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ABSTRACT

The dassieal approach 1.0 shape from shading problems is 1.0 find a numerieal solution of the

image irradiance partial differential equation. 11. is usually assumed that the parameters of

this equation (the light source direction and surface albedo) can be estimated in advance.

For images which contain shadows and ocduding contours, this decoupling of problems is

artificial and the dassical approach fails. We develop a new approach 1.0 solving these equa­

tions using the image geometric structures instead of the image photometrie structure. Our

approach is based on modern differential geometry, and solves for light source and surface

shape changes concurrently. Local scene elements (scenels) are estimated from the ,hading

f10w field and the tangent field, and smoothness, material, and light source compatibility

conditions resolve them into consistent scene descriptions. Shadows and related difficnlties

for the dassical approach are discussed .
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• •RESUME

L'approche classique du problème de l'inférence des formes à partir de la variation de

l'intensité lumineuse ou en anglais "Shape f7'Om Shading' consiste à trouver une solntion

numérique aux équations différentielles partielles qui décrivent la réflexion de la lnmière snr

une surface mate. L'estimation des paramètres de ces équations (la direction de la source

de lumière et le coefficient de réflexion de la surface) est toujours présumée préalablement

résolue. En,général, ce découplage du problème de l'inférence de forme et de l'estimation

des paramètres est artificiel et l'approche classique donne des résultats erronés. Nons

développons une nouvelle approche pour résoudre ces équations en se servant de strnctul'es

géométriques extraites de l'image au lieu de la structure photométrique. Notre approche

est fondée sur la géométrie différentielle moderne, et résout simultanément les changements

d'illumination et de forme. Des descriptions locales de la scène sont estimées à partir de

ces structures géométriques de l'image. Des conditions de compatibilité liées à la continuité

des surfaces et des conditions d'éclairage permettent par la suite d'identifier une description

cohérente. Les cas-problèmes de l'approche classique sont étudiés.
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CHAPTER 1

Introduction

In this thesis, we address a weil known problem in computer vision: shapc from shading.

The problem consists of recovering the shape of surfaces of a three-dimcnsional scenc from

a single static two-dimensional intensity image. It is onc of the c1assical problems, and it

has already received a great deal of attention.

Previous research on shape from shading concentrated on images such as Fig. 1.1, i.e.,

images of a smooth surface of constant albedo iIIuminated by a single distant Iight source

under Lambert's rel1ectance mode!. For such images, it is tempting to decouple the sur­

face estimation problem from the Iight source estimation problem and thc surface albedo

estimation problem.

FIGURE 1.1. This image provides an example in which the scene is composed of a
single smooth surface of constant albedo which is illuminated from a single distant
point source.

However, this is a major drawback, because such a decoupling of problems yiclds al­

gorithms whose domain of apj>lication is very Iimited. To iIIustrate, snch algorithrns could

not deal with:
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1. INTRODUCTION

• images of scenes with shadows, Le. parts of the scene that are illuminated differently;

• images of scenes in which surfaces have different albedos (or ref!ectance coefficients),

Le. the scene is not entirely the same colour;

• images of scenes with surface geometric discontinuities, i.e. in which the scene

contains multiple surfaces either abutting or not.

In fact, it is quite common to encounter such images, and it is quite rare to encounter the

classical ones. Apart from contrived settings such as those found in a research laboratory,

wc seldom come across uniformly coloured, uniformly illuminated scenes consisting of a

single smooth surface.

FIGURE 1.2. This image provides an example in which the scene is not illuminated
from a single point source at infinity. There are singularities (maximally bright
points) on the front of the nose and on the back of the neck. The dassical shape
from shading setting which allows for a unique light source direction, thus infers
that the nose and the back of the neck are facing the same direction - an obvious
fault.

The classical assumptions encounter real difficulties when evaluated against natural

images. To illustrate the nature of one of these difficulties, consider the image in Fig. 1.2.

One of the most cornmon assumptions in shape from shading is that the illumination is

constant over the entire scene, which generally implies that there is only one effective light

source. This is not the case for the scene in our figure. Notice that the front and the back

of the head are the brightest areas in the image. The classical assumptions of a unique light

3
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1. INTRODUCTION

source and a Lambertian model of reflectance imply that the brightest areas are facing the

light source. For this example, it wouId mean that both the front and the back of the head

are facing the same direction. This is an obvious error.

FIGURE 1.~. This image provides another example in which the scene is illuminatecl
from multiple distant point sources.~~·

The scene does not need to he very complex before such difficulties arise. Figure 1.3

shows a very simple example that captures the essence of the difficulty. The viewer can

only see half of the sphere's surface from a given viewpoint. Similarly, any given point light

source can only illuminate half of the sphere's surface. Unless the sphere, the viewer and

the light source are aligned, sorne visible part of the sphere will not he illuminated by the

given light source.

Although the sphere seems like an extremely simple example, this discussion illnstrates

how it is sufficiently complex to demonstrate many'·subtleties in shape from shading. Wc

shall use the sphere example throughout this thesis.

Figure 1.4 shows an example of an image of a scene in which shadows arc ohserved. In

the image, the shadow is simply a black zone. It is not possible to infer the shape of the

surface in that zone. Un1ess this fact is acknowledged, the algorithm will yield erroneons

information.

4
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1. INTRODUCTION

FIGURE 1.4. This image provides another example in which the scene is illuminated
from a single distant point source. Here, there are parts of the surface which are
visible but are in a shadow.

1. Overview

In this thesis, we define a generalized shape from shading problem which takes dis­

continuities into account - lighting discontinuities, reflectance discontinuities, and surface

discontinuities. The added complexity leads to a new approach that relies on geometric

structures inferred from the image, rather than on the image itself. This observation marks

a definite break with previous work based on the photometrie properties of the image.

Our shape inference process comprises three steps:

(i) The first step is to extract local geometrical structures from the image. We rely on

the tangent field (information about contours) and the shading flow field (informa­

tion about smooth scenes) as input for the shape inference (Fig. 1.5).

(ii) The second step is to find local scene models that can account for the local geometric

structures within the image (Fig. 1,6). Once this is done, at any given pixel location,

there exist several candidate local'scene models (Fig. 1.7).

(m) We then consider how the different models at different locations fit together (Fig. 1.8),

and study local constraints to find consistent surfaces. Such local constraints seek

pairs of local scene models that can describe the same smooth surface (Fig. 1.9).

The third and last step is thus to find among these possible local scene models, '

global structures for which the local scene models are locally consistent.

5



•
1. INTRODUCTION

64["""""---------------..,

48

32

16

,.. ...
...""""""....--..."'111 l' ,(1 / ....- ..."'Itll \\ \\\1 '""l' \\\\\\\"" ,\""1 \\\""""' -/1"'ft \\\\\"""' --"1"l ,\\\\\"""', - ...."1\

II\\\\""""', ~/I\
11/\\\"""", -- ,,'\

11111\"""", -- ,,\\

{
"j'll"""" ---"'JIl 111"""' ---",

Il 1Il '''''''''''''---'''Il'' ---- ,,
\\\\ ----",

'\\\\'\', - -----",
~\\\\\\\,', - -----",\\\\\\\\\", - " ----- '1
\\\\\\"', - ,,"----- ,
\\\\\,", ~ ,,"/"-- "1

\ \""', --- """"",, ,""", --- """""'1,,", --- ,,""'",,', --- ,,"'"" ------ ".....................------ ,.............------'*", ,
~ ~

0t;,---7.:"""--~--.....,.,,---~o 16 32 48 64
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FIGURE 1.6. The local scene model (b) has ta account for the local image geometric
structures (a) .
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FIGURE 1.7. For a given image position, a collection of possible scene models can
account for the observed local image geometric structures.

FIGURE 1.8. A local scene model aiso has to be consistent with the neighbouring
local scene mode!.

7



1. INTRODUCTION

• Lb
(x,y)

A.)

B.)

S(O,O)

j'

j

the osculating
paraboloid

J
S(u,v)

•

FIGURE 1.9. The Iighting and surface continuity propertics introdncc constraints
on the local scene models.

2. Claims of Originality

In this thesis, we define a new generalized shape from shading problem, and stndy it.s

solution.

• We show that, ta infer shape from shading under the condition that albedo and

Iighting are variable, photometrie structures of the image cannot be relied upon and

we thus exploit the geometric structures of the images - the shading flow field and

the image curves.

• We have built a new local representation of the surface orientation and shape for

which continuous transformations of the surface are mapped ta continuous curves

in a five-dimensional space. This representation, along with an illuminat.ion modcl,

allows us ta build a local scene model which is rich enough ta treat the generalized

shape from shading problem.

• We have established the relationship between local descriptors of the scene and local

geometric properties of the images i.e. the shading flow field and ~he edge map. Local

differential properties of the image are used since the image irradiance values arc not

8
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sufficient to resolve the ambiguity created by the possibility of multiple illumination

sources and albedos.

ln this thesis, we propose a new computational framework to infer the shape of the

snrfaces of these more complicated scenes. In the process of developing this framework,

several results are worth mentioning as they are either an integ\"l part of the computational

framework or serve to justify choices.

• We have established a compatibility relationship between neighbouring local scene

models based on differential geometrie properties of surfaces and continuity proper­

ties of light sources.

• We have defined the shading fiow field as the dual of the gradient field, and present

a new approach to extract these fiow fields from an intensity image.

• We have studied topologieal and geometrieal properties of the shading fiow field and

of the scenel bundle in order to provide a theoretical rationale for our framework.

• Since we consider shape from shading as an entirely geometrieally driven process (we

consider that shape from shading has to rely on shading fiows instead of image irra­

diance intensities), we provide psychophysical evidence in support of the idea that

the primate brain does not process scalar (image) and vectôr properties (geometric

structures) in the same way.

• We show the relationship between different types of discontinuities in the image and

different types of discontinuities in the scene as an asset to interpret the image.

• We also present a computer graphies Implementation of the radiosity equation that

takes interaction with the ambient media into account. The novelty here lies on the

massively parallel nature of the implementation .

9
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CHAPTER 2

Overview of the Vision Problem

This chapter only contains background material intended for a naive reader. It is Illeant to

provide an overview of the vision problem and to show where the topie of this thesis lits

into "the" big picture. Anyone familiar with this research field shonld move on to Chapt. 3.

1. The General Vision Problem

The goal of a vision system is to provide useful information about the environment

from photosensitive deviees. Evolution provided animais with such visual systems fOI' their

specifie needs. There is a wide range of different visual systems whieh cater to a wide

range of different behavionrs. Some arc very primitive, such as the barnacle's. It only

contains a few photosensitive cells whieh cause it to retreat in its shell when a sudden

illumination decrease occurs. Some visual systems arc very developed, such as the human

visual system. It comprises: two eyes facing in the same direction, th us allowing stereopsis;

different photo-receptors, allowing both colour vision and low intensity vision; a fovea,

allowing greater resolution where attention is needed; and roughly a third of the brain's

cells, allowing for a lot of processing power. Between these extremes, wc can note that

some animais cannot discriminate colors (e.g. owl monkeys), some animais have eyes on

opposite sides of the head giving them a large lield of view but little or no stereopsis (e.g.

pigeons). Some animais have even developed special purpose visual deviees such as the f1y's

ultra-violet sensors, presumably for orientation.

Since vision is often the most important source of information for humans, it is not sur­

prising that we want to give that faculty to machines. Automation of many tasks in indnstry

requires information about the environment in whieh the machine works. An ambulatory

robot must sense its environment to be autonomous, especially when the environment is
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FIGURE 2.10. This image provides an example of the data that the machine would
acquire from a sensor. This image is composed of 471 X 358 pixels with the intensity
of each pixel coded with one byte.

hazardous. Biomedical imagi:lg and remote sensing creates such a huge quantity of data

that the automation of the interpretation process also becomes desirable.

The problem setting can be described generally as follows. Light interacts with the

environment and is captured by sensors. Three-dimensional structures in the environment

project onto two-dimensional structures in the image. The problem of vision is to infer

lIseful information about the environment from the output of t~ese sensors. Somehow,

the two-dimensional image structures must support inferences about the three-dimensional

structures in the environment. Becallse this inference process is lInder-determined, sorne

prior knowledge of the image formation process and of the interaction between the light

and the environment is needed to interpret the data.

1.1. Data and Knowledge. To solve the vision problem, there are two types of

information: data and knowledge.

Data is the information provided by the sensors. For humans, the sensors are the eyes.

For machines, the sensors are usually cameras. The information is usually represented

by images or two-dimensional arrays of numb~rs. The image represents the activity of

photosensitive cells in the retina or the iespon~~ of CCD-elements of the camera - scalar

quantities. It also provides a neighbourhood structure that is related to the neighbouring

relationship ol\~he incoming light rays.

11
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Knowledge is the information about the environment that the system has acquired prior

to data acquisition. This knowledge can comprise detailed descriptions of variuus objects

of interest - e.g. the components of an automated production chain. It can include details

of the relationship between objects and their context (Le., that telephones are often found

on tables) and so on.

It also provides the tools needed to begin an understanding of image illtensities. This

includes knowledge of physies. For example:

• spatially, the environment is in a three-dimensiollal spacc;

• light travels in straight lines in the void;

• light interacts with matter...

Knowledge can also be specific to the vision system used. For example, the followillg

knowledge base could describe a partieular vision system:

• the vision system incorporates two sellsors;

• each sensor comprises an optieal system and a photosensitive surface;

• the properties of the opties in front of the photosellsitive surfaces provide the infor­

mation about how the various rays coming from dilferent points in the scene will

project onto the photosensitive surfaces;

• these surfaces are composed of photosensitive cells arranged in sorne irregular foveated

tessellation;

• the image intensity values correspond to the response of the respective cells;
"

• the response of each cell depends on its particular photometrie and spectral respollse

functions ...

Knowledge can also be depend on the expected scenery. The algorithm presented in Chapt. 3

is based on a set of assumptions. Some of these assumptions are:

• the visible surface is continuous;

• the visible surface has a uniform matte colour, and is uniformly illumillated;

• ail visible surface patches are illuminated from the same direction, and this direction

is known;

• the brightest spot in the shading corresponds to a surface patch directly facing the

light source...

When this knowledge is rieh but specific, the vision problem can be easier to solve, but

the solution may have only a limited interest. On the other hand, when this kllowledge is

general but limited, the solution to the vision problem will be more widely applicable, but

it may also be much more difficult to reach.

"
12
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While we recognize that stereo-vision is a powerful cue for depth perception, we ask

the question: what happens whell we close one eye?

In this thesis, we will consider a vision system with only a single CCD-camera and we

will oIlly consider statie images l . Since humans are able to extract a lot of information from

such an image, we will explore the ways that a machine could do it. We will assume that

the photosensitive surface of our sensor is composed of regular square cells all having the

same response function. We will also assume that the image is obtained by an orthographie

projection. Such an image corresponds to the set of parallel incoming rays from the scene

that are perpendicular to the image plane.

1.2. Representations of the Image and the Scene. The solution of the vision

problem can take various forms. We have said that the problem of vision is to infer sorne

useful information about the environment from the output of the sensors. The notion

of usefulness depends on the task considered. A machine whose task is to turn on the

artificial light on a highway at dusk will find the simplest representation useful, whereas

an autonomous vehicle on Mars will need a much rieher description. There is in fact a

hierarchy of such representations of the useful information implicit in a scene.

The lowest representation of the scene information is the intensity image. It is provided

directly by the sensors. The intensity image gives us information on the amount of light that

emanates from given directions. It can also contain sorne information about the spectral

composij;ign of the light.

Since we are considering only single statie images, the next representation could be the

local structures that can be found in the intensity image. There are two types of features

that have been identified based on the dimensionality of their image support [136] .

• Type I. Image curves: edges and lines. These features are locally characterized by

a contrast, an orientation and a curvature.

• Type Il. Vector and direction fields: texture flow fields and shading flow fields. These

features are locally characterized by an orientation and higher order descriptors. For

texture flow fields, these higher order descriptors could be two curvatures [66]: the

curvature of the flow field itself and the curvature of its dual. For shading flow

fields, these higher order descriptors couId also include the curl of the vector field,

1Wc briefly mention the warka of ather researchcrs interested in shading analysis but on different types of
vision systems. Sorne have explored the possibilitics of combining stcreopsis and shading [10,18,61,129], motion and
tdm.ding {2, 108], and multiple images and shading [82,130]. This list is not meant to he exhaustive but it should
provide sorne pointers to aoyone who wishcs to pursue these directions.

13
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its deformation and the axis of deformation. Shading flow fields are studied in

Chapt. 4 of this thesis.

The next representation could be a local description of the scene. The scene is described

with respect to the image coordinate system, and might comprise two models:

• A local surface mode!. It has two components:

- first, a geometric component, described by a position and the surface patch's

orientation and shape;

- second, an appearance component, described by a colour (intensity, hue, sat­

uration), a visual texture pattern, and perhaps a reflectivity function .

• A local lighting mode!. The lighting model is usuaUy composed of the intensity and

direction of the virtual illuminant seen by the surface patch. A richer model could

include the incoming intensity of the rays from every direction.

The next representation might be a global description. The objects in the sœne are

segmented and described globaUy in term of outlines (snakes), surfaces (thin sheets), or

volumetrie primitives (spheres, cylinders, super-quadries, etc.).

FinaUy, the highest representation couId be the identity of objects in the scene, along

with a description of how they relate to each other. This level is comparable to the descrip­

tion of a scene that a person might make in order to communieate with another person.

2. Elements of the Solution

The existence of a solution to the vision problem is provided by biology since evolution

has succeeded in implementing one for human needs. From an engineering point of view,

it can be advantageous to examine such working examples. Psychologists and neul'ophys­

iologists have been studying the visual system of different animais for a long time. Hence

throughout our attempts to find a solution to the vision problem, we were inspired by some

of their findings.

In the next section, we will mention one early work in this field - Helmholz's distinction

between low-Ievel and high-Ievel vision. Then, in the foUowing section, we will look at the

approaches that were used in the attempt to solve the vision problem.

2.1. Low-IeveI and High-IeveI Vision. Heinrich von Helmholtz (1821-1894) [125]

distinguished two levels of visual processing: the low-Ievel and the high-Ieve!. These are

sometimes also referred to as early processing and later processing. Early processing refers

to what is going on from the retina to the cortex, whereas later processing refers to what is

going on in the later stages of cortieal processing.
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DEFINITION 2.1. Low-level vision is dominated by l'hysics and l'hysical models of the en­

vironment. The l'roblem is one of finding general constraints on sl'ecial-l'url'ose hardware.

Thus, if something is understood about structure of the image or the scene, then something

can be inferred about functions in the visual system [137].

DEFINITION 2.2. High-level vision is dominated by reasoning. The l'roblem is one of finding

specifie constraints on general-l'url'ose hardware. Thus, if something is under..tood about

function, then something can be hypothesized about structures in the scene or in the im­

age [137].

When Roberts [115] described what is probably the first artificial vision system, he too

decomposed it into two stages: a low-level stage in which image curl'es were obtained and

a high-Ievel stage in which the image curves were matched against a model knowledge-base

of polyhedra - the blocks world. Even though Roberts severely restricted the world of

possible objects, matching remained a difficult problem.

As we attempt to create artificial vision systems to deal with a much richer world, it is

necessary to infer more intermediate representations before matching the low-level results

with a model base. The classical problem of "shape from shading", which we will discuss in

Chapt. 3, is an example of an attempt to enrich the representation at an early processing

stage. It provides a clear example of how physics and physical models of the environment

can be used as general constraints to solve a low-Ievel vision problem.

2.2. Data-driven and Knowledge-based Approaches. We said earlier that there

are two types of information useful for solving the vision problem: data and knowledge. Two

approaches have been attempted, each basically driven by one type of information.

The data-driven approach builds on the data. It infers more structured representa­

tions from the data. It thus increases the database. Typically, one incorporates general

constraints following the principle of least commitment that Marr imported to computer

vision [93]. Nevertheless, these constraints are assumptions that will require careful analysis

before they can be accepted as a fact consistent within the resulting representations.

The knowledge-based approach seeks answers to questions. Detailed hypotheses are

inferred from the knowledge, and conclusions are confirmed by thed:ltabase. One strategy

consists in orienting the search through the model base by using contextual information.

Ultimately, the approach seeks to match a model with the data orthe representations

inferred from it.

15
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These two approaches have the potential to complement each other. As we jnst said,

the knowledge-based approach seeks to match models to the data. This matching is a

verydifficult step when the model base is rich and the data limited to intensity images.

For sorne applications, it is possible to limit the model base enough to succced in solving a

particular problem (see the pattern recognition literature). Unfortunatcly, in most potential

applications, it is not that simple. An alternative is to enrich the data with more structured

representations. This is precisely what a data-driven approach provides. Each structured

representation cornes with a set of assumptions. Whereas these assumptions should hold

most of the time for the lower levels of a structured representation, at the higher levels, the

assumptions can be more context dependent and hence, less reliable. The problem becomes

one of assessing the reliability of the results. This is the type of problem that is we\l-suited

for a knowledge-based approach.

In this thesis, we scrutinize the "shape from shading" problem. It is a. problem that is

now genera\ly considered to be an early vision problem. It is dominated by the physics of

the interaction oflight with matter and by physical models of the reflecting surface. General

constraints on the interaction of light with matter and on the reflecting surface arc used to

guide the Inference of a local representation of the surface shape.

In Chapt. 3 and in Parts 2 and 3, different data-driven approaches to dea! with the

shape from shading problem are presented. These approaches differ significantly in their

underlying assumptions and thus lead to very different algorithms. It is our belief that the

new approach, based on shading flow fields and scenel bundles (described in Parts 2 and 3)

is a significant advance over the classical formnlation (presented next, for comparison and

introduction) .

16
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CHAPTER 3

The Classical Shape from Shading Problem

Shape from shading is a classical problem in computer vision research. It is usually asso­

ciated with a partieular setting: a single distant point light source uniformly illuminates a

smooth surface of constant albedo according to Lambert's reflection law. Throughout this

thesis, we refer to this setting as classical shape from shading.

ln this chapter, a brief history of the shape from shading problem is presented. The

classieal shape from shading problem is described, together with the various attempts to

solve it. The classieal setting introduces constraints that allow fast solutions to the shape

from shading problem. But we show that it also severely limits the domain of application.

This chapter is intended to provide the background for our new approach.

1. Brief History

The quest to determine the shape of the surface features in the maria of the moon [26,

114] is at the origin of recent work on shading analysis [50,54]. In those days, the only

available images of the moon were obtained from telescopes on earth. Since the moon is

always more or less presenting the same face to earth observers, motion or stereo vision

algorithms could not provide precise estimates of its topography. Even if images were taken

from distant points on the earth, these algorithms could not provide precise estimates of

features on the moon - the ratio of the radius of the earth to the earth-moon distance is

too small. Thus, other eues received more attention. Photometrie stereo algorithms [61,

129,130] rely on images of a scene taken under identical viewing conditions but different

lighting conditions. Many shape from shading algorithms [51] rely on a single image but

assume that the reflectance function is known.
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The shape from shading problem is classical in vision; Ernst Mach (1866) was perhaps

the first to establish a formai relationship between image and scene domains, and to captnre

their inter-relationships in a partial differential equation [91,112].

Consider a sufficiently smooth surface! characterized by :1 depth map z(x, y) where

(x, y) are the image coordinates. Let

== (~;, ~:)
denote the gradient of the surface, so that the surface normal field

N() (p,q,-l)
x,y = Vp2+q2+1

For a matte surface (moàelled by Lambert's reflectance function) which is illuminated

by a distant point light source (e.g. the sun) from direction L, the image irradiance E(x, y)

can be modelled as

(3.1) E(x,y) = N(x,y)·L .

•

Mach assumed that the surface could be obtained by integrating Eq. 3.1. It took qnite a

while before someone picked up that challenging problem.

Horn set the modern approach by focusing on the solution of these partial dilferential

equations by classical and numerical techniques [51,52,56,62]. In his early attempts to solve

the shape from shading problem, Horn [51] introduced the image illumination equation:

E(x,y) = F(x,y,z,p,q).

This equation is often referred to as the image irradiance equation (see for example [15]).

This general formulation states that the image irradiance for a given position (x, y) depends

on the position in space (x, y, z) of the corresponding surface point and on the surface

gradient (p, q). The explicit dependency on surface position allows for a dependency on

material properties as well. Furthermore, it allows the modelling of a nearby light source

for which the distance between the source and the surfàce patch is crucial.

Since the general form of the image irradiance~quation did not yield practical numerical

solutions, the dependence of F(x, y, z, P, q) on position was dropped [53] thereby reducing

the equation to the more simple form:

E(x , y) = F(p, q).

1By smooth herc, wc mean the function i~ differcntiahle as many times as nceded.
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The basic assumption here is that ail variations in the image irradiance are due to variations

in the surface gradient., thus to variations in surface orientation.

Horn's early attel'lpts to solve this problem yielded promising results and others have

built upon it. In the following sections, we provide the classical definition of the problem

and then we discuss sorne of the solutions proposed.

2. Classical Definition of the Shape from Shading Problem

We take the classical setting in computer vision for shape from shading to be the

following: a point light source at infinity uniformly illuminates a smooth matte surface of

constant albedo whose image is formed by orthographic projection.

PROBLEM 3.1. CLASSICAL SHAPE FROM SUADING

Assuming that

(i) the scene has the same reflectivity everywhere;

(H) the scene is illuminated by a single distant point light source;

(iii) the scene is composed of a single smooth surface;

(iv) the surface is matte;

(v) the image is formed by orthographie projection.

Given

(i) the albedo p;

(H) the illumination A;

(iii) the direction of the light source L;

(iv) the image irradiance E(x, y).

Recover

(i) the surface shape.

The matte surface is traditionally modeled with Lambert's refiectance function [78] so

the image irradiance equation becomes

(3.2) [(x, y) = pAL. N(x, y)

•

where [(x, y) is the image intensity2 at a point (x, y)j p is the albedo of the surface, i.e.

the fraction of the shining light which is refiectedj Ais the illumination, Le. the amount of

shining lightj L is the light source directionj and N(x, y) is the normal at the surface point

2The image irradiance E(x,y) is ofteo replaced by the image intensity I(x,y). One assumes that the relation
bctween the image irradiance E(x,y) and the image intensity f(z,y) is Iinear. One further assumes that the highest
image intcnsity ",alue corresponds to Il surface facÎng the light source so that one cao use the image intensity normalized
by the highest value, and take p and L heing gi-.. ,'m the unit value.
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corresponding to an image point (x, y). The physical model leading to this equation has

recenUy been reviewed by Nayar et al. [98].

(x.y) .if:
..··{L....'.....

...
...........

.......

FIGURE 3.11. A continuous surface, described locally by its orientation N, is illu­
minated from a direction L. The image of this scene is obtained by au orthographie
projection. We use a coordinate system in which the image plane defines the x-y
plane and depth is the distance from the image plane along the z axis. Two scalar
quantities are important for the understanding of matte refiection: the albedo p
and the illumination À.

Fundamental to the classical shape from shading problem is the following implicit basic

assumption:

ASSUMPTION 3.1 (HORN). Variations in image intensity are entil-ely due ta variations in

surface orientation.

Researchers followed two basic approaches in their attempts to solve the problem of

recovering shape from shading. The first approach assumes that the model is correct and

proceeds directly to compute the exact depth map z(x, y). The second approach assumes

that there are errors in the model and therefore introduces additional constraints to recover

shape.

Horn's early attempts to solve this problem lie at the heart of the first approach.

He realized that along characteristic strips [41], the image irradiance equation could be
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rewritten in terms of five ordinary differential equations [51,52]:

dx 8F dy oF dz 8F 8F
= = 8q ds = p-+q-

ds 8p ds 8p 8q

dp 8E dq 8E
= =

ds 8x ds 8y

where s is a parameter which varies with distance along a characteristic strip. When the

surface normal is known at a pixel (xa, ya), then one can integrate the differential equations

to obtain a curve on the surface. ln order to get an initial estimation of the normal, Horn

used the singular points. At the maxima of intensity, the normal vector N and the vector

pointing toward the light source Lare equal.

Several authors studied the conditions under which these known points uniquely con­

strain the solution and showed that recovering shape from ghading is not always ill-posed [15,

16,99,100,118]. Elegant solutions have since been recen8y proposed [6,86,101]. Unfortu­

nately, the characteristic strip method remains numerically unst"blé':

The second approach is precisely concerned with issues such as numerical stability. The

susceptibility to noise is at the root of the need for sorne additional constraint. There are

two main classes of algorithms: local and global algorithms.

Global algorithms, or variational approaches, were developed to extract estimates of

surface orientation with an additional assumption about surface shape - the surface is

smooth in sorne sense. The smoothness assumption is used to relate adjoining points [13].

It enables spatially isolated information about absolute surface orientation to be iteratively

propagated across the surface. Such iterative methods were implemented on a regular

grid, the integral surface being defined by either a C 2 function [14,56,121] or a Cl func­

tion [14,56,62,88]. Multi-grid implementations were also proposed [122,123] to alleviate

the computational burden.

The issue of integrability has also received attention [37,55,56] - integrability can

be enforced when both the surface height and the gradient of surface height function are

represented. It provides a powerful constraint on the surface function.

A class of local algorithms were also developed [31,68,87,106] at about the same time.

ln order to extract estimates of surface orientation, again an assumption about surface

shape was made - the local surface curvature constrains the surface. This local curvature

assumption relates information about absolute surface orientation within a small image

neighbourhood. Whereas Frankot and Chellappa's algorithm enforced integrability, in a

similar spirit, Ferrie and Lagarde [30] considéted how to enforce curvature consistency.
F;-"';,
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From their comparative study of shading techniques, they concluded that it stabilizcs and

iml'raves local estimates of shape from shading.

Other types of algorithms have also been considered. Among others, wc bricny mcntion

the existence of Pentland's algorithm [107] nsing an assumption abont surface rcncctancc.

It is clear that the "classical" shape from shading problem has received a lot of attention.

ln the next section, we will examine the nature of the solution and how it behaves in

situations for which the basic model is not apprapriate.

3. Analysis of a "Classical" Shape from Shading Algoritlull

Reccntly, ways to obtain the solution of the "classical" shape from shading problcm

were published [6,86,99-101,135]. It is reported that these algorithms provid<isolutions

that are reasonably good when the usual assumptions are met. We Irave implcmcntcd

Bichsel and Pentland's algorithm [6] ta illustrate the solution ta the classical shapc from

shading problem3 •

3.1. Overview of Bichsel and Pentland's AIgorithm. Bichsel and Pentland's

(B&P's) algorithm takes gray level images as input. The singular points of an image also

need to be identified, as they l'laya key raie by introducing a three-fold ambiguity (Iocally

convex, concave, or saddle) to the ~i)lution. Since these points correspond to thc points of

maximum brightness, Bichsel and Pentland assume that this identification task should bc

straightforward [6].

B&P's aigorithm uses a "minimum downhill principlc" to remove this ambiguiLy. The

downhill principle consists in passing surface information only to pixels which arc more
,,-'

distant from the light source. For the minimum downhill principle, one chooscs among

different possible paths, the path tIJat leads the least away fl'Om the light source. Bichscl

and Pentland claim that this "minimum downhill principle" guarantees the convergencc of

their algorithm.

The solution of the shape from shading problem is a description of the shape of the scene

that generated the image. For this algorithm, the description consists of a depth mal'. It is

obtained by an Iterative scheme in which the local surface patch depth is updated according

to the minimum downhill principle. ., .-

3.2. Solution to the "Classical" Shape from Shading Problem. Figure 3.12(a)

shows a test image used to analyse B&P's algorithm. The scene consists of a sphere in fl'Out

3The two key subroutincs were copicd directly from thcir conference plI.per. Howcver1 il. wu neCC81UUY ta writc
code for the input/output as weil as the calls for these subroutincs.
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of a plane, both matte surfaces. The scene is illuminated from a distant point which lies

directly on the line ofsight, in mathematical terms: L = (0, 0, 1). The shading is generated

artificially using Lambert's reflectance function. In Fig. 3.12(b), we show the corresponding

depth map obtained by the algorithm. Ail the algorithm 's underlying assumptions are

satisfied for this example, and the scene obtained by this algorithm should resemble the

original data when illuminated from the given direction.
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FIGURE 3.12. This very simple test image provides an example of a "successful"
shape recovery. We implemented an algorithm using the classical shape from shad­
ing assumptions, An ideal intensity image of a constant albedo matte scene illu­
rninated by a single distant point light source (a) and the corresponding recovered
depth rnap (b) arc shown in this figure. The algorithm is from Bichsel and Pent·
land [6]. The code of the two main subroutines came directly from their conference
paper; only the input/output and the cali functions inside an iteration loop had to
be re·coded.

OBSERVATION 3.1. The depth map from Bë!P's algorithm captures accurately the shape of

the sphere and the plane. However, il is important ta note that although the algorithm re­

tUl1led a "good" solution, at/1er "good" solutions are also possible. /n the original scene, the

clepth of the plane is largely ar·bilmry. Furthermore, the same image could have been gen·

emtecl with the plane in othe7' orientations if the sphere and the plane were not constmined

ta be of the same reflectivity.
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Identifying the singular points is not a straightforward task when wc deal with n'Jisy

discrete data. Singular points may not show as global maximum in the image domain. Most,

local maxima in the image domain do not correspond to a singular points; they are sim ply

the resuit of noise.

In Fig. 3.13(a), we present another test image. The scene is composed of three identieal

damped anisotropie waves slightly interfering. Again the scene is ilIuminated from a distant

point whieh lies directly on the line of sight and the shading is generated artiflcially using

Lambert's refiectance function. Because of the discretization of the image, a surface point

directly facing the Iight may not be represented in the image by a global maximum. The

depth map obtained with B&P's algorithm is shown in Fig. 3.13(b). This example reveals

that B&P's algorithm is quite dependent on the accuracy of the singularity detection.
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FIGURE 3.13. The image of an undulated constant albedo matie surface iIluminated
by a single distant point Iight source (a) and the corresponding recovered depth mal'
(b) are shown in this figure. This depth mal' is the output of B&P algorithm using
the brightest pixels in the image as singularities. The surface should corrcspond to
the interference pattern of three identical demped anisotropic \Vavcs. The recovered
surface does not fit this description. This test image provides an example of lin
inaccurate shape recovery that occurs when the initial data are not reHable. Ilere,
the singularities are not all weil identified. Since the image is a discrete function,
singularities for the continuous image irradiance function do not ncccssarily appear
as the brightest point in the image.

In Fig. 3.14(a), we present a third test image. The scene consists of a mask in front of a

fiat background. The scene was originally captured by a laser range finder and the shading
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was obtained by considering a light source at a distant point lying directly on the line of

sight. In this image, since noise ir.t,oduces local maxima, it is even more diflicult to detect

the singularities that are key for the shape recovery. The depth map obtained with B&P's

algorithm is shown in Fig. 3.14(b). Our besL guess leads to a reasonable result4
•

(a)

o '"

(b)

o

•

FIGURE 3.14. In this figure, we show an intensity image (al that was made by
artificially shading the range data image of a mask, and the corresponding recovered
depth map (bl. We can note here that B&P algorithm did not accurately recover
every detai! of the shape of the mask. The shape recovery was based on singularities
that were perceptually salient, and these were identified manually. The emphasis
in this figure is not on the performance of the algorithm, but on the nature of
the initial data. Here, finding the singularities is not straightforward because of
the noise. Using only global maxima likely misses important singu!arities, whereas
using local maxima introduces a lot of insignificant singularities.

OBSERVATION 3.2. ln arder ta recover the shape of surfaces in the scene, the initial data

must be 7-eliably avai/able.

From these three examples, we can at least conclude that the use of B&P's algorithm

is interesting for situations over which we have complete control. Thus, we will use this

algorithm in the following section to show the weaknesses of the classical shape from shading

assumptions. In their very recent comparative study of the various shape from shading

techniques, Zhang et al. [135] have also implemented B&P's algorithm. They have run the

"For this example, the singularitics are DOt determined by the brightcst pixels, but are instead chosen based on
our \'isual perception.
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algorithm on images for which the classical setting is usually appropriate and have also

acknowledged the accuracy and drawbacks of the m~ihod. Given the correct singlliarity

information, B&P's algorithm provides typical resllits for the "classical" shape from shading

setting.

3.3. Limitations and Difficulties. The literatnre cited in this chapter describes

the varions attempts to solve the classical shape from shading problem from first princip!es.

We emphasize, however, that, to make these approaches tractable, certain parameters are

assumed known. Typically the surface albedo p, the illnmination ..\ and the direction from

which it cornes Lare presumed to be constant and known. Operationally this assllmption

decouples problemsj e.g., it deconples the shape from shading problem from light sonrce

estimation problems [105]. Although this decollpling simplifies significantly the shape from

shading problem, it also limits severely the range of its applicability. The resnll, of any

algorithm based on such asspmptions couldbe misleading.

ln Fig. 3.15(a), we show an image of a sphere iIluminated from two dilferent directions.

Parts of the sphere are illuminated by only one source and the central part is illuminated by

both light sources. As previously, the shading is generated artificially using Lambert's re­

flectance function. The depth map obtained with B&P's algorithm is shown in Fig.3.15(b).

We can observe a deformation of the sphere.

OBSERVATION 3.3. An algorithm designed ta solve the "classical" shalle from shading l'rob­

lem fails ta accurately recover the shape of a scene if shadows are present.

The error is due to the fact that the "classical" shape from shading algorithm ,1Ssumes

that the surface is illuminated from the wrong direction on parts of the image. Objects

create shadows and an object which lies in the shadow is illuminated dilferently. Since

different surface patches are often illuminated dilferently, this type of error is likely to occnr

in general.

In Fig. 3.16(a), we show an image of the sphere in front of a plane but part of the

plane and sphere are in a darker colour than the rest. Again the scene is illuminated from a

distant point which lies directly on the line of sight and the shading is generated artificially

using Lambert's reflectance function. The depth map obtained with B&P's algorithm is

shown in Fig. 3.16(b). We can observe a deformation of the sphere.

OBSERVATION 3.4. An algorithm designed ta solve the "classical" shape from shading prob-

lem fails ta accurately recover the shape of a scene if it does not have a constant albedo. -. ~-'<"
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li

'li

41'

..211

(a) (hl

FIGURE 3.15. To analyse the limitation of a shape from shading algorithm based
on the classical assumptions, this test image provides an example of shape recovery
for a simple scene in which two light sources are present. Parts of the sphere are
illuminated with only one light source - the upper right and the lower left parts
- and the central part of the sphere and the back plane are illuminated by both
light sources. The intensity image (a) and the corresponding recovered depth map
from B&P's algorithm (b) are shawn in this figure. Note the "valley" introduced
by the algorithm to account for the shading variability around the edge.
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(b)

o

•

FIGURE 3.16. This test image provides an example of shape recovery attempt with
B&P's algorithm for a simple scene in which the surface albedo changes abrllptly
- the scene is not entirely the same colour. The intensity image (a) and the
corresponding recovered depth map (b) are shawn in this figure. This result shows
clearly that the algorithm based on the classical shape from shading asslImptions
rails ta accurately recover a multiple albedo scene.
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The error is due to the fact that, on a certain part of the image, the algorithm wrongly

assumes the surface reflectance coefficient. Since the world is not entirely the same colour,

this type of error is likely to occur in general.

Although promising results for the classical shape from shading problem have been

obtained by numerous researchers, problems remain which are not naturally treated in the

classical sense, especially those related to discontinuities and shadows. We emphasize again

that in arder to make the shape from shading problem tractable, certain parameters have

been assumed known. This is tantamount to a decoupling of problems, for example, the

shape from shading problem and the light estimation problem. We submit that such decou­

pling, while appropriate for certain highly engineered situations, is not always necessary;

moreover, it can make shading analysis impotent precisely when it should be useful.
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• CHAPTER 4

The General Shape from Shading Problem

A human observer confronted with a static, monocular view of a scene will.succeed in

obtaining sorne estimate of the shapes of the surfaces within it, even when sorne of the

classical setting's constraints are relaxed. The presence of a shadow, a diffuse light source,

or even a patterned surface does not necessarily interfere with our ability to recover shape

from shading. Thus the classical constraints can be relaxed in principle; but how far?

ln this chapter, we redeline the shape from shading j>roblem and we describe how the

classical assumptions ne~d to be relaxed to deal the problems that we have identified.
li
li

1. The Objectives

Scenes often contain multiple surfaces. It is cornmon that these surfaces partly occlude

one another and even that a surface self-occludes. It is also cornmon for different surfaces

to have different rel1ectance coefficients. Furthermore, occlusions are common along lines

between a light source and points on a surface; this latter instance causes lighting conditions

to abruptly change and creates shadows.

Single smooth surface Multiple smooth surfaces

Single light source Multiple light sources

No shadow Shadows

Single albedo scene Multipb albedo scene

1 Classical Shape from Shading 1 Generalized Shape from Shading 1

TABLE 4.1. The classical shape from shading problem and the generalized shape
from shading problem differ in the scenes they can deal with.

•
We have observed in Chapt. 3 that these scenes cause the classical shape from shading

algorithms to fail. These failures are not due to bad algorithm design, rather the cause is

intrinsic to the problem's delinition. The assumptions underlying the classical shape from



•

•

4. THE GENERAL SHAPE FROM SHADING PROBLEM

shading problem are too restrictive. To handle the situations in Chapt. 3, the classical

setting needs to be generalized as in Table 4.l.

We want to be able to also recover shape from shading for these problematic scenes

simply because they are 50 common. Therefore we have to redefine the shape from shading

problem and attempt to address all the problems raised by our observations.

2. The Line of Thought

The scenes mentioned in the previous section do not comply with the constraints in­

herent in the assumptions of the c1assical shape from shading problem. Thns, first and

foremost, we have to relax these constraints on the scene in order to correct this sitnation.

But how much can we relax them?

Can we get rid of them altogether? Consider the general form of the image irradiance

equation:

I(x, y) = <l>(x, y) 3(x, y) ,

where the functions

<l>(x, y) = p(x, y)>.(x, y) ,

3(x,y) = L(x,y) ·N(x,y)

How can we recover <l>(x, y) and 3(x, y) given only their product? This is obvionsly impos­

sible without any assumption.

50 we redefine the shape from shading problem in a way snch that we retain only the

essence of the basic assumption implicit in the c1assical shape from shading problelll, that

is:

ASSUMPTION 4.1. For the generalizecl shape from shading problem, smooth variations in

intensity are entirely due to smooth var'jations in surface orientation.

To make the distinction c1ear, we emphasize the fact that this assnmption is only

concerned with variations that are smooth. Abrupt variations of intensity can be dne to

abrupt variations in surface orientation, but they can also be due to abrupt variations in

the surface albedo or abrupt variations in the lighting conditions. We examine such abrnpt

changes later (see Chapt. 6).

The basis for the distinction between Assumptions 3.1 and 4.1 lies in the observation

that intensity changes occur at different scales [79,80]. 5mall changes in image intensity

:12
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characterize smooth change in scene features (i.e. smooth surfacel ) although the quan­

tization of space and intensity introduces sorne noise. Large changes in image intensity

characterize changing scene features, i.e. wherever the surface reflectance, the lighting con­

dition, or the surface orientation change abruptly. This notion of scale was fundamental to

Land's Retinex theory [79,80], and will be important to our generalization of shape from

shading.

The changes of intensity occurring at various scales reveal that there is more ,to an

image than just the photometrie aspect. The various structures are shown in Fig. 4.17.

Along with the intensity, wc can distinguish the shading f10w field (small changes) and the

image discontinuity curves (large changes).

Image

Photometrie

t
image intensity

Geometrie

eontinuous

t
shading flow field

diseontinuous

t
image eurves

(e.g. edge,)

FIGURE 4.17. An image comprises a set of pixel intensity values. These capture
the photometrie aspect of the image. Au image also implié;':ly defines geometric
structures. These emerge from the ueighbourhood relatiouships of the image pixels.
These structures can describe either continuous properties of the image or discon-
tinuous ones. ---,---=_~'

The significance of Assumption 4.1 for the reflectance function of a matte surface can

be expressed by the following equation:

(4.1) V'I(x, y) = p(x, y)A(x, y) L(x, y) . V'N(x, y)

•

At every point (x, y) where the image iutensity gradient V'I(x, y) is defined, this equation

implies that the surface albedo p(x, y), the illumination A(x, y) and the direction of the

illuminant L(x, y) are locally constant. It also implies the existence o(a differentiable

surface normal V'N(x, y). Note that the other terms in the total derivative V'1 are assumed

lIn Chapt. ID, wc look at alternative a8sumptions.
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nonexistent according to the above comments about scale; i.e., VL = 0, Vp = 0, and

V>' = O.

There are two key conceptual differences between our approach to the generalized shape

from shading problem and the approaches to the classical shape from shading problem

described in Chapt. 3:

(i) in order to generalize the scene model, the scene constraints are considered to be

local and not necessarily global;

(H) since the surface ref1ectance coefficient and illumination cannot be taken as given,

surface shape recovery is based on the geometric structures of the image rather than

on the photometrie structures.

We elaborate on the imp,ortance of these differences in the following sections. Alternative

options for relaxing the basic assumption are discussed in Chapt. 10.

3. Local vs. Global Scene Constraints

Using local scene coristraints instead of global scene constraints has sevemlnoteworthy

consequences:

• It addresses the problematical issues in the scene model that caused the classical

shape from shading algorithm to fail.

• It introduces discontinuities into the scene mode!. The projection of these discon­

tinuities onto the image plane provides another powerful cue to aid snrface shape

estimation.

• It does not allow for a global description of scene descriptors, such as the albedo p,

the illumination>' or the illuminant direction L, and thus these cannot be taken as

given. Rather, it stresses the need to evaluate these concurrently with the surface

shape.

3.1. Generalizing the Scene Model. We have demonstrated in Chapt. 3 that the

classical global constraints are too restrictive to deal with several featnres that commonly

occur. The key to our approach is to reconsider these same constraints but with a reduced

. range; e.g. whereas for the classical shape from shading problem, the albedo was constant

over the entire scene, for the generalized shape from shading problem, it is assumed constant

only over a neighbourhood. Table 4.2 summarizes the constraints used by the dilrerent scene

models.

The ref1ectance properties of the scene are only considered locally constant; the scene

is not presumed to be described with a single albedo. The illumination of the scene is also
'\:
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Classical Shape from Shading Generalized Shape from Shading

Global constraints Local constraints

Smoo'h surface Piecewise smooth surface

Constant illumination Piecewise constant illumination

Constant albedo Piecewise constant albedo

TABLE 4.2. The dassical shape from shading problem and the generalized shape
from shadillg problem differs on the surface, the illumination, and the refiectance
constraints and the resulting mode!.

considered to be locally constant; the scene is not presumed to be everywhere illuminated in

the same way. The differentiability (a local property) of the surface normal function implies

that this function is continuous (another local property). Where the image intensity gradient

is not defined, the surface normal function can be discontinuous; the scene is not presumed

to be described by a single continuous surface.

3.2. Introducing a Madel with Discontinuities. A model with piecewise con­

stant albedo implies that the projection onto the image plane will be marked by disconti­

IlUities in albedo. A model with piecewise constant lighting also implies that the projection

onto the image plane will be marked by discontinuities in illumination and illuminant di­

rection. Similarly, a model with piecewise smooth surfaces implies that the projection onto

the image plane will be marked by discontinuities in surface depth, orientation and shape.

Ali of these discontinuities form contours.

OBSERVATION 4.1. The discontinuities in the scene are marked by curves of discontinuity

in the image plane.

The relations between the curves of image discontinuities and the curves of scene dis­

continuities provide an important insight to distinguish the various scene discontinuities

(see Chapt. 6).

Since geometric discontinuities (in curvature, orientation, and depth) are unavoidable

aud their projection onto the image has a widely recognized importance [8,69,73], we allow

for discontinuities. We therefore assume that the scene is composed of piecewise smooth

surfaces2 •

2Since the reftectancc function depends on the existence of ft differentiahle surface normal, allowing surfaces
that are nowhere smooth Îs c1early inappropriate.
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OBSERVATION 4.2. The projection onto the image of geometrie diseontinuities provides an

additional eue to help shape reeovery.

3.3. Coupling Surface and Light Source Estimation. The classieal shape from

shading assumptions allowed the scene 1.0 be modelled by a single albedo, a single illumi­

nation and a single illuminant direction. The albedo and the illumination always enter the

equations as a product, 50, for the entire image, a single vector p>'L is needed. When the

classieal assumptions hold, one can expect 1.0 extract this single vector based on statistieal

considerations [105].

Since we are considering local constraints for the generalized shape from shading prob­

lem, the vector p>'L is constant only within some neighbourhood. One should typically

expect this vector 1.0 take multiple values for any given scene, i.e. according 1.0 our assump­

tions, il. will take a given value for points corresponding 1.0 a certain patch of the image, and

il. will take a different value for points corresponding 1.0 a different patch. Severa! patches

of various sizes and for ms have 1.0 be delimited and modelled by different vector vaines.

The problem is more complex and one cannot expect 1.0 extract the vector p>'L based on

the statistieal considerations used for the classieal problem. The problems of shape from

shading and Iight source estimation can no longer be decoupled. Light sonrces and sur­

face properties must be handled concurrently; neither problem must be solved "before" the

other.

4. Geometrie vs. Photometrie Image Structures

To emphasize the dichotomy between the photometrie· and geometric structures, we

rewrite Eq. 4.1 as follows:

'I1J(x, y) = cI>(x, y) r(x, y)

where the photometric and geometrie aspects of the scene are respectively:

cI>(x, y) = p(x, y) >.(x, y)

r(x, y) = L(x, y) . V'N(x, y)

The photometric structure of the image, the image intensity, is directly related 1.0 the

photometrie aspect of the scene, the product of the illumination and the albedo of the surface

cI>(x, y) as shown in Eq. 3.2. Since we are letting both the illumination and the albedo be

functions of position, the image intensity is a poor choiee for initial data of the shape from

shading problem. The geometric information about the scene would be confounded with

the photometric.
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OBSI>RVATION 4.3. The relaxation of the seene eonstmints leuds ta the rejection of the pho­

tometrie structure of the image as initial data for the shape from shading problem.

The geometric aspect of the image revea!s information of a different nature. We consider

two types of structures [136]:

• type I. Contours. These are one-dimensiona! structures in a two-dimensional space.

Of particular importance are those curves that correspond to discontinuities.

• type II. Flow patterns. These are two-dimensional structures in a two-dimensional

space. Vector fields and direction fields are examplesj we shall consider a specific

one called the shading flow field.

'1'0 elaborate, viewing the intensity imagè ~s a scalar lield, we derive two geometric structures

from it. One of these corresponds to the regions depicting smooth intensity changes, or

regions in which the intensity gradient is well-behaved. This will becilme the shading flow

field, and it is deve!oped later in this section. Separating these regions of smooth intensity

variation are Jordan curves of discontinuities - these correspond to so-called "edges" in

images, and they depict the locus of positions along which surface and lighting properties

change abruptly. Note that the curves and fields are comp!ementary, but that they both

provide information about shape.

Singularities of the flow field constitute another dass of geometric structures.

• Point singularities. These are zero-dimensiona! structures in a two-dimensional

space. A specularity on a sphere is an example of a situation that generates such a

structure. Such a singularity corresponds to a point where the shading flow field is

uudefined - the singularity being a sink (or a source) of the gradient field. Point

singularities can be characterized by their index.

• Line singularities. These are one-dimensional structures in a two-dimensional space.

A highlight ou a cylinder is an example of a situation that generates such a structure.

These structures in the shading flow field are characteristic of parabolic surface

patches (or line [72]) as the surface curves in only one direction.

• Undefined regious. These arc two-dimensional structures in a two-dimensional space.

The back plane in Fig. 3.12 is an example of a situation that generates such a

structure. These structures in the shading flow field are characteristic of planar

surface patches as the surface does not curve in any direction, hence the intensity

remains constaut.

We coutinue next with a discussion of image curves, represented locally as a tangent

field. First, however, note that in a static image, we can extract a shading flow field and
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a texture flow field [136]. Although shading may overlap a textnre flow, it is dilncnlt to

recover when the changes occur at the same scale. Since we consider only the smallest

scale, the shading flow field [12] and the texture flow field can be viewed as exclnsive and

complementary. Both provide information about shape3 [109].

4.1. The Tangent Field. The tangent field [136] comprises the position, orientation

and curvature information about image curves: Tt = {x, y, e('>, "('>}. There are seveml

types of image curves, e.g. bright lines, dark lines, edges. The tertn "edge" refers to the

image curve along which an abrupt change in the image intensity occurs.

Artists have drawn sketches in terms of line drawings for several centuries. It has been

acknowledged as a powerful eue for the perception of shape. When humans look at line

drawings, they can often extract a qualitative description of what they see [43]. When

viewing the line drawing in Fig. 4.18, most people immediately recognize the humanoid

figure.

FIGURE 4.18. The line drawing provides suffident information to humans to allow
them ta recognize sorne scenes. This line drawing was extracted from the gray-level
image with Iverson's logical-linear operators for edges and lincs [66J.

Often, line drawings contain sulndent data to drive the recognition process. Occludinll

contours have probably received the most attention. Richards et al. [113] attempted to

3Note that the scope of this currcnt work includes contours and Iihading f10Wl:l. The integration u( texture
information inta this framework is left for the future.

38



•

•

4. THE GENERAL SHAPE FROM SHADING PROBLEM

uncover how unique three-dimensional interpretations could be made from two-dimensional

silhouettes. At the heart of their work were two rules:

(i) Do not propose undulations of the 3-D surface without evidence for such.

(il) Pick the most general positiou 3-D interpretation, namely, that 3-D shape that

preserves the signs of the curvature of the silhouette over the widest range of view­

points.

and three constraints:

(i) The sign of the Gaussian curvature of points on the 3-D surface that project onto

the silhouette is the same as the sign of curvature of those projections [71]. This

qualitative constraint on the surface shape is independent of viewing distance [69].

(il) For generic surfaces, the f1exional (parabolic) Iines are closed and non-intersecting.

(iii) A region of negative curvature on a silhouette is always interpreted in three dimen-

sions as a furrow (or neck), never as a dent.

ln a corn l'anion paper, Beusmann ct al. [5] proposed a method of representing the shape of

complex objects as convex parts. They showed that the part boundaries, hyperbolic regions,

could he inferred from the occluding contours. Kœnderink and van Doorn [73] described

how this type of representation is common in fine arts.

OBSERVATION 4.4. Occluding contours only depend on the geometric properties of the sur­

face lVilh respect ta the vielVer. The relationship betlVeen the scene and the orientation and

curvature of an edge element is therefore independent of the illumination model and the

surface reflectance model.

At those positions where the image intensity gradient is not defined, image curves can

provide precious information.
'.

4.2. The Shading Flow Field. If we provide the shading information along with

the line drawing, we can notice details that we have missed previously. The shading l'l'ovides

evidence of undulations that the line-drawing cannot capture.

In Fig. 4.19, the hollow between the shoulder blades is an example. Here the shading

l'l'ovides evidence of an undulation of the 3-D surface that was not available from the line

drawing. Neither the Iighting condition nor the reflectance properties of the surface change

abruptly, and since the viewing position is facing the hollow, there is no self-occlusion. This

is typical of situations in which the line drawing extracted from an image (Fig. 4.18) is

insufficient to capture the (smooth) variations in shape.
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FIGURE 4.19. The shading provides additional information ta humans. It allows
us to notice Sorne shape detai[ on the surface.
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•
FIGURE 4.20. An image (a) of the shoulder blade region in Fig. 4.19 and its shading
flow field (bl. The shading is not sufficient ta characterize unambiguously the shape.
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An image without discontinnities is sometimes quite confusing. In Fig. 4.20, we have

cropped the image and we have only taken the region between the shoulder blades. Although

we can still get a qnalitative description of the shape, its orientation is not reliable [ïS]. We

not.e here that a similar phenomenon occurs with texture when viewed through an aperture

(the surfaces always seem fronto-parallel).

OIlSlmVATION 4..5. The line dmwings and the shading provide complementary information

about the shape of surfaees.

Riehards et. al.'s first ru le consists of not proposing undulations of the 3-D surface

withont evidence for such. The shading llow field provides precisely this evidence.

If we look at the first order directional derivatives of the intensity function,

8
Ix = p>. L· " N ,

(ïX

8
ly = p>. L . - N ,

ây
or the second order directional derivatives of the intensity function,

. â2

lxx = pXL· âx2 N

â2

lxy = p>. L . -- N
âxây
â2

lyy = p>. L . - Nây2

we note that aIl these partial derivatives depend on the variable illumination and albedo.

Again, as in the image intensities, these measures confound the scene's geometric informa­

tion with the scene's photometrie properties. Therefore, they are not appropriate to solve

the generalized shape from shading problem.

The directional derivatives' information can nevertheless be combined in ways that are

independent from the variable illumination and albedo. One such way is the shading ftow

field.

DEI'INITION 4.1. The shading llow field is the vector field which indicates the direction in

which the image intensily remains constant. It is therefore per'pendicular to the image

intensily g.mlient field.

Although the following ca.1clllations are elementary, their implications are deep for our

mode!.
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TUEOREM 4.1. For the generali:ed shape from .<hading prob/em, the orientation of the in·

tensity gradient field (where it is defined) is independent of the t>al"Ïab/e illllmination (A)

and albedo (l')' Tlws the orientation of the intensity gmdient fieM only depends on the:

geometrie properties of the surface r(x, y) and the lighting with rY:spcct te the vieU'e,·.

Proof: The orientation of the gradient field 9 is related 1.0 a ratio of directional dcriva.t.ives:

I y
tan 9 = I~ .

Since both directional derivatives arc directly proportional 1.0 the product of the iIIuminat.ion

and the albedo,
L·.Q.N r

tan9 = 8: = 2
L'a;; N l'x

The orientation of the intensity gradient field is independent from the variable iIIuminat.ion

P,) and albedo (l')' 0

COROLLARY 4.1. The shading flow field (whery: it is defined) is independent of the """iable

illumination and albedo, and thus only t!epent!s on the gcometrie p1'Oper/ies of the smface

and the lighting with respect ta the vielVer.

We acquire two vector fields based on this orientation information. Wc ean considel' t.he

normalized gradient field and the shading f10w field as unit veclm fields (direction fields).

COROLLARY 4.2. The eurvatures of bath the shat!ing flow field anll the 7w,'malizelly""t!icnt

field are also indepent!ent of the variable illumination ant! albedo, and thus only dCJ""ul lm

the geometrie properties of the surface ant! the lighting with respect ta the viewer'.

The curvature of shading f10w field "s and the curvatnre of the normali~ed gradient.

field ". are respectively:

2Ixlylxy - J';lyy - 1;lxx
lis = 3

(1;+1;)'

Ixly(Ixx - luu) - Ixu (/; - 1;)
~ = 3'

(/;+1;)'

Since the first and second directional derivatives arc directly proportional 1.0 the product of

the illumination and the albedo, in both instances, the numerator and the dominat.or wou Id

be proportional the cu be of this prod uct and cancel ou t.

The shading flow field can exhibit singularities. Singularities of index one wou Id wr­

respond 1.0 circulations, either ciockwise or counterciockwise. Of l'articulaI' importance fol'
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I3ichsel and Pentland's algorithm were those points that correspond to maxima of intensity.

These are counterclockwise circulations. Note that the shading flow field does not give rise

to sink or source because of the way it is defined with respect the image intensity - just

recall that the curl of the gradient of a scalar field is identieally null. Singularities of index'

minus one would correspond to saddles. Wc obtain the index of an isolated point singularity

by summing the angle differences between vectors (divided by 2rr) as we follow a c10sed path

aronnd the singularity in a counterclockwise fashion. Thus, from the shading flow field, we

have a straightforward way to locate singularities.

1.2.1. Othe,' Motivations. Observe that a sensitivity issue arises in the shape from

shading problem; spatial quantization of the image induces a quantization of the scene

domain. Analogously to the manner in which integer solutions are not always possible

for algebraie equations, wc begin with "quantized" initial data as weil. In particular, we

derive our initial estimates from the slwding flow field instead of directly from the intensity

image. This field is the first order differential structure of the intensity image expressed as

the isoluminance direction and augmented with the gradient magnitude; we supplement il.

with the intensity "edge" image. We suggest that dealing with uncertainties at the level of

the shading flow field will expose more of the natural spatial consistency of the intensity

variation, and will thns lead to more robust" processing than the raw intensities. The

shading flow field ideas are related to Kœnderink's isophotes [72] and Wolff photometrie

flow fields [128].

Onr motivation for starting from the shading flow field is also biologiea!. We take

shading analysis to be an inherently geometric process, and hence handled within the same

cortieal systems that provide orientation selection and texture flow analysis (see App. A).

Shading f10w is simply a natural extension.

5. SUllunary

Wc re-examine the problems uncovered in Chapt. 3 for the c1assical formulation of the

shape from shading. The discussion of the "local vs. global" scene constraints and the

"geometrie vs. photometrie" image strnctures yields the following proposais.

PIlOPOSAI, 4.1 (OBSEIlVATION 3.1 IlEVISITED). The first difficulty observed was that the

com]luted shape of a backgf'Oulld smiace is constrained by an occluding object. By assuming

that the scene cm, comp7'ise seveml smooth surfaces, we allow for surface discontinuities.

::>.4Throughollt. this thesis, the term "robust" is uscd as meaning "not scnsith'c to noise" .
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Thus, the shape of the background surface is no longer neccssm'ily constJYIincd by occludil/Y

abjects.

PROPOSAL 4.2 (OBSERVATION 3.2 REVISITED). The secOlul difficuUy ob.<crllcd wus Ihalsha[ll'

reeovery depencls on an estima/.ion of thc ini/.ial clata. The rcliabilily of thc e.,/i1llate is 'TU­

cial ta an accurate recouel'y of shape. By taking Ihe ab"U[l/ c/umgcs il/ the il/wge il/lel/"ity

and the shading flotO field, tOc have chosen as inilial dal.a only gcome!"ie stl'ucl.ul'e8 that cali

be more reliably extractecl from the image. Unlike I/"",ima al' millima, mc/, of Il,ese dula

can be refined according ta their oum geomell·Y.

ln his Ph.D. thesis, Lee lverson [66] describes a l'eHable way t.o ext.ract. the abrupt.

changes in t.he image intensity. ln Chapt. 5, we propose a reHable way to ext.rac\. t.1",

shading fiow field.

PROPOSAL 4.3 (OBSERVATION 3.3 REVISITED). The third dijJicuUy ob8erued was the failurc

ta deal tOith shadotOs. ShadotOs arc zones tOhae the lighting conditions urc dijJcrellt, us onc

light source is somehotO occludec/. By Clssuming that seveml clistcmt lighl. so""ces il/u1llinalc

the scene, tOC al/mil for the chclUging lighting condition that Cl'Cates s/uulow8, The lighlillg

conditions are not taken as given.

PROPOSAL 4.4 (OBSERVATION 3.4 REVISITED). The f01l1·th dijJiculty obsel'ued was the fail­

m'C to deal tOith scenes that Clre not entil'Cly the SClme colom'. By assu111ing IIwt the scene i.,

composed of surfClccs fol' which the refleetclUce coefficients Cl1'e [lieeewise constant, wc /uwe:

the possibility to deClI tOith scene tOhich Cl7'C not cntirely the: SCl7lle COlOU1', The ,'cfleetcmc:c

coefficients Clre not taken ClS given,

6. The Generalized Shape from Shading Problem
"'\:

These proposais f';·;lt in a new definition of the shape from shading problelll - even
~~.,.

though it still deals with a single monochromatic image, it allows more gelleral Scelles,

PROBLEM 4,1. GENERALIZED SHAPE FROM SIIADING

Assuming thClt

•

(i)

(ii)

(iii)

'(iv)

(v)

colours CCln be ]Jresent in the scene, but (l7'e ]Jiecewise eonstClnt;

seveml distClnt Liglit sources CCln il/umÎ1lClte the SC~iiC;",~;,> '"
--, \\

the scene can comprise several smooth surfClces; );
ij'

the surfaces are matte; c:~·

the imClge is formed bg an orthogra]Jhic projection,
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G'Ï1)(;n

(i) the tangent fielri;

(ii) the s/""Jing f/o", fielfi.

lleC01JC7"

(i) the surface shape;

(ii) the il/ll7nirlfl7l1 riirection.

The scope or this shape rrom shading problem is more general than the c1assical shape

rrom shading setting (see Problem :l.I). The a~sumptions made about the scene are less

constraining. The only given variables are the geometric structures or the image - these

Ca.1I be extract.ed from the image intcIIsities, as wc now show.
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CHAPTER 5

Computing the Shading Flow Field

Our shape l'rom shading approach is based on the shading f10w field. Therefore, il, Y"lies on

an accu rate initial estimation of these local properties of the shading. We have st\ldied 1,1",

problem of extracting this information l'rom the image.

In this chapter, we describe how the shading f10w field can he extract.ed frolll the image.

1. Introduction

5ince the shading f10w field is the "dual" of the normalized gl'adient field, Wl' look al.

how one could extract the gradient of an image.

The problem of computing the gradient of an im'Ige would he stl'aightfOl'ward if the

image intensities were sim ply a mapping of IR2 -t IR. II. wonld sumec 1.0 cOlllp\lte the

directional derivative in the x and y directions:

'J ft;, y) = (;/(X, 11), ;/(X, 11)) .

But, the image intensity is not a mapping of IR2 -t IR. The image is discrete. Il, is

a mapping of Z2 -t Z. The situation becomes complicated by the fact that the \lotion

of differentiability is not defined on integers. '1'0 make matters worse, the image is also

intrinsically noisy.

50, it is necessary to redefine the problem. We are not computi\lg the gl'adiellt of

the image intensities direct\y, but seek to infer the gradient of a fnnction that capt'Ires

the shading of the scene as projected on the image plane. The image intensities l'l'ovide il

sampling of this l'unction .
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5. COMPUTING THE SIIADING FLOW FIELD

1.1. Fuzzy Derivatives. Traditionally, the gradient of an image "'l(x,y) is com­

puted by slIIoothing the image intensity fuuction 1(x, y) before estimating direction a! deriva­

tives. The smoothing is usually done by the convolution of a Gaussian kernel over the image.

lu(x',y') "" L l(x,y) Gu(x - x') Gu(y - y') ,
(x ,y)

wh"ëre

G' ( ) __1_ -x' /2u'
ux - =ev21fa

and a is the variance.

Usiug the convolutiou property of Gaussian kernels, these equations can be rewritten

in terms of "fuzzy derivatives" [74]:

Olu "" l * G~(x) Guly) ,
O.T

Olu
Oy

where G~(x) is the first derivative of the Gaussian. The gradient estimate follows immedi­

ately, and the isoiuminauce direction is simply perpendicular to the gradient.

FIGURE 5.21. In this figure, wc provide an exampleofthc use of "fuzzy derivatives".
The dala used is the gray-Ievel image iu baekgrouud, and the resulting shading flow
field, augmeuted with the gradient magnitude, is showu in foreground.

The oue limitation ofthis approach is that (depending on the magnitude of a) it always

iufers a smooth gradient field, even when the underlying image is non-continuous.
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1.2. Limitation and Difficulties. The notion of continnity is an important under­

Iying condition for differentiability. By smoothing the image with a Gaussian kerncl, one

ensures that the function is continuous and that ils derivativcs are continuous. But by

doing so, we are also masking otller important strnctnres.

Consider the image formation process for a smooth matte surface under a constant

lighting condition. Il. yields a smooth intensity fnnction. Its projection on the image plalle

should also yield a smooth image intensity function 1. Il. should normally result in a smooth

gradient field (See Fig. 5.21). This is fine.

However, often the imaged scene contains discontinuous features. We shall now considel'

1.1'0 such images. They both consist of 1.1'0 smooth surfaces: a sphere in front of a plaue.
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FIGURE 5.22. The technique of fuzzy derivative6 produces Il smooth shllding Ilow
field eventhough the undcrlying image intcnsity function has markcd disconlinu­
ities. Here, (a) the image of a scene with intensil.y discontinnil.ies yields (b) Il

continuolls shading fiow field, In this figure, lhe gradient magnitude is codccl ill
gray levels - darker meaning largel' gradient.

In the fil'st image (Fig. 5.22(a)), the Iighting condition l'emains constant, bnt. one part.

of the sphere and the plane is of a different. albedo than the ot.her. Both sn l'faces generat.e a

smooth intensity function. Each surface should independently exhibit a certain shading Ilow

pattern. But since the sphere pal't.ially occludes the plane, the pl'Oject.ion ont.o the image

plàne would typically yield a discontinuous intensity function and a discont.inuolls gradient.

1Hè~.... wc assume t,hat the surface Îs not sclf·occludillg
I.f"
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field. The discontinuity should lie on a curve. On both sides of that curve, the intensity

fundion and the gradient field should be smooth. Figure .5.22(b) shows the shading ftow

field obtained with the fuzzy derivative appraach. It is continuous everywhere. Near an

intensity discontinuity (it is particularly striking around the albedo change), the ftow field's

distortion reflects the size of the convolution kernel. This undesirable result occurs because

the technique of fuzzy derivativcs involves smoothing the intensity functionp.~?rJ·where

without consideration for the discontinuities that occur at various scales. Therefore, it

l'''L~ks an important image feature and consequently, it intraduces errars in the estimation

of the directional derivatives.
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(a> (b)

FIGURE 5.23. The technique of fuzzy derivatives produces a smooth shading Dow
field even though the underlying image intensity function should lead to a shading
flow field with marked discontinuities. Here, (a) the image of a scene with a dis­
continuity that should he reDected in the shading Dow field yields (b) a continuous
shading Dow field. In this figure, the gradient magnitude is coded as term of gray
levels - darker meaning larger gradient.

•

In the second image (Fig. 5.23(a)), the albedo remains constant, but the lighting con­

ditions change since one of the light sources present is not visible from everywhere on the

sphere. Where both light sources shine, one should observe a different shading flow pat­

tern than where only one light shines. We should observe a discontinuity in the shading

1I0w field. Figure 5.23(b) shows the shading flow field obtained with the fuzzy derivative

approach. Again, it is continuous everywhere. This undesirable result occms because the

technique of fnzzy derivatives involves smoothing the intensity function everywhere without
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consideration for potential underlying shading flo\\' field discontinuities. It therefore masks

another important image feature and consequeutly, it iutroduces errors iu the estimatiou of

the directional derivatives.

OBSERVATION 5.1. Smoothing ouer' cliscontinllities clistm'ts the gmclicnt fichl <lncllhc s/IIII/iu!!

flow fielcl.

The fuzzy derivative approach is th us inappropriate in the presence of discontinnitics.

2. Piecewise Continuous Flow Field

To extract the gradient from au image, we consider a differcnt. method. For cach image

point., the iuteusity function is locally modeled by a smooth funcI.ion (IR~ '7 IR) . Since only

the first derivatives are needed, we use a Iinear function:

I(x, y) "" <1 X + b y + c

A least squares fit provides the parameters of the modelling function from which t.he

gradient is computed. Since this is a local model, we assume that. t.he confidence in t.he

data decreases with the distance to the pixel (1'0) ove,· which the gradient. is cst.imat.ed;

~(x,y) = Gq (,') with a = 2 . For computational simplicit.y, wc ignol'e data point.s fnrt.her

than 4.5 pixels, as their coutributious arc not noticeable - the int.egra! ove,' t.he remaining

pixels' weight represeuts less than 0.4% of the tot.al integral. The pixels used fol' locally

fitting a continuous intensity function are shown in Fig. 5.2'I(a).

This "fitting" approach also infers a smooth gradient field. As with the "fnzzy deriva-

"tives", if there is a dis"co'rtinuity in the neighbourhood of a pixel, the gradient. at t.his point.

will be distorted. Vp to now, this approach is a first order approximat.ion to t.he int.ensit.y

function I(x, y) around l'o. It assumes that the function and it.s first derivatives arc cont.in­

uous over the data points. This is not always the case. Next, wc review how discontinnit.ies

are uncovered, and after, we show how wc adapt the "fit.ting" apprmech to take advant.agc

of this newly acquired information.
;/

2.1. Computing Intensity Discontinuities. The discontinuities in intensity forlll

image curves. These image curves are characterized both by their tangential properties

(orientation 0(1), curvature />(1)) and their cross-sectional propertiüs (üdgü, posit.ive and

negative cClntrast Iines).

The problem of edge detection in images appüared in the first comput.er vision sys­

tem [115]. Edges are said to be, by defiuition, transitions between two rnarküdly dissilllilar
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(al " (b)

•

FIGURE 5.24. For a given pixel, the data points used for fitting a local smooth
fllnct.ion, lies in iLs neighbourhood. (a) The confidence givcll ta a data point dcpends
on its distance from where the model is fi(.(.ed as illustrated the radial shading. For
comput.alional simplicity, wc use only the pixels whose centre are within the circle.
(b) The pixels, on or beyond an edge or a line passing through the neighbourhood,
arc nol, uscd ta compute the gradient.

int.ensit.ies. ln t.erms of the image intensity function, the edge is a region in the x - 11 plane

where 1(x, 11) has a gradient of large magnitude. The Roberts cross operator was designed

ilS a discrete approximation to the gradient magnitude. Il. is b"sed on a 2 x 2 window and

t.hus very sensitive to uoise.

Attempts 1.0 find a less noise sensitive operator have been numerous. Sobelsuggested

an operat.or [28] using a larger window (3 x 3) than the Roberts cross operat.or in an attempt

t.o smooth out. t.he uoise. Modelling edges in images as an ideal step edge and addit.ive noise

gave l'ise t.o an entire c1ass of solutions [19,25,47,93,94]. The various designs proposer!

can be decomposed in two operations: one to smooth the noise, an other 1.0 locate the

cclge. These methods l'ely on thresholds 1.0 determine what is considered a gradient of large

magnitude. This is not desirable since a single threshoJefvalue for the entire image is rarely

appropl'iate. Depending ou an arbitrary choiee of the global threshold, the operator may

signal the presence of edges where there are none and may signal the absence of an edge

whel'e U\ere arc some.

\n his thesis, Lee lverson [66] addresses aIl these problems while differentiating between

the diffel'ent types of image cnrves. Fùrthermore, his model takes into account the possible

coexist.encc of Illnltiple edges al. a given image location whieh allows for an accu rate location
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and description of features such as corners and junctions. These arc fundamental to the

uuderstandiug of line drawings [i, 48,126].

Edge detection is still au active research tapie. Even though wc haven 't l"OusidCl'ed

using them, it is worth mentiouiug that otlter techuiques have recently becn prop05"d sueh

as "steerable filters" [38,110,111] aud "edge-energy" methods [96, Ill].

2.2. Defining the Shading Flow Field Operator's Domain. FOI' the "fit,ting"

approach ta be meaningful, corrective steps arc need"d for bath intensity diseont.inuil.iPs

and shading Dow field discontinuit.ies.

At adiscontinuit.y, t.he gradient. is not. defined. However, il, is defined near a diseontinnit.y

it is in fact defined on bath skies of a discontinnity. 130th the magnit.ude and t.he

orientation can differ. Bence, we choose 1.0 acknowledge this l'cali 1.y by aHowing mnlt.iple

representations of the gradient at any given pixel location. We define a set of possible

gradient orientations, and design operators whieh provide a confidence measnre fol' eaeh

one.

We have investigated methods of obtaining stable discOIl/.iIlIUJllS shading flow fields ns­

ing logieal/linear operators [65] 1.0 find edges and lines. l3y first identifying the discontinnil,y

curves in the image, the use of data points Iying on2 01' beyond any discontinnity can he

avoided. This is predsely what we shall do as shawn in Fig. 5.24(b). This corrective step

prevents smoothing across an identifiable intensity discontinuity.

For shading Dow field discJntinuities, the diffieulty is differen!, since no " pl'io/'i knowl­

edge about their presence is avaHahle. Ta evaluate the confidence of a possible gradient

orientation in the neighbourhood ofa given pixel, we consider sixteen different fits. Each fil,

uses a subset of pixels in the neighbourhood as shawn in Fig. 5.25. Each sllbset. cDl'respollds

ta a different assumptiou abOlit the presellce of a, shading flow field dbcolltinllil,y alld rejed.s

pixels beyond the hypothetieal disconLinuity curve. The uumber of fits (Nd = 10) I·efled.s
<:-'

two constraints:

(i) different shading Dow field discoutiuuities should yield diITerent domaills fol' t.he fit.;

(ii) the domains for the fit should be large enough ta smooth the noise.

For each orientation of a possible discontinuity, the gradient is compllted.

The initial estimate of the shading flow field reflects these values. We assign a confi­

dence, P(Oi), ta the hypothesis that the ol'ientaLiou of the shadillg flow field is a vaille Oi,

2 A pixel on an image intellsity discoutinuity usually reflccts an intcrpohltioll of tlll: intcllsity 011 IJOth MidI!!'; of
the discontinuity. It can thus induce an error in the gradient estimation .
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FIGURE 5.25. For a given pixel. the data points used for fitting a local smooth
function, lie in its neighbourhood. The confidencc given a data point depends on
its distancc from where the model is fitted as illustrated by the radial shading. '1'0
deal with the possible presence of shading flow field discontinuities, wc subdivide
the ncighbourhood. A set of 16 neighbourhoods used to provide reliable estimates
of the gradient arc shown here as dotted circles. This partitioning of the neighbour­
hoocl insures that at least one fit will not be corrupted even if there is a shading
lIow field discontinuit),. For example, if such a discontinuity (shown here as a solid
line) passes throngh the pixel, the two dashed circles would provide support to the
appropriate lIow hypotheses as both encirele a region adjacent to the discontinuity.
'l'wo distinct shading flow hypotheses couId be retained. For another example, if
snch Il discontinuity (not shown in this figure) passes elsewhere in the neighbour­
hood of the pixel, there would be more dotted circles to provide support for the
one appropriate lIow hypothesis. As in Fig. 5.24, if the tangent field indicates the
presence of an edgc or a tine, pixels on or beyond are not used ta compute the fit .
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as follows:

1 ~ (16 (0 0 ))2P(Oi) = -r- L. e-" ,- J

1\ d j=1

where Oj is the orientation of the gradient computed assumiug a shadiug liow lield discon­

tinuity of orientation if rd.

2.2.1. Discrete Shading Flow Field Representation. The space of shading f10w orien­

tation is divided into a discrete set of regular intervals. Each interval delines an equivalence

class which we represent with the central orient~tion oLt.he int"rval: Oi. Each one is viewed

as a hypothesis that the directional derivative of 1:,e image intensity function is uull iu au

orientation within the interva1.

The shading fiow field's orientation is a local measure. Hence, the ueed 1.0 use a

neighbourhood as small as possible. The discretization of image position, (x,1I), simply

refiects the tessellation in pixels of the image. The Iimited information available induces

a Iimited precision in the measure. Our equivalence class sim ply reliects this facto We

observed that sixteen was about the number of different orientations, 0, tha\. we con Id

distinguish considering a circulaI' neighbourhood with a radins of four pixels.

We represent the shading liow field augmented with the magnitude of the image inten­

sity gradient, IVII. This scalar quantity is discretized in five intervals. The coarseness of

this quantization is due to the uncertainty induced by the orientation quantization.

At this point, we can restate the problem as one of finding a consistent f10w lield ont

of these initial estimates. The shading fiow field is no longer nniqnely valned. We shall

now consider the shading liow field as a union of direction fields. Snch a relaxed definition

allows a better representation of the shading fiow field at discontinuities - both sides of a

discontinuity can be represented.

3. Relation to Relaxation Labelling

Relaxationlabellingis a computational method to find consistent strnetnres in a network

of nodes. Hummel and Zucker [58] have laid down the foundation of relaxation processes,

and Parent and Zucker [103,104] provided insights regarding their implemeutatiou.

1'0 relate the problem of computing a shading now field to the relaxation labelling

paradigm, we consider each orientation as a node of the relaxation network. Since the

orientation hypothesis can be either true or false, we associate two labels to each uode,

TRUE and FALSE . We distribute a measure Pi over each i representing confirmation of the

hypothesis. In this section, we provide a brief review of the relaxation labelling paradigrn .
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3.1. The General Relaxation Labelling Paradigm. Let a set of nodes 1 be

given. '1'0 each node i E l, wc ..,sociate a set of labels 1\;. Each label À E Ai is interpreted

as a possible vainc ta be assigned t.o anode i.

DIWINITION 5.1. Tite confidence is a scalar value Pi(À) assoeiated wUh eIlch label À E I\i at

llorle i E 1. This lIalue is "estrieterl to be within zero anrl one, inclusive:

o::; ]li(À) ::; 1

When t.he confidence ]li(À) is nnity, il. confirms the assignment. of label À al. t.he node

i. When t.he confidence ]li(À) is zero, it. disconfirms t.he assignment. of label À al. the node i.

DIWINITION .5.2. The labelling assignment is the triple of (I, 1\, p) where pis an instance of

a conjitlence measure being assigned 1.0 elle,'Y label of every norle and for whiclt tlte followiny

,'est.7'ietion Itolds:

~>(À) = 1 .
A,

We dejine J( ClS the space of such labelling Clssignments.

This rest.riction expresses t.he exclusive nature of t.he assignment problem. A simple

int.erpretation of such an assignment is that each pi(À) is the confidence that the label À

should be assigned t.o node i.

The labelling assigument is said ta be /lnClmbig/lous wheu

Pi(À) E {O, l} Vi E I, À E Ai .

Such a labelliug defines a mappiug

i -+ À if aud only if p;(À) = 1 .

Wc say theu t.hat. À is assigned ta the node i.

Since t.he goal of t.he relaxation labelling method is 1.0 solve an assignment problem , a

C1'itel'ion needs 1.0 be defined. We seek a labelling which maximizes a measure of cOllsistency.

DEFINITION .5.3. The cOlnpatibility matl'ix R captures the pClirwise compatibility between

labcls 011 (/ij}'e1'ent nodes. fts clements ";j(À, N) prollide a measure of the compatibility

bet.ween labcl À al.. node i and label N al. node j.

1\ positive compatibility, rij(À, À~, betwccn labels (À, À') means thal. the labels are

consistent. with each other, a negative compatibility means that the labels are inconsistent

with each other, a null compatibility means that the labels arc unrelated .
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DEFINITION 5.4. The support for' a label ..\ at node i is clejined as fhe weighfcd Slllll of 1/",

eompatibi/ities between this label and eve,'y othe,' possible labcl at ellery node.

Si(..\; p) ;: L L '·ij(..\, ..\') /lj("\') .
JET ."eh)

The support indicates the consistency of a label ..\ at anode i with labels al. 0\.11"" nodes

given a labelling assign ment p.

DEFINITION 5.5. A consistent labelling is a labelling assignlllent w"ieh flilfill., the col/dit;ol/

that

"liE!, "IVE!\': L1Ji(..\)s;(..\;p) 2: LVi(..\)Si(..\;P)'
~ ~

Formally, relaxation labelling solves the problelll of finding a consistent la.belling given

an initial description (J,II., p) and the cOlllpatibility lIlatrix rij.

DE,FINiTION 5.6. The average local consistency is dejined as the weiyht<:tl sl/m of the SI//JIW,'f

for every possible label at every node.

A(p) = L L Pi(..\) Si(..\; p) ,
jEI.\ehj

or to make exp/icit the 'laadratie forn/of the funeUon

A(p) = L L L L Pi(..\) '·ij(..\, ..\') fJj(..\') ,
ieI.\eAi jeT ."Eh)

Hummel and Zucker [58] have shown that, for symmetric cOlllp"tibilities, the following

algorithm constitutes a gradient asccnt on "verage local consistency which terminates al. a

consistent labelling.

ALGORITIIM 5.1 (RELAXATION LABI'LI.ING).

(i) Compute an initial estimate of p = {/li(..\)} whieh e"nstitllte.' Il labt/Uny assiyn­

ment. Cali this pO.

(il) Repeat stm'tiny wilh n = 0 untif pn is consistent:

(a) Repeat fa" ail i E !:

(i) Compute pi = /17 + 8 Si·

(ii) Pl'Ojeet pi ont" (l va/icl labelliny IIssiynment. This ne'" (lssif}n",enl,18

lJ~+1, .
(b) Set n = n + 1.

(iil) Generate the mappin9 i --+ ..\ .
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III this algorithm, (j is the qualltity that controis the stepsizc and its predetermined

small value is chosen to facilitate convergencc.

SIIch "computatiollaÎ energy" forms have become common in neural networks, Hopfield

IIetworks [49] are a special case, as are polymatrix games, under certain conditions [95].

3.2. The Two-Labels Relaxation Labelling Paradigm. Iverson and Zuckcr [64,

GG] have considcred the special case kllown as two-Iabel., relaxation labelling. It is also the

one that wc consider. Here, the set. of nodes 1 is referred to as the network of hypotheses.

The set of two labels is Ai = {'l'RUE, FALSE }. Either a hypot.hesis is true or it is false.

The representation of the two-Iabels' confidence can be simplified because of the com­

plementarity of the two labels. It is only necessary to explicitly represent one label.

]Ji(FALSE) = 1 - ]Ji(TRUE )

Similarly the representation of ,the two-Iabels' support can be simplified if we impose the

design condition t.hat evidencc for a hypothesis is evidence opposing t.he converse.

s;(FALSE) = - Si(TRUE )

This design condit.ion tl"anslates int.o t.he following condition on the st.ructure of the com­

patibilit.ies "ij(>', >,1):

"ij(TllIJE ,'l'RUE) = -"ij(TRUE, FALSE) = -rij(FALSE, 'l'RUE) = rij(FALSE, FALSE )

We take advantage of these simplificat.ions to make our notation Iighter, We choose to

represent only the 'l'RUE label and th us using

]Ji ta refer to ]Ji(TRUE)

Si to refer 1.0 Si(TRUE:)

rij to refer ta "ij(TRUE, 'l'RUE: )

Wc can nolV rewrite the support as

Sj = L 1'ij ]Jj
jEl

and t.he lIJ>datc rulc as

n+1 r. n + < ]1]Ji = U:'i 0 Si 0 ,

where the function [x]~ 1s x truncated 1.0 the interval [0,1].
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3.3. Implementation Remarks. The relaxation labelling mnthod uses a gradient

ascent procedure which inevitabll' terminates on a local maximnm. Wc have 1.0 ensure t,hat

this local maximum is meaningfuI. Wc designed the calculation of t.he initial est,imat.es and

the derivation of the compatibilities with this in mind. For that purpose, the support. "i

should onll' be positive when the features that are considered essential for a valid solut.ion

can be verified localll'.

4. Coherent Shading Flow Field

We use relaxation labelling processes 1.0 refine the initial estimat.e. The key task of

this idea is 1.0 define what is a consistent labelling for a shading 1I0w field. '1'0 l'cadi t.his

objective, we use the local differential properties of the 1I0w field as a const.miut..

4.1. Using Curvatures as Constraints. Consider that the local descript.ion of

the shading 1I0w field comprises the orientation of the 1I0w field and t.wo cUI'vat,ures: t.he

curvature of the shading 1I0w field and the curvature of its dual, the gradient field. These

curvatures capture the local variation the shading 1I0w orientation, thus they can he nsed

as constraints.

lverson [66] used these quantities 1.0 constrain texture 1I0w fields and showed t.hat.

the relaxation will interpolate Il dense field even from sparse input.s without. arhit.mrily

smoothing over discontinuities. Since this is precisely where wc are aiming, wc fil'st. cousidel'

these quantities 1.0 design the consistencl' relationship fOI' the shading 1I0w field. Iverson

considered that, for texture, 1I0w patterns can he viewed as resnlting from a comhinat.ion of

translations or rotations. As a consequence, the texture 1I0w fidd is modelled wit.h hoth a

divergence component and Il curl component. This is not appropriate fOI' shading 1I0w field

as the shading 1I0w field rellecls a differentiation with l'esl'cd to a scalar fidd (the image

intensities), and the curl component of the gradient is always IIldI.

Wc can derive a different constraint hased soleil' on the definition of these curval.nres.

Then, the variation of the orientation of the shading flow is given hl'

aao = ("8 sin 17 + "il cos 11) ,,.
where the variables ,. and {) are simply the local frame coordinat.es expressed as polar

coordinates.

The principal interest of this representation is that it provides a local description to

the image intensity [(x,y) which remains the same3 for the image irradiance B(x,y).

3Here, wc assume only that the relation between I(x,y) and E(x,y) is indcpendeut of the illlI1KI~ pONiLioll (.:r.,y)
and that this relation preserves the sign of dircctional derivativc.
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4.2. Using Differentiai Invariants as Constraints. The shading f10w field's rep­

resentation is richer than the textnre f10w field 's. There is an extra dimension that is

available to constrain the shading f10w field. It is the magnitude of the gradient, Ivil.

PltOl'OSITION 5.1. The s/lluling fiolV field, llllgmented lVith the magnitude of the intensi/.y

fJTYUiiellt, CIlIl be /oClllly l/escribcd by ys = {x, y,,ë}, D 1 (x, y) E 1R2,,ë} E 1R2, DE 1R3}.

J'mof: Consider a smooth shading f10w field ,ë}(i'). Wc develop a Taylor expansion of ,ë}(i')

to obtain a local description and wc keep only the first terIUs:

where

1 - (0 -1) 1 - (1 0) 1 - 1 (1 0)= - curiS + -2 div S + -2 def S R~ RI'2 1 O· 01 0-1
Since the shading f10w field is related to image intensity gradient by:

., ( -Iy{x,y) ) (vi(,~,y)lcoso{x,y) )5(x,y) = = _ ,
Ix('~'y) v/(x,yllsin O(x,y)

it follows that

div.'5 = curlvI == 0,

the trace of the variation of the f10w field is null. Thus, three quantities suffice to describe

il, locally:

(5.l l ,ë}(x +~x, y +~y) "" ,ë}(x, y)
(

-Ixy -Iyy ) ( ~x )
+ Ixx ,Ixy ~y .

•

The coefficients of this matrix rel~:,e to the three com poner.ts of a DISTORTION vector as

follows:

(

-def_,ë}sin(21") ) ( Ixx - IYY )

D == def S cos(21") = -2IXY •

cnrl,ë} Ixx + I yy

Fignre 5.26 provides a geomctric pictnre of the relationship between the shading f10w ol'Îen­

tation and the nature of the distortion. Combined with the shading llow vector, it completes

the local shading f10w description space, ys = {x, y, 0, Ivil, D}. 0
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If we express the variation in tenns of the coordinates delined by the tangent, and the

normal 1.0 the shading flow al. ,.,., wc can relate curvatures, lig aud li" aud the differential

invariants:

a~~l d~' = (=:: ::) (~~ )
where lJ.u = lJ.x cos Il + lJ.y sin Il, lJ.v = -lJ...z; siull + lJ.y cos Il, and lie = -2/x"lx l" ­

IxxI;, - I""I;. This third term can uot be accounted for with the model wit,hont magnitnde.

'/11111\1'
//1/11 ' "
''////11'"
11"'//,1' ,---...., ...
___ , f 1/'//
._,,/11//
",1/111/
",\I/flll. , . ,

, / 1/1 1\\\
,//1/ \\\"

'0"',/ / 1 \\"....
- ........ ,1 ~.~ , ............
....,'\ 11/'/,'\, VI/

, ',", \ !II

•

FIGURE 5.26. This sequence shows now fields for which t.he dist.ortion veclor differs.
The left most depiets a pure curl, D3 = l, t.lle right most depicts a pure deformal,ioll
D3 = 0, and in between, the two componenl.s blend with different proportions.
Whercas the curl is symmetric with respect to a point, the deformatioll is symlllciric
with respect ta an axis. Note how the nature of the singularitics difrcrs as the
distortion changes.

The shading flow field, augmented with the magnitude of the intensity gradient, is

fully constraiued. '1'0 appreciate this result, wc cau look at textnre flow lields - they arc

naturally constrained with ouly two quautities (such as the curvatnres lig, ,;,). Different

models have been proposed to relate them with differeutial inval'iants, models t.hat. al'e

exclnsive of one another (e.g. pure rotat.ion and expansion [66] 01' pnl'e deformaLion ['Ill]).

4.3. Compatibilities between Local Shading Flow Descriptions. Sa given two

local shadiug flow descriptions, Yi = {'~i,Yi,lIi, l'ifIl; ,Di}-and Yi = {"'j,Yj,Oj, l'if/lj ,Dj},

wc shall deline a compatibility measure.

The transported shading flow description .'Ji is derived from Eq. 5. J with lJ.x eqnal

1.0 Xj - Xi and t.he matrix coefficients derived dit'ectly from Di. The tmnspOl'l.ed shading

flolV description .'1; is obtained in a similar way; lJ.x is equal ta Xi - Xj and t.he matrix

coefficients arc derived directly From Dj.

The shading flow descriptors Yi = {Xi, Yi, IIi, l'iflli, Di} constmin the shading flow

descriptors Yi = {Xj, Yj, IIj, l'ifll j ,Dil, and redprocally, the shading flow descript.ors Ti =

{Xj, Yj, IIj, IVilj, Dj} constrain t.he shading flow descriptors Yi = {:Ci, Yi, Oi, l'ifIL, Dil. Wc

require the compatibility to be positive only when both these constraints arc satisfied. '1'0

achieve this, wc use the logicaljlinear combinators int.rodnced by Iverson and Zncker [fi5] .

(iO



•

•

5. COMPUTING THE SIIADING FLOW FIELD

DI';FINITION ,5.7. The logical/linear combinator ~ is give" by:

x+y, if x>O A y>O

x~ y
y, if x>O A y:O;O

=
x, if x:O;O A y>O

:I:+Y, if x:O;O A y:O;O

The compatibility is then given by:

""J' = 1'~' ~ 1'-:'1) JI

where

"Ij = GI/(Oj -On G(IVljl-lv(1) G(IXj - xd)

";i = GI/(Oi -0;) G(IVIil-IVI;1) G(Ix; - Xji)

The orientation of the fiow field is stronglyconstrained; i.e. the shading fiow descriptions

are said to be compatible only if the transported orientation of i falls within the Voronoi cell

of the orientation j and vice-versa, the shading fiow descriptions are said to be incompatible

otherwise. On the other hand, the magnitude of the gradient is only weakly constrained;

i.e. this component only modulates the strength of the com,)atibility, it does not affect the

sign.

This compatibility function generalizes the co-circularity and the concentricity mod­

els [(j"]. 130th these models project a center of curvature (which is a singularity forc,the fiow

field) in a direction perpendicular 1.0 the fiow vector al. a distance determined by the fiow

field's cnrvature. Similarly, the distortion vector projects a singularity, buy::;,; relation

between the f10w vector and the position of the singularity can be more com~Î~x because of

the deformation component.

5. Numerical Results

ln this section, we present a couple of examples for which this approach has been used

1.0 cxtmct the shading f10w field. Thes~!,les,were chosen to iIIustrate that a piecewise

smooth shading fiow field can be inferred from images where such discontinuity arises.

5.1. Abrupt Albedo Change. The first example that we ran 1.0 test our algorithm

was an image of a scene in which the albedo changed abruptly (Fig.5.27(a)). II. simply

consists of a sphere in front of a plane..

We cxtracted the edge mal' using the algorithm of Iverson [66] and the shading fiow field

nsing thc algorithm outlined in this chapter. These are shown in Fig. 5.27(c). If we compare
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FIGURE 5.27. This test image provides an example of a shar'.;ng flow field recovery.
It was obtained after 5 it,,,ations of the relaxation labellil,g algorithm proposcd
in this chapter. An ideal Hltensity image of a simple scene iIIuminated by a single
distant point Iight s6ïirc,,,but with an abrupt. change inalbedo (a), the corresponding
tangent field (b) and shading f10w field (c) are shown in this figure. This shading
flow field presents a point singularity of index one in the centre and a nndefined
region on the image's outskirts. For display purposes only, thresholds are nsed to
avoid c1uttering the figures with useless information and the resolution of the edge.,
map and shading flow field are decrea.ed by two. '--.'
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thiH reHult with the shadillg f10w field obtained with "fuzzy derivatives" (see Fig, 5.22), we

1I0t.e differellceH whem the discontilluities occur. The relaxation labelling approach aIJowed

for discont.illuity in the shading f10w field whereas the "fuzzy derivatives" approach does

ilOt.

5.2. l'\;Iultiple Light Sources. The second example that we l'an to test our algo­

rit.hm wa, an image of a scene which is iIJuminated by two distant light sources (Fig. 5.28(a)).

Agaill, it sim ply consists of a sphere ill front of a plane"

SlIch as for the previous example, we extracted 'the edge mal' usillg the algorithm of

Iverson [66J and the shadillg f10w field using the algorithm outlined in this chapter. These

are shown in Fig. 5.28(c). The only edges in this example are the curved edges that form a

ci l'cie. There is an illversion of the edge's directioll where the polarity of the image contrast

changes. The most interesting feature in this example is the curve running across the sphere

alollg which the shading f10w field is also discontinuous. The shading flow field discontinuity

is extracted even though there is 110 intensity discontilluity. The comparison of this l'esult

wit.h t.he shading f10w field obtained with "fuzzy derivatives" (see Fig. 5.23) shows again a

differellee whNe t.he discolltinuit.ies occur.

5.3. The Car's Fender. The third example that we ran to test our algorithm was a

real image of a seene which is i1Juminated by two distant light sources (Fig. 5.29(a)). This

t.ime, t.he scene consists of a car. For the example, we use a c1ose-up of the fender on which

l'UliS a shadow (Fig. 5.29(b)).

Wc show ill Fig. 5.29(c), the edge mal' obt.ained using the algorithm of lverson [66] alld

t.he shading f10w Iield obtained using the algorithm described in this section. Even though

the data is 1I0isy, the shading f10w field is usnally smooth. The points where the shading

f10w field is not smooth correspond to curves marking discontinuities.

These resllits show that. the shading f10w field can be extracted from the image with­

out necessarily destroying the informat.ion of discontinuities. The approach presented in

t.his chaptel' produees pieeewise smoot.h shading f10w fields that preserve singularities and

discoll t.i nuities.
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(c)

FIGURE 5.28. This test image provides an example of a shading flolV field rccovery.
It was obtained after 5 iterations of the relaxation labelling algoritlun proposed
in this chapter. An ideal intcnsity image of a simple scelle illulIlinaled by two
distant point Iight source (a), t.he corresponding tangent field (b) and sliading 1I01V
field (cl arc shawn in this figure. Note the shading 1I0w field presents again a
point singularity of index one (near the centre of the upper righ!. qnadrant) and an
undefined region. For display purposes only, thresholds are nsed ta avoid c1nUcring
the figures \Vith uscless information and the rcsolutioll of the cdgc mar and shadiug
fiow field is decreased by two.
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F'IGUIŒ 5.29. This test image provide an example of shape recovcry for a eeal
image. The image lIsed (h) is a elose-up of the fender of a car (a). The corresponding
edge map and shading flaw field (c) arc used as input .
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CHAPTER 6

Interpretations of Discontinuities

The general shape l'rom shading pl'Oblem introduces discontinuit.ies. They DCCIII' in bot.h

the given initial data and the scene mode!. The relationships bet.ween thesc arc at. t.he 1'00t.

of the image interpretation.

Considering that any of the scene parameters (lighting condit.ion, albedo, surface orien­

tation) can change abrupUy, can wc determine which one did given t.he geomet.ric propert.îPs

of the image?

1. Various Cases of Scene Discontinuity

In this section, as a first st.ep toward answering this qnest.ion, wc est.ablish t.he signat.nre

of each scene discontinuity fol' generic surfaces wit.h a genel'Îc illnminant. direet.ion alld frolll

a generic viewpoint1

Before looking al. the varions cases of scene discont.inuit.y, wc begin by <:allsiderillg t.he

situation when there is none. The image irradiance depellds on t.he alhedo, t.he light.illg

condition, and the surface orientation:

E=pÀL.N;

and the orientation of the shading nolV field depends 011 t.he light.illg <:andit.ioll, alld t.he

snrface orientation:
L.JN

tanO = ;'
L· axN

We can derive direcUy an important first. result.

OBSERVATION 6.1. A smoot" matte smiace of constant albedofil'OjcctH, unde7' cO".,ta"t il­

lumination, a smoot" image irmdiaiJce and al7llost eve7'ywilae, a smootil .,luuliny llo", jidd.
•

l'The assumpt.ions of 'lgeneric vieul' and "ycncric illuminant direction" statf:S thal. tllf! o!Jservj~l' and thj~ Ii~ht

sources arc not in a special position relative ta the scelle. A small change in thcir position !'ihould nul I1fr1:d LIli:
qualitative aspect of the image [9,39] .
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6. INTERPRETATIONS OF OISCONTINUlTIES

Discont.innity of the shading "ow field can occur at singularities of the direction field,

that is, where the image irradiance gradient is null. Although botl, point and li ne singular­

ities arc of mea.,ure zero with respect 1,0 the domain of the shading flow field, OUI' analysis

requires that Wc take them into consideration.

üBSlmVATION 6.2. Now, let's consider the """,ding flow field of a smooth matte surface of

c(m"tant albedo undel' constant illuminal.ion, but augmented with the gmrlient magnitude.

'/11el'c exisl", a 7'CJlresentation (the C(l7'tesian coorrlinate) in which the l'es/tlting vector fielrl

i.' continuou" ",ul rlifJerentiable ever·ywhere.

1.1. Shadows. Shadows OCCI1l' when some Iight source does not shine on part of the

scene. Such an event can be explained as an occlusion of the light source by an opaque

object. The bonndaries of shadow correspond to where the illumination abruptly changes,

Let "UI LU) describe the illumination and the direction of light sources indexed by i.

Conside,' a shadow caused by the occlusion of a point light source "(0) L(o).

The linearity of Lambert's model allows the definition of an equivalent light source (see

the illumination model in Chapt. i) as the sum of the light sourCe visible from the surface.

lknce, the lighting condition on each side of the shadow boundary can be described by " L

and "s Lao the latter corresponding to the shadow side:

'" L s = L "(i) L(i)
i, i;éO

hence this simple relationship:

"s Ls = "L - "(0) L(o) .

At a point on the boundary, the onset of the occlusion can be caused either by a possibly

distant opaque object or by the surface itself slanting away from the light source. We cali

these t.wo C<I'C$ respectively, cast. shadow boundary and attached shadow boundary. These

account. fOf different image struct.ures.

1.1.1. The Casl Shadow B01l1uI1l7·Y. Wc examine the behaviour of image properties

where cast. shadow boundaries occur. The first. quantity that wc consider is the image

irradiance. Is it. continuous? The dirference in image irradiance as we enter in the shadow

is given by:

E - Es = P "(0) L(o) . N .

FOI' a cast. shadow, L(o) . N > 0, hence Es < E. The result cOlTesponds to our intuition .
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6. INTBRPRETATIONS OF DlSCON1'INUI1'IES

OBSERVATION 6.3. A easl s!wclow bOllnclary is mm'kecl by a cliseon/.inllÎty ill Ihe image

h'raciiance2 .

The second qnantity that we consider is the shading no\\' orientation. Again, the foens

is on continuity. The shading f10w orientations, on the respective sides of a cast shadow

boundary, arc given by:

tan 0

tanOs =

ln general, the shading f10w orientation differs from eaeh side of the shadow bonndary.

OBSERVATION 6.4. A cast shru!o," bounrltl1'y is ge1Jerieally 1Jwrkcd by a rlisr:ollti1l11il'lI ill 1.111'

sharling fio'o fielcl.

One should note that in an image of a scene, coincidelltal alignmellts arc likely 1.0 DCCIII'

at some points along the boundaries.

1.1.2. The Atlachecl Shaclow BOllnclary. Now, Wc examine the behavionr of image

properties where attached shadow boundaries occnr. Wc fi l'st, determine whethel' or IlOt,

the image irradiance is continuous. The diffel'ence in image irradiance as wc enter ill 1.11"

shadow is given by:

E - Es = P À(D) L(D) . N .

Even though there is a marked decl'Case in surface illnmination, the image il'l'Ildiallcc is

continuons since L(D) . N = 0; the incoming rays from the occlnded son l'CC ollly gra~e the

surface, hence Es = E.

OBSERVATION 6.5. When an attaehecl shru/ow bO/mr/ary ocew'.' 011 a 8mool1l .,w,!r,,:e, it /B

markecl by continuolls image irmrliance.

Again, the second qnantity that, wc considel' is the shadillg f10w ol'Ïentatioll, alld fOl:ns

is still on continuity. The shading f10w orientations, on the ,'esl'eclive sides of ail aU;u:hed

2Strickly spcakillg, a discontinuity occurs ollly ir the hiddell light is u point source und if thCff: is 1111 utIlHlSphl:l'Îl:
dispersion (see App. D). The size of the image curve dctectors defincs a notion of sc"I,:. ThiN seall! rdaxl:s the
previously statcd condition to allow light sources which arc sOlllcwhat splttia!ly l~xtcndl:d lUIl! som.! lill1itl!d ;Ullllllllt of
blurring due to atmosphcric dispersion .

U8
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6. INTERPRETATIONS OF DISCONTINUITIES

shadow bou udary, arc giveu by:

L. ,8 N
O ay

tan = a 1

L· axN

L s ' t. N
tan 0, = a

L" axN

.Just ih' for the cast shadow boundary case, in general the shading f10w orientation differs

on each side of the shadow boundary. Again, one should note that in an image of a scene,

eoincident.al alignments can occur at some isolaied points along the bouudaries.

OHSlmVATION 6.6. An altached s/""low boundar'y is gener/eally marked by a diseontinuity

in the "/",,lill!} flow field.

Thus, the signature of the cast and the atiached shadow boundaries differ by their

image ÎITadia.ncc discontinuity.

1.2. Change in Refiectivity. Changes in reflectivity occur when the material prop­

erties change. If wc consider a surface for which the reflectivity changes abruptly, the change

will occur along a curve. Let Pl and Pd be respectively the albedo on the Iighter and darker

side of t.hat curve.

Now, wc examine the behaviour of the image irradiance on both sides of the curve

whel'e the reflectivity changes. If the image irradiance on the Iighter side is denoted as El,

th en the image irradiance on the darker skIe is given by:

PdEd = - E, •
PI

If t.he surface is illurninated, then Ed < E, since Pd < Pl, Bence, another confirmation of

ail intuit.ive l'csult.

OHSI~IIVATION 6.ï, A chalige in rejleetivity is marked by a diseontinuity in the image ü.,.a­

dirmcc.

The orientation of the image irradiance gradient has a different behaviour. Since it is

independent of the albedo,

L·lN
tan Od = tan e, = ;; ,

L, 8xN

t.he OI'ientation of the image irradiance gradient is continuous where only the reflectivity

changes.

OBSEIlVA1'ION 6,8. A change in reflectivity is mU7'ked by a continuous shading jlow field,
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1.3. Occlusions and Other Surface Discontinuities. The dilference in t.he image

irradiance at. surface discontinnit.ies is given by t.he following:

E - E' = p À L . (N - N') .

The surface orientations on each skie of a surface discontinuit.y (N, N') a)'e not. relat.ed,

hence N - N' is usually not. equal t.o zero. Since the illumiuat.ion direction is not. relat.ed 1.0

N - N', the dot product L . (N - N') is also usual\y not equal to zero.

OBSERVATION 6.9. Smjace discontinuities ""c genel'ical/y """'ked by di8r:<JlIli/lIlilies ill Ihe

image il',yuliance.

Note that the occurrence of a poiut, somewhere aloug au occlnsion, for which L .

(N - N') = 0 is expected. For a generic sit.uat.ion, this point. marks an inve"sion of cont.rast,;

Fig. 5.28 l)I'ovides two examples of such points.

For the shading flow field, the considenüion t.hat. t.he surface orient.at.ions (and il.s

derivati"es) on each side of a surface discontinuity arc not. related, yields the following

observation.

OBSERVATION 6.10. SUl'face discontinuities al'e usulll/y mm'l:cd by di.'cml/.illuilie8 ill th,.

shading flOlO field.

Surface discontinuities OCClll' when one snrface partially occludes anot.he,·. In snel, a

case, when the albedos of the two surfaces are dilferent, a change in albedo occnrs at I.he

same image locat.ion as the occlusion. The same example l'an be reworked 10,' light.ing

conditions; in this case, the front surface could occlnde some light sources l'rom t.he Imck

surface. Again, a change in lighting condition occurs at the same image locat.ion as t.he

occlusion.

OBSERVATION 6.11. At sll,l'face diseontinuities, changcs in albedo ","l lighlillg eo"dilimls

often OCCUl'. These are not due /0 a eoincidcnl,û alignment, lhe.,,; Ill'e 7'IlI.IIC'· d,,,, 10 Il

common cause.

2. SUllllllary of Results

The result.s obtained for generic surfaces are sUllllllarized in Tabl" O.:l (print.cd in bold­

face). By bringing the previous observat.ions together, wc get. t.he beginning of an anw::';,"

to our question. At least in some cÎt'cumstanccs, wc can det.ennine which scene paramet.l!I's

change abruptly l'rom the geometric properties of the image,
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dise. dise. probable Interpretation eharaeteristic

int.. § surface albedo Iighting

110 no smooth constant constant

smcoth parabolie constant shadow bound- parallel fiow field

ary (attached)

110 yes smooth constant shadow bound

ary (attached)

yes no smooth abrupt change constant

smooth parabolie constant shadow bound- parallel fiow field

ary (cast)

aligned parabolic - - parallel fiow field

surraces junction

yes yes smooth constant shadow bound

.
ary (cast)

discontinuous - -

TAHI~E 6.3. This table shows the relations bctween image discontinuities and scene
diseolltinuities. The shading f10w field S(x, y) is perpendieular to the normaHzed
gradient intcnsity I:~I"
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OBSERVATION 6.12. The difJerent discontinuity signattll'cs allou> us ta dis/in!!uis" occ/urlin!!

boundaries fr01l1 abrnpt albec/o changes 01' f1'0111 altachecl shm/ou> boulll/arics.

For generic snrraccs, there is only one ambiguity that canllol he ,'csolved prio!' 1.0 sha.pe

estimation, Discontinuons surraces and cast shadow boundarics 011 a Sll100th surface CHU ilOt.

be distinguished. The Interpretation is nevertheless trivial once the surface shape is kllo\\'n

(which happens in stage 2 of our process, see Chapt. 9).

Non-generic surfaces sneh as parabol;e SUl'raccs3 or planaI' surraces illtro<iucc morc

ambiguities. They have ho\\'ever charaderistic shading 1I0\\' fields t.hat allo\\'s ns :,0 sort.

them out.

Parabolic surfaces pradnce parallel shading 1I0\\' fields alld, furt.hermore, t.he orient.at.ion

of the field is only dependent on the geometric <lspect. of t.he surface: t.his le<lds t.o t.he

following consequences.

• Although the attached shadow boundary no longer exhibit.s it.s shadillg lIow field

discontinuity, the magnitnde of t.he gradient ,'emains discont.innons along a Iille par­

aile! t.o the 1I0\\'. It is t.hns possible t.o dist.ingllish it from a smoot.h sn l'face of Il nifo l'Ill

albedo under constallt illumination condit.ion .

• The cast shado\\' boundary and discontinuons aligned paraholic s1ll'faces no IOllgel'

exhibit a discont.inuity ill the shadillg 1I0w field. Bnl, again t.he magnit.llde of t.he

gradient remains discontinllolls along a line, this time parallel t.o int.ellsit.y discolI­

tin nity \\'hich for the cast shadow boulldary's c,e,e is not lIecessarily parallel t.o the

shading 1I0w field.

These results are also summarized in Table 6.3.

PlanaI' surfaces always produce null shading 1I0w fields, hence they also generat.!) am­

biguities. Il. is not possible ta distillguish between an abrupt change in albedo, a shadow

boundary", and a surface discontinuity where only t.he surface orientation changes.

The ambiguities iri'troduced by parabolic snrfaces do not complet.ely prevent. 1.1", in­

terpretation of t.he geometric strudures of the image. There is always some chan'cI.l!ristic

shading f10w field where these ambiguities OCCIII'. Our analysis l'an be carried everywherl!

else.

3A surface is said to he parabrJlic if one of its principal curvaturcs is Illlili 11 sllrfacl~ is said ln be Tll,Hlflr if IlOth
principal curvatures arc null.

40nly the cast shadow boundary can occlIr on a fiat surfacl!, an atll1ched sluvlow !Jolllld"ry illvulvf:N" "llrfaœ
curving awa)' from a Iight source, -"
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dise. dise. dise. probable interpretation eharaeteristic

1\'i Il int. § surface albedo lighting

no no no smooth constant constant

y(~S no no smooth parabolic constant shadow bau nd- parallel flow field

ary (attached)

TABLE GA. This table shows ether relations bctwccn image discolliinuiiies and
secHe discontilluÎtics.

AI, least one such ambiguity cau be resolved. An attaehed shadow boundary on a

smooth parabolie surface of constant albedo does not demarcate itself from a smooth surface

of constant albedo under coustant lighting condition, given the image geometrical structures

ident,ified 1.IIUS far. We examine the behaviour of the image irradiance gradient magnitude

near an attached shadow boundary. IL is given by:

l\7ï~'I: = 1\71>12
- p2( ((2>,L - À(o)L(o)) . :xN)(À(O)L(O) . :xN)

+ ((2 ÀL - À(o)L(o)) . :y N) (À(O)L(O) . :y N»)
Since ÀL ~ À(o)L(o) and À(o)L(o) > 0, the magnitude of the image irradiance differs from

each side of the shadow boundary.

ÛIlSf;11VATION 6.13. An altached sluulow bOllndmy is marked by a discontinuity in the image

il'I'w!irl1lce !Il'fldienl. magnitude (even fOI' a ]Jarabolic smiace).

The discontiuuity of the gradient magnitude lifts the ambiguity as shawn in Table 6.4.

Imago cllrvos capturing this type of discontinuity can also be extracted from the image

using logical/linoar oporators [66)).

We conclude this chapter by stressing the usefulness of the geometrical structures of

the image - the shading flow field and the tangent field used together, not only on their

OWII - fOI' the understanding of the sceue. A lot of interpretation can be carried out priaI'

1.0 an)' sh~;pe from shading computation .
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CHAPTER 7

The Scenel Bundle Approach

Ilaving dcvclopcd the notion of a shading now field and discussed several of its properties,

wc now present an approach to inferring shape from il. The approach is motivated by

modern not.ions of fibre bundles in dilferential geometry [120]. It provides a solution to

t.he gencralized shape from shading problem that is posed as a cou pied collection of "local"

pl'Oblcms, thc solution to each of which is that local scene elemont (or scenel!) that captures

t.hc local imagc propcrties, and which are then cou pied togeth~r to form global piecewise

smoot.h solutions.

ln this chapter, wc present an outline of our generalized shape from shading approach

and then we brieny intl'Oduce fibre bundles. We th en establish the relationship between

fibrc bundlcs and the geometric construction on which OUI' approach is based. The struc­

t.ure of libre bundles is used to pl'Ovide a clear picture of the scene's model space and its

Cil ar'a.cteristics.

1. The Outline of the Scenel Bundle Approach

Wc are cssentially considering the gcneralized shape from shading problem as a cou pied

family of local problems. Given the formai specification of a local scene element, our

approach has two requirements:

(i) a mcchanism fOl' infel'l'ing the scene element from thc image (or more precisely, fl'Dm

the image gcomet.ric structures);

(ii) a mcchanism for the local to global transition, Le. fol' sewing the local scene patches

-I.?gethel· in a consistent fashion.

We formtilate a geometric construction to structure these mechanisms and we illustrate it

in the Figs. ï.30, ï.31, ï.32, and ï.33.

Thc local scene model comprises a local surface model and a local lighting mode!.

These 1lI0deis interact to prod uce the geometric structures of the image (see Fig. ï .30).

This rclationship l'l'ovides the basis fol' the local shape from shading Inference.

1cf. Pixel, \'oxel .... scelle!.
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A.)

:::-'\1(.,

"'/1\\'

(x,y)

N

B.)

u

•

FIGURE 7.30. Depiction of an abstract sccne clement, or scellei, correspolldillg t.o
an image patch (A). The sceneI (B) consists of a snrface patch, described by its
image coordinates, surface normal, and curvature. Ils matcriai propcrties (albcdo)
are aiso represented. Finally, a virtuai Iight source completes the photolllCtry.
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,en-
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FIGURE ï.31. Depiction of a Scenel Fibre over a pixel of the image. At each point
in the image thcrc arc many possible seene elements, or scelleIs. Each of these
scellcls is dcpiclcd along a fibre, or vertical space above cach image coorclinate. \Ve
tag il confidence mcasurc to cvcry scenel. This confidence measurc inciicates how
weil the scenel matches the local geometric properties of the image.
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~\I/~

'/'f"(\\. LI

..•.
....
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FIGURE 7.32. Depiction of a Scenel Bundle over an image. The IIl1ion of·Hcclle1
fibres avec the entire image is called a scellel bllmllo. The shape rrom shadillg
problelll is forllllliated as deterlllining sections thrangh the scenel bnmlle. SlIeh a
section is dcpictcd by the shadcd sccncls, and rcprcscnts a "horizontal" cross-sœtÎolI
across the bundle. Scenel participation in a horizontal scct.ioll is govcrncd by surrace
smoothness and matcrial and light source constallcy cOlIst.raints.
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(x,y)

A.)

B.)

S(O,O)

j'

j

the osculating
paraboloid

)

S(u,V)

•

FIGUliE ï.33. Illustration of the compatibility reiationship for scenel consistency.
Two sccnc!s arc shawn on the fibre ai image location (x', yi), and are evaluated
against the scenel (i) at (x,y). The surface represented in scenel,," is modeled by
t,he osculat.ing parabalaicl , and cxtendcd to (X',Y'). It is now cJenr thai one scellel
(j') at (x', !f') is consistent, because it.s surface pat.ch lies on this paraboloid and light.
source and albcdo ngrcc. The ather secnel (i) is inconsistent, because its surface
doc. not match the extcndcd paraboloid. Such osculating paraboloids arc used to
sillllliatc t.he parallcl t,ransport of sccncl,rl,yl onio scenelx,y .
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Typically, the local geometric structures l'rom the image arc consistent with an eqniva­

lence c1ass of local scene models. This c1ass of possible scene models bccomes the bnilding

block of a geometric constrnction (sec Fig. 7.31).

The next step is 1.0 consider the interaction between the scene models al. difl"ere"t

locations. For each pixel location, a c1ass of local scene 11I0deis is infelTed l'rom the geometric

strnctures of the image (see Fig. 7.32). The interactions arc the local constmints that we

have described in Chapt. 4.

The coupling between the local sceue models dictates a consistenc.Ç'rclat.ionship over

them (sel' Fig 7.33). This consistency relationship derives l'rom two principle considerat.ions:

(i) A SURFACE SMOOTHNESS CONSTRAINT, which states that, the sm'face normal and

cUI'vatures must vary according 1.0 a Lipschitz condition betw<'Cn pairs of scends

which project 1.0 neighbouring points in the image domain. This notiou is snbt.le

1.0 implement, because il. involves comparison of normal vect.ors following paralld

transport 1.0 the proper position (sec [117l).

(il) A LIGHT SOURCE CONSTRAINT, which states that the vÏI'tnallight sonrce is constant.

almost everywhere for pairs of scenels which project 1.0 neighbonl'ing point.s in t.he

image domain.

OBSERVATION 7.1. The natw'e of the consislency 7daliollshi]ls is ]l1l7dy l/cOIl/.e/rie.

The consistency relationships do not depend on the image, they depend only on the

pairs of scenels.

1.1. Informa! Description of Scene! Bund!es. While the libre bnndle constl'nc­

tion is 'luite abstract, wc use il, in the manner shawn in Figs. 7.30, 7.:11 and 7.:12. 'l'hi8

formalism offers a natural association between cl'oss-sections of a bllnclle and the problem

of shape Inference. II. \>covides a powerful descriptive langnage ta deal with t.he relation8hips

between the base and libre spaces.

Wc take the image manifold as the base space aud consider the phot.ometry 1'01' eadl

point on il.. In a small neighbourhood al'olllld the point (a:,11), the shading information

can be described by a combillation of illumination model and snrrace 1II0dei. Eadl or

these delines a scenel (Fig. 7.30) and the space of aIl possible scencls defines the fibre ovO!'

that point (Fig. 7.31). Together, the collection of scenel fibl'es defines the scencl bnlldle

(Fig. 7.32).

The reason we introduce the bundle strnctnre on scenels is 1.0 develop its topological,

as weil as its geometrical structures.
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OBSERVATION ï.2. The seenel fibre must present a topotogy sueh tllClt continuous su/face

changes ean be expresscd by a eonfilluous path in the fibl"C sp'u'o.

We seck a solution of the shape from shading prob!em as connectl'd Sl'ts of sCl'npls ill

which neighbours are consistent; such a solution is ca lied a CllOSS-SECTION throlll':h t.he

scenel bundle. For"llally, a cross-section assigns a mcmbcr or cach libre to earh positioll in

the manifold.

OBSERVATION ï.3. Sinee the sl/lfaee of a solil! is orientel!, Il ClJnsÎsknt el'lJss·.<edilla Ilf the

seenel bundle must also be orientel!.

A sub-bundle of the scenel bun,lle is the TANGENT HUNllLE, in which the fibres consist

of the tangent spaces al, each point IInd the sections correspond 1,0 vector fields; Sallder and

Zucker [11ï] previously used this bundle in their study of inferring l'ri Il ci pal direcI.ioll lields

011 surfaces.

2. The Local Representation of the Scene

We want the scene element 01' scenel 1,0 he a local representat.ioll of the scelle which

comprises an illumination model and a surface mode!. In this section, wc describe the

information captured by the illumination mode! and the surface mode!.

2.1. The Illumination Model. A model of the illumination cOllld l'l'ovide, a.t evel'y

point, the brightlless of every illcoming ray. The spectral composition of each my collid also

be described. There are several other pl'Operties of Iight that cOllld also be inclllded, fol'

example polarity, coherence... Such a detailed mode! is not always neccssary.

Restricting OUI' shading analysis 1,0 the matte com ponent of the rellection allows us 1,0

use a simple local illumination mode!.

ASSUMPTION ï.l. Lambel·t 's refteet.llnee lilw holds fOI' eaeh ..cenci pllt.eh.

We can Iimit OUI' consideration 1,0 only two atLributes:

(i) ILLUMINATION: Denoted by À, the illumination is the scalar qnantity that indicates

the amount of incoming Iight.

(H) ILLUMINANT DIRECTION: Denoted by L, the illuminant direct.ion is the nnit vector

that indicates from which direction the Iight is coming.

These two attributes are quite simple 1,0 visuali~e when a single distant point Iight son l'ce

illuminates the surface patch. The model's attributes, the illnmination and the illuminant
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direetion, correspond respectively 1.0 the illumination aud the direction of a point Iight

sonrce. But. what. if several dist.ant. point sources i1lumiuate a single surface pat.ch?

DI';FINITION ï.1. The virt.ual iIIumin"nt is ail imagillary distallt )Joillt light source that

woultl )J1"Ovide the same 8miaœ )Jatch irTYldicl1lcc as the aetual light sources. ft com)Jrises

two aUri/mies, >. anrl L, that CCl1! be deriverl cOllsirlerillg the linear )Jro)Jerty of Lambert 's

"eflc:ct",,,:e funclicm.

Consider a set of !v! distant point sources that illuminate the snrface patch. Let this set

he descrihed hy PU)LU) : l ::; i ::; M} where >'Ul and LU) are respectively the intensity and

t.he dÎl'ection of the individua! point Iight source. The attributes of the virtua! illuminant

arc givclI by:

Now consider extended Iight sources illuminating the surface patch. Let A(L) den ote

the hdghtness of the Iight ray that is incident from direction L. Using the Iinear property

of Lamhert's reflectance function 1.0 integrate the Iight rays coming from ail directions in

t.he visible hemisphere H, we ohtain:

>. L == ~ f A(L) L(l!) dl! .
1i J'ii

The virtua! illuminant th us provides a very convenient representation of the illumina­

tion as il. allows complex illumination tà he described simply by a scalar and a unit vector.

It. is a much more general mode! than that. of a simple infinitely distant point source.

2.2. The Surface Model. The surface model provides a local description of what

reflect.s the Iight. W" consider t\Vo distinct attributes of the surface model:

(i) MATERIA!' pROpERTIES: The nature of the reflecting surface is what is meant 1.0

be described here. Wc have chosen 1.0 only consider the matte component of the

ref!ection, th uS the on!y quantity that we need is a scalar: the albedo p. Note that

wc have also ch05en 1.0 ignore the spectral composition of the Iight since our input

is a gray-Ieve! image. VVe would other\Vise consider one scalar pel' colour channel of

ou l' scnsor.

(ii) SURFACE SUApE IlESCRIPTORS: We use the first and second fundamental forms' co-
-0

efTicients 1.0 describe surface patches. The t\Vo principal curvatures (KI, K2) describe

t.he shape up 1.0 rotation. Two angles, slant (J and tilt '-, are needed 1.0 describe

the surface tangent plane orientation \Vith respect 1.0 the viewer's coordinate frame.

An additional angle 4> is needed 1.0 describe the principal direction of the Darboux
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FIGURE 7.34. The world eoordinates define the axes (x, y, z) where x-y is the
image piane. Wc express t.he surface normal as a funclion of it.s tilt T and sian l, (7:
N = (sin Tsin IT,eos Tsin IT,eoslT). (a) The rotation of the frame froml,he z axis 1.0
t.he normal N defincs a local coordinate systcm (x', y', :') where x'-y' is the surface
tangent plane. (b) The principal frame defines a differenl. eoordinal.e system in I.he
surface t.angent. plane: ll-V. The rotat.ion bet.wecn thcsc two coordinal.c syst.ems
delines the angle 4> .
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frame in the snrface tangent plane (Sec Fig. 7.34). Otller terms could be included

to enriched this local description. In App. B, wc examine such a possibility by

considering the local spatial variation of the principal curvatures and the principal

directions.

Wc seek a surface representation with the following features:

• any continnous change of the surface can be mapped by a continuous change of the

surface model parameters,

• any continuons change of the surface model parameters can be mapped by a con­

tinuous change of the surface.

The representation of the surface orientation does uot pose any challenge. The two

angles needed to orient the sn l'face tangent plane in space describe the surface normal

N = (Nx,Ny,N:J = (cosrsin<T,sinrsin<T,cos<T) ,

where <T is the slant and ris the tilt (Fig. 7.35). Continnous changes of the surface orien­

tation correspond 1,0 continuous changes of the surface normal N and vice-versa.

z

y

•
FIGURE ï .35. The normal veetor N is defined in terms of two angles: the slant cr
and the tilt r. Sinee only visible surface patches are represented, the normal lies on
t.he unit hemîsphere facing the viewcr.
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The representation of the surface shape is not as straightfor\\'ard. The geometry sug­

gests considering the Darboux frame represeutation, but this has difficulties \\'ith siugular­

ities. Moreover, for umbilic surfaces2 , the priucipal directions arc uudenned. Consider the

following example:

EXAMPLE ï.l. Conside7' the surface of a pamlJoloiel desC"ilJed by

z = - ~ ("1.,;2 + "21/)

where "1 > "2. The pammeler characte7"Î:ing the p7'incipal direc/.ion, the anyle </>, take",

the value O.

Moreovel', if one smoothly changes the surface such that only p7"Încipal c'l1'Imtll7'e "2

varies, say "2 increases, there is an ab"upt chanye in tI.e value of </> as "2 beeomes fl'"Cftte7'

than "1' The angle </> suddenly takes the value ~.

Inlight ofthese undesirable characteristics, wc reject the Darboux frame representat.ion

in its classical form.

We have designed a new shape representation that has the desired features. We show

here how it relates to the Darboux frame parametel's "1, "2, </>' The two principal cUl'vatul'es

("l, "2) are mapped into a curvedness measul'e

and a shape index measure

-1 ("1 +"2)s=cos 2c'

These are analogous ta Kœnderink's cUl'vedness and shape index [ïO], with the choice of

norm for the curvedness and the spreading function for the shape index modified slightly.

OBSERVATION ï.4. The angles 2</> and sare, respectively, the longitude and latitude of a

spherical coordinate system covering shape variation in the tangent plane. As wc stated

previously, the angle </> represents the principal ctirection, while s values 0 and 'Ir re]I7'esent

umbitic surfaces where pl'incipal directions are not defined.

DEFINITION 7.2. The shape vector is a vector designed as follows:

K = (1(1,1(2,1(3) = (ccos(21»sins,csin(21»sins,ccoss) ,

where s is the shape index and 1> is the angle giving the orientation of the ]17'incipal clirections.
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FIGURE ï.3û. The shape ofasurfaee patch is represented by K, the "shape" vector.
This vcctor lies in a thrccwdimcnsional spacc, IR3, !ts direction can be defined in
terms of two angles: </J giving the orientation of the principal directions in the
tangent plane and s = co.-' ("'t:') giving a shape index. The length of the
vector can be defined as the curvedness c = max (1",1 ,1"21). The continuity of
this rcprcsentatioll is iLs main interest - it is continuous even at umbilical points
where the principal directions arc undefined. A convex umbilical point will be
characterized by K = (0,0, cl; a concave umbilical point, by K = (0,0, -cl; and a
planar point, by K = (0,0,0) .
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This representation is interesting since nearby positions in the K space indicate smooth

changes in either the shape or orientation of a scencl nnd convcrsely, smoot,h changes in

either the shape or orientation of a scenel correspond to nearby positions in the K space.

Even though the principal directions are nndefined for nmbilic surfaces (th us, so is 9), these

surfaces do not cause any singularity in K space as they are sim ply represented by the shape

vector K = (0, 0, ±c).

Another interesting characteristic of the N-K representation is that complemental'Y

objects, whose surfaces match the solid as the mold of an object, would be oriented in

the opposite direction. Such an object would also have opposite curvatures. The Slll'raee

representation would thus be (N', K') = -(N, K).

EXAMPLE 7.2. Consider a sphere. ft presents an umbilic conve" sllljacc patch faci"!J /he

viewer that l'an be desc7'ibed by N = (0, 0,1), K = (0, 0, 1). The mold of this sIlIjacc wOllld 1,,:

a spherical cavity. SA the corresponding complemen/m'y patch would be an IImbilic conc/llIe

patch painting away from the viewer. This patch could be desc7'ibed by N = (0,0, -1),

K = (0, 0, -1).

EXAMPLE 7.3. Now consider a flat surface with an m'bitmry o1'Îen/a/.ion. Any Im/.eh on slleh

a surface can be desc7'ibed by N = (Nx,Ny,N.), K = (0,0,0). The mold of this smjlu:e is

also a flat surface but oriented in the opposite direction. Any patch on this complemen/.IU,!!

surface l'an thus be described by N = (-Nx, -Ny, -N.), K = (0,0,0).

EXAMPLE 7.4. Finally consider a minimal surface3 (other th,m the plane) lOith IlIlarbit.7'1l1'Y

orientation. Such a saddle surface patch l'an be described by N = (Nx, Ny, N.), K =

(ccos(24», l'sin (24)), 0). The mold of this surface is also a minimal smjaee lOith the opposite:

orientation and the same shape but inve7·ted. The complementlU'y slu!clle smjae:e Imte:h can

thus be descl'ibed by N = (-Nx, -Ny, -N.), K = (-ccos(24», -csill (2<,1», 0).

2.3. Fibre Bundles. Since we use fibre bundles as the framewOl'k fOI' 0111' appl'Oach,

we introduce the terminology in this section. The notion offibl'e bllndles is flllldament.al t.o

modern differential geometry [59].

DEFINITION 7.3. A bundle is a triple (E, 11', B), where 11' : E --t B is a IIl11p. The spaee Il

is called the base space, the space E is called the total space, and the malI 11' is callcd the

2 An umbilic surface is characterized by a normal curvature which Îs illdependcnt from the dirf~ctioni e.g. (~Vf:ry

point on a sphere is umbilic, l'Cl = K2 = r(l~i'u'
3 A minimal surface is a surface for which the mean curvature Îs nullï i.e. KI = -"2'
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projection of thc bundlc. For cach b E B, thc space 1l'-1 (b) is ml/ed the fibre of the bundle

(J!Jcr b E IJ [59].

DEFINITION ïA. A bundle (E', 'Ir', B') is a sub-bundle of 1l' : E -+ B provided E' is Il

,mbsplU:e of E, 13' is a subspace of B, and 'Ir' = 'Ir 1E' : E' -+ B' [59].

DEFINITION 7.·5. A cross-section of a bundle (E, 1l', B) is a mal' s : B -+ E such lImt

'lrS = la. ln ollie,' w01'ds, a cross-section is a mal' s: B -+ E such that s(b) E 'Ir-1(b), the

jib"e O!1C" b, for cach b E B [59].

Denoting the fibre F, an example is the product bundle (= (B X F, 'Ir, B), which illus­

trates how the total space can be viewed as the base manifold crossed \Vith the fi bre space.

The bundle cau be thought of as a union of fibres F(b) = 'Ir- 1 (b) for b E B parametrized by

J3 and "glued together" by the topology of the space E.

2.4. The Scenel Bundle. The N-K space describes the surface model and l'l'ovides

a representation with the desired characteristics. The vi l'tuai illuminant direction Land

the image position (x, y) complete the local scene descript,ion.

D(;I"INITION 7.6. The SC(;N(;I" is a nine-dimensional abject, Ii = {x;, Yi, Li, N;, Ki}, which

provides a hypothesis that the scene can be local/y described by an image position (x;, y;),

lm illuminant direction Li, a smjace orientation N;, and a surface shape K;.

DI,FINITION ï.ï. The SC(;NEL BUNDLE is the t7'iple (E, 1l', B), where the total space is the set

of all scencls E = {Ii,Ii E I}, the base space is the image plane B = {(Xi, Yi), (x;, Yi) E IR2,

mul'lr : E -+ B 1 Ii -+ ('"i,!Ji)

DIWINITION ï.8. For cach (x;,y;) E B, the space 'Ir-1(X;,Yi) = {Xi,Yi,L;,N;,K; 1 L; E

L, Ni E N, K; E K} is cal/ed the FIBRE of the scene! bundle ove,· (x;, y;) E B.

OBSlmVATION 7.5. The scene! bU7lll/e is a trivial bundle, the total space is the p1'Oduet of

the ba"e space mul the fibre space.

OBSlmVATION ï.6. ln cont1'llst, the Dm'boux f1'llme field is not a trivial bundle for which

Ili"ible smoo/h "U7jaccs are cross-sections as the imagc plane does not define a global chart

for the Dm'boux f1'llme.

The scenel bun,lIe structure allows us:

•
(i)

(ii)

to relate the scene properties \Vith the image properties in a purely local analysis;

to connect local scene descriptions together in a way consistent with their geometry.
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In the next subsection, we examine the scencl bundle from bath a topologieal perspectivl'

and a geometric one.

2.5. Topology. Wc state the embedding space of the fibre: L = {Li, Li E 8"} =}

L ç 8 2, N = {Ni, Ni E 8 2} =} N ç 8 2, and K = {Ki, Ki E ,!?3} =} K ç IR". Since 8" is

orientable, both Land N are orientable. And since IR" i, orientable, K is orientable. 'l'h"

product of orientable spaces is also an orientable space, hence the following observation.

OBSERVATION ï.ï. The scene/tota! space, l ç 1R2 X 82 X 8 2 X 1R3, is ",·icntau!c.

We now turn to orientation of sections. Solids have sn l'faces that are ol'iented manifol,!H.

We follow the convention that the normal points away from the solid. The projection of

the vi l'tuai illuminant direct.ion on the normal has ta be positive for the Iight ta shine on

the surface.

The scenel bundle l = {x, y, L, N, I<:} is a trivial bUllcllc ove.. the base spacc, allY

section s is a globally defined mal' .-1 : 1R2 -; l and thns constitntes a global l'hart for

visible scene .-1 (1R2). 2-lvIanifolds \Vith '~Iobal charts 'u'e necessarily orientable [:lI].

OBSERVATION ï.8. Any contintlOUS cross-section of the scend SIJClce crJllst..ita/cs all OI';clltt:r!

manifold.

The scene description that constitutes a solution to the shape from shading pl'Oblem

is a viewer centered description. Only one side of a sn l'face is visible. Non-orient.able

surfaces snch as the lvIèibi~ls band, do not pose any special problems. The problem of global

non-orientability does not arise since such sn l'faces are nevel' entirely visible.

The scenel bundle topology thus provides a \Veak constraint on the compatibility be­

tween scenels. The orientation of a scenel bundle's cross-section must be maintained. The

Jacobian determinant of the coordinate transformation bet\Veen compatible scenels mnst.

al\Vays be positive. If wc consider t\Vo visible surface patches, compatibilit.y reqnir'es tha.!.:

• for both surface patches, the inner product of the normal and the viewer's dire<:t.ion

be of the same sign (positive);

• for both surface patches, the inner product of the normal and the virt.nal illnmiml.l1I.'s

direction be of the same sign (positive).

OBSERVATION ï.9. The scene! uund!e, l = {x, y, L, N, K}, possesses a tO]lO!Of/Y, ("', y) C

1R2, L ç 8 2, N ç 8 2, K ç 1R3, consistent with the tO]lo!ogy of the sprwe of smir,,:es.
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This observation is important as it validates the relation between equivalence c1ass and

the Voronoi cciI. The neighbourhood in the fibre space carries a meaning of "c1oseness" in

the scelle domaiu.

2.6. Geometry. By looking at the geometry of the scenel bundle, we establish an

evoll more restrictive condition for the scellel compatibility.

Let 1= {QI: IR2-l1R 1 QI(X, x) 2': a} denote the space spanned by the first fundamental

fort Il s, and Il = {QII : IR 2 -l IR 1 QII('~' x) 2': a} denote the space spanned by the second

fundalllentai forms, where Q denotes quadratic forms,

Let N+ = {(Nx , Ny, N,) C NIN, > a} denote the space of visible surface orientations.

PltoPOSl'l'lON i.J. Giuen a smle, the7'e exists a continuolls ma]J]Jing from the visible N+-K

s]lace illto the ]Jrorlucl. s]Jace 1 x Il of fil'st anrl second fundamental f07'ms.

l'roof: From the normal vector, Ni E N+, we can define two vectors in the tangent plane,

X' = (1, 0, -%:) and yi = (0,1, -Çl). These tangent vectors arc defined fol' ail visible sur­

face, i.e. N, > O. The inner pl'oducts (X', X'), (X', yi), and (yi, yi) define the coefficients

of a fil'st fHndamcntal fOl'm,

(
(X', X')

QI(X. x) = x'
. (X', yi)

(X', yi)

(Y', yi)

Thus, wc can delinc a mapping ç : (N+, K) -l 1.

ln thc pl'cvious section, we havc expressed a continuous mapping from "l, "2, </J to K.

Now, wc establish thc existencc of an inverse mapping, fl'om K to "10 "2, </J. The principal

CHI'Vatnl'es n'1 and "2 can bc l'ecovered from a shape vector K as follows:

if [(3 2': a
otherwise

if [(3 2': 0

otherwise

•
whcre c = JKr +Ki +KJ . Thesc mappings arc continuous eVen when [(3 = 0, fol'

K3 -l 0+ and K3 -l 0-, both yicld "1 = -"2 = C.
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The principal frame is defined with the normal and the principal directions. The laU"r.

when defined, are represented by the angle ri> whkh l'an also be recovered as follows:

ri> = ~tan-l (KI, /(2) .

Ta gel. the second fundamental form coefficieuts, {'1i\, '11h, '1~~} in tenus or the firsl.s,

{'Il" '112, '1~2}' and K, we use the following system or equations:

'III 'III _ 'Ill 2
n. n. - II 22 1212- 111 2

'111'l22 - lit?

'1~2'1l\ - 2'112'11~ + '1L'I~~
ni + n2 = 1 1 12

'Ill '122 - '1,2

o = ('1l2'1~1 - IJ~2'1l1) sin
2 ri> + ('Il, '1~1 - '1~2'1l\) si n ri> cos ri> + (q~2'1l ~ - 'Il 21'~~) cos

2
ri>

where nI +n2 = 2K3 and nl0·2 = c(2IK31- cl. When the angle ri> is nndefined, /(1 = /(2 =

0, the third equation red uces ta:
1 1 1

lit 1 lit 2 '122
-'1Il = -;-711 = -;-71I

II 12 22

Thus, for visible surfaces, there exists a continuous mapping (N+, K) -7 (1, Il). 0

OBSERVATION 7.10. Fm", a l'mss-section of 'he s1lb-bllnllle {x,y,N+,K} CI, 'he ""'faee

l'an be recovel'ed "1' ta ]Josition if Ca7'lIlt!'S e'l"ations of e011l]Jatibility a7'C "atisfied.

This observation follows directly from l'l'Op. 7.1 aud the Pmulamentld I.heOl'C/l1 of Slll'­

faces [27,70]. Il. suggests the basis for the sccnels' compatibility relatiouships that we de­

velop in Chapt. 8.

We have only a weak topological constraint on the virtual illuminant. The st ronger

constraint that we will impose derives rrom the undel'lying assnlllption or the shape rrom

shading problem.
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CHAPTER 8

The Scene Element

The key idea in the step of inferring shape from a shading fiow field is ta consider it as a

COli pied family of local problems. Each of these problems is a "micro"-version of the shape

from shading problem in which a Iighting and a surface model interact ta prod uce the

locally observed shading structure. Wc cali each of these diITerent models a sceneelëment,

or SCCllef. Whereas each scenel de?ls with the local consistency with the data, the coupling

between scenels on diITerent fibres provides the nJeans ta assure global consistency.

1. The Discrete Scenel Space

On a digital computer, bath the data and the result of the computation are represented

by a finite nllmber of bits. Onr data, the intensity image, is represented by a function for

which bath the domain and the range are discrete values. This aITects any attempts ta

recover shape from shading with such a device. A consequence b tha.t quantities such as

the local orientation of a contour can only be derived with finite p"ecision [66], th us Iimiting

the precision of the shading [Jow field as weil. We acknowledge this and exploit it ta our

advant,agc.

An analngy can be drawn with significant digits in experimental data - we rarely

write more than one non-significant digit when an error is associated with a measure (e.g.

gmvitational acceleration is cqual ta 9.8 ± O.l,ll/sec). It is in this sense that we are using

the Lerm "precision".

OHSlmVATION 8.1. Wc can mor/el the scelle with ollly a finite numùer of r/iffe1"Cllt scenels

",il/Wllt aJJectill9 the precision of the ,·esult.

1.1. The Quantization of the Scenel Attributes. Ta model the scene by a finite

number of differcnt scenels, cach scenel attribute is quantized:
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(i) htAGE POSITION: The image pixels are given as a set. of discret.e valul's of;r and !J

position.

(ii) ILLUr..HNATION DESCRIPTORS: Onr iIlnmiItation mode! comprises 1."'0 compul\('nt~

describing a vi l'tuai light source:

(a) The possible virtuallight source directions map onto a unit. 8phe"", Wc sam pie

this sphere as uniformly as possible t.o gel, a discl'ete set. of vi"t.nal illuminant.

directions; sec Fig. 8.37. ln vie"'er-ccI1V~rcd coordinatcs, t.hpsc Hllit. v(-'dor~ arc

givcn as

L = (Lx,L,,,L:) .

(b) The illumination from the virtuallight source À is nol. l'epl'esenl.ed in I.he scen,,\

description as it 1s not used in OUI' shape fl'om shading analysis.

FIGURE 8.37. The discretc representation of a unit vectar such as the illumina.tion
dil'edion stal'ts with asamplingof the unit sphere. The sampled poillt.s 011 t.he sphel'c
are choseo ta be regularb' spaccd if possible or something close to it ol.herwiHc. '1'IICHC
points rorm a set that defines a Voronoi tessellation. The Voronoi ccII cOllsisls of
cvcry point on tlte sphere tltat is closer to a givcn samplcd point t.hall any olher. In
our representatioll, the vector corresponding to a sam l'le point rcprcsclIl,s the dass
of vedol's eol'l'espollding ta t.he Voronoi ccII,

(iii) SURFACg DgSCRIPTORS: In the pl'evious section, the surface was said 1.0 be l'epl'e­

sented by the albedo p, the normal N, and the shape vecl.or K.

':::;-

•
(a) The set of ail normals fOl'ms a unit sphere. The surface of this sphel'e i8 "LIli pied

as uniformly as possible ta del'ive a discl'ete set of normals. In viewel'-clJlltel'ed
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coordinate.~, thesc unit vectors are given as

Of these, only the ones in the hemisphere facing the viewer are used; the others

are not visible.

(h) Although the shape vector lies in 1R3, we prefer ta quantize it as if it was

Iying in 82 X 1R+. The shape vector can be decomposed in a magnitude (the

curvedness c) and a direction (a unit shape vector K). The set of ail unit shape

vectors also fDrms a unit sphere. Again, by sampling the surface of the sphere

IIl1iformly we derive a discrete set of parameters which cover ail variations

of smooth, oriented shape in the tangent plane. Augmenting this with the

curvedness index provides a complete, discretely sampied shape descriptor. In

the K space, these unit vectors are given as

(c) The albedo of the surface pis not represented in the scenel description. As with

illumination, the albedo is not needed for our shape from shading analysis.

1.2. The Set of SceneIs. Given the discrete sampling of the scene attributes as

defined above, we derive a set of scenel labels

l = {x,y,L,N,K 1 (x,y) E image, LE 8 2
, NE 8 2, K E 8 2

X Z}

which represent ail potential assignments of these scene attributes. Thus each i represents

the hypothesis that the scene can be locally described by the scenel (Xi, Yi, Li, Ni, Ki).

D81'INITIDN 8.1 (ALT8IlNAT8). Each scenel is viewed as the hypothesis that, at the !liven

illUl!Je posi/.ion, the scene can be locally described by a surface of a !liven shape, oriented in

" !Jiven direction, and illuminated from a !liven direction.

RecaH that the total space of the scenel bundle is a product bundle composed of the

image plane (a finite set of pixels) as the base space and the scenel fibre. The scenel space

is th us quantized. A scenel i is meant to model the equivalence c1ass of local scene whose

descriptions lie "c1oser to" it than to any other scene! j. The collection of ail such local

scene descriptions forms the Voronoi cell of scenel i. The scenel space is thus depicted as a

Vorolloi tessellation corresponding to our chosen set of scenels.
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The Voronoi tessellation implies that the scencl space is a me/,.;e s/,uce. Consider t.he

mapping I! : I X I -+ IR such that:

I!(Ii, Ij) =

(( ._ .)2 (. _ .)2 (COS- i (Nj' Ni)) 2 (COS-1(1(j' 1(i)) 2 (Cj _ Ci )2) t
XJ x, + YJ Y, + A N + K' +.\

wl ~ wC

where AlN , AlI<:, Ac are the average distance between neighbouring scenels for t.he given

attribute. Since

I! (Ii, Ij) > 0

I! (Ii, Ij) 0 ïf:~ I= 1 ~:i = j

I! (Ii, Ij) = I! (Ij,Xi)

I! (Xi, Ik) :,; I! (Xi,Xj) + I! (Xj,Ik) ,

the mapping I! (Xi,Xj) defines the distance. Each local descriptor is treated <15 an indcpcn­

dent dimension and is normalized by the descriptor's quantization. The image coordinates,

x and y, are already given in unit pixels.

Ta relate the scenel bundle approach ta the relaxation labelling paradigm, Wc conside,'

each scenel as a node of the relaxation network. Since the scenel hypothcsis can be eit.hcr

true or false, we associate ta each node, two labels: TRUE and FAI,SI~ . Wc dist.ribute a.

measure Pit),) over these labels), E A for each scenel i. Since t.hel'C arc only I.wo labels, il,

suffices ta explicitly represent one label as pi(TRUE ) = l'i(FALSE ). Wc choose t.o rcprcscnt.

only the TRUE label. This allows us ta simplify the notation: ]'i shall be uscd from nowon

ta represent confirmation of the scenel hypot.hesis.

2. The Inference of the Scene} Fibre

Our appraach is data-driven. We have already observed that the scencls caunol, be

directly derived from the image irradiance if we allow the surface albedo and illumiuation

ta vary. We have ta consider the local geometric structures of the image that do not depcud

on the surface albedo and illumination: the tangent field and the shading flow field.

Thus, from the initial data, a static intensity image, we extract relevant image gcomctric

structures. These, in turn, become our data. For each image position, we infcr the set. of

possible scenels that can account for these geometric structures. Bence, at each image

position, the local geometric structures yield a sampling of the fibre of possible secncls.
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When we examine the relation between the local image structures and tbe scenel, there

are two important considerations ta keep in mind.

(i) Since the scenel represents a range of scene descriptors, a scenel can account for

several different image geometrical structures.

(H) Fllrthermore, several differellt scenels can account for the same image geometrical

structures.

ln this section, we show how ta assign the confidence measure to a scenel given the available

data.

DEFINITION 8.2. The confidence measure associated ta cach hypoth~;sis reflects the compat­

ibility of the corresponding scend and the observed structures in the image.

At the onset of the shape from shading problem, the confidence measure's assignment

is pixel-wise. The discrete nature of both the sceuel representation and the image local

geometric properties, allows us to build a look-up table to capture the Iink between the

image local geometric properties, Y = Y' Uyi, and the confidence measures for the scenels.

Il. takes the form of a look-up table in which, to build this look-up table,

(i) we nccd 1.0 establish first the relationship between the scene descriptors and the

geometrical structures of the image (see below);

(H) we over-sample the scenel space as uniformly as possible and tag each sam l'le by

marking the Voronoi cell to which it belongs;

(iii) then for each sam l'le, we compute theexpected geometrical image structures and

add the saml'le to a data bin corresponding to the appropriate image geometrical

structure Voronoi cell - this takes the form of a histogram whose dimensionality

renects the dimensionality of the image geometrical structures Y = Y' U yi;

(iv) the weight Pi associated with scenel j will reflect the ratio of the samples tagged

with i in the appropriate data bin over ail samples tagged with i.

For every given image geometrical structure, y/, a Iist of possible scenels (each with an

associated weight) is provided.

2.1. The Local Image Structures generated by the Scenel. To generate geo­

metrical image structures from the scenel, we consider the lighting condition and the surface

locally described by the scenel i. We choose to locally approximate the surface model by

a paraboloid because it allows us to fully exploit the information provided by the scenei
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(X;, y;, L;, Ni, K;). The paraboloid is a curyed surface that obeys the followiug local para­

metric form:

(
1. 2 1. 2)

'lt, v, -'2 l'il U - 2" /i2 V ,

where the 11 and v are the parameters corresponding respectiyely to t.he t.wo principal

directions, and "1 and "2 correspond to the two principal curvatures at. the origill.

Note that this approximation can find its ancestry in Pentland's local shading anal­

ysis [31,106]. In his algorithm, Pentland used the sphere (an umbilic slIrface) t.o locally

approximate the surface shape. The paraboloid is a generalization over t.he sphere t.hat.

enjoys important qualitative differences. In particular, it can modcl both elliptie alld hy­

perbolic surfaces as "1 and "2 can take positive and negative values.

There are a few different coordinate systems that we consider when establishing t.he

relation between scenels and the local image structures.

• The viewer's coordinates (x, y, z) are defined such that. the vcetor (0,0,1) point.s

toward the yiewer. Note that, for image formation, wc will assume ort.hographie

projection, hence, the image lies in the x-y plane.

• The surface patch local coordinates (el,e2,e3) are defined such t.hat, al. a givell

point, the vector (0,0,1) indicates t.he direction of the surface normal, and t.he

vectors (1,0,0) and (0,1,0) correspond to the snrface principal direct.iolls.

• The principal frame field (fi, f2 , f3 ) is defined such t.hat, at every point, the vect.ol·

(0,0,1) indicates the direction of the surface normal, and the yectors (1,0,0) alld

(0,1,0) correspond to the surface principal directions.

The viewer's coordinates and the surface patch local coordinates arc rclated by t.he

Iinear transformation matrix:

•

where e~x), ely) , el:) are respectively the x, y, z components of the il" vcct.or of the slIrface

patch local coordinate system. This transformatioll is only a rotat.ion mat.rix. lIence t.hc

inverse of the matrix M is simply its transpose.

The matrix Mean be recovered from the scenel i descriptors, more precisely, from t.hc

normal Ni and the shape yector K; as follows:
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where Mn describes the rotation depicted in Fig. 7.34(a) and Mc describes the rotation

dcpictcd in Fig. 7.34(b). Thesc matrices arc related to the scenel descriptors as follows:

(
)(~ y' N x ( N'N.'" N:rNyNz-NrN" N xNl+Ne N2+N2x 2% y 2

Mn = X' y' N, ) = N:rNyN.:-N:rNy N"Nz+N:r
N, )y y Nl+N$ Nl+N$

X~ y' No -Nx -Ny No0

and ('œ. -sincjJ

nMc = sin cjJ coscjJ

a a

where cjJ = ~ tan- 1 (j~7)'
Now that wc have shown the relation between the paraboloid model and the scenel, we

Ilse this model to derive the expected shading f10w field and the expected edge map.

2.1.1. The Expected Shadi71g Flow Field. Given a sam pIe of the scenel space, we want

t.o compute the shading flow field. The relationship between the scene descriptors and the

shading flow field is based on the image irradiance equation:

1 = p..\L· N ,

where p, ..\, Lare locally constant functions of (x, y), and N is a locally smooth function of

(x, y).

The orientation of the shading f10w field e and the shading f10w field '5 normalized

distortion veetor Ï> can be derived from the first and second spatial partial derivatives:

tan e

Ï> = 1 ( I
xx

- I
yy

)-2Ixy •

Vr;+I~
I xx + I yy

Using the paraboloid as the local surface model, we evaluate the first spatial

dcrivativcs l :

partial

•
Ix = p..\L· (Cf (- kl fi) + e~ (- k2 f2))

I y = p..\L· (ef (- kl fd + e~ (- k2 f2))

1Since the point considercd is the origin of the surface patch local coordinates, the componcnts of principal
frnl1lcficld (fl,f2.f3) arccqual to (Cl,C2,Ca) .
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and the second spati•.! partial derivatives:

lxx = -pAL· (elef 1<1 + e~e2 ~~) f3

lxy = -pAL· (eler 1<1 + eXeY n:2) f32 2 2
lyy = -pAL· (erer 1<1 + eYeY ~2) f32 2 2

As mentioned in Chapt. 4, the useful properties of the shading no\\' ficld are only

dependent on the scenel descriptors N, K, L - the prodnct pA always appears in both the

numerator and the denominator and th us always caucels itsclf.

Hence, we have a relationship betwccn the scenel description l = {,;, V, L, N, K} aud

the shading fiow field: ys = {,;, y, 8, Ï>}.
2.1.2. The Expected Edge Map. Among the image cnrves that we extntet from the

data, there are edges which corresponds to occlnding contours. These occlnding contonl's

are curves that lie in the scene domain. We exploit tllfee of their features:

(i) Occluding contours lie on surfaces.

(H) At the occluding contour, the surface is perpendicular to the fine of sight..

(iii) Occluding contours projected on the image plane form edges.

The occluding contour is a three-dimensional curve that can be represented in the

viewer's coordinate system (,;(i), vtt), z(t)) QI' the local surface patch coordinate system

(u(t), vtt), w(t)) with the two being related as follows:

(,;(t), vtt), z(t)) = M (u(t), vtt), w(t))

If we consider again the paraboloid as our local surface modcl, the sn l'face normal vec\,or

is given in terms of a local surface patch coordinate system:

N = CI<1U2+1<:~uV2+1)t' (1<1U2+1<:~vV2+1)t' (l<iU2+:~V2+1)t)
Since at the occluding boundaries, the surface becomes perpendicular to the fine of sight,

we express the normal vector in image cOOl'dinates.

And thus occluding boundaries arc characterized by the z component of the normal veetol'

being null.
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which provide a first constraint to define the curve describing the occluding contour.

(8. J) ci "1 u(t) + ei "2 v(t) + e3 = a

Another constraint on the curve describing the occluding contour is that it lies on the

paraboloid, thus
1 1

1O(t) = - 2 "IU2(t) - 2 "2 V2 (t) .

Wc can project this curve on the image plane and obtain a planar curve x = (x(t), Y(I.))

that describes the corresponding edge:

x(t) = ef u(t) + ei v(t) + e3 1O(t)

y(t) = et u(t) + e~ vtt) + e~ 1O(t)

Successive differentiations by the arclength yield the tangent vector and the curvature

vedor. The taugent vector of this curve is given by:

dx dt

dtds '

•

where s is the arclength parametrization. And the curvature vector of this curve is given

by:
dt

k = "n = ds

For every sam pIe, we consider whether or not an occluding contour couId be visible

at the same pixel location. An occluding contour is said to be visible at the same pixel

location if the corresponding image curve can pass through the pixel in which the origin of

t.he paraboloid model lies.

Bence, wc have a relationship between the scenel description l = {x, y, L, N, K} and

the t.angent field corresponding to occluding contours: yt = {x, y, Olt), ,,(t)}.

2.2. The Labelling. The discretized scenel space used for our implementation is

detailed in App. E. The question of how coarse or how fine to sampie each of the dimen­

sions of t.he scenel space is subtle, as there are opposing considerations. For computational

considerations, the fewest scenels possible is preferable, whereas for representational con­

siderations, the more scenels the better. Bowever, because of the limited precision of the

data, there is a limit on the precision of the scenel representation.

OBSERVATION 8.2. This number of scenets will be dictated by the discriminability of the

scencls givcn the shading flow fielel.
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In Fig. 3.38, we illustrate the variation of the expected shading flow thal. occurs for scene

descriptors within an equivalence c1ass. The discrimiuation bet,wccn these is impract.ical

because of the limited precision of the shadiug flow field representation.
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FIGURE 8.38. This figure illustrates the variation of the expeeted shading f10w field
within an equivalence elass of scenels. In (a), (b), (c), the normal changes. There
is an angle difference of approximately 10· between any pair of normals shawn. III
(d), (e), (f), it is the shape veetor which changes. There is an allgle dilferencc of
approximately 20· between any pair of shape veetors shawn. The normal and shape
vectors used are depieted ill Fig. 8.40. The cllrvedlless is 0.15 and the light sollrce
is (0.3035,0.5257,0.7946).

In Fig. 8.39, we illustrate the variation of the expected shading flow that occllrs for scene

descriptors belonging to neighbouring equivalence classes. The discrimination between these

is possible even given the limited precision of the shading flow field representation .
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FIGURE 8.39. This figure illustrates the variation of the expected shading flow field
for neighbouring scenels. The normal changes and ail the other scenel descriptors
rcmaill constant. The normal and the shape vectors used are shown in Fig.8AOi
the curvedness is 0.15 and the Iight source is (0.3035, 0.5257, 0.7946). There is an
angle difference of approximately 3D' between the normals of (a) and (c), and an
angle difference of approximately 20' between the normals of (b) and either of (a)
or (c).

The expected shading flow field computed from a scene!'s descriptors is projected on

the discretized shading flow field space. The discretized shading flow field must yield back

the scenel.

3. The Consistent Scene} Labelling

Up 1.0 now, wc have dealt with the scenels' compatibility with the local geometric

structures inferred From the image. lu this sectiou, we consider the interactiou of scenels

on ueighboul"Ïug fibres, thereby making the transition from local to global.

3.1. The Solution: a Cross·Section of the Scenel Bundle. Viewed globally, the

solution wc seek consists of sections in which a single (eq1ûvalent) light source illuminates a

collectiou of surface patches with constant material properties but whose shape properties

vary smoothly. The above constraiuts are embedded into a functional, and consistent sec­

tions through the scenel bundle are stationary points of this functional. More specifically,

the constraints :U'e expressed as compatibility relationships between pairs of neighbouring

cstimates withiu a relaxation labelling process,

Si = L 7'ijPj
jEN(i)
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FIGURE 8.40. These figures show the tessellations of (a) the normal space and of (b)
the shape vector space. Represented as black dots of various sizcs arc the normals
and the shape vectors used ta ilIustrate the variation of the shading flow wiLhill
an equivalencc class and betwcen cquivalence classes. Wc show as white Vorolloi
eells (in the normal and the shape vector spaces), the equivalence c1ass from which
examples are taken for Fig. 8.38. In that figure's first row, (a)-(e), the normal varies
taking the values indicated respectively by, the smallesl., the second smaliest., and
the third smallest dot depieted in the normal's white Vorolloi cciI. The shape vedor
remains constant, it keeps the value indkated by the largesl. black dot in the shape
veetor's white Voronoi ccli. In the second raw, (d)-(f), the shape vedor varies
taking the values indicated respeetively by, the third smallesL, the second smaliest,
and the smallest dot depieted in the diseretized shape veetor's white Voronoi ccli.
The normal remains constant, it keeps the value indieated by the largest dot ill
the normal's white Voronoi cell. In Fig. 8.39, wc show examples of shading flows
fram neighbouring equivalencc classes. \Vc lise 1wo immcdiatc ncighbours alollg the
normal dimension (the Voronoi eells shawn in light gray). The normal varies, il,
corresponds ta the largest dot in the white and light gray Voronoi cclls. The shape
veetor remains constant, it keeps the value indieated by the (a,gest. black dot in the
shape veetor's white Voronoi ccli .
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Th" final labelling is select"d such that it locally maximizes the average local support

A(7') = 2:>;S;
iEI

= L L 7';1';;7';
;EI ;ENU)

•

Snch a labelling is said ta be consistent [58].

3.2. Compatibility between Neighbouring Scene Elements. As we mentioned

in Chapt. 7, the coupling between the local scene! problems dictates a consistency relation­

,hip over them. This consistency relationship derives from two principle considerations:

(il A SURFACE SMOOTHNESS CONSTRAINT, which states that the surface normal and

cn rvatures must. satisfy Cartan's equation for pairs of scenels which project ta neigh­

bouring points in the image domain.

(il) A I.IGHT SOURCE CONSTRAINT, which states that the virtuallight source is constant

for pairs of scenels which project ta neighbouring points in the image domain.

Fol' the l'elaxation labelling process, these translate into the following:

• A scene! j is com7'atible with the scenel i if they have the same virtual iIIuminance

direction L, and if scenel j's surface descriptors fa.ll on scenel i's extl'apolated surface

at the corresponding relative position.

• A scenel j is incompatible with the scenel i if they have the same vi l'tuaI iIIuminance

direction, and if there exists another scenel j', neighbouring scenel j along the fibre,

that bettel' fits the extrapolated surface from scenel i than scenel j. Observe that

this incompatibility serves to localize information along each fibre.

• othel'wise a scene! j is unrelatecl ta the scenel i.

Using these guiding principles, we assign a value ta the compatibility r;; between two

scenels i and j. This compatibility will be positive for compatible hypotheses, negative

fol' incompatible hypotheses, and zero othel'\vise. ln general, variation in r;; is assumed ta

be smooth between neal'by points in the parameter space I. The process is iIIustl'ated in

Fig. 8.'11.

We now derive the e>:act form of the scenel compatibility function from these principles.

Considel' the pamboloid S;(u, v) such that the neighboul'hood of S;(O, 0) is described by the

surface parametcrs of scenel i.

OBSERVATION 8.3. The pambolo/cl S;(u, v) is unique/y clefinecl by the scenel i .
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b
(x ,y)

A.)

B.)

5(0,0)

j'

the osculating
paraboloid

J

•

FIGURE 8.41. Illustration of the compatibility relationship for scencl con"i"teney.
Two scenels arc shawn on the fibre at image location (x/dl), alld arc cvaillal.ed
against the scenel (i) at (x, y). The surface represented in scenel,," is modeled by
the osculating paraboloid, and extended ta (x', y'). It is now c1ear t.Imt one scencl
(j') at (x', y') is consistent, becanse its snrface patch lies on this paraboloid and lighl.
source and albedo agree. The other scenel (j) is inconsistent, beeanse il.s snrfaee
does not match the extended paraboloid. Snch oscnlating paraboloids arc nsed 1,0
simulate the parallcl transport of sccncl,r' ,y' onto scenelx,y .
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The paraboloid provides a model for defining the paralle! transport of the scenel on the

snrface. The snrface orientation in the scene!'s local coordinates is given by:

N(",v) = ( "1" " "2
V

" l ,)
("1 ,,2 +,,~ v2 + 1)' ("1 ,,2 + ,,~ v2 + 1)' ("1 ,,2 +,,~ v2 + 1)'

The principal cnrvatnres and directions arc obtained as follows:

"1 (1 + .:~ V2)
",(",v) =

(1 + "1 u2 +,,~ V2)

"2 (1 + "1 ,,2)
"2("'V) = ( 2 2 2 2)

1+ "1 " +"2 v
dv ) "1 "2'W
d)U'v = (1+,,~v2)

Wc find the point (,,", v") for which the local descriptors (xi, Yi, Ni, Î<i, cil of the

paraboloid Si(", v) arc "c1osest to" scenel j according to the distance measnre, (J.

I\s wc have said before, each scenel j defines a Voronoi ccII. Each point in this cell is

closes!. to the scenel j than ta any other scene! j'. So if the descriptors (xi,yi,Ni,Ki,cil
fall into the Voronoi cell of scenel j, then "i; is positive. If the descriptors fall into a

neighbonring Voronoi ccII, then "i; is negative. If the descriptors fall further, then "i; is

Ill"!. Figure 8.42 illustrates the desired behaviour for the compatibilities along a dimension,

snch as the normal, which maps onto a unit sphere.

FIGURE 8.42. If the c10sest representation is the·Voranoi cell in white, this scenel
would have a strong positive compatibility (white), whereas its Immediate neigh­
hours wonld have a strang negative compatibility (dark gray) and the compatibility
of the furthest neighbours would be uull (Hght gray) ..
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Building on the observation that the different dimensions of the scencl are independent,

we consider these separately to localize the compatible scenel in the fibre. Note tha\. wc

realize that it is not possible to localize the sccncl along the cnrvedness dimension becanse

of the coarseness of its representation - there arc only three cnrvedness for onr impie·

mentation. The normal vector space and the shape vcctor space are t.he t.wo rcmailling

dimensions. Both are defined on unit spheres, 8 2•

The quantization of the unit sphere leads nsnally to an irregnlar and anisotropie tes­

sellation. To avoid the related difficulties, we approximate the Voronoi cell by a disk whose

radius, C, corresponds to the furthest point in the ccII for each of these dimensions. The

Gaussian, G<, l'l'ovides a measnre over the equivalencc c1ass of objects. Wc lise its secoll"

derivative, GZ, to localize compatible measnres in a given scenel dimellsion. This fnndion,

with a sign reversai, mimics the desired behaviollr for the compatibility; il. is positive ilS

long as the point lies within the approximated Voronoi ccII, it becomes negat.ive if the poillt

lies outside of the approximated VOl'Onoi cell, the inhibitory lobe being stl'Onger fOI" the

immediate neighbours. Hence, we shall bllild 0111' localization fllllctiolls ilS follow",

Q~ = aLi,Lj' G ("'Iii) .-G~j" CyU) .G<J' ("y~) .G<j ("'Iii)

Q~ = aL"L)·G ("'Iii) .G<j" ("'lm '-G~J' ("'I~) .Gq("'Iii)
where

~dj = V(Xi - xi)2 + (Yi - 1Jil2

"'If; = cos- I (Ni - Ni)

K = cos- I (Ki - Ki)"'Iij
,fj

•= Cj - Ci

arc the different components of the distance between the tl'ansported scencl and scenel j,

and the variances, cf,cf,(j, correspond to the Voronoi ccll's radins along the N, 1<:, and

c dimensions l'espectively.

The function Q~ retlll'llS a positive value if and only if the extl'apolated normal from

scenel i falls within the approximated Voronoi cell. This fllnction will tend to take a slIIall

value if in any dimension, there is a pOOl' match betwccn the scenel j and the descriptors

derived from the paraboloid 8;(u, v) at the point (u*, v·j. The function QB behaves similarly

but consider the shape veetor instead of the normal.

For scenels i and j to be compatible, we require that both the pamboloid snrface's

orientation and curvatures need to be within the equivalence c1ass defined by the scenel j .
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The "cenels i and j arc not considered compatible if any of the normal or the shape vector

does not match - e_g. if the normal does not match, the scenels ~hall not be considered

compatible regardless of how weil the shape vector matches. To achieve this goal, wc use

the logical/linear combinators introduced by lverson and Zucker [65].

I)I'FINITION S.:!. The logical/linear combinator 4. is given by:

x+y, if x>O /1 y>O

x 4. y
y, if x>O /1 y$O

=
x, if x$O /1 y>O

x+y, if x$O /1 y$O

The compatibility between scenel i and scenel jean be expressed as a logical/linear

combinat.ion of the normal's localization function Q~, and of the shape vector's localization

f"nction, Q~:

'·ij = Q~ 4. Q~
where '·ij is positive if and only if both Q~ and Q~ _"re'flôsftiv~." Hence, the scenel is

localizcd in both N and K dimensions.

Notice that these values depend only on-the relationship between scenel i and scenel j,

which arc fixe" and constant throughout the computation. Therefore, these compatibilities

can be calclliated once and then stored in either a lookup table or as the weights in sorne

sort of network.
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CHAPTER 9

Implementation

The general shape from shading problem as we have defined il. is dcfinitely not ail "asy

problem 1.0 solve. Inevitably our solution 1.0 il. involves intense col".'utational bnrdell.

Our approach has the merit of being fully parallel alld il. is in principl" weil snit.ed 1.0

implementation on a massively parallel machine. This is precisely what wc have donc. The

machine we have is a MasPar-l, il. is a SIMD (single instrnction, mnltiple data) type machille

with 2048 processors forming an toroidal array of 32 x 64 with 16 K-Bytes of melllol'y pel'

processor.

We have found that the most severe constraint on the machine was its limited lIIem­

ory capacity. Even with small images (64 x 64), when comp"ting the local sllpport, the

number of possible scenels on each fibre is such that the lIumber of pairwisc combillatiolls

exceeds the machille's storage capacity. The relevallt compatibility matrix elem"nts callnol.

be ail stored on the machine'" RAM. Hence the machine swaps its Illemol'y with a. disk

which tremendous!y slows down the actna! computation. This has severely lilllit,ed 0111'

experimentation.

1. Numerical Results

We have chosen onIl' a few examples but wc chose these 1.0 illustrate that 0111' algorit.hm

can resolve the limitations and difficulties that were shown 1.0 be typical fOI' the dassical

shape from shading algorithms.

1.1. Abrupt Albedo Change. The first example that IVe ran 1.0 test 0111' algorit,hm

Was an image of a scene in which the albedo changed abruptly (Fig.9.4:3(a)). II. simply

consists of a sphere in front of a plane. This same example was used in Chapt.. :3 when

we were exposing the limitations and difficulties related 1.0 elassical shape frolll shading

algorithms (See Fig. 3.16).

We extracted the edge mal' using the algorithm of Iverson [66] and the shading flow

field using the algorithm outlined in Chapt.. 5. These arc shown in Fig. 9.4:3(b). The straight

edges are interpreted correctly according 1.0 Table 6.3 as an abrupt change in albcdo, silice
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FIGURE 9.43. This test image IJrovides an example of a shape recovery. We im­
plemented an algorithm using the generalized shape from shading assumptions. An
ideal intensity image of a simple scene illuminated by a single distant point light
sonrce but with an abrupt ehange in albedo (a) and the eorresponding shading fiow
field (b) are shown in this figure. The shape recovery is illustrated by the surface
normals (c). For display purposes only, thresholds are used ta avoid cluttering the
fignres with useless information and the resolution of the edge map and shading
flow field is decreased by two and the resolution of the surface normal is decreased

by fOllr .
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a discontinuity in intensity is present while the shading now field is cont.innous. The curved

edges that form a circle carry two interpretat.ions since discont.inuities in both t.he intensil.y

and the shading fiow field are present:

(i) either they mark a cast shadow boundary;

(H) or they mark a surface discontinuity.

While the artificial scene is not meant 1.0 be characterized by a change in lighting condition,

such Interpretation is not incompatible with the image. The second int.erpret.at.ion is t.he

one which we int.end t.o exploit as these edges mark in fact an occluding contour.

Our shape from shading algorithm yields the result shown in Fig.9.4:l(c) aftel' five

iterations. The visible surface of the sphere is accurately recovered as weil as the illumination

direction of the light shining on il.. The description of the back plane remains ambiguous

as multiple cross-sections of the scenel bundle are equally supported. Each cross-sect.ion

indicates the presence of a planaI' surface which is accu rate. The ambiguity (which cannot

be resolved) lies only in the planaI' surface's orientation.

1.2. Multiple Light Sources. The second example that we ran 1.0 test onl' a.lgo.

rithm was an image of a scene which is iIluminated by two distant Iight sources (Fig. !).H (a).

Again, il. simply consists of a sphere in front of a plane.

As with the previous example, we extracted the edge mal' using the algorit,hm of

lverson [66] and the shading now field using the algorithm ontlined in Chapt.. 5. These

are shown in Fig. 9.44(b). The only edges in this example are the cnrved edges that f01'l1l

a circle. Again, as in the previous example, they can support two interpretations since

discontinuities in both the intensity and the shading now field are present:

(i) either they mark,; cast shadow boundary;

(H) or they mark a surface discontinuity.

Again, while the artificial scene is not meant 1.0 be characterized by a challge in light.illg

condition, such an interpretation is not incompatible with the image. The second inter­

pretation is the one which we intend 1.0 exploit as these edges mar'k in fact an occlndillg

contour.

There are discontinuities in the shading now field along a curved line. Sillcc these

are not accompanied by intensity discontinuities, the cnrved line is correctly illterpreted,"

according 1.0 Table 6.3 interpreted as an attached shadow bonndary -- the surface is thlls

inferred 1.0 be continuons.

III
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FIGURE 9.44. This test image provides an example of a shape recovery. We im­
plemented an algorithm using the generalized shape fram shading assumptions. An
ideal intensity image of a simple scene illuminated by two distant pointlight sources
(a) and the corresponding shading f10w field (b) are show!, in this figure. The shape
recovery is illustrated by the surface normals (c). Tliil'gray levels code different
illnminant directions.
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Our shape from shading algorithm yields the result shown in Fig. 9,44(c) aIler five

iterations. The visible surface of sphere is again accurately recovered as well as the illu­

mination direction of the light shining on il.. The dilference between this result and the

previous example is not immediately visible on the figure siuce the surface orientations are

exactly the same - il. is only the light source orientation which dilfers.

As previously, the description of the back plane remains ambiguous as multiple cross­

sections of the scenel bundle are equally supported. Each cross-section indicates the presence

of a planar surface which is accu rate. The ambiguity (which cannot be resolved) lies only

in the planar surface's orientation.

1.3. The Car's Fender. The third example is a l'l'al image of a scene (Fig. 9,45(1')).

Consequently, there is sensor noise on top of the omnipresent quantization noise. This

time, the scene consists of a car which is illuminated by two distant light son l'ces. We

selected a sub-image because of practical contraints, and focnsed on a c1ose-up of the fender

(Fig. 9.45(b)) because of the wealth of features in this small region: there is an occlusion;

the fender is partially hiding another surface; there is a cast shadow that l'uns acl'Oss tll"

fender; and there is an attached shadow that runs along the surface.

We show in Fig. 9.45(c), the edge map obtained using the algorithm of (verson [66]

and the shading flow field obtained using the algorithm outliued in Chapt. 5. Artel' five

iterations, our shape from shading algorithm yields the result shown in Fig. 9.45(d). Unlike

the two previous examples, we do not know what t.he ground truth is. This inconvenience

highlights the necessity of being able to generate realistic looking images of artificial scenes,

We show in App. Dour implementation of a new parallel algorithm that attempts 1.0 palliate

this inconvenience.

Meanwhile, note that the scene of this example has several qualitative features that,

allow us 1.0 evaluate our results:

• There are edges on both sides of the fender where therc arc also discontillnities in

the shading flow fielél. As stated fol' the two previolls examples, such instances can

support two interpretations:

(i) either they mark a cast shadow boundary;

(H) or they mark a surface discontinuity.

The correct one includes a surface discontinuity. Our result also suggests that the

normal slants away from the viewer as il. approaches the edge from the fender's side.

On the other side of the edge, our result gives multiple consistent cross-sections.

1la
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FIGURE 9.45. (a) A real image is used for this last example. The shape recovery
is donc with (b) a close-up of the fender of a car. In this image, there are several
noteworthy featnres, snch as occlnsion, cast and attached shadow boundaries. (c)
The corresponding edge map and shading llow field are used as input. The edges
are depicted as bold arrows, and the shading llows, as thin arrows. (d) The shape
recovery is illustrated by the surface normals (c). The gray levels code different
illuminant directions.
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Ali these cross-sections correspond 1.0 planaI' surfaces of various orieutatious aud

lighting couditions. But plaual' surfaces are not compatible with the cUl'ving fender,

hence the surface discoutiuuity.

Anywhere a surface discontiuuity occurs, both the albedo aud lighting coudition can

independently chauge. The back plane beiug black, this issue cauuot be resolved.

Our result is no different in this regard, none of these possibilities arc rejected.

• The line singularity running aloug the fender reveals the parabolic uatnre of the

car's fender. A visual assessment of the surface shape yields a result consistent \Vith

this prediction - that is, the feuder is roughly cylindrical.

• There are also edges running across the fender. Along most of it there is no discon­

tinuity iu the shading flow field but uulike the first example, the shading Ilows arc

parallel. This allows an additioual possible interpretation according 1.0 Table G.:!,

which is correct for this example:

(i) The edges mark a cast shadow boundary on a smooth parabolic slllface.

The shading flow field is discontinuous only where the edges running across the

fender meet the singularity lines. These image geometric structnres al'e wnsistent

with

(i) either a cast shadow boundary;

(H) or a surface discontinuity.

The cast shadow boundary is the correct interpretation.

Our result is consistent with the correct interpretation. The surface is continnons

ail along this edge, but the illuminant direction differs.

• The attached shadow presents an interesting special case for this example. There

is no edge and no shading flow field discontinuity. The parallel shading Ilow is

consistent with either:

(i) a smooth surface with constant albedo and lighting conditions;

(ii) or an attached shadow boundary on a parabolic sn l'face.

Our result shows that the surface is continuous where wc perceive an attached

shadow boundary. lt also shows a partial overlap between cross-sections wit,h dif­

ferent illuminant directions. The attached shadow is thus localized in the region

defined by the overlap. The localization of the attached shadow on parabolic snr­

face patches could be improved by localizing discontinuities in the magnitnde of

the intensity gradient. This geometric structnre is a type 1structnre and conld, in

principle, be extracted from the image [G6] .
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CHAPTER 10

Discussion

By rclaxing the constraints of the classical shape from shading problem, we have given

shape from shading an entirely new structure.

The data that serve as input to classical shape from shading algorithms have been

shown to be inappropriate when the classical constraints are relaxed. The albedo and

the illumination are not known since they are functions of (x, y), not global quantities.

Consequently, the photometric values cannot be used because of their dependence on the

albeclo and the illumination.

We have shown that in order to address the new generalized shape from shading prob­

lem, we can make use of other properties of the image - in particular, We exploited the

geometrical structures of the image. Both the image curves and the shading fiow field can

be extracted reliably from the image. The Integration of these two cues is shown to be

ncccssary.

We have developed a new computational framework, designed to extract the shape of

the surfaces, which integrates different cues: specifically, it integrates the shading fiow field

and the tangent field. This framework exploits our new local representation of the surface

orientation and shape for which continuous transformations of the surface are mapped to

continuous paths in a five-dimensional space. It also uses the relationships that we have

established between the local descriptors of the scene and the local geometric properties of

the images, and between the different neighbouring local scene models.

OUI' thrcc examples provide an indication that our framework is sound and that the

resulting algorithm works. These examples also show the importance of the Interpretation

of discontinuities as it allows us to relate the geometrical structures of the image to scene

properties.
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Generalized shape from shading can dea! with many situatious for which algorithms

based on the c1assica! coustraiuts would inevitably fail. There is obviously a much more

severe computational burden assodated with the generalized problem, and we have tackll'd

this issue by designing a massively parallel algorithm.

1. Future Directions

The work presented in this thesis has provided a new direction in shape from shading.

As such, il. has answered some questions, but il. has also raised new ones. In this sect.ion,

we describe the future directions that we think might be insight.ful 1.0 explore furthel".

1.1. Implementation and Experimentation. The images used in our implemen­

tation (Chapt. 9) have been chosen 1.0 provide a l'roof of concept.. The images depict. sccnes

that contain discontinuities in surface, lighting, and albedo.

However, a more extensive implementation is desirable. Experiment.at.ion on more

realistic images is needed 1.0 characterize the algOl'ithm's behaviour. For t.his, a difrerent

machine is needed, one with enough memory 1.0 store the relevant compat.ibilit.ies fOI' cach

fibre, and preferably, massively parallel.

1.2. Consequences of the Shading Flow Field. The shading 1I0w lield is pro­

posed as an intermediate structure for the generalized shape fmm shading pmblelll .

• Mathematical, properties - If we consider the shading f10w lield 1.0 be a vect.ol· licld

on a manifold, what are its mathematica! properties? How do they rclat.e wit.h t.he i;

texture f10w field's properties? What is the relation betwcen t.he index of shading

flow singularities and scene properties such as highlight.s'!

• Psychophysical properties - Does the shading f10w lield have any psychophysical

re~lity?

(i) Geometric style computation. In Apl" A, wc have beg'un 1.0 explore the idea

that the primate brain uses a geometrical style of cOllllllltation. Fnrther ou­

going psychophysical experiments focus more predsely on the shading lIow

field.

(ii) Sensitivity issues. How accu rate are we in percciving t.he various parallleters

of the shading flow? Can we perceive and accu rat.cly localize shading f1ol\'

discontinuities?
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1.3. Integration of other eues. Experiments supported the sufficiency of the com­

putational framework for integrating the information provided by the tangent field and the

shading f10w field. What about the other cues available in a single static image?

l.:l.l. Visual Texlure. Shading and visual texture can be found together [109]. The

intensity gradient can be computed within the texture elements in regions where the scale

of the visual texture is large. If, in a region, the scale of the visual texture is small, then

this part of the image would yield no shading flow field. Consequently, we know that in

this part. of the image, our shape from shading yields no result either. This is interesting,

'L' it opens the door for integrating another complementary cue to infer shape [43]: visual

text.ure.

1.3.2. 1fig"lig"Is anc/ Slwc/olOs. Evidence indicated that the singularities of the shad­

ing f10w field cou Id provide cUes to unveil highlights and shadows. These features also

provide other evidence about surface shape as the extrema of the surface luminance have

been shown to ding to parabolic Iines [72] for matte surfaces.

Although wc are mainly concerned with matte surfaces in this thesis, we need to be

aware t.hat other types of surface exist. An important dass is glossy surfaces. In computer

graphics, glossy surfaces are often modelled as the superposition of a matte reflection and a

speculaI' reflection. In Fig. 10.46, we show the geometry of the speculaI' reflection. The unit

vectors R and V show respectively the direction of the pure mirror-Iike reflection and a

viewpoint. For a given surface patch and a given viewpoint, the Phong model [17] describes

the intensity of the speculaI' component due to a point Iight source. When R· V > 0, the

intensity is given by:

1 = kdpAN· L + ksA (R. V)n .

The coefficients kd and ks give respectively the fractions of the incoming Iight involved in

matte reflection and in speculaI' reflection. The specular-reflection exponent, n, depends

on the sUl'face material being simulated. Values of n typically vary from one to several

hundred [35]. This equation contaius an extra term whieh can also give rise to singularities

in the shading flow field. This would occur when R· V --t 1, Le. the Iight source, the

surface, and the viewer aligned such that there is a mirror-Iike reflection, N . L = N . V =

J~ (1+ L· V) > O.

Torrance and Sparrow [124] developed a geometrieal optie model for speculai' reflection

by rongh surfaces. Beckmann and Spizzichino [4] on the other hand developed physical

opties model for the reflection of plane waves on smooth and rough surfaces. Nayar et al. [98]
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N

R

FIGURE 10.46. The veetor R is the direction of the mirror-like rellect.ion of an
incoming ray from the direction L for a surface whase orientation is providcd by
the normal vector N.

studied the behaviour of bath these models and proposed a physicalmodel compl"ising thrcc

reflection components: a diffuse lobe, a specular lobe and a speculai' spike. The diffn8e lohe

correspond ta Lambert's reflection model of a matte surface.

Siuce the specular reflection has different spectral and geometrical propert.ies t.han t.he

matte reflection, it is sometime possible t.o ideutify specnlarit.ies [89]. The shadiug lIow

field's singularities may provide a new way ta localize aud aualyze them.

1.4. Improving the Scenel Madel. Algorit.hms fail wheu uuderlyiug aS8umpt.ious

are Ilot ail met. '1'0 improve upon a model, it is interestiug to kHOW when t.he '"'8nlll(>t.ion8

break. lt is particularly insightful when the algorithm it.self can recognizc sllch a sit.uation

as it limit.s the imageinterpretat.ion ta a level whme result.s are reliahle.

1.4.1. Nearby and Extended Light Sources. We used t.he virtual illuminant. to model

light sources. For lighting conditions such as a pointlight source, a collection of point light.

sources, an extended light source that is entirely visible from the surface, or a collection of

these, the virtual illuminant is a piecewise constant function. This is consist.ent with OUI'

underlying assumption.

However, nearby and extended Iight sources :nay, in some circnmstances, generate shad­

ing patterns that are inconsistent with our main assumption. FOI' extended light SOIll'ces,

this wou!d occur in the penumbra (see Fig. 10.47). For a scene in which the light. source's

extent is Infinite, Langer and Zucker [83,84] reported that the solid angle of visihle light

source (or the aperture) then becomes a dorninating quantity. The use of our illumiuation

1J!J
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model uncovers a key characteristic of ail these situations: the virtual illuminant direction

changes wildly.

iIIuminated surface

shadow penumbra

l'IGURE 10.47. An extended light source can cause a smooth variation in intensity
cven if the surface orientation remaÎns constant. This occurs in the penumbra as
the amount of the extended light source that is visible from the surface is gradually
changing.

The phenomenon of mutual illumination between surface patches (see Fig. 10.48) can

become significant if the albedo of the surface approaches unity [36]. When considering

inter-renections, other surface patches are treated as light sources - local extended light

sources. The variation of virtual illuminant direction may then provide an indication of the

significance of the inter-renections' contribution.

N·1

~-------~

l'IGURE 10.48. When a surface patch i and a surface patch j can be joined by a
straight line in ambient space (that is not through a solid shape), then the surface
patch are visible one from the otller. Therefore, if sorne light shines on the surface
patch i, a fraction can be reOected in the direction of patch j and vice-versa. This
phenomena is called mutual iIIumiuation.
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Since the cross-section corresponding ta a scelle with a varyil1g virt.ual illuminant di­

rection is said to be inconsistent, we conjecture that for snch an image our algorithm \\'ollid

yield a null result.

(i) A null result is interesting because it constitutes a statement 1.0 the efrect, that 0111'

assumption does not apply for this scene, hence a distributed pellumbra or some

other effect is detected.

(ii) Observe that in such a situation, classical approaches 1.0 shape from shadillg oimply

give wrong answers.

There is a caveat 1.0 the previous conjecture when a scene that breaks 0111' asoumptioll

mimics a scene that doesn't. Such situations could occllr naturally (e.g. camollflage of

animaIs) or artificially (e.g. Trompe-l'oeil paintings on buildings). They are cOlloidered

illusions and can potentially confuse both human and machine vision systems.

Colt~ider the canonical example: a photograph (where the albedo varies contillllollsly),

a projeeted slide (where the illumination on the screen varies continllously) and the scene

itself. Any shape from shading process should reconstrnct shape information identically. In

absence of other cues, this ambiguity cannot be resolved and th us, we have intentionally cho­

sen to concentrate our efforts on complex surfaces bnt with simple albedo and illllminatioll

variations.

1.4.2. Light Interaction wUh the Ambient Medium. 0111' setting of shape from shading

assumes that light interacts with surfaces and is captured 1.0 fOl'ln the image. Bllt Iight cali

also interact with the medium in which it is tl·avelling. Diffllsioll and absorption of Iight

are two common phenomena that could occur when Iight interacts with fog, dllst or smoke.

Here again, these phenomena can cause a smooth variation of intensity.

In order to pursue our investigation on these Iimiting cases, wc need images fOI' which

we have complete knowledge of scene; Le. at every point where Iight interact with maU,er,

the shape and reflectance properties of the surface element or the absorptioll alld diffn­

sion characteristic of the medium in which light travel, the lighting condition. We have

begun work for the synthesis of such image on a massively parallel compllter. Onr ClIlTent

implementation is detailed in App. D.
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APPENDIX A

Flows and Scalar Field: Evidence for Multiple Pathways

ln this thesis, we have considered separately the photometrie and the geometric properties

of the image. To emphasize this distinction here, we use a parallel with texture aualysis.

Density is 1.0 texture what intensity is 1.0 shading. Whereas we have shading nows for

shacling analysis, 'we have texture f10ws for texture analysis.

This appendix describes psychophysies experiments designed 1.0 examine an hypoth(,~

sized representation of scalar quantities and vector properties in the visual COl'tex.

1. Introduction

The notion of parallel processing pathways has been integral to psychophysiealmodcling

fol' some time, and has led 1.0 various "independence" hypotheses in carly vision. Early

physiologieal evidence was provided by the separation of ON and OFF channels in the

retina, but more recently the emphasis has been on functionai specialization [134]. Perhaps

the most explicit such proposai has been made by Cavanagh [20], who posited separate

channels for luminance, motion, binocular disparity, colour, and texture following the striat.e

cortex. These channels are based in part on the belief that V4 is an area specialized for

colour [132], and have been strengthened by the discovery of cytochrome oxidase blobs in

visual area VI, coupIed with the anatomy of connections through V2 to V4 [133]. Wc

shall focus on this functional specializationj namely that the blobs support a color system,

white the "interblob" pathways support a luminance system, because il. has become rather

prominent in the literature [90,131]. However, we argue that, white t.he color/luminance

distinction is attractive pragmatically, the evidence is that the blob/interblob distinction is

much more subtle functionally. Allman and Zucker [1] summarized il. as follows: (i) cells

within blobs are sensitive 1.0 contrast as weil as calaI'; (ii) sorne animais with calaI' vision

appear 1.0 be lacking blobs; and (iii) sorne animais without calaI' vision appear 1.0 have thelTl .
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Thus, while the colorization process may be pleasing for viewing classical motion pictures,

its evolutionary value is not at ail clear.

New proposais rcgarding blob/interblob function arc required, and wc review one in

the next section. '1'0 stress the functional specialization beyond the domain of contrast and

color, wc en large the argument to show how it suggests a novel view of the representation

of texture in visual cortex. A series of psychophysical experiments are then reported in

support of the view. The conclusion is that a more appropriate model of blob/interblob

functional specialization transcends the above pragmatically-defined categories to others

that arc more abstracto The different classes of feature are categorized mathematically into

those thal. arc scalar as opposed to those that arc (differentially, or locally) geometric.

1.1. The Allman/Zucker Hypothesis. Allman and Zucker [1] have advanced the

hypothesis that blob cells arc not only coding different information from interblob cells, but

they arc encoding it differently. They suggest in particular that blob cells are selective for

scalar information. and encode it by frequency offiring, while interblob cells are selective for

geometric variables and encode a strength of match. Representational differences emerge

as weil, as follows.

A classical view of the visual cortex is as columnar organizations of cells responsive to

specific stimulus properties. Key among these is orientation, one of the most prominent

!leallle/de features of our environment. Orientation hypercolumns consist of cells tuned to

different orientations, and can be modeled as representing (a sampling of) ail orientations

at each retinotopic position. The firing rate of such cells can be interpreted in proportion to

how weil the stimulus orientation matches the cell's preferred orientation; i.e., as " strength

of match. However, since strength of match is confounded with stimulus contrast, such cells

typically saturate within about one order of magnitude of log contrast [92]. This facilitates

finding the border around and within natural objects, given the variations imposed by

Iighting in natural scenes. Their firing rate rarely exceeds about 100 spikes/second.

Cells within the cytochrome oxidase blobs, however, respond to other stimulus proper­

tics, such as contrast and color. Observe that these are sealar properties, in that they can be

l'epresented by a single number. (Geometric properties, such as orientation, require a vec­

tor.) Now, what defines the blobs is an energy measure: cytochrome oxidase is an enzyme

that indicates en~rgetic capacity. How is it, then, that cells within the blobs stain for more

cytochrome oxidase activity than those between blobs (in the orientation hypercolumns)?

The Allman/Zucker proposai specifically claims that, if scalar variables such as contrast

were encoded by firing rate within blob cells, then such cells would require the energetic
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capacity to sustain a broad dynamic range. This will lead to a high concentration of cy­

tochrome oxidase. While firing rates for cells within blobs are just now being studied, the

indirect evidence is that cells that are likely candidates for bcing located within blob" re­

spond to over 200 spikes/sec and exhibit contrast saturation after 3 log orders of magnitude.

In addition, contrast is available at every location within the image, so contrast-signaliug

cells will always be active to some extent. Orientation, on the other hand, will be single

valued at most image points, so the majority of cells within an orientatiou hypercolumu

will be quiet. Hence the difference in energetic capacity.

1.2. Two Classes of Textures. With this background, wc can now state the formaI

observation motivating our psychophysical experiments: the scalar vs. geometric varia.ble

difference arises within textures, as weil as between boundaries and contrasts. In particular,

(i) there are those texture patterns, such as stars on a clear night, points of light. shining

through foliage, or grains of sand on a beach, whose arrangements are characteri~ed primar­

i1y by variables such as density; and (ii) there ar'1 those texture patterns, such as fur, hair,

grass, or wheat, that are characterized by their orientation structure, or f1ow. Wc sha.1I refer

to these classes of patterns as (i) texture point fields and (ii) texture f1ows, respectivcly, to

stress the differences. Our current interest is to determihc whether texture point fields and

texture fiows exhibit different psychophysical characteristics, '1$ a prolegomena to determine

whether one is carried by the blob system and the other by the interblob system.

We shall use different types of dot patterns to represent these two classes of textures,

with l'andom dot patterns obviously representing texture point fields. Textu re f10ws will

be represented with random dot Moiré patterns (RDMP), or Glass patterns [44], composed

as follows: begin with an original random dot pattern, and make a copy of it. Now, sllift

each dot in the copy by a given transformation, and superimpose the shift~d copy onto the

original. If the transformation were a lateral displacement, for example, then the composite

would depict a linear f1ow; locally the fiow is carried by the pairs of transformed dots.

Other transformations might include rotations, expansions, etc. Finally, a second col'y can

be made, transformed from the first copy, and then superimposed onto the original plus

first copyj the resultant 'even richer pattern will be composed of triples of points '"Tanged

according to the given transformation. Wc refer to the number of dot patterns comprising

the RDMP as the path length; note that longer path lengths correspond to more spat.lal

structure in the fiow pattern. A path length of 1 is, of course, a texture poiut field.

While the psychophysical category of textllre includes both texture poillt Iields alld

texture fiows, we shall focus on the differences. Texture point fields are domiuated by their
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FIGURE A.49. This figure provides an illnstration of the two types of texture pat­
terns used in the experiments. (a) A random dot textnre point field, charaeterized
by its density. (b) A random dot Moiré (or Glass) pattern [44J, eonstructed as
follows: begin with an original random dot pattern, and make a copy of it. Now,
shift each dot in the copy by a given transformation, and superimpose the shifted
copy onto the original. The transformation shawn is a \inear displacement, and the
composite is a linear Dow; oUler transformations are aise possible, e.g. rotations,
expansions, ctc. Finally, a second copy is made, transformed from the first copy,
and then sllperimposed onto the original plus first copy; the resnltant pattern is
1I0W composcd of triples of points arranged according to the given transformation.
Wc refer to the number of dot patterns comprising the random dot Moiré pattern as
the l'al" lellgl"; longer path lengths correspond ta more spatial structure in the flow
pattern. A path length of 1 is, of course, a texture point field. The advantage of
lIsing such dot patterns is that density can be held constant while they are arranged
to carry incrcasingly more gcometric structure.
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first-order statisties, or density, while an important second-order term is introduccd for

RDMPs with path length = 2. Barlow [3] showed that, for texture point fields, densit.y

was the key informational variable, and that the information in specific pattern st.ruct.nres,

or arrangements of dots, was not utilized. Jnlesz [67], in his t.ext.on t.heory, made t,hem

distinct, and included them among other textnre primitives.

2. Preliminary Observations

There is a classieal dietum attributed 1.0 the carly Disney art.ists that., t.o make con­

vincing cartoons, effort should be conccntrated on borders rather than color overlays; gaps

and smudges will be perceptually filled in by the interior color. This informai observat.ion

was confirmed by Kolers and von Grünan [77] (discussed below), and pl'Ovides t.he basis fOI'

our first informai examination of t.exture filling-in phenomeua: siuce textures, like colon l'S,

depiet surface coverings, one would expect them both 1.0 fill-iu moving cont.our boundaries.

Our first display confirmed this expectatiou, but also provided a hint. that text.ure point.

fields and texture flows are not treated identieally.

Displays were created on a Silicon Graphies IRIS Personal Workstation and t.hey were

shown on a Silicon Graphies Color Monitor model #CM20S6A3SG at. approximat.cly SO cnl

from the subject. The refresh rate is 60 hertz, the horizontal and vert.ieal resolntions of tl,e

monitor are respectively 3765 and 3793 pixels/meter, and each RGB chauncl has 8 bit.s.

The figure consisted of a circular border, approximat.ely 2 degrecs t.o ,1 degl'ecs in

diameter, and whieh was filled wit.h a jittering RDMP. The filled, circulaI' figure nnderwent,

motion, as follows. The entire figure followed a path around anot.her circle, approximat.ely

6 degrees in diameter. The center of the border circle followed the path exactly, bnt t.he

interior RDMP jitt.ered around t.his path, so t.hat al. t.imes t.hel'e were gaps bct.wecn t.he

interior texture and the border, and al. times the interior texture went ont.side of rot.at.ing

border. The subject was instructed t.o fil' his view at the cent.er of the 6 degrec pa.l.h, alld t.o

report when either a gap appeared within the border, or an "arm" of t.e.xture brokc through

il.. The path length of the interior RDMP was varied from 1 - .5.

OBSERVATION A.l. From the response of ollr sllbjects, it is immelliatelll apllllre1lt that !lall"

and arms are more visible f07' the longer path lengths than for the "horter- Ime".

Whereas texture point fields seem 1.0 "fill in" like colours in Disney's observatioll, tex­

ture flows do not. The Glass pattern appeared more detachable than a random dot palte"11
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with the same average density. Because the question is confounded by prominent outliers,

this experiment is dimcult to quantify. So wc move to a different paradigm.

Unlike colour and contrast, texture filling-in has never been systematically studied.

There iu iudirect evidence that intensity and texture density are confounded variables [9i,

12i] and that texture fields can be segregated from texture flows [46]. The implications arc

larger than variable confounding, however, because of the possibility of parallel processing

streams would arise if the representation of texture fields were decoupled from texture flows.

3. Experimental Paradigm

Wc now explore the differences between texture fields and texture flows psychophysi­

cally, using a paradigm devcloped by ((olers and von Grünau [ïï]. Building on an earlier

observation that the boundary of an object deforms smoothly during apparent motion [i6],

theyexplored ",ow the color interior to a shape changed during such apparent motion. The

experiment placed two shapes in apparent motion, with color! in shapelo and color2 in

shape2' If sliapel were, say, a square, and shape2 a triangle, then the boundary percept

would be of a square deforming smoothly into a triangle. Their real concern was with the

interior color, and two observations arc relevant:

(i) the color appeared to stay within the deforming contour, completely filling it but

not extending outside of it;

(ii) when color! differed from color2' the change was abrupt from color! to color2'

Thus, unlike the boundary, color did not deform smoothly. Similar results hold for

different contrasts as weil.

This differencc between abrupt color changes and smooth boundary changes suggests a

psychophysical measul'e that discriminates between those properties carried by the blob sys­

tem and those carried by the interblob (hypercolumn) system: when the information from

these systems is integrated, changes in blob variables (color or contrast) appear abrupt,

while changes in interblob variables (boundary) appeal' smooth. With this operational as­

sumption in place, wc can now formulate our specifie hypothesis: (scalar) information about

texture fields (density) is carried by the blob system, while (geometric) information about

texture flows is carried by the interblob system, We thus predict that changes in texture

density will be abrupt during apparent motion, while changes in texture flow orientation

will be smooth,
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FIGURE A.50, This figure illustrates how boundaries change du ring apparent 1110­

tian, and how the eolor interior 1.0 a shape fills in the ehanging contonr. (1o!,)
Depiction of an apparent mot.ion sequence in which a triangle dcrorms jut.o a square
while moving from left 1.0 right. The percept is that of a triangle deforllling sllloot,hly
into a square while moving from left 1.0 right. The figures that are act.ually displayed
arc shown in soHd lines, while a rcndition of thc apparcnt shape at illl.crlllcdiat.e
positions is shawn dotted. (bottom) When the initial and filial figures are filled
with either a single color or contrast, the same color or contr;:lSt appears to Jill the
intermediate apparent contours completely. I-Iowever, when the initial and final
colors or contrasts differed, the appearancc was of an abrupt change in t.he color
within the moving, apparent centour. This is depicted in the bottom sequence in
whieh gray level abruptly switehes frolll Gl 1.0 Go al. about the lIlidpoint.
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4. Experimental Procedure

Our subjects were either graduate students in our research centie or visitors. None

of them had prior knowledge about the experience or the hypothesis being tested. The

experiments took place iu our laboratory in normal use but with dim light condition. The

stimuli were created and displayed in the same set-up as the previous paradigm.

The subject was asked to fix a point a the centre of the screen and then a pair of stimuli

were presented. The first stimulus appears al. the left of the fixation point for only 150

msec; then the screen remains blank for 50 msec; then finally the second stimulus appears

at the right of the fixation point for again only 150 msec. The apparent displacement is

approximatcly 3° of visual angle.

The subject was initially shown identical stimuli 1.0 get familiar with apparent motion.

Once this stage was completed, the subject was shown pair of stimuli that often differed.

The subject was asked whether the Illling change abruptly or not.

The first types of Illling tested were intensity and colour 1.0 reproduce and complement

Kolers and von Grünau results.

(i) Wc considered two series of stimuli with intensity:

(a) On a black background, wc use a white stimulus as the reference and the other

stimulus varying from white 1.0 dark gray.

(b) On a white background, wc use a black stimulus as the reference and the otller

stimulus varying from black 1.0 Iight gray.

(ii) We considered three series of stimuli with colour:

(a) On a gray background, wc use a red stimulus as the reference and the otller

stimulus varying from red 1.0 green (via yellow).

(b) On a gray background, we use a blue stimulus as the reference and the otller

stimulus varying from blue 1.0 red (via magenta).

(c) On a gray background, wc use a blue stimulus as the reference and the othe!"

stimulns varying from blue to yellow (via cyan and green).

For the colour stimuli, wc determined a set of isoluminant colours for each individual subject

just prior 1.0 the experiment. This was donc by rapidly alternating two colours; the first

colour is the reference and the second is adjusted by the observer until the scintillation

ceasesor is minimal. This was done in order 1.0 avoid the confusion between hue and intensity.

Wc designed the second types of filling 1.0 test the prediction of the Allman/Zucker

hypothesis with respect 1.0 texture point field and texture flow.

(i) Wc considered two series of stimuli with texture point field:
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FIGURE A.51. The paradigm is identical 1.0 Fig. A.49, in which (tOI') wc confirmed
the Kolers results. Wc then extended the interior patterns 1.0 textures, using bath
(middle) texture fields and (bottam) texture Dows. The (micldle) pattern illustrates
a change in texture density. 'l'wo sets of trials: for the first, one stimuli had a densil.y
of 480 dots in 32,400 pixels (the figure was in a 180 x 180 window), and the other W'L"
more dense; for the second, one stimuli had 2560 dots and the other was less dense.
The (bottam) pattern illustrates a change in texture Dow orientation. The initial
flow orientation was taken as 0°, 10° 1 20° 1 30° 1 and 45°, and the final orientat.ion
was taken as 45', 30', 20', la', 0', -la', -20', -:la', -45'. T'rials with Glass
patterns of path lengths equal 1.0 3 (shown)and 5 (not shawn) were carried out. For
our experiments we used objects sub-tending 3 degrees in visual angle, displayed on
a Silicon Graphics Personallris (color display model no. CM2086A:l5G) in a dimly
illuminated room. Subjects had no direct knowledge of the experimental questions,
and aJl had normal or corrected vision .
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(a) On a black background, we use as the reference a random dot pattern of a

fixed dot density and for the other stimulus any of a range of other random

dot patterns with a varying dot density - in this experiment we keep the

fixed dot luminauce constant.

(b) On a black background, we use as the reference a random dot pattern of a

fixed dot density and for the other stimulus any of a range of other random

dot patterns with a varying dot density - in this experiment we keep the

fixed average luminance constant.

(ii) Wc cousidered oue series of stimuli with texture fiow:

(a) On a black background, we use as the reference a random dot Moiré pattern

of with a giveu orientation and for the other stimulus any of a range of other

random dot Moiré patterns with varying orientation (up to 90°).

A diffJculty arises because the average intensity and average contrast of random dot patterns

arc correlated with dot density. In an attempt to assess if the potential bias is significaut, we

look at both extreme instances: constant average intensity and constant average contrast.

5. Results

Ali graphs plot the fraction of displays in which subjects reported an abrupt change

in the interior region (ordinate) vs. the stimulus dimension of interest (abscissa). In each

experiment the initial display was filled with a pattern given by the leftmost dot along the

abscissa. For no change in the pattern, ail subjects reported no abrupt changes (first data

point). For significant differences between the initial and final displays, ail experiments

show a psychophysical curve with a steep slope, indicating the rapid onset of apparent

abrupt changes with interior differences.

ln Fig. A.52, we present the result of four subjects for both experiments in which only

the luminance differs in the two stimuli presented. For both negative and positive contrast,

an abrupt change is usually perceived when the stimuli are quite different.

ln Fig. A.53, wc present the result of respectively five, five and three subjects for the

expel"iments in which only the hue differs (red -+ red-green, blue -+ blue-red, blue -+ blue­

yellow) in the two stimuli presented. Again, for ail combinations, an abrupt change is

usually perceived when the stimuli are quite different.

We note that our results for the luminance and colour experiments are in agreement

with Kolers and von Grünau's result.
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FIGURE A.52. Results of four experimenis of apparent motion. Two stimuli arc
successively shawn. In (a), the colour of the first was red and the colollr of the other
varied in hue but was of the same perccived luminance. In (a). the first was dark
and the relative luminance of the other varied.

In Fig. A.54, we present the result of eight subjects for both experiments in which the

dot density differs in the two stimuli presented. Whether the lnminance is constanl. or

the contrast is constant, an abrupt change is usually perceived when the stimnli arc '1nite

different. Our perception of texture density is thus similar to onr perception of colom alld

luminance.

Finally, no data are graphed for the texture fiow experiment, as no snbject reporl.ed

an "abrupt" response under any condition examined. Wc note here that the percepl.ioll of

texture fiows is more Iike the shape boundary - a smooth deformation is perceived. This

resnlt indicates that the perception of texture fiows is 'luite different than the perception

of texture fields.

6. Discussion

Our psychophysical results provide further evidences to support the daim that the cor­

tex treats differently the scalar properties and geometrical pl"Operties. This daim snggests

that for computer vision, both the scalar and geometrical images properties be considered,

and possibly on their own .
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FIGUIŒ A.53. Results of series experiments of apparent motion. 1'wo stimuli are
successively shown. ln (a), the colour of the first was red and the colour of the other
varied in hue bnt was of the same perceived luminance. ln (b), the first was dark
and t.he relat.ive luminance of the other varied. ln both (cJ .
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FIGURE A.54, Results of two experiments of apparent motion, Two sLilJluli are
successively shawn. In bath (a) and (b), it is the dot density that varies. In (a),
the average luminance remains constant whcreas in (h), the dot luminance rcmains
constant,
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APPENDIX B

Higher Order Constraints

The local representation of the surface couId be enriched to include the variation of the

principal cnrvatures "1, "2 in the two principal directions.

The spin forms and the variation of the principal curvatures could be used 1.0 further

constrain the surface. The spin forms l'l'ovide a constraint on both the principal directions

and the principal curvatures.

These descriptors are necessary 1.0 predict the curvature of the gradient and the curva­

turc of the shading "ow field from the scenels.

'1'0 implement a system rnaking use ofthese quantities, more rnemory would be needed.

The implementation presented in the body of the thesis already suffers from the current

computer hardware limitations. II. is nevertheless interesting 1.0 look al. the relation between

intensity image properties and other scene descriptors.

1. Definitions of the Coordinate Systems

ln the following sections, wc will consider a few different coordinate systems.

• The viewer's coordinates (x, y, z) are defined such that the vector (0,0,1) points

tOlvard the viewer. Note that, fol' the image formation, we will assume orthographie

projection, hence, the image lies in the x-y plane.

• The snrface patch local coordinates (el,e2,e3) are defined such that, al. a given

point, the vector (0,0,1) indicates the direction of the surface normal, and that the

vect.ors (1,0,0) and (0,1,0) correspond 1.0 the surface principal directions.

• The principal frame field (fI, f2, f:l) is defined such that, al. every point, the vector

(0,0,1) indieates the direction of the surface normal, and that the vectors (1,0,0)

and (0,1,0) correspond 1.0 the surface principal directions.
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2. Shading and Spin forms

Our basic hypothesis for shape from shading is that ail smooth variations of the image

intensity are due to smooth variations of the surface orientation. First wc describe smooth

variations of the surface orientation and then, wc relate the smoot.h variat.ions of t.he sUl'fal'e

orientation and the image intensity.

2.1. The Partial Derivative of a Surface Patch Normal. On a smoot.h surface,

the normal is a smooth vector field so il. is different.iable. For any poiut. (:l';, Yi, z;) ou such

a surface, we l'an define the surface patch local coordinates (el,e2,e3). The nOl'uHI1 of

the surface l'an then be expressed as a function of t.hese coordinat.es N(el, e2) such t.hat.

N(O,O) = e3' In this section, we look at. bot.h t.he first. and second order part.ial derivatives

of the normal with respect to t.he snrface patch local coordinates. Wc st.art. here wit.h t.he

first:

~N = Df~ ~N + Df2 ~N ,
Dei Dei Dfl De; Df2

ln differential geometry, t.he st.udy of how t.he principal fl'ame of a surface l'hauges

is c1assical. In the ninet.eent.h cent.ury, several mathemat.icians cont.ribnt.ed t.o t.his Iicld

- among t.hem Cartan, Codazzi, Gauss, Mainardi, Rodriguez, Weingart.en obt.aiued result.s

very relevant fol' this section. Their results arc nicely explained in some dilferential geOlnet.l·y

textbooksj see [34,70,102,120].

'1'0 evaluate the partial derivatives of the principal frame (of which the uormal is the

third component f3), we use the Cartan matrix. More precisely, wc nse the jndependent,

components wij which are called the connection forms of the frame Iield.

DEFtNITlON B.l. The connection form wij (fk) is the mte of t!lm of the fmm.e vedor fi

toward the frame vector fj when the ]Joint of a]J)Jlii'fltioll m.oves in the tlirection of the fm11lc

veclor fk

Considering that

L wjk (fi) fk ,

k

in conjunction with Rodriguez formulas,

•
Wl3 (fi)

w23 (f2)

= _w31 (fi) = k l

= _w32 (f2) = k 2
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givc

8~1 f3 = .;,31 (fI) fI + .;,32 (fI) f3 = -klfl

8~2 f3 = .;,31 (f2) fI + .;,32 (f2) f3 = -k2f3

The relation between the local coordinates and the frame field is trivial for the first

arder differentiation.

TIIIIS the first order partial derivatives are

.!!..-N = -kl fI
8el

.!!..-N = -k2 f2
8e2

there 'u'e two parameters needed 1.0 describe them and these are the two principal curvatures

k h k2 •

The second order partial derivatives of the normal is slightly more complicated to

obtain.

8
8fl N +

8
8f2N

•

We nse the independent components .;,ij of the Cartan matrix - these are called the

connection forms of the frame field.

This Ume, we need ail the connection equations. These equations allow us to describe

the smooth variation of the principal frame field in terms of four parameters: the principal

curvatures kI , k2 , and the spins 81,82'
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• Wl2 (fi) = _w21 (fi) = SI

wl3 (fi) = _w31 (fi) = k l

w23 (fi) = _w32 (fi) = a
wl2 (f2) = _w21 (f2) = -82

wl3 (f2) = _w31 (f2) = a
w23 (f2) = _w32 (f2) = k2

Lwjk(fi}fk
k

•

8~/1 = wl2 (fi) f2 + w!3 (fi) f3 = s If2 + klf3

8~1 f2 = w21 (fi) fi + w23 (fi) f3 = -SI fi

8~/3 = w31 (fi) fi + w32 (fl}f2 = -kif!

8
8f

2
fi = wl2 (f2) f2 + w13 (f2) f3 = -S2f2

8~2 f2 = w21 (f2) fi + w23 (f2) f3 = S2fl + k2f3

8~/3 = w31 (f2) fi + w32 (f2) f2 = -k2f2

The first partial derivations introduce the two principal curvatures. Thel'efore, on

the second partial derivations, we have 1.0 take into account the val'iat.ion of the principal

curvatures.

8 (k l -k2 ) wl2 (fi) (k2 - ktl s2-k2 = =
8fl
8 (k l - k2 ) wl2 (f2) (k l - k2 ) SI-kl = =

8f2

8
-kl = II
8fl
8
-k2 = /'2
8f2

Two other parameters 1" 12 are needed 1.0 describe the variation of the principal Clll'vatUl'es.

The relation between the local coordinates and the frame field:
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o2fl 0
o2f2

Oel 2 = Oel 2 = -SI

o2fl o2f2
0= SI =

OelOe2 OelOe2

o2fl 0
o2f2

=
Oe20el

= S2
Oe20e l

o2fl 02f2
Oe22 = -S2 Oe22 = 0

And thus the second order partial derivatives are

02
-II fI - SI (k l - k2) f2 - kif3-N =

oel 2

02
N (kl - k2) (-SI fI s2 f2)

oeloe2
= +

02
N (kl - k2) (-SI fI s2f2)

oe2oel
= +

02
-12f2 - S2 (k2 - kd fI - k~f3-N =

oe22

2.2. The Partial Derivatives of the Image Irradiance. We assume that the re­

f1ecl.ance can be modeled by Lambert's refiectance function, and that furthermore the image

is obtained by an orthographic projection. First we relate the image coordinate system and

the local surface patch coordinate system. Then we evaluate the partial derivatives of the

image irradiance.

2.2.1. Viewel"s COO1Y1illales mul Surface Palch Local Coordinales. The viewer's co­

ordinates and the surface patch local coordinates are related by the Iinear transformation

matl'Îx:

(

x) (x) (x) Jel e 2 e3

M = eiY) e~Y) e~Y)

(=) (=) (=)
el e 2 e3

where e~x), e~Y), el=) arc respectively the x, y, z components of the jth vector of the surface

patch local coordinate system .

140



•
B. IIIGIIER OROER CONSTRAINTS

This transformation is only a rotation matrix. Bence the inverse of the mat.rix M is

simply its transpose. We can relate t.he represention of a vector - e.g. the illuminant,

direction - in the viewer's coordinat.e frame wit.h t.he representat.ion of t.hat. veet.or in t,he

surface patch local coordinate frame as follows:

Lx
(x) l

+
(x) l,

+ (x) l= Cl .JI e2 2 C3 .13

L y = e(Y) LI + e(Y) L2 + e(Y) L31 2 3

L:
(:)

LI +
(:) L2 +

(:) L3= el e2 e3

Two rotat.ions relate the viewer's coordinates to the surface patch local eoordinat.l'S.

The first rotation takes care of the surface orientation and the second, of the principal

directions. In matrix form, it can be written as

where

and

(

COS2 TCOSU + sin2 T

= sin rcos.rcosO' - sin TCOST

- cos T sm U

sin rcosrcosa - sin rCDsr

sin2 Tcosu+cos2 T

- sin Tsin (1

cosTsinu)
si Il TsillU

COR (J

•

M, = (~: -~": n
The axis of the first rotation is the axis perpendicular t.o the plane defined by the z axis

al,d the surface normal N. This rotation matrix can he rewritten in tenus of the "lII'faee

normal components to provide a bettel' intuition.

The axis of the second rotation corresponds to the surface norlllal N .

lAI



•

•

B. HIGIlER OROER CONSTRAINTS

2.2.2. The Imaye Irrtl/1itmce. Since wc assume that the reflectance properties of a

surface can he modeled by Lambertian law,

1 = pAL· N ,

the first order directional derivatives of the intensity function can be computed as follows.

D
Ir = pAL· Dx N

D
I y = pAL·- NDy

If wc consider the surface normal as a fUlIction of the local surface patch coordinates and

apply t.he chain ru le, wc obtain

(
Del D

lx = pAL· Dx Del N +

(
Del D

Iy = pAL· -D -DN +
y el

The second order directional derivatives of the intensity function can be computed as

follows.

D2
Ixx = pAL· Dx2 N

D2

I xy = pAL· -- NDxDy
D2

I yy = pAL. - NDy 2

.Just as the first partial derivatives, we consider the surface normal as a function of the

local surface patch coordinates and apply the chain rule, and we obtain
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lxx = p'\L. (Del Del ~N
Dx Dx Del2

'L (Del Del D
2

N (Del De2 De2 Del) D' N De, De, ,)2 )lxy = p" . -- -- + --+-- + -- --N
Dx Dy Del2 Dx Dy Dx Dy Del De2 Dx Oy IJe,'

lyy = p'\L. (Del Del ~N + 2 Del De, D2 N + De,Oe, D' N)
Dy Dy Del2 Dy Dy DelDe2 Dy Dy De22

These equations combined with eqnations 13.1 and B.2 provide the Iink het.wcen local

surface patch properties and the variation of the image irradiance.

2.2.3. The Shucling Flow Fielcl. For recovering shape from shading, wc propose 1.0 use

some characteristics of the shading Dow field. VVe consider t.he most. il!,!.ort.ant 1.0 he the

orientation of the Dow:
1"tan 0 = --'- .
lx

which is independent from both the albedo and the illumination:

L.(er (-klfd + e~ (-k,f2))
tanO =

L· (ef (- k l fd + e~ (- k2 f2 ))

We note that il, is not the case for magnitude of image irradiance gn,dient.:

or explicitly

lifll = p'\ (L' (ef (ktfd + e~ (k2 f2 ))r+ (L' (er (k l fd + c~ (k, f2 ))r.
Curvatures are other useful characteristics of the shading Dow field. ,J ust. Iike the

orientation, they are independent from both the albedo and the illumination, The CUI'vat.UI·e

of the isoluminance line is given by:

2lxl ylxy - 1;lyy - I;lx"
Iii = 3

(/;+ I~)'

And the curvature of the gradient. line is given by:

1; lxx - I;lyy
"'g = :\

(r; + l~)'
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Surface Shape and Occluding Contours

ln this appendix, wc derive the relationship between the differential properties of the GC­

c1nding contonrs and the surface shape.

1. DifferentiaI properties of a planar curve

Let's con,ider a planaI' cnrve with an arbitrary parametrization:

x = (x(t), y(t))

The tangent vector of this curve is given by

t = dx = dx dt
ds dt ds

where s is t.he arclength parametrization, th us

or l'cci procally
1

dl. = IdXI-1 = ((dX(t))2 + (dy(t))2)-'ï
ds dt dt dt

And the cnrvature vedor of this curve is:

dt
k = nO =

ds
with

and

dt
ds =

dt ,li.
dt ds

= ,Px (dt)2 +
,U2 ds

dx dt d (dt)
dt ds dt ds

= d
2
x (dt)2 + t ~ (dt)

dt2 ds dt ds

•
,1 (ds)
dl. dl.

= _ (dX.1!l d
2
x(t) dy(t) d2y(t)) ((dX(t))2

dt dt2 + dt dt2 dt +
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2. Self Occluding Edges

For our surface model, the paraboloid, the surface normal veetor is given in t.ertn of a

local surface patch coordinate system:

N _ ( "1 " "2VI)
- Il Il 1

("I ,,2 +,,~ v2 + 1)2 ("I ,,2 +,,~ v2 + 1)' ("I ,,2 +,,~ ,,2 + 1)'

Since at the occluding boundaries, the surface becomes perpendienlar t.o t.he line of Hight"

we express the normal veetor in image coordinates,

And th us occluding boundaries are characterized by the z component. of the normal vect.OI'

being null.

N lzk- ef "1 11 + e~ "2 v + e~ _
' •• - 1 - 0

("I 1L2 +,,~ v2+ 1)2

which pl'Ovide a first constraint to deline the curve describing the occludiug cont.OUI',

ef "1 1L + e~ "2 v +e~ = 0

'c. This leads to the following arbitrary parametrizations: if eit.her "1 = (J 01' cf = (J

and either "2 = 0 or e~ = 0 then nO'occlusion is visible; cIse if "1 = 0 or cf = (J, t.hen

11(t) = t
Cz

vtt) =
__3_

e~1i2

or if "2 = oor e~ = 0, then

1L(t) = _ e3
cf "1

vtt) = t

otherwise

1'15

1 2
= - 2" "1 1L (t)

vtt)

1L(t)

w(t)
;:

1 (. e~ )=- -e2 t ---.
"1 2 e2

= 2- (ef t _ e~.)
"2 2 ei

Another constraint on the curve describing the occluding contour is that it lies on the

paraboloid, th us

•
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We can project this curve on the image plane and obtain the following planar curve.

x(t) = ef urt) + e2" vtt) + e3w(t)

y(t) = er urt) + e~ v(t) + eg w(t)

rlx(l)
lit

dy(t)
dl

xdu(t) xdv(t) x ( . (t) du(t~! _ () dV(t))
= e)"""dt + ez"""dt + e3 -/» u ---;[i"- + -/>z v t """dt

ydu(t) ydv(t) y ( ( ) du(t) ( ) dv(t))= e)-1- + ez- 1- + e3 -/>1 ut -d- + -/>zvt -d-
d Il t t

du(t)
=

-C2
lit />1

dv(t)
=

ej
dt />z

=
dx (t)

lit

dy(t) =
lit

eXeZ eXeZ
e3((e2 t e

Z
) e

Z
( e

Z
) ef)_-..!2 + ..1....!. + 2 :2 ..1.+ eZt -

2 :f/>1 />z /» 1 />z
eYe: eUe::

e~((e2t e
Z

) e2 (- e3 ) ef )_-..!2 + ..1....!. + 2 :2 -+ e~f-

/>1 />z ~1J.·-~·~ '~- 2 ef />z

Ilx (t) eXez eX eZ eXez eX eZ (*2 efef) x=
_ -..!2 - ...L.'!. + ..1....!. + ...L.'!. + -- e3 t

dt /» 2/» />z 2/>z />1 />z
dy(t) eYez l'y e Z eYe:: eV eZ (*2 efef ) eY t= _ -..!2 "':1 3 + ..1....!. + ...L.'!. +dt /» 2/» />z 2/>z />1 />z 3

(e2e2/>Z + efef/>Il e~ t
(e2e2/>Z + efef/>Il e3t

efef) x-- e
/>z 3

Z ')
el Ci y-- e

n.2 3

e~ellil

e~eî n,}

!e~ e3/>z +
!e3e3/>z +

= - CYC21l.2

- efe~n.2

IIZx(t) = (e2e2 +
dtZ /»

l[2y(t) = (*2
di.2 />1 +

The orientation of the ocduding edge is thus:
dy(l)

tante) = d:!,)
dt

+ !e~ e3/»

+ !eX eZ"z 3 3~)

tante)
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Shadillg from Shape

ln order to test our shape from shading algorithm, it is nccessary to have prior knowledge nf

the illumination and shape of every surface patch viewed in the image. For this pnrpose, we

have implemented an algorithm that solves the "shading from shape" problem. This prob­

lem is often referred to as the forward problem whereas the shape from ,hading pl'Oblenl is

referred as the inverse problem. Depicting a realistic image of a scene is a cOlllpntat.ionally

intensive task. Massively parallel computers have ent.ered computer graphies research, raÎs­

ing the issue of how to embed the radiosityproblem [45,119] into lIlassive!y paralle! SIM ()

computing architectures. We have shown that the Langer's pamlle! radiosity algorit,hm

[81] could be implemented efliciently on a SIMD machine with a t.wo-dimeusioual alTay of

processors and first-neighbour connectivit.y. We extended the algorithm 1.0 deal wit.h scenes

in which a participating media such as fog or smoke is present. This generalit,y is a st.roug

improvement over previous radiosity algorithms where each additional scene pammeter (eg.

specularities [63], fog [116]) required a signilicaut amount of ext.ra pl'Ogralllmiug erfort.

1. Previous Work

Surface inter-reflections have been traditionally modelled by expressing the radiance

of each surface point as a weighted snm of the radiances of ail the other surface points,

Specifically, the surfaces in a given scene are represented as a set. of" iuter-reflect.ing planaI'

facets, and the radiosity equation is approximated as a set" Iinear equat.ions. The equat.ions

have ,,2 coefficients, or form factors [119] which must be computed.

The main bottleneck in computing the form factors is to determine which snrface facets

are visible from which. This visibility problem is solved by computing a pel'spect.ivc vicw

of the scene sequentially for each surface facet. Once a visibility fnnct.ion V(x,x") is COlll­

puted, a Iinear system of equations that relate the surface radiositics is constructed. FOI'



•

•

D. SHADING FROM SHAPE

Lambertian surfaces and sources, the continuous radiosity equation is

( () p(x) J R( ") cos 81 cos 82 l/( ") d "R x) = R,mit x + -;;:- x lx _ x"1 2 x, X x,

where }l(x) is the radiance of x, and 81 and 82 are the angles between the line segment XX"

and the unit surface normals N(x) and N(x").

When either directional refiectance or participating media are present, the above equa­

tions require significant revision. Directional reflectance may be induded by partitioning

the hemisphere of directions above each surface patch into a finite set of solid angles[63],

cffectively multiplying the number of form factors by m2 (where m is the size of the par­

tition). Participating media may be induded byexplicitly representing the surface-volume

and volume-volume exchange of light. This requires an enormous increase in the number of

f01"l1l factors[1l6].

Langer [81] ..eformulated the radiosity equation in terms of the light rays in a scene,

rather than in terms of pairs of surface facets. In an important sense, the set of light rays

in a scene is smaller than the set of pairs of surface facets: while each light ray corresponds

1,0 a pair of surface facets (namely the points of origin and termination), many pai ..s of

surface facets may not be joined by a straight line through free space. Indeed, the visibility

fnnction may be thought of as a labelling of a line segment as "a light ray" or "not a light

l'ay'',

Let, n(x, L) denote the mdiance of Il light my arriving at x in direction L. Radiance

has unÎts Watts pel' square meter pel' ste..adian, and is defined as follows, Consider viewing

a scene through a narrow straight tube (see Fig, D,55), Suppose thatthe near end of the

tube is positioned at a point x in free space, and that the central ray through the tube has

di ..ecUon L. Let d2 J') denote the light energy passing through the tube and let dL denote

the solid angle subtended by the far end of the tube. Let da denote the cross sectional area

of the tube. Then, the radiance of the light ray passing through x in direction Lis

Let, 1l(x) denote the hemisphere of directions pointing out of the surface at x, For

Lambertian sm'faces and sources, the radiance of ray leaving a surface does not depend on

direction, and th us may be written R(x), The radiosity equation may now be expressed in

tenns of the radiance of light rays as

p(x) lR(x) = R,mit(X) + - R(x, -L) N(x)· L dL ,
11' 1I(x)
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. .
..:..'..'

L
x

FIGURE 0.55. A light ray passes through the point x in direction L. The radiance
of the ray is defined as the energy that passes through the tube per unit, area cross
section pel' steradian subtended by the far end of the tube.

This system of equations may be solved numerically by using a .Jacobi iteration,

(0.1) k+l () p(x)
R (x):= Remit X + -­

'Ir L:
LElI(x)

Rk(x, -L) N(x) . L 6.L .

Surface radiance al. x is just the radiance of a light ray whosc point of o1'Ï!liu is x. '1'0

apply (0.1), however, requires that light rays arc indexed by thcir points of ICl'lIIirwlio/!.

Langer [81] designed an algorithm for reparameterizing the set of light. rays in a scene, l'l'Om

their point.s of origin to their points of termination. One of the key advant.ages of t.his

algorithm is that it may be embedded into a massively parallel SIMD architect.ure, t.hus

implicitly solving the vi8ibility problem but in a fashion that i8 nat.urally parallel.

(al (" )

•
FIGURE D.56. A comparison of the traditional and nelV formulations of the radios­
it~, equation. (a) In the traditional formulation, scenc gcomctry is rcprcsclltcd by il.

set of surface facets and by a visibility functiou on pairs of facets. (hl ln the nelV
formulation, scene geomctry is reprcscntcd by ft cubic latticc of nodcs, and by Cl

local coordinate systen,-'o;'è\he Iight ray manifold .

H!!
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2. Light Ray Manifold

ln the absence of scattering by fog or dust, Iight travels along straight Iines in free

space. These oriented Iines, or Iight rays, may be either finite, semi-infinite, or infinite in

both directions. Let M denote the set of Iight rays in a given scene. Langer [81] showed

that this set is a four dimensional manifold, which he called the light rav manifolcl (see [27]

for the general definition of a manifold.). He notes that an important property of the Iight

"ay manifold is that in the absence of a participaling meclium, mcliance is constant along a

mv [42]. That is, mcliance is a positive rcal valuet! funclion on the light mv manifolt!,

R : M -> 1R+.

This property is independent of the surface reflectance. Morcover, it allows us to identify

the radiance at the point of origin of a ray with the radiance at the point of termination.

2.1. Local Coordinates: Continuous Case. Local coordinate systems on a Iight

ray manifold M may be defined in a variety of ways. Fol' example, consider a local patch

x(u, v) of a surface in the scene. Fol' each point x on the patch, the set of Iight rays that

OI'iginate from x may be parameterized by a hemisphere of unit vectors 1l(x). These vectors

specify t.he directions of t.he outgoing rays. Since both a hemisphere and a surface patch

are two dimensional sets, it follows that t.he set of Iight rays that originate from the surface

patch x(u, u) is four dimensiona\. Notice t.hat a similar local coordinate system is defined

by pa",ulIeterizing the Iight rays that. terminate at the surface patch. These local coordinate

systems of Marc widely used in traditional radiosity algorithms. Surfaces in a scene arc

defined by a set of planaI' facets, and for each faeet, a hemicube of incident [23] or refiected

[22] rays is defined.

Langer [81] introduced an alternative local coordinate system for;\.1 is intl'oduced. (See

Fig. 0.57.) Consider a two-dimensional plane passing through the scene, for example, the

plane Z == zo, A given point on this plane is either in free spaee, inside an object, 01' on the

sn l'face of an object. Each Iight ray that intel'sects this plane is specified by folll' coordinates:

two determine where the ray intersects the plane, and two determine the direction of the

ray. For example, the Iight ray that passes through a point (xo, Vo, zo) in direction (</J, e)

lIIay be parameterized by (xo, Yo, </J, el.

Observe that, when the plane is swept through space, a coordinate evolution on M is

obtained. Suppose that a Iight ray passes through both planes z == Zo and z == Zl' Let

(xo,Vo, </J, e) and (XI,YI,</J,e) be the two resulting parameterizations ofthis ray, and fUl'ther

observe that (XI> vil -> (xo, Vo) as ZI -> Zoo Thus, the coordinate evolution is continuous.
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(Xo.yo.$'.9)

lx.. y,.~ .9):\ :-:

y

1

A
x (~ •9l 7.

7.,

FIGURE 0.57. The paramelerizalion of a lighl ray depends on lhe coordinat.e plane.
A given ray is paramet.erized by (xo, Yo, 4>, 0) in t.he plane == =0. In t.he plane
= = =1, t.he same ray is paramelrized by (Xl. YI, 4>, 0). Observe t.ha(, ("1.1/1,4>,0) -t
(xo, Yo, 4>, 0) as =1 -t =0.

This continuity property is crucial becanse il. allows us ta comput.e a coordiuat.e evolut.iou ou

M using a massively parallel computiug architecture (in l'articulaI', using a 1.wo dilllellHiolial

array of processing elements that have only local cOllnectivity).

2.2. Local Coordinates: Discrete Case. As in discrete ordillate Illethods [:12, :la,
57,85], Langer [81] considered that the nodes in space and the ligh1. "'ys that pass 1.hrough

space are discretized as follo\vs. Space is represented by a N X N X N cu bic la1.tice. Nades

in this lattice are of four types: FREE nodes, SURFACE 1I0des, SOUI\Cg 1I0des, alld SOLID

nodes. Light rays travel through Fl\gg nodes. Ligh1. is absorbed alld reflec1.ed al. SlJllFACI~

nodes. Ligh1. is emitted al. SOURCE nodes. Light does not reach SOI,IIl nodes.

Light rays are restricted ta travel in a finite set of directions through the space lat.1.ice.

For each FREE, SURFACE, or SOURCE node x, Langer defined the fillite set of ligh1. "'ys 1.ha1.

may pass through x by the nodes on a small cube that is celltered al. x. These directioll6

are defined by the line segments joining x ta points on the six faces of the cube. (Sec Figure

D.58.) The cube is analogous ta the hemicube of Cohen alld Grecnberg[2:l]; howevel',

there are two important differences. Firs1., the half width of our cube is much 61llaller

(M = 5 vs. J'vI = .50) than that of Cohen and Greenberg. Second, Lallgel' defilled a ligh1.

ray cube al. each FREE node, as weil as al. each SURFACE and SOUI\Cg uode, where,", Cohell

and Grccnberg only defined il. al. each SURFACg node. 11. is by Illaking the6e additiou,,1

hemieubes explicit, that the visibility problem becomes implicit and the algorithm hecollw6

naturally parallel.
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Local coordinates on the sam pied Iight ray manifold may be represented as follows.

(See Fig. D..S!).) For a given face F of the Iight ray cube (Le. there are 6 faces), consider the

ith plane in the space lattke that is parallel ta F. The local coordinate system Cr c M is

the set of Iight rays that are specified by F and that pass through plane i,

Cr == {(x,y,L) : (x,y,i) is a FREE or SURFACE node, and L E F}.

Neighboring local coordinate systems may overlap. For example, consider a PREE node

x = (x, y, il, and a ray passing through this node in direction L = (Lx, Ly, M). This ray

con Id be parameterized in at least three different ways:

FIGUllI; D.58. Light rays arc restricted ta travel in a finite set of directions through
the space lattice. These directions are defined by the nodes on a small cube, specif­
ically, the directions of the line segments joining the center of the cube ta points on
the six faces of the cube.

3. Coordinate Evolution

Ta solve Equation (D.1) requires that rays be parameterized by their point of termina­

tian. For that pnrpose, we use Langer's algorithm. This algorithm consists of two nested

procednres. The first is a local coordinate transformation (depicted in Fig. D.GO) from oue

coordinate system Cr ta its ueighbor C4M' The second is a sequence of local transforma­

tions, or coordinate evoiution, that reparameterizes ail rays in the Iight ray manifold.

Consider the case of two neighboring coordinate systems Cr and C4M' Let Ro(x, y, L)

and R, (x, y, L) be radiance functions that are defined on Cr and C4M' respectively. Given

an estimate Rk(x) of the surface radiance and given Ro(x, y, L), the radiance R, (x, y, L) is
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i-2

i+2

FIGURE D.59. A local eoordinaLe system on Lhe light. ray manifold is defilled fol­
lows. For a given cube face F , consider lhe illl plane in lhe space lalt.icc t.hat, is
parallel to face F. The local eoordinate system Cr is the sot. of light. "'ys t.hat. arc
in the directions specified by F and that pass throllgh plane i.

computed by transformillg from Cr to CfrM' III Section 5, this algorit,hm will bc modificd

slightly to include the presence of a participating medium.

Local Transformation( F, i, Ra, RI, Rk ) {

for ail (x, y) in parallel

x := (x,y,i);

for ail L := (Lx, Ly, M)

case {x- L}

SOLID: RI (x, y, L) := 0;

FREE: RI (x, y, L):= Ro(x - Lx, Y - Ly, L);

SURFACE: if (L· N(x - L) > 0)

RI (x, y, L):= R(x - L, L);

else RI (x, y, L) := 0;

SOURCE: Rt(x,y,L):= Rcmü(x - Lx,y- Ly,L);

}

A coordinate evolution is defincd by a scqucncc of local coordinat.e t.ransforrnat.ions

along the three orthogonal axes of the cubic lattice, first in thc posit.ivc dircction and thclI

in the negative direction of each axis. In each of these six "swceps", the rays dcli IIcd by a

particular face of the cube of light ray directions are considered .
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i+M

FIGURg D.GO. In the procedure Local TrallSforJllatioIl, the parameterization of
the Hght rays is transformed from one local coordinate system 1.0 its neighbor a
distance M away. Because of the continuity property discussed in Fig. D.57, a light
ray passes through ncarby Ilodes in two neighboring coordinate planes.

Coordinate Evolution(Rk ) {

for ail cube faces F,

initialize Ra 011 Cr;

for (i = 0; i < N; i := i +1) {

Local Transformation( F, i, Ra, R ll Rk );

110 .- Il,;

}

}

Once the rays have been reparameterized in terIns of their point of termination, the

surface radiance is updated using (D.l). ln our implementation, the surface radiances are

updated within the procedure Local Transformation whenever a ray terminates al. a

su IU'ACE Ilode.

'J'wo observations should be made. First, the coordinate evolution may interpreted as

the propagation of radiance along rays, sa that the algorithm is just a simulation of the

physics of radiosity. The number of iterations of the algorithm corresponds ta the number

of snrface inter-rellections that are considered. Second, the algorithm does not depend on

the rellectance properties of the surface. If the rellectance was non-Lambertian, then the

surface radiance function would be non-isotropie. This case will be discussed in detai! in a

futnre paper.
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4. Parallel Implementation

A coordinate evolution is a sequence of local coordinate transformations on the Iight

ray manifold. This evolution is implemented on a massively parallel computer, a 1\'1asPar.·'"

whieh is a SIMD machine having 2048 4-bit processing clements. The l'Es forlll a two

dimensiona! array of size Nx X Ny = 64 X :12. Each pE is directly counected ta il,s eight

neighbors, and the boundary is connected in a toroidal topology.

The width of a scene ta be rendered is typieally larger than the width of the pE alTay.

Ta accommodate this difficulty, a coordinate plane is mapped ta the PI, anay by wrapping

the plane aroulld the array as many times as necded. The result is that, al. each pE, many

space columns arc represented.

For example, the images shawn in Fig. 0.61 correspond ta a scene of width N = 128.

This scene is wrapped onto the pE array, 2 times for the X dir'ection and ,1 times for !J

direction. Each PE thus represents 8 space columns, each of which is 128 nodcs dcep.

I-Ience, 1028 space nodes arc represented at each pE.

4.1. Memory Costs. For each space node, a variety of state variables arc l'Cpre­

sented. For SURFACE nodes, these state variables indude the space type, t.he albedo, surface

radiance, surface normal and emittance. For FREE nodes, the st.ate variables indude t.he

scattering and absorption coefficients, and the luminescence (sec Sec. 5).

If Nx = Ny = N, then N space nodes arc represented at. each pE. Wit.hin t.he pl'Ocednre

Local Transformation, O(M2 ) rays arc required at each pE ta represent. t.he radiance of

the rays. Additional temporary memory of size O(N) is also needed ta l'Ot.ate t.he (", !J, z)

axes within the procedure Coordinate Evolution. Thus, the local memory cast. t.o each

PE is O(N +M2).

When many space columns arc represent.ed at each pE, the memOl'Y cost.s arc mult.iplied

by the number of columns at each PE, whieh is N2/(NxNy). Each PI, on t.he MASpA R-I

has a local memory of 16 Kbytes, which imposes a maximum scene width of N = 128.

More recent. models of the MasPar machine have over 16 K processors (fonning an anay of

128 X 128) and 64 Kbytes of memory pel' processor. On such a machine, it would he possihle

ta generate 512 X 512 images. Ta indude directional effects such as specnlarit.ies, refradion,

and non-isotropie scattering, the memory cost.s arc mnltiplied hy a fact.or O(M 2 ).

4.2. Time Costs. The basie time cast of the algorit.hm pel' Iteration is O(N M 2 ).

Local Transformation is O(M2 ), and Coordinate Evolution multiplies this cost. by

O(N). If the scene is wider than the PE array, then the time cast. of Local Transformation
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FIGURE D.61. A ring f10ating in a box and viewed through the top. No partici­
pating media is present. Thealbedo of ail surfaces is 0.9. The light Bource has two
components, ambient and directed, both of which enter the box through the open
roof. The ambient component is a uniform hemispheric sky.The directed compo­
nent is oblique, from the left. Twelve iterations are used. The scene is viewed from
nille differcnt directions, ccntered around the vertical.
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is multiplied by N 2 f(Nx Ny ). For our machine, the procedure Local Transformation

requires roughly 0.6 seconds when N = 128, resulting in a total computation time of

roughly 8 minutes per iteration of the algorithm.

We also note that time is required to rotate the (x, y, z) axes within the procednre

Coordinate Evolution, between "sweeps". On a seriai machiue, the time cast. of this

rotation is O(N3). We have developed an efficient parallel algorithm to solve t.he problem.

The algorithm has a time complexity of O(NNx ) when N = Nx , and O(N3fNx ) when

N > Nx . The operations required for the axis rotation are quite simple, and in pract.ice t.he

time cost is insignificant. In partieular, when N = 128, each rotat.ion takes o.a seconds.

5. Scattering and Absorption in Free Space

Until now, only the case of a vacuum has bccn discussed. In many interesting sit.uat.ions,

however, a participating medium such as smoke or fog will be present. [11], and Iight. will

be scattered and absorbed. In this sect.ion, we show how to generalize algorithm of Sec. :l

to account for isotropie scattering and absorption effects. An import.ant. result is t.hat. t.he

space and time costs of the algorithm are unaffected by this generalizat.ion. An example is

shown in Figure D.52.

Isotropie scattering and absorption may be modelled by assigning a scat.tering coeffi­

cient ((x) and an absorption coefficient 'l'(x) to each point in free space. Consider a my

passing through x in direction L. The radiance of rays passing near x satisfy

dR(x+ Œ,L)) = (-((x) _ 'l'(x)) R(x,L) + ((x) [ R(x,L") dL" .
dE 411' JS 2

ln partieular, radiance is conserved along a ray over any region of frcc space in whieh ((x)

and 'l'(x) vanish.

When a participating medium is present, radiance is not a unique function defined

on the manifold M. Rather, different radiance functions arc delined on differcnt. local

coordinate systems of M. The above equation relates the radiance functions of neighhoriug

local coordinate systems.

Scattering is incorporated into our algorithm by modelling it as isotropie lurninescem:e.

Specifically, energy is temporarily"accumulated in astate variahle Ak(x) whenever a Iight

ray passes through x. The energy that is accumulated during iteralion k is scattered

isotropieally in iteration k + 1. The Local Transformation algorithJ!l must be modified

slightly. A box is placed around the modified Iines of' pseudo-code.
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Observe that the time and space costs of the algorithm arc unchanged from the case

of the vacuum. This is in sharp contrast to the method proposed in [116], where the

computatioual costs increase dramatieally in the presence of a participating medium.

Local Transformation( F, i, Ro, Rh Rk
) {

for ail (x, y) in parallel {

x := (x,]J, il;

for ail L := (Lx, Ly , M),

case {x- L}

SOJ,ID: RI (x, y, L) := 0;

FIWE: RI (x, y, L) := (1 - ,(x) - ((x)) Ro(x - Lx, ]J - Ly, L) + ~ Lk(x) ;

J\k+1 (x) += ,(x) Ro(x - Lx, Y - Ly , L) ilL ;

SURI'ACE: if (L· N(x - L) > 0)

RI(x,y,L):= R(x- L,L);

else RI (x, y, L) := 0;

SOURCE: R\(x,]J,L):= Remit(x-Lx,y- Ly,L);

}

6. Summary

The radiosity equation has been reformulated in terms of the radianœs of the set of light

mys iu a scene, rather than in terms of the the radiosity exchanged by each pair of surface

fllcets. Form fadors and visibility functions are not computed in the n~'v. formulation. The
/,,-"'"

traditional computational bottleneck of computing the visibility b~tween surface facets is

replaced by the problem of parameterizing the set of light rays by their points of termination,

rather than by their points of origin. This parameterization is solved by a coordinate

evolu tion algorith m.

This uew formulation has two main advantages over the traditional one. The first is its

geuerality. The presence of~'!c~?rtkipi[ting medium requires only a slight modification of the

algorithm and no change to either the space or time complexity. (The memory requirements

for the case of non-isotropie surface refiectance and scattering will be presented in a future

paper.)

The second advantage is that the algorithm is massively parallel; it may be implemented

on a SIMD architecture having local connections between nodes. Machines that are of

appropriate size arc now entering the marketplace. The existence of rendering algorithms
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FIGURE D.62. Three balls fioating in a box that is Olled with fog. The scelle is
illuminated by a directed light source that is from above but slightly oblique. The
shadows cast by the balls are visible both in space (as a tube) and on the surface.
Observe that the deepest bail is the darkest since light is absorbed as it P'L'SCS

through the fog.

i!
::;.,,~"

l5!l



•

•
: '.

D. SHADING FROM SHAPE

that make lise of these machines is a fllrther technologieal incentive for the development of

massively parallel SIMD graphies hardware.
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Labelling

The surface orientation is represented by unit normal facing the viewer. Wc at.t.empt 1,0

saml'le this space as uniformly as possible to get forty cells. The cells are listed in Tahle

E.5.

( 0.338, 0.939, 0.059) ( 0.644, 0.762, 0.059) (-0.982, 0.17G, 0.05!!)

(-0.982, -0.176, 0.059) ( 0.644, -0.762, 0.059) ( 0.338, -0.9a9, O.05n)

( -0.212, 0.939, 0.270) (-0.707, 0.653, 0.270) ( 0.n19, 0.285, 0.270)

( 0.919, -0.285, 0.270) (-0.707, -0.653, 0.270) (-0.212, -0.9a9, 0.270)

( 0.127, 0.934, 0.333) ( 0.745, 0.577, 0.333) (-0.872, 0.35G, 0.:1:1:1)

(-0.872, -0.356, 0.333) ( 0.745, -0.577, 0.333) ( 0.127, -0.934, 0.3:1:1)

(-~.440, 0.762, 0.473) ( 0.880, 0.000, 0.473) (-0.'1'10, -0.7G2, OAn)

( 0.233, 0.756, 0.610) ( 0.538, 0.580, 0.610) (-0.772, 0.176, 0.(10)

(-0.772, -0.176, 0.610) ( 0.538, -0.580, 0.610) ( 0.2:1:1, -0.75G, O.fiIO)

(-0.333, 0.577, 0.745) ( 0.666, 0.000, 0.745) (-0.3a3, -0.577, 0.745)

( 0.005, 0.580, 0.814) ( 0.500, 0.294, 0.814) (-0.505, 0.285, O.8lA )

(-0.505, -0.285, 0.814) ( 0.500, -0.294, 0.814) ( 0.005, -0.580, 0.81'1)

( 0.170, 0.294, 0.940) (-0.340, 0.000, 0.940) ( 0.170, -0.294, O.(40)

( 0.000, 0.000, 1.000)

TABLE E.5. This table gives the sampling of the surface normal that wc lise ill ollr implclllclltatioll.

The shape of the surface is locally represented by the shape vector and the CIII·velless.

The curveness is very coarsely sampled as wc show in Table K6. Wc attempt. 1,0 sam pie the

shape vector space as uniformly as possible to get thirty-two cells. The cells am Iisted ill

Table E.7.

The direction of the illumination is represented by a unit vector. In our implementation,

we use the same thirty-two cells defined by the sarnplillg of the shape vector space.
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0.2 0.08 0.05

TABLE E.û. This table givcs the sampling of the surface curveness that wc use in
our implcmcntation.

( 0.000, 0.000, -1.000)

(-0.303, -0.525, -0.794)

( 0.333, -0.577, -0.745)

(-0.7'15, 0.577, -0.333)

(-0.127, -0.934, -0.333)

( 0.491, -0.850, -0.187)

(-0.491, -0.850, 0.187)

( -0.872, 0.356, 0.333)

( 0.127, -0.934, 0.333)

( 0.666, 0.000, 0.745)

( 0.303, -0.525, 0.794)

( 0.607, 0.000, -0.794)

( 0.333, 0.577, -0.745)

(-0.127, 0.934, -0.333)

(-0.745, -0.577, -0.333)

( 0.491, 0.850, -0.187)

(-0.491, 0.850, 0.187)

( 0.127, 0.934, 0.333)

(-0.872, -0.356, 0.333)

(-0.333, -0.577, 0.745)

(-0.607, 0.000, 0.794)

( 0.000, 0.000, 1.000)

(-0.303, 0.525, -0.794)

(-0.666, 0.000, -0.745)

( 0.872, 0.356, -0.333)

( 0.872, -0.356, -0.333)

(-0.982, 0.000, -0.187)

( 0.982, 0.000, 0.187)

( 0.745, 0.577, 0.333)

( 0.745, -0.577, 0.333)

(-0.333, 0.577, 0.745)

( 0.303, 0.525, 0.794)

•

TABLE E. i. This table gives the sampling of the surface shape vec!or that we use
in our impicmclltation .
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