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Abstract

Algorithms for optimization and verification of radiation treatments have been de­

veloped. The fust one, an active set aIgorithm for inverse treatment planning employs

a conjugate gradient routine for subspace minimization in order to achieve a higher rate

of convergence than the widely used constrained steepest descent method at the expense

of a negligeable amount of overhead calculations and storage. The active set algorithm

is found to he superior to the constrained steepest descent in terms of both its conver­

gence properties and the residual value of the cost functions at termination. The active

set approach can significantly accelerate the process of inverse treatment planning by

decreasing the number of time consuming dose calculations.

The second algorithm employs a continuous penaltyfunction method to solve approx­

imately a large-scale constrained minimization problem which reflects the goal of sparing

healthy tissues as much as possible while delivering the necessary tumorcidal dose. The

perfonnance of the continuous penalty function method is optimized by a numerical in­

vestigation ofa few integration schemes and a pair ofweighting functions which influence

the perfonnance of the Methode Clinical examples are presented that illustrate possible

applications of the techniques in the context of multi-objective optimintion.

An image correlation based algorithm for automatic registration of pairs of portal

images bas also been devel0Ped. Accounting for both in-plane translations and rotations,

the algorithm uses fast-Fourier-transforms and a sequential approach to speed up the

registration without degrading the accuracy of the match. The technique has also been

applied to the automatic registration ofportal images to digitally reconstnlcted radiographs

(DRRs) which have been modified to resemble megavoltage images. The results indicate

the feasibility of this approach as a tool for treatment setup verification.
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Résumé

Dans cette thése, des algorithmes servant à optimiser et à vérifier les traitements

en téléradiothérapie ont été développés. Le premier, un algorithme d'ensemble actif

s'avère utile dans la planification inverse des traitements. Plutôt que d'utiliser la méthode

conventionelle de la descente la plus rapide à contraintes l'algorithme d'ensemble actif

emploie une routine de gradient conjugué ce qui donne une convergence précose et une

plus petite valeur de la fonction de pénalité lorsque la convergence est atteinte. En

conséquence, en diminuant le nombre nécessaire des calculs dosimétriques, l'algorithme

d'ensemble actif peut accélérer le processus de la planification inverse des traitements

d'une façon significative.

Le deuxième algorithme utilise une fonction de pénalité continue afin de

résoudre d'une manière approximative le problème de minimisation à contraintes

en téléradiothérapie résultant du double objectif de donner à la tumeur une dose im­

portante tout en épargnant les tissues sains autant que possible. La performance de cet

algorithme est accrue par un examen numérique de plusieurs schémas d'intégration et de

deux fonctions représentatives d'importance des structures anatomiques. Des exemples

cliniques de l'utilisation de cette technique sont présentés.

Le dernier algorithme sert à la juxtaposition automatique de deux images por­

tales. Celui-ci tient compte des translations et des rotations dans le plan de l'image.

L'algorithme utilise des transformations rapides de Fourier et une approche séquentielle

pour accélérer la juxtaposition sans nuire à son exactitude. Cet technique est aussi prop­

ice à la juxtaposition d'une image portale et d'une radiographie digitalement reconstruite

qui est modifiée afin de ressembler à une image obtenue par un faisceau thérapeutique de

haute énérgje. Les résultats démontrent la valeur de cette approche pour la vérification

du positionnement du patient par raport au champ d'irradiation.
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Original Contribution

An analysis is perfonned of the computational properties of treatment planning op­

timization with intensity modulated beams. For differentiable objective functions, the

conjugate-gradient methods are identified as optimal gradient minimization techniques to

taclde the large-scale inverse problem. A robust active set algorithm with a conjugate­

gradient routine for subspace minimization is designed in order to account for the physi­

cally imposed non-negativity constraints on the independent variables. The theoretically

expected superiority of the active set method to the widely used constrained steepest

descent is confinned numerically for two largely accepted treatment objectives and dif­

ferent irradiation geometries.

A novel fonnulation of the inverse problem is suggested which uses only target dose

levels. A mathematical analysis is conducted which proves that any local solution of the

resulting constrained rninirnization problem is a global solution. A continuous penalty

function method is introduced as an approximate numerical technique to perfonn the

large-scale constrained optimization. The applicability of the method to the particular

statement of the inverse problem is proved. Several numerical integration techniques are

investigated and an optimal one is identified. A procedure for the clinical use of the

technique is introduced which allows autonomous detennination of the target importance

weight that produces a clinically acceptable target coverage.

In-plane rotation search is implemented in a correlation based portal-image registra­

tion algorithm which adopts a full calculation of correlation integrals rather than their

sampling through Monte Carlo techniques. A fast Fourier transform (FFT) implementa­

tion of the Pearson correlation coefficient (PCC) is derived. Investigation is performed

of the properties of the PCC with respect to in-plane rotations. These properties are

consequently exploited to design a sequential search for the transformation parameters in
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arder ta accelerate the image registration. The utility of two different correlation opera­

tors have been tested for image matching: the PCC and the normalized cross-correlation.

The theoretical indication that the PCC is more robust for registration of images with

linear transformations of the intensities is experimentally confinned. The feasibility of

the image correlation approach to the automatic registration of portal images to digitally

reconstructed radiographs (ORRs) is aIso demonstrated.
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Figure 4.2

Top right : megavoltage DRR with a selected reference subimage

(large window) and the features for matching (small windows).

The sphenoid is enclosed by the top small window and the Petrous

bone (ear) is enclosed by the small central window. Top left : the

portal image ofthe skull phantom with the anatomy displaced with

respect to reference one (10 mm,~ deg). The search subimage is

shown by the large window. Bonom right : the difference image

before the registration. The improper cancelation ofbony

structures is conspicuous. Bonom left : the difference image after

the registration. The transformation parameters are :

a = -25 pixels. b=-4 pixels. Q = 6.2 deg, ~a = 0 pixels, ~b =

- 2 pixels. The images are normalizedfor visualization. . . . . . . 4-5

Top right : a portal image taken at J MU with a selected reference

subimage (large window) and a feature for matching (small

window). Top Ieft : the portal image taken at 2 MU. The windows

represent search regions ofdecreasing size. In the different

windows the position ofthe searchedfeature with respect ta the

axis ofrotation going through the center ofthe corresponding

search window is different. However, the dependence ofthe

maximum correlation coefficient on the angle ofrotation remains

the same (see text). Bonom right : the difJerence image after the

first (translationaI) stage ofthe registration. The improper

cancelation ofbony structures is conspicuous. Bonom /eft : the

difJerence image after the second stage ofthe registration. The

images are normalizedfor visualization. . . . . . . . . . 4-8
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Figure 4.5

Top left : a laIerai image ofa patient's head, used as a reference

one wilh a selecledfeature for matching (small window) within a

reference subimage (large window). Top righl: a laIeraI image of

the patient's head laken in anolher treatment session. The window

represents the search subimage. Bot/om right : the difference

image afier the first translational and rotational a/ignment.

Bottom left : the difference image after the final fine trans/ational

aIignment. The improved cancelation ofbony structures under

the radiation field due 10 Ihe last fine adjustment is

clearly visible. The transformation parameters are :

a = 44 pixels, b=25 pixels, 0: = 1. i deg, ~a = -3 pixels, ~b =
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1.1 Introduction to Radiation Therapy

Introduction

•

•

Cancer is the second leading cause of death in Canada,1 accounting for 60 000

victims annuaUy.2 In 1997, 130 000 patients are expected to be diagnosed with cancer

in this country:2 Even though hyperthennia,3 immunotherapy4 as weIl as other novel

therapiesS' 6 have been actively explored, the majority of the cancer patients will be

subject to sorne combination of surgery, radiotherapyand chemotherapy. Approximately

haIf of the cancer patients will be administered radiation at sorne point in the course of

their treatment.7

Radiation therapy aims at tumor eradication by means of ionizing radiations, the most

commonly employed types being photons and electrons, with energies ranging from a

few hundred keV to a few MeV. Among all cellular perturbations caused by the ionizing

radiations,8 the double-strand break in DNA is the predominant cause for radiation­

induced cellular death.9 The number of double-strand breaks is related to the physical

quantity absorbed dose 1o or simply dose which is the energy deposited by the radiation

per unit mass of material (The SI unit of dose is gray (Gy) defined as 1 Gy = 1 J/kg).

With increasing dose to the tumor volume, the number of killed cancer ceUs increases

and so does the probability of cure. The random nature of the radiation damagell- 14

detennines a sigmoidal shape of the relation between the dose and the tumor control

probability (TCP) which is the probability that there are no surviving clonogenic ceUs

in the tumor (Fig. 1.1). The tumor lethal dose (dose required to achieve 95% TCP)

varies between 2 000 cGy to more than 8 000 cGy depending on the tumor size, extent,

type, radiosensitivity as weil as on the tumor pathologic grade and differentiation. 1S

The Donnai tissue complication probability (NTCP), which is the probability of inducing

sorne particular complication (end-point) in a non-tumor-bearing organes), is a sunilar

This number excludes die estimated 61 000 cases of DOn-melanoma skin canCcf'.
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Figure 1.1. Response curves of tumor cure (TCP) and normal tissue
complications (NTCP). The mutual position of these curves varies in
different clinical circumstances depending on the radiosensitivity of the
tumor and the involved normal tissues.

function of the dose (Fig. 1.1) since the same principles of radiation killing apply to both

tumor and normal cells. Both the Tep and the NTCP of the involved healthy tissues are

considered when the value of the dose to be deposited in the tumor volume is selected.

Radiation cao be administered to a patient by sealed radioactive sources in catheters

which are inserted in the tumor volume (brachYilierapy) or MOSt commonly by directed

megavoltage extemal beams ofx-rays or electrons (extemal beam therapy or teletherapy).

A typical teletherapy treatment unit (a linear accelerator or a cobalt unit) uses a radiation

source mounted on a rotating gantry capable of moving around a patient who lies on

a treatment coach (Fig. 1.2). In Many cases, multiple properly collimated beams from

different directions can be used to deliver the necessary tumorcidal dose and to minimize

the dose to the healthy structures surrounding the tumor.

The process of external beam therapy consists of severa! steps. First, a patient

diagnosed with cancer undergoes a thorough evaluation that aims at the detennination of

1-3



Figure 1.2. Extema/ beam treatment unit (With modificationsfrom Bijho/d
et al. 16).
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•

the tumor volume, its exteot and relationships to critical structures in the body. During

this process, the radiation oncologist uses palpation, biopsies and the infonnation from

various imaging procedures such as computed tomography (Cn, magnetic resonance

imaging (MRI), positron emission tomography (pEn, single photon emission tomography

(SPECT), and diagnostic ultrasound, in order to define the gross tumor volume (GTV)17

which comprises the gross extent of the malignancy. Local subclinical tumor spread is

then included in the clinical target volume (CTV)17 which is defined as the GTV plus

a margine The GTV and the CTV are based on anatomical, biological, and clinical

considerations. A planning target volume (pTV)17 is then defined as the CTV plus a
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marg~ which accounts for the technical aspects of the treatment such as organ motion

and variations of patient's positioning. In addition to the tumor volume, critical structures

to be spared during the radiation treatment can aiso be identified and outlined.

The CTV, the PTV as weIl as the oullines of the critical structures are used as input

data for treatment planning, which is the next step in the course of radiotherapy.t A

beam arrangement (number of beams, type, energy, apertures, directions and modifiers)

is selected and the dose distribution within the patient is calculated and evaluated. This

process continues until the resulting dose distribution achieves an adequate coverage of

the target volume (CTV and PTV) and acceptable sparing of the critical structures.

To aid the process oftreatment planning and verification, the patient's bony anatomy

can be imaged on a simulator which is a diagnostic x-ray unit that mimics the geometry,

the alignment as weIl as the movements of the actuai trealment unit. The process of

treatment simulation cao be perfonned prior to and/or subsequent to treatment planning.

During the simulation, localization of the target can be perfonned by referencing the

position of anatomie structures relative to skin marks. An appropriate beam arrangement

can be selected by examining the relative position of the various organs at different gantry

angles. The shape and the position of shielding blocks can he verified by placing the

blocks in position and by obtaining radiographs under the geometry in which the treatment

is to occur. These radiographs also serve as reference images for the verification of the

patient setup during the actual treatment. CT simulation,18--20 which utilizes the patient's

CT data and various image processing techniques is being increasingly used to perform

sorne of the above functions of the conventional simulator. As a result of such simulation,

digitally reconstructed radiographs (DRRs) are produced which reflect the desired setup

of the patient's anatomy with respect to the radiation fields. A DRR is simulated by

In mis thesis we will ftequently use the generic 1eml ·radiodJer.lpy· ta denote eucmal beam therapy.
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projecting rays from the intended position of the radiation source through the patient's

CT data (patient's anatomy) to the pixels in the plane of a virtual imaging device. Line

integrals are evaluated by summing the CT values (or the linear attenuation coefficient

values) along the individual rays. The values of the line integrals are assigned ta the

corresponding pixels ta form a DRR.

The next step in the teletherapy procedure is the actual radiation delivery which is

administered in small daily doses (usually fractions of 2 Gy of the total prescription

dose) generally over a period of three ta six weeks. During the daily treatments, a

radiographie film or an electronic portal imaging device (EPID) (Fig. 1.2) are used to

acquire megavoltage portal images with the radiation beam for treatment verification.

The size and the shape of the radiation field as weIl as the proper positioning of the

patient are checked by comparison of the portal images ta the diagnostic portal images

obtained during simulation. After the conclusion of the radiation treatment, patient's

follow-up is conducted.

1.2 Conformai Therapy

1.2.1 Rationale and Potential Impact

Radiotherapy bas curative potential~ given that the primary tumor is confined ta its

local or local-regional site (Table 1.1). According to the data of the National Cancer

Institute Surveillance, Epidemiology and End Results (SEER) program21.22 and the

National Cancer Data Base,23 approximately 65-72% of the cancer patients in the United

States are initially diagnosed with locally confined disease without clinical evidence

of distant cancer spread (metastasis). Even though two-thirds of these patients are

cured after a treatment of the localized disease by surgery and/or radiation therapy,24

Radiation cau also be used with a palliative intente
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Table 1.1 Cancers commonly treated by definitive (curative) radiation.8

Hodgkin's disease

Non-Hodgkin's lymphomas

Cervical cancer

Prostate cancer

Head and neck cancers

Cancers of the central nervous system

Seminoma

Retinoblastoma

Choroidal melanoma

Unresectable lung cancer

Unresectable pancreatic cancer

Unresectable sarcoma

a significant portion still succumbs to the disease. Furthennore, 3~50% of the patients

treated with curative radiation therapy fail at their primary tumor site.25, 26 Even though

these failures relate not only to treabnent parameters but also to biological factors, they

indicate the inability of radiotherapy to provide tumor control in certain cases due to either

(i) inadequate dose delivery (insufficient dose) or (ii) geometric misses of the target.

An important question is, however, whether improvements in radiation therapy that

increase local tumor control probability by addressing the above two problems will lead

to increased patient survival. There bas been sorne concem that new local control

patients will ultimately fail either due to the presence of undetected micrometastases

at the lime of the diagnosis or due to the development of distant Metastases subsequent

to the primary tumor treatment.25, 27, 28 However, severallines of evidence confinn that

improved local tumor control does result in increased disease free survival.25, 29, 30 For
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example, data from several institutions indicate that, depending on both the treatment

site and the tumor stage, 18% ta 88% of the patients that undergo salvage surgery§

survive for 5 years and more free of the disease. Furthermore direct correlation seems

to exist between the overall incidence of metastatic disease and the local or the local­

regional tumor contro1.24 For instance, after a review of the outcome of 679 surgically

staged (without detectable metastasis) patients with carcinoma of the prostate treated with

permanent implantations of encapsulated 1251sources, Fuks et aPi have demonstrated that

the relative risk of distant Metastases subsequent to local relapse was four limes greater

than the risk without evidence of 10caI failure. Other retrospective studies have reported

increased metastatic occurrences after local failure in carcinoma of the breast,32 lung,33

rectum,34, 35 prostate,36, 37 uterine cervix,38 in head and neck tumors39 as weil as in soft

tissue sarcomas.40 Therefore there are sufficient indicators to warrant the development

and the evaluation of approaches that aim at improved local tumor control by assuring

an adequate target coverage and/or escalating the dose to the target volume without

increasing the risk to surrounding healthy tissues.28

Three-dimensional computer controlled conformai therapy (CCRT) is such an ap­

proach. The term conformai therapy is associated with extemal beam therapy to denote

treatment designs that tailor a high-dose region to the target volume and simultane­

ously deliver low doses beyond its extent.41-43 (Conformai therapy bas been attempted

since the inception of radiotherapy, but the degree of conformity bas improved over

the years.) By sparing more of the critical organs conformai treatments May also allow

higher doses to be delivered to the tumor (dose escalation) to increase the probability of

local contro1.24•28,44 This increase bas been estimated at 2.5% (median) per 1 Gy in the

•
Salvage surgery is anempted for selected patients after radiotherapy failure.
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neighborhood of the 50% range (median 52 Gy) of the dose-response curve for patients

with macroscopic tumors.45

The potential impact of the improved local tumor control on the long-term patient

survival has been roughly estimated for severa! treatment sites. Using detailed analyses

of the causes of failure, Suit2S estimated that complete local tumor control (100%) would

result in a 20% increase of the 5-year survival rate for patients with carcinoma of the

uterine cervix, a 14% increase for patients with carcinoma of the oral cavity and the oro­

pharynx, a 21 % increase for patients with carcinoma of the colorectum and a 14% increase

for patients with carcinoma of the avaries. Given the annual rates of cancer incidence for

the above sites, these figures would translate in approximately 2500 additional survivais

in Canada if complete local control were achieved for these tumors.2S (A factor of 10

has been used in the above estimate ta account for the size of the population of Canada

compared ta that of USA.)

Yorke et al.46 studied the impact of improved local control for the case of prostate

cancer. They applied a model47 for the metastasis development of prostatic carcinoma

ta the clinical results of a long-tenn follow-up study31 in order to obtain reasonable

biological parameters for the madel. Under the assumption of 100% local control

achieved by conformai therapy, the model predicts a 10% increase of the 5-year distant­

metastasis free survival and a 35% increase of the 10-year distant-metastasis free survival

for patients with prostatic carcinoma.48 Similar trends could be expected for other

treatment sites where metastasis dissemination occurs as a relatively late effect.48 The

actual gain in survival due ta confonnal therapy depends on the achievable local tumor

control, an unknown which is currendy under investigation by severa! clinical trials with

confannal therapy for prostate cancer.49• SO
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Many of the key concepts of confonnal therapy were tirst intr'oduced by Takahashi41

in 1965. Takashi and co-workers used 3-D models of the tumor (based on planar

tomography) ta plan the treatment, orthogonal light beams ta align the target with the

machine isocenter, as weil as "geared sectional collimators" and a mechanical control

system to conform the beam shape to the shape of the target as the machine rotated about

the patient. Similar early conformaI techniques were developed in other centers.51- 54

The advent of modem conformai therapy was marked by the introduction of CT and

CT-assisted 3-D treatment planning in radiotherapy. Before CT scans became available,

tumor volumes were ill-defined and marginal misses, especially in large tumors were

frequently encountered in radiotherapy.55-S7 To avoid local relapse due to these misses

treatment fields were designed to encompass the identifiable tumor plus large margins

(2 cm or more) of normal tissues surrounding the target. The relatively large volume

of healthy tissues irradiated in the treatment often limited dose escalation because of

the restrictions imposed by normal tissue tolerance. Thus treatment designs were often

restrained by the nonnal tissue tolerance rather than dose levels required to control the

turnor. Computed tomography improved significantly the coverage of the target during

radiation treatments by allowing better definition of the target volume and its relation to

the surrounding healthy structures in the process of treatment planning.S5-S7

Further improvements in the target coverage were obtained with the use of high­

power workstations, which allowed computer graphics,20, S8-60 3-D dose calculation

algorithms,61 as well as tools for the evaluation of 3-D dose distributions62,63 to be

integrated in the treatment planning process.64

Concurrently with the development of 3-D conformaI treatment planning new gener­

ation treatment units were designed to execute confonnal plans. The tirst machine of this
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generatio~ the Scanditronix MM50 racetrack microtron65-67 is a typicaI example of the

treatment capabilities provided by these units: megavoltage photon and electron beams

of various energies, a fully computerized control system, and a multileaf collimator6S-70

(an· assembly of up to 40 thin tungsten leaves on each side of the collimator which are

moved in and out of the beam under computer control). It is the recent widespread avail­

ability of multileaf collimator systems (MLC) that bas significantly fostered the interest

in conformai therapy mostly due to the fact that an MLC opens up the possibility of im­

proved dose conformation65. 71-76 by computer-controlled modulation of the intensity of

each beam.65. 77, 74, 7s-82 Treatments with intensity modulated beams have been initiated

clinically for intracrania1'6 lesions and prostate cancers.83 Such treatments have been

shown to be executable in reasonable time limits when multileaf collimation is used ­

lOto 12 min for prostate cases (a dose fraction of 140 cGy delivered by 6 beams).83

The on-line electronic portal imaging device84 (EPID) is another important compo­

nent of the equipment required for confonnaI therapy.48 The role of the EPID is not

restricted only to the crueial task of providing near real time information on patient's

setup.85-89 EPID are currently becoming an important tool for evaluating target mo­

tion and set-up uncertainties~2 which are to be incorporated in the treatment planning

process.93, 94 Portal dose images obtained by an EPID can be compared to calculated

ones.95,96 In addition, gjven patient-specifie informatio~ on-line images can further be

used for reconstruction of the actual dose distributions created during the treatment.97,98

Thus, an EPID creates the opportunity of complete geometric and dosimetric verification

of conformai radiation treatments.96-100
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1.3 Treatment Planning Optlmlzatlon

1.3.1 Rationale

Introduction

-

-

Given the new and improved technical abilities that modem computer-controlled

treatment units provide for radiation delivery, the treatment planning process is crucial

in assuring that these features are used properly for achieving the most beneficial

effeet.48• 53. 101 Ling et al. 48 observe that currently, despite the advent of high-speed

graphies workstations, very little is done beyond the uplanning by conventionU whereby

the same arrangement of beams is applied to patients for a given disease site followed

by sorne manual optimization of the beam positions and weights. This process does not

guarantee optimal utilization of modem radiotherapy equipment since it relies on "past

clinical experience" which is non-existent for dose escalation studies or for the novel

radiation distribution patterns that can be achieved with the currently available technical

capabilities, e.g. intensity modulation.48 On the other hand novel treatment designs

for dose escalations that optimize few treatment parameters may require as much as 1.5

physicist-months of much trial and error.48 Whereas such an effort can be weil justified

for finding generic treatment parameters for sorne disease sites which exhibit high inter­

patient similarity (e. g. prostate and nasopharynx), it is inapplicable for cases where the

tumor extent and position are highly variable (e. g. brain and lung cancers) or for cases

where a large number of optimization variables is involved, e. g. intensity modulation.

Thus computer-aided optimization is essential for the progress of confonnal therapy.

1.3.2 Approaches

Computer-assisted treatment planning optimization cao be described by the generic

optimization algorithm shown in Fig. 1.3. Two distinct approaches exist that differ in

their evaluation of the dose distributions. The biological approach which is the more

1-12
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The validity, however, of the eXlstlDg TCP and NTCP models is not yet weIl

establishedl18, 12~122 and their clinical predictive power is unproven. 118, 123 Furthennore,

significant uncertainties exist in the values of the radiobiological parameters used by these

models due to the paucity ofclinical data, especially at the higher dose levels. 124 For these

reasons, for treatment designs, TCP and NTCPs, if considered at all, are ooly secondary

adjuncts to dose-based and intuitive criteria such as (a) target dose homogeneity, (h) maxi­

mum tolerance doses ofcritical structure, and (c) dose-volume considerations.30, 44, 125-127

(A dose-volume consideration usually specifies the percentage volume of the critical organ

that can be sacrificed above certain dose level.)

relevant one from a conceptual point of view, takes into account the architecture of the

irradiated normal tissues and the corresponding dose-volume effects. (For example, very

little damage to any part to the spinal cord May have lethal effect, whereas the lung

remains functional even if a significant part of it is destroyed.) Models of cell and organ

response47. 102-110 are used to predict biological indexes such as NTCPs and TCP from

the dose distribution. Cost functions based on these indexes or their combinations111-113

are then used to evaluate the probability of success of the radiation treatment and to serve

as objectives for the biologically based optimizations. 112, 114-119 Minimization algorithms

such as constrained steepest-descent112, 116-119 and simulated annealingl14. Ils were used

\Vith biological objectives for the selection ofoptimal beamlLon times (weights),112, 11(r119

energies,119 and directions. 120

•

CHAPTER 1 Introduction

•

The physica/ approach to treatment planning optimization takes the above criteria

into account by employing dose-based objective fonctions such as the integral (total)

dose to the target,128, 129 the integral dose to healthy tissue,128, 51, 13~134 the dose to the

center of the target,129, 135-137 the difference between the integral dose to the target and

Including pencil beams. wedgcd beams, open beams, elc.

1-14
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the healthy tissues,138 target dose uniformityl32. 133, 139 as weil as the sum of the squares

of the residuals between the prescribed and the delivered dose.73, 140-148 Minimization

algorithms such as linear,51, 128, 130-134. 136, mixed-integerl29 and quadratic programmîng

techniques,132, 142 gradient techniques,116, 144, 149 simulated annealing,136, 141, 143, 144, ISO

iterative deconvolution and filtered backprojection,I46, 151, 152 iterative reconstruction

techniques, 73, 147, 148 as well as genetic algorithms137 were applied to physical objective

functions for the selection ofoptimal beam weights. A combination of simulated anneal­

ing and an iterative reconstruction technique was recently used for the optimal selection

of the number and the orientations of beams in intensity modulated treatments. ISO

1.3.3 Inverse Treatment Planning

Ideally, regardless of the particular objective in use, an optimization algorithm should

automatically determine ail the relevant parameters of the treatment (Fig. 1.3). In practice,

however, the size of the solution space is prohibitive for such an attempt. For this

reason the various optimization algorithms explore ooly certain subsets of the treatment

parameters.

The inverse problem43, 153 in confonnal radiotherapy generalizes the most commooly

solved problem of beam weigbt optimization for a set of fixed beams. The inverse

problem considers the individual beam ports as being tiled in pencil beams (beamlets)

with their own weights. Different sets of pencil beam weights correspond to different

modulation of the beams. The dose to any point in the patient volume is then given as

the superposition of the dose contributions to that point of all beamlets. A solution of the

inverse problem is the modulation of the ftuence (intensity) across the individual beam

ports which results in an optimal plan, according to the selected physical or biological

objective. Numerical or analytical procedures for solving the inverse problem are referred

to as inverse treatment planning techniques.

1-15
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Compared to uniform beams, modulated beams have the potential of creating im­

proved conformaI distributions, especially for targets with concave regjons.65, 72, 71, 73-75

The design of the beam profiles, however, is a process of considerable complexity, clearly

beyond the ability of a human planner. The modulation of the beam intensities is a large­

scale problem which involves a few hundredl16 to a few thousand variables (pencil beam

weights).74.122 Furthennore, the objective fonction evaluation is very-time consuming

due to the combined effect of the follo",-mg two factors.

First, the novel dose distributions produced by intensity modulated beams generally

possess "unusual" properties such as high-gradient regions and small but very low- or

very high-dose domains. Sïnce these features can be clinically significant, fine sampling

of the dose distribution is irnportantlS4-156 and therefore, the number of the required

calculation points per structure May have to be at least an order of magnitude larger than

the number of points used in treatment planning optirnization with uniform or wedged

beams. (For the latter case, depending on the size of the organ, 100 to 800 randomly

distributed points per structure have been found sufficient. 1S6, 157)

Second, Chen et .a/1SS have demonstrated that the calculation of the dose distribution

for treatment planning optimization by intensity modulation is to include lateral transport

in order to avoid target underdosage and to reduce unwanted injuries to critical organs

when critical structures are immediately adjacent to the target. Convolution/superposition

algorithms adequately take into account lateral transport of radiation. 1S9-161 However,

photon-dose calculations by such an algorithm for a 64x64x 128 grid on a DEC Alpha

(3000/400) station (Digital Equipment Corp., Marlborough, MA) have been reported

to exceed 5 min turnaround lime for typical clinical beam arrangements. 162 Thus for

thousands ofsampling points, a single iteration ofan inverse treabnent planning procedure

May require a few seconds to a few minutes on the currently available hardware in the

1-16
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radiotherapy departments.

Given the large-scale nature of the inverse problem and its computationaI properties,

the development of versatile and efficient optimization aIgorithms for inverse treatment

planning is imperative for the advancement of intensity modulated conformaI therapy.

The results of our research in this direction are presented in Chapter 2. 163-165

There is another facet related to the computational nature of inverse treatment plan­

ning. Given the current status of the radiobiological models, the clinicai advancement of

intensity modulated confonnaI therapy is based on the physical approach to inverse treat­

ment planning which provides continuity with respect to the existing standard practice.83

However, to make the inverse problem manageable, the clinical goal of confonning the

high dose region to the target while sparing healthy tissues is cast in an optirnization

problem by relatively simple models. For this reason the resulting optimized plans May

not be clinicaUy acceptable. Our research effort to improve on the existing models with

physical objective functions is presented in Chapter 3. 166-169

1.4 Treatment Setup Verification

1.4.1 Rationale

Confonnal radiotherapy (with or without intensity modulation) reduces the treatment

margins around the CTV in arder to achieve a higher TCP while maintaining low NTCPs.

Therefore, high geometric accuracy in the placement of the target volume with respect ta

the treatment beams (ports) is crucial for the success of confonnal treatments. 170, 171 The

attainment of precise target coverage implies monitoring, detection and correction offield

placement errors which result in geographic misses of some fraction of the target volume.

Field placement errors May be caused by setup errors (improper blacks or wedges placed

(·17



• CHAPTER J Introduction

•

•

in the beam port), by inaccurate patient positioning or by movement of internai organs

with respect to the extemal skin marks used to align the patient.

Being difficult to monitor, field placement errors are the largest source of uncertainty

in dose delivery172 compared to the- uncertainties resulting from variations in dosimetry,

treatment unit output and gantry and treatment coach stability. Moreover, by employing

radiobiological models, several studies have demonstrated that setup errors can have

significant impact on both the Tep and the NTCP"~176 Goitein and Bussel73 have

demonstrated that tumors with steep dose-effect curves (Fig. 1.1) such as supraglottic

lesions are very sensitive to field placement errors. For POsitioning errors of +5 mm,

they have estimated TCP reduction between 12% and 40% depending on the size of the

selected margins and the frequency of the errors which were assumed to be random.

Assuming a constant dose distribution a10ng the beam axis,# Brahmel74 calculated the

TCP reduction as a function of the misalignment of the radiation field edge and the target

border. Depending on the steepness of the dose-response curve (Fig. 1.1) sorne decrease

of 3-7% in the TCP was evaluated for a 2 mm shift and of 9-50% for a 5 mm shift. Using

a radiobiological model, for the cases of lesions encircling the brain stem or the spinal

cord, Daftari et al. 176 evaluated that patient positioning had to be kept within 2 mm to

eosure a NTCP value of 1%. By retroactively incorporating treatment positioning errors

into a 3-D treatment planning system, Rudat et al. 171 have evaluated a resulting reduction

in TCP of 2% for esophagus carcinomas and 5% for prostate carcinomas.

Qualitatively, the conclusions of these theoretical models are supported by sorne

clinical studies. Kinzie et al. 177 reported results on the relapse rates for patients with

Hodgkin's disease in relation to the adequacy of the field placement as inferred from

portal images. Treatment setups which had consistently resulted in partial shielding

Close approximation ta that assumption is the dose distribution produced by • pair of paraUel opposcd beams.
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of the target volume or of the supraclavicular, auxiliary and/or abdo;ninal nodes were

considered inadequate. The relapse rate for patients who had been treated with improperly

placed fields was 54% with 33% of these recurrences appearing in the irradiated volume.

For patients mthout field placement errors, the relapse rate was 14% with only 7% of

recurrences in the primary tumor site. Another study by White et al. 178 statistically

significant difference in the survival rates for patients with and without major treatment

protacol variations, 80% of which were due in part or completely to shielding errors

as revealed by portal film analysis. The relapse rate was 69% in the group with major

protacol variations and 34% in the other group.

It is evident from the existing theoretical studies that accurate beam localization

with respect to the patient anatomy (in the order of 2 mm) is essential for achieving the

necessary local tumor control, particularly in the case of confonnal therapy with its tight

margins. However, in clinical practice, for 20% of the treatment setups, the discrepancies

between the intended and the actual field edge positions are in order of 10 mm. 179 An

appraach that can significantly improve the accuracy of the field placements is described

below.

1.4.2 Portal Imaging

The goal of portal imaging is to detennine whether a patient setup is perfonned

correctly within the prescribed limits and to suggest the necessary corrective measures if

the field placement errors are inadmissibly large. For this purpose, the treatment beam

(port) is used to acquire a portal image of the patient in the treatment position. An

EPID or a film are employed to record the image which is usuaUy double-exposed to

provide a better visualization of the spatial relationship between the patient anatomy and

the treatment field (Fig. 1.4). (In a double exposure image the treatment field appears

as a clark shadow cast on the previously obtained image of the patient anatomy with a
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large rectangular field.) The portal image is compared to a reference one that reftects the

desired placement of the treatment field with respect to the patient anatomy (Fig. 1.4).

A diagnostie-quality image obtained during the conventional simulation process, a DRR

produced by virtual simulation or an approved portal image from the tirst treatment

session can serve as reference images. After visual or computer-assisted registration of

the anatomy images (Fig. 1.4), a misalignment of the borders of the actual and of the

desired treatment field manifests an inaccurate patient setup.

Conventionally, ponal images are obtained by films. I77, 179-187 Portal films include

verification films, whieh are slow and exposed throughout the treatment and localization

films which are exposed only with a small fraction of the daily dose. 188 A definitive

correlation exists between the rate of field placement errors and the frequency of portal

image acquisitions. 183. 185, 189 For example, for extended mantle fields, increasing the

frequency of portal film acquisitions from 3 to 18 per treatment decreases the frequeney

of field placement errors from 55% to 29%.183

Despite the efficiency of portal radiography in reducing the rate of treatment

setup errors, there is a signfficant numbers of hospitals that have not adopted portal

imaging. 187, 188 In 1989, a survey among 25 centers in Canada indicated that only 55%

of the institutes acquired routinely portal images of all the patients treated with curative

intent.187 Overall, only 67% of the patients receiving radical treatments have field place­

ment accuracy checked by portal imaging. In U.S.A., an earlier study reported that 90%

of the dînies acquired portal films on the fust day of the treatment for more than 75% of

their patients. However, similarly to the practice in Canada, ooly 40% employed routine

radiographs on a weekly basis (4 ta 6 portal films per treatment course).188

Somewhat surprisingly, the above described patterns of clinical portal imaging

practice are not caused solely by the off-lïne nature of portal film radiography. Indeed,

even though EPIDs84 can provide near real-time digital images for on-line viewing and
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Figure 1.4. Schematic representation of treatment selup verification by
portal imaging. On the left: double exposed portal image ofthe treatment
field and the surrounding patient anatorny. On the right: a reference
image (in this particu/ar example a DRR) ofthe patient anatomy and the
desired placement of the treatment field. After anatomy registration, in
the absence offield placement errors the horders of the actual and of the
desired treatment field will he a/igned.

quantitative analysis, they have not been adopted for clinical radiotherapy as widely as

initially anticipated. l90 A survey at The Third International Workshop on Electronic

Portal Imaging (San Francisco, July 1994) demonstrated that among the 34 hospitals that
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had installed EPIDs, 38% used them daily, 26% used them weeldy, 21% did not use

them often and 15% did not use them clinically.191

The difficulties associated with the detection and evaluation of field placement er­

rors are regarded as the main obstacle to the wider and more frequent clinical use of

portal imaging.186. 181. 192-195 Accurate on-line manual registration of images and sub-

sequent measurements are considered impractical since they require a few minutes to be

perfonned. 192 For this reaSOD, the majority of the portal images are evaluated on subjec­

tive basis. Dunscombe et al. 187 found that 63% of the hospitals that participated in their

study relied on a visual judgement of the portal images, 25% of the hospitals used both

subjective and quantitative measure, but relied predominantly on the subjective approach,

8% of the hospitals evaluated the images half quantitatively and half subjectively and

only 4% of the hospitals used mostly "semi-quantitative99 methods in their analysis of

portal images.

The visual subjective analysis of the images, however, is not ooly somewhat time­

consuming but prone to significant errors as weB, due to the paor contrast of portal images

which results from the predominance of the Compton scattering in the imaging process

and from the degrading effect of scattered radiation.·· For example, Herman et al. 194

reported a study whereby patient setup errors were estimated by visual comparison of

EPID images and reference ones obtained during simulation. The patient setup was

corrected if errors larger than 5 mm were detected. A further analysis of the images

before and after the on-line correction revealed that more than 17% of the accepted final

setups still exhibited errors exceeding the 5 mm criterion.

The above considerations indicate that the development of fast, computer-assisted

methods for the detection and the evaluation of fields placement errors cao contribute

These are general properties of the image formation al megavoltage cncrgies. indepcndcnt of the actual portal image dctector.
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significantly to the effective use of electronic (or film) ponal imaging in clinical

practice. 186, 187,192-196 In the second part of this thesis (Chapter 4), we present our

contribution to the research effort16, 197-220 in the field of image processing for treatment

setup verification.

1.5 Objectives and Organizalion of Thesis

This thesis presents our work in two distinct areas essential for the efficient clinical

use of the modem technologies for confonnal radiation treatments: (i) the development of

techniques for the design of intensity modulated radiation beams and (ii) the development

of techniques for field placement detection and evaluation. Our objectives were:

1. to develop a versatile optimization algorithm that, onder the limitations of the

currently existing hardware, can be applied to various objective functions at the

large-scale of the inverse problem.

II. to develop an optimization technique that cao improve on the existing inverse

treatment planning algorithms by exploring beam intensity modulation while

providing continuity with the existing clinical practice.

III. to develop an automated anatomy image registration algorithm in order to facilitate

the process of detection and evaluation of field placement errors.

In Cbapter 2, the existing methods for inverse treatment planning are reviewed in

order to identify somewhat optimal algorithms for treabnent planning optimization with

intensity modulated beams. An active set algorithm is introduced as an alternative to the

widely used constrained steepest-descent method. The two methods are compared for

two treatment objectives and three anatomical sites.

In Chapter 3, after an analysis of the limitations of the conventional inverse treatment

planning technique, an alternative statement of the inverse problem is suggested. A
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continuous penalty function method is introduced to find approximate solutions of the

resulting large-scale constrained optimization problem. The perfonnance of the technique

as a function of severa! parameters is investigated. Examples are presented to illustrate

sorne strategies for the clinical applications of the technique.

In the second part of this thesis, Chapter 4 describes a registration algorithm based

on image correlation. Two correlation operators can be employed: (i) the normalized

cross-correlation and (ü) the Pearson linear-correlation coefficient can be used. Their

utility is investigated for the cases of portal-to-ponal and portal-to-DRR registration.

Finally, after summarizing the features of the techniques presented in this thesis,

Chapter 5 discusses sorne of the areas to be explored by future research.

To streamline the presentation, mathematical calculations are given in the Appendices.

In Appendix A the Differentiai Scatter-Air Ratio dose calculation model is outlined. In

Appendix B, we prove the applicability of the continuous penalty function method to the

inverse problem fonnulated in Chapter 3. In Appendix C, we derive the Fast Fourier

Transform implementation of the Pearson linear correlation coefficient.

A list of references, sorted by the arder of appearance, follows each chapter. A

complete bibliography is included at the end of the thesis.

SeveraI aspects of this work have been presented at national and international

rneetings,221-226 and have been published as abstracts l63, 164, 166. 168,227 and articles in

conference proceedings,167, 169, 228, 229 and in peer-reviewed journals.16S, 230,231
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•

2.1.1 Existing Approacbes

The idea ofusing intensity modulated beams for conformai therapy was tirst proposed

by Brahme et al.1 who, by inverting analytically a prespecified dose distribution, solved

the inverse problem for the case of a circular symmetric target with a healthy organ at

its center. Their solution was then generalized for the case of targets with an axis of

symmeayl· 3 and arbitrary shape.4 The resulting profiles, however, are generally piece­

wise negative and therefore not physically realizabie. Tulovsky et al.S addressed this

problem for the case of circular isocentricaLly centered target and obtained non-negative

optimal profiles for this case. However, the analytical approach ignores beam divergence,

tissue inhomogeneities and lateral scatter, which are to be considered in order to reduce

unwanted injuries to critical organs.6

Recent advances in computer technology have fostered considerable interest in the

numerical solutions of the inverse problem for targets of arbitrary shapes. A brief

description of these methods is given below.

Iterative deconvolution7-9 is a method for inverse treatment planning similar to

the filtered backprojection reconstruction of computed tomography (CT) images. In

CT the 3-D distribution of the linear attenuation coefficient is reconstructed from the

transmission data by filtering of the measured profiles and subsequent backprojection.

The iterative filtered backprojection implementation9 which is the most versatile of the

iterative deconvolution techniques,10 inverts this process. Within each transversal slice

of the patient data, the desired dose distribution is projected along the source rays to

produce an estimate of the desired profiles in that plane. These estimates are further

filtered to account for lateral scatter and geometric blur. The resulting profiles are used

for forward calculation of the dose distributions and the ditference between the desired
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and the calculated dose distributions is then used as an input for a new iteratioD. This

procedure requires full 3-D dose calculation at each iteration. In addition~ the technique

is not readily applicable to non-copIanar beams since it works on slice-per-slice basis.

Iterative dose reconstruction techniques11-13 for inverse treatment planning are anal­

ogous to the algebraic reconstruction techniques in tomographie imaging. They employ

various updating schemes to obtain a dose distribution which is the best match of the

desired one in least-square sense. Similarly to the iterative deconvolution techniques~

iterative dose reconstruction methods are restricted to least-square dose objectives. Their

advantage is, however, that the intensities of non-coplanar beams cao be optimized.tt

Feasibility search l4, 15 techniques for inverse treatment planning aim at the identi­

fication of feasihle rather than optimum solutions of the inverse problem. A feasibility

search algorithm requires a set of convex constraints that the prescribed dose must sat­

isfy. (An example of convex constraint is the requirement that the dose to any point in a

critical organ be below a certain planner-specified level.) Then a projection of the pencil

beam weights onto the convex sets specified by the constraints is established. The pencil

beam weights are projected altematively among the constraint sets until convergence is

achieved. If the intersection of the convex sets of the constraints is not empty, the result­

ing pencil beam profiles produce dose distributions which satisfy the dose constraints.

There are two drawbacks of the feasibility search techniques. First, they produce

intensity modulation that satisfies the constraints (if such exists) but in case of success

do not indicate how much more stringent a constrained could be. Second, they cannot

be easily generalized to consider non-linear functions sucb as TCP and NTCPs.

Djordjevitch et. a116 formulated the problem of optimal compensator design as a

quadratic programming problem. A linear-quadratic function is minimized which com-

•
tt Bortfeld's technique11 cau also be considered as a sradient technique.
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bines the integral dose to selected healthy points and the least-square difference between

the target dose and a preset level. The linear constraints require that the dose to selected

vulnerable points be below specified limits. Therefore the approach cao be regarded as

further generalization of the inverse planning techniques based on least-square objectives.

However, quadratic programming is restricted to linear-quadratic functions and cannot be

extended to nonlinear functions ofdose. Furthermore, quadratic programming techniques

solve sequences of linear programming problems and therefore fail to provide approxi­

mate solutions when feasible parameters that satisfy the constraints do not exist. 17, 18

Simulated annealing19 is a stochastic optimization method based on the Metropolis

aigorithm20 for simulation of a collection of atoms in equilibrium at a given temperature

T. In each step of the MetroPOlis algorithm an atom is given a small random displacement

and the change 6,E in the energy of the system is evaluated. If ~E < 0 the new

configuration is retained as a starting point for the new step. If 6,E > 0 the configuration

is accepted with a probability P(6,) = exp (-ÂEj kBT), where kB is the Boltzmann

constant. By repeating the basic step Many times the thermal motion of a collection

of atoms with a heat bath at temperature T is simulated. In order to find the ground

state of the system one should proceed with the simulations in the manner follo\ved by

the experiments that detennine the low-temperature state of a material - for example,

experiments that grow single crystal from a melt. After the substance is melted, the

temperature is lowered slowly, with a substantial amount of time spent in the vicinity

of the freezing point.

The simulated annealing method uses this approach by substituting the cost function

in place of the energy and by defining configurations in terms of the parameters to

be optimized. The temperature is a control parameter in the same units as the cost

function. The system is optimized by "metting" at a high temperature and then lowering
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the temperature by slow decrements until the system '1i'eezes". At each temperature

the simulation must proceed long enough for the system to reach a steady state. The

annealing schedule is determined by the number of rearrangements at each temperature

and the temperature sequence.

The most attractive feature of the simulated annealing is that it cao find the global

minimum of virtually any function given a sufficiently slow cooling scheme. However,

similar to the physical systems which when annealed rapidly reach a metastable state

different from the ground one, the simulated annealing method is bound ta produce

a minimum different from the global one if the cooling is too fast. In addition, a

large number of iterations is required at each temperature to thennalize the system.

For example, 4 million iterations have been reported for the optimization of up to

8192 variables (128 beams with 64 beamlets) in a 3-D model (323 dose points) that

employed a least-square dose objective.21 A single iteration does not require a full 3­

D dose calculation, but does evaluate the cost fonction from the 3-D dose distribution.

Therefore, an equivalent number of approximately 3000 full 3-D dose calculations must

be evaluated. The excessive number of dose calculations is the main factor that currently

limits the applicability of the simulated annealing to the large-scale inverse treatment

planning problem.

Gradient aIgorithms22- 26 are somewhat optimal for intensity modulation design.

First, tbey have much better rate of convergence than the stochastic methods. Second,

gradient techniques can be applied to optimization problems that are beyond the scope of

dose reconstruction, feasibility searches and quadratic programming techniques. Exam­

pIes of such problems are optimizations based on biological or mixed biological/physical

objective functioRS.

Gradient methods do have their drawbacks. First, they are applicable only to
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differentiable functions of the optimization variables. This requirement, however, can

be met by almast ail clinically significant biological or physical indexes.26 More relevant

limitation is the inability of gradient ~ethods to avoid local minima. In this case, if

the solution is not acceptable, the gradient search should be restarted with a different

initial guest. Another approacb is to identify proper starting points for certain beam

arrangements and treatment sites and to use these for new cases.24, 25

2.1.2 Objectives

Among the gradient methods, the constrained steepest-descent (CSD) bas been

exclusively employed for inverse treatment planning.22- 26 115 main advantage is that

the requirement of nonnegative pencil beam weights (nonnegativity constraint on the

independent variables) can be satisfied by simply imposing them at each iteration step.22

Such a procedure is not mathematically robust for other gradient-based approaches such

as the conjugate gradient (CG) and the quasi-newton (QN) methods. These methods rely

on the notion that the function to be mjnjrnized can be approximated by a quadratic fonn

in the vicinity of a minimum. They exploit the properties of the quadratic functions to

construct a self-consistent set ofdescent directions such that successive line minimizations

along these directions lead to the minimum. However, when nonnegativity constraints are

imposed, a line minimization can lead to an infeasible iterate. Truncation to zero of the

negative variables creates a feasible point which is ditferent from the line minimum. This

disrupts the necessary process of successive line minimizations. On the other hand the

afore mentioned methods have higher convergence rate than the steepest-descent method

for unconstrained minimization problems.27 Thus their use can potentially accelerate

the design of intensity modulated beams by decreasing the number of time-consuming

three-dimensional dose computations.28. 29

Our objective is to develop robust implementation of the CG for the purposes
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of inverse treatment planning. We propose an active set method with a conjugate­

gradient routine for subspace rninimization in order to accommodate the non-negativity

constraints. The utility of the active set method for treatment planning optimization is

to be investigated by a comparison of its performance to that of the CSD. Two cost

functions, different treannent geometries, relevant starting points and termination criteria

are considered for the purposes of objective comparison.

2.2 Background

2.2.1 Heam Intensity Modulation in Dose Calculations

Bearn intensity modulation is included in dose calculations by tiling the cross-section

of each beam in small elements (pencil beams) at a certain reference distance (Fig. 2.1).

The pencil beams are indexed by c, which is the number of the beam they belong to and

two indices (j, k) indicating the position of the pencil beam within the beam port. The

coefficient H;:i:~" is the calculated dose contribution per unit weight from a pencil beam

(j, k, c) to a voxel P at a grid location (m, n, 1) . The pencil beam dose contribution

depends on ditferent physical factors: the geometry of the irradiation, the treatment

modality, and patient anatomy. However, in practice, the coefficients H;:i:~" reBect the

modelling of the above physical factors by the particular dose calculation Madel. For

instance, if scattered radiation is not considered, H;:i:~" is zero beyond the ray line of a

pencil beam, contrary to the case where the scatter is taken into account.

The inclusion of beam intensity modulation in dose calculations is done by assigning

a nonnegative weight wi,k,c to each pencil beam. The dose nm,ft,' to a voxel P is then:

•
(2.1)
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/

•
Figure 2.1. Inc/usion of modulated beam intensity in dose ca/cu/anons.
Only one beam is shown for c/arity.

Summation over repeated indices is assumed. If the indices are combined as shown in

Fig. 2.1 we have:

p = l..N, i = l..M (2.2)

where N is the total number of dose calculation voxels and M is the total number of

pencil beams used for optimization. In vector notation:

•
D = Hw,

2-9
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Figure 2.2. Strocture Iabelling. The internaI structures, the tumour and
the patient surface are out/ined manually or semiautomatically on consec­
utive images obtained by computed tomography. The points of the dose
caIcuIation grid are Iabelled with respect to the structures Sa they beIong
to. Two (a = 1, 2) structures (51, Sû and a tumour target Tl (b = 1) are
labelled in this particuIar example.

2.2.2 Cost fonctions

Quadratic objective. Wheo the goal of the optirnintion is specified in tenns of the

desired dose distribution, a quadratic objective is widely used. Let DSa. be the tolerance

dose ofstructure Sa (Fig. 2.2), where a is ao index that eoumerates the various anatomical

structures. Let DTb be the dose to be delivered unifonnly to the target Tb (Fig. 2.2), where

b is an index that enumerates the target volumes to be treated. Let the total oumber of

healthy structures be ns and let the total number of targets to be tteated he nT. Theo,

the objective functioo to be minimized cao be written as :
nT ns

S(W) = (3 E (DP(w) - DT,J2) +E rna ( Rp(DP(w) - DSœ )2)
6=1 n 11=1 Sa

R = {1 if DP(w) > DSG

P 0 if DP(w) < D Sœ •
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(2.5)•

The averages are calculated over the points of the corresponding structures. Different

structures can be given different weights ma and the overall weighting of healthy tissues

versus the tumour targets is accounted for by the parameter 13.

Probabllity of uncomplicated local tumor control. A relevant biological objective is

ta eradicate the tumour under nonuniform dose delivery without causing severe damage

ta healthy DonnaI tissues. This goal can be incorporated by various biological models

into the probability of uncomplicated local tumor control P +. Elaborate discussion on

P + and a underlying biological model is given by Agren et al.30 and Kallman et al.23, 31

In what follows we ooly present the corresponding analytical expressions used in the

optimization.

In the model under consideration, for several target volumes, the probability of tumour

control PT is given by Poisson statistics as31 :

nT nb eib (1- D~,b(W») -kb ln nb

PT(W) = IIII 2-e 50,b ,

b=1j=1

where D j,b (w) is the dose in voxel i in target volume Th for the current pencil beam

weights w, DSO,b is the 50% response dose, "Yb is the maximum value of the nonnalized

dose response gradient and e is the base of the natural logarithm. The total number of

voxels in target volume Tb is nb. The scale factor kb accounts for the often reduced

volume dependence of a heterogeneously growing tumor and has a value of unity for

homogeneous tumors. The probability of injury Plis given by

•

no

P[(w)=l- Il
a=1 [ (

( Dj,a(w»)) sa] n~ ~~na e1a 1--bp,r.....-

II
SO,a

1- 1- 1 - 2-e

j=1

(2.6)
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where Sa is the relative seriality23 of the structure Sa. The probability of uncomplicated

local tumour control P +(w) cao be expressed by PTew) and P [(w) as

(2.7)

where 8 is the fraction of patients with statistically indePe0dent respoose.30

Giveo the above, a suitable cost function to be minimized is the probability P_ (w)

of obtaining severe complications and/or a recurrence :

P_(w) = 1 - P+(w) .

2.3 Gradient Optimization Aigorithms

(2.8)

•

•

2.3.1 Optimal A1goritbm Selection

Any gradient algorithm for unconstrained rninjmization of a smooth cost function

C (w) of the pencil beam weights w can be presented by the following model algorithm.32

A1gorithm U (Madel a/gorithm for n-dimensiona/ unconstrained optimization). Let

Wk be the current estimate of the minimum point w*.

UI [Test for convergence]. If the conditions for convergence are satisfied, the algorithm

tenninates with w le as the solution.

U2 [Compute a search direction]. Compute a non-zero n vector dk, the direction of

search.

U3 [Compute a step length]. Compute a positive scalar Ok such that C(W/c + o/cd/c) <

C(Wk)

U4 [Update the estimate of the minimum]. Set wle+l = Wk + oledlc and go back to

step Ul.

The various gradient algorithms for unconstrained optimization differ mostly in the

way the descent direction die is selecte~ which itself determines the rate of convergence

2-12



Table 2.1 Characteristics of gradient unconstrained optimization algo­
rithms. The number of the independent variables (pencil beam weights)
is M. Operations relate to the number offloating point operations to be
performed for the calcu/ation ofa descent direction dk once the gradient
of the cost function is determined. The exact numbers vary slightly with .
the specifie imp/ementation.

CHAPTER 2 An Active set Aigorithm for Inverse Treatment Planning

•

•

Gradient Methods

Steepest descent Conjugate gradients Quasi·newton

Storage .~ few 1W ~\-[2

Operations J.\J few ~[ few 1\;[2

Convergence linear linear·superlinear superlinear

towards the minimum (the minimizer) w· of C(w). Better selection of dk is associated

with increasing overhead computations and memory storage (Table 2.1). In a typical

problem of intensity modulation the number of the pencil beams is in the order of 104

(Al "J 104 ) and the number of the calculation points is in the order of 105 (N f",J 105
).

Given the dose calculation equation D = :ûw, the number of floating point operations

needed for a single evaluation of the dose distribution is 2MN. Therefore, a QN method

requires a number of overhead calculations (Table 2.1) comparable to that needed for

the evaluation of the dose distribution. The large amount of storage required for the

QN method (few hundred Mbytes) also hampers its utility for optimization of intensity

modulated beams. On the other band, the CG are computationally comparable to the QN

methods33 but at the expense of a negligible increase in the overhead calculations and

memory (Table 2.1). Therefore, a CG implementation for inverse treatment planning can

be a viable alternative to the eso Methode

It must be emphasized that the above considerations are strictly valid for uncon­

strained optimization. For the case of constraint optimization, the properties of the

2·13
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•

various methods associated with the overhead calculations and the storage requirements

remain in the same proportionality, but their convergence properties are affected by the

nature of the constraints and the objective (cost) function. For this reason, an active set

implementation of the non-negativity constraints in the CG is proposed below and its

performance is compared to that of a eso implementation.

2.3.2 CODstrained Steepest Descent (CSD) metbod

In an unconstrained steepest descent method the descent direction d k (Step U2 of the

model algorithm) is selected to he the opposite to that of the local gradient of the cost

function, that is dk = -gk = - VwC(w) Iw=wl: . The step length (Step U3 of the model

algorithm) Ok can be heuristically selected or computed by minimizing C (w) along the

ray wk + 0kdk .

An inclusion of the positivity constraints w~ = (Wk)1 > 0 is done by the following

modifications. The descent direction is calculated as:

di=(dk)i=O if w~=O and -(gk)i<O

di = (dk)i = -(gk)i otherwise.
(2.9)

•

The step length Ok is determined by minimizing C(w) along the ray Wk+Okdk. However,

whenever a constraint (wt = (Wk)i < 0) is encountered, wt is set to zero and the

minimization continues along a new ''bent'' vector with components max [0, w~ + Qk4].
This implementation is a generalization of the widely used "step and truncate" approach

to the CSD.22- 26 A pseudo code statement of the algorithm is given in Fig. 2.3 and an

extensive discussion on the properties of this algorithm is provided in the original work

by McConnick.34
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•

•

Algorltbm CSD

(Constrained steepest descent minimization ofa smoothfunction C(w).)

Let Wt be the current estimate of the minimum point w· and

g,è = VwC(w)lw=w"" he the gradient of the cost function.

WHILE the conditions for convergence are not satisfied [Test (Tl) jôr convergence]

DO
BEGIN kth iteration

IF (w~ = 0 and _(gë)Î ~ 0) THEN di = (dt)Î = 0

ELSE 4 = (dc)Î = _(gt)Î [Compute afeasib/e search direction dt.];

BEGIN [Compute a step /ength by a fine minimization.]

Compute a positive scalar Qt by minimizing C(w) along the ray W,è +
Qtdt. Whenever a constraint (w1 = (Wk)Î ~ 0) is encountered, set

w1 to zero and continue the mjnjmization continues along a new "bent"

vector with components max [0, w~ + Që4J.
END

(Wk+l)Î = max [0, w1 + Qtdi] [Updare the iteTate];

END

Figure 2.3. CSD pseudo code.
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•

•

2.3.3 Active Set Metbod witb Conjugate Gradient Subspace Minimization (AS)

We have introduced an active set method for inverse treatment planning which

accounts for the simple bounds on the independent variables (w i > 0). The algorithm

is based on the following notion. Let l (active set) be the set of the indexes of these

components 'W.
i of the solution vector w* that are to be kept at the boundaries. For the

variables w·i that do not belong to the active set (i tI. I) the corresponding components of

the function gradient are equal to zero (gi(w*) = 0). On the other band for the variables

'W*i in the active set (i E I) the corresponding components of the function gradient have

to be positive (gi(w*) > 0). Suppose that at the solution w· a variable w·i in the active

set (i E I) existed such that gi(w·) < O. In this case a CSO iteration (Sec. (2.3.2» would

create a new feasible point with a smaller value of the objective function by removing the

variable w·i from its bound. However, that contradicts the fact that w· is a constrained

minimum. Therefore the assumption of gi(w·) being smaller than zero for variables in

the active set is incorrect.

If l were known a priori, then one could fix the corresponding variables w·i , i E l to

their boundaries and perfonn unconstrained optimization in the subspace of the remaining

variables by using, for instance, a CG Methode However, since the set l is not known,

at each iteration step, the active set methods aim at developing a prediction 1,; of the

correct active set I. Such a prediction is based on the properties of the active set 1 at the

solution. However, these properties are tested at the current iteration point and therefore

the prediction Iii; of the correct active set could be wrong. Hence, active set methods a1so

include a procedure for testing whether the prediction is correct and altering it if not. In

our implementation, after the update of the active set, a descent direction is calculated as

in the CSO. An essential feature of the active set methods is that all iterates are feasible.

A statement of the algorithm is gjven below along with a pseudo code oudine in Fig. 2.4.
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(2.10)

•

•

A1goritbm AS (A/gorithm for n-dimensiona/ constrained optimization subject to

positivity constraints). Let Wk be the current estimate of the minimum point w· and

gk = VwC(W)IW=Wk be the gradient of the cost fonction.

Al [Test for convergence (Tl)]. If the conditions for convergence are satisfied, the

algorithm tenninates with w k as the solution.

A2 [Update the active set Ik]. Compute Ik as the set of the indexes j such that tu{ = 0

and -g1 = -(gk)i < o.
A3 [Compute a feasible search direction]. Compute a descent direction dk such that

di = 0 if i E Ik and d~ = -g1 otherwise.

A4 [Compute a step length] Compute n, the maximum non-negative step along dk.

Compute Ok minimizing along dk or its '''ent'' version if constraints are encountered

(see Sec. 2.3.2).

AS [Update the iterate]. Set w~+l = max [0, w~ + okd~] .

If Ok < Q (feasible step) go to step A6 otherwise go to step Al.

A6 [Conjugate gradient iteration]

1. (Update the iterate] Set W1+1 = wi + ok4·
2. [Decide which logic to perform (T2)] If minimization in the current subspace

(indexes i not in Ik) is to be terminated, go to Step Al. Otherwise, perform a

CG update of the descent direction dk in the current subspace and go to Step A4.

The CG update of the descent direction dk is different from -gk, used by the CSD.

It is detennined by the last descent direction dk-}, the last function gradient gk-l and

the local downhill gradient gk by27

d + Cgk - gk-d·gk d
k = -gk k-l .

gk-l·gk-l

The steepest descent direction -g is used as a fust member of a CG sequence. For

the case of a quadratic function, a CG update of the descent direction guarantees that
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•

•

Algoritbm AS (Active set a/goritlrm for constrained minimization subject to nonneg­

atÎvity constraints). Let W,t he the cunent estimate of the minimum point w· and

gi: = 'V.C(w)lw=wJr he the gradient of the cost function.

WHILE the conditions for convergence are not satisfied (Test (Tl) for convetgence.]

DO

BEGIN kth iteration

Update the active set Ii: as the set of the indexes j such mat:

w1: = 0 and -g~ = _(gj:)i :s; 0;

IF i E Ile THEN 4 = 0

ELSE 4 = -g~ [Compute ajëasib/e search direction di:];

SUBSPACE_MlNIMIZATION = TRUE;

DO

BEGIN

Compute Q, the maximum non-negative step along di:;

BEGIN [Compute a step /ength bya /ine minimization.]

Compute a positive scatar Qi: by m;nimizing C(w) along

theraywi:+cti:di:. WheneveracoDStraint(wt =(Wi:)i $

0) is encountered, set w~ to zero and continue the mini­

mization continues along a new "benf' vector with com­

ponents max [0, w~ + Qi:4l .

END
(Wk+l)i = max [0, wi + Qi:4l [Update the iterate] ;

IF the step was feasible (Qi: < Ci) THEN

IF minimization in the cunent subspace (indexes i DOt in li:)

is to he terminated [test (T2)]

TIIEN SUBSPACE_MlNIMIZATION = FALSE;

ELSE perfonn a CG update of the descent direction di: in the

cuneot subspace;

ELSE SUBSPACE_MINlMIZATION =FALSE;

END

UNTll.. SUBSPACE_MlNIMIZATION is TRUE;

END

Figure 2.4. AS pseudo code
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the minimization along dk results in an iteration estimate wk which also minimizes

the cost function with respect to the previous direction dk-l. That is not true for any

function C(w). Nevertheless, the rationale for using the CG is the fact that C(w) can

be approximated by a guadratic fonn in the vicinity of a rninitnizer w·.

The change in the objective fonction from iteration to iteration is used for the logie

test T2 and the termination test Tl. They both indicate termination if

(2.11 )

•

•

where T is a user-speeified parameter. The merlt of the test given by Eq. (2.11) is

that it is not unduly stringent even when [C(wk)1 is eonsiderably smaller than unity.

Simultaneously for large absolute values of the cost function the above test [Eq. (2.11)]

tums into the widely used termination test

(2.12)

that examines the relative change in the objective funetion from iteration to iteration.

In order to insure that the correct active set is selected at the solution, Tl aIso requires

that the last descent direction be a CSD one and a feasible step be perfonned along that

direction. The tennination criterion (Tl) is used for the eso method as weIl. The use of

a single termination criterion based ooly on the change of the objective fonction cannot

mie out the possibility of tennination at a point which is not a local minimum. On

the other band, it does not involve any additional overhead calculations which become

considerable when, as is the case in inverse treatment planning, the number of variables

is large.

The prediction Ik of the correct active set 1 is updated under two circumstances:

either the conjugate gradient minirnization in the current variable subspace (indexes i not

in Ik) has been accomplished (test T2) or a constraint in the current subspace has been
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•

•

encountered. In the fust case, after the subspace rninimization, a update of the active set

is needed since there may be variables wi .in the current active set which are no longer

bound (active) by the inequality gi(w) > 0 at the current point. In the second case, the

incorrectness of the active set is conspicuous and a new prediction is to be made.

2.3.4 Performance Evaluation

The performance of a minimization algorithm depends on the cost function, on the

selected performance measures, on the initial search point, as weIl as, on the termination

criteria. For this reason it is important ta identify a relevant starting point and termination

criteria, as well as, performance measures for the evaluation of the optimization routines.

We compared the performance of the CSD and the CG by the residual value of the cost

function at termination, the total number of iterations (dose calculatioDS) and the number

of main iterations. A main iteration comprises a selection of the descent direction and a

single line miojrnization. Both the eSD and the AS need a single dose calculation and

a single evaluation of the fonction gradient for the selection of the descent direction and

a few dose calculations per line minimization. At each main iteration, the AS method

requires additional floating point operations for the evaluation of the maximum feasible

step Q and the CG descent direction. These amount to few At/ and present a negligible

calculation overhead (Sec. 2.3.1). The number of main iterations is an indicator of the

efficiency of the CSO and the CG in the selection of the descent direction. The number

of main iterations (gradient calculations) is a somewhat more objective measure than the

total number of iterations since the latter depends on the parameters of the routine that

selects the step along the current descent direction. For the ideal case, if a single step

were performed to the line minimum, the total number of iterations would be equal to

the number of main iteratioDS.

The value of the objective fonction at tennination is of primary concem when
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•

•

P _(w) is used for the optimintion for it ret1ects directIy the utility of the achieved

dose distribution. However, when the quadratic objective S(w) is employed, a smaller

residual value May not readily result in significantly better dose distribution from a clinical

point of view. For this reason, we also examined the dose distributions obtained by the

AS and the CSD.

2.4 Method

2.4.1 Target Volumes and Organs at Risk

Three different cases were used for the comparison of the optimization algorithms.

Case A is a simulated concave target with an organ at risk in a cylindrical phantom

(Fig. 2.5). Case B is a solid prostate cancer with organs at risk being bladder, rectum

and nonnal tissue stroma (Fig. 2.6). Case C represents a target volume located in the

head and neck region with organs at risk being spinal cord and normal tissue stroma

(Fig. 2.7). The relative tumor density is assumed 90% in the target volume. Due to the

uncertainty in the values of the radiobiological parameters we used reasonable estimates

based on publisbed data.23, 25. 35-37 The values of the radiobiological parameters and

those of the dose levels for the physical objective are given in Table 2.2. The fraction

8 of patients with statistically indePendent tumour and nonnai responses bas been set

ta zero. The different sets of weights assigned to the various anatomical structures for

the case of the quadratic objective are given in Table 2.3. For aIl cases, homogeneous

tumors are assumed.

2.4.2 Irradiation Geometries and PeneR Beams

ln our particular implementation, the Differential-Scatter-Air-Ratio (DSAR) dose

calculation model38 of a 3D treatment planning system (GRATIS, Sherouse IDc.) was
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Figure 2.S Case A. Dose distributions obtained by the CSD and the AS.
Two combinations ofweights (/3 : mIl are used. (a) CSD. (1 : 1); (b) AS.
(1 : 1); (c) CSD. (1 : 15); (d) AS. (1 : 15).
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•
Figure 2.6 Case B. (a) Dose distribution obtained by the CSD. (b) Dose
distribution obtained by the AS. Weights ofunity are assigned to the target
and the rectum ((.8 : ml) = (1 : 1)).
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Figure 2.7 Case C. Tumor in the head and neck region. The spinal cord is
the organ at risk. For the optimization ofthe quadratic objective a margin
of 1 cm (not shown) was introduced around the target where dose leve/s
were not specified.
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Table 2.2 Radiobiological and dose parameters used in the optimization.
For aU cases, homogeneous tumors are assumed. The dose levels for the
tumors correspond to those delivered to them with unifonn beams and 100
MU delivered by each beam. The dose levels to the other structures are
calculated as a percentage of the target dose.

Cases Dose (Gy) (%) Dso{Gy) "Y s

A. Simulated

Tumor 4.7 (l00.0)

1. Organ at risk 1.9 (40.4)

2. Normal tissue 2.8 (59.5)

B. Prostate cancer

Tumor 5.5 (100.0) 60.0 4.00

1. Rectum. 3.0 (54.5) 75.0 2.50 0.70

2. Bladder 3.0 (54.5) 80.0 3.00 1.30

• 3. Normal tissue 3.0 (54.5) 65.0 2.76 1.00

C. Head and neck

Tumor 2.9 (100.0) 52.0 3.00

1. Spinal cord 1.45 (SO.O) 60.0 1.78 1.00

2. Normal tissue 1.45 (50.0) 65.0 2.76 1.00

•

adapted for pencH beam dose calculation (SxS mm2 at source-to-isocenter distance

of 100 cm). The DSAR model (Appendix A) takes inlo account scatter but does oot

consider inhomogeneities. However, by virtue of Eq. (2.3) the optimizatioo procedure is

implemented as a model-free routine. It does not explore any particular properties of the

matrix. il and can be used with any other model for the calculation of the pencïl beams.

Since scatter is accounted for by the DSAR model, a margin of 1.5 cm is added around

the projection of the target in each beam's eye-view. Photon pencil beams (18 MV) are
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Table 2.3 Weights assigned to the target and an organ at risk for the
quadratic objective optimization. The other structures considered in the
optimization are given we;ghts ofunity.

Cases Weights (;3 : ml)

A. Tumour : Organ at risk

B. Tumour: Rectum
1:1 1:5 1:10 1:15 5:1 10:1

•

•

Table 2.4 Irradiation parameters. Coplanar beams in the direction of
increasing angles with equal angular separations are employed in aU
cases. Gantry angle is zero when the gantry ;s straight up. The angles
increase for counterclockwise rotation of the gantry as viewed from the
isocenter. The isocenter is a/ways placed in the center ofthe targe! volume
(in center-of-mass sense). Initial angles are: 3 'JO for case A, f? for case
B, 00 for case C.

Case Numberof Numberof Grid sue Voxel sue

beams pendl beams (cm2) (<:m3)

A 7 1491 124 x 124 x 1 0.25 x 0.25

B 9 1267 104 x 178 x 1 0.25 x 0.25

C 3 1503 32 x 37 x 22 0.5 x 0.5 x 0.5

precalculated before the optimization for the given beam setup and dose calculation grid.

The pencil beam weights map onto Monitor Dnits (bearn-on tinte) after multiplication

by a factor of 100 MU/Gy. For the quadratic objective, no additional scaling of the

pencil beam weights was done. Given the dose prescription levels, the weights varied

between zero and few units (Gy) for both optirnintion algorithms. When the biological

cost fonction is minimized, an additional common scaling factor is introduced such that
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•

•

the unifonn beams of unit weight deliver unifonn dose to the turnor slightly higher than

the 50% response dose.23, 31 A full three~imensional optimization was perfonned for the

head and neck case, and two-dimensional optirnization was· performed for the simulated

and the prostate cases by fonning a sHt irradiation.

2.4.3 Optimization Parameters

In the optimization of the quadratic objective, zero initial weights were used as a

starting point to avoid unnecessary healthy tissue irradiation. For the case of uncompli­

cated local tumour control optimization, uniform unit beams were used as an initial guess

since previously such a choice has been found satisfactory.24, 25

The value of the tennination parameter T was selected as follows. For the case

of the quadratic objective optimization, we applied the CSD to few cases, varying T

in order to investigate the sensitivity of the resulting dose distributions with respect to

it. Dose volume histograms were employed to evaluate the optimized plans. A dose

volume histogram is a cumulative or a differential dose distribution calculated within a

preselected volume. In this thesis, however, dose volume histogram stands exclusively

for cumulative dose distributions. For a particular organ, a dose volume histogram allows

one ta evaluate the fractional volume of the organ that is irradiated at and above a certain

dose level. (For example, in Fig. 2.8 (c), for T = 0.001 approximately 80 % of the spinal

cord receives 30 % and more of the maximum dose.)

Based on our analysis of the dose-volume histograms (Fig. 2.8), we set T to 0.001

for cases A and C, and T to 0.01 for case B. In the radiobiologically based optimization,

we set T equal to 0.001, thus aiming at improvements of a tenth of a percent. Values of

the tennination parameter T below 0.001 were found to lead to excessive computational

times and therefore impractical.
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Figure 2.8 Sensitivity of the inverse treatment planning solutions to the
value ofthe termination criterion T. AU structures are assigned weights of
unity for aU cases. The dose distributions are normalized to their maxima.
The CSD is used for the optimization. (a) Dose-volume histograms for
the target and the organ al risk for case A. The resulting solutions are
significantly different. (b) Dose-volume histograms for the targe! and the
rectum for case B. The solutionfor T = 0.01 ;s a/most identical to thatfor
T = 0.001. (c) Dose-vo/ume histograms for the target and the spinal cord
for case C. The resulting solutions are significantly different.
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In our implementation of the minimization algorithms, an identical safeguarded line

minimization routine with parabolic interpolation39 is used by both the eso and the AS.

This routine combines a guaranteed, reHable go/den section search in one dimension with

a parabolic interpolation to yield an algorithm that converges rapidly if the cost function is

weB behaved, but is not much less efficient than the guaranteed method in the worst case.

2.5 Results and Discussion

2.5.1 Convergence Properties

Figures 2.9, 2.10 and 2.11 illustrate the convergence properties of the eso and the AS

when applied to the minimization of the square objective. For aH cases, the AS exhibits

a higher rate of convergence than the eso. The AS aIso reaches a lower residual value

of the cast function at termination than the eso does.

Figure 2.12 examines the number of iterations and the number of main iterations

required by the AS to achieve the same value of the cost function as the one obtained by

the CSO at tennination for treatment cases A and B. For case C, the CSO executes 185

iterations and Il main ones to reach termination. For the same case, the AS requires 107

iterations and 7 main ones to achieve the same value of the cost function. These results

and the ones shown in Fig. 2.12 confinn the expected fact that the sUPeriority of the AS

to the eso is mainly due to the lower number of main iterations, which in tum, is due

to the improved selection of the descent directions.

Figure 2.13 illustrates the convergence properties of the eSD and the AS when

applied to the minimization of the probability P _ (w) of obtaining severe complications

and/or recurrence for cases B and C. The AS exhibits a higher rate of convergence than

the eso. The AS also reaches a lower residual value of the cost function at tennination

than does the eSD (Fig. 2.13(a». The eSD executes 243 iterations with 15 main ones
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Figure 2.9. Quadratic objective S(w) versus number ofiteration stepsfor
case A. Lines are drawn to show the trend ofthe costfunction values. Plots
(a)-(f) cOn'espond to the combinations ofweights given in Table 2.3. AlI
plots start with the second main iteration since thejirst one is common for
both the CSD and the AS. The inserts identify the main iteration step at
which the AS leads to a value of the cost function lower than the value
obtained by the CSD at the termination.
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Figure 2.10 Quadratic objective S(w) versus number of iteration steps
for case B. Lines are drawn ta show the trend in value ofthe castfunction.
Plots (a)-(/) con-espond to the combinations ofweights given in Ülble 2.3.
Al/ plots start with the second main iteration since thefirst one is cammon
for bath the CSD and the AS. The inserts identify the main iteration step
at which the AS leads ta a value ofthe cast function lower than the value
obtained by the CSD at the termination. For plot (f) the CSD iterations are
terminated as soon as the residual cast is below the value obtained by the
AS. For this case the number ofiterations required by CSD;s as large as
three times the one required by the AS.

2-31



• CHAPTER 2 An Active Set Aigorithm for Inverse Treatment Planning

0.30 •
\
\
1

0.25 ~

-
1 v 5recpar: Dr:sccm (5D)
1 ~ AclivcScl(AS>
!. Coajupre Gnéieat Ireruioa (CG) !

0.04 ~-------

~ 0.20o-~ .
~ 0.15 ~
"-' .
~

0.10 -

0.05 -

0.03 ~

20050 100 150
Number of iterations

0.00 i'--- "--- "-- "-- _

o

•
Figure 2.11 Quadratic objective S(w) versus number of iteration steps
for case c. Lines are drawn ta show the trend ofthe cast function values.
The plot starts with the second main iteration since thefirst one is common
for both the CSD and the AS. Ail anatomical structures are given weights
ofunity. The insert identifies the main iteration step at which the AS leads
10 a value ofthe cast function lower than the value obtained by the CSD
al the termination.

to reach tennination. For the same case, the AS requires only 100 iterations with 6 main

ones to achieve the same value of the cost function.

•

For the head and neck case the perfonnance of both methods is almost identical,

both in terms of their convergence properties and the residual value of the cost function

(Fig. 2.13(b». This suggests that even though a certain algorithm may have the potential

of outperfonning another, whether or not this occurs is ultimately determined by the cost

function, which, for the case of treatment planning optirnization of a biological objective,

is defined by both the treatment geometry and the radiobiological parameters for the
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Figure 2.12 Number ofiterations and number ofmain iterations required
by the AS to achieve the same value ofthe costfunction as the one obtained
by the CSD at termination for treatment cases A and B. The bar plots from
left to right correspond to the combinations ofweights given in Table 2.3.
The average number ofiterations per main iteration rounded to the nearest
integer number is also given. In some cases. the last number gives some
additional advantage to the AS. However. the superior performance ofthe
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Figure 2.13. (a) ProbabiIity of obtaining severe complications and/or a
recurrence P_(w) versus number ofiteration steps for case B. The insert
identifies the main iteration step at which the AS leads to a value ofthe cost
function lower than the value obtained by the CSD at the termination. (b)
Probability ofobtaining seyere complications and/or a recurrence P _ (w)
versus numher ofiteration steps for case c. Lines are drawn to show the
trend in the value ofthe cost function.
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various organs. Nevertheless, given the statement of the AS (Sec. 2.3.3), one May expect

tbat in the worst scenario, the AS will perfo~ at least as weil as, the eSD with respect

to its convergence properties.

Figures 2.9, 2.10, 2.11, 2.13 illustrate that the AS iteration sequences vary signifi­

candy with respect to the treatment site. For instance, negative weights are more often

encountered for case A (Fig. 2.9) then for case B (Fig. 2.10). For case A, negative weights

are usually encountered after the fust CG iteration in the current minimization subspace

(Fig. 2.9(a-e» which leads to a frequent update of the active set. However, even a single

CG iteration in the current subspace a1lows significant improvement in the convergence

of the iteration sequence. For case B, negative weights are usually encountered once at

the beginning of the iteration sequences (Fig. 2.10(a-c, e, 0). After the corresponding

active set update several CG iterations (Fig. 2.10(a-c, e, t) lead to the minimum in the

current subspace, which is a1so the minimum of the constrained problem (according to

test Tl) since the update of the active set and the consequent move down the steepest

descent direction do not lead to significant changes in the cost function value.

We emphasize that when negative weights are not encountered the AS automatically

becomes the unconstrained CG with the additional calculation of the maximum feasible

step Q. Therefore, when there are not any active constraints at the solution the AS is

almost as efficient as the CG and produces the same minimum as the CG. When there

are active constraints at the solution, the AS attempts to identify them and to proceed as

the unconstrained CG in the subspace of the remaining variables. Given its statement,

it always converges to a point that will be considered as a minimum by the CSD.34

On the other band, a point obtained by the use of the unconstrained CG throughout the

minimization and truncation to zero of the negative weights at the end is not guaranteed to

be a minimum of the constrained rninimization problem. For a particular cost function,
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a mathematical analysis of the properties of the objective is needed to evaluate the

robustness of such an unconstrained approach.

The additional calculations required by the AS at each main iteration present a

negligible computational overhead in comparison with the calculation time necessary

for a single dose calculation. For case C, given 1503 pencil beams and 26048 calculation

voxels, the AS needs 0.01 s per iteration to evaluate the maximum feasible stepsize and

the CG descent direction. A single dose calculation perfonned as a matrix multiplication

(Sec. 2.3.1) takes 15 s. However, in our implementation the pencil beams are stored

on disk. Thus the dose calculation time is 75 s due to input-output operations. Ail the

simulations are performed on a Sun SPARC 10 computer.

2.5.2 Dose Distributions

When a quadratic dose objective is optimized the utility of the resulting dose

distributions depends not ooly on the performance of the optimization algorithms but

also on the optimal selection of the dose levels and of the weight factors for the various

structures. Figure 2.14(a) illustrates this point for treatment case A. The AS leads to

a lower residual value at tennination than does the CSD (Fig. 2.9(a», but the AS dose

distribution can be considered inferior to that of the CSD (Fig. 2.14(a), Fig. 2.S(a) and

Fig. 2.S(b». However, it cannot be argued that for a particular treatment case, the eSD

tends to terminate at a point of a higher cost function value but of better clinical utility

than the AS does. Figures 2.14(b), 2.14(c) and 2.S(c), 2.S(d) illustrate that even for

the same treatment case and dose levels, depending on the assigned weights, the lower

residual value obtained by the AS May reflect dose distributions which are similar or

better than those obtained by the eSD.

For treatment case B, the dose distributions obtained by the eSD and the AS were

very sunilar for ail combinations of weights given to the anatomical structures despite the
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Figure 2.14. Dose-volume histograms for the target and the organ at risk
for case A andfor different combinations ofweights (f3 : mI). (a) (1 : 1):
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consistently lower residual value of the cast function obtained by the AS. Figures 2.15(a)

and 2.6 illustrate this fact for a particular selection of the structure weights.

For treatment case C, the lower residual value of the cost function obtained by the

AS reflects a better dose distribution both in tenns of the sparing of the spinal cord and

the turnor dose homogeneity (Fig. 2.15(b».

To summarize, for a quadratic objective the AS always reaches a lower residual value

at tennination than the eso. However, due to the nature of the quadratic objective, the

dose distributions obtained by the AS May not always be better than those obtained by

the eSD. To ensure a good correlation between a low residual value of the cost function

and a useful dose distribution, the dose levels that are specified must be very close to

the achievable ones.

2.6 Conclusions

The most time-consuming operation in the optimization of radiotherapy treatment

plans by intensity modulated beams is the repeated dose calculation. An active set

algorithm for inverse treatment planning is introduced as an alternative tool to the widely

used constrained steepest descent method. The algorithm uses a conjugate gradient

routine for subspace minimization in order to achieve better convergence at the expense

of negligjble amount of overhead calculations. By numerical simulations it has been

demonstrated that (i) the active set algorithm performs at least as weil as the constrained

steepest descent in terms of the residual cost at termination for two different type of

objective fonctions; and (ii) due to its better convergence properties, the active set method

can decrease signjficantly the number of iterations necessary to reach a solution of the

inverse treatment planning problem.
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3.1 Introduction
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•

In Chapter 2 we introduced an active set algorithm as a tool for solving the large-scale

inverse problem in conformai therapy when a smooth differentiable objective function of

the pencil beam weights is used. The clinical utility, however, of the dose distributions

produced by any minimization algorithm depends critically on the proper modelling of

the treatment objectives. In this chapter, sorne of our research effort in this direction

is presented.

The goal of inverse treatment planning is ta generate treatment plans that conform the

high-dose region ta the target while minimizing the dose to surrounding healthy tissues

by modulating the intensity of a preselected set of fixed beams. In principle, biological

objective functions which incorporate tissue architecture and radiobiological response

should be used for the mathematical modelling of this objective. Ho~ever, a clinical

placement of a biologically based inverse treatment planning system is unlikely given

the current status of both the radiobiological models and their parameters (Chapter 1).

Physical objectives, on the other hand, can fonn the basis for clinical inverse treatment

planning since they provide continuity with respect to the existing standard practice by

incorporating clinically accepted dose- and dose volume-based criteria for the evaluation

of treatment plans.

Among the treatment planning optimization techniques based on physical objective

functions the model of partial dose volume constraints1-5 May be the Most cIinically

relevant one. Within this model various objectives are pursued under certain constraints

such as: (i) the desired target dose uniformity; (ii) the acceptable maximum dose to points

in healthy structures; (iii) the fractional volumes of critical structures that can receive

more than a certain dose, e. g. less than 30% of the Jung May receive more than 20 Gy.

Using the above model and the dose to a target point as an objective, Langer et a/. I
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solved the optimization problem as a combinatorial linear program. Given k healthy

organs, m(k) points in the healthy organ k and n(k) constraint points that have to satisfy

the dose limits on the fractional volume, an explicit enumeration of each combination

of constraint points in the critical organs leads to a set of IJ (':«:/) linear programs,

which are solved by the simplex method for linear programming.6• 7 Linear programs are

problems with objectives and constraints which are linear functions of the optimization

variables. This approach has been applied to the optimization of the weights of a few

beams for a thoracic case, for which one point in the target, one point in the spinal cord

and 15 points in the lungs were used. 1

Such an approach is clearly impractical for large-scale problems. For this reason, in

order to find the optimal beam weights for cases that involve up to 36 wedged or open

beams and several structures with a few hundred points per structure, Langer et al.2, 4, 5

applied mixed integer linear programming to the partial dose volume model with the

dose to a target point as an objective. The integer variables (0/1) indicate whether a

particular point exceeds the dose limit on the fractional volume. The algorithm proceeds

by solving a sequence of linear programs in which the integer variables with the largest

values al the optimum are fixerl to unity.

The time to solve a mixed integer linear problem is very sensitive to the number of

integer variables (number of points in healthy organs). For a thoracic case, using 450

points in the healthy lung, Langer et al.4 have optimized a few beam weights in average

time of 3.8 min on a DEC VAXstation 3520 (Digital Equipment Corp., MaYnard, MA).

When 800 points were used, the average time increased to 56 min with maximum time

of 22 br. Therefore, even though mixed integer linear programming provides a robust

model for the escalation of the target dose under dose volume constraints, the technique

is not applicable al the scale of the inverse treatment planning problem, which involves
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a few hundred to a few thousand variables and a few thousand to tens of thousands of

constraint points.

Morrill et al.3 suggested another approach to solve the partial dose volume model.

In their approach dose volume constraints are accounted for by introducing 3-D collars

around the target which divide neighboring organs in high- and low- dose regions. A

collar of different margin is assigned with respect to each structure so that the ratio of

the volume of the high-dose region to the volume of the low-dose region is equal to

the specified dose volume constraint for that structure. Points in the targel are assigned

homogeneity constraints and the integral dose to critical structures is minimized by linear

programming. For the case of a pancreatic tumor treated by a combination of beams

al every 10°, the approach has been applied for the optimization of up to 216 beam

weights. For a few hundred constraint points, calculation times of approximately 35 min

have been rePOrted on a DEC VAXstation 3520 (Digital Equipment Corp., Maynard,

MA). For routine clinical optimization of 216 variables, Morrin et al.8 estimated that

the number of constraint points that can be used with linear progranuning should be

smaller than 1000.8 This restriction partially results from the need of frequent restart of

the optimization process with relaxed constraints since linear progranuning is unable to

produce approximate solutions when a feasible point does not exist in the solution space.

Due to the computational difficulties associated with the application of the partial dose

volume model al the scale of the inverse problem, cruder models are used to formulate

mathematically the goal of intensity modulation conformai therapy.9-17 These models

aim at matching a prespecified dose distribution by minimizing a physical square objective

which penalizes for deviations from the desired dose distnoutioDS. The rationale for such

an approach is that the solution ofa less clinically relevant but manageable problem with a

large number of variables (pencil beam weights) can still provide better dose distributions
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tban a refined model with ooly a few degrees of freedom. That is clearly the case for

targets with concave regions.9, 13, 18 Furthermore, by exploiting the modulation of the

beam intensities, inverse treatment planning may decreas-e the number of beams necessary

to achieve certain conformity.19 On the other band, a large number of beams is needed

to achieve confonnity with unmodulated beams. 1- S

Apart from the fact that the radiation response properties of the critical structures

are not taken into account during the optimization, inverse treatment planning techniques

witb physical square objectives suifer from other limitations that may render the designed

dose distributions clinically unacceptable. In this chapter we develop a new approach to

address sorne of these drawbacks. Section 3.2 reviews briefly the conventional inverse

treatment planning technique in order to elucidate sorne of its limitations. In Sec. 3.3 an

alternative constrained minimization problem is proposed. On the premise that further

irnprovement of a 3-D confonnal plan with open (or wedged) beams can be achieved by

modulation of the intensities of the selected beams, we propose to minimize the dose to

healthy tissues while delivering the necessary dose to the target within certain unifonnity.

A continuous penalty function method is introduced as a numerical technique that finds

approximate solutions of the constrained minimization problem. The efficiency of the

continuous penalty function method depends on the choice of a numerical integration

scheme and a pair ofweighting functions, which are investigated in Sec. 3.5. In Sec. 3.6

examples are presented of the application of the technique to the clinical cases described

in Sec. 3.4. Based on these examples, in Sec. 3.7 we discuss the use of the technique

as a tool for treatment planning optimization in the general context of multiple criteria

optimization.
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3.2 Conventlonal Inverse Treatment Planning

3.2.1 Problem Statement

Let DSa be the maximum tolerance dose of a structure Sa where a is an index that

enumerates the various anatomical structures. Let Drin be the minimum dose that bas

to be delivered to the target T and let Dpax be the maximum admissible target dose as

deduced from dose uniformity considerations. Let P be a voxel of the grid and DP (w)

be the dose given to that voxe!. We recall that the vector of dose values is calculated as

the weighted sum of the dose contributions of the individual pencil beams as:

D=Hw, N --D = {DP(w)}P=l' H = {Hf},
. . }.[

w = {w· : w· > o} .- .=1 . (3.1)

(3.2)
•

The inverse treatment planning is then the process of matching a desired dose

distribution by solving the following problem. Find w such that :

1. wi > 0

2. DP(w) < Dsa , PESa

3. Dpax > DP(w) > Drin, PET.

Setting DT = D'Tax = D'Tin one formulates the above objectives as a non-lînear

optimization problem with constraints :

min {F(w)lgp(w) < 0, wi > o}

l ""' ?F(w) = - L.J (DP(w) - DTt
nT PeT

gp(w) = DP(w) - Dsa , PESa

(3.3)

•

In the above expression nT is a normalization factor whicb bere is selected equai to the

number of calculation voxels within the target T.

A variant of the exterior Penalty function method20 bas been exclusively used for

solving the above problem.9• 10. 12-17 A term proportional to the magnitude of the
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constraint violation is added to the objective function to penalize constraint violations.

Tbus a new objective function is to be minimized :

min{ C(w)lwi > a}

C(w) = nI L (DP(w) - DT)2 + r L :a L Rp(DP(w) - Ds,J2

T PeT Sa a PeSa (3.4)

{
1 if DP(w) > DSa

Rp = 0 if DP(w) < DS
a

where r is a penalty parameter and na is the number of calculation voxels pertaining

to structure Sa. Different structures can be gjven different weights ma. Sorne of the

approaches10-17 require exact matching of the prescribed dose by setting Rp = 1. In

practice the nonnegativity constraints are imposed by tnmcation of the negative weights

wi to zero at each iteration step.9-17,21

3.2.2 Limitations

The main limitation of the inverse treatment planning with a physical objective

function is that the goal of the radiation treatment as specified by Eq. (3.2) May not be

feasible for the selected beam setup. This is likely to be the case for the following two

reaSOllS. First, as yet, there is limited experience as to what is achievable with intensity

modulated beams. Second, the dose distributions intensity that modulated beams cao

provide are difficult to conjecture due to the large number of degrees of freedom. When

the goal specified by Eq. (3.2) is not feasible, the minimum of the physical objective

function [Eq. (3.4)] May result in dose distributions with target underdosage14. 22-24 that

are not clinically acceptable.25 (The term target underdosage refers to very low-dose

regions whose clinical effect cannot be circumvented by acceptable renonnalization of

the dose distribution.) Even in cases where the desired dose distribution is feasible the

question remains whether more stringent requirements could be imposed with respect to

the critical structures.
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Given that a critical structure is in the immediate neighborhood of a target or a dose

value is assigned to each grid voxel,10-16 the smooth real dose distribution cannot match

the desired dose distribution, since the latter has sharp discontinuity al the interfaces

between different structures. Even though the match may be the best in least square

sense, it again May not be clinically acceptable. Collars cao be introduced around the

different structures to allow more realistic dose specifications in the transient region.26

However, this creates the opportunity ofassigning collar widths larger than the achievable

ones, thus compromising the dose conformation.

An implementation problem arises when gradient-based optimization techniques are

employed for the minirnization of C(w) in Eq. (3.4).9-12. 14-16 It is known from the

non-linear optimization theory that the problem specified by Eq. (3.3) is to he solved by

a sequence of unconstrained minimization problems for increasing values of the penalty

r. However, current methods9, 10, 12, 14-16 minirnize C(w) for fixed and somewhat

arbitrary value of the penalty parameter r in order to decrease the number of lengthy

dose calculations. In this case one does oot, in fact, distinguish the consttaints from the

objective functioo. The repercussioos are that the solution of the optimi2ation problem

may not even approximately satisfy the dose constraints.

The above problems are sufficieotly suppressed when a large number offields (>15) is

used. However, for conformai treatments with standard facilities (MLC, compensators),

within reasonable time limits, ooly a few beams (5-9) are to be employed and the

discussed effects cao be significant for certain treatmeot sites. In what follows we

suggest an approach that addresses some of the limitations of the inverse treatment

planning technique.
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3.3 The Contlnuous Penalty Functlon Method (CPFM)

3.3.1 Theory

Most of the limitations of the inverse treatment planning with a physical objective

function are related to the feasibility of the specified dose levels. To overcome the diffi­

culties resulting from infeasible dose prescriptions in our approach we aim at minimizing

the dose delivered to healthy tissues while delivering the necessary dose to the target.

We formulate the above objective as the following constrained minimization problem:

•

min{f(w)jgj(W) < O,j = l, ... ,2nT + Nf}

f(w) = Ema ..!... E (DP(w»2 = Erna..!... E (Hfwi )2
na na

s~ pES~ 54 pES~

9j(W) = DP(w) - Dpar = Hfw i - Dpar ~ PET, j = 1, ... , nT

gj(W) = Drin - DP(w) = Hfwi - Drin, PET, j = nT + l, ... , 2nT

9j(W) = _wi, j = 2nT + l, ... , 2nT + 1\:/, i = l, ...,.!ll

(3.5)

•

The cost function J(w) is defined as the average of the squared dose delivered to healthy

tissues in order to reflect a goal of matching a zero-dose leveI to healthy tissues in a

least-square sense. The average is calculated over the voxels of the various organs and

different organs can be assigned different importance by their weights ma. The number

ofcalculation voxels pertaining to structure Sa is na and the number ofcalculation voxels

pertaining to the target T is nT. The constraints gj(W) demand that the target dose be

within certain limits and that the pencil beam weights be nonnegative.

The limitations of the conventional inverse treatment planning technique are ad­

dressed by the statement of the constrained optimization problem given by Eq. (3.5).

Conceming the dose prescription, it only requires two dose levels Drin and Dpaz.

Based on the clinicai experience with uniform beams, a planner cao always select fea­

sible values for these quantities. CoHars around the target need not be specified, since

3-10
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(3.7)

(3.8)

•

•

a solution of the above constrained minimization problem will autonomously extend the

high dose region around the target as much as needed to satisfy the dose constraints.

Furthermore, Eq. (3.5) poses a convex programming problem since the objective is a

convex function of the pencil beam weights and the constraints are linear and therefore

convex fhnctions of the pencil beam weights. A remarkable property of any convex

programming problem is that every local minimum is a global minimum.27 Thus any

solution of Eq. (3.5) guarantees the minimum possible value of the cost function without

cold spots in the target volume.

To solve the inverse treatment planning problem given by Eq. (3.5) we propose to

use the continuous penalty function method (CPFM).28 It accounts for constraints by

introducing a penalty term and varies the penalty coefficient continuously. Introducing

the functions gt(w) defined as gt(w) de! max[O,gj(w)], we refiect constraint violations

by a convex penalty term U (w) written as :

(3.6)

\Vithin the frame of the continuous approach functions P(w, t), j1.(t) and T(t) are defined

such that :

P(w, t) = p.(t)f(w) + T(t)U(W)
00

pet) > 0, r(t) > 0, Jp(t)dt = 00

o

and ~fg -+ 0 monotonically as t -+ 00. The limit points (t -+ 00) of the solutions of the

following system of ordinary differential equations (ODE) are sought:

d
dt w(t) = -VwP(w, t) w(O) = Wo

Using the convexity of the objective function f(w) and the penalty term U(w) as weIl

as previous results28,29 we bave proved (Appendix B) that the limit points of Eq. (3.8)
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•

converge to a solution of the initial optimization problem [Eq. (3.5)] for any starting

point w (0). Furthermore, since any local minimum coincides with a global minimum of

Eq. (3.5) the method leads asymptotically to a global minimum. Equation (3.8) cao be

considered a generalization of methods for unconstrained minimization. Indeed, it turns

into the steepest descent method wben the time-dependent weighting functions are kept

constant and the Euler integration scheme is applied.

The CPFM bas severa! properties that indicate its utility for the large-scale problem

of radiotherapy optimization. It bas a simple statement and accounts for the constraints

explicitly. It does not involve solving a sequence of unconstrained minimization prob­

lems, a process that presents considerable computational difficulties for large values of the

penalty coefficient. Furthennore, despite the fact that the CPFM is usually used for find­

ing approximate solutions,28, 30 there is sorne numerical evidence31 , 32 that optirnization

routines that solve Eq. (3.8) can perform considerably better than sorne well-known and

successful sequential quadratic programming techniques in tenns of reliability, number

of function evaluations as weil as accuracy.

Rather than accounting for the non-negativity constraints via a penalty tenn, one cao

consider truncation to zero of the negative pencil beam weights at eacb iteration step of

the optimization. In this case the tenn in Eq. (3.6) penalizing for negative pencil beam

weights is omitted and the limiting points of the following equation are sougbt :

d
dt w(t) = -[VwP(w, t)]+ (3.9)

wbere

3-12

(VwP(w, t»· > 0 (3.10)and
( [V'wP(w, t)]+)1 = {O • if w· = 0

(VwP(w, t» otherwise.

Intuitively the above approacb should produce the same results as the robust CPFM

[Eqs. (3.6), (3.7) and (3.8)]. A comparison of these two approaches is given in Sec. 3.5.

•
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3.3.2 Numerical Methods of ODE Integration

An important observation concerning the numerical solution of the system ofordinary

differential equations given by Eq. (3.8) is that sorne computational effort is likely to be

wasted in the process of following an ODE trajectory accurately when ail that is really

needed is the limit point of this trajectory as t ~ 00. For this reason we investigate

several numerical methods to integrate Eq. (3.8) efficiently. AlI methods have been

integrated in our inverse treatment planning system (Sec. 2.4.2).

As a benchmark a Runge-Kutta method33 with adaptive stepsize control is applied

to the integration of Eq. (3.8). A fractional error of five percents is set as a criterion

for the routine that evaluates the tnmcation error as a fonction of the step size. Thus

an accuracy of about five percent is sought for the values of the pencil beam weights

at tennination. To select an optimal routine to solve Eq. (3.8) we compare the results

of several other integration schemes to those calculated by the Runge-Kutta method in

terms of computational efficiency and accuracy.

As a tirst integration scheme we employ Euler's method. At the kth iteration a step

from WA;, tA; to wl;+1 = WI; + ~w, tk+l = tA; + hl; is done by calculating the correction

~w in the pencil beam weights as:

(3.11 )

•

The step hk is accepted if P(Wk + ÂW, tl;) < P(Wk, tl;) and hk+l is set equal to ht·

Otherwise, ht is reduced and the correction~W in the pencil beam weights is recalculated

from Eq. (3.11). When Eq. (3.9) is integrated with that scheme, the negative components

of Wk+l are truncated to zero at each iteration step.

An alternative integration scheme arises after a linearization of Eq. (3.8) about the

current iteration point Wk. Using Taylor's expansion ofP(w, t) in the vicinity ofwk(tl;)
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we can write an approximation to Eq. (3.8) as

(3.12)

where V'2 P(w/" tk) is the Hessian of P(w, t) (a M by M symmetric matrix whose i,jth

element is /J:~fwJ). We employa slight modification of the method proposed by Brown

and Bartolomew-Biggs32, which here we refer to as an approximate Hessian method. At

the kth iteration a step from wob tA; to WA;+l = wA; + ~W, tA;+l = tA; + hk involves the

solution of the linear system :

(3.13)

(3.14)

•
which follows from Eq. (3.12). In the equation above 1 stands for the identity matrix.

The step hk is accepted if P(Wk + 4W, tA;) < P(Wk, tA;) and hA;+1 is set equal to hA;.

Otherwise, hA; is reduced and the correction Llw in the pencil beam weights is recalculated

from Eq. (3.13). Due to the huge size of the Hessian V'2 P(WA;, tA;) we approximate it by

a diagonal matrix A whose elements are those of the Hessian:

Aii = VriP(WA;, tA;) = 2Jl(tA;) L ma L (Hf)2
na

Sa PeSa
kt

+ 2T(tA;) L (Hf)2 + 2Tl;k) L 1
nT PeT i=l

DP<D~in tu" <0

DP>D~QZ

Strictly speaking, the Hessian of P(w, t) is not a continuous function of the pencil beam

weights. However, this fact does not seem to be critical for the numerical implementation

of the method. When Eq. (3.9) is integrated with that scheme, the Hessian reads

and the negative components of Wk+l are truncated to zero at each iteration step.

•
L
peT

DP<DTin

DP>DTGZ
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Figure 3.1. Case A. A concave larget and an organ al risk in a cylindrica/
phantom. The diameter ofthe phantom is 30 cm. Seven caplanar 18 MV
photon beams are empioyed. The gantry angles are: 3'JO, 9(fJ, 142', 193°,
24ifJ. 29ff>, 34ff>. Gantry angle is zero when the gantry is straight up. The
angles increase for counterciockwise rotation ofthe gantry as viewedfrom
the isocenter. The isocenter (cross) is placed in the center of the target
volume (in center-of-mass sense).

To adjust the integration step hk for the Euler and the approximate Hessian method

we scale it by a constant positive factor 0 smaller than unity UDtil the acceptance criteria

are met. As a consequence, all algorithms, themselves, establish the proper scale of the

integration step after a few iterations.

3.4 Method

3.4..1 Targets, Organs at Risk and Prescription Levels

Three different cases were investigated in this work. Case A is a simulated concave

target with an organ at risk in a cylindrical phantom (Fig. 3.1). It was used for the
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Figure 3.2. Case B. Cancer of the prostate. Considered organs at risk
are the bladder and the rectum. ln this panicu/ar case the PTV does not
overlap with the organs at risk.Nine cop/anar 18 MV photon beams are
employed. The gantry angles are: 2U'. 6U', 1DU', 14U', 18~, 22U', 2600.
3oer. 34er. The angles increasefor counterclockwise rotation ofthe gantry
as viewed from the isocenter. The isocenter is placed in the center of the
target volume (in center-of-mass sense).

evaluation of the optimization algorithme Case B is a clinical case of a prostate cancer

with organs at risk being the bladder and the rectum (Fig. 3.2). Case C represents a

target volume located in the head and neck region with organs at risk being the spinal

cord and the normal tissue stroma (Fig. 3.3). For both clinical cases the patient is in a

supine position with the head towards the gantty. For the clinical cases both the CPFM

and a standard inverse treatment planning technique9 are employed. Sïnce the problem
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Figure 3.3. Case C. Target in the head and neck region. The spinal cord
is the organ at risk Five coplanar 18 MY photon beams are employed.
The gantry angles are: 00, 73°, 14SJ, 21SO, 29fY'. The angles increasefor
countercloclewise rotation ofthe gantry as viewed from the isocenter. The
isocenter is placed in the center of the target volume (in center-of-mass
sense).

represented by Eq. (3.4) is a convex onet any minimization method will achieve the same

optimal solution. Thus particular selection of a minimization algorithm for Eq. (3.4) is

not crucial and severa! algorithms have been used with this model.9• 14, 17 We applied the

scaled gradient projection algorithm34 to solve the problem given by Eq. (3.4) because it

has been widely employed with conventional inverse treatment planning.9, 19,26,35 The

parameters used by the two techniques are listed in Table 3.1. For case B, the parameters

used by the standard technique have values typical for prostate cases. 19, 26 For case C,

the parameters used by the standard technique reBect the goal of delivering 66 Gy to
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Table 3.1 Relative minimum n min and maximum nmax prescription dose
/eve/s used in the optimization by a standard inverse treatment planning
technique and the CPFM The weights ma of the various structures are
a/so given.

CHAPTER 3 A Continuous Penalty Funetion Method for Inverse Treatment Planning

Cases D'min / DmGZ / mG

Standard technique CPFM

A. Simulated

Tumour 90/100/1

1. Organ at risk ..1..J1

2. Normal tissue stroma ..J ..Jl

B. Prostate cancer

Tumouc 100/100/1 95/100/1

1. Bladder ..J8511 ..J ..Jl

2. Rectum ..160/3 ..J..J3

• 3. Normal tissue stroma

C. Head and neck

Tumouc 100/100/1 90/10011

1. Spinal cord ..167/5 ..J ..J5

2. Normal tissue stroma ..J90/1 ... 1..J1

the planning target volume (PTV) while keeping the dose to the spinal cord below 44

Gy. The dose levels for the CPFM correspond to those achieved by uniform beams for

the same setup.

3.4.2 PencU Beams

•
For the examples presented here 18 MV photon pencil beams were precalculated

before the optirnization for the given beam setup, patient anatomy and dose calculation
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grid. The pencil beam weights map onto monitor units after multiplication by a factor

of 10Q MU/Gy. The minimum and the maximum dose levels for the target volume are

specified in Gy and selected -as follows. The maximum dose Dpax to be delivered to

the target is chosen to be equal to the maximum target dose value delivered by uniform

beams of unit weight (100 MU). The minimum dose Drin to be delivered to the target is

then calculated trom the maximum dose Dpax given the target dose inhomogeneity that

can be tolerated. A two-dimensional optimization was perfonned for the simulated case

and fully three-dimensional optimizations were performed for the other cases. To speed

up the optimization, only pencil beams whose integral dose contribution to the target is

above a certain level (integral dose contribution to the target over the maximum dose

delivered by the pencil beam greater than 10-3) are retained for the optimization. The

weights of the remaining pencil beams are set to zero to prevent the irradiation of healthy

tissue. For the two-dimensional optimization of case A, sHt irradiations were simulated

and ooly pencil beams in the plane of the phantom were retained. For case B the

dose-calculation grid used for optimization eneompassed ooly the target and the critical

structures. The resulting beam intensities were consequently used for the calculation of

the dose distributions within the entire patient volume. The irradiation and peneil beam

parameters are given in Table 3.2.

3.5 Optimizatlon Parameters

3.5.1 Integration Scbeme Selection

To evaluate the performance of the integration schemes proposed in Sec. 3.3.2, we

applied them to perform inverse treatment planning on case A. The dose constraint was

to encompass the target by the ninety percent isodose Une. The weighting functions

were seleeted as p.(t) = 1 and ,(t) = exp (t). The initial pencil beam weights w(O)

3·19



• CHAPTER 3 A Continuous Penalty Fundion Method for Inverse Treatment Planning

•

•

Table 3.2 Pencil beam parameters.

No. of No. of Pencil Grid size Voxel size (cm.2)

Case beams pendl beam (cm3)

beams size (mm2)

A 7 153 5x5 124 x 124 x 1 0.25 x 0.25

B 9 572 5 x 10 40 x 69 x 28 0.25 x 0.25 x 0.51

C 5 848 5x5 52 x 58 x 21 0.30 x 0.30 x 0.30

have been set to zero for ail optimizations reported in this paper to avoid unnecessary

irradiation of healthy tissues. This choice is not crucial since any solution of Eq. (3.5) is

a global minimum regardless of the starting point of the optimization. For aIl integration

schemes, the iterations were tenninated as the value of the penalty term U (w) became

smaller than 2.5 x 10-6 Gr, which in this particular cas~ indicated close conformity

with the constraints (Table 3.3).

The evolution of the cost function f(w) and the penalty tenn U(w) when the

Runge-Kutta method, the Euler method [Eq. (3.11)] and the approximate Hessian method

[Eqs. (3.12) and (3.14)] are applied to the integration of Eq. (3.7) is shown in Fig. 3.4.

It suggests that the Euler and the Runge-Kutta schemes are equivalent. The cost function

trajectory of the approximate Hessian slightly departs from the other two ones, most

probably due to the approximation of the Hessian matrix [Eq. (3.14)]. Figure 3.5 suggests

the same conclusions when the Runge-Kutta method, the Euler method [Eq. (3.11)] and

the approximate Hessian method [Eqs. (3.12) and (3.15)] are applied to the integration

of Eq. (3.9). Furthennore, aU methods produce similar dose distributions (Fig. 3.6) and

Table 3.3) and intensity profiles (Fig. 3.7). Based on these data, we conclude that,
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•
Figure 3.4. Comparison of the Runge-Kutta methodJ the Euler method
and the approximate Hessian method when the non-negativity constraints
are exp/icitly included in the penalty term U(w). (a) Penalty term U(w)
versus continuous penalty coefficient T(t). (b) Cost function f(w) versus
continuous penalty coefficient T( t).

•

for practical purposes, in terms of their solutions, ail methods of numerical integration

considered in Sec. 3.3.2 are equivalent to the benchmark Runge-Kutta method.

However, in terms of their computational efficiency the integration schemes under

investigation differ significantly. Given N calculation voxels and M pencil beams, a
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Figure 3.5. Comparison of the Runge-Kutta method, the Euler method
and the approximate Hessian method when the non-negativity constraints
are imp/icitly accounted for by truncation of the negative penci/ beam
weights at each iteration step. (a) Penalty term U(w) versus continuous
penalty coefficient T( t). (b) Cost function J(w) versus continuous penalty
coefficient T ( t ).

•
single dose calculation requires 2MN ftoating point operations according to Eq. (3.1).

The number offtoating point operations required for the calculations ofeither the gradient

or the approximate Hessian of P(w) is also in order of 2MN. The evaluation of
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(d)

(e)

(f)

•

Figure 3.6. Isodose plots for the plans created by the various integration
routines. The dose distributions are norma/ized to the dose distribution
maxima. The 89% isodose Une is the one that encompasses !ii~ target ip '.::
cases. The isodose Unes below 59% do not eonform to the target, whieh is
to he expeeted given its size, shape and the relative low number ofbeams
employed. (aHe) Runge-Kutta, Euler and approximate Hessian methods
when the non-negativity eonstraints are aeeounted for by a penalty term.
(d}-(f) Runge-Kutta, Euler and approximate Hessian methods when the
non-negativity eonstraints are aeeountedfor by truncation.
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Table 3.3 Dose statistics (rounded to 0.1%) for the plans created by the
various integration routines. The dose distributions are normalized to their
maxima. The non-negativity constraints are taken into account by a penalty
term (P) and truncation (t). The mean D, minimum Dmin and maximum
D max doses for each structure are given.

Method Tumor Critical sttucture Rest of anatomy

D D man D m 4.Z D Dman D m 4.Z D D man Drn...r

Runge-KuttaP 94.2 89.5 99.0 38.8 15.6 67.9 31.7 0.0 100.0

Euler' 93.9 89.4 98.6 38.7 15.3 68.0 31.7 0.0 100.0

Approx. HessianP 95.0 90.0 100.0 395 17.1 68.4 31.9 0.0 99.4

Runge-Kuttat 94.1 89.4 99.0 38.3 15.0 67.5 31.8 0.0 100.0

Euler 93.6 89.1 98.2 38.2 14.7 67.6 31.7 0.0 100.0

Approx. Hessiant 95.1 90.1 100.0 39.3 16.3 68.8 32.3 0.0 99.5

P(w) itself requires few 1V tloating point operations, an amount at least two orders

of magnitude smaller than tbat necessary for the evaluation of either the dose distribution

or the gradient V P(w). Therefore the total number of f10ating point operations needed

for the optimization can be roughly estimated as 2(mg + md)l\t/N where mg is the total

number of gradient and approximate Hessian evaluations and md is the total number of

dose distribution calculations. Based on the above estimates and the results shown in

Table 3.4 we conclude that the approximate Hessian method outperfonns the other ones

in tenns of computational efficiency. Furthennore, the time independent part of the

fust tenn of the Hessian approximation [Eq. (3.15)] cao be calculated only once, which

makes the method even more efficient.

The evaluation of the various integration methods strongly suggests the approximate

Hessian approach [Eqs. (3.13), (3.15) and (3.9)] with negative pencil beam weights
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Figure 3_7. Overlaid intensity profiles (penci/ beam weights x
100 MU/Gy) obtained by the considered methods of integration (listed
in Table 3.3). For each angle of incidence the profiles obtained by ail
six methods (Table 3.3) are shown. The gantry angles are given in the
upper right comers.
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Table 3.4 The number ofdose. gradient and Hessian evaluations for the
integration schemes under consideration. A common initial integration
step ho = 0.2 and a scalingfactor Ct = 0.8 were usedfor aIl cases where
needed.

Evaluated quantity

Dose

Hessian and/or Gradient

Dose

Hessian and/or Gradient

Number of evaluations

Runge-Kuna Euler Approx. Hessian

Non-negativity constraints included via penalty

4167 760 519

4167 737 1000

Negative pendl beam weigbts ttuncation

4403 768 502

4403 745 966

•

•

truncation as the method of choice. For this reason we have employed this method

for aIl our further investigations.

3.5.2 Weighting Functions

The requirements with respect to the weighting functions Il(t), T(t) (Sec. 3.3.1)

allow considerable freedom in their selection. Theoretically, as long as J,l(t) and T(t)

possess the ùesired properties, the limit points w(00) of Eq. (3.8) represent a solution

of the inverse treatment planning problem. Therefore, asymptotically, the cost function

trajectory should converge to its minimum value. Figure 3.8(a) illustrates this point for

a particular selection of the weighting functions when the approximate Hessian method

was applied to perfoon inverse treatment planning on case A and the dose constraint

was to cover the target by the 90% isodose line. After reaching a maximum value of

8.53 Gr the cost function starts decreasing at a very low rate. Such a behavior is to
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be expected, since, at large values of the penalty coefficient T(t), the algorithm corrects

the pencil beam weights by smal1 amounts to avoid the large penalty that arises from

constraint violation.

In practice, the numerical integration of Eq. (3.8) is to be terrninated at some point

t = T, at which the constraints are judged to be acceptably satisfied. ln this case,

depending on the choice of the weighting fonctions, the values of the pencil beam weights

w(T) will be in different proximity of the actual solution w(CX)). The set of different

weighting functions cannot be, of course, explored completely and an ad hoc choice is

to be made. To the best of our knowledge, the most extensive computational experience

with the continuous method for constrained optimization has been reported by Brown

and Bartholomew-Biggs.32 In their parametrization p.(t) is set to unity and r(t) is set

to a quadratic function, namely 1 + t + t2• Besides this particular selection we also

investigated sorne other ones that have been used for continuous optimization.30

Figure 3.8(b) illustrates the cost function trajectories resulting from the various

parameterizations under investigation when the approximate Hessian method was applied

to perfonn inverse treatment planning on case A and the dose constraint was to cover

the target by the 90% isodose line. As expected, the different parameterizations result in

different trajectories. We retained the solutions w(T) that resulted in penalty values

U(w) smaller than 1.5 x 10-6 Gr (2.9 x 10-5 Gr for the case of the quadratic

parameterization) in order to evaluate their proximity to the actual solution of the

constrained optimization problem [Eq. (3.5)]. However, even for case A, 153 variables

and 1900 dose constraints are involved, which would present a formidable task for most

of the available non-linear programming codes. For this reason, the active set algorithm

(Chapter 2) was applied to the minimization of the fonction Pr(w) = P(w, T) =
f(w) +exp (T)U(w), which had the largest cast function value for the selected constraint

violation (Fig. 3.8). Within the frame of the sequential unconstrained mioimization
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(3.16)

•

•

exp (T) of the penalty term bas a large value (Fig. 3.8). The pencil beam weights at

termination w(T) were used as a starting point of the minimization. The function value

was rnonitored and the minimization was tenninated after few thousand iterations as the

temtination criterion

1

Pr(w,) - Pr(Wl-1 ) 1

Pr(wz) < f

was satisfied for € equal to 10-5• The comparison of the resulting plan (Fig. 3.9(b)) to

the plans produced by the different parameterizations (Fig. 3.9(a), (c) and (d) suggests

that, for large values of the weighting function ratio T(t)/ pet), the parameterization

p.( t) = 4, T(t) = exp (t) produces pencH beam weights w(t) that are in the closest

vicinity of the rninimizer w·. This observation is further confirmed by inspection of the

dose statistics (Table 3.5), the cumulative dose histograms (Fig. 3.10) and sorne of the

intensity profiles (Fig. 3.11) for the plans created by the different parameterizations.

The parameterization Jl(t) = 4, 'T'(t) = exp (t) does not seem justified with respect to

the number of iterations (Table 3.5). However, for clinical cases, acceptable confonnity

with the constraints is usually achieved when the penalty tenn is in the order of 10-3

Gy2 - 10-4 Gr and a few hundred iterations suffice.

The quadratic parameterization which bas been mast extensively and successfully

used for continuous optimization32 failed to produce as close conformity with the

constraints as the otherparameterizations (Table 3.5) did because the approximate Hessian

scheme could not extend the integration of Eq. (3.9) for large enough values of the

penalty weighting function. Therefore, no definite conclusion cao be drawn about the

proximity of the pencil beam weights w(t) to the solution wC00) for large values

of 1 + t + t2 • Nevertheless, the plan produced by the quadratic parameterization

(Fig. 3.9(c» is evaluated against the plan produced by the solution of the constrained

optimization problem (Fig. 3.9(b» in tenns of dose statistics (Table 3.5) and cumulative
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Figure 3.9. Isodose plots norma/ized to the dose distribution maximum
for the plans created by the approximate Hessian method with different
combinations of weighting functions: (a) /let) = 4, T(t) = exp (t); (b)
/let) = 1, T(t) = exp (t) plus additional minimization; (c) /let) = 1,
T(t) = 1 + t + t2

; (d) /l(t) = 1, T(t) = exp (t) .
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Table 3.5 Number ofiterations, penalty term U(w), costfunction f(w).
dose stalistics (rounded to 0.1%) and the ratios T(T)/ peT) ofthe weighting
functions for the plans created by the approximate Hessian methodfor three
different combinations ofweighting functions. The dose distributions are
normalized to their maxima. The mean D, minimum Dmin and maximum
D max doses for each structure are given.

lter. U(w) f(w) Tumor Conca! structure Rest of anatomy

xlO-6 [Gr] [or] D Dmin Dmar D Dmin Dmar D Dmin Dmar

a) f.L(t) = 4, r(t) = exp (t), ta = 0, r(T)ff.L(T) = 62510

2800 <1.5 8.08 93.0 88.4 97.4 35.4 10.9 66.6 31.9 0.0 100.0

b) pet) = 1, r(t) = exp (t), ta = 0, T(T)ff.L(T) =59725

plus additional mjnjmization

1.1 8.04 92.2 87.7 96.8 35.1 11.7 65.731.6 0.0 100.0

c) f.L(t) = 1, r(t) = 1 + t + t 2
, ta =0, r(T)/f.L(T) = 94i5

3625 29.0 7.47 92.4 86.8 97.4 31.7 8.1 62.5 31.7 0.0 100.0

d) pet) = 1, r(t) = exp (t), ta = 0, r(T)fp(T) = 59725

599 < 1.5 8.47 95.0 90.5 99.7 39.6 15.8 68.9 32.1 0.0 100.0

dose histograms (Fig. 3.10). These indexes as well as the similarity of the intensity

profiles (Fig. 3.11) imply that the quadratic parameterization could have produced a plan

close to that of the solution if large enough values of the penalty weighting function

had been achieved.

It is to be acknowledged that the utility of the various parameterizations May depend

on the treatment site. For this reason, in our applications of the CPFM to clinical cases,

we extend the optimization by a few iterations, applying the approximate Hessian method
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Figure 3.10. Cumulative dose histograms (dose-volume histograms) for
the targe! and the organ at risk (case A). Plots (a) to (d) correspond to the
dose distributions illustrated in Fig. 3.9, (a) to (d). The dose distributions
are normalized to their maxima.

[Eq. (3.13)] to the minimization of the function P(w, T) = 4f(w) + exp (T)U(w) where

T is the value of the parameter t at the tennination of the integration of Eq. (3.9).

3.6 Examples

•

ln this section we apply the CPFM to two clinical cases and propose a procedure for

the optimization of the intensity modulation of the radiation beams when dose constraints

with respect to the organs at risk are to be satisfied. Dose-volume histograms (DVH) of

the target and the organs at risk (OAR) are used as a primary tool for presenting and

comparing dose distributions.
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Figure 3.11. Intensity profiles (penci/ beam weights x 100 MU/Gy) of
two beams produced by the approximate Hessian method with difJerent
combinations of weighting functions. Plots (a) to (d) correspond to the
combinations lisled in Fig. 3.9, (a) 10 (d).

3.6.1 Prostate

•
Figure 3.12 illustrates DVHs for a family of plans produced by the CPFM for

increasing values of the ratio T(t)/ p.(t). The target dose uniformity gradually improves

at the expense of larger volumes of the rectum being raised to high dose levels. Such
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Figure 3.12. Dose-volume histograms for target and rectum volumes for
plans created by the CPFM for increasing values of the ratio T(t)/ p.(t)
of the weighting functions. The dose distributions are normalized to their
respective maxima. The target dose uniformity ((maximum target dose ­
minimum target dose) vs. minimum target dose) for the last plan is 9%
given a prescription of 5%.

behavior is expected and the use of a large weigbting factor for the target as a Mean

of improving dose homogeneity and conformation bas been reported.37• 23 However, the

selection of the target weight bas been a process of trial and error, whereas the CPFM

autonomously reaches the necessary target weight to achieve the specified target dose

and homogeneity.

Figure 3.13 compares a plan (P10) obtained by the CPFM for a large value of

r(t)/ pet) to the one obtained from pl0 after additional minimization. The iterations for

the latter minimization were tenninated according to our stopping criterion [Eq. (3.16)]

with E = 10-3• The marginal improvement supports the utility of the selected parame­

terization.
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Figure 3.13. Dose-volume histograms for target, rectum and b/adder
volumes. The dose distributions are normalized to their respective max­
ima. Dashed Unes correspond to a plan (P/l2J) created by the CPFM
(T(T)/p.(T) = 1757, f(w(T)) = 12.17 Gy, U(w(T)) = 7.7 X 10-4 Gy,
202 iterations). Solid Unes correspond to the plan obtainedfrom p/l2J after
additional minimization (71 iterations, al termination f(w) = 12.10 Gy,
U(w) = 3.8 X 10-4 Gy).

Figure 3.14 illustrates dose distributions in few axial planes representative of a plan

obtained by the CPFM at a large value ofr(t)/p,(t). The dose distribution is nonnalized

to its maximum. The isodose lines from 90% down to 50% confonn closely to the target.

ln sorne planes, relatively large 50% hot spots develop near the skin outline (Fig. 3.14(b».

Depending on the prescription dose and the spatial location of other OARs (e. g. femural

heads) these hot spots may not be acceptable. In this case, all the relevant organs at risk

are ta be taken into account by their inclusion in the optimization.

A central question is the application of the CPFM to cases where sorne dose or dose­

volume constraints with respect to the organs at risk are to he satisfied. It is realistic

to expect that for certain target-dose homogeneity the solution provided by the CPFM
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(b)

(d)

•

Figure 3.14. Isodose plots for a plan produced by the CPFM
(T(T)/p.(T) = 1757). The dose distribution is normalized to ils maximum.
The 90%. 80%. 70%. 60%. 50%. 20% isodose lines are given. a) 20 mm
inferior to the isocenter plane. b) 15 mm inferior to the isocenter plane. c)
10 mm superior to the isocenter plane. d) 40 mm superior to the isocenter
plane.

may not be useful due to clinically unacceptable overdosage of healthy tissue. Since

one generally expects to achieve a larger level of healthy tissue sparing at the expense of

decreasing unifonnity of the target dose a straightforward approach is to apply the method

with increasingly relaxed requirements for the target dose homogeneity (for instance 5%,

10%, 15%) and to compare the resulting plans.
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Another approach is based on the observation that the CPFM creates a family ofplans

that present different compromises between target coveragc and normal tissue sparing

(Fig. 3.12). These plans cao be stored for a planner's consideration. Furthennore, the

confonnity with certain dose and dose-volume constraints cao be automatically examined

at each iteration step. The last plan in the integration sequence that is still acceptable

can be kept for a physician's consideration. If the ratio T(T) / p.(T) at termination is

not large, further minimization of the function P(w~ T) = 4f(w) + e:x-p (T)U(w) can

improve the plan since at this point the current estimate of the pencil beam weights w(T)

can be significantly different from the minimizer of the function P(w, T). The pencil

beam weights w(T) are to be used as a starting point of the minimization.

Figure 3.15 illustrates such a sequential procedure. The plan obtained by the CPFM

for a large value of T(t) / p.(t) delivers the target dose within 9% uniformity but a larger

volume of the rectum is raised to high dose levels in comparison to the plan obtained

by the standard inverse treatment technique (Fig. 3.15(a». We assume that this plan is

clinically acceptable for illustrative purposes only. In fact, even though the parameters for

the standard inverse treatment planning technique have values typical for prostate cases 19

this plan May not be optimal for our particular case due to differences in the organ and

cost function definitions. From the family of plans created by the CPFM for increasing

values of T(t)/ p.(t) (Fig. 3.12) the one that produces rectum DVH close to that given by

the standard technique is used for additional minimization (Fig. 3.15(b». The resulting

plan (Fig. 3.15(c» improves both the target dose homogeneity and the sparing of the

rectum. Figure 3.1 S(d) illustrates that a plan similar to that produced by the sequential

procedure discussed above cao be ofcourse directly obtained by the CPFM under relaxed

dose constraints. We emphasize this fact, since the sequential procedure can sometimes

degrade either the target dose homogeneity or the sparïng of the critical structures. In

these cases the CPFM should he reapplied with relaxed constraints on the target dose.
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Figure 3.1S. Dose-volume histograms for target and rectum volumes for
plans produced by: (a) the standard inverse treatment planning technique
(f. = 10-3, 89 iterations) and the CPFM for a large ratio T(t)/ pet);
(b) the standard inverse treatment planning technique and the CPFM
when the dose-volume histograms for the rectum are a/most identical;
(c) the CPFM as in (b) and additiona/ optimization (€ = 5.0 x 10-3 ,

66 iterations) of the plan created by the CPFM; (d) the CPFM with
relaxed target-dose constraints (T(T)/ peT) = 5124, f(w(T» = 9.01 Gr,
U(w(T» = 2.3 x 10-5 Gy2, 282 Iterations) and a sequentialprocedure as
in (c). Ail plans are norma/ized to have nomina/ 1000/6 delivered to 95%
of the target volume.
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Figure 3.16. Dose-volume histograms for target and spinal cord volumes
for plans createdfor increasing values ofthe ratio T( t) / Il (t) ofthe weight­
ing functions. The dose distributions are normalized to their respective
maxima. The target dose uniformity ((maximum targe! dose - minimum
target dose) vs. minimum targe! dose) for the /ast plan is 12% given a
prescription of 10%.

3.6.2 Head and Neck

Figure 3.16 illustrates DVHs for a family of plans produced by the CPFM for

iDcreasing values of the ratio T ( t )/ JI. ( t ). As for the prostate case the target dose

unifonnity gradually improves at the expense of larger volumes of the spinal cord being

raised to high dose levels. However, for this case the slight improvements of the target

dose homogeneity are associated with significant differences in the irradiation of the

organ at risk (Fig. 3.16) contrary to what is observed for the prostate case (Fig. 3.12).

Figure 3.16 further illustrates that for large enough values of T(t)/p.(t) the target is

enclosed by the 80% isodose surface but the maximum of the dose distributions is Dot

in the PTV. Therefore, if one prescribes to the 80% isodose surface some Hot Spots38
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(a)

(c)

•

Figure 3.17. Isodose plots for a plan produced by the CPFM
(r(T)/p.(T) = 4020) in few axial planes. The dose distribution is
normalized to its maximum. The 95%. 90. 80%. 70%. 60%. 50%, 30%
isodose fines are given. a) 6 mm inferior to the isocenter plane. b)
isocenter plane. c) 3 mm superior to the isocenter plane. d) 18 mm
superior to the isocenter plane.

exist outside the PTV. However the Hot Spots above 90% and 95% are found to be very

small and in the immediate vicinity of the PTV (Fig. 3.17).
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Figure 3.18. Dose-volume histograms for target and spinal cord volumes
for plans created by the CPFM and the standard inverse treatmenl planning
technique. Ailplans are norma/ized la deliver 66 Gy 10 the [CRU Reference
Point coinciding with the isocenter. The prescription leve/ is indicated by
the vertical /ine. The CPFM required 86 iterations 10 achieve a weighting
Junction ratio T( t)1p.( t) of 4020 and 337 iterations to increase Ihat ratio
to 18254. The standard inverse treatment planning technique required 290
iterations to achieve termination (€ = 1.0 x 10-3).

•

Figure 3.18 compares the plans obtained by the CPFM for two values of the ratio

r(t)/ p.(t) to the plan obtained by the standard inverse treatment planning technique. As

for the prostate case a plan similar to that produced by the standard inverse treatment

technique could be selected from the sequence created by the CPFM. A few additional

iterations did not improve the plan which was to be expected given the relatively

large value of the weighting function ratio (T(t)/ p.(t) = 4020). The CPFM plan for

T(t)/ p.(t) = 18254 delivers the target dose within -4% to +10% of the prescription

dose and keeps the dose to the spinal cord below 44 Gy. However, this plan may

not he necessarily the optimal one, since, in comparison with the other two plans, the
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improvement in the target dose homogeneity can be considered marginal whereas the

increase in the delivered dose to the spinal cord is substantial. The above observation is

irnmediately related to the inherent limitations of the dose-based objectives for treatment

planning·optimization (Sec. 3.7.2).

The CPU time per iteration was 6 min 30 s for case B and 8 min for case C on a

SUD SPARC 4 computer. Thus the overall calculation times were large: 22 hrs for case

B and 45 hrs for case C despite the modest number of iterations required by the CPFM

for both cases. One can expect a decrease in the computational time of 5 to 10 times

if the optimization is performed on a high-end computer along with a more efficient

dose-calculation scheme.

3.7 Discussion and Conclusions

3.7.1 The Continuous Penalty Function Metbod

Several investigators have suggested that any clinically relevant optimization

technique should be able to impose some dose, dose-volume and/or TCPINTCP

constraints39, 40, 19 on the relevant anatomical structures and target volumes. The existing

algorithms for treatment planning optimization by beam intensity modulation through

objective function minimization account for the dose constraints by the inclusion of a

fixed weight penalty terme Thus constraint violations are penalized but close conformity

with the constraints is not guaranteed at the conclusion of the optimization.

We introduce the CPFM to treat explicitly the treatment planning optimization

as a constrained rninirnization problem. The method is a simple generalization of

gradient-based iterative techniques for inverse treatment planning that use fixed weighting

coefficients. The only additional detail is that the CPFM changes the weights from

iteration to iteration in a simple, predefined manner. Given that the objective and the
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penalty are convex functions of the variables of the optimization,28.29 the CPFM finds

a solution that approximately minimizes the objective function and closely confonns to

the constraints. The method performs this task with the same order of iterations as the

conventional method. The latter property is very important if realistic c1inical plans are to

he optimized in tolerable time limits. Furthennore, numerical experience bas shown that

the CPFM can perfonn successfully on other types of objective functions as well.32. 41

Therefore, the rationale exists for further investigation of the utility of the CPFM for

inverse treatment planning when objectives and constraints different from the ones used in

the \vork presented here are used. For instance, the TCP can be specified as an objective

function while the constraints require that the NTCPs for the organs at risk be below

sorne specified levels. For this problem the Euler integration scheme is to be used since

the calculation of the approximate Hessian of biological functions is a computationally

intensive process. Since ooly few non-trivial constraints are involved in the constrained

optimization of biological indexes, such a problem May be also manageable by the

available high-accuracy codes for constrained non-linear optimization despite the large

number of variables to be optirnized. However, the CPFM May be a viable method to

tacIde the complexity and the scale of the optimization of the beam intensity modulation

when both dose and biological constraints and objectives are involved.

3.7.2 Objective Functions and Multiple Objective Optimization

In the work presented here the CPFM is applied ta a least-square dose objective

of matching zero-dose level to healthy tissues subject to dose constraints with respect

to the target volume. The purpose of this statement is twofold. First, we redefine the

inverse treatment planning problem based on a least-square objective as a consttained

minimization problem to avoid unacceptable underdosage of the target volume, which is

often the case for the least·square objective.22- 24 Furthennore, this fonnulation perfonns

343



• CHAPTER 3 A Continuous Penalty Funetion Method for Inverse Treatment Planning

•

•

sorne form of feasibility study of the minimum dose levels achievable beyond the extent

of the target volume since the method attempts to minimize the dose outside the target

as much as possible (given the necessary target coverage). Second, the particular

definition of the objective and the constraints ensures the applicability of the CPFM

to the constrained optimization problem. In strict mathematical terms, similar to other

penalty function methods, solution of the constraint optimization problem is achieved by

the CPFM at the asymptotic limit. However, a few hundred iterations is sufficient to

achieve dose confonnity of 2-4% with respect to the prescriptions (Figs. 3.12 and 3.16,

respectively). Better confonnity cao he achieved with greater number of iterations. With

the conventional technique, a greater number of iterations will improve the accuracy

of the solution. However, if that solution itself does not provide the necessary target

coverage, additional number of iterations will still result in unacceptable underdosage of

the target volume.22-24

Other dose-based objectives cao be conceived as weil. For instance, the integral dose

to healthy tissues can be used as a linear objective under the same dose constraints to

the target and the CPFM can be applied with the Euler integration scheme to search

for a solution that minimizes the objective. It bas to be acknowledged, bowever,

that any inverse treatment planning based solely on dose objectives and constraints is

limited since dose-volume and radiobiological effects are not taken into account. In

principal, objective functions based on models of TCP and NTCPs are more relevant

than physical objectives since these models provide quantitative biophysical measure of

dose distributions. However, optimization based solely on models of TCP and NTCP is

currently being discouraged because the validity and predictive power of these models

has not yet been proven c1inically.42

Given the current status of the radiobiological models, the radiotherapy treatment
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planning is inherently a multiple objective optimization problem.43 Several objectives

expressed in terms of dose statistics, dose-volume histograms, and estimates of Tep

and NTCP are to be simultaneously optimized. A clinical decision is based on a

score that combines these incompatible objectives. However, currently there is not a

unanimously accepted mathematical representation of this score since it is difficult to

capture the clinical judgement about the relative importance of each component of the

score.39• 44 Thus the utility function that combines the individual objectives is not yet

known and the optimal plan selection requires significant computer-human interaction.

Sorne characteristics of the inverse treatment planning approach presented here facilitate

the semi-interactive process of optimal plan selection. First, the technique creates a

sequence of plans with a well-defined asymptotic point. These plans present different

compromises between target coverage and healthy tissue sparing that can be kept for

clinical consideration. Second, the sequential approach autonomously suggests the target

importance factor that May relate the minimization of the resulting square objective to a

clinically relevant optimization. Third, compared to other techniques based on physical

objectives, fewer dose specifications are required. Preferences with respect to various

organs Can be accounted for by assigning different importance weighting factors. Within

the framework of CPFM, such assignments do not result in target underdosage since the

penalty term weighting coefficient increases constantly thus asymptotically forcing the

dose constraints [Eq. (3.7)].

Ta summarize, a continuous penalty function method is introduced as a tool to

find approximate solutions of the large-scale constrained minimization problems that are

encountered in the process of treatment planning optimization. The method is applied

to an alternative formulation of the inverse treatment planning problem that obviates the

need of dose specifications that May not be feasible. Severa! features of the resulting

technique demonstrated on clinical examples suggest that it can be a viable alternative
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The geometric accuracy of the patient setup is an important factor for the successful

accomplishment of extemal-beam radiotherapy. The verification process is concemed

with two major components: (i) the shape, the size and the orientation of the prescribed

radiation fields themselves and (ii) the correct positioning of the patient anatomy with

respect to the radiation fields. The former problem has been solved to a large extent

by a number of robust algorithms which automatically extract the radiation field mask

(or edges) from the portal images l-9, analyze it and report errors in the field shape and

size.3.6-9

Different approaches have been developed for the registration of portal images to

simulator (conventional or CT) images in order to quantify the displacement of the

anatomy under the radiation field. These include manual point matching10, semiautomatic

point matching11 • 12, curve matching,13 as weil as much more automated techniques based

on the extraction of bone edges in the portal images3,8, 14-16 and consequent chamfer

matching3 or image correlation.8 These approaches as weil as the emerging techniques

for automatic three-dimensional verification of the patient setupl6 rely heavily on the

extraction (either interactive or automatic) of anatomical features. This is a difficult task

due to the low inherent contrast of portal images and the lack of a priori knowledge

about the image content due to the inter-patient and treatment site variability (for the

case of automatic extraction). Automatic extraction techniques require extensive testing

and tuning of various edge detection and morphological operators as weIl as threshold

levels. 14 However, the selection of these parameters is based on a cohort of patients and

therefore it does not adapt from patient to patient.

In a different, two-stage approach to the anatomy matching, the portal image from the.
tirst treatment is registered interactively to a simulator image, thus producing a reference



portal image and the images acquired during subsequent treatments are registered to the

new reference image. For this case correlation of subimages from the reference image

with a portal image cao be done for anatomy matching. lI , 17, 18 The advantages of this

approach are that no feature extraction is necessary and the algorithms are not model

based. However, the cross-correlation operator is not rotationally invariant and previous

methods have used it to identify only translations. 17, Il The cross-correlation approach

is also computationally extensive. The fast Fourier transform (FFT) implementation17 of

the normalized cross-correlation was shown to improve the speed significantly, but not

sufficiently to include transformations other than translations. ln another approach, Rad­

cliffe et al., 18 applied Monte Carlo techniques to the calculation of the cross-correlation

integral, which decreased the computational time and allowed the search space of the

geometric transfonnations between the images to include also rotation and magnification.

However, the number of sampIes required for satisfactory perfonnance May varies with

the anatomical site used for matching, thus forcing the use of a high number of samples

which in tum impedes the speed of the registration algorithm.

1
1

1.
1

1
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In this chapter we present an approach which, in addition to the quantification of

translations, incorporates in-plane rotation search in a correlation based algorithm. Since

the reliability of the matching depends on the size, the shape and the contrast of the

subimages used for correlation we have adopted a full calculation of the cross-correlation

integral rather than its sampling through Monte Carlo techniques. The pursuit for a higher

speed is done by what can be called sequential matching and a FFT implementation of the

cross-correlation operators (normalized cross correlation and Pearson's linear correlation

coefficient). The feasibility oftbis approach to the automatic registration ofportai images

and the automatic registration of ponal images to digitally reconstructed radiographs

(DRRs) is investigated.
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4.2 Materials and Methods

4.2.1 Megavoltage DRRs

To test the performance of the algorithm and study the feasibility of ponal-to­

DRR registration a CT data set of 62 slices (PQ2000; Picker Int., Cleveland, OH)

of a humanoid sku11 phantom (Nuclear Associate, Carle Place, NY, 11514-0349) with

placed radiopaque fiducial markers (radiopaque catheter, 1 x 1 mm2) was acquired.

The settings were: 130 kVp, 24 cm field of view (pixel size=0.47 mm), 3 mm slice

thickness, 0 gap. A lateraI portal image of the phantom was taken with a 10 MV photon

beam (Clinac 18, Varian Associates, Palo Alto, CA). For the portal image lead squares

(4 x 4 x 1.5 mm3) were placed on the skull with their inner top corners located at the

positions of the radiopaque fiducial markers described above. The source-to-isocenter dis­

tance was 100.0 cm and source-to-film distance was 124.9 cm. The image was digitized

to 14 bits, 0.43 mm pixels with a Du Pont LINX FD-2000 laser digitizer, and cropped to

512 x 512 pixels and processed with a 3 x 3 smoothing filter to decrease the noise. To

ensure that the phantom was aligned properly to avoid out-of-plane rotations we aligned

the markers placed on the phantom with the CT laser localizers and then with the laser

localizers in the treatment room. Megavoltage DRRs to be used as reference images for

registration were simulated by modifying the original 3D CT data set in the following

manner:

•

1.

II.

The spectrum of the bremsstrahlung radiation for 10 MY was detennined by the

EGS4 Monte Carlo code. 19, 20

The linear attenuation coefficients of some tissue substitutes (Jung, fat, muscle,

bone) of known composition were calculated from the available data for the photon

cross sections of the constituents21 and the radiation spectnlm. The CT numbers

4-4
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Figure 4.1. Top right: megavoltage DRR with a selected reference
subimage (large window) and the features for matching (small windows).
The sphenoid is enclosed by the top small window and the Petrous bone
(ear) is enclosed by the small central window. Top left: the ponal image
ofthe skull phantom with the anatomy displaced with respect 10 reference
one (ID mm, -6 deg). The search subimage is shown by the large
window. Boltom right : the difference image before the registration. The
improper cancelation ofbony structures is conspicuous. Bonom left : the
difJerence image after the registration. The transformation parameters are:
a = -2·5 pixels, b=-4 pixels, a = 6.2 deg, ~a = 0 pixels, ~b = -2 pixels.
The images are normalized for visualization.
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of the materials were then measured and a calibration curve of linear attenuation

coefficient versus CT number was built.

nI. The CT data were then mapped onto linear attenuation coefficients at 10 MV and

DRRs simulated by raytracing and trilinear interpolation.22• 23, The parameters for

the raytracing were the ones used for the acquisition of the portal image.

IV. The portal-film dose response, and the calibration of the film digitizing system

were finally used to modify the DRRs to simulate the effects introduced on the

portal image by the portal film and the digitizing system. The average gray level

value in the open portion of the field was used as a reference for the determination

of the entrance fluence.

The above procedure considers only the effect of primary radiation on the image fonna­

tion. In order to account partially for scatter, Dong and Boyer24,25 suggested to match

the intensity histogram of the reference DRR ta that of the one of the portal image.

However, such an approach is not very robust for it implicitly relies on the notion of

nearly registered images.26 For this reason in our investigations we used the primary

DRRs which are computed on sound physical basis.

The portal image was manually regjstered to a zero-displacement DRR by point

matching (top inner corners ofthe lead markers (Fig. 4.1, top left) to provide a registration

point for quantifying the results of the algorithm. The root-mean square (RMS) difference

between the known positions of the fiducial markers and the ones given by the registration

algorithm was used for this purpose. The fiducial markers were barely discemible on

the megavoltage DRR (see Fig. 4.1, top right). For this reason their positions were

detennined from a DRR with a diagnostic quality, simulated with the same parameters

as the zero-displacement megavoltage one.

4-6
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4.2.2 Portal Images

Another set of five Iateral ponal images of the same phantom was acquired with the

same treatment machine to test the portal-to-portal registration. The phantom was kept

stationary with respect to the treatment coach. Translations were simulated by moving

the treatment coach and in-plane rotations by rotating thé collimator of the Clinac18.

The source-to-film distance in this case was 126.4 cm. Four images were taken with

1 Monitor Unit (1.05 cGy&flJ with isocenter setup) and one with 2 MU to investigate

the sensitivity of the different cross-correlation operators to scale and shift transfonnations

of the intensity of the images. These were digitized with the same system as above and

the radiation fields were registered with the automatic extraction and matching algorithm

available at our institution.6 The images were then cropped to the size of the radiation

fields-512 x 540 pixels. After this procedure one is presented with images of shifted and

rotated anatomy with respect to the common reference frame established by the regjstered

radiation field masks (Fig. 4.2). We used the results from the field matching as a gold

standard for the angles of rotation as given by the anatomy matching algorithm.

To get some insight in the utility of our approach for clinical purposes we also

applied our algorithm to the registration of a pair of clinical portal images obtained in

our institution (Fig. 4.3). These were digitized as above and cropped to 512 x 512 pixels.

The algorithm is developed and tested as a MATLAB script (The Mathworks,

!ne., Natick, MA 01760), which reduced the lime devoted to technicalities of the

implementation. MATLAB was running on a DEC 300o-M300 compute!.

4.3 Registratlon algorithm

4.3.1 Cost Function

To register a pair of portal images we propose to determine the in-plane translations

4-7
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Figure 4.2. Top right : a portal image taken at 1 MU with a selected
reference subimage (large window) and a feature for matching (small
window). Top /eft : the portal image taken at 2 MU. The windows represent
search regions of decreasing size. ln the different windows the position
of the searched feature with respect to the axis ofrotation going through
the center of the corresponding search window is diffèrent. However, the
dependence ofthe maximum correlation coefficient on the angle ofrotation
remains the same (see text). Bonom right : the difference image afier the
first (trans/ational) stage of the registration. The improper cance/ation of
bony structures is conspicuous. Bonom left : the difference image after
the second stage of the registration. The images are nonna/ized for
visualization.
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Figure 4.3. Top left: a lateral image of a patient's head. used as a
reference one with a selected feature for matching (small window) within
a reference subimage (large window). Top right: a lateral image of
the patient's head taken in another treatment session. The window
represents the search subimage. Bottom right: the d{fference image
after the first translational and rotational a/ignment. Bottom left: the
difference image after the final fine translational a/ignment. The improved
cance/ation of bony structures under the radiation field due to the last
fine adjustment is clearly visible. The transformation parameters are :
a = 44 pixels. b=25 pixels, 0 = 1.7 deg, ~a = -3 pixels. ~b = -2 pixels.
Note that the field adjustment (indicated by the arrow) suggested by
the physician is easily identifiable after the anatomy registration (top
left, bottom left).
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Figure 4.4. The algorithm employs a search mask w( x, y) taken from the
reference image 9 (x, y) and searches for the location of the minimum of
a cast function among the rotated versions fa (x, y) of the search window
f(x, y) .

T (?) and rotation R(a) which maximize the value of the cross-correlation integral

between a subimage within the reference image (a template) and a search image. Sïnce

the maximum correlation value within the distribution decreases as the angle of rotation

between the template and the search image ïncreases,27 a cost function can be established

to evaluate their alignment.

Let g(x, y) be the reference image of the patient in the correct treatment position.

Let w( x, y) be a search mask of size J x K within the reference image (Fig. 4.4). The

search mask encloses a feature to be matched with the same feature in the search window

f(x, y) of size M x N larger than J x K. The search window includes the feature and

other anatomical structures which May have been shifted and/or rotated with respect to

their correct positions reftected in the reference image g(x, y). Let f ex ( x, y) be a test
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image obtained from I(x, y) after rotation at an angle Q around the center of I(x, y), w

be the average intensity of the mask, aod let Jer (x, y) be the average value of 10/ (x, y) in

the region coincident with w(x, y). Th~ for each position (m, n) within the test image a

cost function measuring the similarity between w(x, y) and the region of fer (X , y) onder

the search mask cao be calculated. We considered two cost functions: the fust one,

Lp(fcr, w) being the negative of the Pearson's linear correlation coefficient28 (PCC),

L,;,n(fO/, w) = -rO/(m, n) =

2: 2: [fO/(x, y) -JO/Cx, y)] [w(x - m, y - n) - w]
x y

-
_IL., L [W(X - m, y - n) - w]2 _IL L., [!er(X, y) - ïer(x, y)] 2
V x y Vx y

(4.1)

and the second one, LN(!a, w) being the negative of the nonnalized cross-correlation29

(NCC),

L., 2: fa(x, y)u:(x - m, y - n)

L~·n(/O/,w) = -cer(m, n) = - x y • (4.2)
· _IL E w2(x - m,y - n) _IEEJ~(x,y)Vx y \1 x y

In the above expressions all the quantities are to be calculated for the common region of

w(x, y) and JO/(x, y) at each test location (m, n). The Nec (Eq. (4.2)] is invariant under

scaling of the image intensities, g(x, y) ---+ Cl X g(x, y), whereas the PCC [Eq. (4.1)] is

invariant under a more general transfonnation, g(x, y) --+ Cl X g(x, y) + C2, including

both scaling and shift of the image intensities. In the above expressions Cl and C2 are

constants. Therefore the PCC is expected to be more robust for applications where the

images to be registered have undergone sorne intensity changes due to different dose rate

and detector response.

It has been shown that the NeC can be implemented through FFT-based cross­

correlations17 which increases the speed significaotly due to the efficiency of the fast

Fourier transform algorithms.28• 30 The FFT-implementation of the Nee we use is that
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given by Jones and Boyer. 17 In the Appendix we demonstrate that the PCC can aIso

be irnplemented by FFT-based cross-correlations, which, to our knowledge~ has not been

reported previously.

A few more words are to be said conceming the approach to the incorporation of

in-plane rotations. Clearly, the test image 1Q (x, y) must not be cropped ta the size of the

initial search image 1(x, y). Otherwise there could be cases in which the maximum of

the correlation integral is not produced at the correct location, because after the rotation,

the feature to be matched bas been partially cropped in the test image fa ( X ~ y), even

though it has been fully included in the initial search image I(x, y).

Also in this approach~ if the feature under the search mask is not fully included in

the search image I(x, y), the correlation value at the correct location will drop because

an artificial edge in f Q (x, y) has been matched. For this reason the feature to be matched

is usually chosen at the center of the reference image thus maximizing the probability

that it will be found within the search area during the registration. In this case a drop

of the maximum correlation value below a properly established threshold will indicate

that the feature to be located is not entirely included in the search image and a gross

deviation in the patient setup has occurred.

To summarize, the registration parameters are given as follows. The angle of rotation

a is the one at which the minimum of the cost function(s) [Eq. (4.1) and (4.2)] occurs.

The translation vector r is determined as r = (m, n)maximum - (m~ n)center' where

(m, n)maximum is the location of the correlation Peak and (m, n)center is the expected

position of the center of the search mask after the rotation. Therefore, to register the

images one rotates the searcb image al an angle a and afterwards translates it by -r.
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4.3.2 Cost Function Minimization

The cost functions [Eq. (4.1) and (4.2)] have to be rnin;rnized with respect to

(m, n, 0::) to obtain the transformation parameters, which in the general case may be

amenable only to procedures such as Fast Simulated Annealing and Genetic Algorithms31

which search the parameter space thoroughly in order to guarantee convergence to the

absolute minimum. However, the amount of iterations involved makes such an approach

impracticaI. We propose another approach, based on the observed properties of the cast

functions.

For the range of rotations which is likely to occur clinically (-10° < 0:: < 10°) an

investigation of the properties of the NCC 17 has shown that the maximum value within

the correlation distribution max(c(fQ, w)) [Eq. (4.1)] is a unimodal, convex function of

the angle of rotation with a maximum corresponding ta the proper rotational alignment

of the search image and the search mask. This also holds true for the case of the PCC,

illustrated in Fig. 4.5. In fact the above observation holds true for in-plane rotations

up to 15 deg. Therefore, the minimization of the cast functions [Eq. (4.1) and (4.2)] can

be done efficiently as follows:

1. al a trial angle 0:: the maximum value within the correlation distribution

max(c(fa, w)) [Eq. (4.1)] or max(r(fa, w» [Eq. (4.2)] and its pixel coordi­

nates (m, n) are found by a sorting algorithm.

Il. the negative of the maximum is assigned ta be the value of a restricted cost

function, L (a) at the trial angle a.

m. the cost function is then rnjnirnized by Brent's method in one dimension32, which

is in fact golden section search, but with improved convergence when the function

has continuous second order derivative, which, as shown in Fig .4.5, seems to be

the case for L(Q). Due to the smoothness of L(a) and the interpolation used by
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Figure 4.5. Â plot ofthe negative ofthe maximum correlation value ofthe
correlation distribution as a function ofthe angle ofrotation ofthe search
windows in Fig. 4.2. The images are rotated with respect to each other at
5.8 deg. Even though the relative position ofthe mask with respect to the
center ofrotation ;s different. the plots are ;dentical s;nce for aIl the cases
the search mask ;s entirely w;thin the search window.
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•
Brent's method, the improvement in the accuracy of the search below sorne value

of the user supplied rotational angle tolerance is marginal. We set this tolerance

to 1 deg because it resulted in registration of no more than 0.06 deg rotation for

identical images, which we considered sufficiently accurate.

4.3.3 Sequential Search

•
The amount of computations involved in the algorithm outlined above depends on

the size of the search mask and the search window as weil as the range of the angle of
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rotation to he explored. However, saving computational time al the expense of decreased

size of the search window and the search mask will decrease the degree of automation

of the algorithm and affect the uniqueness of the feature to be matched.

It has been shown17• 11 that for a certain range of in-plane rotations

(-15° < Q < 15°), the maximum of the correlations value does not shift signifi­

cantly (~5pixels) from its correct position given by the coordinates of the center of

the mask after the rotation. The reason is that for a 64 x 64 pixel search mask the

average pixel is displaced 16 pixels from the center, and after a rotation of 10 to 15

deg it is shifted by 3 to 4 pixels. This gives rise to the uncertainty in the position of

the correlation maximum discussed above.

Therefore, the approximate position of the search mask within the search window cao

be detennined as a preliminary step by a cross-correlation (NCC or PCC) of the search

mask and the search window. Then a smaller search window centered at the approximate

position of the search mask is selected and the search algorithm described in Sec. 4.3.2

is initiated. A diagram of the sequential implementation of the algorithm is given in

Fig. 4.6. It gives the angle of rotation, and after the rotation, the fine adjustments

of the translations. To avoid the problems described in Sec. 4.3.1, the size of the new

search window is calculated from the size of the search mask as shown in Fig. 4.7. At

tbis stage the cross-correlaton integral is computed in the spatial domain, which is faster

given the size of the search mask (we used a 64 x 64 search mask). The importance of

the final adjustment of the translations is clearly demonstrated in Fig. 4.3.

4.4 Results

4.4.1 A1gorithm Performance

To evaluate the performance of the algorithm itself we simulated 28 DRRs with
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f(x.y) w(x,y),
Calculate the correlation measure (pCC or NeC)

,
Find the position ofthe correlation maximum (m.n)1:IU

•

,
Calculate the initial translation parameters (a,h)

(a.b) = - (m.n) + (m,n)max cen,
Select a smaller search window j(x.y)

centered at (m,n)max

j(x,y) w(x,y),
Minimize by Brent's method in one dimension

the restricted cost function L(a)

,
Find the position (m '.n Jmax ofthe correlation maximum

at the angle tbat minimizes L(a)

,
Output:

the angle a tbat minimizes L(a) ;
the translation vector (&J. M) = - (m ',n Jmax + (m.n) max;

Cl. (&J, M),
Register:

1. Translate the search image by (a.b);
2. Rolate it by a around (m,n) ;
3. Translate it by (&J. M): cen

i
1
1•

(a,h)

•

Figure 4.6. SequentiaI search of the transformation parameters. The
initial translational parameters (a, b) are calcu/ated from the position of
the maximum of the correlation distribution (m, n )mG% and ils expected
position in the referencewindow (m, n)cen' The expectedposition coincides
with the position of the center of the mask in the reference window. The
fine adjustment ofthe translational parameters (Lla, Llb) is done after the
rotation by the angle Q •
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Figure 4.7. Arrangement for se/ecting the size of the sma//er search
window f'(x, y). The size ofthe margin is se/ected to be 8 pixels, twice as
large as the displacement ofthe correlation maximum observedat 15 deg. 17

the anatomy shifted 0 mm, 5 mm, 10 mm, lSmm and rotated from -9 deg to +9 deg

in steps of 3 deg. These images served as reference ones for the registration of the

zero-displacement DRR. We used three different 256 x 256 reference/search windows

with 64 x 64 search masks always placed at the center of the reference window, thus

simulating 84 different cases for the algorithm. The range of the angle of rotation

was set to :10 deg. For aIl the subsequent experiments no histogram modifications

(nonnalization, etc.) were done on the images. For ail results presented below, the x

axis runs horizontally from right to left, the y from top down and the rotational angle

increases in clockwise direction.

At this stage there was no significant ditTerence in the performance of the algorithm

because of the ditTerent cost functions. The images were aligned ta 0.3 deg on average,
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with maximum misalignment of 0.7 deg. The average RMS difference between the

known positions of the fiducial markers and the ones given by the registration algorithm

(Sec. 4.2.1) was 2.8 pixels and the maximum was 9.4 pixels, ~orresponding to 1 mm and

3 mm at the isocenter plane, respectively. Although the different DRRs were simulated

by changing the geometry of the raytracing, the maximum correlation values were very

high, above 0.994 for the PCC and above 0.9999 for the NCC, indicative of virtually

identical images. The maximum translational shift given by the algorithm at the final

stage was 4 pixels, which justifies our sequential approach. An interesting observation is

the fact that even though the slice thickness was 3 mm along the simulated translations,

alignment down to 1 mm was possible, due to the divergent beam geometry.

The average times taken by the algorithm are 1 min with the NCC cost function and

1.25 min with the PCC cost function compared to 15 min (NCC) and 20 min (PCC)

with no sequential approach.

4.4.2 Portal-DRR RegistratioD

Ta test the feasibility of automatic portal-to-DRR registration, we repeated the above

experiments, using the same search masks and search windows, but with the portal

image of the skull (Sec. 4.2.1) as a search image, instead of the zero-displacement DRR

(Fig. 4.1). Since the portal image was registered to the zero-displacement DRR the true

transfonnation parameters were known. The algorithm performed successfully only with

the PCC as a cost function and only for two of the selected three features for matching­

the sphenoid and Petrous bone (ear). The typical maximum correlation values were

0.86 and 0.83 respectively, reftecting the different degrees of similarity obtained in the

simulation of the DRRs. The average error in the rotational angle was 0.9 deg with a

maximum misalignment of 2.2 deg (Fig. 4.8). The average RMS difference between the

known positions of the fiducial markers and the ones given by the registration algorithm
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Figure 4.8. Frequency distribution of the difference between the correct
rOlalional angle and the one given by the registration algorithm, evaluated
from 56 cases. They correspond la shifts of 0 mm la 15 mm in step of 5
mm, rotations from -9 deg to 9 deg in step of3 deg, and 2 differentfeatures
to be matched.

(Sec. 4.2.1) was 4.2 pixels and the maximum was 10.3 pixels, corresponding to 1.5 mm

and 3.3 mm, respectively, al the isocenter plane (Fig. 4.9). For the third feature, even

though its approximate position was located by the cross-correlation operator, the error

in the rotation angle was larger than 3 deg. These failures exist because there is not

sufficient similarity between this particular feature in the DRRs and its counterpart in

the portal image.

In none of the cases did the NCC detect the correct position of the features within the

search window in the fust stage of the algorithm which resulted in misregistration. The

reason is the weaker adaptability of the NCC to the changes in the intensity of the portal
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Figure 4.9. Frequency distribution of the RMS difference between the
known positions of the fiducial markers and the ones given by the reg­
istration a/gorithm, eva/uatedfrom 56 cases. They correspond 10 shifts of
omm to 15 mm in slep of5 mm, rotations from -9 deg to 9 deg in step of
3 deg, and 2 different features to be matched.
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image due to the in-phantom scatter which was not taken into account in the simulation of

the DRRs. However, from our experiments on pairs of portal images (see Section 4.4.2)

it follows that both cost functions lead to sunHar results if the intensities of the images

are similar. To validate this we nonnalized the intensities of the portal image and the

DRRs to achieve somewhat better similarity. This improved the Perfonnance of the NCC,

which produced results close to that of the PCC for the sphenoid bone region. However

in this approach there is no objective criterion when the proper histogram modification is

done. For this reason we concluded that the NeC was inappropriate for portal-to-DRR

registration given the quality of the DRRs we have simulated.
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Table 4.1. Tests ofthe algorithm on images obtained at different exposures
(Fig. 4.2) with the PCC cost function. The angle given by the field
registration a/gorithm is 5.8 deg. Both the reference and the search image
have been blurred to a different degree prior to registration. Mask 1,2,3
encompass the samefeatures as the small windows shawn from left to right,
respectively on Fig. 1 (Top right). Mask 4 encompasses an area between
small masks 1 and 2. The maximum correlation value is denoted by M.

•

mask

2

3

4

No processing 3 x 3 smoothing fi1ter 5 x 5 smoothing fiiter

Maximum

Angle I-M Angle I-M Angle correlation

(deg) (deg) (deg) value

4.9 0.265 4.9 0.109 5.2 0.101

4.9 0.235 5.9 0.098 5.4 0.088

4.6 0.367 3.6 0.150 3.0 0.138

4.5 0.188 4.2 0.057 4.3 0.047

•

4.4.3 Portal-Portal RegistratioD

One of the portal images from our second set (Sec. 4.2.1, Fig. 4.2) was used as a

reference for the registration of portal images. Four different 256 x 256 reference/search

windows with 64 x 64 search masles placed at the center of the reference window were

selected for the registration, thus simulating 16 different cases for the algorithm. We only

investigated the detection of the in-plane rotations by the algorithm for the translations

were difficult ta control with our experimental setup. The RMS difference between the

rotation angles as given by the registration of the anatomy from the ones given by the

field registration were calculated for both cost fonctions, with the acceptance range set

to 3 deg. For bath cast functions the RMS difference was 1.4 deg, but with different

failure : 6% for the pce and 19% for the Nec. This was due to the failure of the NCC

in the registration of images obtained at different exposures (Table 4.1 and Table 4.2).

4-21



Table 4.2. Tests ofthe a/gorithm on images obtained at different exposures
(Fig. 4.2) with the Nee cost function. The angle given by the field
registration algorithm is 5.8 deg. Both the reference and the search image
have been blurred to a different degree prior to registration. Mask 1.2,3
encompass the samefeatures as the sma/l windows shownfrom left to right.
respective/yon Fig. 1 (Top right). Mask 4 encompasses an area between
masks J and 2. The maximum correlation value is denoted by M.
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mask
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3
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No processing 3 x 3 smoothing tilter 5 x 5 smoothing tilter

Maximum

Angle I-M Angle I-M Angle correlation

(deg) (10-&) (deg) (1~) (deg) value (lo-a)

4.9 3.8 4.9 1.4 4.9 1.2

-5.8 4.2 -5.9 1.8 -5.2 1.6

-7.5 3.8 -1.7 1.2 -2.0 1.1

6..7 3.5 0.0 1.2 0.1 1.1

e

In these cases the minimum of the cost function did not correspond ta the tnle translation

parameters at the fust stage of the algorithm. Our experiments a1so showed that for sorne

features (with low spatial frequencies) the cost fonctions are very robust against change

in the resolution of the images, a fact observed previously by Radcliffe et al. 18 This

is important for it allows sorne preprocessing of the images in arder to remove noise

and increase the significance of the correlation peak as a refiection of the quality of the

match. More work is required ta correlate the perfonnance of the algorithm ta specifie

types and shapes of anatomical structures, and to different smoothing processes.

4.5 Discussion and conclusions

One of the goals of this work is to demonstrate an approach to the determination of

in-plane rotation (down to 1 deg) in a correlation-based algoritbm for image regjstration
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in a reasonable time frame. The approach clearly relies on the assumption that the range

of the in-plane rotation is : 15 deg, which is greater than the one expected clinically

(around 4-5 deg).ll When using film-screen ·systems for imaging, translational errors

and rotational errors greater than those above may be introduced because of the film­

digitization process. For this reason registration of radiation fields has to be performed

prior to the registration of anatomy. The images are aligned tirst with the parameters

obtained from the registration of the fields which establishes a common reference frame.

The misregistration of the anatomy in this frame should, in general, be small when patient

setup is properly perfonned. WeIl calibrated on-line portal systems do not pose such a

problem because one can assume that a change of position of a patient cao be detected

as a change in position of the patient's anatomy relative to the pixel matrix of the image.

We did not attempt to develop any correlation procedure for the determination of the

magnification. A previous study18 has shown that this parameter could not be precisely

detennined by a correlation based algorithm. The fact that the correlation operator can

detennine translations and rotation (by a search) indicates that the divergent geometry of

the beam do not change the appearance of the projection image significantly. Because the

beam is not grossly divergent, the redistribution of the pixels in the resultant images due

to the small changes in magnification May not be precisely detected by the correlation

operator. In what follows we discuss a possible approach to the incorporation of the

magnification in an automatic regjstration algorithm.

The performance of the algorithm outlined above depends on the ability of the

correlation operators to match the search feature within the search window, which itself

depends on several factors: (i) the similarity of the images, (ii) the presence ofprominent

anatomical feature(s), as weIl as (iü) the quality of the images.

The size and the shape of the anatomical feature as weU as its subject contrast
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detennine how weil it can be matched in the search region. Il, 33 We did not attempt

any investigation in this direction since we believe that the identification of the most

appropriate features for matching and registration for a certain treatment setup can be

easily and reliably identified by experience from a few clinical cases. This leaming

process is aIso necessary since the choice of the best landmarks also improves the

robustness of the aIgorithm against noise, change in the resolution as weil as the existence

of structures that can confound the correlation operator. For those selected features the

value of the cost functions after the registration can aIso be used as a criterion for the

quality of the match, given that the imaging chain (linear accelerator and portal imaging

device) is stable. The use of the PCC as a cost function makes the registration more

robust in cases where the images have undergone sorne intensity modifications due to

changes in the dose rate or the acquisition technique (different number of MU).

An important consideration of the utility of the above aIgorithm to the automatic

registration of portal images is the existence of nonrigid transfonnations of the patient.

An example is the difference image in Fig. 4.3. Even though the structure to be matched

is registered weil as indicated by the uniform gray levels in the corresponding region,

sorne minor mismatch under the radiation field is noticeable. This cannot be managed by

the algorithm in its present fonn. The reason is that it finds the transformation parameters

which best register the selected feature locally and assigns those parameters as a global

transfonnation parameters under the assumption of rigid transfonnations.

This problem as weil as the determination of the magnification cao be approached at

the expense of increased computationaI time in the following manner. A set of features

can be selected and the registration parameters cao be found for each one by the algorithm

in its present fonn. Then a model based transformation cao be found that is in the best

agreement with the parameters calculated before and weighted (that cao be done in several
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ways) with the values of the cost function. In this way, nonrigid transfonnations and

image magnification cao be determined.

Such a procedure will be advaotageous even in the case of rigid transfonnatio~s. In

this case the Procmstes algorithmIl, 13, 34 can be used to find the translation, rotation

and scale values, which, when applied to the search image, minimize the least square

differences between the paired features in the search and the reference image. This

approach is similar to the one suggested by Moseley and Munro 11 but has the advantage

of Ci) incorporating a larger search window and (ii) decreasing the error introduced by the

correlation operator in the identification of the match points when the images are rotated.

Even though the proposed automatic algorithm May never be completely successful,

it can be implemented as a tool in more complex strategies for registration of portal

images. To malee these strategies effective, a user-friendly interface that provides a

selection of different options with a different degree of automatization is to be created.

The best options for each individuai setup (automatic, semiautomatic or manuaI) can

then be detennined through experience.

The accuracy of the algorithm is of course inferior to what has been achieved when

the radiation fields are matched. However, as it can be seen in Fig. 4.3 sorne deviations in

the treatment set up can be easily recognized as a mismatch of the radiation fields above

the registered anatomical structures, thus facilitating the process of decision making in

the course of radiation therapy.

The fact that registration ofportal images and DRRs was possible suggests that sorne

regions of the anatomy are amenable to automatic registration even though the in-phantom

scatter is not taken ioto account. In fact, as a reference image, a DRR is of better utility

compared to any portal image since the anatomy position witb respect to the radiation field

is precisely known. When the fust portal image is registered to a conventional simulator
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image, the registered portal image becomes the gold standard. However, an error in the

registration would be carried on systematically to subsequent measurements. Our work

suggests that the megavoltage DRR can be registered with each portal image directly thus

removing this systematic error and obviating the need of conventional simulator images

for registration purposes. This emphasizes the added importance of CT simulation in

modem radiation oncology. Another important consideration is that an anatomical feature

for matching not obscured by extemal structures (for example, the mounting of the shield­

supporting trays) cao always be selected in the reference image. Further investigations

are, bowever, needed to detennine the accuracy of the registration as a function of the

parameters of the CT data.

To summarize, we have developed a grey-level image alignment algorithm based on

cross-correlation that takes into account both in-plane rotations and translations.tt The

search for the in-plane rotation is made possible in a reasonable time frame by using a

sequential approach and the FFT-implementation of the Pearson correlation coefficient,

which proved to be a better option for matching than nonnalized cross-correlation. The

algorithm can also be used for registration of portal images and DRRs, given that certain

modifications are done on the DRRs, thus making the use of a portal image as a reference

image unnecessary. The algorithm bas the potential to be a tool in fast and automated

approaches to images registration and patient setup verification.

After the appeannce oC ibis work in Medical Physic:s., similar developmenlS were published by Dons Md Boyer.3'

4-26



• CHAPTER 4

References

A Gray-Level Image Correlation Aigorithm for Anatomy Registration

•

•

2

4

5

6

7

8

9

10

11

12

13

14

J. Bijhold, K.. G. A. Gilhuijs, M. van Herk, and H. Meertens. Radiation field edge detection in portal

images. Phys. Med. Biol., 36: 170~171O, 1991.

J. Bijhold, K..G.A. Gilduijs, and M. van Herk. Automatic verification of radiation field shape using

digital portal images. Med. Phys., 19:1007-1014, 1992.

K. G. A. Gilhuijs and M. van Herk. An automatic in-Line inspection of patient setup in radiation

therapy using digital portal images. Med. Phys., 20:667-677, 1993.

1. Crooks and B.G. FalJone. Contrast enhancement ofportal images by selective histogram equalization.

Med. Phys., 20:199-204, 1993.

H. Wang and B.G. Fallone. A robust morphological algorithm for automatic radiation field-extraction

and correlation of portal images. Med. Phys., 21 :237-244. 1994.

H. Wang and B.G. Fallone. A mathematical model of radiation field edge localization. Med. Phys.•

22: 1107-1110, 1995.

S. Zhou and L.I. Verhey. A robust method ofmultileaf collimator (mie) leaf-configuration verification.

Phys. A{ed. Biol.• 39:1929-1948. 1993.

K. Eilertsen, A. Skretting. and T. L. Tennvass3s. Methods for fully automated verification of patient

set-up in external beam radiotherapy with polygon shaped fields. Phys. Med. Biol.• 39:993-1012, 1994.

K. W. Leszczynski, S. Loose. and P. Dunscombe. Segmented chamfer matehing for prescription­

treatment image registration in radiotherapy. Phys. Med. Biol., 40:83-94. 1995.

H. Meenens, J. Bijold, and J. Strackee. A method for the measurement of field placement errors in

digital portal images. Phys. Med. Bio/.• 35:299-323. 1990.

J. Moseley and P. Munro. A semiatomatie method for registratioD of portal images. Med. Phys.•

21(4):551-558, 1994.

B. J. McParland Digital portal registration be sequential anatomical matchpoint and image correlations

for real-time continuous field alignment verification. Med. Phys., 22(7):106~1075. 1995.

J.M. Balter, C.A. Pelizzare. and G.T.Y. Chen. Correlation ofprojeetion radiographs in radiation therapy

using open curve segments and points. Med. Phys.• 19:329-334, 1992.

K. G. A. Gilhuijs, A. Touw, M. van He~ and E. Vijlbrief. Optimization of automatic portal image

analysis. Med. Phys.• 22(7):1089-1099. 1995.

4-27



• CHAPTER 4 A Gray-level Image Correlation Algorithm for Anatomy Registration

IS

18

19

16

17

D. S. Fritsch, E. L. Cbaney, A. Boxwal~ M. J. McAuliffe, S. Ragbavan, A. ThaU, and J. R. Eamhart.

Core-based portal image registration for automatic radiotherapy treatment verification. Int. J. Radial.

Oncol. Biol. Phys., 33(5): 1287-1230, 1995.

K. G. A. Gilhuijs, P. J. H. van de Heu, and M. van Herk. Automatic tbree-dimensional inspection of

patient setup in radiation therapy using portal images, simulator images, and computed tomography

data. Med. Phys., 23(3):389-399, 1996.

S. Jones and A. Boyer. Investigation ofan FFT-based correlation technique for verification of radiation

treatment setup. Med. Phys., 18:1116--1125, 1991.

T. Radcliffe, R. Rajapaksbe, and S. Shalev. Pseudocorrelation: A fast, robust, absolute, grey-level

image alignment algorithm. Med. Phys., 21:761-769, 1994.

W. R. Nelson, H. Hiraym~ and D. W. O. Rogers. The EGS4 code system. Internai repon SLAC 265,

Stanford Linear Accelerator Center, 1985.

Corey E. Zankowski. Monte Carlo analysis of the 10 MY x-ray beam from a CLINAC-18 linear

accelerator. Master's thesis, Medical Physics Dept., McGill University, Montreal, 1994.

21 E. StOnD. and H.I. Israel. Photon cross sections from 1 KeV to 100 MeV for elements Z=1 to Z=I00.

Nuclear Data Tables, A7:565--681, 1970.

20

•

•

22

2J

24

2S

26

27

28

G.W. Sherouse, K. Novins, and EL. Chaney. Computation of digitalIy reconsmIcted radiographs for

use in radiotherapy treatment design. Int. J. Radiat. Onco[. Bio/. Phys., 18:651-658, 1990.

B. Siddon. Fast calculation of the exact radiological patb for a tbree-dimensional cr array. Med.

Phys., 12(2):252-255, 1985.

L. Dong and A. L. Boyer. Creating digitally reconstructed radiographs to simulate electronic portal

inages for automatic image correlation studies. In 3rd International Workshop on Electronic Portal

Imaging, San Francisco, CA, October 7-8, 1994.

L. Dong and A. L. Boyer. An image correlation procedure for digitaUy reconstructed radiographs and

electronic portal images. Int. J. Radiat. Oncol. Biol. Phys., 33(5): 1053-1060, 1995.

E. L. Hall. Computer image processing and recognition, page 181. Academie Press, New York, lst

edition, 1979.

R. J. Schalkotf. Digital Image Processing and Computer VISion. John Wl1ey & Sons, Inc., 1989.

R. C. Gonzales and P. Wmtz. Digital Image Processing. Addison-Wesley, Reading, MA, 2nd edition,

1987.

4-28



• CHAPTER 4 A Gray-Level Image Correlation Algorithm for Anatomy Registration

•

•

29

30

31

32

33

34

3S

w. K. Pratt. Digital Picture Proeessing. John Wl1ey & Sons, Ine., New York, 1978.

R. N. Bracewell. The Fourier TransjOrm and Ils Applications. McGraw-HilI, New York, 1986.

D. L. G. Hill and D. J. Hawkes. Medical image registration using knowledge of adgacency of

anatomical structures. Image VISion Computing, 12:17~178, 1994.

Richard P. Brent. Algorithms for Minimizarion mthout Derivatives. Prentice-Hall, Inc., Englewood

Cliffs, New Jersey 07632, 1973.

L. Lemieux, R. Jagor, D. R. Fish, N. D. Kitchen, and D. G. T. Thomas. A patient-tOecomputed­

tomography image registration method based on digitally reconsttueted radiographs. Med. Phys.,

21: 1749-1760, 1994.

A. C. Evans, S. Marett, L. Collins, and T. M. Peters. Anatomical-functional correlative analysis of the

human brain using three dimensional imaging systems. Pme. SPIE Med. Image. III Image Proeess.,

1092:264-270, 1989.

L. Dong and A. L. Boyer. A ponal image alignment and patient setup verification procedure using

moments and correlation techniques. Phys. Med. Biol., 41(4):697-724, 1996.

4-29



•
CHAPTER5 Su.mmary and Future

Developments

5.2 Anatomy Registration for Treatment Setup Verification 5-7

5.2.1 Summary 5-7

•

•

5.1 Inverse Treatment Planning

5.1.1 Summary

5.1.2 Future Work

5.2.2 Future Work

5-1

5-2

5-2

5-4

5-8



• CHAPTER 5

5.1 Inverse Treatment Planning

Summary and Future Developments

•

•

5.1.1 Summary

In the fust part of this thesis, two numerical techniques for inverse treatment planning

were presented.

The fust technique, the active set algorithm is a hybrid optimization routine applicable

to any differentiable function of the pencil beam weights. The minimization algorithm

combines the constrained steepest descent and the conjugate gradient methods in arder

to accelerate the design of intensity modulated beams while accounting for the non­

negativity constraints imposed on the pencil beam weights. The algorithm attempts

to identify the active set at the solution (pencil beam weights that have value of zero

at the solution) so as to proceed with unconstrained minimization in the space of the

remaining variables employing the conjugate gradient method. If the prediction of the

active set is incorrect, a constraint is encountered and the prediction of the active set is

updated. Consequently, the algorithm restarts the conjugate gradient method in the new

optimization subspace by resetting the current descent direction to be opposite to the local

gradient of the objective function. For two popular objectives, our numerical simulations

demonstrated that the active set method outperforms the constrained steepest descent in

tenns of (i) the residual value of the cost function at tennination and (H) the number of

iterations required to achieve an objective value lower or equal to that obtained by the

constrained steepest descent at tennination. Thus, as a tool for inverse treatment planning,

the active set algorithm is a viable alternative to the constrained steepest descent Methode

The second algorithm, the continuous penalty function method, is an approximate

numerical technique for solving large·scale constrained optimization problems. The

method is applied to the least-square dose objective of matching zero dose level to

healthy tissues. The constraints require that the target dose be within certain levels.
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They are accounted for by the introduction of a penalty terrn. The continuous penalty

function method combines the objective and the penalty terrn into a single function and

proceeds by increasing the weight of the penalty term at each iteration step in arder

to confonn closely the final dose distribution with the constraints. During this iterative

process which bas a well-defined asymptotic point, the optimization technique creates

plans with different compromises between target coverage and healthy tissue sparing.

These plans can be kept for a physician's consideration. The selection of a particular

plan from the iteration sequence automatically indicates the target importance weight

which can relate the minimization of the resulting squared dose objective to a clinically

relevant optimization in which Many treatment factors are implicitly accounted for by the

physician. This approach adds sorne ftexibility to the continuous penalty function method

for its application to cases where the desired target coverage results in inadmissible

overdosage of critical organs.

Being independent of beam energies and modalities, both the active set algorithm and

the continuous penalty function method cao also optimize these parameters in addition

to the beam profiles. For this purpose, for each direction of the beam setup, multiple

beams (different energies, type of radiation) are to be employed. After the optimization,

the pencil beams pertaining to more beneficial beams will be assigned greater weights

than the ones that pertain to beams with linle contribution to the improvement of the

dose distribution. The latter beams can then be removed without much degradation of

the treatment plan.

The inverse treatment planning methods presented in this thesis are independent of

both the dose calculation model and the dose sampling technique. Furthennore, both

algorithms are applicable to large classes of cost functions. The active set technique can

be employed with any differentiable objective. The continuous penalty function method is
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robust for convex objectives and convex penalty terms but it can also provide solutions for

other types of objective functions. l, 2 To benefit fully from inverse treatment planning,

one must understand the impact of the dose calculation models, of the dose sampling

techniques and of the various objectives on both the beam profiles and the optimized

dose distributions. These are sorne of the future research tracks that need to be explored.

5.1.2 Future Work

Dose calculatioD model An accurate dose calculation algorithm is essential to assure

that the optimized dose distributions obtained by intensity modulated beams cao be ac­

tually delivered. The DSAR model employed in this thesis (Appendix A) does not

consider inhomogeneities in the patient volume. Furthennore, its panicular implemen­

tation restricts the minimum beamlet size to 5 x 5 mm. A better model based on fust

principle convolution/superposition dose calculationsl-S must be implemented so that the

sensitivity of the optimized dose distributions with respect to lateral scatter, pencil beam

resolution as weil as inhomogeneities can be investigated. Some insight in the role of

these parameters in the design of intensity modulated beams May significantly accelerate

the process of inverse treatment planning and radiation delivery for certain treatment

sites and objectives.

Dose sampUng techniques The dose distributions produced by intensity modulated

beams are characterized with steep high-gradient regions and small but very low- or

very high-dose domains. Therefore, fine sampling of the dose distributions is necessary

for consistent and reliable inverse treatment planning. The adequate density of dose cal­

culation points for evaluation of dose distributions generally depends on the treatment

site, the sampling method and the properties ofthe dose distribution.6--8 Therefore, further

investigations in this direction are warranted.
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Figure S.l. Dose-volume histograms for target and spinal cord volumes
for plans created by the continuous penalty function method with linear
and quadratic objectives for the same constraint violations as measured by
the penalty term. The dose distributions are norma/ized to their respective
maxima. The same importance weights are given to the critical organs
for both objectives. For the quadratic objective T(t)j JL(t) = 4020 at
termination. Euler's integration scheme was usedfor the linear objective.

Objective functions The least-square objective of matching zero-dose level was used

in conjunction with the continuous penalty function to provide continuity with the

conventional inverse treatment planning technique and to eosure the applicability of the

minimization algorithm. However, other physical objectives can be envisaged and should

be explored in order to feed the process of inverse treatment planning with some a priori

knowledge. For example, a linear objective equal to the weighted sum of the average

doses to critical structures penalizes equally for equal dose increases in the high- and

the low-dose regions of the critical structures, whereas the quadratic objective penalizes

preferentially for dose increase in the high-dose regions of the irradiated organs (Fig. 5.1

and Fig. 5.2). These features of the objective fonctions guide the optirnization process
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Figure S.2. Dose-volume histograms for target and rectal volumes for
plans created by the continllous penalty function method with linear and
quadratic objectives for the same constraint violations as measured by the
penalty term. The dose distributions are normalized ta their respective
maxima. The same importance weights are given ta the critical organs
for bath objectives. For the quadratic objective T(t)/ pet) = 1757 at
termination. Euler's integration scheme was usedfor the /inear objective.

to produce different dose distributions and different sparing of the critical organs for the

same constraint violation (Fig. 5.1 and Fig. 5.2). Therefore, one May consider the use

of a quadratic objective for nearly seriai organs that can tolerate high doses only in very

smalI, insignificant volumes. Typical examples are the spinal cord9 and the rectum.10

On the other hand, a linear objective May be better suited for organs with large volume

effects such as the lungs10 which can be kept functional by sacrificing a considerable

part of their volume while keeping the rest to very low dose levels. These considerations

underline once again that the continuous improvement in the modelling of the treatment

objectives is an important research direction to be explored.
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5.2 Anatomy Registration for Treatment Setup Verification

5.2.1 Summary

The gray-Ievel image correlation algorithm, presented in the second part of this

thesis (Cbapter 4), was designed with the goal of automatic quantification of the two­

dimensional displacements of the patient anatomy with respect to the radiation field.

Under the assumption of rigid transfonnations and image similarity (up to a linear trans­

fonnation of the intensities), the algorithm searches for the transformation parameters

which produce the highest correlation value between the reference image and the regis­

tered one. Certain properties of the correlation operators were explored and consequently

exploited to accelerate the image registration. First, a frequency domain representation of

the Pearson correlation coefficient was derived which allowed its fast Fourier transform

implementation. Second, the value of the maximum of the correlation distribution was

shown to be a unimodal function of the angle of rotation between the pair of images to be

registered, with a maximum corresponding to the proper image alignment. These prop­

erties, along with the property of the correlation maximum to indicate the approximate

position of the image feature under small rotations (±lSO) were used to design the regis­

tration algorithm as a two-stage sequential procedure. At the fust stage, the approximate

value of the displacement between the two images is obtained from the detected and the

expected positions of the maximum of the correlation distribution which is calculated

with the fast Fourier transform implementation. At the second stage of the algorithm,

a smaller search window in the vicinity of the previously located maximum is selected

and a search for bath the rotational and the translational parameters is conducted. The

accuracy of the registration procedure for our phantom study was in the order 1 mm and

1° with typical execution times in the order of a minute on a DEC 3000-M300 computer.
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Imaging parameten and treatment sites The results from the application of the cor­

relation algorithm to the registration of portal images and megavoltage DRRs indicates

that certain regions of the anatomy were amenable to automatic matching even though the

in-phantom scattered radiation was not modelled. The success of the Pearson correlation

coefficient, which is invariant under a shift and scaling of the image intensities, implies

that for our particular setup the scatter contribution across the image is a slowly varying

(almost constant) function of the image coordinates, which is added to the primary image

signal. This speculation is consistent with the failure of the nonnalized cross-correlation,

which is invariant only under scaling of the image intensities. Therefore, the perfonnance

of the algorithm for the cases of portal-to-DRR registration should improve wben scatter

from the patient is reduced by acquiring the portal image at a large patient-to-detector

distance. On the other hand, given the fixed size of the portal imaging detectors (elec­

tronic portal imaging devices or film-screen detectors) the patient-to-detector distance is

often determined by the size of patient anatomy that bas to be imaged. Therefore, for

each intended treatment site, phantom studies at the maximum possible patient-portal

imager separation sbould be conducted to investigate the perfonnance of the registration

algorithm for the various anatomical features that are envisaged as correlation templates.

The identification of the anatomical landmarks, however, needs to be done only once.

Furthennore, their selection on the reference image of the patient to be treated can be

performed very fast simply by placing (on a computer screen) predefined square drawings

at the proper locations. This procedure needs to be executed only once at the beginning

of the treatment sessions.

Extensions and applications The registration algorithm relies on the matching of

unique, asymmetric and prominent anatomical landmarks. 115 robustness for anatomy
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alignment can be further improved by combining the information obtained from the

registration of severa! anatomical features. The transformation parameters for each land­

mark cao be found by the technique in its present fOnIl and a global transformation

based on the properly weighted (e. g. with the values of the correlation maxima) local

transfonnations can be designed to register the portal image and the reference one.

A challenging problem is the extension of the present technique for 3D verification

of the patient setup, especially wben out of plane rotations are presented. Lemieux

et al. 11 reported the application of a correlation technique to the 3D registration of CT

data to high-quality diagnostic radiographs. However, the rePOrted computational times

(I"V 30 min) were impractical for on-line portal imaging. Furthermore, given the portal

image quality, the feasibility of their correlation approachIl in the context of portal

imaging needs to be investigated.

However, when only translations are present, our correlation algorithm can align

the patient anatomy (represented by the 3D CT data) in the desired treatment position

by registering a pair of orthogonal portal images to the corresponding DRRs. This

approach May also evaluate accurately the actual 3D displacement when small out-of­

plane rotations in the order of l"oJ 20 are presented. 12 Such small out-of-plane rotations

of the bony anatomy are typical for the conformaI treatments of patients with prostate

cancer after immobilization with custom thennoplastic body cast. 13 Furthennore, given

the small volume of the target volume, a correction of the small out-of-plane rotations

May not be necessary.13 Therefore, the 3D anatomy verification of such treatments is

a potential application of our registration tool. Furthennore, the algorithm cao be used

for detecting and quantifying setup errors in retrospective studies on setup uncertainties

and target motion. The subsequent findings sbould then be incorporated in the treatment

planning process 14• 15 and properly accounted for in the design of confonnal treatments.
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Inverse treatment planning requires dose calculation algorithms that madel the effect

of beam intensity modulation on the dose distributions. A short description of the dose

model used throughout this work is presented below.

The dose DP(x, y, d, Fp ) delivered to a calculation voxel P lying al a physical depth

d (Fig. A.I), off-axis position (x, y) in the beam's eye-view plane and distance Fp from

the source is 1:

nn(dn , Fn ; ~Vx, Wy) (Fn)2 1
D(x, y, d, Fp) = T AR(d l-V. W) -p, [I(x, y, d, Fp)TAR(d, 0, 0)+

n, .\:, Y p W norm

J ? (' 1 ,)l ~-SARx.-xy--yd-.
~~ ( ') l'}' 1)+~~ f Xi, Yi, dii , Fp ~x~ ~Xi~Yj] .
1=1 J=l Y

(A.l)

In the above equation, the fust tenn in the brackets accounts for the primary dose and the

second one for the scattered dose from the different volume elements. The differential

scatter-air ratio ti.2 S AR/~xti.y describes the amount of scatter from pencil beams such

as the one shown in Fig. A.I. The scattered dose contributed to a voxel by a pencil beam

is determined by the distance Tij = V(Xi - x)2 + (Yi - y)2 between the calculation

voxel and the pencil beam and the depth ~i of the pencil beam which is detennined

by the curvature of the entrance surface (Fig. A.I). Values for the DSAR function cao

be obtained either by differentiating tissue-air ratios2 (TARs) for rectangular fields or by

differentiating scatter-air ratios2 (SAR) with respect to radius:

2 ( 1 1 )~ SAR Xi - x'Yi - y,d

ti.x~y
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Figure A.I. The dose to a voxel P(x, y) is calculated by summing the
weighted scattered dose contributions from aU co/umns of tissue such as
the one shown. The dose scattered by such a column is a function of its
distance rij to the voxe/ of interest and the depth d'.

given that the increments ~x, ~y are small. The function f(x, y, d, Fp ) describes the

fluence distribution. It can be represented as f(x, y, d~ Fp) = g(x, y, d, Fp)w(x, y) where

g(x, y, d, Fp ) describes the radiation field at each voxel in the patient accounting for the

intensity distribution of the radiation source and penumbra effects. The transmission of

a filter is given by w(x, y) and the attenuation of the beam along the central axis due

to the fil ter is accounted by l/wnorm • The dose to the normalization point lying on

the central axis of the beam al a depth dn at a source-to-nonnalïzation point distance

Fn is nn(dn,Fn, Wx, Wy). The tissue-air ratio for the depth ofnormalization is given

A-2
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by T AR(dn , Wx, lVy) where the field size at the normalization point defined by the

collimator jaws is lVx x Wy. When the nonnalization and the calibration points coincide

( a typical case being Fn = SAD, dn = dmaz ) the nonnalization dose is given as :

(A.3)

•

where OFmed(WX, lVy) is the output factor at the depth of dose maximum dmaz for the

given field size and MU is the number of the delivered monitor units (beam on time).

Certain preliminary calculations are to be done that account for the fact that tissue­

air ratios are not readily available for megavoltage linear accelerators. Instead, the beam

data are obtained by measurements in phantom and normalized dose functions as tissue­

phantom ratio (TPR) or tissue-maximum. ratio (TMR) are evaluated.3 TARs can be

calculated from the corresponding TMRs by :

TAR(d. Wx, Wy) = TMR(d, l-Vx, l-Vl) _ TJfR(d, Wx, Wy) (A.4)
. TAR(dmaz , Wx, ny) BSF(l-Vx, Wy)

where B SF(Wx, l-Vy) is the back scaner factor for the corresponding field size. Once

the TARs are calculated, the corresponding SARs are given as :

SAR(r, d) = T AR(r, d) - T AR(O, d) . (A.5)

•

Within the DSAR model, inverse treatment planning cao be perfonned by introducing

pencil beam weights w(x, y) in monitor units (MU) and setting the nonnalization (wedge)

factor 1/Wnorm to one. The resulting beam profiles detennine the bearn-on rime for each

portion of the beam. However, when a sequence of static fields defined by a multileaf

collimator is used for the delivery of the profiles, the change of the output with the field

size is to be accounted for.
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• APPENDIXB

8.1 Problem Statement

Applicability of the
CPFM to the Inverse

Treatment Planning Problem

A non-linear constrained optimization problem is ~tten as:

~f fCx)! -~ = {x E En : g(x) ~ O}. (B.I)

•

•

Here, Ei is the i-dimensional Euclidian space, x = [xl, ... ,xn]T E En, I(x) is the

function to be rninimized, X is the set of admissible values for x detennined by the

constraints g(x). A local solution x· is a point in a neighborhood of which, there is no

other point satisfying the constraints that gives a smaller value of the objective function.

A global solution can be defined as any local solution that yjelds the smallest objective

function value. We denote by X· the set of ail solutions x· of the minimization problem

(solution set) and we assume that X· is not empty.

A quadratic optimization problem with linear inequality constraints is given by:

min IIAx - b11 2
, X = {x E En : g(x) = Bx - c < D}. (B.2)

xEX

Here b E Em , c E El, A is an m X n matrix and B is an l X n matrix. In Eq. (B.2),

IIAx - bl! is the usual Euclidian nonn of the vector Ax-b andg(x) = [gl(x), ... ,g'(x)]T

is a linear vector function, that is for any o., (3 E El, x, y E En, g(ax + {3y) =
ag(x) + f3g(y).

Our purpose is: (i) to reassert that Eq. (B.2) poses a convex programming problem

and (ii) to prove that the continuous penalty function method solves that problem for the

particular case of inverse treatment planning, where b = 0, c has finite components and

the elements of the matrices A and B are real positive numbers. To this end we fust cite

sorne definitions and results from the theory of mathematical programming.
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• Appendix B Applicability of the CPFM to the Inverse Treatment Planning Problem

8.2 Convexity - Definitions and Propertles

Definition 1. A function f(x) : En -. El is a convex function of x in En if for every

two points Xl, X2 E En and every À, where 0 < À < 1

(B.3)

•

•

If f (x) is a convex function of x in En we simply say that f (x) is a convex function

of x.

Definition 2. A function g(x) : En --+ El is a concave function of x in En if -g(x)

is a convex function.

As a corollary of the above definitions linear functions are both convex and concave.

p

Lemma 1. If fI, ... , fp are convex functions then f(x) = L fi(X) is a convex function.
i=l

The statement of the Iemma follows immediately from the definition of a convex

function.

Definition 3. A symmetric matrix A is said to be positive semidefinite (nonnegative

definite) if for every vector y, yTAy ~ O.

Let V'2f (x) denotes a square symmetric matrix of the order n whose (i, j) th element

is ax~~xJf(x). The matrix V 2 f(x) is aise called the Hessian matrix of f(x). The

following theorem holds true. 1

Theorem 1. If the function f( x) is twice differentiable in En, then f( x) is convex if

V 2 f(x) is semidefinite everywhere in En-
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• Appendix B Applicability of the CPFM to the Inverse Treatment Planning Problem

Definition 4. The convex programming problem is written as

min f(x), X = {x E En : g(x) > O}
xEX

(B.4)

•

where f (x) is a convex function and each component gi(x) of the vector function g(x)

is a concave function.

For convex programming problems the following theorem holds tnle.2

Theorem 2. [Local-Global Convexity Property] Every local minimum x· of the convex

programming problem is a global minimum.

8.3 Continuous Penalty Function Method

Within the frame of the continuous approach one solves the constrained optimization

problem (Eq. B.I) by introducing a penalty tenn S(x) such that S(x) = 0 if x E X and

S(x) > 0 otherwise. A new function P(x, t) is defined as

P(x, t) = p(t)f(x) + 'i(t)S(x)
(B.5)

where pet) and 'i(t) are continuous fonctions of the scalar argument t such that

•

00

pet) > 0, r(t) > 0, f p(t)dt = 00.

D

A set G(t) is defined such that

G(t) = {x E En : P(x, t) < Jl(t)f(x·)}.

The following theorem holds true:3• 4
•

8-3
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• Appendix B Applicability of the CPFM to the Inverse Treatment Planning Problem

Theorem 3. Let f(x) and S(x) be convex continuously ditTerentiable functions every­

where in En, let the set G(O)be non-empty and bounded, let the continuous functions pCt)

and T(t) satisfy conditions (B.6), and let the ratio ~~g -. 0 monotonicallyas t -. 00.

Then the set of limit points (as t -+ 00) of the solution x( XQ, t) of the Cauchy problem

dx(t)
---;Ii = - V zP(x~ t), x(O) = XQ (B.S)

is non-empty and a11 the limit points belong to X. wbatever the initial condition XQ.

8.4 Local-Global Convexity Property of the
Inverse Treatment Planning Problem

A remarkable property of the problem stated by Eq. (8.2) is that any local solution

is also a global solution. Indeed, introducing a vector function h(x) sucb that hi(x) =

_gÉ(x) the constrained optimization problem [Eq. (B.2)] can be rewritten as:• min IIAx - bll 2
, X = {x E En : h(x) > O}

zEX
(B.9)

•

The Hessian ATA of the twice differentiable objective function IIAx - bl1 2 is a symmetric

positive semidefinite matrix, since for every vector y, yTATAy = (Ay)T (Ay) = Il Ay Il 2 >

o (Definition 3). Therefore, according to Theorem 1 the objective function is convex.

The components of the vector function h (x) are linear and therefore concave functions of

x. Thus the problem posed by Eq. (B.9) is a convex programming problem (Definition 4)

and therefore every local minimum is a global minimum (Theorem 2).

The inverse treatment planning problem is given by Eq. (B.9) and a particular choice

of the parameters b, c, A and B. Therefore every local minimum of the inverse treatment

planning problem is a global minimum. If one considers the case of zero weights to the

critical structures and relaxed requirements with respect to the target one can demonstrate

that several global minima of different clinical utility are possible.
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B.5 The Inverse Treatment Planning Problem

We have shown in the previous section that the objective f(x) is in accordance with

the requirements of Theorem 3 since it is continuously difi'erentiable and convexe

In order to use the continuous penalty function method3 we fonn a convex penalty

term
1

S(x) = L (gt(x»)2
i=l

(B.IO)

•

to account for the constraints. The functions gt(x) are defined as gt(x) de!

max(O,9i(X»). We prove that (gt(x»)2 is a convex function of x and therefore S(x),

being a SUIn of convex functions, is also convex (Lemma 1). Omitting the index i, we

verify that (g+ (x) ) 2 complies with the requirements of Definition l, that is

(B. Il)

for every À, 0 < À < 1 and any Xl, X2. AlI possibilities are considered below:

1. [À = 0 or À = l, any Xl,X2]

Let us consider the case ,\ = O. Equation (B. Il ) reads:

') 2
(g+(ÀXI + (1 - À)X2))- = (9+(X2»)

= À(g+(xI))2 + (1 - >')(9+(X2»2

since for positive Às

g+(,\x) = max(O,g('\x)] = max(O,'\g(x)] = '\g+(x).

(B.12)

(B.13)

•
Similarly it can be shown that the inequality in (Eq. B.11) is satisfied for

the case ,\ = 1.
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For this case

The left side of Eq. (B. II) reads:

(g+(.'\Xl + (1 - À)X2))2 = (.~g(Xl) + (1 - À)9(X2))2 =

= ,\2g2(xI) + 2À(1 - '\)g(Xdg(X2) + (1 - À)2g2(X2).

(B. 14)

(B.IS)

After rearranging all terms of Eq. (B. Il ) on the left, one bas to verify:

•
?

,\(,\ - 1)g2(xI) + 2'\(1 - '\)g(Xd9(X2) - (1 - À)À92(X2) <: 0

After division by À(l - ..\), (À(1 - ,\) > 0) we have

and therefore Eq. (B.11).

(B. 16)

(B.17)

•

For this case Eq. (B.Il) tums ioto the trivial equality 0 = 0 and therefore

bolds true.

IV. [0 < ,\ < 1, X},X2 : Àg(xI) + (1- À)g(X2) < 0, g(Xl) < 0,g(X2) > 0 or

g(xd > 0, 9(X2) < 0)

For this case Eq. (B.ll) reads: 0 < (1 - À)g2(X2) or 0 < Àg2(xI} and

therefore holds true.
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For this case Eq. (B. Il ) reads:

(9+(ÀXl + (1 =-- À)X2»)2 = (Àg(xI) + (1 - À)g(X2»2

= ,\2g2(xt) + 2À(1 - À)g(xI)9(X2) + (1 - À)2g2(X2)
?

<: (1 - À)g2(X2)
(B.lS)

?

À2g2(XI) + 2À(1 - À)g(xI)g(X2) <: o. (B.19)

Dividing by Àg(Xl) (Àg(Xl) < 0) and rearranging the resulting terms one

confirms that

•
Àg(xt> + (1 - À)9(X2) + (1 - '\)g(X2) > O., ~ ~ ~

y •

~o ~o

and therefore Eq. (B.Il) hoIds tnle for this case.

(B.20)

For this case Eq. (B. Il ) reads:

(9+(ÀXl + (1 - À)X2»)2 = ('\g(xI) + (1 - À)9(X2»2

= ,\2g2(xt) + 2À(1 - '\)g(xI)g(X2) + (1 - ,\)2g2(X2)

(B.2l)

(B.22)

•

Dividing by (1 - À )g(X2) «1 - À )g(X2») and rearranging the resulting terms

one confinns that

(8.23)
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and therefore Eq. (B.II ) holds true for this case.

The linear functions gi(x) are continuously differentiable with respect to the compo­

nents of the vector x and therefore the composite penalty tenn S(x) is a continuously

differentiahle with respect to x.•

The penalty tenn S(x) cao he written as

1

S(x) = L cp(9i(X»
i=1

where

{
g2 9 > 0

1'(g) = '
0, 9 < 0

The function 'P(g) is continuously differentiable with respect to 9 since

{

2g, 9 > 0
ep'(g)= 0, g=O.

0, 9 < 0

The weighting functions used in this study are of the fonn

p(t)=const>O, T(t)=exp(t),1+t+t2
, •••

(B.24)

(B.25)

(B.26)

(B.27)

and therefore satisfy the requirements of Theorem 3.

Let consider the requirement of Theorem 3 that concems the set G(0). First we show

that if a solution x· exists (that is the case if feasible target dose levels are specmed),

the set G(O) is not empty since x· E G(O). Indeed, for the functions used in this thesis,

•

P(x,O) = p(O)f(x) + T(O)S(X) = const x f(x) + S(x)

and therefore G(O) is given by

G(O) = {x E En : S(x) < const x (fCx·) - fCx»}.

8-8
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For the solution x· the equality holds true since

(B.30)

and therefore x· E G(O).

The requirement that G(O) be bound implies that there exists a large but finite number

lV such that Ilxll < N for any vector x E G(O). Therefore, one requires that there be

no vectors x with infinite components that pertain to G(O), that is there be no vectors

x with infinite components such that

The functions S(x), f(x) are non-negative. Therefore, Eq. (B.31) can hold true only if

However, for a vector with one or several infinite components xi, Eq. (B.32) cannot

hold true since the penalty term always tends to infinity. Only positive or ooly negative

infinite components wouId cause S(x) -+ 00 due to the violation of the dose constraints.

Infinitely large positive and negative components could Iead to conformity with the dose

constraints but the penalty tenn again tends to infinity due to the violation of the non­

negativity constraints, since

•

S(x) < const x (f(x·) - f(x)).

o < S(x) < const x f(x·).

. ?

S(x) oc (x'r -+ 00.rÎ__oo

(B.31)

(B.32)

(B.33)

•

The above argument demonstrates that for the particular case of inverse treatment planning

the set G(O) is bound and non-empty if feasible dose levels for the target are specified.

To summarize, for the particular formulation of the inverse treatment planning

proposed in this work, the objective function fez) and the penalty term S(x) are convex

continuously diiferentiable functions of x, the weighting functions pet), T(t) satisfy the
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requirements of Theorem 3 and the set G(O) is bound and non-empty. Therefore, the

continuous penalty fonction method proposed in Theorem 3 is applicable to the inverse

treatment planning problem and the method can be used for finding approximate solutions.
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• APPENDIXC FFT-implementation
of the Pearson's

correlation coefficient

•

Given a digital image f(x, y) of size A-I x N (search window) and a search mask

w(x, y) of size J x K, where J < M and K < N the correlation coefficient is defined as

L: L: [f(x, y) - !(x~ y)] [w(x - m, y - n) - w]
rem. n) = x y (C.I)

. _IL: L: [w(x - m,y - n) - w]2 IL L: [f(x,y) - !(x,y)]2
V x y V x y

where m = 0,1,2, ..., l\tf + J - 1, n = 0, 1,2.... , N +]{ -1, w is the average intensity of

the mask, l(x, y) is the average value of f(x, y) in the region coincident with w(x, y),

and the summations are carried over the coordinates common to both f and w. The

way to interpret the correlation operator given above is the following: the search mask

w(x, y) is placed at sorne point (m, n) of the search window I(x, y) and the value of the

correlation at this point is calculated by Eq. (C.I) where the averages and the sums are

calculated over the points of overlap between w(x, y) and f(x, y).

Our approach consists of expanding Eq. (C.I) and implementing the resulting tenns

by FFT-based correlations. According to the correlation theorem if F(s, t) = :F[f(x, y)]

is the Fourier transfonn of f and W(s, t) = :F[w(x, y)] is the Fourier transform of w,

then the cross-correlation matrix

•

[f@w]m,n = LLf(x,y)w(x-m,y-n)
x y

can be written through the Fourier transfonns of the functions as

C-l
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• APPENDIX C FFT-implementation of the Pearson's correlation coefficient

where u*" denotes the complex conjugate and F-1 is the inverse Fourier transfonn. Let

us define two additional functions (binary masks) as

• (x ) = {1' if (x, y) is within the search mask,
p , y 0, otherwise

.. q(x, y) = 1, x = l..M, Y = l..N

and their Fourier transfonns as:

• p (s, t) = F[P(x, y)} and Q(s, t) = F(q(x , y)}.

The expansion of the numerator of Eq. C.I leads to the following terms :

and

•

E E I(x,y)w(x - m,y - n) = [1 @) w}m,n
r y

- E E I(x, y)w = -w(m, n) [E E I(x, y)] .
x y r y m,n

The average value of the search mask over the common area of f and w is

wm,n = w(m, n) = S(~, n) [EEw(x, y)]
r y m,n

where the area of overlap is

(CA)

(C.S)

(C.6)

Sm,n = Sem, n) = [q @) P}m,n = [F-1(Q(s, t)p·(s, t)]] m,n (C.7)

and the SUffiS over the common area of 1 and w can he written as

[EEw(x,y)] = [q@w]m,n
x y m,n

[E E/(x,y)] = [1 @plm,n .
x 11 m,n

(C.S)

The other two terms in the expansion of the numerator cancel each other and we obtain

for the numerator

•
[
1 @ w _ (q @ w)(f @ p)] .

q@)p m,R
(C.9)
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In the above expression as weil as in ail the subsequent ones the arithmetic operations

on the images are done point by point. For the denominator we have:

.lE E [w(x -m,y- n) - wf =
V x y

- E E w2(x - m,y - n) - 2w E E w(x - m,y - n) +E E w2(m,n)
x y r y r y

m.n
(C.IO)

Similarly,

·/EE [f(x,y) _1]2 =
V x y

- E E f2(x, y) - 2ÎCm, n) E E fCx~ y) + E E ÎCm, n)Î(m, n)
x y x y x y•

_ [ f2 @) P _ Cf @ p)
2

q@p
m,n

(C.ll)

•

Thus the FFT-based implementation of the linear correlation coefficient reads:

rem, n) = [ (f @ w)(q @ p) - (q @) w)(f @ p) ]. (C.12)

V(q @ w2)(q @J p) - (q @ w)2 J(f2 @ p)(q 8 p) - (f 8 p)2 m,R

The above expression gives the value of the correlation coefficient at any location of

the search mask over the search window. Clearly the boundary regions (in order of

few pixels) are going to produce high value of the correlational coefficient. Therefore,

cropping of the correlation matrix r is desirable to avoid a false maximum of the

correlation distribution. In the case where one wants to calculate the correlation coefficient

ooly for the cases when the whole search mask is within the search window Eq. (C.12)

C-3



• APPENDIX C FFT-implementation of the Pearson's correlation coefficient

can he simplified even further. In this case:

q@Jp = JI<Î
J K

q@w2 = ÎLL w2(x,y)
x=ly=l

J K
q@)w=ÎLLw(x,y)

x=ly=l

(C.13)

•

•

where Î is a unitary matrix of size Al - J +1~ lV - K +1 and the other correlation matrices

in Eq. (C.12) are to he cropped to this size. In this case sorne computational time can

be saved by substituting sorne of the correlations with the expressions in Eq. (C.13).
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