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ABSTRACT

The classical approach to shape from shading problems is to find a numerical solution of the
image irradiance partial differential equation. It is usually assumed that the parameters of
this equation (the light source direction and surface albedo) can be estimated in advance.
For images which contain shadows and occluding contours, this decoupling of problems is
artificial and the classical approach fails. We develop a new approach to solving these equa-
tions using the image geometric structures instead of the image photometric structure. Our
approach is based on modern differential geometry, and solves for light source and surface
shape changes concurrently, Local scene elements (scenels) are estimated from the shading
flow field and the tangent field, and smoothness, material, and light source compatibility
conditions resolve them into consistent scene descriptions. Shadows and related difficulties

for the classical approach are discussed.



RESUME

L’approche classique du probleme de l'inférence des formes & partir de la variation de
Pintensité lumineuse ou en anglais “Shape from Shading” consiste A trouver une solution
numérique aux équations différentielles partielles qui décrivent la réflexion de la lumiére sur
une surface mate. L’estimation des paramétres de ces équations (la direction de la source
de lumigre et le coefficient de réflexion de la surface} est toujours présumée préalablement
résolue. En général, ce découplage du probléme de I'inférence de forme et de I'estimation
des pa,ra,métres est artificiel et I’approche classique donne des résultats erronés. Nous
développons une nouvelle approche pour résoudre ces équations en se servant de structures
géométriques extraites de l'image au liev de la structure photométrique. Notre approche
est fondée sur la géométrie différentielle moderne, et résout simultanément les changements
d’illumination et de forme. Des descriptions locales de la scéne sont estimées & partir de
ces structures géométriques de 'image. Des conditions de compatibilité liées & la continuité
des surfaces et des conditions d’éclairage permettent par la suite d’identifier une description

cohérente. Les cas-problémes de I’approche classique sont étudiés,
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Part 1

ON THE SHAPE FROM SHADING PROBLEM



CHAPTER 1

Introduction

In this thesis, we address a well known problem in computer vision: shape from shading.
The problem consists of recovering the shape of surfaces of a three-dimensional scene from
a single static two-dimensional intensity image. It is one of the classical problems, and it
has already received a great deal of attention.

Previous research on shape from shading concentrated on images such as Fig. 1.1, i.e.,
images of a smooth surface of constant albedo illuminated by a single distant light source
under Lambert’s reflectance model. For such images, it is tempting to decouple the sur-

face estimation problem from the light source estimation problem and the surface albedo

estimation problem.

FIGURE 1.1. This image provides an example in which the scene is composed of a
single smooth surface of constant albedo which is illuminated from a single distant
point source,
However, this is a major drawback, because such a decoupling of problems yields al-

gorithms whose domain of application is very limited. To illustrate, such algorithms could
not deal with:



1. INTRODUCTION

e images of scenes with shadows, i.e. parts of the scene that are illuminated differently;
e images of scenes in which surfaces have different albedos (or reflectance coefficients),
i.e. the scene is not entirely the same colour;
e images of scenes with surface geometric discontinuities, i.e. in which the scene
contains multiple surfaces either abutting or not.
In fact, it is quite common to encounter such images, and it is quite rare to encounter the
classical ones. Apart from contrived settings such as those found in a research laboratory,
we seldom come across uniformly coloured, uniformly illuminated scenes consisting of a

single smooth surface.

F1GURE 1.2. This image provides an example in which the scene is not illuminated
from a single point source at infinity. There are singularities {maximally bright
points) on the front of the nose and on the back of the neck. The classical shape
from shading setting which allows for a unique light source direction, thus infers
that the nose and the back of the neck are facing the same direction — an obvious
fault.

The classical assumptions encounter real difficulties when evaluated against natural
images. To illustrate the nature of one of these difficulties, consider the image in Fig. 1.2.
One of the most common assumptions in shape from shading is that the illumination is
constant over the entire scene, which generally implies that there is only one effective light
source. This is not the case for the scene in our figure. Notice that the front and the back

of the head are the brightest areas in the image. The classical assumptions of 2 unique light

3



1. INTRODUCTION

source and a Lambertian model of reflectance imply that the brightest areas are facing the
light source. For this example, it would mean that both the front and the back of the head

are facing the same direction. This is an obvious error.

FiIGURE 1.3, This image provides another example in which the scene is illuminated

from multiple distant point sources. ===

The scene does not need to be very complex before such difficulties arise. Figure 1.3
shows a very simple example that captures the essence of the difficulty. The viewer can
only see half of the sphere’s surface from a given viewpoint. Similarly, any given point light
source can only illuminate half of the sphere’s surface. Unless the sphere, the viewer and
the light source are aligned, some visible part of the sphere will not be illuminated by the
given light source.

Although the sphere seems like an extremely simple example, this discussion illustrates
how it is sufficiently complex to demonstrate many-subtleties in shape from shading. We
shall use the sphere example throughout this thesis.

Figure 1.4 shows an example of an image of a scene in which shadows are observed. In
the image, the shadow is simply a black zone. 1t is nol possible to infer the shape of the
surface in that zone. Unless this fact is acknowledged, the algorithm will yield erronecous

information.
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Fi1GURE 1.4, This image provides another example in which the scene is illuminated
from a single distant point source. Here, there are parts of the surface which are
vigible but are in a shadow.

1. Overview

In this thesis, we define a generalized shape from shading problem which takes dis-
continuities into account — lighting discontinuities, reflectance discontinuities, and surface
discontinuities, The added complexity leads to a new approach that relies on geometric
structures inferred from the image, rather than on the image itself. This observation marks
a definite break with previous work based on the photometric properties of the image.

Our shape inference process comprises three steps:

(i) The first step is to extract local geometrical structures from the image. We rely on

the tangent field (information about contours) and the shading flow field (informa-
tion about smooth scenes) as input for the shape inference (Fig. 1.5).

(ii} The second step is to find local scene models that can account for the local geometric
structures within the image (Fig. 1.6). Once this is done, at any given pixel location,
there exist several candidate local scene models (Fig. 1.7).

(iii) We then consider how the different models at different locations fit together (Fig. 1.8),
and study local constraints to find consistent surfaces. Such local constraints seek
pairs of local scene models that can describe the same smooth surface (Fig. 1.9).
The third and last step is thus to find among these possible local scene models,-

global structures for which the local scene models are locally consistent.
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INTRODUCTION

Ficurg 1.5. The shading flow field is depicted by thin arrows and the tangent field,
by thick arrows. These geometrical structures correspond to the image shown in

Fig. 1.3.

A)

(x,¥)

FiGURE 1.6. The local scene model {b) has to account for the local image geometric

structures (a).

o/
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F1GURE 1.7. For a given image position, a collection of possible scene models can
account for the observed local image geometric structures.

FiGUuRE 1.8. A local scene model also has to be consistent with the neighbouring
local scene model.
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the osculating
paraboloid

FIGURE 1.9. The lighting and surface continuity properties introduce constraints
on the local scene models.

2. Claims of Originality

In this thesis, we define a new generalized shape from shading problem, and study its
solution.

e We show that, to infer shape from shading under the condition that albedo and
lighting are variable, photometric structures of the image cannot be relied upon and
we thus exploit the geometric structures of the images — the shading flow field and

the image curves.

e We have built a new local representation of the surface orientation and shape for
which continuous transformations of the surface are mapped to continuous curves
in a five-dimensional space. This representation, along with an illumination model,
allows us to build a local scene model which is rich enough to treat the generalized

shape from shading problem.

e We have established the relationship between local descriptors of the scene and local
geometric properties of the imagesi.e. the shading flow field and the edge map. Local

differential properties of the image are used since the image irradiance values are not

8
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1. INTRODUCTION

sufficient to resolve the ambiguity created by the possibility of multiple illumination

sources and albedos.

In this thesis, we propose a new computational framework to infer the shape of the
snrfaces of these more complicated scenes. In the process of developing this framework,
several results are worth mentioning as they are either an integrai part of the computational

framework or serve to justify choices.

e We have established a compatibility relationship between neighbouring local scene
models based on differential geometric properties of surfaces and continuity proper-

ties of light sources.

e We have defined the shading flow field as the dual of the gradient field, and present

a new approach to extract these flow fields from an intensity image.

e We have studied topological and geometrical properties of the shading flow field and

of the scenel bundle in order to provide a theoretical rationale for our framework.

¢ Since we consider shape from shading as an entirely geometrically driven process (we
consider that shape from shading has to rely on shading flows instead of image irra-
diance intensities), we provide psychophysical evidence in support of the idea that
the primate brain does not process scalar (image) and vectc:;r properties (geometric

structures) in the same way.

o We show the relationship between different types of discontinuities in the image and

different types of discontinuities in the scene as an asset to interpret the image.

e We also present a computer graphics implementation of the radiosity equation that
takes interaction with the ambient media into account. The novelty here lies on the

massively parallel nature of the implementation.



CHAPTER 2

Overview of the Vision Problem

This chapter only contains background material intended for a naive reader. It is meant to
provide an overview of the vision problem and to show where the topic of this thesis fits

into “the” big picture. Anyone familiar with this research field should move on to Chapt. 3.

1. The General Vision Problem

The goal of a vision system is to provide useful information about the environment
from photosensitive devices. Evolution provided animals with such visual systems for their
specific needs. There is a wide range of different visual systems which cater to a wide
range of different behaviours. Some are very primitive, such as the barnacle’s. It only '
contains a few photosensitive cells which cause it to retreat in its shell when a sudden
illumination decrease occurs. Some visual systems are very developed, such as the human
visual system. It comprises: two eyes facing in the same direction, thus allowing stercopsis;
different photo-receptors, allowing both colour vision and low intensity vision; a [ovea,
allowing greater resolution where attention is needed; and roughly a third of the brain’s
cells, allowing for a lot of processing power. Between these extremes, we can note that
some animals cannot discriminate colors (e.g. owl monkeys), some animals have eyes on
opposite sides of the head giving them a large field of view but little or no stereopsis (c.g.
pigeons). Some animals have even developed special purpose visual devices such as the fiy’s
ultra-violet sensors, presumably for orientation.

Since vision is often the most important source of information for humans, it is not sur-
prising that we want to give that faculty to machines. Automation of many tasks in industry
requires information about the environment in which the machine works. An ambulatory

robot must sense its environment to be autonomous, especially when the environment is
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FicUrE 2.10. This image provides an example of the data that the machine would
acquire from a sensor. This image is composed of 471 x 358 pixels with the intensity
of each pixel coded with one byte.

hazardous. Biomedical imaging and remote sensing creates such a huge quantity of data
that the automation of the interprefation process also becomes desirable.
The problem setting can be described generally as follows. Light interacts.with:the
environment and is captured by sensors. Three-dimensional structures in the environment
project onto two-dimensional structures in the image. The problem of vision is to infer
useful information about the environment from the output of these sensors. Somehow,
the two-dimensional image structures must support inferences about the three-dimensional
structures in the environment. Because this inference process is under-determined, some
prior knowledge of the image formation process and of the interaction between the light

and the environment is needed to interpret the data.

1.1. Data and Knowledge. To solve the vision problem, there are two types of
information: data and knowledge.

Data is the information provided by the sensors. For humans, the sensors are the eyes.
For machines, the sensors are usually cameras. The information is usually represented
by images or two-dimensional arrays of numbers. The image represents the activity of
photosensitive cells in the retina or the 'i'espongé of CCD-elements of the camera — scalar
quantities. It also provides a neighbourhood structure that is related to the neighbouring

relationship Bt‘iﬁt‘:he incoming light rays.

11
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2. OVERVIEW OF THE VisloN PROBLEM

Knowledge is the information about the environment that the system has acquired prior
to data acquisition. This knowledge can comprise detailed descriptions of varivus objects
of interest — e.g. the components of an automated production chain. It can include details
of the relationship between objects and their context (i.e., that telephones are often found
on tables) and so on.

It also pfovides the tools needed to begin an understanding of image intensities. This
includes knowledge of physics. For example:

e spatially, the environment is in a three-dimensional space;
e light travels in straight lines in the void;
e light interacts with matter... 7
Knowledge can also be specific to the vision system used. For example, the following
knowledge base could describe a particular vision system:
e the vision system incorporates two sensors;
e each sensor comprises an optical system and a photosensitive surface;
¢ the properties of the optics in front of the photosensitive surfaces provide the infor-
mation about how the various rays coming from different péints in the scene will
project onto the photosensitive surfaces;
o these surfaces are composed of photosensitive cells arranged in some irregular foveated
tessellation;
o the image intensity values correspond to the response of the respective cells;
¢ the response of each cell depends on its particular photometric”a,nd spectral response
functions...
Knowledge can also be depend on the expected scenery. The algorithm presented in Chapt. 3
is based on a set of assumptions. Some of these assumptions are:

¢ the visible surface is continuous;

e the visible surface has a uniform matte colour, and is uniformly illuminated;

o all visible surface patches are illuminated from the same direction, and this direction

is known;

e the brightest spot in the shading corresponds to a surface patch "t-ilirecl;ly facing the

light source...

When this knowledge is rich but specific, the vision problem can be easier to solve, but
the solution may have only a limited interest. On the other hand, when this knowledge is
general but limited, the solution to the vision problem will be more widely applicable, but
it may also be much more difficult to reach.

12



2. OVERVIEW OF THE VISION PROBLEM

. While we recognize that stereo-vision is a powerful cue for depth perception, we ask
the question: what happens when we close one eye?

In this thesis, we will consider a vision system with only a single CCD-camera and we
will only consider static images!. Since humans are able to extract a lot of information from
such -z‘a"n image, we will explore the ways that a machine could do it. We will assume that
the photosensitive surface of our sensor is composed of regular square cells all having the
same response function. We will also assume that the image is obtained by an orthographic
projection. Such an image corresponds to the set of parallel incoming rays from the scene

that are perpendicular to the image plane.

1.2. Representations of the Image and the Scene. The solution of the vision
problem can take various forms. We have said that the problem of vision is to infer some
useful information about the environment from the output of the sensors. The notion
of usefulness depends on the task considered. A machine whose task is to turn on the
artificial light on a highway at dusk will find the simplest representation useful, whereas
an autonomous vehicle on Mars will need a much richer description. There is in fact a
hierarchy of such representations of the useful information implicit in a scene.
The lowest representation of the scene information is the intensity image. It is provided
directly by the sensors. The intensity image gives us information on the amount of light that
emanates from given directions. It can also contain some information about the spectral
composition of the light.
Since we are considering only single static images, the next representation could be the
local structures that can be found in the intensity image. There are two types of features
that have been identified based on the dimensionality of their image support [136].
e Type 1. Image curves: edges and lines. These features are locally characterized by
a contrast, an orientation and a curvature. |

e TypeIl. Vector and direction fields: texture flow fields and shading flow fields. These
features are locally characterized by an orientation and higher order descriptors. For
texture flow fields, these higher order descriptors could be two curvatures [66]: the
curvature of the flow field itself and the curvature of its dual. For shading flow

fields, these higher order descriptors could also include the curl of the vector field,

'We briefly mention the works of other researchers interested in shading analysis but on different types of
vision systems. Some have explored the possibilities of combining stereopsis and shading {10, 18,61, 129], motion and
shading {2, 108, atnd multiple images and shading [82,130], This list is not meant to be exhaustive but it should
provide some pointers to anyone who wishes to pursue these directions,

o 13



2. OVERVIEW OF THE VisION PROBLEM

its deformation and the axis of deformation. Shading flow fields are studied in
Chapt. 4 of this thesis. _

The next representation could be a local description of the scene. The scene is described
with respect to the image coordinate system, and might comprise two models:

e A local surface model. It has two components:

— first, a geometric component, described by a position and the surface patch’s
orientation and shape;

— second, an appearance component, described by a colour (intensity, hue, sat-
uration), a visual texture pattern, and perhaps a reflectivity function.

o A local lighting model. The lighting model is usually composed of the intensity and
direction of the virtual illuminant seen by the surface patch. A richer model could
include the incoming intensity of the rays from every direction.

The next representation might be a global description. The objects in the scene are
segmented and described globally in term of outlines (snakes), surfaces (thin sheets), or
volumetric primitives (spheres, cylinders, supér-quadrics, etc.).

Finally, the highest representation could be the identity of objects in the scene, aloug
with a description of how they relate to each other. This level is comparable to the descrip-

tion of a scene that a person might make in order to communicate with another person.

2. Elements of the Solution

The existence of a solution to the vision problem is provided by biology since evolution
has succeeded in implementing one for human needs. From an engineering point of view,
it can be advantageous to examine such working examples. Psychologists and neurophys-
iologists have been studying the visual system of different animals for a long time. Hence
throughout our attempts to find a solution to the vision problem, we were inspired by some
of their findings.

In the next section, we will mention one early work in this field — Helmholz’s distinction
between low-level and high-level vision. Then, in the following section, we will look at the

approaches that were used in the attempt to solve the vision problem.

2.1. Low-level and High-level Vision. Heinrich von Helmholtz (1821 — 1894) [125]
distinguished two levels of visual processing: the low-level and the high-level. These are
sometimes also referred to as early processing and later processing. Early processing refers
to what is going on from the retina to the cortex, whereas later processing refers to what is

going on in the later stages of cortical processing.

14



2. OVERVIEW OF THE VISION PROBLEM

DEFINITION 2.1. Low-level vision is dominated by physics and physical models of the en-
vironment. The problem is one of finding general constraints on special-purpose hardware.
Thus, if something is understood about structure of the image or the scene, then something

can be inferred about functions in the visual system [137].

DEFINITION 2.2. High-level vision is dominated by reasoning. The problem is one of finding
specific constraints on general-purpose hardware, Thus, if something is understood about
funetion, then something can be hypothesized about structures in the scene or in the im-
age [137].

When Roberts [115] described what is probably the first artificial vision system, he too
decomposed it into two stages: a low-level stage in which image'curves were obtained and
a high-level stage in which the image curves were matched against a model knowledge-base
of polyhedra — the blocks world. Even though Roberts severely restricted the world of
possible objects, matching remained a difficult problem. _

As we attempt to create artificial vision systems to deal with a much richer world, it is
necessary to infer more intermediate representations before matching the low-level results
with a model base. The classical problem of “shape from shading”, which we will discuss in
Chapt. 3, is an example of an attempt to enrich the representation at an early processing
stage. It provides a clear example of how physics and physical models of the environment

can be used as general constraints to solve a low-level vision problem.

2.2. Data-driven and Knowledge-based Approaches. We said earlier that there
are two types of information useful for solving the vision problem: data and knowledge. Two
approaches have been attempted, each basically driven by one type of information.

The data-driven approach builds on the data. It infers more structured representa-
tions from the data. It thus increases the database. Typically, one incorporates general
constraints following the principle of least commitment that Marr imported to computer
vision [93]. Nevertheless, these constraints are assumptions that will require careful analysis
before they can be accepted as a fact consistent within the resulting representations.

The knowledge-based approach seeks answers to questions. Detailed hypotheses are
inferred from the knowledge, and conclusions are confirmed by the'database. One strategy
consists in orienting the search through the model base by using contextual information.
Ultimately, the approach seeks to match a model with the data or the representations

inferred from it.
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2. OVERVIEW OF THE VIsiON PROBLEM

These two approaches have the potential to complement each other. As we just said,
the knowledge-based approach seeks to match models to the data. This matching is a
very difficult step when the model base is rich and the data limited to intensity images.
For some applications, it is possible to limit the model base enough to succeed in solving a
particular problem (see the pattern recognition literature). Unfortunately, in most potential
applications, it is not that simple. An alternative is to enrich the data with more structured
representations. This is precisely what a data-driven approach provides. Each structured
representation comes with a set of assumptions. Whereas these assumptions should hold
most of the time for the lower levels of a structured representation, at the higher levels, the
assumptions can be more context dependent and hence, less reliable. The problem becomes
one of assessing the reliability of the results. This is the type of problem that is well-suited
for a knowledge-based approach.

In this thesis, we scrutinize the “shape from shading” problem. It is a problem that is
now generally considered to be an early vision problem. It is dominated by the physics of
the interaction of light with matter and by physical models of the reflecting surface, General
constraints on the interaction of light with matter and on the reflecting surface are used to
guide the inference of a local representation of the surface shape.

In Chapt. 3 and in Parts2 and 3, different data-driven approaches to deal with the
shape from shading problem are presented. These approaches differ significantly in their
underlying assumptions and thus lead to very different algorithms. It is our belief that the
new approach, based on shading flow fields and scenel bundles {(described in Parts 2 and 3)

is a significant advance over the classical formulation {presented next, for comparison and

introduction).
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CHAPTER 3

The Classical Shape from Shading Problem

Shape from shading is a classical problem in computer vision research. It is usually asso-
ciated with a particular setting: a single distant point light source uniformly illuminates a
smooth surface of constant albedo according to Lambert’s reflection law. Throughout this
thesis, we refer to this setting as classical shape from shading.

In this chapter, a brief history of the shape from shading problem is presented. The
classical shape from shading problem is described, together with the various attempts to
solve it. The classical setting introduces constraints that allow fast solutions to the shape
from shading problem. But we show that it also severely limits the domain of application.

This chapter is intended to provide the background for our new approach,

1. Brief History

The quest to determine the shape of the surface features in the maria of the moon [26,
114] is at the origin of recent work on shading analysis [50,54]. In those days, the only
available images of the moon were obtained from telescopes on earth. Since the moon is
always more or less presenting the same face to earth observers, motion or stereo vision
algorithms could not provide precise estimates of its topography. Even if images were taken
from distant points on the earth, these algorithms could not provide precise estimates of
features on the moon — the ratio of the radius of the earth to the earth-moon distance is
too small. Thus, other cues received more attention. Photometric stereo algorithms [61,
129,130] rely on images of a scene taken under identical viewing conditions but different
lighting conditions. Many shape from shading algorithms [51] rely on a single image but

assume that the reflectance function is known.



3. THE CLASSICAL SHAPE 'ROM SHADING PROBLEM

The shape from shading problem is classical in vision; Ernst Mach (1866) was perhaps
the first to establish a formal relationship between image and scene domains, and to capture
their inter-relationships in a partial differential equation [91,112].

Consider a sufficiently smooth surface’ characterized by a depth map z(z,y) where
(z,y) are the image coordinates. Let

- (&)
(pg) = 9z’ 3y

denote the gradient of the surface, so that the surface normal field

N(z,y) = (¢, —1)

VP F@E+1

For a matte surface (modelled by Lambert’s reflectance function) which is illuminated

by a distant point light source (e.g. the sun} from direction L, the image irradiance E(z,y)
can be modelled as

(3.1) E(z,y) = N(z,9) L .

Mach assumed that the surface could be obtained by integrating Eq. 3.1. It took quite a
while before someone picked up that challenging problem.

Horn set the modern approach by focusing on the solution of these partial differential
equations by classical and numerical techniques [51, 52,56, 62). In his early attempts to solve

the shape from shading problem, Horn [51] introduced the image illumination equation:

E(ﬂhy) = F(:c,y,z,p,q).

This equation is often referred to as the image irradiance equation (see for example [15]).
This general formulation states that the image irradiance for a given position (z,y) depends
on the position in space (z,y, z) of the corresponding surface point and on the surface
gradient (p,q). The explicit depen(iency on surface position allows for a dependency on
material properties as well. Furthermore, it allows the modelling of a ncarby light source
for which the distance between the source and the surface patch is crucial.

Since the general form of the image irradiance 2quation did not yield practical numerical

solutions, the dependence of F(z,¥, z,p, ¢) on position was dropped {53] thereby reducing
the equation to the more simple form:

E(z,y) = F(pq).
1By smooth here, we mean the function |s differentiable as many times as needed.
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3. TuHe CLASSICAL SHAPE FROM SHADING PROBLEM

The basic assumption here is that all variations in the image irradiance are due to variations
in the surface gradient, thus to variations in surface orientation.

Horn’s early atterapts to solve this problem yielded promising results and others have
built upon it. In the following sections, we provide the classical definition of the problem

and then we discuss some of the solutions proposed.

2. Classical Definition of the Shape from Shading Problem

We take the classical setting in computer vision for shape from shading to be the
following: a point light source at infinity uniformly illuminates a smooth matte surface of

constant albedo whose image is formed by orthographic projection.

PROBLEM 3.1. CLASSICAL SHAPE FROM SHADING
Assuming that
(i) the scene has the same reflectivity everywhere;
(i) the scene is illuminated by a single distant point light source;
(iii} the scene is composed of a single smooth surface;
(iv) the surface is matte;
(v) the image is formed by orthographic projection.
Given
(i) the albedo p;
(i) the illumination A;
(it} the direction of the light source L;
(iv) the image irradiance E(z,y).
Recover

(1) the surface shape.

The matte surface is traditionally modeled with Lambert’s reflectance function [78] so

the image irradiance equation becomes
(3.2) I(z,y) = pAL - N(z,y)

where I(z,y) is the image intensity? at a point (z,y); p is the albedo of the surface, i.e.
the fraction of the shining light which is reflected; A is the illumination, i.e. the amount of

shining light; L is the light sonrce direction; and N(z,y) is the normal at the surface point

*The image irradiance E(z,y) is often replaced by the image intensity I{z,y). One assumes that the relation
between the image irradiance E{x,y) and the image intensity [(z,y) is linear. One further assumes that the highest
image intensity value corresponds to a surface facing the light source 50 that one can use the image intensity normalized
by the highest value, and take p and L being gi: an the unit value.
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3. THE CLASSICAL SHAPE FROM SHADING PROBLEM

corresponding to an image point (z,y). The physical model leading to this equation has
recently been reviewed by Nayar et al. [98].

{(x.y) _}:if

AL

Ny

FiGuRrE 3.11. A continuous surface, described locally by its orientation N, is illu-
minated from a direction L. The image of this scene is obtained by an orthographic
projection. We use a coordinate system in which the image plane defines the z-y
plane and depth is the distance from the image plane along the z axis. Two scalar
quantities are important for the understanding of matte reflection: the albedo p
and the illumination A,

Fundamental to the classical shape from shading problem is the following implicit basic

assumption:

o

AssumpTION 3.1 (HORN). Variations in image intensity are entirely due lo variations in

surface orientation.

Researchers followed two basic approaches in their attempts to solve the problem of
recovering shape from shading. The first approach assumes that the model is correct and
proceeds directly to compute the exact depth map z(z,y). The second approach assumes
that there are errors in the model and therefore introduces additional constraints to recover
shape.

Horn’s early attempts to solve this problem lie at the heart of the first approach.

He realized that along characteristic strips [41], the image irradiance equation could be

20



3. THE CLASSICAL SHAPE FROM SHADING PROBLEM

rewritten in terms of five ordinary differential equations [51,52]:

& _oF dy _OF 4 _ 9P OF
ds ~ Op ds ~ Og ds_pb‘p Y 3q

dp _ 0E  dg _ OF
ds ~ Oz ds 3y

where s is a parameter which varies with distance along a characteristic strip. When the

surface normal is known at a pixel (zg, o), then one can integrate the differential equations

to obtain a curve on the surface. In order to get an initial estimation of the normal, Horn

used the singular points. At the maxima of intensity, the normal vector N and the vector

pointing toward the light source L are equal.

Several authors studied the conditions under which these known points uniquely con-
strain the solution and showed that recovering shape from ﬁhading is not ajways ill-posed [15,
16,99, 100, 118]. Elegant solutions have since been recenﬂcpxy proposed [6,86,101]. Unfortu-
nately, the characteristic strip method remains numerically unst..blé.

The second approach is precisely concerned with issues such as numerical stability. The
susceptibilily to noise is at the root of the need for some additional constraint. There are
two main classes of algorithms: local and global algorithms.

Global algorithms, or variational approaches, were developed to extract estimates of
surface orientation with an additional assumption about surface shape — the surface is
smooth in some sense. The smoothness assumption is used to relate adjoining points [13].
It enables spatially isolated information about abselute surface orientation to be iteratively
propagated across the surface. Such iterative methods were implemented on a regular
grid, the integral surface being defined by either a C? function [14, 56,121] or 2 C? func-
tion [14,56,62,88]. Multi-grid implementations were also proposed [122,123] to alleviate
the computational burden.

The issue of integrability has also received attention [37,55,56] — integrability can
be enforced when both the surface height and the gradient of surface height function are
represented. It provides a powerful constraint on the surface function.

A class of local algorithms were also developed [31,68, 87, 106] at about the same time.
In order to extract estimates of surface orientation, again an assumption about surface
shape was made — the local surface curvature constrains the surface. This local curvature
assumption relates information about absolute surface orientation within a small image
neighbourhood. Whereas Frankot and Chellappa’s algorithm enforced integrability, in a

similar spirit, Ferrie and Lagarde [30] considered how to enforce curvature consistency.
/-"'-\\
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3. THE CLASSICAL SHAPE FROM SHADING PROBLEM

From their comparative study of shading techniques, they concluded that it stabilizes and
improves local estimates of shape from shading.
Other types of algorithms have also been considéi‘ed. Among others, we briefly mention
the existence of Pentland’s algorithm [107] using an assumption about surface reflectance.
It is clear that the “classical” shape from shading problem has received a lot of attention.
In the next section, we will examine the nature of the solution and how it behaves in

sitnations for which the basic model is not appropriate.

3. Analysis of a “Classical” Shape from Shading Algorithm

Recently, ways to obtain the solution of the “classical” shape from shading problem
were published [6,86,99-101,135]. It is reported that these algorithms provide solutions
that are reasonably good when the usual assumptions are met. We have implemented

Bichsel and Pentland’s algorithm [6] to illustrate the solution to the classical shape from
shading problem3.

“3.1. Overview of Bichsel and Pentland’s Algorithm. Bichsel and Pentland’s
(B&P’s) algorithm takes gray level images as input. The singular points of an image also
need to be identified, as they play a key role by introducing a three-fold ambiguity (locally
convex, concave, or saddle) to the solution. Since these points correspond to the points of
maximum brightness, Bichsel and Pentland assume that this identification task should be
straightforward [6].

B&P’s algorithm uses a “minimum downhill principle” to remove this ambiguily. The
downhill principle consists in passing surface information only to pixels which are more
distant from the light source. For the minimum downhill principle, one chooses among
different possible paths, the path that leads the least away from the light source. Bichsel
and Pentland claim that this “minimum downhill principle” guarantees the convergence of
their algorithm.

The solution of the shape from shading problem is a description of the shape of the scene
that generated the image. For this algorithm, the description consists of a depth map. It is
obtained by an iterative scheme in which the local surface patch depth is updated according

to the minimum downhill principle. ._-, -

3.2. Solution to the “Classical” Shape from Shading Problem. Figure 3.12(a)

shows a test image used to analyse B&P’s algorithm. The scene consists of a sphere in front

3The two key subroutines were copied directly from their conference paper. However, it was necessary to write
code for the input/output as well as the calls for these subroutines.
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3. THE CLASSICAL SHAPE FROM SHADING PROBLEM

of a plane, both matte surfaces. The scene is illuminated from a distant point which lies
directly on the line of sight, in mathematical terms: L = (0,0, 1). The shading is generated
artificially using Lambert’s reflectance function. In Fig. 3.12(b), we show the corresponding
depth map obtained by the algorithm. All the algorithm’s underlying assumptions are
satisfied for this example, and the scene obtained by this algorithm should resemble the

original data when illuminated from the given direction.
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FiGure 3.12. This very simple test image provides an example of a “successful”
shape recovery. We implemented an algorithm using the classical shape from shad-
ing assumptions. An ideal intensity image of a constant albedo matte scene illu-
minated by a single distant point light source (a) and the corresponding recovered
depth map (b) are shown in this figure. The algorithm is from Bichsel and Pent-
land [6]. The code of the two main subroutines came directly from their conference
paper; only the input/output and the call functions inside an iteration loop had to
be re-coded.

OsseERVATION 3.1. The depth map from B&P’s algorithm caplures accurately the shape of
the sphere and the plane. However, it is important to note that although the algorithm re-
turned a “good” solution, other “good” solutions are also possible. In the original scene, the
depth of the plane is largely arbitrary. Furthermore, the same image could have been gen-
erated with the plane in other orientations if the sphere and the plane were not constrained

to be of the same refleclivity.
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3. THE CLASSICAL SHAPE FROM SHADING PROBLEM

. Identifying the singular points is not a straightforward task when we deal with noisy
discrete data. Singular points may not show as global maximum in the image domain. Most
local maxima in the image domain do not correspond to a singular points; they are simply
the result of noise.

In Fig. 3.13(a), we present another test image. The scene is composed of three identical
damped anisotropic waves slightly interfering. Again the scene is illuminated from a distant
point which lies directly on the line of sight and the shading is generated artificially using
Lambert’s reflectance function. Because of the discretization of the image, a surface point
directly facing the light may not be represented in the image by a global maximum. The
depth map obtained with B&P’s algorithm is shown in Fig, 3.13(b). This example reveals

that B&P’s algorithm is quite dependent on the accuracy of the singularity detection.
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FiGURE 3.13. The image of an undulated constant albedo matte surface illuminated
by asingle distant point light source {a) and the corresponding recovered depth map
(b) are shown in this figure. This depth map is the output of B&P algorithm using
the brightest pixels in the image as singularities. The surface should correspond Lo
the interference pattern of three identical damped anisotropic waves. The recovered
surface does not fit this description. This test image provides an example of an
inaccurate shape recovery that occurs when the initial data are not reliable. Here,
the singularities are not all well identified. Since the image is a discrete function,
singularities for the continuous image irradiance function do not necessarily appear
as the brightest point in the image.

In Fig. 3.14(a), we present a third test image. The scene consists of a mask in front of a

flat background. The scene was originally captured by a laser range finder and the shading
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3. THE CLASSICAL SHAPE FROM SHADING PROBLEM

was obtained by considering a light source at a distant point lying directly on the line of
sight. In this image, since noise int:oduces local maxima, it is even more difficult to detect
the singularities that are key for the shape recovery. The depth map obtained with B&P’s

algorithm is shown in Fig. 3.14(b). Our best guess leads to a reasonable result?.

(a)

(b)

FIGURE 3.14. In this figure, we show an intensity image (a) that was made by
artificially shading the range data image of a mask, and the corresponding recovered
depth map (b). We can note here that B&P algorithm did not accurately recover
every detail of the shape of the mask. The shape recovery was based on singularities
that were perceptually salient, and these were identified manually. The emphasis
in this figure is not on the performance of the algorithm, but on the nature of
the initial data. Here, finding the singularities is not straightforward because of
the noise. Using only global maxima likely misses important singularities, whereas
using local maxima introduces a lot of insignificant singularities.

OBSERVATION 3.2. In order to recover the shape of surfaces in the scene, the initial data
must be reliably available.

From these three examples, we can at least conclude that the use of B&P’s algorithm
is interesting for situations over which we have complete control. Thus, we will use this
algorithm in the following section to show the weaknesses of the classical shape from shading
assumptions. In their very recent comparative study of the various shape from shading

techniques, Zhang et al. [135] have also implemented B&P’s algorithm. They have run the

4For this example, the singularitics are not determined by the brightest pixels, but are instead chosen based on
our visual perception.
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3. THE CLASSICAL SHAPE FROM SHADING PROBLEM

algorithm on images for which the classical setting is usually appropriate and have also
acknowledged the accuracy and drawbacks of the method. Given the correct singularity

information, B&P’s algorithm provides typical results for the “classical” shape from shading
setting.

3.3. Limitations and Difficulties. The literature cited in this chapter describes
the various attempts to solve the classical shape from shading problem from first pi‘i:lciples.
We emphasize, however, that, to make these approaches tractable, certain parameters are
assumed known. Typically the surface albedo p, the illumination A and the direction from
which it comes L are presumed to be constant and known. Operationally this assu‘m ption
decouples problems; e.g., it decouples the shape from shading problem from light source
estimation problems [105]. Although this decoupling simplifies significantly the shape from
shading problem, it also limits severely the range of its applicability. The result of any
algorithm based on such assymptions could be misleading.

In Fig. 3.15(a), we show an image of a sphere illuminated from two different directions.

Parts of the sphere are illuminated by only one source and the central part is illuminated by

both light sources. As previously, the shading is generated artificially using Lambert’s re--

flectance function. The depth map obtained with B&P’s algorithm is shown in Fig. 3.15(b).

We can observe a deformation of the sphere.

OBSERVATION 3.3. An algorithm designed to solve the “classical” shape from shading prob-

lem fails to accurately recover the shape of a scene if shadows are present.

The error is due to the fact that the “classical” shape from shading algorith’ni assumes
that the surface is illuminated from the wrong direction on parts of the image. Objects
create shadows and an object which lies in the shadow is illuminated differently. Since
different surface patches are often illuminated differently, this type of error is likely to occur
in general.

In Fig. 3.16(a), we show an image of the sphere in front of a plane but part of the
plane and sphere are in a darker colour than the rest. Again the scene is illuminated from a
distant point which lies directly on the line of sight, and the shading is generated artificially
using Lambert’s reflectance function. The depth map obtained with B&P’s algorithm is

shown in Fig. 3.16(b). We can observe a deformation of the sphere.

OBSERVATION 3.4. An algorithm designed to solve the “classical” shape from shading prob-

lem fails to accurately recover the shape of a scene if it does not have a constant albedo.
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3. THE CLASSICAL SHAPE FROM SHADING PROBLEM

(a) (b)

-

FIGURE 3.15. To analyse the limitation of a shape from shading algorithm based
on the classical assumptions, this test image provides an example of shape recovery
for a simple scene in which two light sources are present. Parts of the sphere are
illuminated with only one light source — the upper right and the lower left parts
— and the central part of the sphere and the back plane are illuminated by both
light sources. The intensity image (a} and the corresponding recovered depth map
from B&P’s algorithm (b) are shown in this figure. Note the “valley” introduced
by the algorithm to account for the shading variability around the edge.
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FiGURE 3.16. This test image provides an example of shape recovery attempt with
B&P’s algorithm for a simple scene in which the surface albedo changes abruptly
— the scene is not entirely the same colour. The intensity image (a) and the
corresponding recovered depth map (b) are shown in this figure. This result shows
clearly that the algorithm based on the classical shape from shading assumptions
fails to accurately recover a multiple albedo scene.
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3. THE CLASSICAL SHAPE FROM SHADING PROBLEM

The error is due to the fact that, on a certain part of the image, the algorithm wrongly
assumes the surface reflectance coefficient. Since the world is not entirely the same colour,
this type of error is likely to occur in general.

Although promising results for the classical shape from shading problem have been
obtained by numerous researchers, problems remain which are not naturally treated in the
classical sense, especially those related to discontinuities and shadows. We emphasize again
that in order to make the shape from shading problem tractable, certain parameters have
been assumed known. This is tantamount to a decoupling of problems, for example, the
shape from shading problem and the light estimation problem. We submit that such decou-
pling, while appropriate for certain highly engineered situations, is not always necessary;

moreover, it can make shading analysis impotent precisely when it should be useful.
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CHAPTER 4

The General Shape from Shading Problem

A human observer confronted with a static, monocular view of a scene will succeed in
obtaining some estimate of the shapes of the surfaces within it, even when some of the
classical setting’s constraints are relaxed. The presence of a shadow, a diffuse light source,
or even a patterned surface does not necessarily interfere with our ability to recover shape
from shading. Thus the classical constraints can be relaxed in principle; but how far?

In this chapter, we redefine the shape from shading oroblem and we describe how the

classical assumptions need to be relaxed to deal the problems that we have identified.
\I

1. The ObJectlves

Scencs often contain multiple surfaces. It is common that these surfaces partly occlude
one another and even that a surface self-occludes. It is also common for different surfaces
to have different reflectance coefficients. Furthermore, occlusions are common along lines
between a light source and points on a surface; this latter instance causes lighting conditions

to abruptly change and creates shadows.

Classical Shape from Shading | Generalized Shape from Shading
Single smooth surface Multiple smooth surfaces
Single light source Multiple light sources

No shadow Shadows
Single albedo scene Multiple albedo scene

TABLE 4.1. The classical shape from shading problem and the generallzed shape
from shading problem differ in the scenes they can deal with,

We have observed in Chapt. 3 that these scenes cause the classical shape from shading
algorithms to fail. These failures are not due to bad algorithm design, rather the cause is

intrinsic to the problem’s definition. The assumptions underlying the classical shape from
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shading problem are too restrictive. To handle the situations in Chapt. 3, the classical
setting needs to be generalized as in Table 4.1.

We want to be able to also recover shape from shading for these problematic scenes
simply because they are so common. Therefore we have to redefine the shape from shading

problem and attempt to address all the problems raised by our observations.

2. The Line of Thought

The scenes mentioned in the previous section do not comply with the constraints in-
herent in the assumptions of the classical shape from shading problem. Thus, first and
foremost, we have to relax these constraints on the scene in order to correct this situation.

But how much can we relax them?

Can we get rid of them altogether? Consider the general form of the image irradiance
equation:

I(z,y) = @(z,9) E(z,y) ,

where the functions

®(z,y) = plz,y)A(2,y) ,
E(z,y) = L(z,y)-N(z,y} .

How can we recover ®(z, y) and =(z, y) given only their product? This is obviously impos-
sible without any assumption.
So we redefine the shape from shading problem in a way such that we retain only the

essence of the basic assumption implicit in the classical shape from shading problem, that
is:

ASSUMPTION 4.1, For the generalized shape from shading problem, smooth varictions in

intensity are entirely due to smooth variations in surface orientation.

To make the distinction clear, we emphasize the fact that this assumption is only
concerned with variations that are smooth., Abrupt variations of intensity can be due to
abrupt variations in surface orientation, but they can also be due to abrupt variations in
the surface albedo or abrupt variations in the lighting conditions. We exanine such abrupt
changes later (see Chapt. 6).

The basis for the distinction between Assumptions 3.1 and 4.1 lies in the observation

that intensity changes occur at different scales [79,80]. Small changes in image intensity
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4. THE GENERAL SHAPE FROM SHADING PROBLEM

characterize smooth change in scene features (i.e. smooth surface!) although the quan-
tization of space and intensity introduces some noise. Large changes in image intensity
characterize changing scene features, i.e. wherever the surface reflectance, the lighting con-
dition, or the surface orientation change abruptly. This notion of scale was fundamental to
Land’s Retinex theory [79,80], and will be important to our generalization of shape from
shading.

The changes of intensity occurring at various scales reveal that there is more.to an
image than just the photometric aspect. The various structures are shown in Fig. 4.17.
Along with the intensity, we can distinguish the shading flow field (small changes) and the

image discontinuity curves (large changes).

Image

Photometric Geometric

image intensity

continuous discontinuous

v v

shading flow field  image curves
(c.g. edges)

FiGunre 4.17. An image compnses a set of pixel mt.ensnty values. These capture
the photometric aspect of the image. An image also implici'ly defines geometric
structures. These emerge from the neighbourhood relatlonshlps of the image pixels,
These structures can describe elther continuous properties of the image or discon-
tinuous ones, R

The significance of Assumption 4.1 for the reflectance function of a matte surface can

be expressed by the following equation:

(4.1) Vi(z,y) = plz,y)A(z,y) L{z,y) - VN(z,y) .

At every point (z,y) where the image intensity gradient VI(z,y) is defined, this equation
implies that the surface albedo p(z,y), the illumination A{z,y) and the Hirection of the
illuminant L(z,y) are locally constant. It also implies the existence of“a differentiable

surface normal VN(z, y). Note that the other terms in the total derivative VI are assumed

'In Chapt. 10, we look at alternative assumptions.
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nonexistent according to the above comments about scale; ie., VL = 0, Vp = 0, and
Vi=0.

There are two key conceptual differences between our approach to the generalized shape
from shading problem and the approaches to the classical shape from shading problem
described in Chapt. 3:

(i) in order to generalize the scene model, the scene constraints arc considered to be

local and not necessarily global;

(ii) since the surface reflectance coefficient and illumination cannot be taken as given,
surface shape recovery is based on the geometric structures of the image rather than
on the photometric structures.

We elaborate on the importance of these differences in the following sections. Alternative

options for relaxing the basic assumption are discussed in Chapt. 10.

3. Local vs. Global Scene Constraints

Using local scene cornstraints instead of global scene constraints has several noteworthy
consequences:

o [t addresses the problematical issues in the scene model that caused the classical
shape from shading algorithm to fail.

¢ It introduces discontinuities into the scene model. The projection of these discon-
tinuities onto the image plane provides another powerful cue to aid surface shape
estimation.

e It does not allow for a global description of scene descriptors, such as the albedo p,
the illumination A or the illuminant direction L, and thus these cannot be taken as

given. Rather, it stresses the need to evaluate these concurrently with the surface
shape.

3.1. Generalizing the Scene Model. We have demonstrated in Chapt. 3 that the
classical global constraints are too restrictive to deal with several features that commonly
occur. The key to our approach is to reconsider these same constraints but with a reduced

: range; e.g. whereas for the classical shape {rom shading problem, the albedo was constant
over the entire scene, for the generalized shape from shading problem, it is assumed constant
only over a neighbourhood. Table 4.2 summarizes the constraints used by the different scene
models. _

The reflectance properties of the scene are only considered locally constant; the scene

is not presumed to be described with a single albedo. The illumination of the scene is also

¥
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Classical Shape from Shading | Generalized Shape from Shading
Global constraints Local constraints
Smoo*h surface Piecewise smooth surface
Constant illumination Piecewise constant illumination
Constant albedo Piecewise constant albedo

TaBLE 4.2. The classical shape from shading problem and the generalized shape
from shading problem differs on the surface, the illumination, and the reflectance
constraints and the resulting model.

considered to be locally constant; the scene is not presumed to be everywhere illuminated in
the same way. The differentiability (a local property) of the surface normal function implies
that this function is continuous {another local property). Where the image intensity gradient
is not defined, the surface normal function can be discontinuous; the scene is not presumed

to be described by a single continuous surface.

3.2. Introducing a Model with Discontinuities. A mode! with piecewise con-
stant albedo implies that the projection onto the image plane will be marked by disconti-
nuities in albedo. A model with piecewise constant lighting also implies that the projection
onto the image plane will be marked by discontinuities in illumination and illuminant di-
rection. Similarly, a model with piecewise smooth surfaces implies that the projection onto
the image plane will be marked by discontinuities in surface depth, orientation and shape.

All of these discontinuities form contours.

OBSERVATION 4.1. The discontinuities in the scene are marked by curves of discontinuity
in the image plane.

The relations between the curves of image discontinuities and the curves of scene dis-
continuities provide an important insight to distinguish the various scene discontinuities
(see Chapt. 6).

Since geometric discontinuities (in curvature, orientation, and depth) are unavoidable
and their projection onto the image has a widely recognized importance [8,69, 73], we allow

for discontinuities. We therefore assume that the scene is composed of piecewise smooth
surfaces?,

2Since the reflectance function depends on the existence of a differentiable surface norimal, allowing surfaces
that are nowhere smooth is clearly inappropriate.
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OBSERVATION 4.2. The projection onto the image of geometric discontinuilies provides an

additional cue to help shape recovery.

3.3. Coupling Surface and Light Source Estimation. The classical shape from
shading assumptions allowed the scene to be modelled by a single albedo, a single illumi-
nation and a single illuminant direction. The albedo and the illumination always enter the
equations as a product, so, for the entire image, a single vector pAL is needed. When the
classical assumptions hold, one can expect to extract this single vector based on statistical
considerations [105].

Since we are considering local constraints for the generalized shape from shading prob-
lem, the vector pAL is constant only within some neighbourhood. One should typic;illy
expect this vector to take multiple values for any given scene, i.e. according to our assump-
tions, it will take a given value for points corresponding to a certain patch of the image, and
it will take a different value for points corresponding to a different patch. Several patches
of various sizes and forms have to be delimited and modelled by different vector values.
The problem is more complex and one cannot expect to extract the vector pAL based on
the statistical considerations used for the classical problem. The problems of shape from
shading and light source estimation can no longer be decoupled. Light sources and sur-

face properties must be handled concurrently; neither problem must be solved “before” the
other.

4. Geometric vs. Photometric Image Structures
To emphasize the dichotomy between the photometric and geometric structures, we
rewrite Eq. 4.1 as follows:
Viz,y) = &(z,y) [(z,y)

where the photometric and geometric aspects of the scene are respectively:

o(z,y) = plz,y) Az, y)
F(z,y) = L(z,y)  VN(z,y) .

The photometric structure of the image, the image intensity, is directly related to the
photometric aspect of the scene, the product of the illumination and the albedo of the surface
®(z,y) as shown in Eq. 3.2. Since we are letting both the illumination and the albedo be
functions of position, the image intensity is a poor choice for initial data of the shape from
shading problem. The geometric information about the scene would be confounded with

the photometric.
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. OBSERVATION 4.3. The relazalion of the scene constraints leads to the rejection of the pho-

tomelric structure of the image as initial data for the shape from shading problem.

The geometric aspect of the image reveals information of a different nature. We consider
two types of structures [136]:

e type I. Contours. These are one-dimensional structures in a two-dimensional space.
Of particular importance are those curves that correspond to discontinuities.

o type Il. Flow patterns. These are two-dimensional structures in a two-dimensional
space. Vector fields and direction fields are examples; we shall consider a specific
one called the shading flow field.

To elaborate, viewing the intensity image as a scalar field, we derive two geometric structures
from it. One of these corresponds to the Egéi'ons depicting smooth intensity changes, or
regions in which the intensity gradient is well-behaved. This will become the shading flow
field, and it is developed later in this section. Separating these regions of smooth intensity
variation are Jordan curves of discontinuities — these correspond to so-called “edges” in
images, and they depict the locus of positions along which surface and lighting properties
change abruptly. Note that the curves and fields are complementary, but that they both
provide information about shape.
Singularities of the flow field constitute another class of geometric structures.

e Point singularities. These are zero-dimensional structures in a two-dimensional
space. A specularity on a sphere is an example of a situation that generates such a
structure. Such a singularity corresponds to a point where the shading flow field is
undefined — the singularity being a sink (or a source) of the gradient field. Point
singularities can be characterized by their index.

e Line singularities. These are one-dimensional structures in a two-dimensional space.
A highlight on a cylinder is an example of a situation that generates such a structure.
These structures in the shading flow field are characteristic of parabolic surface
patches (or line [72]) as the surface curves in only one direction.

o Undefined regions. These are two-dimensional structures in a two-dimensional space.
The back plane in Fig. 3.12 is an example of a situation that generates such a
structure, These structures in the shading flow field are characteristic of planar
surface patches as the surface does not curve in any direction, hence the intensity
remains constant. |

We continue next with a discussion of image curves, represented locally as a tangent

field. First, however, note that in a static image, we can extract a shading flow field and
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4. THE GENERAL SHAPE FROM SHADING PROBLEM

a texture flow field [136]. Although shading may overlap a texture flow, it is difficult to
recover when the changes occur at the same scale. Since we consider only the smallest
scale, the shading flow field [12] and the texture flow field can be viewed as exclusive and

complementary. Both provide information about shape® [109].

4.1. The Tangent Field. The tangent field [136] comprises the position, orientation
and curvature information about image curves: Y! = {m,y,ﬂ(‘),u(‘)}. There are several
types of image curves, e.g. bright lines, dark lines, edges. The term “edge” refers to the
image curve along which an abrupt change in the image intensity occurs.

Artists have drawn sketches in terms of line drawings for several centuries. It has been
acknowledged as a powerful cue for the perception of shape. When humans look at line
drawings, they can often extraci a qualitative description of what they see [43]. When

viewing the line drawing in Fig. 4.18, most people immediately recognize the humanoid
figure.

FIGURE 4.18. The line drawing provides sufficient information to humans to allow
them to recognize some scenes. This line drawing was extracled from the gray-level
image with Iverson’s logical-linear operators for edges and lines [66].

Often, line drawings contain sufficient data to drive the recognition process. Qccluding

contours have probably received the most attention. Richards et al [113] attempted Lo

3Note that the scope of this current work includes contours and shading flows. The integration of texture
information into this framework is left for the future.
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. uncover how unique three-dimensional interpretations could be made from two-dimensional
silhouctties. At the heart of their work were two rules:

(i) Do not propoese undulations of the 3-D surface without evidence for such.

(i) Pick the most general position 3-I} interpretation, namely, that 3-D shape that
preserves the signs of the curvature of the silhouette over the widest range of view-
points.

and three constraints:

(i) The sign of the Gaussian curvature of points on the 3-D surface that project onto
the silhouette is the same as the sign of curvature of those projections [71]. This
qualitative constraint on the surface shape is independent of viewing distance [69].

(ii) For generic surfaces, the flexional (parabolic) lines are closed and non-intersecting.

(iii) A region of negative curvature on a silhouette is always interpreted in three dimen-
sions as a furrow (or neck), never as a dent.

In a companion paper, Beusmann et al. [5] proposed a method of representing the shape of
complex objects as convex parts. They showed that the part boundaries, hyperbolic regions,
could be inferred from the occluding contours. Keenderink and van Doorn [73] described

how this type of representation is common in fine arts.

OBSERVATION 4.4, Occluding contours only depend on the geometric properties of the sur-
face with respect to the viewer. The relalionship between the scene and the orientation and
curvature of an edge element is therefore independent of the illumination model and the

surface reflectance model.

At those positions where the image intensity gradient is not defined, image curves can

provide precious information.

4.2, The S}iading Flow Field. If we provide the shading information along with
the line drawing, we can notice details that we have missed previously. The shading provides

evidence of undulations that the line-drawing cannot capture,

In Fig. 4.19, the hollow between the shoulder blades is an example. Here the shading
provides evidence of an undulation of the 3-D surface that was not available from the line
drawing. Neither the lighting condition nor the reflectance properties of the surface change
abrupt_ly, and since the viewing position is facing the hollow, there is no self-occlusion. This
is typiéal of situations in which the line drawing extracted from an image (Fig. 4.18) is

insufficient to capture the (smooth) variations in shape.
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FIGURE 4.19. The shading provides additional information to humans. 1t allows

us to notice some shape detail on the surface.
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4. THE GENERAL SHAPE FROM SHADING PROBLEM

An image withoutl discontinuities is sometimes quite confusing. In Fig. 4.20, we have
cropped the image and we have only taken the region between the shoulder blades. Although
we can still get a qualitative description of the shape, its orientation is not reliable [75]. We
note here that a similar phenomenon occurs with texture when viewed through an aperture

(the surfaces always seem fronto-parallel}.

OBSERVATION 4.5. The line drawings and the shading provide complementary information

aboul the shape of surfuces.

Richards et al.’s first rule consists of not proposing undulations of the 3-D surface
without evidence for such. The shading flow field provides precisely this evidence.

If we look at the first order directional derivatives of the intensity function,

8
I = pAL- = N,

d
er = p)\ L. a—y N N
or the second order directional derivatives of the intensity function,
,)‘ 82
Ir_r = p)\ L . ﬁ N
9
= pAL- N
foy = p dxdy
92
Iyy = pA L- '-555 N

we note that all these partial derivatives depend on the variable illumination and albedo.
Again, as in the image intensities, these measures confound the scene’s geometric informa-
tion with the scene’s photometric properties. Therefore, they are not appropriate to solve
the generalized shape from shading problem.

Tilc directional derivatives’ information can nevertheless be combined in ways that are

independent from the variable illumination and albedo. One such way is the shading flow

field.

DerinirioN 4.1, The shading flow field is the vector field which indicates the direction in
which the image infensity remains constant. It is therefore perpendicular to the image
inlensity gradient field.

Although the following calculations are elementary, their implications are deep for our

model.
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THEOREM 4.1. For the generalized shape from shading problem, the oricntation of the in-
tensity gradient field (where it is defined) is independent of the variable illumination ()
and albedo (p). Thus the orientation of the intensity gradient ficld only depends on the

geometric properties of the surface l:(:r:, y) and the lighting with respeet te the viewer.

Proof: The orientation of the gradient field # is related to a ratio of directional derivatives:

i
tand = I_: .

Since both directional derivatives are directly proportional to the product of the iHumination
and the albedo,

L. .E?—y N _n

L-ZN I

The orientation of the intensity gradient field is independent from the variable illumination
(A) and albedo (p). O

tand =

COROLLARY 4.1. The shading flow field (where it is defined) is independent of the variable
illumination and albedo, and thus only depends on the geometric propertics of the surfuce

and the lighting with respect to the viewer.

We acquire two vector fields based on this orientation information. We can consider the

normalized gradient field and the shading flow field as unit vector fields (direction fields).

COROLLARY 4.2. The curvalures of both the shading flow field and the normalized gradient
field are also independent of the variable illumination and albedo, and thus only depend on

the geometric properiies of the surface and the lighting with respect to the viewer.,

The curvature of shading flow field &, and the curvature of the normalized gradient

field &, are respectively:
Uplylzy — 12y — Dlex
(12+13)
Iely (o = lyy) = oy (12 = 12)
(12+ 13)%

Since the first and second directional derivatives are directly proportional Lo the product of

Ky =

i

2
R

Ky

the illumination and the albedo, in both instances, the numerator and the dominator would
be proportional the cube of this product and cancel out.
The shading flow field can exhibit singularities. Singularities of index one would cor-

respond to circulations, either clockwise or counterclockwise. Of particular importance for

.
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Bichsel and Pentland’s algorithm were those points that correspond to maxima of intensity.
These are counterclockwise circulations. Note that the shading flow field does not give rise
to sink or source hecause of the way it is defined with respect the image intensity — just
recall that the curl of the gradient of a scalar field is identically null, Singularities of index |
minus one would correspond to saddles. We obtain the index of an isolated point singularity
by summing the angle differences between vectors (divided by 27) as we follow a closed path
around the singularity in a counterclockwise fashion. Thus, from the shading flow field, we

have a straightforward way to locate singularitieé.

4.2.1. Other Molivations. QObserve that a sensitivity issue arises in the shape from
shading probletn; spatial quantization of the image induces a quantization of the scene
domain. Analogously to the manner in which integer solutions are not always possible
for algebraic equations, we begin with “quantized” initial data as well. In particular, we
derive our initial estimates from the shading flow field instead of directly from the intensity
image. This field is the first order differential structure of the intensity image expressed as
the isoluminance direction and augmented with the gradient magnitude; we supplement it
with the intensity “cdge” image. We suggest that dealing with uncertainties at the level of
the shading flow field will expose more of the natural spatial consistency of the intensity
variation, and will thus lead to more robust! processing than the raw intensities. The
shading flow field ideas are related to Kcenderink’s isophotes {72] and Wolil photometric
flow fields [128].

Our motivation for starting from the shading flow field is also biological. We take
shading analysis to be an inherently geometric process, and hence handled within the same
cortical systems that provide orientation selection and texture flow analysis (see App. A).

Shading flow is simply a natural extension.

5. Summary

We re-examine the problems uncovered in Chapt. 3 for the classical formulation of the
shape from shading. The discussion of the “local vs. global” scene constraints and the

“geomelric vs. photometric” image structures yields the following proposals.

Prorosal 4.1 (O8SERvATION 3.1 REVISITED). The first difficulty observed was that the
computed shape of a background surface is constrained by an occluding object. By assuming

that the scene can comprise several smooth surfaces, we allow for surface discontinuities.

o . . 2 . e .
~~*Throughaout this thesis, the term “robust” is used as meaning “not sensitive to noise”.
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Thus, the shape of the background surface is no longer necessarily constrained by occluding
objects.

PRrRoPOSAL 4.2 (OBSERVATION 3.2 REVISITED). The second difficulty observed was that shape
recovery depends on an estimation of the initial data. The reliability of the estimale is cru-
cial to an accurale recovery of shape. By taking the abrupl changes in the image intensity
and the shading flow field, we have chosen as initial datla only geometric structures that can
be more reliably extracted from the image. Unlike maxima or minima, each of these duta

cen be refined according lo their own geomelry.

In his Ph.D. thesis, Lee Iverson [66] describes a reliable way to extract the abrupt

changes in the image intensity. In Chapt. 5, we propose a reliable way to extract the
shading flow field.

ProrosaL 4.3 {OBSERVATION 3.3 REVISITED). The third difficulty observed was the fuilure
to deal with shadows. Shadows are zones where the lighting condilions are different, as one
light source is somehow occluded. By assuming that several distani light sources illuminale
the scene, we allow for the changing lighting condition that creales shadows. The lighting

conditions are not taken as given.

ProrosaL 4.4 (OBSERVATION 3.4 REVISITED). The fourth difficulty observed was the fuil-
ure lo deal with scenes that are not entirely the same colour. By assuming that the scene is
composed of surfaces for which the reflectance coefficients are piecewise constanl, we have
the possibility to deal with scene which are not enlirely the same colour. The refleclance

coefficients are not taken as given.

6. The Generalized Shape from Shading Problem

FAN s .
These proposals It in a new definition of the shape from shading problem — even

e
though it still deals with a single monochromatic image, it allows more general scenes.

PRroBLEM 4.1. GENERALIZED SHAPE FROM SIHADING
Assuming that :
(i) colours can be present in the scene, but are piccewise conslant;
(ii) several distant light sources can illuminate the sc:;\é‘ric;\_k_,f,;—_-z
i

(iii) the scene can comprise several smooth surfaces; i
N =

SRt

“(iv) the surfaces are malle; o
(v) the image is formed by an orthoyraphic projection.
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Gliven

(i) the tangent ficld;

(ii) the shading flow field.
Recover

(i) the surface shape;

(ii) the illuminant direction.

The scope of this shape from shading problem is more general than the classical shape
from shading setting (see Problem 3.1). The assumptions made about the scene are less
constraining. The only given variables are the geometric structures of the image — these

can be extracted from the image intensities, as we now show.
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CHAPTER 5

Computing the Shading Flow Field

QOur shape from shading approach is based on the shading flow field. Therefore, it reties on
an accurate initial estimation of these local properties of the shading, We have studied the
problem of extracting this information from the image.

In this chapter, we describe how the shading low field can be extracted from the image.

1. Introduction

Since the shading flow field is the “dual” of the normalized gradient field, we look at
how one could extract the gradient of an image.

The problem of computing the gradient of an image would be straightforward if the
image intensities were simply a mapping of R? = R. It would suffice to compute the

directional derivative in the 2 and y directions:

-

) /] a
Vi(z,y) = (%I(w.y), a—yl(m,y))

But, the image intensity is not a2 mapping of R? — R. The image is discrete. [t is
a mapping of Z2 = Z. The situation becomes complicated by the fact that the notion
of differentiability is not defined on integers. To make matters worse, Lhe image is also
intrinsically noisy.

So, it is necessary to redefine the problem. We are not computing the gradient of
the image intensities directly, but seek to infer the gradient of a function that captires
the shading of the scene as projected on the image plane. The image intensities provide a
sampling of this function.



5. COMPUTING THE SHADING Frow FIELD

1.1. Fuzzy Derivatives. ‘Traditionally, the gradient of an image VI(z,y) is com-
puted by smoothing the image intensity function I (z, y) before estimating directional deriva-
tives. The smoothing is usually done by the convolution of a Gaussian kernel over the image.

I{z',yf) = Y. I{z,y) Golz - 2') Goly— ) ,
(=)
where

, 1 32 /202
Gola) = == ™17,

and @ is the variance.
Using the convolution property of Gaussian kernels, these equations can be rewritten
in terms of “fuzzy derivatives” [74]:

g
da

¢

I'x Gi(=) Galy)

o1,
dy

where G (z) is the first derivative of the Gaussian. The gradient estimate follows immedi-

= I+ Gy(z) GL(y) ;

alely, and the isoluminance direction is simply perpendicular to the gradient.

Fi1GuRE 5.21. In this figure, we provide an example of the use of “fuzzy derivatives”.
The data used is the gray-level image in background, and the resulting shading fiow
ficld, augmented with the gradient magnitude, is shown in foreground.

The one limitation of this approach is that (depending on the magnitude of o) it always

infers a smooth gradient field, even when the underlying image is non-continuous.
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1.2. Limitation and Difficulties. The notion of continuity is an important under-
lying condition for differentiability. By smoothing the image with a Gaussian kernel, one
ensures that the function is continuous and that its derivatives are continuous. But by
doing so, we are also masking other important structures.

Consider the image formation process for a smooth matte surface under a constant
lighting condition. It yields a smooth intensity function. Its projection on the image plane
should also yield a smooth image intensity function'. It should normally result in a smooth
gradient field (See Fig. 5.21). This is fine.

However, often the imaged scene contains discontinuous features. We shall now consider

two such images, They both consist of two smooth surfaces: a sphere in front of a plane.
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FIGURE 5.22. The technique of fuzzy derivatives produces a smooth shading low
field even though the underlying image intensity function has marked discontinu-
ities. Here, (a) the image of a scene with intensity discontinuities yields (b) a
continuous shading flow field. In this figure, the gradient magnitude is coded in
gray levels — darker meaning larger gradient.

In the first image (Fig. 5.22(a)), the lighting condition remains constant, but one part
of the sphere and the plane is of a different albedo than the other. Both surfaces generate a

smooth intensity function, Each surface should independently exhibit a certain shading flow

pattern. But since the sphere partially occludes the plane, the projection onto the image

plane would typically yield a discontinuous intensity function and a discontinuous gradient
IHere we assume that the surface is not sell-oceluding
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field. ‘T'he discontinuity should lie on a curve. On both sides of that curve, the intensity
function and the gradient field should be smooth. Figure 5.22(b) shows the shading flow
field obtained with the fuzzy derivative approach. It is continuous everywhere. Near an
intensity discontinuity (it is particularly striking around the albedo change), the flow field’s
distortion reflects the size of the convolution kernel. This undesirable result occurs because
the technique of {uzzy derivatives involves smoothing the intensity function _QEE!‘:,'WhGl‘G
without consideration for the discontinuities that occur at various scales. Therefore, it
masks an important image feature and consequently, it introduces errors in the estimation

of the directional derivatives.
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FIGURE 5.23. The technique of fuzzy derivatives produces a smooth shading flow
ficld even though the underlying image intensity function should lead to a shading
flow field with marked discontinuities. Here, (a) the image of a scene with a dis-
continuity that should be reflected in the shading flow field yields (b) a continuous
shading flow field. In this figure, the gradient magnitude is coded as term of gray
levels — darker meaning larger gradient.

In the sccond image {Fig. 5.23(a)), the albedo remains constant, but the lighting con-
ditions change since one of the light sources present is not visible from everywhere on the
sphere. Where both light sources shine, one should observe a different shading flow pat-
tern than where only one light shines. We should observe a discontinuity in the shading
flow field. Figure 5.23(b) shows the shading flow field obtained with the fuzzy derivative

approach. Again, it is continuous everywhere. This undesirable result occurs because the

technique of fuzzy derivatives involves smoothing the intensity function everywhere without
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consideration for potential underlying shading flow field discontinuities. 1t thercfore masks
another important image feature and consequently, it introduces errors in the estimation of

the directional derivatives.

OBSERVATION 5.1. Smoothing over discontinuities distorts the gradient ficld and the shading
flow field.

The fuzzy derivative approach is thus inappropriate in the presence of discontinuitics.

2. Piecewise Continuous Flow Field

To extract the gradient from an image, we consider a different method. For cach image
point, the intensity function is locally modeled by a smooth function (R* — R) . Since only

the first derivatives are needed, we use a linear function:
He,zy) = a2 4+ by + ¢

A least squares fit provides the parameters of the modelling function from which the
~ gradient is computed. Since this is a local model, we assume that the confidence in the
data decreases with the distance to the pixel (po) aver which the gradient is estimated;
Afz,y) = Gg(r) with ¢ =2 . For computational simplicity, we ignore data points further
than 4.5 pixels, as their contributions are not noticeable — the integral over the remaining
pixels’ weight represents less than 0.4% of the total integral. The pixels used [or locally
fitting a continuous intensity function are shown in Fig. 5.24(a).

This “fitting” apprqlach also infers a smooth gradient ficld. As with the “fuzzy deriva-
tives”, if thereis a dib’(:(;'xf_ltinuity in the neighbourhood of a pixel, the gradient at this point
will be distorted. Up to now, this approach is a first order approximation to the intensity
function I(z, y) around po. It assumes that the function and its first derivatives are contin-
uous over the data points. This is not always the casc. Next, we review lhow discontinnitics
are uncovered, and after, we show how we adapt the “fitting” approach o take advantage

of this newly acquired information.

2.1. Computing Intensity Discontinuities. The discontinuities in intensity form
image curves. These image curves are characterized both by their tangential properties
{orientation #1), curvature ) and their cross-sectional properties (edge, positive and
negative contrast lines).

The problem of edge detection in images appeared in the first computer vision sys-

tem [115]. Edges are said to be, by definition, transitions between two markedly dissimilar
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() ~ (b}

Fraure 5.24. For a given pixel, the data points used for fitting a local smooth

lunction, lies in its neighbourhood. (a) The confidence given to a data point depends

on its distance from where the model is fitted as illustrated ihe radial shading. For

computational simplicity, we use only the pixels whose centre are within the circle,

(b} The pixels, on or beyond an edge or a line passing through the neighbourhood,

are not used to compute the gradient.
intensities. In terms of the image intensity function, the edge is a region in the & — y plane
where f(x,y) has a gradient of large magnitude. The Roberts cross operator was designed
as a discrete approximation to the gradient magnitude. 1t is based on a 2 x 2 window and
thus very sensitive Lo noise.

Attempts to find a less noise sensitive operator have been numerous. Sobel suggested
an operator [28] using a larger window (3 x 3) than the Roberts cross operator in an attempt
to smooth out the noise. Modelling edges in images as an ideal step edge and additive noise
gave rise to an entire class of solutions [19,25,47,93,94]. The various designs proposed
can be decomposed in two operations: one to smooth the noise, an other to locate the
edge. These methods rely on thresholds to determine what is considered a gradient of large
magnitude. This is not desirable since a single threshold value for the entire image is rarely
appropriate. Depending on an arbitrary choice of the global threshold, the operator may
signal the presence of edges where there are none and may signal the absence of an edge
where there are some.

In his thesis, Lee Iverson [66] addresses all these problems while differentiating between
the different types of image curves. Furthermore, his model takes into account the possible

coexistence of multiple edges at a given image location which allows for an accurate location
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and description of features such as corners and junctions. These are fundamental to the
understanding of line drawings {7, 48, 126].

Edge detection is still an active research topic. Even though we haven’t considered
using them, it is worth mentioning that other techniques have recently been proposed such

as “steerable filters” [38,110,111] and “cdge-cnergy” methods [96,111].

2.2. Defining the Shading Flow Field Operator’s Domain. [For the *fitting”
approach to be meaningful, corrective steps are neceded for both intensity discountinnitios
and shading flow field discontinuities.

At adiscontinuity, the gradient is not defined. However, it is delined near a discontinuity
— it is in fact defined on both sides of a discontinuity. Both the magnitude and the
orientation can differ. Hence, we choose to acknowledge this reality by allowing multiple
representations of the gradient at any given pixel location, We define a set of possible
gradient orientations, and design operators which provide a confidence measure for each
one.

We have investigated methods of obtaining stable discontinuous shading flow ficlds us-
ing logical/linear operators [65] to find edges and lines. By first identilying the discontinuity
curves in the image, the use of data points lying on? or beyond any discontinuity can be
avoided. This is precisely what we shall do as shown in Fig. 5.24(b). This corrective step
prevents smoothing across an identifiable intensity discontinuity.

For shading flow field discuntinuities, the difficuity is diflerent since no a priori knowl-
edge about their presence is available. To evaluate the confidence of a possible gradicnt,
orientation in the neighbourhood of a given pixel, we consider sixteen different fits. 1Sach fit
uses a subset of pixels in the neighbourhood as shown in Fig. 5.25. Bach subset corresponds
to a different assumption about the presence of a shading llow field discontinuity and rejects
pixels beyond the hypothetical discontinuity curve. The number of fits (Nyg = 16) reflects
two constraints: -

(i) different shading flow field discontinuities should yield different domains lor the fit;

(ii) the domains for the fit should be large enough to smooth the noise.
For each orientation of a possible discontinuity, the gradient is computed.
The initial estimate of the shading flow field reflects these values., We assign a conli-

dence, P(8;), Lo the hypothesis that the orientation of the shading flow field is a value 6;,

e

2A pixel on an image intensity discontinuity usually reflects an interpalation of Lhe intensity on both sides of
the discontinuity. It can thus induce an error in the gradient estimation,
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Figurk 5.25. For a given pixel, the data points used for fitting a local smooth
function, lic in its neighbourhood. The confidence given a data point depends on
its distance from where the maodel is fitted as illustrated by the radial shading. To
deal with the possible presence of shading flow field discontinuities, we subdivide
the neighbourhood. A set of 16 neighbourhoods used to provide reliable estimates
of the gradient are shown here as dotted circles. This partitioning of the neighbour-
hood insures that at least one fit will not be corrupted even if there is a shading
flow field discontinuity. For example, if such a discontinuity (shown here as a solid
line) passes through the pixel, the two dashed circles would provide support to the
appropriate flow hypotheses as both encircle a region adjacent to the discontinuity.
Two distinct shading flow hypotheses could be retained. For another example, if
such a discontinuity (not shown in this figure) passes elsewhere in the neighbour-
hood of the pixel, there would be more dotted circles to provide support for the
one appropriate flow hypothesis. As in Fig. 5.24, if the tangent field indicates the
presence of an edge or a line, pixels on or beyond are not used to compute the fit.
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as follows:

where 8; is the orientation of the gradient computed assuming a shading flow ficld discon-

tinuity of orientation js—"' rd.

2.2.1. Discrete Shading Flow Field Representation. 'T'he space of shading flow otien-
tation is divided into a discrete set of regular intervals. Each interval defines an equivalence
class which we represent with the central orientation ofj_;t.lle interval: 8;. 1Sach one is viewed
as a hypothesis that the directional derivative of tire iiﬁage intensity function is null in an
orientation within the interval.

The shading flow field’s orientation is a local measure. Hence, the need to use a
neighbourhood as small as possible. The discretization of image position, (z,y), simply
reflects the tessellation in pixels of the image. The limited information available induces
a limited precision in the measure. Qur equivalence class simply reflects this fact. We
observed that sixteen was about the number of different orientations, #, that we could
distinguish considering a circular neighbourhood with a radius of four pixels.

We represent the shading flow field augmented with the magnitude of the image inten-
sity gradient, lV-I | This scalar quantity is discretized in five intervals. The coarseness ol
this qﬁantization is due to the uncertainty induced by the orientation quantization.

At this point, we can restate the problem as one of finding a consistent flow ficld out
of these initial estimates. The shading flow field is no longer uniquely valued. We shall
now consider the shading flow field as a union of direction fields. Such a relaxed definition
allows a better representation of the shading flow ficld at discontinuitics — both sides of a

discontinuity can be represented.

3. Relation to Relaxation Labelling

Relazation labellingis a computational method to find consistent structures in a network
of nodes. Hummel and Zucker [58] have laid down the foundation of relaxation processes,
and Parent and Zucker [103,104] provided insights regarding their implementation,

To relate the problem of computing a shading flow field to the relaxation labelling
paradigm, we consider each orientation as a node of the relaxation network. Since the
orientation hypothesis can be either true or false, we associate two labels to each node,
TRUE and FALSE . We distribute a measure p; over cach i representing confirmation of the

hypothesis. In this section, we provide a briefl review of the relaxation labelling paradigm.
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3.1. The General Relaxation Labelling Paradigm. Let a set of nodes | be
given. To each node 7 € /, we associate a set of labels A;. Each label A € A; is interpreted

as a possible value to be assigned to a node i.

DEFINITION 5.1, The conlidence is a scalar value p;(A) associated with each lebel A € A; at

node i € 1. This value is restricted Lo be within zero and one, inclusive:
0<m(A) L1

When the confidence p;(A) is unity, it confirms the assignment of label A at the node

i. When the confidence p;(}) is zero, it disconfirms the assignment of Jabel A at the node i.

DerINITION 5.2, The labelling assignment is the triple of (I, A, p) where p is an instance of
a confidence measure being assigned to every label of every node and for which the following
restriction holds:

Zp,-()\) =1.

A
We define K as the space of such labelling assignments.

This restriction expresses the exclusive nature of the assignment probleni. A simple
interpretation of such an assignment is that each p;(A) is the confidence that the label A
“should be assigned 1o node i.

The labelling assignment is said to be unambiguous when
pi(A) € {0,1} Viel, AeA; .

Such a labelling defines a mapping
i—= Ail and only if p;(A) = 1.

We say then that A is assigned to the node i.
Since the goal of the relaxation labelling method is to solve an assighment problem, a

criterion needs to be defined. We seck a labelling which maximizes a measure of consistency.

DurinrrtonN 5.3, The compatibility matrix R captures the pairwise compalibility between
labels on different nodes. Its elements ri; (X, X) provide a measure of the compatibility

between label A at node i and label X' at node j.

A positive compatibility, ri;(A, X)), between labels (A, AY) means that the labels are
consistent. with cach other, a negative compatibility means that the labels are inconsistent

with cach other, a null compatibility means that the labels are unrelated.
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DeriNiTION 5.4, The support for a label A at node i is defined as the wcighted sum of the
compatibilities between this label and every other possible label at cvery node.
sisp) = D0 Y (W A) pi(\)
JEl MeA,
The support indicates the consistency of a label A at a node 7 with labels at othoer nodes

given a labelling assignment p.

DEFINITION 5.5. A consistent labelling is a labelling assignment which fulfills the condition
that

VielLVveK: Y pm(\)si(hp) 2 D vilA) si(xp) .
: C A )

Formally, relaxation-labelling solves the problem of finding a consistent labelling given

an initial description (I, A, p) and the compatibility matrix ;.

DEeFINITION 5.6. The average local consistency is defined as the weighted sum of the support
Jor every possible label al every node.
Alp) = D3 mlN) si(xip)
i€l NeA;
or to make explicit the quadralic forni-of the funclion
AP = 3000 3 D (N rp(A ) p(A)
' tel Agh; el MeA,
Hummel and Zucker [58] have shown that, for symmetric compatibilities, the following

algorithm constitutes a gradient ascent on average local consistency which terminates at a

consistent labelling.

ALGORITHM 5.1 (RELAXATION LABELLING).
(i) Compute an initiel estimate of p = {pi(A)} which constitutes a labelling assign-
ment. Call this p°.
(ii) Repeal starting with n = 0 unlil p™ is consisteni:
{a) Repeat for allie I: =
(i) Compute p; = p + & s;.
(it} Project p; onte a valid labelling assignment. This new assignment is
prtt,
(b) Setn = n + 1.
(i) Generale the mapping i — A.
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In this algorithm, & is the quantity that controls the stepsize and its predetermined
small value is chosen to facilitate convergence.
Such “computational energy” forms have become common in neural networks, Hopfield

networks {49] are a special case, as are polymatrix games, under certain conditions [95].

3.2. The Two-Labels Relaxation Labelling Paradigm. Iverson and Zucker [64,
66] have considered the special case known as two-labels relazation labelling. 1t is also the
one that we consider. Here, the set of nodes [ is referred to as the network of hypotheses.
The set of two labels is A; = {TrUE ,FALSE }. Either a hypothesis is true or it is false.

The representation of the two-labels’ confidence can be simplified because of the com-

plementarity of the two labels. It is only necessary to explicitly represent one label.
pi(FALSE ) = 1 — p;(TRUE)

Similarly the representation of the two-labels’ support can be simplified if we impose the

design condition that evidence for a hypothesis is evidence opposing the converse.
8;(FALSE ) = — 5;(TRUE)

'This design condition translates into the following condition on the structure of the com-

patibilities r;;(A, A):

r(TRUE ,TRUB ) = —pi;(TRUE ,FALSE } = —r;;(FALSE ,TRUE ) = #;;(FALSE ,FALSE )

We take advantage ol these simplifications to make our notation lighter. We choose to

represent only the TRUE label and thus using
pi toreler to p;y(TRUE )

si torefer to s;(TRUE)

ri; torefer to ri;(TRUE , TRUE )

We can now rewrite the support as
Si = Y TP
jel
and the update rule as
! !
it = [ + b
where the function [2]] is z truncated to the interval [0, 1].
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3.3. Implementation Remarks. The relaxation labelling method uses a gradient
ascent procedure which inevitably terminates on a local maximum. We have to ensure that
this local maximum is meaningful. We designed the calculation of the initial estimates and
the derivation of the compatibilities with this in mind. For thal purpose, the support s;

should only be positive when the features that are considered essential for a valid solution

can be verified locally.

4. Coherent Shading Flow Field

We use relaxation labelling processes to refine the initial estimate. The key task ol
this idea is to define what is a consistent labelling for a shading flow ficld. To reach this

objective, we use the local diflerential properties of the flow ficld as a constraint.

4.1. Using Curvatures as Constraints. Consider that the local description of
the shading flow field comprises the orientation of the flow ficld and two curvatures: the
curvature of the shading flow field and the curvature of its dual, the gradient field. These
curvatures capture the local variation the shading flow orientation, thus they can be used
as constraints.

Iverson [66] used these quantities to constrain texture flow ficlds and showed that
the relaxation will interpolate a dense field even from sparse inputs without arbitrarily
smoothing over discontinuities, Since this is precisely where we are aiming, we first consider
these quantities to design the consistency relationship for the shading flow field. lverson
considered that, for texture, flow patterns can be viewed as resulting from a combination of
translations or rotalions. As a consequence, the texture flow field is modelled with both a
divergence component and a curl component. This is not appropriate for shading flow field
as the shading flow field reflects a differentiation with respect. to a scalar field (the image
intensities), and the curl component of the gradient is always null.

We can derive a different constraint based solely on the definition of these curvatures.

Then, the variation of the orientation of the shading flow is given by

Qg
Ir

where the variables » and 9 are simply the local frame coordinates expressed as polar

= (Kgsind + k,cos1))

coordinates.
The principal interest of this representation is that it provides a local description to

the image intensity J(z,y) which remains the same® for the image irradiance E(ix,y).

3Here, we assume only that the relation between I(x, ¥) and E{z,y) is independent of the image position (x,y)
and that this relation preserves the sign of directional derivative.
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4.2. Using Differential Invariants as Constraints. The shading flow field’s rep-
rosenlation is richer than the texture flow field’s, There is an extra dimension that is

available to constrain the shading flow field. It is the magnitude of the gradient, |V_‘I|.

Prorostrrion 5.1. The shading flow field, augmented with the magnitude of the inlensity
gradicnt, can be locally deseribed by T° = {z,3,5,D | (z,y) € R%, § e R?, D € R3).

Proof. Consider a smooth shading flow field S(7). We develop a Taylor expansion of S_"(r")

Lo obtain a local description and we keep only the first terms:
DE Semy T (-7
S(F+dr) = S(F) + T4 ..
where

25 | = [0 -1 1 .. ={10 1 - {1 0
= = ) - d - 1
o7 2f:urIS(1 0)+2 wS(O 1)+2defSRw (0 _1)R¢

Since the shading flow field is related to image intensity gradient by:
l5}'(1:’?") - _]y(ﬂ"r y) =
Ir(z,y)

divS = curlVI = 0,

)|eostte
VI(':,J |smﬂ ,

it Tollows that

the trace of the variation of the flow field is null. Thus, three quantities suffice to describe

it. locally:

(5.1) S(z + Az, y+ Ay) = S(@,y) + ( ey ~lu ) ( A )
Iz« Iy Ay
The coeflicients of this matrix rele*e to the three componéﬁts of a DISTORTION vector as
follows: \
— def §'sin(2¢) Iz = Iy
D = def § cos(2¢) = ~21py
curl § Low + Ty

Figure 5.26 provides a geometric picture of the relationship between the shading flow ovien-
tation and the nature of the distortion. Combined with the shading flow vector, it completes

the local shading flow description space, Y = {x,y,8, 'V~I| ,D}. O
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If we express the variation in terms of the coordinates defined by the tangent and the
normal to the shading flow at 7, we can relate curvatures, x, and xy, and the differential
invariants: '

m oo | e R Au
o —Hs Ky Av
where Au = Az cos8 + Ay sinf, Av = —Az sinf + Ay cosf, and v, = 21,11, -

Imlg - Iyyfg. This third term can not be accounted for with the model without magnitude.
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FIGURE 5.26. This sequence shows flow fields for which the distortion vector diflers.
The left most depicts a pure curl, D3 = 1, the righi most depicts a pure deformation
D3z = 0, and in between, the two components blend with different proportions.
Whereas the curl is symmetric with respect Lo a point, the deformation is symmetric
with respect to an axis. Note how the nature of the singularities diflers as the

distortion changes.

The shading flow field, augmented with the magnitude of the intensity gradient, is
fully constrained. To appreciate this result, we can look at texture flow fields — they are
naturally constrained with only two quantities (such as the curvatures s, 1,). Different
models have been proposed to relate them with differential invariants, models that are

exclusive of one another (e.g. pure rotation and expansion [66] or pure deformation [40]).

4.3. Compatibilities between Local Shading F‘lg;w Descriptions. So given two
local shading flow descriptions, T? = {x;, vi, 6;, 'V-]L yDi} and T§ = {x;, 45,05, lVrilj D},
we shall define a compatibility measure.

The transported shading flow description Sy is derived from Eq. 5.1 with Ax equal
to x; — x; and the matrix coefficients derived directly from D;. The transported shading
flow description §; is obtained in a similar way; Ax is equal to x; — x; and the matrix

coefficients are derived directly from D;.

The shading flow descriptors T = {z;, »i, i, Iﬁ[i,,D;} constrain the shading flow
t

descriptors Y} = {z;,y;,0;, IV“!L_ , D;}, and reciprocally, the shading flow descriptors T3

{z;, 4,0, IV"II .y D;} constrain the shading flow descriptors T§ = {23, ;, f;, IV-Il_ ,D;}. We
M t

require the compatibility to be positive only when both these constraints are satisfied. To

achieve this, we use the logical/linear combinators introduced by Iverson and Zucker [65).
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. DEFINITION 5.7. The logical/linear combinator A s given by:

z4+y, il 220 A y>0;

_ ¥, if z>0 A y<0;
chy = T, if <0 A y>0;
z+y, if z€0 A 3<0.

I'hie compatibility is then given by:

M= T
where
i = G"(8;- 6;) G (V15| - [VE]) G (% - %)
Po= G"(o,.-a;)G(WI; —|€I;|) G (1% - &) -

The orientation of the flow field is strengly constrained; i.e. the shading flow descriptions
are said to be compatible only if the transported ortentation of 4 falls within the Voronoi cell
of the orientation j and vice-versa, the shading flow descriptions are said to be incompatible
otherwise. On the other hand, the magnitude of the gradient is only weakly constrained;
i.e. this component only modulates the strength of the compatibility, it does not affect the
sign.

This compatibility function generalizes the co-circularity and the concentricity mod-
cls [64). Both these models project a center of curvature (which is a singularity for-the flow
field) in a direction perpendicular to the flow vector at a distance determined by the flow
field’s curvature. Similarly, the distortion vector projects a singularity, bu_jr{i?:é*' relation
between the flow vector and the position of the singularity can be more com p‘l,t;x because of

the deformation component.

5. Numerical Results

In Lhis section, we present a couple of examples for which this approach has been used
to extract the shading flow field. Tlles&g@nplec:were chosen to illustrate that a piecewise

—_
smooth shading flow field can be inferred from images where such discontinuity arises.

5.1. Abrupt Albedo Change. The first example that we ran to test our algorithm
was an image of a scene in which the albedo changed abruptly '(Fig. 5.27(a)). It simply
consists of a sphere in front of a plane.

We extracted the edge map using the algorithm of Iverson [66] and the shading flow field

using the algorithm outlined in this chapter. These are shown in Fig. 5.27(c). If we compare

o .
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FIGURE 5.27. This test image provides an example of a shading flow ficld recovery.
It was obtained after 5 iterations of the relaxation labelling algorithin proposed
in this chapter. An ideal nl.enslby image of a simple scene illuminated by a single
distant point light source-but with an abrupt. change in albedo (a), the corresponding
tangent field {b) and shading flow field {c} are shown in this figure. This shading
flow field presents a point singularity of index one in the centre and a undefined
region on the image’s outskirts. For display purposes only, thresholds are used to
avoid cluttering the figures with uscless information and the rcsolutlou of the edge
map and shading flow field are decreased by two. R
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this result with the shading flow field obtained with “fuzzy derivatives” (see Fig. 5.22}, we
note differences where the discontinuities occur. The relaxation labelling approach allowed
for discontinuity in the shading flow field whereas the “fuzzy derivatives” approach does

not.,

5.2. Multiple Light Sources. The sccond example that we ran to test our algo-
rithm wa.sr‘;;l'image of a scene which is illuminated by two distant light sources (Fig. 5.28(a)).
Again, il simply consists of a sphere in front of a planel

Such as for the previous example, we extracted the edge map using the algorithm of
Iverson [66] and the shading flow field using the algorithm outlined in this chapter. These
are shown in Fig. 5.28(c). The only edges in this example are the curved edges that form a
circle. There is an inversion of the edge’s direction where the polarity of the image contrast
changes. ‘T'he most interesting feature in this example is the curve running across the sphere
along which the shading flow field is also discontinuous. The shading flow field discontinuity
is extracted even though there is no intensity discontinuity. The comparison of this result
with the shading flow field obtained with “fuzzy derivatives” (see Fig. 5.23) shows agdin a

difference where the discontinuities occur.

5.3. The Car’s Fender. The third example that we ran to test our algorithm was a
real image of a scene which is illuminated by two distant light sources (Fig. 5.29(a)). This
time, the scene consists of a car. For the example, we use a close-up of the fender on which
runs a shadow (Fig. 5.29(Db)).

We show in Fig. 5.29(c), the edge map obtained using the algorithm of Iversen [66] and
the shading flow field obtained using the algorithm described in this section. Even though
the data is noisy, the shading flow field is usually smooth. The points where the shading
flow field is not smooth correspond to curves marking discontinutties.

These results show that the shading flow field can be extracted from the image with-
out nccessarily destroying the information of discontinuities. The approach presented in
this chapter produces piccewise smooth shading flow fields. that preserve singularities and

discontinuitics.
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FicURE 5.28. This test image provides an example of a shading low field recovery.
It was obtained after 5 iterations of the relaxation labelling algorithin proposed
in this chapter. An ideal intensity image of a simple scene illuminated by two
distant point light source (a), the corresponding tangent field (1) and shiading flow
field (c) are shown in this figure. Note the shading flow field presents again a
point singularity of index one (near the centre of the upper right quadrant) and an
undefined region. For display purposes only, thresholds are used to avoid cluttering
the figures with uscless information and the resolution of the edge map and shading
flow field is decreased by two.
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CHAPTER 6

Interpretations of Discontinuities

The general shape from shading problem introduces discontinuities. They occur in both
the given initial data and the scenc model. The relationships between these are at the root.
of the image interpretation,

Considering that any of the scene parameters (lighting condition, albedo, surlace orien-

tation) can change abruptly, can we determine which one did given the geometric propertios

of the image?

1. Various Cases of Scene Discontinuity

In this section, as a first step toward answering this question, we establish the signature
of each scene discontinuity for generic surfaces with a generic illuminant dircction and rom
a generic viewpoint!

Before looking at the various cases of scene discontinuity, we begin by considering the
situation when there is none. The image irradiance depends on the albedo, the lighting

condition, and the surface orientation:
E=p_L-N;

and the orientation of the shading flow ficld depends on the lighting condition, and the
surface orientation:

tanf = LT f
We can derive directly an important first result.

OBSERVATION G.1. A smooth maile surfuce of constanl albedo-projects, under constani il-

lumination, a smooth image irradiance and almnost everywhere, « smooll shading flow ficld,
N —— L

IThe assumptions of “generic view” and “generic Hluminant direction” states that the obmerver and the light
sources are not in a special position relative to Lhe scene. A small change in their position should nol affect the
qualitative aspect of the image [9,39).



6. INTERPRETATIONS OF DISCONTINUITIES

Discontinuity of the shading flow field can occur at singularities of the direction field,
that is, where the image irradiance gradient is null. Although both point and line singular-
ities are of measure zero with respect to the domain of the shading flow field, our analysis

requires that we take them into consideration.

OBSERVATION 6.2. Now, lel’s consider the shading flow field of a smooth matte surface of
constant albedo under constant illumination, bul eugmenied with the gradient magnitude.
There exists a representation (the Carlesian coordinale) in which the resulting veclor field

is continuous and differentiable everiphere.

1.1. Shadows. Shadows occur when some light source does not shine on part of the
scene. Such an event can be explained as an occlusion of the light source by an opaque
object. The boundarics of shadow correspond to where the illumination abruptly changes.

Let A¢y Ly;y describe the illumination and the direction of light sources indexed by i.
Consider a shadow caused by the occlusion of a point light source A(g) L(q)-

The linearity of Lambert’s model allows the definition of an equivalent light source (see
the illumination model in Chapt. 7) as the sum of the light source visible from the surface.
Hence, the lighting condition on each side of the shadow boundary can be described by A L

and Ay Ly, the latter corresponding to the shadow side:
AL = Z_,\(,-, L
1
MLy = Y Ap Ly
i, {£0

hence this simple relationship:
’\s La = AL - /\[g) L(g) .

At a point on the boundary, the onset of the occlusion can be caused either by a possibly
distant opaque object or by the surface itself slanting away {rom the light source. We call
these two cases respectively, cast shadow boundary and attached shadow boundary. These

account for dilferent image structures.

LLL1. The Cast Shadow Boundary. We examine the behaviour of image properties
where cast shadow boundaries occur. The first quantity that we consider is the image
irradiance. 1s it continuous? The difference in image irradiance as we enter in the shadow
is given by:

E~ B = pAgy LN .

For a cast shadow, Lgy ' N > 0, hence E; < FE. The result corresponds to our intuition.
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6. INTERPRETATIONS OF [MSCONTINUIMTIES

OBSERVATION 6.3. A cast shadow boundary is marked by a discontinuity in the fnage
2

irradiance®.
The second quantity that we consider is the shading llow orientation. Again, the focus
is on continuity. The shading fiow orientations, on the respective sides of a cast shadow

boundary, are given by:

L-2ZN
tanf = 5=

L-5=N

L,- 2N
tanf, = (’:,Jy

L - 52

In general, the shading flow orientation differs from each side ol the shadow boundary.

OBSERVATION 6.4. A cast shadow boundary is generically marked by a discontinuity in the
shading flow field.

One should note that in an image of a scene, coincidental alignments are likely to occur

at some points along the boundaries.

1.1.2. The Attached Shadow Boundary. Now, we examine the behaviour of image
properties where attached shadow boundaries occur. We first determine whether or not,
the image irradiance is continuous. The difference in image irradiance as we enter in the

shadow is given by:
E - Es = pAgy Ligy- N .

IEven though there is a marked decrease in surface illumination, the image irradiance is
continuous since Ly - N = 0; the incoming rays from the occluded source only graze the

surface, hence £, = F.

OBSERVATION 6.5. When an attached shadow boundary occurs on a smoolh surface, il is

marked by continuous image irradiance.

Again, the second quantity that we consider is the shading flow orientation, and focus

is still on continuity. The shading flow orientations, on the respective sides of an attached

23trickly speaking, a discontinuity occurs only if the hidden light is a point seurce and if there is no stniospheric
dispersion (seec App. D). The size of the image curve detectors defines a notion of seale. This seale relaxes the
previously stated condition to allow light sources which are somewhat spatially extended and some limited amount of
blurring due to atmospheric dispersion,
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6. INTERPRETATIONS OF DISCONTINUITIES

shadow houndary, are given by:

L. 2N
tanf = 9y )
an L-%N

L, 2N
t 93 = #o
an Ls'%N

Just as for the cast shadow boundary case, in general the shading flow orientation differs
on cach side of the shadow boundary. Again, one should note that in an image of a scene,

coincidental alignments can occur at some isolaied points along the boundaries.

OHSERVATION 6.6. An alleched shadow boundary is generically marked by a discontinuity

in the shading flow field.

Thus, the signature of the cast and the attached shadow boundaries differ by their

image irradiance discontinuity,

1.2. Change in Reflectivity. Changes in reflectivity occur when the material prop-
criies change. If we consider a surface for which the reflectivity changes abruptly, the change
will occur along a curve. Let p; and pg be respectively the albedo on the lighter and darker
side of that curve.

Now, we examine the behaviour of the image irradiance on both sides of the curve
where the reflectivity changes, 1If the image irradiance on the lighter side is denoted as Ej,
then the image irradiance on the darker side is given by:

B, = PR .
pi

If the surface is illuminated, then By < Fj since pg < p;. Hence, another confirmation of

an intuitive result.,

OBSERVATION 6.7. A change in reflectivity is marked by a discontinuity in the image irra-

dinnce.

The orientation of the image irradiance gradient has a different behaviour. Since it is

independent of the albedo,

tanfy = tanf, = -_a_ :
L5

the orientation of the image irradiance gradient is continuous where only the reflectivity

changes.
OBSERVATION 6.8. A change in reflectivity is marked by a continuous shading flow field.
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6. INTERPRETATIONS OF DISCONTINUITIES

1.3. Occlusions and Other Surface Discontinuities. The difference in the image

irradiance at surface discontinuities is given by the following:
E—FE =pAL-(N-N")

The surface orientations on each side of a surface discontinuity (N, N’} are not related,
hence N — N’ is usually not equal to zero. Since the illumination direction is not related to

N — N/, the dot product L - (N ~ N') is also usnally not equal to zero.

OBSERVATION 6.9. Surface discontinuilies ave generically marked by discontinuitics in the

image irradiance.

Note that the occurrence of a point, somewhere along an occlusion, for which L -
(N — N’) = 0 is expected. For a generic situation, this point marks an inversion of contrast;
Fig. 5.28 provides two examples of such points.

For the shading flow field, the consideration that the surface orientations (and its

derivatives) on each side of a surface discontinuity arc not related, yields the following
observation.

OBSERVATION 6.10. Surfuce discontinuities are usually marked by discontinuitics in the
shading flow field.

Surface discontinuities occur when one surface partially occludes another. In such a
case, when the albedos of the two surfaces are different, a change in albedo occurs at the
same image location as the occlusion. The same example can be reworked flor lighting
conditions; in this case, the front surface could occlude some light sources from the back

surface. Again, a change in lighting condition occurs at the same image location as the
occlusion.

OBSERVATION 6.11. At surface disconlinuities, changes in albedo and lighting conditions
often occur. These are not due to e coincidental alignment, these are rather duc lo a

commaon cause.

2. Summary of Resultfs

The results obtained for generic surfaces are summarized in Table 6.3 (printed in bold-
face). By bringing the previous observations together, we get the heginning ol an answer
to our question. At least in some circumstances, we can deter mme which scene parameters

change abruptly from the geometric properties of the image.
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6. INTERPRETATIONS OF DDISCONTINUITIES

dise. | disc. probable interpretation characteristic
int. | § | surface albedo lighting
no no | smooth constant constant
smeoth parabolic constant shadow bound- | parallel flow field

ary (attached)

no | yes | smooth constant shadow bound-
ary (attached)

yes | no | smooth abrupt change constant
smooth parabolic constant shadow bound- | parallel flow field

ary (cast)
aligned parabolic — — parallel flow field

surfaces junction

yes | yes | smooth constant shadow bound-

ary (cast)

discontinuous — —_

TasrLe 6.3. This table shows the relations between image discontinuities and scene
discontinuitics. ‘The shading flow field S(z, ) is perpendicular to the normalized
encliont § oy B

gradient intensity ik

VI

Tl
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OBSERVATION 6,12. The different discontinuily signatures allow us to distinguish occluding

boundaries from abrupt albedo changes or from atlached shadow boundaries.

For generic surfaces, there is only one ambiguity that cannot be resolved prior to shape
estimation. Discontinuous surlaces and cast shadow boundaries on a smooth surface cannot.
be distinguished. The interpretation is nevertheless trivial once the surface shape is known
(which happens in stage 2 of our process, see Chapt. 9).

Non-generic surfaces such as parabolic surfaces® or planar surfaces introduce more
ambiguities. They have however characteristic shading flow fields that allows us to sort
them out.

Parabolic surfaces produce parallel shading flow ficlds and, furthermore, the orientation
of the field is only dependent on the geometric aspect of the surface: this leads to the

following consequences.

e Although the attached shadow boundary no longer exhibits its shading flow field
discontinuity, the magnitude of the gradient remains discontinuous along a line par-
alle! to the flow. It is thus possible to distinguish it from a smooth surface of uniform
albedo under constant illumination condition.

e The cast shadow boundary and discontinuous aligned parabolic surfaces no longer
exhibit a discontinuity in the shading fiow ficld. But again the magnitude of the
gradient remains discontinuous along a line, this time parallel to intensity discon-
tinuity which for the cast shadow boundary’s case is not necessarily parallel to the
shading flow field.

- These results are also summarized in Table 6.3.

Planar surfaces always produce null shading flow fields, hence they also generate am-
biguities. It is not possible to distinguish between an abrupt change in albedo, a shadow
boundary?, and a surface discontinuity where only the surface orientation changes.

The ambiguities introduced by parabolic surfaces do not completely prevent the in-
terpretation of the geometric structures of the image. There is always some characteristic

shading flow field where these ambiguities occur. Qur analysis can be carried everywhere

else.

2A surface is said to he parabslic if one of its principal curvatures is null; a surface is said to be planar if hoth
principal curvatures are null.

40nly the cast shadow boundary can occur on a flat surface, an attached shadow boundary involves i surlace
curving away from a light source. -
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disc. | disc. | disc. probable interpretation characteristic
VI | int. | § |surface albedo lighting
1o no no | smooth constant constant

yes | no no | smooth parabolic constant  shadow bound- | parallel flow field

ary (attached)

‘TaBrLe 6.4, This table shows other relations hetween image discontinuities and
scene discontinuities,

At least one such ambiguity can be resolved. An attached shadow boundary on a
smooth parabolic surface of constant albedo does not demarcate itself from a smooth surface
of constant albedo under constant lighting condition, given the image geometrical structures
identified. thus far. We examine the behaviour of the image irradiance gradient magnitude

near an attached shadow boundary. It is given by:

2 d d

d g ..\
-+ ((2 AL - /\(Q)L(o)) . %N) (I\{O)L(g) . BTJN)) .

Sinee AL > AgyLgy and AgL(gy > 0, the magnitude of the image irradiance differs from

v 2

= |VE

each side of the shadow boundary.

OBSERVATION 6.13. An allached shadow boundary is marked by « discontinuity in the image

irradiance gradient magnitude (cven for a parabolic surface).

The discontinuity of the gradient magnitude lifts the ambiguity as shown in Table 6.4,
Image curves capturing this type of discontinuily can also be extracted from the image
using logical/lincar operators [66]).

We conclude this chapter by stressing the usefulness of the geometrical structures of
the image — the shading flow field and the tangent field used together, not only on their ;
own — for the understanding of the scene. A lot of interpretation can be carried out prior

to any shape from shading computation.
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THE SCENEL BUNDLE APPROACH



CHAPTER 7

The Scenel Bundle Approach

Having developed the notion of a shading flow field and discussed several of its properties,
we now present an approach to inferring shape from it. The approach is motivated by
modern notions of fibre bundles in differential geometry [120]. It provides a solution to
the generalized shape from shading problem that is posed as a coupled collection of “local”
problems, the solution to each of which is that local scene elemont (or scenel!) that captures
the local image properties, and which are then coupled Logetl‘ll't\e"r to form global piecewise
smooth solutions.

In this chapter, we present an outline of our generalized shape from shading approach
and then we briefly introduce fibre bundles. We then establish the relationship between
fibre bundles and the geometric construction on which our approach is based. The struc-
ture of libre bundles is used to provide a clear picture of the scene’s model space and its

characteristics.

1. The Outline of the Scenel Bundle Approach

We are essentially considering the generalized shape from shading problem as a coupled
family of local problems. Given the formal specification of a local scene element, our
approach has two requirements:

(i} a mechanism for inferring the scene element from the image (or more precisely, from

the image geometric structures);
(ii) a mechanism for the local to global transition, i.e. for sewing the local scene patches
~together in a consistent fashion.
We formilate a geometric construction to structure these mechanisms and we illustrate it
in the IMigs. 7.30, 7.31, 7.32, and 7.33.

The local scene model comprises a local surface model and a local lighting model.

These models interact to produce the geometric structures of the image (see Fig. 7.30).

This relationship provides the basis for the local shape from shading inference.

Vel Pixel, voxel, ... scenel.
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THE SCENEL BUNDLE APPROACH

Al)

v

(x,y)

FIGURE 7.30. Depiction of an abstracl scene element, or scenel, corresponding to
an image patch (A). The scenel (B) consists of a surface patch, described by its
image coordinates, surface normal, and curvature. lts material properties (albedo)
are also represented. Finally, a virtual light source completes the photometry.

7



7.

THE SCENEL BUNDLE APPROACH

Yoy

icurs 7.31. Depiction of a Scenel Fibre over a pixel of the image. At each point
in the image there are many possible scene elements, or scenels. Each of these
scencels is depicted along a fibre, or vertical space above cach image coordinate. We
tag a confidence measure to every scenel. This confidence measure indicates how
well the scenel matches the local geometric properties of the image.
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.

L, Ny

FI1GURE 7.32. Depiction of a Scenel Bundle over an image. The union of scenel
fibres over the entire image is called a scene! bundle. The shape from shading
problem is formulated as determining sections through the scenel bundle. Such a
section is depicted by the shaded scenels, and represents a “horizontal” cross-section
across the bundle. Scenel participation in a horizontal section is governed by surlace
smoothness and material and light source constancy constraints.
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Al)

B.)

the osculating
paraboloid

S(u,v)

IIGuike 7.33. lllustration of the compatibility relationship for scenel consistency.
Two scenels are shown on the fibre at image location (2, y'), and are evaluated
against the scenel (1) at (z,y). The surface represented in scenel,, is modeled by
the osculating paraboloid, and extended to (z',3'). It is now clear that one scenel
(4') at (', ') is consistent, because its surface patch lies on this paraboloid and light
source and albedo agree. The other scenel (f) is inconsistent, because its surface
docs not match the extended paraboloid. Such osculating paraboloids are used to
simulate the parallel transport of scenel,r v onto scenel, .
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Typically, the local geometric structures from the image are consistent with an equiva-
lence class of local scene models. This class of paossible scene models becomes the building
block of a geometric construction (see Fig. 7.31).
The next step is to consider the interaction between the scene models at dilferent
locations. For each pixel location, a class of local scene models is inferred from the geometric
structures of the image (see I'ig. 7.32). The interaclions arc the local constraints that we
have described in Chapt. 4.
The coupling between the local scene models dictates a consistency. ‘velationship over
them (see Fig 7.33). This consistency relationship derives from two principle considerations:
(i) A SURFACE SMOOTHNESS CONSTRAINT, which states that the surface normal and
curvatures must vary according to a Lipschitz condition between pairs of scencls
which project to neighbouring points in the image domain. ‘I'his notion is subtle
to implement, because it involves comparison of normal vectors following paralicl
transport to the proper position (see [117]).

(ii) A LIGHT SOURCE CONSTRAINT, which states that the virtual light source is constant.
almost everywhere for pairs of scenels which project to neighbouring points in the

image domain.
OBSERVATION 7.1. The nature of the consisiency relationships is purely geomelric.

The consistency relationships do not depend on the image, they depend only on the

pairs of scenels.

1.1. Informal Description of Scenel Bundles. While the fibre bundle construc-
tion is quite abstract, we use it in the manner shown in Figs. 7.30, 7.31 and 7.32, "This
formalism offers a natural association between cross-sections of a bundle and the problem
of shape inference. It provides a powerful descriptive language to dea! with the relationships
between the base and fibre spaces.

We take the image manifold as the base space and consider the photometry for each
point on it. In a small neighbourhood arcound the point (x,y), the shading information
can be described by a combination of illumination model and surface model. Each of
these defines a scenel (Fig. 7.30) and the space of all possible scenels defines the fibre over
that point (Fig. 7.31). Together, the collection of scenel fibres defines the scenel bundle
(I'ig. 7.32).

The reason we introduce the bundle structure on scenels is Lo develop its topological,

as well as its geometrical structures.
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7. The SCENEL BUNDLE APPROACH

’ OBSERVATION 7.2. The scenel fibre must present a topology such that continuons surfuce

changes can be expressed by a continuous path in the fibre space.

We sezk a solution of the shape {rom shading problem as connected sets of scenels in
which neighbours are consistent; such a solution is called a cross-sgctTioN through the
scenel bundle. Foratally, a cross-section assigns a member of each fibre to each position in

the manifold.

OBSERVATION 7.3. Since the surface of a solid is orienicd, a consistent cross-scelion of the

scenel bundle must also be orienied.

A sub-bundle of the scenel bundle is the TANGENT BUNDLE, in which the fibres consist
of the tangent spaces at each point and the sections correspond to vector fields; Sander and
Zucker [117] previously used this bundle in their study of inferring principal direction lields

on surfaces.

2. The Local Representation of the Scene

We want the scene element or scenel to be a local representation of the scene which
conmprises an illumination model and a surface model. In this section, we describe the

information captured by the illumination model and the surface model.

2.1. The Illumination Model. A model of the illumination could provide, at every
point, the brightness of every incoming ray. The spectral composition of cach ray could also
be described. There are several other properties of light that could also be included, for
example polarity, coherence... Such a detailed model is not always necessary.

Restricting our shading analysis to the matte component of the reflection allows us to

use a simple local illumination model.
AssuMPTION T.1. Lambert’s reflectance law holds for each scenel patch.

We can limit our consideration to only two attributes:

(i) IuLumINATION: Denoted by A, the illumination is the scalar guantity that indicates
the amount of incoming light.
(ii} ILLuMINANT DIRECTION: Denoted by L, the illuminant direction is the nnit vector

that indicates from which direction the light is coming,.

These two attributes are quite simple to visualize when a single distant point light source

illuminates the surface patch. The model’s attributes, the illumination and the illuminant
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direction, correspond respectively to the illumination and the direction of a point light

source. But what if several distant point sources illuminate a single surface patch?

DEFINIFION 7.1, The virtual illuminant is aen imaginary distant point light source that
would provide the same surface patch irrediance as the actual light sources. Il comprises
two altributes, A and L, thal can be derived considering the linear property of Lambert’s

refleelance funclion,

Consider a set of M distant point sources that illuminate the surface patch. Let this set
be described by {AnLey : 1 €4 € M} where A and Ly;) are respectively the intensity and
the direction of the individual point light source. The attributes of the virtual illuminant
are given by:

AL = 3 AL

Now consider extended light sources iII:JminaLing the surface patch. Let A(L) denote
the brightness of the light ray that is incident from direction L. Using the linear property
of Lambert’s reflectance function to integrate the light rays coming from all directions in

the visible hemisphere #, we obtain:
AL = L j AL) L(Q) dQ .
T JH

The virtual illuminant thus provides a very convenient representation of the illumina-
tion as it allows complex illumination to be described simply by a scalar and a unit vector.

[t is a much more general model than that of a simple infinitely distant point source.

2.2. The Surface Model. The surface model provides a local description of what

reflects the light. We consider two distinct attributes of the surface model:

(i) MATERIAL PROPERTIES: The nature of the reflecting surface is what is meant to
be described here. We have chosen to only consider the matte component of the
reflection, thus the only quantity that we need is a scalar: the albedo p. Note that
we have also chosen to ignore the spectral composition of the light since our input
is a gray-level image. We would otherwise consider one scalar per colour channe! of
our sensor.

(ii) SURFACE SHAPE DESCRIPTORS: We use the first and second fundamental forms’ co-
cfficients to describe surface patches. The two principal curvatures (k1, &2) describe
the shape up to rotation. Two angles, slant ¢ and tilt 7, are needed to describe
the surface tangent plane orientation with respect to the viewer’s coordinate frame.

An additional angle ¢ is needed to describe the principal direction of the Darboux
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(a) (1)

Ficgure 7.34. The world coordinates define the axes (z,y,2) where x-y is the
image plane. We express the surface normal as a function of its tilt 7 and slanl o
N = (sinrsin o, cos 7sin g, cos o). (a) The rotation of Lthe frame from the = axis to
the normal N defines a local coordinate system (2, ¢, 2') where 2"~y is the surface
tangent plane. (b) The principal frame defines a different coordinate system in the
surface tangent plane: u-v. The rotation between these two coordinale systems

defines the angle ¢.
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7. THE SCENEL BUNDLE APPROACH

frame in the surface tangent plane (See Fig. 7.34). Other terms could be included
1o enriched this local description. In App. B, we examine such a possibility by
considering the local spatial variation of the principal curvatures and the principal

directions.

We seek a surface representation with the following features:
e any continuous change of the surface can be mapped by a continuous change of the
surface model parameters,
¢ any continuous change of the surface model parameters can be mapped by a con-
tinuous change of the surface.
- . . .
I'he representation of the surface orientation does not pose any challenge. The two

angles needed to orient the surface tangent plane in space describe the surface normal

N = (Ng, N, N;) = (costsing,sinrsino,cosa) ,

where ¢ is the slant and 7 is the tilt (Fig. 7.35). Continuous changes of the surface orien-

{ation correspond to continuous changes of the surface normal N and vice-versa.

X

Ficure 7.35. The normal vector N is defined in terms of two angles: the slant o
and the tilt 7. Since only visible surface patches are represented, the normal lies on
the unit hemisphere facing the viewer.

84



7. THE ScENEL BUNDLE APPROACH

The representation of the surface shape is not as straightforward. The geometry sug-
gests considering the Darboux frame representation, but this has difficulties with singular-
ities. Moreover, for umbilic surfaces?, the principal directions are undefined. Consider the

following example:
ExXAMPLE T.1. Consider the surface of a paraboloid described by
1
= - = (1:1.7;2 + ngyz)
2
where Ky > K. The parameter characterizing the principul divcelion, the angle ¢, takes

the value 0.

Moreover, if one smoothly changes the surface such that only principal curvaturc ko
varies, say Ka tncreases, there is an abrupt change in the value of ¢ as kg becomes greater

than k). The angle ¢ suddenly takes the value 5.

In light of these undesirable characteristics, we reject the Darboux frame representation

in its classical form.

We have designed a new shape representation that has the desired features. We show
here how it relates to the Darboux {rame parameters Ky, g, ¢. The two principal curvatures

(k1, k2) are mapped into a curvedness measure

c = l]laX(Ifﬁllal"‘Ql)

and a shape index measure

2c
These are analogous to Koenderink's curvedness and shape index [70], with the choice of

-1 (’\71 +h72)
S = cos —

norm for the curvedness and the spreading function for the shape index modified slightly.

OBSERVATION 7.4. The angles 2¢ and s are, respeclively, the longitude and latitude of «
spherical coordinate sysiem covering shape variciion in the tangent plane. As we slefed
previously, the angle ¢ represents the principal direction, while s values 0 and © represent

umbilic surfaces where principal directions are nol defined.
DEFINITION 7.2. The shape vector is a vector designed as follows:
K = (K,K3, K3) = (ccos(2¢)sins, csin(2¢) sins, ccoss)
where s is the shape index and ¢ is the angle giving the orientation of the principal divections.
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FigurE 7.36. Theshape of a surface patch is represented by K, the “shape” vector.
This vector lies in a three-dimensional space, B3, Its direction can be defined in
terms of iwo angles: ¢ giving the orientation of the principal directions in the
tangent plane and s = cos™! (£152) giving a shape index. The length of the
veclor can be defined as the curvedness ¢ = max(|&i1], [x2]}). The continuity of
this representation is its main interest — it is continuous even at umbilical points
where the principal directions are undefined. A convex umbilical point will be
characterized by K = (0,0, c}; a concave umbilical point, by K = {0,0,—¢); and a
planar point, by K = (0,0,0).
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This representation is interesting since nearby positions in the K space indicate smooth
changes in either the shape or orientation of a scenel and conversely, smooth changes in
either the shape or orientation of a scenel correspond to nearby positions in the K space.
Even though the principal directions are undefined for umbilic surfaces (thus, so is ¢), these
surfaces do not cause any singularity in X space as they are simply represented by the shape
vector K = (0,0, xc).

Another interesting characteristic of the N-K representation is that complementary
objects, whose surfaces match the solid as the mold of an abject, would be oriented in
the opposite direction. Such an object would also have opposite curvatures. The surlace
representation would thus be (N',K') = —(N, K).

EXAMPLE 7.2. Consider a sphere. It presents an umbilic convez surface patch fucing the
viewer that can be described by N = (0,0,1), K = (0,0,1). The mold of this surface would be
a spherical cavity. So the corresponding complementary pateh would be an umbilic concave

patch pointing away from the viewer. This patch could be described by N = (0,0,-1),
K=(0,0,-1).

ExXAMPLE 7.3. Now consider a flat surface with an arbilrary orientation. Any pulch on such
a surface can be described by N = (Ng, Ny, N3}, K = (0,0,0). The mold of this surface s
also a flat surface but oriented in the opposite direction. Any patch on this complementary
surface can thus be described by N = (=N, —-N,, —-N;), K= (0,0,0).

EXAMPLE 7.4. Finally consider a minimal surface® (other than the plane) with an arbitrary
orientation. Such a saddle surface patch can be described by N = (Ng Ny, Nz), K =
(ccos(2¢), csin(24),0). The mold of this surface is also a minimal surface with the opposile
orientation and the same shape bul inverted. The complementary saddle surface patch can
thus be described by N = (=N, =Ny, —N.), K = (—ccos(2¢), —csin(2¢), 0).

X

2.3. Fibre Bundles. Since we use fibre bundles as the framework for our approach,
we introduce the terminology in this section. The notion of fibre bundles is lundamental to

modern differential geometry [59].

DEFINITION 7.3. A bundle is a triple (E,m, B), where w : ' = B is a map. The space B

is called the base space, the space I is called the total space, and the map n is called the

2An utnbilic surface is characterized by a normal curvature which is independent from the direction; e.g. every
point on a sphere is umbilic, #; = K2 = -MJT.
3A minimal surface is a surface for which the mean curvature is null; i.e. 5; = —sg.

87



7. THE SCENEL BUNDLE APPROACH

praojection of the bundle. For cach b € B, the spuce ©71(b) is called the fibre of the bundle
over b € 13 [59].

DerNITIoN T4, A bundle (E', 7', B') is a sub-bundle of # : £ = B provided ' is «
subspuce of 12, B' is a subspuce of B, and ' = w|E': E' — B' [59].

DEFINITION T.5. A cross-section of a bundle (E,7,B) is a map s : B — FE such thal
ws = lg. In other words, a cross-section is @ map s : B — E such that s(b) € =~ (b), the

fibre over b, for each b € B [59).

Denoting the fibre F, an example is the product bundle ¢ = (B x F,#, B), which illus-
trates how the total space can be viewed as the base manifold crossed with the fibre spluace.
The bundle can be thought of as a union of fibres F(b) = #~1(h) for b € B parametrized by
B and “glued together” by the topology of the space .

2.4. The Scenel Bundle. The N-K space describes the surface model and provides
a representation with the desired characteristics. The virtual illuminant direction L and

the image position (z,y) complete the local scene description.

DEFINITION 7.6. The SCENEL is a nine-dimensional object, I; = {x;,y;, L, Ni, K;}, which
provides a hypothesis that the scene can be locally described by an image position (x;,3;),

an illuminant direction L;, a surface orientation N;, and a surface shape K;.

DEFINITION 7.7, The SCENEL BUNDLE 75 the triple (E, m, B), where the lotal space is the sel
of all scenels I = {I;,Z; € I}, the basc space is the image plane B = {(x:, yi), (=i, yi) € R?,
andx: E—= B|Z; = (2,4)

DEFINITION 7.8, For cach (z;,y) € B, the space ' (24, 4:) = {zivi Li, N, K; | L; €
L,N; € N,K; € K} is called the FIBRE of the scenel bundle over (z;,y;) € B.

OssirvAaTION 7.5. The scenel bundle is a trivial bundle, the total space is the product of

the base space and the fibre space.

OBSERVATION 7.6. In contrast, the Darbouz frame field is not a trivial bundle for which
visible smooth surfaces are cross-sections as the image plane does not define a global chart

Jor the Darbour frame.

The scenel bundle structure allows us:
(i} to relate the scene properties with the image properties in a purely local analysis;

(if) to connect local scene descriptions together in a way consistent with their geometry.
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In the next subsection, we examine the scenel bundie from both a topological perspective

and a geometric one.

2.5. Topology. We state the embedding space of the fibre: L = {£;,L; € 8%} =
LCS, N={N;,N;e¢ §?}= N C §2, and K = {K;, K; ¢ R% = K € R% Since 8% s
orientable, both L and N are orientable. And since RS is orientable, K is orientable. The

product of orientable spaces is also an orientable space, hence the following observation.
OBSERVATION 7.7. The scenel total space, T C R? x 82 x §2x R3, is oricntable.

We now turn to orientation of sections. Solids have surfaces that arc oriented manilolds.
We follow the convention that the normal points away from the solid. The projection of
the virtual illuminant direction on the normal has to be positive for the light to shine on
the surface.

The scenel bundle Z = {z,y,L,N,K} is a trivial bundle over the base space, any
section s is a globally defined map =~! :._IR'2 — Z and thus constitutes a global chart for

visible scene 7! (R?). 2-Manifolds with zlobal charts are necessarily orientable [21].

OBSERVATION 7.8. Any conlinuous cross-secltion of the scenel space constitutes an oriented

manifold.

The scene description that constitutes a solution to the shape rom shading problem
is a viewer centered description. Only one side of a surface is visible. - Non-orientable
surfaces such as the M®bbius band, do not pose any special problems. T'he problem of global
non-orientability does not arise since such surfaces are never entirely visible,

The scenel bundle topology thus provides a weak constraint on the compatibility be-
tween scenels. The orientation of a scenel bundle’s cross-section must. be maintained. The
Jacobian determinant of the coordinate transformation between compatible scenels must,
always be positive. If we consider two visible surface patches, compatibility requires that:

e for both surface patches, the inner product of the normal and the viewer’s direction
be of the same sign (positive);
o for both surface patches, the inner product of the normal and the virtual illuminant’s

direction be of the same sign (positive).

OBSERVATION 7.9. The scenel bundle, T = {z,y,L,N,K}, possesses a topology, (x,y) C
R? L C 8% N CS?% K CR? consistent with the lopology of the space of surfaces.
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. This observation is important as it validates the relation between equivalence class and
the Voronoi cell. The neighbourhood in the fibre space carries a meaning of “closeness” in

the scene domain.

2.6. Geometry. By looking al the geometry of the scenel bundle, we establish an
even more restrictive condition for the scenel compatibility.

Let I = {Q1:R? = R|Q;(z,2) > 0} denote the space spanned by the first fundamental
forms, and [l = {Qp : R?2 =5 R | Qu(z,z) 2 0} denote the space spanned by the second

fundamental forms, where @ denotes quadratic forms,

11 2

21 {22

Qz,z) = &
Let Nt = {(Nz, Ny, N;) C N | N; > 0} denote the space of visible surface orientations.

ProrosimTionN 7.1. Given a scale, there ezists a contlinttous mapping from the visible NT-K

space into the product space | x 11 of first and second fundamental forms.

Proof: From the normal vector, N; € N, we can define two vectors in the tangent plane,
X' = (1,0, ——%—:) and Y' = (0,1, —%,Jf). These tangent vectors are defined for all visible sur-
face, i.e. N: > 0. The inner products (X', X, (X', Y"), and (Y, Y’) define the coefficients

of & first fundamental form,

(Xl’ XJ’) (Xf’ Y!)

) = gt
@l = ey vy

Thus, we can define a mapping € : (N, K) = 1.
In the previous section, we have expressed a continuous mapping from &y, K2, ¢ to K.
Now, we establish the existence of an inverse mapping, from K to &;, k9, ¢. The principal

curvatures Ky and &3 can be recovered from a shape vector K as follows:

o = c ifK3>0
: ¢+ 2K3 otherwise
—c+2K3 fK53>0
he =

—c otherwise

where ¢ = /K?4+ K+ KZ . These mappings are continuous even when Ki = 0, for
K3 0% and K3 — 0™, both yield k; = ~ky = c.
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The principal frame is defined with the normal and the principal directions. The latter,

when defined, are represented by the angle ¢ which can also be recovered as follows:
. | S AP
¢ = Eta.n V(K KS)

To get the second fundamental form coeflicients, {i},qib, ¢lL} in terms of the firsts,
{g},,q)s, 622}, and K, we use the [ollowing system of cquations:

1l 112
Ti1f22 — N2

G110 — f1{22
Baath — 2ala0ih + ol 0
4110k — dl’
0 = (al2adh — abyal}) sin? o+ (g} obb — adoall) sin deos o + (ol — aluelh) cos® o
where k14 ko = 2K3 and K1k = ¢ (2| K3} — ¢). When the angle ¢ is undefined, Ky = Ky =

0, the third equation reduces to:

RikKgy =

K1+ k2 =

VTR | PR
T )

Thus, for visible surfaces, there exists a continuous mapping (N+,K) — (1,11). O
OBSERVATION 7.10. From a cross-section of the sub-bundle {z,y,N*, K} C Z, the surfuce

can be recovered up to position if Cartan’s equations of compuatibilily are satisfied.

This observation follows directly from Prop. 7.1 and the Fundamental theorem of sur-
faces [27,70]. It suggests the basis for the scenels’ compatibility relationships that we de-
velop in Chapt. 8.

We have only a weak topological constraint on the virtual illuminapt. The stronger
constraint that we will impose derives from the underlying assumption ol the shape [rom

shading problem.
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CHAPTER 8

The Scene Element

The key idea in the step of inferring shape from a shading flow field is to consider it as a
coupled family of local problems. Each of these problems is a “micro”-version of the shape
from shading problem in which a lighting and a surface model interact to produce the
locally observed shading structure. We call each of these different models a scene‘elgl.nent,
or secenel. Whereas cach scenel deals with the local consistency with the data, the coupling

between scenels on different fibres provides the means to assure global consistency.

1. The Discrete Scenel Space -

On a digital computer, both the data and the result of the computation are represented
by a finite number of bits. Our data, the intensity image, is represented by a function for
which both the domain and the range are discrete values. This affects any attempts to
recover shape from shading with such a device. A consequence is that quantities such as
the local orientation of a contour can only be derived with finite precision [66], thus limiting
the precision of the shading flow field as well. We acknowledge this and exploit it Lo our
advantage.

An analogy can be drawn with significant digits in experimental data — we rarely
wrile more than one non-significant digit when an error is associated with a measure (e.g.
gravitational acceleration is equal to 9.8 +0.1m/sec ). It is in this sense that we are using

the term “precision”.

OusERVATION 8.1. We can model the scene with only a finite number of different scenels

without affecting the precision of the result.

1.1. The Quantization of the Scenel Attributes. To model the scene by a finite

number of different scenels, each scenel attribute is quantized:



(i)

(ii)

8. THE SCENE ELBEMENT

IMAGE PoSITION: The image pixels arc given as a set of discrete values of r and y
position.

[LLUMINATION DESCRIPTORS: Our illumination model comprises two components
describing a virtual light source:

(a) The possible virtual light source directions map onto a unit sphere. We sample
this sphere as uniformly as possible to get a discrete set ol virtual illuminant
directions; see Fig. 8.37. In viewer-centered coordinates, these unit vectors are
given as

L = (Lz Ly L2)
{b) The illumination from the virtual light source A is not represented in Lhe scenel

description as it is not used in our shape [rom shading analysis.

FiGurg 8.37. The discrete representation of a unit vector such as the ilhnmination
direction starts with a sampling of the unit sphere. Thesampled points on the sphere
are chosen to be regularly spaced if possible or something close to il otherwise. These
points form a set that defines a Voronoi tessellation. The Voronoi cell consists of
every point on the sphere that is closer to a given sampled point than any other. In
our representation, the vector corresponding to a sample point represents the class
of vectors corresponding to the Voronoi cell.

SURFACE DESCRIPTORS: In the previous section, the surface was said to be repre-

sented by the albedo p, the normal N, and the shape vector K.

(a) The set of all normals forms a unit sphere. The surface of this sphere is sampled

as uniformly as possible to derive a discrete set of normals. In viewer-centered
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coordinates, these unit vectors are given as
. N = (N, N,N.) .

Of these, only the ones in the hemisphere facing the viewer are used; the others
are not visible. '

(b) Although the shape vector lies in R®, we prefer to quantize it as if it was
lying in 82 x R*. The shape vector can be decomposed in a magnitude (the
curvedness c) and a direction (a unit shape vector K). The set of all unit shape
vectors also forms a unit sphere. Again, by sampling the surface of the sphere
uniformly we derive a discrete set of parameters which cover all variations
of smooth, oriented shape in the tangent plane. Augmenting this with the
curvedness index provides a complete, discretely sampled shape descriptor. In

the K space, these unit vectors are given as
K = (I, K, K3) .

(c) The albedo of the surface p is not represented in the scenel description, As with

illumination, the albedo is not needed [or our shape from shading analysis.

1.2. The Set of Scenels. Given the discrete sampling of the scene attributes as

defined above, we derive a set of scenel labels
T ={z,y,L,N,K| (z,y) € image, L € 8%, N €8% K € §*x Z}

which represent all potential assignments of these scene attributes. Thus each { represents

the hypothesis that the scene can be locally described by the scenel (z;, yi, L;, N, Ki).

DEFINITION 8.1 (ALTERNATE). Fach scenel is viewed us the hypothesis that, al the given
image position, the scene can be locally described by a surface of a given shape, oriented in

a given direction, and illuminaled from a given direction.

Recall that the total space of the scenel bundle is a product bundle composed of the
image plane (a finite set of pixels) as the base space and the scenel fibre. The scenel space
is thus quantized. A sceune! 7 is meant to model the equivalence class of local scene whose
descriptions lie “closer to” it than to any other scenel 5, The collection of all such local
scene descriptions forms the Voronoi cell of scenel 7. The scenel space is thus depicted as a

Voronoi tessellation corresponding to our chosen set of scenels.
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The Voronoi tessellation implies that the scenel space is a metric space. Consider Lhe

mapping ¢ :Z X I — R such that:

Q(IHIJ) =

2 .. . 2 - " .. o [ 2 2
(m_,-— m;)2 4 (yj _ y;)2 . (co:, 11(31:; N,)) . (cos I(KJ. K,)) 4 (cjgcc;)

AvK

where AvN, AvK| Ac are the average distance between neighbouring scenels for the given
attribute. Since

v

0,

0 =1,

2 (Z; L)

< e(@inI) + (2L

G
I

the mapping ¢ (Z;, Z;) defines the distance. Each local descriptor is treated as an indepen-
dent dimension and is normalized by the descriptor’s quantization. The image coordinates,
2 and y, are already given in unit pixels. '

To relate the scenel bundle approach to the relaxation labelling paradigm, we consider
each scenel as a node of the relaxation network. Since the scencl hypothesis can be cither
true or false, we associate to each node, two labels: TRUE and FALsE . We distribute a
measure p;(A) over these labels A € A for each scenel i. Since there are only two labels, it
suffices to explicitly represent one label as p;(TRUE } = p;(FALSE ). We choose to represent
only the TRUE label. This allows us to simplify the notation: p; shall be used from now on

to represent confirmation of the scenel hypothesis.

2. The Inference of the Scenel Fibre

Our approach is data-driven. We have already observed that the scenels cannot be
directly derived from the image irradiance if we allow the surface albedo and illumination
to vary. We have to consider the local geometric structures of the image that do not, depend
on the surface albedo and illumination: the tangent field and the shading flow field.

Thus, from the initial data, a static intensity image, we extract relevant image geometric
structures. These, in turn, become our data. For each image position, we infer the set of
possible scenels that can account for these geometric structures. Hence, al each image

position, the local geometric structures yield a sampling of the fibre of possible scenels.
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When we examine the relation between the local image structures and the scenel, there
are two important considerations to keep in mind.
(i) Since the scenel represents a range of scene descriptors, a scenel can account for
several different image geometrical structures.
(i) Furthermore, several different scenels can account for the same image geometrical
structures.
In this section, we show how to assign the confidence measure to a scenel given the available

data.

DerINITION 8.2, The confidence measure associaled to each hypothesis reflects the compal-

ibility of the corresponding scenel and the observed structures in the image.

At the onset of the shape from shading problem, the confidence measure’s assignment
is pixel-wise. The discrete nature of both the scenel represenﬁation and the image local
geomelric properties, allows us to build a look-up table to capture the link between the
image local gecometric properties, T = T*UT!, and the confidence measures for the scenels.

It takes the form of a look-up table in which, to build this look-up table,

(i) we need lo establish first the relationship between the scene descriptors and the

geometrical structures of the image (see below);

(ii) we over-sample the scenel space as uniformly as possible and tag each sample by
marking the Voronoi cell to which it belongs;

(iti) then for each sample, we compute the expected geometrical image structures and
add the sample to a dafa bin corresponding to the appropriate image geometrical
structure Voronoi cell — this takes the form of a histogram whose dimensionality
reflects the dimensionality of the image geometrical structures ¥ = T* U T

(iv) the weight p; associated with scenel i will reflect the ratio of the samples tagged
with 7 in the appropriate data bin over all samples tagged with 7.

For every given image geometrical structure, Ty, a list of possible scenels (each with an

assoctated weight) is provided.

2.1. The Local Image Structures generated by the Scenel. To generate geo-
metrical image structures from the scenel, we consider the lighting condition and the surface
locally described by the scenel i. We choose to locally approximate the surface model by

a paraboloid because it allows us to fully exploit the information provided by the scenel
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(z:, yi, Li, Ny, K;). The paraboloid is a curved surface that obeys the following local para-
metric form:

(u, v, —;1?: Ky ud - -12— Ko v2) ,
where the u and v are the parameters corresponding respectively to the two principal
directions, and &, and xy correspond to the two principal curvatures at the origin.

Note that this approximation can find its ancestry in Pentland’s local shading anal-
ysis [31,106]. In his algorithm, Pentland used the sphere (an umbilic surface) to locally
approximate the surface shape. The paraboloid is a generalization over the sphere that
enjoys important qualitative differences. In particular, it can model both elliptic and hy-
perbolic surfaces as x; and sz can take positive and negative values.

There are a few different coordinate systems that we consider when establishing the
relation between scenels and the local image structures.

e The viewer’s coordinates (x,y,z)} are defined such that the vector (0,0,1) points
toward the viewer. Note that, for image formation, we will assume orthographic
projection, hence, the image lies in the x-y plane.

e The surface patch local coordinates (e;,ep,es) are defined such that, al a given
point, the vector (0,0,1) indicates the direction of the surface normal, and the
vectors (1,0,0) and (0, 1,0) correspond to the surface principal directions.

e The principal frame field (f1, fz, f3) is defined such that, at every point, the vector
(0,0,1) indicates the direction of the surface normal, and the vectors (1,0,0) and
(0,1, 0) correspond to the surface principal directions.

The viewer’s coordinates and the surface patch local coordinates are related by the

linear transformation matrix:

& o)
M = e(ly) egu) egf")

e(lz) L’(;) C:(j:)

where eﬁ”’,eﬁ”’,e?’ are respectively the z,y, z components of the i** veclor of the surface
patch local coordinate system. This transformation is only a rotation matrix. Hence the
inverse of the matrix M is simply its transpose.

The matrix M can be recovered from the scenel i descriptors, more precisely, from the

normal N; and the shape vector K; as follows:
M = M,M,

97



8. THE SceENE ELEMENT

where M, describes the rotation depicted in Fig. 7.34(a) and M, describes the rotation

depicted in Fig. 7.34(b). These matrices are related to the scenel descriptors as follows:

NgNz+N2 N N Nz“’N.tN T
X, Y) N; ﬂ——r”'NI+Ny N v Y TINZ N,
— — NaNyN:=NzN, N2ZN.+NZ
M, = | X! ¥} N, | = S A LT Ny
T Y x ¥
X, Y, N ~N; -N, N,
and
cos¢p —sing 0
M, = sing cos¢ O
0 0 1

where ¢ = %Lan" (-}ﬁ)
Now that we have shown the relation between the paraboloid model and the scenel, we

use this model to derive the expected shading flow field and the expected edge map.

2.1.1. The Ezpected Shading Flow Field. Given a sample of the scenel space, we want
to compute the shading flow field. The relationship between the scene descriptors and the

shading flow field is based on the image irradiance equation:
I = pAL-N ,

where p, A, L are locally constant functions of (z,y), and N is a locally smooth function of
(z, ).
The orientation of the shading flow field # and the shading flow field’s normalized

distortion vector D can be derived from the first and second spatial partial derivatives:

tand = ﬁ- ;
I
1 Izz — Iyy
D = ~21,,
Y
Iz::c + Iyy

Using the paraboloid as the local surface model, we evaluate the first spatial partial

derivatives!:
I = pAL- (ef (= k1 f1) + € (= by fg))
Iy = pAL- (e} (= k1 £1) + €} (= ko )

!Since the point considered is the origin of the surface patch local coordinates, the components of principal
frame field (f;,f2,f3) are equal to (ey,e2,03).
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and the second spatial partial derivatives:

Inx = —pAL- (efef K2 4+ efel ».';’) fs
Iy = —pAL- (efel 6} + efel n3)
Iy, = —pAL- (eﬁ’c]{ K3+ elel h%) fa

As mentioned in Chapt. 4, the useful properties of the shading flow field are only
dependent on the scenel descriptors N, K, L — the product pA always appears in both the
numerator and the denominator and thus always cancels itself.

Hence, we have a relationship between the scenel description Z = {«,y,L, N, K} and
the shading flow field: T° = {:r, y, 0, 13}.

2.1.2. The Ezpected Fdge Map, Among the image curves that we extract {rom the
data, there are edges which corresponds to occluding contours. These occluding contours
are curves that lie in the scene domain. We exploitl three of their [eatures:

(1) Occluding contours lie on surfaces.

(i) At the occluding contour, the surface is perpendicular to the line of sight.

(iii) Occluding contours projected on the image plane form edges.

The occluding contour is a three-dimensional curve that can be represented in the
viewer’s coordinate system (z(t),y(t), 2(t)) or the local surface patch coordinate system
(u(t), v(£), w(t)) with the two being related as follows:

(2,90, 2(0) = M (), v(e), w(®)) -

If we consider again the paraboloid as our local surface model, the surface normal vector

is given in terms of a local surface patch coordinate system:

N = KU Ko U 1
(22 +r2 02 +1)7 (B +md 02+ 1) (62 ul + 63 02 4 1)3

Since at the occluding boundaries, the surface becomes perpendicular to the line of sight,

we express the normal vector in image coordinates.
N(;ryz) =M N(uvw)

And thus occluding boundaries are characterized by the z component of the normal vector
being null.
N(..) _ E'i’ Kpu -+ Cg Ko U+e§

(k% u2 + K2 02 + 1);—
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which provide a first constraint to define the curve describing the occluding contour.
(8.1) e kyu(t) + esrav(t)4+e3 =0

Another constraint on the curve describing the occluding contour is that it lies on the

paraboloid, thus

1 1
w(t) = — 5 mu(t) - 3 rav?(t) .
We can project this curve on the image plane and obtain a planar curve x = (:r(t), y(t.))

that describes the corresponding edge:

z(t) = ef u(t) + €3 v(t) + €3 w(t} ,
y(t) = e¥ u(t) + € v(t) + e§ wit) .

Successive differentiations by the arclength yield the tangent vector and the curvature
vector, The tangent vector of this curve is given by:
dx dx dt

t = (sin(ﬂw),cos(ﬂm)) === T

where s is the arclength parametrization. And the curvature vector of this curve is given
by:

k:r;n=£.

For every sample, we consider whether or not an occluding contour could be visible
al the same pixel location. An occluding contour is said to be visible at the same pixel
location if the corresponding image curve can pass through the pixel in which the origin of
the paraboloid model lies.

Hence, we have a relationship between the scenel description Z = {z,y,L,N,K} and

the tangent field corresponding to occluding contours: Y* = {m, y, 6, u(”}.

2.2, The Labelling. The discretized scenel space used for our implementation is
detailed in App. E. The question of how coarse or how fine to sample cach of the dimen-
sions of the scenel space is subtle, as there are opposing considerations, For computational
considerations, the fewest scenels possible is preferable, whereas for representational con-
siderations, the more scenels the better. However, because of the limited precision of the

data, there is a limit on the precision of the scenel representation.

OBservaTION 8.2, This number of scenels will be dictated by the discriminabilily of the

scenels given the shading flow field.
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In Fig. 8.38, we illustrate the variation of the expected shading fow that occurs for scene
descriptors within an equivalence class. The discrimination between these is impractical

because of the limited precision of the shading flow field representation.
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FIGURE 8.38. This figure illustrates the variation of the expected shading flow lield
within an equivalence class of scenels. In (a), (b), (c), the normal changes. "There
is an angle difference of approximately 10° between any pair of normals shown. In
(d), (e), (I), it is the shape vector which changes. There is an angle difference of
approximately 20° between any pair of shape vectors shown. 'Fhe normal and shape
vectors used are depicted in Fig. 8.40. Thc curvedness is 0.15 and the light source
is (0.3035, 0.5257, 0.7946).

In Fig. 8.39, we illustrate the variation of the expected shading flow that occurs for scene
descriptors belonging to neighbouring equivalence classes. The discrimination between these

is possible even given the limited precision of the shading flow field representation.
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Figurl 8.39. This figure illustrates the variation of the expected shading flow field
for neighbouring scenels, The normal changes and all the other scenel descriptors
remain constant. The normal and the shape veclors used are shown in Fig. 8.40;
the curvedness is 0.15 and the light source is (0.3035, 0.5257, 0.7946). There is an
angle difference of approximately 30° between the normals of (a) and {c}, and an
angle dilference of approximately 20° between the normals of (b) and either of (a)
or (c).

The expected shading flow field computed from a scenel’s descriptors is projected on
the discretized shading flow field space. The discretized shading flow field must yield back

the scenel.

3. The Consistent Scenel Labelling

Up to now, we have dealt with the scenels’ compatibility with the local geometric
structures inferred from the image. In this section, we consider the interaction of scenels

on neighbouring fibres, thereby making the transition from local to global.

3.1. The Solution: a Cross-Section of the Scenel Bundle. Viewed globally, the
solution we seck consists of sections in which a single (equivalent) light source illuminates a
collection of surface patches with constant material properties but whose shape properties
vary smoothly. The above constraints are embedded into a functional, and consistent sec-
tions through the scenel bundle are stationary points of this functional. More specifically,
the constraints arc expressed as compatibility relationships between pairs of neighbouring

estimates within a relaxation labelling process.
S = z riibi
JEN()

102



8. THE SCENE ELEMENT

(a) {(u)

FIGURE 8.40. These figures show the tessellations of (a) the norinal space and of ()
the shape vector space. Represented as black dots of various sizes are the normals
and the shape vectors used to illustrate the variation of the shading fow wilhin
an equivalence class and between equivalence classes. We show as while Voronoi
cells (in the normal and the shape vector spaces), the equivalence class from which
examples are taken for Fig. 8.38. In that figure’s first row, (a)-(c), the normal varies
taking the values indicated respectively by, the smallest, the second sinallest, and
the third smallest dot depicted in the normal’s white Voronoi cell, The shape veclor
remains constant, it keeps the value indicated by the largest black dot in the shape
vector’s white Voronoi cell. In the second row, (d)-{f), the shape veclor varies
taking the values indicated respectively by, the third smallest, the second smallest,,
and the smallest dot depicted in the discretized shape vector’s while Voronoi cell,
The normal remains constant, it keeps the value indicated by the largest dot in
the normal’s white Voronoi cell. In Fig. 8.39, we show examples of shading lNows
from neighbouring equivalence classes. We use two inmmediate neighbours along the
normal dimension (the Voronoi cells shown in light gray). The normal varies, it
cortesponds to the largest dot in the white and light gray Voronoi cells. The shape
vector remains constant, it keeps the value indicated by the largest black dot in the
shape vector’s white Voronoi cell.

103



8. THE SCENE ELEMENT

T'he final labelling is selected such that it locally maximizes the average local support

Alp) = ZP{S:' = Z Z TPy .

i€l 1€l jeN(i)
Such a labelling is said to be consistent [58].

3.2. Compatibility between Neighbouring Scene Elements. As we mentioned
in Chapt. 7, the coupling between the local scenel problems dictates a consistency relation-
ship over them. This consistency relationship derives from two principle considerations:

(i A SURFACE SMOOTHNESS CONSTRAINT, which states that the surface normal and

curvatures must satisfy Cartan’s equation for pairs of scenels which project to neigh-
bouring points in the image domain.
(ii) A LIGHT SOURCE CONSTRAINT, which states that the virtual light source is constant
lor pairs of scenels which project to neighbouring points in the image domain.
For the relaxation labelling process, these translate into the following:

¢ A scenel 7 is compatible with the scenel { if they have the same virtual illuminance
direction L, and if scenel j's surface descriptors fall on scenel i’s extrapolated surface
at the corresponding relative position.

e A scenel j is incompatible with the scenel 7 if they have the same virtual illuminance
direction, and if there exists another scenel j', neighbouring scenel j along the fibre,
that better fits the extrapolated surface from scenel ¢ than scenel j. Observe that
this incompatibility serves to localize information along each fibre.

o otherwise a scenel j is unrelated to the scenel .

Using these guiding principles, we assign a value to the compatibility r;; between two
scenels ¢ and j. This campatibility will be positive for compatible hypotheses, negative
for incompatible hypotheses, and zero otherwise. In general, variation in rj; is assumed to
be smooth between nearby points in the parameter space Z. The process is illustrated in
Iig. 8.41.

We now derive the exact form of the scenel compatibility function from these principles.

Consider the paraboloid S;(w, v) such that the neighbourhood of S;(0, 0) is described by the
surface parameters of scenel i.

OBsERVATION 8.3. The paraboloid S;(u,v) is uniquely defined by the scenel i.
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i ; P SN
-~ “I|\\

the osculating
paraboloid

Fiqurg 8.41. [lustration of the compatibility relationship for scenel consisiency.
Two scenels are shown on the fibre at image location (z,4'), and are evalualed
against the scenel (7) at (#,y). The surface represented in scenel; y is modeled by
the osculating paraboloid, and extended to (2, y'). It is now clear that onc scenel
(7') at (2',y') is consistent, because its surface patch lies on this paraboloid and lighi
source and albedo agree. The other scenel (j) is inconsistent, because its surlace
does not match the extended paraboloid. Such osculating paraboloids are used to
simulate the parallel transport of scenely v onto scenel, 5.
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"I'he paraboloid provides a model for defining the parallel transport of the scenel on the
surface. The surface orientation in the scenel’s local coordinates is given by:
Ky Ko U 1

(k% u? 4+ w3 v2 4+ 1)':7, (k2 u?+ K202+ 1);—, (k3 u? 4 w3 U2+1)%

N(u, v} =

The principal curvatures and directions are obtained as follows:

£1 (1 + &3 v?)

H](u, U) = (1 + H-f n2 + h‘.% vz)

) w1k u?)

Ko(u,) = (14} u2+ k2 02) ’
dv K1KoUv
E(n,v} = T+

We find the point (z*,v*) for which the local descriptors (=7, ¥}, 5 K5 €f) of the
paraboloid S;(u,v) are “closest to” scenel j according to the distance measure, .

As we have said before, each scenel § defines a Voronoi cell. Each point in this cell is
closest to the scenel j than to any other scenel 5. So if the descriptors (2], yr, N7, K7, ¢f)
fall into the Voronoi cell of scenel j, then ry; is positive. If the descriptors fall inlo a
neighbouring Voronoi cell, then r; is negative. If the descriptors fall further, then ry; is
null. Figure 8.42 illustrates the desired behaviour for the compatibilities along a dimension,

such as the normal, which maps onto a unit sphere,

FIGURE 8.42. If the closest representation is the-Voronoi cell in white, this scenel
would have a strong positive compatibility (white), whereas its immediate neigh-
bours would have a strong negative compatibility (dark gray) and the compatibility
of the furthest neighbours would be null (light gray). -
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Building on the observation that the different dimensions of the scenel are independem,
we consider these separately to localize the compatible scenel in the fibre. Note that we
realize that it is not possible to localize the scenel along the curvedness dimension because
of the coarseness of its representation — therc are only three curvedness for onr imple-
mentation. The normal vector space and the shape vector space are the two remaining
dimensions. Both are defined on unit spheres, S2.

The quantization of the unit sphere leads usually to an irregular and anisotropic tes-
sellation. To avoid the relaied difficulties, we approximate the Voronoi cell by a disk whose
radius, ¢, corresponds to the furthest point in the cell for each of these dimensions. The
Gaussian, G¢, provides a measure over the equivalence class of objects. We use its second
derivative, G, to localize compatible measures in a given scenel dimension. This function,
with a sign reversal, mimics the desired behaviour for the compatibility; il is positive as
long as the point lies within the approximated Voronoi cell, it becomes negative il Lthe point,
lies outside of the approximated Voronoi cell, the inhibitory lobe being stronger for the

immediate neighbours. Hence, we shall build our localization functions as lollows:
N _ x U NY | KY e
QN = b, G () - i (+) Gx (+%) -Ges (45)

08 = s, 1) e (1)~ () i ) -

where

V5 = (w5 - 272+ (5 - 97)?
7}}’ = cos™! (N; — N7)

733( = cos™! (KJ - K:‘)

o= -d

are the different components of the distance between the transported scenel and scencl j,
and the variances, C}\',C}.(, ¢, correspond to the Voronoi cell’s radius along the N, K, and
¢ dimensions respectively.

The function Qﬁ returns a positive value if and only il the extrapolated normal from
scenel 7 falls within the approximated Voronoi cell. This function will tend to take a small
value if in any dimension, there is a poor match between the scenel j and the descriptors
derived from the paraboloid S;(w, v) at the point (#*,v*). The (unction Q,lf behaves similarly
but consider the shape vector instead of the normal.

For scenels ¢ and 7 to be compatible, we require that both the paraboloid surface’s .

orientation and curvatures need to be within the cquivalence class defined by the scenel j.
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The scenels 7 and 7 are nol considered compatible if any of the normal or the shape vector
does not, match — e.g. if the normal does not match, the scenels shall not be considered
compatible regardless of how well the shape vector matches. To achieve this goal, we use

the logical/linear combinators introduced by Iverson and Zucker [65)].
DEFINITION 8.3. The logical/linear combinator A s given by:

z+y, if z>0A y>0;
sy = Y, it z>0 A y<0;
z, if 2<0A y>0;
z4y, if 2<0 A y<0.

The compatibility between scenel i and scenel j can be expressed as a logical/linear
combination of the normal’s localization function Q};‘-‘ , and of the shape vector’s localization
function, QEJ(

ri; = QN AQE

where ry; is positive if and only i both Q}}' and Q{f qre‘-pdéi'tive. Hence, the scenel is

localized in both N and K dimensions. .

Notice that these values depend only on'the relationship between scenel ¢ and scenel 7,
wlich are fixed and constant throughout the computation. Therefore, these compatibilities
can be calculated once and then stored in either a lookup table or as the weights in some

sort of network, .
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CHAPTER 9

Implementation

The general shape from shading problem as we have defined it is definitely not an casy
problem to solve. Inevitably our solution to it involves intense coniputational burden.
Our approach has the merit of being fully parallel and it is in principle well suited to
implementation on a massively parallel machine. This is preciscly what we have done. The
machine we have is a MasPar-1, it is a SIMD (single instruction, multiple data) type machine
with 2048 processors forming an toroidal array of 32 x 64 with 16 K-Bytes of memory per
processor.

We have found that the most severe constraint on the machine was its limited mem-
ory capacity. Even with small images (64 x 64), when computing the local support, the
number of possible scenels on each fibre is such that the number of pairwise combinations
exceeds the machine’s storage capacity. The relevant compatibility matrix elements cannot.
be all stored on the machine’s RAM. Hence the machine swaps its memory with a disk
which tremendously slows down the actual computation. This has severely limited our

experimentation.

1. Numerical Results

We have chosen only a few examples but we chose these to illustrate that our algorithm
can resolve the limitations and difficulties that were shown to be typical for the classical

shape from shading algorithms.

1.1. Abrupt Albedo Change. The first example that we ran to test our algorithm
was an image of a scene in which the albedo changed abruptly (Fig. 9.43(a)). It simply
consists of a sphere in front of a plane. This same example was used in Chapt. 3 when
we were exposing the limitations and difficulties related to classical shape [rom shading
algorithms (See Fig. 3.16).

We extracted the edge map using the algorithm of Iverson [66] and the shading flow
field using the algorithm outlined in Chapt. 5. These are shown in Fig. 9.43(b). The straigt

edges are interpreted correctly according to Table 6.3 as an abrupt change in albedo, since
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FIGURE 9.43. This test image provides an example of a shape recovery. We im-
plemented an algorithm using the generalized shape rom shading assumptions. An
ideal intensity image of a simple scene illuminated by a single distant point light
source but with an abrupt change in albedo (a) and the corresponding shading flow
ficld (b) are shown in this figure. The shape recovery is illustrated by the surface
normals {c). For display purposes only, thresholds are used to avoid cluttering the
figurcs with useless information and the resolution of the edge map and shading
flow field is decreased by two and the resolution of the surface normal is decreased

by four.
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a discontinuity in intensity is present while the shading flow field is continuous. The curved
edges that form a circle carry two interpretations since discontinuities in both the intensity
and the shading flow field are present:

(i) either they mark a cast shadow boundary;

(ii) or they mark a surface discontinuity.

While the artificial scene is not meant to be characterized by a change in lighting condition,
such interpretation is not incompatible with the image. The sccond interpretation is the
one which we intend to exploit as these edges mark in fact an occluding contour.

Our shape from shading algorithm yields the result shown in Fig. 9.43(c) after five
iterations. The visible surface of the sphere is accurately recovered as well as the illumination
direction of the light shining on it. The description of the back plane remains ambiguous
as multiple cross-sections of the scenel bundle are equally supported. Bach cross-section
indicates the presence of a planar surface which is accurate. The ambiguity (which cannot

be resolved) lies only in the planar surface’s orientation.

1.2, Multiple Light Sources. The second example that we ran to test our algo-
rithm was an image of a scene which is illuminated by two distant light sources (IPig. 9.44(a).
Again, it simply consists of a sphere in {ront of a plane.

As with the previous example, we extracted the edge map using the algorithm of
Iverson [66] and the shading flow field using the algorithm outlined in Chapt. 5. These
are shown in Fig. 9.44(b). The only edges in this example are the curved edges that form
a circle. Again, as in the previous example, they can support two interpretations since
discontinuities in both the intensity and the shading flow field are present:

(i) either they mark a cast shadow boundary;

(i) or they mark a surface discontinuity.
Again, while the artificial scene is not meant to be characterized by a change in lighting
condition, such an interpretation is not incompatible with the image. The second inter-
pretation is the one which we intend to exploit as these edges mark in fact an occluding
contour.

There are discontinuities in the shading flow field along a curved line. Since these
are not accompanied by intensity discontinuities, the curved line is correclly interpreted,
according to Table 6.3 interpreted as an attached shadow boundary -— the surface is thus

inferred to be continuous.
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FiGURE 9.44. This test image provides an example of a shape recovery. We im-
plemented an algorithm using the generalized shape from shading assumptions. An
ideal intensity image of a simple scene illuminated by two distant point light sources
{a) and the corresponding shading flow field (b) are shown in this figure. The shape
recovery is illustrated by the surface normals (c). The“zray levels code different
illuminant directions.
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Our shape from shading algorithm yields the result shown in Fig. 9.44{c) after five
iterations. The visible surface of sphere is again accurately recovered as well as the illu-
mination direction of the light shining on it. The difference between this result and the
previous example is not immediately visible on the figure since the surface orientations are
exactly the same — it is only the light source orientation which differs.

As previously, the description of the back plane remains ambiguous as multiple cross-
sections of the scenel bundle are equally supported. Each cross-section indicates the presence
of a planar surface which is accurate. The ambiguity (which cannot be resolved) lies only

in the planar surface’s orientation.

1.3. The Car’s Fender. The third example is a real image of a scene (Fig. 9.45(a)).
Consequently, there is sensor noise on top of the omnipresent quantization noise. This
time, the scene consists of a car which is illuminated by two distant light sources. We
selected a sub-image because of practical contraints, and focused on a close-up of the fender

(Fig. 9.45(b)) because of the wealth of features in this small region: there is an occlusion;

" the fender is partially hiding another surface; there is a cast shadow that runs across the

fender; and there is an attached shadow that runs along the surface.

We show in Fig. 9.45(c), the edge map obtained using the algorithm of Iverson [66]
and the shading flow field obtained using the algorithm outlined in Chapt. 5. After live
iterations, our shape from shading algorithm yields the result shown in Fig. 9.45(cl). Unlike
the two previous examples, we do not know what the ground truth is. This inconvenience
highlights the necessity of being able to generate realistic looking images of artificial scencs.
We show in App. D our implementation of a new paralle] algorithm that attempts to palliate
this inconvenience.

Meanwhile, note that the scene of this example has several qualitative features that

allow us to evaluate our results:

o There are edges on both sides of the fender where there arc also discontinuities in
the shading flow field. As stated for the two previous examples, such instances can
support two interpretations:

(i) either they mark a cast shadow boundary;

(ii) or they mark a surface discontinﬁity.
The correct one includes a surface discontinuity. Qur result also suggests that the
normal slants away from the viewer as it approaches the edge from the fender’s side.

On the other side of the edge, our result gives multiple consistent cross-sections.
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FIGURE 9.453. (a) A real image is used for this last example. The shape recovery
is done with (b} a close-up of the fender of a car. In this image, there are several
noteworthy features, such as occlusion, cast and attached shadow boundaries. (c)
The corresponding edge map and shading flow field are used as input. The edges
are depicted as bold arrows, and the shading flows, as thin arrows. (d) The shape
recovery is illustrated by the surface normals (c). The gray levels code different

illuminant directions.
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All these cross-sections correspond to planar surfaces of various orientations and
lighting conditions. But planar surfaces are not compatible with the curving fender,
hence the surface discontinuity.
Anywhere a surface discontinuity occurs, both the albedo and lighting condition can
independently change. The back plane being black, this issue cannot be resolved.
Our result is no different in this regard, none of these possibilitics are rejected.
The line singularity running along the fender reveals the parabolic nature of the
car’s fender. A visual assessment of the surface shape yields a result consistent with
this prediction — that is, the fender is roughly cylindrical.
There are also edges running across the fender. Along most of it there is no discon-
tinuity in the shading flow field but unlike the first example, the shading llows are
parallel. This allows an additional possible interpretation according to Table 6.3,
which is correct for this example:

(i) The edges mark a cast shadow boundary on a smooth parabolic surlace.
The shading flow field is discontinuocus only where the edges running across the
fender meet the singularity lines. These image geometric structures are consistent.
with .

(i) either a cast shadow boundary;

(ii) or a surface discontinuity.
The cast shadow boundary is the correct interpretation.
Our result is consistent with the correct interpretation. The surface is continuous
all along this edge, but the illuminant direction differs.
The attached shadow presents an interesting special case for this example. There
is no edge and no shading flow field discontinuity. The parallel shading llow is
consistent with either:

(i) a smooth surface with constant albedo and lighting conditions;

(ii) or an attached shadow boundary on a parabolic surface.
Our result shows that the surface is continuous where we perceive an attached
shadow boundary. It also shows a partial overlap between cross-seclions with dif-
ferent illuminant directions. The attached shadow is thus localized in the region
defined by the overlap. The localization of the attached shadow on parabolic sur-
face patches could be improved by localizing discontinuities in the magnitude of
the intensity gradient. This geometric structure is a type I structure and could, in

principle, be extracted from the image [66].
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CHAPTER 10

Discussion

By relaxing the constraints of the classical shape from shading problem, we have given
shape from shading an entirely new structure.

The data that serve as inputl to classical shape from shading algorithms have been
shown Lo be inappropriate when the classical constraints are relaxed. The albedo and
the illumination are not known since they are functions of (z,y), not global quantities.
Conscquently, the photometric values cannot be used because of their dependence on the
albedo and the illumination.

We have shown that in order to address the new generalized shape from shading prob-
lem, we can make use of other properties of the image — in particular, we exploited the
geometrical structures of the image. Both the image curves and the shading flow field can
be extracted reliably from the image. The integration of these two cues is shown to be
necessary.

We liave developed a new computational framework, designed to extract the shape of
the surfaces, which integrates different cues: specifically, it integrates the shading flow field
and the tangent field. This framework exploits our new local representation of the surface
orientation and shape for which continuous transformations of the surface are mapped to
continuous paths in a five-dimensional space. It also uses the relationships that we have
established between the local descriptors of the scene and the local geometric properties of
the images, and between the different neighbouring local scene models.

Our three examples provide an indication that our framework is sound and that the
resulting algorithm works. These examples also show the impdftance of the interpretation
of discontinuities as it allows us to relate the geometrical structures of the image to scene

properties.
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Generalized shape from shading can deal with many situations for which algoriths
based on the classical constraints would inevitably fail. There is obviously a much more
severe computational burden associated with the generalized problem, and we have tackled

this issue by designing a massively paralle! algorithm.

1. Future Directions

The work presented in this thesis has provided a new direction in shape from shading.
As such, it has answered some questions, but it has also raised new ones. In this scction,

we describe the future directions that we think might be insightful to explore further,

1.1. Implementation and Experimentation. The images used in our implemen-
tation (Chapt. 9) have been chosen to provide a proof of concept. The images depict scenes
that contain discontinuities in surface, lighting, and albedo.

However, a more extensive implementation is desirable. Experimentation on more
realistic images is needed to characterize the algorithm’s behaviour, Tor this, a difierent
machine is needed, one with enough memory to store the relevant compatibilities for each

fibre, and preferably, massively parallel.

1.2. Consequences of the Shading Flow Field. The shading llow lield is pro-

posed as an intermediate structure for the generalized shape from shading problem.

e Mathematica! properties — If we consider the shading flow field to be a vector ficld
on a manifold, what are its mathematical properties? How do they relate with the
texture flow field’s properties? What is the relation between the index of sh:uling:’
flow singularities and scene properties such as highlights?

¢ Psychophysical properties — Does the shading flow field have any psychophysical
rezlity?

(i) Geometric style computation. In App. A, we have begun to explore the idea
that the primate brain uses a geometrical style of computation. Further on-

going psychophysical experiments focus more preciscly on the shading llow

field.

(i1) Sensitivity issues. How accurate are we in perceiving the various parameters
of the shading flow? Can we perceive and accurately localize shading flow

discontinuities?
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1.3. Integration of other Cues. Experiments supported the sufficiency of the com-
putational framework for integrating the information provided by the tangent field and the

shading Now field. What about the other cues available in a single static image?

1.3.1. Visual Texlure. Shading and visual texture can be found together [109]. The
intensity gradient can be computed within the texture elements in regions where the scale
of the visual texture is large. If, in a region, the scale of the visual texture is small, then
this part of the image would yield no shading flow field. Consequently, we know that in
this part of the image, our shape from shading yields no result either. This is interesting,
as it opens the deor for integrating another complementary cue to infer shape [43]: visual

Lextare.

1.3.2. Ifighlights and Shadows. Evidence indicated that the singularities of the shad-
ing flow field could provide cues to unveil highlights and shadows. These features also
provide other cvidence about surface shape as the extrema of the surface luminance have
been shown to cling to parabolic lines [72] for matte surfaces.

Although we are mainly concerned with matte surfaces in this thesis, we need to be
aware that other types of surface exist. An important class is glossy surfaces. In computer
graphics, glossy surfaces are often modelled as the superposition of a matte reflection and a
specular reflection. In Fig. 10.46, we show the geometry of the specular reflection. The unit
vectors R and 'V show respectively the direction of the pure mirror-like reflection and a
viewpoint. For a given surface patch and a given viewpoint, the Phong model [17] describes
the intensity of the specular component due to a point light source. When R -V > 0, the

intensity is given by:
I = kypAN-L + EA(R-V)"

The coefficients ky and ks give respectively the fractions of the incoming light involved in
mattle reflection and in specular reflection. The specular-reflection exponent, n, depends
ot the surface material being simulated. Values of n typically vary from one to several
hundred [35]. This equation contains an extra term which can also give rise to singularities
in the shading flow field. This would occur when RV — 1, i.e. the light source, the
surface, and the viewer aligned such that there is a mirror-like reflection, N-L=N.V =
VE(I+L-V)>0,

Torrance and Sparrow [124] developed a geometrical optic model for specular reflection
by rough surfaces. Beckmann and Spizzichino [4] on the other hand developed physical

optics model for the reflection of plane waves on smooth and rough surfaces. Nayar et al. [98]
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ki

FIGURE 10.46. The vector R is the direction of the mirror-like refleciion of an
incoming ray from the direction L for a surface whose orientation is provided by
the normal vector N.

studied the behaviour of both these models and proposed a physical model comprising three
reflection components: a diffuse lobe, a specular lobe and a specular spike. The diffuse lobe
correspond to Lambert’s reflection model of a matte surface,

Since the specular reflection has different spectral and geometrical properties than the
matte reflection, it is sometime possible to identify specularities [89]. The shading flow

field’s singularities may provide a new way to localize and analyze them.

1.4. Improving the Scenel Model. Algorithms fail when underlying assumptions
are not all met. To improve upon a model, it is interesting to ktiow when the assumptions
break. It is particularly insightful when the algorithm itsell can recognize such a situation

as it limits the image interpretation to a level where results are reliable.

1.4.1. Nearby and Eztended Light Sources. We used the virtual illuminant to model
light soutces. For lighting conditions such as a point light source, a collection of point lighl:/
sources, an extended light source that is entirely visible from the surface, or a collection of
these, the virtual illuminant is a piecewise constant function. This is consistent with our
underlying assumption.

However, nearby and extended light sources may, in some circumstances, generate shad-
ing patterns that are inconsistent with our main assumption. For extended liz;,ht sources,
this would occur in the penumbra (see Fig. 10.47). For a scene in which the light source’s
extent is infinite, Langer and Zucker [83,84)] reported that the solid angle of visible light

source (or the aperture) then becomes a dominating quantity. The use of our illumination
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. model uncovers a key characteristic of all these situations: the virtual illuminant direction
changes wildly.
extended
light source

& tlluminated surface

shadow penumbra

Ficure 10.47. An extended light scurce can cause a smooth variation in intensity
even if the surface orientation remains constant. This occurs in the penumbra as
the amount of the extended light source that is visible from the surface is gradually

changing.

The phenomenon of mutual illumination between surface patches (see Fig. 10.48) can
become significant if the albedo of the surface approaches unity [36]. When considering
inter-reflections, other surface patches are treated as light sources — local extended light
sources. The variation of virtual illuminant direction may then provide an indication of the

significance of the inter-reflections’ contribution.

Ficure 10.48. When a surface patch ¢ and a surface patch j can be joined by a
straight line in ambient space (that is not through a solid shape), then the surface
patch are visible one from the other. Therefore, if some light shines on the surface
patch 7, a fraction can be reflected in the direction of patch j and vice-versa. This
phenomena is called mutual illumination,
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. Since the cross-section corresponding to a scene with a varying virtual illaminant di-
rection is said to be inconsistent, we conjecture that for such an image our algorithm would
yield a null result,

(i) A null result is interesting because it constitutes a statement to the effect that our

assumption does not apply for this scene, hence a distributed penumbra or some

other effect is detected.

(ii) Observe that in such a situation, classical approaches to shape from shading simply

give wrong answers.

There is a caveat to the previous conjecture when a scene that breaks our assumption
mimics a scene that doesn’t. Such situations could occur naturally {c.g. camoullage of
animals) or artificially (e.g. Trompe-l'oeil paintings on buildings). They arc considered
illusions and can potentially confuse both human and machine vision systems.

Counsider the canonical example: a photograph (where the albedo varies continuously),
a projected slide (where the illumination on the screen varies continuously) and the scene
itself. Any shape from shading process should reconstruct shape information identically. In
absence of other cues, this ambiguity cannot be resolved and thus, we have intentionally cho-

sen to concentrate our efforts on complex surfaces but with simple albedo and illuimination

variations.

1.4.2. Light Interaction with the Ambient Medium. Our setling of shape from shading
assumes that light interacts with surfaces and is captured to form the image. But light can
also interact with the medium in which it is travelling. DifTusion and absorption of light
are two common phenomena that could occur when light interacts with fog, dust or smoke.
Here again, these phenomena can cause a smooth variation of intensity.

In order to pursue our investigation on these limiting cases, we need images for which
we have complete knowledge of scene; i.e. at every point where light interact with matter,
the shape and reflectance properties of the surface element or the absorption and diflu-
sion characteristic of the medium in which light travel, the lighting condition. We have
begun work for the synthesis of such image on a massively parallel computer. Qur current
implementation is detailed in App. D.
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APPENDIX A

Flows and Scalar Field: Evidence for Multiple Pathways

In this thesis, we have considered separately the photometric and the geometric propertics
of the image. To emphasize this distinction here, we use a parallel with texture analysis.
Density is to texture what intensity is to shading. Whereas we have shading llows for
shading analysis, we have texture flows for texture analysis.

This appendix describes psychophysics experiments designed to examine an hypothe-

sized representation of scalar quantities and vector properties in the visual cortex.

1. Introduction

The notion of parallel processing pathways has been integral to psychophysical modeling
for some time, and has led to various “independence™ hypotheses in carly vision. [arly
physiological evidence was provided by the separation of ON and OFF channels in the
retina, but more recently the emphasis has been on functional specialization {134]. Perhaps
the most explicit such proposal has been made by Cavanagh [20], who posited separate
channels for luminance, motion, binocular disparity, colour, and texture following the striate
cortex. These channels are based in part on the belief that V4 is an arca specialized for i,
colour [132], and have been strengthened by the discovery of cytochrome oxidase blobs in
visual area V1, coupled with the anatomy of connections through V2 to V4 [133]. We
shall focus on this functional specialization; namely that the blobs support a color system,
while the “interblob” pathways support a luminance system, because it has become rather
prominent in the literature [90,131). However, we argue that, while the color/luminance
distinction is attractive pragmatically, the evidence is that the blob/interblob distinction is
much more subtle functionally. Allman and Zucker [1] summarized it as follows: (i) cells
within blobs are sensitive to contrast as well as color; (ii) some animals with color vision

appear to be lacking blobs; and (jii) some animals without color vision appear to have them.
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Thus, while the colorization process may be pleasing for viewing classical motion pictures,
its evolutionary value is not at all clear.

New proposals regarding blob/interblob function are required, and we review one in
the next section. To stress the functional specialization beyond the domain of contrast and
color, we enlarge the argument to show how it suggests a novel view of the representation
of texture in visual cortex. A series of psychophysical experiments are then reported in
support, of the view. The conclusion is that a more appropriate model of blob/interblob
functional specialization transcends the above pragmatically-defined categories to others
that are more abstract. The different classes of feature are categorized mathematically into

those that are scalar as opposed to those that are (differentially, or locally) geometric.

1.1. The Allman/Zucker Hypothesis. Allman and Zucker [1] have advanced the
hypothesis that blob cells are not only coding different information {rom interblob cells, but
they are encoding it differently. They suggest in particular that blob cells are selective for
scalar information and encode it by frequency of firing, while interblob cells are selective for
geomelric variables and encode a strength of match. Representational differences emerge
as well, as follows.

A classical view of the visual cortex is as columnar organizations of cells responsive to
specific stimulus properties. Key among these is orientation, one of the most prominent
geamelric features of our environment. Orientation hypercolumns consist of cells tuned to
different orientations, and can be modeled as representing {a sampling of) all orientations
at each retinotopic position. The firing rate of such cells can be interpreted in provortion to
how well the stimulus orientation matches the cell’s preferred orientation; i.e., as 4 strength
of match. However, since strength of match is confounded with stimulus contrast, such cells
typically saturate within about one order of magnitude of log contrast [92]. This facilitates
finding the border around and within natural objects, given the variations imposed by
lighting in natural scenes. Their firing rate rarely exceeds about 100 spikes/second.

Cells within the cytochrome oxidase blobs, however, respond to other stimulus proper-
ties, such as contrast and color. Observe that these are scalar properties, in that they can be
represented by a single number. (Geometric properties, such as orientation, require a vec-
tor.}) Now, wlmt_ defines the blobs is an energy measure: cytochrome oxidase is an enzyme
that indicates elférgetic capacity. How is it, then, that cells within the blobs stain for more
cytochrome oxidase activity than those between blobs (in the orientation hypercolumns)?

The Allman/Zucker proposal specifically claims that, if scalar variables such as contrast

were encoded by firing rate within blob cells, then such cells would require the energetic
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capacity to sustain a broad dynamic range. This will lead to a high concentration of cy-
tochrome oxidase. While firing rates for cells within blobs are just now being studied, the
indirect evidence is that cells that are likely candidates for being located within blobs re-
spond to over 200 spikes/sec and exhibit contrast saturation after 3 log orders of magnitude.
In addition, contrast is available at every location within the image, so contrast-signaling
cells will always be active to some extent. Orientation, on the other hand, will be single
valued at most image points, so the majority of cells within an orientation hypercolumn

will be quiet. Hence the difference in energetic capacity.

1.2. Two Classes of Textures. With this background, we can now state the formal
observation motivating our psychophysical experiments: the scalar vs. geometric variable
difference arises within textures, as well as between boundaries and contrasts. In particular,
(i) there are those texture patterns, such as stars on a clear night, points of light shiuing
through foliage, or grains of sand on a beach, whose arrangements are characterized primar-
ily by variables such as density; and (ii) there are those texture patterns, such as [ur, hair,
grass, or wheat, that are characterized by their oi‘ig!}tatiotl structure, or flow. We shall refer
to these classes of patterns as (i) texture point ﬁelci‘s‘_and (i1) texture fows, respectively, to
stress the differences. Our current interest is to determiiie whether texture point ficlds and
texture flows exhibit different psychophysical characteristics, as a prolegomena to determine
whether one is carried by the blob system and the other by the interblob system.

We shall use different types of dot patterns to represent these two classes of textures,
with random dot patterns obviously representing texture point fields. Texture flows will
be represented with random dot Moiré patterns (RDMP), or Glass patterns [44], composed
as follows: begin with an original random dot pattern, and make a copy of it. Now, shift
each dot in the copy by a given transformation, and superimpose the shifted copy onto the
original. If the transformation were a lateral displacement, for example, then the composite
would depict a linear flow; locally the flow is carried by the pairs of transformed dots.
Other transformations might include rotations, expansions, etc. Finally, a sccond copy can
be made, transformed from the first copy, and then superimposed onto the original plus
first copy; the resultant’even richer pattern will be composed of triples of points arranged
according to the given transformation. We refer to the number of dot patterns comprising
the RDMP as the path length; note that longer path lengths correspond to more spatial
structure in the flow pattern. A path length of 1 is, of course, a texture point field.

While the psychophysical category of texture includes both texture point lields and

texture flows, we shall focus on the differences. Texture point fields are dominated by their
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(a) (b)

FiauRE A.49. This figure provides an illustration of the two types of texture pat-
terns used in the experiments. (a) A random dot texture point field, characterized
by its density. (b) A random dot Moiré (or Glass) pattern [44], constructed as
follows: begin with an original random dot pattern, and make a copy of it. Now,
shifl each dot in the copy by a given transformation, and superimpose the shifted
copy onto the original. The transformation shown is a linear displacement, and the
composite is a linear low; other transformations are also possible, e.g. rotations,
cxpansions, cte. Finally, a second copy is made, transformed from the first copy,
and then superimposed onto the original plus first copy; the resultant pattern is
now composed of triples of points arranged according to the given transformation.
We refer to the number of dot patterns comprising the random dot Moiré pattern as
the path length; longer path lengths correspond to more spatial structure in the flow
pattern. A path length of 1 is, of course, a texture point field. The advantage of
using such dot patterns is that density can be held constant while they are arranged
to carry increasingly more geometric structure.
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first-order statistics, or density, while an important second-order term is introduced for
RDMPs with path length = 2. Barlow {3] showed that, for texture point fields, density
was the key informational variable, and that the information in specific pattern structures,
or arrangements of dots, was not utilized. Julesz [67], in his texton theory, made them

distinct, and included them among other texture primitives.

2. Preliminary Observations

There is a classical dictum attributed to the carly Disney artists that, to make con-
vincing cartoons, effort should be concentrated on borders rather than color overlays; gaps
and smudges will be perceptually filled in by the interior color. This informal observation
was confirmed by IKolers and von Griinau [77] (discussed below), and provides the basis for
our first informal examination of texture filiing-in phenomena: since textures, like colours,
depict surface coverings, one would expect them both to fill-in moving contour boundarics.
Our first display confirmed this expectation, but also provided a hint that texture point
fields and texture flows are not treated identically.

Displays were created on a Silicon Graphics IRIS Personal Workstation and they were
shown on a Silicon Graphics Color Monitor medel #CM2086A3SG at approximately 80 cn
from the subject. The refresh rate is 60 hertz, the horizontal and vertical resolutions of the
monitor are respectively 3765 and 3793 pixels/meter, and each RGB channel has 8 bits.

The figure consisted of a circular border, approximately 2 degrees to 4 degrees in
diameter, and which was filled with a jittering RDMP. The filled, circular figure underwent,
motion, as follows. The entire figure followed a path around another circle, approximately
6 degrees in diameter. The center of the border circle followed the path exactly, but the
interior RDMP jittered around this path, so that at times there were gaps between the
interior texture and the border, and at times the interior texture went ouiside of rotating
border. The subject was instructed to fix his view at the center of the 6 degree path, and to
report when either a gap appeared within the border, or an “arm” of texture broke through

it. The path length of the interior RDMP was varied lrom 1 - 5.

OBSERVATION A.l. From the response of our subjects, il is immediately apparent that gaps

and arms are more visible for the longer path lengths than for the shorler ones.

Whereas texture point fields seem to “fill in” like colours in Disney’s observation, tex-

ture flows do not. The Glass pattern appeared more detachable than a random dot patters
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with Lhe same average density. Because the question is confounded by prominent outliers,
this experiment is difficult to quantify. So we move to a different paradigm.

Unlike colour and contrast, texture filling-in has never been systematically studied.
There in indirect evidence that intensity and texture density are confounded variables [97,
127} and that texture fields can be segregated from texture flows [46]. The implications are
larger than variable confounding, however, because of the possibility of parallel processing

streams would arise if the representation of texture fields were decoupled from texture flows.

3. Experimental Paradigm

We now explore the differences between texture fields and texture flows psychophysi-
cally, using a paradigm developed by Kolers and von Griinau [77). Building on an earlier
observation that the boundary of an object deforms smoothly during apparent motion [76],
they explored how the color interior to a shape changed during such apparent motion. The
experiment pI:Lced two shapes in apparent motion, with color; in shape;, and colory in
shapeg. I shape; were, say, a square, and shapez a triangle, then the boundary percept
would be of a square deforming smoothly into a triangle. Their real concern was with the

interior color, and two observations are relevant:

(i) the color appeared to stay within the deforming contour, completely filling it but
not extending outside of it;

(ii) when color; differed from colorz, the change was abrupt from color; to colors.

Thus, unlike the boundary, color did not deform smoothly. Similar results hold;-for'
different contrasts as well.

This difference between abrupt color changes and smooth boundary changes suggests a
psychophysical measure that discriminates between those properties carried by the blob sys-
tem and those carried by the interblob (hypercolumn) system: when the information from
these systems is integrated, changes in blob variables (color or contrast) appear abrupt,
while changes in interblob variables (boundary) appear smooth. With this operational as-
sumption in place, we can now formulate our specific hypothesis: (scalar) information about
texture ficlds (density) is carried by the blob system, while (geometric) information about
texture flows is carried by the interblob system. We thus predict that changes in texture
density will be abrupt during apparent motion, while changes in texture flow arientation

will be smooth.
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FIGURE A.50. This figure illustrates how boundaries change during apparent mo-
tion, and how the color interior to a shape fills in the changing contour. {lop)
Depiction of an apparent motion sequence in which a triangle deforms into a square
while moving from left, to right. The percept is that of a triangle deforming smoothly
into a square while moving from left to right. The figures that are acinally displayed
are shown in solid lines, while a rendition of the apparent shape at intermediate
positions is shown dotted. (bottom) When the initial and final figures are filled
with either a single color or contrast, Lthe same color or contrast appears to fill Lthe
intermediate apparent contours completely. However, when the initial and final
colors or contrasts differed, the appearance was of an abrupt change in the color
within the moving, apparent contour. This is depicted in the bottom sequence in
which gray level abruptly switches from & to G2 at about the midpoint.
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4. Experimental Procedure

Qur subjects were either graduate students in our research centie or visitors. None
of them had prior knowledge about the experience or the hypothesis being tested. The
experiments took place in our laboratory in normal use but with dim light condition. The
stimuli were created and displayed in the same set-up as the previous paradigm.

The subject was asked to fix a point a the centre of the screen and then a pair of stimuli
were presented. The first stimulus appears at the left of the fixation point foer only 150
msec; then the screen remains blank for 50 msec; then finally the second stimulus appears
at the right of the fixation point for again only 150 msec. The apparent displacement is
approximately 3° of visual angle.

The subject was initially shown identical stimuli to get familiar with apparent motion.
Once this stage was completed, the subject was shown pair of stimuli that often differed.
The subject was asked whether the filling change abruptly or not.

"T'he first types of filling tested were intensity and colour to reproduce and complement
Kolers and von Griinau results.

(i) We considered two series ol stimuli with intensity:

(a) On a black background, we use a white stimulus as the reference and the other
stimulus varying from white to dark gray. .
{b) On a white background, we use a black stimulus as the reference and the other
stimulus varying from black to light gray.
(i) We considered three series of stimuli with colour:
(a} On a gray background, we use a red stimulus as the reference and the other
stimulus varying from red to green (via yellow).
{b) On a gray background, we use a blue stimulus as the reference and the other
stimulus varying from blue to red {via magenta).
{c) On a gray background, we use a blue stimulus as the reference and the other
stimulus varying from blue to yellow (via cyan and green).
For the colour stimuli, we determined a set of isoluminant colours for each individual subject
Jjust prior to the experiment. This was done by rapidly alternating two colours; the first
colour is the reference and the second is adjusted by the observer until the scintillation
ceasesor is minimal. This was done in order to avoid the confusion between hue and intensity.

We designed the second types of filling to test the prediction of the Allman/Zucker

hypothesis with respect to texture point field and texture flow.

(i} We considered two series of stimuli with texture point field:
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Time 1 Time 2

FIGURE A.51. The paradigm is identical to Fig. A.49, in which {top) we confirmed
the Kolers results. We then extended the interior patterns Lo textures, using both
{middle) texture fields and (bottom) texture flows. The (middie) pattern illustrates
a change in texture density. Two sets of Lrials: for Lhe first, one stimuli had a density
of 480 dots in 32,400 pixels (the figure was in a 180 x 180 window}, and the other was
more dense; for the second, one stimuli had 2560 dots and the other was less dense.
The (bottom) pattern illustrates a change in texture flow orientation. The initial
flow orientation was taken as 0°, 10°, 20°, 30%, and 45°, and the final orientation
was taken as 45°, 30°, 20°, 10°, 0°, —10°, —20°, —30°, —45°. Trials with Glass
patterns of path lengths equal to 3 (shown)and 5 (not shown) were carried out. For
our experiments we used objects sub-tending 3 degrees in visual angle, displayed on
a Silicon Graphics Personal Iris (color display model no. CM2086A35G) in a dimly
illuminated room. Subjects had no direct knowledge of the experimental questions,
and all had normal or corrected vision.

i
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(2) On a black background, we use as the reference a random dot pattern of a
fixed dot density and for the other stimulus any of a range of other random
dot patterns with a varying dot density — in this experiment we keep the
fixed dot luminance constant.

{b) On a black background, we use as the reference a random dot pattern of a
fixed dot density and for the other stimulus any of a range of other random
dot patterns with a varying dot density — in this experiment we keep the
fixed average luminance constant.

(ii) We considered one series of stimuli with texture flow:

(a) On a black background, we use as the reference a random dot Moiré pattern
of with a given orientation and for the ather stimulus any of a range of other
random dot Moiré patierns with varying orientation (up to 90°).

A difficulty arises because the average intensity and average contrast of random dot patterns
arc correlated with dot density. In an attempt to assess if the potential bias is significant, we

look at both extreme instances: constant average intensity and constant average contrast.

5. Results

All graphs plot the fraction of displays in which subjects reported an abrupt change
in the interior region (ordinate) vs. the stimulus dimension of interest (abscissa). In each
experiment the initial display was filled with a pattern given by the leftmost dot along the
abscissa. For no change in the pattern, all subjects reported no abrupt changes (first data
point). TFor significant differences between the initial and final displays, all experiments
show a psychophysical curve with a steep slope, indicating the rapid onset of apparent
abrupt changes with interior differences.

In Fig. A.52, we present the result of four subjects for both experiments in which only
the luminance differs in the two stimuli presented. For both negative and positive contrast,
an abrupt change is usually perceived when the stimuli are quite different.

In Iig. A.53, we present the result of respectively five, five and three subjects for the
experiments in which only the hue differs (red - red-green, blue — blue-red, blue — blue-
yellow) in the two stimuli presented. Again, for all combinations, an abrupt change is
usually perceived when the stimuli are quite different.

We note that our results for the luminance and colour experiments are in agreement

with Kolers and von Griinau’s result.
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Reference Stimulus: Dark Gray Reference Stimulus: White
1 T e e 1 - d AE
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Weber Fraction Weber Fraction
(a) ()

FicURE A.52. Results of four experimenis of apparent motion. Two stimuli are
successively shown. In (a), the colour of the first was red and the colour of the other
varied in hue but was of the same perceived luminance. In {a), the first was dark
and the relative luminance of the other varied.

In Fig. A.54, we present the result of cight subjects for both experiments in which the
dot density differs in the two stimuli presented. Whether the luminance is constant or
the contrast is constant, an abrupt change is usually perceived when the stimuli are quite
different. Our perception of texture density is thus similar to our perception of colour and
luminance.

Finally, no data are graphed for the texture flow experiment, as no subjecl reported
an “abrupt” response under any condition examined. We note here that the perception of
texture flows is more like the shape boundary — a smooth deformation is perceived. This
result indicates that the perception of texture flows is quite dilferent than the perception

of texture fields.

6. Discussion

Our psychophysical results provide further evidences to support the claim that the cor-
tex treats differently the scalar properties and geometrical properties. This claim suggests
that for computer vision, both the scalar and geometrical images properties be considered,

and possibly on their own.
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FFrauite A.53. Resulis of series experiments of apparent motion. Two stimuli are
successively shown. In (a}, the colour of the first was red and the colour of the other
varied in hue but was of the same perceived luminance. In (b), the first was dark
and the relative luminance of the other varied. 1n both (c).
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FIGURE A.54. Results of two experiments of apparent motion. T'wo stimuli are
successively shown. In hoth {a) and (b), it is the dot densily that varies. In (&),
the average luminance remains constant whereas in (b), the dotl luminance remauins

constant,
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APPENDIX B

Higher Order Constraints

The local representation of the surface could be enriched to include the variation of the
principal curvatures Ky, k2 in the two principal directions.

The spin forms and the variation of the principal curvatures could be used to further
constrain the surface. The spin forms provide a constraint on both the principal directions
and the principal curvatures.

These descriptors are necessary to predict the curvature of the gradient and the curva-
ture of the shading flow field from the scenels.

To implement a system making use of these quantities, more memory would be needed.
The implementation presented in the body of the thesis already suffers from the current
computer hardware limitations. It is nevertheless interesting to look at the relation between

intensity image properties and other scene descriptors.

1. Definitions of the Coordinate Systems
In the [ollowing sections, we will consider a few different coordinate systems.

e The viewer’s coordinates (x,y,2) are defined such that the vector (0,0,1) points
toward the viewer. Note that, for the image formation, we will assume orthographic
projection, hence, the image lies in the z-y plane.

e The surface patch local coordinates (ey, ez, e3) are defined such that, at a given
point, the vector (0,0, 1) indicates the direction of the surface normal, and that the
vectors (1,0,0) and (0,1, 0) correspond to the surface principal directions.

e The principal frame field (fi, £z, f3) is defined such that, at every point, the vector
(0,0,1) indicates the direction of the surface normal, and that the vectors (1,0, 0)

and (0, 1,0) correspond to the surface principal directions.



B. Hicuer OrbER CONSTRAINTS

2. Shading and Spin forms

Our basic hypothesis for shape from shading is that all smooth variations of the image
intensity are due to smooth variations of the surface orientation. First we describe smooth
variations of the surface orientation and then, we relate the smooth variations of the surface

orientation and the image intensity.

2.1. The Partial Derivative of a Surface Patch Normal. Oun a smooth surlace,
the normal is a smooth vector field so it is differentiable. For any point (w, yi, zi) on such
a surface, we can define the surface patch local coordinates (e,,ez,e3). The normal of
the surface can then be expressed as a function of these coordinates N{ey, ez) such that
N(0,0) = e3. In this section, we look at both the first and second order partial derivatives
of the normal with respect to the surface patch local coordinates. We start here with the
first:

f

In differential geometry, the study of how the principal rame ol a surface changes

N,

is classical. In the nineteenth century, several mathematicians contributed to this field
— among them Cartan, Codazzi, Gauss, Mainardi, Rodriguez, Weingarten obtained results
very relevant for this section. Their results are nicely explained in some differential geometry
textbooks; see [34,70,102,120].

To evaluate the partial derivatives of the principal frame (of which the normal is the
third component f3), we use the Cartan matrix. More precisely, we use the independent

components @ which are called the connection forms of the frame field.

DEFINITION B.1. The connection form & () is the rale of turn of the frame vector f;
toward the frame vector f; when the point of applivalion moves in the direction of the frame

vector £,

Considering that

) »
a_f,-t} = ;w’ (£) &

in conjunction with Rodriguez formulas,

(Dla<f|) = —GJSI (ﬂ) = kl
PR (fh) = - (f) = ky
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give

-a-a?-f:; =S LT)SI (f])fl + ‘:-’32 (fl) f3 = "klfl 1
1
—a—-fg = @ (fg) fi + @32 (fg) B = --kgf;_:, .
of;

The relation between the local coordinates and the frame field is trivial for the first

order differentiation.

de;

7 = %

Thus the first order partial derivatives are

d
-EEN— =k £,
]
IN= k.
8e2N ky £

there are two parameters needed to describe them and these are the two principal curvatures
k| 3 kg.
The second order partial derivatives of the normal is slightly more complicated to

obtain.

O? 9, @ of [ of, &2 of, &°
feper = Dejder D6 T De; |e; BRI T De; OT0%
32f2 iN + .aé —_a..f_l ..__62 N + % a_2N'
de;de; Of; de; _36_,‘ of of, de; ok

We use the independent components & of the Cartan mattix — these are called the
connection forms of the frame field.

This time, we need all the connection equations. These equations allow us to describe
the smooth variation of the principal frame field in terms of four parameters: the principal

curvatures &y, k9, and the spins sy, s5.
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o' (f) = -&M () =
@ () = —&*(fi) =
By = - {h) =
o' (B = —&* (f) =
B () = - (fh) =
eB(f) = - () =

B. HIGHER ORDER CONSTRAINTS

—f = Zw“’ (£) £,

26 = GEND + 0 ()
1
ifg = o <f1)f1 + & (fl)fg
ot
if3 = PUEYE + &P )1,
ar,
ifl = &' <f2) f2 + o3 (f2>f3
ot
ifg = g% (fz) fi + o3 (fg) fa
o5,
o = PR + ST E)E

The first partial derivations introduce the two principal curvatures.

= sify + kifs
= -af)
= —kf
= —s5f
= sofy + hafs

= —kyf,

Therefore, on

the second partial derivations, we have to take into account the variation of the principal

curvatures,

8 .

T —ky = (ky~ ko) @'*(f)) =

]

c')‘—fg.kl = (k= k)@ {f)) =
ad
af,"‘ =h
1]

(ko — k1) 52

(kl - k?)sl

Two other parameters t, ¢; are needed to describe the variation of the principal curvatures.

The relation between the local coordinates and the frame field:
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rn _ 4 rH _
3&12 - 8&;2 - !
*f, — 9%, =0
Oelaeg - 081062 -
e 9°*f,
=0 = &g
deade; dezde;
0°f) 0%, _
0822 = T8 8822 =0
And thus the second order partial derivatives are
i2---.‘N = —f.lfl - 51 (Al - kg) fg - k?fg y
("3(312
32
——N = (k) = k) (5T f.
aelaezN ( 1 2)( sify + s 2) 3
02
N = (& = k) (—5fT f.
Jeg0e; (k1 2) (—s1fy + sof2)
92

ae—zzN = —tafy — 52 (ko — k1) £ — K3f5 .

2.2. The Partial Derivatives of the Image Irradiance. We assume that the re-
flectance can be modeled by Lambert’s reflectance function, and that furthermore the image
is obtained by an orthographic projection. First we relate the image coordinate system and
the local surface patch coordinate system. Then we evaluate the partial derivatives of the

image irradiance.

2.2.1. Viewer’s Coordinates and Surface Patch Locel Coordinates. The viewer’s co-

ordinates and the surface patch local coordinates are related by the linear transformation

matrix:
e(l:r) e(2.7:) e:(;")
M — e(ly) egy) egy)

e(l.:) e(;) E:(;z)

where ef‘”), egy), ef.z) are respectively the z, ¥,z components of the i*# vector of the surface

patch local coordinate system.

140



B. HiGHER OrDER CONSTRAINTS

This transformation is only a rotation matrix., Hence the inverse of the matrix M is
simply its transpose. We can relate the represention of a vector — e.g. the illuminant
direction — in the viewer's coordinate frame with the representation of that vector in the

surface patch local coordinate frame as follows:

L; Ly Ly L,
L, =M Lo or inversely L, = M! Ly, .
L: LS IJB IJ:

= eiz) [41 =+ egﬂ L2 + ng) ])3

[l
H

Ly, = Ly + & Ly + &Y Ly
L= e 0 + 8 Ly + & Ls
Two rotations relate the viewer’s coordinates to the surface patch local coordinates.

The first rotation takes care of the surface orientation and the second, of the principal

directions. In matrix form, it can be written as

M = M,M,
where
cos?rcoso +sin? T SINTCOSTCOST —SINTCOST COSTSiNG
M, = | sinrcosTcosg —sinTcosT sin® rcos o + cos? T sin Tsing
—cosTsing —sinTsineg cos o
and

cos¢p —sing 0
M, = sing cos¢ 0 .
0 0 1
The axis of the first rotation is the axis perpendicular 1o the plane defined by the z axis
atid the surface normal N. This rotation matrix can be rewritten in terms of the surface

normal components to provide a belter intuition.

NZN:+N NNy Ny Ng Ny
NE+Ng o NEHNG N
= NeNyN:=NeNy NN 4N2
M, = NI+NZ NTENY Ny
-N; a=N, N

The axis of the second rotation corresponds to the surface normal N.
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2.2.2. The Image Irradiance. Since we assume that the reflectance properties of a

surface can be modeled by Lambertian law,
I = pML-N |

the first order directional derivatives of the intensity function can be computed as follows.

d

I, = pf\L--é-);N
d
Iy = p/\L'@N

If we consider the surface normal as a function of the local surface patch coordinates and

apply the chain rule, we obtain
de; @ de; 0 )
= . — —N — r—
[ PAL (Bx de, + Ox c?egN

. 6e; d 832 d )
fy = pAL: (W der’ T By der .
And since
der _ o 2 _ 4
ax ~ ! gx ~ ? i
e desy
ay -4 ey o
Lthus obtain
(B.1) I: = pAL- (e (- ki £1) + ¢ (- ko )
(B.2) 1, = pAL- (¢} (= k1 61) + ¢ (— kn £2))

The sccond order directional derivatives of the intensity function can be computed as

follows.

02

Ir;; = pI\LW N
32

Izy = pAL- ——

@ =P Ixdy N
82

Iy = pAL- 55 N

Just as the first partial derivatives, we consider the surface normal as a function of the

lacal surface patch coordinates and apply the chain rule, and we obtain
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de, de; 02 de, de;, O Jey ey &°
rr = AL | — o s —_— —— r,1\]'
fe =7 (ax ox der? Ix Ox Oe,de; Ox 0x Oey?
I, = pL. {2808 & o (Gule @(’i) & dez Doy O
o dx dy de? Ox dy = dx dy ] dejie, Ox dy des?
_ 3e1 ael 82 . 06| 382 82 aeg (')e-g 02
f = pAL (}FFJ v ¥ 29y Oy Deide; | T Ty Dy Dot

These equations combined with equations B.1 and B.2 provide the link between local

surface patch properties and the variation of the image irradiance.

2.2.3. The Shading Flow Field. For recovering shape from shading, we propose to use
some characteristics of the shading flow field. We consider the most itivportant to be the
orientation of the flow:

f,
tangd = — .
Iz
which is independent from both the albedo and the illumination:
Lo(ef (- ki f)) + ¢ (- ks )
L-(ef (- ki £)) + €f (- ko £2)

We note that it is not. the case for magnitude of image irradiance gradient:

Vi = 2+ 12,

tand =

or explicitly

2 2
|v“1| = pA \l (L.(ef (ky £1) + €& (ko fg))) + (L-(e",’ (k1 £1) + e (ks fz)))
Curvatures are other useful characteristics of the shading flow field. Just like the

orientation, they are independent from both the albedo and the illumination. T'he curvature

of the isoluminance line is given by:

2yl - 12, — 131,,,,
(2+ Ig)%

And the curvature of the gradient line is given by:

1313-‘!-‘ - Iglyy

(Ig + I;})%

hg =
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APPENDIX C

Surface Shape and Occluding Contours

In this appendix, we derive the relationship between the differential properties of the cec-

cluding contours and the surface shape.

1. Differential properties of a planar curve

Let’s consider a planar curve with an arbitrary parametrization:

x = (a(t), y(t)

The tangent vector of this curve is given by
_dx _ dxdt
T ds ~ dtds

where s is the arclength parametrization, thus

ds _ |dx| _ (dm(t))2 N (dy(t))2 :
dt ~ |dt| T dt dt
or reciprocally
1
dt x|t (cl:n(r.))2 (dy(t) AN
ds ~ |dt - di + dt )

And the curvature vector of this curve is:

dt
k = kn = T
with
dt dt dt d®x fdt\*? dxdt d [dt dix [ dt\? d [di
and '

dds\  (de( @) | dy@) @)\ [[de\E  (dyH)\?\
dr.(ﬁ) - (_d?" @t Td ae )(( dt ) + ( dt )



C. SURFACE SHAPE AND OccLupinG CONTOURS

2. Self Occluding Edges

For our sutface model, the paraboloid, the surface normal vector is given in term of a

local surface patch coordinate system:

K u Ha U 1
1

N = 1 11
(hPu+ w202+ 1)7 (&3 w2 nd 24+ 1)7 (&} 0?4+ 83024+ 1)%

Since at the occluding boundaries, the surface becomes perpendicular to the fine of sight,

we express the normal vector in image coordinales,
N(:.-:y:) =M N(uvw)

And thus occluding boundaries are characterized by the z component of the normal vector

being null.
NGk ARt Gravie o
(H? 1!,2 -|- ﬁ‘% U2~+ 1)5

which provide a first constraint to define the curve describing the occluding contour.

e kit + el kpvtel =0

This leads to the following arbitrary parametrizations: if either K, = O oref = (
and either k2 = 0or ¢§ = 0 then noocclusion is visible; else if kK, = Goref = 0, then
u(t) = 1
c-'.
v(t) = _‘"..3_
€5K2
orif kg = Qorej = 0, then
€3
ult) = —-——
o 0 = -z
. u(t) = ¢
otherwise
1 e;
w(f) = — [—eSf — —
©= ( o2 cg)
o(t) = i(m “’d)
K2 \ 2 e

Another constraint on the curve describing the occluding contour is that it lies on the
paraboloid, thus

w(l) = —

1 1
. 3 kul(t) - 3 rav® (L)
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We can project this curve on the image plane and obtain the following planar curve.

z(t) = €y u(t) + €5 v(t) + &5 w(t)
yt) = e u(t) + ez v{t) + 5 w(t)
dx(t) du(t) dv(t) - ( du(ti dv(t))
= -k ult) —=% 4+ —kp vt
= gt Talme) = ) g
dy(t) ydu(t) ydu(i) y ( du(t) dv(t.))
AL —y u(t) —— ¢
a =g teag TelTml o) 5
du(t) = —e
dt K1
dv(t) ef
dt Ka
dz(t) etel elel - (( . e3 ) e} ( . e ) EI)
= — e e5 t — = eit — — | —
dt K1 + Ko 3 2 +2&‘2’ h‘.1+ ! 2¢ef/) ko
dy(t) e | ebes (a4 2) Do far - ) 4)
) — (gt + =) 24 {esr - S )2
di K1 Ko 3 2t 2¢€ 51+ oo 2e5) Ke
- de(t) _ efe; ef €3 + ezej + €5 e (egeg + e‘fef) ey
dt K1 2K Ko 2K K1 Ka
dy(t) ele  edef | ejel ey e (e§e§ efe‘l’) y
LA S - = - + el t
dt K1 2K Ko 219 K Ko
d2a(t eses efef
£) — _ ( 22, G l)e?;
dt K1 Kg
d?y(t) (egeg efef) o
dt? 1 ke /) °
The orientation of the occluding edge is thus:
dy(t
d
tan{@) = dz:[ttl
at
lan(@) = = elesng — Lef efhe + ejeiny + fef e — (eZelrg + efeing) et
— efefhy — €3 ek + efefrny + fef 5k — (efednn + efein)ef ¢
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APPENDIX D

Shading from Shape

In order to test our shape from shading algorithm, it is necessary to have prior knowledge of
the illumination and shape of every surface patch viewed in the image. For this purpose, we
have implemented an algorithm that solves the “shading from shape” problem. This prob-
lem is often referred to as the forward problem whereas the shape from shading problem is
referred as the inverse problem. Depicting a realistic image of a scene is a computationally
intensive task. Massively parallel computers have entered computer graphics research, rais-
ing the issue of how to embed the radiosily problem [45, 119] into massively parallel SIMD
computing architectures. We have shown that the Langer’s parallel radiosity algorithm
[81] could be implemented efficiently on a SIMD machine with a two-dimensional array of
processors and first-neighbour connectivity. We extended the algorithin to deal with scenes
in which a participating media such as fog or stnoke is present. This gencrality is a strong
improvement over previous radiosity algorithms where each additional scene parameter (g,

specularities [63], fog [116]) required a significant amount of extra programming cffort.

1. Previous Work

Surface inter-reflections have been traditionally mmodelled by expressing the radiance
of each surface point as a weighted sum of the radiances of all the other surface points.
Specifically, the surfaces in a given scene are represented as a sel of n inter-reflecting planar
facets, and the radiosity equation is approximated as a set n linear equations. The equations
have n? coefficients, or form factors [119] which must be computed.

The main bottleneck in computing the form factors is to determine which surface lacets
. are visible from which. This visibility problem is solved by computing a perspective view
of the scene sequentially for each surface facet. Once a visibility function V' (x,x*) is com-
puted, a linear system of equations that relate the surface radiosities is constructed. For
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D. SHADING FROM SHAPE

Lambertian surfaces and sources, the continuous radiosity equation is

x) / Rix") cosﬂl cos 0

TR Vix,x") dx”

(X) = Rcm;t

where R2(x) is the radiance of x, and @) and 6 are the angles between the line segment xx~
and the unit surface normals N(x) and N(x").

When either directional reﬂectance or participating media are present, the above equa-
tions require significant, revision. Directional reflectance may be included by partitioning
the hemisphere of directions above each surface patch into a finite set of solid angles[63],
cffectively multiplying the number of form factors by m? (where m is the size of the par-
tition). Participating media may be included by explicitly representing the surface-volume
and volume-volume exchange of light. This requires an enormous increase in the number of
form lactors{116]. -

Langer [81] reformulated the radiosity equa.tlon in terms of the light rays in a scene,
rather than in terms of pairs of surface facets. In an important sense, the set of light rays
in a scene is smaller than the set of pairs of surface facets: while each light ray corresponds
to a pair of surface facets (namely the points of origin and termination), many pairs of
surface facets may not be joined by a straight line through free space. Indeed, the visibility
function may be thought of as a labelling of a line segment as “a light ray” or “not a light
ray”.

Let R(x,L) denote the radiance of a light ray arriving at x in direction L. Radiance
has units Watls per square meter per steradian, and is defined as follows. Consider viewing
a scene through a narrow straight tube (see IMig. D.55). Suppose that the near end of the
tube is positioned at a point x in free space, and that the central ray through the tube has
direction L. Let d2F denote the light energy passing through the tube and let dL denote
the solid angle subtended by the far end of the tube, Let da denote the cross sectional area
of the tube. Then, the radiance of the light ray passing through x in direction L is

d*E

R(x,L) = Tt

Let H(x) denote the hemisphere of directions pointing out of the surface at x, Tor
Lambertian surfaces and sources, the radiance of ray leaving a surface does not depend on
dircction, and thus may be written R(x). The radiosity equation may now be expressed in

terms of the radiance of light rays as
R = Renict) + 22 [ R(x-L)NGo-Lar.
T JH(x)
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FIGURE D.55. A light ray passes through the point x in direction L. "The radiance
of the ray is defined as the encrgy that passes through the tube per unit area cross
section per steradian subtended by the far end of the tube.

This system of equations may be solved numerically by using a Jacobi iteration,

(D.1) REU(x) 1= Rema(x) + p(x) 3> R¥x,-L)N(x)-L AL .

T LeH(x)

Surface radiance at x is just the radiance of a light ray whose point of erigin is x. 'l'o
apply (D.1), however, requires that light rays are indexed by their points ol lermination.
Langer [81] designed an algorithm for reparameterizing the set of light rays in a scene, lrom
their points of origin to their points of termination. One of the key advantages of this
algorithm is that it may be embedded into a massively parallel SIMD architecture, thus

implicitly solving the visibility problem but in a fashion that is naturally paraliel.

(a) )

FIGURE D.56. A comparison of the traditional and new formulations of the radios-
ity equation. (a) In the traditional formulation, scene geometry is represented by a
set of surface facets and by a visibilily function on pairs of facets. (b) In the new
formulation, scene geometry is represented by a cubic lattice of nodes, and by a
local coordinate systeni uirthe light ray manifold.
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2. Light Ray Manifold

In the absence of scattering by fog or dust, light travels along straight lines in free
space. These oriented lines, or light rays, may be either finite, semi-infinite, or infinite in
both directions. Let M denote the set of light rays in a given scene. Langer [81] showed
that this set is a four dimensional manifold, which he called the light ray manifold (see [27]
for the general definition of a manifold.). He notes that an important property of the light
ray manifold is thal in the absence of a purticipaling medium, radiance is constant along a

ray [42). That is, radiance is a positive real valued function on the light ray manifold,
R: M = R*.

This property is independent of the surface reflectance. Moreover, it allows us to identify

the radiance at the point of origin of a ray with the radiance at the point of termination.

2.1. Local Coordinates: Continuous Case. Local coordinate systems on a light
ray manifold M may be defined in a variety of ways. For example, consider a local patch
x(n, v) of a surface in the scene. For each point x on the patch, the set of light rays that
originate [rom x may be parameterized by a hemisphere of unit vectors H(x). These vectors
speeily the directions of the outgoing rays. Since both a hemisphere and a surface patch
are Lwo dimensional sets, it follows that the set of light rays that originate from the surface
patch x(x, ») is four dimensional. Notice that a similar local coordinate system is defined
by parameterizing the light rays that terminate at the surface patch. These local coordinate
systems of M are widely used in traditional radiosity algorithms. Surfaces in a scene are
defined by a set of planar facets, and for each facet, a hemicube of incident [23] or reflected
[22] rays is defined.

Langer [81] introduced an alternative local coordinate system for M is introduced. (See
Fig. D.57.) Consider a two-dimensional plane passing through the scene, for example, the
pane £ = zp. A given point on this plane is either in free space, inside an object, or on the
surface of an object. Each light ray that intersects this plane is specified by four coordinates:
two determine where the ray intersects the plane, and two determine the direction of the
ray. For example, the light ray that passes through a point (2o, yo, 20) in direction (¢,8)
may be parameterized by (zo, yo, ¢, ). _

Observe that, when the plane is swept through space, a coordinate evolution on M is “
obtained. Suppose that a light ray passes through both planes » = 25 and z = z;. Let
(%0, 0, ¢, 8) and (x1, 1, ¢, ) be the two resulting parameterizations of this ray, and further

observe that (z1, 1) — (zo, %) as 21 = zo. Thus, the coordinate evolution is continuous.
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(%0,¥2,0,9)

(xn.y:.th.ﬂ);f )

0.9 *

[l

FIGURE D.57. The parameterization of a light ray depends on the coordinate planc.

A given ray is parameterized by (%o, %0,¢,#) in the plane ¢ = z5. In the plane

£ = 21, the same ray is parametrized by (21,11, ¢,9). Observe that (&1,1,6,0) =

(z0, v0,9,0) as =1 = =p.
This continuity property is crucial because it allows us to compute a coordinate evolution on
M using a massively parallel computing architecture (in particular, using a two dimensional

array of processing clements that have only local connectivity).

2.2. Local Coordinates: Discrete Case. As in discrete ordinate methods [32,33,
57,85], Langer [81] considered that the nodes in space and the light rays that pass through
space are discretized as follows. Space is represented by a N x N x N cubic lattice. Nodes
in this lattice are of four types: FREE nodes, SURFACE nodes, SOURCE nodes, and SoLID
nodes. Light rays travel through FREE nodes. Light is absorbed and reflecied at SURFACE
nodes. Light is emitted at SOURCE nodes. Light does not reach soLIb nodes.

. Light rays are restricted to travel in a finite set of directions through the space lattice.
For each FREE, SURFACE, or SOURCE node X, Langer defined the finite set of light rays that
may- pass through x by the nodes on a small cube that is centered at x. These directions
are defined by the line segments joining x to points on the six laces of the cube. (See Figure
D.58.) The cube is analogous to the hemicube of Cohen and Greenberg[23]; however,
there are two important differences. First, the half width of our cube is much smaller
(M =5 vs. M = 50) than that of Cohen and Greenberg. Second, Langer defined a light
ray cube at each FREE node, as well as at cach SURFACE and sOURCE node, whereas Cohien
and Greenberg only defined it at each SURFACE node. It is by making these additional
hemicubes explicit, that the visibility problem becomes implicit and the algorithm becomes
naturally parallel,
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Local coordinates on the sampled light ray manifold may be represented as follows.
(See Fig. D.59.) For a given face F of the light ray cube (i.e. there are 6 faces), consider the
ith plane in the space lattice that is parallel to F. The local coordinate system cFcMis
the set of light rays that are specified by F and that pass through plane i,

¢ = {(z,y,L) : (z,y,7) is a FREE or SURFACE node, and L € F}.

Neighbaring local coordinate systems may overlap. For example, consider a FREE node

x = (z,¥,1), and a ray passing through this node in direction L = (Lz, Ly, M). This ray

could be parameterized in at least three different ways:

('T!yaL) € Cth ($+iny+l"y?L) € Ct'{?l-ﬂ’f y OF (-’U"Lmy—Ly?L)eciliM .

Figurg D.58. Light rays are restricted to travel in a finite set of directions through
the space lattice. These directions are defined by the nodes on a small cube, specif-
ically, the directions of the line segments joining the center of the cube to points on
the six faces of the cube,

3. Coordinate Evolution

"To solve Equation (12.1) requires that rays be parameterized by their point of termina-
tion, For that purpose, we use Langer’s algorithim, This algorithm consists of {wo nested
procedures. The first is a local coordinate transforniation (depicted in Fig. D.60) from one
coordinate system C” to its neighbor Cf[_M. The second is a sequence of local transforma-
tions, or coordinate evolution, that reparameterizes all rays in the light ray manifold.

Consider the case of two neighboring coordinate systems Cf and Cf[,M. Let Ro(z,y, L)
and £y (z,y, L) be radiance functions that are defined on C,F and Cf*.M, respectively. Given

an estimate R¥(x) of the surface radiance and given Ro(z,y,L), the radiance Ry (z,y,L) is

152



D. SHADING FROM SHAPE

FIGURE D.59. A local coordinate system on the light ray manifold is defined fol-
lows. For a given cube face F, consider the #th planc in the space latiice that is
parallel to face F. The local coordinate system €} is the set of light. rays that are
in the directions specified by IF and that pass through plane 7.

computed by transforming from € to C,—’iM. In Section 5, this algorithm will be modified

slightly to include the presence of a participating medium.

Local Transformation( F, 4, Rp, R, R¥ {
for all (z,y) in paralle}

x = (z,y,1);

for all L := (L, L,, M)

case {x- L }

soLID : Ri(z,y,L):=0;

FREE : Ry(z,y,L):= Ro{z — Ly,y— L, L};

SURFACE : if (L-N(x-L) > 0)

Ry(z,y,L) := R(x-L,L);
else Ri{z,y,L):=0;
SOURCE : Ry(x,y,L):= Remi{z — Lpyy— Ly, L)

A coordinate evolution is defined by a sequence of local coordinate tLransformations
along the three orthogonal axes of the cubic lattice, first in the positive direction and then
in the negative direction of each axis. In each of these six “sweeps”, the rays defiued by a

particular face of the cube of light ray directions are considered.
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i+M

Fioure D.60. In the procedure Local Transformation, the parameterization of
the light rays is transformed from one local coordinate system to its neighbor a
distance M away. Because of the continuity property discussed in Fig. D.57, a light
ray passes through nearby nodes in two neighboring coordinate planes.

Coordinate Evolution(f?F) {
for all cube laces F,
initialize Hp on CJ‘-"";
for (i=0; i< N; i :=i+1){
Local Transformation( F, i, R, Ry, R*);
o = Ry,
}
}

Ouce the rays have been reparameterized in terms of their point of termination, the
surface radiance is updated using (D.1). In our implementation, the surface radiances are
updated within the procedure Local TFransformation whenever a ray terminates at a
SURFACE node.

Two observations should be made. First, the coordinate evolution may interpreted as
the propagation of radiance along rays, so that the algorithm is just a simulation of the
physics of radiosity. The number of iterations of the algorithm corresponds to the number
of surlace inter-reflections that are considered. Second, the algorithm does not depend on
the reflectance propertics of the surface. If the reflectance was non-Lambertian, then the
surface radiance function would be non-isotropic. This case will be discussed in detail in a

future paper.
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4. Parallel Implementation

A coordinate evolution is a sequence of local coordinate transformations on the light
ray manifold. This evolution is implemented on a massively parallel computer, a MasPar.1,
which is a SIMD machine having 2048 4-bit processing clements. The Pl3s form a two
dimensional array of size N; x Ny = 64 x 32. Each PE is dircctly connected to its eight
neighbors, and the boundary is connected in a toroidal topology.

The width of a scene to be rendered is typically larger than the width of the P15 array.
To accommodate this difficulty, a coordinate plane is mapped to the PE array by wrapping
the plane around the array as many times as nceded. The result is that, at cach PE, many
space columns are represented.

For example, the images shown in Fig. D.G1 correspond to a scene of width N = 128,
This scene is wrapped onto the PE array, 2 times for the = dircction and 4 times for y
direction. Each PE thus represents 8 space columns, each of which is 128 nodes deep.

Hence, 1028 space nodes are represented at each PL.

4.1. Memory Costs. For each space node, a variety of state variables are repre-
sented. For SURFACE nodes, these state variables include the space type, the albedo, surface
radiance, surface normal and emittance. For FREE nodes, the state variables include the
scattering and absorption coefficients, and the luminescence (sce Sec. 5).

If Nz = Ny = N, then N space nodes are represented at each PE. Within the procedure
Local Transformation, O(M?) rays ate required at cach PE to represent the radiance of
the rays. Additional temporary memory of size O{N) is also nceded to rotate the (a,y, )
axes within the procedure Coordinate Evolution. Thus, the local memory cost Lo cach
PE is O(N + M?2).

When many space columns are represented at cach PIE, the memary costs are multiplied
by the number of columns at cach PE, which is N?/(NzN,). Bach PE on the MASPAR-1
has a local memory of 16 Kbytes, which imposes a maximum scene width of N = 128,
More recent models of the MasPar machine have over 16 K processors (forming an array of
128 x 128) and 64 Kbytes of memory per processor. On such a machine, it would be possible
to generate 512 x 512 images. To include directional effects such as specularities, refraction,

and non-isotropic scattering, the memory costs are multiplied by a factor O(M?).

4.2. Time Costs. The basic time cost of the algorithim per iteration is O(N M?).
Local Transformation is O{M?), and Coordinate Evolution multiplies this cost by

O(N). If the scene is wider than the PE array, then the time cost of Local Transformation
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=4

Ficgure D.Gl. A ring floating in a box and viewed through the top. No partici-
pating media is present. The albedo of all surfaces is 0.9. The light source has two
components, ambient and directed, both of which enter the box through the open
roof. The ambient component is a uniform hemispheric sky.-The directed compo-
nent is oblique, from the left. T'welve iterations are used. The scene is viewed from
nine different directions, centered around the vertical.
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is multiplied by N?/(N.N,). For our machine, the procedure Local Transformation
requires roughly 0.6 seconds when N = 128, resulting in a total computation time of
roughly 8 minutes per iteration of the algorithm.

We also note that time is required to rotate the (z,y, )} axes within the procedure
Coordinate Evolution, between “sweeps”. On a serial machine, the time cost of this
rotation is O(N3). We have developed an efficient parallel algorithm to solve the problem.
The algorithm has a time complexity of O(NN;) when N = N, and O(N3/N,) when
N > N.. The operations required for the axis rotation are quite simple, and in practice the

time cost is insignificant. In particular, when N = 128, each rotation takes 0.3 scconds.

5. Scattering and Absorption in Free Space

Until now, only the case of a vacuum has been discussed. In many interesting situations,
however, a participating medium such as smoke or fog will be present [11], and light will
be scattered and absorbed. In this section, we show how to generalize algorithm ol Sec. 3
to account for isotropic scattering and absorption effects. An important result is that the
space and time costs of the algorithm are unaffected by this generalization. An example is
shown in Figure D.62.

Isotropic scattering and absorption may be modelied by assigning a scattering coefli-
cient {(x) and an absorption coefficient y(x) to each point in free space. Consider a ray

passing through x in direction L. The radiance of rays passing near x satisly

A LD () - v RO D) + S8 [ ey an

In particular, radiance is conserved along a ray over any region of free space in which ¢(x)
and y(x) vanish. -

When a participating medium is present, radiance is not a unique lunction defined
on the manifold M. Rather, different radiance functions are defined on different local
coordinate systems of M. The above equation relates the radiance functions of neighboring
local coordinate systems.

Scattering is incorporated into our algorithm by modelling it as isotropic luminescence.
Specifically, energy is temporarily accumulated in a state variable A*(x) whenever a light
ray passes through x. The energy that is accumulated during iteration & is scallered
isotropically in iteration £ + 1. The Local Transformation algorithm must be modified

slightly. A box is placed around the modified lines of pseudo-code.
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. Observe that the time and space costs of the algorithm are unchanged from the case
of the vacuum. This is in sharp contrast to the method proposed in [116], where the

computational costs increase dramatically in the presence of a participating medium.

Local Transformation( F%, i, Ro, Ry, R*) {

for all (z,y) in parallel {

x = (z,41);

for all L := (L, Ly, M),

case {x-L }

soLID : Ry(z,y,L):=0;

FREE : Ri(z,3,L) = (1 —7(x) = ((x)) Ro(z — Lz, y— Ly, L) + 42 L¥(x) ;

A (x) + = v(x) Ro(z — Ly y— Ly, L) AL ;
surrack @ if (L-N(x-L) > 0)
Ri(z,y,L) = R(x-L,L);
else Ri(z,y,L):=0;
SOURCE : Ry(z,y,L) = Remir(z — Lzyy — Ly, L);

6. Summary

The radiosity equation has been reformulated in terms of the radiances of the set of light
rays in a scene, rather than in terms of the the radiosity exchanged by each pair of surface
lacets. Form factors and visibility functions are not computed in the new, formulation. The
traditional computational bottleneck of computing the visibility b: nween surface facets is
replaced by the problem of parameterizing the set of light rays by their points of termination,
rather than by their points of origin. This parameterization is solved by a coordinate
evolution algorithm.

This new formulation has two main advantages over the traditional one. The first is its
generality. The presence of.a.narticipating medium requires only a slight modification of the
algorithm and no change to either the space or time complexity. (The memory requirements
for the case of non-isotropic surface reflectance and scattering will be presented in a future
paper.)

The second advantage is that the algorithm is massively parallel; it may be implemented
on a SIMD architecture having local connections between nodes. Machines that are of

appropriate size are now entering the marketplace. The existence of rendering algorithms
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(a) (b)

FiGurRE D.62. Three balls floating in a box that is filled with fog. The scene is
illuminated by a directed light source that is from above but slightly oblique. The
shadows cast by the balls are visible both in space (as a tube) and on the surface,
Observe that the deepest ball is the darkest since light is absorbed as it passes

through the fog.
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. that make use of these machines is a further technological incentive for the development of

massively parallel SIMID graphics hardware.
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. APPENDIX E

Labelling

The surface orientation is represented by unit normal facing the viewer. We attemipt to

sample this space as uniformly as possible to get forty cells. The cells are listed in Table
E.5.

0.338, 0.939, 0.059
—0.982, —0.176, 0.059
-0.212, 0.939, 0.270

) ( 0.644, 0.762, 0.059
)
)
0.919, —0.285, 0.270)
)
)

) -0.982, 0.176, 0.059)
( 0.644, —0.762, 0.059)

)

)

0.338, —0.939, 0.059)
0.919, 0.285, 0.270)

(
(
(-0.707, 0.653, 0.270) (
(-0.212, ~0.939, 0.270)
(
(
(

-0.707, —0.653, 0.270
0.745, 0.577, 0.333
0.745, —0.577, 0.333
0.880, 0.000, 0.473) (—0.440, —0.762, 0.473)

0.127, 0.934, 0.333 )
)
)
0.538, 0.580, 0.610) (-0.772, 0.176, 0.610)
)
)

(

(

(

(

( -0.872, 0.356, 0.333)
(-0.872, —0.356, 0.333 0.127, -0.934, 0.333)
(—-2.440, 0.762, 0.473)

( 0.233, 0.756, 0.610

(-0.772, ~0.176, 0.610 0.538, —0.580, 0.610 0.233, ~0.756, 0.610)
(-0.333, 0.577, 0.745

(

(

(

(

)

)

) 0.666, 0.000, 0.745) (—0.333, —0.577, 0.745)
0.005, 0.580, 0.814)

)

)

)

(
(
0.500, 0.204, 0.814) (—0.505, 0.285, 0.814)
—0.505, —0.285, 0.814 (
0.170, 0.294, 0.940 (
0.000, 0.000, 1.000

0.500, —0.204, 0.814) 0.005, —0.580, 0.814)
-0.340, 0.000, 0.940) 0.170, —0.294, 0.940)

TABLE E.5. This table gives the sampling of the surface normal that we use in our implemnentation.

The shape of the surface is locally represented by the shape vector and the curveness.
The curveness is very coarsely sampled as we show in Table E.6. We attempt 1o sample the
shape vector space as uniformly as possible to get thirty-two cells, The cells are listed in
Table E.7.

The direction of the illumination is represented by a unit vector. In our implementation,

we use the same thirty-two cells defined by the sampling of the shape vector space.
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6.2 008 005

TaBLE I5.6. This table gives the sampling of the surface curveness that we use in
our implementation.

( 0.000, 0.000,—1.000
(-0.303, —0.525, —0.794
( 0.333,-0.577, —0.745

0.607, 0.000, —0.794)
0.333, 0.577,—0.745)
)

( —0.303, 0.525, —0.794)
(

(=0.127, 0.934,-0.333

(

(

(

—0.666, 0.000, —0.745)
0.872, 0.356,—0.333)
0.872, —0.356, —0.333)

(
(
(
(=0.745, 0.577, -0.333 (
(—0.982, 0.000, —0.187)
(
(
(
(
(

(-0.127, —-0.934, —0.333

)
)
)
) (~0.745, —0.577, —0.333
)

( 0.491, —0.850, —0.187)
)
)
)
)
)

0.491, 0.850,-0.187
-0.491, 0.850, 0.187

)

)

) 0.982, 0.000, 0.187)
( 0.127, 0.934, 0.333)

)

)

)

)

0.745, 0.577, 0.333)
0.745, —0.577, 0.333)
—0.333, 0.577, 0.745)
0.303, 0.525, 0.794)

(-0.491, —0.850, 0.187
(—0.872, 0.356, 0.333
( 0.127,-0.934, 0.333
( 0.666, 0.000, 0.745
( 0.303,-0.525, 0.794

(-0.872, —0.356, 0.333
(—0.333, —0.577, 0.745
(-0.607, 0.000, 0.794
( 0.000, 0.000, 1.000

TABLE E.7. This table gives the sampling of the surface shape vector that we use
in our implementation.
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