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Abstract

Algorithms for optimization and verification of radiation treatments have been de-
veloped. The first one, an active set algorithm for inverse treatment planning employs
a conjugate gradient routine for subspace minimization in order to achieve a higher rate
of convergence than the widely used constrained steepest descent method at the expense
of a negligeable amount of overhead calculations and storage. The active set algorithm
is found to be superior to the constrained steepest descent in terms of both its conver-
gence properties and the residual value of the cost functions at termination. The active
set approach can significantly accelerate the process of inverse treatment planning by
decreasing the number of time consuming dose calculations.

The second algorithm employs a continuous penalty function method to solve approx-
imately a large-scale constrained minimization problem which reflects the goal of sparing
healthy tissues as much as possible while delivering the necessary tumorcidal dose. The
performance of the continuous penalty function method is optimized by a numerical in-
vestigation of a few integration schemes and a pair of weighting functions which influence
the performance of the method. Clinical examples are presented that illustrate possible
applications of the techniques in the context of multi-objective optimization.

An image correlation based algorithm for automatic registration of pairs of portal
images has also been developed. Accounting for both in-plane translations and rotations,
the algorithm uses fast-Fourier-transforms and a sequential approach to speed up the
registration without degrading the accuracy of the match. The technique has also been
applied to the automatic registration of portal images to digitally reconstructed radiographs
(DRRs) which have been modified to resemble megavoltage images. The results indicate
the feasibility of this approach as a tool for treatment setup verification.



Résumé

Dans cette thése, des algorithmes servant a optimiser et a vérifier les traitements
en téléradiothérapie ont été développés. Le premier, un algorithme d’ensemble actif
s’avere utile dans la planification inverse des traitements. Plutot que d’utiliser la méthode
conventionelle de la descente la plus rapide a contraintes 1’algorithme d’ensemble actif
emploie une routine de gradient conjugué ce qui donne une convergence précose et une
plus petite valeur de la fonction de pénalité lorsque la convergence est atteinte. En
conséquence, en diminuant le nombre nécessaire des calculs dosimétriques, 1’algorithme
d’ensemble actif peut accélérer le processus de la planification inverse des traitements
d’une fagon significative.

Le deuxieme algorithme utilise une fonction de pénalité continue afin de
résoudre d’une maniére approximative le probléme de minimisation 2 contraintes
en téléradiothérapie résultant du double objectif de donner a la tumeur une dose im-
portante tout en épargnant les tissues sains autant que possible. La performance de cet
algorithme est accrue par un examen numérique de plusieurs schémas d’intégration et de
deux fonctions représentatives d’importance des structures anatomiques. Des exemples
cliniques de I’utilisation de cette technique sont présentés.

Le dernier algorithme sert 2 la juxtaposition automatique de deux images por-
tales. Celui-ci tient compte des translations et des rotations dans le plan de I’image.
L’algorithme utilise des transformations rapides de Fourier et une approche séquentielle
pour accélérer la juxtaposition sans nuire 3 son exactitude. Cet technique est aussi prop-
ice a la juxtaposition d’une image portale et d’une radiographie digitalement reconstruite
qui est modifiée afin de ressembler a une image obtenue par un faisceau thérapeutique de
haute énérgie. Les résultats démontrent la valeur de cette approche pour la vérification

du positionnement du patient par raport au champ d’irradiation.



Original Contribution

An analysis is performed of the computational properties of treatment planning op-
timization with intensity modulated beams. For differentiable objective functions, the
conjugate-gradient methods are identified as optimal gradient minimization techniques to
tackle the large-scale inverse problem. A robust active set algorithm with a conjugate-
gradient routine for subspace minimization is designed in order to account for the physi-
cally imposed non-negativity constraints on the independent variables. The theoretically
expected superiority of the active set method to the widely used constrained steepest
descent is confirmed numerically for two largely accepted treatment objectives and dif-

ferent irradiation geometries.

A novel formulation of the inverse problem is suggested which uses only target dose
levels. A mathematical analysis is conducted which proves that any local solution of the
resulting constrained minimization problem is a global solution. A continuous penalty
function method is introduced as an approximate numerical technique to perform the
large-scale constrained optimization. The applicability of the method to the particular
statement of the inverse problem is proved. Several numerical integration techniques are
investigated and an optimal one is identified. A procedure for the clinical use of the
technique is introduced which allows autonomous determination of the target importance
weight that produces a clinically acceptable target coverage.

In-plane rotation search is implemented in a correlation based portal-image registra-
tion algorithm which adopts a full calculation of correlation integrals rather than their
sampling through Monte Carlo techniques. A fast Fourier transform (FFT) implementa-
tion of the Pearson correlation coefficient (PCC) is derived. Investigation is performed
of the properties of the PCC with respect to in-plane rotations. These properties are

consequently exploited to design a sequential search for the transformation parameters in

iv



order to accelerate the image registration. The utility of two different correlation opera-
tors have been tested for image matching: the PCC and the normalized cross-correlation.
The theoretical indication that the PCC is more robust for registration of images with
linear transformations of the intensities is experimentally confirmed. The feasibility of
the image correlation approach to the automatic registration of portal images to digitally

reconstructed radiographs (DRRs) is also demonstrated.
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CHAPTER 1 Introduction

1.1 Introduction to Radiation Therapy

Cancer is the second leading cause of death in Canada,! accounting for 60 000
victims annually.? In 1997, 130 000 patients are expected to be diagnosed with cancer
in this country.”> Even though hyperthermia,’ immunotherapy* as well as other novel
therapies> ¢ have been actively explored, the majority of the cancer patients will be
subject to some combination of surgery, radiotherapy and chemotherapy. Approximately
half of the cancer patients will be administered radiation at some point in the course of
their treatment.’

Radiation therapy aims at tumor eradication by means of ionizing radiations, the most
commonly employed types being photons and electrons, with energies ranging from a
few hundred keV to a few MeV. Among all cellular perturbations caused by the ionizing
radiations,® the double-strand break in DNA is the predominant cause for radiation-
induced cellular death.” The number of double-strand breaks is related to the physical
quantity absorbed dose'? or simply dose which is the energy deposited by the radiation
per unit mass of material (The S/ unit of dose is gray (Gy) defined as 1 Gy = 1 Jkg).
With increasing dose to the tumor volume, the number of killed cancer cells increases
and so does the probability of cure. The random nature of the radiation damage!!™'4
determines a sigmoidal shape of the relation between the dose and the tumor control
probability (TCP) which is the probability that there are no surviving clonogenic cells
in the tumor (Fig. 1.1). The tumor lethal dose (dose required to achieve 95% TCP)
varies between 2 000 cGy to more than 8 000 cGy depending on the tumor size, extent,
type, radiosensitivity as well as on the tumor pathologic grade and differentiation.!®
The normal tissue complication probability (NTCP), which is the probability of inducing

some particular complication (end-point) in a non-tumor-bearing organ(s), is a similar

* This number excludes the estimated 61 000 cases of non-melanoma skin cancer.
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Figure 1.1. Response curves of tumor cure (TCP) and normal tissue
complications (NTCP). The mutual position of these curves varies in
different clinical circumstances depending on the radiosensitivity of the
tumor and the involved normal tissues.

function of the dose (Fig. 1.1) since the same principles of radiation killing apply to both
tumor and normal cells. Both the TCP and the NTCP of the involved healthy tissues are
considered when the value of the dose to be deposited in the tumor volume is selected.

Radiation can be administered to a patient by sealed radioactive sources in catheters
which are inserted in the tumor volume (brachytherapy) or most commonly by directed
megavoltage external beams of x-rays or electrons (external beam therapy or teletherapy).
A typical teletherapy treatment unit (a linear accelerator or a cobalt unit) uses a radiation
source mounted on a rotating gantry capable of moving around a patient who lies on
a treatment coach (Fig. 1.2). In many cases, multiple properly collimated beams from
different directions can be used to deliver the necessary tumorcidal dose and to minimize
the dose to the healthy structures surrounding the tumor.

The process of external beam therapy consists of several steps. First, a patient

diagnosed with cancer undergoes a thorough evaluation that aims at the determination of

1-3



CHAPTER 1 Introduction

Figure 1.2. External beam treatment unit (With modifications from Bijhold
et al.'9).

the tumor volume, its extent and relationships to critical structures in the body. During
this process, the radiation oncologist uses palpation, biopsies and the information from
various imaging procedures such as computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET), single photon emission tomography
(SPECT), and diagnostic ultrasound, in order to define the gross tumor volume (GTVY
which comprises the gross extent of the malignancy. Local subclinical tumor spread is
then included in the clinical target volume (CTV)!? which is defined as the GTV plus
a margin. The GTV and the CTV are based on anatomical, biological, and clinical

considerations. A planning target volume (PTV)!7 is then defined as the CTV plus a

14
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margin, which accounts for the technical aspects of the treatment such as organ motion
and variations of patient’s positioning. In addition to the tumor volume, critical structures

to be spared during the radiation treatment can also be identified and outlined.

The CTV, the PTV as well as the outlines of the critical structures are used as input
data for treatment planning, which is the next step in the course of radiotherapy.! A
beam arrangement (number of beams, type, energy, apertures, directions and modifiers)
is selected and the dose distribution within the patient is calculated and evaluated. This
process continues until the resulting dose distribution achieves an adequate coverage of

the target volume (CTV and PTV) and acceptable sparing of the critical structures.

To aid the process of treatment planning and verification, the patient’s bony anatomy
can be imaged on a simulator which is a diagnostic x-ray unit that mimics the geometry,
the alignment as well as the movements of the actual treatment unit. The process of
treatment simulation can be performed prior to and/or subsequent to treatment planning.
During the simulation, localization of the target can be performed by referencing the
position of anatomic structures relative to skin marks. An appropriate beam arrangement
can be selected by examining the relative position of the various organs at different gantry
angles. The shape and the position of shielding blocks can be verified by placing the
blocks in position and by obtaining radiographs under the geometry in which the treatment
is to occur. These radiographs also serve as reference images for the verification of the
patient setup during the actual treatment. CT simulation,'¥2% which utilizes the patient’s
CT data and various image processing techniques is being increasingly used to perform
some of the above functions of the conventional simulator. As a result of such simulation,
digitally reconstructed radiographs (DRRs) are produced which reflect the desired setup
of the patient’s anatomy with respect to the radiation fields. A DRR is simulated by

t In this thesis we will frequently use the generic term ‘radiotherapy’ to denote external beam therapy.
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projecting rays from the intended position of the radiation source through the patient’s
CT data (patient’s anatomy) to the pixels in the plane of a virtual imaging device. Line
integrals are evaluated by summing the CT values (or the linear attenuation coefficient
values) along the individual rays. The values of the line integrals are assigned to the
corresponding pixels to form a DRR.

The next step in the teletherapy procedure is the actual radiation delivery which is
administered in small daily doses (usually fractions of 2 Gy of the total prescription
dose) generally over a period of three to six weeks. During the daily treatments, a
radiographic film or an electronic portal imaging device (EPID) (Fig. 1.2) are used to
acquire megavoltage portal images with the radiation beam for treatment verification.
The size and the shape of the radiation field as well as the proper positioning of the
patient are checked by comparison of the portal images to the diagnostic portal images
obtained during simulation. After the conclusion of the radiation treatment, patient’s

follow-up is conducted.
1.2 Conformal Therapy

1.2.1 Rationale and Potential Impact

Radiotherapy has curative potential? given that the primary tumor is confined to its
local or local-regional site (Table 1.1). According to the data of the National Cancer
Institute Surveillance, Epidemiology and End Results (SEER) program?!: 22 and the
National Cancer Data Base,?* approximately 65-72% of the cancer patients in the United
States are initially diagnosed with locally confined disease without clinical evidence
of distant cancer spread (metastasis). Even though two-thirds of these patients are

cured after a treatment of the localized disease by surgery and/or radiation therapy,2*

: Radiation can also be used with a palliative intent.
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Table 1.1 Cancers commonly treated by definitive (curative) radiation.’

Hodgkin’s disease
Non-Hodgkin’s lymphomas
Cervical cancer

Prostate cancer

Head and neck cancers
Cancers of the central nervous system
Seminoma

Retinoblastoma

Choroidal melanoma
Unresectable lung cancer
Unresectable pancreatic cancer

Unresectable sarcoma

a significant portion still succumbs to the disease. Furthermore, 30—50% of the patients
treated with curative radiation therapy fail at their primary tumor site.2> 26 Even though
these failures relate not only to treatment parameters but also to biological factors, they
indicate the inability of radiotherapy to provide tumor control in certain cases due to either

(i) inadequate dose delivery (insufficient dose) or (ii) geometric misses of the target.

An important question is, however, whether improvements in radiation therapy that
increase local tumor control probability by addressing the above two problems will lead
to increased patient survival. There has been some concern that new local control
patients will ultimately fail either due to the presence of undetected micrometastases
at the time of the diagnosis or due to the development of distant metastases subsequent
to the primary tumor treatment.2> 27- 22 However, several lines of evidence confirm that

improved local tumor control does result in increased disease free survival.?: 2%-30 For
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example, data from several institutions indicate that, depending on both the treatment
site and the tumor stage, 18% to 88% of the patients that undergo salvage surgery’
survi\(e for 5 years and more free of the disease. Furthermore direct correlation seems
to exist between the overall incidence of metastatic disease and the local or the local-
regional tumor control.2* For instance, after a review of the outcome of 679 surgically
staged (without detectable metastasis) patients with carcinoma of the prostate treated with
permanent implantations of encapsulated 2] sources, Fuks et a/*! have demonstrated that
the relative risk of distant metastases subsequent to local relapse was four times greater
than the risk without evidence of local failure. Other retrospective studies have reported
increased metastatic occurrences after local failure in carcinoma of the breast,3? lung,33
rectum,’# 33 prostate,é 37 uterine cervix,3® in head and neck tumors3? as well as in soft
tissue sarcomas.’® Therefore there are sufficient indicators to warrant the development
and the evaluation of approaches that aim at improved local tumor control by assuring
an adequate target coverage and/or escalating the dose to the target volume without

increasing the risk to surrounding healthy tissues.?3

Three-dimensional computer controlled conformal therapy (CCRT) is such an ap-
proach. The term conformal therapy is associated with external beam therapy to denote
treatment designs that tailor a high-dose region to the target volume and simultane-
ously deliver low doses beyond its extent.*'3 (Conformal therapy has been attempted
since the inception of radiotherapy, but the degree of conformity has improved over
the years.) By sparing more of the critical organs conformal treatments may also allow
higher doses to be delivered to the tumor (dose escalation) to increase the probability of

local control.?% 28. 44 Thjs increase has been estimated at 2.5% (median) per 1 Gy in the

§ Salvage surgery is attempted for selected patients after radiotherapy failure.
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neighborhood of the 50% range (median 52 Gy) of the dose-response curve for patients

with macroscopic tumors.*’

The potential impact of the improved local tumor control on the long-term patient
survival has been roughly estimated for several treatment sites. Using detailed analyses
of the causes of failure, Suit?® estimated that complete local tumor control (100%) would
result in a 20% increase of the S-year survival rate for patients with carcinoma of the
uterine cervix, a 14% increase for patients with carcinoma of the oral cavity and the oro-
pharynx, a 21% increase for patients with carcinoma of the colorectum and a 14% increase
for patients with carcinoma of the ovaries. Given the annual rates of cancer incidence for
the above sites, these figures would translate in approximately 2500 additional survivals
in Canada if complete local control were achieved for these tumors.>> (A factor of 10
has been used in the above estimate to account for the size of the population of Canada

compared to that of USA.)

Yorke et al.*® studied the impact of improved local control for the case of prostate
cancer. They applied a model*’ for the metastasis development of prostatic carcinoma
to the clinical results of a long-term follow-up study>! in order to obtain reasonable
biological parameters for the model. Under the assumption of 100% local control
achieved by conformal therapy, the model predicts a 10% increase of the 5-year distant-
metastasis free survival and a 35% increase of the 10-year distant-metastasis free survival
for patients with prostatic carcinoma.*® Similar trends could be expected for other
treatment sites where metastasis dissemination occurs as a relatively late effect.*® The
actual gain in survival due to conformal therapy depends on the achievable local tumor
control, an unknown which is currently under investigation by several clinical trials with

conformal therapy for prostate cancer.*%: 50
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1.2.2 Development of Conformal Therapy

Many of the key concepts of conformal therapy were first introduced by Takahashi*!
in 1965. Takashi and co-workers used 3-D models of the tumor (based on planar
tomography) to plan the treatment, orthogonal light beams to align the target with the
machine isocenter, as well as “geared sectional collimators” and a mechanical control
system to conform the beam shape to the shape of the target as the machine rotated about

the patient. Similar early conformal techniques were developed in other centers.’!—54

The advent of modern conformal therapy was marked by the introduction of CT and
CT-assisted 3-D treatment planning in radiotherapy. Before CT scans became available,
tumor volumes were ill-defined and marginal misses, especially in large tumors were
frequently encountered in radiotherapy.”>>7 To avoid local relapse due to these misses
treatment fields were designed to encompass the identifiable tumor plus large margins
(2 cm or more) of normal tissues surrounding the target. The relatively large volume
of healthy tissues irradiated in the treatment often limited dose escalation because of
the restrictions imposed by normal tissue tolerance. Thus treatment designs were often
restrained by the normal tissue tolerance rather than dose levels required to control the
tumor. Computed tomography improved significantly the coverage of the target during
radiation treatments by allowing better definition of the target volume and its relation to

the surrounding healthy structures in the process of treatment planning.5>-57

Further improvements in the target coverage were obtained with the use of high-
power workstations, which allowed computer graphics,?% 5860 3.D dose calculation
algorithms,5! as well as tools for the evaluation of 3-D dose distributions®% 63 to be

integrated in the treatment planning process.%*

Concurrently with the development of 3-D conformal treatment planning new gener-

ation treatment units were designed to execute conformal plans. The first machine of this
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generation, the Scanditronix MMS50 racetrack microtron597 is a typical example of the
treatment capabilities provided by these units: megavoltage photon and electron beams
of various energies, a fully computerized control system, and a multileaf collimator%%7°
(an- assembly of up to 40 thin tungsten leaves on each side of the collimator which are
moved in and out of the beam under computer control). It is the recent widespread avail-
ability of multileaf collimator systems (MLC) that has significantly fostered the interest
in conformal therapy mostly due to the fact that an MLC opens up the possibility of im-
proved dose conformation®S: 7176 by computer-controlled modulation of the intensity of
each beam.%% 77: 74. 7882 Treaiments with intensity modulated beams have been initiated
clinically for intracranial’® lesions and prostate cancers.’> Such treatments have been
shown to be executable in reasonable time limits when multileaf collimation is used —

10 to 12 min for prostate cases (a dose fraction of 140 cGy delivered by 6 beams).%3

The on-line electronic portal imaging device®* (EPID) is another important compo-
nent of the equipment required for conformal therapy.*® The role of the EPID is not
restricted only to the crucial task of providing near real time information on patient’s
setup.8>%° EPID are currently becoming an important tool for evaluating target mo-
tion and set-up uncertainties?®>®2 which are to be incorporated in the treatment planning
process.?> 94 Portal dose images obtained by an EPID can be compared to calculated
ones.?> % In addition, given patient-specific information, on-line images can further be
used for reconstruction of the actual dose distributions created during the treatment.””- 98
Thus, an EPID creates the opportunity of complete geometric and dosimetric verification

of conformal radiation treatments.96-100
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1.3 Treatment Planning Optimization

1.3.1 Rationale

Given the new and improved technical abilities that modern computer-controlled
treatment units provide for radiation delivery, the treatment planning process is crucial
in assuring that these features are used properly for achieving the most beneficial
effect. 4% 53, 101 Ling er al*® observe that currently, despite the advent of high-speed
graphics workstations, very little is done beyond the “planning by convention” whereby
the same arrangement of beams is applied to patients for a given disease site foilowed
by some manual optimization of the beam positions and weights. This process does not
guarantee optimal utilization of modern radiotherapy equipment since it relies on *“past
clinical experience” which is non-existent for dose escalation studies or for the novel
radiation distribution patterns that can be achieved with the currently available technical
capabilities, e.g. intensity modulation.*®* On the other hand novel treatment designs
for dose escalations that optimize few treatment parameters may require as much as 1.5
physicist-months of much trial and error.#® Whereas such an effort can be well justified
for finding generic treatment parameters for some disease sites which exhibit high inter-
patient similarity (e. g. prostate and nasopharynx), it is inapplicable for cases where the
tumor extent and position are highly variable (e. g. brain and lung cancers) or for cases
where a large number of optimization variables is involved, e. g. intensity modulation.

Thus computer-aided optimization is essential for the progress of conformal therapy.

1.3.2 Approaches

Computer-assisted treatment planning optimization can be described by the generic
optimization algorithm shown in Fig. 1.3. Two distinct approaches exist that differ in

their evaluation of the dose distributions. The biological approach which is the more
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relevant one from a conceptual point of view, takes into account the architecture of the
irradiated normal tissues and the corresponding dose-volume effects. (For example, very
little damage to any part to the spinal cord may have lethal effect, whereas the lung
remains functional even if a significant part of it is destroyed.) Models of cell and organ
response*’> 102-110 are ysed to predict biological indexes such as NTCPs and TCP from
the dose distribution. Cost functions based on these indexes or their combinations!!!~1!3
are then used to evaluate the probability of success of the radiation treatment and to serve
as objectives for the biologically based optimizations.!!? 14119 Minimization algorithms

114, 115 were used

such as constrained steepest-descent! 12 116-119 and simulated annealing
with biological objectives for the selection of optimal beamll-on times (weights),!12. [16-119

energies,!!® and directions.!?°

The validity, however, of the existing TCP and NTCP models is not yet well
established!!8: 120-122 and their clinical predictive power is unproven.!!® 123 Furthermore,
significant uncertainties exist in the values of the radiobiological parameters used by these
models due to the paucity of clinical data, especially at the higher dose levels.!?* For these
reasons, for treatment designs, TCP and NTCPs, if considered at all, are only secondary
adjuncts to dose-based and intuitive criteria such as (a) target dose homogeneity, (b) maxi-
mum tolerance doses of critical structure, and (c) dose-volume considerations.30 44, 125-127
(A dose-volume consideration usually specifies the percentage volume of the critical organ

that can be sacrificed above certain dose level.)

The physical approach to treatment planning optimization takes the above criteria
into account by employing dose-based objective functions such as the integral (total)
dose to the target,!28 129 the integral dose to healthy tissue,!28: 51 130-134 the dose to the

center of the target,!2%: 1357137 the difference between the integral dose to the target and

g Including pencil beams, wedged beams, open beams, etc.
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the healthy tissues,!3® target dose uniformity!32- 133. 139 a5 well as the sum of the squares
of the residuals between the prescribed and the delivered dose.”?: 140-148 Minimization
algorithms such as linear,3!: 128, 130-134, 136 myixed.integer'?? and quadratic programming
techniques,!3% 142 gradient techniques,!!6 144 149 simulated annealing,!36. 141, 143, 144, 150
iterative deconvolution and filtered backprojection,!46 131: 152 jterative reconstruction
techniques, 73+ 147 148 a5 well as genetic algorithms!37 were applied to physical objective
functions for the selection of optimal beam weights. A combination of simulated anneal-
ing and an iterative reconstruction technique was recently used for the optimal selection

of the number and the orientations of beams in intensity modulated treatments.!3°

1.3.3 Inverse Treatment Planning

Ideally, regardless of the particular objective in use, an optimization algorithm should
automatically determine all the relevant parameters of the treatment (Fig. 1.3). In practice,
however, the size of the solution space is prohibitive for such an attempt. For this
reason the various optimization algorithms explore only certain subsets of the treatment
parameters.

The inverse problem*?: 133 in conformal radiotherapy generalizes the most commonly
solved problem of beam weight optimization for a set of fixed beams. The inverse
problem considers the individual beam ports as being tiled in pencil beams (beamlets)
with their own weights. Different sets of pencil beam weights correspond to different
modulation of the beams. The dose to any point in the patient volume is then given as
the superposition of the dose contributions to that point of all beamlets. A solution of the
inverse problem is the modulation of the fluence (intensity) across the individual beam
ports which results in an optimal plan, according to the selected physical or biological
objective. Numerical or analytical procedures for solving the inverse problem are referred

to as inverse treatment planning techniques.
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Compared to uniform beams, modulated beams have the potential of creating im-
proved conformal distributions, especially for targets with concave regions.%5- 72 71. 73-75
The design of the beam profiles, however, is a process of considerable complexity, clearly
beyond the ability of a human planner. The modulation of the beam intensities is a large-
scale problem which involves a few hundred! !¢ to a few thousand variables (pencil beam
weights).”® 122 Furthermore, the objective function evaluation is very-time consuming

due to the combined effect of the following two factors.

First, the novel dose distributions produced by intensity modulated beams generally
possess “unusual” properties such as high-gradient regions and small but very low- or
very high-dose domains. Since these features can be clinically significant, fine sampling
of the dose distribution is important!34136 and therefore, the number of the required
calculation points per structure may have to be at least an order of magnitude larger than
the number of points used in treatment planning optimization with uniform or wedged
beams. (For the latter case, depending on the size of the organ, 100 to 800 randomly

distributed points per structure have been found sufficient.!36: 157)

Second, Chen et .al'*® have demonstrated that the calculation of the dose distribution
for treatment planning optimization by intensity modulation is to include lateral transport
in order to avoid target underdosage and to reduce unwanted injuries to critical organs
when critical structures are immediately adjacent to the target. Convolution/superposition
algorithms adequately take into account lateral transport of radiation.!3%16! However,
photon-dose calculations by such an algorithm for a 64x64x 128 grid on a DEC Alpha
(3000/400) station (Digital Equipment Corp., Marlborough, MA) have been reported
to exceed 5 min turnaround time for typical clinical beam arrangements.!'®> Thus for
thousands of sampling points, a single iteration of an inverse treatment planning procedure

may require a few seconds to a few minutes on the currently available hardware in the
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radiotherapy departments.

Given the large-scale nature of the inverse problem and its computational properties,
the development of versatile and efficient optimization algorithms for inverse treatment
planning is imperative for the advancement of intensity modulated conformal therapy.

The results of our research in this direction are presented in Chapter 2.163-165

There is another facet related to the computational nature of inverse treatment plan-
ning. Given the current status of the radiobiological models, the clinical advancement of
intensity modulated conformal therapy is based on the physical approach to inverse treat-
ment planning which provides continuity with respect to the existing standard practice.3?
However, to make the inverse problem manageable, the clinical goal of conforming the
high dose region to the target while sparing healthy tissues is cast in an optimization
problem by relatively simple models. For this reason the resulting optimized plans may

not be clinically acceptable. Our research effort to improve on the existing models with

physical objective functions is presented in Chapter 3.166-169

1.4 Treatment Setup Verification

1.4.1 Rationale

Conformal radiotherapy (with or without intensity modulation) reduces the treatment
margins around the CTV in order to achieve a higher TCP while maintaining low NTCPs.
Therefore, high geometric accuracy in the placement of the target volume with respect to
the treatment beams (ports) is crucial for the success of conformal treatments.!7% 7! The
attainment of precise target coverage implies monitoring, detection and correction of field
placement errors which result in geographic misses of some fraction of the target volume.

Field placement errors may be caused by setup errors (improper blocks or wedges placed
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in the beam port), by inaccurate patient positioning or by movement of internal organs

with respect to the external skin marks used to align the patient.

Being difficult to monitor, field placement errors are the largest source of uncertainty
in dose delivery!7? compared to the uncertainties resulting from variations in dosimetry,
treatment unit output and gantry and treatment coach stability. Moreover, by employing
radiobiological models, several studies have demonstrated that setup errors can have
significant impact on both the TCP and the NTCP.!>17¢ Goitein and Busse!7? have
demonstrated that tumors with steep dose-effect curves (Fig. 1.1) such as supraglottic
lesions are very sensitive to field placement errors. For positioning errors of +5 mm,
they have estimated TCP reduction between 12% and 40% depending on the size of the
selected margins and the frequency of the errors which were assumed to be random.
Assuming a constant dose distribution along the beam axis,” Brahme'!’* calculated the
TCP reduction as a function of the misalignment of the radiation field edge and the target
border. Depending on the steepness of the dose-response curve (Fig. 1.1) some decrease
of 3-7% in the TCP was evaluated for a 2 mm shift and of 9-50% for a S mm shift. Using
a radiobiological model, for the cases of lesions encircling the brain stem or the spinal
cord, Daftari et al.'”® evaluated that patient positioning had to be kept within 2 mm to
ensure a NTCP value of 1%. By retroactively incorporating treatment positioning errors
into a 3-D treatment planning system, Rudat er al.!”! have evaluated a resulting reduction
in TCP of 2% for esophagus carcinomas and 5% for prostate carcinomas.

Qualitatively, the conclusions of these theoretical models are supported by some
clinical studies. Kinzie et al.!”’ reported results on the relapse rates for patients with
Hodgkin's disease in relation to the adequacy of the field placement as inferred from
portal images. Treatment setups which had consistently resulted in partial shielding

* Close approximation to that assumption is the dose distribution produced by a pair of parallel opposed beams.
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of the target volume or of the supraclavicular, auxiliary and/or abdominal nodes were
considered inadequate. The relapse rate for patients who had been treated with improperly
placed fields was 54% with 33% of these recurrences appearing in the irradiated volume.
For patients without field placement errors, the relapse rate was 14% with only 7% of
recurrences in the primary tumor site. Another study by White ez al.!’® statistically
significant difference in the survival rates for patients with and without major treatment
protocol variations, 80% of which were due in part or completely to shielding errors
as revealed by portal film analysis. The relapse rate was 69% in the group with major
protocol variations and 34% in the other group.

It is evident from the existing theoretical studies that accurate beam localization
with respect to the patient anatomy (in the order of 2 mm) is essential for achieving the
necessary local tumor control, particularly in the case of conformal therapy with its tight
margins. However, in clinical practice, for 20% of the treatment setups, the discrepancies
between the intended and the actual field edge positions are in order of 10 mm.!” An
approach that can significantly improve the accuracy of the field placements is described

below.

1.4.2 Portal Imaging

The goal of portal imaging is to determine whether a patient setup is performed
correctly within the prescribed limits and to suggest the necessary corrective measures if
the field placement errors are inadmissibly large. For this purpose, the treatment beam
(port) is used to acquire a portal image of the patient in the treatment position. An
EPID or a film are employed to record the image which is usually double-exposed to
provide a better visualization of the spatial relationship between the patient anatomy and
the treatment field (Fig. 1.4). (In a double exposure image the treatment field appears

as a dark shadow cast on the previously obtained image of the patient anatomy with a
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large rectangular field.) The portal image is compared to a reference one that reflects the
desired placement of the treatment field with respect to the patient anatomy (Fig. 1.4).
A diagnostic-quality image obtained during the conventional simulation process, a DRR
produced by virtual simulation or an approved portal image from the first treatment
session can serve as reference images. After visual or computer-assisted registration of
the anatomy images (Fig. 1.4), a misalignment of the borders of the actual and of the
desired treatment field manifests an inaccurate patient setup.

Conventionally, portal images are obtained by films.!””> 17%-187 Pportal films include
verification films, which are slow and exposed throughout the treatment and localization
films which are exposed only with a small fraction of the daily dose.!3% A definitive
correlation exists between the rate of field placement errors and the frequency of portal
image acquisitions.!83: 185. 189 For example, for extended mantle fields, increasing the
frequency of portal film acquisitions from 3 to 18 per treatment decreases the frequency
of field placement errors from 55% to 29%.183

Despite the efficiency of portal radiography in reducing the rate of treatment
setup errors, there is a significant numbers of hospitals that have not adopted portal
imaging.'37 138 In 1989, a survey among 25 centers in Canada indicated that only 55%
of the institutes acquired routinely portal images of all the patients treated with curative
intent.!87 Overall, only 67% of the patients receiving radical treatments have field place-
ment accuracy checked by portal imaging. In U.S.A., an earlier study reported that 90%
of the clinics acquired portal films on the first day of the treatment for more than 75% of
their patients. However, similarly to the practice in Canada, only 40% employed routine

radiographs on a weekly basis (4 to 6 portal films per treatment course).!8

Somewhat surprisingly, the above described patterns of clinical portal imaging
practice are not caused solely by the off-line nature of portal film radiography. Indeed,

even though EPIDs®* can provide near real-time digital images for on-line viewing and
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Figure 1.4. Schematic representation of treatment setup verification by
portal imaging. On the left: double exposed portal image of the treatment
field and the surrounding patient anatomy. On the right: a reference
image (in this particular example a DRR) of the patient anatomy and the
desired placement of the treatment field. After anatomy registration, in
the absence of field placement errors the borders of the actual and of the
desired treatment field will be aligned.

quantitative analysis, they have not been adopted for clinical radiotherapy as widely as
initially anticipated.!9® A survey at The Third International Workshop on Electronic
Portal Imaging (San Francisco, July 1994) demonstrated that among the 34 hospitals that

1-21



CHAPTER 1 Introduction

had installed EPIDs, 38% used them daily, 26% used them weekly, 21% did not use

them often and 15% did not use them clinically.!%!

The difficulties associated with the detection and evaluation of field placement er-
rors are regarded as the main obstacle to the wider and more frequent clinical use of
portal imaging.!86. 187.192-195  Accurate on-line manual registration of images and sub-
sequent measurements are considered impractical since they require a few minutes to be
performed.!9? For this reason, the majority of the portal images are evaluated on subjec-
tive basis. Dunscombe et al.'®” found that 63% of the hospitals that participated in their
study relied on a visual judgement of the portal images, 25% of the hospitals used both
subjective and quantitative measure, but relied predominantly on the subjective approach,
8% of the hospitals evaluated the images half quantitatively and half subjectively and
only 4% of the hospitals used mostly “semi-quantitative” methods in their analysis of
portal images.

The visual subjective analysis of the images, however, is not only somewhat time-
consuming but prone to significant errors as well, due to the poor contrast of portal images
which results from the predominance of the Compton scattering in the imaging process
and from the degrading effect of scattered radiation.”* For example, Herman er al.!%*
reported a study whereby patient setup errors were estimated by visual comparison of
EPID images and reference ones obtained during simulation. The patient setup was
corrected if errors larger than 5 mm were detected. A further analysis of the images
before and after the on-line correction revealed that more than 17% of the accepted final

setups still exhibited errors exceeding the S mm criterion.

The above considerations indicate that the development of fast, computer-assisted

methods for the detection and the evaluation of fields placement errors can contribute

**  These are general properties of the image formation at megavoltage energies, independent of the actual portal image detector.
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significantly to the effective use of electronic (or film) portal imaging in clinical
practice.!86, 187, 192-196 [ the second part of this thesis (Chapter 4), we present our
contribution to the research effort!é: 197-220 jp the field of image processing for treatment

setup verification.

1.5 Objectives and Organization of Thesis

This thesis presents our work in two distinct areas essential for the efficient clinical
use of the modern technologies for conformal radiation treatments: (i) the development of
techniques for the design of intensity modulated radiation beams and (ii) the development

of techniques for field placement detection and evaluation. Our objectives were:

I to develop a versatile optimization algorithm that, under the limitations of the
currently existing hardware, can be applied to various objective functions at the
large-scale of the inverse problem.

II. to develop an optimization technique that can improve on the existing inverse
treatment planning algorithms by exploring beam intensity modulation while
providing continuity with the existing clinical practice.

III. to develop an automated anatomy image registration algorithm in order to facilitate

the process of detection and evaluation of field placement errors.

In Chapter 2, the existing methods for inverse treatment planning are reviewed in
order to identify somewhat optimal algorithms for treatment planning optimization with
intensity modulated beams. An active set algorithm is introduced as an alternative to the
widely used constrained steepest-descent method. The two methods are compared for

two treatment objectives and three anatomical sites.

In Chapter 3, after an analysis of the limitations of the conventional inverse treatment

planning technique, an alternative statement of the inverse problem is suggested. A
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continuous penalty function method is introduced to find approximate solutions of the
resulting large-scale constrained optimization problem. The performance of the technique
as a function of several parameters is investigated. Examples are presented to illustrate
some strategies for the clinical applications of the technique.

In the second part of this thesis, Chapter 4 describes a registration algorithm based
on image correlation. Two correlation operators can be employed: (i) the normalized
cross-correlation and (it) the Pearson linear-correlation coefficient can be used. Their
utility is investigated for the cases of portal-to-portal and portal-to-DRR registration.

Finally, after summarizing the features of the techniques presented in this thesis,
Chapter 5 discusses some of the areas to be explored by future research.

To streamline the presentation, mathematical calculations are given in the Appendices.
In Appendix A the Differential Scatter-Air Ratio dose calculation model is outlined. In
Appendix B, we prove the applicability of the continuous penalty function method to the
inverse problem formulated in Chapter 3. In Appendix C, we derive the Fast Fourier
Transform implementation of the Pearson linear correlation coefficient.

A list of references, sorted by the order of appearance, follows each chapter. A
complete bibliography is included at the end of the thesis.

Several aspects of this work have been presented at national and international
meetings,22'~226 and have been published as abstracts!53: 164, 166, 168, 227 apnq articles in

conference proceedings,!7 169 228,229 and in peer-reviewed joumnals.!65: 230: 231
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CHAPTER 2 An Active Set Algorithm for Inverse Treatment Planning

2.1 Introduction

2.1.1 Existing Approaches

The idea of using intensity modulated beams for conformal therapy was first proposed
by Brahme et al.! who, by inverting analytically a prespecified dose distribution, solved
the inverse problem for the case of a circular symmetric target with a healthy organ at
its center. Their solution was then generalized for the case of targets with an axis of
symmetry® 3 and arbitrary shape.* The resulting profiles, however, are generally piece-
wise negative and therefore not physically realizable. Tulovsky et al.° addressed this
problem for the case of circular isocentrically centered target and obtained non-negative
optimal profiles for this case. However, the analytical approach ignores beam divergence,
tissue inhomogeneities and lateral scatter, which are to be considered in order to reduce
unwanted injuries to critical organs.5
Recent advances in computer technology have fostered considerable interest in the

numerical solutions of the inverse problem for targets of arbitrary shapes. A brief
description of these methods is given below.

Iterative deconvolution’™® is a method for inverse treatment planning similar to
the filtered backprojection reconstruction of computed tomography (CT) images. In
CT the 3-D distribution of the linear attenuation coefficient is reconstructed from the
transmission data by filtering of the measured profiles and subsequent backprojection.
The iterative filtered backprojection implementation’ which is the most versatile of the
iterative deconvolution techniques,'? inverts this process. Within each transversal slice
of the patient data, the desired dose distribution is projected along the source rays to
produce an estimate of the desired profiles in that plane. These estimates are further
filtered to account for lateral scatter and geometric blur. The resulting profiles are used

for forward calculation of the dose distributions and the difference between the desired
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and the calculated dose distributions is then used as an input for a new iteration. This
procedure requires full 3-D dose calculation at each iteration. In addition, the technique

is not readily applicable to non-coplanar beams since it works on slice-per-slice basis.

Iterative dose reconstruction techniques!'1 for inverse treatment planning are anal-
ogous to the algebraic reconstruction techniques in tomographic imaging. They employ
various updating schemes to obtain a dose distribution which is the best match of the
desired one in least-square sense. Similarly to the iterative deconvolution techniques,
iterative dose reconstruction methods are restricted to least-square dose objectives. Their

advantage is, however, that the intensities of non-coplanar beams can be optimized.!?

Feasibility search'® !> techniques for inverse treatment planning aim at the identi-
fication of feasible rather than optimum solutions of the inverse problem. A feasibility
search algorithm requires a set of convex constraints that the prescribed dose must sat-
isfy. (An example of convex constraint is the requirement that the dose to any point in a
critical organ be below a certain planner-specified level.) Then a projection of the pencil
beam weights onto the convex sets specified by the constraints is established. The pencil
beam weights are projected alternatively among the constraint sets until convergence is
achieved. If the intersection of the convex sets of the constraints is not empty, the result-
ing pencil beam profiles produce dose distributions which satisfy the dose constraints.

There are two drawbacks of the feasibility search techniques. First, they produce
intensity modulation that satisfies the constraints (if such exists) but in case of success
do not indicate how much more stringent a constrained could be. Second, they cannot
be easily generalized to consider non-linear functions such as TCP and NTCPs.

Djordjevitch er. al'® formulated the problem of optimal compensator design as a

quadratic programming problem. A linear-quadratic function is minimized which com-

tt  Bortfeld's technique!! can also be considered as a gradient technique.
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bines the integral dose to selected healthy points and the least-square difference between
the target dose and a preset level. The linear constraints require that the dose to selected
vulnerable points be below specified limits. Therefore the approach can be regarded as
further generalization of the inverse planning techniques based on least-square objectives.
However, quadratic programming is restricted to linear-quadratic functions and cannot be
extended to nonlinear functions of dose. Furthermore, quadratic programming techniques
solve sequences of linear programming problems and therefore fail to provide approxi-

mate solutions when feasible parameters that satisfy the constraints do not exist.!” 18

Simulated annealing'® is a stochastic optimization method based on the Metropolis
algorithm?? for simulation of a collection of atoms in equilibrium at a given temperature
T. In each step of the Metropolis algorithm an atom is given a small random displacement
and the change AFE in the energy of the system is evaluated. If AF < 0 the new
configuration is retained as a starting point for the new step. If AE > 0 the configuration
is accepted with a probability P(A) = exp(—AFE/kgT), where kg is the Boltzmann
constant. By repeating the basic step many times the thermal motion of a collection
of atoms with a heat bath at temperature T is simulated. In order to find the ground
state of the system one should proceed with the simulations in the manner followed by
the experiments that determine the low-temperature state of a material — for example,
experiments that grow single crystal from a melt. After the substance is melted, the
temperature is lowered slowly, with a substantial amount of time spent in the vicinity

of the freezing point.

The simulated annealing method uses this approach by substituting the cost function
in place of the energy and by defining configurations in terms of the parameters to
be optimized. The temperature is a control parameter in the same units as the cost

function. The system is optimized by “melting” at a high temperature and then lowering
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the temperature by slow decrements until the system “freezes”. At each temperature
the simulation must proceed long enough for the system to reach a steady state. The
annealing schedule is determined by the number of rearrangements at each temperature

and the temperature sequence.

The most attractive feature of the simulated annealing is that it can find the global
minimum of virtually any function given a sufficiently slow cooling scheme. However,
similar to the physical systems which when annealed rapidly reach a metastable state
different from the ground one, the simulated annealing method is bound to produce
a minimum different from the global one if the cooling is too fast. In addition, a
large number of iterations is required at each temperature to thermalize the system.
For example, 4 million iterations have been reported for the optimization of up to
8192 variables (128 beams with 64 beamlets) in a 3-D model (323 dose points) that
employed a least-square dose objective.?! A single iteration does not require a full 3-
D dose calculation, but does evaluate the cost function from the 3-D dose distribution.
Therefore, an equivalent number of approximately 3000 full 3-D dose calculations must
be evaluated. The excessive number of dose calculations is the main factor that currently
limits the applicability of the simulated annealing to the large-scale inverse treatment

planning problem.

Gradient algorithms*2~2% are somewhat optimal for intensity modulation design.
First, they have much better rate of convergence than the stochastic methods. Second,
gradient techniques can be applied to optimization problems that are beyond the scope of
dose reconstruction, feasibility searches and quadratic programming techniques. Exam-
ples of such problems are optimizations based on biological or mixed biological/physical

objective functions.
Gradient methods do have their drawbacks. First, they are applicable only to
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differentiable functions of the optimization variables. This requirement, however, can
be met by almost all clinically significant biological or physical indexes.2® More relevant
limitation is the inability of gradient methods to avoid local minima. In this case, if
the solution is not acceptable, the gradient search should be restarted with a different
initial guest. Another approach is to identify proper starting points for certain beam

arrangements and treatment sites and to use these for new cases.?% 2

2.1.2 Objectives

Among the gradient methods, the constrained steepest-descent (CSD) has been
exclusively employed for inverse treatment planning.222% Its main advantage is that
the requirement of nonnegative pencil beam weights (nonnegativity constraint on the
independent variables) can be satisfied by simply imposing them at each iteration step.??
Such a procedure is not mathematically robust for other gradient-based approaches such
as the conjugate gradient (CG) and the quasi-newton (QN) methods. These methods rely
on the notion that the function to be minimized can be approximated by a quadratic form
in the vicinity of a minimum. They exploit the properties of the quadratic functions to
construct a self-consistent set of descent directions such that successive line minimizations
along these directions lead to the minimum. However, when nonnegativity constraints are
imposed, a line minimization can lead to an infeasible iterate. Truncation to zero of the
negative variables creates a feasible point which is different from the line minimum. This
disrupts the necessary process of successive line minimizations. On the other hand the
afore mentioned methods have higher convergence rate than the steepest-descent method
for unconstrained minimization problems.?’ Thus their use can potentially accelerate
the design of intensity modulated beams by decreasing the number of time-consuming

three-dimensional dose computations.28: 29

Our objective is to develop robust implementation of the CG for the purposes
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of inverse treatment planning. We propose an active set method with a conjugate-
gradient routine for subspace minimization in order to accommodate the non-negativity
constraints. The utility of the active set method for treatment planning optimization is
to be investigated by a comparison of its performance to that of the CSD. Two cost
functions, different treatment geometries, relevant starting points and termination criteria

are considered for the purposes of objective comparison.

2.2 Background

2.2.1 Beam Intensity Modulation in Dose Calculations

Beam intensity modulation is included in dose calculations by tiling the cross-section
of each beam in small elements (pencil beams) at a certain reference distance (Fig. 2.1).
The pencil beams are indexed by ¢, which is the number of the beam they belong to and
two indices (J, k) indicating the position of the pencil beam within the beam port. The
coefficient H k’,'::" is the calculated dose contribution per unit weight from a pencil beam
(j,k,c) to a voxel P at a grid location (m,n,l) . The pencil beam dose contribution
depends on different physical factors: the geometry of the irradiation, the treatment
modality, and patient anatomy. However, in practice, the coefficients HJ'.?,;;" reflect the

modelling of the above physical factors by the particular dose calculation model. For
instance, if scattered radiation is not considered, H; ,c’":’l is zero beyond the ray line of a
pencil beam, contrary to the case where the scatter is taken into account.

The inclusion of beam intensity modulation in dose calculations is done by assigning

a nonnegative weight w/** to each pencil beam. The dose D™™! to a voxel P is then:

Dm,n,l — H;'?k,:;’le'k’c' (2-1)

2-8



CHAPTER 2 An Active Set Algorithm for Inverse Treatment Planning

Source

Pencil beam | 7
i=(@.kc)

Beam port aEam '/k
(c) = i :

Figure 2.1. Inclusion of modulated beam intensity in dose calculations.
Only one beam is shown for clarity.

Summation over repeated indices is assumed. If the indices are combined as shown in

Fig. 2.1 we have:
DP = HPw', p=1.N, i=1..M (2.2)

where NV is the total number of dose calculation voxels and M is the total number of

pencil beams used for optimization. In vector notation:

D=fw, D={DPwW)}Y,, H={#?), w={uv:v 20} @3

29
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Figure 2.2. Structure labelling. The internal structures, the tumour and
the patient surface are outlined manually or semiautomatically on consec-
utive images obtained by computed tomography. The points of the dose
calculation grid are labelled with respect to the structures S, they belong
to. Two (a = 1,2) structures (51, S2) and a tumour target Ty (b = 1) are
labelled in this particular example.

2.2.2 Cost functions

Quadratic objective. When the goal of the optimization is specified in terms of the
desired dose distribution, a quadratic objective is widely used. Let Dg_ be the tolerance
dose of structure S, (Fig. 2.2), where a is an index that enumerates the various anatomical
structures. Let D, be the dose to be delivered uniformly to the target T}, (Fig. 2.2), where
b is an index that enumerates the target volumes to be treated. Let the total number of
healthy structures be ngs and let the total number of targets to be treated be n7. Then,

the objective function to be minimized can be written as :

S(w) = 3i <(DP(w) - DT")2>Tb + is: ma<Rp(Dp(W) - D5°)2>s.,
a=1

b=1
R {1 if DP(w) > Ds,
P=Vo0 if DP(w) < Ds, .

24
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The averages are calculated over the points of the corresponding structures. Different
structures can be given different weights m, and the overall weighting of healthy tissues

versus the tumour targets is accounted for by the parameter 5.

Probability of uncomplicated local tumor control. A relevant biological objective is
to eradicate the tumour under nonuniform dose delivery without causing severe damage
to healthy normal tissues. This goal can be incorporated by various biological models
into the probability of uncomplicated local tumor control P... Elaborate discussion on
P. and a underlying biological model is given by Agren et al.>* and Killman et al.23: 3!
In what follows we only present the corresponding analytical expressions used in the
optimization.

In the model under consideration, for several target volumes, the probability of tumour

control P is given by Poisson statistics as>! :

D.
nr n €7 (1— -5%) —kplnng

Pr(w)=]]]]2"° ' , 2.5)

b=1j=1
where D;(w) is the dose in voxel j in target volume T} for the current pencil beam
weights w, Dsg p is the 50% response dose, v, is the maximum value of the normalized
dose response gradient and e is the base of the natural logarithm. The total number of
voxels in target volume 7} is n;. The scale factor k; accounts for the often reduced
volume dependence of a heterogeneously growing tumor and has a value of unity for

homogeneous tumors. The probability of injury Py is given by

1
A
D: 4(w) SaYna |
no Na 67“(1—_5'_.7)
Prow)y=1-J]|1- [1-T[|1- ]2 ®
a=1 Jj=1

(2.6)
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where s, is the relative seriality?> of the structure S,. The probability of uncomplicated

local tumour control P (w) can be expressed by Pr(w) and P;(w) as

P+(w) = Pr(w) — Pr{w) + 6(1 — Pr(w))Pr(w) Q2.7

where § is the fraction of patients with statistically independent response.3°

Given the above, a suitable cost function to be minimized is the probability P_(w)

of obtaining severe complications and/or a recurrence :

P_(w)=1-Py(w). (2.8)
2.3 Gradient Optimization Algorithms

2.3.1 Optimal Algorithm Selection
Any gradient algorithm for unconstrained minimization of a smooth cost function
C(w) of the pencil beam weights w can be presented by the following model algorithm 32
Algorithm U (Model algorithm for n-dimensional unconstrained optimization). Let

w; be the current estimate of the minimum point w*.

Ul [Test for convergence]. If the conditions for convergence are satisfied, the algorithm
terminates with wi as the solution.

U2 [Compute a search direction]. Compute a non-zero n vector d;, the direction of

search.

U3 [Compute a step length]. Compute a positive scalar a; such that C(wi + axdi) <
C(wk)

U4 [Update the estimate of the minimum]. Set wiy; = wW; + axd; and go back to

step Ul.

The various gradient algorithms for unconstrained optimization differ mostly in the

way the descent direction d; is selected, which itself determines the rate of convergence
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Table 2.1 Characteristics of gradient unconstrained optimization algo-
rithms. The number of the independent variables (pencil beam weights)
is M. Operations relate to the number of floating point operations to be
performed for the calculation of a descent direction d; once the gradient
of the cost function is determined. The exact numbers vary slightly with
the specific implementation.

Gradient Methods
Steepest descent  Conjugate gradients Quasi-newton
Storage M few M M2
Operations M few M few M?
Convergence linear linear-superlinear superlinear

towards the minimum (the minimizer) w* of C(w). Better selection of d; is associated
with increasing overhead computations and memory storage (Table 2.1). In a typical
problem of intensity modulation the number of the pencil beams is in the order of 104
(M ~ 10%) and the number of the calculation points is in the order of 10° (N ~ 10°).
Given the dose calculation equation D = ﬁw, the number of floating point operations
needed for a single evaluation of the dose distribution is 2M N. Therefore, a QN method
requires a number of overhead calculations (Table 2.1) comparable to that needed for
the evaluation of the dose distribution. The large amount of storage required for the
QN method (few hundred Mbytes) also hampers its utility for optimization of intensity
modulated beams. On the other hand, the CG are computationally comparable to the QN
methods®? but at the expense of a negligible increase in the overhead calculations and
memory (Table 2.1). Therefore, a CG implementation for inverse treatment planning can

be a viable alternative to the CSD method.

It must be emphasized that the above considerations are strictly valid for uncon-

strained optimization. For the case of constraint optimization, the properties of the
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various methods associated with the overhead calculations and the storage requirements
remain in the same proportionality, but their convergence properties are affected by the
nature of the constraints and the objective (cost) function. For this reason, an active set
implementation of the non-negativity constraints in the CG is proposed below and it—s

performance is compared to that of a CSD implementation.

2.3.2 Constrained Steepest Descent (CSD) method

In an unconstrained steepest descent method the descent direction d; (Step U2 of the
model algorithm) is selected to be the opposite to that of the local gradient of the cost
function, that is dy = —g¢ = —VwC(W)|w=w, - The step length (Step U3 of the model
algorithm) aj can be heuristically selected or computed by minimizing C'(w) along the

ray wi + apdg.
An inclusion of the positivity constraints wi = (wk)i > 0 is done by the following
modifications. The descent direction is calculated as:

di =(dg) =0 if wi=0 and —(g) <0
(2.9)

di = (dp) = —(gk)' otherwise.

The step length o} is determined by minimizing C(w) along the ray wi+axd;. However,
whenever a constraint (w} = (wk)i < 0) is encountered, w} is set to zero and the
minimization continues along a new “bent” vector with components maz [0, w} + axd}].
This implementation is a generalization of the widely used “step and truncate” approach
to the CSD.2226 A pseudo code statement of the algorithm is given in Fig. 2.3 and an
extensive discussion on the properties of this algorithm is provided in the original work

by McCormick.3*
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Algorithm CSD
(Constrained steepest descent minimization of a smooth function C(w).)

Let w; be the current estimate of the minimum point w* and
gt = VwC(W)|w=w, be the gradient of the cost function.
WHILE the conditions for convergence are not satisfied [Zest (T1) for convergence]
DO
BEGIN kth iteration
IF (w} = 0 and —(g:)" < 0) THEN d = (i)' = 0
ELSE d} = (dk)i = —(ge)' [Compute a feasible search direction dy.};
BEGIN [Compute a step length by a line minimization.)
Compute a positive scalar a; by minimizing C(w) along the ray w, +
aid;. Whenever a constraint (w} = (w;,)‘ < 0) is encountered, set
wi to zero and continue the minimization continues along a new “bent”
vector with components maz [0, wi + axdi].
END
(wk.,.,)‘ = maz [0, w}; + agd‘;] {Update the iterate);
END

Figure 2.3. CSD pseudo code.
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2.3.3 Active Set Method with Conjugate Gradient Subspace Minimization (AS)

We have introduced an active set method for inverse treatment planning which
accounts for the simple bounds on the independent variables (w' > 0). The algorithm
is based on the following notion. Let I (active set) be the set of the indexes of these
components w*' of the solution vector w* that are to be kept at the boundaries. For the
variables w** that do not belong to the active set (< & I) the corresponding components of
the function gradient are equal to zero (g'(w*) = 0). On the other hand for the variables
w*' in the active set ( € I) the corresponding components of the function gradient have
to be positive (g°(w*) > 0). Suppose that at the solution w* a variable w*’ in the active
set (i € I) existed such that g'(w*) < 0. In this case a CSD iteration (Sec. (2.3.2)) would
create a new feasible point with a smaller value of the objective function by removing the
variable w** from its bound. However, that contradicts the fact that w* is a constrained
minimum. Therefore the assumption of g'(w*) being smaller than zero for variables in

the active set is incorrect.

If I were known a priori, then one could fix the corresponding variables w*, ielto
their boundaries and perform unconstrained optimization in the subspace of the remaining
variables by using, for instance, a CG method. However, since the set I is not known,
at each iteration step, the active set methods aim at developing a prediction I; of the
correct active set I. Such a prediction is based on the properties of the active set I at the
solution. However, these properties are tested at the current iteration point and therefore
the prediction I of the correct active set could be wrong. Hence, active set methods also
include a procedure for testing whether the prediction is correct and altering it if not. In
our implementation, after the update of the active set, a descent direction is calculated as
in the CSD. An essential feature of the active set methods is that all iterates are feasible.

A statement of the algorithm is given below along with a pseudo code outline in Fig. 2.4.
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Algorithm AS (Algorithm for n-dimensional constrained optimization subject to
positivity constraints). Let w; be the current estimate of the minimum point w* and

gk = VwC(W)|w=w, be the gradient of the cost function.

Al [Test for convergence (T1)]. If the conditions for convergence are satisfied, the
algorithm terminates with wk' as the solution.

A2 [Update the active set I;]. Compute I; as the set of the indexes 7 such that w‘,’: =0
and —gi = —(gk)’ < 0.

A3 [Compute a feasible search direction]. Compute a descent direction d; such that
d, = 0ifi € I and d}, = —g} otherwise.

A4 [Compute a step length] Compute &, the maximum non-negative step along d;.
Compute a; minimizing along d;. or its “bent” version if constraints are encountered
(see Sec. 2.3.2).

A5 [Update the iterate]. Set wi,, = maz[0,w} + ogd}].

If oy < & (feasible step) go to step A6 otherwise go to step Al.
A6 [Conjugate gradient iteration]
1. [Update the iterate] Set wi, , = w} + oxd}.
2. [Decide which logic to perform (T2)] If minimization in the current subspace
(indexes ? not in I;) is to be terminated, go to Step Al. Otherwise, perform a

CG update of the descent direction d; in the current subspace and go to Step A4.

The CG update of the descent direction d is different from —gi, used by the CSD.
It is determined by the last descent direction di_;, the last function gradient g;_; and
the local downhill gradient g; by?’

Bk-1-Bk—1

The steepest descent direction —g is used as a first member of a CG sequence. For

the case of a quadratic function, a CG update of the descent direction guarantees that
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Algorithm AS (Active set algorithm for constrained minimization subject to nonneg-
ativity constraints). Let w; be the current estimate of the minimum point w* and
gt = VwC(W)|w=w, be the gradient of the cost function.
WHILE the conditions for convergence are not satisfied {7est (T1) for convergence.]
DO
BEGIN kth iteration
Update the active set I; as the set of the indexes 7 such that:
w) =0 and —g} = —(g)" < 0;
[Fie I, THENd. =0
ELSE d. = —gi [Compute a feasible search direction d];
SUBSPACE_MINIMIZATION = TRUE;
DO
BEGIN
Compute &, the maximum non-negative step along dx;
BEGIN [Compute a step length by a line minimization.)
Compute a positive scalar a; by minimizing C(w) along
the ray wi +aid:. Whenever a constraint (w} = (we)' <
0) is encountered, set w to zero and continue the mini-
mization continues along a new “bent” vector with com-
ponents maz [0, w} + axdi].
END
(Wi+1)' = maz [0, wi + ardi] [Update the iterate] ;
IF the step was feasible (o < @) THEN
IF minimization in the current subspace (indexes ¢ not in [})
is to be terminated [test (T2)]
THEN SUBSPACE_MINIMIZATION = FALSE;
ELSE perform a CG update of the descent direction d; in the
current subspace;
ELSE SUBSPACE_MINIMIZATION = FALSE;
END
UNTIL SUBSPACE_MINIMIZATION is TRUE;
END

Figure 2.4. AS pseudo code
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the minimization along d; results in an iteration estimate wj; which also minimizes
the cost function with respect to the previous direction dx_;. That is not true for any
function C(w). Nevertheless, the rationale for using the CG is the fact that C(w) can

be approximated by a guadratic form in the vicinity of a minimizer w*.

The change in the objective function from iteration to iteration is used for the logic

test T2 and the termination test T1. They both indicate termination if
|C(Wi—1) — C(wi)| < 7(1 + [C(wg)l) (2.1

where 7 is a user-specified parameter. The merit of the test given by Eq. (2.11) is
that it is not unduly stringent even when |[C(wy)| is considerably smaller than unity.
Simultaneously for large absolute values of the cost function the above test [Eq. (2.11)]

turns into the widely used termination test
[C(Wk-.) — C(wi)| < 7|C(Wg)| (2.12)

that examines the relative change in the objective function from iteration to iteration.
In order to insure that the correct active set is selected at the solution, T1 also requires
that the last descent direction be a CSD one and a feasible step be performed along that
direction. The termination criterion (T1) is used for the CSD method as well. The use of
a single termination criterion based only on the change of the objective function cannot
rule out the possibility of termination at a point which is not a local minimum. On
the other hand, it does not involve any additional overhead calculations which become
considerable when, as is the case in inverse treatment planning, the number of variables
is large.

The prediction I; of the correct active set I is updated under two circumstances:
either the conjugate gradient minimization in the current variable subspace (indexes ¢ not

in I;) has been accomplished (test T2) or a constraint in the current subspace has been
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encountered. In the first case, after the subspace minimization, a update of the active set
is needed since there may be variables w* in the current active set which are no longer
bound (active) by the inequality g(w) > 0 at the current point. In the second case, the

incorrectness of the active set is conspicuous and a rew prediction is to be made.

2.3.4 Performance Evaluation

The performance of a minimization algorithm depends on the cost function, on the
selected performance measures, on the initial search point, as well as, on the termination
criteria. For this reason it is important to identify a relevant starting point and termination
criteria, as well as, performance measures for the evaluation of the optimization routines.
We compared the performance of the CSD and the CG by the residual value of the cost
function at termination, the total number of iterations (dose calculations) and the number
of main iterations. A main iteration comprises a selection of the descent direction and a
single line minimization. Both the CSD and the AS need a single dose calculation and
a single evaluation of the function gradient for the selection of the descent direction and
a few dose calculations per line minimization. At each main iteration, the AS method
requires additional floating point operations for the evaluation of the maximum feasible
step & and the CG descent direction. These amount to few M and present a negligible
calculation overhead (Sec. 2.3.1). The number of main iterations is an indicator of the
efficiency of the CSD and the CG in the selection of the descent direction. The number
of main iterations (gradient calculations) is a somewhat more objective measure than the
total number of iterations since the latter depends on the parameters of the routine that
selects the step along the current descent direction. For the ideal case, if a single step
were performed to the line minimum, the total number of iterations would be equal to

the number of main iterations.

The value of the objective function at termination is of primary concem when
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P_(w) is used for the optimization for it reflects directly the utility of the achieved
dose distribution. However, when the quadratic objective S(w) is employed, a smaller
residual value may not readily result in significantly better dose distribution from a clinical
point of view. For this reason, we also examined the dose distributions obtained by the

AS and the CSD.

2.4 Method

2.4.1 Target Volumes and Organs at Risk

Three different cases were used for the comparison of the optimization algorithms.
Case A is a simulated concave target with an organ at risk in a cylindrical phantom
(Fig. 2.5). Case B is a solid prostate cancer with organs at risk being bladder, rectum
and normal tissue stroma (Fig. 2.6). Case C represents a target volume located in the
head and neck region with organs at risk being spinal cord and normal tissue stroma
(Fig. 2.7). The relative tumor density is assumed 90% in the target volume. Due to the
uncertainty in the values of the radiobiological parameters we used reasonable estimates
based on published data.?* 253537 The values of the radiobiological parameters and
those of the dose levels for the physical objective are given in Table 2.2. The fraction
6 of patients with statistically independent tumour and normal responses has been set
to zero. The different sets of weights assigned to the various anatomical structures for
the case of the quadratic objective are given in Table 2.3. For all cases, homogeneous

tumors are assumed.

2.4.2 Irradiation Geometries and Pencil Beams

In our particular implementation, the Differential-Scatter-Air-Ratio (DSAR) dose
calculation model*® of a 3D treatment planning system (GRATIS, Sherouse Inc.) was
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Relative Dose (C¢)

Figure 2.5 Case A. Dose distributions obtained by the CSD and the AS.
Two combinations of weights (3 : m1) are used. (a) CSD, (1:1); (b) AS,
(1:1); (¢) CSD, (1:13); @) AS, (1:15).
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Figure 2.6 Case B. (a) Dose distribution obtained by the CSD. (b) Dose
distribution obtained by the AS. Weights of unity are assigned to the target
and the rectum ((8 : m;) = (1:1)).
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Figure 2.7 Case C. Tumor in the head and neck region. The spinal cord is
the organ at risk. For the optimization of the quadratic objective a margin
of 1 cm (not shown) was introduced around the target where dose levels
were not specified.

2-24



CHAPTER 2 An Active Set Algorithm for Inverse Treatment Planning

Table 2.2 Radiobiological and dose parameters used in the optimization.
For all cases, homogeneous tumors are assumed. The dose levels for the
tumors correspond to those delivered to them with uniform beams and 100
MU delivered by each beam. The dose levels to the other structures are
calculated as a percentage of the target dose.

Cases Dose (Gy) (%) Dso(Gy) v s
A. Simulated

Tumor 4.7 (100.0)

1. Organ at risk 1.9 (40.4)

2. Normal tissue 2.8 (59.5)

B. Prostate cancer

Tumor 5.5 (100.0) 60.0 4.00

I. Rectum 3.0(54.5) 75.0 2.50 0.70

2. Bladder 3.0 (54.5) 80.0 3.00 1.30
‘ 3. Normal tissue 3.0 (54.5) 65.0 2.76 1.00

C. Head and neck

Tumor 2.9 (100.0) 52.0 3.00

1. Spinal cord 1.45 (50.0) 60.0 1.78 1.00

2. Normal tissue 1.45 (50.0) 65.0 2.76 1.00

adapted for pencil beam dose calculation (5x5 mm? at source-to—isocenter distance
of 100 cm). The DSAR model (Appendix A) takes into account scatter but does not
consider inhomogeneities. However, by virtue of Eq. (2.3) the optimization procedure is
implemented as a model-free routine. It does not explore any particular properties of the
matrix H and can be used with any other model for the calculation of the pencil beams.
Since scatter is accounted for by the DSAR model, a margin of 1.5 cm is added around
the projection of the target in each beam’s eye-view. Photon pencil beams (18 MV) are
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Table 2.3 Weights assigned to the target and an organ at risk for the
quadratic objective optimization. The other structures considered in the
optimization are given weights of unity.

Cases Weights (3 : m,)

A. Tumour : Organ at risk

I1:1 1:5 1:10 1:15 5:1 10:1
B. Tumour : Rectum

Table 2.4 Irradiation parameters. Coplanar beams in the direction of
increasing angles with equal angular separations are employed in all
cases. Gantry angle is zero when the gantry is straight up. The angles
increase for counterclockwise rotation of the gantry as viewed from the
isocenter. The isocenter is always placed in the center of the target volume
(in center-of-mass sense). Initial angles are : 37° for case A, (° for case
B, 0° for case C.

Case Number of Number of Grid size Voxel size
beams pencil beams (cm?) (cm?)
A 7 1491 124 x 124 x 1 025 x 0.25
B 9 1267 104 x 178 x 1 0.25 x 0.25
C 3 1503 32x37x22 0.5x0.5x0.5

precalculated before the optimization for the given beam setup and dose calculation grid.
The pencil beam weights map onto Monitor Units (beam-on time) after multiplication
by a factor of 100 MU/Gy. For the quadratic objective, no additional scaling of the
pencil beam weights was done. Given the dose prescription levels, the weights varied
between zero and few units (Gy) for both optimization algorithms. When the biological

cost function is minimized, an additional common scaling factor is introduced such that
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the uniform beams of unit weight deliver uniform dose to the tumor slightly higher than
the 50% response dose.23: ! A full three-dimensional optimization was performed for the
head and neck case, and two-dimensional optimization was performed for the simulated

and the prostate cases by forming a slit irradiation.
2.4.3 Optimization Parameters

In the optimization of the quadratic objective, zero initial weights were used as a
starting point to avoid unnecessary healthy tissue irradiation. For the case of uncompli-
cated local tumour control optimization, uniform unit beams were used as an initial guess

since previously such a choice has been found satisfactory.2% 25

The value of the termination parameter = was selected as follows. For the case
of the quadratic objective optimization, we applied the CSD to few cases, varying 7
in order to investigate the sensitivity of the resulting dose distributions with respect to
it. Dose volume histograms were employed to evaluate the optimized plans. A dose
volume histogram is a cumulative or a differential dose distribution calculated within a
preselected volume. In this thesis, however, dose volume histogram stands exclusively
for cumulative dose distributions. For a particular organ, a dose volume histogram allows
one to evaluate the fractional volume of the organ that is irradiated at and above a certain
dose level. (For example, in Fig. 2.8 (c), for 7 = 0.001 approximately 80 % of the spinal

cord receives 30 % and more of the maximum dose.)

Based on our analysis of the dose-volume histograms (Fig. 2.8), we set 7 to 0.001
for cases A and C, and 7 to 0.01 for case B. In the radiobiologically based optimization,
we set 7 equal to 0.001, thus aiming at improvements of a tenth of a percent. Values of
the termination parameter 7 below 0.001 were found to lead to excessive computational

times and therefore impractical.
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Figure 2.8 Sensitivity of the inverse treatment planning solutions to the

value of the termination criterion . All structures are assigned weights of
unity for all cases. The dose distributions are normalized to their maxima.

The CSD is used for the optimization. (a) Dose-volume histograms for
the target and the organ at risk for case A. The resulting solutions are

significantly different. (b) Dose-volume histograms for the target and the
rectum for case B. The solution for v = 0.01 is almost identical to that for
T = 0.001. (¢) Dose-volume histograms for the target and the spinal cord
Jor case C. The resulting solutions are significantly different.
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In our implementation of the minimization algorithms, an identical safeguarded line
minimization routine with parabolic interpolation3? is used by both the CSD and the AS.
This routine combines a guaranteed, reliable golden section search in one dimension with
a parabolic interpolation to yield an algorithm that converges rapidly if the cost function is

well behaved, but is not much less efficient than the guaranteed method in the worst case.

2.5 Results and Discussion

2.5.1 Convergence Properties

Figures 2.9, 2.10 and 2.11 illustrate the convergence properties of the CSD and the AS
when applied to the minimization of the square objective. For all cases, the AS exhibits
a higher rate of convergence than the CSD. The AS also reaches a lower residual value

of the cost function at termination than the CSD does.

Figure 2.12 examines the number of iterations and the number of main iterations
required by the AS to achieve the same value of the cost function as the one obtained by
the CSD at termination for treatment cases A and B. For case C, the CSD executes 185
iterations and 11 main ones to reach termination. For the same case, the AS requires 107
iterations and 7 main ones to achieve the same value of the cost function. These resulits
and the ones shown in Fig. 2.12 confirm the expected fact that the superiority of the AS
to the CSD is mainly due to the lower number of main iterations, which in turn, is due

to the improved selection of the descent directions.

Figure 2.13 illustrates the convergence properties of the CSD and the AS when
applied to the minimization of the probability P_(w) of obtaining severe complications
and/or recurrence for cases B and C. The AS exhibits a higher rate of convergence than
the CSD. The AS also reaches a lower residual value of the cost function at termination

than does the CSD (Fig. 2.13(a)). The CSD executes 243 iterations with 15 main ones
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Figure 2.9. Quadratic objective S(w) versus number of iteration steps for
case A. Lines are drawn to show the trend of the cost function values. Plots
(a)-(f) correspond to the combinations of weights given in Table 2.3. All
plots start with the second main iteration since the first one is common for
both the CSD and the AS. The inserts identify the main iteration step at
which the AS leads to a value of the cost function lower than the value
obtained by the CSD at the termination.
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Figure 2.10 Quadratic objective S(w) versus number of iteration steps
for case B. Lines are drawn to show the trend in value of the cost function.
Plots (a)-(f) correspond to the combinations of weights given in Table 2.3.
All plots start with the second main iteration since the first one is common
for both the CSD and the AS. The inserts identify the main iteration step
at which the AS leads to a value of the cost function lower than the value
obtained by the CSD at the termination. For plot (f) the CSD iterations are
terminated as soon as the residual cost is below the value obtained by the
AS. For this case the number of iterations required by CSD is as large as
three times the one required by the AS.
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Figure 2.11 Quadratic objective S(w) versus number of iteration steps
Jor case C. Lines are drawn to show the trend of the cost function values.
The plot starts with the second main iteration since the first one is common
Jor both the CSD and the AS. All anatomical structures are given weights
of unity. The insert identifies the main iteration step at which the AS leads
to a value of the cost function lower than the value obtained by the CSD
at the termination.

to reach termination. For the same case, the AS requires only 100 iterations with 6 main

ones to achieve the same value of the cost function.

For the head and neck case the performance of both methods is almost identical,
both in terms of their convergence properties and the residual value of the cost function
(Fig. 2.13(b)). This suggests that even though a certain algorithm may have the potential
of outperforming another, whether or not this occurs is ultimately determined by the cost
function, which, for the case of treatment planning optimization of a biological objective,
is defined by both the treatment geometry and the radiobiological parameters for the
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Figure 2.12 Number of iterations and number of main iterations required
by the AS to achieve the same value of the cost function as the one obtained
by the CSD at termination for treatment cases A and B. The bar plots from
left to right correspond to the combinations of weights given in Table 2.3.
The average number of iterations per main iteration rounded to the nearest
integer number is also given. In some cases, the last number gives some
additional advantage to the AS. However, the superior performance of the
AS compared to that of the CSD is mainly due to the lower number of main
iterations.
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Figure 2.13. (a) Probability of obtaining severe complications and/or a
recurrence P_{w) versus number of iteration steps for case B. The insert
identifies the main iteration step at which the AS leads to a value of the cost
Sfunction lower than the value obtained by the CSD at the termination. (b)
Probability of obtaining severe complications and/or a recurrence P_(w)
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trend in the value of the cost function.
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various organs. Nevertheless, given the statement of the AS (Sec. 2.3.3), one may expect
that in the worst scenario, the AS will perform, at least as well as, the CSD with respect

to its convergence properties.

Figures 2.9, 2.10, 2.11, 2.13 illustrate that the AS iteration sequences vary signifi-
cantly with respect to the treatment site. For instance, negative weights are more often
encountered for case A (Fig. 2.9) then for case B (Fig. 2.10). For case A, negative weights
are usually encountered after the first CG iteration in the current minimization subspace
(Fig. 2.9(a-e)) which leads to a frequent update of the active set. However, even a single
CG iteration in the current subspace allows significant improvement in the convergence
of the iteration sequence. For case B, negative weights are usually encountered once at
the beginning of the iteration sequences (Fig. 2.10(a-c, e, f)). After the corresponding
active set update several CG iterations (Fig. 2.10(a-c, e, f)) lead to the minimum in the
current subspace, which is also the minimum of the constrained problem (according to
test T1) since the update of the active set and the consequent move down the steepest

descent direction do not lead to significant changes in the cost function value.

We emphasize that when negative weights are not encountered the AS automatically
becomes the unconstrained CG with the additional calculation of the maximum feasible
step @. Therefore, when there are not any active constraints at the solution the AS is
almost as efficient as the CG and produces the same minimum as the CG. When there
are active constraints at the solution, the AS attempts to identify them and to proceed as
the unconstrained CG in the subspace of the remaining variables. Given its statement,
it always converges to a point that will be considered as a minimum by the CSD.3}*
On the other hand, a point obtained by the use of the unconstrained CG throughout the
minimization and truncation to zero of the negative weights at the end is not guaranteed to

be a minimum of the constrained minimization problem. For a particular cost function,

2-35



CHAPTER 2 An Active Set Algorithm for Inverse Treatment Planning

a mathematical analysis of the properties of the objective is needed to evaluate the
robustness of such an unconstrained approach.

The additional calculations required by the AS at each main iteration present a
negligible computational overhead in comparison with the calculation time necessary
for a single dose calculation. For case C, given 1503 pencil beams and 26048 calculation
voxels, the AS needs 0.01 s per iteration to evaluate the maximum feasible stepsize and
the CG descent direction. A single dose calculation performed as a matrix multiplication
(Sec. 2.3.1) takes 15 s. However, in our implementation the pencil beams are stored
on disk. Thus the dose calculation time is 75 s due to input-output operations. All the

simulations are performed on a Sun SPARC 10 computer.

2.5.2 Dose Distributions

When a quadratic dose objective is optimized the utility of the resulting dose
distributions depends not only on the performance of the optimization algorithms but
also on the optimal selection of the dose levels and of the weight factors for the various
structures. Figure 2.14(a) illustrates this point for treatment case A. The AS leads to
a lower residual value at termination than does the CSD (Fig. 2.9(a)), but the AS dose
distribution can be considered inferior to that of the CSD (Fig. 2.14(a), Fig. 2.5(a) and
Fig. 2.5(b)). However, it cannot be argued that for a particular treatment case, the CSD
tends to terminate at a point of a higher cost function value but of better clinical utility
than the AS does. Figures 2.14(b), 2.14(c) and 2.5(c), 2.5(d) illustrate that even for
the same treatment case and dose levels, depending on the assigned weights, the lower
residual value obtained by the AS may reflect dose distributions which are similar or
better than those obtained by the CSD.

For treatment case B, the dose distributions obtained by the CSD and the AS were

very similar for all combinations of weights given to the anatomical structures despite the
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Figure 2.14. Dose-volume histograms for the target and the organ at risk
for case A and for different combinations of weights (8 : m1). (@) (1:1);
®) (1:15); @© (5:1).
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Figure 2.15 (a) Dose-volume histograms for the target and the rectum for
case B. (b) Dose-volume histograms for the target and the spinal cord for
case C. Weights of unity are assigned to all anatomical structures.
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consistently lower residual value of the cost function obtained by the AS. Figures 2.15(a)
and 2.6 illustrate this fact for a particular selection of the structure weights.

For treatment case C, the lower residual value of the cost function obtained by the
AS reflects a better dose distribution both in terms of the sparing of the spinal cord and
the tumor dose homogeneity (Fig. 2.15(b)).

To summarize, for a quadratic objective the AS always reaches a lower residual value
at termination than the CSD. However, due to the nature of the quadratic objective, the
dose distributions obtained by the AS may not always be better than those obtained by
the CSD. To ensure a good correlation between a low residual value of the cost function
and a useful dose distribution, the dose levels that are specified must be very close to

the achievable ones.

2.6 Conclusions

The most time-consuming operation in the optimization of radiotherapy treatment
plans by intensity modulated beams is the repeated dose calculation. An active set
algorithm for inverse treatment planning is introduced as an alternative tool to the widely
used constrained steepest descent method. The algorithm uses a conjugate gradient
routine for subspace minimization in order to achieve better convergence at the expense
of negligible amount of overhead calculations. By numerical simulations it has been
demonstrated that (i) the active set algorithm performs at least as well as the constrained
steepest descent in terms of the residual cost at termination for two different type of
objective functions; and (ii) due to its better convergence properties, the active set method
can decrease significantly the number of iterations necessary to reach a solution of the

inverse treatment planning problem.
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CHAPTER 3 A Continuous Penalty Function Method for Inverse Treatment Planning

3.1 Introduction

In Chapter 2 we introduced an active set algorithm as a tool for solving the large-scale
inverse problem in conformal therapy when a smooth differentiable objective function of
the pencil beam weights is used. The clinical utility, however, of the dose distributions
produced by any minimization algorithm depends critically on the proper modelling of
the treatment objectives. In this chapter, some of our research effort in this direction

is presented.

The goal of inverse treatment planning is to generate treatment plans that conform the
high-dose region to the target while minimizing the dose to surrounding healthy tissues
by modulating the intensity of a preselected set of fixed beams. In principle, biological
objective functions which incorporate tissue architecture and radiobiological response
should be used for the mathematical modelling of this objective. However, a clinical
placement of a biologically based inverse treatment planning system is unlikely given
the current status of both the radiobiological models and their parameters (Chapter 1).
Physical objectives, on the other hand, can form the basis for clinical inverse treatment
planning since they provide continuity with respect to the existing standard practice by
incorporating clinically accepted dose- and dose volume-based criteria for the evaluation

of treatment plans.

Among the treatment planning optimization techniques based on physical objective
functions the model of partial dose volume constraints'™ may be the most clinically
relevant one. Within this model various objectives are pursued under certain constraints
such as: (i) the desired target dose uniformity; (ii) the acceptable maximum dose to points
in healthy structures; (iii) the fractional volumes of critical structures that can receive

more than a certain dose, €. g. less than 30% of the lung may receive more than 20 Gy.

Using the above model and the dose to a target point as an objective, Langer et al!
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solved the optimization problem as a combinatorial linear program. Given k& healthy
organs, m(k) points in the healthy organ & and n(k) constraint points that have to satisfy
the dose limits on the fractional volume, an explicit enumeration of each combination
of constraint points in the critical organs leads to a set of I'[ ( (k) ) linear programs,
which are solved by the simplex method for linear programnung 6.7 Linear programs are
problems with objectives and constraints which are linear functions of the optimization
variables. This approach has been applied to the optimization of the weights of a few
beams for a thoracic case, for which one point in the target, one point in the spinal cord

and 15 points in the lungs were used.!

Such an approach is clearly impractical for large-scale problems. For this reason, in
order to find the optimal beam weights for cases that involve up to 36 wedged or open
beams and several structures with a few hundred points per structure, Langer et al.% %3
applied mixed integer linear programming to the partial dose volume model with the
dose to a target point as an objective. The integer variables (0/1) indicate whether a
particular point exceeds the dose limit on the fractional volume. The algorithm proceeds
by solving a sequence of linear programs in which the integer variables with the largest

values at the optimum are fixed to unity.

The time to solve a mixed integer linear problem is very sensitive to the number of
integer variables (number of points in healthy organs). For a thoracic case, using 450
points in the healthy lung, Langer ef al.* have optimized a few beam weights in average
time of 3.8 min on a DEC VAXstation 3520 (Digital Equipment Corp., Maynard, MA).
When 800 points were used, the average time increased to 56 min with maximum time
of 22 hr. Therefore, even though mixed integer linear programming provides a robust
model for the escalation of the target dose under dose volume constraints, the technique

is not applicable at the scale of the inverse treatment planning problem, which involves
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a few hundred to a few thousand variables and a few thousand to tens of thousands of

constraint points.

Morrill et al.? suggested another approach to solve the partial dose volume model.
In their approach dose volume constraints are accounted for by introducing 3-D collars
around the target which divide neighboring organs in high- and low- dose regions. A
collar of different margin is assigned with respect to each structure so that the ratio of
the volume of the high-dose region to the volume of the low-dose region is equal to
the specified dose volume constraint for that structure. Points in the target are assigned
homogeneity constraints and the integral dose to critical structures is minimized by linear
programming. For the case of a pancreatic tumor treated by a combination of beams
at every 10°, the approach has been applied for the optimization of up to 216 beam
weights. For a few hundred constraint points, calculation times of approximately 35 min
have been reported on a DEC VAXstation 3520 (Digital Equipment Corp., Maynard,
MA). For routine clinical optimization of 216 variables, Morrill er al.® estimated that
the number of constraint points that can be used with linear programming should be
smaller than 1000.% This restriction partially results from the need of frequent restart of
the optimization process with relaxed constraints since linear programming is unable to

produce approximate solutions when a feasible point does not exist in the solution space.

Due to the computational difficulties associated with the application of the partial dose
volume model at the scale of the inverse problem, cruder models are used to formulate
mathematically the goal of intensity modulation conformal therapy.>!7 These models
aim at matching a prespecified dose distribution by minimizing a physical square objective
which penalizes for deviations from the desired dose distributions. The rationale for such
an approach is that the solution of a less clinically relevant but manageable problem with a

large number of variables (pencil beam weights) can still provide better dose distributions
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than a refined model with only a few degrees of freedom. That is clearly the case for
targets with concave regions.” 13- 13 Furthermore, by exploiting the modulation of the
beam intensities, inverse treatment planning may decrease the number of beams necessary
to achieve certain conformity.!? On the other hand, a large number of beams is needed

to achieve conformity with unmodulated beams.'™

Apart from the fact that the radiation response properties of the critical structures
are not taken into account during the optimization, inverse treatment planning techniques
with physical square objectives suffer from other limitations that may render the designed
dose distributions clinically unacceptable. In this chapter we develop a new approach to
address some of these drawbacks. Section 3.2 reviews briefly the conventional inverse
treatment planning technique in order to elucidate some of its limitations. In Sec. 3.3 an
alternative constrained minimization problem is proposed. On the premise that further
improvement of a 3-D conformal plan with open (or wedged) beams can be achieved by
modulation of the intensities of the selected beams, we propose to minimize the dose to
healthy tissues while delivering the necessary dose to the target within certain uniformity.
A continuous penalty function method is introduced as a numerical technique that finds
approximate solutions of the constrained minimization problem. The efficiency of the
continuous penalty function method depends on the choice of a numerical integration
scheme and a pair of weighting functions, which are investigated in Sec. 3.5. In Sec. 3.6
examples are presented of the application of the technique to the clinical cases described
in Sec. 3.4. Based on these examples, in Sec. 3.7 we discuss the use of the technique
as a tool for treatment planning optimization in the general context of multiple criternia

optimization.
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3.2 Conventional Inverse Treatment Planning

3.2.1 Problem Statement

Let Dgs, be the maximum tolerance dose of a structure S, where a is an index that
enumerates the various anatomical structures. Let D{p""" be the minimum dose that has
to be delivered to the target 7' and let DT'** be the maximum admissible target dose as
deduced from dose uniformity considerations. Let P be a voxel of the grid and DP(w)
be the dose given to that voxel. We recall that the vector of dose values is calculated as

the weighted sum of the dose contributions of the individual pencil beams as:
D = Hw, D={D”(W)}::__1, ﬁ:{HIP}, w = {wizwiEO}fil . 3.D

The inverse treatment planning is then the process of matching a desired dose
distribution by solving the following problem. Find w such that :
1. w' >0
2. DP(w)<Ds, PeS, (3.2)
3. DP* > DP(w)>DF", PeT.
Setting Dr = DF%* = D?"‘ one formulates the above objectives as a non-linear
optimization problem with constraints :
min{ F(w)|gy(w) < 0,w* > 0}
1 2
F(w) = — PZE;(DP(w) - Dr) (3.3)
gp(w) =D¥(w)—-Ds,, PE€S,
In the above expression nT is a normalization factor which here is selected equal to the
number of calculation voxels within the target T'.
A variant of the exterior penalty function method?® has been exclusively used for

solving the above problem.® 101217 A term proportional to the magnitude of the
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constraint violation is added to the objective function to penalize constraint violations.

Thus a new objective function is to be minimized :

min{C(w)|wi > 0}

Clw) = o= 3 (DP(w) = D1 +r 378 37 Ry (D) = D5V
PeT Sa Pes, :
_{1 i Dw)2Ds,
m={s 0 DmZD:

where r is a penalty parameter and n, is the number of calculation voxels pertaining
to structure S,. Different structures can be given different weights m,. Some of the
approaches'®!7 require exact matching of the prescribed dose by setting R, = 1. In
practice the nonnegativity constraints are imposed by truncation of the negative weights

w' to zero at each iteration step.>!7- 2!

3.2.2 Limitations

The main limitation of the inverse treatment planning with a physical objective
function is that the goal of the radiation treatment as specified by Eq. (3.2) may not be
feasible for the selected beam setup. This is likely to be the case for the following two
reasons. First, as yet, there is limited experience as to what is achievable with intensity
modulated beams. Second, the dose distributions intensity that modulated beams can
provide are difficult to conjecture due to the large number of degrees of freedom. When
the goal specified by Eq. (3.2) is not feasible, the minimum of the physical objective
function [Eq. (3.4)] may result in dose distributions with target underdosage'4: 22-24 that
are not clinically acceptable.?> (The term target underdosage refers to very low-dose
regions whose clinical effect cannot be circumvented by acceptable renormalization of
the dose distribution.) Even in cases where the desired dose distribution is feasible the
question remains whether more stringent requirements could be imposed with respect to

the critical structures.
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Given that a critical structure is in the immediate neighborhood of a target or a dose
value is assigned to each grid voxel,'®-16 the smooth real dose distribution cannot match
the desired dose distribution, since the latter has sharp discontinuity at the interfaces
between different structures. Even though the match may be the best in least square
sense, it again may not be clinically acceptable. Collars can be introduced around the
different structures to allow more realistic dose specifications in the transient region.26
However, this creates the opportunity of assigning collar widths larger than the achievable

ones, thus compromising the dose conformation.

An implementation problem arises when gradient-based optimization techniques are
employed for the minimization of C(w) in Eq. (3.4).9712 1416 It is known from the
non-linear optimization theory that the problem specified by Eq. (3.3) is to be solved by
a sequence of unconstrained minimization problems for increasing values of the penalty
r. However, current methods® !0 12 14-16 mjinimize C(w) for fixed and somewhat
arbitrary value of the penalty parameter r in order to decrease the number of lengthy
dose calculations. In this case one does not, in fact, distinguish the constraints from the
objective function. The repercussions are that the solution of the optimization problem

may not even approximately satisfy the dose constraints.

The above problems are sufficiently suppressed when a large number of fields (>15) is
used. However, for conformal treatments with standard facilities (MLC, compensators),
within reasonable time limits, only a few beams (5-9) are to be employed and the
discussed effects can be significant for certain treatment sites. In what follows we
suggest an approach that addresses some of the limitations of the inverse treatment

planning technique.
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3.3 The Continuous Penalty Function Method (CPFM)

3.3.1 Theory

Most of the limitations of the inverse treatment planning with a physical objective
function are related to the feasibility of the specified dose levels. To overcome the diffi-
culties resulting from infeasible dose prescriptions in our approach we aim at minimizing
the dose delivered to healthy tissues while delivering the necessary dose to the target.

We formulate the above objective as the following constrained minimization problem:

min{f(w)lgj(w) <0, =1,....2n7 + M}

fw) =S ma 30 (D2 = T me— 3 (HPw)?
Sa N Sa .

pESa Pesa
g;(w) = DP(w) — D = HPw' — D= PeT, j=1,.,nr (3.5)

gj(w) = DF'" — DP(w) = H?w' — DP™®, P€eT, j=nr+1,..2n7

gi(w)=—w', j=2nr+1,...2n7+ M, i=1,.. M
The cost function f(w) is defined as the average of the squared dose delivered to healthy
tissues in order to reflect a goal of matching a zero-dose level to healthy tissues in a
least-square sense. The average is calculated over the voxels of the various organs and
different organs can be assigned different importance by their weights m,. The number
of calculation voxels pertaining to structure S, is n, and the number of calculation voxels
pertaining to the target T is ny. The constraints g;(w) demand that the target dose be
within certain limits and that the pencil beam weights be nonnegative.

The limitations of the conventional inverse treatment planning technique are ad-
dressed by the statement of the constrained optimization problem given by Eq. (3.5).
Concerning the dose prescription, it only requires two dose levels D}""‘ and DT?*.
Based on the clinical experience with uniform beams, a planner can always select fea-

sible values for these quantities. Collars around the target need not be specified, since
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a solution of the above constrained minimization problem will autonomously extend the
high dose region around the target as much as needed to satisfy the dose constraints.
Furthermore, Eq. (3.5) poses a convex programming problem since the objective is a
convex function of the pencil beam weights and the constraints are linear and therefore
convex functions of the pencil beam weights. A remarkable property of any convex
programming problem is that every local minimum is a global minimum.?” Thus any
solution of Eq. (3.5) guarantees the minimum possible value of the cost function without
cold spots in the target volume.

To solve the inverse treatment planning problem given by Eq. (3.5) we propose to
use the continuous penalty function method (CPFM).28 It accounts for constraints by
introducing a penalty term and varies the penalty coefficient continuously. Introducing
the functions gj‘ (w) defined as g;-"(w) def maz(0, g;(w)], we reflect constraint violations

by a convex penalty term U'(w) written as :

2nr 2nr+M

Ulw) = Z () +5 > (7). (3.6)

J-—-n7+1
Within the frame of the continuous approach functions P(w,t), u(t) and 7(¢) are defined

such that :
P(w,t) = p(t)f(w) + r(t)U(w)

u(t) >0, (t)>0, / p(t)dt = 3.7
0

‘;7(:-) — 0 monotonically as ¢t — oo. The limit points (¢ — oo) of the solutions of the
following system of ordinary differential equations (ODE) are sought:

%w(t):—VwP(w,t) w(0) =wp . (3.8)

Using the convexity of the objective function f(w) and the penalty term U(w) as well
as previous results?®: 29 we have proved (Appendix B) that the limit points of Eq. (3.8)
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converge to a solution of the initial optimization problem [Eq. (3.5)] for any starting
point w(0). Furthermore, since any local minimum coincides with a global minimum of
Eq. (3.5) the method leads asymptotically to a global minimum. Equation (3.8) can be
considered a generalization of methods for unconstrained minimization. Indeed, it turns
into the steepest descent method when the time-dependent weighting functions are kept
constant and the Euler integration scheme is applied.

The CPFM has several properties that indicate its utility for the large-scale problem
of radiotherapy optimization. It has a simple statement and accounts for the constraints
explicitly. It does not involve solving a sequence of unconstrained minimization prob-
lems, a process that presents considerable computational difficulties for large values of the
penalty coefficient. Furthermore, despite the fact that the CPFM is usually used for find-
ing approximate solutions,?3: 30 there is some numerical evidence?!- 32 that optimization
routines that solve Eq. (3.8) can perform considerably better than some well-known and
successful sequential quadratic programming techniques in terms of reliability, number
of function evaluations as well as accuracy.

Rather than accounting for the non-negativity constraints via a penalty term, one can
consider truncation to zero of the negative pencil beam weights at each iteration step of
the optimization. In this case the term in Eq. (3.6) penalizing for negative pencil beam

weights is omitted and the limiting points of the following equation are sought :

%w(t) = —[VwP(w,t)]T (3.9)
where
+\' _Jo Cif w=0 and (VwP(W,t) >0
([pr(w’t)] ) - {(VWP(w,t))' otherwise. (3.10)

Intuitively the above approach should produce the same results as the robust CPFM
[Egs. (3.6), (3.7) and (3.8)]. A comparison of these two approaches is given in Sec. 3.5.
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3.3.2 Numerical Methods of ODE Integration

An important observation concerning the numerical solution of the system of ordinary
differential equations given by Eq. (3.8) is that some computational effort is likely to be
wasted in the process of following an ODE trajectory accurately when all that is really
needed is the limit point of this trajectory as ¢ — oo. For this reason we investigate
several numerical methods to integrate Eq. (3.8) efficiently. All methods have been

integrated in our inverse treatment planning system (Sec. 2.4.2).

As a benchmark a Runge-Kutta method®® with adaptive stepsize control is applied
to the integration of Eq. (3.8). A fractional error of five percents is set as a criterion
for the routine that evaluates the truncation error as a function of the step size. Thus
an accuracy of about five percent is sought for the values of the pencil beam weights
at termination. To select an optimal routine to solve Eq. (3.8) we compare the results
of several other integration schemes to those calculated by the Runge-Kutta method in
terms of computational efficiency and accuracy.

As a first integration scheme we employ Euler’s method. At the kth iteration a step
from Wi, tg to Wiy = Wi + AW, tg; = tr + hi is done by calculating the correction

Aw in the pencil beam weights as:
Aw = —hh VP(wy, tg). (3.11)

The step hj is accepted if P(wi + Aw,tr) < P(wg,t;) and hgy, is set equal to hi.
Otherwise, hi is reduced and the correction Aw in the pencil beam weights is recalculated
from Eq. (3.11). When Eq. (3.9) is integrated with that scheme, the negative components
of wj; are truncated to zero at each iteration step.

An alternative integration scheme arises after a linearization of Eq. (3.8) about the

current iteration point w. Using Taylor’s expansion of P(w,t) in the vicinity of wx(tz)
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we can write an approximation to Eq. (3.8) as

%v = —VP(wg, ) — V2P(wg, te)(W — W) (3.12)

where V2 P(wy, t;) is the Hessian of P(w,t) (a M by M symmetric matrix whose 7, jth
element is 5%23’;—,). We employ a slight modification of the method proposed by Brown
and Bartolomew-Biggs>?, which here we refer to as an approximate Hessian method. At
the Ath iteration a step from wy, ¢x to Wiy = Wi + Aw, tr 3 = ¢t + ki involves the

solution of the linear system :
[T+ he VEP(Wi, te)] AW = —hi V P(wy, ty), (3.13)

which follows from Eq. (3.12). In the equation above I stands for the identity matrix.
The step ki is accepted if P(wi + Aw,t;) < P(Wg,ti) and hgy; is set equal to Ay.
Otherwise, hj is reduced and the correction Aw in the pencil beam weights is recalculated
from Eq. (3.13). Due to the huge size of the Hessian V2 P(wy, t;) we approximate it by

a diagonal matrix A whose elements are those of the Hessian:

A = VuP(wkvtk) = zﬂ(tk) E = Z (Hp

s. '@ pes,
27'(tk) QT(tk (3.14)
S #HD) + § : 1
PET 1
DP<DT™ w'<0
DP>D?°’

Strictly speaking, the Hessian of P(w,t) is not a continuous function of the pencil beam
weights. However, this fact does not seem to be critical for the numerical implementation

of the method. When Eq. (3.9) is integrated with that scheme, the Hessian reads

Aii = VEP(Wi, i) = 2,;(@2? > (#Y) o2 > (HD)? @19

a nr
Sa PesS. Dpzze;';"'"

max
DP>DT

and the negative components of w4 are truncated to zero at each iteration step.
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Figure 3.1. Case A. A concave target and an organ at risk in a cylindrical
phantom. The diameter of the phantom is 30 cm. Seven coplanar 18 MV
photon beams are employed. The gantry angles are: 37°, 90°, 142°, 193°,
244°, 296°, 346°. Gantry angle is zero when the gantry is straight up. The
angles increase for counterclockwise rotation of the gantry as viewed from
the isocenter. The isocenter (cross) is placed in the center of the target
volume (in center-of-mass sense).

To adjust the integration step A for the Euler and the approximate Hessian method
we scale it by a constant positive factor o smaller than unity until the acceptance criteria
are met. As a consequence, all algorithms, themselves, establish the proper scale of the

integration step after a few iterations.

3.4 Method

3.4.1 Targets, Organs at Risk and Prescription Levels

Three different cases were investigated in this work. Case A is a simulated concave

target with an organ at risk in a cylindrical phantom (Fig. 3.1). It was used for the
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bladder o
e

Figure 3.2. Case B. Cancer of the prostate. Considered organs at risk
are the bladder and the rectum. In this particular case the PTV does not
overlap with the organs at risk.Nine coplanar 18 MV photon beams are
employed. The gantry angles are: 20°, 60°, 100°, 140°, 180°, 22(°, 260",
300°, 340°. The angles increase for counterclockwise rotation of the gantry
as viewed from the isocenter. The isocenter is placed in the center of the
target volume (in center-of-mass sense).

evaluation of the optimization algorithm. Case B is a clinical case of a prostate cancer
with organs at risk being the bladder and the rectum (Fig. 3.2). Case C represents a
target volume located in the head and neck region with organs at risk being the spinal
cord and the normal tissue stroma (Fig. 3.3). For both clinical cases the patient is in a
supine position with the head towards the gantry. For the clinical cases both the CPFM

and a standard inverse treatment planning technique® are employed. Since the problem
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Figure 3.3. Case C. Target in the head and neck region. The spinal cord
is the organ at risk. Five coplanar 18 MV photon beams are employed.
The gantry angles are: 0°, 73°, 145°, 218°, 290°. The angles increase for
counterclockwise rotation of the gantry as viewed from the isocenter. The
isocenter is placed in the center of the target volume (in center-of-mass

sense).

represented by Eq. (3.4) is a convex one, any minimization method will achieve the same
optimal solution. Thus particular selection of a minimization algorithm for Eq. (3.4) is
not crucial and several algorithms have been used with this model.® % 17 We applied the
scaled gradient projection algorithm* to solve the problem given by Eq. (3.4) because it
has been widely employed with conventional inverse treatment planning.%: 19- 26: 35 The
parameters used by the two techniques are listed in Table 3.1. For case B, the parameters
used by the standard technique have values typical for prostate cases.!®* 26 For case C,
the parameters used by the standard technique reflect the goal of delivering 66 Gy to
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Table 3.1 Relative minimum D™™ and maximum D™** prescription dose
levels used in the optimization by a standard inverse treatment planning
technique and the CPFM. The weights m, of the various structures are

also given.
Cases D™ /D™ /m,
Standard technique CPFM

A. Simulated
Tumour - 90/100/1
I. Organ at risk A1
2. Normal tissue stroma v Aldl

B. Prostate cancer
Tumour 100/100/1 95/100/1
1. Bladder .../85/1 R |
2. Rectum ...160/3 RWAWE)
3. Normal tissue stroma

C. Head and neck
Tumour 100/100/1 90/100/1
1. Spinal cord 16715 ot A5
2. Normal tissue stroma ../190/1 ) |

the planning target volume (PTV) while keeping the dose to the spinal cord below 44
Gy. The dose levels for the CPFM correspond to those achieved by uniform beams for

the same setup.

3.4.2 Pencil Beams

For the examples presented here 18 MV photon pencil beams were precalculated

before the optimization for the given beam setup, patient anatomy and dose calculation
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grid. The pencil beam weights map onto monitor units after multiplication by a factor
of 100 MU/Gy. The minimum and the maximum dose levels for the target volume are
specified in Gy and selected -as follows. The maximum dose DT%* to be delivered to
the target is chosen to be equal to the maximum target dose value delivered by uniform
beams of unit weight (100 MU). The minimum dose D?i" to be delivered to the target is
then calculated from the maximum dose DT%* given the target dose inhomogeneity that
can be tolerated. A two-dimensional optimization was performed for the simulated case
and fully three-dimensional optimizations were performed for the other cases. To speed
up the optimization, only pencil beams whose integral dose contribution to the target is
above a certain level (integral dose contribution to the target over the maximum dose
delivered by the pencil beam greater than 103) are retained for the optimization. The
weights of the remaining pencil beams are set to zero to prevent the irradiation of healthy
tissue. For the two-dimensional optimization of case A, slit irradiations were simulated
and only pencil beams in the plane of the phantom were retained. For case B the
dose-calculation grid used for optimization encompassed only the target and the critical
structures. The resulting beam intensities were consequently used for the calculation of
the dose distributions within the entire patient volume. The irradiation and pencil beam

parameters are given in Table 3.2.

3.5 Optimization Parameters

3.5.1 Integration Scheme Selection

To evaluate the performance of the integration schemes proposed in Sec. 3.3.2, we
applied them to perform inverse treatment planning on case A. The dose constraint was
to encompass the target by the ninety percent isodose line. The weighting functions
were selected as p(t) = 1 and 7(t) = exp (t). The initial pencil beam weights w(0)
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Table 3.2 Pencil beam parameters.

No. of No. of Pencil Grid size Voxel size (cm?)

Case beams  pencil beam (cm?)

beams  size (mm?)

A 7 153 5x5 124 x 124 x 1 0.25 x 0.25
B 9 572 5x10 40 x 69 x 28 0.25 x 0.25 x 0.51
C 5 848 5x5 52x58x21 0.30 x 0.30 x 0.30

have been set to zero for all optimizations reported in this paper to avoid unnecessary
irradiation of healthy tissues. This choice is not crucial since any solution of Eq. (3.5) is
a global minimum regardless of the starting point of the optimization. For all integration
schemes, the iterations were terminated as the value of the penalty term U(w) became
smaller than 2.5 x 10~% Gy?, which in this particular case indicated close conformity

with the constraints (Table 3.3).

The evolution of the cost function f(w) and the penalty term U(w) when the
Runge-Kutta method, the Euler method [Eq. (3.11)] and the approximate Hessian method
[Egs. (3.12) and (3.14)] are applied to the integration of Eq. (3.7) is shown in Fig. 3.4.
It suggests that the Euler and the Runge-Kutta schemes are equivalent. The cost function
trajectory of the approximate Hessian slightly departs from the other two ones, most
probably due to the approximation of the Hessian matrix [Eq. (3.14)]. Figure 3.5 suggests
the same conclusions when the Runge-Kutta method, the Euler method [Eq. (3.11)] and
the approximate Hessian method [Eqgs. (3.12) and (3.15)] are applied to the integration
of Eq. (3.9). Furthermore, all methods produce similar dose distributions (Fig. 3.6) and
Table 3.3) and intensity profiles (Fig. 3.7). Based on these data, we conclude that,
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Figure 3.4. Comparison of the Runge-Kutta method, the Fuler method
and the approximate Hessian method when the non-negativity constraints
are explicitly included in the penalty term U(w). (a) Penalty term U{w)
versus continuous penalty coefficient (t). (b) Cost function f(w) versus
continuous penalty coefficient 7(t).

for practical purposes, in terms of their solutions, all methods of numerical integration

considered in Sec. 3.3.2 are equivalent to the benchmark Runge-Kutta method.

However, in terms of their computational efficiency the integration schemes under

investigation differ significantly. Given N calculation voxels and M pencil beams, a
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Figure 3.5. Comparison of the Runge-Kutta method, the Euler method
and the approximate Hessian method when the non-negativity constraints
are implicitly accounted for by truncation of the negative pencil beam
weights at each iteration step. (a) Penalty term U (W) versus continuous
penalty coefficient T(t). (b) Cost function f(W) versus continuous penalty

coefficient T(t).

single dose calculation requires 2M NV floating point operations according to Eq. (3.1).

The number of floating point operations required for the calculations of either the gradient

or the approximate Hessian of P(w) is also in order of 2MN. The evaluation of
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(@) i }*’7 DTN @ X o NS
N

Figure 3.6. Isodose plots for the plans created by the various integration
routines. The dose distributions are normalized to the dose distribution
maxima. The 89% isodose line is the one that encompasses *:ic target ir -.-{
cases. The isodose lines below 59% do not conform to the target, which is
to be expected given its size, shape and the relative low number of beams
employed. (a)—(c) Runge-Kutta, Euler and approximate Hessian methods
when the non-negativity constraints are accounted for by a penalty term.
(d)—~(f) Runge-Kutta, Euler and approximate Hessian methods when the
non-negativity constraints are accounted for by truncation.
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Table 3.3 Dose statistics (rounded to 0.1%) for the plans created by the
various integration routines. The dose distributions are normalized to their
maxima. The non-negativity constraints are taken into account by a penalty
term (p) and truncation (1). The mean D, minimum D,,;, and maximum
Dmaz doses for each structure are given.

Method Tumor Critical structure Rest of anatomy
D Dnpn Dnez: D  Dmin Dmaz D Dmin Dias
Runge-Kutta? 942 895 99.0 388 156 679 31.7 00 1000
Euler® 939 894 986 387 153 680 31.7 00 100.0
Approx. Hessian® 950 900 1000 395 17.1 684 319 00 994
Runge-Kutta* 94.1 894 990 383 150 675 318 00 100.0
Euler 936 89.1 982 382 147 676 31.7 00 100.0

Approx. Hessian® 95.1 90.1 1000 393 163 688 323 00 995

P(w) itself requires few N floating point operations, an amount at least two orders
of magnitude smaller than that necessary for the evaluation of either the dose distribution
or the gradient V P(w). Therefore the total number of floating point operations needed
for the optimization can be roughly estimated as 2(my + my) M N where m, is the total
number of gradient and approximate Hessian evaluations and mg is the total number of
dose distribution calculations. Based on the above estimates and the results shown in
Table 3.4 we conclude that the approximate Hessian method outperforms the other ones
in terms of computational efficiency.  Furthermore, the time independent part of the
first term of the Hessian approximation [Eq. (3.15)] can be calculated only once, which

makes the method even more efficient.

The evaluation of the various integration methods strongly suggests the approximate

Hessian approach [Egs. (3.13), (3.15) and (3.9)] with negative pencil beam weights
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Figure 3.7. Overlaid intensity profiles (pencil beam weights X
100 MU/Gy) obtained by the considered methods of integration (listed
in Table 3.3). For each angle of incidence the profiles obtained by all
six methods (Table 3.3) are shown. The gantry angles are given in the

upper right corners.
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Table 3.4 The number of dose, gradient and Hessian evaluations for the
integration schemes under consideration. A common initial integration
step hg = 0.2 and a scaling factor a = 0.8 were used for all cases where

needed.
Evaluated quantity ' Number of evaluations
Runge-Kutta Euler Approx. Hessian
Non-negativity constraints included via penalty
Dose 4167 760 519
Hessian and/or Gradient 4167 737 1000
Negative pencil beam weights truncation

Dose 4403 768 502
Hessian and/or Gradient 4403 745 966

truncation as the method of choice. For this reason we have employed this method

for all our further investigations.

3.5.2 Weighting Functions

The requirements with respect to the weighting functions u(t), 7(¢) (Sec. 3.3.1)
allow considerable freedom in their selection. Theoretically, as long as x(t) and 7(t)
possess the desired properties, the limit points w(oo) of Eq. (3.8) represent a solution
of the inverse treatment planning problem. Therefore, asymptotically, the cost function
trajectory should converge to its minimum value. Figure 3.8(a) illustrates this point for
a particular selection of the weighting functions when the approximate Hessian method
was applied to perform inverse treatment planning on case A and the dose constraint
was to cover the target by the 90% isodose line. After reaching a maximum value of

8.53 Gy? the cost function starts decreasing at a very low rate. Such a behavior is to
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be expected, since, at large values of the penalty coefficient 7(¢), the algorithm corrects
the pencil beam weights by small amounts to avoid the large penalty that arises from
constraint violation.

In practice, the numerical integration of Eq. (3.8) is to be terminated at some point
t = T, at which the constraints are judged to be acceptably satisfied. In this case,
depending on the choice of the weighting functions, the values of the pencil beam weights
w(T) will be in different proximity of the actual solution w(oo). The set of different
weighting functions cannot be, of course, explored completely and an ad hoc choice is
to be made. To the best of our knowledge, the most extensive computational experience
with the continuous method for constrained optimization has been reported by Brown
and Bartholomew-Biggs.3? In their parametrization u(2) is set to unity and r(t) is set
to a quadratic function, namely 1 + t + ¢>. Besides this particular selection we also

investigated some other ones that have been used for continuous optimization.3?

Figure 3.8(b) illustrates the cost function trajectories resulting from the various
parameterizations under investigation when the approximate Hessian method was applied
to perform inverse treatment planning on case A and the dose constraint was to cover
the target by the 90% isodose line. As expected, the different parameterizations result in
different trajectories. We retained the solutions w(7') that resulted in penalty values
U(w) smaller than 1.5 x 1076 Gy®> (2.9 x 105 Gy? for the case of the quadratic
parameterization) in order to evaluate their proximity to the actual solution of the
constrained optimization problem [Eq. (3.5)]. However, even for case A, 153 variables
and 1900 dose constraints are involved, which would present a formidable task for most
of the available non-linear programming codes. For this reason, the active set algorithm
(Chapter 2) was applied to the minimization of the function Pr(w) = P(w,T) =
f(w)+exp (T)U(w), which had the largest cost function value for the selected constraint
violation (Fig. 3.8). Within the frame of the sequential unconstrained minimization
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exp (T') of the penalty term has a large value (Fig. 3.8). The pencil beam weights at
termination w(7') were used as a starting point of the minimization. The function value
was monitored and the minimization was terminated after few thousand iterations as the

termination criterion

Pr(wi) — Pr(wi-,)
PrtwD) <e (3.16)

was satisfied for € equal to 103. The comparison of the resulting plan (Fig. 3.9(b)) to

the plans produced by the different parameterizations (Fig. 3.9(a), (c) and (d)) suggests
that, for large values of the weighting function ratio 7(¢)/u(t), the parameterization
u(t) = 4, 7(t) = exp(t) produces pencil beam weights w(¢) that are in the closest
vicinity of the minimizer w*. This observation is further confirmed by inspection of the
dose statistics (Table 3.5), the cumulative dose histograms (Fig. 3.10) and some of the
intensity profiles (Fig. 3.11) for the plans created by the different parameterizations.

The parameterization u(t) = 4, 7(¢) = exp (¢) does not seem justified with respect to
the number of iterations (Table 3.5). However, for clinical cases, acceptable conformity
with the constraints is usually achieved when the penalty term is in the order of 10~
Gy? — 10 Gy? and a few hundred iterations suffice.

The quadratic parameterization which has been most extensively and successfully
used for continuous optimizatiou32 failed to produce as close conformity with the
constraints as the other parameterizations (Table 3.5) did becaus.e the approximate Hessian
scheme could not extend the integration of Eq. (3.9) for large enough values of the
penalty weighting function. Therefore, no definite conclusion can be drawn about the
proximity of the pencil beam weights w(¢) to the solution w(oco) for large values
of 1 + t + t2. Nevertheless, the plan produced by the quadratic parameterization
(Fig. 3.9(c)) is evaluated against the plan produced by the solution of the constrained
optimization problem (Fig. 3.9(b)) in terms of dose statistics (Table 3.5) and cumulative
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Figure 3.9. Isodose plots normalized to the dose distribution maximum
Jfor the plans created by the approximate Hessian method with different
combinations of weighting functions: (a) p(t) = 4, 7(t) = exp(t); (b)
u(t) = 1, 7(t) = exp(t) plus additional minimization; (c) p(t) = 1,
(1) = 1 +t+t2 @ pu(t) = 1, 7(t) = exp(t).
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Table 3.5 Number of iterations, penalty term U(w), cost function f(w),
dose statistics (rounded to 0.1%) and the ratios T(T') [ u(T') of the weighting
JSunctions for the plans created by the approximate Hessian method for three
different combinations of weighting functions. The dose distributions are
normalized to their maxima. The mean D, minimum Din and maximum
Dynar doses for each structure are given.

Iter. U(w) f(w) Tumor Critical structure ~ Rest of anatomy
x106 (Gy*] [(Gy'] D Dmin Dmar D Dmin Dmazr D  Dmin Dmaz
a) u(t) =4, 7(t) = exp(t), ta =0, 7(T)/u(T) = 62510
2800 <1.5 8.08 93.0 884 974 354 109 666319 0.0 100.0

b) u(t) =1, 7(t) = exp(t), to =0, 7(T)/u(T) = 59725
plus additional minimization
1.1 804 922 87.7 96.8 351 11.7 65.731.6 00 100.0

Out)=1,7() = 1+t+ 8, to =0, r(T)/u(T) = 9475
3625 29.0 747 924 868 974 317 81 625317 00 1000

d) p(t) =1, 7(t) = exp (1), tc = 0, 7(T)/u(T) = 59725
599 <15 847 950 905 99.7 39.6 158 68.932.1 00 1000

dose histograms (Fig. 3.10). These indexes as well as the similarity of the intensity
profiles (Fig. 3.11) imply that the quadratic parameterization could have produced a plan
close to that of the solution if large enough values of the penalty weighting function

had been achieved.

It is to be acknowledged that the utility of the various parameterizations may depend
on the treatment site. For this reason, in our applications of the CPFM to clinical cases,

we extend the optimization by a few iterations, applying the approximate Hessian method
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Figure 3.10. Cumulative dose histograms (dose-volume histograms) for
the target and the organ at risk (case A). Plots (a) to (d) correspond to the
dose distributions illustrated in Fig. 3.9, (a) to (d). The dose distributions
are normalized to their maxima.

[Eq. (3.13)] to the minimization of the function P(w,T) = 4f(w)+exp (T)U(w) where

T is the value of the parameter ¢ at the termination of the integration of Eq. (3.9).

3.6 Examples

In this section we apply the CPFM to two clinical cases and propose a procedure for
the optimization of the intensity modulation of the radiation beams when dose constraints
with respect to the organs at risk are to be satisfied. Dose-volume histograms (DVH) of
the target and the organs at risk (OAR) are used as a primary tool for presenting and

comparing dose distributions.
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Figure 3.11. Intensity profiles (pencil beam weights x 100 MU/Gy) of
two beams produced by the approximate Hessian method with different
combinations of weighting functions. Plots (a) to (d) correspond to the
combinations listed in Fig. 3.9, (a) to (d).

3.6.1 Prostate

Figure 3.12 illustrates DVHs for a family of plans produced by the CPFM for

increasing values of the ratio 7(¢)/u(t). The target dose uniformity gradually improves

at the expense of larger volumes of the rectum being raised to high dose levels. Such
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Figure 3.12. Dose-volume histograms for target and rectum volumes for
plans created by the CPFM for increasing values of the ratio (t)/u(t)
of the weighting functions. The dose distributions are normalized to their
respective maxima. The target dose uniformity ((maximum target dose —
minimum target dose) vs. minimum target dose) for the last plan is 9%
given a prescription of 5%.

behavior is expected and the use of a large weighting factor for the target as a mean
of improving dose homogeneity and conformation has been reported.3” 22 However, the
selection of the target weight has been a process of trial and error, whereas the CPFM
autonomously reaches the necessary target weight to achieve the specified target dose
and homogeneity.

Figure 3.13 compares a plan (plD) obtained by the CPFM for a large value of
7(t)/u(t) to the one obtained from pl@ after additional minimization. The iterations for
the latter minimization were terminated according to our stopping criterion [Eq. (3.16)]
with € = 103, The marginal improvement supports the utility of the selected parame-

terization.
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Figure 3.13. Dose-volume histograms for target, rectum and bladder
volumes. The dose distributions are normalized to their respective max-
ima. Dashed lines correspond to a plan (pl@) created by the CPFM
(r(T)/ u(T) = 1757, f(w(T)) =12.17 G2, U(w(T)) = 7.7 x 10~ G2,
202 iterations). Solid lines correspond to the plan obtained from plO after
additional minimization (71 iterations, at termination f(w) = 12.10 Gy?,
U(w) = 3.8 x 10~% Gy2).

Figure 3.14 illustrates dose distributions in few axial planes representative of a plan
obtained by the CPFM at a large value of 7(¢)/u(t). The dose distribution is normalized
to its maximum. The isodose lines from 90% down to 50% conform closely to the target.
In some planes, relatively large S0% hot spots develop near the skin outline (Fig. 3.14(b)).
Depending on the prescription dose and the spatial location of other OARs (e. g. femural
heads) these hot spots may not be acceptable. In this case, all the relevant organs at risk
are to be taken into account by their inclusion in the optimization.

A central question is the application of the CPFM to cases where some dose or dose-
volume constraints with respect to the organs at risk are to be satisfied. It is realistic

to expect that for certain target-dose homogeneity the solution provided by the CPFM
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Figure 3.14. Isodose plots for a plan produced by the CPFM
(r(T)/u(T) = 1737). The dose distribution is normalized to its maximum.
The 90%, 80%, 70%, 60%, 50%, 20% isodose lines are given. a) 20 mm
inferior to the isocenter plane. b) 15 mm inferior to the isocenter plane. c)
10 mm superior to the isocenter plane. d) 40 mm superior to the isocenter

plane.

may not be useful due to clinically unacceptable overdosage of healthy tissue. Since
one generally expects to achieve a larger level of healthy tissue sparing at the expense of
decreasing uniformity of the target dose a straightforward approach is to apply the method
with increasingly relaxed requirements for the target dose homogeneity (for instance 5%,

10%, 15%) and to compare the resulting plans.
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Another approach is based on the observation that the CPFM creates a family of plans
that present different compromises between target coveragc and normal tissue sparing
(Fig. 3.12). These plans can be stored for a planneri’s consideration. Furthermore, the
conformity with certain dose and dose-volume constraints can be automatically examined
at each iteration step. The last plan in the integration sequence that is still acceptable
can be kept for a physician’s consideration. If the ratio 7(7)/u(T) at termination is
not large, further minimization of the function P(w.T) = 4f(w) + exp (T)U(w) can
improve the plan since at this point the current estimate of the pencil beam weights w(T')
can be significantly different from the minimizer of the function P(w,7T). The pencil

beam weights w(7") are to be used as a starting point of the minimization.

Figure 3.15 illustrates such a sequential procedure. The plan obtained by the CPFM
for a large value of 7(t)/u(t) delivers the target dose within 9% uniformity but a larger
volume of the rectum is raised to high dose levels in comparison to the plan obtained
by the standard inverse treatment technique (Fig. 3.15(a)). We assume that this plan is
clinically acceptable for illustrative purposes only. In fact, even though the parameters for
the standard inverse treatment planning technique have values typical for prostate cases'”
this plan may not be optimal for our particular case due to differences in the organ and
cost function definitions. From the family of plans created by the CPFM for increasing
values of 7(¢)/u(t) (Fig. 3.12) the one that produces rectum DVH close to that given by
the standard technique is used for additional minimization (Fig. 3.15(b)). The resulting
plan (Fig. 3.15(c)) improves both the target dose homogeneity and the sparing of the
rectum. Figure 3.15(d) illustrates that a plan similar to that produced by the sequential
procedure discussed above can be of course directly obtained by the CPFM under relaxed
dose constraints. We emphasize this fact, since the sequential procedure can sometimes
degrade either the target dose homogeneity or the sparing of the critical structures. In
these cases the CPFM should be reapplied with relaxed constraints on the target dose.
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Figure 3.15. Dose-volume histograms for target and rectum volumes for
plans produced by: (a) the standard inverse treatment planning technique
(e = 1073, 89 iterations) and the CPFM for a large ratio 7(t)/u(t);
(b) the standard inverse treatment planning technique and the CPFM
when the dose-volume histograms for the rectum are almost identical;
(c) the CPFM as in (b) and additional optimization (¢ = 5.0 x 1073,
66 iterations) of the plan created by the CPFM; (d) the CPFM with
relaxed target-dose constraints ((T)[/u(T) = 5124, f(w(T)) = 9.01 Gy°,
U(w(T)) = 2.3 x 10~% Gy?, 282 iterations) and a sequential procedure as
in (c). All plans are normalized to have nominal 100% delivered to 95%
of the target volume.
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Figure 3.16. Dose-volume histograms for target and spinal cord volumes
for plans created for increasing values of the ratio v(t)/u(t) of the weight-
ing functions. The dose distributions are normalized to their respective
maxima. The target dose uniformity ((maximum target dose — minimum
target dose) vs. minimum target dose) for the last plan is 12% given a
prescription of 10%.

3.6.2 Head and Neck

Figure 3.16 illustrates DVHs for a family of plans produced by the CPFM for
increasing values of the ratio 7(t)/u(t). As for the prostate case the target dose
uniformity gradually improves at the expense of larger volumes of the spinal cord being
raised to high dose levels. However, for this case the slight improvements of the target
dose homogeneity are associated with significant differences in the irradiation of the

organ at risk (Fig. 3.16) contrary to what is observed for the prostate case (Fig. 3.12).
Figure 3.16 further illustrates that for large enough values of 7(¢)/u(t) the target is

enclosed by the 80% isodose surface but the maximum of the dose distributions is not

in the PTV. Therefore, if one prescribes to the 80% isodose surface some Hot Spots>8
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Figure 3.17. Isodose plots for a plan produced by the CPFM
(7(T)/p(T) = 4020) in few axial planes. The dose distribution is
normalized to its maximum. The 95%, 90, 80%, 70%, 60%, 50%, 30%
isodose lines are given. a) 6 mm inferior to the isocenter plane. b)
isocenter plane. c) 3 mm superior to the isocenter plane. d) 18 mm
superior to the isocenter plane.

exist outside the PTV. However the Hot Spots above 90% and 95% are found to be very
small and in the immediate vicinity of the PTV (Fig. 3.17).
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Figure 3.18. Dose-volume histograms for target and spinal cord volumes
for plans created by the CPFM and the standard inverse treatment planning
technique. All plans are normalized to deliver 66 Gy to the ICRU Reference
Point coinciding with the isocenter. The prescription level is indicated by
the vertical line. The CPFM required 86 iterations to achieve a weighting
function ratio T(t)[u(t) of 4020 and 337 iterations to increase that ratio
to 18254. The standard inverse treatment planning technique required 290
iterations to achieve termination (e = 1.0 x 1073).

Figure 3.18 compares the plans obtained by the CPFM for two values of the ratio
7(t)/u(t) to the plan obtained by the standard inverse treatment planning technique. As
for the prostate case a plan similar to that produced by the standard inverse treatment
technique could be selected from the sequence created by the CPFM. A few additional
iterations did not improve the plan which was to be expected given the relatively
large value of the weighting function ratio (7(¢)/u(t) = 4020). The CPFM plan for
7(t)/p(t) = 18254 delivers the target dose within 4% to +10% of the prescription
dose and keeps the dose to the spinal cord below 44 Gy. However, this plan may

not be necessarily the optimal one, since, in comparison with the other two plans, the
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improvement in the target dose homogeneity can be considered marginal whereas the
increase in the delivered dose to the spinal cord is substantial. The above observation is
immediately related to the inherent limitations of the dose-based objectives for treatment
planning optimization (Sec. 3.7.2).

The CPU time per iteration was 6 min 30 s for case B and 8 min for case C on a
Sun SPARC 4 computer. Thus the overall calculation times were large: 22 hrs for case
B and 45 hrs for case C despite the modest number of iterations required by the CPFM
for both cases. One can expect a decrease in the computational time of 5 to 10 times
if the optimization is performed on a high-end computer along with a more efficient

dose-calculation scheme.

3.7 Discussion and Conclusions

3.7.1 The Continuous Penalty Function Method

Several investigators have suggested that any clinically relevant optimization
technique should be able to impose some dose, dose-volume and/or TCP/NTCP
constraints3® 40- 19 on the relevant anatomical structures and target volumes. The existing
algorithms for treatment planning optimization by beam intensity modulation through
objective function minimization account for the dose constraints by the inclusion of a
fixed weight penalty term. Thus constraint violations are penalized but close conformity
with the constraints is not guaranteed at the conclusion of the optimization.

We introduce the CPFM to treat explicitly the treatment planning optimization
as a constrained minimization problem. The method is a simple generalization of
gradient-based iterative techniques for inverse treatment planning that use fixed weighting
coefficients. The only additional detail is that the CPFM changes the weights from

iteration to iteration in a simple, predefined manner. Given that the objective and the

3-42



CHAPTER 3 A Continuous Penalty Function Method for Inverse Treatment Planning

penalty are convex functions of the variables of the optimization,?8: 29 the CPFM finds
a solution that approximately minimizes the objective function and closely conforms to
the constraints. The method performs this task with the same order of iterations as the
conventional method. The latter property is very important if realistic clinical plans are to
be optimized in tolerable time limits. Furthermore, numerical experience has shown that
the CPFM can perform successfully on other types of objective functions as well.32 41
Therefore, the rationale exists for further investigation of the utility of the CPFM for
inverse treatment planning when objectives and constraints different from the ones used in
the work presented here are used. For instance, the TCP can be specified as an objective
function while the constraints require that the NTCPs for the organs at risk be below
some specified levels. For this problem the Euler integration scheme is to be used since
the calculation of the approximate Hessian of biological functions is a computationally
intensive process. Since only few non-trivial constraints are involved in the constrained
optimization of biological indexes, such a problem may be also manageable by the
available high-accuracy codes for constrained non-linear optimization despite the large
number of variables to be optimized. However, the CPFM may be a viable method to
tackle the complexity and the scale of the optimization of the beam intensity modulation

when both dose and biological constraints and objectives are involved.

3.7.2 Objective Functions and Multiple Objective Optimization

In the work presented here the CPFM is applied to a least-square dose objective
of matching zero-dose level to healthy tissues subject to dose constraints with respect
to the target volume. The purpose of this statement is twofold. First, we redefine the
inverse treatment planning problem based on a least-square objective as a constrained
minimization problem to avoid unacceptable underdosage of the target volume, which is

often the case for the least-square objective.22-24 Furthermore, this formulation performs
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some form of feasibility study of the minimum dose levels achievable beyond the extent
of the target volume since the method attempts to minimize the dose outside the target
as much as possible (given the necessary target coverage). Second, the particular
definition of the objective and the constraints ensures the applicability of the CPFM
to the constrained optimization problem. In strict mathematical terms, similar to other
penalty function methods, solution of the constraint optimization problem is achieved by
the CPFM at the asymptotic limit. However, a few hundred iterations is sufficient to
achieve dose conformity of 2—4% with respect to the prescriptions (Figs. 3.12 and 3.16,
respectively). Better conformity can be achieved with greater number of iterations. With
the conventional technique, a greater number of iterations will improve the accuracy
of the solution. However, if that solution itself does not provide the necessary target
coverage, additional number of iterations will still result in unacceptable underdosage of

the target volume.?224

Other dose-based objectives can be conceived as well. For instance, the integral dose
to healthy tissues can be used as a linear objective under the same dose constraints to
the target and the CPFM can be applied with the Euler integration scheme to search
for a solution that minimizes the objective. It has to be acknowledged, however,
that any inverse treatment planning based solely on dose objectives and constraints is
limited since dose-volume and radiobiological effects are not taken into account. In
principal, objective functions based on models of TCP and NTCPs are more relevant
than physical objectives since these models provide quantitative biophysical measure of
dose distributions. However, optimization based solely on models of TCP and NTCP is
currently being discouraged because the validity and predictive power of these models

has not yet been proven clinically.4?

Given the current status of the radiobiological models, the radiotherapy treatment
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planning is inherently a multiple objective optimization problem.*> Several objectives
expressed in terms of dose statistics, dose-volume histograms, and estimates of TCP
and NTCP are to be simultaneously optimized. A clinical decision is based on a
score that combines these incompatible objectives. However, currently there is not a
unanimously accepted mathematical representation of this score since it is difficult to
capture the clinical judgement about the relative importance of each component of the
score.’® ** Thus the utility function that combines the individual objectives is not yet
known and the optimal plan selection requires significant computer-human interaction.
Some characteristics of the inverse treatment planning approach presented here facilitate
the semi-interactive process of optimal plan selection. First, the technique creates a
sequence of plans with a well-defined asymptotic point. These plans present different
compromises between target coverage and healthy tissue sparing that can be kept for
clinical consideration. Second, the sequential approach autonomously suggests the target
importance factor that may relate the minimization of the resulting square objective to a
clinically relevant optimization. Third, compared to other techniques based on physical
objectives, fewer dose specifications are required. Preferences with respect to various
organs can be accounted for by assigning different importance weighting factors. Within
the framework of CPFM, such assignments do not result in target underdosage since the
penalty term weighting coefficient increases comstantly thus asymptotically forcing the

dose constraints [Eq. (3.7)].

To summarize, a continuous penalty function method is introduced as a tool to
find approximate solutions of the large-scale constrained minimization problems that are
encountered in the process of treatment planning optimization. The method is applied
to an alternative formulation of the inverse treattnent planning problem that obviates the
need of dose specifications that may not be feasible. Several features of the resulting

technique demonstrated on clinical examples suggest that it can be a viable alternative
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4.1 Introduction

The geometric accuracy of the patient setup is an important factor for the successful
accomplishment of external-beam radiotherapy. The verification process is concerned
with two major components: (i) the shape, the size and the orientation of the prescribed
radiation fields themselves and (ii) the correct positioning of the patient anatomy with
respect to the radiation fields. The former problem has been solved to a large extent
by a number of robust algorithms which automatically extract the radiation field mask
(or edges) from the portal images'~?, analyze it and report errors in the field shape and

size.>» 69

Different approaches have been developed for the registration of portal images to
simulator (conventional or CT) images in order to quantify the displacement of the
anatomy under the radiation field. These include manual point matching!®, semiautomatic
point matching!!: 12, curve matching,'3 as well as much more automated techniques based
on the extraction of bone edges in the portal images™ 3 416 and consequent chamfer
matching® or image correlation.? These approaches as well as the emerging techniques
for automatic three-dimensional verification of the patient setup'® rely heavily on the
extraction (either interactive or automatic) of anatomical features. This is a difficult task
due to the low inherent contrast of portal images and the lack of a priori knowledge
about the image content due to the inter-patient and treatment site variability (for the
case of automatic extraction). Automatic extraction techniques require extensive testing
and tuning of various edge detection and morphological operators as well as threshold
levels.!* However, the selection of these parameters is based on a cohort of patients and

therefore it does not adapt from patient to patient.

In a different, two-stage approach to the anatomy matching, the portal image from the

first treatment is registered interactively to a simulator image, thus producing a reference

4.2



CHAPTER 4 A Gray-Level Image Correlation Algorithm for Anatomy Registration

portal image and the images acquired during subsequent treatments are registered to the
new reference image. For this case correlation of subimages from the reference image
with a portal image can be done for anatomy matching.!!: !7- 18 The advantages of this
approach are that no feature extraction is necessary and the algorithms are not model
based. However, the cross-correlation operator is not rotationally invariant and previous
methods have used it to identify only translations.!” !' The cross-correlation approach
is also computationally extensive. The fast Fourier transform (FFT) implementation!’ of
the normalized cross-correlation was shown to improve the speed significantly, but not
sufficiently to include transformations other than translations. In another approach, Rad-
cliffe er al.,'® applied Monte Carlo techniques to the calculation of the cross-correlation
integral, which decreased the computational time and allowed the search space of the
geometric transformations between the images to include also rotation and magnification.
However, the number of samples required for satisfactory performance may varies with
the anatomical site used for matching, thus forcing the use of a high number of samples

which in turn impedes the speed of the registration algorithm.

In this chapter we present an approach which, in addition to the quantification of
translations, incorporates in-plane rotation search in a correlation based algorithm. Since
the reliability of the matching depends on the size, the shape and the contrast of the
subimages used for correlation we have adopted a full calculation of the cross-correlation
integral rather than its sampling through Monte Carlo techniques. The pursuit for a higher
speed is done by what can be called sequential matching and a FFT implementation of the
cross-correlation operators (normalized cross correlation and Pearson’s linear correlation
coefficient). The feasibility of this approach to the automatic registration of portal images
and the automatic registration of portal images to digitally reconstructed radiographs
(DRRs) is investigated.
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4.2 Materials and Methods

4.2.1 Megavoltage DRRs

To test the performance of the algorithm and study the feasibility of portal-to-
DRR registration a CT data set of 62 slices (PQ2000; Picker Int., Cleveland, OH)
of a humanoid skull phantom (Nuclear Associate, Carle Place, NY, 11514-0349) with
placed radiopaque fiducial markers (radiopaque catheter, 1 x 1 mm?) was acquired.
The settings were: 130 kVp, 24 cm field of view (pixel size=0.47 mm), 3 mm slice
thickness, O gap. A lateral portal image of the phantom was taken with a 10 MV photon
beam (Clinac 18, Varian Associates, Palo Alto, CA). For the portal image lead squares
(4 x 4 x 1.5 mm3) were placed on the skull with their inner top corners located at the
positions of the radiopaque fiducial markers described above. The source-to-isocenter dis-
tance was 100.0 cm and source-to-film distance was 124.9 cm. The image was digitized
to 14 bits, 0.43 mm pixels with a Du Pont LINX FD-2000 laser digitizer, and cropped to
512 x 512 pixels and processed with a 3 x 3 smoothing filter to decrease the noise. To
ensure that the phantom was aligned properly to avoid out-of-plane rotations we aligned
the markers placed on the phantom with the CT laser localizers and then with the laser
localizers in the treatment room. Megavoltage DRRs to be used as reference images for
registration were simulated by modifying the original 3D CT data set in the following

manner:

L The spectrum of the bremsstrahlung radiation for 10 MV was determined by the
EGS4 Monte Carlo code.!%: 20

II. The linear attenuation coefficients of some tissue substitutes (lung, fat, muscle,
bone) of known composition were calculated from the available data for the photon

cross sections of the constituents?! and the radiation spectrum. The CT numbers
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Figure 4.1. Top right : megavoltage DRR with a selected reference
subimage (large window) and the features for matching (small windows).
The sphenoid is enclosed by the top small window and the Petrous bone
(ear) is enclosed by the small central window. Top left : the portal image
of the skull phantom with the anatomy displaced with respect to reference
one (10 mm, —6 deg). The search subimage is shown by the large
window. Bottom right : the difference image before the registration. The
improper cancelation of bony structures is conspicuous. Bottom left : the
difference image after the registration. The transformation parameters are :
a = —25 pixels, b=-4 pixels, a = 6.2 deg, Aa = 0 pixels, Ab = —2 pixels.
The images are normalized for visualization.
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of the materials were then measured and a calibration curve of linear attenuation

coefficient versus CT number was built.

III. The CT data were then mapped onto linear attenuation coefficients at 10 MV and
DRRs simulated by raytracing and trilinear interpolation.2? 2. The parameters for

the raytracing were the ones used for the acquisition of the portal image.

IV. The portal-film dose response, and the calibration of the film digitizing system
were finally used to modify the DRRs to simulate the effects introduced on the
portal image by the portal film and the digitizing system. The average gray level
value in the open portion of the field was used as a reference for the determination

of the entrance fluence.

The above procedure considers only the effect of primary radiation on the image forma-
tion. In order to account partially for scatter, Dong and Boyer?* 25 suggested to match
the intensity histogram of the reference DRR to that of the one of the portal image.
However, such an approach is not very robust for it implicitly relies on the notion of
nearly registered images.?® For this reason in our investigations we used the primary

DRRs which are computed on sound physical basis.

The portal image was manually registered to a zero-displacement DRR by point
matching (top inner corners of the lead markers (Fig. 4.1, top left) to provide a registration
point for quantifying the results of the algorithm. The root-mean square (RMS) difference
between the known positions of the fiducial markers and the ones given by the registration
algorithm was used for this purpose. The fiducial markers were barely discernible on
the megavoltage DRR (see Fig. 4.1, top right). For this reason their positions were
determined from a DRR with a diagnostic quality, simulated with the same parameters

as the zero-displacement megavoltage one.
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4.2.2 Portal Images

Another set of five lateral portal images of the same phantom was acquired with the
same treatment machine to test the portal-to-portal registration. The phantom was kept
stationary with respect to the treatment coach. Translations were simulated by moving
the treatment coach and in-plane rotations by rotating the collimator of the Clinacl8.
The source-to-film distance in this case was 126.4 cm. Four images were taken with
I Monitor Unit (1.05 cGy/MU with isocenter setup) and one with 2 MU to investigate
the sensitivity of the different cross-correlation operators to scale and shift transformations
of the intensity of the images. These were digitized with the same system as above and
the radiation fields were registered with the automatic extraction and matching algorithm
available at our institution.® The images were then cropped to the size of the radiation
fields-512 x 540 pixels. After this procedure one is presented with images of shifted and
rotated anatomy with respect to the common reference frame established by the registered
radiation field masks (Fig. 4.2). We used the results from the field matching as a gold
standard for the angles of rotation as given by the anatomy matching algorithm.

To get some insight in the utility of our approach for clinical purposes we also
applied our algorithm to the registration of a pair of clinical portal images obtained in
our institution (Fig. 4.3). These were digitized as above and cropped to 512 x 512 pixels.

The algorithm is developed and tested as a MATLAB script (The Mathworks,
Inc., Natick, MA 01760), which reduced the time devoted to technicalities of the
implementation. MATLAB was running on a DEC 3000-M300 computer.

4.3 Registration algorithm

4.3.1 Cost Function

To register a pair of portal images we propose to determine the in-plane translations
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Figure 4.2. Top right : a portal image taken at 1 MU with a selected
reference subimage (large window) and a feature for matching (small
window). Top left : the portal image taken at 2 MU. The windows represent
search regions of decreasing size. In the different windows the position
of the searched feature with respect to the axis of rotation going through
the center of the corresponding search window is different. However, the
dependence of the maximum correlation coefficient on the angle of rotation
remains the same (see text). Bottom right : the difference image after the
first (translational) stage of the registration. The improper cancelation of
bony structures is conspicuous. Bottom left : the difference image afier
the second stage of the registration. The images are normalized for

visualization.
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Figure 4.3. Top left : a lateral image of a patient’s head, used as a
reference one with a selected feature for matching (small window) within
a reference subimage (large window). Top right : a lateral image of
the patient’s head taken in another treatment session. The window
represents the search subimage. Bottom right : the difference image
after the first translational and rotational alignment. Bottom left : the
difference image after the final fine translational alignment. The improved
cancelation of bony structures under the radiation field due to the last
fine adjustment is clearly visible. The transformation parameters are :
a = 44 pixels, b=25 pixels, o = 1.7 deg, Aa = —3 pixels, Ab = —2 pixels.
Note that the field adjustment (indicated by the arrow) suggested by
the physician is easily identifiable after the anatomy registration (top
left, bottom left).
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Figure 4.4. The algorithm employs a search mask w(z,y) taken from the
reference image g(z,y) and searches for the location of the minimum of
a cost function among the rotated versions fo(z,y) of the search window

f(z,y).

T(7) and rotation R(a) which maximize the value of the cross-correlation integral
between a subimage within the reference image (a template) and a search image. Since
the maximum correlation value within the distribution decreases as the angle of rotation
between the template and the search image increases,?’ a cost function can be established

to evaluate their alignment.

Let g(z,y) be the reference image of the patient in the correct treatrent position.
Let w(z,y) be a search mask of size J x K within the reference image (Fig. 4.4). The
search mask encloses a feature to be matched with the same feature in the search window
f(z,y) of size M x N larger than J x K. The search window includes the feature and
other anatomical structures which may have been shifted and/or rotated with respect to

their correct positions reflected in the reference image g{(z,y). Let fo(z,y) be a test
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image obtained from f(z,y) after rotation at an angle a around the center of f(z,y), @
be the average intensity of the mask, and let f,(z,y) be the average value of f,(z,y) in
the region coincident with w(z,y). Then, for each position (m,n) within the test image a
cost function measuring the similarity between w(z, y) and the region of f,(z,y) under
the search mask can be calculated. We considered two cost functions: the first one,

Lp(fa,w) being the negative of the Pearson’s linear correlation coefficient?® (PCC),
L2 (farw) = —ro(m,n)

;zy: [fa('r’y) - fa(‘rvy)] [u’(z -—m,y — Tl) - 'IJ]

o JE T et~y ) —of zz (fa(z9) — Falz )]
@1

and the second one, L x(fa,w) being the negative of the normalized cross-correlation®®

(NCC),

z

LT (fa,w) = —Ca(m,n) = - ——0t .
" [ z—m,y—n)\/iz:gfs(z,y)

In the above expressions all the quantities are to be calculated for the common region of

“4.2)

22 fa(z.y)u(z —m,y —n)
y

w(z,y) and fqo(z,y) at each test location (m,n). The NCC [Eq. (4.2)] is invariant under
scaling of the image intensities, g(z,y) — C1 x g(z,y), whereas the PCC [Eq. (4.1)] is
invariant under a more general transformation, g(z,y) — C; X g{(z,y) + C2, including
both scaling and shift of the image intensities. In the above expressions C; and C> are
constants. Therefore the PCC is expected to be more robust for applications where the
images to be registered have undergone some intensity changes due to different dose rate
and detector response.

It has been shown that the NCC can be implemented through FFT-based cross-
correlations!”? which increases the speed significantly due to the efficiency of the fast

Fourier transform algorithms.?8: 39 The FFT-implementation of the NCC we use is that
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given by Jones and Boyer.!” In the Appendix we demonstrate that the PCC can also
be implemented by FFT-based cross-correlations, which, to our knowledge, has not been

reported previously.

A few more words are to be said concerning the approach to the incorporaticn of
in-plane rotations. Clearly, the test image f,(z,y) must not be cropped to the size of the
initial search image f(r,y). Otherwise there could be cases in which the maximum of
the correlation integral is not produced at the correct location, because after the rotation,
the feature to be matched has been partially cropped in the test image f,(z.y), even

though it has been fully included in the initial search image f(z,y).

Also in this approach, if the feature under the search mask is not fully included in
the search image f(z,y), the correlation value at the correct location will drop because
an artificial edge in f,(z,y) has been matched. For this reason the feature to be matched
is usually chosen at the center of the reference image thus maximizing the probability
that it will be found within the search area during the registration. In this case a drop
of the maximum correlation value below a properly established threshold will indicate
that the feature to be located is not entirely included in the search image and a gross

deviation in the patient setup has occurred.

To summarize, the registration parameters are given as follows. The angle of rotation
a is the one at which the minimum of the cost function(s) [Eq. (4.1) and (4.2)] occurs.
The translation vector  is determined as ¥ = (M, 7) 2zimum — (1) enter» Where
(M, n) mazimum 1S the location of the correlation peak and (m,n),,,,., is the expected

position of the center of the search mask after the rotation. Therefore, to register the

images one rotates the search image at an angle a and afterwards translates it by ~7.
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4.3.2 Cost Function Minimization

The cost functions [Eq. (4.1) and (4.2)] have to be minimized with respect to
(m,n,a) to obtain the transformation parameters, which in the general case may be
amenable only to procedures such as Fast Simulated Annealing and Genetic Algorithms>!
which search the parameter space thoroughly in order to guarantee convergence to the
absolute minimum. However, the amount of iterations involved makes such an approach
impractical. We propose another approach, based on the observed properties of the cost

functions.

For the range of rotations which is likely to occur clinically (—10° < a < 10°) an
investigation of the properties of the NCC'” has shown that the maximum value within
the correlation distribution maz(¢(fa,w)) [Eq. (4.1)] is a unimodal, convex function of
the angle of rotation with a maximum corresponding to the proper rotational alignment
of the search image and the search mask. This also holds true for the case of the PCC,
illustrated in Fig. 4.5. In fact the above observation holds true for in-plane rotations
up to 15 deg. Therefore, the minimization of the cost functions [Eq. (4.1) and (4.2)] can

be done efficiently as follows:

L at a trial angle o the maximum value within the correlation distribution
maz(c(fo,w)) [Eq. (4.1)] or maz(r(fa,w)) [Eq. (4.2)] and its pixel coordi-
nates (m,n) are found by a sorting algorithm.

II. the negative of the maximum is assigned to be the value of a restricted cost
function, L(a) at the trial angle a.

HI. the cost function is then minimized by Brent’s method in one dimension32, which
is in fact golden section search, but with improved convergence when the function
has continuous second order derivative, which, as shown in Fig .4.5, seems to be

the case for L(a). Due to the smoothness of L(a) and the interpolation used by
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Figure 4.5. A plot of the negative of the maximum correlation value of the
correlation distribution as a function of the angle of rotation of the search
windows in Fig. 4.2. The images are rotated with respect to each other at
5.8 deg. Even though the relative position of the mask with respect to the
center of rotation is different, the plots are identical since for all the cases
the search mask is entirely within the search window.

Brent’s method, the improvement in the accuracy of the search below some value
of the user supplied rotational angle tolerance is marginal. We set this tolerance
to 1 deg because it resulted in registration of no more than 0.06 deg rotation for

identical images, which we considered sufficiently accurate.

4.3.3 Sequential Search

The amount of computations involved in the algorithm outlined above depends on

the size of the search mask and the search window as well as the range of the angle of
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rotation to be explored. However, saving computational time at the expense of decreased
size of the search window and the search mask will decrease the degree of automation
of the algorithm and affect the uniqueness of the feature to be matched.

It has been shown!”!'! that for a certain range of in-plane rotations
(—15° < a < 15%), the maximum of the correlations value does not shift signifi-
cantly (*35pixels) from its correct position given by the coordinates of the center of
the mask after the rotation. The reason is that for a 64 x 64 pixel search mask the
average pixel is displaced 16 pixels from the center, and after a rotation of 10 to 15
deg it is shifted by 3 to 4 pixels. This gives rise to the uncertainty in the position of
the correlation maximum discussed above.

Therefore, the approximate position of the search mask within the search window can
be determined as a preliminary step by a cross-correlation (NCC or PCC) of the search
mask and the search window. Then a smaller search window centered at the approximate
position of the search mask is selected and the search algorithm described in Sec. 4.3.2
is initiated. A diagram of the sequential implementation of the algorithm is given in
Fig. 4.6. It gives the angle of rotation, and after the rotation, the fine adjustments
of the translations. To avoid the problems described in Sec. 4.3.1, the size of the new
search window is calculated from the size of the search mask as shown in Fig. 4.7. At
this stage the cross-correlaton integral is computed in the spatial domain, which is faster
given the size of the search mask (we used a 64 x 64 search mask). The importance of

the final adjustment of the translations is clearly demonstrated in Fig. 4.3.

4.4 Results

4.4.1 Algorithm Performance

To evaluate the performance of the algorithm itself we simulated 28 DRRs with
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Calculate the correlation measure (PCC or NCC)
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Find the position of the correlation maximum (m.n)

v
Calculate the initial translation parameters (a.5)
(ab)=-(mn)_ . +(mn)

y

Select a smaller search window f(x.y)
centered at (m.n)m

(ab)

Sy} w(x.y)
v
Minimize by Brent’s method in one dimension
the restricted cost function L(a)

v

Find the position (m’,n’),,, of the correlation maximum .
at the angle that minimizes L(a) '

v

Output :
the angle @ that minimizes L(a) ;
. the translation vector (Ag, Ab) =-(m',n’)  + (m,n) . ;

a, (Aa, Ab)
v
Register :
1. Translate the search image by (a,5); ——
2. Rotate it by a around (m.n) _;
3. Translate it by (Aa, Ab);

[ —m e

Figure 4.6. Sequential search of the transformation parameters. The
initial translational parameters (a,b) are calculated from the position of
the maximum of the correlation distribution (m,n), .. and its expected
position in the reference window (m,n)_,,,.. The expected position coincides
with the position of the center of the mask in the reference window. The
fine adjustment of the translational parameters (Aa, Ab) is done after the

rotation by the angle a.
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w(x,y}

Figure 4.7. Arrangement for selecting the size of the smaller search
window f'(z,y). The size of the margin is selected to be 8 pixels, twice as
large as the displacement of the correlation maximum observed at 15 deg.!’

the anatomy shifted 0 mm, S mm, 10 mm, 15mm and rotated from -9 deg to +9 deg
in steps of 3 deg. These images served as reference ones for the registration of the
zero-displacement DRR. We used three different 256 x 256 reference/search windows
with 64 x 64 search masks always placed at the center of the reference window, thus
simulating 84 different cases for the algorithm. The range of the angle of rotation
was set to 710 deg. For all the subsequent experiments no histogram modifications
(normalization, etc.) were done on the images. For all results presented below, the z
axis runs horizontally from right to left, the y from top down and the rotational angle

increases in clockwise direction.

At this stage there was no significant difference in the performance of the algorithm

because of the different cost functions. The images were aligned to 0.3 deg on average,
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with maximum misalignment of 0.7 deg. The average RMS difference between the
known positions of the fiducial markers and the ones given by the registration algorithm
(Sec. 4.2.1) was 2.8 pixels and the maximum was 9.4 pixels, corresponding to 1 mm and
3 mm at the isocenter plane, respectively. Although the different DRRs were simulated
by changing the geometry of the raytracing, the maximum correlation values were very
high, above 0.994 for the PCC and above 0.9999 for the NCC, indicative of virtually
identical images. The maximum translational shift given by the algorithm at the final
stage was 4 pixels, which justifies our sequential approach. An interesting observation is
the fact that even though the slice thickness was 3 mm along the simulated translations,

alignment down to 1 mm was possible, due to the divergent beam geometry.

The average times taken by the algorithm are 1 min with the NCC cost function and
1.25 min with the PCC cost function compared to 15 min (NCC) and 20 min (PCC)

with no sequential approach.

4.4.2 Portal-DRR Registration

To test the feasibility of automatic portal-to-DRR registration, we repeated the above
experiments, using the same search masks and search windows, but with the portal
image of the skull (Sec. 4.2.1) as a search image, instead of the zero-displacement DRR
(Fig. 4.1). Since the portal image was registered to the zero-displacement DRR the true
transformation parameters were known. The algorithm performed successfully only with
the PCC as a cost function and only for two of the selected three features for matching-
the sphenoid and Petrous bone (ear). The typical maximum correlation values were
0.86 and 0.83 respectively, reflecting the different degrees of similarity obtained in the
simulation of the DRRs. The average error in the rotational angle was 0.9 deg with a
maximum misalignment of 2.2 deg (Fig. 4.8). The average RMS difference between the

known positions of the fiducial markers and the ones given by the registration algorithm

4-18



CHAPTER 4 A Gray-Level Image Correlation Algorithm for Anatomy Registration

16
14 =
12 -

Frequency

H | i | [ i |
3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0
Deviation from the correct rotational angle (deg)

Figure 4.8. Frequency distribution of the difference between the correct
rotational angle and the one given by the registration algorithm, evaluated
Jrom 56 cases. They correspond to shifts of 0 mm to 15 mm in step of 5
mm, rotations from -9 deg to 9 deg in step of 3 deg, and 2 different features
to be matched.

(Sec. 4.2.1) was 4.2 pixels and the maximum was 10.3 pixels, corresponding to 1.5 mm
and 3.3 mm, respectively, at the isocenter plane (Fig. 4.9). For the third feature, even
though its approximate position was located by the cross-correlation operator, the error
in the rotation angle was larger than 3 deg. These failures exist because there is not
sufficient similarity between this particular feature in the DRRs and its counterpart in
the portal image.

In none of the cases did the NCC detect the correct position of the features within the
search window in the first stage of the algorithm which resulted in misregistration. The
reason is the weaker adaptability of the NCC to the changes in the intensity of the portal
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Figure 4.9. Frequency distribution of the RMS difference between the
known positions of the fiducial markers and the ones given by the reg-
istration algorithm, evaluated from 56 cases. They correspond to shifts of
0 mm to 15 mm in step of 5 mm, rotations from -9 deg to 9 deg in step of
3 deg, and 2 different features to be matched.

image due to the in-phantom scatter which was not taken into account in the simulation of
the DRRs. However, from our experiments on pairs of portal images (see Section 4.4.2)
it follows that both cost functions lead to similar results if the intensities of the images
are similar. To validate this we normalized the intensities of the portal image and the
DRRs to achieve somewhat better similarity. This improved the performance of the NCC,
which produced results close to that of the PCC for the sphenoid bone region. However
in this approach there is no objective criterion when the proper histogram modification is
done. For this reason we concluded that the NCC was inappropriate for portal-to-DRR

registration given the quality of the DRRs we have simulated.
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Table 4.1. Tests of the algorithm on images obtained at different exposures
(Fig. 4.2) with the PCC cost function. The angle given by the field
registration algorithm is 5.8 deg. Both the reference and the search image
have been blurred to a different degree prior to registration. Mask 1,2,3
encompass the same features as the small windows shown from left to right,
respectively on Fig. 1 (Top right). Mask 4 encompasses an area between
small masks 1 and 2. The maximum correlation value is denoted by M.

No processing 3 x 3 smoothing filter 5 x 5 smoothing filter
Maximum
mask Angle I-M Angle I-M Angle correlation
(deg) (deg) (deg) value
1 49 0.265 4.9 0.109 5.2 0.101
2 49 0.235 59 0.098 54 0.088
3 4.6 0.367 3.6 0.150 3.0 0.138
4 4.5 0.188 4.2 0.057 43 0.047

4.4.3 Portal-Portal Registration

One of the portal images from our second set (Sec. 4.2.1, Fig. 4.2) was used as a
reference for the registration of portal images. Four different 256 x 256 reference/search
windows with 64 x 64 search masks placed at the center of the reference window were
selected for the registration, thus simulating 16 different cases for the algorithm. We only
investigated the detection of the in-plane rotations by the algorithm for the translations
were difficult to control with our experimental setup. The RMS difference between the
rotation angles as given by the registration of the anatomy from the ones given by the
field registration were calculated for both cost functions, with the acceptance range set
to 3 deg. For both cost functions the RMS difference was 1.4 deg, but with different
failure : 6% for the PCC and 19% for the NCC. This was due to the failure of the NCC
in the registration of images obtained at different exposures (Table 4.1 and Table 4.2).
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Table 4.2. Tests of the algorithm on images obtained at different exposures
(Fig. 4.2) with the NCC cost function. The angle given by the field
registration algorithm is 5.8 deg. Both the reference and the search image
have been blurred to a different degree prior to registration. Mask 1,2,3
encompass the same features as the small windows shown from left to right,
respectively on Fig. 1 (Top right). Mask 4 encompasses an area between
masks 1 and 2. The maximum correlation value is denoted by M.

No processing 3 x 3 smoothing filter 5 x 5 smoothing filter
Maximum
mask Angle 1-M Angle I-M Angle correlation
(deg) (10 (deg) (10 (deg) value (10™)
I 49 3.8 4.9 14 49 1.2
2 -5.8 4.2 -5.9 1.8 -5.2 1.6
3 -7.5 38 -1.7 12 -2.0 1.1
4 6..7 35 0.0 1.2 0.1 1.1

In these cases the minimum of the cost function did not correspond to the true translation
parameters at the first stage of the algorithm. Our experiments also showed that for some
features (with low spatial frequencies) the cost functions are very robust against change
in the resolution of the images, a fact observed previously by Radcliffe et al.'!® This
is important for it allows some preprocessing of the images in order to remove noise
and increase the significance of the correlation peak as a reflection of the quality of the
match. More work is required to correlate the performance of the algorithm to specific

types and shapes of anatomical structures, and to different smoothing processes.

4.5 Discussion and conclusions

One of the goals of this work is to demonstrate an approach to the determination of

in-plane rotation (down to 1 deg) in a correlation-based algorithm for image registration
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in a reasonable time frame. The approach clearly relies on the assumption that the range
of the in-plane rotation is 15 deg, which is greater than the one expected clinically
(around 45 deg).!! When using film-screen systems for imaging, translational errors
and rotational errors greater than those above may be introduced because of the film-
digitization process. For this reason registration of radiation fields has to be performed
prior to the registration of anatomy. The images are aligned first with the parameters
obtained from the registration of the fields which establishes a common reference frame.
The misregistration of the anatomy in this frame should, in general, be small when patient
setup is properly performed. Well calibrated on-line portal systems do not pose such a
problem because one can assume that a change of position of a patient can be detected

as a change in position of the patient’s anatomy relative to the pixel matrix of the image.

We did not attempt to develop any correlation procedure for the determination of the
magnification. A previous study!® has shown that this parameter could not be precisely
determined by a correlation based algorithm. The fact that the correlation operator can
determine translations and rotation (by a search) indicates that the divergent geometry of
the beam do not change the appearance of the projection image significantly. Because the
beam is not grossly divergent, the redistribution of the pixels in the resultant images due
to the small changes in magnification may not be precisely detected by the correlation
operator. In what follows we discuss a possible approach to the incorporation of the

magnification in an automatic registration algorithm.

The performance of the algorithm outlined above depends on the ability of the
correlation operators to match the search feature within the search window, which itself
depends on several factors: (i) the similarity of the images, (ii) the presence of prominent

anatomical feature(s), as well as (iii) the quality of the images.
The size and the shape of the anatomical feature as well as its subject contrast
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determine how well it can be matched in the search region.!"33 We did not attempt
any investigation in this direction since we believe that the identification of the most
appropriate features for matching and registration for a certain treatment setup can be
easily and reliably identified by experience from a few clinical cases. This learning
process is also necessary since the choice of the best landmarks also improves the
robustness of the algorithm against noise, change in the resolution as well as the existence
of structures that can confound the correlation operator. For those selected features the
value of the cost functions after the registration can also be used as a criterion for the
quality of the match, given that the imaging chain (linear accelerator and portal imaging
device) is stable. The use of the PCC as a cost function makes the registration more
robust in cases where the images have undergone some intensity modifications due to

changes in the dose rate or the acquisition technique (different number of MU).

An important consideration of the utility of the above algorithm to the automatic
registration of portal images is the existence of nonrigid transformations of the patient.
An example is the difference image in Fig. 4.3. Even though the structure to be matched
is registered well as indicated by the uniform gray levels in the corresponding region,
some minor mismatch under the radiation field is noticeable. This cannot be managed by
the algorithm in its present form. The reason is that it finds the transformation parameters
which best register the selected feature locally and assigns those parameters as a global

transformation parameters under the assumption of rigid transformations.

This problem as well as the determination of the magnification can be approached at
the expense of increased computational time in the following manner. A set of features
can be selected and the registration parameters can be found for each one by the algorithm
in its present form. Then a model based transformation can be found that is in the best

agreement with the parameters calculated before and weighted (that can be done in several
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ways) with the values of the cost function. In this way, nonrigid transformations and

image magnification can be determined.

Such a procedure will be advantageous even in the case of rigid transformations. In
this case the Procrustes algorithm'! 13:34 can be used to find the translation, rotation
and scale values, which, when applied to the search image, minimize the least square
differences between the paired features in the search and the reference image. This
approach is similar to the one suggested by Moseley and Munro!! but has the advantage
of (i) incorporating a larger search window and (ii) decreasing the error introduced by the

correlation operator in the identification of the match points when the images are rotated.

Even though the proposed automatic algorithm may never be completely successful,
it can be implemented as a tool in more complex strategies for registration of portal
images. To make these strategies effective, a user-friendly interface that provides a
selection of different options with a different degree of automatization is to be created.
The best options for each individual setup (automatic, semiautomatic or manual) can

then be determined through experience.

The accuracy of the algorithm is of course inferior to what has been achieved when
the radiation fields are matched. However, as it can be seen in Fig. 4.3 some deviations in
the treatment set up can be easily recognized as a mismatch of the radiation fields above
the registered anatomical structures, thus facilitating the process of decision making in

the course of radiation therapy.

The fact that registration of portal images and DRRs was possible suggests that some
regions of the anatomy are amenable to automatic registration even though the in-phantom
scatter is not taken into account. In fact, as a reference image, a DRR is of better utility
compared to any portal image since the anatomy position with respect to the radiation field

is precisely known. When the first portal image is registered to a conventional simulator
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image, the registered portal image becomes the gold standard. However, an error in the
registration would be carried on systematically to subsequent measurements. Our work
suggests that the megavoltage DRR can be registered with each portal image directly thus
removing this systematic error and obviating the need of conventional simulator images
for registration purposes. This emphasizes the added importance of CT simulation in
modern radiation oncology. Another important consideration is that an anatomical feature
for matching not obscured by external structures (for example, the mounting of the shield-
supporting trays) can always be selected in the reference image. Further investigations
are, however, needed to determine the accuracy of the registration as a function of the
parameters of the CT data.

To summarize, we have developed a grey-level image alignment algorithm based on
cross-correlation that takes into account both in-plane rotations and translations.t* The
search for the in-plane rotation is made possible in a reasonable time frame by using a
sequential approach and the FFT-implementation of the Pearson correlation coefficient,
which proved to be a better option for matching than normalized cross-correlation. The
algorithm can also be used for registration of portal images and DRRs, given that certain
modifications are done on the DRRs, thus making the use of a portal image as a reference
image unnecessary. The algorithm has the potential to be a tool in fast and automated

approaches to images registration and patient setup verification.

3 After the appearance of this work in Medical Physics, similar developments were published by Dong and Boyer.3*
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CHAPTER 5 Summary and Future Developments

5.1 Inverse Treatment Planning

5.1.1 Summary

In the first part of this thesis, two numerical techniques for inverse treatment planning
were presented.

The first technique, the active set algorithm is a hybrid optimization routine applicable
to any differentiable function of the pencil beam weights. The minimization algorithm
combines the constrained steepest descent and the conjugate gradient methods in order
to accelerate the design of intensity modulated beams while accounting for the non-
negativity constraints imposed on the pencil beam weights. The algorithm attempts
to identify the active set at the solution (pencil beam weights that have value of zero
at the solution) so as to proceed with unconstrained minimization in the space of the
remaining variables employing the conjugate gradient method. If the prediction of the
active set is incorrect, a constraint is encountered and the prediction of the active set is
updated. Consequently, the algorithm restarts the conjugate gradient method in the new
optimization subspace by resetting the current descent direction to be opposite to the local
gradient of the objective function. For two popular objectives, our numerical simulations
demonstrated that the active set method outperforms the constrained steepest descent in
terms of (i) the residual value of the cost function at termination and (ii) the number of
iterations required to achieve an objective value lower or equal to that obtained by the
constrained steepest descent at termination. Thus, as a tool for inverse treatment planning,
the active set algorithm is a viable alternative to the constrained steepest descent method.

The second algorithm, the continuous penalty function method, is an approximate
numerical technique for solving large-scale constrained optimization problems. The
method is applied to the least-square dose objective of matching zero dose level to

healthy tissues. The constraints require that the target dose be within certain levels.
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They are accounted for by the introduction of a penalty term. The continuous penalty
function method combines the objective and the penalty term into a single function and
proceeds by increasing the weight of the penalty term at each iteration step in order
to conform closely the final dose distribution with the constraints. During this iterative
process which has a well-defined asymptotic point, the optimization technique creates
plans with different compromises between target coverage and healthy tissue sparing.
These plans can be kept for a physician’s consideration. The selection of a particular
plan from the iteration sequence automatically indicates the target importance weight
which can relate the minimization of the resulting squared dose objective to a clinically
relevant optimization in which many treatment factors are implicitly accounted for by the
physician. This approach adds some flexibility to the continuous penalty function method
for its application to cases where the desired target coverage results in inadmissible

overdosage of critical organs.

Being independent of beam energies and modalities, both the active set algorithm and
the continuous penalty function method can also optimize these parameters in addition
to the beam profiles. For this purpose, for each direction of the beam setup, multiple
beams (different energies, type of radiation) are to be employed. After the optimization,
the pencil beams pertaining to more beneficial beams will be assigned greater weights
than the ones that pertain to beams with little contribution to the improvement of the
dose distribution. The latter beams can then be removed without much degradation of

the treatment plan.

The inverse treatment planning methods presented in this thesis are independent of
both the dose calculation model and the dose sampling technique. Furthermore, both
algorithms are applicable to large classes of cost functions. The active set technique can

be employed with any differentiable objective. The continuous penalty function method is
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robust for convex objectives and convex penalty terms but it can also provide solutions for
other types of objective functions.!" 2 To benefit fully from inverse treatment planning,
one must understand the impact of the dose calculation models, of the dose sampling
techniques and of the various objectives on both the beam profiles and the optimized

dose distributions. These are some of the future research tracks that need to be explored.

5.1.2 Future Work

Dose calculation model An accurate dose calculation algorithm is essential to assure
that the optimized dose distributions obtained by intensity modulated beams can be ac-
tually delivered. The DSAR model employed in this thesis (Appendix A) does not
consider inhomogeneities in the patient volume. Furthermore, its particular implemen-
tation restricts the minimum beamlet size to 5 x S mm. A better model based on first
principle convolution/superposition dose calculations* must be implemented so that the
sensitivity of the optimized dose distributions with respect to lateral scatter, pencil beam
resolution as well as inhomogeneities can be investigated. Some insight in the role of
these parameters in the design of intensity modulated beams may significantly accelerate
the process of inverse treatment planning and radiation delivery for certain treatment

sites and objectives.

Dose sampling techniques The dose distributions produced by intensity modulated
beams are characterized with steep high-gradient regions and small but very low- or
very high-dose domains. Therefore, fine sampling of the dose distributions is necessary
for consistent and reliable inverse treatment planning. The adequate density of dose cal-
culation points for evaluation of dose distributions generally depends on the treatment
site, the sampling method and the properties of the dose distribution.5® Therefore, further

investigations in this direction are warranted.
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Figure 5.1. Dose-volume histograms for target and spinal cord volumes
Jfor plans created by the continuous penalty function method with linear
and quadratic objectives for the same constraint violations as measured by
the penalty term. The dose distributions are normalized to their respective
maxima. The same importance weights are given to the critical organs
Jor both objectives. For the quadratic objective (t)/u(t) = 4020 at
termination. Euler’s integration scheme was used for the linear objective.

Objective functions The least-square objective of matching zero-dose level was used
in conjunction with the continuous penalty function to provide continuity with the
conventional inverse treatment planning technique and to ensure the applicability of the
minimization algorithm. However, other physical objectives can be envisaged and should
be explored in order to feed the process of inverse treatment planning with some a priori
knowledge. For example, a linear objective equal to the weighted sum of the average
doses to critical structures penalizes equally for equal dose increases in the high- and
the low-dose regions of the critical structures, whereas the quadratic objective penalizes
preferentially for dose increase in the high-dose regions of the irradiated organs (Fig. 5.1

and Fig. 5.2). These features of the objective functions guide the optimization process
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Figure 5.2. Dose-volume histograms for target and rectal volumes for
plans created by the continuous penalty function method with linear and
quadratic objectives for the same constraint violations as measured by the
penalty term. The dose distributions are normalized to their respective
maxima. The same importance weights are given to the critical organs
. Jfor both objectives. For the quadratic objective 7(t)/u(t) = 1757 at
termination. Euler’s integration scheme was used for the linear objective.

to produce different dose distributions and different sparing of the critical organs for the
same constraint violation (Fig. 5.1 and Fig. 5.2). Therefore, one may consider the use
of a quadratic objective for nearly serial organs that can tolerate high doses only in very
small, insignificant volumes. Typical examples are the spinal cord’ and the rectum.!?
On the other hand, a linear objective may be better suited for organs with large volume
effects such as the lungs'® which can be kept functional by sacrificing a considerable
part of their volume while keeping the rest to very low dose levels. These considerations
underline once again that the continuous improvement in the modelling of the treatment

objectives is an important research direction to be explored.
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5.2 Anatomy Registration for Treatment Setup Verification

5.2.1 Summary

The gray-level image correlation algorithm, presented in the second part of this
thesis (Chapter 4), was designed with the goal of automatic quantification of the two-
dimensional displacements of the patient anatomy with respect to the radiation field.
Under the assumption of rigid transformations and image similarity (up to a linear trans-
formation of the intensities), the algorithm searches for the transformation parameters
which produce the highest correlation value between the reference image and the regis-
tered one. Certain properties of the correlation operators were explored and consequently
exploited to accelerate the image registration. First, a frequency domain representation of
the Pearson correlation coefficient was derived which allowed its fast Fourier transform
implementation. Second, the value of the maximum of the correlation distribution was
shown to be a unimodal function of the angle of rotation between the pair of images to be
registered, with a maximum corresponding to the proper image alignment. These prop-
erties, along with the property of the correlation maximum to indicate the approximate
position of the image feature under small rotations (+15°) were used to design the regis-
tration algorithm as a two-stage sequential procedure. At the first stage, the approximate
value of the displacement between the two images is obtained from the detected and the
expected positions of the maximum of the correlation distribution which is calculated
with the fast Fourier transform implementation. At the second stage of the algorithm,
a smaller search window in the vicinity of the previously located maximum is selected
and a search for both the rotational and the translational parameters is conducted. The
accuracy of the registration procedure for our phantom study was in the order 1 mm and

1° with typical execution times in the order of a minute on a DEC 3000-M300 computer.
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5.2.2 Future Work

Imaging parameters and treatment sites The results from the application of the cor-
relation algorithm to the registration of portal images and megavoltage DRRs indicates
that certain regions of the anatomy were amenable to automatic matching even though the
in-phantom scattered radiation was not modelled. The success of the Pearson correlation
coefficient, which is invariant under a shift and scaling of the image intensities, implies
that for our particular setup the scatter contribution across the image is a slowly varying
(almost constant) function of the image coordinates, which is added to the primary image
signal. This speculation is consistent with the failure of the normalized cross-correlation,
which is invariant only under scaling of the image intensities. Therefore, the performance
of the algorithm for the cases of portal-to-DRR registration should improve when scatter
from the patient is reduced by acquiring the portal image at a large patient-to-detector
distance. On the other hand, given the fixed size of the portal imaging detectors (elec-
tronic portal imaging devices or film-screen detectors) the patient-to-detector distance is
often determined by the size of patient anatomy that has to be imaged. Therefore, for
each intended treatment site, phantom studies at the maximum possible patient-portal
imager separation should be conducted to investigate the performance of the registration
algorithm for the various anatomical features that are envisaged as correlation templates.
The identification of the anatomical landmarks, however, needs to be done only once.
Furthermore, their selection on the reference image of the patient to be treated can be
performed very fast simply by placing (on a computer screen) predefined square drawings
at the proper locations. This procedure needs to be executed only once at the beginning

of the treatment sessions.

Extensions and applications The registration algorithm relies on the matching of

unique, asymmetric and prominent anatomical landmarks. Its robustness for anatomy
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alignment can be further improved by combining the information obtained from the
registration of several anatomical features. The transformation parameters for each land-
mark can be found by the technique in its present form and a global transformation
based on the properly weighted (e. g. with the values of the correlation maxima) local
transformations can be designed to register the portal image and the reference one.

A challenging problem is the extension of the present technique for 3D verification
of the patient setup, especially when out of plane rotations are presented. Lemieux
et al.'! reported the application of a correlation technique to the 3D registration of CT
data to high-quality diagnostic radiographs. However, the reported computational times
(~ 30 min) were impractical for on-line portal imaging. Furthermore, given the portal
image quality, the feasibility of their correlation approach!! in the context of portal
imaging needs to be investigated.

However, when only translations are present, our correlation algorithm can align
the patient anatomy (represented by the 3D CT data) in the desired treatment position
by registering a pair of orthogonal portal images to the corresponding DRRs. This
approach may also evaluate accurately the actual 3D displacement when small out-of-
plane rotations in the order of ~ 2° are presented.!? Such small out-of-plane rotations
of the bony anatomy are typical for the conformal treatments of patients with prostate
cancer after immobilization with custom thermoplastic body cast.!* Furthermore, given
the small volume of the target volume, a correction of the small out-of-plane rotations
may not be necessary.!3 Therefore, the 3D anatomy verification of such treatments is
a potential application of our registration tool. Furthermore, the algorithm can be used
for detecting and quantifying setup errors in retrospective studies on setup uncertainties
and target motion. The subsequent findings should then be incorporated in the treatment

planning process!4 !5 and properly accounted for in the design of conformal treatments.
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APPENDIX A DSAR Dose Calculation

- Model for Inverse Planning

Inverse treatment planning requires dose calculation algorithms that modei the effect
of beam intensity modulation on the dose distributions. A short description of the dose
model used throughout this work is presented below.

The dose D?(z,y,d, F,) delivered to a calculation voxel P lying at a physical depth
d (Fig. A.1), off-axis position (z,y) in the beam’s eye-view plane and distance F, from

the source is':

_ D™(dg, Fa; Wy, Wy) (Fa\* 1
D(I! Y, d! FP) - TAR(dn, If‘/‘", WY) Fp Wnorm [.f(I7 Y, d'. Fp)TAR(d’ 02 0)+
1 J , ASAR(z; — z,y; — y,d;
+ z: Z f(:r.', Yj» dijs Fp) ( AzAy ) AziAy,].

1=1 =1

(A.1)
In the above equation, the first term in the brackets accounts for the primary dose and the
second one for the scattered dose from the different volume elements. The differential
scatter-air ratio A2SAR/AzAy describes the amount of scatter from pencil beams such

as the one shown in Fig. A.1. The scattered dose contributed to a voxel by a pencil beam

is determined by the distance r;; = \/(;,- - 2:)2 + (y; — y)2 between the calculation
voxel and the pencil beam and the depth d:-j of the pencil beam which is determined
by the curvature of the entrance surface (Fig. A.1). Values for the DSAR function can
be obtained either by differentiating tissue-air ratios? (TARs) for rectangular fields or by
differentiating scatter-air ratios? (SAR) with respect to radius :
A2SAR (z} — 2,y -y, d)
AzAy

1 Ar Ar
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Figure A.1. The dose to a voxel P(z,y) is calculated by summing the
weighted scattered dose contributions from all columns of tissue such as
the one shown. The dose scattered by such a column is a function of its
distance rij to the voxel of interest and the depth d'.

given that the increments Az, Ay are small. The function f(z,y,d, F,) describes the
fluence distribution. It can be represented as f(z,y,d. Fp) = g(z,y,d, Fp)w(z,y) where
g(z,y,d, Fp) describes the radiation field at each voxel in the patient accounting for the
intensity distribution of the radiation source and penumbra effects. The transmission of
a filter is given by w(z,y) and the attenuation of the beam along the central axis due
to the filter is accounted by 1/wporm. The dose to the normalization point lying on
the central axis of the beam at a depth d, at a source-to-normalization point distance

Fy, is D*(dp, Fn, Wx,Wy). The tissue-air ratio for the depth of normalization is given

A-2



APPENDIX A DSAR Dose Calculation Model for Inverse Planning

by TAR(d,, Wx,Wy) where the field size at the normalization point defined by the
collimator jaws is Wx x Wy . When the normalization and the calibration points coincide

( a typical case being Fy = SAD, dy = dmaz ) the normalization dose is given as :
D™(dp, Fa, Wx,Wy) = MU x OF mea(Wx, Wy) (A.3)

where OF,,.q(Wx, Wy) is the output factor at the depth of dose maximum d,,,, for the

given field size and MU is the number of the delivered monitor units (beam on time).

Certain preliminary calculations are to be done that account for the fact that tissue-
air ratios are not readily available for megavoltage linear accelerators. Instead, the beam
data are obtained by measurements in phantom and ncrmalized dose functions as tissue-
phantom ratio (TPR) or tissue-maximum ratio (TMR) are evaluated? TARs can be

calculated from the corresponding TMRs by :
TMR(d,Wx,Wy) TMR(d,Wx,Wy)
T d,Wx,Wy) = = 4
AR W WY) = A Rldmas, W, We) ~ BSF(Wx, Wy) A9

where BSF(Wx,Wy) is the back scatter factor for the corresponding field size. Once

the TARs are calculated, the corresponding SARs are given as :
SAR(r,d) =TAR(r,d) — TAR(0,d) . (A.5)

Within the DSAR model, inverse treatment planning can be performed by introducing
pencil beam weights w(z, y) in monitor units (MU) and setting the normalization (wedge)
factor 1/wnorm to one. The resulting beam profiles determine the beam-on time for each
portion of the beam. However, when a sequence of static fields defined by a multileaf
collimator is used for the delivery of the profiles, the change of the output with the field

size is to be accounted for.
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APPENDIX B Applicability of the
CPFM to the Inverse
Treatment Planning Problem

B.1 Problem Statement
A non-linear constrained optimization problem is written as:
min f(z). X ={z€ Ea: g(z) 20}. (B.1)

Here, E; is the i-dimensional Euclidian space, z = [z!,..,z"]" € E,, f(z) is the
function to be minimized, X is the set of admissible values for z determined by the
constraints g(z). A local solution z* is a point in a neighborhood of which, there is no
other point satisfying the constraints that gives a smaller value of the objective function.
A global solution can be defined as any local solution that yields the smallest objective
function value. We denote by X* the set of all solutions z* of the minimization problem
(solution set) and we assume that X* is not empty.

A quadratic optimization problem with linear inequality constraints is given by:
min Az — b||>, X ={z € En: g(z) = Bz —c < 0}. (B.2)
4

Here b € E,,, c € E;, A is an m X n matrix and B is an [ x n matrix. In Eq. (B.2),
|| Az — b is the usual Euclidian norm of the vector Az —b and g(z) = [¢*(2), ..., g'(z)] "
is a linear vector function, that is for any a,8 € E), z,y € E,, glaz+ By) =
ag(z) + Bg(y).

Our purpose is: (i) to reassert that Eq. (B.2) poses a convex programming problem
and (ii) to prove that the continuous penalty function method solves that problem for the
particular case of inverse treatment planning, where b = 0, c has finite components and
the elements of the matrices A and B are real positive numbers. To this end we first cite

some definitions and results from the theory of mathematical programming.
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B.2 Convexity — Definitions and Properties

Definition 1. A function f(z) : E, — E; is a convex function of z in E, if for every

two points z;,z2 € E; and every A, where 0 < A <1
FOz1 + (1= Na2) < Af(r) + (1 — A f(z2) - B.3)

If f(z) is a convex function of z in E, we simply say that f(z) is a convex function

of z.

Definition 2. A function ¢g(z) : E, — E; is a concave function of z in E, if —g(z)
is a convex function.

As a corollary of the above definitions linear functions are both convex and concave.

P
Lemma 1. If fi,..., f, are convex functions then f(z) = Y_ fi(z) is a convex function.
1=1

The statement of the lemma follows immediately from the definition of a convex

function.

Definition 3. A symmetric matrix A is said to be positive semidefinite (nonnegative
definite) if for every vector y, yT Ay > 0.

Let V2 f(z) denotes a square symmetric matrix of the order n whose (7, j )th element
is E'E%Ff(z)‘ The matrix V2f(z) is also called the Hessian matrix of f(z). The

following theorem holds true.!

Theorem 1. If the function f(z) is twice differentiable in E,, then f(z) is convex if

V2f(z) is semidefinite everywhere in Ey,.
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Definition 4. The convex programming problem is written as

mig f(z), X={z€E,: g(z) >0} (B.4)

where f(z) is a convex function and each component ¢*(z) of the vector function g(z)
is a concave function.

For convex programming problems the following theorem holds true.?

Theorem 2. [Local-Global Convexity Property] Every local minimum z* of the convex
programming problem is a global minimum.
B.3 Continuous Penalty Function Method

Within the frame of the continuous approach one solves the constrained optimization
problem (Eq. B.1) by introducing a penalty term S(z) such that S(z) =0 if z € X and
S(z) > 0 otherwise. A new function P(z,t) is defined as

P(z,t) = p(t) f(z) + 7(t)5(z)

(B.5)
where u(t) and 7(¢) are continuous functions of the scalar argument ¢ such that
(e o]
u(t) >0, r(t)>0, /p(t)dt = o0. (B.6)
0
A set G(t) is defined such that
G(t) ={z € En: P(z,t) < p(t)f(z%)} B.7)

The following theorem holds true:*: 4
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Theorem 3. Let f(z) and S(z) be convex continuously differentiable functions every-
where in E,, let the set G(0)be non-empty and bounded, let the continuous functions y(t)
and 7(t) satisfy conditions (B.6), and let the ratio ‘;—fg — 0 monotonically as ¢t — oo.
Then the set of limit points (as ¢ — oc) of the solution z(zo,¢) of the Cauchy problem
dz(t)

dt

= -V, P(z,t), z(0)==z0 (B.8)

is non-empty and all the limit points belong to X, whatever the initial condition zg.

B.4 Local-Global Convexity Property of the
Inverse Treatment Planning Problem

A remarkable property of the problem stated by Eq. (B.2) is that any local solution
is also a global solution. Indeed, introducing a vector function k(z) such that h'(z) =
—g'(z) the constrained optimization problem [Eq. (B.2)] can be rewritten as:

min [|Az —b]?, X ={z € En: h(z) 20} (B.9)

The Hessian AT A of the twice differentiable objective function || Az — b|| 2isa symmetric
positive semidefinite matrix, since for every vector y, yTAT Ay = (Ay)T(Ay) == ||Ay||2 >
0 (Definition 3). Therefore, according to Theorem 1 the objective function is convex.
The components of the vector function h(z) are linear and therefore concave functions of
z. Thus the problem posed by Eq. (B.9) is a convex programming problem (Definition 4)
and therefore every local minimum is a global minimum (Theorem 2).

The inverse treatment planning problem is given by Eq. (B.9) and a particular choice
of the parameters b, ¢, A and B. Therefore every local minimum of the inverse treatment
planning problem is a global minimum. If one considers the case of zero weights to the
critical structures and relaxed requirements with respect to the target one can demonstrate

that several global minima of different clinical utility are possible.
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B.5 The Inverse Treatment Planning Problem

We have shown in the previous section that the objective f(z) is in accordance with

the requirements of Theorem 3 since it is continuously differentiable and convex.

In order to use the continuous penalty function method®> we form a convex penalty

term

l
Sx)=3_ (g7 (2))* (B.10)

=1

. ) d
to account for the conmstraints. The functions g (z) are defined as g7 (z) ef

maz|0, gi(z)]. We prove that (g;"(z))z is a convex function of r and therefore S(z),
being a sum of convex functions, is also convex (Lemma 1). Omitting the index ¢, we

verify that (g*(z))’ complies with the requirements of Definition 1, that is
(g7 (Az1 + (1 = A)z2))” < Mg™(z1))” + (1= M) (g7 (z2))” (B.11)

for every A\, 0 < A <1 and any z;,z2. All possibilities are considered below:

L [\ =0 or A =1, any z], 2]
Let us consider the case A = 0. Equation (B.11) reads:

(g (Az1 + (1 = Nz2))’ = (9+(22))°

i . (B.12)
= (g% (z1))" + (1 = X)(gF(z2))"

since for positive As
gt (Az) = maz0, g{Az)] = maz(0, Ag(z)] = Ag¥(z). (B.13)

Similarly it can be shown that the inequality in (Eq. B.11) is satisfied for

the case A = 1.
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IL. [0< A<, 1,22 : g(z1) 20, g(z2) > 0]
For this case
gF(Azy + (1 = A)z2) = Ag(z1) + (1 — N)g(z2). (B.14)
The left side of Eq. (B.11) reads:

2 2

(g7 Az + (1 = M)z2))” = (Ag(z1) + (1 — M)g(z2))” =

2 92 2 2 (BIS)
= A"g7(z1) + 2A(1 — A)g(z1)g(z2) + (1 — A)"¢"(22).

After rearranging all terms of Eq. (B.11) on the left, one has to verify:
A - 1)g(z1) + 20(1 — Ng(z1)g(z2) — (1= MAGH(z2) SO (B.16)
After division by A(1 — A), (A(1 — A) > 0) we have
—g%(z1) + g9(z1)g(z2) — g%(x2) = —(9(z1) — g(z2))° <0 (B.17)
and therefore Eq. (B.11).

I P <X<1,z,22:9(z1) <0, g(z2) < 0]
For this case Eq. (B.11) tumns into the trivial equality 0 = 0 and therefore
holds true.
Iv. [0 <A <1, z1,22 : Ag(1) + (1 = A)g(z2) < 0, g(z1) < 0,9(z2) = 0 or
g(z1) = 0,9(z2) < 0]

For this case Eq. (B.11) reads: 0 < (1 — A)g?(z2) or 0 < Ag?(z)) and
therefore holds true.



Appendix B Applicability of the CPFM to the Inverse Treatment Planning Problem

V. a. [0< A<, 2,22 Ag(z1) + (1 — A)g(z2) 2 0, g(z1) < 0,9(z2) 2 0]
For this case Eq. (B.11) reads:
(g% (Az1 + (1= 1)z2))” = (Ag(21) + (1 = Ng(z2))’
= A2g%(z1) + 2A(1 — A)g(z1)g(z2) + (1 — A)’g*(22)

< (1 - A)g¥(z2) 518

Since (1 — 3)?¢%(z2) < (1 — A)g*(z2) it suffices to show that

Mg (z1) + 2X\(1 — N)g(z1)g(z2) < 0. (B.19)
Dividing by Ag(z;) (Ag(z1) < 0) and rearranging the resulting terms one
confirms that

Ag(z1) + (1 = Ng(z2) + (1 — Ng(z2) 2 0. (B.20)

>0 >0
and therefore Eq. (B.11) holds true for this case.

VL a [0<X<1,z1,22: Ag(z1) + (1 — N)g(a2) 2 0, g(z1) = 0,9(z2) < 0]

For this case Eq. (B.11) reads:
(g7 Az + (1 — N)z2))? = (Ag(z1) + (1 = N)g(z2))’
= A2g%(z1) + 2M(1 — A)g(z1)g(z2) + (1 — X)*g*(z2)

< Ag*(z1)
B.21)
Since A\2g%(z;) < Ag?%(z)) it suffices to show that
?
2A(1 — N)g(z1)g(z2) + (1 — A)°g*(z2) < 0. (B.22)

Dividing by (1 — A)g(z2) ((1 — A)g(z2)) and rearranging the resulting terms
one confirms that

Ag(z1) + (1 — A)g(z2) + Ag(z1) 2 0. (B.23)
>0 >0
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and therefore Eq. (B.11 ) holds true for this case.

The penalty term S(z) can be written as

l
S(z) =Y w(gi(z)) (B.24)
i=1
where
2
iy =19 920
The function ¢(g) is continuously differentiable with respect to g since
29, ¢>0
<,o'(g) =40, =0. (B.26)
0, ¢g<@0

The linear functions ¢;(z) are continuously differentiable with respect to the compo-
nents of the vector z and therefore the composite penalty term S(z) is a continuously
differentiable with respect to z.

The weighting functions used in this study are of the form
p(t) = const >0, 7(t) =ezp(t), L +t+1t% .. B.27)

and therefore satisfy the requirements of Theorem 3.

Let consider the requirement of Theorem 3 that concerns the set G(0). First we show
that if a solution z* exists (that is the case if feasible target dose levels are specified),

the set G(0) is not empty since z* € G(0). Indeed, for the functions used in this thesis,
P(z,0) = p(0)f(z) + 7(0)S(z) = const x f(z) + S(z) (B.28)
and therefore G(0) is given by

G(0) = {z € En : S(z) < const x (f(z%) — f(z))}- (B.29)
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For the solution z* the equality holds true since
S(z*) = const x (f(z") — f(=*)) =0 (B.30)

and therefore z* € G(0).

The requirement that G(0) be bound implies that there exists a large but finite number
N such that ||z|| < N for any vector ¢ € G(0). Therefore, one requires that there be
no vectors z with infinite components that pertain to G(0), that is there be no vectors

z with infinite components such that
S(z) < const x (f(z%) — f(z)). (B.31)
The functions S(z), f(z) are non-negative. Therefore, Eq. (B.31) can hold true only if
0 < S(z) < const x f(z*). (B.32)

However, for a vector with one or several infinite components z*, Eq. (B.32) cannot
hold true since the penalty term always tends to infinity. Only positive or only negative
infinite components would cause S(x) — oo due to the violation of the dose constraints.
Infinitely large positive and negative components could lead to conformity with the dose
constraints but the penalty term again tends to infinity due to the violation of the non-

negativity constraints, since

Sz)x ()} - o (B.33)

' ——00
The above argument demonstrates that for the particular case of inverse treatment planning
the set G(0) is bound and non-empty if feasible dose levels for the target are specified.
To summarize, for the particular formulation of the inverse treatment planning
proposed in this work, the objective function f(z) and the penalty term S(z) are convex

continuously differentiable functions of z, the weighting functions u(t), 7(¢) satisfy the
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requirements of Theorem 3 and the set G(0) is bound and non-empty. Therefore, the
continuous penalty function method proposed in Theorem 3 is applicable to the inverse

treatment planning problem and the method can be used for finding approximate solutions.
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APPENDIX C FFT-implementation
of the Pearson’s
correlation coefficient

Given a digital image f(z,y) of size M x N (search window) and a search mask

w(z,y) of size J x K, where J < M and K < N the correlation coefficient is defined as

ZZ: [f(x,y) - f(fey)][w(z — m’y—n) —_ IZ’]
rim.n) = = = — (D)
EX(wa—my—m) —al’ [E T [fz0) - o))

where m =0,1,2,... M+J-1,n=0,1,2...., N+ K — 1, w is the average intensity of
the mask, f(z,y) is the average value of f(z,y) in the region coincident with w(z,y),
and the summations are carried over the coordinates common to both f and w. The
way to interpret the correlation operator given above is the following: the search mask
w(z,y) is placed at some point (m, n) of the search window f(z,y) and the value of the
correlation at this point is calculated by Eq. (C.1) where the averages and the sums are
calculated over the points of overlap between w(z,y) and f(z,y).

Our approach consists of expanding Eq. (C.1) and implementing the resulting terms
by FFT-based correlations. According to the correlation theorem if F(s,t) = F[f(z,y)]
is the Fourier transform of f and W (s,t) = Flw(z,y)] is the Fourier transform of w,

then the cross-correlation matrix
[f®uwl,,= ZZf(z,y)u(x-m y—n) (C2)
can be written through the Fourier transforms of the functions as

f@w=FF(s,t)W*(s,t)] (C3)
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APPENDIX C FFT-implementation of the Pearson's correlation coefficient

where “*” denotes the complex conjugate and F~! is the inverse Fourier transform. Let

us define two additional functions (binary masks) as

e p(z,y) = 1, if (z,y) is within the search mask,
P\% Y7 =10, otherwise
o Q(Iay) =1, z = 1.M, y = 1.N

and their Fourier transforms as:
o P(s.t) = Flp(z,y)] and Q(s,t) = Flg(z,y)].

The expansion of the numerator of Eq. C.1 leads to the following terms :
> flzywc—my—n)=[f® ]y, (C.4)
 y

and

—sz(:r,y)w = —w(m, n) I:Z:Z:f(z’y)} . (C.5)
z y z 3

m,n

The average value of the search mask over the common area of f and w is

Wm,n = u')(m,n) = Wf;tﬁ;lj I:Z: Zw(x, y)] (C.6)
’ r y

m.n

where the area of overlap is
Smpa =8(m,n) =g @ plp . = [F Qs )P (5,1)]] 0 (C.7)

and the sums over the common area of f and w can be written as

[Z D w(z, y)] =g v],,

" (C.8)

[Z > f(r,y)] =[f@Plpn -
Ty

mn

The other two terms in the expansion of the numerator cancel each other and we obtain

for the numerator

_(qeuw)(fep) . (C9)

feow
[ q®p m,n
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In the above expression as well as in all the subsequent ones the arithmetic operations

on the images are done point by point. For the denominator we have:
ZZ[w(z—-m,y——n} - =
z oy
= \/ZEw'-’(a:—m,y -n) —QEZZw(x—m,y—n) +§:Zﬂ)2(m,n)
I Yy z y z y

i

(€ 10)

Similarly,

\/ZZ[f(z,y)—

z oy

=\/ZZfQ(r,y)—2f(mvn)zzf(f=y)+sz(m=”)f(m’") (C.11)
r ¥ z y T vy

L et
*[\/f ©Pp qG)pJ

Thus the FFT-based implementation of the linear correlation coefficient reads:

I

o) [ Uswlsen-Gowien | i

V(g®uw?)(g@p) —(gow)i\/(f2ep)Ne®p) - (f®p)°

The above expression gives the value of the correlation coefficient at any location of
the search mask over the search window. Clearly the boundary regions (in order of
few pixels) are going to produce high value of the correlational coefficient. Therefore,
cropping of the correlation matrix r is desirable to avoid a false maximum of the
correlation distribution. In the case where one wants to calculate the correlation coefficient

only for the cases when the whole search mask is within the search window Eq. (C.12)
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can be simplified even further. In this case:

q®p=JKT
R J K
g@uw’ =T) Y w(z.y)
z=1 y=1 (C.13)
N J K
q@w:]ZZw(m,y)
z=1 y=1

where T isa unitary matrix of size M —J+1. N — K +1 and the other correlation matrices
in Eq. (C.12) are to be cropped to this size. In this case some computational time can

be saved by substituting some of the correlations with the expressions in Eq. (C.13).
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