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A B S T R A C T

Heavy ion collisions performed at facilities such as the Large Hadron Collider (LHC)

and the Relativistic Heavy Ion Collider (RHIC) produce the hottest matter in the

universe at ∼ 1012 K. This generates an energetic state of matter in which quarks

and gluons become deconfined, known as the Quark Gluon Plasma. However, this

material only survives for approximately 10−23 seconds, presenting many challenges

for precise study.

This thesis uses Bayesian methods for systematic model-to-data comparison to

quantify the properties of this material with a fully state-of-the-art hybrid model of

heavy ion collisions. The hybrid model consists of IP-Glasma for the initial collision

and pre-equilibrium evolution, 2+1D MUSIC viscous hydrodynamics, iS3D particliza-

tion, and SMASH for the hadronic cascade. This work has produced the most accurate

and precise constraint in the literature on the understanding of the shear and bulk vis-

cosity, energy scale, hydrodynamic onset time, and particlization temperature of the

Quark Gluon Plasma. By using a pre-equilibrium model with physically-motivated

microscopic physics for the first time, the sensitivity of experimental results to ma-

terial properties of the plasma has been revealed. This highlights the importance of

accurately incorporating pre-equilibrium physics in the hybrid model to describe the

hydrodynamic evolution.

Sensitivity of inferred parameters to modeling choices is investigated with model

averaging and computational improvements are realized through computer experi-

ment design (an ordered Maximum Projection Latin Hypercube) and transfer learn-

ing, both of which are applied to the study of heavy ion collisions for the first time.

Importantly, this work also lays the foundations for further extensions using transfer

learning.
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R E S U M É

Les collisions d’ions lourds menées au Grand collisionneur de hadrons (LHC) et au

Collisionneur d’ions lourds relativistes (RHIC) produisent la matière la plus chaude

de l’univers, à ∼ 1012 K. Ces conditions sont propices à la création d’un état de la

matière où quarks et gluons se déconfinent, soit le plasma de quarks-gluons. Cet état

est toutefois éphémère puisqu’il ne survit qu’environ 10−23 secondes, compliquant

ainsi toute analyse expérimentale précise.

Cette thèse de doctorat emploie les méthodes bayésiennes dans la comparaison sys-

tématique de modèle avec des données expérimentales pour quantifier les propriétés

de cet état en s’appuyant sur un modèle hybride des collisions d’ions lourds. Les com-

posantes du modèle sont IP-Glasma pour les conditions initiales et l’évolution pré-

équilibre, MUSIC pour l’évolution hydrodynamique visqueuse en 2+1D et SMASH

pour la cascade hadronique finale. Cette recherche établie les contraintes les plus pré-

cises sur les viscosités de cisaillement et de volume, l’échelle énergétique, le temps

de commencement de la phase hydrodynamique et la température de fragmentation

particulaire du plasma de quarks-gluons. En se basant sur un modèle de la physique

microscopique pré-équilibre (soit IP-Glasma) pour la toute première fois, la sensi-

bilité des résultats expérimentaux aux propriétés matérielles du plasma sont révélées.

Ces découvertes soulignent l’importance de modèles physiques de pré-équilibre pour

l’évolution hydrodynamique.

La sensibilité des paramètres liés au choix du modèle est étudiée en faisant une

moyenne statistique de modèles. De plus, des améliorations de calculs informatiques

ont été réalisées grâce à l’utilisation d’une procédure informatique expérimentale

(dite “ordered Maximum Projection Latin Hypercube”) et l’apprentissage par trans-

fert, dont l’usage combiné est une première dans l’étude des collisions d’ions lourds.

Ce travail servira aussi de fondation pour de futures extensions employant l’apprentissage

par transfert.
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C O N T R I B U T I O N O F A U T H O R T O O R I G I N A L K N O W L E D G E

Chapters 1-3 These chapters are a general introduction to heavy ion collisions, modeling the

soft sector, and statistical methods with a review of relevant literature. In chap-

ter 3, I use the simple pendulum as a tractable example to demonstrate Bayesian

inference and Bayesian modeling workflow. The idea and implementation are

novel and performed by me, first appearing in pre-print in [1], but adapted for

this thesis.

Chapter 4 This chapter produces novel comparisons and analysis between the existing

state-of-the-art models and the models used in this work to motivate the main

study in this thesis. The comparisons were performed by me as well as a sub-

stantial number of the underlying computations. Some comparisons previously

appeared in [2]. The chapter then motivates and discusses design considerations

for a new Bayesian study, with some comparisons previously appearing in [3].

These motivations and design considerations are novel to this thesis. The inves-

tigation of design space sampling strategies is also novel to this thesis and this

thesis employs an ordered Maximum Projection Latin Hypercube design for the

first time in heavy ion collisions.

Chapter 5 This chapter investigates the pre-equilibrium stage in isolation. I developed

significant automation to produce the underlying calculations on high perfor-

mance computing infrastructure. I then implemented the inference, analysis,

and discussion and they are novel to this thesis. I also implemented non-uniform

priors for the first time in a Bayesian study of heavy ion collisions and moti-

vated a larger-scale Bayesian study of a hybrid model with an IP-Glasma pre-

equilibrium stage.

Chapter 6 I designed, adapted software, implemented, and executed a global Bayesian

analysis of heavy ion collisions using a hybrid model with an IP-Glasma pre-

equilibrium stage. I performed calculations requiring approximately 500 core-



years of computing resources and 100 TB of storage on high performance com-

puting infrastructure. I implemented a linear transfer learning model, first pro-

posed with proof of concept by coauthors and myself in [4], but never before

implemented or used in practice for Bayesian inference in heavy ion collisions.

I inferred the properties of matter produced in heavy-ion collisions and used

Bayesian model comparison to reveal physical features required by the data. I

used Bayesian model averaging to produce best estimates with uncertainty of

the properties of strongly-interacting matter. I calculated physical observables

with maximum a posteriori configurations of the model and make predictions.

xxiv



Part I

P H Y S I C A L F O U N D AT I O N S

This part provides an introduction to heavy ion physics as well as the

phenomenology investigated in this thesis, with a review of relevant liter-

ature. The multi-stage physics model used for simulation is described and

important considerations are discussed.





1
I N T R O D U C T I O N T O H E AV Y I O N C O L L I S I O N S

On 15 September 1896, two unmanned railway locomotives were crashed into each

other at high speed in a publicity stunt known as “The Crash at Crush”. Imagine

yourself to be an enthusiastic student of thermodynamics who arrived at the site of

the crash, which had remained untouched for a century, knowing only that two loco-

motives collided and wishing to learn about heat engines such as the steam engine

in the locomotives. If this student’s only way of studying heat engines were to col-

lide many different models of period trains until the scattered parts resembled those

at the Crash at Crush, they would be on their way to being a heavy-ion physicist

attempting to study the quark-gluon plasma produced in heavy ion collisions.

Figure 1.1: The moment of collision of the Crash at Crush [5].

Modeling heavy-ion collisions is a challenging exercise: the system is extraordinar-

ily dynamic, but occurs so quickly that it is difficult to gain direct insight. Instead, the

material produced must be studied using the particles that reach the detectors. While

the thermodynamics enthusiast arrived armed with a knowledge of thermodynamics,

3



4 introduction to heavy ion collisions

those curious about quark-gluon plasma must arm themselves with the fundamental

theory of the strong nuclear force.

1.1 quantum chromodynamics

Four broadly-independent forces describe the present understanding of nature: elec-

tromagnetism, gravitation, and the strong and weak nuclear forces. Electromagnetism

and the weak nuclear force are unified at high energy scales and become the elec-

troweak interaction. This thesis is concerned with studying the strong nuclear force,

described by Quantum ChromoDynamics (QCD). This theory governs the dynamics

of quarks and gluons and has three charges. These charges are described in analogy

to the colors of light, hence the term “chromo”, and composite particles are always

color-neutral. The color-neutral state is called “white” and the charges are red, green,

and blue.

The QCD Lagrangian,

LQCD = ψ̄q,a

(
iγµ∂µδab − gsγ

µtCabA
C
µ −mqδab

)
ψq,b −

1

4
FAµνF

Aµν, (1.1)

FAµν = ∂µA
A
ν − ∂νA

A
µ − gsfABCA

B
µA

C
ν , (1.2)

characterizes the strong interaction. LQCD is the QCD Lagrangian and gs is the QCD

coupling constant. Color indices are (a,b), the gluon indices (A,B,C), the SU(3) gen-

erators (tCab), and the structure constants fABC arise by the commutation relation[
tA, tB

]
= ifABCt

C [6]. Throughout this thesis, repeated indices such as in the QCD

Lagrangian, are summed over.

The strength of the QCD coupling poses a unique challenge. In Quantum Electro-

dynamics (QED) and the weak nuclear force, the coupling is small at low energies

and increases with increasing energy scale. The strong force behaves differently; it

is comparatively strong at low energies and decreases in strength at progressively

higher energies. This is revealed by the sign of the QCD β function,

β(g) = −
g3

(4π)2

(
11Nc − 2nf

3

)
, (1.3)

where g is the strong coupling constant, Nc is the number of colors, and nf is the

number of approximately massless quark flavors (2 in QCD). The negative sign of the
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QCD β function arises because of the gluon self-coupling. The β function describes

the rate of change of the renormalized coupling αs(Q) as the renormalization scale

(i.e. energy scale) Q is varied,

αs(Q) = −
g3

8πβ(g) log(Q/Λ)

=
6π

(11Nc − 2nf)log(Q/Λ)
(1.4)

where Λ is a scale parameter, usually taken to be ≈ 200 MeV and Nc = 3 for QCD [7].

The renormalized coupling αs thus clearly decreases with increasing energy.

A standard mathematical tool for investigating the behavior of forces is pertur-

bation theory, which assumes a weak coupling. This is not the case for the strong

force at low energies. As a result, its low energy behavior is difficult to calculate.

Non-perturbative numerical techniques on the lattice (Lattice QCD) excel above the

deconfinement transition or crossover temperature [8] where the degrees of freedom

are quarks and gluons but do not smoothly connect to the hadronic phase. However,

at high energies, QCD is weakly interacting and perturbative calculations are possi-

ble. The running of the strong coupling αs with energy scale Q is shown in Fig. 1.2.

Figure 1.2: The running of the QCD coupling constant with energy scale Q, adapted from [9].
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Exotic phases of nuclear matter are theorized to exist in different regions of the

QCD phase diagram (Fig. 1.3). Of these phases, the high-temperature plasma of

quarks and gluons, transitioning to a hadron gas, is the primary focus of this work.

Figure 1.3: A schematic QCD phase diagram, adapted from [10]. The estimated crossover

temperature is from [11].

Significant efforts are underway to understand the collective behavior of quarks

and gluons and involves constructing models of relativistic hydrodynamics. This is

used to explore the physics and reproduce observable quantities from the collision

of heavy ions at particle accelerators [12], such as the Relativistic Heavy-Ion Col-

lider (RHIC) at Brookhaven National Laboratory in New York and the Large Hadron

Collider (LHC) in Geneva. RHIC and the LHC determined that heavy-ion collisions

create such a macroscopic state of quarks and gluons that behaves as a strongly-

interacting viscous fluid [13]. As it is a viscous fluid, the dynamics of this macro-

scopic state can be described using transport coefficients such as shear viscosity, bulk

viscosity, and charge conductivity. Transport coefficients determine how the medium

reacts to small deviations from equilibrium. These transport coefficients can either
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be determined through microscopic calculations [14–18] or through inference using

model-to-data comparison. Determining the value and temperature dependence of

transport coefficients and other properties of the medium using statistical learning is

the central focus of this work.

In the low-temperature region, QCD matter forms a gas of hadrons. In the high-

temperature region, QCD matter takes the form of a plasma of quarks and gluons.

The transition between the hadron gas and quark-gluon plasma occurs in a crossover

region [19, 20], shown in Fig. 1.3, and estimated to be at 155± 1.5 MeV [11]. At higher

net baryon density, a first-order phase transition has been predicted [20, 21]. This

implies the existence of a critical point where there ceases to be a crossover from the

hadron gas to a quark-gluon plasma. The investigation of the critical point is a subject

of intense effort, but is beyond the scope of this work.

1.2 heavy ion collisions

When heavy ions such as lead or gold collide, there are initial large gradients and high

energies in a phase strongly out of equilibrium. Then, the system approaches local

thermal equilibrium and enters an intermediary region. In this intermediate energy

region, the droplets of strongly coupled matter are well-described by hydrodynamics.

Like a fireball, the strongly coupled matter expands and cools, eventually forming a

gas of hadrons. Finally, the mean free path becomes long and the system is no longer

well-described by hydrodynamics, but is better described by a lower-energy hadron

gas. This hadronic ensemble interacts until it becomes sufficiently dilute and travels

to the detectors. These stages are shown in Fig. 1.4. This description is the “standard

model” of the soft sector of heavy ion physics and has been constrained by years of

data-taking and theoretical modeling. For recent reviews, including experimental evi-

dence for collective behavior, see [22, 23]. The “soft” sector indicates that jet physics is

not considered at this level although interactions between jets and the hydrodynamic

medium are the subject of active research [24–26]. This thesis is focused exclusively

on studying the soft sector of heavy ion collisions.

As described previously, the stages shown in Fig. 1.4 can be condensed into three

epochs: pre-equilibrium and thermalization, hydrodynamics, and hadronization. Ad-
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Figure 1.4: Stages of heavy ion collisions, adapted from [27].

vanced hybrid model simulations of heavy ion collisions with a hydrodynamic stage

have been successful in reproducing hadronic observables [28–30]. This supports the

notion that hydrodynamics is an accurate effective field theory of the long wavelength

modes and is applicable when the mean free path is short relative to the size of the

system. As the system cools and expands, the mean free path grows to the point

where hydrodynamics is no longer applicable. This is known as particlization. After

this, a “hadronic afterburner” can be used to evolve particles from the end of hydrody-

namics to the particle shower observed in detectors. Two examples of contemporary

hadronic afterburners are UrQMD [31] and SMASH [32].

The evolution from collision to freezeout all takes place within approximately 10

fm/c, or 1× 10−22 seconds. As a result, it is not possible to directly observe each stage

as one would with a traditional microscope or camera. Instead, the only way to image

these dynamics is via particles that reach the detectors. The traditional coordinate sys-

tem used is with the z-axis along the beam and with x and y denoting the transverse

plane. The momenta of the particles is recorded, typically the transverse momentum

pT =
√
p2x + p

2
y and the azimuthal angle in momentum space φp = arctan

(
px
py

)
. Ad-

ditional kinematic variables that will be used throughout this thesis are the rapidity

y =
1

2
ln
(
E+ pz
E− pz

)
(1.5)

where E is the energy E =
√

p2 +m2. Pseudorapidity η is also often used and is

identical to the rapidity for massless particles,

η =
1

2
ln
(
|p|+ pz
|p|− pz

)
(1.6)
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where bold has been used to denote the momentum three-vector. This slightly over-

subscribes the notation, with η representing both the pseudorapidity and the shear

viscosity. The shear viscosity is always referred to as the specific shear viscosity η/s

and the difference will always be made clear in context. This thesis specifically con-

siders models that assume boost-invariance, i.e. without longitudinal structure. This

approximation is best at mid-rapidity, and so comparisons are often made within a

small rapidity (or pseudo-rapidity) window such as |η| < 0.5, chosen to match exper-

imental measurement. This is the case for the charged hadron multiplicity dNch/dη

or identified particle yields, e.g. dNπ+/dy. A more complete reference for particle

kinematics, as well as particle listings, can be found in [6].

While such overall yields and multiplicity provide information about the overall

size of the material produced, the geometry is revealed by the azimuthal angle of the

particles φp. Each collision produces many particles, whose spectra can be decom-

posed with a Fourier series in azimuthal angle, e.g.

dNch
pTdpTdydφp

=
dNch

2πpTdpTdy

{
1+ 2

∞∑
n=1

vn(y,pT ) cos [n(φp −Ψn(y,pT ))]

}
(1.7)

where Ψn denote the event plane angle, or the offset of the overall angular orientation

from 0. The expansion coefficients of this series vn yield valuable geometric insights

and are an important observable used throughout this thesis. Because these expan-

sion coefficients vn reveal information about the momentum-space geometry, they

are a key probe of collective behavior and are thus an ideal way to learn about the

hydrodynamic stage.

This begins to yield a glance at how heavy ion collisions can be imaged, with the

size and geometry characterized through detected particles. More quantities can be

carefully constructed, yielding insight into different aspects of the collision. Examples

of how different particle species and quantities provide multi-messenger insight into

the evolution of heavy ion collisions may be found in [33]. Despite such success in

reconstructing the collision, the hadrons detected in experiments are all produced at

relatively late stages of the collision. Understanding the early stages of the collision

must use additional probes, such as particles that only interact electromagnetically as

they traverse the medium, or an extensive campaign of model building and systematic

comparison to data.
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1.3 status of bayesian studies in hics

Theoretical study of heavy ion collisions has produced many physical insights but

has only recently begun to incorporate more advanced statistical methods. These sta-

tistical methods are a key step in gaining quantitative insight, but also in quantifying

uncertainty. This quantification with uncertainty is beginning to yield guidance for

theoretical efforts.

The first efforts in heavy ion collisions to gain quantitative insights using ad-

vanced statistical techniques for model-to-data comparison were [34, 35] followed

by the MADAI collaboration [36]. These used simpler hybrid models without any

pre-equilibrium dynamics and demonstrated the wealth of information that could be

gained through systematic comparison.

These analyses were improved on by the DukeQCD research efforts [37–44], which

also introduced a more flexible parametric model to allow the data to speak more

for itself rather than priming the extractions with constraining prior assumptions.

These analyses used a more sophisticated hybrid model, including pre-equilibrium

dynamics in the form of free streaming. They also considered p+A and A+A collisions

simultaneously for the first time and introduced more systematic treatments about

questions such as surrogate models and principal component analysis. The work of

the DukeQCD group set the field on a firm foundation.

These efforts have inspired numerous others, most prominently the JETSCAPE Col-

laboration’s study of the soft sector [45, 46], with which I was involved. This effort,

along with the thesis of D. Everett [47], represents the current state-of-the-art in heavy

ion collisions. This analysis used Bayesian model selection and Bayesian model aver-

aging to assess previously unquantified sources of uncertainty for the first time. This

analysis also resolved several outstanding or previously-unexplored issues present in

previous analyses, such as the treatment of the σ meson. The application of Bayesian

tools to heavy ion collisions beyond the soft sector is also becoming increasingly com-

mon, c.f. [48, 49].

Other soft-sector Bayesian efforts have been published recently, such as [50–53], and

have been primarily focused on increasing statistical power in model calculations or

incorporating additional observables. Only one of these studies has explicitly consid-
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ered the use of more advanced observables, such as symmetric cumulants, in con-

straining the transport properties of QGP [53]. Despite different levels of complexity,

all of these have used simplified parametric models of the initial state without micro-

scopic physics. A parametric model of the initial state, TRENTo [37, 42], has been used

to extract physically relevant and meaningful quantities with apparent success in all

of these studies. This is typically followed by a parametrized set of dynamics, such as

freestreaming, resulting in sharp discontinuities at the transition to hydrodynamics

in addition to other systematic, unquantified uncertainties [2].

1.4 present investigation

This thesis is in support of the ongoing campaign of model building and systematic

model-to-data comparison. It introduces a structured workflow for Bayesian model-

ing to heavy ion collisions for the first time. I will further extend the literature by us-

ing a physically-motivated microscopic physics model in a comprehensive Bayesian

study – IP-Glasma [54]. IP-Glasma uses information from deep inelastic scattering

(DIS) experiments to constrain the gluon saturation scale before evolving gluon gauge

fields with the classical Yang-Mills (CYM) equations. Further details of the IP-Glasma

model are provided in the following chapter. I will use the IP-Glasma model for the

pre-equilibrium stage, allowing for a consistent theoretical treatment of both initial

energy deposition and pre-equilibrium evolution to the onset of hydrodynamics. I

also demonstrate novel contributions to computer experiment design and statistical

learning in heavy ion collisions to more efficiently and systematically explore the

parameter space of this study.

With these extensions, I proceed to embed the hybrid model into a Bayesian study

of the quark-gluon plasma to systematically test a CGC-based model for the first

time. I do so with a focus on Pb-Pb collisions at the LHC with
√
sNN = 2.76 TeV. I

first demonstrate constraint, and a new total covariance, in the parameter space of the

IP-Glasma model. I demonstrate otherwise that the hybrid model with an IP-Glasma

initial state can be constrained by final-state observables and is self-consistent, i.e. it

can recover known inputs. I then proceed to perform an 11-dimensional study of

the parameter space of the full hybrid model using final state observables believed
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to have constraining power on the temperature-dependence of the shear and bulk

viscosity. With this study, I will constrain the overall energy scale as well as the onset

of hydrodynamics, the particlization temperature, and the specific shear and bulk

viscosities. Finally, I incorporate a transfer learning approach [4] to investigate similar

models in a computationally-efficient way.

The goal of this work is to more accurately describe the state of knowledge of

the properties of strongly-interacting matter in heavy ion collisions by using the best

tools and information available. To do this, realistic physical models and advanced

statistical techniques are applied in order to precisely, but accurately, describe phys-

ical constraint and modeling uncertainty. Critically, this goes beyond a model fitting

exercise where a specific parameter “tune” is the result: the goal of this thesis is to

rigorously improve the understanding of the strongly-interacting matter produced

in heavy ion collisions through systematic comparison of physical models to experi-

mental measurements. The result of this work is the state of knowledge posterior to

comparison of model calculations to experimental results. This result may also be

used to improve other studies that utilize a hybrid model of the soft sector of heavy

ion collisions and the best estimates of its properties to study other phenomena. For

example, this will provide a new background for both jet physics and photon/dilep-

ton studies that rely on a calibrated soft sector.

The thesis is organized as follows: Part I introduces the physical foundations of

heavy ion physics and the models used for the soft sector (Chapter 2). In Part II,

the statistical framework is introduced in Chapter 3 and demonstrated in a peda-

gogical example. Detailed numerical comparisons between the current state of the

art Bayesian and IP-Glasma studies, followed by design considerations and advances

are shown in Chapter 4. Chapter 5 investigates the self-consistency and sensitivity of

IP-Glasma as the pre-equilibrium stage. Chapter 6 performs the full 11-dimensional

study. In the final chapter, I discuss the results from the totality of the thesis, conclude,

and describe the outlook for future work.
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1.4.1 Note on conventions

The mostly negative Minkowski metric signature (+,−,−,−) is used as well as units

where  h = c = kB = 1 unless otherwise noted. Here, c is the speed of light,  h is

the reduced Planck’s constant, and kB is the Boltzmann constant. Reference values

for these constants are c = 299792458 ms−1,  h = (6.62607015 × 10−34)/2π Js, and

kB = 1.380649× 10−23 JK−1 and they are a subset of the defining constants of the In-

ternational System of Units (SI) [55]. These units allow for straightforward conversion

between time, space, energy, and temperature. For example,  hc = 0.19733 GeV fm = 1

in these units. The standard notation β = 1/T is also used throughout. Oversubscrip-

tion of notation is somewhat unavoidable, but is disambiguated in the body of the

text.





2
M O D E L I N G T H E S O F T S E C T O R

Now that the broad physics of heavy ion physics has been introduced, it is time to

introduce each model in turn. As seen in Fig. 1.4, there are three broad stages of

heavy ion collisions:

1. Initial energy deposition and pre-equilibrium dynamics,

2. Relativistic viscous hydrodynamics, and

3. Hadronic interactions.

In the first stage, the nuclei collide, deposit energy, and are driven toward (local)

equilibrium by some dynamics in this extremely energetic material. In the follow-

ing stage, the material interacts hydrodynamically as it approaches local equilibrium.

Next, the mean free path of individual particles becomes long enough that the ma-

terial ceases to be hydrodynamic, but interacts more like a gas of particles. The hy-

drodynamic medium transitions into particles via “particlization”, which remains an

area of active research and a source of theoretical uncertainty. The resulting hadron

gas is evolved to late times where they can be compared to experimental measure-

ments. In this chapter, I will elucidate details of each stage as well as the model I use

to describe it. However, this space is insufficient to provide a detailed technical report

on each model. For such insight, I refer to relevant literature.

2.1 pre-equilibrium dynamics – ip-glasma

IP-Glasma is a QCD-based pre-equilibrium (initial state) model for heavy ion colli-

sions [28, 54, 56, 57]. It incorporates small momentum fraction gluon saturation using

the Impact Parameter SATuration (IPSAT) model [58] and then evolves the resuling

semi-classical gluon fields [59–62]. IP-Glasma was first implemented in [54] and in an

improved computational formulation by [28, 57].

15
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The theoretical underpinning of IP-Glasma is the Color Glass Condensate (CGC)

framework. This framework is an effective theory of QCD in the limit where glu-

ons dominate a system. Color refers to the three color charges in QCD. In the CGC

framework, the boosted partons that source the gluon field experience time dilation

and are “frozen” during the interactions between the two nuclei, but are of course

still dynamic. The epithet “condensate” arises as the phase space density of gluons

is high and these gluons behave coherently over length scales proportional to their

saturation scale, Qs, discussed further below.

CGC’s connection to QCD becomes transparent when comparing the CGC and

QCD actions. The QCD action is

SQCD =

∫
d4x

(
−
1

4
FaµνF

µνa + ψ̄f
(
i /D−mf

)
ψf

)
, (2.1)

where f is an index over quark flavors, a is an index 1-8 over colors, and Feynman’s

slash notation has been used. Once again, repeated indices denote summation by

convention. Fµν is the field strength tensor,

Faµν = ∂µA
a
ν − ∂νA

a
µ + gstrongf

abcAbµA
c
ν, (2.2)

and the covariant derivative is

Dµ = ∂µ − igstrongA
a
µt
a (2.3)

where gstrong is the strong coupling constant. The CGC action is the QCD action

without dynamical quarks [59],

SCGC =

∫
d4x

(
−
1

4
FaµνF

µνa + JµaAaµ

)
. (2.4)

The first term is identical between QCD and the CGC, but differences arise in the

second term. The CGC separates fast and slow degrees of freedom: the fast partons

(quarks) act as sources Jµa for the slow parton (gluon) gauge fields Aaµ. The separation

between fast and slow partons is determined using the momentum fraction x = k
P

where k is the momentum of an individual parton while P is the total momentum of

the nucleon.

The CGC is an appropriate effective theory for QCD in heavy ion collisions because

at the relativistic velocities at which the collisions occur, the system is very nearly only
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Figure 2.1: Parton distribution functions (PDFs) from HERA, adapted from [64]. xuv denotes

the up quark PDF, xdv the down quark PDF, xS the sea quark PDF, and xg the

gluon PDF. Note that the gluon and sea quark PDFs have been scaled dramatically.

gluons. Using the CMS fit [63], x ≈ 10−4 at LHC energies, which corresponds to the

very lefthand margin of Fig. 2.1, where gluons dominate the momentum fraction.

At the LHC, Pb+Pb collisions currently take place at either
√
sNN = 2.76 or 5.02

TeV. To determine the Lorentz factor,

γ =
E

m
=

√
s

2m
. (2.5)

For 2.76 TeV collisions, this yields γ ≈ 1470 for protons and neutrons while for 5.02

TeV, this yields γ ≈ 2510. A lead nucleus has an approximate radius of 7 fm, thus the

length contraction of the nuclei is

Rcontracted =
2RPb
γ

=
14fm

1470
≈ 0.009fm. (2.6)

It follows from this that it is reasonable to approximate the nucleus as a 2-dimensional

pancake. The CGC framework assumes that the colliding nuclei are perfectly frozen,
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i.e. moving with the speed of light. For the purposes of heavy ion collisions with such

a large γ, it is clear that treating the fermions in the nucleus as frozen sources is not

far from the truth because of time dilation with the same γ.

Now that the use of the CGC framework has been motivated, it is time to turn to

the details of IP-Glasma. This section condenses, but broadly follows, the discussion

in [57] and references therein.

As the nuclei are “frozen” and moving at the speed of light, they are on the light

cone. As a result, the color currents can only be delta functions moving on the light

cone,

Jµa(x) = ρa(A) (x⊥) δ
µ+δ

(
x−
)
+ ρa(B) (x⊥) δ

µ−δ
(
x+
)

(2.7)

where A and B denote the colliding nuclei. The charge density distribution is sampled

stochastically and cannot be determined analytically in event-by-event collisions.

The next piece of the puzzle comes in the form of the Classical Yang-Mills (CYM)

field and equations of motion. In electromagnetism, there is a scalar charge. The

Yang-Mills equations generalize Maxwell’s Equations from a scalar charge to a vector

of charges, i.e. multiple charges. QCD has three color charges and the equations of

motion can be derived by varying the action, resulting in

[Dµ, Fµν]a = Jνa. (2.8)

This source is the same as the source of the color currents along the light cone. This

is familiar from electromagnetism (c.f. [65]), but with an additional color index a.

For details of the derivation as well as technical implications, the interested reader is

referred to the seminal McLerran-Venugopalan model [66–68], early IP-Glasma work

[54], and relevant theses [57, 69].

The gauge fields (Aaµ in the action and field strength tensor) satisfy a two-dimensional

Poisson equation where gauge fields go to zero as x⊥ goes to infinity.

−∇2⊥A±C = J± = gstrongρ(x
∓, x⊥) (2.9)

where subscript C denotes that the field is in the covariant gauge. Thus, the gauge

fields of a nucleus prior to collision may be constructed. Of course, in heavy ion

collisions, the quantity of interest is the gauge field of two 2D colliding nuclei. In this

case, two sources moving on the x± axes are summed,

J = gstrongρA
(
x−, x⊥

)
+ gstrongρB

(
x+, x⊥

)
(2.10)
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and A± = 0,

Ai = θ
(
x−
)
θ
(
−x+

)
AiA (x⊥) + θ

(
x+
)
θ
(
x−
)
AiB (x⊥) (2.11)

satisfy the equations of motion prior to the collision where AA and AB are the non-

Abelian gauge fields of nuclei A and B prior to the collision. The discontinuity of the

fields across the nuclei gives the charge density, in which the physical information is

embedded. This can be written as

∇iAiA(B) = ρA(B)(x⊥), (2.12)

which is simply Gauss’ Law. Next, the initial condition is uniquely determined by the

gauge fields before the collision in an initial value problem. This relies explicitly on

the charge distributions. Once the initial condition has been determined, the gauge

fields can be evolved using the equations of motion.

Solving the Poisson equation to determine the pre-collision fields is therefore all

that stands in the way of a theoretical solution to implement computationally.

Beginning with the Poisson equation, but suppressing x± and the color index yields

−∇2⊥A
+(−)
a = gstrongρa(x

−(+)) (2.13)

and the Fourier transform may be written

A(k⊥) =
gstrongρ(k⊥)

k2⊥
. (2.14)

This equation can then be solved and the inverse Fourier transform taken to find the

gauge field at any position in the transverse plane. These gauge fields in position

space are the initial conditions for the pre-equilibrium evolution. The path-ordered

exponential of this gauge field gives the Wilson Line [70]

V (x⊥) = Pe
i
∫
dx−A+(x−,x⊥). (2.15)

Discretizing this equation and connecting it to a gauge transformation yields the

initial gauge fields. These are the fields that are then evolved using the CYM equa-

tions as the pre-equilibrium phase of the collision. Implementing this process on a

computational lattice is a technically-involved process which can only be given a de-

tailed treatment in a dedicated work. However, this brief introduction should serve as
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a conceptual introduction to CGC-based pre-equilibrium models and demonstrates

the degree of first-principles theory involved compared to parametric ansätze used in

other works.

A basic recipe for IP-Glasma is given below, adapted from [57] for a (2+1)D study:

1. Determine nuclei positions. This can be done by sampling from a Woods-Saxon

distribution, but this work exploits pre-calculated nucleon configurations that

include nucleon-nucleon correlations [71].

2. Sample impact parameter from

P(b)db =
2b

b2max − b
2
min

db (2.16)

and shift nucleus A(B) by +(−)b/2 in the x-direction.

3. Sum contributions from individual nucleons to construct the nuclear thickness

function

Tnucleus(x) =
A∑
i=1

e(x−xi)2/2BG

2πBG
(2.17)

where BG denotes the size of the nucleon hot spots.

4. Compute the saturation scale Q2s at midrapidity using IPSAT,

Q2s =
1

r2s
=
π2

Nc
αs(µ

2(r2))xg(x,µ2(r2))T(b) (2.18)

where µ is the energy scale of the interaction at which deep inelastic scattering

takes place, xg is the gluon PDF, Nc is the number of colors and Qs ∝ g2strongµ;

or, perhaps more intuitively, Qs
g2strongµ

= const. This proportionality must be esti-

mated from data and is the parameter µQs throughout this thesis. Throughout

this work, Nc = 3, corresponding to QCD. Constraining µQs using experimental

data is one of the goals of this thesis, as is investigating simultaneous constraint

on gstrong.

5. Sample the color charge density using

〈ρaA(B)(x⊥)ρ
b
A(B)(x⊥)〉 = g

2
strongµ

2
A(B)(x, x⊥)δabδ2(x⊥ − y⊥) (2.19)
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6. Solve the Poisson equation

∇2⊥Aa = ρa (2.20)

This is simplified in 2D, since Aη is zero at τ = 0 fm [57]. As each spatial com-

ponent results in 8 new colour gauge fields, the lack of an η direction reduces

the complexity of the problem.

7. Construct Wilson lines at midrapidity (η = 0) for a 2+1D simulation, as the

boost-invariant approximation is most accurate at midrapidity.

8. Construct pure gauge fields for each nucleus

A
A(B)
µ = −

i

gstrong
VA(B)∂µV

A(B)† (2.21)

9. Solve Gauss’ Law. In 2D, this becomes trivial because derivatives in the η direc-

tion vanish, leaving [Di,Ei] = 0, whose solution is simply Ei = 0 and the initial

transverse fields start at 0.

10. Evolve using the sourceless classical Yang-Mills equations of motion

[Dµ, Fµν] = 0. (2.22)

Note that as the sources for the initial gauge fields travel at the speed of light,

they are now causally disconnected from the evolution and thus cannot source

new fields.

11. Construct the energy-momentum tensor Tµν

Tµν = −gµαgνβgγδFαγFβδ +
1

4
gµνgαγgβδFαβFγδ (2.23)

12. Diagonalize Tµν

Tµνu
ν = εuµ (2.24)

13. Separate Tµν into ideal and viscous components to initialize the hydrodynamic

evolution
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2.2 relativistic viscous hydrodynamics – music

Hydrodynamics is an effective theory of long-wavelength modes. Practically, this

means that the evolution of a collection of differential elements can be described not

by tracking microscopic particles, but considering their long-wavelength (or spatially-

coarse) collective motion. Analogously, to model a hurricane or storm front, it is not

necessary (or even relevant) to model the behavior of every constituent water droplet

or molecule of air. Instead, the collective dynamics at a much larger scale reveal the

physics of interest.

In this section, I will introduce the basic equations of relativistic viscous hydro-

dynamics broadly following a similar discussion in [30]. However, the equations of

relativistic viscous hydrodynamics can describe any hydrodynamic evolution. To con-

nect this to heavy ion physics explicitly, I will also discuss details of the equation

of state. With this connection, I motivate the functional form of the shear and bulk

viscosity used in this thesis.

It is traditional to proceed by introducing the energy-momentum tensor order-by-

order in the deviation from equilibrium. I will begin by introducing the ideal energy-

momentum tensor and proceed to add dissipative (viscous) elements.

The ideal symmetric energy-momentum tensor is

T
µν
ideal = −Pgµν +wuµuν (2.25)

where P is the temperature-dependent pressure (the functional dependence on tem-

perature T is suppressed for clarity), s = dP/dT is the entropy density, w = Ts is the

enthalpy density, and gµν is the metric tensor. This is also commonly written in the

equivalent form

T
µν
ideal = (ε+ P)uµuν − Pgµν (2.26)
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using the relation Ts = ε+ P. In this thesis, I use the Landau frame1 where uµ(x)

is the velocity of energy transport. This is also known as enforcing the eigenvalue

equation

uµT
µν = εuν. (2.27)

The energy-momentum tensor is next extended to first order in deviation from

equilibrium, where shear and bulk viscosity are encountered for the first time. This

is called “Navier-Stokes” hydrodynamics. Because of the choice of the Landau frame,

uµ∆T
µν = 0, where ∆Tµν is the first order deviation from the ideal energy-momentum

tensor. The full energy-momentum tensor thus becomes

T
µν
N.S. = T

µν
ideal +∆T

µν (2.28)

∆Tµν = η

(
Dµuν +Dνuu −

2

3
∆µν∂ρu

ρ

)
+ ζ∆µν∂ρu

ρ (2.29)

with the projection tensor

∆µν = gµν − uµuν (2.30)

and the covariant derivative

Dµ = ∂µ − uµu
β∂β, (2.31)

both of which are normal to the flow uµ.

In the local rest frame, the change in the entropy current sµ = suµ is given by

∂µs
µ =

η

2T

(
∂iuj + ∂jui −

2

3
δij∇ · u

)2
+
ζ

T
(∇ · u)2 (2.32)

The non-decrease of entropy must be respected. As a result, the shear viscosity η and

the bulk viscosity ζ must be non-negative.2

Thus far, the focus has been on the gradient expansion to the first order. However,

the first order expansion is insufficient for relativistic fluids because it is possible

for acausal propagation of information via superluminal flow [72], although recent

1 An alternate frame, the Eckart frame, considers the velocity of baryon number flow. In this thesis,

the system’s conserved quantum numbers are set to be identically 0 and the Eckart frame cannot be

applied.
2 As s is an overall multiplicative factor in the entropy current, the same requirement of non-negative

specific shear (η/s) and bulk (ζ/s) viscosity naturally follows.



24 modeling the soft sector

progress has been made in the search for causal theories [73–76]. In this thesis, second-

order viscous hydrodynamics is used.

The first derivation of second-order viscous hydrodynamics was by Müller, Israel,

and Stewart [77, 78]. Müller-Israel-Stewart adds transport coefficients in the form of

shear and bulk relaxation times, as well as two additional hydrodynamic equations,

τππ̇
〈µν〉 + πµv = 2ησµν − 4

3π
µνθ,

τΠΠ̇+Π = −ζθ− 2
3τΠ
Πθ.

(2.33)

As before, η and ζ are the shear and bulk viscosities, respectively. θ = ∂µu
µ is the

expansion rate and σµν = ∂〈µuν〉 is the Navier-Stokes tensor. Π is the bulk pressure

and πµν = 2ησµν is the shear tensor in the Navier-Stokes limit. Finally, the shear and

bulk relaxation times are denoted by τπ and τΠ. The dot above a quantity indicates a

proper time derivative Π̇ = uµ∂µΠ = dΠ/dτ while the brackets 〈〉 refer to the trace-

less part of the symmetrized tensor, π̇〈µν〉 = 1
2

(
π̇µν + π̇νµ − 2

3∆
µνπ̇αα

)
. These shear and

bulk relaxation times characterize the timescale on which shear stress tensor and bulk

pressure approach their first-order solutions, ensuring causal solutions [79]. These en-

sure that superluminal propagation of information does not occur as, for example, in

the absence of shear viscosity, the Navier-Stokes shear tensor decays instantaneously

while the shear relaxation time ensure it decays proportional to exp(−τ/τπ). Recent

works have further investigated and developed second-order hydrodynamic formula-

tions specifically to constrain when hydrodynamics becomes acausal [80, 81].

In this thesis, a variant of Müller-Israel-Stewart hydrodynamics is chosen for the

hydrodynamic simulation. This kinetic-theory-based formulation by Denicol, Niemi,

Molnar, and Rischke – referred to by their initials as DNMR hydrodynamics [82] –

is more commensurate with how modern physical theories are constructed by con-

sideration of all allowable symmetries. It is derived from the relativistic Boltzmann

equation,

pµ∂µfp = C[f]. (2.34)

From left to right, pµ is the four-momentum, fp is the distribution function of a sin-

gle particle, and finally C[f] is the classic Boltzmann collision kernel, where DNMR

hydrodynamics includes 2 → 2 collisions. Terms up to the second order in Knud-

sen number kn = λ
L and shear/bulk inverse Reynolds numbers are included. Small
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Knudsen number quantifies the ratio between microscopic (λ) and macroscopic (L)

length scales, ensuring that a long-range effective theory like hydrodynamics applies.

Small inverse Reynolds number quantifies the ratio of viscous to equilibrium forces

and guarantees the system is not far from equilibrium, so a gradient expansion is still

appropriate.

Specifically, DNMR second-order relativistic viscous hydrodynamics adds the fol-

lowing equations to those of Müller, Israel, and Stewart:

τππ̇
〈µν〉 + πµν = 2ησµν −

4

3
τππ

µνθ+
9

70P
π
〈µ
α π

ν〉α −
10

7
τππ

〈µ
α σ

ν〉α +
6

5
τπΠσ

µν (2.35)

and

τΠΠ̇+Π = −ζθ−
2

3
τΠΠθ+

8

5

(
1

3
− c2s

)
τΠπ

µνσµν (2.36)

where the relaxation times are from the collision kernel and depend on underlying

interactions, providing the timescale by which higher-order dissipative modes decay

toward the Navier-Stokes limit. In this thesis, the relaxation times are fixed by ratios

to viscosity

τπ =
5η

ε+ P
(2.37)

τΠ =
ζ

ε+ P

1

14.55 (1/3− c2s)
2

, (2.38)

where the constants are obtained through an expansion in the relaxation time approx-

imation [83]. DNMR hydrodynamics is implemented numerically in the code known

as MUSIC (MUSCl for Ion Collisions). MUSIC uses the Kuganov-Tadmor (KT) algo-

rithm for calculating spatial derivatives and Heun’s method for temporal derivatives.

It is well-suited to application in heavy ion collisions as the numerical viscosities are

small and the KT algorithm is robust to discontinuities and shock waves. For further

details of MUSIC, including a simple example of the algorithm, see [12, 30].

The transport coefficients of interest in this study, notably η/s and ζ/s, characterize

the first-order deviation from equilibrium in the hydrodynamic medium. This begs

the question, “deviation from what equilibrium?” This is characterized by the Equa-

tion of State (EoS), which is necessary to close the system of hydrodynamic equations

above. Equations of state relate the thermodynamic properties (state variables) such

as pressure, temperature, or entropy density under given conditions. This is where
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the specific material properties of QCD matter inform the hydrodynamic stage and

as a result, must be constructed to be consistent with the model choices. The EoS

at high temperature is matched to lattice calculations [84]. At low temperature, the

EoS matches that of the particle list used in the hadronic cascade, which ensures that

the EoS is continuous across the transition between the two stages. The matching

between the high and low temperature results must be done in a manner consistent

with the QCD crossover, i.e. it must have a smooth crossover rather than a sharp phase

transition at vanishing baryochemical potential.3 Attempts to constrain the equation

of state directly from hadronic observables have shown promise, but as of yet still

have significant remaining uncertainty [91, 92]. The difficulty in constraining the EoS

largely arises from the relative insensitivity of hadronic observables. Active learning

techniques are also being applied to the efforts to characterize the equation of state

[93]. The EoS used in this work smoothly connects the HotQCD calculation [94] at

high temperatures to a list of stable resonances at low temperatures and matches that

of [45] as shown explicitly in Fig. A.1 and the code that produced it is publicly avail-

able with the default parameters [95]. More on constructing a QCD equation of state

as well as detailed comparisons between various candidates may be found in [96–98]

with a Bayesian study focused on constraining the EoS in [36].

2.3 particlization – is3d

As the fireball of quark-gluon plasma expands, it cools and the mean free path be-

tween particles becomes large. The relevant degrees of freedom in hydrodynamics

transitions from being quarks and gluons to being hadrons and, as the medium con-

tinues to cool, it ceases to interact hydrodynamically. Once hydrodynamics is no

longer an effective theory of long-wavelength modes, it is necessary to transition

to a discrete particle description of the strongly-interacting matter. This transition is

known as “particlization.” This is a change in the degrees of freedom from those

of hydrodynamics to particles. In practice, it becomes a change of language in how

3 Discussions of non-zero baryochemical potential are beyond the scope of this thesis, but are a vibrant

field which features a search for a hypothesized QCD critical point [22, 85–90].
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the material is described and occurs in a regime where both hydrodynamics and a

discrete particle kinetic theory are applicable.

To particlize a hydrodynamic medium, the current best practice is to draw a surface

at constant temperature, energy density, or entropy - these choices are equivalent in

the case of zero baryochemical potential, which this thesis strictly respects. This tem-

perature is called the switching, or particlization, temperature.4 Once this surface has

been drawn, particles can be sampled stochastically, respecting energy and momen-

tum conservation on ensemble average. This means that to ensure that the sampled

distribution converges to the true distribution of particles, momenta, etc.. it is nec-

essary to oversample this surface. This is either done a fixed number of times (often

100 to 300 times), or until a sufficient number of particles has been sampled. This

ensures that for large surfaces, where individual fluctuations balance, fewer events

are oversampled, reducing computational cost, while for small surfaces where indi-

vidual samples from the surface have greater variation, more samples are taken and

conservation laws are respected on ensemble average.

The way the sampling is performed is via the Cooper-Frye prescription [101], in

this thesis implemented in iS3D [102]. Given an isothermal (or isentropic, etc.) hy-

persurface Σ with normal vector σµ(x), the invariant momentum spectra of a particle

species i with degeneracy gi is

E
dNi
d3p

=
gi

(2π)3

∫
Σ
fi(x,p)pµdσµ(x) (2.39)

where fi(x,p) is the phase-space distribution. This distribution function reproduces

the energy-momentum tensor of hydrodynamics at the particlization surface,

Tµν(x) =
∑
i

gi
(2π)3

∫
pµpνfi(x,p)

E
d3p. (2.40)

Here, fi(x,p) is species-specific, representing Bose-Einstein statistics for particles with

integer spin and Fermi-Dirac statistics for particles with half-integer spin.

The out-of-equilibrium nature of the material generates interesting physics, but

presents significant mathematical challenges. If at the time of particlization the hydro-

dynamic medium was in equilibrium, the choice of the distribution function would

4 Interesting ongoing work is investigating chemical freezeout. For more on chemical freezeout, see [99,

100].
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simply be the equilibrium form. The rest frame velocity and temperature would be

fixed by the hydrodynamic velocity and the energy density in the local rest frame.

The medium is not in equilibrium and consistency between the kinetic description of

particles and viscous hydrodynamics must be attempted. The shear and bulk stress

– πµν and Π – equate to deviations of the microscopic distributions and yields from

the equilibrium ones. While many different methods to capture these dynamics ex-

ist, there are two main classes: linear and exponentiated viscous corrections. A recent

work has even extended the maximum entropy ideas of statistics and information the-

ory to the problem [103]. This thesis will exclusively consider the more established

linear viscous corrections as these are systematically-improvable. These are Grad’s

14-moment approximation [104] and the linear Chapman-Enskog expansion in the

relaxation time approximation [105]. The following discussion closely follows [102]

and summarizes key parts for completeness.

The distribution function for a fluid out of local equilibrium may be separated as

fi(x,p) = feq,i(x,p) + δfi(x,p) (2.41)

where feq,i(x,p) is the equilibrium distribution function (Bose-Einstein or Fermi-Dirac

for different particle species) and δfi(x,p) is the non-equilibrium correction.5 An ad-

vantage of mapping between a hydrodynamic description and a kinetic theory (par-

ticle) description is that information from hydrodynamics can be used to provide

some information for the non-equilibrium correction. The net baryon current JµB and

energy-momentum tensor Tµν from viscous hydrodynamics translate to the first and

second moments of the distribution,

J
µ
B(x) =

∑
i

bi

∫
p
pµfi(x,p) (2.42)

Tµν(x) =
∑
i

∫
p
pµpνfi(x,p) (2.43)

where the shorthand notation
∫
p ≡
∫ d3p

(2π)3Ep
has been used.

5 An explicit assumption of viscous corrections is that they are small. However, they still modify

the momentum dependence of observables as shown in [102]. Studies explicitly using momentum-

dependence for constraint should exercise caution about overly-certain conclusions, especially as cor-

rections grow larger.
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Unfortunately, the separation of the distribution function into the equilibrium con-

tribution and a viscous correction, despite the constraints from matching to hydro-

dynamics, does not fully specify the momentum-dependence of δfi(x,p). This means

that the choice of correction remains a modeling choice with inherent ambiguity that

can have a notable impact on hadronic observables [106]. To constrain further, the rea-

sonable assumption is made that hydrodynamics and relativistic kinetic theory are

simultaneously applicable at the transition between them.

Linearized viscous corrections linearize the correction δfi in the shear stress tensor

(πµν), bulk viscous pressure Π, and baryon diffusion current VµB ,

δfi(x,p) ≈ cπ,i(x,p)p〈µpν〉π
µν(x) + cΠ,i(x,p)Π(x) (2.44)

+ cV ,i(x,p)p〈µ〉V
µ
B(x)

where cπ,i, cΠ,i, and cV ,i are expansion coefficients with both spatial and momentum

dependence. In this thesis, baryon diffusion not considered, but is included in this dis-

cussion for completeness. In linearized viscous corrections, the expansion coefficients

are adjusted to exactly reproduce JµB and Tµν.

Grad’s 14-moment approximation expands the correction δfi(x,p) in momentum

moments of the distribution function [104], only truncating at the level with terms

involving pµ and pµpν, i.e. at hydrodynamic order, which after some manipulation

[78, 82, 107, 108] becomes

δfi = feq,if̄eq,i(cTm
2
i + bn(cB(uµp

µ) + c
〈µ〉
V p〈µ〉) (2.45)

+ cE(uµp
µ)2 + c

〈µ〉
Q (uµp

µ)p〈µ〉 + c
〈µν〉
π p〈µpν〉)

where f̄eq,i ≡ 1−g−1n Θnfeq,n and the brackets 〈·〉 again denote the traceless part of the

symmetrized tensor. Here, gn is the spin degeneracy gn = 2sn + 1 and Θn = (−1, 1)

to account for quantum statistics of a particle (Bose-Einstein and Fermi-Dirac). The

coefficients c are adjusted to ensure that the viscous correction to the distribution does

not contribute to the energy or net baryon density and reproduces the shear stress

tensor, bulk viscous pressure, and baryon diffusion current that were linearized. Their

forms are lengthy and may be found in [102, 104].
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The Chapman-Enskog expansion is a gradient expansion around feq,i. The relax-

ation time approximation (RTA) is used for the collision term of the Boltzmann equa-

tion [109], which thus reduces to

pµ∂µfi = −
uµp

µ

τr
δfi (2.46)

where the relaxation time τr is momentum and species independent. Then expanding

fi into its equilibrium component and correction and assuming hydrodynamic gradi-

ents are small in comparison to the relaxation time, a first order gradient correction

for the thermal distribution may be derived [110],6

δfi = −
pµ∂µfeq,i

uµpµ/τr
. (2.47)

This may then be expanded using conservation laws and Navier-Stokes relations to

produce the final form of the viscous correction,

δfi =feq,if̄eq,i

[
Π

βΠ

(
biG+

(uµp
µ)F

T2
+

(−pµ∆
µνpν)

3(uµpµ)T

)
(2.48)

+
V
µ
Bp〈µ〉
βV

(
nB

E+Peq
−

bi
(uµpµ)

)
+
πµνp

〈µpν〉

2βπuµpµT

]
.

Here, VµB = κB∆
µν∂ναB is the baryon diffusion current, κB is the baryon diffusion

coefficient, and αB = µB/T is the ratio of baryon chemical potential and temperature.

The conservation of net baryon number is α̇B = Gθ, conservation of energy is Ṫ =

Fθ, and conservation of momentum is u̇µ = ∆µν∂nu ln T . The ratios of transport

coefficients to relaxation times are denoted βπ = η/τr, βΠ = ζ/τr and βV = κB/τr.

The remaining quantities, F and G are defined by thermal integrals and may be found

in [102, 110].

The uncertainty in the treatment of the σ meson presents challenges to sampling it

in the particlization stage. In particular, the uncertainty of the mass and decay width

can significantly impact hadronic observables as explored in [45]. Additionally, the

contribution of the σ to isospin-averaged observables is minimal due to repulsion

from the isotensor-scalar channel and including it spuriously increases pion yields

[111]. The preferred practice is to omit it from sampling at particlization but allow it

to be dynamically formed in the hadron gas phase so the π− π cross-section remains

well-described.
6 This equation demonstrates the competition between global expansion and local scattering in deter-

mining δfi [102].
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2.4 hadron gas – smash

Once a list of particles has been sampled from a hydrodynamic hypersurface, they

can be evolved using kinetic theory via the SMASH transport code [32]. The particles

interact each other, scattering, decaying, and forming resonances. These are computed

in SMASH using measured particle properties and channels [6] via a tower of coupled

Boltzmann equations.

pµ∂µfi(x,p) = C[fi] (2.49)

where i is an index over species. Once again, fi(x,p) is species-specific, representing

Bose-Einstein statistics for particles with integer spin and Fermi-Dirac statistics for

particles with half-integer spin. This list of species is given in the SMASH documen-

tation.7 This thesis uses SMASH Version 1.8.

Inclusion of this stage makes physical sense: the particles sampled directly from

the medium must travel to the detectors and do so in the presence of the rest of the

hadron gas. Consequently, they must be allowed to interact and decay dynamically;

not doing so would introduce a sharp discontinuity in the dynamics inconsistent with

the assumption that this is a continuous system one is forced to model disjointedly.

By using a dynamic hadron cascade, SMASH allows for a dynamical decoupling of

the strongly-interacting medium dictated by the mean free path and density. This is

consistent with physical intuition that the fireball should gradually decouple as the

density drops and particles are less likely to collide.

This work will vary none of the parameters of SMASH, similar to [45, 46], which

validated its usage. As this thesis does not vary parameters of this stage, the inter-

ested reader is referred to more comprehensive references for specific implementation

of details, including determining collisions, implementing mean fields, and particle

properties [32].

7 Available at smash-transport.github.io

smash-transport.github.io
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2.5 modeling and centrality selection

To calculate observables from particle lists, a large number of collisions must be sim-

ulated. Each event’s properties can be calculated and then event-averaged quantities

may be compared to experiment. Given a set of input parameters of interest to the

model, the following procedure is followed:

1. Generate 2,500 IP-Glasma events with impact parameter restricted to between 0

and 13 fm,

2. Propagate each event through viscous hydrodynamics using MUSIC, saving a

hypersurface at a specified switching temperature,

3. Particlize the information from the hydrodynamic hypersurface into a hadron

gas using a specified model for the viscous corrections,

4. Propagate the hadron gas dynamically with scatterings and decays using SMASH.

This produces lists of particles and their properties that can be analyzed to reproduce

calculations of observables from experiments. The analysis follows the centrality se-

lection of [28], which reproduces Glauber centrality classes and cross-sections within

experimental error. This method produces a cross-section of σPbPb ∼ 8.1b, compatible

with the ALICE result of σPbPb = 7.7b± 0.1b(stat)± 0.5b(sys) [112]. The 100% cen-

trality cutoff - a poorly-constrained idea in simulation - is treated as a parameter use

to ensure the model is properly calibrated to the data and experimental effects. To

bins events by centrality, the following procedure is followed:

1. Calculate the single-event properties such as the number of charged hadrons,

2. Take the ratio between two centrality bins’ charged hadron multiplicities and

compare to experiment,

3. Order all events by charged hadron multiplicity and use percentiles to define

centrality classes,

4. If the ratio between the bins of the experimental charged hadron multiplicity is

greater than the simulated ratio, add empty events (zeros) to the list of simu-

lated charged hadron multiplicities and re-bin until the ratios match.
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5. If the ratio between the bins of the experimental charged hadron multiplicity is

less than the simulated ratio, drop events from the list until the ratio matches.

This is analogous to varying an energy cut-off that defines 100% centrality. Its abil-

ity to reproduce the Glauber cross section is remarkable as there are no nucleons

in IP-Glasma: to reproduce the Glauber result, central nucleon positions must be

added and participants counted. The range 0− 13 fm typically maps onto a range of

∼ 0− 75% centrality for Pb-Pb collisions at 2.76 TeV. The advantage of this method

of centrality selection is that hydrodynamics is generally considered to break down

in highly peripheral collisions. In minimum bias calculations, this corresponds to

discarding a significant number of events at great computational cost.

2.6 observables

A precise understanding of various candidate observables is critical for extracting

physics insight. It is not merely sufficient to treat them as black-box quantities, but

rather the reader should appreciate the details so that it is clear how properties of

the quark-gluon plasma may be revealed through careful, simultaneous study. This

section describes the observables used in this thesis. I will refer to two classes of

observable: first generation observables and next generation observables. This distinction

is wholly my own, but will be a useful shorthand. This division is broadly made

as the first generation observables are those first reported by experimental collabo-

rations and those first used in Bayesian studies. The next generation observables are

dominated by observables reported by experimental collaborations after the first gen-

eration or those included in a Bayesian study for the first time in this thesis. I by no

means list all possible soft sector observables here, merely a selection that are used

in this thesis and with which the interested reader must be conversant.

2.6.1 First generation observables

These broadly describe large-scale features of the fireball and add four-particle radial

Fourier coefficients to the set of observables used in [45, 46] with the exception of
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correlated momentum fluctuations. Charged hadron multiplicity, transverse energy,

and mean transverse momenta all probe the total energy contained in the collision as

well as the total entropy produced and the chemical composition of the fireball.

• dNch/dη: The number of charged hadrons per unit pseudorapidity. Measure-

ments are from the ALICE Collaboration [113].

• dNi/dy, i ∈ {π,p,K, etc.}: Identified charged hadrons per unit rapidity. Mea-

surements are from the ALICE Collaboration [114].

• dET/dη: Transverse energy, defined as ET =
√
m2 + p2T , per unit rapidity. Mea-

surements are from the ALICE Collaboration [115].

• 〈pT 〉i, i ∈ {π,K,p}: Mean transverse momenta of identified hadrons. Measure-

ments are from the ALICE Collaboration [114].

• vn{2}: Two-particle radial Fourier coefficients. Measurements are from the AL-

ICE Collaboration [116].

• vn{4}: Four-particle radial Fourier coefficients. Measurements are from the AL-

ICE Collaboration [117].

The momentum-space geometry of the fireball is a traditional sign of hydrody-

namic behavior and is quantified by the radial Fourier coefficients. In an almond-

shaped medium, the pressure gradient is larger along the narrower axis; this means

that the expansion rate in this axis is faster due to the higher gradient. As event-

by-event fluctuations of partons grow more complex, it is possible to probe more of

the momentum space geometry by including more advanced, next generation observ-

ables.8

2.6.2 Next generation observables

These observables explore more sophisticated effects using correlations between geo-

metric features or momentum fluctuations and decompositions of observables into a

8 While this thesis considers only the two and four-particle Fourier coefficients, coefficients with higher

numbers of particles are also measured.
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linear and non-linear response of the medium. These have been shown in [2, 118] and

others to be sensitive to details of the hydrodynamic evolution such as the viscosity

or the initial state geometry. As these are key details arising from the CGC initial state

or viscous hydrodynamic evolution, they will be key to providing new insights. Near

this study’s conclusion, it was shown that other next-generation observables can also

be effective in constraining the transport coefficients of QCD matter [53].

• Two- and three-plane Scalar Product Event Plane Correlators: Correlations be-

tween expansion coefficients vn reveal patterns of fluctuations in the initial state

and non-linear effects in hydrodynamics. Measurements, as well as detailed def-

initions, are from the ATLAS Collaboration [119]. These patterns are coupled

and reproduction of them in parametric models has been shown to be highly

model-dependent [118]. The ALICE Collaboration measures similar quantities,

which are also used, statistics allowing [120].

• χn,mk: Nonlinear response coefficients that quantify mixing between higher and

lower-order modes. These decompose higher order vn into a linear component

from the corresponding position space energy density Fourier coefficients (εn)

and a non-linear component from lower modes. For example, v5 = vL5 +χ5,32v3v2.

Measurements and more details may be found in [120].

• Linear and non-linear flow modes: these quantify the linear and non-linear re-

sponse of the flow to collision geometry, similar to the event plane correlators

and χn,mk above [120].

• δpT/〈pT 〉: Correlated transverse momentum fluctuations, alternately denoted as
√
Cm/M. This quantifies the correlations between deviations from the mean

transverse momentum. If the deviations are uncorrelated over all events, this

quantity is 0 [121].

The purpose of using these carefully chosen observables is to efficiently constrain

the properties of strongly-interacting matter. For example, the multiplicities constrain

the overall energy of the system, the radial Fourier coefficients constrain the momentum-

space geometry of the hydrodynamic stage, and next-generation observables couple
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various aspects of the medium evolution. More specifically, details such as the lin-

ear and non-linear relationships between vn can specifically target the hydrodynamic

phase of the evolution. This will be coupled with state-of-the-art physical simulation

and Bayesian inference to improve the understanding of strongly interacting matter.



Part II

S TAT I S T I C A L F O U N D AT I O N S

Bayesian inference is introduced with historical overview and some details

of probability theory. Relevant considerations for numerical implementa-

tion are discussed, including computer experiment design for training a

surrogate model on expensive numerical calculations. Finally, a simple ex-

ample is used to demonstrate how to use Bayesian methods to provide

quantitative guidance in a simple physics problem.





3
I N T R O D U C T I O N T O B AY E S I A N I N F E R E N C E

When doing science with simulations, it is necessary to engage in plausible reasoning.

Especially in numerically-expensive pursuits such as heavy ion collisions,1 scientists

attempt to make conclusions by considering the results of computation with a fixed

set of parameter values. This discards the inherent uncertainty on the model inputs

by construction. It then becomes difficult to convincingly argue that an effect is (or

is not) present: it may simply be a choice of having arbitrary confidence in input

parameters.

The choice of particular parameters is, of course, not random. It is often chosen by

what is winkingly referred to as “chi-by-eye”, referring to the χ2 metric. “Chi-by-eye”

calibrations are simply varying model inputs by hand and heuristically determining

a combination of parameters that fits “well-enough”.

The issue that arises with such a method is that it is misleadingly precise: numeri-

cal simulations always have some uncertainty and experimental data is always mea-

sured with uncertainties arrived at through painstaking modeling. It is a disservice

to these efforts to ignore this uncertainty when performing quantitative comparisons.

Instead, scientific efforts connecting rigorous theoretical modeling to experimental

results should be honest in their comparisons and account for both theoretical and

experimental uncertainties.

To account for these uncertainties consistently when comparing to data, this thesis

employs the tools of Bayesian inference. By doing so, it is possible to make conclusive

general statements rather than attempting to hide the fact that conclusions were made

with a naive exploration of the parameter space.

This is comparable to the state of science in the 18th century. James Bernoulli (1713)

highlighted the difference between deductive logic in games of chance and the induc-

1 The primary culprit behind the computational expense of heavy ion collisions is the need to evolve

differential equations on a spatial grid with sufficient resolution to faithfully reproduce the underlying

physics.

39
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tive logic required for more general reasoning and sought a way to make plausible

statements about everyday outcomes. The solution to this came from a Presbyterian

minister, Reverend Thomas Bayes, in a letter published after his death in 1763 and

formulated into its now-familiar expression by Laplace in 1812. In this approach to

statistics, probability denoted a degree of belief (and consequently, uncertainty) in a

given proposition. For example, Laplace used the inductive logic proposed by Rev-

erend Bayes to reason plausibly about the possible values of the mass of Saturn given

available observations and came to a result where “... it is a bet of 11,000 to 1 that the

error of this result is not 1/100th of its value.” All these years after Laplace’s death,

the estimate for the mass of Saturn has only changed by approximately 0.63%, demon-

strating the power of reasoning plausibly and with quantified uncertainty [122].

However, Bayes’ Theorem includes a quantity to explicitly account for prior beliefs,

or rather beliefs informed by observations other than those under consideration. This

led to the denouncement of this school of statistical analysis as “subjective” and the

rise of so-called Frequentist statistics. In this new school of statistics, probability is not

interpreted as a “degree of belief” a la Bayes, but rather “the long-run limiting fre-

quency of an event occurring were it to be identically repeated an infinite number of

times”. This less-intuitive definition of probability is what is often taught in schools,

but in this author’s experience, is rarely how physicists actually interpret probabili-

ties in practice. While Bayesians attempt to answer statistical problems by reasoning

plausibly, Frequentists calculate limiting frequencies of events that may only be able

to occur once. This split in the fundamental interpretation of probability resulted in

a quip by Louis Lyons: Bayesians address the question everyone is interested in by using

assumptions no-one believes, while frequentists use impeccable logic to deal with an issue of

no interest to anyone [123, 124]. It is worth noting that, often enough, the numerical

results between the two schools of statistics are equivalent, merely the interpretation

differs. Bayesians additionally tend to treat the entire final probability distribution as

the result of interest as it quantifies the full degree of belief, while Frequentist results
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are often summary statistics or similar estimates drawn from the final probability

distribution.2

Such was the state of science in the 19th and the first part of the 20th centuries. In

1946, Richard Cox resurrected the Bayesian perspective by establishing the rules for

logical and consistent quantitative reasoning via the rules of Boolean logic and ordi-

nary algebra in a move recognized as “the most important advance in the conceptual

... formulation of probability theory since Laplace” [125]. In the late 20th and early

21st centuries, the rapid increase in available computational resources has allowed

for the computing of Bayes’ Theorem in more general, less analytically-solvable cases.

This has proven valuable as uncertainty quantification is often as valuable as parame-

ter estimation, which has been the focus of more traditional statistical approaches. It

is with Cox’s rules that I will derive Bayes’ Theorem anew.

3.1 bayes’ theorem

To begin a discussion of probabilities, it is necessary to introduce a notation. In this

work, I will strive to stick to that of Gelman’s Bayesian Data Analysis [126]. First,

p(A) denotes the probability density p(·) of a proposition A. Next, p(A|B) denotes

the probability density of proposition A conditional on proposition B, i.e. the prob-

ability density of A given B. There may be multiple statements to which the propo-

sition of interest is conditional; these are all contained to the right of the vertical

bar, e.g. p(A|B,C,D, . . . ). In general, the comma in the probability density denotes

“and”, thus p(A,B|C,D) may be read as the probability density of A and B given C

and D. The overall probability of a proposition, rather than the probability density,

is denoted Pr(A). Negation is indicated with a bar over a quantity, thus not A is de-

noted Ā. Throughout this thesis, the shorthand proposition I is used to represent all

other information one may have about a particular probability statement. For exam-

ple, one may be interested in the value of a physical quantity, but are fundamentally

2 It is worth noting that one can use Bayes’ Theorem while remaining a Frequentist. The division be-

tween Bayesians and Frequentists is in the interpretation of probability, not in the simple use of a

foundational theorem.
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restricted to investigating it in the context of a particular model. The particular model

is absorbed into the additional information I.

Next, some fundamental statements of probability theory are introduced. The first

is the sum rule,

Pr(X|I) + Pr(X̄|I) = 1 (3.1)

that states that the sum of the probability of proposition X being true plus the prob-

ability of proposition X being false must be 1. In applications where a proposition is

not Boolean (i.e. strictly true or false) but may be continuous, this is simply the nor-

malization requirement of probability. The second fundamental statement is called

the product rule,

Pr(X, Y|I) = Pr(X|Y, I)× Pr(Y|I). (3.2)

The product rule reveals that the probability that both X and Y are true can be ex-

pressed as the probability of X being true given that Y is true times the probability

that Y is true. Both of these are broadly intuitive statements, but have a firm founda-

tion in Boolean logic.3

Relaxing the Boolean nature of the above statements results in dealing with proba-

bility densities. Revisiting the product rule yields

p(X, Y|I) = p(X|Y, I)p(Y|I). (3.3)

If the goal is to make probability statements about X given Y, this rule may be rear-

ranged to provide a joint probability distribution for X and Y,

p(X|Y) =
p(X, Y)
p(Y)

(3.4)

where the additional information I is suppressed for conciseness. It is always assumed

to present, but left implicit. The product rule may then be used again since X and

Y obey the principle of exchangeability: the joint probability of X and Y p(X, Y) is

indistinguishable from the joint probability of Y and X, p(Y,X).4

p(X|Y) =
p(Y,X)
p(Y)

=
p(Y|X)p(X)

p(Y)
(3.5)

3 For the reader interested in Boolean logic, the proof of the sum and product rules may be found in

chapter 2 of [125] and alternatively, appendix B of [122].
4 By connecting p(X|Y) and p(Y|X) via a joint distribution and exchangeability, inference and plausible

reasoning are made possible.
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This is Bayes’ Theorem. Each piece of this theorem is of critical importance to the

remainder of this thesis and considerable space will be devoted to each. To connect

Bayes’ Theorem to physical modeling questions, I will rewrite it in a more convenient

notation,

p(H|d, I) =
p(d|H, I)p(H, I)

p(d, I)
. (3.6)

In this notation, H represents a particular hypothesis, such as the proposed values

of a set of parameters and d represents data to which the hypothesis is compared.

p(H|I) is the prior and is the belief in the hypothesis H prior to comparison with

measurements. p(d|H, I) is the likelihood and is the likelihood for the data d given

the hypothesis H. p(d|I) is the Bayes or Bayesian evidence and is typically treated as

a normalization constant such that
∫
p(H|d, I)dH = 1. Older names for the evidence

are the prior predictive or the marginal likelihood, but these are poor descriptions of the

meaning of this quantity. The Bayes evidence quantifies a balance between quality of

fit via the likelihood and predictive power, by penalizing increasing dimensionality.

It can therefore be used in model selection: the “best” model is the one that fits the

data best with the fewest number of free parameters. Finally, the quantity of interest

is p(H|d, I), the posterior. It quantifies the belief in a given hypothesis H posterior to

comparison with measured data d. Bayes’ theorem formalizes statistical learning by

making a prior belief explicit and then comparing it to data, after which the prior

belief is determined to be relatively more or less likely. The result posterior to compar-

ison with data is the new state of understanding.

Specifics of the prior, likelihood, and data are application-specific and are ad-

dressed explicitly for each study. Bayes’ theorem may be used to solve inverse prob-

lems, calculating “how likely is the data given a set of model parameters” (the like-

lihood) in order to answer a primary question of interest, “how likely is the set of

model parameters given the data” (the posterior). Consequently, a hypothesis for

which the observed data is unlikely is itself an unlikely hypothesis. This allows for

the translation of a forward problem more typical in physics phenomenology – given

some input, what is the outcome? – to an inverse problem – given some outcome,

what were the inputs? – through which one hopes to reason plausibly about the

physical world.
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The next piece of the puzzle that must be introduced is known as marginalization.

Marginalization follows directly from the sum and product rules. First, the sum r)

Pr(X, Y) = Pr(Y,X) = Pr(Y|X)Pr(X). (3.7)

Next, the same expression for Pr(X, Ȳ) may be added to both sides,

Pr(X, Y) + Pr(X, Ȳ) = [Pr(Y|X) + Pr(Ȳ|X)]Pr(X). (3.8)

Of course, the term in the square brackets must be 1 from the sum rule and the

expression simplifies,

Pr(X) = Pr(X, Y) + Pr(X, Ȳ). (3.9)

In this analysis, Y and Ȳ form a mutually exclusive and exhaustive set of outcomes.

In most applications, there are more than two binary outcomes and thus the mutu-

ally exclusive and exhaustive set of outcomes can be represented by, for example,

{Yn} = {Y1, Y2, . . . , YM}. Thus, each of these must be accounted for and results in the

marginalization rule

Pr(X) =

M∑
n=1

Pr(X, Yn). (3.10)

It is worth noting that this only holds if the sum rule may be used as it was above. For

the sum rule to hold, the set {Yn} must obey the normalization condition

M∑
n=1

Pr(Yn) = 1 (3.11)

revealing it to be a mutually exclusive and exhaustive set. In the continuum limit

(equivalently, M→∞), the marginalization rule becomes an integral

p(X) =

∫∞
−∞ p(X, Y)dY. (3.12)

The use of marginalization is important because it allows one to “integrate out” nui-

sance parameters that aren’t relevant to the problem but must be included in the

inference and it allows for the visualization of complex high-dimensional distribu-

tions.5

5 Marginalization does not only go from two dimensions to one, but may go from 10 to 4 or any other

combination so long as the result is a lower-dimensional projection of the original distribution of

interest.
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3.2 markov chain monte carlo

All this is very well and good, but how does one actually go about putting this into

practice? Not all posteriors have an analytically-tractable form and, due to practical

limitations, one cannot query the posterior at every point in the parameter space. Sim-

ilarly, simply querying the posterior on a fixed grid over a certain range is inefficient

as much of the space may be uninteresting and unlikely, meaning that the region of

interest is poorly explored.

In this thesis, this problem is addressed using Markov Chain Monte Carlo (MCMC).

In MCMC, samples are drawn from the true posterior and the set of samples may be

used to explore the posterior distribution numerically. To explore how this is done,

I will introduce Markov Chain Monte Carlo in general and will proceed to discuss

the details of one of the first MCMC algorithms, the Metropolis algorithm. Many

different MCMC algorithms exist, including those used in this work [127, 128], but the

technical details prohibit them from being an accessible introduction to the unfamiliar.

They are often purposefully chosen to efficiently sample posteriors with particular

features.

To begin in the beginning, it is necessary to introduce the Markov Property. This is

sometimes described as memorylessness, i.e. a process which obeys the Markov Prop-

erty is independent of history of the process. A Markov Chain is a collection of the

states of a Markov process. Each state in the collection (or chain) is only determined

by the previous state. In this way, it is often introduced in textbooks as a “drunken

walk” as it follows no directed pattern and the drunkard’s next step only depends on

where they are at present. To put this in more formal statistical language, a Markov

chain is a sequence of random variables θ1, θ2, . . . for which the distribution of θn

given all previous θ depends only on θn−1.

But how is this useful? A Markov Chain can be constructed so that it has a unique

stationary distribution. Then, one can show that the stationary distribution is equal to

the target distribution of interest. For the Markov Chain to have a unique stationary

distribution, the chain must be irreducible, aperiodic, and not transient. The chain is

irreducible if the random walk has some positive, finite probability of reaching any

state from any other state - i.e. it can jump to anywhere from anywhere. Aperiodicity
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and non-trasience of the chain hold for random walks on any proper distribution.

Thus, what remains is to prove that the stationary distribution of the chain is the

target distribution. To do this, I first introduce the Metropolis algorithm, and then

prove explicitly that the distributions are equal.

The Metropolis algorithm is a random walk with a rule for accepting or rejecting a

proposed step such that the walk converges to a specified target.

Step 1: Choose a set of starting points. While these can be chosen intelligently, the

common practice is to randomly disperse points throughout the sample space,

allow the chains to walk toward the target distribution, and then throw out the

first N steps of the chain so that the chain has an opportunity to explore the

potentially arbitrarily-complex space.

Step 2: For n = 1, 2, . . . :

Step 2.1: Sample a proposed next step θ ′ from a proposal (or jumping) distribution

at step n, Jn(θ ′|θn−1). In the Metropolis algorithm, this proposal distribu-

tion must be symmetric – Jn(θa|θb) = Jn(θb|θa) ∀ θa, θb,n.

Step 2.2: Calculate the Metropolis ratio:

r =
p(θ ′|y)

p(θn−1|y)
(3.13)

where y are the data. This is immediately recognizable as the ratio of the

posteriors for parameter hypotheses θ.

Step 2.3: Add a state to the Markov chain as follows

θn =


θ ′ with probability min(r, 1)

θn−1 otherwise

(3.14)

until the chain is a sufficiently close approximation to the target distribu-

tion for its intended purpose.

It is important to note two details: first, that even if the distribution does not jump

to the next state, this still constitutes an iteration in the chain. Second, it is possible

to denote a transition distribution Tn(θn|θn−1) as a point mass at θn = θn−1 and the

proposal distribution Jn(θn|θn−1) weighted by the acceptance rate.
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With the Metropolis algorithm in hand, it is possible to return to the proof of

MCMC convergence with a digestible example. Next, consider a target distribution

p(θ|y) at step n − 1 in order to demonstrate that the target distribution and the

Metropolis algorithm Markov chain’s stationary distribution are one and the same.

Two draws from p(θ|y) are hereon labeled as θa and θb.

The unconditional probability density of transition from θa to θb is

p(θn−1 = θa, θn = θb) = p(θa|y)Jn(θb, θa)r. (3.15)

The Metropolis ratio r weights the right hand side, but because of the labeling of a

and b the acceptance probability is 1, so it has only been included here for clarity. The

unconditional probability density of transition from θb to θa is

p(θn = θa, θn−1 = θb) = p(θb|y)Jn(θa, θb)
(
p(θa|y)

p(θb|y)

)
(3.16)

= p(θa|y)Jn(θa|θb), (3.17)

where the transition probability density from θa to θb is recovered due to the sym-

metry of the proposal distribution. As the joint distributions are symmetric, θn and

θn−1 have the same marginal distributions and so p(θ|y) is the stationary distribu-

tion of the Markov chain of θ. While this example specifically exploits the Metropolis

algorithm, similar proofs may be found for other algorithms.

Of course, it is all very well and good to claim it is a random walk, but it is im-

portant to check this explicitly. One of the first diagnostics of a Markov chain is the

autocorrelation. This quantifies if the chain is taking a directed walk – meaning that the

chain is not truly in a Markov state – or if the chain has converged to a target distri-

bution, where steps are uncorrelated and are thus draws from the target distribution.

The autocorrelation is calculated by defining some lag, l. A chain is then shifted by

this number of steps, and then the dot product of the chain is taken, normalized by

the product of the magnitudes of the two chains. Thus, the 0 lag autocorrelation is 1

by construction and two tightly-correlated chains have autocorrelation close to 1 for

many lag steps. A decorrelated chain’s autocorrelation drops to 0 quickly, perhaps

even after a single step. Additional diagnostics include the Gelman-Rubin diagnos-

tic [129], and the between- and within-sequence variance [126], although a technical

discussion on various MCMC diagnostics is beyond the scope of this thesis.
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In this thesis, the parallel-tempering Markov Chain Monte Carlo software ptemcee

is used [128]. This defines a ladder of inverse temperatures βi and evolves an ensem-

ble of walkers on “tempered” distributions p(y|x)βip(x) where in the limit β → 0,

the prior distribution p(x) is recovered while at β = 1, the prior is multiplied by the

likelihood. The walkers are given the chance to exchange with walkers at neighboring

temperatures. The advantage of this technique is that walkers at high temperatures

are progressively less influenced by peaks in the likelihood as these peaks are tem-

pered. Conversely, walkers at β = 1 sample from the target posterior. Thus, only

samples from the β = 1 chain are used in analysis and gain all the advantage from

the higher chains in efficiently sampling multimodal distributions.

Another convenient feature of using parallel-tempering MCMC is in the calculation

of the Bayes Evidence. If one defines the Bayes Evidence as a function of inverse

temperature,

Z(β) =

∫
dx [p(y|x)]β p(x), (3.18)

then it satisfies a differential equation

d lnZ(β)
dβ

=
1

Z(β)

∫
dxp(x) ln [p(y|x)] [p(y|x)]β

≡ 〈ln [p(y|x)]〉β (3.19)

and the log Bayes Evidence lnZ(β = 1) is calculated by integrating the average at

each temperature with error determined by the number of rungs in the temperature

ladder. The convergence behavior of ptemcee is also greatly superior to other MCMC

algorithms and rapidly converges to the target distribution of interest with autocor-

relation dropping to 0 more than an order of magnitude more quickly than in similar

algorithms [47].

3.3 bayesian model comparison

Bayesian model preference is evaluated using the ratio of two models’ Bayes evi-

dences (the denominator of Eq. 3.6), called the Bayes factor

B01 =
p(d|M0)

p(d|M1)
(3.20)
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where models Mi are subscripted 0 and 1. The Bayes factor B01 is used to quantify

model preference. A Bayes factor greater than one represents an increase of support

for M0 relative to M1 and directly corresponds to the odds of M0:M1. The logarithm

of the Bayes factor, lnB, is often used both for ease of computation as in ptemcee but

also to quantify the relative probability in a more concise manner. The Bayes factor

allows for determination of a preferred model when the result is not immediately

obvious. In sophisticated experiments, multiple observables are often considered si-

multaneously and the comparison becomes more complex. While tools such as the χ2-

per-degree-of-freedom exist, these often make implicit assumptions about the shape

of the posterior distribution.

The Bayes factor makes no additional distributional assumptions beyond those ex-

plicitly chosen by the priors and the likelihood. It also penalizes the incorporation

of additional parameters. John von Neumann reportedly said that “with four param-

eters I can fit an elephant, and with five I can make him wiggle his trunk” [130].

The Bayes factor implements Occam’s Razor, which says that it is futile to do with

more things that which can be done with fewer [131]. A model with many parame-

ters should be disfavored in comparison with an equally-successful model with fewer

parameters. A further discussion of Bayesian model selection may be found in [132].

Empirical scales are used to determine when there is weak, moderate, and strong

evidence for M0 vs. M1. The Bayes factor is easily interpretable as it gives the direct

odds ratio of one model to the other. In this work, the Jeffreys’ Scale is used (Table 3.1)

[133]. The Jeffreys’ Scale is a standard scale for model selection in Bayesian studies.

|lnB01| Odds Probability Strength of evidence

< 1.0 6 3 : 1 < 0.750 Inconclusive

1.0 ∼ 3 : 1 0.750 Weak evidence

2.5 ∼ 12 : 1 0.923 Moderate evidence

5.0 ∼ 150 : 1 0.993 Strong evidence

Table 3.1: The Jeffreys’ Scale, reproduced from [132].
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3.4 principal component analysis

In many situations, modeling is designed to predict a single outcome. In contrast,

heavy-ion collisions is such a rich physics laboratory precisely because of the multi-

messenger nature of the QGP, with different particle species providing different in-

sights into the chemistry and evolution of the fireball. In turn, these different probes

allow for the construction of many observable quantities as summary statistics of a

shower of particles. These summary statistics can each be reconstructed from theoret-

ical simulations and compared, constraining the simulation.

Doing this directly is the naive, but inefficient approach. For example, the number

of protons produced in a particular collision shares mutual information with the total

number of charged hadrons (including protons) produced. Instead of considering

each observable totally independently, it should be possible to determine this mutual

information and determine the minimum amount of information required to describe

all the various observables.

Enter principal component analysis (PCA). In a space defined by the observables,

where each dimension corresponds to a particular observed quantity, it is possible to

identify correlations. Principal component analysis is a simple technique to “rotate”

in observable space into a linear combination of the original axes such that every

dimension of the data is linearly independent.

This rotation is also invertible, meaning that predictions can be made for the trans-

formed space and inverted back to the observable space. This is useful as it is no

longer necessary to interpolate between hundreds of dimensions in the observable

space, but rather only interpolate in a O(10) dimensional space, which is much more

feasible.

Another way to think of this rotation is by a decomposition of the data in ques-

tion to its eigenvalues and eigenvectors. The eigenvalues are the fraction of the total

variance in the data described by each eigenvector.

More formally, PCA is a dimensionality-reduction tool and is sometimes described

as an elementary type of unsupervised learning. This is useful for analyses with a

large amount of data, such as ours, because much of the information contained in the

data is redundant due to features such as correlations. One motivation for this is to
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speed up calculations, but another one is simple: surrogate modeling techniques (or

“emulators”) often perform poorly with multidimensional outputs and this remains

an area of active research. As such, one has to train an emulator for each feature one

wishes to predict. With a long list of observables, this becomes many independent

surrogate models that need to be trained and deployed in MCMC. This is computa-

tionally expensive and redundant.

A much more intelligent way of doing this is to construct new characteristics that

adequately summarize the data and allows for reconstruction of the high-dimensional

data with fewer-dimensional inputs. The way this is done is by finding linear combi-

nations of the original inputs (correlated) that project the inputs into a space of these

new characteristics (uncorrelated), which are called principal components. This also

has the useful feature of discarding features in the data that do not explain much

variation while focusing on the features that do explain the variation.

To put this another way, the different measured quantities are not totally indepen-

dent of each other. However, there exists a vector space into which these different

quantities may be projected. This transformation orders the components of the new,

independent vector space so that the component that describes most of the variation

is the first component; the component that describes the next largest fraction of the

variation is the second component; and so on and so forth. The discussion that fol-

lows broadly reproduces that of [134, 135] to make this more mathematically explicit,

borrowing a simple example.

First, the data has to be encoded as a matrix. Suppose that the width w, height h,

and length l of some large number of boxes are known. Box i’s measurements are

recorded in a column vector xi of length d = 3 – xTi = (wi,hi, li). Now there are

some large number of data vectors to encode in a data matrix. This is done by simply

stacking the vectors,

X =



w1 h1 l1

w2 h2 l2

...

wn hn ln


(3.21)
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Each column thus refers to a single coordinate and the matrix is n×d dimensional.

This matrix is also standardized in practice, meaning the mean has been subtracted:

µ =
1

n

n∑
i=1

xi =

(
1

n

n∑
i=1

xi1, . . . ,
1

n

n∑
i=1

xid

)T
(3.22)

The zero-centered vectors are used as rows of the matrix X:

X =



xT1 − µ
T

xT2 − µ
T

...

xTn − µ
T


(3.23)

We then write the sample covariance around the mean S:

S =
1

n− 1

n∑
i=1

(xi − µ)(xi − µ)
T =

1

n− 1
XTX (3.24)

Note that dividing by 1
n−1 rather than 1/n is simply Bessel’s correction to correct bias

in the estimation of the population variance from a sample.

With this notation in hand, it becomes possible to formally tackle PCA. The goal

is the find a collection of k 6 d unit vectors vi ∈ Rd for i ∈ (1, . . . ,k) such that the

variance of the dataset projected onto the direction determined by vi is maximized and

the vi are all mutually orthogonal. These unit vectors vi are the principal components.

The projection of x ∈ Rd onto the line determined by any vi is the dot product vTi x,

so the variance of the dataset projected onto the first principal component v! is just

1

n− 1

n∑
i=1

(vT1xi − v
T
1µ)

2 = vT1Sv1. (3.25)

The problem is now how to find v1 such that it maximizes Eq. 3.25 subject to the

constraint that ‖v1‖ = 1. This is done with Lagrange multipliers and results in

Sv1 = λ1v1 (3.26)

thereby implying that v1 is an eigenvector of S. Since ‖v1‖ = vT1v1 = 1, the eigenvalue

is just the variance of the dataset along v1, i.e. vT1Sv1 = λ1. This process can be repeated

for a new direction v2 with the additional constraint that v1 ⊥ v2 and for a further

new direction v3 with the additional constraint that v3 ⊥ v1, v2 and so on and so forth.
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The first k principal components of X are the k eigenvectors of the covariance matrix

S ordered by their eigenvalues. The following discussion closely follows [134].

Since S is a real symmetric matrix, i.e. S = ST , there exists a full set of orthonormal

eigenvectors for S over R. Consider the case k = d < n. Taking k = d PCs, one

can construct a d × d matrix V whose columns are the eigenvectors of S and that

diagonalizes S.

S = VΛVT =

r∑
i=1

λiviv
T
i (3.27)

where Λ = diag(λ1, . . . , λd) and r = rank(X). This means that the PCs are the columns

of a rotation matrix and forms a new basis for the data aligning the dataset X so that

the dimensions are uncorrelated.

A similar method exists, called Singular Value Decomposition, which is a matrix

factorization method used in linear algebra that is generalized and efficient for non-

square matrices. This is usually used in practice since it is more general, although

the outcome is similar to the simpler process outlined above but the process is less

transparent.

3.5 inference with expensive likelihoods

All the proceeding text is true for general inference, but what if it is not practical to

call the model tens or hundreds of thousands of times to generate an MCMC chain?

The computationally expensive piece of Bayes’ Theorem is the likelihood function,

which requires the model to be evaluated. As a result, this problem is known as the

problem of an expensive likelihood function.6

While specifics of the model implementation are addressed later in this thesis, suf-

fice it to say that a single model run requires 0.5-1 core-years.7 The resources required

to run a single MCMC run would thus take an entire high performance computing

cluster for a year (and even then, with relatively few steps) and the results would all

6 Likelihood-free methods exist, such as Approximate Bayesian Computing. However, these have disad-

vantages that make them poorly-suited to this thesis. They are often also special cases of more general

likelihoods.
7 A core-year is the equivalent computing of a single CPU core running continuously for 1 year.
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be dependent upon specific choices made in the study at hand – hardly an efficient

way to proceed.

A more efficient and general strategy is obviously required. In this section, I outline

the idea of surrogate modeling as well as its implementation in this study using

regression with Gaussian Processes (GPs). Following this, strategies for more efficient

surrogate modeling are pursued via improvements to computer experiment design,

i.e. how training data is chosen for the surrogate models.

3.5.1 Surrogate Modeling

Surrogate modeling is an effective strategy for expensive likelihood functions. A

cheaper model (the “surrogate”) is trained to emulate the expensive model by us-

ing calculations from the more expensive model. This less computationally expensive

model can be considered a low-fidelity model, or a model-of-a-model, and compro-

mises a degree of accuracy for computational time. It does this by simply mapping

inputs to outputs and learning the functional relationship between them rather than

attempting to produce a “coarse” version of all the intermediary physics.

Many different surrogate modeling strategies exist, varying from simple interpola-

tion through to techniques such as deep convolutional neural networks. In this study,

I use Gaussian Process Emulators as a nonparametric surrogate model to learn the

mapping between parameter inputs and model outputs.

Gaussian processes are a regression technique to determine the relationship be-

tween variables and data and are used in heavy ion collisions to make predictions

as surrogate models. Given a set of training points, there are infinitely many func-

tions that can describe the points. Gaussian processes assign a probability to each

of these functions, meaning that the output is a probability distribution of the char-

acterization of the data. Conveniently, this also allows one to determine the relative

confidence in the prediction. The mathematical details of the following discussion are

reproduced from [126, 136]. The only assumptions by the GP are that it assumes the

function is continuous and smoothly varying with respect to the length scales of the

observations.
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Figure 3.1: Draws from a Gaussian Process emulator prior to conditioning on data (left) and

posterior to conditioning (right).

A GP can be thought of as putting a Gaussian prior on an unknown regression

function µ(x), where individual draws from the Gaussian process are random func-

tions whose outputs are normally-distributed around the mean of the process.8 Due

to the flexibility of an interpolation through function space, many features of interest

can be reproduced without extensive modeling choices and careful tuning.

A Gaussian process µ ∼ GP(m, ) is parametrized by a mean function m and covari-

ance function k, where µ and its prior define the GP as a random function. The values

at specified points x1, . . . , xn are a draw from the n-dimensional Gaussian (normal)

distribution with mean m and covariance k

µ(x1), . . . ,µ(xn) ∼ N
(
(m(x1), . . . ,m(xn)) , (3.28)

k (x1, . . . , xn)
)

.

This is a nonparametric model. The mean function is an initial guess at the regres-

sion function and is the starting point when conditioning the GP on training data.

k specifies the covariance between any two points of the process, with k as an n×n

matrix in which kpq corresponds to the covariance between two points k(xp, xq), or

alternately k(x, x ′). The smoothness of the GP is controlled by k and also controls the

8 A GP is also the limit of a neural network given certain specific choices [137].
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degree of shrinkage toward the mean. The most common choice for the covariance

function is the Gaussian,

k(x, x ′) = τ2 exp
(
−
|x− x ′|2

2l2

)
(3.29)

where τ and l are unknown parameters in the covariance and |x − x ′|2 is the Eu-

clidean distance between two points x and x ′. τ determines the magnitude and l the

smoothness. In practice, the hyperparameters are independent in each dimension,

k(x, x ′) = cov(µ(x),µ(x ′)) = τ2 exp

−

p∑
j=1

(xj − x
′
j)
2

2l2j

 . (3.30)

The hyperparameters can then be varied and a posterior or maximum likelihood may

be found, allowing the GP to be used as a regression model.

But how does one actually arrive at the trained GP? Bayesian inference allows for

a convenient explanation.

p(X|Y) ∝ p(Y|X)p(X) = p(X, Y) (3.31)

Given a prior p(X) on the test points X and a set of training points Y, one can obtain

a posterior. First, the joint distribution p(X, Y) is formed between the test points X

and training points Y. The result is a multivariate Gaussian with dimensions |Y|+ |X|.

Conditioning allows one to find p(X|Y) from p(X, Y). Formally, when conditioning

two distributions X ∼ N(µx,ΣXX) and Y ∼ N(µy,ΣYY), then conditioning is defined by

X|Y ∼ N
(
µX + ΣXYΣ

−1
YY(Y − µY),ΣXX − ΣXYΣ

−1
YYΣYX

)
(3.32)

and

Y|X ∼ N
(
µY + ΣYXΣ

−1
XX(X− µX),ΣYY − ΣYXΣ−1XXΣXY

)
. (3.33)

This should be read as, for example, X|Y is conditional on Y and one can then find

the conditioned outputs from the GP given training points Y for a set of input hy-

perparameters. Specific methods of tuning the hyperparameters and exploring the

hyperparameter space is beyond the scope of this discussion.

Because this is important to understand and is still comparatively new to physics

audiences, I will provide one last explanation of how a GP is trained. Priors on GP
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hyperparameters are also conditionally conjugate such that for a given Gaussian pro-

cess, the posterior when compared to data is itself a GP, but with updated inputs.

It is impossible to evaluate the GP everywhere, so the focus is on data points x =

(x1, . . . , xn) and additional locations x̃ where predictions may be of interest.

A Gaussian process GP(0,k) prior to conditioning has a multivariate Gaussian joint

density for observations y and µ at additional locations x̃,y
µ̃

 ∼ N


0
0

 ,

k(x, x) + σ2I k(x̃, x)

k(x, x̃) k(x̃, x̃)


 . (3.34)

In this case noise variance σ2 has been added to the diagonal of the covariance of µ

to get the covariance for y. This corresponds to how the GP is used in practice, with a

multivariate Gaussian kernel and an additional variance that accounts for uncertainty.

It is then possible to calculate other properties such as the expected value

E(µ̃) = k(x̃, x)(k(x, x) + σ2I)−1y (3.35)

and covariance

cov(µ̃) = k(x̃, x̃) − k(x̃, x)(k(x, x) + σ2I)−1k(x, x̃). (3.36)

The clear next question is how does one choose the relevant hyperparameters, since

everything else follows relatively straightforwardly. This is done by maximizing the

log marginal likelihood (LML), which identical to the Bayes factor for the hyperpa-

rameters. The LML is given in closed form by

p(y | X, θ) =−
1

2
yT
(
k(x, x) + σ2I

)−1
y (3.37)

−
1

2
log
∣∣∣k(x, x) + σ2I

∣∣∣− n
2

log 2π

where the first term is for model fitting and the second term penalizes complexity,

balancing the potential for overfitting.

In this thesis, GPs are used as surrogates for the much more computationally-

intensive hybrid model of heavy ion collisions. The purpose of the surrogate model

is to learn the true dependence of the observables on the parameters of the hybrid

model so that MCMC can be performed on a reasonable timescale and with realistic

uncertainties. One can think of it in analogy to game of telephone: the full physics
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model with its uncertainties is the quantity of interest, but the only practical way

to access the information in it is via a third party, the GP, whose reliability must be

verified. The MCMC queries the GP, which refers to its training to give the best guess

– with uncertainty – of what the truth is. In this thesis, a Gaussian (or Radial Basis

Function) kernel and a white noise kernel are used for the underlying Gaussian pro-

cesses. The Gaussian kernel describes the underlying functional behavior while the

white noise kernel describes the inherent variability from finite Monte Carlo model

evaluations.

3.5.1.1 Transfer learning

A surrogate modeling technique only recently applied to heavy ion collisions is trans-

fer learning [4, 138]. This is a method used to learn about a task of interest (the target

task) by using information from related tasks (source tasks). In heavy ion collisions,

inductive transfer learning, where the source and target have the same input domain,

can be readily deployed. This allows for straightforward transfer learning between

models of viscous corrections at particlization that do not introduce additional para-

metric flexibility.

Transfer learning is performed by first having a trained surrogate model for a

source task. Then, the discrepancy between the source and the target is found and is

encapsulated in a discrepancy function. Finally, the task in transfer learning is to use

comparably little new training information about the target to learn the discrepancy

function.

More formally, if fS(x) is the source and fT (x) the target, then a simple relationship

can be identified,

fT (x) = ρfS(x) + δ(x) (3.38)

where ρ is a linear correlation between the source and target estimated via maximum

likelihood methods and δ(x) is the discrepancy between the source and target models.

fS(x) and δ(x) are considered to be independent Gaussian processes. This model for

transfer learning was developed from multifidelity emulation, where the source is a

computationally-inexpensive low-fidelity model and the target is a computationally-

expensive high-fidelity model [139].
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Practically, this vastly reduces the computational cost of training new models that

are similar to an already-trained target. In the case of viscous corrections, particularly

those between Grad’s 14-moment viscous corrections and the Chapman-Enskog vis-

cous corrections, an order of magnitude fewer training points are required to reach a

specified accuracy when using transfer learning as opposed to training a new surro-

gate model [4]. This thesis is the first time transfer learning methods will be used in

heavy ion collisions for Bayesian inference. I will use transfer learning to implement

a second viscous correction model with Grad’s 14-moment viscous corrections as the

source fS and Chapman-Enskog RTA viscous corrections as the target fT .

3.5.2 Computer Experiment Design

Previous studies using uniform priors have sampled the allowed parameter space us-

ing maximin latin hypercube sampling (LHS) techniques, which maximize the mini-

mum Euclidean distance between points. Latin hypercubes are designed to provide

uniform coverage when projected into 1 dimension while the maximin algorithm

helps select points that give a fairly reasonable coverage of the volume.

This is a sub-optimal space-filling sampling technique. The purpose of the sam-

pling is not to give even coverage when projected into 1 dimension or have good

coverage only in the full d-dimensional space but rather to provide a uniform cover-

age of the volume – and of the active subspace of that volume – for the training of

Gaussian Process emulators (GPs). Choosing a maximin Latin hypercube requires the

specification of a number of samples and is inherently tied to this number of samples;

adding additional points is thus an open question.

One approach to rectify these issues is through designs which have criteria that

make them straightforwardly extensible, including the use of low-discrepancy se-

quences such as the Sobol Low-Discrepancy Sequence (LDS) [140]. Low-discrepancy

sequences are deterministic sequences of points that rapidly converge to a uniform

coverage of an N-dimensional volume. In fact, it can be shown that a Sobol LDS

converges to uniform coverage of the space ∼ O(1/N) while the Latin hypercube

converges ∼ O(1/
√
N). Further comparisons can be found in a comprehensive study

comparing the two [141].
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Use of extensible designs produces a variety of advantages. First, it ensures con-

vergence with increasing points and guarantees that points are being placed in such

a way that the volume is given uniform coverage. Second, it is efficient and sequen-

tially improvable, meaning that future studies can simply continue to add points to

improve the resolution of the data and thus represents an investment in research in-

frastructure. Third, it ensures that there is always a uniform coverage of the volume,

not simply a 1-d projection of this volume and thus is more suited to the task at hand.

However, using the Sobol LDS has a limitation. In relatively few dimensions, con-

verged Sobol sequences can be constructed with relatively few points. The Sobol

Low Discrepancy Sequence has two convergence properties, called Property A and

Property A’. Property A is met if for any binary segment (not an arbitrary subset) of the d-

dimensional sequence of length 2d there is exactly one draw in each 2d hypercube that results

from subdividing the unit hypercube along each of its length extensions into half. Property A’

is satisfied if for any binary segment (not an arbitrary subset) of the d-dimensional sequence

of length 4d there is exactly one draw in each 4d hypercube that results from subdividing the

unit hypercube along each of its length extensions into four equal parts [140]. These define

two convergence thresholds, dependent on the dimensionality of the sample space. In

a few-dimensional space, these properties are easy to meet; for example, in 3 dimen-

sions, Property A requires 23 = 8 samples while Property A’ requires 43 = 64 samples.

This scales poorly to higher dimensions, e.g. in 11 dimensions, Property A requires

211 = 2048 samples. This rapidly becomes impractical. With the available computa-

tional budget for this thesis, a design size of 350 training points is the largest possible.

I compute the centered discrepancy [142] from uniform sampling for a variety of

sampling strategies in Fig. 3.2.

In few dimensions where uniform exploration of the parameter space is the goal,

this thesis uses a Sobol low-discrepancy sequence, a first for the field. However, when

facing the curse of dimensionality and when maximizing the performance of a surro-

gate model is of primary interest, the Sobol sequence is poorly suited to the goal and

another design must be used.

Recall that the desire was for a space-filling, extensible approach for placing points

for maximal surrogate model performance – not necessarily uniformity of coverage.

One issue that arises in surrogate model performance is projection behavior: not all
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Figure 3.2: Centered Discrepancy from uniformity in a number of different sampling tech-

niques on the 11-dimensional unit hypercube. The Sobol sequence only converges

after 2048 samples. At the design space size in this thesis, the Sobol sequence and

the Maximum Projection design have comparable discrepancy, but the Maximum

Projection is designed for interpolator performance in high dimensions and covers

the space.

parameters are equally impactful – some may even have little impact on the final

result. As a result, there is a smaller space that impacts the outputs, called the “active

subspace”. It is not possible to know the active subspace ahead of time, but it is

possible to construct a space filling design that maximizes all arbitrary projections

of the space to lower dimensions. This is the idea behind the Maximum Projection

(MaxPro) design strategy [143].

Specifically, this study will utilize a MaxPro Latin Hypercube Design. By focusing

on all arbitrary projections rather than only the 1-D projection, a major critique of

Latin Hypercubes is resolved in a way more commensurate with the desired prop-

erties than naive Maximin designs.9 Rather than maximizing the minimum distance

9 An additional benefit is that the points can be ordered so that the points that maximize projection

behavior can be calculated first, meaning intermediate results are more rapidly useful [3].
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between points as in a Maximin design, the Maximum Projection design criteria (or

measure) is

min
D
ψ(D) =


1 n

2


n−1∑
i=1

n∑
j=i+1

1∏p
l=1

(
xil − xjl

)2


1/p

. (3.39)

p is the number of dimensions of the space and n are the number of points in the

sample space. Overlapping points are infinitely penalized, as ψ(D) =∞ for xil = xjl,

i 6= j and so points that maximize distance to another in all projections are preferred.

Rather than consider the simple Euclidean distance, the denominator has the product

of the squared distances, discouraging two points from approaching each other in

any projection. The design that minimizes ψ(D) maximizes the projection behavior

in all subspaces for sampled points x [143].10

The sampling must also be made commensurate with the parameter ranges and

priors used. This is accomplished by sampling designs on a unit hypercube with the

relevant number of dimensions. The priors are chosen and the percent point function

(or quantile) can be straightforwardly calculated. The sample location on each dimen-

sion of the unit hypercube corresponds to a percentile of the prior range in each

dimension. This ensures uniform coverage of the probability volume by weighting by

the prior density. This deformation technique is shown for a simple 2D example in

Fig. 3.3

An additional feature of the Maximum Projection design is that it provides a mea-

sure to be minimized. This allows for choosing points such that the firstN points min-

imize a design chosen from the larger subset. This is in contrast to other, unordered

techniques and allows for intermediary results as the first N points have maximized

the coverage of the space. A comparison for the coverage of a single parameter dimen-

sion is shown in Fig. 3.4. As can clearly be seen, the ordered MaxPro design spans the

1-dimensional projection much more quickly than the design which only maximizes

the minimum d-dimensional Euclidean distance between design points [3].

10 All designs are generated on the p-dimensional unit hypercube, [0, 1]p and then scaled and shifted to

be commensurate with priors.
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Figure 3.3: Deformation of a 2 dimensional Maximum Projection design on the unit hyper-

cube centred at 0 according to a standard Generalized Normal distribution (Ver-

sion 1) with β = 10. The centred unit hypercube is highlighted with a square

box.

The ordered Maximum Projection design compares comparably well to designs at

each number of points and outperforms other design methods also chosen for the

chosen number of points. A comparison between purpose-built MaxPro designs and

subsequent subsets from a larger design is shown in Fig. 3.5. This choice of sequential

subset allows for intermediary analysis to be run reliably before the full design has

been computed, providing substantial speedup in producing physics results.

3.6 bayesian modeling workflow

The final plank in the statistical foundation of this study is the idea of a Bayesian

modeling workflow. In addition to supporting trustworthy inference, it ensures an
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Figure 3.4: Subsequent subsets from a one-dimensional projection of the unit 11-dimensional

Maximum Projection design with 350 design points compared to similar subsets

for a maximin latin hypercube algorithm [144] used by nearly all other studies of

heavy ion collisions. Adapted from [3].

Figure 3.5: Design measure with subsets from am 11-dimensional, 350-point Maximum Pro-

jection design compared to Maximum Projection designs chosen for various in-

creasing design sizes.

awareness of the decisions made at each step of the analysis. It also highlights that

producing a Bayesian study is not the end of a task - rather, it sets in motion a guided

process of refinement and improvement.

In the next section, I deploy a Bayesian modeling workflow to produce quantitative

guidance for the simple pendulum in the introductory laboratory. The steps are listed

below and details are expanded upon in the next chapter.
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Step 1: Define the prior state of knowledge.

Choose or build the model that will be investigated and define principled ex-

pectations for prior knowledge of the parameter values.

Step 2: Prior Predictive Checks.

Evaluate the model given the prior knowledge of the parameters defined in the

preceeding step. Are these outputs reasonable or is there pathological behavior

that suggests mis-specified prior knowledge?

Step 3: Model Validation.

Generate pseudodata with the model in question given known inputs. Can the

known inputs be recovered to show that the model is self-consistent?

Step 4: Inference with Data.

Replace the pseudodata with real experimental data. Analyze the results, in

particular the differences from expectations gathered with the pseudodata com-

parison.

Step 5: Posterior Predictive Checks.

Evaluate the model given the posterior knowledge gathered in the preceding

step. Are these outputs consistent with the data? If not, are discrepancies inter-

pretable?

Step 6: Identify Future Directions.

Identify avenues for model improvement or physics study. Return to step 1,

improve the model and begin the process anew.





A S I M P L E E X A M P L E : T H E P E N D U L U M

Note: A reader only interested in heavy ion collisions can skip this chapter without loss of

relevant physics; the reader unfamiliar with Bayesian techniques is encouraged to review this

example as a simple demonstration before a higher-dimensional application. This example

is lightly adapted from [1]. Preference should be given to citing that work whenever

possible. At time of writing, the preprint is in the process of peer review.

Introductory physics courses commonly teach that the period of a simple pen-

dulum displaced by a small angle θ may be found by applying the approximation

sin(θ) ≈ θ, which holds when θ is small. However, the period of a pendulum also de-

pends on the initial angular displacement. Attention has so far been focused on more

closely approximating the full non-analytic integral expression for the period so stu-

dents in undergraduate laboratories can investigate the dependence of the period on

initial angular displacement [145]. Recently, model comparison and complexity has

been applied to the pendulum problem or the teaching laboratory [146].

Thus far, guidance for the use of the small angle approximation in simple pendula

has not been rigorously quantified using realistic uncertainties measured in teaching

laboratories. Textbooks often state that after ∼ 15◦, the difference between sin(θ) and

θ in radians exceeds 1% and the small angle approximation should no longer be used

[147]. This does not take into account the variety of measurement uncertainties in

practice or if the data demands additional complexity. In this demonstration, I show

that with both an exact and approximate analytical formula for the period of a pen-

dulum can successfully establish a quantitative preference at moderate displacements

using Bayesian tools provided sufficiently accurate timing methods are available. This

demonstration produces quantitatively-motivated guidance for restricting the initial

angular displacement or employing more complicated formula for the first time.

67
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3.7 the period of a simple pendulum

An ideal simple pendulum is comprised of a bob with mass m suspended from a

frictionless attachment point by a massless rod of length L. The motion of the pen-

dulum is localized in a single angular plane θ. In the remainder of this example,

non-conservative forces such as friction and drag are explicitly excluded. The equa-

tion of motion of the ideal simple pendulum is

θ̈ = −
g sin(θ)
L

(3.40)

where g is the gravitational acceleration. For small displacements, sin θ ≈ θ and

Eq. 3.40 is a simple harmonic oscillator. The period of a simple harmonic oscillator is

T = 2π
√
m
k and, for the simple pendulum, k = mg

L . This results in

T0 = 2π

√
L

g
, (3.41)

in which there is no angular dependence. Thus, when propagating uncertainty, only

the uncertainty on the length is propagated through to the final period.

To derive an exact expression for the period of a pendulum, one can begin by

considering the conservation of energy. An exact expression for the period of a simple

pendulum is readily derived using the conservation of energy. By choosing the zero of

potential energy when θ(t) = 0 and assuming the pendulum to be initially stationary

and at its initial angular displacement θ0 makes this process straightforward. The

energy conservation equation is mgL (1− cos θ0) = 1
2mL

2θ̇2 +mgL(1 − cos θ). It is

then straightforward to solve for θ̇ and integrate θ from 0 to θ0, corresponding to

one-quarter of the period. T = 2
√
2
√
L
g

∫θ0
0

1√
cos θ−cos θ0

dθ. This integral is improper

when θ = θ0, but the substitution cos θ = 1− 2 sin2(θ/2) may be combined with a

change of variables sinφ =
sin(θ/2)

sin(θ0/2)
to yield

T = 4

√
L

g

∫π/2
0

1√
1− sin2(θ0/2) sin2(φ)

dφ (3.42)

This can then be evaluated numerically [145, 148]. Uncertainty on the initial angular

displacement θ0 is propagated through the integral expression, assuming that the

uncertainties are Gaussian and uncorrelated. The exact expression contains both the
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length and angular displacement, so must account for the measurement uncertainty

on both. The small angle approximation (Eq. 3.41) and the exact expression (Eq. 3.42)

are the two models that will be considered in this example.

3.7.1 Generating realistic measurements

In order to determine when the small angle approximation becomes insufficient using

realistic measurements, realistic choices must be made. Using real measurements in

order to determine model preference thresholds demands a sufficiently large number

of measurements as to be impractical. For 5 measurements of 10 periods at 20 dis-

placements each with 3 timers, a single maximum angular displacement can require

300 measurements, so some of the data in this example is generated using Eq. 3.42

and assigned realistic uncertainties determined in this section.

Generated data used in model validation is called “pseudodata” and real measure-

ments are performed for the final inference. Generated data is used again to calculate

model preference thresholds as this is a particularly data hungry process. Pseudo-

data is generated for model validation by making a set of simple choices informed

by standard guidance in undergraduate teaching laboratories. In these laboratories,

students are told that a rule of thumb for measurement uncertainty is equal to half

of the smallest increment of the measurement device. A common measuring device

in teaching laboratories is a meter stick with millimetre gradations, corresponding

to an uncertainty of ±0.0005 m. In this example, the length of the pendulum was

measured to be L = 0.807± 0.0005m. The uncertainty on initial angular displacement

corresponds to the use of digital protractor with 0.01
◦ gradations and thus all angular

model inputs have uncertainty ±0.005
◦.Uncertainty is propagated from the measured

inputs assuming independent (or uncorrelated) variables, where for a function f of

variables a, b, etc., the variance of the model prediction is

σ2f =

(
∂f

∂a

)2
σ2a +

(
∂f

∂b

)2
σ2b + . . . . (3.43)

More precise timing mechanisms such as photodiodes may also be available and

the use of smartphone accelerometers in teaching laboratories has become more com-

mon. These measurements are significantly more precise than the precision of a stop-
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watch and bypass human reaction times. Measurements with smartphone accelerom-

eters in recent courses at McGill had uncertainty of ±0.02 s [149], while timing uncer-

tainties with the photodiode timer I used to measure data for this example are smaller

still at approximately ±0.005 s. Finally, for timing uncertainties corresponding to the

use of a stopwatch in model selection is taken to be 0.250
√
2 s, corresponding to a

reaction time of 0.250 s [150] to start and stop the timer added in quadrature. Ten

periods were timed to reduce the relative error of the measurements.

It is possible to specify the initial angular displacement and produce pseudodata

that reflects the real precision of data, which can in turn be used to to assess self-

consistency. Once the models are shown to be self consistent, they are compared to

data. If a model describes the data sufficiently well, then it can be used to generate

realistic-enough pseudodata for general guidance. While a simple calculation is suffi-

cient to show that the models become increasingly differentiable as θ0 increases, this

is a tractable example to demonstrate Bayesian model selection.

3.8 a workflow for reproducible inference

Following a step-by-step process acts as a safeguard that supports the validity of the

analysis – or straightforward troubleshooting – and a rich understanding of the mod-

els. It also establishes practices for reproducibility in analysis. In both research and

pedagogical settings, clearly-defined steps are used to guide analysis and allow for

careful implementation and refinement. This simple example is an ideal testbed for

demonstrating this workflow before applying it to more involved research problems.

At the end of the workflow, when both models have been validated and calibrated to

data, Bayesian model comparison is used to establish rigorous criteria for when the

data demands one model over the other.

3.8.1 Step 1: Defining the prior state of knowledge

The first step in Bayesian data analysis is to clearly motivate the choice of prior given

the models in hand. The prior should reflect realistic understanding of the parameters,

with a goal of accurately reflecting a physical understanding blind to the data in
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question. This then allows for posterior constraint to be determined by the systematic

comparison of the model to the data via the likelihood [151].

The only free model parameter in both the equations using the small angle approx-

imation and the exact expression for the period of a pendulum is the gravitational

acceleration g. It must be positive definite and nonzero, otherwise no oscillation will

occur. Physical intuition may also be applied to the prior. Gravitational acceleration

on the surface of a body scales with the mass of the body and gravitational accel-

eration on the Moon is approximately 1.625 m/s2 [152] while the surface gravity of

Jupiter is 24.79 m/s2 [153]. Proceeding with confidence that the mass of the Earth is

likely between that of the Moon and Jupiter, a weakly-informative prior can be con-

structed that allows for some probability of surprise. A common choice for a weakly-

informative prior on positive definite quantities is the inverse gamma distribution. It

has support on the interval (0,∞), matching the positive definite constraint and is

easily tuned so that only 1% of the probability falls below 1.625 m/s2 and above 24.79

m/s2. This prior is shown in Fig. 3.6. The location of the mode of the distribution is

not necessarily relevant – by constructing a weakly-informative prior, the data is al-

lowed to speak for itself. Other choices of prior that have similar support are possible,

but the inverse gamma distribution has the nice feature of smoothly approaching 0

on the bounds of its support, which is consistent with physical expectations.

Figure 3.6: The prior probability density function (PDF) of the gravitational acceleration g.

This PDF is p(H|I) in Eq. 3.6 where each value of g is a hypothesis H.
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3.8.2 Step 2: Prior predictive checks

Exploring the parameter space is an important step in data analysis to understand

any system. Prior predictive checking provides an understanding of model behavior

because it can reveal interesting or improper features of the model [154]. The model

is evaluated with draws from the prior distribution to form the prior predictive dis-

tribution, which is is used to assess the model’s behavior. A non-trivial feature could

be an interaction between two components of a multi-component model that yields

unphysical results and should be excluded by a more carefully constructed prior. In

this example, few such features exist, but the step is included for completeness of the

demonstration. Predictions for the period with g sampled from the prior distribution

are shown in Fig. 3.7. It is expected that measured periods of this pendulum will

be between approximately 1 and 5 seconds, while longer and shorter periods and

corresponding values of g are still theoretically possible, but implausible.

Figure 3.7: 100 predictions for the period for both models, with g sampled from the prior and

initial angular displacement θ0 sampled from a uniform distribution U(0,π/4).

3.8.3 Step 3: Model validation

Testing for self-consistency is a means of establishing model validity. This could also

be called “inverse validation”, as it requires solving the inverse problem and com-

paring the result to known inputs. This is an important step, but also represents the

best-case scenario: the model is known to contain all the features of the pseudodata.

While this is straightforward in a simple example, it is a critical feature in more
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intensive numerical applications with sophisticated observables such as heavy ion

collisions.

Pseudodata is generated using the NIST reference value g = 9.80665 m/s2 [155]

and a timing uncertainty corresponding to the use of a photodiode timer over 10

periods. Initial displacements are chosen with arbitrary spacing, primarily due to the

difficulty in regular spacing on the experimental apparatus.

θ0 = [2.86◦, 11.46◦, 20.05◦, 22.92◦, 35.98◦]

Calculations of the corresponding periods are shown in Fig. 3.8. The arbitrarily-

spaced displacements exaggerate features of real measurements rather than provide

an unrealistically-even test case.

Figure 3.8: Pseudodata used for model validation. In model validation, models are compared

to data generated by the model under consideration.

The models are then both calibrated to their respective validation pseudodata

(Fig. 3.8) and the posterior distributions are shown in Fig. 3.9. Both models are found

to be self-consistent. The small angle approximation model’s posterior is slightly

more peaked than that of the exact model because the predictions are more precise.

This increased precision arises as the small angle approximation does not account for

uncertainty on θ0. For each hypothesized parameter value, the Gaussian likelihood is

calculated and the posterior is trivially found. While this is simple in a small number

of dimensions, this is impractical for high-dimensional applications with expensive

models due to computational cost. To overcome this, the posterior is evaluated nu-

merically using Markov Chain Monte Carlo. This is used here here for consistency

with later analysis.
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Figure 3.9: Posterior distributions for g in model validation using the exact formula for the

period and the small angle approximation. The true value is shown in red and

vertical dashed lines denote the 16th, 50th, and 84th percentile of the samples in

increasing g with values provided above the figure. When the models contain the

full information present in the data to which they are compared, both are able to

recover the true value.

Posterior predictive checks help ensure that the posterior is consistent with the

data. Predictions are made by taking draws from the posterior distribution and evalu-

ating the model to form the posterior predictive distribution, shown in Fig. 3.10. Both

models clearly produce predictions consistent with their respective validation data.

A mismatched posterior predictive distribution can indicate an issue in the inference,

the MCMC, or may reveal underlying structure contrary to expectations but useful

for improving the model. For example, the posterior predictive distributions may re-

produce some – but not all – data, indicating that there is missing physics and what

that missing physics may be. Where the models are calibrated to data generated by

themselves, both are able to recover the known input (Fig. 3.9) and reproduce pseu-

dodata (Fig. 3.10). The distribution of model predictions are shown with violin plots.

In violin plots, the width of the regions corresponds to the probability density of the

data.
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Figure 3.10: Posterior predictive distributions for g from model validation. The posterior dis-

tributions are those shown in Fig. 3.9.

3.8.4 Step 4: Inference with data

Only after self-consistency has been established is it appropriate to move on to com-

parison with real data. Measurements were made with a pendulum of length L =

0.807± 0.0005 m and a cylindrical bob of mass 10± 0.05g with times recorded us-

ing a photodiode connected to a Pasco 850 universal interface Model UI-5000 for data

acquisition. The bob was released from the same location using a stand. Five measure-

ments of ten periods were made at each arbitrary angular displacement, consistent

with the typical number of measurements performed by students in introductory

teaching laboratories. The means of these measurements and associated uncertainty

are provided in Table 3.2.

θ0 (deg) ±0.005◦ Period (s) ±0.0001 s

6.40 1.8028

11.73 1.8056

16.41 1.8113

19.99 1.8152

23.18 1.8196

32.67 1.8339

Table 3.2: Experimental results for the period of the simple pendulum.



76 introduction to bayesian inference

The posterior for the gravitational acceleration g is shown in Fig. 3.11. The exact

model is able to infer the gravitational acceleration with a relatively accurate and pre-

cise 68% credible region – 9.818± 0.003 m/s2 – while the small angle approximation

infers a result with higher precision – 9.715± 0.001 m/s2 – but sacrifices accuracy

with a remarkable ∼ 0.1 m/s2 bias from the standard value 9.80665 m/s2 [155] and

from 9.80636 m/s2, the best-available model calculation of g for the experimental

apparatus’ location [156]. While in Fig. 3.9, both models were self consistent and re-

covered results within expectations, one can clearly see in Fig. 3.11 that the small

angle approximation’s posterior is less consistent with expectations than that of the

exact expression for the period.

Increased precision at the cost of bias is commonly known as the bias-variance

tradeoff. Addressing this tradeoff is a focus of model development and many tech-

niques in statistical learning [157]. While the reference value is not within the 68%

credible region of the exact model, the bias is greatly reduced and predictions with

the posterior are investigated further in the next subsection and match the data well.

9.68 9.70 9.72 9.74 9.76 9.78 9.80 9.82 9.84
g (m/s2)

gExact=9.827±0.003gSmallAngle=9.674±0.001

Small Angle Percentiles
Exact Model Percentiles
9.80665 m/s2

Exact Model
Small angle approximation

Figure 3.11: Independently normalized posterior distributions for g using the exact formula

for the period and the small angle approximation. The NIST value [155] is shown

in red and vertical dashed lines denote the 16th, 50th, and 84th percentile of

the samples in increasing g with exact values provided above the corresponding

distribution. Because the two posteriors are independently normalized, it is im-

portant to consider each posterior independently and not interpret the relative

height of the peaks.
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3.8.5 Step 5: Posterior predictive checks

Posterior predictive distributions can elucidate features of the predictions and pro-

vide insights into why one model may fail why the other succeeds. The posterior

predictive distributions are shown in Fig. 3.12. The failure of the small angle approx-

imation to reproduce the measured data is striking. As it was shown in Fig. 3.10 that

the small angle approximation is self-consistent, the only conclusion can be that im-

portant physics is absent, e.g. angular dependence. The predictions from the exact

model posterior are constrained around the measurements and are broadly consis-

tent with the measured uncertainty, while the small angle model attempts to match

the data by undershooting at large angular displacement and overshooting small dis-

placements. It thus fails to reproduce the data outside a small intermediate window.

As a result, the posterior predictive distributions make the incompleteness of the

small angle approximation immediately apparent and interpretable, while the failure

of the exact model requires more attention. Features not yet accounted for include the

flattening of the data at large displacement in Fig. 3.12, likely due to non-conservative

forces such as drag. Accounting for such effects is beyond the scope of this example.

This establishes that it is possible to detect the bias in calculations of gravitational

Figure 3.12: Violin plot of the posterior predictive distributions for g. The posterior distribu-

tions are those shown in Fig. 3.11.

acceleration introduced by using the small angle approximation of the period of a

pendulum while including large initial angular displacements and realistic measure-

ment uncertainties. Through the use of a modeling workflow, it is straightforward
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to identify and interpret this bias through visualization of the posterior and poste-

rior predictive distributions. It is also clear that the exact formula for the period of

a simple pendulum contains much of the relevant physics necessary to describe real

data.

3.9 model comparison

It is time to translate this into quantitative guidance using the tools of Bayesian model

comparison. In the remainder of this chapter, the exact formula and the small angle

approximation for the period are subscripted 0 and 1, respectively. Taking sufficient

accurate measurements by hand involves thousands of measurements of the period

and it has already been demonstrated that the exact expression of the period describes

the motion of a pendulum well. Rather than perform an unreasonable number of mea-

surements for a simple demonstration, the model selection study will use generated

data. It is unreasonable to assume that a student in an introductory laboratory would

be able to make reliable measurements at increments finer than 1◦ with a meter-scale

pendulum or at more than 12 increments in initial angular displacement θ0. This

represents an attempt to find an idealized, maximally-restrictive constraint on initial

angular displacement θ0.

12 proxy data points linearly spaced in θ0 are generated if the maximum θ0 is

larger than 12
◦. If the maximum θ0 is less than 12

◦, data is generated in 1
◦ increments.

The Bayes factor is calculated and interpolated to determine at what Max[θ0] the

evidence for the exact model becomes weak, moderate, or strong. Including these

results demonstrates the importance of accounting for uncertainty when offering data-

driven guidance and will allow for appropriate implementation.

The ln Bayes factors are shown in Fig. 3.13. As the maximum initial angular dis-

placement θ0 increases, there is progressively stronger preference for the exact expres-

sion. The constraint diminishes as the relative magnitude of the angular displacement

is reduced and the displacement is increasingly small. Preference thresholds for the

exact calculation at maximum initial angular displacement θ0 is given in Table 3.3.

The small angle approximation is appropriate below these model preference thresh-

olds.
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Figure 3.13: lnB01 demonstrating preference for the exact expression for the period of the

pendulum over the small angle approximation for a variety of timing methods.

Positive values denote preference for the exact model. Horizontal lines denote

thresholds for weak, moderate, and strong preference and the filled areas rep-

resent the integration uncertainty on the Bayes factors arising from numerical

calculation of the Bayes evidence. When timing is imprecise, it becomes difficult

to establish model preference.
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Strength of evidence |lnB01| θ0 (rad) θ0 (deg)

Photodiode timing

Weak 1.0 0.140± 0.003 8.0+0.1−0.2

Moderate 2.5 0.155± 0.002 8.89+0.09−0.1

Strong 5.0 0.171± 0.001 9.81± 0.06

Accelerometer timing

Weak 1.0 0.195± 0.007 11.2± 0.4

Moderate 2.5 0.234± 0.004 13.4+0.2−0.3

Strong 5.0 0.275± 0.003 15.8± 0.2

Stopwatch timing

Weak 1.0 0.62+0.04−0.03 35± 2

Moderate 2.5 0.78± 0.02 44.6± 0.9

Table 3.3: Model preference thresholds in which the exact formula is preferred over the small

angle approximation. Subscript 0 denotes the exact formula and subscript 1 denotes

the small angle approximation. Strong preference was not found for stopwatch tim-

ing when maximum angular displacement was limited to π/4 rad.

Timing Precision Recommended Restriction

(rad) (deg)

Photodiode (± ∼ 0.005 s) 0.17 10

Accelerometer (± ∼ 0.02 s) 0.26 15

Stopwatch (± ∼
√
2(0.250) s) π/4 45

Table 3.4: Guidance for restricting initial angular displacement for simple pendula when us-

ing the small angle approximation.

3.10 conclusions

This example demonstrates how to approach statistical modeling through a workflow

and how to set data-driven constraints on the use of the small angle approximation

using Bayesian inference.
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The heuristic guidance of constraining simple pendula to 15◦ is excessively restric-

tive when timing with the typical precision found in stopwatches, but is reasonable

when using a smartphone accelerometer and overly-permissive when using more pre-

cise timing methods. The data does not exhibit strong preference for the exact expres-

sion for the period with photodiode timing until 9.81± 0.06◦ and with accelerometer

timing until 15.8± 0.2◦, while stopwatch timing is insufficiently precise to establish

strong preference between the two models at maximum displacements up to π/4

radians (45◦). This suggests that current guidance of restriction to ∼ 15◦ is appropri-

ate for timing of precision ±O(0.01) s, but displacements with more precise timing

±O(0.001) s should be restricted to 10◦ while displacements with less precise timing

commensurate with stopwatches and human reaction times should not be restricted

below 45◦.

This analysis represents the current state-of-the-art guidance for laboratory manu-

als and textbooks as it has used realistic best-case uncertainties and advanced statis-

tical techniques to determine when the breakdown of the approximation is actually

detectable. Future works should continue with the present guidance, but modify their

justification to be data-driven rather than being motivated by a 1% discrepancy in the

small angle approximation. This would both be more directly applicable to instruc-

tors and more faithfully communicate the derivation of scientific guidance to students.

Additionally, this has demonstrated a statistical modeling workflow in which more

advanced modeling and guidance questions may be addressed.





Part III

Q U A N T I F Y I N G T H E Q U A R K - G L U O N P L A S M A

Bayesian tools are applied to modeling heavy ion collisions; first in a lim-

ited case and then in a global Bayesian analysis. Details of the model-

ing process are discussed before results are provided and predictions are

made.





4
M O T I VAT I O N A N D D E S I G N

One question at the outset of any study is to ask what one hopes to learn from per-

forming it. In this case, Bayesian analyses with TRENTo have been performed many

times, often with relatively small changes between them. A new analysis, replacing

the parametric TRENTo + freestreaming pre-equilibrium stage with IP-Glasma’s mi-

croscopic physics, is justified by the clear successes of IP-Glasma-based models in the

literature [28, 29, 57].

I will also motivate a new analysis with reference to the current state of the field

and by detailed quantitative comparison to the hybrid model used in most Bayesian

studies of heavy ion collisions. I first demonstrate important physical differences

between the current standard hybrid model with a TRENTo + freestreaming initial

state and a more physically-derived initial state model – notably, IP-Glasma. I show

that these differences are of physical importance to modeling heavy ion collisions

and outline that the current modeling standard is insufficient for accurate inference

of the properties of the QGP. With these differences established through detailed

comparison, I design a new, IP-Glasma based study to infer the properties of the QGP

through more physically interpretable simulations and model-to-data comparison.

A major reason to motivate these differences is not only to demonstrate increased

interpretability of physically-derived models, but rather the adage that “hydrody-

namics is agnostic.” In other words, hydrodynamics is a deterministic process.1 and

thus constitutes an initial value problem. Assuming two models can both reproduce

the same initial values, hydrodynamics will evolve them in the same way and it will

be impossible to distinguish between them. Thus, it is important to unambiguously

differentiate the CGC-based, QCD-inspired IP-Glasma from the standard TRENTo +

freestreaming implementation to physically justify a new study.

1 Hydrodynamic fluctuations are beyond the scope of this thesis. For more on hydrodynamic fluctua-

tions in heavy ion collisions, see [30].
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First, I demonstrate that a TRENTo + freestreaming initial state does not reproduce

important details of an IP-Glasma initial state at hydrodynamic starting time. Then,

I argue that in order to have confidence that physical quantities are extracted rather

than merely useful model parameters, a physical initial state model must be used. I

then highlight that known sources of theoretical uncertainty arise from the coupling

of the initial state and the hydrodynamic stage.

In this chapter, I begin with a brief overview of TRENTo to establish the current

standard of modeling in Bayesian inference in heavy ion collisions in Sec. 4.1. I then

compare TRENTo and IP-Glasma energy deposition in Sec. 4.2. Next, I compare var-

ious aspects of TRENTo + freestreaming initial states and IP-Glasma directly using

initial state pseudo-observables in Sec. 4.2.1. In the same section, I highlight system-

atic impacts of these differences on the subsequent evolution and the implications for

Bayesian studies. I also list some physically-motivated and methodological concerns

and expand to issues in previous Bayesian works. I show comparisons using final-

state observables with differentiable features of IP-Glasma and TRENTo + freestream-

ing in Sec. 4.3 and highlight proper comparisons as well as particularly constraining

observables that have so far been unused. I include some brief notes on the imple-

mentation before describing what will be learned from this study. I also describe

improvements compared to previous analyses as well as a few potential extensions.

Finally, to conclude this chapter, I explicitly describe parameters and parametriza-

tions as well as their physical meaning in Sec. 4.5.4. These are the quantities which

will be constrained through systematic Bayesian model-to-data comparison.

4.1 initial state models

The goal of every Bayesian study in HICs is to accurately infer properties of the

strongly-interacting QCD medium. To do this, the initial stage must be described.

However, there are many models of this pre-equilibrium stage. Physically-inspired

parametric models have achieved wide use and include Glauber models [158] and

TRENTo [37]; transport models such as AMPT [159] used to produce initial states for

hydrodynamics; and saturation-based models such as EKRT [160], KLN [161], and

IP-Glasma [54].
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Due to both availability and flexibility, the model nearly-exclusively used in mod-

ern Bayesian analyses in heavy-ion phenomenology is TRENTo. To allow for complete-

ness of discussion, I provide a brief introduction of the parametric TRENTo model

before continuing to comparisons with IP-Glasma.

TRENTo, or Thickness (Reduced) Event-by-event Nuclear Topology, is a paramet-

ric model of the initial stage of a heavy-ion collision.2 This model seeks to use a

continuously-varying parameter p to modulate the energy deposition into the initial

state and introduces other parameters for flexible modeling of the initial energy de-

position. It has also been used to “interpolate” between various features – such as

geometry – of commonly-used models, including IP-Glasma, MC-KLN, EKRT, and

the wounded nucleon model, although these comparisons must be made cautiously

[2].

The motivation for a simplified model is that microscopically-derived models of

the initial state are computationally intensive and therefore take a significant amount

of resources to employ. They are also inflexible, meaning that they effectively “bake

in” prior beliefs.3 TRENTo is capable of running orders of magnitude more events

than IP-Glasma in a comparable time while also enjoying a degree of quantitative

success and generating event-by-event energy density profiles.

To provide some mathematical detail, imagine that two colliding heavy ions each

can be assigned some “thicknesses” TA and TB denoting the amount of nuclear mate-

rial at a particular position. When these two thickness functions collide (or “partici-

pate” in a collision), they deposit energy into a reaction plane proportional to some

function of the participant thickness functions. This deposited energy is called the

reduced thickness function as the two participant thickness functions are “reduced”

to a third thickness. TRENTo angesetzt that this can be modeled by a function TR of

the form

TR (p; TA, TB) ≡
(
T
p
A + TpB
2

)1/p
(4.1)

2 As TRENTo’s usage has evolved, model interpolation has been de-emphasized and much effort has

gone into differentiating it from models it was designed to interpolate between [162] and must be

understood as highly conditional on other choices [2].
3 Flexibility is a double edged sword: because parametric models are not necessarily physical by con-

struction, they can produce unphysical outcomes.
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which may easily be recognized as the generalized mean. Depending on the value of

p, one produces max(TA, TB) (p→∞), the arithmetic mean (TA+ TB)/2) at p = 1, the

geometric mean
√
TATB at p = 0, the harmonic mean 2TATB/(TA + TB) at p = −1, and

finally min(TA, TB) at p→ −∞. The impact of the variation of p is shown in fig. 4.1.
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Figure 4.1: TRENTo thickness functions for different values of the parameter p, reproduced

from [37].

The individual thickness functions TA and TB also deserve some attention for the

upcoming discussion. At least in 2D TRENTo, these are functions of only the trans-

verse coordinates x and y. The nuclear density of two colliding protons A and B

centred along the x axis is given by

ρA,B = ρproton(x± b/2,y, z) (4.2)

where the protons collide with some impact parameter b. A collection of nucleons

colliding similar to these protons may be complied into a total thickness function

for nucleus A or B where each proton is also given a fluctuating weight, w, itself an

element of the set of weights wA,B.

TA,B(x,y) = wA,B

∫
dzρA,B(x,y, z). (4.3)

These weights wA,B are independent random weights sampled from a unit mean

gamma distribution,

Pk(w) =
kk

Γ(k)
wk−1e−kw, (4.4)
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and are introduced to reproduce large multiplicity fluctuations in proton-proton col-

lisions. The shape parameter k is tuned by fitting to data. Additional physical param-

eters include the nucleon width, the minimum nucleon-nucleon distance for Woods-

Saxon sampling of nuclei positions, and the overall normalization of the energy (or

entropy) deposition.

Before continuing to comparisons with IP-Glasma, it is worth issuing some words

of caution when using parametric models. In the case of TRENTo, parameters such

as nucleon size have strong degeneracy with follow-up stages which diffuse hotpots.

These can thus compensate for each other and TRENTo’s relatively diffuse energy

(entropy) density deposition results in less constraint about the knowledge of the

length of a more physical pre-equilibrium stage. In fact, substantial covariance with

hydrodynamic quantities has been shown [42, 45].

TRENTo does not provide an initial full Tµν nor does it generate flow, so an addi-

tional step is often used between the initial energy density and the onset of hydrody-

namics. Typically, a freestreaming model [163, 164] is used. This introduces another

opportunity for unquantified uncertainties as freestreaming is known to be an in-

complete approximation to pre-equilibrium dynamics. In freestreaming, the energy

distribution is initialized with an isotropic momentum distribution and allowed to

evolve without interactions. In heavy ion modeling, freestreaming is often initialized

using the TRENTo energy (or entropy) density.

A physical problem with connecting freestreaming to hydrodynamics directly is

that freestreaming implies an infinite mean free path (no interactions). Hydrodynam-

ics evolves a strongly-coupled medium whose mean free path is very short. This is a

source of unquantified theoretical uncertainty in hybrid models with this discontinu-

ity. A method to more smoothly connect initial states to hydrodynamics can be found

in [165], although more detailed considerations are beyond the scope of this thesis.4

A phenomenological concern is that, when followed by freestreaming, the hot spots

in TRENTo diffuse further. This has a clear degeneracy with the nucleon size param-

eter and, if evolved long enough, can significantly impact the geometry at the on-

set of hydrodynamics. This suggests an additional compensating effect between the

4 A new model, KTiso [166], has been proposed that is more physically-inspired than freestreaming and

appears promising, but has yet to be used at scale.



90 motivation and design

freestreaming time and various TRENTo parameters and will be explored further in

Sec. 4.2.1. TRENTo attempts to provide a sufficiently flexible model to match data

by compiling features and expecting that the parametric flexibility is able to partially

quantify the uncertainty on the initial stage and its impact on later stages of the model.

The success of this will be investigated in Secs. 4.2 and 4.2.1.

4.2 initial-state comparison

Parametric, geometric models sacrifice microscopic physics in order to capture broad

features in an efficient, intuitive way. The goal of the entire program of statistical

analysis in heavy ion collisions is to accurately and precisely quantify the present

state of knowledge of the properties of strongly-interacting matter. As such, striv-

ing for infinitely precise inference without making substantial effort to understand

and reduce unquantified bias only serves to harm the broader theoretical program.

In contrast, IP-Glasma’s foundation in the QCD-based CGC framework includes mi-

croscopic physics and allows for a direct connection of pen and paper theory to

phenomenology. IP-Glasma presents an opportunity to quantitatively constrain phys-

ical and theoretical understanding of strongly-interacting matter in the initial stage

of heavy ion collisions with an already-successful model, attempt to identify weak-

nesses, and allow for them to be improved.

In this and the following section, I demonstrate differences between TRENTo and

IP-Glasma that directly motivate a Bayesian analysis with an IP-Glasma initial state.

I show a series of comparisons at switching time to hydrodynamics with important

differences between the two models. In the direct comparisons in this chapter, I use

maximum a posteriori (MAP) results for simplicity and due to computational expense.

The Grad MAP parameter set from [45, 46] is used for TRENTo + freestreaming, while

the calculations with IP-Glasma are performed with the calibration from [28] for Pb-

Pb collisions at
√
sNN = 2.76 TeV.

Comparisons are made at hydrodynamic switching time. Some researchers would

prefer comparisons between the models at the same proper time τ [2]. A comparison

at the same time would be informative if the relevant comparison were to under-

stand synchronous differences between the evolutions. Instead, the goal of this work



4.2 initial-state comparison 91

is to understand what differences are presented to the remaining parts of the hy-

brid model and the impact of these differences. The remaining evolution is sensitive

to the way the model is used in practice, rather than all possible configurations. Fi-

nally, many such comparisons of TRENTo and other models already exist while the

comparison at the onset of hydrodynamics is novel and of more relevance to this dis-

cussion. All subsequent TRENTo quantities are calculated at τ ∼ 1.45 fm, subject to the

energy-dependent switching time prescription in [45], while IP-Glasma calculations

are performed at 0.4 fm. The JETSCAPE workflow is reproduced and validated, with

brief details shown in Appendix A.

4.2.1 Comparisons at the onset of hydrodynamics

As noted earlier, “hydrodynamics is agnostic”. If TRENTo and freestreaming were to

somehow successfully reproduce the features of an IP-Glasma initial state at hydro-

dynamic switching time, then the subsequent analysis would not be impacted by the

choice of initial state and differences in the evolution to that point would be immate-

rial. I show conclusively that differences do exist in the initial state produced by these

different modeling choices and therefore hydrodynamics does not see indistinguish-

able initial conditions.

I will make two broad classes of comparison at the onset of hydrodynamics as the

models are used in practice: first, I will compare the geometry and second, I will com-

pare the dynamics. In the geometric comparisons, I will compare the shapes of the

deposited energy densities in the reaction plane. This will reveal both whether event-

averaged geometries are similarly distributed, but also if the centrality dependence of

the geometries are comparable. In the comparisons with dynamics, I investigate dif-

ferences in pre-equilibrium flow to determine whether to expect comparable response

from the hydrodynamic stage in both models as well as if the hydrodynamic stage

is forced to compensate for an incomplete physical picture from the pre-equilbrium

phase.
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To explore the geometry of the medium at hydrodynamic switching time, a pseudo-

observable called εn is used and are the coefficients of a radial Fourier decomposition

of the energy density in position space. In TRENTo, these are defined as

εne
inφ = −

∫
dxdyrneinφTR∫
dxdyrnTR

(4.5)

where εn are the coefficients of order n, φ is the azimuthal angle, and r is the radius

r =
√
x2 + y2. When using models other than TRENTo, TR is replaced by the energy

density of the model under consideration. These are similar to vn – simply the spatial

energy density rather than the momentum-space energy density – and are often con-

sidered a proxy for vn as hydrodynamics converts initial state spatial gradients into

final state momentum space gradients. Thus, ε2 quantifies how elliptical the energy

density is, ε3 quantifies how triangular the energy density is, and so on and so forth.

This therefore allows for a meaningful geometric comparison between the two mod-

els as it quantifies differences in the shape of the energy densities. The event-averaged

εn for central to peripheral collisions are shown in Fig. 4.2. It is immediately appar-

ent that the shapes are strikingly different and do not have comparable centrality

dependence or in the case of εn6=2, magnitude. This suggests that the energy density

supplied by TRENTo + freestreaming is more diffuse than the more structure-rich

energy density of IP-Glasma.

The observed suppression in the higher components can be understood as the

hotspots diffusing and overlapping each other to produce a remarkably different

geometry from the strikingly non-flat IP-Glasma εn. This is the first sign that even

the basic geometry of the events at the onset of hydrodynamics is radically different.

Although the geometry supplied to hydrodynamics is quite different, it is impor-

tant to consider the dynamics. This will allow for details such as medium response

to be put into their proper context. As previously described, the dynamics typically

implemented with TRENTo are freestreaming, as opposed to the microscopic CGC-

based evolution used by IP-Glasma. The purpose of freestreaming is to provide pre-

equilibrium dynamics to the hydrodynamic phase. The first comparison of the dy-

namics is the root mean square (RMS) transverse velocity of TRENTo + freestreaming

and IP-Glasma, in Fig. 4.3. It is clear that both the shape and values of the RMS initial

transverse flow velocities are strikingly different. An important difference between

the two models is the centrality dependence of the RMS transverse flows. Fig. 4.3
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Figure 4.2: ε2 through ε5 at the onset of hydrodynamics

clearly shows a linear centrality dependence for TRENTo + freestreaming, while IP-

Glasma’s transverse velocity centrality dependence is clearly non-linear. This is cer-

tain to impact the hydrodynamic response and its centrality dependence.

Figure 4.3: Transverse flow in TRENTo + freestreaming and IP-Glasma at the onset of hydro-

dynamics. The freestreaming time used is the prescription of [45] and IP-Glasma

is evolved to 0.4 fm in accordance with [28].



94 motivation and design

Another differentiating feature between the standard TRENTo + freestreaming pre-

equilibrium model and IP-Glasma is the momentum anisotropy. Because there are no

interactions in freestreaming, the initial isotropic momentum distribution is frozen-in

and the anisotropy is identically 0 as freestreaming is presently initialized with an

isotropic momentum distribution. In IP-Glasma, there is no such constraint and a

clear nonzero momentum anisotropy is observed.

In [167], a significant component (35-45%) of the momentum anisotropy comes

from the initial state, particularly in pA collisions. The bulk viscosity also impacts

the evolution of momentum anistropy, which suggests that freestreaming’s isotropic

momentum distribution is certain to have an impact on the evolution of the medium

and influence estimates of the bulk viscosity.

The momentum anisotropy quantity is defined so that it is comparable to the final

state momentum anisotropy vn coefficients, which must include the imaginary term.

This definition is

εp =
Txx − Tyy + 2iTxy

Txx + Tyy
(4.6)

and its magnitude is

|εp| =

√
(Txx − Tyy)2 + (2Txy)2

(Txx + Tyy)2
. (4.7)

This recovers the expected physical result for freestreaming and IP-Glasma, shown

in Fig. 4.4. This is another clear difference between a TRENTo + freestreaming initial

state and an IP-Glasma initial state and will have implications for the final momentum

distributions observed in particle spectra.

This is another clear signal of how freestreaming does not successfully mimic the

microscopic physics of the classical Yang-Mills evolution and why quantitative results

generated with a TRENTo + freestreaming pre-equilibrium phase are likely unreliable

reflections of the physical dynamics of heavy ion collisions. Both the geometry and

the dynamics show that there is a clear need for a Bayesian study using an IP-Glasma

initial state in order to better constrain the understanding of the QGP.

A difficulty in constraining the current state of knowledge lies in significant sources

of theoretical uncertainty arising from a variety of available models. In the initial

state, a variety of models are available and were discussed in Sec. 4.1. If a model
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Figure 4.4: Momentum anisotropy in TRENTo + freestreaming and IP-Glasma. Freestreaming

explicitly assumes an isotropic momentum distribution.

existed which was able to interpolate between broad features of these models, it

would be able to constrain the model space and highlight important features using

systematic model-to-data comparison. Such a claim was made using the TRENTo

model, reproduced in Fig. 4.5, and has resulted in the need for repeated emphasis

that p = 0 TRENTo and IP-Glasma are distinguishable using a variety of methods,

including those shown in this chapter [2, 162].

Figure 4.5: Model selection in TRENTo. Reproduced from Fig 5.13 in [42].

At the outset, it was emphasized that TRENTo + freestreaming entropy deposition,

conditional on certain parameter choices, is able to reproduce some geometric fea-
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tures of IP-Glasma and EKRT [42]. This value of p is repeatedly favored by experi-

mental data [42, 45, 51]. The comparison to other models arises solely from compari-

son to ε2, ε3, and
√
〈ε22〉/

√
〈ε23〉

0.6
for IP-Glasma and to thermal distribution profiles

with special values of p for KLN, EKRT, and the Wounded Nucleon model [42]. Note

that these comparisons are only geometric and do not investigate dynamics, which of

course modify the geometry. Additionally, these are with entropy density, not energy

density as TRENTo is now used. Insofar as p = 0 TRENTo have been compared to

IP-Glasma, EKRT, and other models, it is within this limited context.

Since the initial states are distinguishable using geometry, flow, and momentum

pseudo-observables at hydrodynamic matching as used in practice, it can be conclu-

sively stated that p = 0 TRENTo and IP-Glasma are both qualitatively and quantita-

tively different. The strongest statement that can be made is that it is possible for a

particular configuration of TRENTo + freestreaming to mimic a particular configura-

tion of IP-Glasma. However, this is not a guarantee that p = 0 is sufficient to do so,

although it seems to suggest IP-Glasma as a candidate for further study.

Now that the two initial state models have been differentiated, it is important to

investigate how those differences are expected to impact final state observables and,

consequently, inference of strongly-interacting matter in heavy ion collisions. Criti-

cally, I do not seek to prove which model is “right” or “wrong”, but how each of

these two models is most useful.5

It is critical to ask what implications the identified differences will have for Bayesian

inference – were these differences immaterial and nothing new would be learned, a

new study could not be justified. In [160], the authors highlight that event plane corre-

lators are particularly sensitive both to the value and to the temperature dependence

of η/s. To date, no Bayesian study has used this to constrain the temperature depen-

dence of shear viscosity, which is a critical aspect of study as [45, 46] find that it is

difficult to constrain η/s(T).

The evolution from the initial participant-plane correlations to final state event-

plane correlations is highlighted in [118]. There is a compensating effect in this ob-

5 The famous adage is “all models are wrong, but some are more wrong than others”. Thinking of the

usefulness of models for various problems is a much more productive way to approach phenomenol-

ogy than in stark binary categories and is generally ascribed to George Box.
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servable between initial state model choice and shear viscosity required to match

data. I have established significant differences between the predictions for these εn

between TRENTo and IP-Glasma, suggesting that the geometric differences will im-

pact the inferred shear viscosity. This coupling of initial state model and shear viscos-

ity is not isolated to this observable; the effect is seen again in Fig. 5.4 of [42] where

Glauber and KLN initial states produce nearly-non-overlapping distributions of η/s.

In a study on nonlinear response coefficients, the ALICE collaboration [120] found

that simply changing the shear viscosity in a single initial state model can change the

prediction for certain coefficients by up to a factor of 10 in more central collisions.

Changing the initial state model and holding the viscosity fixed can also produce a

difference up to a factor of 3, again demonstrating the coupled nature of the initial

state and hydrodynamic medium.

Viscosities modify the mapping of initial states to final states [168, 169], making

it apparent that geometrically-motivated models without underlying physical con-

straints or dynamics are insufficient and significantly impact the results of statistical

inference.

As previously discussed, εp is sensitive to the bulk viscosity and, when properly

constructed, directly corresponds to v2 in the final state. When 35-45% of εp in hybrid

models of pA collisions can be traced to the initial state [56] and there are nontrivial

correlations between shear and bulk viscosity [42, 45, 50, 51], it becomes imperative

to use a physically motivated, interpretable, and systematically-improvable model to

accurately constrain transport coefficients. To explicitly test determine if the hydro-

dynamic phase masks differences in initial state behaviors, the initial states must be

evolved through hybrid models and compare final state observables.

4.3 final state comparisons

In this section, I compare TRENTo + freestreaming + MUSIC + iS3D + SMASH events

using the Grad MAP parameters of JETSCAPE SIMS to the work of [28] in order

to thoroughly explore differences in final-state predictions. Both of these choices

presently represent the state-of-the-art for each hybrid model.
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While I have comprehensively demonstrated differences at switching time to hy-

drodynamics, final state differences between the two hybrid models can suggest

where the models experience tension in describing the data and what features may

be lacking. In particular, the differences between these hybrid models are in the

pre-equilibrium geometry and dynamics. The pre-equilibrium geometry and dynam-

ics are mapped to final-state quantities via hydrodynamics, particlization, and the

hadronic cascade.

Event plane correlators and hydrodynamic response coefficients are examples of

observables that couple shear viscosity and the initial geometry [118, 120, 160]. Addi-

tionally, the initial state can be the source of significant momentum anisotropy. This

momentum anisotropy is modified by the bulk viscosity [56]. Differences in initial

geometry and momentum anisotropy will have a clear signal in the final state and

corresponding implications for Bayesian inference. No Bayesian analysis in heavy ion

collisions has yet considered such observables that couple these quantities in such

an explicit manner, nor exploited them to constrain the temperature-dependence of

the viscosity. This increases the value of choosing observables with such interpretable

sensitivity.

TRENTo as a successful proxy for IP-Glasma was partially identified because of

eccentricity scaling and binary scaling of the thickness function [42]. However, the

parameters that result in this matched scaling are not chosen in practice. Thanks to

sensitivity analyses, the underlying cause for this is revealed. The final state geometry

is sensitive to both initial state geometry and η/s [118, 160]. The momentum-space

anisotropy, characterized by vn, is also sensitive to shear viscosity. In a sensitivity

analysis of a TRENTo + freestreaming + MUSIC + iS3D + SMASH hybrid model, the

primary observables sensitive to changes in the freestreaming time are vn, followed

by 〈pT 〉 [45].

Thus, the momentum space anisotropy and correlated momentum fluctuations are

connected to overly-simplistic dynamics. This has a knock-on effect as the initial εp

and ζ/s have a demonstrable impact on the evolution of the hydrodynamic momen-

tum anisotropy [56, 167]. Additionally, bulk viscosity is necessary to reproduce 〈pT 〉

and a range of other hadronic observables [170, 171]. As a result, the initial state pro-

duced by TRENTo that has the same geometric properties as a more physical model
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is undermined by the heuristic dynamics that follow. The deficiencies’ impact of the

freestreaming stage on the extracted hydrodynamization time is clear. As a result,

there are interpretable and identifiable deficiencies in the pre-equilbrium stage pro-

duced by TRENTo + freestreaming that impacts inference of the hydrodynamic stage.

The impacts of these effects will be demonstrated in this section.

A disclaimer is worth including for the following comparisons. I compare calcu-

lations at single sets of parameter values, IP-Glasma in a hybrid model as used by

[28] and TRENTo + freestreaming as specified by the MAP parameters of [45, 46]. The

posterior predictive distribution from Bayesian model-to-data comparison would be

a more informative quantity to differentiate the models and the true uncertainty in

predictions from varying the parameters. However, this is not easily available, is pro-

hibitively computationally expensive for exploratory work, and is beyond the scope

of this analysis.

While the TRENTo + freestreaming hybrid model was systematically tuned to ex-

perimental observables, the work of [28] uses the following procedure to tune to data

by hand: first, normalize IP-Glasma to match the charged hadron multiplicity and sec-

ond, adjust a constant shear viscosity and a parametrized bulk viscosity to visually

match flow coefficients vn and mean transverse momentum 〈pT 〉. Small adjustments

are then made to normalization to ensure the best visual matching. Event plane corre-

lators and nonlinear response coefficients were not used as inputs in either calibration

and therefore represent a prediction by both models.

4.3.1 First generation observables

In this section, the first generation observables discussed in Ch. 2 are considered.

Here, TRENTo + freestreaming is expected to produce satisfactory calculations as

these are broadly observables to which the TRENTo + freestreaming hybrid model

was systematically compared. However, there is tension in the JETSCAPE-SIMS cali-

bration and this results in an underestimation of the charged hadron multiplicity in

Fig. 4.6. A hand-calibrated IP-Glasma produces a better description of this observable.

Next, consider vn. In Fig. 4.7, it is apparent that TRENTo + freestreaming under-

shoots the data systematically at MAP, while IP-Glasma better reproduces the data
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Figure 4.6: Charged hadron multiplicity from a hybrid model with IP-Glasma compared to

that of TRENTo + freestreaming and data measured by ALICE. Shaded bands

throughout this thesis denote uncertainty.

but does not fully capture the centrality dependence as it is currently configured.

These two results are both worthy of attention, as it is important to emphasize that

two imperfect models are being compared rather than a “perfect” model and a chal-

lenger. Sufficient differences between data and MAP TRENTo + freestreaming calcu-

lations suggests that IP-Glasma may be worthwhile to pursue systematically.

Another interesting feature is the relatively better matching to data from IP-Glasma

compared to TRENTo + freestreaming with 〈pT 〉 in Fig. 4.8 despite the fact that these

observables were included in the systematic tune. This suggests that sufficiently large

tension existed elsewhere that it was not able to simultaneously match this quantity

and other data.

4.3.2 Next generation observables

While both hybrid models produce reasonable, albeit different, reproductions of ex-

perimental results for first generation, simpler observables, it is time to investigate

next generation observables beginning with the ATLAS Collaboration’s measurement

of event plane correlators [172]. The impact of hydrodynamics is key to a proper un-

derstanding of next-generation observables and provides a unique way to simultane-
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Figure 4.7: vn{2} from a hybrid model with IP-Glasma compared to that of TRENTo +

freestreaming and data measured by ALICE. IP-Glasma comparisons are restricted

to a conservative 0− 50% centrality range in keeping with [28].

Figure 4.8: Identified particle mean transverse momentum from a hybrid model with IP-

Glasma compared to that of TRENTo + freestreaming and data measured by AL-

ICE.
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ously constrain initial geometry and dynamics in addition to details of the hydrody-

namic phase.

We show event plane correlations in Figs. 4.9– 4.15. In these plots, the number of

participants at different centrality bins are estimated using the MC-Glauber model

according to Table 1 in Ref. [172]. In some cases, there is little statistically-significant

difference between TRENTo and IP-Glasma event plane correlators (Fig. 4.9), while in

other cases IP-Glasma predicts these quantities more accurately (such as in Fig. 4.10).

As a result, for these next generation observables, IP-Glasma has a clear advantage

in predictive power. This demonstrates that there is physics in IP-Glasma that is not

yet captured by TRENTo + freestreaming that impacts final-state results. This cannot

be ascribed to the fact that IP-Glasma uses pre-generated nuclear configurations as

TRENTo uses the same configurations, therefore the correlation is due to additional

geometric and dynamic differences in the pre-equilibrium stage.
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Figure 4.9: The 〈cos(4(Ψ2 − Ψ4))〉 charged hadron event-plane correlation as measured by

the ATLAS experiment compared to predictions from IP-Glasma and TRENTo +

freestreaming-based hybrid models.
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Figure 4.10: The 〈cos(2Ψ2+ 3Ψ3− 5Ψ5)〉 charged hadron event-plane correlation as measured

by the ATLAS experiment compared to predictions from IP-Glasma and TRENTo

+ freestreaming-based hybrid models.
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Figure 4.11: The 〈cos(2Ψ2− 6Ψ3+ 4Ψ4)〉 charged hadron event-plane correlation as measured

by the ATLAS experiment compared to predictions from IP-Glasma and TRENTo

+ freestreaming-based hybrid models.
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Figure 4.12: The 〈cos(2Ψ2+ 4Ψ4− 6Ψ6)〉 charged hadron event-plane correlation as measured

by the ATLAS experiment compared to predictions from IP-Glasma and TRENTo

+ freestreaming-based hybrid models.
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Figure 4.13: The 〈cos(6(Ψ2 − Ψ3))〉 charged hadron event-plane correlation as measured by

the ATLAS experiment compared to predictions from IP-Glasma and TRENTo +

freestreaming-based hybrid models.

4.3.3 Nonlinear response coefficients

Nonlinear response is another observable sensitive to both the viscosity and the initial

state model [120]. While second and third order anisotropic flow – v2{2} and v3{2}, for
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Figure 4.14: The 〈cos(6(Ψ2 − Ψ6))〉 charged hadron event-plane correlation as measured by

the ATLAS experiment compared to predictions from IP-Glasma and TRENTo +

freestreaming-based hybrid models.
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Figure 4.15: The 〈cos(6(Ψ3 − Ψ6))〉 charged hadron event-plane correlation as measured by

the ATLAS experiment compared to predictions from IP-Glasma and TRENTo +

freestreaming-based hybrid models.



106 motivation and design

example – are mostly determined by the initial spatial anisotropy ε2 and ε3, higher

order flows (vn{m},n > 3) can have significant mode coupling to lower order flows.

This mode coupling is described by the nonlinear response coefficient as it breaks the

otherwise dominantly linear relationship between εn and vn. This nonlinear mode

coupling is sensitive to the hydrodynamic phase, which maps εn to vn as well as

to the various εn themselves. This makes it a useful and sensitive discriminating

observable for constraining both the initial geometry and the viscosity of the fireball

in heavy ion collisions.

In these calculations, TRENTo + freestreaming and IP-Glasma initial states produce

comparable predictions; rarely are the distributions not overlapping. IP-Glasma’s abil-

ity to simultaneously describe the event plane correlators provides further evidence

that it contains important physics not present in simple parametric models with more

freely-tunable parameters. Additionally, the temperature dependence of the viscos-

ity’s impact on χn,mk in IP-Glasma-based hybrid models, which was not explored in

[120] or [28], is of significant interest.

Figure 4.16: Predictions of the χ4,22 nonlinear response coefficient and measurements in

Pb+Pb collisions at 2.76 TeV.
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Figure 4.17: Predictions of the χ5,23 nonlinear response coefficient and measurements in

Pb+Pb collisions at 2.76 TeV.

Figure 4.18: Predictions of the χ6,33 nonlinear response coefficient and measurements in

Pb+Pb collisions at 2.76 TeV.

4.4 explicit motivation for a new bayesian study

It has now been demonstrated that IP-Glasma’s predictive power is superior, which

suggests that it is advantageous for accurate inference of physical properties as it is a
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Figure 4.19: Predictions of the χ6,222 nonlinear response coefficient and measurements in

Pb+Pb collisions at 2.76 TeV.

more complete description of the dynamics. This further supports the goal of motivat-

ing a new Bayesian study with an IP-Glasma pre-equilibrium stage. Methodological

improvements have also been made that will allow this new study to leverage the

latest techniques for computational design, efficiency, and accuracy. Throughout this

chapter, it has been shown that TRENTo + freestreaming initial states do not success-

fully mimic IP-Glasma’s geometry or dynamics and deliver a quantitatively different

and inferior initial state to the hydrodynamic phase. It has also been shown that this

impacts the predictive power of the hybrid model and, in Chapter 2, the physical

basis of the IP-Glasma model was thoroughly expounded. The implications of the

deficiencies of a parametric pre-equilbrium stage are expected to have an impact on

parameter inference and as a result, introduce bias to describing the underlying QCD

medium.

Another motivation behind a new study is that a hybrid model of heavy ion col-

lisions with an IP-Glasma pre-equilibrium stage has never been studied in a system-

atic way. This provides a unique opportunity to test a physically-derived microscopic

theory for the initial stage of HICs and identify aspects for future study and im-

provement. Bayesian inference should be treated as a precision tool to quantify the

parameters of physical models, therefore if reliable inference with minimal bias is
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the goal, state-of-the-art models at each stage are a requirement. Advancing the field

from Bayesian techniques with TRENTo+freestreaming to IP-Glasma is a clear im-

provement to the theoretical study of heavy ion collisions.

Through using IP-Glasma as the pre-equilibrium stage, this thesis will address

these points. Not only is IP-Glasma based on microscopic physics, but it is already

tuned to data from deep inelastic scattering experiments.6 It also has the advantage of

reducing the curse of dimensionality as there are fewer free parameters in the initial

state, making exploration of the space more tractable. Since the whole collision sys-

tem will be informed and constrained by microscopic dynamics, this analysis is able

to extend to specific observables that couple the pre-equilibrium and hydrodynamic

stages of heavy ion collisions. The expectation is that this will constrain the tem-

perature dependence of the shear and bulk viscosity of the QGP to unprecedented

accuracy and precision.

Finally, from a philosophical perspective, science should be concerned with rigor-

ously testing and comparing theoretical models to data. The state-of-the-art previous

to this study is a good-faith attempt to do this, albeit with a parametric estimate of

the pre-equilibrium stage guided by sound physical reasoning, but by no means a

consistent and detailed description of microscopic physics. This consequently results

in knock-on effects in parameter inference of transport coefficients in an uncontrol-

lable way that is more systematically improvable through physics progress. Rather

than attempt to make estimates of what physics is primarily relevant for quantities

of interest and include it by hand or determine what constitutes a “good enough” de-

scription of the physics, it is clearly preferable to employ the leading physical model.

IP-Glasma is the leading physical model of the initial stage of heavy ion collisions

and has not yet been systematically been compared to data with Bayesian methods.

This thesis will rectify this.

6 In principle, a future study of IP-Glasma could perform parameter inference on IP-SAT and use this

as an empirical prior for additional parameters in IP-Glasma.
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4.5 design considerations

I now lay out details of how the study will be performed such as various physics

choices in the model – such as the treatment of the σ meson – and details of the

Bayesian inference. In Sec. 4.5.3, I describe the choice of likelihood function as well as

which parameters will be varied and the relevant parameterizations.

The design discussion begins with physics choices which must be made prior to

further decisions. In Sec. 4.5.1, the choice of viscous corrections is described as well as

how to account for this source of uncertainty. In Sec. 4.5.2, the treatment of the sigma

meson and how to construct the equation of state are described. Finally, in Sec. 4.5.3,

the choice of likelihood function is justified, specifics priors are motivated, and the

varied parameters in the model are discussed.

4.5.1 Viscous correction

Viscous corrections at particlization are an important source of uncontrolled theo-

retical uncertainty at switching from a hydrodynamic description of the strongly-

interacting matter in heavy ion collisions to a particle-based kinetic theory description.

The two leading candidates, Grad’s 14-moment viscous corrections and Chapman-

Enskog relaxation time approximation viscous corrections were introduced in Ch. 2.

Recent work by the JETSCAPE Collaboration’s Simulations and Distributed Comput-

ing working group (to which I contributed) tested several forms of the viscous correc-

tions and found somewhat differing inferred transport coefficients and particlization

temperatures. In addition, through Bayesian model comparison, the JETSCAPE Col-

laboration’s hybrid description of HICs strongly favored Grad’s 14-moment expan-

sion [45, 46].

This preference was due to the failure of the Chapman-Enskog RTA viscous cor-

rections to simultaneously capture proton and pion yields in a hybrid model with

a TRENTo + freestreaming initial state. If one discounts proton yield in the calcula-

tion of the Bayes factors in [45], the relative preference for Grad viscous corrections

over Chapman-Enskog decreases from lnBA/B = 8.2± 2.3 to lnBA/B = 2.7± 2.8. In

other words, a preference of 4000 : 1 decreases to a preference of ≈ 5 : 1 and con-
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sistent with no preference at all. The work also has a posterior whose specific bulk

viscosity is large at particlization, suggesting that the influence of viscous correc-

tions may be exaggerated and pushes the assumption that the corrections are small

compared to the equilibrium distribution. This demonstrates that this debate is not

settled and is worth revisiting and accounting for such uncertainties in this work. In

addition, hybrid models with an IP-Glasma pre-equilibrium stage show agreement

within statistical error bars with the proton yield [28]. This suggests that this discrep-

ancy in the proton yield may be an effect deserving further study. In this thesis, I

will investigate only linearized viscous correction models. In addition to their longer

history in the literature, an important feature of these viscous corrections is that they

are systematically-improvable by expanding to higher order in the expansion. For

example, the 14-moment viscous corrections contain all terms in an expansion to hy-

drodynamic order – i.e. terms with pµ and pµpν – while Chapman-Enskog viscous

corrections are a gradient expansion around the equilibrium distribution function.

Previous work in selecting models of viscous corrections at particlization informs

the choice in this thesis to primarily use Grad’s 14-moment viscous corrections. Be-

cause of the focus on linear viscous corrections, this is also well-suited to exploit

transfer learning for the first time in a large scale study [4]. This will then allow for a

rigorous treatment of the systematic uncertainties arising from the choice of viscous

correction at particlization that directly impacts matching to observable quantities.

This thesis will primarily consider Grad’s 14-moment viscous corrections with a

transfer learning extension to the Chapman-Enskog relaxation time approximation

viscous corrections in order to test another model and better account for theoretical

uncertainty. Potential extension to exponentiated viscous corrections or Maximum

Entropy viscous corrections is left for future work and will require significantly less

investment due to this study already computing the pre-equilibrium and hydrody-

namic stages needed for such a study, assuming transfer learning.

4.5.2 σ meson and the equation of state

The treatment of the σ meson varies between studies of heavy ion collisions. The σ

meson was proposed in the linear σ model to describe low-energy pion dynamics σ
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model [173] and can be used for exact calculations of transport coefficients in low-

temperature hadron gases [18]. There is significant uncertainty surrounding its pole

mass and width [6]. As such, it is necessary to make informed choices of how to

treat the σ meson as it impacts both the hadron resonance gas phase as well as the

equation of state matching to high-temperature QCD, as discussed in Ch. 2. The

impact of including the σ meson at particlization has also been studied and a variety

of choices that are consistent with the experimental understanding have been shown

influence final observed results [45]. The contribution by σ to the partition function

is nearly completely cancelled, further supporting its lack of inclusion [111]. As such,

the σ is excluded from the SMASH list of resonances for sampling at particlization.

However, the σ is important in the hadron resonance gas phase to reproduce the π−π

cross-section and is allowed to form dynamically.

In this thesis, the equilibrium equation of state is matched to the SMASH box

list of particles that excludes extremely massive resonances.7 The inclusion of only

the lighter species in the construction of the equation of state is the correct practice

recommended by the developers of SMASH.

4.5.3 Bayesian analysis

Bayes theorem derives the posterior via the priors, the likelihood, and the Bayes Ev-

idence. The Bayes Evidence is a normalization and is calculated by integration as

described in Ch. 3. Thus, what remains are the likelihood and priors. In this section,

specific choices are justified. This thesis focuses on Pb-Pb collisions at the LHC with
√
sNN = 2.76 TeV; extending to other collision systems is beyond the scope of this

thesis but is a logical next step.

4.5.3.1 Likelihood function

The least informative, Maximum Entropy (MaxEnt) choice for data with a mean and

a variance is a Gaussian likelihood [122]. When quantities are typically reported in

HICs, the result is given as a mean and two variances, one “statistical” – arising from

7 The list of heavy resonances is incomplete in SMASH and work is ongoing to identify and characterize

important contributions [174–178].
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a finite number of collisions – and another systematic, arising from detailed under-

standing and modeling of the experimental apparatus µ± σstat. ± σsys.. However, no

further information is provided. As a result, the least informative course of action is

to assume that the two variances are independent and uncorrelated.8 Without further

information, a mean and a variance characterize a Gaussian distribution and thus a

Gaussian likelihood is the only realistic option for a non-informative study. Interest-

ing work has been done on proposing theoretical covariances between quantities, but

without detailed information from experiment, these remain hypotheses.

4.5.3.2 Priors

The prior distribution, or state of knowledge, for each parameter must be justified for

each study. However, the general form of the prior deserves some attention for the

first time in heavy ion collisions. In all Bayesian inference in heavy ion collisions to

date, uniform priors are used. However, uniform priors are unrealistic and unfaithful

representations of the true state of knowledge due to sharp cutoffs. Sharp cutoffs can,

of course, be physical: a quantity restricted to be positive definite may be reasonably

likely to be zero, but infinitely unlikely to be even slightly negative. However, this

is not always the case. For example, if a uniform prior is put on the boiling point

of water at sea level U(99.0, 101.0) Celsius, this is tantamount to suggesting that it is

equally likely for the boiling point to be anywhere between 99 and 101 Celsius but

forbidden to be 101.0 + 10−9 Celsius. This kind of sharp change in prior is an im-

proper representation of the prior state of knowledge without explicit justification for

such seeming ambivalence and absolutism. From a more practical perspective, sharp

cutoffs in high dimensions can also impact the performance of MCMC algorithms.

Existing guidance from Bayesian practitioners in the statistics community sug-

gests using uniform priors with sharp cutoffs if that is an accurate reflection of

the underlying constraint and not as a general non-informative choice. Additionally,

priors may be chosen with features such as boundary-avoidance or invariance un-

der reparametrization [179]. Another important consideration is to interrogate what

8 Recently, experimentalists have commented that error bars do not necessarily denote a mean and

variance but rather characterize a range in which there may be a uniform probability and outside

which there is none. Without additional information, no progress can be made from theory alone.
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“weakly-” or “non-informative” means in the absence of explicit reference to the like-

lihood. If the dominant constraint comes from the prior, then the prior is informative.

Conversely, if the likelihood is the dominant source of constraint, then the prior is

less informative.9

It is high time for the priors used in HICs to be brought in line with more standard

statistical practice. In order to bias the priors as little as possible, this study uses

a Generalized Normal distribution (Version 1) with varying mean µ, location α, and

shape parameter β. The shape parameter βwhich controls the tails of the distribution.

When β = ∞, the distribution becomes the uniform distribution. When β = 2, the

distribution is Gaussian, while when β = 1, the distribution is Laplacian. When β & 8,

the distribution resembles a flat plateau with power law tails, smoothly interpolating

between the current practice (effectively β = ∞) and priors more reflective of the

underlying physics. This is an important step towards including yet-more physics

information in the priors and I demonstrate in this thesis that such priors are both

weakly-informative and can be consistently incorporated into study design. Future

studies should use this infrastructure to further incorporate theoretical expectations

in systematic model-to-data comparisons.

The Generalized Normal distribution has support on the whole real line and can

be shifted. Additionally, the Half Generalized Normal distribution exists for instances

where a sharp cutoff is reasonable, e.g. positive specific viscosity for non-decrease of

entropy. Quantities such as the probability density function (PDF) and cumulative

distribution function (CDF) are well defined, as is the entropy of the distribution, and

thus it is well-suited for continuing, flexible study.

The probability density function of the Generalized Normal distribution is

p(x,µ,α,β) =
β

2αΓ(1/β)
e(−|x−µ|/α)β (4.8)

where Γ is the Gamma function. I generate a variety of sample PDFs for the standard

Generalized Normal distribution (i.e. mean 0 and variance 1) with different β in

Fig. 4.20.

9 An interesting way one could check whether the prior or the likelihood is dominantly informative is

to calculate a metric such as Kullback-Leibler Divergence between the likelihood and the posterior vs

the prior and the posterior.
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Figure 4.20: The standard Generalized Normal Distribution (Version 1) probability density

function for several sample values of the shape parameter β.

4.5.4 Parameters

In this section, the physical meaning of the free parameters investigated in this thesis

is described. The specific choices for individual priors are given in each study in

subsequent chapters. However, the general form of the prior remains the same: a

Generalized Normal distribution with a specified shape parameter β and a central

99% interval. Rather than specify values of the location and scale, the central 99%

interval is chosen and the parameters that produce this interval are found through

numerical optimization. This is more interpretable as it specifies a 99% degree of

belief that the parameters are within a certain range and is directly comparable to the

100% central interval used to characterize the uniform distribution.

In this thesis, only parameters in IP-Glasma and MUSIC are varied. The choice of

viscous correction is a parameter in iS3D, but is fixed for each calculation. The impact

of this choice on parameter inference is investigated in Ch. 6.

4.5.4.1 IP-Glasma

The parameters in IP-Glasma are mostly fixed via the IP-SAT model’s comparison

to deep inelastic scattering experiments, as described in Ch. 2. Two parameters are
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poorly constrained: the proportionality between the saturation scale and color charge

densities, and the onset of hydrodynamics while the strong coupling g_strong has

previously been fixed to reproduce the low-energy αs. The strong coupling and the

proportionality between the saturation scale and color charge density are totally de-

generate (as confirmed in Ch. 5) and thus the strong coupling is fixed to 2. Suppress-

ing the running of the coupling,

αs =
g2

4π
. (4.9)

In (2+1)D IP-Glasma, the coupling is fixed during the Classical Yang-Mills evolution,

thus fixing it to 2 results in αs = 1/π. This is commensurate with experimental mea-

surements and model predictions for αs at low energy scale Q < 0.5 GeV [180].

Each parameter is now described in more detail and is given a shorthand notation.

1. Multiplier_for_mu_to_Qs (µQs): Multiplier from the saturation scale to the

color charge density profile (Qs ∝ g2µ). In the CGC, these quantities are pro-

portional but a constraint on this proportionality is not known from theory.

Phenomenologically, it is important for determining the energy density in IP-

Glasma and the variance of color charge fluctuations. The value used in 3D is

typically higher because the 2D simulation does not evolve the gluon densities

and thus the boost invariant assumption modifies the behavior of the gluon

fields.

2. g_strong (gstrong): Strong coupling constant. Believed to be completely degen-

erate with µQs , but worth investigating in an initial state closure test to check

systematically. The value currently used in IP-Glasma is 2.0, but a wide variation

will be allowed as this has not been systematically studied before.

3. Switching_time_to_MUSIC (τ0): Proper time in fm of the transition between IP-

Glasma and hydrodynamics. In IP-Glasma, the Glasma phase stabilizes within

approximately 0.2 fm while flow continues to build as shown in Fig. 4.21 repro-

duced from [69]. The onset of hydrodynamics is additionally expected on order

1/Qs, typically around 0.2 fm. However, recent studies with freestreaming [42,

45, 51] extract a longer time to the onset of hydrodynamics than the 0.4 fm typ-

ically used with IP-Glasma [28]. This thesis will allow for switching times up
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Figure 4.21: Pressure to energy ratio in (2+1)D IP-Glasma, adapted from [69].

to ∼ 1.2 fm, informed by longer hydrodynamic onset time and the approach to

hydrodynamics [181], to determine if these long onset times are plausible in a

model with more physically-inspired dynamics.

4.5.4.2 MUSIC

The MUSIC parameters included are the shear and bulk viscosity parametrizations

and the freezeout (or particlization) temperature. Due to the parametric flexibility in

the viscosity, these parameters dominate the analysis.

It has been proposed to avoid using a parametrization, which correlates values

of the viscosity at different temperatures [47]. However, extrapolating outside of the

range of chosen temperatures is uncontrolled and complete lack of correlation be-

tween points is unphysical as the approximate shape of the shear viscosity is con-

strained to have a variety of well-known features. The advantage of the decorrelation

is straightforward constraint to ensure viscosity is small at freezeout, ensuring small

viscous corrections. However, this is insufficient to overcome the unphysical nature
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of such decorrelation. As a result, this work uses the viscosities as parametrized in

[45, 46] but widens the prior ranges.

The specific shear viscosity is parametrized as

η/s(T) = (η/s)kink + aη,low ∗ (T − Tη,kink)Θ(Tη,kink − T)

+aη,high ∗ (T − Tη,kink)Θ(T − Tη,kink) (4.10)

where the function has four parameters: (η/s)kink, aη,low, aη,high and Tη,kink. These

control the value of η/s at some kink, the slope below and above the kink, and the

temperature of the kink. In practice, this can be less than 0, so the value used is

max(0,η/s). This parametrization is justified by first principles calculations which

show such a kinked behavior, if any temperature dependence at all [182, 183]. IP-

Glasma has so far experienced success without any temperature dependence in η/s.

The specific bulk viscosity is parametrized as the pdf of a skewed Cauchy distribu-

tion,

ζ/s(T) =
(ζ/s)maxΛ

2

Λ2 + (T − Tζ,c)
2

(4.11)

Λ = wζ [1+ λζ sign (T − Tζ,c)]

where the function again has four parameters: the maximum of the bulk viscosity

(ζ/s)max, the temperature at which the bulk viscosity is maximum Tζ,c, the width of

the bulk viscosity wζ and the skewness λζ. This parametrization, as highlighted in

[45], is consistent with the expectation that specific bulk viscosity for QCD matter

reaches a peak near the deconfinement transition and is related to the trace anomaly

of QCD or a corresponding dip in the speed of sound in-medium while at high

temperature, QCD becomes increasingly conformal and the specific bulk viscosity is

expected to smoothly approach zero [18, 184–188].

The full list of the parameters varied in MUSIC is as follows:

1. (η/s)kink: The value of η/s at the kink temperature.

2. Tη,kink: The temperature at which η/s changes slope.

3. aη,low: The slope of the η/s below the kink temperature. This is broadly expected

to be negative or 0, but has not yet been constrained conclusively by model-to-

data comparison.
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Figure 4.22: The parametrization of the viscosities.

4. aη,high: The slope of η/s above the kink temperature. This is anticipated to be

positive or 0, but has not yet been constrained conclusively by model-to-data

comparison. A theoretical exception to this expectation can be found in the NJL

model for SU(3) [189].

5. (ζ/s)max: The maximum of ζ/s.

6. Tζ,c: The temperature of the maximum of ζ/s.

7. wζ: The width of the peak in ζ/s.

8. λζ: The asymmetry of the peak in ζ/s.

9. T_freeze, also known as the particlization or switching temperature (Tsw): At

this temperature, the hydrodynamic medium ceases to behave as a fluid and is

converted to particles. A surface at constant temperature is drawn (assuming

no baryochemical potential) from which particles are sampled by iS3D.
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B AY E S I A N I N V E S T I G AT I O N O F T H E I N I T I A L S TA G E

It is now time to turn to an application of the methods and models introduced thus

far. The specific choices made in the hydrodynamic stage have already been thor-

oughly tested in other analyses, leaving the pre-equilibrium stage comparatively un-

explored. In this exploratory study, this will be rectified by first performing tests of

self-consistency, i.e. if known inputs can be recovered before proceeding to a pre-

liminary comparison to data. This will systematically explore the free parameters in

IP-Glasma for the first time and establish the sensitivity of final-state observables to

variation in the pre-equilibrium stage.

First, the priors and observables used in this analysis are explicitly motivated and

specified in Sec. 5.1. Then, tests of self-consistency are performed in Sec. 5.2 to val-

idate the model and statistical workflow. A discussion of the results concludes this

chapter in Sec. 5.3.

5.1 implementation and observables

The test of self-consistency, also known as a closure test, is performed with the physi-

cal parameters for IP-Glasma not already constrained by deep inelastic scattering ex-

periments. This leaves three parameters: the strong coupling (gstrong), the multiplier

from the color charge density profile to the saturation scale (µQs), and the switching

time between IP-Glasma and MUSIC (τ0).

Two IP-Glasma parameters, gstrong and µQs , should have a strong covariance as

they usually appear together (see Sec. 2.1). However, it would be of consequence

if this degeneracy is broken and this has yet to be systematically investigated. This

would in turn allow for the first constraint on the strong coupling from heavy-ion

phenomenology. As there has been no systematic study of observable sensitivity to

these parameters, it is important to assess in a limited study what parameters may

121
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or may not be possible to constrain. If a parameter does not impact final observables,

there is no sense needlessly expanding the dimensionality of the parameter space in

a larger study.

For all of the parameters in this study, the prior distribution is a Generalized Nor-

mal Distribution with shape parameter β = 10. Rather than specify the remaining

parameters independently, which can be difficult to interpret, the central interval that

contains 99% of the probability density is specified by identifying the values of the

0.5th and 99.5th percentiles of the distribution. The explicit parameters for the distri-

butions are then found using numerical optimization.

The prior for the strong coupling is chosen with some knowledge of Fig. 1.2 in

mind. 2+1D IP-Glasma uses a coupling that does not run with the energy scale and

the form of the QCD coupling is αs =
g2strong
4π . At gstrong = 2.0, the low-energy value

of αs is recovered (∼ 0.3). A simple test of the impact of parameter variation can be

performed with an empirically-derived proxy between IP-Glasma energy and final-

state multiplicity [28],

dNch
dη

≈ 0.839
(
dE

τdη

)0.833
. (5.1)

Varying gstrong and holding all other parameters constant yields the proxy multi-

plicity dependence in Fig. 5.1. Allowing for an approximate factor of 2 variation from

the value used by [28] (marked as “standard value”) yields a 99% prior range of 1.30

to 3.25.

This same procedure with the proxy multiplicity is repeated to determine a broad

prior range for the multiplier from the color charge density profile to the saturation

scale, demonstrated in Fig. 5.2. Again allowing for an approximate factor of 2 vari-

ation in the prior yields a 99% prior range from 0.45 to 0.80. An interesting feature

of both of these variations is that the dependence of the proxy multiplicity on both

gstrong and µQs is parametrically 1/x. Thus, these take the form of an overall inverse

normalization.

The final parameter to motivate a prior range for is the switching time between

IP-Glasma and MUSIC, τ0. As seen in Fig. 4.21, the pressures do not start to come to

a steady-state until approximately 0.2 fm. The current practice with IP-Glasma at in
√
sNN = 2.76 TeV collisions is to wait until 0.4 fm, but recent works with varying pre-

equilibrium models have favored increasingly large times to transition between the
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Figure 5.1: Multiplicity dependence of a central event on variation of gstrong with all other

parameters held fixed.

Figure 5.2: Multiplicity dependence in a central event on variation of µQs with all other pa-

rameters held fixed.

pre-equilibrium and hydrodynamic stages [33, 45]. As this has yet to be systematically

explored and is of clear interest, τ0 is allowed to vary between 0.2 and 1.0 fm and its

impact on observables will be investigated in this chapter. The final prior ranges are

collected in Table 5.1. Not varied are the viscous parameters or the particlization

temperature, which are fixed to the MAP values for Grad viscous corrections from

[45]. In this chapter, only the Grad viscous corrections are investigated.

With the priors in hand, a design can be chosen. As there are only 3 dimensions

and the primary goal of this study is to explore the parameter space, a Sobol Low

Discrepancy sequence is used for the design. Sobol convergence property A is met
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Parameter 0.5th percentile 99.5th percentile

gstrong 1.30 3.25

µQs 0.45 0.80

τ0 0.2 1.0

Table 5.1: Prior ranges for testing self-consistency in IP-Glasma.

with 23 points and the curse of dimensionality does not impact this limited study. The

GP emulators with a Gaussian + white noise kernel are trained with 30 main design

points (10 points per dimension). The Gaussian (or Radial Basis Function) kernel

characterizes the smoothness of the function draws and the white noise component

accounts for the fluctuations in the training data. This combined kernel will also be

used in the global Bayesian analysis in the following chapter.

In preliminary testing, it was found that 2500 events per design point are suffi-

cient to calculate first generation and most next generation observables of interest

described in Sec. 2.6. However, calculation of an observable does not necessarily

guarantee successful surrogate modeling. While next generation observables were

demonstrated to be a discriminating observable in Ch. 4, the choice of the best set

of observables for a full comparison remains unclear and must be decided by both

physical intuition and practical considerations.

The set of observables that are reliably calculated and distinguishable from sta-

tistical fluctuation are all of the first generation observables; the nonlinear response

coefficients χ4,22, χ5,23, χ6,222, and χ6,33; the linear and nonlinear flow modes vL4 , v4(Ψ2),

v5(Ψ23), v6(Ψ2), v6(Ψ3); and the event plane correlations ρ422, 〈cos(4(Φ2−Φ4))〉, 〈cos(6(Φ2−

Φ3))〉, 〈cos(6(Φ2−Φ6))〉, 〈cos(4(Φ3−Φ6))〉, 〈cos(2Φ2+3Φ3−5Φ5)〉, 〈cos(2Φ2+4Φ4−

6Φ6)〉, and 〈cos(2Φ2− 6Φ3+ 4Φ4)〉. The calculations at each design point for these ob-

servables are shown in Fig. 5.3. Note that even though the hydrodynamic phase has

not been explicitly calibrated with an IP-Glasma initial state, most of the data fall

within the prior predictive range for this exploratory study. This stands in contrast

to Ch. 4, where many of these observables were shown to not be reproduced with a

TRENTo + freestreaming initial state with the same hydrodynamic parameters. These

correlations are thus isolated to the difference between pre-equilibrium models and
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IP-Glasma clearly incorporates important physics by construction. However, this does

not account for correlations between the observables.

Figure 5.3: Calculations at each design point forming the prior predictive distribution for each

observable. Points are experimental data.
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To reduce the dimensionality of this data with minimal loss, PCA is used. First,

it must be explicitly checked that the correlations between observables are linear as

PCA is a linear transformation. Once this has been verified, PCA is performed. It was

found that 20 principal components capture 96.205% percent of the variation in the

data. Finally, a Gaussian Process emulator is trained on the principal components of

the observables vs. the parameters. The predictions of this GP are then compared to

validation points that were not included in the training set for each observable of

interest, shown in Fig. 5.4.

In Fig. 5.4, a successful prediction of the validation point’s observables is consis-

tent with the line y = x, shown by a dashed line. Clearly, the surrogate model

is not successful at making predictions for all these observables. This is often be-

cause the underlying model calculations are statistically under-powered or fluctuate

about zero. For reliable outcomes from this analysis, the observable set must be re-

stricted to only those observables that are successfully emulated. This set is com-

prised of the first generation observables; the flow modes vL4 , v4(Ψ2), v5(Ψ23), v6(Ψ2),

v6(Ψ3); and the plane correlations ρ422, 〈cos(4(Φ2 −Φ4))〉, 〈cos(2Φ2 + 3Φ3 − 5Φ5)〉,

and 〈cos(2Φ2+ 4Φ4− 6Φ6)〉. The remaining observables then become excellent candi-

dates for predictions with higher-statistics calculations. Once these observables have

been selected, the PCA and GP emulation is repeated and are sufficiently reliable for

performing self-consistency tests.

5.2 self-consistency

Tests for self-consistency, also known as closure tests or empirical coverage tests, are

important to assess whether a model is trustworthy. After all, a model that cannot

recover its own inputs – i.e. is not self-consistent – cannot be trusted to reveal the

truth in experimental data. The self-consistency tests are also less of a challenge for

the model as there is no tension in the data as the model in testing generated the data

exactly. In an ideal scenario for a single-valued posterior, the parameters map one-to-

one to values of the observables. As a result, the posterior on the parameters would

become a delta function at each known truth. However, this is smeared in practice by
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Figure 5.4: Emulated vs. computed for all observables considered. Successful emulation is

clustered around y = x, shown as a dashed line. Error in the x direction is emulator

uncertainty while error in the y direction is uncertainty from the hybrid model.
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both uncertainties in the parameter estimation and the underlying data as well as by

any degeneracy in the parameter space.

In these tests of self-consistency, Bayesian inference is performed with a validation

point not included in the training set for the GP. Then, the resulting posterior can

be compared to the known true values and the degree of constraint can be assessed.

Finally, this exploratory study will conclude with a preliminary calibration to data

given the MAP parameter values for the hydrodynamic stage from [45]. For concise-

ness, not all the closure test results are shown.

The first closure test is performed on a validation point with true parameter values

(gstrong,µQs , τ0) = (2.11587, 0.49354, 0.624). A total of 10,000 MCMC steps are taken

and the chains have clearly come to the stationary distribution with autocorrelation

dropping almost immediately to zero, shown in Fig. 5.5. The posterior distribution

for this test is shown in Fig. 5.6 and the posterior predictive distribution is shown in

Fig. 5.7. Constraint tighter than experimental uncertainty is due to the fact that some

of the observables appear exclusively sensitive to the hydrodynamic phase, which is

not varied in this study. While the data is successfully reproduced by the posterior

predictive distribution, a strong covariance can be seen between gstrong and µQs . The

bimodality in this covariance is not of significance and is likely due to a small number

of design points.

This strong covariance is a feature seen in all validation points and with a rela-

tively sparse 30-point design, any breaking of this covariance is just as likely to be

a feature of the emulation as it is to be physical. This suggests that the theoretical

understanding was correct and gstrong and µQs are totally degenerate and one of the

two parameters should be fixed. Because gstrong is well-constrained by experiment

while there is no experimental guidance for µQs , the natural choice is to fix gstrong.

With gstrong fixed to the known truth, Bayesian inference can be performed again

and the results can be investigated further. The MCMC behaviour is comparable to

that of Fig. 5.5 and is omitted for conciseness. The posterior distribution is shown

in Fig. 5.8 and the posterior predictive distribution as well as the validation data are

shown in Fig. 5.9. With the covariance between gstrong and µQs resolved by fixing the

strong coupling, good constraint is found and the known truths are well constrained

within the posterior. This performance in constraining the posterior is comparable



5.3 discussion 129

Figure 5.5: MCMC chain trace and autocorrelation after calibration to a validation point with

true parameter values (gstrong, µQs , τ0) = (2.11587, 0.49354, 0.624).

across all validation points, suggesting that once the gstrong − µQs covariance is re-

moved, IP-Glasma’s free parameters are excellent candidates for study in a Bayesian

inference framework.

5.3 discussion

This exploratory study has been the first application of Bayesian methods to a hybrid

model with an IP-Glasma initial state and the first systematic model-to-data compari-

son of the free parameters in IP-Glasma. Observable selection was demonstrated and

self-consistency of the IP-Glasma initial state was established with confirmation that

the strong coupling and the proportionality between the color charge density and

saturation scales are degenerate. The closure tests demonstrate that the true values

are well-contained within the inferred posterior regions

The primary goals of this study were to investigate potential covariances in IP-

Glasma and to establish if sufficient constraint were possible on the parameters of IP-
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Figure 5.6: Posterior distribution after calibration to a validation point with true parameter

values (gstrong, µQs , τ0) = (2.11587, 0.49354, 0.624). 1-dimensional marginal dis-

tributions are along the diagonal and off-diagonal elements are the 2-dimensional

marginal distributions. True values are shown in red and the median and cen-

tral 95% interval are given. The quoted values are the median and 95% credible

interval.

Glasma not fixed by comparison to DIS experiments. These goals were successfully

met and have been demonstrated by the tests for self-consistency.

This exploratory analysis also aimed to develop an automated workflow for produc-

ing a design space, running the hybrid model at design points, performing analysis

on each design point, and collecting the results into a format compatible with exist-

ing Bayesian analysis infrastructure. These goals were met and successfully prepared

the IP-Glasma hybrid model workflow for execution at scale on high performance

computing systems.

Finally, a brief word must be included on the value of closure tests. In addition to

demonstrating the self-consistency of a model – and thus the reliability of compar-

isons to data – it must be emphasized that closure tests are an idealized comparison

in which the model contains all the information in the data. This is not the case when

comparing to experimental data. A healthy degree of caution must be exercised re-

garding the comparison between the degree of constraint achieved in closure tests to
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Figure 5.7: Posterior predictive distribution after comparison to a validation point with true

parameter values (gstrong, µQs , τ0) = (2.11587, 0.49354, 0.624). Validation data are

shown as black points and the posterior predictive distribution is shown in blue.
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Figure 5.8: Posterior distribution after comparison to a validation point with true parameter

values (gstrong, µQs , τ0) = (2.11587, 0.49354, 0.624) and holding gstrong fixed to

its true value. 1-dimensional marginal distributions are along the diagonal and

off-diagonal elements are the 2-dimensional marginal distributions. True values

are shown in red and the median and central 95% interval are given.

the degree of constraint when comparing to data. Nonetheless, closure tests remain a

valuable laboratory for ensuring the validity of analysis before comparing to experi-

mental measurements and are an indispensable way to understand the limitations of

a model before deployment.
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Figure 5.9: Posterior predictive distribution after comparison to a validation point with true

parameter values (gstrong, µQs , τ0) = (2.11587, 0.49354, 0.624), holding gstrong

fixed to its true value.
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A M O D E R N B AY E S I A N I N F E R E N C E F O R H E AV Y I O N

C O L L I S I O N S

With pertinent motivation in hand and self consistency established, all the pieces

are in place for a Bayesian study of an IP-Glasma hybrid model with simultaneous

variation of pre-equilibrium and hydrodynamic quantities. In this chapter, I begin by

explicitly motivating priors and choice of design space sampling method. The model

selection process from Ch. 5 is repeated to determine what physically-motivated ob-

servables are can be practically implemented. Once this is complete, tests for self-

consistency are performed for the full parameter space. Then, comparison to data is

performed with Grad’s 14-moment viscous corrections. Finally, transfer learning is

used to perform closure tests and comparison to data using the Chapman-Enskog

RTA viscous corrections. A discussion of the results concludes this chapter.

6.1 priors

The first step is to again specify prior knowledge. The motivation behind specifying

the IP-Glasma parameters varied in this study, µQs and τ0 are unchanged from Ch. 5

although the prior for τ0 is extended to even later times to ensure late times are

properly explored.

The remaining parameters whose priors must be motivated are those of the hydro-

dynamic stage: the 8 parameters of the specific shear and bulk viscosity as well as

the particlization temperature. For the parameters of the specific shear viscosity, the

parametrization in Eq. 4.10 is used and some inspiration was taken from a lack of

ability to constrain the temperature dependence in previous studies [45]. As a result,

the priors for the parametrization of the specific shear viscosity were widened, but

the same belief was kept that it is more likely for the slope below the kink to be

negative and the slope above the kink to be positive, although the opposite is also ex-

135
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Parameter 0.5th percentile 99.5th percentile β Distribution

µQs 0.55 0.90 10 Generalized Normal

τ0 [fm] 0.20 1.20 20 Generalized Normal

Tη,kink [GeV] 0.120 0.320 20 Generalized Normal

aη,low [GeV−1] -2.10 1.20 20 Generalized Normal

aη,high [GeV−1] -1.20 2.10 20 Generalized Normal

(η/s)kink 0.00 0.30 10 Half Generalized Normal

(ζ/s)max 0.00 0.30 10 Half Generalized Normal

Tζ,c [GeV] 0.100 0.350 10 Generalized Normal

wζ [GeV] 0.02 0.18 30 Generalized Normal

λζ -1.0 1.0 20 Generalized Normal

Tsw [GeV] 0.135 0.180 10 Generalized Normal

Table 6.1: Prior hyperparameters and distributions for each parameter varied.

plored. For the specific bulk viscosity, the parametrization in Eq. 4.11 is used and the

same procedure was applied, but also incorporated knowledge of the prior success

of peaked bulk viscosities and the physical motivation for their form [190]. Finally,

the particlization temperature is believed to be around the crossover temperature, but

recent studies have found success in lower particlization temperatures. Both will be

explored in this study. The form of the priors is again the Generalized Normal Dis-

tribution (Version 1) or the half Generalized Normal Distribution (Version 1) if the

quantity is commensurate with a sharp cutoff (e.g. is required to be positive definite).

Unlike in the exploratory study, the value of β is not kept uniform, but is instead

modified on a case-by-case basis to depending on how quickly the tails of the prior

drop off. The full set of parameter priors, with the central 99% range and the Gener-

alized Normal distribution shape parameter β is collected in Table 6.1. The viscous

priors with respect to temperature are shown in Fig. 6.1.
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Figure 6.1: Viscous priors with respect to temperature with credible intervals (C.I.). The spe-

cific bulk viscosity is shown on the left and the specific shear viscosity is on the

right.

6.2 sampling the design space

Unlike in Ch. 5, the goal of this design is to maximize the emulator performance. Ad-

ditionally, in an 11-dimensional study, the convergence properties of the Sobol LDS

make it an untenable choice by requiring nearly 200 points per parameter dimen-

sion. As the goal is a computationally-efficient choice of design maximizing surrogate

model performance, the clear choice is the Maximum Projection design. This design

is sampled on the 11-dimensional unit hypercube [0, 1]11 and deformed according to

the specified priors.

The number of design points must maximize the underlying model performance

given the constraint of a finite computational budget. The initial state closure test

demonstrated that next generation observables can be reliably calculated with 2500

events per design point. With a single design point requiring approximately 1.25

core-years, the budget allows for 350 design points in the training set as well as an

additional 50 from an independent design to form the validation set. This translates

to approximately 32 points per parameter dimension, well above the rule-of-thumb

of 10 points per parameter dimension, suggesting that emulator performance will

outperform that in the exploratory study. Additionally, these design points will be
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ordered to maximize the Maximum Projection criteria for the design containing the 0

to nth point, allowing for intermediary results [3].

Additional computational resources are reserved for repeating the particlization

and hadronic cascade for the 50 most important training design points as well as

20 validation design points with Chapman-Enskog viscous corrections. This will al-

low for transfer learning to account for this source of modeling uncertainty. Further

computing resources are reserved higher-statistics runs at the MAP points for both

viscous corrections found in inference.

6.3 observable selection and emulator forward validation

Once again, it is important to investigate which parameters are both reliably calcu-

lated with the underlying hybrid model and are reliably emulated by the Gaussian

process surrogate model. This step, revisited at the outset of each study, must be per-

formed to ensure that predictions made by the GP are sensible and will provide

physical – rather than spurious – constraint. The set of observables that are reli-

ably calculated and distinguishable from statistical fluctuations are again all of the

first generation observables; the nonlinear response coefficients χ4,22, χ5,23, χ6,222, and

χ6,33; the linear and nonlinear flow modes vL4 , v4(Ψ2), v5(Ψ23), v6(Ψ2), v6(Ψ3); and the

event plane correlations ρ422, 〈cos(4(Φ2−Φ4))〉, 〈cos(6(Φ2−Φ3))〉, 〈cos(6(Φ2−Φ6))〉,

〈cos(4(Φ3 −Φ6))〉, 〈cos(2Φ2 + 3Φ3 − 5Φ5)〉, 〈cos(2Φ2 + 4Φ4 − 6Φ6)〉, and 〈cos(2Φ2 −

6Φ3 + 4Φ4)〉. The calculation of these observables at each design point are shown in

Fig. 6.2. PCA is once again performed and 30 principal components explain 90.642%

of the variance in the calculations. Finally, emulators are trained on the PCs vs. the

parameters and predictions for observables can be made. The emulator predictions at

validation points vs. the computed results are shown in Fig. 6.3.

Observables that are loosely clustered along the y = x lines in Fig. 6.3 are not

kept for the final analysis and observables that are extremely uncertain are also not

included. This constitutes “forward model validation.” Given a known set of inputs,

the predictions are compared to model calculations and observables the surrogate

model predicts poorly are inappropriate for inclusion in a physics study. Finally, the

〈cos(4(Φ2 −Φ4))〉 event plane correlator is not included as it quantifies the same
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Figure 6.2: Calculations at each design point forming the prior predictive distribution for each

observable. Points are experimental data.
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Figure 6.3: Emulated vs. computed for all observables considered. Successful emulation is

clustered around y = x, shown as a dashed line. Error in the x direction is emulator

uncertainty while error in the y direction is uncertainty from the hybrid model.
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correlation as the ρ422 correlator and has an overall bias. The finalized set of observ-

ables for testing self-consistency and comparison to data is comprised of the first

generation observables; the flow modes vL4 , v4(Ψ2), v5(Ψ23), v6(Ψ2); and the plane cor-

relations ρ422, 〈cos(2Φ2 + 3Φ3 − 5Φ5)〉, and 〈cos(2Φ2 + 4Φ4 − 6Φ6)〉. The remaining

observables are again excellent candidates for predictions with higher-statistics cal-

culations to test the posterior state of knowledge. Once these observables have been

selected, the PCA and GP emulation is repeated and are found to be sufficiently re-

liable for performing self-consistency tests and comparisons to data. Further details

of the principal component analysis for the final observable set are shown in Fig. 6.4,

where the relationship between the first three principal components (PCs) are shown

as well as the cumulative explained variance fraction. The first few principal com-

ponents contain the majority of the variance of the data and it can be clearly seen

that the first three PCs relate clearly to the observables, further supporting the idea

that they are successfully reducing the dimensionality of the data with minimal loss

of underlying signal. With the final observable set, 30 principal components explain

97.94% of the variance in the data. The full set of principal components to explain the

total variance in the data consists of 161 PCs, meaning that the remaining 131 princi-

pal components represent 2.06% of the variance in the data, which is almost certainly

dominated by noise in the underlying calculations. Note that the presence of exclu-

sively linear correlations between observables must be investigated for the final set of

chosen observables. This investigation was performed and correlations were found to

be sufficiently linear for PCA to be a valid transformation, but the resulting figure is

sufficiently large (a 334 x 334 matrix of plots to show pairwise combinations of every

observable in every centrality) as to not fit in this thesis.

6.3.1 Transfer learning for Chapman-Enskog δf

The viscous corrections are an important source of uncontrolled theoretical uncer-

tainty to quantify. The most computationally-efficient way to do so is by using trans-

fer learning, where a linear transfer learning model was introduced in Ch. 3.5.1.1.

This uses information learned from a source system – in this study, the already vali-

dated Grad viscous correction – to learn about a similar target system, the Chapman-
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Figure 6.4: Observable relation to the first three principal components (left) and cumulative

explained variance fraction (right).

Enskog RTA δf. By construction, these are both linearized viscous corrections and are

designed to be small corrections to the equilibrium distribution function. This is a

prime opportunity to use transfer learning to enable Bayesian inference for the first

time in heavy ion collisions.

Transfer learning is implemented using emukit and GPy’s [191, 192] multifidelity

emulation framework and builds off work introduced as proof-of-concept in [4]. Nonethe-

less, the proof-of-concept was not yet ready for deployment in a full-scale study. The

proof-of-concept did not yet incorporate principal component analysis nor did it re-

turn the covariance matrix necessary for evaluating the likelihood function.

The information contained in the principal component analysis for the Grad vis-

cous corrections (see Fig. 6.4) is exploited so that the transfer learning can take

place on the principal components. The Grad PCA, trained on a large number of

design points, can be understood to perform a critical covariance-revealing and noise-

filtering function. By acting as a rotation in the observable space, the true underlying

signal is contained in the first N PCs and noise fluctuations are reduced. This re-

veals mutual information between observables, e.g. that one can be fairly confident

of dNch/dη in the 30-40% bin given its value in the 0-5% bin. It also means that ob-

servables that require higher statistics to calculate reliably, such as δpT/〈pT 〉, become

correlated with observables that do not, resulting in noise reduction and more suc-

cessful surrogate modeling. Additionally, by training the transfer learning emulator
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on the same principal components as the source emulator, the comparison between

the two is put on an even footing.

A second improvement to the transfer learning is using “transformed parameters”,

introduced and used in [45, 46, 193] and the above work. Although the parametriza-

tion of the specific shear and bulk viscosity may appear intuitive and concise, it can

present challenges to nonparametric models such as Gaussian processes as the rela-

tionship between the observables and these parameters can be highly non-linear and

non-uniform. However, observables are often more straightforwardly-dependent on

the value of the specific shear and bulk at a given temperature. Because for any one

set of parameters in Eqs. 4.10 and 4.11 there exists one and only one set of values

of η/s and ζ/s at a set of temperatures, a one-to-one mapping takes place. Thus,

no information is gained or lost by performing this transformation. By using the

transformed observables, the transfer learning emulator’s mean squared error was

reduced by a factor between 2 and 20 for every observable considered as well as

corresponding improvement in the distance between the coefficient of determination

R2 and its maximum value of one. Finally, software changes were made to make it

indistinguishable from the original Emulator object and therefore compatible with

existing MCMC software and ready for use. This software, as well as the general im-

provements to the heavy-ion collisions Bayesian software implemented for this thesis,

will be made available on GitHub [194].

The transfer learning emulator validation begins with comparing emulated predic-

tions to computed values at validation points not used in training, shown in Fig. 6.5.

All the observables considered for the study with Grad viscous corrections are well

predicted by the transfer learning model, in some cases even better than the source

emulator trained on the full design. Uncertainties are often larger in the transfer

learning model than in the Grad emulator, but this does not interfere significantly

with the quality of predictions and is consistent with having two Gaussian Processes,

each with their own variance, rather than just one. Predictions by the transfer learn-

ing emulator are broadly consistent with the true values and the emulator uncertainty

is well-balanced with the computed uncertainty in the most statistics-hungry observ-

ables. Were one source of uncertainty systematically larger than the other, this would

suggest imbalance between the number of design points and the number of model
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Figure 6.5: Transfer learning emulated vs. computed for all observables considered. Valida-

tion points are shown with a consistent color to identify correlations between

points. The diagonal dashed line is located at y = x, denoting perfect prediction.

runs at each design point, which must be judged by the most statistics-hungry calcu-

lations. In this case, there are the correlated momentum fluctuations and event plane

correlators: δpT/〈pT 〉, ρ422, and 〈cos(2Φ2+ 4Φ4+ 6Φ6)〉SP. Further worth highlighting

is what appears to be slight emulator bias in the three-plane correlators in Fig. 6.3 is

resolved in the transfer learning emulation, suggesting yet-more accurate predictions.

6.3.2 Observable sensitivity

The first physics results of this chapter can be derived now that a surrogate model

has been trained and validated with a reliable set of observables. Using the Gaus-

sian process emulator as a surrogate, the global sensitivity of the model to variation
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of input parameters can be calculated. This analysis is an example of “analysis of

variance” (ANOVA) that decompose the total variance of a model into variance of

model parameters (at first order), pairs of model parameters (second order), and so

on. The first-order Sobol indices quantify the global variance in model observable

due to variance in model parameters [195] and are readily available [196, 197].

For a given observable output y, suppose it can be represented as a function of

model parameters x, y = f(x). A prior predictive distribution p(y) is produced for

each output by marginalization,

p(y) =

∫
dxp(y|x)p(x). (6.1)

The quantity of interest is, however, the variance associated with a single parameter.

In this case, suppose one fixed a single parameter xi to take a particular value a. The

variance of the resulting distribution of outputs can be readily computed,

p(y|xi = a) =

∫
dx1 . . . dxi−1dxi+1 . . . dxnp(y|x)p(x) (6.2)

where x consists of n elements. The variance of this distribution is Var(y)|a ≡ Var(p(y|xi =

a)) and is the variance of the observable y due to varying all parameters except xi,

i.e. conditional on xi = a. By marginalizing over possible values of xi, determined in

turn by the prior, the variance due to variation of xi is found,

Var(y)|xi =
∫
daVar(y)|ap(a). (6.3)

The first-order Sobol sensitivity index S1 for a parameter xj and observable y is then

S1[xj] ≡
Var(y) − Var(y)|xj

Var(y)
, (6.4)

the fractional variance in the observable from variation of parameter xj alone. There-

fore, if S1[xj] = 0.7, this is interpreted as 70% of the global variation in this observable

being ascribed to variation of xj alone.

The first-order Sobol sensitivities of the observables in the most central central-

ity bin are shown in Figs. 6.6-6.10. Due to length, they are divided into the follow-

ing groups of observables: multiplicities and transverse energy in Fig. 6.6; identified

hadron mean transverse momentum and correlated transverse momentum fluctua-

tions in Fig. 6.7; anisotropic flow in Fig. 6.8; flow modes vL4 , v4(Ψ2), v5(Ψ23), v6(Ψ2)
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in Fig. 6.9; and the plane correlations ρ422, 〈cos(2Φ2 + 3Φ3 − 5Φ5)〉, and 〈cos(2Φ2 +

4Φ4 − 6Φ6)〉 in Fig. 6.10. The similar sensitivity of the two viscous correction mod-

els, almost always overlapping, demonstrates that the models are similar, but not

identical, and that the viscous corrections are small compared to the overall effect of

parameter variation.

Figure 6.6: First-order Sobol sensitivity of charged hadron multiplicity, identified particle mul-

tiplicity, and transverse energy to input parameters.

In these Sobol sensitivities, physical intuition is confirmed - an important step in

further verifying that the model behaves as expected. The multiplicities and trans-

verse energy (Fig. 6.6) are dominantly sensitive to the overall normalization (µQs)

and the viscosity presents a small correction. The proton multiplicity, one of the most
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Figure 6.7: First-order Sobol sensitivity of identified particle mean transverse energy and cor-

related momentum fluctuations to input parameters.

sensitive observables to the chemistry of the system, is the more sensitive than the

rest to the bulk viscosity and the switching temperature.

The mean transverse momentum (Fig. 6.7) again confirm the prior expectation that

the dominant sensitivity is to the overall normalization and the bulk viscosity. To-date,

however, no study using an IP-Glasma initial state has been able to reproduce experi-

mental results for δpT/〈pT 〉. This sensitivity analysis reveals that while the dominant

sensitivity is to the overall normalization, the fluctuations are primarily sensitive to

the shear viscosity, onset of hydrodynamics, and the switching temperature. This

study is the first with IP-Glasma to consider simultaneous variation of these parame-
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Figure 6.8: First-order Sobol sensitivity of charged hadron anisotropic flow coefficients to in-

put parameters.

ters – in concert with all observables – to learn what can be learned about and from

this observable.

The anisotropic flow coefficients (Fig. 6.8) reveal, as expected, that the dominant

sensitivity is to shear viscosity and overall normalization. The overall normalization

is related to the lifetime of the hydrodynamic phase, in turn allowing for more time

for the shear viscosity to act. Interestingly, the difference in sensitivity between the

two-particle and four-particle anisotropic flow is isolated to an increased sensitivity

to overall normalization and a decreased sensitivity to the high-temperature slow of

the shear viscosity. However, the vn{m} are broadly insensitive to the bulk viscosity

and particlization temperature, as anticipated.
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Figure 6.9: First-order Sobol sensitivity of charged hadron linear and nonlinear flow modes

to input parameters.

In summary of the first generation observables, the expectations set by both hand-

tuning and previous studies is confirmed: the normalization, shear viscosity, and bulk

viscosity are broadly sensitive to separate parameter families, but yield constraint

across the input parameter space. Disappointingly perhaps, the switching time be-

tween the pre-equilibrium and hydrodynamic stage does not appear to be a dominant

factor in the variance of any of these observables.

Consideration of the global sensitivity of next generation observables begins with

linear and nonlinear flow modes in Fig. 6.9. These observables have less defined

and smaller sensitivity to the input parameters, alternately suggesting that they are

insensitive to the parameters or that the IP-Glasma initial state by construction con-
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Figure 6.10: First-order Sobol sensitivity of charged hadron event plane correlators to input

parameters.

tains the information needed to reproduce these quantities. The exception in this

case is to the shear viscosity, whose kink value dominates the constraint of these

quantities. Nonetheless, physical expectations suggest that these quantities couple

the pre-equilibrium and hydrodynamic stages in a way that similar first generation

observables do not – a feature that can be readily seen by their different relations to

the principal components in Fig. 6.4.

The correlators (Fig. 6.10) are also less sensitive to variation of the parameters than

the first generation observables. Additionally, the large uncertainties on the Sobol

indices suggests that the sensitivity is less uniform across the space than in the first

generation observables. Nonetheless, these observables further couple the initial state

geometry to the hydrodynamic phase in a way poorly quantified by the first genera-

tion observables alone.
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The sensitivity analysis provides the first glimpse into the response of an IP-Glasma

+ MUSIC + iS3D + SMASH hybrid model to parameter variation. This result, with a

validated surrogate model, yields the first physics insights by calculating the global

sensitivity of these observables with the leading physics model of the pre-equilibrium

stage and how a realistic hydrodynamic medium responds. The PCA and sensitivity

analysis confirm, before any inference has taken place, that the model outputs will

yield constraint and that there is information in the next generation observables not

contained in the first generation observables that have been the focus of most previous

studies. Combined with a physical understanding of the observables themselves, this

suggests strongly that exciting opportunities lie ahead for learning through model-to-

data comparison.

6.4 bayesian parameter estimation with pb-pb collisions at 2 .76 tev

As must be becoming familiar, once the observables have been selected and the surro-

gate model is validated, the next steps are tests of self-consistency to verify the model

achieves closure and – at long last – inference with data. These final steps will once

again ensure that the model is capable of recovering known inputs before comparing

with data to extract a physical result.

6.4.1 Establishing self-consistency

Once again, the model is tested for self-consistency with pseudodata generated by

the underlying hybrid model at known points in the parameter space that were not

used in training the surrogate model. The surrogate model is then used for inference

with pseudodata and the resulting posterior is investigated to determine how well it

recovers underlying truth. Due to the fact that a particular parametrization has been

chosen for the specific shear and bulk viscosity, the test for self-consistency is best

compared as, for example, η/s vs. temperature. After all, despite the motivation for

the parametrization, the physics is contained in the temperature dependence of the

viscosity, not a particular representation.
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It is cumbersome to show this result for all validation points, but care is taken to

show a representative sample of validation points in this section. The viscous and

non-viscous parts of the posterior are shown separately as the viscous posterior is

shown as η/s or ζ/s vs. temperature and no discernible covariance is seen between

the viscous and non-viscous parameters. While no covariances are seen, when the

model is pushed to the edges of the prior region, the distribution can become bi-

modal. Examples are shown in Figs. 6.11-6.13.

What is important to inspect is if the posterior consistently contains the known

truth. For example, does the true value fall within the 90% credible interval approxi-

mately 90% of the time? If so, then it is plausible that, provided with a 90% credible

interval, a gambler would break exactly even assuming they were presented with fair

odds by the bookmaker. This is clearly the case for the viscous posteriors and the

non-viscous posteriors shown in Figs. 6.11 and 6.13. The sample validation points

chosen for these figures additionally demonstrate the resolution of a large, relatively

flat bulk viscosity (Fig. 6.13) and a bulk viscosity with a comparatively sudden peak

at high temperature (Fig. 6.11) in addition to a variety of η/s. All are recovered well

and within the 90% C.I.

Figure 6.11: Non-viscous (left) and viscous (right) posteriors for a sample validation point.

The true values are highlighted in black. The quoted values are the median and

95% C.I.

The posteriors in Fig. 6.12 demonstrate a strong bimodality for Grad viscous correc-

tions and bias in C.-E. δf and, while the truths are partially recovered, the posteriors

seem at odd with physical intuition and are not in particularly good agreement with

each other, such as in τ0. This occurs because the true value of the bulk viscosity peak
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Figure 6.12: Non-viscous (left) and viscous (right) posteriors for a sample validation point.

The true values are highlighted in black. This is an important example of inter-

pretable failure. The quoted values are the median and 95% C.I.

Figure 6.13: Non-viscous (left) and viscous (right) posteriors for a sample validation point.

The true values are highlighted in black. The quoted values are the median and

95% C.I.

is below the particlization temperature and a bimodality develops in ζ/s for Grad

δf, while the C.-E. δf attempts to compensate and does not resolve the second ζ/s

mode and poorly resolves η/s. For each peak of ζ/s, a different value of the switch-

ing time between IP-Glasma and MUSIC is preferred as the model is pushed into a

corner, causing bimodality in the non-viscous posterior. The observable that couples

these quantities is δpT/〈pT 〉, whose pseudodata is noisier than the experimental data,

further exacerbating the issue. This is an example of an interpretable failure is an

edge case in the parameter space. It is intuitive that the model struggles to reproduce

true values of hydrodynamic quantities that are located outside the hydrodynamic

evolution. Joint priors (i.e. requiring the bulk peak temperature to be greater than
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particlization) have not yet been developed for heavy ion collision studies and doing

so is beyond the scope of this work. Note as well that this is a particular feature of

the multi-modal bulk viscosity as the true value of Tsw in Fig. 6.11 is close to the edge

but can still be well-constrained. Nonetheless, the ability to interpret these failures of

the modeling workflow further strengthens the results derived from this study.

A reassuring feature of the inferential framework is that all of the closure points re-

produce the pseudodata well, as exemplified in Fig. 6.14. As can be seen, the emulator

is not overfitting by going through every potentially noisy data point, but is instead

robust to statistical fluctuations in the underlying data. This further suggests that the

model is behaving well and is well-conditioned for the problem at hand while also

not exhibiting strong bias. An example of low-bias can also be seen in the marginal

distributions for µQs in Figs. 6.11-6.13 – the truth is not always exactly located at

the peak of the marginal distribution, but instead the peaks are distributed around

the true value. Additionally, the two δf models are differentiable and reveal that the

transfer learning model is not simply reproducing the source model’s results.

An exciting feature in these closure tests in comparison to previous studies is the

constraint on η/s and ζ/s at higher temperatures. In previous studies, constraint was

limited to the low temperature regions and the model was insensitive to the high-

temperature (or early-time) behavior of the fireball evolution unless the temperature-

dependence was explicitly specified by the parametrization [42, 45, 46, 50, 51]. In

these closure test, for the first time, constraint on the viscosity can be achieved even at

high temperature. This raises the exciting prospect that the bulk viscosity of strongly-

interacting matter in heavy ion collisions may be constrained to an unprecedented

precision without sacrificing accuracy.

6.4.2 Parameter estimation from data

Now that the model is known to behave in accordance with expectations for test

points and failures are interpretable, the validation pseudodata is exchanged for real

experimental data. The previous section has confidently established that the Bayesian

parameter estimation produces reasonable results for known inputs, leading to the

belief that this should plausibly reveal the underlying properties of experimentally-
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Figure 6.14: Posterior predictive distributions with Grad viscous corrections for the posterior

shown in Fig. 6.13 with pseudodata used for comparison shown as data points.

produced quark-gluon plasma in heavy ion collisions. The repeated validation, ob-

servable selection, closure testing, and sanity checks of the surrogate modeling and

inference have established beyond a reasonable doubt that the models are reliable

and well-conditioned for the problem at hand.

The calculations at the design points form the prior predictive distribution and

were shown in Fig. 6.2 for a superset of observables. These calculations cover the

experimental results well, although correlations between calculations are difficult to

discern and likely introduce some tension. The MCMC is again performed using a

parallel tempering algorithm. The above closure test and the below comparison to

data are performed using Grad’s 14-moment viscous corrections and while the above

closure tests were performed with 10,000 MCMC steps with 10 walkers per dimension

and 10 rungs in the parallel tempering temperature ladder, the below comparison to
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data is performed with 20,000 MCMC steps with 50 walkers per dimension and 20

rungs in the parallel tempering ladder for improved sampling resolution. The trace,

moving average, and autocorrelation of the final MCMC chain is shown in Fig. 6.15

for three sample walkers. These walkers have clearly thermalized as the trace exhibits

no discernible autocorrelation and are thus sampling from the target distribution.

With confidence in the MCMC, it is finally time to look at the posterior distri-

bution after comparison with data. The non-viscous parameter posterior for both

viscous corrections is shown in Fig. 6.16, the viscous posterior for both viscous cor-

rections is shown in Fig. 6.17, and the marginal and joint marginal distributions

of the 11-dimensional posterior are shown in Fig. 6.18. The non-viscous parame-

ters demonstrate clear constraint, particularly in the case of the normalization µQs .

This constraint is consistent with results derived entirely from J/Ψ production in

e+p collisions at HERA [52]. The switching time between IP-Glasma and MUSIC is

well-localized to early times τ0 . 0.7 fm, which is in accordance with physical expec-

tations and appears to rule out very late hydrodynamic onset times seen in models

with more simplistic pre-equilibrium dynamics.

The particlization temperature Tsw is also well-constrained within the prior re-

gion. A recent estimate of the crossover temperature from lattice QCD places it at

Tc = 155± 1.5 MeV [11], precisely in the region of highest posterior density for the

particlization temperature. The constraint of the particlization temperature is particu-

larly interesting as the chemistry of the hydrodynamic medium is identical to that of

[45], which required a much lower particlization temperature with the same viscous

correction. This also provides a limit on the lifetime over which the viscosity can act

by reducing the lifetime of the fireball, placing limits on the viscous contribution. As

demonstrated in the closure tests, the viscosity is not required to be small in this re-

gion and so has the potential to be influenced by large viscous corrections. However,

this is seen to not be the case: in the temperature region probed by particlization –

approximately bounded by 0.14 and 0.18 GeV – the data itself prefers the specific bulk

viscosity to be small. In testing for self-consistency, it was found that the model can

recover large viscosity at particlization (Fig. 6.13), meaning that the demand for small

viscous corrections is an authentic feature of the data.
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Figure 6.15: MCMC trace, moving average, and autocorrelation from comparison to experi-

mental data with Grad viscous corrections. The C.-E. MCMC behavior is compa-

rable.
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Figure 6.16: Non-viscous posterior from comparison to experimental data with Grad δf (blue,

lower triangle) and Chapman-Enskog δf (red, upper triangle). The quoted values

along the diagonal are the median and 95% C.I. of the 1-dimensional marginal

distribution.

In Fig. 6.17, the temperature-dependent specific bulk viscosity ζ/s demonstrates a

clear peak and the 99% C.I. is inconsistent with 0 below T ≈ 0.34GeV for Grad viscous

corrections while for Chapman-Enskog, it is inconsistent with zero over the entire

range shown. Randomly drawn example samples from the Grad posterior are shown

in Fig. 6.19, demonstrating the diversity of choices that are compatible with data.

The constraint certainly weakens at high temperature, but the peaked specific bulk

viscosity is well-constrained at low and intermediate temperatures. This is the first

time a large, nonzero, peaked specific bulk viscosity has been recovered from data.

A peaked result is consistent with expectations from previously-used bulk viscosity

motivated by purely physical considerations, demonstrating phenomenological self-

consistency between purely theoretical considerations and model-to-data comparison,
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Figure 6.17: Viscous posterior with Grad viscous corrections (blue) and Chapman-Enskog vis-

cous corrections (red) from comparison to experimental data.

although the extracted peak is (mostly) constrained to be at higher temperatures. The

peak of the specific bulk viscosity shifts slightly between the two viscous correction

models, but the posteriors are broadly consistent with each other, particularly the 60%

credible intervals. Both viscous correction models strongly indicate a peaked nonzero

bulk viscosity throughout the hydrodynamic evolution.

An unexpected feature of the viscous posterior is a slight preference for a negatively-

sloped specific shear viscosity at higher temperatures. This is driven in part by pe-

ripheral v3{2}, a fluctuation-driven quantity, and central v4{2}. As higher temperatures

correspond to earlier times in the fireball evolution, this decreasing high-temperature

η/s dissipates initial-state fluctuations more slowly. Worth noting, however, is that

the high-temperature η/s posterior is still compatible with both a flat line through the

99% credible interval and the AdS/CFT-derived bound of 1/4π [198]. This is a con-

sideration worth investigating in more depth. Recent theoretical work has estimated

effective viscosity from first-principles calculations; the shear and bulk posteriors in

this study are consistent with those derived from first principles theory based on
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Figure 6.18: 11-dimensional posterior showing marginal and joint marginal distributions with

Grad viscous corrections (blue, lower triangle) and Chapman-Enskog viscous cor-

rections (red, upper triangle) from comparison to experimental data. Values along

the diagonal are the median and 95% C.I. of the 1-dimensional marginal distribu-

tion.

comparisons to other work at a different collision energy [199]. This is also worth

investigating in more depth.

To ensure the quality of the fit and to identify tension in the model, one can in-

spect the posterior predictive distribution (Fig. 6.20) and the ratio of the posterior

predictive distribution to experimental data (Fig. 6.21). It is clear from the posterior



6.4 bayesian parameter estimation with pb-pb collisions at 2 .76 tev 161

Figure 6.19: Samples from the viscous posterior for Grad viscous corrections after comparison

to experimental data.

predictive distributions that the model fits the data well, but exhibits tension, seen in

the transverse energy and the three-plane correlators.

The tension between dET/dη is not new to this work and was also seen in [47]. This

suggests that it is a feature independent of the pre-equilibrium stage and potentially

a feature of either the specifics of the hadronic chemistry or – less likely – a feature of

2+1D hydrodynamics. As the transverse energy captures correlations between particle

multiplicity and transverse momentum, the chemical explanation is more plausible

and is consistent with the differences in reproducing experimental results first shown

in Fig. 4.8 and present in both models.

The difficulty reproducing the three-plane correlators is also not new, but the

postdictions shown in Fig. 6.20 are consistent with the results previously shown in

Fig. 4.10. Of note is that the C.-E. δf is closer to reproducing these correlations than

the Grad viscous corrections. Insight can be gained by investigating the sensitivity of

these observables to various parameters in Fig. 6.10. The dominant sensitivities are

to normalization and the shear viscosity kink temperature, similar to the anisotropic

flow that naturally influence the correlations. The other potential underlying cause
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Figure 6.20: Posterior predictive distribution with Grad viscous corrections (blue) and C.-E.

viscous corrections (red) after comparison to data.

of difficulty in matching these observables is geometric - the observables match as

well as they can, but the prior predictive distributions do not cover the data. With

the geometry in IP-Glasma fixed by nuclear configurations and deep inelastic scat-

tering, insufficient freedom remains. Before leaving this to future analysis, it must

be noted that δpT/〈pT 〉 is also at the edge of the prior predictive region. If the three-

plane correlators and the pT fluctuations are correlated, this has potential to reveal

further insight. The correlation between these observables at mid-centrality is shown

in Fig. 6.22 and reveals that these observables are uncorrelated, suggesting that their

tension is independent. A future analysis should attempt to address this by revisiting

the constraint from deep inelastic scattering simultaneously with observables from

heavy ion collisions.
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Figure 6.21: Posterior predictive ratio with Grad (blue) and C.-E. (red) δf after comparison to

data.

The posterior predictive distribution for the correlated pT fluctuations produces the

most accurate postdiction of any IP-Glasma calculation and yields the correct central-

ity dependence, a feature not seen in other models. Investigating this sensitivity, the

overall magnitude is reduced by a larger (ζ/s)max and constraints τ0 to early times.

This suggests yet further that the bulk viscosity must be further investigated for a

narrower, taller peak to better reproduce experimental results. This is, unfortunately,

beyond the scope of this work.1

The success of the model with respect to every other observable must be high-

lighted: nearly every experimental measurement in nearly every observable is consis-

tent with the posterior predictive distribution shown in Fig. 6.20. This is nothing short

1 This narrower, taller peak is difficult to resolve without reparametrization of the width of the bulk

viscosity or carefully constructing a scale-invariant prior. This too is beyond the scope of this work,

but should be strongly considered in future studies.
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Figure 6.22: Correlations between posterior predictive distributions for selected observables

for central collisions. Dashed lines denote the central experimental result and x-

and y-axis units are the experimental uncertainty for the respective observables.

Grad viscous corrections are in blue while Chapman-Enskog viscous corrections

are shown in red.

of remarkable and is by no means guaranteed. Bayesian studies in heavy ion physics

have broadly exhibited success, but previous studies have used flexible parametric

models and fewer observables. To have a pre-equilibrium stage with microscopic

physics produce such a resounding success is a thorough and non-trivial validation

of the theory and implementation of IP-Glasma. This represents a milestone in rig-
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orously constructing a hybrid model with each stage containing the best-available

microscopic physics and testing it via comparison to data. Certainly, future work re-

mains in theoretical development, but this establishes the physical models on a firm

scientific foundation.

6.4.3 Bayesian Model Comparison

Bayesian model comparison, introduced in Ch. 3.3, can be used to determine if the

data exhibits a preference for one model or another, if additional complexity is jus-

tified by the model, or even if the model can differentiate between pseudodata and

experimental data. This is extremely valuable as it does not attempt to falsify a model,

but rather puts it to a binary test to determine which model is the most useful in de-

scribing the data.

To test, as always, with self-consistency, the first use of Bayesian Model Compari-

son is to determine if the model can differentiate between pseudodata used for the

previous self-consistency testing and experimental data. This hypothesizes the fol-

lowing scenario: a “true” model underlies the experimental data just as a known

model underlies the pseudodata generated to test self-consistency. A distinct model

is never expected to systematically defeat the true underlying model and, if it did,

would be a sign of systematic bias. As a result, the Bayes evidence for the pseudo-

data is expected to be greater than the Bayes evidence for the experimental data and

strong preference is expected from the Bayes factor. This is found when comparing the

model estimate of the Bayes evidence for pseudodata and true data using Grad vis-

cous corrections: the ln Bayes Factor determining which data the model is best suited

to ranges from 118.7± 3.1 to 147.9± 2.3 in favor of the pseudodata, corresponding

to odds of around 2× 1056 : 1 to 1062 : 1 differentiating the two data sources. Com-

parable, albeit slightly reduced preference is found using Chapman-Enskog viscous

corrections (lnB ∼ 90± 5). This is an overwhelming validation of the model’s ability

to differentiate the data and demonstrates the self-consistency of the Bayesian model

selection. It remains a humbling revelation of just how much information is not yet

captured even by this state-of-the-art model.
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The self-consistent Bayesian model comparison can now be used to determine if

the model exhibits a preference for a variety of features. For example, it can be used

to test if the model demands a temperature-dependent shear viscosity by fixing the

high and low temperature slopes to 0 and fixing the kink temperature to any value

in the prior range as it is meaningless with no change in slope. Performing this com-

parison yields lnB = 0.2 ± 2.4 in favor of temperature-dependent shear viscosity

with Grad viscous corrections and lnB = 1± 4 for Chapman-Enskog viscous correc-

tions. On the Jeffreys’ scale (Table 3.1), this is consistent with no preference between

the two models, suggesting that the evidence is still inconclusive in favor or against

temperature-dependent η/s given the data considered in this study. This suggests

that further, and higher-resolution, studies are required to conclusively demonstrate

the temperature dependence (or lack thereof) of η/s in heavy ion collisions.

The lack of such preference for or against η/s(T) is not surprising. Hybrid models

with IP-Glasma have demonstrated considerable success in describing experimental

results using a constant specific shear viscosity and the viscous posteriors in this

study are themselves consistent with a constant value. In the study requiring a con-

stant η/s, the result is well-constrained – η/s = 0.137+0.025−0.028 for Grad viscous cor-

rections and η/s = 0.125+0.021−0.022 for Chapman-Enskog viscous corrections, where the

uncertainty denotes the 95% C.I. – and with minimal covariance. By inspection, it is

apparent that this is entirely consistent with the η/s(T) posteriors in Fig. 6.16 and

nearly spans the full width at the narrowest point.

As many Bayesian works require η/s(T) to strictly increase or be constant above a

fixed kink temperature, this is also a useful comparison and is performed with only

Grad viscous corrections as both models are consistently in agreement. To do this,

aη,low is fixed to zero as it is in those studies and Tη,kink is fixed to 0.154 GeV. Finally,

aη,high’s prior range is reduced to require it to be positive definite. Comparing the

evidence for this configuration to the full study produces lnB = 3.8± 2.6 in favor of

the full study allowing for a negatively-sloped η/s(T). This corresponds to moderate-

to-strong evidence on the Jeffreys’ Scale in Table 3.1. Comparing the requirement of a

positive-definite slope to η/s(T) to a constant η/s, the Bayes factor is lnB = 3.6± 2.6

in favor of the constant specific shear viscosity. Because the Bayes factor penalizes

complexity, the additional complexity is not justified by the data.
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Next generation observables are employed in this study in the hope of determin-

ing the features of η/s and ζ/s with greater accuracy and precision. Some studies use

next generation correlations that require much greater computational expenditure to

attempt to find this constraint, but suffer from parametric initial conditions [53]. It

is clear from these Bayesian model comparisons that success in learning the physi-

cal specific viscosity of strongly-interacting matter will only come from combining

realistic initial conditions and well-chosen observables. A promising candidate for

increased constraint are vn − pT correlations, which are not readily calculable at the

precision of this study, but further couple pre-equilibrium geometry to the hydrody-

namic evolution [200, 201]. This is investigated later in this work as a prediction made

at Maximum a Posteriori.

Recent Bayesian works with a TRENTo + freestreaming initial state have been find-

ing success with smaller and smaller specific bulk viscosity [50, 51, 53], contrasting

with prior studies demonstrating the need for ζ/s to reproduce hadronic observables.

By fixing (ζ/s)max to zero and holding the other parameters fixed to arbitrary val-

ues as they no longer have any impact, it is straightforward to assess the demand

for nonzero ζ/s. This comparison results in lnB = 34.4 ± 2.4 in favor of non-zero

ζ/s when using Grad viscous corrections, corresponding to odds of ∼ 8× 1014 : 1.

With Chapman-Enskog viscous corrections, this preference for the inclusion of bulk

viscosity increases to lnB = 61± 5, conclusively demonstrating that bulk viscosity is

strongly justified when using a physically-motivated pre-equilibrium stage no mat-

ter the viscous corrections at particlization. The physical impacts of the lack of bulk

viscosity arise in enhancement of the identified particle 〈pT 〉 and the momentum fluc-

tuations δpT/〈pT 〉 with simultaneous suppression of v3{2} and the three-plane correla-

tors. The particlization temperature is also forced to the highest possible temperature

allowed in the prior while the switching time to MUSIC is required to be as short

as possible. This arises from a need to preserve as many initial-state fluctuations as

possible as they must reproduce fluctuation-driven final-state observables. The high

particlization temperature additionally preserves fluctuations by allowing for less vis-

cous dissipation in the hydrodynamic phase.

Comparing the relative likelihood of the viscous correction models is a useful way

to assess model applicability and begin to quantify the uncertainty introduced by
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the choice of viscous correction. Comparing Grad and Chapman-Enskog viscous cor-

rections to data with none of the parameters held fixed, the relative preference for

the Grad over the Chapman-Enskog RTA viscous corrections is lnB = −0.1± 3.1 in

imperceptibly-slight favor of Grad viscous correction, although this should be inter-

preted as the models being indistinguishable in this analysis.

This indistinguishable nature of the viscous correction models deserves further

study. The posteriors, as shown previously, are quite similar but not identical, but are

equally well-suited to experimental measurements. As a result, the viscous correc-

tions chosen in a study are an important source of theoretical uncertainty to quantify

and not doing so results in an artificially precise posterior. Progress in adding ad-

ditional constraining observables must not neglect quantification of uncertainty as a

parallel goal lest analyses fall into the trap of the bias-variance tradeoff. The goal is

not to constrain these quantities the most precisely, but to do so both accurately and

precisely. By not including sources of theoretical uncertainties, an analysis focuses on

the latter and sacrifices the former.

A natural question to ask is why is the model preference between the Grad and

Chapman-Enskog viscous corrections indeterminate in this study where, in the only

other application of Bayesian model comparison, it was strongly in favor of the Grad

δf [45, 46]? The answer is essentially two-fold: first, the viscosity in the previous study

were larger at particlization and as a result, enhanced the effect of the corrections; and

second, the inclusion of more realistic dynamics in the pre-equilibrium stage means

that observables are less sensitive to the hydrodynamic viscosity. As the viscosity is

not wholly responsible for introducing momentum-state anisotropy, for example, the

viscous corrections at particlization impact the observables less, in turn resulting in

less model preference between modeling choices which should be small effects by

construction. The lack of preference between the two models of viscous corrections is

in accordance with prior theoretical expectations.

The most likely value in the 11-dimensional parameter space is the Maximum a

Posteriori estimate , determined by numerical optimization on the MCMC chain. As

the Bayesian model comparison exhibits no preference for or against temperature-

dependent specific shear viscosity, estimates of the MAP are provided for both tem-

perature dependence and a lack thereof in Table 6.2.
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Parameter Grad δf, η/s Grad δf, η/s(T) C.-E. δf, η/s C.-E. δf, η/s(T)

µQs 0.72341 0.70808 0.72654 0.70858

τ0 [fm] 0.52127 0.51291 0.40142 0.55159

Tη,kink [GeV] 0.150 0.22333 0.150 0.21123

aη,low [GeV−1] 0.000 -0.16259 0.000 0.65272

aη,high [GeV−1] 0.000 -0.80217 0.000 -0.89472

(η/s)kink 0.13577 0.13944 0.12504 0.14888

(ζ/s)max 0.28158 0.22085 0.17391 0.20117

Tζ,c [GeV] 0.31111 0.29198 0.2706 0.25455

wζ [GeV] 0.02878 0.03625 0.05255 0.04506

λζ -0.96971 -0.56235 -0.14178 0.06408

Tsw [GeV] 0.15552 0.15429 0.15069 0.1513

Table 6.2: Maximum a Posteriori estimates with Grad’s 14-moment and Chapman-Enskog

RTA viscous corrections. Estimates with (denoted η/s(T)) and without (denoted

η/s) temperature-dependent specific shear viscosity are reported.

A variety of interesting features arise in Table 6.2. First, the lattice QCD estimate

of crossover temperature – Tc = 155± 1.5 MeV – is consistent with both Grad MAP

estimates of the particlization temperature using Grad viscous corrections, with the

MAP estimate from constant η/s nearly identical to the central lattice estimate. Us-

ing Chapman-Enskog viscous corrections results in a slightly lower estimate of the

particlization temperature, but still close to the estimated crossover temperature, sug-

gesting that the hadrons may behave hydrodynamically for a brief period after re-

combination. Next, the switching time τ0 is consistent with IP-Glasma’s pressures

having come to a steady state (see Fig. 4.21) and with sufficient time for the build-

up of pre-equilibrium dynamics that was hypothesized to be of critical importance

in describing the strongly-interacting medium (see Ch. 4). The value of the specific

shear viscosity is broadly consistent with other Bayesian results and the constant η/s

is very close to past chi-by-eye fits of 0.13. The bulk viscosity maximum and width

are consistent with a large, peaked bulk viscosity, further supporting a consistent pic-
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ture between theoretical expectations and prior modeling success. The asymmetry of

the bulk viscosity is of interest as it suggests a bulk viscosity peaked at high temper-

ature and slowly decreasing as it approaches the particlization temperature, where

it is well-constrained by the data to be small. While the MAP estimates for the bulk

viscosity differ in their parameters between η/s and η/s(T), the actual value at any

temperature differs by a maximum of ∼10% below the region where it nears the lower

peak location at T ≈ 0.28 GeV.

The MAP estimates are used to make predictions of observables not used in the

model-to-data comparison. Strictly speaking, this is due to computational limitation:

the most appropriate comparison is a full posterior predictive distribution with per-

haps a surrogate model trained on a reasonable quantity of high-statistics calculations.

At the same time, the MAP estimates are the recommended parameters for use in

other studies, such as hard sector studies of jet-medium interactions or photon/dilep-

ton calculations, and therefore represent a faithful picture of how the model will be

used in practice.

6.4.4 Bayesian Model Averaging

In Bayesian model comparison, the question under investigation is “which model

is best suited to the data?” This informs which model to use and how best to use

it. A related question is “given two models, how does one best estimate the truth?”

For this, Bayesian model averaging (BMA) is employed. In Bayesian model averaging,

two posteriors are combined using a weighted average in which the weights are the

Bayes evidence [202]. In a simplified example, if two models are equally likely, then

the truth is most likely to be in the region where the model posteriors overlap. This

is formalized as

pBMA(x|y) ∝
∑
i

pi(y)pi(x|y) (6.5)

for models indexed i.

BMA was first used in heavy ion collisions to perform model averaging of the

transport coefficients and later for model averaging of non-viscous parameters [46,

47]. The BMA viscous posteriors are shown in Fig. 6.23 along with the Kullback-
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Leibler divergence, which quantifies the distance between two distributions and is

used here to calculate the information gained from the prior to the BMA posterior

[203]. The BMA posterior for non-viscous parameters is shown in Fig. 6.24.

The BMA viscous posterior clearly demonstrates the value of accounting for the

uncertainty due to viscous corrections at particlization by showing the state of knowl-

edge by considering both simultaneously. The two models contribute their constraint

throughout the temperature evolution of both ζ/s and η/s, although the impact is

clearer in the specific bulk viscosity due to the differences in constraint between the

two models. Particularly of interest is that BMA leverages the information content

of both models to produce a more-constrained 60% C.I. than either model indepen-

dently, demonstrating how to address the bias-variance tradeoff with multiple models

in a rigorous way.

Figure 6.23: Bayes Model Averaged viscous posterior shown with with Grad 90% C.I. (blue)

and Chapman-Enskog 90% C.I. (red) and the Kullback-Leibler Divergence quan-

tifying information gain from the priors to the BMA posterior in bits (bottom

panels).

The KL Divergence in Fig. 6.23 is also of note: information on the viscosity is gained

by comparing to data over the entire temperature region considered, decreasing at

higher temperatures that are probed more briefly and earlier in the collision evolu-
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tion. This is consistent with the only other study to investigate this, but has substan-

tially increased the amount of learning from prior to posterior. As the hydrodynamic,

partilcization, and hadronic cascade stages were intentionally chosen to be identical,

this difference can be ascribed to microscopic physics in the pre-equilibrium evolu-

tion of the plasma. This difference in dynamics is most pronounced at early times

in the evolution, roughly corresponding to higher temperatures, where the increased

constraint is found. The KL Divergence is also non-monotonic for the BMA posterior,

which is commensurate with increased constraint around the peak of ζ/s and the kink

of η/s as well as constraint of ζ/s near particlization. This demonstrates model sen-

sitivity to key phenomenological features and less constraint otherwise. As the field

attempts to better constrain the understanding of heavy ion collisions by constrain-

ing the temperature-dependent transport coefficients, using state-of-the-art physics

models rather than parametric substitutes must be a critical plank in the theoretical

program.

Figure 6.24: Bayes Model Averaged posterior for non-viscous parameters (orange) shown with

with Grad (blue) and Chapman-Enskog (red). The lowest contour shown is the

5th percentile.
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The non-viscous BMA posterior demonstrates this as well and it can be seen in

the joint marginal distributions that the BMA posterior is in between those of the

two underlying models. This incorporates this source of modeling uncertainty and

is the most precise and accurate physical understanding of these quantities yet. The

non-viscous posteriors for the Grad and C.-E. viscous correction models are quite

similar, demonstrating that these are robust to a modeling choice intended to be a

small correction. The largest difference between the two models is in the particlization

temperature, which is robustly accounted for in the BMA posterior, and the median

value remains consistent between the models.

Bayesian model averaging remains the current state-of-the-art in heavy-ion colli-

sions for leveraging the information in multiple models to best constrain the physical

understanding of strongly-interacting matter without over-fitting. This is only the

second study in this field, following [46] and elaborated in [47], to utilize BMA for

improving uncertainty quantification and has further demonstrated its importance.

Further sources of unquantified uncertainty still exist in heavy ion collisions, usually

at the interface between models at each stage in the evolution of the fireball, but how

to incorporate such interface effects in BMA is not yet clear. The majority of Bayesian

effort in studying the strongly-interacting matter produced in heavy ion collisions

is in improving the precision of the models; it cannot be emphasized enough that

studies that pursue arbitrary precision without accounting for sources of uncertainty

using techniques such as BMA do not fully leverage the information available and

are falling prey to bias. Simultaneous consideration of observables and uncertainty

quantification, as performed in this chapter, are required for reliable inference of the

physical properties of strongly-interacting matter.

6.4.5 Calculations at Maximum a Posteriori

Scientific models can be evaluated by how well they can describe experimental mea-

surements in systematic model-to-data comparison, as performed up to this point,

but also by how well they predict quantities to which they were not explicitly tuned.

A model that can only describe quantities to which it is systematically compared is

less useful than a model that, once compared to a carefully-selected set, makes ac-
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curate predictions. The Bayesian inference performed in this chapter was performed

using a surrogate model trained at a large number of design points, not the under-

lying model itself. As a result, before moving on to predictions, it is important to

explore the veracity of the MAP points in Table 6.2. To do this, the model is run as

before, but with 6000 collision events from 0− 13 fm rather than 2500. This increase

in statistics allows for higher precision results.

First, the veracity of the MAP points is determined via postdiction, in which the

underlying computationally-expensive hybrid model is compared to quantities used

in the inference above. In the following figures, the Grad and C.-E. MAP are shown

in blue and red, respectively. The MAP with temperature-dependent η/s is shown

as a solid line while constant η/s is shown as a dashed line. Shaded regions denote

uncertainty. Where available, a MAP calculation from [45] is shown for comparison to

the previous state-of-the-art Bayesian study in HICs. The charged hadron multiplicity,

Fig. 6.25, compares very favorably with the MAP calculations within the experimental

uncertainty for all viscous correction models. A variety of identified particle multiplic-

ities and transverse energy per rapidity slice, Fig. 6.26, also compare very well, albeit

the proton and kaons are overestimated while the pions are underestimated. This

balancing act combined with the overall charged hadron multiplicity shows that as-

pects of the hadron chemistry are imbalanced. As discussed previously, details such

as chemical freezeout (c.f. [100, 204]) are not included in this study and are likely to

particularly influence higher-mass particles, particularly kaons. The overestimation

of the number of higher-mass particles in turn results in an overestimation of trans-

verse energy. Nonetheless, the differences between the MAP calculations imply an

influence of viscous corrections on the hadronic chemistry.

The mean transverse momentum of identified particles, Fig. 6.27, further reveals the

success of the model-to-data comparison while demonstrating how overestimation

of multiplicity combined with good estimation of the transverse momentum results

in overestimation of transverse energy. The 〈pT 〉 shows less tension in the chemical

makeup than previous results with the same hydrodynamic equation of state, reveal-

ing the role of bulk viscosity and a physically-motivated pre-equilibrium model with

microscopic dynamics. The primary difference between Grad and C.-E. MAP calcu-
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Figure 6.25: Postdictions of charged hadron multiplicity at Maximum a Posteriori.

Figure 6.26: Postdictions of identified hadron multiplicity at Maximum a Posteriori.

lations is in enhanced proton 〈pT 〉, in which the C.-E. MAP better reproduces the

experimental results.

The two-particle integrated vn further reveal good, albeit imperfect, reproduction of

experimental results in Fig. 6.28. Notably, v2{2} and v4{2} are well described, particu-

larly in central collisions, while v3{2} is underestimated. The underprediction of v3{2}

is a feature of nearly every study and remains an object of continuing study. Periph-

eral v2{2} reveal that the MAP temperature-dependence of the Grad shear viscosity
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Figure 6.27: Postdiction of identified particle 〈pT 〉 at Maximum a Posteriori.

results in an overestimate, while the constant shear more closely reproduces the ex-

perimental centrality dependence as do the C.-E. MAP calculations. For all vn{2}, the

MAP prediction of this study performs better than the previous state-of-the-art and

the tension revealed here produces useful insight both into temperature-dependent

η/s and remaining progress required in describing the geometric fluctuations that

drive v3{2}. The four-particle integrated v2 is shown in Fig. 6.29, showing agreement

with data until the most peripheral bin where it is overestimated, consistent with the

two-particle v2 in Fig. 6.28, suggesting that these observables capture broadly simi-

lar physics and are similarly-well described by the model, although less tension is

observed in v2{4} compared to v2{2}.

Figure 6.28: Postdiction of vn{2} at Maximum a Posteriori.
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Figure 6.29: Postdiction of v2{4} at Maximum a Posteriori.

The correlated momentum fluctuations δpT/〈pT 〉, also denoted
√
Cm/M or

√
Cm/〈pT 〉,

in Fig. 6.30 are the first calculations to successfully describe this observable from a

model with an IP-Glasma pre-equilibrium state and this description is consistent. The

only prior work showing this calculation matches less well and does so by underesti-

mating charged hadron multiplicity [205], while this study is able to simultaneously

describe both quantities with a variety of different viscosities and viscous corrections.

These fluctuations are also sensitive to the temperature-dependence of the specific

shear viscosity, where the constant η/s systematically overestimates the data while

correctly reproducing the centrality dependence (itself not seen in either other cal-

culations with IP-Glasma or in the previous state-of-the-art), while the temperature-

dependent η/s better reproduces the data beginning in mid-central collisions. The

C.-E. MAP reproduces the fluctuations more closely, save for the η/s(T) calculation

in the most central bin, which is likely the impact of statistical fluctuations.

The decomposition of higher order vn further reveals the ability to simultane-

ously describe flow observables in Fig. 6.31. For every quantity other than central

vL4 , both models produce successful predictions of the experimental data, with the

temperature-dependent η/s again overpredicting peripheral flow as seen in v4(Ψ2).

Although is often consistent with the data within uncertainty, vL4 is overpredicted by

the C.-E. MAP calculations. Nonetheless, this broad reproduction of the experimen-

tal flow decomposition suggests that the momentum-space geometry of the hybrid

model successfully reproduces the physical picture in heavy ion collisions.
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Figure 6.30: Postdiction of δpT/〈pT 〉 at Maximum a Posteriori.

Figure 6.31: Postdiction of the decomposition of vn at Maximum a Posteriori.

As highlighted in Ch. 4, the simultaneous reproduction of flow decomposition and

event plane correlation constrains both the initial state geometry and the hydrody-

namic evolution. In Fig. 6.32, the correlators are also well-described by the postdic-

tions and are consistent with experimental uncertainty, save for central 〈cos(2Φ2 +

4Φ4− 6Φ6)〉. The purely-even correlations are particularly well described and primar-

ily relate the conversion of event planes of initial state geometry to momentum space

via hydrodynamics. The mixed even-odd plane correlations reveal that the fluctuation

structure is well described and correlates properly with even planes. These calcula-

tions can be compared to Figs. 4.9, 4.10, and 4.12 where the previous state-of-the-art

systematically underpredicted correlations and the previous IP-Glasma results pre-
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dicted less well. This postdiction is also well in line with the posterior predictive

distributions, further supporting the accuracy of the surrogate modeling.

Figure 6.32: Postdiction of event plane correlations at Maximum a Posteriori. Data and calcu-

lations are shifted for clarity.

The postdictions show that MAP parameter values are able to successfully describe

the observables used in inference with never-before-seen accuracy for a hybrid model

with an IP-Glasma pre-equilibrium stage. This alone is a resounding success of the

Bayesian inference in this study and conclusively demonstrates the performance of

the Gaussian Process emulators as well as the study design. Tension is seen in the

hadron chemistry, impacting the transverse energy, as well as in some of the descrip-

tion of the flow harmonics, notably v2{2} and v3{2}. However, the decomposition of

higher order flow is successful and the overwhelming majority of observables are

well-described while the same tension is seen in v2{4}, ensuring this is effect is not a

result of two-particle correlations. In the case of δpT/〈pT 〉, successful description is

shown for the first time. The impact of viscous corrections is minimal, showing that

the different posteriors are accurately accounting for differences in the underlying

model calculations.

6.4.5.1 Predictions

Having established the success of the surrogate modeling and demonstrated unprece-

dented description of a wide range of observables, it is time to turn to predictions of
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quantities not included in the calibration. Here, “predictions” is used to highlight that

these observables were not used in systematic comparisons. As a result, the model

is blind to these observables beyond information contained in other quantities. If

models are differentiable at this stage, perhaps it can shed light on model quality

not revealed in the more limited model-to-data comparison. In the following compar-

isons, centrality bins are chosen to match experimental results and predictions for

bins not shown are simply due to dominance by theoretical uncertainty from a small

number of events per bin.

The comparisons begin with measures of event plane correlation from ALICE in

Fig. 6.33 and ATLAS in Fig. 6.34. In both cases, the model predictions are very

well-aligned with experimental results. Both ρ532 and ρ633 are accurately predicted

within experimental uncertainty, while ρ6222 is accurately predicted below 30% cen-

trality. With respect to the ALICE measurements, the MAP calculations are broadly

indistinguishable. A similarly indistinguishable picture is painted by comparison

to ATLAS measurements, where 〈cos(2Φ2 + 3Φ3 + 4Φ4)〉SP, 〈cos 6(Φ2 −Φ3)〉SP, and

〈cos 6(Φ3−Φ3)〉SP are very well predicted by the model. Two predictions that perform

less successfully above 30% centrality are 〈cos 4(Φ2 −Φ4)〉SP and 〈cos 6(Φ2 −Φ6)〉SP.

The consistent picture drawn from comparison to both experiments suggests that the

event planes produced by an IP-Glasma initial state are better suited to collisions

below 30% despite successful comparison to observables across the whole centrality

range. These predictions outperform previous predictions made by a hybrid model

with IP-Glasma, shown in Ch. 4.

A motivation for the use of IP-Glasma as a pre-equilibrium model was its suc-

cess in simultaneous description of next generation observables, particularly both the

event plane correlations and nonlinear response coefficients. With demonstrated suc-

cess in prediction of event plane correlations not used in model-to-data comparison,

predictions for nonlinear response coefficients are shown in Figs. 6.35 and 6.36. These

broadly describe the experimental results within experimental uncertainty, with slight

overestimation in χ5,23 between 20 and 40% centrality and peripheral χ4,22. In this

case, the model with η/s(T) slightly outperforms predictions with constant η/s, al-

though they are often consistent within standard error. This demonstrates that a hy-

brid model with an IP-Glasma pre-equilibrium stage is able to produce simultaneous
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Figure 6.33: Prediction of ALICE event plane correlations at Maximum a Posteriori. Data and

calculations are shifted for clarity.

Figure 6.34: Prediction of ATLAS event plane correlations at Maximum a Posteriori. Data and

calculations are shifted for clarity.

accurate predictions of the event plane correlations and hydrodynamic response with

a initial geometry broadly fixed by low-energy nuclear correlations. This strongly sug-

gests that the hydrodynamic phase is accurately described as there is no geometric

flexibility to exploit and the hydrodynamic response to geometry matches that seen

in experiment. The centrality dependence is also often accurately captured, such as

in χ5,23, which was not the case in previous calculations.

Predictions for the final category of observables used in the analysis are shown in

Fig. 6.37 for the linear and nonlinear flow decomposition. These predictions are ac-
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Figure 6.35: Prediction of ALICE nonlinear response coefficients at Maximum a Posteriori.

Data and calculations are shifted for clarity.

Figure 6.36: Prediction of the ALICE χ6222 nonlinear response coefficients at Maximum a

Posteriori. Data and calculations are shifted for clarity.

curate and are clearly consistent with experimental results within uncertainties, save

for 30− 40% vL5 . This demonstrates the continuing success of the hybrid model with

IP-Glasma as it is able to both describe and predict a wide range of observables. In

the vL5 predictions, the constant η/s prediction is more consistent with the experimen-

tal measurement, further supporting an inconclusive preference for one model over

the other as the quality of predictions depends on which observable is considered.

The final pT -integrated prediction is made for the modified Pearson correlation

between v22 and pT , shown in Fig. 6.38. As no experimental results at this energy are
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Figure 6.37: Prediction of ALICE linear and nonlinear flow at Maximum a Posteriori.

available, preliminary results for a higher Pb-Pb collision energy system (
√
sNN = 5.02

TeV) are used [206] for comparison. The predictions made at
√
sNN = 2.76 TeV de-

scribe the higher-energy data and its centrality dependence well, which is not seen in

TRENTo-based hybrid model predictions and has been shown to be sensitive to nu-

cleon size [201]. This study has not utilized sub-nucleonic degrees of freedom and has

used a nucleon size of 4 GeV−2. There is no significant difference seen between pre-

dictions with different viscous corrections or between η/s and η/s(T). Even with vari-

ation of the nucleon width in previous calculations of this quantity with IP-Glasma

and TRENTo-based hybrid models, successful prediction of the value and centrality

dependence has proved elusive. Hybrid models with TRENTo + freestreaming initial

states, as well as previous calculations with IP-Glasma, have sign changes as they

become increasingly peripheral. This feature is not seen in the data, nor in this pre-

diction. Based on the prediction in Fig. 6.38, there is no anticipated collision-energy

dependence of this correlation and the IP-Glasma initial state at maximum a pos-

teriori is able to successfully describe this observable. The lack of collision-energy

dependence is supported by the comparison of Pb-Pb at
√
sNN = 5.02 TeV data com-

pared to Xe-Xe collisions at
√
sNN = 5.44 TeV data from ALICE [206]. Of note is

that it appears to not yield further constraint on the temperature-dependence of η/s.

Nonetheless, comparing it directly to the previous state-of-the-art Bayesian study us-

ing a TRENTo + freestreaming initial state, one immediately sees that the microscopic

physics of the IP-Glasma pre-equilibrium stage plays an important role in capturing

the relevant physics. This represents a true prediction as data at
√
sNN = 2.76 TeV has

yet to be published.
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Figure 6.38: Prediction of correlation between v22 and pT at Maximum a Posteriori, compared

to data from a higher-energy collision and a prediction using [45]. Note that data

and the JETSCAPE prediction are at
√
sNN = 5.02 TeV while the MAP predictions

are at
√
sNN = 2.76 TeV.

Up to this point, only pT -integrated observables have been considered. Differential

observables also exist and provide interesting and discriminating probes of the soft

sector. However, the boundary between the soft sector and the hard sector (such as

jets and jet-medium interactions) is unclear. By considering the integrated quantities

up to now, the sensitivity of the inference to the precise location of this boundary

is reduced and predictions can be made. This sensitivity is reduced because inte-

grated observables are weighted by the multiplicity, which drops exponentially. By

considering each differential pT bin, this exponentially-decreasing weighting would

be removed and each bin would be treated on an equal footing, in turn giving the

bins on the boundary of the soft and hard sectors a higher proportional weighting.

The first differential observable investigated is the differential charged hadron vn{2},

with predictions shown in Fig. 6.39 compared to experimental measurements from

ALICE [116]. Tension is clearly present in reproducing the spectra, with predictions

from integrated observables often undershooting at lower transverse momentum and

overshooting at higher momenta. Nonetheless, the majority of predictions are con-

sistent with experimental measurements for the first time or the distance from the

prediction to measurement has been greatly reduced from the previous IP-Glasma

state-of-the-art [28]. The greatest tension is observed in the differential v2{2} in the

0− 5% and 30− 40% centrality bins and low-pT v3{2} in more peripheral collisions.

This low-momentum region is expected to be the region best described by hydrody-
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namics, suggesting that relevant physics remains missing from the hybrid model. As

v3{2} is primarily fluctuation driven, this suggests that fluctuation structure is miss-

ing. The underestimate of v2{2} in contrast suggests that a geometric aspect is not in-

cluded or an aspect of the conversion between position-space and momentum-space

geometry remains incomplete. This is not necessarily a concern for the validity of

the hydrodynamic description, as the higher-order differential vn are well-described,

but instead suggests that additional physics may be at play. Recent works including

the differential momentum spectra suggest that their inclusion in systematic model-

to-data comparison can yield insight, but various analysis errors and inclusion of

momentum bins in regions where unincluded physics is relevant hinders the inter-

pretation of results [50, 51]. The posterior predictive distribution, rather than single

MAP predictions, may provide more insight into the present apparent mismatch of

the model predictions and data.

Figure 6.39: Prediction of differential vn{2} at Maximum a Posteriori for the 0− 5% centrality

bin (upper panel) and the 30− 40% centrality bin (lower panel).
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The light hadron multiplicity spectra, shown in Fig. 6.40 for selected central and

mid-central centrality bins, paints a complimentary picture to the integrated multi-

plicity in Fig. 6.26. The integrated proton and kaon multiplicity were overestimated,

while the pion multiplicity was slightly underestimated; the same is found here. The

momentum dependence of the spectra, however, remains well-predicted until the

higher momentum region (pT > 1.75 GeV), where mini-jets, jet showers, and other

hard-sector considerations begin to gain relevance. Beginning in this region, all the

identified light hadrons are underpredicted. To include these additional effects is a

matter of ongoing theoretical effort and is beyond the scope of this thesis.

Figure 6.40: Prediction of differential light hadron multiplicity spectra at Maximum a Poste-

riori for the 0− 5% centrality bin (upper panel) and the 30− 40% centrality bin

(lower panel).

Postdictions and predictions using four MAP calculations have been shown, com-

paring Grad and Chapman-Enskog viscous corrections with and without temperature-

dependent shear viscosity. The inconclusive preference between viscous correction
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models is consistent when comparing MAP parameter sets, as is the inconclusive

preference for or against temperature-dependent η/s, in keeping with the Bayesian

model comparison.

This study has implemented rigorous Bayesian model-to-data comparison with IP-

Glasma for the first time, incorporated transfer learning for the first time, and has

demonstrated ongoing inconclusive preference between viscous correction models

and between temperature-dependent and temperature-independent shear viscosity.

A large number of postdictions and predictions are shown at maximum a posteriori

and should be considered the new state-of-the-art theoretical result to which future

measurements and calculations should be compared. The posterior distributions are

the main results of this chapter and are the current best estimate of the properties of

strongly-interacting matter in ultra-relativistic heavy ion collisions.





7
C O N C L U S I O N S , O U T L O O K , A N D F I N A L R E M A R K S

conclusions

In this thesis, the tools of Bayesian inference were used to study the strongly-interacting

matter produced in heavy ion collisions, employing a hybrid model with an IP-

Glasma pre-equilibrium state in such a framework for the first time. This study

was motivated by extensive comparison to the previous state-of-the-art and advances

were made to the computer experiment design, incorporating non-uniform priors

and design space sampling for the first time in heavy ion collisions (Ch. 4). The self-

consistency of IP-Glasma was demonstrated using a limited closure test and it was

shown that a hydrodynamic stage calibrated using a parametric initial-state model

was unable to successfully reproduce experimental measurements (Ch. 5). A large-

scale Bayesian study was then performed, simultaneously varying the remaining free

parameters of IP-Glasma, the transport coefficients of the hydrodynamic phase, and

the particlization temperature (Ch. 6).

The motivations for this study were collected in Ch. 4 and demonstrated that sys-

tematically motivating a study yields useful insight into how to constrain physical

properties. Certainly, a prior belief existed that a physically-inspired model with mi-

croscopic physics was a higher-fidelity description than a parametric model with

parametric dynamics. By demonstrating specifically where a systematically-constrained

parametric model fails, it was possible to identify discriminating quantities and inter-

pret them physically. With this in hand, it was possible to design a study that ex-

ploited the information contained in these quantities. The design, also described in

Ch. 4, was another source for methodological progress. The ordered Maximum Projec-

tion Latin Hypercube has distinct advantages to the maximin Latin Hypercube used

by previous studies. In particular, a fair sampling of the design space is reached much

earlier and the active space of the model is well-covered rather than only the full de-

189



190 conclusions , outlook , and final remarks

sign space and its 1-dimensional projections. This produced clear improvements in

surrogate model performance. Non-uniform priors were also motivated and imple-

mented, beginning the process of more accurately describing physical understanding

of these quantities. The previous standard – a uniform prior – has unphysical features,

such as sharp cutoffs without explicit justification. By developing and demonstrating

non-uniform priors, a more faithful representation of physical priors can be used and

design points can be placed in regions with higher prior probability.

A Bayesian modeling workflow was also introduced and implemented throughout

this work. This formalizes the process of model development, comparison, and criti-

cism. It was shown with a pedagogical, but nonetheless physical, example – the sim-

ple pendulum. In this example, adapted from [1], a common piece of introductory lab-

oratory guidance was investigated using the tools of Bayesian model comparison. It

was found that the guidance currently standard in laboratories is overly-constraining

in the absence of relatively precise timing.

The self-consistency of IP-Glasma had not been established before Ch. 5, which

demonstrated the total covariance of the strong coupling gs with the multiplier be-

tween the color charge density profile and the saturation scale, µQs . Once this total

covariance was broken by fixing the strong coupling to a value commensurate with

the generated simulations, a hybrid model with an IP-Glasma initial state was able

to recover the input parameters of IP-Glasma. This step demonstrated that the sen-

sitivity of chosen final-state hadronic observables to the pre-equilibrium phase was

sufficient to reliably extract accurate information. The self-consistency of the subse-

quent phases had been demonstrated in other studies, but this demonstration served

to show that IP-Glasma was well-suited for a large-scale statistical study.

The final study in this thesis, Ch. 6, simultaneously varied physical parameters of

the hybrid model in the pre-equilibrium and hydrodynamic phases. The ranges over

which these parameters were varied are given in Tab. 6.1 and the maximum a poste-

riori estimates for their values are given in Tab. 6.2. It implemented transfer learning

for the first time in heavy-ion collisions and used Bayesian model comparison and

Bayesian model averaging to estimate the most likely true values of the physical

quantities considered. Of particular focus were the the specific shear and bulk vis-

cosity of strongly-interacting matter, the understanding of which are a long-standing
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goal of the field. By using multiple viscous correction models, an important source of

otherwise-unquantified theoretical uncertainty was studied for only the second time

in heavy-ion collisions and was found to have less impact than in previous studies.

The temperature dependence of the specific shear viscosity remains indeterminate,

but is substantially constrained in the high-temperature/early-time regime of the col-

lision. This is the result of much reduced parametric flexibility in the initial state and

in the inclusion of microscopic physics in the pre-equilibrium dynamics. The specific

bulk viscosity ζ/s was found to be large and peaked during the hydrodynamic phase

and is strongly inconsistent with zero.

The proportionality between the color charge density and the saturation scale was

successfully constrained and found to be only weakly sensitive to the impact of differ-

ent viscous corrections. To my knowledge, this is the first such systematic constraint

derived for a Color Glass Condensate Model. The switching time between the pre-

equilibrium stage and hydrodynamics was also well-constrained and was found to

be incompatible with a long pre-equilibrium evolution. In fact, pre-equilibrium evo-

lution longer than 0.6 fm was strongly disfavored, in contrast to many studies with

a freestreaming pre-equilibrium stage which sometimes evolve for up to 1.5 fm. This

short time to the onset of hydrodynamics is the first Bayesian study, to my knowl-

edge, to yield a constraint consistent with the theoretical expectations of approxi-

mately 1/Qs. This is another advantage of using a physically-inspired model with

microscopic physics: with realistic hybrid model components, realistic constraints

are derived. It is my hope that with future rigorous study and inclusion of more

discriminating observables, these constraints can be improved yet further.

The particlization temperature was also well-constrained by the hybrid model for

both viscous correction models. Excitingly, these constraints are consistent with the

latest lattice QCD estimates of the crossover in the QCD phase diagram. Details of

viscous particlization models were investigated, but chemical freezeout remains an

exciting avenue for future research not included in this thesis. Nonetheless, the con-

straint on particlization temperature’s consistent identification of the change of the

degrees of freedom from the quark gluon plasma to a hadron gas is another success

of this work.
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Calculation of observables not used in the Bayesian model-to-data comparison were

also shown, demonstrating the striking predictive power of the model in both non-

linear response coefficients and in pT -differential quantities. Comparisons are shown

with both constant and temperature-dependent η/s, revealing little systematic prefer-

ence for one over the other in either postdictions or predictions. Similarly, Grad and

Chapman-Enskog viscous corrections are investigated and no significant preference

is observed.

A true prediction for ρ(v22, [pT ]) was shown for
√
sNN = 2.76 TeV and compared to

data at 5.02 TeV in Fig. 6.38. The maximum a posteriori predictions are consistent with

the higher-collision-energy data and with its centrality dependence, again a first to

my knowledge. This suggests that the most likely outcome of such a measurement is

that there is little
√
sNN dependence in this observable and that a hybrid model with

an IP-Glasma pre-equilibrium stage is able to successfully describe both underlying

quantities as well as their correlation.

The hybrid model is – of course – incomplete, but useful. By systematically compar-

ing the model to data while including sources of uncertainty, it is possible to guide

theoretical effort on a quantitative foundation. For example, a tension between multi-

plicity and transverse energy first identified in parametric studies remains in this one,

pointing to a need for increased study in the chemical construction of the equation of

state. The models considered in this thesis are also wholly (2+1)-dimensional. (3+1)-

dimensional studies are currently prohibitively computationally expensive, but re-

main a rich avenue for the study of both longitudinal dynamics and potential further

constraint of the transport coefficients of strongly-interacting matter. A final limita-

tion is that only one collision system was considered, Pb-Pb collisions at
√
sNN = 2.76

TeV. Other studies have found comparatively little additional benefit from including

multiple collision systems, but with the increased constraint demonstrated by this

study it is plausible that with multiple systems, the temperature dependence – or

lack thereof – of the specific shear viscosity could be determined.
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outlook

The future of Bayesian techniques in physics is bright, with the potential for applica-

tion ranging from the gamut from introductory physics laboratory (Ch. 3.6) through

to heavy-ion collisions. I briefly outline a few avenues for contribution to this bur-

geoning sub-discipline in the hope that it proves useful to future researchers.

First, recent studies are increasingly expending ever-greater computational resources

to drive down statistical uncertainty from Monte Carlo models and thus better con-

strain the properties of strongly-interacting matter. This must be balanced with in-

creased efforts for uncertainty quantification. An arbitrarily precise but potentially

inaccurate result is of no scientific value. The choice of observables must be moti-

vated by a physical understanding of what must be learned and care must be taken

to ensure that the model is best suited to the data at hand. For example, care must

be taken to ensure that the model is compared to data in the realm of its applica-

bility; attempting to describe a regime in which jet effects become prominent with a

purely hydrodynamic model will not produce useful results. The inclusion of more

new observables must be guided by what can be learned by the comparison.

Another method of reducing expenditures is by developing and employing novel

surrogate modeling strategies, such as the transfer learning employed in this thesis.

By choosing an intentionally weakly-informative prior for the overall normalization,

transfer learning and multifidelity emulation can be exploited to extend this study

to other collision energies and systems. It is my hope and expectation that this will

improve the understanding of the material produced in heavy-ion collisions and that

it sheds further light on the still-indeterminate temperature dependence of η/s.

A still-unquantified source of theoretical uncertainty is the onset of hydrodynamics.

KøMPøST [207, 208] seeks to model pre-equilibrium dynamics with non-equilibrium

linear response to more smoothly approach hydrodynamics while other approaches

seek to remove the constraint that the transition between the pre-equilibrium and

hydrodynamic phases is isochronous throughout the medium [209–214]. These ap-

proaches have not yet been included in a Bayesian study, but have potential to im-

prove this transition and would be of great value.
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A final important avenue for progress is in dialogue with experimental collabora-

tions. Bayesian studies with efficient surrogate models can be used to determine the

potential constraint yielded by new observables or better measurement of existing ob-

servables by artificially reducing errors to determine optimal targets for experimental

effort. The correlation between experimental uncertainties is still rarely reported and

better elucidation of the shape of these uncertainties would be of great value. This the-

sis took the maximum entropy approach and assumed the uncertainties were Gaus-

sian and uncorrelated, but this is unlikely to be the case of systematic errors that

undergo rigorous experimental study. More information about the correlation and

distribution of these uncertainties will yield further information via priors placed on

the covariance matrix.

final remarks

The novel results and methodological improvements presented in this thesis repre-

sent the state-of-the-art of prior elicitation, computer experiment design, parameter

estimation, surrogate modeling with transfer learning, and uncertainty quantification

in heavy ion collisions. The Bayes model averaged transport coefficients are the best

estimate of the properties of hydrodynamic strongly-interacting matter. By establish-

ing a clear workflow for Bayesian inference, the progress made in this thesis can

clearly inform future study design and progress in understanding the most perfect

fluid. By further developing the statistical tools and incorporating the leading physi-

cal models, this thesis was able to advance the knowledge of the strongly-interacting

matter produced in heavy ion collisions.

It is astounding that strongly-interacting matter is produced on Earth. When it was

first produced in colliders, it was likely the first time that hot and dense QCD matter

was produced in the aftermath of the Big Bang. The inference of the properties of

this material is no less stunning than if, with only the rusted remains of the Crash

at Crush, a dedicated global effort was able to build a working steam locomotive.

The theoretical program will continue, incorporate additional physics, and the under-

standing of hot QCD matter will improve. This thesis is another tie in building that

railroad.
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A
W O R K F L O W VA L I D AT I O N

In order to do a systematic comparison of full events from TRENTo vs. IP-Glasma, it

is necessary to actually produce full TRENTo hybrid model events. The work of the

JETSCAPE Collaboration’s Simulations and Distributed Computing (SIMS) working

group (of which I am a member) serves as the reference model and calculation. The

goal is to reproduce the Grad MAP results, within the limits of Monte Carlo simu-

lations, in order to demonstrate a validated model that can then be used compare

other final-state observables. The parametrizations and modeling choices of [45] are

reproduced exactly. Brief comparisons are shown here to confirm that the workflow

was validated before the pre-equilibrium model was replaced with IP-Glasma.

a.1 equations of state

In Fig. A.1, it is apparent that the EoS used in [28] differs by a maximum of 2% with

that used by JETSCAPE. With large bulk viscous corrections, this can introduced

unquantified differences. As a result, software1 was adapted to properly reproduce

equations of state with the HotQCD result [94] matched to both UrQMD and SMASH

particle lists at the crossover. The results produced by this software are shown in

Fig. A.1, where it can be explicitly seen the the equations of state are identical.

a.2 final state comparison

The results of several hundred events were used to perform a statistically-noisy vali-

dation to ensure that model predictions with a hybrid workflow matching that of [45]

was able to reproduce the results of that work. Single-event tests were performed, but

1 available at https://github.com/mrhheffernan/eos_maker
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Figure A.1: Pressure to energy density ratio from the SMASH equation of state produced by

mrhheffernan/eos_maker compared to that of SIMS and the EoS used by [28],

labeled UrQMD.

are omitted here for conciseness. These tests found reproduction of physical quanti-

ties within statistical uncertainties.

In Fig. A.2, the result is in statistical agreement with that of SIMS for the majority

of points and differences are consistent with expectations. The ratio between the new

workflow and SIMS show that these results are consistent within statistical error. This

confirms the reproduction of the geometry.

The results for 〈pT 〉 are sufficiently close that plotting the SIMS calculation and my

result on the same plot is nearly unproductive. The ratio of all calculations to those

of JETSCAPE-SIMS is shown in Fig. A.3. The maximal difference is ∼2%, which is

a feat in comparisons of statistical codes. For kaons and pions, the ratio is largely

statistically consistent with 1 and does not differ much more than 0.5% with the

reference calculation.

In Fig. A.4, the π0 spectra from a fixed seed test is shown. In this case, the entire

evolution prior to the freezeout (or particlization) surface is identical due to the fixing

of the seed in TRENTo (see Fig. A.5 for a close-up of the energy density comparison

between particlization surfaces). To ensure that the final read-in and Cooper-Frye
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Figure A.2: New workflow vn{2} compared to that of JETSCAPE-SIMS and data measured

by ALICE, ratios between the new workflow and SIMS are shown in the bottom

panel.

Figure A.3: Average transverse momentum compared to the work of JETSCAPE-SIMS. Note

that this scale has a maximum difference less than +1/-2%.

sampling is identical, 57 samplings of the surface are taken and individual particle

spectra can be determined. As can be seen, the sampled spectra are identical within

statistical fluctuations with shaded bars denoting standard error in each transverse

momentum bin.
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Figure A.4: π0 spectra in a single event fixed seed comparison between the JETSCAPE SIMS

workflow and the workflow used in this thesis.

Figure A.5: Absolute difference in energy density in a single event fixed seed comparison

between the JETSCAPE SIMS workflow and the workflow used in this thesis,

albeit with a TRENTo + freestreaming initial state. The difference is large on edges

due to numerical effects from interpolation to make this comparison. In the body

of the comparison, the differences are substantially less than 0.1 MeV.
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The workflow successfully reproduces the predictions of JETSCAPE-SIMS up to dif-

ferences consistent with statistical fluctuations and reproduction of large scale Monte

Carlo simulations. This successfully validates the model and ensures it can be used

in comparisons of other observables not reported by that analysis. Additional exten-

sive comparisons were made, but are not shown here for sake of brevity and clarity

of discussion. In each comparison made, the differences between available calcula-

tions from [45] and those of the TRENTo workflow underconsideration here were

immaterial. This comparison ensures that differences in calculations are isolated to

the models in question and are not impacted by details such as the equation of state,

specifics of the particlization or hadronic cascade, or parametrization. It was also use-

ful in developing a workflow as it allowed for quick identification of software issues

at the boundary between stages, which were readily resolved. The validated model is

ready for comparison to other model calculations (see Ch. 4).





O P E N S O U R C E P R O G R A M M I N G L I B R A R I E S

The computational models used in this thesis are research works and have been cited

appropriately in the text. This work has further utilized a number of open-source

programming libraries for the Python language. These are listed alphabetically below:

• Emukit [191]

• GPy [192]

• h5py [215]

• HSLuv [216]

• matplotlib [217]

• NumPy [218]

• pandas [219, 220]

• ptemcee [128]

• SALib [196, 197]

• scikit-learn [221]

• SciPy [222]

• seaborn [223]
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