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Abstract

The proportional hazards model proposed by Cox(1972) is by far the most
popular method of regressing survival data. This model is attractive because:
(i) It has a simple interpretation; the impact of a variable upon survival is
a constant and multiplicative effect on the hazard function. (ii) It facili-
tates the employment of the partial likelihood inference technique so that
it requires no assumptions about the baseline distribution of survival times.
Many numerical tests as well as graphical approaches have been proposed for
assessing the adequacy of the proportional hazards model. However only a
few authors have discussed strategics for modelling data for which the hazard
ratio varies over time.

In this thesis the topic of survival analysis is overviewed, and methods for
assessing the validity of the proportional hazards assumption are reviewed.
Finally a method of estimating the hazard ratio as a flexible function of time
using the method of regression splines and the AIC model selection criterion
is proposed. We report the results of a simulation meant to examine the

small sample properties of this technique.




Résumé

Le modéle a hasard proportionnel présenté par Cox (1972) est une méthode
de régression trés utilisée dans ’analyse de survie. Ce modeéle est intéressant,
car (i) il est simple a interpréter, 'impact d’une variable sur la survie ayant
un effet constant et multiplicatif sur la fonction de hasard, et (ii) il permet
'utilisation de la technique d’inference par la vraisemblance partielle, ce
qui n'oblige aucune supposition sur la distribution de base des temps de
survie. De nombreux tests et méthodes graphiques existent pour mesurer
I'adéquation du modéle a hasard proportionnel. Toutefois, peu d’ouvrages
discutent des stratégies pour la modélisation des données ayant un taux de
hasard variable en temps.

Dans cette étude, nous passons en revue les caractérisations essentielles
a 'analyse de survie et les méthodes pour mesurer la validité de I’hypothése
d’un modéle & hasard proportionnel. Par la suite, nous présentons un esti-
mateur flexible du taux de hasard, variable en temps, par la méthode des
splines de régression et la sélection d’un modele, par le critére AIC. Enfin,
nous rapportons les résultats d’une simulation qui examine les propriétés des

petits échantillons.
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Introduction

Cox’s proportional hazards model is one of the most popular statistical tech-
niques in health care rescarch. Its employment rivals that of t-tests, and 2 x 2
contingency tables. This is used in regression applications where the depen-
dent variable is a survival or some elapsed time which is subject to censoring.
The appeal of this model may be explained by the following properties: (i)
it has a relatively simple interpretation, and (ii) it is semi-parametric since
it avoids assumptions about the underlying distribution of survival times.
Despile its overwhelming popularity, analysts who employ this model
rarely if ever report checking its main assumption, that the hazard functions
of any two subjects are proportional. The impact of an independent variable
on, or association with, the hazard function is not mitigated by the passage
of time. A practical implication of this assumption is that a variable is
cqually able at predicting short-term and long-term survival. Another way
of stating this is that, say, a laboraiory test recorded today is not more
valuable in determining risk than is a recording from any time in the past.
This constancy of the relative risk over time may be approximately true in

studies of a suitably short duration but there is no reason to expect it to be




true in general. The widespread failure of analysts to check the assumptions
of the model is not due to a lack of graphical or numerical methods for testing
‘he proportionality of hazards. For instance, at ¢ 13 numerical tests have
been pr-posed in the literature.

Alternative modelling strategics that model the relative risk as a function
of time would be valuable to health care practitioners. Characteristics that
have only a short-term ability to predict events or have a delayed fmpact
on risk may go undetected by the proportional hazards method. In clinical
trials it would be useful to determine if the trial treatment is actually effective
during the entire follow-up of the study and not just in the short term. In
observational studies it would be valuable to know whether an exposure has
an immediate effect on risk or if the effect does not occur until some time
after the exposure.

Zucker and Karr (1990) propose the modelling of the hazard ratio as o
function of time by using smoothing splines. In this thesis the modelling
of the hazard ratio by another smoothing method, the method of regression
splines is proposed and evaluated in a preliminary simulation study.

In chapter 1 the topic of survival analysis is outlined. Survival analysis,
also variously called, failure-time analysis and response-time analysis, is basi-
cally the theory and methodology of analyzing data from health care rescarch
where the focal measurement, or dependent variable, is an clapsed time. In
this chapter, the partial likelihood is presented, and we give heuristic proofs

of it is asymptotic properties. The proportional hazards model is introduced



as a method that facilitates the partial likelihood approach. In the final sec-
tion we draw the link between the proportional hazards model and the log
rank test, a test for comparing survival between two samples, and illustrate
the assumptions implicitly made about the hazard ratio as function of time
by some other popular two sample test statistics.

In chapter 2, we discuss the methods of validating the assumption of
proportional hazards. This chapter reviews numerical and graphical tests of
assessing the constancy of the hazard ratio, or rather the proportionality of
hazards. Particular emphasis is placed on the residuals approach proposed
by Schoenfield (1982).

In chapter 3, we discuss methods for modelling the hazard ratio as a
function of time. We describe the smoothing spline approach proposed by
Zucker and Karr (1990). Then we propose a method that uses regression
splines and the model selection criterion proposed by Akaike. We refer to
this as the best-AIC regression spline approach. We discuss heuristically
its the large sample properties of this technique and make some relevant
observations concerning the impact of model selection upon inference.

Finally, in chapter 4, we describe, and report the results of, a simulation
meant to examine the sample properties of the best-AIC regression spline
approach.

Throughout this manuscript we shall refer to the following data set, re-
ported in Fleming and Harrington (1991) and frequently used to illustrate

new survival analytic methods. Between 1974 and 1984 the Mayo Clinic con-




ducted a trial of the effects of the drug D-penicillamine on persons suffering
from primary biliary cirrhosis (PBC) of the liver. This is a rare but chronic
and fatal disease of the liver whose cause is unknown. The treatment was
ultimately deemed ineffective. However, for each subject a number of clini-
cal features and laboratory markers {rom the time of diagnosis were recorded
which makes it possible to examine their possible association with subsequent
survival.

We shall refer repeatedly to one of these measurements, prothrombin
time. Prothrombin is an agent in blood that is responsible for coagulation.
Prothrombin time is the duration of time, usually about 10 seconds in these
subjects, required to achieve coagulation in a test tube of the subjects’s
blood. We shall use this variable to compare the results of different statistical
methods discussed in the thesis and to illustrate the ability of the proposed
model to provide new insights into the structure of survival data.

A total of 424 persons with PBC were referred to the Mayo clinic during
the 10-year period of the study and 312 agreed to participate in the trial.
All but 6 of the remaining persons consented to undergo measurements. Of

these 418 subjects, 161 were observed to die during the course of the study.
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Chapter 1

Analysis of Survival Data

1.1 Follow-up data and censoring

In health statistics one of the most common measurements is an elapsed time.
Examples are the time from the diagnosis of cancer until death, or the time
from the initiation of some treatment to death or some other event such as
heart attack or stroke. In each case there is some well-defined starting point,
such as the date of diagnosis or the start of treatment and a well defined
endpoint such as death. This type of data is called follow-up data. There is
broadly speaking two types of studies in which follow-up data is collected.
One is the clinical trial, and the other is the observational study.

A (randomized) clinical trial is the evaluation of the efficacy of a drug
or more generally any intervention by enrolling a group of subjects, usually
subject to some inclusion criteria, and administering the treatment to some
and not to others (randomly), and by finally comparing the treated with the
untreated persons. Often efficacy is defined to be the ability of the treatment
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to increase survival. In this case the enrollces would be followed up for some
suitable period of time in order to compare the survival between the treated
and untreated group.

An observational study is the evaluation of the association between some
relevant endpoint, for instance, survival, and the level of, or presence or
absence of some exposure or characteristic. For instance, an oncologist could
follow up a group of persons newly diagnosed with cancer in order to assess
the association between the size of the tumour they present with and their
subsequent survival.

It is the nature of the time dimension that we cannot always completely
measure survival, or more generally speaking, durations. It usually happens
that on the date of the analysis one or more of the subjects in the study
are still alive or have not experienced the particular event being examined.
On the other hand, perhaps some of these persons could not be followed up
for logistical reasons, i.e.; perhaps one of these persons are known to have
lived for 5 years after the diagnosis after which they they moved, and the
investigators lack knowledge of what happened to them subsequently. Some
clinical studies may be predetermined to terminate after a fixed number
of deaths or events have been observed leaving the exact survival of the
remaining subjects unobserved. In statistics, this type of partial information
is referred to as (right) censored data, (Kalbfleisch and Prentice, 1980).

It is very unusual to encounter follow-up data which is complete, that

is, uncensored, for every subject. It is not uncummon to encounter studics
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in which 50% or more of the follow-ups are censored. It would be wrong to
exclude the subjects for which the complete duration is not known. Censored
follow-up data provides some information. Furthermore discarding such par-
tial information creates bias in the estimates since a person whose duration
is long is more likely to be censored than a person whose duration is short.

The analysis of censored follow-up data is popularly referred to as survival
analysis. The term, survival, is used despite the fact that it is just as common
to examine non-death endpoints such as heart attacks or strokes.

In this chapter, we shall review some of the major concepts from sur-
vival analysis methodology. In section 2, we introduce the survival function,
as well as the hazard function, and discuss its estimation. In section 3, we
review methods for comparing survival between two. These groups may be
determined by the presence or absence of some clinical feature or exposure or
may represent the treated and untreated arms of a clinical trial. One method
of comparison is the log-rank test. We show how other popular tests can be
expressed as 'weighted’ log-rank tests. In section 4, we go beyond compar-
isons between groups and discuss regression methods for quantitating the
association betwcen survival and one or more independent variables. In this
section, we motivate the idea of the partial likelihood which is the main topic
of section 5. In section 5, we also introduce the proportional hazards model
and demonstrate how it facilitates use of the partial likelihood. In section
6, the partial likelihood is discussed further. We demonstrate that its use

is justified when the number of persons in a study observed to die, or more

13




generzlly speaking, experience the examined cvent, is suitably large. The
partial likelihood facilitates the use of time-dependent independent variables.
These are discussed in section 7. In scction 8, we demonstrate the correspon-
dence between the log-rank statistic and the proportional hazards madel. In
this section also make some interesting observations concerning the relation
between other weighted log-rank tests and particular hazard ratio models.
In this chapter, we emphasize the overwhelming popularity and appeal
of non-parametric and semi-parametric methods over parametric methods.
We discuss how the former became developed only when the methodologists
switched their center of attention from time as the dependent variable, to the

complementary notion of risk.

1.2 Estimation of the survival function

In many statistical settings, it is usually informative to calculate & mean
or median as well as a standard deviation or interquartile range. When the
variables of interest are survival times, or durations, thesc summary statistics
are also helpful. However it is far more popular to report, instcad of this
single summary measure, the survival function. The survival function, S(¢),
also referred to as the survival curve, is plotted along the time axis and
estimates for each time the probabilities that a person would survive that
period of time or longer. It T is a random variate from a distribution of
survival times, the S(t) = Pr[I" > t]. The survival function i3 just the

complementary cumulative distribution function.
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One approach to estimation of the survival function is to propose a para-
metric form, Sp(t), and proceed to estimate 6 and therefore Sy using an
approach such as maximum likelihood. Some possibilities for this para-
metric form, are the Weibull, S,.(tf) = exp[—(pt)*], and the log-logistic,
Sox(t) = [1 4+ (pt)*]~, as well as the Gamma, and the log-normal, for whom
closed forms for the survival function do not exist. See Cox and Oakes (1984)
or Kalbfleisch and Prentice (1980) for a thorough discussion of parametric
statistical models for survival analysis.

A special case of the Weibull distribution is the exponential distribution
which occurs when £ = 1. The exponential is characterized by the follow-
ing memory-less property. Let T be a random variate from an exponential

distribution, and ¢ and u two positive real values then,
Pr(T € [t,t + u)|T > t] = Pr[T € (0,u))]. (1.1)

The memory-less property is equivalent to stating that the hazard function,

A(t), is constant with respect to time, t, where,
At) = [Bmo Pr[T € [t,t + At)|T > ¢]. (1.2)

The hazard function, or just hazard, is also known as the instantaneous risk.
The hazard function and the survival function play a central role in sur-
vival analysis, just as the density function and the cumulative distribution

function play a central role in most other areas of statistics. One can rewrite

the right side of equation (1.2) as —£.5(¢)/S(t) or f(t)/S(t) where f(2) is the

15




probability density function of survival times. Often it is more meaningful

to propose a parametric form for the hazard function instead of the survival
function. In this case the survival function can be obtained from the hazard

using the formula,

S(t) = exp(~ [ ML) db). (1.3)

The cumulative hazard, A(t) = [5 A(t)dt = —logS(t), is also a popular
quantity in survival analysis.

The hazard function for the Weibull distribution has the parameteriza-
tion xp(pt)*~!. When « exceeds 1 this hazard function is strictly increasing
whereas the hazard is strictly decreasing when & is less than 1. A clini-
cal setting where the latter might be true is survival following an operation
where patients settle down to a low risk status after living through a high-risk
period immediately following the operation.

Having proposed a parametric form for either the survival or the hazard
function we could proceed to their estimation by writing the likelihood func-
tion. Suppose n persons have been followed up. Typically, survival data is
recorded as pairs. The pair (¢, d) consists of a time measurment and a binary
variate which is typically 1 if the full duration has been observed and 0 if
the duration has been censored. To write the likelihood of observing a pair

(T, A) it is necessary to recognize the following,
T = min(T°C),
A = lp=go. (14)
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where T is true survival time and C is the censoring time. If we assume

that 7 and C are independent the likelihood of the pair (2, 6) is,

L= {dPr(T“ <t)Pr(C >1t), if6=1; (1.5)

Pr(T° > t)dPr(C < t), if 6 = 0.

This can be rewritten as
L = {dPr(T° < t)Pr(C > t)}} {Pr(T° > t)dPr(C < t)}*~¢ (1.6)
which becomes
L(6) = {dSe(t)Pr(C > 1)} {Sa(t)dPr(C < 1)}~ (1.7)

upon substitution of Sy(t) for Pr(T? > t). Typically it is assumed that the
distribution function of the censoring time, Pr(C < t), carries no information
about #. This is referred to as noninformative censoring (Kalbfleisch and
Prentice, 1980). Therefore the 6 maximizing L(0) is the same 6 maximizing
dSe(t)’Se(t)!=% = Xg(t)’Se(t)dt. 1f n persons are followed up yielding the
observations (¢4, 61),...,(ts, 6») and we assume that their survival times and

censoring times are independent of one another the likelihood function is

L(9) = _f[xo(t.-)ﬂso(t.-). (1.8)

The assumption of the independence of the survival times and censoring
times is usually reasonable in clinical trials and observational studies. It

would be wrong to assume independence if subjects were censored according
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to some characteristics that are rclated to survival, For instance, if subjects in
the PBC study had been withdrawn from the study because their health sta-
tus either improved or deteriorated substantially the censoring times would
not be independent of their survival times.

It is not necessary to assume that 7° and C are independent to derive

the likelihood in (1.8). It is sufficient that,
Pr(T° € [t,t + At)|T° 2 t,C 2 t) = Pr(I° € [t,t + AT > t).  (1.9)

This condition is referred to as weak independence. Deriving the likelihood
in (1.8) using only this condition is more difficult. It involves the partition
of the time axis into an infinite number of infinitesimally small intervals. See
Kalbfleisch and Prentice (1980) for details.

Choosing a particular parametric model is usually arbitrary although the
choice may be guided by a posteriori model selection criteria. Employing
a non-parametric estimator avoids this arbitrariness. Partly for this reason
non-parametric methods are favoured in survival analysis. One example of a
non-parametric method is the Kaplan-Meier estimator (Kaplan and Mecier,
1958). This estimator is usually presented in any article in the medical
literature in which survival or durations are being examined.

The Kaplan-Meier estimator of the survival function has an intuitive form
when expressed in terms of risk sets. The risk set at time ¢ is the sct of
the subjects known to be alive (or to have not yet incurred the particular

endpoint being examined) at time t after the beginning of follow-up. A
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subject is part of the risk set at time ¢ if the following 2 conditions are true;
(i) the subject survives ¢ units or longer and (ii) the subject is not censored
before time ¢. So for instance all subjects are part of the set at time 0.
Usually we are not interested in the continuum of risk sets, but the risk sets
evaluated immediately prior to each observed death (event). The first risk
set consists of all subjects except any subjects censored before the time of
the first observed failure. The second risk set consists of all subjects except
the subject first observed to fail and any subjects censored before the time
of the second observed failure.

The Kaplan-Meier estimator, also known as the product-limit estimator,
is calculated as follows. Let tj < ... < ¢} be the (unique) times at which
deaths (events) occur and Ry, ..., Rx be the corresponding risk sets. The

Kaplan-Meier estimate is given by

Sem(t) = I (1-1/|Ri)). (1.10)

ut) <t
The Kaplan-Meier puts all its mass at the k& death times. Its derivation is

based on the following chain-like identity of conditional probabilities
PriU > u] =[] PrlU > w|U > u,y] (1.11)
1

where 0 = up < u; < ... < uy. It uses 1 — 1/|R,| as the estimate of Pr[T >
t,JT > t; — €] and 1 as the estimate of Pr[T" > t;— € |T > t;-1]. Peterson
(1977) showed that the Kaplan-Meier is a consistent estimator of S(¢).
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Another, very similar, estimator of the survivor function is based upon the
estimator given by Nelson (1969). Nelson estimated the cumulative hazard

A(t) = 5 Mu) du as
Aty = Y 1/|R.). (1.12)
<t
The estimate of the survivor function is obtained by taking § (¢) = exp[A(t)].
It is worth noting that the Nelson estimator can be expressed as a first order
Taylor expansion of the logarithm of the Kaplan-Meier estimator since

log Skm(t) = Y log(1 - 1/|R.]) = ¥ 1/|R| = A(t). (1.13)

te<t Lt
1.3 Comparison of risks

A health care researcher who wishes to assess if some characteristic or ex po-
sure is a possible cause of some discase or adverse outcome would calculate
the observed risk of subjects with the characteristic and compare it to the
calculated observed risk of subjects without the characteristic. In a clini-
cal trial, the goal is to compare the outcome of subjects receiving a new
treatment with subjects receiving a conventional treatment or placebo. In
observational studies, we usually refer to characteristics that are associated
with an adverse outcome as risk factors for that adverse outcome and we say
that the characteristics have predictive ability.

To compare the risks of two groups for whom survival data has been

observed, one method is to compare the estimates of their respective sur-
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vival functions. Figure 1 depicts two Kaplan-Meier estimates superimposed
on the same graph. The laboratory marker prothrombin time recorded in
the PBC study has been dichiotomized into low and high values using the
cut of 11 seconds. This threshold was chosen since it is the closest integer
value to the median prothrombin time which is 10.6 seconds. Kaplan-Meier
estimates have been plotted for the low (thin line) and high value (thick
line) groups. The striking difference between the two estimates suggests that
the corresponding survivor functions that they estimate are different. We
say that persons with high values are more at risk of death, in other words,
prothrombin time has the ability to predict survival.

The superimposition of the two Kaplan-Meier estimates facilitates their
comparison. We would like to formalize this comparison procedure by con-
structing a hypothesis test. If there was no censoring the standard non-
parametric approach would be to use the Wilcoxon test statistic (Lehmann,
1975). Let ty,...t, be the uniquely valued observed survival times, the

Wilcoxon statistic can be expressed as

U= 3 L, Us, (1.14)

=1 .n
=l. n

where q, is 0 or 1 according as the ¢-th subject does or does not have the
characteristic, I is an indicator, and Uj,, assuming no ties, is defined as 1 if
T, > T, and -1 otherwise. Gehan (1967) naturally adapted this formulation
to censored data. He defined

{+1, ift,>t, and 6, = 1;
Uij =

—1, if t; < tj and 6; =1. (115)

21




Mantel (1966) proposed another test which marked a breakthrough in
the way survival data is treated. In constructing a test he focused on the
idea of risk and not on durations as docs Gehan’s method. Mantel refor-
mulated the problem in terms of a serics of 2 by 2 tables and applied the
method of stratified contingency tables that he developed in an earlier pa-
per (Mantel and Haenszel, 1959). The principle underlying this method is
to compare each of the subjects who have died with the risk set evaluated
just prior to their death. Let O, be 0 or 1, respectively, (or 1 or 2) depend-
ing on whether the i-th death corresponds to a person with, or without the
characteristic. O, is an observation from a hypergeometric distribution. Let
E; = E[O,|R)] and V; = Var[O;|R)], be the expected value and variance
respectively of O; given knowledge of the risk set just prior to the death.
Under the hypothesis that the characteristic has no predictive ability, O, is
an observation from a hypergeometric distribution, and E, = ¥,¢5 O, /| )|
and V, = ¥ ,cp 0, % 0,/|R,| — E? = E, — E?. The Mantel-Hacnszel test

statistic is

k k
Y (0. - E)/ >V, (1.16)
1 1

where k is the total number of deaths. This statistic is non-parametric be-
cause the actual times at which the deaths occurred are not used. Their
order is used implicitly and in entirety in the construction of the risk sets. If
the characteristic has no predictive ability the Mantel-Ilacnszel test statistic

has an approximate normal distribution with null mean and unit variance
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which becomes exact asymptotically (Crowley, 1974).

The log-rank test applied to the dichotomized version of the laboratory
marker prothrombin time, yields a p-value less than 0.0001 confirming the
ability of prothrombin time to predict survival.

The Mantel-Haenszel is usually referred to as the log-rank statistic. This
name dates to a paper by Peto and Peto (1972), in which they demonstrated
that the Mantel-Haenszel is one generalization of Savage’s exponential scores
test to censored data, which can be interpreted as a sum of logarithm of ranks.

The expression for the log-rank in (1.16) may be generalized by the in-

corporation of weights, Wi, ..., Wy as follows,
k k
S W0, - B}/ 3 W2 (1.17)
i=1 1

This is referred to as a weighled log-rank statistic. The standard log-rank
is recaptured when Wy = ... = Wy = 1. When W; = |R;|, the number
of persons at risk just prior to the i-th death, it becomes Gehan’s statistic.
The Gehan statistic is criticized because the weights W; = |R;| depend on
the censoring distribution. Indeed, for large n, |R;|/n is close to S(t7)Sc(i})
where & are observed failure times and Sg(t) is the probability of not be-
ing censored before tiniv ¢. Prentice (1978) proposed the weighting scheme
W, =8 (¢;) where § is any estimator of the combined survival curve for the
two groups, for instance, the Kaplan-Meier estimate. Prentice’s test, like
Gchan'’s, becomes the Wilcoxon test when there is no censored data.

It is not difficult to generalize the log-rank statistic in (1.16) to ordinal or
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continuous data. Earlier we dichotomized the laboratory marker prothrom-

bin time in order to test if subjects with high values had a higher or lower
risk of death than subjects with low values but we should be able to use it in
its undichotomized form. In the former case each failure corresponds to sam-
pling a 0 or 1 from the set of 0 and 1’s indexed by the corresponding risk set.
In the latter case each O, becomes a 1-sample from a discrete distribution
whose mass points correspond to the values of the variable, for example pro-
thrombin time, for the subjects in R;. In section 8 we will demonstrate that
this continuous version of the log-rank statistic is actually a score statistic

corresponding to the type of regression Cox introduced in 1972,

1.4 Estimating the relative risk

Weighted log-rank statistics are useful for coming to conclusions of the type
'prothrombin time has the ability to predict survival’ or ’treated subjects
survive longer than untreated subjects’. This may not be enough in some
situations. We may want to quantify the difference in survival. One such
way would be to estimate the differcnce in mean or median survival. Another
is to estimate the difference or ratio of the risks.

Consider the comparison of subjects with low and high values of pro-
thrombin time. Let Ag(t) and A;(¢) be the respective hazard functions. Sup-
pose the ratio of the hazard functions just before the time of the i-th observed
failure, 7, is p; = A (¢]—)/da(t:—). For instance at the time just belore the

i-th failure a subject with a high prothrombin time (as measured at time 0) is
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p, times more likely to fail in the next instant than a subject with a low pro-
thrombin time. The conditional probsbility that the i-th failure corresponds

to a subject with high prothrombin time is

nai(ty)

1.18
noAo(ty) + nai(t]) (119
or

M1 ps (1.19)

nio + N4 P4
where n,o and n,; are respectively the number of persons with low and high
values of prothrombin time at risk just prior to the i-th failure. The con-
ditional probability that the i-th failure corresponds to a subject with high
prothrombin time is

n;o,o’.u-(l)- g (120
By multiplying the each of these probabilities we obtain the following pseudo
likelihood

e
where O is 1 if the subject failing has high prothrombin time and 0 otherwise.
This pseudo-likelihood is not proportional to a probability, and therefore not
a true likelihood, since the probabilities we have multiplied do not correspond

to independent events. However, it is intuitive that these respective events

are not very dependent.
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This particular model for the risk ratio’s is overparameterized. We have
a unique parameter for each failure time. One way of reducing the number of
parameters is to assume that p; = p, = ...px = p or in effect that at all times
during the follow-up, the instantaneous relative risk of death of a subject
with high prothrombin is p times more likely than the instantancous relative
risk of a subject with low prothrombin. To estimate p we could choose that p
maximizing expression (1.21). Doing so we yields the estimate p = 3.3. The
instantaneous risk of subjects with high prothrombin times is on average 3.3
times higher than subjects with low prothrombin times.

In the next section, this method of creating a likclihood is formalized.

1.5 Partial likelihood and the proportional
hazards model

The methods we introduce in this section are due to Cox (1972). Cox’s
contribution was two complementary concepts. The first was to create a
likelihood whose terms did not come from strictly independent events. This
later became known as the partial likelihood (Cox, 1975). The sccond was
the proposal of a model for the way in which covariates affect the hazard
function that yields a simple form for the partial likclihood. This is called

the proportional hazards model.
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1.5.1 Partial likelihood

Cox extended Mantel’s (1967) idea of conditioning on the risk sets in order to
yield test statistics. In this w», he obtained the partial likelihood, which may
be used to yield maximum likelihood type estimates for the parameters of,
for instance, regression models. The appeal of this risk set approach is two-
fold: (i) No distributional assumptions about the (baseline) hazard function
are necessary, but as we shall show we do parameterize the way in which
variables modify the hazard function and (ii) It allows the incorporation of
time-dependent variables which we shall define later.

Cox associates exactly one term in the partial likelihood with each ob-

served failure. The likelihood term he associates with the first failure is
Ly = Pr[Ty =t}|T, 2t} Vj € R, and T, = t; for exactly one j]

Pr[T} =t} and T; > t} Vj € Ry and T; = ] for exactly one j € R;]
Pr[T; > t; Vj € Ry and T; = ¢} for exactly one j € R}

Pr(Ty =t} and T, > t; Vj € Ry]
Pr[T, > t; Vj € R, and T; = t} for exactly one j € R;]

PT[T} 2 Vje Rl]PT[Tf = t;|T7T > t;]
Pr(T; 2 41 Vj € R\ Tjer, Pr{T = IT; > tj]

Pr(Ty = 3|1} 2 t}]
Tyer, Pr(Ti = §|T; > ti]

A (t)
= 2\l 1.
Srem M) (1-22)
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where A; and S; are, respectively, the hazard and survival functions of the

i-th subject. In the partial likelihood approach, a random variable is induced
at each observed failure time by conditioning on the corresponding risk set,
or rather, on all the information about failures and censorings prior to the
time of the i-th failure, which we shall denote by H,. Let A, be the discrete
random variable which takes the value of the index of the subject having the

t-th observed failure, so that

Aoy (21) o .
Pr[A; = a,|R)] = { Sen L0 itj € By (1.23)
0 otherwise.
Cox argued that the event A; given H; is rather independent of the event A,

given H;. For instance, for ¢ > j,

Pr((A; = a,|H, = hi)|A; = aj] = Pr{A; = a|ll; = h; and A, = qa,]
= Pr[A, = a|H, = h], (1.24)

since H;, the complete history of survival up to time ¢!, contains the in-
formation on the failure, A, = a,, at time ¢} < ¢;. Using this notion of
independence Cox proposed the likelihcod as the product of the & factors,

one for each failure time, of the form in (1.22),

EooA)
PL=T] —" 1.25

@ (1:29)
1.5.2 The proportional hazards model

Cox’s second idea was to propose a form for the way independent variables

affect the hazard function that took advantage of the partial likelihood’s
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structure. Cox proposed the following factorization of the hazard function
A(t; ) = Ao(t)ee, (1.26)

where A(t; ) is *he hazard function of a subject whose value for the inde-
pendent variable is z. This factorization is referred to as the proportional
hazards model. It is semi-parametric: The effect of the covariate z on the
hazard is parameterized but the effect of time is not. The first factor on the
right in (1.26) is referred to as the baseline hazard function. The second fac-
tor is the hazard ratio or instantaneous relative risk. When expression (1.26)
is substituted into (1.25) the baseline hazard cancels out of the expression
yiclding

Kk oBa

io1 ZeR, €71 (1.27)
In this model, the parameter § measures the effect of the variable = on
the risk of failure. When z is a dichotomous variable e is the ratio of
hazards between the two groups. In general, e® is the multiplicative effect
on the instantaneous risk of increasing by 1. Cox proposed that the partial
likelihood be maximized with respect to 3 in order to yield estimates 3. The
absolute value of 3 expresses the strength of the predictive ability of the
characterisic z.

Expression (1.27) is independent of the actual failure times. For this

reason J is called a semi-parametric estimator. It is not fully non-parametric

since the effect of the z on the hazard function is parameterized.
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In expression (1.26) the hazard ratio can be replaced by g(Bz) where
g is any positively valued function and = may be a matrix and not just a
vector in which case 8 is a vector. Two more possible generalizations are:
(i) the variable may be time dependent and (ii) the hazard ratio nced not be
assumed to be constant. Almost always in clinical applications the hazard
ratio is assumed to be ef*. This is also referred Lo as the log-lincar modecl.
The linear model, g(8z) = Bz, is not appealling from a computational point

of view since for this model the estimated hazard ratio may be non-positive.

1.5.3 More about the partial likelihood

It is intuitive that the partial likelihood carries information about the hazard
ratio, but it may not be completely clear that it carries all of the information
about the hazard ratio. Let (t,,,6,,),...,(t.,,6,,) be the observed follow-
up information ordered so that ¢, < -+ < ts,. Suppose t, and l,, arc
successive uncensored failure times, so that 6, = 6, =land §,,,, = =
bs.;2 = 0. The partial likelihood ignores any information carried by the
censoring times in the interval (¢,,,t, ). It seems intuitive, for instance, that
knowledge that subject s;;, survived over the interval (¢,,, ¢, +1) contributes
some information about A(t; z,4+1) and therefore about 8. However, since we
are making no assumptions about the baseline hazard, this knowledge can
contribute little or no information about the hazard ratio. It may be that

Ao(t) is zero everywhere except for mass points coinciding with the observed

failure times. In that case, the knowledge that subject s,;, survived over
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the interval (i,,,1,,,,) carries no information, since subject s;;, cannot fail
in that interval.

Kalbfleisch and Prentice (1973) obtained the partial likelihood as the
marginal likelihood of the ranks of the follow-up times when the true model
is proportional hazards.

The idca that the baseline hazard may be zero everywhere except a finite
sct of points is troubling. In many cases this may be very unlikely. It is
more likely that the baseline hazard is a smooth function. Abrahamowicz
and Ciampi (1993) discuss estimation of the hazard ratio when the baseline
hazard is assumed be have some minimal level of smoothness and is esti-
mated from the data based on full maximum likelihood density estimation
by regression splines (Abrahamowicz, Ciampi and Ramsay, 1992).

The full likelihood, F'L, of the follow-up times can be expressed in such a
way that the partial likelihood appears as a factor carrying most or all of the
information about the impact of a variable upon the baseline hazard (Cox,
1984). Let H(t) be all the information about the failure and censoring times
'up until’ time ¢. The information in H(t) about subject ¢ is

{T. =t,A;=6;, ift; <t

T; > t,, otherwise. (1.28)

The entire information from the sample is then carried in H(o0). The full

likelihood, FL = Pr[H(o0) = h(00)}, can be manipulated using the chain

rule of probabilities as
k+1

II PrlH®) = h(t:)|H (tizs) = h(tiz1))] (1.29)

s=1
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or

kﬂl{Pr[H (t:) = k()| H(t, — dt) = h(t; — dt)] x (1.30)

=1

Pr[H(t,- - dt) = h(t,' - dt)li](t,_l) = h(t;_l)]}

which can be rewritten as

k+1

I1 PriH(t) = h()|H(t - dt) = h(t; — d1)] X (1.31)
}ﬁl PrH(t; — dt) = h(t; — dt)|H (ti-1) = h(ti21))

where ] < -+« < i} are the observed failure times and {5 and ¢, denote 0
and oo respectively. The first product in (1.32) is the partial likeliood. The
other factor carries information provided by the gaps between successive

failures.

1.6 Asymptotics for maximum partial like-
liliood estimates

Estimates of § that maximize a partial likelihood, called MPLE'’s have the
same important properties of maximum likelihood estimates. In particular,
MPLE’s are consistent and asymptotically normal subject to some mild regu-
larity conditions. Tsiatis (1981), and Andersen and Gill (1982) have demon-
strated the asymptotic theory. The latter two authors reformulate survival
analysis in the language of counting processes and martingale theory.

In his original paper, Cox (1972) presented an heuristic proof of the

asymptotic normality of MPLE’s. For this, it is necessary to employ the
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logarithm of the partial likelihood, and its first, U(8) and second derivatives
V(B) with respect to the parameter 8. Assume, for simplicity, that g is a
scalar. Let U, and V, be the contributions to the first and second derivatives
of the log-partial likelihood corresponding to the i-th summand, that is, the

i-th failure. For instance,

d oer, Xt )
Ui(B) = 5z A(t]; 27, B) — — 1.32
(8) 5 iz h) > oem Mot 2) (1.32)
Using the A; notation defined earlier (see (1.23)
d
U,(ﬂ) = EPTﬁ[A; = a;IR.]. (1.33)

It is a property of all families of frequency functions (and density functions),
gs, indexed by a continuous parameter 6 for which 6 is the true value, that

B590(X)loas) = 0, (1.34)

(Casella and Berger, 1990). It follows that
d
E[EEPrB(A: = atIRa)|p=po|Ri] =0 (1.35)

for each i, By the double expectation theorem we can take one more expec-

tation, that is integrate with respect to R, to yield
Bl75Pra(As = alRo)lpug,= 0 (1.36)
Therefore
E[Ui(Bo)] = 0 (1.37)
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and so E[U(pg)] = 0.
Its a further property (Casella and Berger, 1990) of all families of fre-

quency functions, gg, that

d?
BlZ90(0loca] = ~BL500(X o]
= —-Var[;—ogo(,\’)]. (1.38)
Therefore
Var[U,(Bo)|R] = ~EIVi(Bo) | ) (1.39)

and again by the double expectation theorem Var[U,(fo)] = — E[Vi(Bo)]. To
derive Var(U(8,)] we first have to calculate the covariance of U, and U, for
i # j. Unlike the corresponding terms in the proof of the asymptotic proper-
ties of maximum likelihood estimates (see, for instance, Kendall and Stuart,
1979) these terms are not independent. Expression (1.37) and the double

expectation theorem are used in the following derivation of the covariance of

U; and U,,

Cov[U(Bo)U, (o)l = E[Ui(Bo)U,(Bo)] ~ ELUL(Bo)| Ry] EIU,(Bo)]
= E[Ui(Bo)U, (o))
= E[E[U.(Bo)U;(Bo) | ;)]
= E[U(Bo)E[U,(Bo)|R,)]
-0 (1.40)

It follows that

VarlU(Bo)] = V‘”’[ZUt(ﬂo)]
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Z Var[U,(Bo)] +2)_ Cov[U.(Bo),U,(Bo)]

(P
= Z“E[V-(ﬂo)]
= ~E[V(B). (1.41)

Cox’s (1972) proof proceeds as in the maximum likelihood proof where
the first derivative of the log-likelihood is expanded in a Taylor series with

remainder around the true parameter, 8y, and evaluated at 3,

U(B) = U(Bo) + (B— Bo)V (8") (1.42)

where 3* lies between fy and 3. Using U (,30) = 0, this expression can be

rewritten as

[—V(B*)3(B = Bo) = [=V(8")]"5[U(Bo))- (1.43)

Using the nearindependence of U; and U, and the central limit theorem, Cox

(1972) concludes that

VC%[(}%:)]—%- — N(0,1). (1.44)
The last expression also yields a score test statistic. For instance to test the
hypothesis that the true value of 4 is 0, compare the statistic V(0)~3U(0)
to a normal distribution.

Having demonstrated the approximate distribution of a MPLE, we now
calculate an estimate and a confidence interval for a measure of the predic-

tive ability of the continuous version of prothrobin time. We shall assume a

proportional hazards effect, A(¢; 2) = Ao(t) exp(fz). We calculate 3 = 0.263,

35




with confidence interval (0.178,0.349). Thus, assuming that hazards are in-
deed proportional this means that cach increase of a sccond in the time to
achieve coagulation is associated with a ¢# = 1.29 fold increase in instanta-
neous risk of death at any time during the follow-up. In the next chapter, we

shall question this assumption of a proportional hazards effect of prothrombin

time.

1.7 Time-dependent variables

The appeal of the partial likelihood as an inference device is two-fold. First,
it avoids parameterization of the bascline hazard function, and sccond, it
allows the introduction of time-dependent covariates (Cox, 1972). So far we
considered variables that are mcasured at the beginning of follow-up. When
we discuss the effect of prothrombin time upon the hazard at time ¢, A(4, r),
we have meant the effect of prothrombin time as measured at the beginning
of this subject’s followup, z(0). We have not mcant and not the effect of
of the value of prothrombin time at time ¢, A(t, z(t)), (or the effect of any
other function that depends on the values of z(t) for t > 0.) However the
validity of the partial likelihood is not lost on regression models in which the
predictor variable is time varying.

The classic example of the time-dependent variable atises from the Stan-
ford Heart Transplant Study (Turnbull, Brown and Hu, 1974). In this study,
the efficacy of heart transplantation was being examined. Subjects became

part of the study if they were considered to be candidates for heart trans-

36




plantation at which time they were put on a waiting list. The time from
this decision of a subject’s candidacy until the time of the actual transplant
depends on the untimely death of another person. This duration is safely
assumed to be independent of the particular morbidity of a subject. Some
subjects died before ever recieving a heart transplant. Follow-up data con-
sists of the 3-tuple (T, 6, {z(t)}:<r) where T is the time from the decision of
candidacy until death, § = 1, or censoring, § = 0, and z(t) is the dichoto-
mous variable which is 1 if the subject received a heart transplant before
time ¢ and 0 otherwise. In order to assess the effect of heart transplanta-
tion on the risk of death, one can employ the proportional hazards model,
At {z(w) }uct) = Ao(t)e?*). Estimates of A for which ef is very low would
provide evidence that heart transplantation is effective.

In some instances, a variable changes over the follow-up but its path
is completely known at time 0. For instance z(t) = z(0)g(t), where g(t)
is some function known at time 0. This type of time-dependent variable
is called fixed. We shall employ fixed time-dependent covariates later to
model alternatives to the proportional hazards assumption. Another type
of time-dependent covariate, which proves useful for uniting some seemingly
disparate concepts from survival analysis, is the evolutionary covariate. Ex-
amples of evolutionay covariates are the number of failure up to time t, N(t),
or the number of censorings up until time ¢, NY(t), and the Kaplan-Meier es-
timator, Sk(t), whose value is bases strictly on information acquired before

time ¢. We shall refer to evolutionary covariates in the next section.
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1.8 Link between the log rank and propor-
tionality of hazards

Arguments based on the risk set were used to derive both the partial like-
lihood and the family of weighted log-rank statistics in (1.17). Accordingly
it may not be surprising to find that the partial likelihood and log-rank
tests are intimately related. Consider the single parameter family of modecls,
A(t;z) = Ao(t)ePs)=, Here the effect of a 1 unit increase in  upon the in-
stantanaous risk of failure at time ¢ is €#9(*) for some function g that might
be known at time 0 or might be an evolutionary covariate. The logarithm of
the partial likelihood, LPL, and its first and second derivatives, U, and V,
corresponding to this model are

LPL(B) = Z{ﬂg Jzi —log 3 eP(Dm}

1—1 JER,

Z T eﬁ.‘]( )'7")
th () {a; - ’ER . }

R eﬂg(t.)zj ?

= z:JER- ziefoltide) _ (Zs€R, z,efaltides
v(g) = -Zg(t ) &, ePIETEs S er, €0,

The score statistic corresponding to the hypothesis that 8 =0, is

U(g)

= Tt - ) (145)

If z is a dichotomous variable this is simply the weighted log-rank statistic
with weights {g(¢!)}.=1,...k. Furthermoreif g is a constant function, the score
statistic becomnes the original log-rank proposed by Mantel (1966). In em-

ploying Mantel’s statistic to test the predictive ability of some dichotomous
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variable, onc is, in a scnse, assuming that the predictive ability, if it exists,
is constant over the follow-up.

If g is the evolutionary covariate, | R(¢)[, the number at risk at time ¢, this
becomes Gehan'’s (1965) test statistic, whereas if g(t) = Sk(t) it is Pren-
tice’s (1978) test statistic. If baseline survival is approximately exponentially
distributed then Skam(t) = e~% for some § > 0 and so g(t) =~ ef. This au-
thor notes that in employing Prentice’s test one is, in a sense, assuming that

predictive ability, if it exists, is exponentially decaying.
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Chapter 2

Assessing the Validity of the
Proportional Hazards Model

2.1 Introduction

Cox’s proportional hazards model is by far the most popular method of re-
gressing survival data. This model is attractive because it facilitates the
partial likelihood approach and because it has a relevant and simple inter-
pretation; the effect of a unit increase in a covariate is associated with a
uniform multiplicative change in the instantaneous relative risk (hazard).
However, the assumption of proportional hazards (referred to later as ph)
cannot be expected to be true, or approximately true, in all situations.
There are many instances when the assumption of proportional hazards
would seem implausible. For instance, in many clinical trials subjects arc
followed up even after treatment has been terminated. One would expect
that if treatment is effective that the relative risk relating treated to control

subjects would change at or some time after the point that treated subjects
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terminate treatment. One would also expect the predictive ability of some
laboratory markers to decline to null eventually. For example a level of high
density lipids measured 10 years ago likely has less predictive value than a
current level in predicting the risk of subsequent coronary heart disease.
Suppose a marker is intimately related to the hazard as in A(¢; z(t)) =
Ao(t) exp(Bz(t)). Fo: example, consider a cohort of persons suffering from
AIDS whose risk of death is largely determined by their ability to fight in-
fection, which in turn is associated with their current level of helper cells,
a component of the immune system. Rarely would we know z(t) at every
moment in time. An analyst might have just one measurement of z(t), the
value at the initiation of follow-up, and proceed to use the model A(¢; z(t)) =
Ao(t) exp(Bz(0)). The extent to which this latter model is appropiate is pro-
portional to the correlation between z(t) and z(0). If the correlation between
z(t) and z(0) decays quickly, then the impact of z(0) upon instantaneous
risk is far from proportional. The association between z(0) and the hazard
A(t,z(-)) will also decay. A more appropiate model would assume that the
instantaneous relative risk decays toward unity, i.e.; as in the ezponential

decay model (Gore, 1984)
At 2(-)) = do(t) exple=*z(0)] (2.1)

for some 8 > 0.
In an 1982 article in Biometrics, Andersen wrote in regard to the propor-

tional hazards assumption, "surprisingly little attention has been paid to the
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problem of model checking”. In the same article, Andersen proposed a test
of the ph assumption. Earlicr, graphical assessments of the assumption had
been proposed by Kay (1977) and Kalbfleisch & Prentice (1980, Chapter 4)
and Cox (1979). Kay (1977) had also proposed a method using the definition
of generalized residuals of Cox and Snell (1968) to examine the overll fit of
the model. In his original paper, Cox (1972) proposed a numerical test of
the proportional hazards assumption and in 1980 Schoenficld proposed a nu-
merical test. Since the time of Andersen’s remark, a considerable number of
methods have been proposed for assessing the validity of the ph assumption.

We begin this chapter by reviewing some graphical techniques for assess-
ing the proportionality of hazards in section 2. In section 3, we discuss some
residual methods for assessing the ph assumption and emphasize the residual

approach proposed by Schoenfield (1982). Iypothesis tests, are reviewed in

section 4.

2.2 Graphical assessment of the proportion-
ality of hazards

If the impact of a variable, z, (as measured at the start of follow-up) upon the
instantaneous relative risk is multiplicative and constant, that is, if hazards
are proportional, A(¢;z) = Ao(t)g(Bz), then S(t;z) = So(£)?P=). This follows

from equation (1.3) which expresses the survival function in terms of the
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hazard function. This expression yields the following identity,
log[ log S(t; )] = log[— log So(#)] - log g(Bz), (22)

which motivates one of the graphical approaches for assessing the propor-
tionality of hazards.

Suppose we are measuring the impact of some treatment upon survival
in a randomized clinical trial. In this case we can think of z as being a
dichotomous variable. Equation (2.2) can be written as log[—log Sr(t)] =
log[— log Sp(t)] — log g(B), where St and Sp are, respectively, the survival
curves for persons receiving the treatment and the placebo. To check whether
hazards are proportional in this setting one could estimate each survival
curve, using the Kaplan-Meier estimates for instance, and plot the log[— log]
transformation of each. If treatment does truly have a constant or approxi-
mately constant effect upon the hazard function then the two plotted curves
should be nearly parallel. This approach was one of the methods proposed by
Kay (1977). Figure 2 depicts this approach for the dichotomized version of
prothrombin time in the PBC study. The thick curve is the log — log Ska(t)
curve for the subjects with high (> 11 seconds) values of prothrombin time.
This example illustrates a problem with this approach to ph assessment. The
two plotted curves are not quite parallel and it is unclear what conclusion to
come to.

For interpretation purposes it is useful to recall that log[— log S(2)] is the
logarithm of the cumulative (integrated) hazard. Thus figure 2 suggests that
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the cumulative hazard of subjects with high prothrobin time is increasing at
a greater rate than other subjects, for instance the hazard is greater, for up
to 3 years after its measurement but not after this point. This method can
be easily generalized to variables with 3 or more levels. An obvious violation
of the the proportional hazards assumption are log[— log 8(¢)] curves that
cross at one more points but are far apart elsewhere. To firm up the notion
of far the analyst could also plot confidence intervals corresponding to these
curves. Confidence intervals for a Kaplan-Meier estimate were demonstrated
by Kaplan-Meier (1958). They are based on a standard error calculation
usually referred to as Greenwood’s formula since it is similar to an estimate
proposed within another framework by Greenwood (1926).

When the predictor has 2 levels, an alternative to plotting log[— log Sy(t)]
and log[—log §,(t)] versus the time axis is to plot one versus the other. If
the predictor has a constant predictive ability then the resulting curve should
be nearly linear with slope equal to the true hazard ratio, (Kalbfleisch and
Prentice, 1980).

As we have done with the laboratory marker, prothrombin time, contin-
uous measures may be stratified into ordinal variables of 2 or more levels in
order to apply this approach. This method does suffer from two disadvan-
tages: (i) The choice of strata is arbitrary ; (i) Some power is lost in detecting
violations or validations to the ph assumption that may occur within strata.

For discrete predictors, a more direct graphical method would be to esti-

mate the hazard function for each level of the predictor. Then the resulting
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estimates could be superimposed on the same plot. In order to check pro-
portionality of the hazards, it is preferable to plot the logarithm of each, in
which case proportionality of hazards corresponds to nearly parallel curves.
Not all estimates of the hazard are ideal for this purpose. For instance the
Nelson estimator of the cumulative hazard assigns mass at each of the failure
times and 0 everywhere else. Comparing two such estimators by eye is very
difficult. It is preferable to assume that that the hazard is smooth and use a
smoothing approach. Ramlau-Hansen (1983) discusses the use of kernel func-
tions for estimating the hazard rate. Bloxom (1985) uses regression splines
to estimate the hazard function while Abrahamowicz, Ciampi and Ramsay
(1992) uses regression splines to estimate the density function. O’Sullivan
(1988) uses smoothing splines to estimate the logarithm of the hazard.

An even more direct method would be to estimate the hazard ratio it-
self. A simple way of doing so is to partition the follow-up period and to
estimate the relative risk separately in each interval. The method of time-
dependent covariate functions can be used to facilitate the estimation. In
general, suppose the follow-up is partitioned as {[yi—1,%:)}i=1,...s using the
sequence 0 = 9 < 7 < ... < 1 = oo. Define the following indicator
functions, I(t) = I, _,,)(t) and the following k time-dependent covariates,
zl,(t), i = 1,..,k. One then maximizes the partial likelihood corresponding
to the model

k
A(t;z) = Ao(t) exp(d_ 6:Li(t)x) (2.3)

=0
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to yield estimates 0y, ..., Ox of the log relative risk in the respective intervals

of the partition. For the PBC data the [ollow-up period was categorized into
5 intervals, [0,1),[1,2),[2,5),(5,8) and [8,00). This partition reflects the
distribution of the timing of the deaths. The respective number of deaths
observed in each interval was 30, 20, 65, 28 and 18. The respective relative
risks for prothrobin time with 95 % confidence interval (based on asymptotic
theory) are presented in figure 3. Note that that the relative risk axis is
log scaled. The dotted line indicates a relative risk of 1. If the confidence
interval for any particular point on the time axis does not contain the value
1 then the data suggests that prothrombin time has an impact on the hazard
at this point. This figure provides evidence that the predictive ability of
prothrombin time is initially high but null § years after its mecasurement.
The analyst should reject the assumption of a constant hazard ratio upon
seeing these results.

Estimation of the hazard ratio is discussed in more detail in section 5,
and in Chapter 3, we discuss the estimation of the hazard ratio by a specific

smoothing method, the method of regression splines.

2.3 Residual methods for assessing propor-
tionality of hazards

In his 1977 paper, Kay also suggested that the method of generalized resid-
uals can be used to assess the goodness-of-fit of the ph model. General-

ized residuals were defined by Cox and Snell (1968). For uncensored data,
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(1, Y1),-..,(2n, Ys), where the Y,’s represent the dependent variable, the i-
th generalized residual is defined as £(Y;;z;) where F(-; ) is an estimate of
the true cumulative distribution function, Fy(-;+), given the independent va-
riable z. If F(;; -) is a good approximation to Fy(-;-) then I:’(Y,-; z;) is close to
Iy(Y,; 2,). This latter random variable has the uniform distribution, U(0, 1),

since,

Prify(Y;z:) <u] = PrlYi < Fyl(uz,)]
= Fo[Fy'(u; zi); 2]
= u (24)

Therefore, the generalized residuals F'(Y3;21),.. ., F(Y,; ,) should resemble
an n-sample from U(0,1). For instance, the empirical distribution function
of these residuals should be approximately a straight line connecting (0,0)
and (1,1).

For a right-censored data set, (T}, Ay, 21), .. ., (Th, A, 2, ) Whose true sur-
vival function is $(.;.) and C(t) = Pr(subject is not censored before time t),
1 - §(T};z,) is a right-censored random variate corresponding to uniformly
distributed ’survival’ durations and the censoring distribution C[(1-5)~(t)],
where (1—5)~! denotes the inverse function of 1 —S. To apply the method of
generalized residuals to the setting in which the proportional hazards model
has been applied, we first require an estimate of S(;-). One appealing es-

timate of the baseline cumulative hazard function, Ag(t) == —log S(¢;0), is
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due to Breslow (1972,1974),

Ay =3 —

tr<t 2.j€R, €

— (2.5)

ﬁl') ’

This is a natural generalization of the Nelson estimator, of the cumula-
tive hazard (1.12). The Nelson estimator is captured by taking g = 0.
(An analogous generalization of the Kaplan-Meier estimator is, Sy(f) =
Mecl! - L 1) To estimate So(t) = S(¢;0), we take So(t) = e~AO),

E’ER. )

To estimate S(¢; z,) we can take S(t;z,) = So()™®(#=), The i-th generalized

residual for this censored data set under the proportional hazards model is
the pair (1 — $(Ty;,),4,). If the proportional hazards model is valid, then
these n residuals resemble a sample from a censored uniformly distributed
sample. Accordingly, an estimate of the survival curve for these transforined
times, such as the Kaplan-Meicr estimate, should be close to a straight line
connecting (0,1) and (1, 0) (Kay, 1977).

The method of generalized residuals in this setting is laborious. Iur-
thermore, it is difficult to determine the variance of the survival function
estimated for these censored generalized residuals. This makes it difficult for
the analyst to determine if this final curve invalidates the ph assumption by
not lying close enough to the straight line connecting (0,1) and (1,0).

The generalized residuals approach was based on the durations 7, whercas
the partial likelihood is motivated by the concept of the risk set. Schoenficld’s

(1982) partial residuals are based on the risk set interpretation of survival

data. He defines one residual for each of the observed failures based on the
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discrete distribution that the v-th risk set induces. The expected value of the
variable z of the i-th subject observed to fail given the risk set just prior to
the time of the i-th failure is

_ Y,eR T Aty )
B Ejen. /J\(t?;m.v) ’ (2'6)

where ¢} denotes the time of the i-th failure. The i-th partial residual is

defined as

H

U, = x: = . (2'7)

If proportional hazards are used to model the impact of the variable z

upon the hazard the i-th partial residual is

. YyeR, TP
U, = o - EpEmE 28)
> seR, €%

The last expression is equivalent to the i-th summand of the score statis-
tic, (1.32), based on the partial likelihood and Cox’s proportional hazards
model. As we demonstrated in section 1.6 the quantities u, have zero mean
if the specified model is correct. Furthermore, they are uncorrelated since
E[UU,] = 0 (see scction 1.6). To operationalize these residuals we can sub-
stitute 8 = B. In this case, the residuals satisfy the property that they sum
to zero since their sum is the derivative of the log-likelihood evaluated at A.

Unlike the residuals we encounter in the usual uncensored continuous re-
spounse regression model which are identically distributed under conventional

assumptions, Schoenficld’s partial residuals are not identically distributed.
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The partial residuals may be standardized by dividing each by its standard

deviation. An estimate of the variance of the i-th residual is

2,0z
o2 = Zoen, &6 _(25€R, z,e0% 0
2=
e, €75 2ser, €74

(2.9)

Typically o, will not change much as i increases unless the covariate has a
very strong eflect.

The partial residuals, u, or u,/0,, may be used to graphically assess sug-
gestive departures from the ph assumption. The analyst can plot them
against the timing or rank of the failure associated with the corresponding
risk set. Suppose the true model is M(¢;z) = Ag(£)elB+9WI2, for some function
g. The function g describes the departure from the proportional hazards
model and is centered about zero. Using a Taylor expansion of LU

about g(¢) = 0 (i.e.; the case when ph holds,) Schoenficld (1982) shows that
E[UR) = g(;)Vare(X|R,), (2.10)

where Varg(X?|R,) is the true variance of X given the risk set just prior
to t;. The partial residuals will tend to be positive or negative, respectively,
depending on whether the true log-relative risk is being underestimated o
overestimated. Figure 4 depicts the residuals, u,, for Cox model estimates
of the elfect of prothrombin time. There is a definite systematic departure,
During early follow-up the residuals tend to be positive. This suggests that
subjects with higher levcls of prothrombin time are more likely to dic in the

earlier part of follow-up than the ph model predicts. In other words, the
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proportional hazards model underestimates the relative risk function during
the first part of follow-up. Conversely, the negatively tending residuals sug-
gest that the relative risk is overestimated later in follow-up. The analyst
at this point should reject or at least be cautious about the assumption of a
constant hazard ratio.

Partial residuals are most appropiate when the predictor is a continuous
variable or at least an ordinal variable with several levels. When proportional
hazards do hold and the predictor is binary (0,1) and say level 1 is associated
with more risk the quantities p, decrease with time since level 1 subjects are
being filtered out of the sample at risk. Consequently, as this author has
experienced, the eye picks up an increasing trend despite the fact that the
average value remains about 0. This same difficulty occurs when the risk of
censoring is more likely in one level than another. A useful alternative in
this situation is to smooth these residuals (Petit and Bin Daud, 1990).

Recent research into diagnostics for survival models using the approach
of martingales have yielded the same Schoenfield (1982) residuals. If the
specified model is correct, the Schoenfield residuals are simply increments of
a martingale process (Fleming and Harrington, 1990). Barlow and Prentice
(1988) propose a number of martingale-based residuals for relative risk regres-
sion and obtain a generalization of Schoenfield’s partial residuals. Therneau,
Grambsch and Fleming (1990) propose a score process meant to evaluate
the proportionality assumption and note that the increments of the process

are the residuals introduced by Schoenfield. Finally Hendersen and Milner
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(1991) introduce a general form of residuals for partial likelihood regression

a special case of which is the Schoenfield residual.

2.4 Hypothesis testing of the proportional-
ity assumption

There is a wealth of tests of the hypothesis of proportional hazards. The first
test was proposed by Cox (1972) in the paper introducing the proportional
hazards model. Cox proposed the alternative model that incorporates a time-
dependent covariate, A(t;x) = Ao(t)ezp{[Bo + Bit]z}. lle suggests that the
proportionality assumption be evaluated by testing the hypothesis f, = 0
using the score statistic for the partial likelihood evaluated at Bo = fp and
B1 = 0. This test is most powerful against the alternative that the hazard
ratio is a linear function of time.

Schoenfield (1980) proposed an omnibus goodness-of-fit test of ph. [e
suggests a partition of the time axis as well as of the range of the covariate and
then shows how the expected values and covariance of the number of events
in each resulting cell can be calculated. He proceeds to yield a goodness-of-fit
statistic which he demonstrates is asymptotically distributed as a chi-square.
The partition of the time and covariate axes is arbitrary. Andersen (1982)
also proposed a goodness-of-fit test based on an arbitrary partition of the
product of the time axis and the covariate range. His method turns out
to be computationally simpler than Schoenficld’s. Morcau, O’Quigley and

Mesbah (1985) propose a test statistic which in the two sample setting is
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equivalent to Schocenfield’s (1980). O’Quigley and Pessione (1989) propose a
general framework in which to test specific alternatives to ph such as linear,
quadratic or exponential trends in the hazard ratio. They use rank-invariant
scores in order to retain the semi-parametric nature of Cox’s model.

A number of tests are implicitly based on the Schoenfield’s partial resid-
uals, (2.7). Nagelkerke, Oosting and Hart (1984) propose a test of the ph
assumptlion which assumes that the alternative is a smoothly changing haz-
ard ratio. They use the summands of the score statistic, U,, defined in (1.32).
These are just the partial residuals of Schoenfield (1982), although they make
no mention of this. They argue that if the hazard ratio is changing smoothly,
the U, are not uncorrelated, in contrast to the case when the hazard ratio
does not change. Indeed, successive values should be positively correlated.
They propose the test statistic ¥;u,u;—;. They use a permutational ap-
proach to estimate the mean and find an upper limit for the variance of this
statistic. Wei (1984) considered violations to proportionality of hazards in
the two-sample setting. Using a stochastic process approach, Wei derived
the test statistic max; | 3, <; U,| where the U; are the summands of the score
statistic. Wei does not identify these increments as partial residuals. Harrell
and Lee (1986) also use partial residuals. They propose that the partial resid-
uals be correlated with the ranks of the failure times corresponding to these
residuals. The null hypothesis is tested using the Fisher z-transform of the
correlation coefficient. This test retains the semi-parametric nature of Cox’s

model and is powerful against alternatives involving monotonic changes of
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the relative risk.

Gill and Schumacher (1987) propose a test of ph which is specific to the

two-sample setting. They consider ratios of the form

/ K(£)dAs(t)/ / K(8)dA, (1) (2.11)

where A; and A; are estimators of the cumulative hazard function in sam-
ples 1 and 2 respectively, and K (t) is some arbitrary weighting function. If
hazards are proportional then this ratio estimates the constant hazard ratio
for any choice of K. If the relative risk is not constant then the expected
value of this estimate depends on the choice of K. The authors propose test

statistics of the form

[ Ka@dha)/ [ K (0)dha(t) - [ Ka(dha(t)/ [ a(t)dha(t). (212)

. They discuss the ideal choice of the weight functions K, and K.

More recently Quantin (1992, personal communication) generalizes Cox’s
model to A(t;z) = [Ag(t)]""eP*. Cox’s model is captured by taking ¥ = 0.
She tests the hypothesis that ¥ = 0 using the score statistic evaluated at
(8,9) = (B,0). The hazard ratio for this model in the two-sample sctling
is ef+t7Aq(t)”"! which is a monotonous function, since A(t) is strictly in-
creasing. Thus this test is not powerful against alternatives in which the
hazard ratio is U-shape in nature. LLiang, Self and Liu (1990) gencralize
Cox’s model to A(¢;z) = Ao(t)elft%7usm) where v is a change-point. They

propose a test statistic for the hypothesis of no change-point which takes
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the supremum of a score stati tic over a range of all possible change-point
values. Gu (1992) uses a similar change-point model but yields a likelihood
ratio test statistic.

There is no lack of test statistics for examining the validity of the propor-
tional hazards assumption. Different tests of ph are powerful against different
alternatives although it is usually not clear what is the best test to use. Fur-
thermore even if the assumption of a constant hazard ratio is rejected the
analysts is left with the problem of what is the correct model and how to esti-
mate the predictor effects over different portions of the follow-up. There has
been but a few papers discussing the modelling of a time-dependent hazard
function. In the next chapter, we describe the previous work on modelling
of the time varying relative risk and introduce the idea of smooth estimates

of the hazard ratio expressed as a function of time.
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Chapter 3

Modelling of the Relative Risk
by Regression Splines

3.1 Overview

Only a few authors have discussed alternatives to the proportional hazards
(ph) model that take advantage of the partial likelihood framework. In sec-
tion 2, we review alternatives to the ph assumption that retain the partial
likelihood framework and introduce the notion of smoothing the hazard ratio.
In section 3 we discuss the method of smoothing splines for estimating the
time-dependent hazard ratio, as proposed by Zucker and Karr (1990). In
section 4 we introduce another smoothing technique, regression splines, and
describe in general some of their propertics. In section § we propose a regres-
sion spline model for estimating the hazard ratio. We also discuss the large
sample properties of the regression spline estimator of the hazard ratio. In
section 6 we shall discuss the computation involved in maximizing the partial

likelihood when regression splines are employed to model the time-dependent
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relative hazard. We introduce the truncated power, B-spline and M-spline
bases which span a given family of regression splines. In section 7 we discuss
the optimal choice of the level of flexibility of a regression spline. There we
propose a method for model identification that uses the Akaike Information
Criterion. We refer to this as the best-AIC regression spline approach. In
section 8 we discuss the impact of a posteriori model selection upon infer-
ence. In section 9 we suggest a modification to the best-AIC regression spline
approach in order to make it more conservative with respect to rejecting the

proportional hazards model.

3.2 Modelling the Time-Dependence of the
Hazard Ratio

One way to incorporate the possibility that the relative risk may not neces-

sarily be constant is to extend Cox’s proportional hazards model to
At; ) = Ao(t)eP )=, (3.1)

in which we replace the parameter 8 by an estimable function of time 8(t).
While the hazards are no longer proportional we have retained a factorization
which, like the ph model, facilitates the partial likelihood method since the
factor Ag(t) cancels out of the partial likelihood. B(t) can be interpreted as
the log relative risk at time t.

One of the most simple ways to estimate B(t) is to express it as a polyno-

mial function of time, A(t; ) = Ao(t) exp[(Bo+fit+- - - + F,t")z(0)]. Another

57




simple way is to partition the time axis and estimate the constant relative
risk separately in each interval as in the model (2.3).

Gore, Pocock and Kerr (1984) propose a log relative risk that declines
exponentially over time, B(t) = Ae", for some known b < 0. It scems
intuitive that the predictive ability of a characteristic could often behave
this way. This seems to be the case, as we described in chapter 2, section 1,
when z(0) is used as a predictor when in fact A(t;z(t)) = Ao(t) exp(Bz(t))
and the correlation between z(t) and z(0) decays to zero. Gore et al were
analysing data from a series of breast cancer patients. They were led to
the exponential decay model after consideration of the estimates from the
stepwise constant relative risk model of (2.3).

Lliang, Self and Liu (1990), as we have previously mentioned, apply a
change point model. The change-point model is appropiate if there is reason
to believe that the relative risk will change abruptly and at the same point
on the time axis for every subject. While it is conceivable that for a specific
subject the relative risk could undergo a dramatic shift at some point on
the time axis it is difficult to imagine any biological mechanism where the
relative risk associated with some marker or some treatment would undergo
this dramatic shift at the same time for each subject. It makes more scnse
that the hazard ratio changes smoothly over time.

Zucker and Karr (1990) suggest the use of smoothing splines (Wegman
and Wright, 1983) to model the time-dependent relative risk.
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3.3 Smoothing splines

One criterion for a function h(t) to be smooth is that it be continuous as
well as having a continuous first derivative. Continuity ensures that there is
no breakpoints while the continuity of the first derivative ensures that there
is no ’corners’ in the curve. This criterion is not enough. The functions
v=1(z — i/n) and sin(27n) defined on [0, 1] are both infinitely differentiable
but for the purposes of modelling data cannot be considered smooth since
they change value so rapidly. The second derivative is one measure of the
local smoothness of a function. As such a popular quantity for measuring
the overall smoothness of a function & is [, |h"|?, where A is the domain of k.
In this case maximal smoothness, attained when f, ["{2 = 0, occurs when
h is a linear function. The functional [, |[d2k|? (or more generally f, |Lh|?
where L is a differential operator) is central to the topic of smoothing splines

(Eubank, 1988).
A smoothing spline is defined to be a solution to the maximization prob-

lem,

mazhenroy P(h) + a /A |Lh|? (3.2)

where H is a space of r-differentiable functions defined on the interval [a, 8],
® is some functional defined on H, « is a constant and L is an r — th order
differential linear operator. Usually r = 2 and L = D?. The function h
that maximizes expression (3.2) strikes a compromise between the desire to

mazimize the log-likelihood and the desire that k be smooth. The constant

59




a controls the relative degrees of these two desires. As a increases so docs
the smoothness of the solution to (3.2). Typically, the smoothing parameter,
a, is chosen using generalized cross-validation (Craven and Wahba, 1979).

Zucker and Karr (1990) use smoothing splines to model the time-dependent
relative risk. In this setting h(t) = B(t), the hazard ratio expressed as a func-
tion of time, r = 2, a = 0, b is some reasonable upper bound for the follow-up
period, L = D? and most importantly @ is the log partial likelihood of the
observed data assuming model (3.1),

max LPL(B) +«a / IO (3.3)
BeH2[0,)] 0

The space of functions H?[a,b] is huge but finding this solution is not
as daunting as it may initially seem. Zucker and Karr prove that any so-
lution to (3.3) must lic in a finite order linear subspace of I/%[a,b]. Let
i1,...,t; be the observed failure times. This linear space is the set of all
B € H?0,b] such that 8 is a cubic polynomial on any one of the intervals
[0, %], [t5, 83], - - -, [th-1s t2], [ty 00]. The fact that 8 is a member of //*[a, b]
ensures that at the failure times f is continuous as well as having contin-
uous slope and curvature. Zucker and Karr demonstrate that if indeed the
model in expression (3.1) is true and that B docs indeed have continuous
second derivative then the maximizer, (t), of expression (3.3) is a consis-
tent estimator and pointwise is asymptotically normal when the sequence of
penalty paramters, {an }n=1,... 00, 1S appropiately chosen. Here, the sequence

{on}n=1,..00 is indexed by the number of observed failures, n, to indicate the
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dependence of the level of smoothing on the available amount of data.

3.4 Regression splines

Regression splines generalize regression by polynomials but are usually con-
sidered to be an improvent over polynomials in that fitting is more localized.
An estimate is called local to the extent that it places relatively more weight
on using information from observations close to ¢ than far from ¢. Localizing
an estimate reduces the bias of estimates while increasing the variance of the
estimator (Hastie and Tibshirani, 1990).

A family of regression splines are defined by their degree, which is equiv-
alent to the degree of a polynomial, and their knots. The knots consist of
the exterior knots, 2 points which define the domain of the regression, and
interior knots, a set of distinct points that partition the domain. Usually
we speak of the order of the regression spline which is 1 plus the degree.
Between any two adjacent knots the regression spline is a polynomial of the
same order. These polynomials join in a smooth fashion. A regression spline
of order k has continuous ! — th derivative for I = 0,...,k — 2. A cubic spline
is continuous as well as having continuous slope and curvature at its interior
knots. A quadratic spline is continuous as well as having continuous slope at
its interior knots.

The family of regression splines of a given order specific to any particular
sequence of knots is a linear space. As such there exists a finite basis. Esti-

mation by regression splines is simply accomplished by regressing onto these
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basis elements by a method such as maximum likelihood estimation or MPL

estimation.

Regression splines have been recently used in survival analysis to (i) esti-
mate the density and hazard functions (Abrahamowicz, Ciampi and Ramsay,
1992) and (ii) model the functional form of the impact of covariates. Durrle-
man and Simon, 1989 and Sleeper and Harrington, 1990 propose the following

generalization of the proportional hazards model,

Mt z) = Ao(t) explg(z)], (3.4)

and proceed to estimate g using regression splines.

Regression splines bear a relation to smoothing spline methods. For in-
stance, as Zucker and Karr (1990) demonstrate for the relative risk func-
tion, there exists a smoothing spline that maximizes the penalized partial
likelihood which is a piecewise cubic polynomial. In other words, there ex-
ists a solution which is a cubic regression spline. This particular regres-
sion spline has one knot for each observed failure time which is an obvious
over-parameterization for a MPLE approach. Typically in regression spline

methods no more than 10 knots are ever used.

3.5 Regression spline model for hazard ratio

The set of regression splines, of a given order (14 degree) and given knot
placement, is a finite linear subspace. As such there exists a finite basis to

span this set of regression splines. The regression spline model we propose
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for the relative hazard can be expressed in the form
{

At;z) = /\o(i)cwp(§ Bigi(t)z) (3.5)
where {g,},=1,...; is an l-dimensional basis for a regression spline space. This
model is a special case of the generalization of Cox’s model to time depen-
dent covariates. The terms g,(t)x are fized time dependent covariates (see
section 1.7). To determine the particular regression spline amongst a space
of regression splines of a given order and of given knot positions that best
estimates the relative hazard an obvious approach is to maximize the partial

likelihood corresponding to this model.

3.5.1 Large sample properties

The proofs of the consistency and asymptotic normality for the partial like-
lihood, that we discussed in section 1.6, ensure the following: If the true
relative hazard is an element of the regression spline space over which we
are maximizing then the relative hazard at any particular point on the time
axis will be estimated without bias and with normal error asymptotically. To
match the "true’ curve ’exactly’ it is likely that no finite regression space will
do. For instance, the true curve corresponds to a regression spline with an
infinite number of knots. Thus to establish asymptotic consistency in general
we must assume an estimation technique that allows the number of knots to
go to infinity. Moreover for any interval (a, b) over which dPr[T < z] > 0

for all z € (a,b) the number of knots falling in the interval must approach
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infinity. One such sequence of knots is obtained by spreading them out

uniformly amongst the observed failure times. For instance if there are n
observed failures, at times t(;) < ... < t@), the knots are chosen to be
Ki = baxra) © = Lyvo, [0/7a], where {r,}ici,.. 00 is any sequence satislying

limyvoo Tn — 00 and limyoe 7 /n — 0.

3.6 MPL estimates for the regression spline
model

Once a knot sequence has been chosen employing regression splines to simooth
the relative hazard can be done at relative ease. For instance one can use
the statistical software BMDP module 2L to obtain smoothed estimates with
little more code than that necessary to obtain estimates from a proportional
hazards model. The Newton-Raphson algorithm can be employed to find the
estimates maximizing the partial likelihood of the model in (3.5). The vector

of first derivatives is given by,

_ Zsenr, T oxp[B()z, ) 16
6ﬂ log PL = z.;gk L ser, explB(t)z;]) (3.6)

where 8(t) = ¥!_, Bia.(t).

The matrix of second derivatives is given by

& _ Tea $ulB) 2 ,
Bﬁkaﬂ, log PL = Egk 5ol A) —( 'o,(ﬂ)) } (3.7)
where
$n(8) = 3 = explB(L])z;] (3.8)
JER,
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for r =0,1,2, and ¢ indexing the observed failures.

The order of one iteration of this Newton-Raphson is o(nmgq) where n is
the size of the sample, m is the number of observed failures and ¢ reflects
the time necessary to invert the matrix of second derivatives. On the other
hand the order of the proportional hazards model with one covariate is n.
The factor increase in complexity, m, is due to the fact that the sums, S,;,
for r = 0,1,2, must be recalculated for each failure time. The corresponding
sums for the proportional hazards model are

Si= Y 2 exp(Bz,). (3.9)
IER,
Since # docs not vary from one failure time to the next, as it does in the
time-dependent model, S, ;;; may be obtained from S, , sums by deleting the
summands corresponding to subjects who are eliminated from the risk set
between these failure times.

Estimates of the asymptotic covariance matrix of the the estimate ﬁ,
denoted by £(3), are yielded by the inverse of the observed information
matrix (matrix of second derivatives), evaluated at 3. The pointwise estimate

of the variance of the log relative risk at time ¢ is then given by

A

g(t)"E(8)g(1) (3.10)

where g(t) is the vector of basis functions evaluated at time t.
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3.6.1 Regression Splines Bases

The functions {g,},=1,...¢ in (3.5) are a basis for the d-dimensional regres-
sion spline basis. A very intuitive and casy to program basis for a space of

regression splines is the truncated power basis. The sct of functions
Lty ot (A= 51)5, . (= k)G (3.11)

spans the r + m-dimensional regression spline space of degree r — 1 (order 1)
with knots placed at k) < +-- < k,5,. The mecaning of the notation (z)} is

the following

r _Jz7, ifz >0 o 1
(”)+‘{0, ifz<0. (3.12)

The continuity properties of the regression spline space are then self-
evident since

d . {r(r—-l)---(r—i+1):c"', if z > 0;

= o, if z < 0. (3.13)

dri o+ =

which is continuous at 0 for ¢ < r. Therefore every element of this basis has
continuous i-derivatives for ¢ < r.

The truncated power basis is easy to define. For instance one could
use it rather easily to obtain regression spline estimates using a statistical
package such as BMDP. However, this basis is highly collincar especially
due to the fact that every element of this basis is a non-decreasing function

(de Boor, 1978). The high level of collincarity decreases the precision with
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which the matrix of second derivatives can be inverted. As a result the
number of steps necessary for convergence may increase or convergence may
not be attained. On the other hand if the basis was orthogonal or ’close’ to
orthogonal the inversion of the matrix of second derivatives may be changed
from a o(d?) calculation to a o(d) calculation. This becomes important in
reducing computing time if the relative hazard function cannot be modelled
adequately by a low dimensional regression spline.

An orthogonal basis does exist for any particular regression spline basis
but typically the order of any algorithm, such as the Gram-Schmidt process,
cmployed to determine an orthogonal basis is o(d?) which would negate the
one of the motivations for finding an orthogonal basis.

The truncated power basis while highly collinear does have a suggestive
property. The property that (¢ — &,)} takes the value 0 over the interval
(—oo0,k,) can be taken advantage of to derive a nearly orthogonal basis. A
basis, {¢,(t)}:=1,..4, for which all elements is zero everywhere except over
finite intervals might yield ncar orthogonality. Suppose g; is zero on the
interval [, for ¢ = 1,...,d then the second partial derivative, W‘zza—ﬂ;log PL,
as in (3.7) is zero for all k and ! such that I and I; do not intersect.

Consider the truncated powers corresponding to the first four knots of a
quadratic regression spline space, (¢ — x,)3,7 = 1,2,3,4. Any linear com-

bination of the latter three is zero on (—oo0, ;). Moreover on the interval
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(K4, —00)

4 4

dYoa(t— &) D a(t— k)

i=1 =1

4
= > a(t* - 2k,t + A?)

=1

= Y (1) (f)m (3.14)

r=0,1,2

where C, = T2, a,x2". If we could find non-zero a = (a1, az, a3, a4)? for
which each of the three C,s equalled zero then the function a(t—n)
would be a regression spline that is non-zcro on the interval (x1,K4), and zero
everywhere else. Such a 4-tuple a does exist as one of the many solutions to

the matrix-equation

1 1 1 1

K1 K2 Kz K4qla= 0. (315)

-2 2 2 2

For any of the solutions, &, to (3.15), the resulting regression spline
Y a,(t — £:)3 has the same approximate shape. This shape is a smooth
bump which is either all negative or all positive. It is possible to derive a ba-
sis which consists entirely of these type of functions. Curry and Schoenberg
(1966) derive such a basis, the M-spline basis and de Boor (1978) derives
another, the B-spline basis. Each generalize the idea of these bases to re-
gression spline bases of arbitrary order. For instance cubic-order B-spline
and M-spline bases are defined. Whereas a quadratic-order B-spline or M-
spline component is zero everywhere except over an interval (K4, Kig3) an -

th order B-spline or M-spline is zero everywere except an interval (k,, K4, ).
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For instance a cubic-order B-spline is positive over 4 consecutive intervals
(Kuy Kag1)y (Rog1y Kig2)y (Kig2, £i43), (K43, Ki44). The B-spline and M-spline are
cach characterized by a different normalization. Each element of a M-spline
basis integrates to 1, whereas for B-spline basis elements, By(t),.. ., By(t) the
sum Y4, B,(t) is unity for all ¢. The unit integral constraint for any par-
ticular element of the M-splines basis can be incorporated as a final linear
cquation, [*¥ " a,(t - &,)2 dt = 0, in expression (3.15).

The B-spline and M-spline bases are nearly orthogonal. For any inner
product, specifically the inner product defined by the second derivates of
the time-dependent hazard ratio model, in (3.7), the inner product of any
two basis elements, b; and b,, is 0 when |¢ — j| > r. The matrix of second
derivatives (3.7) has a banded structure if we employ B-splines or M-splines.
This facilitates the inversion of this matrix which is a crucial part of the
Newton-Raphson algorithm.

Each element of an M-spline basis can be derived in o(r?) calculations.
Typically M-splines and B-splines are obtained via a set of recursive formulas,

(de Boor, 1978, Curry and Schoenberg, 1966, Ramsay, 1988). For instance

the M-spline basis can be constructed using the recursive formulas,

Iig, , o) (2 )
MJ(th,1)=—'[f"-’—J—ﬂ)-(—2 Jj=L..,2r+m-1
1+1 T Ky

(3.16)

forj=1,...,2r+m—-1and

r

M,(tln,r) = [(1‘ _ 1)(Kg+r _ KJ)][(

t—k,)M,(t|g,r - 1)+ (3.17)
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(K‘J*"T - t)A/I_H.l(th,T - l)l (318)

fork>1land j=1,...,2r + m — 1, where £ = (K1,...,Km), the vector of
knots, which also incorporates the endpoints L and U of the domain of the
regression, and I4(t) is the indicator function for the set A. The notation
M(t|x,r) is used to denote the dependence of the regression spline space on
the knots and the order r. A similar recursive formula exists for deriving a
B-spline basis.

This recursive formula is o(r?). It facilitates the calculation of M(t|x,r)
at specific points t. A less direct approach would be to calculate cach M as
a linear combination of 4 elements of the truncated power basis using the
4-tuple a which solves the r by r matrix equation defined by (3.15) and the
unit integrality constraint together. On the other hand if one is gr.phing a
linear combination of the M-splines over some interval, as for instance the
regression spline which maximizes the partial likelihood for the model (3.5),
the recursive formula method should be avoided. In this case the recursion
has to be performed for every value of ¢ in some fine grid within the interval,
for instance for the value of ¢ corresponding to each column of pixels of a
graphic device. In this case computing is facilitated by expressing the M-
splines in terms of the truncated power basis or polynomials.

M-splines are appealing since they facilitate the imposition of tail con-
straints such as 8(0) = 0 or #'(0) = 0. While we have not used any such

constraints we have chosen to use the M-spline basis in our calcuations.
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3.6.2 Example

The analyses that follow were accomplished using a program written in the
language C for a PC-486 by the author. The program was written to yield
partial likelihood estimates for the model in (3.5) where the set of functions
{g,(t)} are replaced by an M-spline basis. In the example that follow knot
selection is automatic. The knots were located along the time axis so that
there was the same (or the same less 1) number of failures in between any
two adjacent knots.

In section 1.3 we reported that the laboratory marker, prothrombin time,
was a statistically significant predictor of deaths based upon the log-rank
test (1.16). In sections 2.3 a plot of Schoenfield’s parti~l residuals (2.7)
suggested that the predictive ability of this variable is not constant. Now
we shall use the regression spline approach to estimate the possible time-
dependent nature of the relative risk corresponding to this variable. Given
the large number of observed failures, 161, we find it reasonable to use a
cubic regression spline with 3 knots. This 7-dimensional regression spline
cnsures sufficient flexibility to capture the shape of the true hazard ratio.

Figure 5 depicts the regression spline estimate (thick line) and corre-
sponding 95% confidence intervals (dashed lines). The horizontal line of unit
relative risk is also included. The time axis is measured in years. The relative
risk axis is logarithmically scaled. A reasonable, although perhaps liberal,

approach to inference is to conclude that §(t) > 0, that is that prothrombin
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time has predictive ability, whenever the lower bound of the confidence in-
terval exceeds 0. In that case we would conclude that prothrombin time has
the ability to predict deaths up until about 3 years after its measurement.
One lesson from this result is that amongst subjects suffering from PBC a
measurement of prothrombin time should be repeated at least every 3 years
if its to have any prognostic value.

The estimate in figure 5 is a decreasing function with no local maxima
or minima. This shape could be captured by a lower dimensional regression
spline, for instance, a quadratic polynomial. In the next section we discuss
the choice of the dimension, or in other words, the level of smoothness, of a

regression spline.

3.7 Best AIC-Regression Splines

As we have described the smoothing of the relative hazard by regression
splines can be done at relative case. However, as in any modelling application
the task is not as automatic as we may initially hope. Before an analyst
proceeds with estimation he/she must decide on the number of and position
of the knots that are required as well as the order of the regression spline. The
choice of these quantities corresponds to the choice of the penalty parameter
in the smoothing spline approach.

Regression splines are often criticized for their dependence on the location
of knots when they are a posteriori (Hastie and Tibshirani, 1990). We shall

employ the following a priori automatic approach. We shall locate the knots
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along the time axis so that the number of failures in between any two adjacent
knots is approximately the same. For instance if 3 knots are used they are
located at the quartiles of the empirical distribution of survival times.

We shall employ an automated model selection criterion to determine
the regression spline order and the number of knots. Among these crite-
ria Akaike’s Information Criterion, AIC, (Akaike, 1974) seems to the most
popular (Bloxom, 1985, Slceper and Harrington, 1990, Abrahamowicz et al,
1992).

3.7.1 AIC in the full likelihood setting

In the full likelihood setting the AIC is easily computed. It is simply the
log-likelihood minus the degrees of freedom in the model. (Usually this is
multiplied by minus 2, but here we shall disregard this constant factor). The
AIC rewards models that fit the observed data well but penalizes the degrees
of freedom in the model. There is two ways to regard the penalty. The first
is that the AIC penalizes complicated models. This is ideal as regression
models that an analyst communicates to a clinician, for instance, should be
as simple as possible. The second way is that the AIC penalizes spurious
fitting which is usually referred to as overfitting.

Akaike’s (1974) motivation in deriving the AIC was the maximization

of the expected log likelihood over a class of models. The expected log

likelihood
Ellogg(Y;z)] = / log g(y; =) f(y; ) dy (3.19)
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is a measure of the closeness of a model g(-; z) to the true model S(-; ). This
quantity is maximized over the set of all models when ¢ = f. This result

follows upon substitution of » = g(Y; z)/ f(Y;z) into the incquality
-l1+v—-logv>20 WveR (3.20)

and by then taking expected values. The expected log-likelihood plays a
dominant role in information thcory (Kullback and Leibler, 1951).

The observed log-likelihood of the model g(; z) is

ilog 9(y; ). (3.21)

It is an estimator of nE[log g(¥;; 2,)]. In the maximum likelihood sctting g is
parameterized as g(+;z;,0) and we find § that maximizes the log-likelihood.
Let 0* be the 6 that maximizes the expected log-likelihood in this particular
parameter space. The maximized log likelihood is a biased estimator of the

maximized expected log likelihood. Akaike demonstrates that the difference,

Elogg(y,-; a:,,ﬁ) — nkflog g(y; , 0*)] (3.22)

is asymptotically distributed as a chi-square with degrees of freedom cqualling
the dimension of the parameter space. Accordingly, the expected value of
the difference is then this dimension. The AIC incorporates this correction.
The AIC can be conceptualized as follows. The first component, the observed
log-likelihood estimates, with bias, the distance between the true distribution
and the best model in the particular parameter space. The second component

corrects for this bias.
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3.7.2 AIC in the partial likelihood setting

So far we have discussed the AIC with respect to a full likelihood inference
device. We must now extend the AIC to the partial likelihood setting. This
is accomplished by replacing the log-likelihood by the log-partial likelihood.
The component of the AIC that corrects bias remains the same. In this
case the AIC estimates the expected value of the partial likelihood. Sev-
cral authors have used the AIC for model selection based upon the partial
likelihood, (Sleeper and Harrington, 1990 and Durrleman and Simon, 1989).

In general we propose that the hazard ratio be estimated in the following
fashion; (i) find the MPL estimate of the hazard ratio for the constant and
lincar relative risk models as well as in all quadratic and cubic regression
splines spaces whose dimension does not exceed some reasonable fraction of
the observed number of failures. For instance there should not be more than
1 dimension per 10 observed failures (Kalbfleisch and Prentice, 1980). (This
fraction should also decrease as the number of events increases if asymptotic
properties of the MPLE’s are to hold.) (ii) For each estimate calculate the
AIC. (iii) Choose the model for which the AIC is optimized.

We shall refer to this method of estimation as the best-AIC regression

spline approach.

3.7.3 Example

We used the best-AIC regression spline approach to estimate the hazard ratio

corresponding to the variable prothrombin time in the PBC study. The AIC
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criterion was maximized using a quadratic regression spline with 0 kuots, in

other words, a quadratic polynomial. Figure 6 illustrates this estimate. We
have included the nominal 95% confidence intervals coustructed as in the
case where a quadratic polynomial is a priori chosen. This estimate much

resembles the estimate in figure 5 with the exception that it is smoother.

3.8 Impact of model selection upon infer-
ence

After having selected a model based on a criterion such as the AIC an an-
alyst usually constructs confidence intervals. Kor instance we would chose
a regression spline model and proceed to draw the curves corresponding to
the 95% confidence intervals for the relative hazard based on the consistency
and asymptotic normality of the maximum likelihood estimates. These con-
fidence intervals are constructed under the premise that the paramecter space
of the true model was known a priori, that is, known before the data was
sampled. The process of model selection alters the actual coverage of these
confidence intervals, (Hurvich and Tsai, 1990). This idea is demonstrated by

the fundamental variance partitioning identity,
Var(Y) = E[Var(Y|X)] + Var[E(Y|X)] (3.23)

where X and Y are any random variables. Suppose we wish to construct a
confidence interval for a random variable Y but first choose a model from a

family of models that compete to model Y. The process of model sclection is
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certainly subject to randomness so let X be the particular model we choose.
If we had chosen to use a particular model z prior to model selection we
would use the variance Var(Y|X = z) to construct a confidence interval for
Y. However, this variance underestimates, on average, the actual variance
by the amount Var{£(Y|X)}. This latter term will be small if the expected
value of Y does not differ much between models or if a particular model is
chosen at a rate close to 1 or if a subset of models all of which differ little with
regard to E[Y|X] arc chosen at a rate close to 1. Furthermore the variance
Var(Y) will be well estimated by Var(Y|X) if and only if Var{E(Y|X)} is
small and the variance of Var(Y|X) as a function of the random variable is
small. So the coverage calculated from model X will be reasonable if and only
if the the model selection criteria choses with probability approaching 1 a set
of models in the support of X for which E(Y|X) and Var(Y|X) vary little.
The severity of this problei of underestimating the true variance is addressed

partially in section 1.6 in which we propose and perform simulations.

3.9 A modification to the best-AIC regres-
sion spline approach

The best-AIC regression spline approach is liberal in its tendency to select
models with time-varying hazard ratios and not the more simple proportional
hazards model. Consider the comparison of a time-dependent regression
spline model of dimension r to the constant relative risk model, which has

dimension 1. Suppose the corresponding AIC are A, and A;. The probability
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that the time-dependent model is sclected is

PrlAy < A] = Pr{LPL —1< LPL, -2
= Pr(=2(LPL, — LPL) >2(r - 1)},  (3.24)

where LPL; and LPL, are the maximized log partial likelihoods correspond-
ing to the constant and time-dependent relative risk models, respectively. If
the true form of the relative risk is constant, then since the constant relative
risk model is nested within the regression spline model then twice the dif-
ference of the maximized log partial likelihoods is asymptotically distributed
as a chi-square whose degrees of frecdom is the difference r — 1 (Gill and

Andersen, 1980). This is a likclihood ratio test. Therefore
Pr{A; > A} = Pr[xi_, > 2(r - 1)]. (3.25)

For instance for r = 2,3, 5 and 10 the respective probabilitics of rejecting the
constant relative risk model when the relative risk is actually constant are
0.15, 0.13, .09 and .04.

In practise an analyst is certain to reduce the probability of rejecting the
hypothesis of either a null effect of the covariate or a proportional hazard
effect by appealling to hypothesis tests. Both because of its simple concep-
tually appealling form and its popularity the analysts would be expected
to provide strong evidence that the ph model is invalid. For instance upon
finding that say a cubic regression spline with 2 knots has the best AIC an

analyst would test if this model is (i) significantly better than the null nodel
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and (ii) significantly better than the proportional hazards model. Since triv-
ially the null model is nested within any space of regression splines and since
th. proportional hazards model is also nested in any regression spline space
a likelihood ratio statistic can be used to test if the best-AIC model fits sig-
nificantly better than the null and constant hazard ratio models. Of course
these tests are only nominal since implicitly by comparing the best-AIC to
say the constant model one is performing multiple comparisons but this mod-
ification is a reasonable tool for reducing the frequency of type I error. The
exact correction of this type I error is not a trivial problem.

When this modification to the best-AIC regression spline approach is
applicd to the variable prothrombin time we find that the quadratic polyno-
mial for the relative risk of a 1 second increase in prothrombin time fits the
obscrved data significantly better than the constant model, P=.0003.

In the simulations that follow we refer to this modification as the modified

best-AIC regression spline approach.
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Chapter 4

Small Sample Behaviour of
Best-AIC Regression Splines

4.1 Overview

The asymptotic properties of the modified best-AIC regression spline, as we
discussed in chapter 3 may be of limited value. For practical purposes it is
more relevant to examine the behaviour of this approach when there is only a
small number of observed failures. A typical approach to determining small
sample behaviour is to perform a simulation.

In section 1 we describe the goals of, and the set-up for a simulation we
perform. In section 2 we describe the gencration of data for this simulation
using a novel approach based on the generation of random variates from the
risk sets. Section 3 concerns a few other details of the simulation, for instance,
the possibility of divergent MPLE’s. Finally, in section 4, the results of the

simulation are reported.

80



4.2 Simulation

Through simulation we would like to examine the small sample behaviour
of modified best-AIC regression spline estimates with respect to (i) type I
crror in the sense of rejecting the ph model, (ii) bias, (iii) coverage rates of
asymptotically based nominal 95% confidence intervals, (iv) the frequency
with which the general shape of the relative risk is captured, be it decreasing
or increasing or U-shaped.

We shall generate samples of size 25, 50 and 100 where there is assumed
to be 33% censoring. In the simulations that follow we shall refer to the
respective sample sizes as ny = 17, ny = 33 and ny = 67, where the notation
ny is meant to signify the number of failures. The variable whose impact upon
the hazard function is being assessed is dichotomous taking either value with
cqual probability. Each sample will be simulated 500 times.

For each sample we consider only smooth regression splines. For instance
for ny = 67 we consider all regression splines with cubic or quadratic order
and with 0 up to 3 knots, as well as the null, constant hazard ratio and linear
hazard ratio models. For smaller sample sizes we consider a smaller array of
models. For ny = 33 we consider null, constant, linear, quadratic and 1-knot
quadratic regression splines. Forny = 17 we consider only the null, constant,
lincar and quadratic models. The choice of knot locations is automatic. It is
determined by the quantiles of the observed failure times.

We have chosen 4 relative hazard functions from which we shall generate
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data. They represent broadly spcaking a range of possibilities that would be

of interest and intepretable to a clinician who is establishing the predictive
ability of some measurable feature or the time of efficacy of a treatment.
They are (i) a constant rclative hazard, (ii) a linear relative hazard, (iii)
an exponentially decaying relative hazard and (Gore, 1984) (iv) a relative
hazard initially null that increases and eventually decreases before the end

of follow-up. We shall refcr to the latter as the Rise and Fall model.

4.3 Data generation

There is many ways to gencrate data. The most popular approach for
generating data from an arbitrary distribution F' is to generate a random
deviate, u, from U(0,1). Then F~!(u) is a random deviate from /7. To
apply this approach to our problem we would have to specify the base-
line hazard function as well as the rclative hazard and calculate F(t) =
1 — ezp(— J3 do(t)ezp{B(t)z}dt) . A closed form for the cumulative hazard
does exist if the baseline distribution is exponential and the relative hazard
is constant or linear but does not exist when the relative hazard takes on the
two other forms we are considering for scemingly any choice of the bascline
hazard function. To avoid a complex dala generation process we propose an
alternative approach based on risk sets that also simplifies the interpretion
of the simulation.

Assume that events, be they failures or censorings occur at fixed points,

t1,...,tn. We shall sample randomly from cach of the corresponding risk
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sets, Ry,..., R,. To incorporate censoring into this process we randomly
consider time ¢; a censoring time 33% of the time. If it is a censoring time
we randomly select a subject from the risk set assuming that each is equi-
probable. If it is not a censoring time we randomly select a subject from the
risk set and say that the subject has failed using the following method: First
we generale a deviate from U(0,1), u. The cumulative discrete distribution
induced by this risk set, R,, assuming that the hazard function is given by

At z) = Ao(t)eP)= is

. eﬁ(‘l)xl
R(]) = zl<],I€R|

LieR, Pl 1)

dcfined for each j € R,. Then the subject failing at time ¢; is indexed by the
J satisfying F(j—) < u <= F(j). The i + 1-th risk set consists of the i-th

risk sct less the subject randomly selected out of it.

4.4 Other details

We shall assume that the ¢;’s are uniformly spaced over the unit interval.
This facilitates summarization of the simulation results. When we report
the results we shall frequently refer to properties of 4(t) and Var(5(t)) at
the quartiles of the empirical distribution of observed failure times, where
t = 0.25,0.50 and 0.75, respectively.

For a dichotomous predictor in low sample sizes the probability that no
finite MPLE exists is reasonably high. For instance for the proportional

hazards model with k observed failures and equal numbers of subjects on
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each of the two respective levels of the predictor the probability of no finite
MPLE is on the order of 2(})* since no finite MPLE would exist if every
subject failing has the same level of the predictor. In our simulations the
quadratic polynomial has no MPLE when n; = 17 with frequency on the
order of 1 in 25. This would happen if amongst the sequence of predictor
values corresponding to failing subjects, ordered by failure time, there was
a run with 2 or less transitions, since then a quadratic polynomial can be
fitted that has zeroes in at or in between these transition points. Although
it creates a bias in the simulation results we chose to ignore a particular
estimate if it was not finite. So for instance if the quadratic polynomial
failed it would not be considered as a choice for best model.

In our report of the results of the simulation we shall stratify the esti-
mates according to whether (i) the null model was chosen, (ii) the constant
model was choosen and (iii) a time-dependent relative risk was chosen. This
seemed advantageous to us from two viewpoints; (i) It scemed unuscful to
report overall results about the pointwise estimated variance and about the
pointwise coverage when with a reasonably high frequency the null model
would be selected, in which case the corresponding nominal 100% confi-
dence interval is 0. (ii) The overall results would be too much an artifact
of the particular true models we chose. This way we separate the effect of
power for detecting time-dependence from that of the bias and precision of

time-dependent estimates.
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4.5 Results of Simulation

When the true form of the relative risk is constant, #(t) = 1 for all ¢, a time-
dependent estimate of the relative risk is chosen with frequency 11.6%, in
samples with 17 events (on average, i.e.; sample size is 25), 13.8% in samples
with 33 events, (say ny = 33), and 19% when n; = 66 (see Table 4.1). The
fact that cach of these frequencies exceeds 0.05 is to be expected since the
likelihood ratio test with nominal type I error of 0.05 compares the best
of a sct of regression splines to the constant relative risk model. The fact
that this emiprical type I error rate is increasing with sample size may be
because for each increase in the number of events we consider successively
more regression spline models using the AIC criterion.

This disturbing type I error rate when ny = 67 is in part mitigated
by the nearly flat shape of the ’significantly’ better fitting time-dependent
estimators. The mean values of 3(0.25), 8(0.50) and ,@(0.75), respectively
amongst these time-dependent estimators are 1.4, 1.1 and 1.0. These time-
dependent estimators change quickly in the 'tails’. The mean values of 3(0)
and ﬁ(l) are 3.3 and 5.1, respectively, with very large standard deviations of
12.4 and 11.6. This erratic behaviour toward the tails is more pronounced in
smaller samples. Figure 7 depicts the true relative risk (thick line), the mean
estimate(dashed line) and curves representing plus and minus one standard
deviation of these estimates(dotted line) when n; = 33 amongst estimates

that are time dependent (i.e.; estimates resulting from a rejection of the null
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True
Hazard | Sample | Null Constant Time
Ratio Size Dependent
Constant 17 470 Al4 116
33 196 644 160
67 016 794 190
Linear 17 784 .066 150
33 682 048 270
67 414 020 566
Exponent. 17 204 350 246
33 126 406 468
67 002 214 784
Rise/Fall 17 746 144 110
33 564 240 196
67 330 330 340

Table 4.1: Frequency with which a particular model was chosen
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and constant models).

As we described in section 4 any estimation technique that involves model
selection will yield estimates of the variance that underestimate the true
variance. In these simulations, the extent of this underestimation increases
as the sample increases for simulations in which the true relative risk is
constant and the estimate chosen is time-dependent. For simulations in which
ny = 1T the ratio of the mean estimate of the standard deviation to the
empirical standard deviation of the estimates is 0.88, 0.96 and 0.83 at the
25-th, 50-th and 75-th percentiles along the time axis. Table 4.2 reports the
coverage rates at each quartile for each sample size. For simulations in which
there is 33 events on average the corresponding ratios are 0.58, 0.61 and
0.61. The corresponding ratios for the n; =67 are 0.6, 0.625 and 0.45. Not
surprisingly the coverage rates of the nominal pointwise 95% c.i.s of these
relative risk estimates that are time-dependent also decrease as sample size
increases. For ny = 17 they range from 0.88 to 0.98 over the time axis.
For n; = 33 they range from 0.73 to 0.88 over the time axis. For n; = 67
they range from 0.67 to 0.83 over the time axis. On the other hand amongst
relative risk estimates that are constant the coverage remains intact at about
0.97 for all three event sizes.

When the true log relative risk is linear there is substantial inflation
amongst the estimates that are time-dependent. Figure 8 depicts for n ;=33
the true log relative risk (thick line), the mean estimate (dashed line) and

symetiric plus or minus one standard deviation curves for these estimates
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True Perentile
Hazard | Sample | 0.25 0.50 0.75
Ratio Size

Constant 17 940 931 921
33 837 837 850
67 751 .832 .703

Linear 17 987 .933 973
33 874 .822 963
67 919 901 922

Exponent. 17 .000 992 976
33 991 944 927
67 929 .903 926

Rise/Fall 17 964  .945 709
33 .898 939 .888
67 .853 871 876

Table 4.2: Coverage rate of nominal 95% confidence interval at quartiles

(dotted lines). The line of unit relative risk is also indicated. For nj =
33 there is also underestimation of the variance. The ratios of the mean
estimated standard deviation to the standard deviation of the estimates are
.89, .72 and .87, respectively at the quartiles ¢t = 0.25, 0.50 and 0.75. The
coverage rate of the nominal 95% c.i. ranges from 0.82 to 0.96 over the time
axis. Table 4.2 reports the coverage rates at the quartiles.

In practise an analyst would likely interpret the relative risk as being
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significantly different from unity when the nominal 95% c.i. interval for
B(t) does not contain 0. Figure 9 depicts the frequencies with which (i) the
lower limit of the 95% c.i. exceeded 0 (solid line) and (ii) the upper limit of
the 95% c.i. is less than 0 (dashed line), when the true log-relative risk is
linear amongst those simulations where a time-dependent model is chosen.
For instance the empirical estimate of the probability with which an analyst
would conclude that $(0.25) exceeds 0 is nearly 50%. With frequency of
approximately 40% the analyst would conclusi:- that £(0.75) is less than 0.
This shows limited power but the ”significant” conclusions tend to be correct.

The actual estimates at each point in time of the relative risk are not,
in practise, as important as the general location (increased risk vs decreased
risk) and the shape of the log-relative risk function. For each simulation
in which a time-dependent model is chosen we have identified whether the
rclative risk is (i) generally increasing, (ii) increasing then decreasing (iii)
decreasing then increasing and (iv) generally decreasing, based on the esti-
mates of the relative risk at ¢ = 0.25, 0.50 and 0.75. When the true log
relative risk is linear (and decreasing) 81% (ny = 17), 87% (n; = 33) and
76% (ny = 67) of the time-dependent estimates are generally decreasing (see
Table 4.3). The fact that for ny = 67 the correct shape is identified with
frequency of only 76% is troubling.

It is not surprising that the low-dimensional regression splines had more
difficulty estimating the exponentially decaying version than the linear ver-

sion of the log-relative risk. For instance when n; = 17 a time-dependent
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True Shape
Hazard | Sample | Increasing Increasing Decreasing Decreasing
Ratio Size Decreasing Increasing
Constant 17 45 .09 .28 19
33 .25 .16 31 .28
67 .26 .22 .23 28
Linear 17 .00 .05 13 .81
33 .00 .08 .05 87
67 .01 12 11 76
Exponent. 17 .02 .02 .26 71
33 15 51 11 22
67 .06 71 .05 18
Rise/Fall i7 49 .29 .02 .20
33 25 .16 .31 .28
67 .26 22 23 .29

Table 4.3: Frequency with which a particular shape of model was chosen
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estimate could either be linear or quadratic. In this case the mean estimate of
A(t) is a function that is decreasing up to ¢ = 0.7 afterwhich it is increasing.
The standard deviation of these estimates is large. The true value of 4(0.50)
is 0.67 whercas the standard deviation of the linear and quadratic estimates
is4.5. For ny = 17 the estimates of the variance of 3(t) are conservative. The
mean cstimated standard deviation typically doubled the empirical estimate
of the standard deviation. The mean estimate of the standard deviation of
8(0.5) was 8.8.

Figure 10 depicts the exponentially decaying log relative risk (thick line)
with corresponding mcan estimates (dashed line) and symettric curves repre-
senting plus and minus one standard deviation of the estimates (dotted line)
when ny = 33, amongst those simulations where a time-dependent model was
chosen over the null or constant models. The true value and mean estimates
are better correlated than for ny = 17 but there is systematic bias towards
over-cstimation of relative risks. There is systematic inflation. Here the
variance is slightly under-estimated. The ratios of the empirically estimated
standard deviation to the mean estimated standard deviation at the 25-th,
50-th and 75-th percentiles are 0.81, 0.79 and 0.87 respectively. The corre-
sponding coverage rates are 0.99, 0.94 and 0.93 (see Table 4.2). Figure 11
depicts (i) the frequency with which the lower limit of the 95% c.i. exceeded
0 (solid line) and (ii) the frequency with which the upper limit deceeded 0
(dashed line). An analyst using the nominal pointwise 95% c.i. would con-

clude that the covariate had a short-term predictive ability roughly 75% of
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the time.

The corresponding results for the exponentially decaying log-relative risk
when n = 67 are similar. In general, when n = 67, estimates are less biased
but the coverage averages only 0.90 between ¢ = 0.25 and 0.75.

The general decreasing aspect of the exponentially decaying log-relative
risk is captured with frequency 71%(ny = 17), 74%(ny = 33), and 74%(n; =
67) amongst estimates that arc time-dependent (see Table 4.3).

Figure 12 depicts the rise and fall log relative risk (thick line) with cor-
responding mean estimates (dashed line) and symmetric plus and minus one
standard deviation of the estimates (dotted line) when ny = 33, amongst the
estimates that are time-dependent. The estimates capture the general form
of the rise and fall except at the tails and except that they are substantially
inflated. There is a second rise in these estimates toward the end of follow-up
but the corresponding estimates of the standard deviation are large so that
the analyst would rarely be mislcad. The mean estimated standard deviation
compares favourably to the standard deviation of the estimates. The ratio
of the former to the latter at the 25-th, 50-th and 75-th percentiles is 0.79,
1.01 and 1.00. between t = 0.25 and 0.75 the coverage averages 0.91 (sce
Table 4.3). Figure 13 depicts (i) the frequency with which the lower limit
of the 95% c.i. exceeded 0 (solid line) and (ii) the frequency with which
the upper limit dececded 0 (dashed line), amongst those simulations where
the time-dependent model was chosen. This figure suggests that an analyst

would conclude that the predictor had a rise and fall impact on the relative
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risk midway through follow-up about 75% of the time The estimate of the
relative risk was gencrally increasing, then decreasing with ficquency 51%

For the larger sample size, ny = 33, a generally increasing, then decreasing
represented 71% of the time-dependent estimates. However, the coverage was
worse, averaging 0.85 between ¢ = 0.25 and 0.75 (sce Table 1.3). This was
due to underestimation of the standard deviation. Betweent = 025 and 0.75
the ratio of the cmpirical estimate of /3(!) to the mean value of f’ar([i(t))
was 0.8.

In summary the simulations yicld a rather consistent picture, across the
variations in the shape of the {rue hazard ratic and sample sizes. Some bias
in the estimates of the hazard ratio is underestimable given that the best-
AIC regressions splines were often of low dunension. This can be explained
to some extent by the problem of insuflicient power to detect more complex
shapes. More importantly, despite this bias, the best-AIC regression splines
often captured the gencral shape of the hazard ratio, be it inerzusing, de-
creasing or U-shaped. We believe these results justify our approach as a
useful exploratory tool even in small samples.

As expected the simulations clearly demonstrated that model sclection
has a large effect on the rate of rejecting the constant hazard ratio and on the
validity of MPLE based confidence intervals. Increasing sample size, while
simultaneously increasing the array of candidate models, did not chminate
these problems and even aggravated them. Further rescarch is necessary to

develop pragmatic strategies to account for the impact of model selection on
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MPLE based inference.
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Conclusion

Cox’s proportional hazards model is concentually appealling due to its sim
plicity. However this modcl is not always appropiate and may mislead the
clinical researchers who employ it. It may prevent them from detecting im-
portant effects of independent variables that are limited to a portion of the
follow-up period such as the short-term. Several tests can be used to test
the appropiateness of the constant hazard ratio assumption but very little
research has been conducted into the representation of the hazard ratio as a
function of time when the assumption of a constant hazard ratio is rejected.
In this thesis a regression spline approach has been proprosed for estunating
the variable effects of an independent variable on the hazard function over
time.

Regression splines can be employed with relatively low computational
burden to estimate the hazard ratio as a function of time. Akaike’s Infor-
mation criterion can be used to guide model selection. The combination of
these two techniques yields a convenient tool for exploring the time-frame
within which variables have predictive ability.

We have examined the small sample propertics of the best-AlC regression




spline approach. As we expected this approach is liberal. Further research is
required to determine exact hypothesis tests of, for instance, the proportional
hazards model versus the alternative of a best-AlIC regression spline hazard
ratio estimate. As we also expected the 95% confidence intervals based cn
large sample MPLE theory have low coverage even when the number of ob-
served failures is as large as 67. Further research is required to determine
mcthods with low computational cost for crcating more precise confidence
intervals.

There is a number of generalizations of our work. First, in our model we
have assumed that the elfect of an independent variable is log-linear. Our
method could be incorporated with the methods of Sleeper and Harring-
ton(1990), and Durrleman and Simon (1988), who model the function form
of the impact of the independent variable using regression splines and the
AIC. Interesting identifiability problems may arise when both the functional
forms for the impact of the variable and for the way the hazard ratio changes
over time compete to explain survival. A second obvious generalization of
our work is to modcl the hazard ratio using more than one variable. Other
pussible dircections are to compare the regression spline approach to other
non-parametric regression techniques, such as smoothing splines, and kernel

smoothing.
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Figure 1. Comparison of survival via Kaplan-Meier estimates
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. Figure 2. Log(-log(S(t)) curves to assess proportionality of hazards
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. Figure 3. Step function estimate of the hazard ratio
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Figure 4. Partial residuals
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® Figure 5. Cubic regression spline with 3 knots
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‘ Figure 6. AlC-Best regression spline
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Figure 7
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Figure 8
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. Figure 11
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Figure 12
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