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ABSTRACT

A technique to measure the evoked vascular response in the human brain has been
developed for a Scanditronix PC2048-15B PET scanner. New hardware and software have
been designed to enable the scanner to acquire image data in 8 distinct segments of the
acquisition memory sequentially and repetitively when gated by an auxiliary signal. For PET
activation studies, these modifications facilitate the application of a stimulation pattern
consisting of 8 phases. By synchronizing the phases with the acquisition, the time course of
the response to the stimulation is measured. Simulation and phantom tests were performed
to verify the system performance before applying it to human subjects. A ''C-CO generator
was developed in order to supply gaseous 'C-CO to be administered to the subjects with
bolus inhalation. A multiple inhalation method was devised which increases the efficiency of
the uptake of the radioactive tracer by up to a factor of 2 when compared with the
conventional single bolus inhalation method, which results in an increase in SNR by a factor
of 1.4. The EVR technique has been applied to CBV measurements using vibrotactile
stimulation to the fingers of the right hand of the subject. The averaged results among 4
subjects show a clear response in the somatosensory right-hand area, with a measured rise
time of 7.2+1.9s and a decay time of 13.2 +2.2s. The technique maybe applied to other PET

activation studies such as visual, auditory and olfactory studies.
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RESUME

Une technique pour mesurer la réponse vasculaire induite (RVI) dans le cerveau humain
a été développée pour le tomographe a émission de positrons (TEP), le Scanditronix PC2048-
25B de I'Institut Neurologique de Montréal (INM). De nouvelles composantes électroniques
(hardware) et de programmation (software) ont été agencées afin de permettre au tomographe
d’acquérir répétitivement et séquentiellement des données d’imagerie en 8 segments de
mémoires distincts lorsque géré par un signal auxiliaire. Pour des études d’activation en TEP,
ces modifications facilitent I’application d’un pattern de stimulations en 8 phases. En
sinchronisant les phases avec [’acquisition, la course temporelle de la réponse induite par la
stimulation est mesurée. Les tests de simulation et ceux utilisant des fantémes ont été
effectués pour vérifier la performance du systéme avant son application sur des sujets
humains. Un générateur de 'C-CO a été développé afin de fournir ce gas radioactif qui doit
etre administré aux sujets par une méthode de multiple inhalations. Ceci permet de doubler
I’efficacité de I’absorption du marqueur radioactif en comparaison avec la technique
conventionnelle de I'inhalation d’un simple bolus conduisant a une augmentation du rapport
signal sur bruit (RSB) par un facteur de 1.4. La technique RVI a été utilisée pour mesurer
des changements de volumes sanguins célébraux suite a des stimulations vibrotactiles aux
doigts de la main droite du sujet. Les résultats moyens obtenus a partir de quatre sujets ont
montré une réponse claire dans [’aire somatosensorielle associée a la main droite avec un
temps d’ascension de 7.2+1.9s et de descente de 13.2+2.2s. De plus, la technique peut etre

appliquée a d’autres études d’activation en TEP comme au niveau visuel, auditif ou olfactif.
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1. Introduction

SOOSOOODSSOOOOODDODSIDEIDOOODODDDODDOSISSOOSOSIDISDODDSOSOSEOOOSD>>

1.1. Positron emission tomography (PET)

1.1.1. Whatis PET

PET (Positron Emission Tomography) is a medical imaging technology developed since
late 1970s [Ter-Pogossian MM, 1980]. It provides quantitative, three-dimensional images for
the study of specific biochemical and physiological processes in humans or animals. The PET
imaging technique is based on the detection of the two 511keV y-rays emitted in opposite
directions when a positron, emitted from a radioactive tracer, annihilates with an electron in
the tissue or organs in the body. The detection of the two coincident y-rays makes it possible
to define a line on which the annihilation occurs, from which we can derive an image of the
distribution of the radioactive tracer.

A conventional PET system consists of a camera, a set of data acquisition electronics and
a computer system. A medical cyclotron and a radiochemistry department are also
indispensable for the provision of radioactive isotopes. As shown in Fig. 1.1, a camera
consists of several rings of detectors which are used to record events by detecting the y-rays
emitted from a part of the body of a subject. Each detector consists of a block of crystal
scintillator such as bismuth germinate (BGO) [Thompson CJ, 1979] coupled to a
photomultiplier tube. The data acquisition electronics reads and processes the signals from

the anodes of all the photomultipliers to provide timing, energy discrimination and
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coincidence detection information. The chord between the detectors in which the coincident
events occur defines a line of response (LOR). The angular position and the locations of the
LORs for detected events are stored into matrices which are called “sinograms”. A complete
sinogram is used to reconstruct a three dimensional PET image by employing a filtered back-
projection algorithm. In a PET image, the intensities of pixels indicates the spatial distribution
of the concentration of the radioactive tracers. The image can be used for further
physiological interpretation, such as blood volume, blood flow, oxygen consumption
measurement, protein synthesis, or tumour detection [Grubb RL, 1978; Raichle ME, 1983;
Fox PT, 1986].

A PET scanner can operate in different acquisition modes according to the requirements
of temporal and spatial resolution. As an example, the Scanditronix PC2048B scanner
presently has two modes available: one is “stationary"”, for which all the detectors are at rest,
and the other is "wobbled", for which each detector moves along the circumference in a small
circle to improve the spatial resolution [Scanditronix PC2048-15B software manual]. This
thesis introduces a third mode on the Scanditronix PC2048B and named as "EVR" (Evoked
Vascular Response) mode, at which the phases of the stimulation given to the subject are
synchronized with the sequence of the acquisition, and the data can be acquired to a series of
phase-dependent memory regions. The EVR mode is mainly designed for PET activation
studies to measure vascular response with a reasonably good temporal resolution without a

trade-off in spatial resolution.
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1.1.2. Radiochemistry and PET applications

The application of PET to specific physiological functions requires specific
radiopharmaceuticals labelled with various positron-emitters. Table 1 summarizes some
commonly-used positron emitters, their basic properties and the methods used for their

production.

Table 1. A list of positron emitters with their properties and producing methods

Radio- Half-life Target material ~ Nuclear reaction Energy
isotope (minutes) required
Mev)

50 2.07 N, “N(d,n)"*O 6

BN 10.0 graphite 2C(d,n)"N 6
water %0(p, )N 10

1c 20.4 boron YB(d,n)!'C 6
enriched ''B UB(p,m)''C 10
N, UN(p,o)!'C 10

BF 109.8 Ne **Ne(d,a)"°F 6.1
H,0 15OCHe,p)"*F 20
H,0 YO(°He,pn)"*F 35
Hzlso 180(p,n)‘8F 9

TRy 74.8 NaBr Br(p,3n)""Kr 35

%Ga 68.3 8Ge/**Ga generator

%2Rb 1.25 828r/**Rb generator

2Cu 9.8 ©2Zn/5?Cu generator
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The positron-emitting isotopes such as 'C, ®N,* O, F, can be produced by small
medical cyclotrons by bombarding a target with accelerated particles, such as protons or
deuterons. These short-lived positron-emitters can be used as labels without causing problems
to the structure or metabolism of the biomolecule. In particular carbon, oxygen and nitrogen
are constituents of living organisms and are useful in creating molecules which mimic the
functions of naturally-occurring agents. The short half-life of these positron emitters used
makes it possible to perform repetitive studies and to minimize the exposure of the subject.

Several other positron-emitters have considerably greater half-lives, but are used less
commonly, and are more complicated to produce. These include ’Kr (half-life 74.8 min) and
5Br (half-life 95.5 minutes), which require higher energy cyclotrons for their production
[Diksic M, 1977]. $®Ga (half-life 68.3 minutes) is obtained from a ®Ge-**Ga generator, and
#2Rb (half-life 1.25 minutes) from a *2Sr -**Rb generator.

The lighter positron-emitters, such as ''C, PN, *O, '*F, and their radio-pharmaceuticals
are normally produced and used to study quantitatively a variety of functions, such as blood
flow, blood volume, oxygen metabolism and glucose metabolism, in the human brain in vivo,
and they are used in most of the PET centres such as the Brain Imaging Centre in Montreal
Neurological Institute (MNI). Because only a small cyclotron is required, it is relatively
affordable and convenient. The following discussion will focus on the application of these
more commonly-used positron-emitters.

150 has a half-life of only 2 minutes. It is very commonly used to label water for blood
flow measurements. PET activation studies based on regional blood flow changes employing

10 labelled water have been used effectively to map different functions of the human brain.
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[Raichle ME, 1976; Herscovitch P, 1983; Raichle ME,1983; Doyon J, 1996; Owen AM,
1996; Hurtig R, 1994]. O is used also to label gases such as C'*°O for blood volume studies
[Grubb RL, 1974, Martin WRW, 1987}, °O labelled CO, for CBF studies and O, for oxygen
consumption studies. The longer half-life of ''C (20 minutes) is used for studies involving
repetitive stimulation or longer observation periods, yet it is short enough to diminish totally
in a day. ''C can also be used to label CO, for blood flow and CO for blood volume studies.
®F is a very important positron emitter. *F- labelled fluoro-2-deoxy-2-D-glucose (FDG) is
used commonly to visualize glucose metabolism, F Dopa is used to study dopaminergic
receptors etc [Barrio JR, 1996; Cumming P, 1993].

While PET has been used extensively in research for the study of physiological and
biochemical processes, it also has a role in clinical applications by providing quantitative
three-dimensional images in vivo. Since glucose and oxygen are almost exclusively the
substrates for cerebral metabolism, both *F-FDG and O labelled compounds are popular in
clinical studies to examine cerebrovascular diseases [Grubb RL,1979], epilepsies [ Yamamato
YL, 1983}, brain tumours, cardiac diseases [Allemand R, 1980], Breast cancer [Thompson
CJ, 1995] and other kinds of brain disorders [Di Chiro G,1981, Owen AM, 1996].

Among all of the applications of PET, activation study has become a very active field, in
which subjects are required to perform some given task during the scan. The following section

introduces the concept of the activation study, its PET methodology, its goals and limitations.

1.2. Activation studies with PET
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1.2.1. Physiology for activation studies

Physiological, anatomical and cognitive behavioural studies have demonstrated that the
brain possesses anatomically-distinct processing regions, and that networks of neurons
residing in strictly localized areas perform mental processes. In any mental process, glucose
and oxygen are utilized by neurons and cerebral perfusion is also influenced by neuronal
activities. The physiology of the nervous system is strictly related to the close relationship
between blood perfusion, metabolism and neuronal function. Measuring these variables and
their relationships thus illuminate various mechanisms of brain.

During cognitive tasks, local alterations in neuronal activity induce local changes in
glucose metabolism, oxygen metabolism, cerebral blood flow and blood volume. These
changes can be measured with PET quantitatively and they can be used to map the functional
loci of mental operations. Glucose utilization is usually quantified by the cerebral metabolic
rate for glucose (CMRGlc) and oxygen consumption is measured as the cerebral metabolic
rate for oxygen (CMRO,). Cerebral perfusion is indicated by cerebral blood volume (CBV)
and cerebral blood flow (CBF) measurement. CBV is defined as an intravascular volume of
blood in unit weight of brain tissue. Its change can be caused by volumetric expansion in
vessels already perfused [Ngai AC, 1988] or by increasing the proportion of vessels actually
perfuses {Shockley RP, 1988]. CBF, on the other hand, quantifies the dynamic alteration in
the delivery of blood to a certain mass of brain in unit time. With PET, CBF change is
measured by detecting the increased amount of radioactive water which diffuse out of the
vessels [Raichle ME, 1994].

Among all the PET activation studies available, CBF is the most frequently measured

18



variable because increase in blood flow is commonly observed. CBV is less frequently
measured because of its comparatively small magnitude of change. For example, in the
experiments by Fox et. al. [Fox PT, 1986, Murase K, 1995] on 9 subjects using vibrotactile
stimulation, the regional CBF demonstrated a change of 29% with a standard deviation of
9%, while in comparison the regional CBV magnitude of change was 7% with a standard
deviation of 6%. Similar studies by other authors also show the same trend [Murase K, 1995].

More sensitive methods to measure regional CBV changes are still required.

1.2.2. PET methodology for activation studies

PET activation studies involving cognitive tasks have become a well-known means to
map the human brain and to investigate the neuronal activities in relations to behaviour. It
specially facilitates the study of sensory, motor, and cognitive functions in human subjects.
After administering the tracer to the subject, scans with and without tasks are acquired. The
scans without tasks are referred as "base-line", "rest state" or “control state”, and the scans
involving tasks as "activation" or "task state". Because the cerebral hemodynamic state in
nonactivated brain areas is quite stable over time, a control state perfusion image can be
subtracted from a task state image to create a new functional image to present local changes
caused by activation tasks. These functional images can be further interpreted to explain
neuronal phenomenon with mathematical models. For some studies, more than one subject
is scanned in order to increase the signal-to-noise ratio, or to remove individual physiological
variations.

Figure 1.2 is an illustration of the methodology of the PET activation study [Raichle ME,
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1994]. In this study, '*O-labelled water bolus was administered to the subjects and visual
stimulation tasks were performed.

Commonly, magnetic resonance Imaging (MRI) scans are conducted to provide an image
of detailed anatomical brain structure for the purpose of comparative study and rescaling the
images of each subject into a standard space in order to perform averaging and statistical

analysis among multiple subjects.

1.2.3. Application of PET activation studies

A large number of studies have been done to map the locations and to study the function
of visual, somatosensory, sensory-motor, auditory, olfactory and other cortices.

Visual PET activation studies have revealed some of the physiological response
characteristics of the human visual cortex by measuring CBF employing °O labelled water
bolus or by measuring glucose utilization employing '*F-labelled FDG. These studies provide
images indicating the spatial dependence of the response of the human visual cortex to the site
and size of retinal stimulation. These approaches have demonstrated the relationship between
the complexity and the magnitude of the change of the blood flow and oxygen consumption
in the visual cortex, the correspondence of the input of each eye to specific regions of visual
cortex [Fox PT, 1987a; Roland PE, 1994].

Auditory PET activation studies employing FDG as a tracer have shown a correlation
between the distribution of glucose utilization and the pattern of the stimuli presented to the
subject. Complex patterns of responses to auditory stimuli were observed when experiments

on pitch perception, speech, attention were conducted [Perry DW, 1996; Zattore RJ, 1996].
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PET images resulting from CBF studies using O labelled water, together with MRI images
have been useful in the preoperational assessment of patients with cerebral AVMs
(arteriovenous malfunctions) in regions corresponding to speech [Leblanc R, 1992].

Language studies with PET have contributed to identify the anatomic basis of language
processing and the neural basis of the language deficits such as Alzheimer’s Disease [Grady
CL, 1993].

Olfactory cortices are usually thought to be poorly understood. PET activation studies
involving CBF measurements with *O labelled water while presenting olfactory stimulation,
have contributed to the localization and lateralization of the olfactory cortices [Zatorre RJ,
1992]. More recent studies on the interaction between olfactory and gustatory systems have
demonstrated evidence of suppression of primary gustatory cortices when both taste and smell
stimulations are applied at the same time [Small DM, 1996]

Vibrotactile PET activation studies, by measuring regional cerebral blood flow and
regional cerebral oxygen consumption, are used to map somatosensory cortices corresponding
to a large number of tactile-responsive regions in the human body, including fingers, lips, toes
[Fox PT,1987b]. Such studies also have revealed physiological response characteristics of the
cortex, such as undivided attention [Drevet WC, 1995; Seitz RJ, 1992], and the coupling
between brain function and cerebral perfusion [Lou HC, 1987]. Since vibrotactile stimulation
generates intense and consistent focal rCBF increases in the corresponding cortex, and
because experiences and a large amount of data on studies with vibrotactile stimulation are
available in MNI, it is a quite feasible way to investigate physiological and pathological

changes of local neural activity, and to test new techniques for neuronal activation studies.
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Clinical applications of PET activation studies are also imminent. PET can be employed
for the diagnosis of various cerebral disorders and diseases, such as brain tumours, ischemic

stroke and migraine diseases.[Maini CL, 1990].

1.2.4. Temporal requirements in activation studies

While the majority of methodologies used have aimed to reveal the magnitude and spatial
nature of neuronal activities, very few have focused upon the temporal course of these
activities. Previous studies have illustrated that the major challenge in measuring the time
course arises from the complexity of the brain function itself. As an example, the speed of
neuronal activity is incomparably faster than the speed of vascular response. A signal from
one part of the brain may travel to another in less than 0.01 second, but the change of CBF,
CBYV and metabolism can occur over seconds [Raichle ME, 1994]. New techniques are
required to explore the brain as a whole.

The examination of the temporal nature of cerebral activities introduces numerous new
questions. For example, how rapidly do these activities occur following the stimulus? How
are CBF, CBV, CMRGIc and CMRGO, related in response to different patterns of
stimulation? How do different parts of the brain coordinate as a network to produce a certain
behaviour? How does the time course vary with age, sex, or different abnormal neurological
states? Does the temporal course of these responses contain information that would allow one
to treat a disease more efficiently? Techniques other than PET exist and are employed to
provide very good time resolution , yet, each presents its own advantages and disadvantages.

None can replace PET because of its ability to provide three dimensional tomographic images
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and to measure some neuronal functions directly. The following section briefly describes some

of the techniques used to measure the time course of the neurological activation.

1.3.  Some techniques for measuring time course of neurological
activities

Near Infrared Spectroscopy (INIRS) is an optical technique which measures the absorption
of infrared light by tissue. It is a noninvasive tool for the continuous monitoring of changes
in CBV, oxyhemoglobin (HbO,), and deoxyhemoglobin (HbR). It offers a time resolution of
0.5s {Villringer A, 1994] for assessing changes in cerebral hemodynamics during various
functional states of the adult human brain. Kato et al [Kato T, 1993] and Villringer et al
[Villringer A, 1994] have studied human cortical function by measuring hemodynamics and
tissue oxygenation in response to cognitive stimulation, visual stimulation and epileptic
seizure. An increase in local HbO, and blood volume with a decrease in deoxygenated
haemoglobin are found during such physiological functional activation. A significant, spike-
like increase in HbO, and blood volume was found during epileptic seizures. Both the
temporal relationship between this sharp increase and the onset of epileptic seizure and the
magnitude of the change in oxygenated cytochrome-oxidase may be insightful in localizing
the epileptic focus. These phenomena might be clinically useful in the future. However, NIRS
is limited by its insufficient SNR for an adult human head, since NIRS signals depend on the
amount of infrared light penetrating and reflected through biological tissue. Also it does not

provide tomographical images of the brain.
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The Functional Magnetic Resonance Imaging (fMRI) technique has also been applied to
brain functional studies [Ogawa S, 1990]. MRI imaging technique is based on detecting the
absorption of radio-frequency energy by the magnetic moments of nuclei which are rich in the
human tissue, such as hydrogen. The group of nuclei playing roles is characterized by the
following parameters: the magnitude of the longitudinal and transverse magnetization, the
phase of the transverse magnetization, frequency of the nuclear-magnetic resonance,
longitudinal relaxation time T, and transverse relaxation time T,. A neuronal function such
as blood flow and oxygenation can cause a change in one of the above parameters. fMRI is
developed to detect these changes to illuminate the corresponding neuronal function [
Moonen C, 1990]. fMRI also has the ability to measure the time course of vascular response
because of its ability to monitor the signal of oxygen level in blood in real time. With both
visual and hand squeezing tasks, a rise-time of about 4 seconds for flow and of 8 seconds for
oxygenation changes have been measured with a temporal resolution of about 3 seconds by
Kwong et al. [Kwong KK,1992]. The rise-time may reflect the onset of the hemodynamic
response following the task-induced neuronal activation. fMRI offers an advantage over
electroencephalography (EEG) or magnetoencephalography (MEG) in that it provides high
spatial resolution tomographical images showing anatomical and functional information,
which makes it possible to accurately identify the activated regions. The other advantage is
that it does not involve the administration of radioactive tracers as PET does. There are still
quite a few questions remain about the fMRI technique, one of these is the brain vs vein
debate [Segebarth C, 1994] which arises from the fact that fMRI provides micro-vascular

information rather than macro-vascular information. The temporal resolution of fMRI is at
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the level of 3 seconds, which is barely good for vascular response measurement and too slow
for neuronal response measurements.

Methods such as EEG and MEG offer high temporal resolution to detect neuronal
activities. The former detects brain electrical activity from the scalp and the latter measures
the magnetic fields generated by electrical activity within the brain. Both are limited by poor
spatial resolution and sensitivity, which degrade when detecting signals from deeper parts of
the brain. These disadvantages limit EEG and MEG being used for mapping the brain.

Some other methods used in animals, such as electrophysiology aided by vascular
florescence imaging, may also provide us useful knowledge in understanding similar neuronal
activities in human brain [Narayan SM, 1995]. Narayan et al successfully measured the time
course of CBV in response to stimulation to the foredigit of rats. It has been found that the
CBYV in the corresponding cortices increases at 1-1.5s and rises to a peak 2-2.5s after the
onset of the stimulation. Though it may not be feasible to apply these methods to humans, the
results are very valuable in guiding the approaches taken for human brain study.

For PET, the present challenge is the development of improved temporal resolution while
presenting the established advantages of this modality. Some work related to temporal
resolution has been done, such as performing multiple-frame dynamic CBF studies with the
ability to measure very short times by making the frames short enough [Ter-Pogossian MM,
1994], but the SNR has been a problem for spatial resolution while obtaining very short
frames. The vascular response could not be measured by repeating the scans, because the PET
activation studies are limited to one repetition every several minutes since the half-lives of the

positron-emitting isotopes are on the order of minutes (e.g. the half-life of *O is 2 minutes
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). These limitations have prevented PET from measuring cerebrovascular transit times
occurring on the order of seconds [Kwong KK, 1992] and instantaneous hemodynamic
response time occurring on the order of hundreds of milliseconds [Fristig RD, 1990].

The "EVR" technique has been developed in order to meet the above needs.

1.4. The EVR technique

1.4.1. Principle
Currently the basic limitation of PET in the measurement of time course in the order of
seconds is the poor signal to noise ratio (SNR) when a limited amount of radioactivity is
administered to a subject. One way to increase SNR is to send the same signal repetitively to
a noisy background. The theory of this method can be explained in the following formulae:
The signals of the total counts in a pixel in a PET image are results from radioactive

decay, which can be described with a Gaussian distribution:

(S’_S)Z
1 20 .
SS, = e ! , i=1,2,....n (L.1)
J2ma,
N
SNR()=—= (1.2)

Where S, is the signal measured during the measurement I and o2 is the variance. A total of
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n measurements are done.

D(S)={o? (13)

Where D is the standard deviation.

The mean of the measured signal will be

3 f_,: i 1
S=— , W=— (1.4)

>w, %

i=1

W, is the weight of the ith measurement.

According to the rules of the propagation of standard deviation:

1
Dax,tbx;)=[(a0, ) +(bo, )] (1.5)

We get

D(S)= lilﬁ (1.6)

and
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When the variable S is the radioactive counting rate, S; = N;, o; = N;'* | SNR(I)= N;'?, can

be applied. and the mean SNR can be derived as:

S—= n

=1 (1.9)
'z &

The mean SNR is higher than SNR(I). When we make a simple assumption that each

measurement is of equal precision, thatis : ;= 0, = ...... =g,, then
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=yn SNR()

(1.10)

That means the SNR is n'? times better if a measurement is repeated n times. For a PET

study, a weight of

(1.11)

is counted for a measurement during the time interval t; to t;. Where N; is the accumulated
counts during t,-t., and a total of I interval were measured.

The above theory suggests that a series of images can be acquired with high SNR, if a
transient biological process can be repeated during several half-lives of the radioactive
isotope. However, the number of repetition should be optimized, because the counts becomes
very low and the improvement in SNR becomes insignificant several half-lives later. The
above theory has been successfully applied to gated cardiac studies in nuclear medicine where
data from the gamma camera are saved in 8 or 16 bins which are locked to phases of the
cardiac cycles. Data accumulates in each frame over a large number of cycles. These can be
played back as a movie loop with images of good quality.

Based on this concept of gated technique, we have developed the Evoked Vascular
Response technique in order to acquire dynamic PET images in multiple phases with a
adjustable phase-duration from milliseconds to several minutes and without compromising

spatial resolution.
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Figure 1.3 illustrates how the EVR technique works. The function of the stimulation and
the location of the data in memory are phase dependent. There are 8 phases in total and the
data is acquired from phase 1 to 8 in cycles in several half-lives. Eventually a loop of 8 images
can be reconstructed for observing the time dependence of the activation in the brain.
Hardware and software design is important to achieve this purpose. The details of this part
is described in chapter 2 and 3.

In order to make the EVR technique possible, the following requirements have been
considered:

1. A PET scanner with high spatial resolution and the potential for achieving high
temporal resolution is required.

2. The hardware should have the ability to separate and store the acquired data to
different regions of memory according to different phases of stimulation so that a movie loop
of several discrete images can be reconstructed for the purpose of observing the time course
of the measurement.

3. Stimuli must be synchronized with the acquisition so that the image acquired in each
phase may be accurately related to a specific phase of the stimuli since time discrimination is
critical for temporal resolution [Sandman CA, 1984].

4. The repetition of the synchronized stimuli and acquisition in one scan is required so that
enough cycles of counts can be accumulated for each phase to achieve adequate SNR for a
good quality PET image.

5. Software is required to organize the acquired data of each phase into a structure which

can be reconstructed into conventional PET images for further analysis.
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1.4.2. Implementation

In order to fulfil the above requirements, some modification has been done to the
acquisition system of the Scanditronix PC-2048B scanner [Evans AC, 1991, Thompson CJ,
1990]. The following section is a brief description of the setup used for data acquisition and
for the EVR technique. A more detailed account will be given in the following chapters.

1. We could not use the function for gated cardiac studies as it requires hardware which
we do not have. But the hardware has the potential mechanism for gated studies. As
introduced in section 1.1.1, there are two acquisition modes on the scanner presently: One
is "stationary" and the other is "wobbled". When the scanner is operated at wobbled mode,
it allocates five times more memory than needed for the stationary mode [Scanditronix
PC2048-15B PET scanner software manual]. This large memory region can be used also for
the storage of data for eight phases of stimulation. A new electronics circuit board to generate
sinograms was designed for the EVR mode to allocate the large memory of wobbled mode
phase-dependently, though the scanner remains stationary.

2. Some modifications were made to the controlling logic of the acquisition system for the
EVR mode whereby the scanner remains stationary while the memory for wobbled mode is
accessed. New logic electronics have been designed so that the scanner can switch between
modes easily.

3. The EVR stimulator has been built. This is an electronic device to control the stimuli
and to synchronize the stimuli with the acquisition. This ensures that the data can be
accumulated in cycles in phase-dependent memory locations.

4. Programs have been written to process the data accumulated while scanning in EVR
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mode to produce a series of 8 data files for the 8 phases. Eight images are subsequently
reconstructed in a conventional way.
5. Programs have been written for activation ROI analysis and SNR analysis to investigate

the activation significance and the temporal information.

1.4.3. Testing

The reliability of the EVR technique was examined with empirical simulation tests using
a rotating radioactive source combined with a shaft encoder to ensure the electronics perform
properly and that the data can be acquired according to the series of phases. Phantom studies
also have been done to test the software to ensure the quality of images before the technique

was used on human subjects. (For details, see Chapter 4)

1.4.4. Application

This technique was first applied using vibrotactile stimulation with ''C labelled CO gas
administered to subjects. The magnitude and time course of CBV changes in cortical regions
corresponding to the phases of the stimulation were observed.

The following considerations have been taken into account in developing this protocol for
the first trial.

1. Regional cerebral blood volume is proportional to the local radioactivity concentration
in the brain, so that the time course of the activation can be measured without blood
sampling, rather based on the measurement of relative changes of the CBV. The following
formula is used :[Martin W, 1987]
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Where , C is the accumulated counts per unit volume from the beginning (t, ) to the end (t,)
of the scan; C,, is the blood activity integrated over the time of the scan; R is the ratio of
cerebral small-vessel haematocrit to large-vessel haematocrit; d,, is the density of the blood
(g/ml), and d, is the density of cerebral tissue (g/ml). A value of 0.85 is usually used for the
ratio of cerebral small-vessel to large-vessel haematocrit and a value of 1.05g/ml is usually
used for the density of both blood and cerebral tissue.

2. It has been proved by a lot of experiments that vibrotactile stimulation applied to the
subjects' fingers produce very stable, reliable, significant changes in brain functions such as
regional blood flow and blood volume [ Fox PT, 1986; Fujita H, 1993; Murase K, 1995].

3. The choice of ''C labelled CO gas as tracer was made for its relatively longer half-life
which allows repetitive acquisition of data during a single scan.

4. We assume that any increase in the CO concentration will appear some time (rise-time)
after the onset of the stimulus and decrease to normal in a certain period of time (decay time).
For this reason there are four phases (phase 1-4) during which one hand of the subject was
stimulated followed by 4 other phases during which the subject relaxed. By choosing carefully
phase-duration we hope to estimate the rise-time and decay-time of the response. The phase-
duration can be adjusted from 1 second to 40 seconds and a five-second phase duration was

used in this particular set of scans. The details of the experiments and results are described
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in Chapter 6 and 7.
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2. Hardware design for the EVR technique

SOOI DEDDODDDDDDDDDODDIDOOSIOSSIDDISISDIOZDDDDSISDIZSDISOOOSIOOD>>

As was introduced in Chapter 1 section 1.4.1, in order to include the capability for the
evoked vascular response, a PET scanner should have the ability to: (1) separate coincidence
and singles data into distinct regions of memory according to different phases of the
stimulation; (2) synchronize the stimulation with the acquisition; and (3) accumulate data
repetitively. This chapter discusses the hardware design of the PET scanner for the EVR

mode.

2.1. Theory for generating sinograms

From Chapter 1, section 1.1, we know that all useful coincident events are stored in
matrices called “sinograms” and ready to be reconstructed into images with a back-projection
algorithm. The X coordinate in a sinogram represents the position (d) and Y coordinates
represents the projection angle (B) of a line-of-response. The following paragraphs explain
how a sinogram is defined and obtained.

In Figure 2.1, D and B are two detectors on a ring of N detectors. A positron-electron
annihilation event happens at point A, and the two emitted y-rays are detected by a detector
pair D and B. Then the event can be identified by d (position along the projection line) and
B (the projection angle). The coincident events which are from all possible detector pairs

allowed by the radial acceptance criteria will be sorted and stored in a matrix of (d, ) which
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forms a sinogram.

The relationship of (d, B) with the detector number can be derived in the following way:
Suppose a two-dimensional PET scanner has N detectors around each ring of a radius r. The
detector numbers increase anticlockwise, starting from detector O on the x axis to detector
N-1. An event is detected by detector pair D & B, where 0< D or B < (N-1). The angle of
D and B should be 2nD/N and 2nB/N respectively. Considering that the trangle DOB is an
isosceles triangle which is made up of two identical right-angled triangles DOC and BOC, and
that the line in which the angle B is defined is parallel to OC, then the following relationship

can be derived from the triangle DOB, BOC and the angle BOX.

d=rcos P-B)

(2.1)

B= n(D+B)

I (2.2)

We can see that d and 3 are derived from the “difference” and the “sum” of the two detector
numbers. Practically, these calculations are performed by the hardware using adders. The
cosine of the “ difference” are stored in a table to find X coordinates (d), and the “sum” in
another table to find Y coordinates (). Negative numbers of (D-B) have N added to then to
make them positive. The point in the sinogram matrix whose coordinates are calculated (d,
B) is incremented if the event is a prompt coincidence. A Programmable Read Only Memory
(PROM) is employed for these functions (PROM MPP in Figure 2.6 & 2.7).

Figure 2.2(a) and 2.3 use a simplified illustration to show how projections from all the

36



possible detector pairs are obtained and stored in a sinogram. For Scanditronix PC2048-15B
scanner, projections with even and odd detector-number-difference (e.g. D-B) are stored
separately in the sinogram. Figure 2.2(b) shows how the sampling precision can be increased
by adding a wobble angular displacement w when the scanner operates in wobbled mode (see
section 1.1.1).

From Figure 2.1, tniangle OAC, it can be derived that
d=s cos(B-o) 2.3)

(where s is the distance of the annihilation point to the centre and a is its angle). The
sinogram will show a cosine wave if the annihilation point is fixed (s and « are constants, e.g.

a point source). This can be used to test the function of the hardware.

2.2. Data acquisition system of PC2048-15B PET scanner

The Scanditronix PC2048-15B PET scanner in MNI has a high spatial resolution and the
potential to accumulate data in discreet phase-dependent memory regions, though the
hardware for gated cardiac studies is not available. The following is an overview of the
acquisition system of the scanner.

Figure 2.4 is a diagram of the acquisition system of the scanner. The computer
configuration of this system is based on a VAX Station 4000/90. Data is acquired on a Data
Acquisition Processor (DAP). The DAP communicates with the VAX over a private ethernet.
The VAX system has fixed disks, optical disks and high capacity magnetic tapes for data
handling. The code for the DAP is written in PLM286.
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y-rays emitted from the brain of the subject are detected by 2048 detector modules, which
are in an array of eight rings, each ring has 256 detectors. Pulses from all the detector
modules are fed to the discriminator rack, and each discriminator board processes signals
from four detector modules. Each signal is split into two for timing and energy determination
purposes. One signal is used to activate a leading edge discriminator, which triggers a
monostable. The other signal is amplified and summed up with the three others in its module
for energy discrimination, and compared with the other signal in the same row and column
in separate comparators to identify the crystal in which the y- ray was absorbed. Triggered
by the monostable, a set of comparators identify the crystal and a second set of comparators
at the output of the summing amplifiers selects the photopeak of the energy spectrum.

The timing and crystal identification signals are processed by a coincidence circuit. When
a coincidence event occurs, the identification of the crystal pair is saved and sorted into
parallel projections by a program stored in a PROM (PROM MPP in Figure 2.6). Axial and
radial acceptance criteria are also selected by the same PROM. The radial criteria limits the
projection length, only LORs whose distance from the centre is less than 15cm are accepted.
The axial criteria are set to accept coincidence events which only occur in the direct and the
adjacent plane, so a total number of 15 slices can be acquired for an image. Figure 2.5 shows
how and why these criteria are set. The identification of detector rings are sorted by another
PROM (PROM RPP in Figure 2.6).

In wobbled studies, the detectors are wobbling in the radial plane in order to increase the
density of sampling in each projection (Figure 2.2(b)). The diameter of the wobble circle is

fixed at 6mm, while the wobble speed can be set from 1 to 60 rpm. There are five wobble
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angular position (®) which are sorted by the third PROM (PROM WDP in Figure 2.6) and
then added as a displacement to the projection.

All the above functions are performed by several groups of PROMs ( RPP, MPP and
WDP) which are mounted on an electronic circuit board called the PROM Circuit Board.
Figure 2.6 is an illustration of the PROM board. All the information from the three PROM
groups come together to generate sinograms. It should be noticed that there are four auxiliary
bins (S0, S1, S2, S3) on PROM RPP, which were put there for cardiac gating studies
originally but were not used. the input of these bins can shift the memory locations according
to the signal of the input. This function is made use of by the EVR technique, and a new
PROM circuit board has been built for the EVR mode including all the capacity of the

previous PROM board.

2.3. A new programable read only memory circuit board

When the scanner operates in the new mode EVR, the phase-dependent memory
locations are specified by feeding the "phase signal” into the four inputs (S0, S1, S2, S3) of
the PROM RPP. As shown in Figure 2.8, a signal W/S, issued by the DAP, signals the
PROM board whether the scan mode is stationary (W/S = Q) or wobble (W/S = 1). This signal
is set when the acquisition protocol is loaded. In order to allow the scanner to function in the
EVR mode, while not interfering with the capacity to switch to stationary or wobbled modes,
the signal W/S is converted into W/S’ to control the PROMs, while the W/S signal controls
the rest of the scanner. This conversion to W/S’ is made by a logic circuit, the inputs of which
are W/S and P (power of the stimulator, P=1 when power on, P=0 when power off. See 2.4
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"Stimulator"). W/S’, working together with W/S, triggers the scanner to work at only one of

the three modes according to the following truth table:

Table 2.1 The truth table to set the modes on the new PROM circuit board

W/S P wW/S’ mode "
0 0 0 stationary
0 1 0 stationary
1 0 1 wobble
|1 1 0 EVR

From the truth table, it is found that W/S and W/S’ are opposite only when the scanner
operates in the EVR mode. In this situation, W/S’=0 tells the PROM Board not to add
wobble position displacement to the projections, while W/S=1 tells the DAP to allocate
memory for a wobble scan. Then singles and coincidence data will be accumulated in separate
memory locations. The sequence of the location is according to the signal input from SO, S1,
S2, S3 (See Figure 1.3). The data structure will be discussed in the next chapter “Software”.

A stationary scan can be done whether the stimulator is on, but a wobble scan is only
possible with the stimulator off. An EVR scan can be done by applying power to the
stimulator, turning off the wobble motor manually, but choosing an unaltered wobble
acquisition protocol.

Four LEDs are mounted on this circuit board to monitor the phase signals, and a fifth
LED is mounted to monitor the modes.

An OR logic is used to generate a signal E (E = OR[SO, S1, S2, S3]). This signal is fed
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to the Logic Control Circuit Board to control the exchanging between stationary, real

wobbled and pseudo-wobbled (EVR) modes. (For details, see next section)

2.4. Modifications on the logic control circuit board

When operating the scanner in the wobbled mode, DAP will issue a command to turn the
wobble motor on as in the case of a real wobble mode, and a wobble position encoder is used
to detect the motion of the wobble motor and send the position information through an eight-
bit counter to the DAP. The scan can be enabled only if the DAP detects a continuous
position change. Otherwise, the DAP issues an error message and prompts the user to restart
or cancel the scan. In order to disable the wobble motor for this "pseudo-wobble" scan while
avoiding this error, another circuit on the logic control circuit board was modified to provide
the missing input from the counter. (The logic control circuit board is used to control the time
sequence of the data acquisition).This part of the hardware modification is described in the
following paragraph.

As shown in Figure 2.9 and 2.10, on the original logic control circuit board, one octal
buffer (7415244, OB1) was employed to work as a bus driver to enable the pulses from the
wobble motor encoder to be read by the DAP. For the special purpose of the new EVR mode,
the circuit has been modified to generate a series of pseudo-wobble pulses. these pulses may
be started and stopped at the code which corresponds the code of the home position of the
wobble motor (Figure 2.11). The home position is the position at which stationary scans,
blank scans and transmission scans are taken and also is the physical position for EVR scans.
The coordinates in the world of the reconstructed PET images are also set up according to
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the home position.

Fig. 2.10 shows the new circuit used to implement the functions described above. For the
pseudo-wobble encoder, a series of TTL pulses are generated by a timer (NESS55) to simulate
the pulses from the wobble encoder. The frequency of the pulses is 128 pulses per second
which is equivalent to the wobble speed 30 rpm. This signal goes to an eight-bit counter
(74LS393N) and the eight-bit signals are transmitted by an octal buffer OB2 (74LS244N) to
the bus to DAP I/O. This bus originally serves to receive the signal from the wobble encoder
through octal buffer OB1. Either of the two octal buffers must be enabled so that the bus can
carry the signal either from the wobble encoder or from the pseudo-wobble encoder. An RS
flip-flop is employed to enable either of the two octal buffers according to whether the EVR
mode has been selected. OB2 is opened for the EVR mode while OB1 is closed; OB1 is
opened for wobble and stationary modes while OB2 is closed. (The time sequence of this
logic is shown in Figure 2.11). The signal E from PROM board will be high if any of the 4 bits
is high, which happens only if the EVR stimulator is working at the EVR mode and one of
the 8 phases are active (see section 2.4 " EVR stimulator"). Another signal Home is computed
by taking the AND of all the eight wobble position bits, which occurs only once in every 256
pulses. NOR(E) is used as a R (reset) and NOR(NOR(E).AND.NOR(Home)) is sent to the
S (set) of the RS flip-flop. This logic also automatically corrects the unstable state caused by
the situation when both R and S are 1. Because the pseudo-wobble encoder signal is always
running, a Home signal will be generated to set OB1 open and make the wobble position code
to the DAP stay at Home, so that the scanner is always ready to be used for stationary or

wobble modes.
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2.5. EVR Stimulator

In order to provide the correct experimental sequence during EVR studies, an electronic
device called EVR Stimulator has been designed for the EVR technique (Fig. 2.12 - 2.15)
to: (1) generate the phase signals (S0, S1, S2, S3) to gate the PROM Board with a given
phase-duration; (2) assist to set the scanner to EVR mode (See section 2.3 “Logic Control
Board™); (3) synchronize the acquisition phases with the stimuli given to the subject; (4) set
the pattern of the stimuli; (5) modulate the sweeping frequency of the stimuli to provide
choices to deal with physiological adaptation effects.

The following paragraphs describe the electronic circuits designed for this device.

2.5.1. The main circuit

As shown in Fig. 2.13, the main circuit of the EVR stimulator employs an astable
(NESSS) to generate pulses with an adjustable frequency from 0.25Hz to SHz. The signal
splits to provide three outputs after processed by two decade counters. One output is fed to
the 4 bins (S0, S1, S2, S3) on the PROM RPP. Another output is sent to a numeric display
which indicates the present phase. The third output is sent to two comparators (74LS85)
where the present phase is compared to the “start" and "stop" codes which are set by two
manual switches. (The “start” and “stop” codes can be set at any number from 1 to 8). Then
one or two sets of stimuli are enabled to begin at the "start" phase and to stop at the
beginning of the "stop" phase. Two sets of phase-dependent stimuli can be applied at the same

time if necessary. Two LEDs are mounted on the housing to monitor which of the two stimuli
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is on. For studies involving vibrotactile stimulation, two solid state relays can be gated by the
"start" and "stop” phase to switch the power of the two vibrators on and off. There is also a
manual switch on the housing to set the stimulator on either "EVR" or "Normal". The
"Normal" position is reserved for stationary scans (Figure 2.13).

The phase duration is critical for the observation of the vascular or neuronal response. it
is now set to be adjusted from 2 seconds to 40 seconds. Four values can be preset with the
trimmpots which represent Ra (Figure 2.13 ), and can be easily varied by a switch mounted
on the circuit housing. Two ranges (a “fast” and a”slow”) for the duration are set by
exchanging the capacitance C, which is by a switch on the housing too.

The frequency is given by [TTL Data Book ; TTL Data Book supplementary.]:

1.44
= Z H:
FRarye P 2.4)
And the phase duration will be:
10
p=7=693 (Ra+2Rb)xC (S) (25)

Presently, two phase-duration ranges are available. The “fast” range is from 2s to Ss, and the
“slow” range is from 5s to 40 s. These ranges can be easily adjusted by replacing Ra, Rb and

C if necessary.
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2.5.2. The circuit to modulate the stimuli

In order to achieve the optimum activation for the purpose of functional brain studies,
some physical variables of the stimuli must be carefully adjusted. Some of these variables
include: (1) amplitude of the stimulation; As an example the head of the vibrators can vibrate
with an amplitude of 2mm. (2) Intrinsic frequency; As an example the vibration frequencies
of the vibrators provided by the manufacture are 60 Hz and 120 Hz. Thus the amplitude can
change 60 or 120 times in a second; (3) modulation frequency; (4) duty cycle of modulation
(T, /(T +Ty ) in Figure 2.7) [TTL Data Book supplementary]. Both modulation frequency
and modulation duty cycle are for obtaining desirable physiological effects. Figure 2.16 shows
a stimulation pulse from a vibrator with its amplitude, intrinsic frequency, modulation
frequency and modulation duty cycle. Similar variables are also critical for other kinds of
stimulation such as visual, auditory stimulation. Figure 2.15 shows an auxiliary circuit built
on the circuit board of the stimulator for the purpose of modulating some of the above
parameters. A dual timer (LM556) is employed. One works as an astable to generate a series
of pulses at a certain frequency, which is the modulation frequency of the stimuli. This
frequency can be adjusted with a trim-potentiometer R-VAR-1. the pulse is fed into the other
timer so that the duty cycle can be adjusted by a second trim-potentiometer R-VAR-2. This
modulated pulse, sent with the output of the comparator to a logic AND, controls the
stimulation given to subjects. A switch (SW-M ) may be used to override the stimulus
modulation as well. Amplitude and intrinsic frequency are not varied by this circuit. Rather,

they are adjusted on the apparatus which generate the stimuli.
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The EVR Stimulator was applied to the EVR studies with vibro-tactile stimulation, which
will be described in details in Chapter 6. It can be also used to control apparatuses for other

kinds of stimulation such as visual and auditory stimulations.
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Annihilation point

D
&

N detectors

Figure 2.1 The geometry for calculating the projection angle () and the position along projection line
(d) for each detector pair. The detector numbers increase anticlockwise starting from detector 0 on the x
axis to detector N-1.The detectors are numbered from 0 to N-1. B and D are two detectors, r is the
radius of the detector circle. « is the angle of the annihilation point, s is the distance from the annihilation
point (A) to the centre (O).



(b)

LOR DB sampled into
5 in wobbled mode

Figure 2.2 (a) A simplified illustration of detector pairs to generate sinograms in Figure 2.3. (b)
the S positions of a detector pair when the scanner operates in the wobbled mode, which samples
each LOR into 5.
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Figure 2.3 A sinogram generated by all possible detector pairs in Figure 2.2 (a). The
projections from detector pairs with even and odd number-differences (e.g. D - B) are
written separately for Scanditronix PC2048-15B.
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Field-of-view

Field-of-view limits the Coincidence in the direct planes (A1-B1), (A2-B2) form direct
project length, which sets the slices, Coincidence in the adjacent planes (A1-B2) & (A2-B1)
radial acceptance criteria form a cross slice

Figure 2.5 Axial and radial acceptance criteria. The former limits the projection length, and the later results direct and cross slices.



Detector rings

New function

n m s e I me e R G FER e W G R A A G Ay EEG M Tm S Em

W/S - W/S°

converter

-«

W/S(Wobble/Stationary
signal from DAP)

P (Power of the
stimulator)

-

T———
Projections :
|
Wobble position : WS
1
N2Y N7y NI
PROM WDP PROM MPP : PROM RPP
-

Singles data

Figure 2.6 A diagram for the original and new PROM circuit board of the Scanditronix PC2048-15B PET scanner.

Adders

Address (to generate sinograms)



To control other

PROM groups

w/s'

To logic control
circuit board

74L832

741832

74L532

74L832

74LS04

6351641 RPP

(o]

v M

zl

4

ol

Ulﬂ

.
e

;3 c:é) Y
"~

[ R R P

Ko} [ J Qg

TN 2

© o o1
N QR

O 0 U~

By Dy

741832

A

4 . \\/S
390
2 |
741804 5

re————- t

\ L 26 }’ —p |

| |
741508 741504 I | f[’,'
2 8 ‘“—OVCC SOl
N3 : :5
I~
: 741504 LED ~ -5y,
| |
M rt
- I 1 sz" o
| i

i 8 A = {K_OVCC — | pmn 53

390 ' [

LED - -

74504

——l i

74L504

Figure 2.7 The part on the new PROM
board designed for the EVR mode

JAT OF




A 1

To control other

PROM groups

Ww/s

COINC

asn uT JON

3 "

741832

. HIA

R5 -- RO

To adders
generating
sinograms

for

740532

741832 3
> 1 10 1

N 1 ] 'S

6351641 Rpp ﬁ-

741832
741504

GND

Figure 2.8 The part on the pevious
PROM board compared with the new PROM
board on Figure 2.7

B T c I )




From woble

position encoder

.

New functions

r—-—————"—"—""~—"—" - - —-—=———-= 1

| Home L> Flip-flop Q 3> g I Q
E{(from PROM board) o 3 ;

I Pseudo-woble |

| position encoder Enable Enable

| b | Octal b

) : Octal bus ctal bus

| (Astable) Eight-bit :> driver | driver

| countor OR?2 | OB1

| cp (o)

I

Other functions

Home

Octal bus
driver
OB3

DAP 1/O

Figure 2.9 A diagram of the pseudo-wobble encoder and the logic to exchange scan modes on the Logic Control Circuit Board.



E

From PROM board

—[T_i

-]_:O,DNJ

Home Flip-Flop
[ ol |
| |
1 So
I 8 1 Q
" 2 10 T
i — '
741800 : [
741504 i :
. { ; I
4 | 13 |
11 |
'I 5 | 12 i
i R I
| |
L. - - — P |
From wobble
vce encoder
740804 0 7
Ra N L
N
EZEEEERE
1
*—=d 1G
R 3 CP [ 194 7415244
R D,g (75 b=3 9K 6 OB1
CV  THR T RRRY
ANWAEDL WM -
NES55
;a:ﬁumﬂw
' 12 8 1 N 9
—LDMU 3 5 5120 88 2
I 2 1015 |22 212 75 1
= : 171 2A3 2Y3 |3 5
GND 5 g | %A 2Y4 95
s 5] 1A 1Y4 =5 A
0 EC 1 1A3 1Y3 [ 3 13
3 7] 182 1¥2 5 * 740521 |
6 1A1 1¥1 3 12
12
OB2 4
+ 10
7415244 9

;

To DAP I/0

Figure 2.10 Pseudo-wobble encoder and

the logic for exchanging scan modes.

(On

the Logic Control Circuit Board)

74L821

74L500

Home

8 |




Home /I:b‘ ﬂ I—! \ \
10\ =« > Y \
/! \ 128 pulses/s |' \\ \
/ ‘I ‘; A I\
e / vy
VY Y I, /I I’
' { \
v ©my\ LI L e e L
\\ :__256 pulses_:i : 1l //
\: | VA
Q i g
| |
! ?
Q|

Figure 2.11 Time sequence of the logic exchanging modes of the scanner. The pseudo-wobble encoder will be on in the
EVR mode when E is high,



DAP

oo The EVR stimulator | >
Decade Phase
Timer counters monitor

> > 2./ §

BCD switch Comparators PET camera

“START” 1 4
“STOP” 5
1
BCD switch Comparators
“START” 4 4
«$TOP”| 1
To control another set of Right
stimulation vibrator — =TT

Figure 2.12 The diagram of the EVR stimulator and its application to PET studies with vibrotactile
stimulation,



vee ) /. Ra Tenths
) 110>A QA ;2 Z 1 AP 3
[ ——8 QB [3 7] 2 B P33
Qc 3 614 C Py
L ph—0 ) ap °1s o pe
B—5- RO(1) B—q B/RBO E Pis
B85 RO(2) B—39q Rsl F Pya
2 R 3 3—7‘Rmn B—q LT G
® @ Rb Ra2) 74L547 man8640
DIS FH——8—AAA— 740590
5 6
e THR
NE555 )
A Units
vce 4 5 7 | 13
w0 A QA Ig i1l A P12
i 18 QB 5 12 B Py
1€ Qc 43 514 ¢ Pig
1 fFast D ap 1] 8 D Pg
slow as B—q BIRBO E ps
Scbcus B—3d Rl Fp 2
: — S LA
3d cir 741547 mang640
start v1 “F Stop V1 730519 Start V2 Stop V2
BCDSW1 BCDSW2 F BCDSW3 BCDSW4
EVR
TS ® T
e it WEkebbpbe TPkt
TrrBRUBER2E ThrERQBRERE TRr>EBAERRE TrrEga@xrry
o ® o ood »ad
74585 74585 74585 74585
v)u,i’ b: 1 pr »r>p
v N A v il A VvV il A
@ o © [er )oY} wWoo
UBA UTA UBA USA
' SO - s3
To PROM board
To U10A-1 To UllA-1 To Ul12A-1 To UI13A-1

Figure 2.13 EVR Stimulator. Main
circuit (page 1)

L

T




From U6-6 From U7-6 From U8-6 From U9-6
U10A UT1A U12A U13A
74504 74504 74504 74504
] ) )
1 1 1 1]
a 3 3
2 2 2 2
74508 74508 774308 774508
4
RESISTOR B a
1A RESISTOR V1A
74504 74504
v vee vee
LED 9 LED From U25-9
To U27-2
To U27-1 *
> ] =N
U20A u21A
74508 74508
u22 u23
Sl ‘PR Sl PR
8lor 1 —2——L Blor i 2__|_
$s11.120d10 == ssft-120d10 —
@)
3
~
g oo 11 oo Ly
S a 2| (O vz , (v
0 L L
Left vibrator right vibrator

Figure 2,14
Circuit (page 2)

EVR Stimulator. Main

1




™
R-VAR-1(frequency)

vCC

10k
R-VAR-2(duty cycle)

i"‘é .

11 9 i MP

§{CON  OUT I3

o i34

CON ouT

TRG DIS

5]IRG  DIs

in]
g

741508

THR

51 THR

RST

'ANO!U

VCC (4 LMSS6-1

RST

u25 LMS56-2

48

u27
741832

From Ul8A-2
From UlS8A-2

vCC

F-¥recn

» ¢-v¥Yoen ©lL

Figure 2,15 EVR Stimulator.

Modulation circuit (page3)




Stimulation (intrinsic frequency 60Hz)

L 2mm
8
'—a 0
g
<
Modulation function (Output MP in Fig, 2.15)
1 < Ty »< T, »
0
Modulation stimulation
o 2
S mm

Figure 2.16 Specifications of the vibrotactile stimulation and its modulation. Where T, and Ty are usually

set to 1 second.



3. Software design for the EVR technique
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3.1. Overview of the software of Scanditronix PC2048-15B PET

scanner

Apart from the hardware which acquires the data and stores it into sinograms, a PET
scanner also requires a large amount of software to operate the hardware, to transfer the data
into a file of a specific format on the host computer, to reconstruct the data to produce
images, and to analyse the images according to the particular purpose of the study.

As shown in Figure 3.1, there are three major program packages which fulfi! the basic
functions of the PC2048-15B scanner: (1) PCAM for acquiring data; (2) REC for
reconstructing image files from the raw data; (3) SEE for displaying and manipulating the
images [Scanditronix PC-2048B software manual]. These three programs are employed for
EVR scans in a conventional way without any modification. Because the sinograms of an
EVR scan are written in a special structure by the new PROM circuit board when the gating
function is applied (see section 2.2), a new program CONEVR was written to convert the
raw data of an EVR scan into 8 separate data files. The structure of the converted data is the
same as a normal stationary scan so that the data can be reconstructed in a conventional way.

The data structures of an EVR scan will be analysed in section 3.3 and the Program
CONEVR will be discussed in section 3.4. However, it is necessary to introduce the

acquisition program PCAM and its special requirements for the EVR mode first.
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3.2. Data acquisition program PCAM and its special requirements for

the EVR mode

PCAM sets its own parameters by loading and modifying a protocol which is a " standard"
file (STD file). Some of the parameters are for the subject, including name, age and sex. Other
parameters pertain to the settings of the scanner, such as the length of each frame of a scan,
the total scanning time and the wobble speed. The raw data ts acquired and stored to the DAP
disk by running PCAM.

The main acquisition programs and all the utilities are files which must be loaded from the
DAP disk. All the hardware of the scanner is controlled directly through DAP. The DAP disk
is logically divided into a program disk and a data disk. A data file uses different size of disk
space, depending on the field of view selected and the mode in which the acquisition system
is operated. When the data is transferred from the DAP disk to the data disk on VAX, data
files are reorganized, reformatted and a file header is added to each file. The header contains
the information from the acquisition protocol and the parameters of the hardware settings
such as the number of detectors per ring, number of projections per slice, sampling mode,
data type (byte, word or long-word) and the scan type (emission, blank, transmission). It also
records temporal information such as the time of injection (the time at which the radio-tracers
are administered), the measurement time, the measuring starting time. These data are
important for calculating the activity concentration, for random and dead-time corrections.

The acquisition protocol employed for an EVR study is the same as a normal wobble scan,
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as long as the gating function is on and the wobble motor is turned off manually (for details,

see section 2.2 and 2.3).

3.3. The structure of the data acquired in the EVR mode

Though we know that the new PROM circuit board gated by the auxiliary phase signal
can shift memory regions according to the phases when acquiring data, the detailed structure
of the data still needs to be revealed by experiments. For this purpose, some experiments are
arranged like this:

A cylindric liquid phantom full of %Ge solution was put into the field of view of the PET
camera. The size of the phantom was 175mm in outer-diameter, 200mm in height and a wall
thickness of Smm. The phase was set from 1 to 8 by using a manual switch to set the 4 gating
inputs on the PROM circuit board to 0 or 1 (to set the phase number from 1 to 8). A 10
minute EVR scan was done for each phase, and the data were moved to the VAX. A
stationary scan and a wobbled scan were also done with the same conditions.

The differences between the data structures among EVR, stationary and wobble scans
were found by examining the data files. Table 3.1 is a comparison of the file structures. From
the table we can see: Both stationary and wobbled scans have a four-block header (a block
is 512 bytes) followed by 16 blocks of singles written in long-words(32bits), and then
followed by sinograms written in words (16bits). The sinograms takes 720 blocks for a
stationary scan and 3840 blocks for a wobbled scan.

The singles are written in an one dimensional array with a size of 2048, since there are
2048 crystals; The sinograms are written in fifteen (48%256) arrays, one following another.
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empty byte Word L-word mix H-- header
- i S -- singles

C -- coincidence

STA --stationary
WOB -- wobbled
Ph.n -- Phase n

3860

WOB =
21 381 389 397
Ph. 1@7//////W 1
1 5 21 445
1 5 21 869
Ph. 3 e
1 5 21 1293
Ph. 4 [ R
1 5 21 1717
Ph. 5 [H e :
1 5 21 2241 2601 2609
Ph. 6 [H IV/////@/_’_/_////// %
1 5 21 2565 30253033 3041
Ph. 7 T/////ff/////r B
1 5§ 21 2989
Ph. 8 [HE V77728

Table 3.1 The structure of the raw data file of an EVR scan compared with a stationary
and a wobbled scan. The regular numbers are the beginning blocks of the contents, the bold
‘, ones are the sizes of the files. 1 block = 512 bytes. (Not to scale).



each array represents a sinogram for each slice, and the number of slices is 15; where 48 is

the maximum projection length in numbers which represent d, 256 is the total number of

detectors and also the maximum projection angle 8 in numbers ( See Figure 2.3 & 2.5).

For EVR studies, we notice that the singles are written in words instead of long-words;

the sinograms are written in bytes (8 bits) instead of words and they are written in locations

which are special when compared with stationary and wobble scans.

The data structure of an EVR scan can be expressed in the following formula:

B=20+(I-1)x424+(S-1)x24

8 (odd phase)
B¢=20+(I-1)*424+360+
0 (even phase)

For a stationary scan:

B.=20+(S-1)x24

B.=4

G.1

(3-2)

(3-3)

(3.4)

Where B, is the block which precedes the first block of sinogram in the raw data file for

phase number I and slice number S. By is the block which precedes the first block of the
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singles data in the raw data file for phase number I. There are 24 blocks of coincidence data
for each slice of each phase following 424 times the number of phase of blocks of zeros, after
that, there are 360 blocks of zeros and then 8 blocks of singles data. we need to pay attention
that there are 8 more blocks of zeros before the 8 blocks of singles data for the odd phases.
which does not happen for even phases. It is noticed that phase O is not used, because the data
does not follow the rules of Formula 3.1 & 3.2. Now the phases are limited to 1-8 for this
configuration.

In addition to the scan data, some of the parameters in the file header for an EVR scan
are written in a special way: The data type, projection length, sampling mode, measurement
time and measuring starting time are recorded as they would be for a wobble scan, which are
not true for an EVR scan. The data structure, including the header, needs to be reorganized
and rewritten as 8 new files that are structured as ordinary stationary scan data files, and the
temporal information also needs to be corrected to represent the real situation of each phase,
so that the data may be read easily and reconstructed correctly with the program REC. Table
3.1 is a list of some critical parameters in the header of a file acquired from a stationary or
wobbled scan.

Table 3.2 Some critical parameters for the stationary and wobbled modes

I
data type projection sampling
length mode
Stationary 0 (word) 48 0
Wobbled 0 (word) 256 5 (bins) i
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3.4. A program to generate reconstructible phase files

The program CONEVR is written for the purpose to rewrite the raw data of an EVR scan
analysed above to 8 distinct files with the structure of the file of a stationary scan. The
sinograms which are recorded according to Formula 3.1 are rewritten according to Formula
3.3, and the singles recorded according to Formula 3.2 are rewritten according to Formula
3.4. The parameters in Table 3.2 recorded as a wobbled scan need to be rewritten as a
stationary scan for the file of each phase. The measurement time (T,;) and measuring starting
time (Tg) of the file of each phase are calculated using the following formulae and written into

the header of the new file:

Lu=Tu/(SKSP (3.5)

To=Tea+([-1) D (3.6)

Where I is the number of the phase. T, is the measurement time recorded in the raw
data, T is the measurement starting time recorded in the raw data. S and S, are the singles
of the raw data and the new data respectively. D is the duration of each phase which are set
by the EVR stimulator (see section 2.2 “EVR stimulator”)

The time frame number in the string of the file name is changed so that the files for

different phases can be identified by its name. As an example, a raw EVR data file named as
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PCSOMANI -COACT 05254930001.DAT;1

(PC+patient-name+context+ID-number +$+frame-number+.DAT;1)

can result in 8 files in series for the 8 phases, when running CONEVR:

PCSOMANI -COACT 05254930011.DAT;1
PCSOMANI -COACT 05254930021.DAT;1

PCSOMANI -COACT 05254930031.DAT;1
PCSOMANI -COACT 05254950041.DAT;1
PCSOMANI -COACT 05254930051.DAT;1

PCSOMANI___ -COACT_____ 05254930061.DAT;1
PCSOMANI___ -COACT_____052549%0071.DAT;1
PCSOMANI___ -COACT____ 052549%0081.DAT;1

This change not only links each file to its corresponding phase, but also makes it possible

to merge the 8 files into one volume with a time dimension. Such a file can be read and

subsequently analysed temporally (details see Section 7.2, "Image conversion and format ").

An EVR data file can be simply rewritten by running CONEVR by inputting the raw data

file name and the phase duration. Total singles of the raw data and each phase, total

coincidence of each phase, measurement time and measuring starting time can be displayed

when running CONEVR. The role CONEVR plays can be seen in Figure 3.1, which can be

treated as another package of the software systems. Figure 3.2 is a flow chart of the program

CONEVR.
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The rewritten data files are ready for reconstruction.

54



mmemmmm—= Electric wires
Raw data Images Results
Getting program Header Header RO
= = =— L oading data | _Singles 128x128 TAC
] analysis,
IO Outputing data Coincidence etc,

- o
: e ;
I '
- | | r— = P if Lt
E I I I I :““”"‘"“""““""""”""""""“"'"E gg
! I I i 1n,k,|’ Y
| 1] R i uum%l'@.w
L. b
JEESSEEeE
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scans,



Revision history, definitions and declarations
T

—>> Input raw data file name
r I
No / Can open? /
.

Input phase-duration
T

Read temporal information in Header (Tyg ,Tgx Display

Calculate total singles S Display

i
___;= Do phase =1, 8

1

Read singles, (Formula 3.2)

T
Calculate total singles for the phase (S) Display
p I
No / S, > threshold ? 7
I

Assign name to new file for the phase
N

Open new file (format of stationary scan)
1

Write singles to new file, (Formula 3.4)
|

Do slice =1, 15
1

Write sinograms to new file (Formula 3.3)

T
Calculate total coincidence per slice — | Display

I
Calculate T, , T (Formula 3.5 & 3.6) — Display

1

Put in Header parameters (Table 3.2) as a
stationary scan, temporal information,
Coincidence Counts per slice

Close new file
T

Close raw data file
T

END

. Figure 3.2 The flow chart of CONEVR program.



4. Simulation and phantom tests

SSSDSODDDSDDDDDDDDDIDDIIDDIDDDISIDDDDZODDDIDIDIDOSIDSDDISODDIDDDDIDDDIDIDOSD

Strict testing of the hardware and software was required before performing any studies
with human subjects. Phantom tests simulating the conditions of a real EVR study are
indispensable to test the mechanical, electronic and software aspects of the system to ensure
that they function reliably and produce images with the required precision.

Testing with a stationary radioactive rod source, an orbiting radioactive rod source and
a brain phantom filled with radioactive solution were done in order to ensure that (1) the
coincident and single events were rewritten properly; (2)the gating technique functions
properly; (3)the parameters in the file-header of each phase file were written properly to
permit the REC program to read them and to generate images which represent the reality

quantitatively with the resolution of the scanner.

4.1. Testing the sinograms with a radioactive rod source

4.1.1. Materials and methods

In order to examine if the coincidence data in sinograms were written properly, a %Ge
radioactive rod source was put at a position in the field of view of the scanner along the axial
direction (as shown in Figure 4.1). A scan was acquired in an EVR mode, transferred to the
data disk on the VAX and converted by CONE VR program. The sinograms were examined

with the SEE display program.
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4.1.2. Results

Figure 4.2 shows the 15 pairs of sinograms of the data of phase 5. We can see that the
sinograms of the radioactive rod were written in a sine shape according to the rule in formula
2.3, which means the coincidence data were acquired by the hardware and restructured by the
software correctly.

The sinograms of the data of other phases (which are not presented here) were examined

and found out to be identical to phase 5. This is because the source was stationary.

4.2. Testing the gating function with a rotating radioactive rod source

4.2.1. Materials and methods

The following tests employing an orbiting radioactive source have been done to test if the
gating function, which accumulates the data into 8 separate bins, is reliable.

The set-up of the test and the diagram of the electronics are shown in Figure 4.3. The
same rod **Ge radioactive source was mounted on an eccentric arm which was rotated by a
small synchronous motor at a speed of 1 rpm. The rod source is parallel to the shaft of the
motor along the axial direction of the camera. The orbit of one point on the source follows
a circular path centred on the axis. A shaft encoder was employed to detect and record the
angular position of the shaft by producing 256 index pulses and one origin pulse per
revolution. The “index” signal were counted by two eight-bit counters in series, so that only

the 4 highest bits are used to encode the angular position of the source by outputting 8
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numbers (0 - 7) to identify 8 different periods in each revolution. The “origin” signal resets
the counters at the end of every revolution. A logic adder is used to add 1 to the inputs to
(S0, S1, S2, S3) so they repeat from 1 to 8 instead of O to 7 in each revolution according to
the requirement of the EVR mode (for details, see Section 3.3). The output of any
combination of the eight bits were connected to the four bits SO, S1, S2, S3 on the PROM
board (Figure2.7) so that the gating of the PROM was synchronized with the rotation of the
source. The data was acquired with the scanner on the EVR mode, transferred, converted
with the program CONEVR and reconstructed to a series of 8 normal 15-slice images with
the program REC.

In a ten-minute EVR scan, the source rotated for several revolutions, and it was expected
that the 8 phases of the images of the radioactive source should have produced a series of
images of arcs with the same radioactivity concentration on the circumference of a circle,
where the length of each arc should have been 1/8 of the circumference without gaps or

overlaps between adjacent arcs.

4.2.2. Results

Figure 4.4 shows the images of the 8 phases of slice 6 of the orbiting radioactive source.
It is shown that each image is produced from the data from the source as it sweeps through
a 45-degree segment of its orbit. No spillage of data was observed. It maybe noticed that the
arc of the first phase starts from a 22.5 degree from the horizontal line. This is simply because

the starting point was chosen arbitrarily in the experiment.
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The images of other slices were examined and the same expected pattern was observed.

These results show that the gating technique works as expected.

4.3, Testing the normalization with a '®F-FDG filled Hoffman brain

phantom

4.3.1. Materials and methods

A Hoffman phantom study was done to test the normalization which is determined by (1)
the rearrangement of the singles data; (2) the calculation of the temporal duration of each
phase (for details, see Chapter 3 "Software").

A Hoffman brain phantom [Hoffman brain phanton manual] is a cylindrical phantom
composed of many thin layers of plexiglass with different pattern of holes on each layer. When
filled with radioactive solution, the distribution of the radioactivity concentration is similar to
that of a real brain and macroscopically simulates a brain’s gray/white matter distribution. For
this particular experimental setup, a Hoffiman phantom was filled with SmCi of “*F-FDG
solution diluted with filtered water. Air bubbles were removed from the solution, and the
phantom was well sealed and placed within the field of view of the PET camera. A 10-minute
EVR scan was done with a phase-duration of 20 seconds. The phase-duration was not
relevant in this study, since the phantom was in a static state, so that the activity concentration

should remain constant between phases after the correction of the decay of the isotope.
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4.3.2. Results

Figure 4.5 shows the 8 images of 8 phases of one slice (8th slice is chosen) from the above
experiments. The circle on each image includes the same arbitrary region of interest (ROI).
Figure 4.6 shows the averaged activity concentration in the ROI (y coordinate) as a function
of the number of the phases (x coordinate). With a linear fitting y=ax+b in least-squares sense,
the coefficient a = -0.0044x10* and b = 4.0312x10° result in a 0.1% difference on averaged
activity concentration between phases. This insignificant difference means the normalization
was properly done with the program CONEVR. However, the images are usually re-
normalized at the stage of data analysis of activation studies, which will optimize the
variations introduced at this stage of data conversion (for details, see Section 7.5 "Resampling

and normalization").

4.4. Testing the reliability of the logic controlling with a "*F-FDG

filled Hoffman Brain Phantom

Some more scans were done with the same Hoffman phantom to test the controlling logic
(for details, see Chapter 2 section 3 "Modification of the logic control circuit board”).
Waobbled, stationary and EVR protocols were selected in a random order to acquire data.
Images were reconstructed and examined, and no abnormality was found during the
acquisition process and image reconstruction.

After all these simulation tests, the EVR technique is ready for trials of activation studies

with human subjects.
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Figure 4.1 Front view of the position of the
radioactive rod source in the sinogram test.

[ SO

Figure 4.2 The sinograms of the 15 slices of one phase of the EVR scan with a radioactive
source at the position as shown in Figure 4.1. Each is written in a pair (ref. Figure 2.3). The
sine waves in the sinograms correspond to formula 2.3, which proves that the CONEVR
rewrites the coincident events properly.
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Figure 4.4 A series of 8 images of the 7th slice acquired during the gating function
simulation test with a rotating radioactive rod source mounted on a shaft encoder.



Figure 4.5 Eight phases of the image of the 8th slice of a Hoffman phantom filled with 5SmCi *F-FDG solution. The circle defines an
arbitrary ROI for study.
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5. HNC labelled CO gas system
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The EVR technique was first applied to the measurement of the cerebral blood volume
using ''C labelled CO as the tracer. A '"C-CO generating system was built for this study and
may be used for other studies later. The *C-CO system consists of two main parts as shown
in Figure 5.1 and 5.2. The tracer is first produced in the production unit and passed along a
delivering line approximately 50 metres long to the receiving unit where it is stored and

administered to the subject.

5.1. The gas production unit.

The radioactive "'C-CO gas is produced with an IBA/Siemens negative ion cyclotron. The
nominal beams of the cyclotron are 100pu A for protons and 60uA for deuterons [Diksic M,
1996]. One of the targets of the cyclotron is used to produce ''C-CO gas. The newly built
C-CO gas production line consists of the target, a trap to condense the radioactive CO,, an
oven to convert CO, to CO and another trap to remove CO, residue from the output of the
CO gas. The ''C-CO gas manufacturing process is described below:

(1) Protons generated from an ion source in the centre of the cyclotron are accelerated
to an energy of about 18MeV. The proton beam bombards a gaseous nitrogen target mixed

with 0.15% oxygen. The gas is compressed to 0.3 liters in the target box using a pressure of
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20atm. The “N(p,)"'C nuclear reaction will take place in the target box to produce the
positron-emitting ''C isotope. Then, the following chemical reaction takes place with the

energy of the proton beam deposited in the target box:

C + O, + energy = CO, (5.1

The amount of CO, produced is controlled by the beam intensity and the bombarding time.

(2) The gas in the box then contains N,, and a small percentage of O, and "'C-CO,. The

composition of the gas is:

50mCi of "'C-CO, containing 3.3X10" molecules
0.3L N, at 20atm and 20 °C containing 1.5X10% molecules

0.15% O, containing 2.3X10% molecules

In order to convert ''C-CO, into a bolus of ''C-CO efficiently, the tiny amount of **C-CO,
in the box needs to be purified by removing the N,. This is achieved by passing the hot gas
into a trap which is a coil made of a stainless steel tube. The trap is dipped into liquid nitrogen
which is at -195 °C and the CO, and O, condense in the coil. The nitrogen will pass through
the tube and be ventilated. It takes about 2 minutes for all the radioactive gas to be
condensed. Table 5.1 is a comparison of the temperatures at which nitrogen, oxygen and

carbon dioxide change state:
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Table 5.1 Temperatures at which CO,, O, and N, change state at latm.

" Material Temperature Phases of states
CO, -78.5°C gas-solidate
0O, -182°C gas-liquid

| N, -195°C gas-liquid

(3) The coil is then raised out of the liquid N, and allowed to reach room temperature to
gasify the condensed material. High pressure helium gas is then released to direct the material
into a charcoal filled oven. The oven is heated to 900°C producing the following chemical

reaction:

CO, + C + energy - 2CO (5.2)

0, + C - 2C0 (5.3)

The converting efficiency is dependent on the surface area of the charcoal and the amount
of 'CO and O, molecules passing through the oven per unit time (which is dependent on the

flow of the gas). The Flow rate, temperature, and temperature uniformity in the oven are
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critical for efficient CO production. These variables are controlled using needle valves and a

temperature controller [Jolly D, 1995].

CO, + NaOH - NaHCO, (5.4)

(4) The gas from the oven is passed through a soda lime trap to remove any CO, residue:
Failure to remove the ''CO, residue will result in contaminating the CBV images obtained
by ''CO. We would then obtain a CBF distribution overlapped on the desired CBV
distribution.

Pure CO including the radioactive CO is mixed with helium gas (which is inert). The
gaseous mixture may then be administered to the subject.

With this "'CO generating system, 70mCi of '*CO gas is able to be produced stably using
a 15pA x5 minute proton beam. This is more than is required for one subject since 25mCi is

the limit for a human subject [see appendix, EVR consent form].

5.2. The gas receiving and administering unit

The gas receiving and administering unit consists of a gas reservoir with a radioactivity
monitor, a medical air supplier and a mouthpiece for inhalation. The process is described
below:

(1) The gas from the production unit is a mixture of helium and CO. The gas is delivered
from the production unit through a delivering line in the ceiling to a rubber bag ( capacity of
3 litres) next to the PET scanner. This takes about 12 minutes.

(2) The gas in the bag is mixed with medical air (Medical air is purified air produced in
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the hospital for clinical use). The activity is monitored with a y-ray counter underneath the
bag. After the activity reading reaches the amount required by the scan protocol, the rest of
the gas in the delivering line is vented via the exhaust duct. The gas in the bag is ready to be
administered to the subject.

(3) A mouth-piece, (which is connected to the bag through a valve), is then given to the
subject. The subject’s nose is clipped in order to prevent gas leaking into the PET room. The
investigator will give instructions to the subject to inhale the gas in one or several breaths.

The scans can proceed 4 minutes after inhalation of the gas. By this time !CO equilibrium

is established throughout the body [Phelps ME, 1978].

5.3. CO risk considerations:

Several considerations are necessary in order to safely and efficiently administer the
radioactive gas to the subject:

1) A total amount of 0.02 litre CO is administered with 3 litres of normal air to a subject
during one study. Only 0.7% of the inhaled gas is CO, corresponding to approximately 5x10%
molecules (An adult takes in 102 -10* oxygen molecule per minute during natural breath ,
and the CO competes with O, to combine to red blood cells). This is well below the toxic

level. The total amount of CO is derived as follows:

v

o = 0.3%x20atm=0.3] = 0.021. (at latm) (5.5)

The target box has an original pressure and volume of 20atm and 0.3 1. 0.3% of the
volume is CO produced from 0.15% O,.
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2) 25mCi of "'C produces a whole-body exposure of 5.1 mSv, which is within the limit
allowed by the Ethics Committee at the MNI. The details of which are in the EVR consent
form in the appendix.

3) The amount of the radioactivity administered to the patient is carefully monitored by
the y-ray counter. This avoids over-dosing the subject.

4) The gas system is well sealed in order to minimize the background radiation in the PET

room.
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Figure 5.1 The system to generate and deliver the ''C-CO gaseous tracer, (Not to scale).
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Figure 5.2 The system to receive and administer the ''C-CO gaseous tracer. (Not to scale)



6. Experimental setup of an EVR activation study with

vibrotactile stimulation and '*C-CO gaseous tracer
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6.1. Subject selection

Eight healthy human subjects were selected as volunteers. No preference for handedness
or sex is given to the subjects. The average age of the subjects was 23. Consent forms
approved by the Montreal Neurological Institute Ethics Committee were given to each subject
so that he/she can fully understand the procedure and the level of risk due to the radiation.
The consent forms were signed by the subjects, the main investigator, a medical doctor and

a witness prior to conducting the study (see EVR consent form in appendix).

6.2. Experimental procedure

6.2.1. The EVR CBY activation protocol with phase-dependent stimulation
(1) A head-restraining mould was made to prevent the head of the subject from moving
while in the scanner.
(2) The scanning level was selected to locate the region of activation in the optimized area
of the field of view of the scanner. This positioning was verified by doing a brief transmission
scan to show the location of the head on the display.

(3) The wobble position was reset to “Home”, and the wobble motor was turned off
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manually. This is critical for the EVR acquisition protocol. (for details, see Secticn 2.3 "New
PROM board" and 2.4 "Modification of the Logic Control board" )

(4) A ten minute transmission scan was done for the purpose of attenuation correction.
(A blank scan was done in advance, at the beginning of the day).

(5) The EVR stimulator was connected to the scanner, powered up and switched to the
EVR state. (Refer to Figure 2.13). The finger-tips of the right hand of the subject were taped
loosely to touch the head of the mechanical vibrator. The application of stimuli was sequenced
by the EVR stimulator to switch on and off according to the pattern in Figure 6.1. The
stimulation was on during phase 1 to 4 and off during 5 to 8. A phase duration of S seconds
was selected, allowing 30 cycles of data to be acquired.

(6) "'C labelled CO gas was produced and contained in a rubber bag (See Chapter 5, “CO
gas generating system). Enough ''C-CO gas should be delivered into the rubber bag so that
an activity of 25mCi be administered to the subject. The gas, mixed with medical air, then
was inhaled by the subject using the multiple inhalation method described below.

(7) The scan was started 4 minutes after the inhalation, with the stimulation on..

(8) The stimulation was stopped and the vibrator was removed from the hand of the
subject. A 60-minute rest-state scan was then acquired.

(9) At the end of the study, the state of the scanner was reset to the original state.

(10) An MRI (Magnetic Resonance Imaging) image was acquired to provide an image
which contains the detailed anatomical structure of the subject’s brain for data analysis and
physical interpretation of the results.

(11) The acquired data from the activation and rest-state were reconstructed to generate
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images for subsequential analysis (for details, see next chapter).

This protocol was applied for 4 of the 8 subjects scanned.

6.2.2. The stationary CBV activation protocol with continuous stimulation

The purpose of the this protocol was: 1) to estimate the detectability of the activation in
the images resulting from this particular kind of study; and to 2) to contribute to the assessing
of the significance of the activation in the average images from multiple subjects [Worsley,
1992], particularly when the SNR of an image of a single subject is very poor.

The procedure is the same as the EVR CBYV activation protocol described above, except
that (1) the stimulation is on constantly during the 20-minute activation scan (Figure 6.1);
(2) The data are acquired in stationary mode instead of the EVR mode.

This protocol was applied to the other 4 of the 8 subjects before the EVR CBV protocol.

6.3. Multiple inhalation method

One major factor limiting the SNR of CBV images is the low efficiency of the uptake of
the gaseous radioactive tracer. Most of the previous studies employing ''C CO tracer used
the single bolus inhalation method [Phelps 1987, Grubb 1987, Martin 1987, Cherry 1993].
It was found that merely 1/3 of the ''C activity in the administered gaseous bolus combined
with red blood cells, and the rest was quickly exhaled [Grubb RB, 1987]. This low efficiency
did not pose a problem for global CBV measurement, but was apparently critical when

detecting local CBV variations induced by a stimulation by subtracting a rest-state image from
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an activation image, because the magnitude of CBV changes are much smaller than that of
CBF changes [Fox PT, 1986], and CBV images are much noisier than CBF images [Cherry
1993].

In order to improve the efficiency of the tracer uptake, a multiple inhalation method was
devised, as described below.

There is a valve connecting the subject’s mouthpiece with either (1) the CO reservoir or
(2) the exhaust duct (see Figure 5.2). The valve can be set in one of the two positions to allow
the subject to either (1) breathe 'CO from the rubber bag or (2) breathe normal air through
the exhaust duct. The position of the valve is adjusted while the subject breathes as the
follows steps:

Step 1: Put the valve at position 2;

Step 2: Exhale (for S seconds);

Step 3 Put the valve at position 1;

Step 4 Inhale (for 5 seconds);

Step S: Hold breath (for 5 seconds);

Step 6: Exhale into the bag (for 5 seconds);

Step 7: Put the valve at position 2;

Step 8: Natural breath (10 seconds).

The above process is repeated for a total of 4 cycles. During the 4th cycle, step 6 is
omitted so that the residue radioactive gas can be ventilated to maintain the background
radiation in the scanning room as low as possible.

Table 6.1 is a record of the percentage uptake of the tracer activity in the first 3 breaths
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for all of the 8 subjects. The percentage uptake was calculated by the following formula:

Aa er_A ore
p=—= y before x100% (6.1)
0

Where, P is the percentage uptake of the radioactive tracer, Ay, Ag i, Auner are the readings
of the total radioactivity delivered to the bag, before and after each breath. The reading of the
activity was from the y-ray counter. The radioactivity uptake is increased with a factor of 2
(from 1/3 to 74%) when compared with the single bolus method. thus the SNR can increase

a factor of {2=1.4 (Formula 1.10).

Table 6.1 The percentage uptake of !''C-CO with the multiple

inhalation method

Tracer uptake ratio (%)

Subjects Breath 1 Breath 2 Breath 3 Total

1 41 28 12 81

2 27 28 25 80

3 38 38 12 78

4 24 19 10 53

5 55 25 15 95

6 30 3 13 46

7 29 31 24 84

8 44 18 14 76
Average 36+ 10 23+11 16£5.7 74+16

There is more CO, breathed in by a subject than that of natural breaths, since the breaths
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from the 2nd to 4th contains the CO, which has been exhaled into the bag from the preceding
breaths. But there is no radioactive CO, among it to contaminate the CBV images with
radioactive H,CO, CBF distribution, because the breathed-in 'C-CO can not be transformed
into "'C-CO, immediately by biochemical reactions in the human body. So this method can
be used in the future CBV studies.

Theoretically more breaths could be taken by subjects to increase the uptake ratio beyond
75%. It is necessary, however, to balance the time for equilibrium (~4 minutes for ''C [Phelps
ME, 1978]) with the total uptake of radioactivity to achieve an required optimal stable

distribution when the scan starts.

6.4. Other factors affecting the quality of images

6.4.1. Subject condition

We found that the subjects who are young, and who exercise regularly are more capable
of taking in radio-isotopes efficiently. The cooperation of the subjects with the instructor who
provides verbal instructions is also critical. Currently, our data is limited to 8 subjects. We
expect to amass more data from additional studies involving inhalation to understand these

aspects more thoroughly.

6.4.2. Subject movement

For most of the EVR scans, a video monitoring system [ Picard Y, 1997] was employed
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to monitor and record the position of the heads of the subjects. It was found that 6 of 8
subjects moved their heads less than 3mm, other two subjects moved more than 5Smm,
however. The effect of the head movement can be partially corrected by acquiring multiple
short frames, registering and summing them together [Scanditronix PC2048-15B Software

Manual].
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7. Data analysis and results of the EVR cerebral activation

studies with vibrotactile stimulation
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7.1. Image reconstruction

The data acquired for the activation and rest-states studies were reconstructed by the
program REC (See Chapter 3, “Software”). Hanning-type of back-projection filters of two
widths were used for reconstruction [MATLARB reference book]: A 10 mm-width was used
for registration. Since two volumes of PET CBV images, PET CBV and MRI images needed
to be registered manually, blood vessels serve as very good landmarks on both PET CBV and
MRI images (for details, see section 7.3 “Image registration and transformation”). A 10mm
filter provide good vessel contrast for PET CBV images acquired with 25mCi ''C-CO. An
18mm filter was used for image analysis purposes. The choice to use the wide filter was
necessary because of limitations of the algorithm used to transform the images from native
space to Talairach space (Talairach space is a standardized sterotaxic coordinate framework
[Talairach J, 1988]. Images of different subjects are transferred onto this space by geometric
scaling and resampling. This enables the same structures within different subjects to be
spatially matched.) Because this transformation is linear, it does not eliminate the variation
in the relative sizes and shapes of various cortical features between subjects. The averaging
of images from a number of subjects in Talairach space, as a result, produces misleading

“structure” in the resultant image when the cortical features are incongruous between
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subjects. A filter sufficiently wide to eliminate this spatial variation removes this artefact and

allows one to define the optimized ROL

7.2. Image Conversion and format

The images were transferred from VAX to Sun/Unix workstations and written as 4-
dimensional matrices. The images may be analysed in either native space or Talairach space.
Analyses involving averaging images over multiple subjects are performed only in Talairach

space. The following tables are specifications for the PET and MRI images.

Table 7.1 specifications for the PET image files in native space

X Y z T (time)
Dimensions 128 128 15 8
Size of unit 2mm 2mm 6.5mm Ss

Table 7.2 specifications for the PET and MRI images in Talairach space

X Y y A T(time)
Dimensions 128 128 80 8
Size of unit 1.72mm 1.34mm 1.Smm 5s
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7.3. Image registration and transformation

Reconstructed CBV images need to be registered first to a certain volume of image from
the same series of scans of the same subject in the native space, and are then registered to the
MRI image of the same subject. This minimizes errors caused by the motion of the subject
between scans. In order to do statistical analysis with many subjects, the PET and MRI
images of each subject need to be transformed onto Talairach space. Figure 7.1 illustrates that
any transformation is a combination of rotation, translation and scaling.

Each image can be treated as a three dimensional vector, and it can be converted to
another vector by multiplying it by a transformation matrix. The following formulae express

this transformation:

(M s]V] = [V'] @y
[MSJ__ s] = invert [MS;SJ.] 1.2)
[Msi_.,gk] = [MS,.—~Sj] [Msj_. k] (7.3)

where S, S; S, are different spaces representing any space of PET,,, , ( the PET image of the
nth activation scan), PET,,. (The PET images of the rest-state scan), MRI (MRI image), or
TAL (Talairach space). [V] represents an image in the space of S; , which is transformed into
[V'] in space §;. [MS‘,SJ ] is the transformation matrix from space S; to S; , which can be
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obtained by registering two volumes of images.

The registration between two CBV PET images of the same subject can be done manually
with a registration program called “Register” (available at FTP site of fip.bic.mni.mcgill.ca).
Since the high activity in blood vessels in CBV images is readily identified, CBV images of
the same subject can be easily registered by matching the large vessels. In the same way, a
CBV PET image and an MRI image of the same subject can be registered. An accuracy of
2.5mm can be easily achieved in this process. Figure 7.2 is an illustration showing that how
a CBV PET image is registered to a MRI image of the same subject. MRI to Talairach space
transformation requires 3-dimensional linear scaling, which is done by an automated feature
matching program [Collins DL, 1994].

After obtaining all the transformation matrices by the above registration, the PET and
MRI images of all of the subjects were transformed into Talairach space using formulae (7.1),

(7.2) and (7.3) and were subsequently analysed.

7.4. Assessing Significance of the activation sites and making ROIs

The significance of the activation sites was assessed using statistical analysis according
to the mathematic model developed by Worsley et al.[Worsley K, 1992]. In the model, the
subtracted PET images ( rest-state images subtracted from the activation images ) are
averaged among subjects, the averaged image is standardized to have unit variance, and the
local maxima are searched. The model then provides means of deciding which of the local
maxima are statistically significant. The program DOT, which has been developed according

to this model, can generate a T-image in the brain volume in Talairach space [Milot S, 1996].
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A T-image is the average subtracted image divided by the pooled standard deviation. Regions
with high T correspond to the regions of high mean activation.

Figure 7.3 shows T-images produced from activation and rest-state scans of the 8
subjects (4 from the EVR CBV scans and another 4 from the normal CBV scans. The reason
to include the 4 normal CBV scans is to increase the significance of the activation site against
noise ). The T-image shows that the somatosensory right hand area is significantly activated.
Figure 7.3 is a comparison of the activation sites of the CBV PET images in this study and
CBF PET images in some previous studies [Reutens D, 1997]. The same kind of stimulation
was involved in both studies. It can be seen that the increase of CBV happens in the same area
of that of the CBF study, except that the size and magnitude of the activation is smaller.

The ROI for study is made to include a volume at the peak in the somatosensory area. The

T value in the volume is greater than the half of the maximum.

7.5. Resampling and normalization

From Formula 1.12, We can derive the following:

ACBV(i))=K(C',_(H-C’,,.) (7.4)
R Cact(i) C ase
Clacl(l)z_lz—’ C/ba:e=tz_b—
[C it [Coa (7-5)
h h
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where

c’ ., C’,,, are normalized regional activity concentration for phase i of the activation

base
and base-line states, respectively. K is a calibration factor. The results of the integration in the
denominators of Equation 7.5 should not vary depending on the phase or the activation, since
the increase in regional blood activity is negligible in comparison to the global blood activity.

In practice, this study is concerned with relative changes in regional activity, and the

absolute quantities in Equation 7.5 are not determined directly. Relative regional activities are

determined by normalizing the images by their mean pixel value:

100 C,,,,

/ - - /
pixel qm ( C/pixel can be C/acr(l) ’ C base) (76)
pixel.
where
slice 75
lice 15 (within Mask) Cpb:el
_. slice within Mas
Mean(Coe) = s (7.7)
pixels

slice 15 (within Mask)

where C, is the value represents the activation concentration in a given pixel, and C’ pixel
is its normalized value. The average is taken from slice 15 to 75 instead of from 1 to 80
because some of the bottom slices and top slices have discrepancies after registration and

transformation. Note that only counts within a specified mask contribute to the sum. The
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mask excludes the counts outside the skull which originate from noise, exclude some brain
structure with extremely low radioactivity concentration and excludes the sagittal sinus which
have a blood concentration 20 times more than the normal cortices. A relatively small
variation in the radioactivity concentration in the sagittal sinus would cause a significant
variation of the calculated normalization factor. Figure 7.4 is an illustration of the discrepancy

and the mask.

7.6. Fractional CBV changes in the ROL

From Formulae (7.4) and (7.5) we can define Fractional CBV change (F) within the ROI

for each subject (n):

~ T T Cy,
%2[ C reen® -R% Crasen (7.10)

> C’
base.,n
ROI

The average among N subjects is:

N
Y F®

ﬁ(i):'“‘T (n=1,2,.....N) (7.11)
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where F, (i) is the Fractional CBV change during phase i for subject n; (/) is the mean
Fractional CBV change of phase i; C’ is the normalized activity concentration of the

act, n

image during phase i for nth subject; C’, e, n 1S the normalized activity concentration of the

image corresponding to the rest-state for the nth subject.

7.7. Results

Figure 7.5 shows the fractional CBV change for single subjects. The error bars are
calculated by conducting the same ROI analysis as above by choosing ROIs of the same
volume on 8 cortical regions which are not likely to be activated. The results represents the
statistical noise in the 8 ROISs, and the standard deviation for the 8 values can apply as an
error bar. This figure indicates that evoked vascular response can be seen in single subject
studies.

Figure 7.6 shows the average of the fractional CBV changes among the 4 subjects. The
curve of the EVR is clearly demonstrated. A rise iime of k.= 7.3 + 1.9s and a decay time of
k & 13.2 £2 25 by fitting the curve with two exponentials with Levenberg-Marquardt Method
[Numerical Recipes in C}: the rising curve with F=F_ (1-e "”") (1< p < 4), and the decay
curve with F=F__ e o (4< p < 8), . Here F,_, is the maximum fractional change of CBV,

p is the phase.
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7.8. Discussion

In fitting to determine the rise and decay time, an assumption was made that the activation
achieved its maximum at phase 4 (15 seconds after stimulation). The assumption was based
on the results from the previous human and animal studies and modelling [Frostig RD, 1990;
Kwong K, 1992; Narayan SM, 1995] in which the rise time varies from 2 to 9 seconds.

A curve with a rise-time of 7.3s, will reach 87% of its maximum at 15 seconds (at the
beginning of phase 4) and 93% at 20 seconds (at the end of phase 4). This may suggest that
the standard deviations of the above results have been underestimated.

The above time-course results quite agree with those measured using fMRI on human
subjects with visual and hand squeezing tasks {[Kwong K, 1992]. It also agrees with those of
animal studies [ Frostig RD, 1990; Narayan SM, 1995]. The magnitude of the fractional CBV
change, the location and size of the activation site also agrees with the previous studies [Fox
PT, 1986].

The above results were obtained from studies on 4 different subjects, and a clear response
curve was found from the average of their data. Theoretically, the precision can be improved
by using more subjects and trying different phase-durations.

CBYV in the brain is less uniformly distributed than CBF (Figure 7.7). Patient movement
can cause significant artifacts. As an example, blood vessels are less than 3mm in diameter.
A misregistration of 3mm will result in a negative peak beside a positive peak instead of
cancelling the two peaks when subtracting two images. For this reason, a wide reconstruction
filter is used for analysis with image subtraction. Fortunately, the time-course measurement
by the EVR technique is much less influenced by the motion artifacts than the magnitude
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measurement. The image differences caused by patient motion between phases are offset by
the short phase-duration and the large number of repetitions. ( the 5 second phase-duration
is considered to be very short compared to the 20-minute scan time. The number of cycles 30,
is considered to be large ). We can describe the effects of the patient motion in the following

way:

F' ()=F (i)+C, (7.11)

Where F’ (7) is the calculated fractional CBV change for subject n, phase i, in which the
activation and baseline images have some mismatch caused by patient motion, and the
movement (< Smm) is much smaller than the size of the ROI(~ 30mm). £, (i) is the ideal
fractional CBV change. The difference C, is independent of the phases. We can derive:

X F
F /(i)="T (7.12)

=F @) +C
where

> C,
C=-1= (7.13)
N

By differentiating equation (7.12), we get

dF () _ dF(i)

7.14
di di ( )
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we can see that F’ (/) andF (i) have the same time-course, though the magnitude is

different.
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Figure 7.1 The tra%fonnation processes required for PET activation studies.



Figure 7.2 A CBYV image coregistered with an MRI image using Register program. From left to right are CBV, MRI, and the
coregiastration of both images. From top to bottom are transverse, sagittal and coronal planes which join at the cross.
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Figure 7.3 T-images of CBV and CBF PET activation studies with vibrotactile
stimulation coregistered with MRI images. The CBF data is taken from a vibrotactile
activation study on 8 subjects with 6x40mCi '*O-water tracer injected to each subject.



PET CBV image Mask Overlap

Figure 7.4 LEFT: CBV PET images averaged over 4 subjects; MIDDLE: The mask
which excludes areas with very high and very low radioactivity concentration, RIGHT:
Coregistered image and mask. (All in Talairach space)
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respectively.



8. Conclusion

DOSDODODDDODDDDDDDIDDDODDDDDDDOSIDDDDIDSDDDSIDDOIDOOODOOSIDSOOO>O>>

A technique to measure evoked vascular response (EVR) was developed for the
Scanditronix PC2048-15B PET scanner, which has opened a temporal window for PET.
Following simulation and phantom tests, the technique was first applied to CBV activation
studies on 4 subjects by employing vibrotactile stimulation, where 25 mCi of 'C labelled CO
gaseous tracer was administered to each subject. Fractional CBV change in the
somatosensory right-hand area shows clear evoked vascular response when averaging the data
of 4 subjects. A rise time of 7.3+£1.9s and a decay time of 13.2+2.2s were determined which
agree well with the previous studies on human subjects, animals and modelling.

The technique offers the advantage of selecting any phase-duration from milliseconds to
minutes in order to study vascular or neuronal responses. It can be further applied to
activation studies with other types of stimulation such as visual, auditory or olfactory
stimulations. It has the ability to synchronize one or two sets of stimulation with the
acquisition, which enables EVR studies with mixed stimulation [Stein BE, 1995; Small DM,
1996]. The technique also has the ability to vary the frequency of the stimulation, facilitating
frequency-dependent activation studies [Kwong K, 1992; Fox PT, 1985; Sadato N, 1996].

Other than activation studies, the technique can be easily adapted to studies requiring

gated memories to distinguish different temporal periods of brain function. As an example,
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during sleep studies with PET, different activities are going on in different periods of sleep
[Hong CC, 1995; Kempenaer C, 1994; Hofle N, 1997]. A technique which can clearly
separate events happened during REM (Rapid Eye Movement) period from other periods can
be very helpful. The EVR technique can play such a rule by storing data in different files
corresponding to different periods during sleep by gating the EVR mode with EEG signals.

The gating hardware and software have been adapted in conjunction with a technique to
correct head motion of subjects during PET studies by storing data in different memory
regions according to the head position [Picard Y, 1997].

The EVR technique is being incorporated currently to the new scanner ECAT HR+,
which has a sensitivity 4 times higher than the Scanditronix PC2048-15B and a potential to
allocate 32 phases [Moreno-Cantu, 1996; Thompson CJ, 1997]. This may permit the EVR
technique to be applied to a single subject with good temporal resolution. This provision

would be clinically very useful.
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POSITRON EMISSION TOMOGRAPHY (PET) AND
MAGNETIC RESONANCE IMAGING (MRI) CONSENT FORM

MONTREAL NEUROLOGICAL INSTITUTE & HOSPITAL
McConnell Brain Imaging Centre, Departments of Nuclear Medicine&

Neuroradiology

Title of Project: EVOKED VASCULAR RESPONSE STUDIES
Investigators: C. J. Thompson

1.

D

2)

3)

4)

REASON FOR THE STUDY

Positron emission tomography is a new test which provides pictures of the chemical
activity and circulation of the brain. There are reasons to believe that these pictures will
contribute to the understanding of certain neurological problems. This study will involve
inhalation of a small amount of traces of carbon monoxide labelled with carbon 'C [half
life =20 minutes]. The researchers hope that this study will contribute to the development
of a new technique to localize parts of the brain which are used during the performance
of specific tasks.

PROCEDURES

Your participation in this study will involve two sessions of about half a day each,
probably on two separate days. The first involves a Positron Emission Tomography
(PET) study, the second involves a Magnetic Resonance Imaging (MRI) study.

Positron Emission Tomography

Procedures (PET Study)

You will be asked to lie on a couch; a head-holder will be made in order to keep head
movement to a minimum.

A ten minute transmission scan will be done to localize the head in the scanner and
help interpret the images.

You will take several breaths of air mixed with a trace amount of ''C-labelled carbon
monoxide. A twenty minute scan will be started a few minutes later. During this scan
the fingers on the left and right hands will be tickled alternately with the mechanical
vibrators. This will be done in the following sequence: left hand - nothing - right hand
- nothing - left hand - etc. Later, another twenty-five minute scan will be done, during
which only one of your hands will be tickled.

The order of the two scans may be interchanged.

We estimate that the study will take about an hour and a half, during which time you
will be requested to lie still on the couch in the scanner.
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5) All procedures during the PET study will be carried out by a qualified nuclear
medicine technician, and supervised by a qualified nuclear medicine physician.

b) Magnetic Resonance Imaging
Procedures (MRI Study)
You will be asked to lie on a couch that will be moved into a cylindrical opening
where pictures of your head will be taken during a period of 30 to 40 minutes. The
MRI machine will be quite noisy during the scan. To reduce the noise, you will be

given earplugs.
3. CONTRAINDICATION

a) For PET Study
The following are contraindications for this procedure.
1) Pregnancy or Breast Feeding
2) Under 18 years old
3) Previous radiation doses received within the past year (over 20 mSv)

b) For MRI Study
The following are contraindications for this procedure.
1) Pacemaker
2) Aneurysm Clip
3) Heart/Vascular Clip
4) Prosthetic Valve
5) Metal Prosthesis
6) Pregnancy

4. ADVANTAGES OF THE PROPOSED STUDIES

Both PET and MRI studies are tests, not treatments. It is hoped that the information obtained
will help our understanding of the function of the human brain. This may, in the long term,
help the diagnosis and treatment of neurological disorders.

5. DISADVANTAGES OF THE PROPOSED STUDIES

a) PET

(I) Some discomfort may be caused by putting on the mouth-piece as well as immobility
on the couch.

(ii) The main Risk of participating in this study is exposure to radiation from the short-
lived tracer substances injected into your body, e.g:
D 25 mCi of ""C-labelled carbon monoxide {! CO) will result in about 4.8 mSv of

radiation to the whole body.

Therefore, during the study your body will be exposed to a radiation level of less than 5.0
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mSv. This radiation dose is two times the radiation which you receive annually from natural
background radiation (0.9 - 2.2 mSv) in various regions of North America. This is also 20%
to of the annual dose limit allowed for those who work in a high radiation environment, such
as, e.g., x-ray technicians. The degree of Risk associated with exposure to an additional less
than 5.0 mSv of radiation is thought to be very low. This amount of additional radiation
increases the risk of death from cancer by about 1 in 20,000 during a lifetime. Similar risks
of death are associated with:

a) smoking 2 packs of cigarettes during a lifetime.
b) driving 2,000 miles by car (Montreal to Calgary).
¢) flying 20,000 miles by air.

d) Lumbosacral spine x-ray once

Additional information avaiiable upon request

b) MRI

During this study, you will be exposed to a strong magnetic field. However, no long-term
negative side-effects have been observed from this type of study. As mentioned above, the
MR is very noisy and you will be given earplugs to reduce this effect.

6. EFFECTS OF PARTICIPATION IN THIS STUDY ON YOUR TREATMENT

Positron emission tomography or magnetic resonance imaging does not interfere with any
treatment or other diagnostic tests.

7. CONFIDENTIAL NATURE OF THIS STUDY
The results of the testing will be kept confidential. No personal information will be released
to third parties without your written approval. Your name, date of birth, address and

telephone number may have to be forwarded to the Atomic Energy Control Board of Canada
upon request.

8. INCIDENTAL FINDINGS

Any incidental findings regarding your own health will be communicated to you or to your
physician at your request.

9. DISCONTINUATION OF THE STUDY BY THE INVESTIGATOR

At any time during the testing, the investigators have the right to terminate the study for

99



purely scientific reasons.

10. COMPENSATION

Upon completion of both MRI and PET studies you will receive $100.00 as compensation for
your time and inconvenience. If studies have to be terminated for scientific reasons,
compensation will be adjusted according to the fraction of the studies completed.

11. SUBJECTS STATEMENT CONCERNING WITHDRAWAL FROM THE
STUDY

I understand that my participation in this research project is voluntary and I may withdraw at
any time, including during the procedure, without prejudice to myself or my treatment.
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3. Isthe subject pregnant?

QUESTIONNAIRE FOR MAGNETIC RESONANCE IMAGING

. Previous surgery (type
date)

2. Does the subject have any of the following?
YES NO
Cardiac pacemaker

Surgical clip on an aneurysm or other vessel

Surgical clip or valve on the heart

Prostheses (please specify type and location)

Implants (please specify type and location)

Metal or metallic fragments in any part of the body
(please specify)

Is the subject currently taking prescription medication?
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SUBJECT'S DECLARATION OF CONSENT

I, , have read the above description with one of the above
investigators,

I fully understand the procedures, advantages and disadvantages of the study which have been
explained to me. I freely and voluntarily consent to participate in this study.

I hereby certify that I have not participated in a PET investigation anywhere before.
Further, I understand that I may seek information about each test either before or after it is

given, that I am free to withdraw from the testing at any time if I desire, and that my personal
information will be kept confidential.

SIGNATURE

SUBJECT DATE CONTACT NO.
SIGNATURE

INVESTIGATOR DATE CONTACT NO.
SIGNATURE

WITNESS DATE CONTACT NO.
SIGNATURE

PHYSICIAN DATE CONTACT NO.

102



16

l

14

-

st in Street

£
~@au

Ali Rights Re<erved

150mm

; g
.______ p
]

_ :

Iy
<
g

[

125

————— | ————

IMAGE EVALUATION
TEST TARGET (QA—3)

APPLIED =1



