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Abstract 

The proportional hazards modcl proposed by Cox(1972) is by far the lIJosl, 

popular method ofrcgrcssing survival data. This modcl is attractive bcCitIl:ic: 

(i) It has a simple interpretation; the impact of a variable upon survival is 

a constant and multiplicative efrect Oll the hazard funclion. (ii) Il facili­

tates the employment of the partial likelihood infcl'cncc tcchlliquc 80 thal. 

it requires no assumptions about the baseline distribution of surviva.\ times. 

Many numerical tests as weil as graphical approachcs have hccn proposcd for 

assessing the adequacy of the proportional hazards mode\. lIowever only a 

few authors have discussed strategies for IIlodclling data for which the hazarJ 

ratio varies over time. 

In this thesis the topic of survival analysis is overviewcd, and rncthods for 

assessing the validity of the proportional hazards assumption arc rcvicwcd. 

Fmally a method of estimating the hazard ratio as a flexible funclion of lime 

using the method of regression splines and the Ale modcl selection critcrion 

is proposed. We report the resulls of a simulation rneant to examine t.he 

small sample properties of this technique. 
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Résumé 

Le modèle à hasard proportionnel présenté par Cox (1972) est une méthode 

de régression trés utilisée dans l'analyse de SUl'vif'. Ce modèle est intéressant, 

car (i) il est simple à interpréter, l'impact d'une variable sur la survie ayant 

un effet constant et multiplicatif sur la fonction de hasard, et (ii) il permet 

l'utilisation de la technique d'inference par la vraisemblance partielle, ce 

qui n'oblige aucune supposition sur la distribution de bdse des temps de 

survie. De nombreux tests et méthodes graphiques existent pour mesurer 

l'adéquation du modèle à hasard proportionnel. Toutefois, peu d'ouvrages 

discutent des stratégies pour la modélisation des données ayant un taux de 

hasard variable en temps. 

Dans cette ét ude, nous passons en revue les caractérisations essentielles 

à l'analyse de survie et les méthodes pour mesurer la validité de l'hypothèse 

d'un modèle à hasard proportionnel. Par la suite, nous présentons un esti­

mateur flexible du taux de hasard, variable en temps, par la méthode des 

splines de régression et la sélection d'un modèle, par le critère AIC. Enfin, 

BOUS rapportons les résultats d'une simulation qui examine les propriétés des 

petits échantillons. 
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Introduction 

Cox 's proportional hazards model is one of the most popular statistical tech­

niques in health care rcscarch. !ts employment rivaIs that of t-tests, and 2 x 2 

contingency tables. This is used in regression applications where the depen­

dent variable is a survival or sorne elapsed time which is subject to censoring. 

The appeal of this modcl may be explained by the following properties: (i) 

it has a rclativcly simple interpretation, and (ii) it is semi-parametric since 

it avoids assumptions about the underlying distribution of survival times. 

Despite its ovcrwhclming popularity, analysts who employ this model 

rarcly if ever report checking its main assumption, that the hazard functions 

of any two subjects are proportional. The impact of an independent variable 

on, or association with, the hazard function is not mitigated by the passage 

of time. A practical implication of this assumption is that a variable is 

cqualiy able at prcdicting short-term and long-term survival. Another way 

of stating this is that, say, a laboraLory test recorded today is not more 

valua.ble in detcrmining risk than is a recording from any time in the pasto 

This constancy of the relative risk over time may be approximately true in 

studies of a suitably short duration but there is no reason to expect it to be 
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true in gcncral. The wiJcsprcaJ füilUll' of dllùly:,b; to check th!.' Ù:-:-'lllllp( Illll" 

of the modcl is Ilot duc to a lack of gli.lphic,t1 ur lIullll'ric,d 1111'1 hotls fnr tl'~t ill!!, 

~he proportionality of hazarJs. Fur illst<tII(e, al 1 L t:J 1I11llwric,d I.e's(s h.lve· 

been prr )osed in the litcraturc. 

Alternative modelling strategies th,tt IlloJcl the rd,ttive risk Mi a fUllctioll 

of time would be valuablc ta health care practitiollers. Chctr,lctt'I ist.ics th.ll. 

have only a short-term ability to prcdid eveuts or have ct ddayed illl(>(L( t. 

on risk may go undctccleJ by the pl'oporLiollal hùzards method. III clilli(',d 

trials it would be useful 1,0 Jetcrrninc if the trial trcatmeut is aduéLlly dft'( tivc 

during the entire follow-up of the study anJ Ilot just iu the short t.ernl. III 

observational studies it woulJ be valudble to know whcther au exposllre has 

an immediate effect on risk or if the cffcct docs Ilot occur IlIltil SOli\(' tilIH' 

after the exp05 ure. 

Zucker and Karr (1990) propose the moJclling of the hazard rat.io as ft 

function of time by using srnoothing splines. In this thcsis the moddlillg 

of the hazard ratio by anothcr srnoothing rnethod, the rncthod of regrcssioll 

splines is proposed and cvaluatcd in a prcliminary simulation study. 

In chapter 1 the topic of survival analysis is outIincd. Survival analysis, 

also variously called, failure-tirnc analysis and rcspome-time analysis, is basi­

cally the thcory and mcthoJology of analyzing Juta from health ccUe re~H!arcb 

where the focal measuremcnt, or JepenJcnt variablr!, is an clapscd lime. In 

this chapter, the partial likelihood is prcscntcd, and wc give hcuristic proofs 

of it is asymptotic properties. The proportional hazards rnodcl is inlrodllo!d 
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as a mcthod that facili tates the partial likelihood approach. In the final sec­

tion wc draw the link between the proportional hazards model and the log 

rank test, a test for comparing survival between two samples, and illustrate 

the a~c;umptions impliclt1y made about the hazard ratio as function of time 

by sorne other popular two sample test statistics. 

In chapter 2, we discuss the methods of validating the assumption of 

proportional hazards. This chapter rcviews numerical and graphical tests of 

asses3ing the constancy of the hazard ratio, or rather the proportionality of 

hazards. Particular emphasis is placed on the residuals approach proposed 

by Schoenfield (1982). 

ln chapter 3, we discuss methods for modelling the hazard ratio as a 

function of time. We dcscribe the smoothing spline approaeh proposed by 

Zucker and Karr (1990). Then we propose a method that uses regression 

splines and the model selection criterion proposed by Akaike. We refer to 

this as the best-AIC regression spline approach. Wc discuss heuristieally 

its the large sarnple properties of this technique and rnake sorne relevant 

observations concerning the impact of model selection upon inference. 

Finally, in chapter 4, we dcseribe, and report the results of, a simulation 

mcant to examine the sample properties of the best-AIC regression spline 

approach. 

Throughout this manuscript we shaH refer to the following data set, re­

ported in Fleming and Harrington (1991) and frequently used to illustrate 

ncw survival analytie rnethods. Between 1974 and 1984 the Mayo Clinie eon-
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ducted a trial of the effects of the drug D-pellicillamine on persans sufrcriug 

from primary biliary cirrhosis (PBe) of the livcr. This is a rare but chl'Onir 

and fatal disease of the livcr whosc cause is unknown. The treatnl<.'ut was 

ultimately deemed ineffective. IIowcvcr, for each subjcct a number of clini­

cal {eatures and laboratory markcrs from the time of diagnosis werc rccorùed 

which makes it possible to examine their possible association with subsequent. 

survival. 

We shalI refer repeatedly ta one of these measurcrncllts, prothrornbill 

time. Prothrombin is an agent in blood that is responsiblc for coagulation. 

Prothrombin time is the duration of time, usually about 10 seconds in thcsc 

subjects, required to achieve coagulation in a test tube of the subjccts's 

blood. We shaH use this variable to comparc the rcsults of difrcrcnt statistical 

methods discussed in the thesis and to illustrate thc ability of thc proposcd 

model ta provide new insights into the structure of survival data. 

A total of 424 persons with PBe were referred ta the Maya clinic during 

the lO-year period of the study and 312 agreed ta participate in the trial. 

AlI but 6 of the remaining persans consentcd ta undergo measurerncnts. Of 

these 418 subjects, 161 were observed to die during the course of the sLudy. 
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Chapter 1 

Analysis of Survival Data 

1.1 Follow-up data and censoring 

In hcalth statistics one of the rnost common rneasurernents is an elapsed tirne. 

Examples are the tirne from the diagnosis of cancer until death, or the tirne 

from the initiation of sorne treatment to death or sorne other event such as 

hcart attack or stroke. In each case there is sorne well-defined starting point, 

such as the date of diagnosis or the start of treatrnent and a well defined 

endpoint such as death. This type of data is called follow-up data. There is 

broadly spcaking two types of studies in which follow-up data is collected. 

One is the clinical trial, and the other is the observational study. 

A (randornized) clinical trial is the evaluation of the efficacy of a drug 

or more generally any intervention by enrolling a group of subjects, usually 

subject to sorne inclusion criteria, and administering the treatment to sorne 

and not to others (randornly), and by finally comparing the treated with the 

ulltreated persons. Often efficacy is defined to be the ability of the treatment 
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to increase survival. In this case the enrollces would he followed up for SaIlle 

suitable period of time in arder to compare the survival hetweell the treated 

and untreated group. 

An observational study is the evaluation of the association oetwL'C1l SOllll' 

relevant endpoint, for instance, survival, and the level of, or presellcc or 

absence of sorne exposure or characteristic. For instance, an oncologist coulù 

follow up a group of persons newly diagnosed with cancer in order t.o assess 

the association between thc size of the tumour they present with and thcir 

subsequent survival. 

It is the nature of the time dimension that we cannot always cornplct.c1y 

rneasure survival, or more generally speaking, durations. It usually happens 

that on the date of the analysis one or more of the subjects in the study 

a.re still a.live or have not experienced the particular evcnt being examined. 

On the other hand, perhaps sorne of these persons could not be followed up 

for logistical reasons, i.e.; perhaps one of these persons are known to ha.ve 

lived for 5 years after the diagnosis aftcr which they thcy moved, and the 

investigators lack knowledge of what happencd to thcm subscqucntly. Sorne 

clinical studies may he predetermined to tcrrninate aftcr a fixcd number 

of deaths or events have been observed leaving the exact survival of the 

rernaining subjects unohserved. In statistics, this type of partial information 

is referred to as (right) censored data, (Kalbfleisch and Prenticc, 1980). 

It is very unusual to encounter follow-up data which is complete, that 

is, uncensored, for every subject. It is not unwrnrnon to encountcr studies 
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in which 50% or more of the follow-ups are censored. It would be wrong to 

cxcludc the subjccts for which the complete duration is not known. Censored 

follow-up data provides sorne information. Furthermore discarding such par­

tial information creatcs bias in the estimates since a person whose duration 

is long is more likely to be censored than a person whose duration is short. 

The analysis of censored follow-up data is popularly referred to as survival 

analysis. The term, survival, is used despite the fact that it is just as cornmon 

to examine non-death endpoints such as heart attacks or strokes. 

In this chapter, wc shaH review sorne of the major concepts frorn sur­

vival analysis methodology. In section 2, we introduce the survival function, 

as weIl as the hazard function, and discuss its estimation. In section 3, we 

review mcthods for cornparing survival between two. These groups may be 

determined by the presence or absence of sorne clinical feature or exposure or 

may represent the treated and untreated arms of a clinical trial. One method 

of cornparison is the log-rank test. We show how other popular tests can be 

expressed as 'weighted' log-rank tests. In section 4, we go beyond compar­

isons bct ween groups and discuss regression methods for quantitating the 

association betwcen survival and one or more independent variables. In this 

section, we rnotivate the idea of the partiallikelihood which is the main topic 

of section 5. In section 5, wc also introduce the proportional hazards model 

and demonstrate how it facilitates use of the partiallikelihood. In section 

6, the partial likelihood is discussed further. We demonstrate that its use 

is justified when the nurnber of persons in a study observed to die, or more 
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genelOllly speaking, experience the examillcd cvcnt, is suitably largl.'. 'l'hl' 

partiallikelihood facilitates the use of time-dependent iudepclldclIl va.r;,nblc's. 

These are discussed in section 7. In section 8, we demollstrate the correspoll­

den ce between the log-rank statistic and the proportional hazan.ls model. III 

this section also make sorne interesting observations conccrning t.he rclati.oll 

between other weighted log-rank tests and particular hazard ratio lIlodclB. 

In this chapter, we ernphasize the overwhclming popularity and apl"cal 

of non-parametric and serni-parametric rncthods over parametric lllC'thods. 

We discuss how the former becamc developed only when the rncthodologists 

switched their center of attention from tirne as the depcndcnl variable, to tht' 

cornplernentary notion of risk. 

1.2 Estimation of the survival function 

In rnany statistical settings, it is usually informative to calculate i.e. rncan 

or median as well as a standard deviation or interquartilc rangc. Whcll the 

variables of interest are survival times, or durations, thesc sUlllmary statistics 

are also helpful. However it is far more popular ta report, instcad of this 

single surnmary measure, the survival function. The survival function, S(t), 

also referred ta as the survival curve, is plottcd along the tirne axis and 

estimates for each time the probabilities that a person would survive that 

period of time or longer. It T is a random variate from a distribution of 

survival times, the S(t) = Pr[T > t]. The survival function is just thc 

complernentary cumulative distribution function. 
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One approach to estimation of the survival functioll is to propose a para­

metric form, So(t), and proceed to estimate 0 and therefore So using an 

approach su ch as maximum likelihood. Sorne possibilities for this para­

rnctric form, are the Weibull, Sp,,,,(t) = exp(-(pt)lÇ] , and the log-logistic, 

SP,IÇ(t) = [J + (pt)IÇ]-I, as well as the Gamma, and the log-normal, for whom 

closed forms for the survival function do not exist. See Cox and Oakes (1984) 

or Kalbflei8ch and Prentice (1980) for a. thorough discussion of pararnetric 

statistical models for survival analysis. 

A spedal case of the Weibull distribution is the exponential distribution 

which oceurs when K. = 1. The exponential is characterized by the follow­

ing memory-ll!ss property. Let T be a randorn variate frorn an exponential 

distribution, ê.nd t and u two positive real values then, 

Pr[T E [t, t + u)IT ~ t] = Pr[T E (0, u)]. (1.1) 

The mcrnory·lcss property is equivalent to stating that the hazard function, 

À( t), is consta.nt with respect to tirne, t, where, 

À(t) = lim Pr[T E [t, t + ~t)IT ~ t]. 
~t ..... O 

(1.2) 

The hazard function, or just hazard, is also known as the instantaneous risk. 

The hazard function and the survival function play a central role in sur­

vival analysis, just as the density function and the cumulative distribution 

function play a central role in most other areas of statistics. One can rewrite 

the right side of equaUon (1.2) as -ftS(t)/ S(t) or f(t)/ S(t) where f(t) is the 
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probability density function of survival times. Onen it is more mcaningful 

to propose a parametric form for the hazard function instcad of the survival 

function. In this case the survival function can be obtained from the haza.rd 

using the formula, 

S(t) = exp( - fot À(t) dt). ( 1.3) 

The cumulative hazard, A(t) = Ici À(t) dt = -log S(t), is also a populal' 

quantity in survival analysis, 

The hazard functiCln for the Weibull distribution has the parametcriza­

tion ,..p(pt)"'-l, When '" excceds 1 this hazard funetion is strietly incrcasillg 

whereas the hazard il! strictly decreasing when K. is lcss thall 1. A clini­

cal setting where the latter might be truc is survival following an opc!fl.l.tion 

where patients settle clown to a low risk status after living through a high-risk 

period immediately following the operation, 

llaving proposed a parametric form for either the survival or the hazard 

funct.ion we could proeeed to their estimation by writing the likelihood fune­

tion. Suppose n persons have been followed up. Typieally, surviva1 data is 

recol'ded as pairs. The pair (t,8) consists of a time rneasurment and a. binary 

variate whieh is typically 1 if the full duration has bcen observcd and 0 if 

the duration has been censorcd, To write the likelihood of obscrving a pair 

(T,.6.) it is necessary to recognize the follow.ing, 

T - min(TO, C), 

D. - 11'=To. 

16 
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whcrc TO is truc survival time and C is the censoring time. If we assume 

that TO and C are independent the likelihood of the pair (t, 0) is, 

L _ {dPr(TO < t)Pr(C > t), if 5 = 1; 
- Pr(TO > t)dPr(C < t), if 5 = O. 

This can be rcwri t ten as 

(1.5) 

L = {dPr(TO < t)Pr(C > t)}S {Pr(TO > t)dPr(C < t)P-s (1.6) 

which becomes 

L(O) = {dSo(t)Pr(C > t)}S {So(t)dPr(C < t)P-Ô (1.7) 

upon substitution of So(t) for Pr(TO > t). Typically it is assumed that the 

distribution function of the censoring time, Pr( C < t), carries no information 

about O. This is referred to as noninformative censoring (Kalbfleisch and 

Prcntice, 1980). Therefore the 0 maximizing L(O) is the same 0 maximizing 

dSo(t)SSo(t)1-s = Ào(t)SSo(t)dt. If n persons are followed up yielding the 

observations (tt, ot}, ... , (tn, On) and we assume that their survival times and 

censoring times are independent of one another the likelihood function is 

n 

L(O) = Il ÀO(ti)S SO(ti). (1.8) 
i=l 

The assumption of the independence of the survival times and censoring 

times is usually reasonable in clinical trials and observational studies. It 

would be wrong to assume independence if subjects were censored according 
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to sorne characteristics that are rclatcd to survival. For instance, if subjects in 

the PBC study had been withdrawn from the study bccausc their hcalth sta­

tus either improved or deterioratcd substantially thc cCllsoring limes would 

not be independent of their survival times. 

It is not necessary to assume that 1'0 and C arc independent to dcrivt' 

the likelihood in (1.8). It is sufficient that, 

Pr(TO E [t, t + ~t)ITO ~ t, C ~ t) = Pr(l'° E [t, t + ~t)I7'° ~ t). (1.9) 

This condition is referred to as weak independence. Dcriving the likelihood 

in (1.8) using only this condition is more difficult. It involves the partition 

of the time axis into an infinite number of infinitcsimally small intervals. Scc 

Kalbfleisch and Prentice (1980) for details. 

Choosing a particular parametric model is usually arbitrary although the 

choice may be guided by a posteriori mode} selection criteria. Ernploying 

a non-parametric estimator avoids this arbitrariness. Partly for this rcason 

non-parametric methods are favoured in survival analysis. One example of a 

non-parametric method is the Kaplan-Meier estimator (Kaplan and Meicr, 

1958). This estimator is usually presented in any article in the mcdicaJ 

literature in which survival or durations are being examined. 

The Kaplan-Meier estimator of the survival function has an intuitive form 

when expressed in terms of risk sets. The risk set at time t is the Bet of 

the subjects known to be alive (or to have not yet incurred the particular 

endpoint being examined) at time t after the beginning of follow-up. A 
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subjcct is part of the risk set at tirne t if the following 2 conditions are truc; 

(i) the subject survives t units or longer and (ii) the subject is not censored 

before time t. So for instance all subjects are part of the set at tirne o. 
Usually we are not interested in the continuum of risk sets, but the risk sets 

evaluatcd immediately prior to each observed death (event). The first risk 

set consists of aIl subjects except any subjects censored before the tirne of 

the first observed failure. The second risk set consists of aIl subjects except 

the subject first observed to rail and any subjects censored before the tirne 

of the second observed failure. 

The Kaplan-Meier estimator, also known as the product-lirnit estirnator, 

is calculated as follows. Let ti < ... < tk be the (unique') times at which 

dcaths (events) occur and RI, ... , Rk he the corresponding risk sets. The 

Kaplan-Meier estimate is given by 

SKM(t) = fI (1 -l/IRd)· (LlO) 
,:t:<t 

The Kaplan-Meier puts all its mass at the k death times. Its derivation is 

bascd on the following chain-like identity of conditional probahilities 

n 

Pr[U > un] = fI Pr[U > u,IU > U,-l] (1.11) 
1 

where 0 = Uo < UI < ... < Un. It uses 1 - 1/1R.1 as the estimate of Pr[T > 

t,IT > ti - E] and 1 as the estirnate of Pr[T > ti- E IT > ti-I]. Peterson 

(1977) showed that the Kaplan-Meier is a consistent cstimator of S(t). 
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Another, very sirnilar, estimator of the survivor function is bascd upon the 

estimator given by Nelson (1969). Nelson estimated the cumula.tive hazard 

A(t) = J~ À(u) du a.s 

Â(t) = L I/IRtl· ( 1.12) 
t;<t 

The estirnate of the survivor function is obtained by taking S(t) = cxp[Â(t)). 

It is worth noting that the Nelson estimator can be expressed as a first order 

Taylor expansion of the logarithrn of the Kaplan-Meier estimator silice 

log SKM(t) = L log(1 - IliRtl) ~ L 1/111\1 = Â(t). (1.1:1) 
t~<t 

1.3 Comparison of risks 

A health care researcher who wishes to assess if sorne charaderistic or cxpo-

sure is a possible cause of sorne discase or adverse outcome would calculatc 

the observed risk of subjects with the charaderistic and compare it to the 

calculated observed risk of subjects without the charaderistic. In a c1ini­

cal trial, the goal is to compare the outcorne of subjects recciving a ncw 

treatrnent with subjects receiving a conventional treatment or placebo. In 

observational ,:>tudies, we usually reCer to characteristics that are assocÎated 

with an adver'le outcorne as risk factors for that adverse outcorne and we say 

that the characteristics have predictive ability. 

To compare the risks of two groups for whom survival data has bccn 

observed, one method is to compare the estirnates of thcir respcctive sur-
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vival functions. Figure 1 dcpicts two Kaplan-Meier estirnates superirnposed 

on the sarne graph. The laboratory marker prothrornbin time recorded in 

the PEe study has been dicllOtornized into lowand high values using the 

eut of Il seconds. This threshold was ehosen sinee it is the closest integer 

value to the median prothrombin time which is 10.6 seconds. Kaplan-Meier 

cstimates have been plotted for the low (thin line) and high value (thiek 

Iinc) groups. The striking difference between the two estimates suggests that 

the corrcsponding survivor functions that they estimate are different. We 

say that persons with high values are more at risk of death, in other words, 

prothrornhin time has the ability to predict survival. 

The superimposition of the two Kaplan-Meier estimates facilitates their 

comparison. We would like to formalize this comparison procedure by eon­

structing a hypothesis test. If there was no censoring the standard non­

pararndric approach would he to use the Wilcoxon test statistic (Lehmann, 

1975). Let t 1, ••• tn he the uniquely valued observed survival tirnes, the 

Wilcoxon statistic can be expressed as 

u = ~ Ial",aJ UiJ' 
1=1 .n 
) .. 1 .. n 

(1.14) 

where al is 0 or 1 according as the i-th subject do es or does not have the 

charactcristic, 1 is an indicator, and UiJ' assuming no tics, is defined as 1 if 

TI > TJ and -1 othcrwise. Gehan (1967) naturally adapted this formulation 

to censorcd data. He defined 

TT •• _ {+1, 
UIJ - -1 , 

if t l > tJ and 8J = 1; 
if t l < t j and 8, = 1. 
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Mantel (1966) proposed another test which markcd a. bn',lkthwugh in 

the way survival data is treated. In cOllstrucling a test he foruseJ un tilt' 

idea of risk and not on durations as does Cehan's mcthod. Malltcl rcfur-

mulated the problem in terms of a series of 2 by 2 tables and appli('d the 

method of stratified contingency tables that he devcloJ>cd ill ail ('arlit'r IM­

per (Mantel and Hacnszel, 1959). The principle unJerlying this melhoJ is 

ta compare each of the subjects who have died with the risk set evaluat.ed 

just prior to their death. Let 0, be 0 or 1, respedivcly, (or 1 or 2) dep('lld­

ing on whether the i-th death corresponds ta a perSOH with, Of wit.hout thl' 

characteristic. 0, is an observation from a hypergeomctric distribution. Lct 

Ei == E[O, IRa] and Vi == Var[OiIR,], he the expeded value and varial\Cl' 

respectively of Oi given knowledge of the risk set just prior to the deat.h. 

Un der the hypothesis that the characteristic has no predictive ability, 0, i:; 

an observation from a hypergeometric distribution, and El == 'E)Ell, O)IIIl,1 

and Va == 'E1ER, 0, * O,IIR,I - E; == E, - El. The Mantcl-liaenszel t.est 

statistic is 

k k 
2)0, - E,)21 2: v:, (1.I(j) 

1 

where k is the total numher of deaths. This statistic is non-pararndric be-

cause the actual times at which the deaths occurred are not uscd. Thcir 

arder is used implicitly and in entircty in the construction of the risk sets. If 

the characteristic has no predictive ability the Mantel-I1aenszcl test statistic 

has an approximate normal distribution with null mean and unit variance 

22 



which bccorncs exact asymptotically (Crowley, 1974). 

The log-rank test applied to the dichotomized version of the laboratory 

marker prothrornbin time, yields a p-value less than 0.0001 confirming the 

ability of prothrombin time to predict survival. 

The Maniel- Haenszel is usually referred to as the log-rank statistic. This 

name daies to a paper by Peto and Peto (1972), in which they demonstrated 

that the Mantel-Haenszel is one generalization of Savage's exponential scores 

test to ccnsored data, which can be interpreted as a sum of logarithm of ranks. 

The expression for the log-rank in (1.16) may be generalized by the in-

corporation of weights, W 1 , ••• , Wk as follows, 

k k 

E W.2(O, - E,)2/ E w.2v.. (1.17) 
i=l 1 

This is reCerred to as a weighled log-rank statistic. The standard log-rank 

is recaptured when W1 = ... = Wk = 1. When W. = IRiI, the number 

of persons at risk just prior to the i-th death, it becomes Gehan's statistic. 

The Gehan statistic is criticized because the weights Wï = IRiI depend on 

the ccnsoring distribution. Indeed, for large n, IRiI/n is close to S(ti)Se(tt) 

whcre t: are observed failure times and SeCt) is the probability of not be­

ing ccnsorcd before tÎItiè t. Prentice (1978) proposed the weighting scheme 

"VI = 8(t:) where S is any f:stimator of the combined survival curve for the 

iwo groups, for instance, the Kaplan-Meier estimate. Prentice's test, like 

Gehan's, becomes the Wilcoxon test when there is no censored data. 

It is Ilot difficult to generalize the log-rank statistic in (1.16) to ordinal or 
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continuous data. Earlicr wc dichotomized the laboratory marker prothrom­

bin time in order to test if subjects with high values had a highcr or lowl'r 

risk of death than subjccts with low values but wc should be able to use it in 

its undichotomized form. In the former case each failure corresponds to sal\l­

pling a 0 or 1 from the set of 0 and 1 's indcxed by the corrcsponding risk sel. 

In the latter case each 0, becomes a l-sample from a discrete distribution 

whose mMS points correspond to the values of the variable, for cxample pro­

thrombin time, for the subjects in Ri. In section 8 we will demonstrate that 

this continuous version of the log-rank statistic is actually a score statislic 

corresponding to the type of regrcssion Cox introduccd in 1972. 

1.4 Estimating the relative risk 

Weighted log-rank statistics are usdul for coming to conclusions of the type 

'prothrombin time has the ability to predict survival' or 'treated subjects 

survive longer than untreated subjects'. This may not be enough in some 

situations. We may want to quantify the difference in survival. One such 

way would be to estimate the diffcrcnce in mcan or mcdian survival. Anothcr 

is to estimate the difference or ratio of the risks. 

Consider the comparison of subjects with low and high valucs of pro­

thrombin time. Let Ào{t) and ..\l(t) be the respective hazard functions. Sup­

pose the ratio of the hazard functions just before the time of the i-th observed 

failure, t;, is Pi = ..\l(ti-)/..\a(t:-). For instance at the time just berore the 

i-th failure a subject with a high prothrombin Ume (as measured at time 0) is 
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p, times more likcly to fail in the next instant than a subject with a low pro­

thrombin time. The conditional prob .. bility that the i-th failure corresponds 

to a subject with high prothrombin time is 

(1.18) 

or 

(1.19) 

where n,o and n,t are respectively the number of persons with low and high 

values of prothrombin time at risk just prior to the i-th failure. The con­

ditional probability that the i-th failure corresponds to a subject with high 

prothrombin time is 

(1.20) 

By multiplying the each of these probabilities we obtain the following pseudo 

likelihood 

k n1-O'(n. p,)O, II iO ,} , , 

i=l niO + nilPi 
(1.21) 

where O} is 1 if the subjeet failing has high prothrombin time and 0 otherwise. 

This pseudo-likelihood is not proportional to a probability, and therefore not 

a truc likelihood, sinee the probabilities we havemultiplied do not correspond 

to illdependent events. However, it is intuitive that these respective events 

are Ilot very dependent. 

25 



This particular model for the risk ratio's is overparameterizcd. We have 

a unique parameter for each failure time. One way of rcducing the Humbcr of 

parameters is to assume that Pl = P2 = ... Pk = P or in cffcct that at an times 

during the follow-up, the instantaneous relative risk of death of a subject 

with high prothrombin is p times more likcly than the instantancous relative 

risk of a subject with low prothrombin. 1'0 estimate P we cou Id choosc that p 

maximizing expression (1.21). Doing 50 we yields the cstimate p = 3.3. The 

instantaneous risk of subjects with high prothrombin times is on average ~J.3 

times higher than subjects with low prothrombin times. 

In the next section, this method of creating a. likelihood is formalized. 

1.5 Partial likelihood and the proportional 
hazards mode} 

The methods we introduce in this section are due to Cox (1972). Cox's 

contribution was two complementary concepts. The first was to create a 

likelihood whose terms did not come from strictly indcpendcnt evcnts. This 

later became known as the partiallikelihood (Cox, 1975). The second was 

the proposaI of a model for the way in which covariatcs affect the hazard 

function that yields a simple form for the partial likclihood. This is callcd 

the proportional hazards model. 
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1.5.1 Partiallikelihood 

Cox extcnded Mantel's (1967) idea of conditioning on the risk sets in order to 

yield test statistics. In this w:' J he obtained the partiallikelihood, which may 

be used to yield maximum likelihood type estimates for the parameters of, 

for instance, regression models. The appeal of this risk set approach is two­

fold: (i) No distributional assumptions about the (baseline) hazard function 

are necessary, but as we shall show we do parameterize the way in which 

variables modify the hazard function and (ii) It allows the incorporation of 

time-dependent variables which we shall define later. 

Cox associates exactly one term in the partial likelihood with each ob­

served failure. The likelihood term he associates with the first failure is 

LI = Pr[Tt = fi:ITJ ;:::: ti Vj E RI and TJ = ti for exactly one j] 

= 
Pr[1;* = ti and Tj ;:::: ti V j E RI and Tj = ti for exactly one j E Ri] 

Pr[Tj > ti V j E RI and Tj = ti for exactly one j E Ri) 

= 
Pr[TJ ;:::: ti Vj E Rl and Tj = ti for exactly one j E Ri] 

= 

= 
Pr[T* - t*IT* > t*] 1 - 1 1 - 1 

= (1.22) 
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where Ài and Si are, respectively, the hazard and survival functions of the 

i-th subject. In the partiallikelihood approach, a random variable is induced 

at each observed faHure time by conditioning on the corrcspondillg ris'K sel, 

or rather, on aIl the information about failures and ccnsorings prior t0 the 

time of the i-th faHure, which we shaH denote by JI,. Let A, he the discrett! 

random variable which takes the value of the index of the suhjcct having the 

i-th observed failure, so that 

ifj E Rs; (1.23) 
otherwise. 

Cox argued that the event Ai given Hi. is rather independent of the event A) 

given Hj. For instance, for i > j, 

(1.2tl ) 

sin ce Hi, the complete history of survival up to time lt, con tains the in­

formation on the failure, AJ = aJ , at time tj < t:. Using this notion of 

independence Cox proposed the likelihood as the product of the k factors, 

one for each failure time, of the form in (1.22), 

(1.25) 

1.5.2 The proportional hazards model 

Cox's second idea was to propose a form for the way independent variables 

affect the hazard function that took advantage of the partial likclihood'fj 
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structure. Cox proposed the following factorization of the hazard function 

(1.26) 

whcrc ..\(tj x) is ',he hazard function of a subject whose value for the inde­

pendent variable is x. This factorization is referred to as the proportional 

hazards model. It is semi-parametric: The effect of the covariate x on the 

hazard is pararneterized but the effect of time is not. The first factor on the 

right in (1.26) is referred to as the baseline hazard function. The second fac­

tor is the hazard ratio or instantaneous relative risk. When expression (1.26) 

is substituted into (1.25) the baseline hazard cancels out of the expression 

yiclding 

(1.27) 

In this mode1, the parameter {3 measures the effect of the variable x on 

the risk of failure. When x is a dichotomous variable eP is the ratio of 

hazards betwcen the two groups. In general, ef3 is the multiplicative effect 

on the instantaneous risk of increasing x by 1. Cox proposed that the partial 

Iikelihood be maximized with respect to (3 in order to yield estimates /J. The 

absolute value of /J expresses the strength of the predictive ability of the 

characterisic x. 

Expression (1.27) is indcpendent of the actual failure times. For this 

reason /J is called a semi-parametric estimator. It is not fully non-parametric 

since the effect of the x on the hazard function is parameterized. 
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In expression (1.26) the hazard ratio can he replaccd by g({Jx) where 

9 is any positively valued function and x may he a matrix and not just a 

vector in which case {J is a vector. Two more possible gcneralizatiolls arc: 

(i) the variable may be lime dependent and (ii) the hazard ratio necd Ilot he 

assumed to be constant. Almost always in clinical applications the hazard 

ratio is assurned to be e{J:c. This is also referrcd to as thc log-lincar model. 

The linear model, g(f3x) = f3x, is not appealling from a computational point 

of view since for this model the estimated hazard ratio may be non-positive. 

1.5.3 More about the partial likelihood 

It is intuitive that the partiallikelihood carries information about the hazard 

ratio, but it rnay not be completely clear that it carries aIl of the information 

about the hazard ratio. Let (tat,O'I), ... ,(t.n,o'n) be the observed follow-

up information ordered 50 that t ,ll < ... < t'n0 Suppose ta. and t.) arc 

successive uncensored failure times, 50 that 0,. = 0" = 1 and oa.tt = ... = 
oa.tt = O. The partial likelihood ignores any information carried by the 

censoring tirnes in the interval (t ,l., t,l)). It secrns intuitive, for instance, that 

knowledge that subject Sitl survived over the interval (t ,l., t,.tt) contributcs 

sorne information about À(tj x,td and therefore about (J. Howcvcr, since wc 

are rnaking no assumptions about the baseHne hazard, this knowledge can 

contrihute little or no information about the hazard ratio. It may he that 

Ào(t) is zero everywhere except for mass points coinciding with the obscrvcd 

failure times. In that case, the knowledge that subject 81tl survived over 
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the interval (t •• , t"H) carries no information, since subject Si+! cannot fail 

in that interval. 

Kalbfleisch and Prentice (1973) obtained the partial likelihood as the 

marginallikelihood of the ranks of the follow-up times when the true model 

is proportional hazards. 

The idea that the baseline hazard may be zero everywhere except a finite 

set of points is troubling. In many cases this may be very unlikely. It is 

more likely that the baseline hazard is a smooth function. Abrahamowicz 

and Ciampi (1993) discuss estimation of the hazard ratio when the baseline 

hazard is assumed be have sorne minimallevel of smoothness and is esti-

mated from the data based on full maximum likelihood density estimation 

by regression splines (Abrahamowicz, Ciampi and Ramsay, 1992). 

The fulllikelihood, F L, of the follow-up times can be expressed in such a 

way that the partiallikelihood appears as a factor carrying most or aU of the 

information about the impact of a variable upon the baseline hazard (Cox, 

1984). Let H(t) be aU the information about the failure and censoring times 

'up until' time t. The information in H(t) about subject i is 

{
Ti = t., ~i = Di, if ti < ~j 
Ti > ti, otherwlse. 

(1.28) 

The entire information from the sample is then carried in H( (0). The full 

likeli hood, F L = Pr[ H ( 00) = h( 00 )], can be manipulated using the chain 

rule of probabilities as 

k+l 

II Pr[H(t.) = h(ti)IH(ti-tl = h(ti-l)] (1.29) 
.=1 

31 



or 

Hl 
II {Pr[H(ti) = h(t,)lH(t, - dt) = h(t, - dt)] x ( 1.30) 
i=1 

which can he rewritten as 

1;+1 rr Pr[H(ti) = h(ti)lH(t, - dt) = h(ti - dt)) x (l.31) 
i=1 

k+l 

II Pr[H(ti - dt) = h(ti - dt)lll(ti_l) = h(t'_I)] 
;=1 

where ti < ... < tk are the ohserved failure times and lô and tk+1 den ote 0 

and 00 respectively. The first product in (1.32) is the partiallikeliood. The 

other factor carries information provided by the gaps betwL'Cn successive 

failures. 

1.6 Asymptotics for maximum partial like­
lihood estimates 

Estimates of f3 that maximize a partiallikelihood, called MPLE's have the 

same important properties of maximum likelihood estimalcs. In particular, 

MPLE's are consistent and asymptotically normal subject to Borne mild regu­

larity conditions. Tsiatis (1981), and Andersen and Gill (1982) have dcrnon­

strated the asymptotic theory. The latter two authors rcformulatc survival 

analysis in the language of counting processes and martingale thcory. 

In his original paper, Cox (1972) presented an heuristic proof of the 

asymptotic normaHty of MPLE's. For this, it is neccssary to employ the 
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logarithm of the partiallikelihood, and its first, U((3) and second derivatives 

V((3) with respect to the parameter (3. Assume, for simplicity, that (3 is a 

scalar. Let U. and V. be the contributions to the first and second derivatives 

of the log-partiallikelihood corresponding to the i-th summand, that is, the 

i-th failure. For instance, 

d ~ d,\ (t*· x*) 
~.( a) = -'\(t~. x* a) _ i...J3eR, di] {J i' i 
1 tJ da l'" tJ ~ , (t*. *) 

tJ i...JieR, /\{J "x, (1.32) 

Using the Ai notation defined earlier (see (1.23) 

(1.33) 

It is a pro pert y of aIl families offrequency functions (and density functions), 

9o, indexed by a continuous parameter 0 for which 00 is the true value, that 

(1.34) 

(Casella and Berger, 1990). It follows that 

(1.35) 

for each i. By the double expectation theorem we can take one more expec­

tation, that is integrate with respect to Ra to yield 

(1.36) 

Thercfore 

E[U,((3o)] = 0 (1.37) 
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and 80 E[V(,do)] = O. 

!ts a further property (Casella and Berger, 1990) of aIl familics of fre­

quency functions, go, that 

E(~2g0(X)lo=Oo1 - -E[:OgO(X)2Io=oo1 

- -Var[~go(X)l. (l.aM) 

Therefore 

Var[U,(,Bo)IR,] = -E[V.(,Bo)IR,] ( 1.:J!J) 

and again by the double expectation theorem Var[U,{,Bo)] = - E[V.(#o)]. '1'0 

derive Var[U(,Bo)] we first have to calculate the covariance of U, and UJ for 

i i j. Unlike the corresponding terms in the proof of the asymptutic pro pel'­

tics of maximum likelihaad estimates (see, for instance, Kendall and Stuart, 

1979) these terms are nat independent. Expression (1.37) and the double 

expectation theorem are used in the following derivation of the covariance of 

Ui and U)I 

Cov[U,{,Bo)UJ(,Bo)] - E[U,(,Bo)UA,Bo)] - E[U,{,Bo)/RJ]E[U](,Bu)] 

- E[Ui(,Bo)UJ(,Bo}] 

- E[E[U,(,Bo)UJ(,Bo}lRJll 

- E[U,(,Bo)E[UJ(,Bo)IR,]] 

- O. 

It follows that 

Var[U(#o}] = Var[L: U,(.80)1 
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- L:Var[U,({3o)] + 2 L: Cov[U,(,Bo), UJ(,Bo)] 

L: -E[V,({3o)] 
, 

= -E{V(,Bo)]. (1.41) 

Cox's (1972) proof procecds as in the maximum likelihood proof where 

t.he first derivative of the log-likelihood is expanded in a Taylor series with 

rernainder around the truc parameter, {30, and evaluated at ~, 

U(/3) = U(,Bo) + (/3 - {3o)V({3*) (1.42) 

where .B* lies between {30 and~. Using U(~o) = 0, this expression can be 

rcwritten as 

[-V(,B*)]!(/3 - (30) = [-V({3*)tt[U({3o)]. (1.43) 

U sing the near independence of Ui and UJ and the centrallimit theorem, Cox 

(1972) concludes that 

U(,Bo) N(O 1) 
Var{U(,Bo)]! --+ ,. 

(1.44) 

The last expression also yields a score test statistic. For instance to test the 

hypothcsis that the true value of {3 is 0, compare the statistic V(O)-tU(O) 

to a normal distribution. 

lIaving demonstrated the approximate distribution of aMPLE, we now 

calculate an cstimate and a confidence interval for a measure of the predic­

tive ability of the continuous version of prothrobin time. We shaH assume a 

proportional hazards cffect, À(tjx) = Ào(t)exp({3x). We calculate /3 = 0.263, 
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with confidence interval (0.178,0.3.19). Thus, assullIing thal. hazards ,lH' in­

deed proportional this rilCanS that cach inCl'case of a second ill t.ht' tillll' 1.0 

achieve coagulation is associatcd with a c~ = 1.29 fold incrcéLse in instant.t­

neous risk of death at any time during the folIow-up. ln the lIext chapter, Wt' 

shaH question this assumption of a proportional hazards clfect of prothWlllbill 

time. 

1.7 Time-dependent variables 

The appeal of the partiallikelihood as an infcrencc dcvice is two-fold. First, 

it avoids parameterization of the basclinc hazard functioll. and second, il. 

allows the introduction of time-dependenl covariales (Cox, Hn~). So far WI' 

considered variables that are mcasurcd at the beginning of follow- up. Wlwu 

we discuss the eIfect of prothrombin time upon the hazard al lime l, >'( l, oC), 

we have meant the eIfect of prothrombin time as measured at the begillllilll!, 

of this subject's followup, x(O). Wc have not meant and not the dfect of 

of the value of prothrombin time at time l, >'( l, x( l)), (or thc cffcct of ally 

other function that depends on the valucs of x( t) for t > O.) lJowcvel tbe 

validity of the partiallikclihood is not lost on rcgrcs!>ion modcls ill wllich the 

predictor variable is time varying. 

The classic example of the timc-dependent variable aIÏscs fWIII the Stafl­

ford Heart Transplant Study (Turnbull, Brown and Hu, 1971). In tllis study, 

the efficacy of heart transplantation was bcing exarnined. Suhjccts became 

part of the study if they were considcred to he caudidates for lIeart trallS-
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plantation at which time they were put on a waiting list. The time from 

this decisioll of a subject's candidacy until the time of the actual transplant 

de pends on the untimcly death of another person. This duration is safely 

assumed to be independent of the particular morbidity of a subject. Sorne 

subjects dicd before ever recieving a heart transplant. Follow-up data con­

sists of the 3-tuple (T, b, {X(t)h<T) where T is the time from the decision of 

candidacy until death, b = 1, or censoring, b = 0, and x(t) is the dichoto­

mous variable which is 1 if the subject received a heart transplant before 

time t and 0 othcrwisc. In order to assess the effect of heart transplanta­

tion on the risk of death, one can employ the proportional hazards model, 

À(tj {x(u}}u<t) = Ào(t)efJ~(t). Estimates of f3 for which eP is very low would 

providc evidence that heart transplantation is effective. 

In sorne instances, a variable changes over the follow-up but its path 

is completcly known at time O. For instance x(t) = x(O)g(t), where g(t) 

is sorne function known at time O. This type of time-dependent variable 

is called fixed. We shall employ fixed time-dependent covariates later to 

model alternatives to the proportional hazards assumption. Another type 

of time-dependent covariate, which proves useful for uniting sorne seerningly 

disparate concepts from survival analysis, is the evolutionary covariate. Ex­

amples of evolutionay covariates are the number of failure up to time t, N( t), 

or the number of censorings up until time t, NU(t), and the Kaplan-Meier es­

timator, SKM(t), whose value is bases strictly on information acquired before 

time t. We shaH reCer to evolutionary covariates in the next section. 
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1.8 Link between the log rank and propor­
tionality of hazards 

Arguments based on the risk set were uscd to derive both the partial like­

lihood and the family of weighted log-rank statistics in (1.17). Accordiugly 

it may not he surprising to find that the partial likclihood and log-rauk 

tests are intimately related. Consider the single parameter family of II1odels, 

..\(tj x) = ..\o(t)e~9(t)X. Here the effect of a 1 unit increasc in x upon the in­

stantanaous risk of failure at time t is e~9(t) for sorne functioll 9 that might 

be known at time 0 or might be an evolutionary covariate. The logarithm of 

the partiallikelihood, LPL, and its first and second derivatives, U, and V, 

corresponding to this model are 

The score statistic corresponding to the hypothcsis that fi = 0, is 

( 1.45) 

If x is a dichotornous variable this is simpl)' the wcighted log-rank statistic 

with weights {g(t:)}'=l, ... ,k' Furthermore if gis a constant function, the score 

statistic hecomes the original log-rank proposed by Mantcl (1966). In em-

ploying Mantel's statistic to test the predictive ability of sorne dichotomous 
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variable, one is, in a sense, assuming that the predictive ability, if it exists, 

is constant over the follow-up. 

If gis the cvolutionary covariate, IR(t)l, the number at risk at time t, this 

bccomes Gchan's (1965) test statistic, whereas if g(t) = SKM(t) it is Pren­

ticc's (1978) test statistic. If baseline survival is approximately exponentially 

distributed then SKM(t) ~ e-Ot for sorne 0 > 0 and so g(t) :::::: e6t • This au­

thor notes that in employing Prentice's test one is, in a sense, assuming that 

predictive ability, if it exists, is exponentially decaying. 
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Chapter 2 

Assessing the Validity of the 
Proportional Hazards Model 

2.1 Introduction 

Cox's proportional hazards model is by far the most popular method of rc-

gressing survival data. This model is attractive becausc it facilitates tlac 

partiallikelihood approach and because il has a relevant and simple illler­

pretationj the effect of a unit increase in a covariatc is associatcd with a 

uniform multiplicative change in the instantaneous relative risk (ha.zard). 

However, the assumption of proportional hazards (rcferred to later a.s pb) 

cannot be expected to be true, or approximately true, in aIl situations. 

There are many instances when the assumption of proportion al hazards 

would seem implausible. Fol' instance, in many clinical trials subjccts arc 

followed up even after treatmcnt has been tcrminated. One would cxpcct 

that if treatment is effective that the relative risk rclating trcatcd to control 

subjects would change at or sorne time aCter the point that treatcd subjects 
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tcrminate treatment. One would also expect the predictive abiIity of sorne 

laboratory rnarkcrs to dccline to null eventually. For example a level of high 

dcnsity lipids mcasured 10 years ago likely has less predictive value than a 

current level in predicting the risk of subsequent coronary heart disease. 

Suppose a marker is intimately related to the hazard as in À(tj x(t)) = 

Ào(t) cxp(,Bx(t)). Fo~ example, consider a cohort of persons suffering from 

AIDS whose risk of death is largely ùderrnined by their ability to fight in­

fection, which in turn is associated with their current level of helper eells, 

a componcnt of the immune system. Rarely would we know x(t) at every 

moment in time. An analyst might have just one measurement of x(t), the 

value at the initia.tion of follow-up, and proreed to use the model À(tj x(t)) = 

Ào(t) exp(,Bx(O)). The extent to which this latter model is appropiate is pro­

portional to the correlation between x(t) and x(O). If the correlation between 

x(t) and x(O) decays quiekly, then the impact of x(O) upon instantaneous 

risk is far from proportion al. The association between x(O) and the hazard 

À( t, x ( .)) will also decay. A more appropiate model would assume that the 

instantaneous relative risk deeays toward unit y, i.e.; as in the exponential 

decay model (Gore, 1984) 

À(t,x(·)) = Ào(t)exp[e-Otx(O)] (2.1) 

for sorne () > O. 

In an 1982 article in Biometries, Andersen wrote in regard to the propor­

tional hazards assumption, "surprisingly little attention has been paid to the 
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problem of model checking". In the same article, Andersen proposcd a test 

of the ph assumption. Earlier, graphical asscssments of the assumption had 

been proposed by Kay (1977) and Kalbllcisch & Prcntice (1980, Chaptcr 4) 

and Cox (1979). Kay (1977) had also proposcd a mcthod usillg the dcfinitioll 

of generalized residuals of Cox and Snell (1968) to examine the overll fit of 

the mode!. In his original paper, Cox (1972) proposed a nUIIlcrical test of 

the proportional hazards assumption and in 1980 Schoenfield proposed a llU-

merical test. Since the time of Anderscn's remark, a considerable number of 

methods have been proposed for assessing the validity of the ph assumptioll. 

We begin this chapter by reviewing sorne graphical tcchniques for asscss­

ing the proportionality of hazards in section 2. In section 3, we discuss sornc 

residual methods for assessing the ph assumption and emphasize the residual 

approach proposed by Schoenfield (1982). I1ypothesis tests, are rcviewcd in 

section 4. 

2.2 Graphical assessment of the proportion­
ality of hazards 

If the impact of a variable, x, (as measured at the start of follow-up) upon the 

instantaneous relative risk is multiplicative and constant, that is, if hazards 

are proportional, À(tj x) = Ào(t)g({Jx), then S(tj x) = So(t)g(lJx). This follows 

from equation (1.3) which expresses the survival function in terms of the 
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hazard function. This expression yields the following identity, 

log[-log S(tj x)] = log[-log So(t)] -logg(.8x), (2.2) 

which motivates one of the graphical approaches for assessing the propor­

tionality of hazards. 

Suppose we are measuring the impact of sorne treatment upon survival 

in a randomized clinical trial. In this case we can think of x as being a 

dichotomous variable. Equation (2.2) can be written as log[-log ST(t)] = 

log[-logSp(t)] - logg(,B), whcre ST and Sp are, respectively, the survival 

curves for persons receiving the treatment and the placebo. To check whether 

hazards are proportional in this setting one could estimate each survival 

curve, using the Kaplan-Meier estimates for instance, and plot the log[-log] 

transformation of each. If treatment do es truly have a constant or approxi­

mately constant effect upon the hazard function then the two plotted curves 

should he nearly parallel. This approach was one of the methods proposed by 

Kay (1977). Figure 2 depicts this approach for the dichotomized version of 

prothromhin time in the PBC study. The thick curve is the log -log SKM(t) 

curve for the subjects with high (> 11 seconds) values of prothrombin time. 

This example illustrates a problem with this approach to ph assessment. The 

two plotted curves are not quite parallel and it is unclear what conclusion to 

come to. 

For interpretation purposes it is useful to recall that log[-log S(t)] is the 

logarithm of the cumulative (integrated) hazard. Thus figure 2 suggests that 
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the cumulative hazard of subjects with high prothrobin time is increasing at 

a greater rate than other sub jects, for instance the hazard is grcater, for up 

to 3 years after its measurement but not aftcr this point. This mcthod cali 

be easily generalized to variables with 3 or more leveis. An obvious violatioll 

of the the proportional hazards assumption are Iog[-logS(t)] curves tha.t 

cross at one more points but are far apart elsewhere. 1'0 firm up the notion 

of far the analyst could also plot confidence intervals corresponding to thcsc 

curves. Confidence intervals for a Kaplan-Meier estimate were dcmonstratcd 

by Kaplan-Meier (1958). They are based on a standard error calculation 

usually referred to as Greenwood's formula since it is similar to an estirnate 

proposed within another framework by Grcenwood (1926). 

When the predictor has 2 levels, an alternative to plotting log[ -log So{t)] 

and log[ -log SI (t)] versus the time axis is to plot one versus the othee. If 

the predictor has a constant predictive ability then the resulting curve should 

be nearly linear with slope equal to the truc hazard ratio, (Kalbfleisch ami 

Prentice, 1980). 

As we have done with the laboratory marker, prothrombin time, contin­

uous measures may be stratified into ordinal variables of 2 or more levcls in 

order to apply this approach. This method does suffer from two disadvan­

tages: (i) The choice of strata is arbitrary ; (ii) Sorne power is lost in detecting 

violations or validations to the ph assumption that may occur within strata. 

For discrete predictors, a more direct graphical mcthod would be to esti­

mate the hazard function for each level of the predictor. Thcn the resulting 
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estimates could be superimposed on the same plot. In order to check pro­

portionality of the hazards, it is preferable to plot the logarithm of each, in 

which case proportionality of hazards corresponds to nearly parallel curves. 

Not aIl estimatcs of the hazard are ideal for this purpose. For instance the 

Nelson estimator of the cumulative hazard assigns mass at each of the failure 

times and 0 everywhere else. Comparing two such estimators by cye is very 

difficult. It is preferable to assume that that the hazard is smooth and use a 

smoothing approach. Ramlau-Hansen (1983) discusses the use of kernel runc­

tions for estimating the hazard rate. Bloxom (1985) uses regression splines 

to estimate the hazard function while Abrahamowicz, Ciampi and Ramsay 

(1992) uses regression splines to estimate the density function. O'Sullivan 

(1988) uses smoothing splines to estimate the logarithm of the hazard. 

An even more direct method would be to estimate the hazard ratio it-

self. A simple way of doing so is to partition the folIow-up period and to 

estimate the relative risk separately in each interval. The method of time­

dependent covariate functions can be used to facilitate the estimation. In 

generaI, suppose the follow-up is partitioned as {['Yi-li 'Yi)}i=l, ... ,k using the 

sequence 0 = 'Yo < 'YI < ... < 'Yk = 00. Define the following indicator 

functions, I,(t) = h'Y'_l,y,)(t) and the following k time-dependent covariates, 

xI,(t), i = l, ... , k. One then maximizes the partiallikelihood corresponding 

to the model 

k 

A(tjx) = Ao(t) exp(E OaIi(t)X) (2.3) 
i=O 

45 



to yield estimates 01, ... , Ok of the log relative risk in the respective intcrvi.l.ls 

of the partition. For the PBC data the follow-up pcriod was ci.l.tcgorized illto 

5 intervals, [0,1), [1,2), [2,5), [5, 8) and [8,00). This partition rcfl<lcts the 

distribution of the timing of the deaths. The respective numbcr of dcaths 

observed in each interval was 30, 20, 65, 28 and 18. The respective relative 

risks for prothrobin time with 95 % confidence interval (bascd on asyrnptotic 

theory) are presented in figure 3. Note that that the relative risk axis is 

log scaled. The dotted Hne indicates a relative risk of 1. If the confidence 

interval for any particular point on the time axis do es not contain the value 

1 then the data suggests that prothrombin time has an impact on the hazard 

at this point. This figure provides evidence that the predictive ability of 

prothrombin time is initially high but null 5 years aCter its measurelllcnt. 

The analyst should reject the assumption of a constant hazard ratio UpOIl 

seeing these results. 

Estimation of the hazard ratio is discussed in more detai! in section 5, 

and in Chapter 3, we discuss the estimation of the hazard ratio by a specifie 

smoothing method, the method of regression splines. 

2.3 Residual methods for assessing propor­
tionality of hazards 

In his 1977 paper, Kay also suggested that the method of generalized resid­

uals can be used to assess the goodness-of-fit of the ph model. General­

ized residuals were defined by Cox and Snell (1968). For unccnsored data, 
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(Xl, Yi), ... , (Xn, Yn), wherc the 1-';'s represent the dependent variable, the i­

th gcneralized residual is defincd as F(VajXi) where .F('jx) is an estimate of 

the true cumulative distribution function, Fo('; -), given the independent va­

riable x. If F(.;.) is a good approximation to FO('j') then F(l'ij xd is close to 

l'ù(Va; x,). This latter random variable has the uniform distribution, U(O, 1), 

Slnce, 

Pr[Fo(1-';; Xi) < u] - Pr[}'i < Fo-I(u; x,)] 

- Fo[Fal( U; Xi); x,] 

- U. (2.4) 

Thercfore, the gcneralized residuals F(Ytj xI), .. . , P(Yn ; xn ) should resemble 

an n-sample from U(O, 1). For instance, the empirical distribution function 

of these residuals should be approximately a straight Hne connecting (0,0) 

and (l,l). 

For a right-censored data set, (Tl! ~l, Xl), ... , (Tm 6.n, xn) whose true sur­

vival function is S(.;.) and C(t) = Pr(subject is not censored before time t), 

1 - SeT,; x,) is a right-censored random variate corresponding to uniformly 

distributed 'survival' durations and the censoring distribution C[(l-S)-I(t)], 

whcre (1 - 8)-1 denotes the inverse function of 1-S. To apply the method of 

generalized residuals to the setting in which the proportional hazards model 

has bcen applied, we first require an estimate of S('j')' One appealing es­

timate of the baseline cumulative hazard function, Ao(t) =: -log Set; 0), is 
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------------------------------------------------------------------------------------------~ 

due to Breslow (1972,1974), 

(2.5) 

This is a natural generalization of the Nelson cstimator, of the cumula-

tive hazard (1.12). The Nelson estimaior is captured by takillg f3 = O. 

(An analogous generalization of the Kaplan-Meier estimator is, SoU) -

nt·<t[1 - E 1 b J.) To estimatc So(t) = S(tj 0), wc take So{t) == C-Â(I). 
,- e z) 

)ER, 

To estimate S(tjX,) we can take S(tjX,) = So(t)cxp({Jx,>. The i-t.h gCllcl'i\.lizcd 

residual for this censored data set under the proportional hazards modcl is 

the pair (1 - S(T,; x,), <5,). If the proportional hazards modcl is valid, thcll 

these n residuals resemble a sample from a ccnsored uniforrnly distl'ibuted 

sample. Accordingly, an estimate of the survival curvc for thesc transformed 

times, such as the Kaplan-Meicr cstimatc, should be close to a straight lille 

connecting (0,1) and (1,0) (Kay, 1977). 

The method of generalized residuals in this setting is laborious. Fur­

thermore, it is difficult to determine the variance of the survival functioll 

estimated for these censored generalizcd rcsiduals. This makcs it difficult for 

the analyst to determine if this final curve invalidates the ph assumption by 

not lying close enough to the straight line connecling (0,1) and (1,0). 

The generalized residuals approach was bascd on the durations 1; wlwreas 

the partiallikelihood is motivated by the concept of the risk set. Schocnficld's 

(1982) partial residuals are based on the risk set intcrpretation of survival 

data. He defines one residual for each of the obscrvcd failures based on the 
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discrcte distribution that the ,t-th risk set induces. The expected value of the 

variable x of the i-th subject observed to fail given the risk set just prior to 

the time of the i-th failure is 

(2.6) 

where t: denotes the time of the i-th failure. The i-th partial residual is 

dcfined as 

(2.7) 

If proportional hazards are used to model the impact of the variable x 

upon the hazard the i-th partial residual is 

(2.8) 

The last expression is equivalent to the i-th summand of the score statis-

tic, (1.32), based on the partiallikelihood and Cox's proportional hazards 

model. As wc demonstrated in section 1.6 the quantities u, have zero mean 

if the spccified mode} is correct. Furthermore, they are uncorrelated since 

E[U,U)] = 0 (see section 1.6). To operationalize these residuals we can sub­

stitute {J = /J. In this case, the residuals satisfy the property that they sum 

to zero since their sum is the derivative of the log-likelihood evaluated at /J. 
Unlike the residuals wc enclJunter in the usual uncensored continuous re-

sponse regression modcl which are identically distributed under conventional 

assumptions, Schoenficld's partial residuals are not identically distributed. 
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The partial residuals may be standdn1iwJ by JiviJing caeh by ils st.and,l( d 

deviation. An estimate of the variance of the i-th rcsitlu,~1 is 

Typically a, will not change much as i inCl'cases unless the cov.u ial(' h.IS a 

very strong eITect. 

The partial residuals, u, or ulla" Illay be USCtl to graphically aSSl'SS sllg-

gestive departures from the ph assumptiou. The aualyst C(~11 plot thelll 

against the timing or rank of the failure associatetl with the COI'J'('spolldillg 

risk set. Suppose the true modcl is À( l; x) = Ào( l )c(J1+g(t))x, for sOrlle fUlldioll 

g. The function 9 descrihes the departure from the proportioual hazards 

model and is centered about zero. Using a Taylor cxpansion of 1!J'[Ul ! .'{.] 

about g(t) = 0 (i.e.; the case when ph holds,) Schocnficld (1982) shows that. 

(2.10) 

where Varo(Xt IR,) is the true variance of X,· given the risk set just priol 

to ti. The partial residuals will tend to be positive or negativc, respedivdy, 

depending on whether the truc log-relative risk is being undercstim,ücd 01 

overestimated. Figure 4 depicts the residuals, u" for Cox model estimates 

of the e{fect of prothrombin lime. There is a dcfinite systcmatic dep,.I.rturc. 

During early follow-up the residuals tend to be positive. This suggests that. 

subjects with higher levcls of prothrombill time arc more likdy to die lU Hu: 

earlier part of follow-up than the ph modcl predicts. In other words, thc 
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proportional hazards modcl underestimatcs the relative risk function during 

the first part of follow-up. Converscly, the negatively tending residuals sug­

gcst that the relative risk is overestimated later in follow-up. The analyst 

at this point should reject or at least be cautious about the assumption of a 

constant hazard ratio. 

Partial rcsiduals are most appropiate when the predictor is a continuous 

variable or at least an ordinal variable with severallevels. When proportion al 

hazards do ho Id and the prcdictor is binary (0,1) and say levell is associated 

with more risk the quantities Il, decrease with time sinee level 1 subjects are 

being filtercd out of the sample at risk. Consequently, as this author has 

cxpcricnccd, the eye picks up an increasing trend despite the fact that the 

average value remains about O. This same difficulty occurs when the risk of 

censoring is more likely in one level than another. A useful alternative in 

this situation is to smooth these residuals (Petit and Bin Daud, 1990). 

Recent research into diagnostics for survival models using the approach 

of martingales have yielded the same Schoenfield (1982) residuals. If the 

spccificd modcl is correct, the Schoenfield residuals are simply increments of 

a martingale process (Fleming and Harrington, 1990). Barlow and Prentice 

( 1988) propose a number of martingale-based residuals for relative risk regres­

sion and obtain a generalization of Schoenfield's partial residuals. Therneau, 

Grambsch and Fleming (1990) propose a score process meant to evaluate 

the proportionality assumption and note that the increments of the process 

are the residuals introduced by Schoenfield. Finally Hendersen and Milner 
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(1991) introduce a gcneral form of residuals for partiallikelihood rcgrcssioll 

a special case of which is the Schoenficld rcsidual. 

2.4 Hypothesis testing of the proportional­
ity assumption 

There is a wealth of tests of the hypothesis of proportional hazards. The first 

test was proposed by Cox (1972) in the paper introducing the proportiollal 

hazards model. Cox proposed the alternative modcl that incorporates a time-

dependent covariate, '\(tjx) = "'o(t)exp{[/Jo + /Jlt]X}. Ile suggests that the 

proportionality assumption be evaluated by tcsting the hypothesis /JI = 0 

using the score statistic for the partial likelihood evaluated at /Jo = Po and 

(31 = O. This test is most powerful against the alternative that the hazard 

ratio is a. linear function of time. 

Schoenfield (1980) proposed an omnibus goodness-of-fit test of ph. Ile 

suggests a partition of the time axis as weIl as of the rangc of thc covariate and 

then shows how the expected values and covariance of the nurnber of cvcnts 

in ea.ch resulting cell can be calculated. He procecds to yicld a goodncss-of-fit 

statistic which he demonstrates is asymptotically distributed as a chi-square. 

The partition of the time and covariate axes is arbitrary. Andersen (1982) 

also proposed a goodness-of-fit test based on an arbitrary partition of the 

product of the time axis and the covariate range. His rnethod turns out 

ta be computationally simpler than Schoenficld's. Moreau, O'Quiglcy and 

Mesbah (1985) propose a test statistic which in the two samplc setting is 
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cquivalcnt to Schocnficld's (1980). O'Quigley and Pessione (1989) propose a 

general framework in which t.o test specifie alternatives to ph such as linear, 

quadratic or exponential trends in the hazard ratio. They use rank-invariant 

scores in order to retain the semi-parametric nature of Cox's mode!. 

A number of tests are implicitly based on the Schoenfield's partial resid­

uals, (2.7). Nagclkerk(>, Oosting and Hart (1984) propose a test of the ph 

assumption which assumes that the alternative is a smoothly changing haz­

ard ratio. They use the summands of the score statistic, U" defined in (1.32). 

These are just the partial residuals of Schoenfield (1982), although they make 

no mention of this. They argue that if the hazard ratio is changing smoothly, 

the U, are not uncorrelated, in contrast to the case when the hazard ratio 

does not change. Indced, successive values should be positively correlated. 

They propose the test statistic Li U,Ui-l. They use a permutational ap­

proach to estimate the mean and find an uppl'r limit for the variance of this 

statistic. Wei (1984) considered violations tu proportionality of hazards in 

the two-sample setting. Using a stochastic process approach, Wei derived 

the test statistic maXj 1 LJSi UJ 1 where the Ui are the summands of the score 

statistic. Wei do es not identify these increments as partial residuals. Harrell 

and Lee (1986) also use partial residuals. They propose that the partial resid­

uals be correlated with the ranks of the failure times corresponding to these 

residuals. The null hypothesis is tested using the Fisher z-transform of the 

correlation coefficient. This test retains the semi-parametric nature of Cox's 

ll10del and is powerful against alternatives involving monotonie changes of 
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the relative risk. 

Gill and Schumachcr (1987) propose a test of ph which is specifie to tilt' 

two-sample setting. They considcr ratios of the forrn 

J K(t)dÂ2 (t)/ J K(t)dÂ1(t) (2.11 ) 

where Al and A2 are estimators oC the cumulative hazard fUllctioll in salJl­

pIes 1 and 2 respectively, and K(t) is sorne arbitrary wcighting fUllet.ioll. If 

hazards are proportional then this ratio estimates the constant hazard ratio 

for any chai ce of 1(. If the relative risk is not constant then the expectcd 

value of this estimate depends on the choice of J(. The authors propose test 

statistics of the form 

. They discuss the ideal choice oC the wcight functions ](1 and 1<2. 

More recently Quantin (1992, personal communication) generalizes Cox's 

model ta A(tiX) = [Ao(t)]e'YzePx . Cox's model is captured by taking 'Y = O. 

She tests the hypothesis that 'Y = 0 using the score slatistic evaluatcd at 

((3,1') = (P,O). The hazard ratio for this model in the two-sample setting 

is eP+'YAo(t)e'Y-l which is a monoLonous function, sinee A(t) is strict.ly in­

creasing. Thus this test is not powerful against alternatives in which the 

hazard ratio is U-shape in nature. LLiang, Self and Liu (1990) gencralizc 

Cox's model ta À(ti x) = Ào(t)e(PtOI{ls'Y}) wherc'Y is a change-point. They 

propose a test statistic for the hypothcsis of no change-point which takes 
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the supremum of a score stati ,Lic over a range of aU possible change-point 

values. Cu (1992) uses a similar change-point model but yields a likelihood 

ratio test statistic. 

Thcre is no lack of test statistics for examining the validity of the propor­

tional hazards assumption. Different tests of ph are powerful against different 

alternatives although it is usually not clear what is the best test to use. Fur­

thermore even if the assumption of a constant hazard ratio is rejected the 

analysts is left with the problem of what is the correct model and how to esti­

mate the predictor effects over different portions of the follow-up. There has 

been but a few papers discussing the modelling of a time-dependent hazard 

function. In the next chapter, we describe the previous work on modelling 

of the time varying relative risk and introduce the idea of smooth estimates 

of the hazard ratio expressed as a function of time. 
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Chapter 3 

Modelling of the Relative Risk 
by Regression Splines 

3.1 Overview 

Only a few authors have discussed alternatives to the proportional hazarJs 

(ph) mode} that take advantage of the partiallikelihood frarnework. In sec­

tion 2, we review alternatives to the ph assumption titat rctain the pa.rtia.l 

likelihood framework and introduce the notion of smoolhing the hazarJ ratio. 

In section 3 we discuss the mcthod of smoothing splines for cstimating the 

tirne-dependent hazard ratio, as proposcd by Zuckcr and Karr (1990). III 

section 4 we introduce another smoothing technique, regression splines, anù 

describe in general sorne of their properties. In section 5 we propose a regres-

sion spline mode} for estimating the hazard ratio. We a]80 discuss the large 

sample properties of the regression spline cstimator of the hazard ratio. ln 

section 6 we shaH discuss the computation involved in rnaximizing the partial 

likelihood when regression splines are employed to model the timc-dcpcndcnt 
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relative hazard. We introduce the truncated power, B-spline and M-spline 

bases which span a given family of regression splines. In section 7 we discuss 

the optimal choice of the level of flexibility of a regression spline. There we 

propose a method for model identification that uses the Akaike Information 

Criterion. We refer to this as the best-AIC regression spline approach. In 

section 8 we discuss the impact of a posteriori model selection upon infer­

ence. In section 9 we suggest a modification to the best-AIC regression spline 

approach in order to make it more conservative with respect to rejecting the 

proportional hazards model. 

3.2 Modelling the Time-Dependence of the 
Hazard Ratio 

One way to incorporate the possibility that the relative risk may not neces­

sarily be constant is to extend Cox's proportional hazards model to 

(3.1 ) 

in which we replace the parameter f3 by an estimable function of time (jet). 

While the hazards are no longer proportional we have retained a factorization 

which, like the ph model, facilitates the partiallikelihood method since the 

factor "'o(t) cancels out of the partiallikelihood. (jet) can be interpreted as 

the log relative risk at time t. 

One of the most simple ways to estimate f3(t) is to express it as a polyno­

mial functioll oftime, "'(t; x) = "'o(t) exp [({jo + f31t+· .. + f3rtr)x(O)]. Another 
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simple way is to partition the time axis and estimate the constant relative 

risk separately in each interval as in the mode! (2.3). 

Gore, Pocock and Kerr (1984) propose a log relative risk that declincs 

exponentially over time, j3(t) == Aeht , for some known b < O. It secl\Is 

intuitive that the predictive ability of a charactcristic cou Id orten behavc 

this way. This seems to be the case, as we described in chapter 2, section l, 

when x(O) is used as a predictor when in fact À(ti x(t» = Ào(t) cxp({Jx(t)) 

and the correlation between x(t) and x(O) decays to zero. Gore et al were 

analysing data from a series of breast cancer patients. They were lcd to 

the exponential decay model aftcr consideration of the estirnatcs from the 

stepwise constant relative risk model of (2.3). 

Lliang, Self and Liu (1990), as we have previously mentioncd, apply a 

change point model. The change-point model is appropiate if therc is reason 

to believe that the relative risk will change abruptly and at the same point 

on the time axis for every subject. While it is conceivable that for a specifie 

subject the relative risk could undergo a dramatic shift at SOllle point on 

the time axis it is difficult to imagine any biological mechanism where the 

relative risk associated with sorne marker or sorne treatment would undergo 

this dramatic shift at the same time for each subject. It makcs more sense 

that the hazard ratio changes smoothly over time. 

Zucker and Karr (1990) suggest the use of smoothing splines (Wegrnall 

and Wright, 1983) to model the time-depcndcnt relative risk. 
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3.3 Smoothing splines 

One criterion for a. function h(t) to be smooth is that it be continuous as 

weIl as baving a continuous first derivative. Conti nuit y ensures that there is 

no hrcakpoints wbile the continuity of the first derivative ensures that there 

is no 'corners' in the curve. This criterion is not enough. The functions 

n:=l(x - i/n) and sin(211"n) defined on [0,1] are both infinitely differentiable 

but for tbe purposes of modelling data cannot be considered smootb since 

they change value so rapidly. The second derivative is one measure of the 

local smoothness of a function. As such a popular quantity for measuring 

the overall smoothness of a function h is fA Ih"12, where A is the do main of h. 

In this case maximal smoothness, attained when fA Ih"12 = 0, occurs when 

h is a linear function. The functional fA IcPhl2 (or more generally fA ILhl2 

where L is a differential operator) is central to the topic of smoothing splines 

(Euhank, 1988). 

A smoothing spline is defined to he a solution to the maximization prob­

lem, 

(3.2) 

where H is a space of r-differentiable functions defined on the interval [a, b), 

~ is sorne functional defined on H, ct is a constant and L is an r - th order 

differentiallinear operator. Usually r = 2 and L = D2. The function h 

that maximizes expression (3.2) strikes a compromise hetween the desire to 

mazimize the log-likelihood and the desire that h be smooth. The constant 
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a controls the relative degrccs of thcsc two desil'cs. As a inCl"CaSeS so dues 

the smoothness of the solution ta (3.2). Typically, the smoolhing pammcta, 

a, is chosen using generalized cross-validation (Craven and Wahba, 1979). 

Zucker and Karr (1990) use smoothing splines to model the tirne-dependclIl 

relative risk. In this setting h(t) = {J(t), the hazard ratio expresscd as a func-

tion of time, r = 2, a = 0, bis some reasonable upper bound for the follow-up 

period, L = D2 and most importantly <I> is the log partial likclihood of the 

observed data assuming model (3.1), 

max LP L({J) + a lb I{J"( t) 12 

.BeH2[o,b] Jo 
(3.a) 

The space of functions JI2[a, b] is huge but finding this solution is not 

as daunting as it may initially seem. Zucker and Karr prove that any so­

lution to (3.3) must lie in a finite order linear subspace of 1/2[a, b). Let 

ti, ... , tt be the observed failure times. This linear spacc is the set of all 

f3 E JI2[O, b] such that {J is a cubic polynomial on any one of the intervals 

[0,ti],[ti,t2], ... ,[tt_l,ttl,[tt,oo]. The fact that {1 is a mernber of 1J2[a,b] 

ensures that at the failure times {J is continuous as weIl as having contin­

uous slope and curvature. Zucker and Karr demonstrate that if indccd the 

model in expression (3.1) is true and that f3 does indeed have continuous 

second derivative then the maximizer, pet), of expression (3.3) is a consis­

tent estimator and pointwise is asymptotically normal when the sequence of 

penalty paramters, {Q'n }n=l, ... ,oo, is appropiately chosen. flere, the sequence 

{Q'n}n=l, ... ,oo is indexed by the number of observed failures, n, to indicate the 
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dependence of the lcvel of smoothing on the available amount of data. 

3.4 Regression splines 

Regression splines generalize regression by polynomials but are usually con­

sidered to be an improvent over polynomials in that fitting is more localized. 

An estimate is callc0. local to the extent that it places relatively more weight 

on using information from observation~ close to t than far from t. Localizing 

an estimate reduces the bias of estimates while increasing the variance of the 

estimator (Hastie and Tibshirani, 1990). 

A family of regression splines are defined by their degree, which is equiv­

aIent to the degree of a polynomial, and their knots. The knots consist of 

thc exterior knots, 2 points which define the domain of the regression, and 

interior knots, a set of distinct points that partition the domain. Usually 

we speak of the order of the regression spline which is 1 plus the degree. 

Bctwecn any two adjacent knots the regression spline is a. polynomial of the 

same order. These polynomials join in a smooth fashion. A regression spline 

of order k has continuous 1 - th derivative for 1 = 0, ... , k - 2. A cubic spline 

is continuo us as well as having continuous slope and curvature at its interior 

knots. A quadratic spline is continuous as weIl as having continuous slope at 

its interior knots. 

The Camily of regrcssion splines of a given order specifie to any particular 

sequence of knots is a !inear space. As such there exists a. finite basis. Esti­

mation by regression splines is simply accompli shed by regressing onto these 
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basis elements by a method such as maximumlikclihood estimation or MPL 

estimation. 

Regression splines have bccn rcccntly llscd in survival analysis to (i) csli­

mate the density and hazard functions (Abrahamowicz, Ciampi and Rmllsay, 

1992) and (ii) model the functional form of lhe impact of covarialcs. Durrle­

man and Simon, 1989 and Slceper and Harrington, 1990 propose the followiug 

generalization of the proportional hazards model, 

À(t; x) == Ào(t) exp[g(x)), (3.'1) 

and proceed to estimate 9 using regression splines. 

Regression splines bear a relation to smoothing spline methods. For in­

stance, as Zucker and Karr (1990) demonstrate for the relative risk fllnc­

tion, there exists a smoothing spline that maxirnizes the penalized partial 

likelihood which is a piecewise cuhic polynomial. In oUlcr words, thcre ex­

ists a solution which is a cubic regrcssion spline. This particular reg rcs­

sion spline has one knot for each ohserved failure time which is an obvious 

over-parameterization for aMPLE approach. Typically in regression splille 

methods no more than 10 knots are ever uscd. 

3.5 Regression spline model for hazard ratio 

The set of regression splines, of a given arder (1 + degree) and given knot 

placement, is a finite linear suhspace. As such there cxists a finac basis tu 

span this set of regression splines. The rcgrcssion spline mode] wc propose 
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for the relative hazard can be expressed in the form 

1 

À(tj x) = Ào(t)exp(L,Bjgj(t)x) (3.5) 
1=1 

where {g,}.=1, ... " is an l-dimensional basis foc a regression spline space. This 

model is a special case of the generalization of Cox's model to time depen­

dent covariates. The terms g.(t)x are fixed time dependent covariates (see 

section 1.7). To determine the particular regression spline amongst a space 

of regression splines of a given order and of given knot positions that best 

estimates the relative hazard an obvious approach is to maximize the partial 

likelihood corresponding to this model. 

3.5.1 Large sample properties 

The proofs of the consistency and asymptotic normality for the partiallike­

lihood, that we discussed in section 1.6, ensure the following: If the true 

relative hazard is an element of the regressi0n spline space over which we 

arc maximizing then the relative hazard at any particular point on the time 

axis will be estimated without bias and with normal error asymptotically. To 

match the 'true' curve 'exactly' it is likely that no finite regression space will 

do. For instance, the truc curve corresponds to a regression spline with an 

infinite number of knots. Thus to establish asymptotic consistency in general 

we must assume an estimation technique that allows the number of knots to 

go to infinity. Moreover for any interval (a, b) over which dPr[T < xl > 0 

for aIl x E (a, b) the number of knots falling in the interval must approach 
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infinity. One such sequence of knots is obtaillcd by sprcadillg tl\l'Ill out 

uniformly amongst the observcd failurc timcs. For instancc if thcrc Me Il 

observed failures, at times t(l) < ... < t(Il)' the knots arc chosen to lH' 

Ki = t('XTn)l i = 1, ... 1 ln/rnJ, whcrc {r'}I=l, ... ,oo is any scqucncc satisfyillg 

liffin-+oo r n -+ 00 and limn ..... oo Tnln -+ O. 

3.6 MPL estimates for the regression spline 
model 

Once a knot sequence has bccn choscn crnploying rcgression splincs to sIrlool.h 

the relative hazard cao he donc at relative case. For instancc OIlC cali use 

the statistical software BMDP modulc 2L to ohtain srnoothcd estilll(ües with 

little more code thao that necessary to obtain estimatcs from a proportioHal 

hazards mode!. The Newton-Raphson algorithm can he employcd to find the 

estimates maximizing the partiallikclihood of the modcl in (3.5). The vector 

of first derivatives is given by, 

~ log PL = Ê9k(t,)X; - ElEU. xJ cxp[fJ(t;)xJJ. (:U.i) 
8fJk i=l ElEU. cxp[fJ(t;)xJJ 

where jJ(t) = E!=l fJlgl(t). 

The matrix of second derivativcs is given by 

where 

STI(fJ) = L: x; CXp[fJ(t;)Xl l (3.8) 
1ER. 
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for r = 0, 1,2, and i indexing the observed failure. ... 

The order of one iteration of this Newton-Raphson is o(nmq) where n is 

the size of the sam pIe, rn is the number of observed failures and q reRects 

the time ncccssary to invert the matrix of second derivatives. On the other 

hand the order of the proportional hazards model with one covariate is n. 

The factor increase in complexity, m, is due to the fact that the sums, Sri, 

for r = 0, 1,2, must be recalculated for each failure time. The corresponding 

sums for the proportional hazards model are 

Sri = L x; exp(,BxJ ). (3.9) 
3ER. 

Sincc (J docs not vary from one failure time to the next, as it does in the 

tirne-dependent model, Sr.i+l may be obtained from Sr,. surns by deleting the 

summands corresponding to subjects who are eliminated frorn the risk set 

bctwœn thcse failure tirnes. 

Estirnates of the asymptotic covariance rnatrix of the the estimate {J, 

denotcd by tU}), are yielded by the inverse of the observed information 

matrix (matrix of second derivatives), evaluated at /3. The pointwise estimate 

of the variance of the log relative risk at time t is then given by 

where g(t) is the vector of basis functions evaluated at tirne t. 
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3.6.1 Regression Splines Bases 

The functions {g, }.=I, ... ,d in (3.5) are a basis for the d-dimcllsiollal reg l'CS-

sion spline basis. A very intuitive and easy to pro gram basis for a spacc of 

regression splines is the t7'uncated power basis. The set of fuudions 

(3.11 ) 

spans the r + m-dimensional regression spline spacc of dcgrec r - 1 (order ,.) 

with knots placed at KI < ... < Km. The meaning of the notation (x)+ is 

the following 

{ 
xr 

(x)+ = ' 0, 
if x ~ 0; 
if x < o. (:1.12) 

The continuity properties of the rcgression spline spacc are then self­

evident sinee 

~ r _{r(r-1) ... (r-i+l)Xr -" ifx>Oj 
dxi x+ - 0, if x < O. (3.1 :1) 

which is continuous at 0 for i < r. Therefore every clement of tbis basil'! bas 

continuous i-derivatives for i < r. 

The truncated power basis is easy to define. For instance one could 

use it rather easily to obtain regression spline estimates using a sLatistical 

package such as BMDP. Howevcr, this basis is highly collinear especially 

due to the faet that every element of this basis is a non-dccreasing function 

(de Boor, 1978). The high levcl of collinearity dccl'eases the precision wilh 
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which the matrix of second derivatives can he inverted. As a result the 

Ilumber of steps neccssary for convergence may increase or convergence may 

not be attained. On the other hand if the basis was orthogonal or 'close' to 

orthogonal the inversion of the matrix of second derivatives may be changed 

Crom a o( d,2) calculation to a o( d) calculation. This becomes important in 

reducing computing time if the relative hazard function cannot be modelled 

adequatcly by a low dimensional regression spline. 

A n orthogonal basis does exist for any particular regression spline basis 

but typically the order of any algorithm, such as the Gram-Schmidt process, 

cmployed to detcrmine an orthogonal basis is o( cP) which would negate the 

one oC the motivations for finding an orthogonal hasis. 

The truncated power basis while highly collinear do es have a suggestive 

propcrty. The property that (t - KI )+ takes the value 0 over the interval 

(-00, KI) can be takcn advantage of to derive a nearly orthogonal basis. A 

basis, {9,(t)h=1, ... ,d, for which aU elements is zero everywhere except over 

finite intervals might yield near orthogonality. Suppose 9j is zero on the 

interval 1. for i = l, ... ,d then the second partial derivative, al3~~131 log PL, 

as in (3.7) is zero Cor aIl k and 1 such that 1" and Il do not intersect. 

COllsider the truncatcd powers corresponding to the first four knots of a 

quadratic regrcssion spline space, (t - K.)~, i = 1,2,3,4. Any linear com­

bination oC the latter three is zero on (-00, Kt). Moreover on the interval 
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4 

L al(t - K1)t -
i=1 1=1 

4 

- L al (t 2 
- 2Kl t + K?) 

i=1 

L (-1 Y (2) Crtr 
r=O,l,2 r 

(3.14) 

which each of the three Crs equalled zero then the function L: al (t - I\,,)~ 

would be a regression spline that is non-zero on the intervai (K l, K4), and zero 

everywhere eise. Such a 4-tuple a does exist as one of the rnany solutiolls to 

the matrix-equation 

(3.15) 

For any of the solutions, â, ta (3.15), the resulting regresslon spline 

L: âl(t - Ki)~ has the same approximate shape. This shape is a smooth 

bump which is either aIl negative or aIl positive. It is possible ta ùcrive a ba­

sis which consists entirely of these type of functions. Curry and Schocubcrg 

(1966) derive such a basis, the M-spline basis and de Boor (1978) ùcrives 

another, the B-spline basis. Each generalize the idca of thcse bases ta rc­

gression spline bases of arbitrary arder. For instance cubic-ordcr H-splinc 

and M-&pline bases are defined. Whereas a quadratic-ordcr B-splinc or M· 

spline component is zero everywhere exccpt over an intcrval (KI) 11:1+3) an r· 

th order B-spline or M-spline is zero everywere cxccpt an intcrval (KI, K,+r)' 
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For inst.!l.nce a cubic-ordcr B-spline is positive over 4 consecutive intervals 

(l'., 1',+1), (1"+11 Ki+2)' (1',+2, X:i+3), (1'.+3, X:'H)' The B-spline and M-spline are 

cach cha.racterized by a different normalization. Each element of aM-spline 

basis integrates to 1, whcreas for B-spline basis elements, BI(t), ... , Bd(t) the 

sum E~=l B,(t) is unit y for aIl t. The unit integral constraint for any par­

ticular element of the M-splines basis can be incorporated as a final linear 

cquation, fi: E a,(t - K,)~ dt = 0, in expression (3.15). 

The B-spline and M-spline bases are nearly orthogonal. For any inner 

produd, specifically the inner product defined by the second derivates of 

the timc-dcpendent hazard ratio model, in (3.7), the inner product of any 

two béLsis elements, bi and b" is 0 when li - il > r. The matrix of second 

dcrivatives (3.7) has a banded structure if we employ B-splines or M-splines. 

This facilitates the inversion of this matrix which is a crucial part of the 

Newton-Raphson algorithm. 

Eél.ch element of an M-spline basis can be derived in o(r2 ) calculations. 

Typkally M-splines and B-splines are obtained via a set of recursive formulas, 

(de Boor, 1978, Curry and Schoenberg, 1966, Ramsay, 1988). For instance 

the M-spline basis can be constructed using the recursive formulas, 

M,(tIK, 1) = I[KJ.KJ+d(t) 
1',+1 - l', 

for i = 1, ... , 2r + m - 1 and 
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(3.18) 

for k > 1 a.nd j = 1, ... , 2r + m - 1, whcre K = (Kt, ... , Km), the verlor of 

knots, which also incorporates the end points Land U of the domaill of the 

regression, and IA(t) is the indicator function for the set A. The notation 

M(tIK, r) is used to denote the dependence of the regression spline spacc OH 

the knots and the order r. A similar rccursive formula exists for derivillg a 

B-spline basis. 

This recursive formula is o(r2
). Il facilitates the calculation of M(tlt.:, r) 

at specifie points t. A less direct approach would he to calculatc cach At as 

a linear eombination of 4 elements of the truncated power hasis using the 

4-tuple a whieh solves the r by r matrix equation defined by (3.15) and the 

unit integrality constraint together. On the other hand if one is gr. ,phillg a 

linear eombination of the M-splines over sorne interval, as for instance the 

regression spline which maximizes the partiallikelihood for the model (3.5), 

the reeursive formula method should he avoidcd. In this case the recursion 

has to be performed for every value of t in sorne fine grid within the intcrval, 

for instance for the value of t corresponding to each colurnn of pixels oC a 

graphie device. In this case computing is facilitated by expressing the M­

splines in terms of the truneated power hasis or polynomials. 

M-splines are appealing sinee they facilitate the imposition of tait con­

straints such as ,8(0) = 0 or ,8'(0) = O. While wc have IlOt used ally sueh 

eonstraints we have chosen to use the M-spline basis in our calcuatiolls. 

70 



3.6.2 Example 

The analyses that follow were accomplished using a program written in the 

language C for a PC-486 by the author. The program was written to yield 

partial li keli hood estimates for the model in (3.5) where the set of functions 

{g.(t)} are rcplaced by an M-spline basis. In the example that follow knot 

selection is automatic. The knots were located along the time axis so that 

there was the same (or the saffie less 1) number of failures in between any 

two adjacent knots. 

In section 1.3 we reported that the laboratory marker, prothrombin time, 

was a statistically significant predictor of deaths based upon the log-rank 

tes!, (1.16). In sections 2.3 a plot of Schoenfield's parthl residuals (2.7) 

suggcsted that the predictive ability of this variable is not constant. Now 

we shaH use the regression spline approach to estimate the possible time­

dependent nature of the relative risk corresponding to this variable. Given 

the large number of observed failures, 161, we find it reasonable to use a 

cubic regression spline with 3 knots. This 7 -dimensional regression spline 

cnsurcs sufficient flexibility to capture the shape of the true hazard ratio. 

l<'igure 5 depicts the rcgression spline estimate (thick line) and corre­

sponding 95% confidence intervals (dashed Hnes). The horizontalline of unit 

relative risk is also included. The time axis is measured in years. The relative 

risk axis is logarithmically scaled. A reasonable, although perhaps liberal, 

,approach to inference is to conclude that l1(t) > 0, that is that prothrombin 
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time has predictive ability, whenever the lower bound of the confidcnce in­

terval exceeds O. In that case we would conclude that prothrombin timc has 

the ability to predict deaths up until about 3 ycars artcr its mcasurcmcllt. 

One les son from this result is that amongst subjccts sufrcrin.~ from PBe a 

measurement of prothrombin time should be repcated at least cvery 3 ycal'S 

if its to have any prognostic value. 

The estimate in figure 5 is a decreasing function with no local maxima 

or minima. This shape could be captured by a lowcr dirncnsional rcgl'CSSiOll 

spline, for instance, a quadratic polynomial. In the ncxt section wc discuss 

the choice of the dimension, or in other words, the level of smoothness, of a 

regression spline. 

3.7 Best Ale-Regression Splines 

As we have described the smoothing of the relative hazard by rcgressiou 

splines can be done at relative ease. However, as in any modelling application 

the task is not as automatic as we may initially hope. Bcfore an analyst 

proceeds with estimation he/she must decide on the numbcr of and position 

of the knots that are required as well as the order of the regrcssion spline. Thc 

choice of these quantities corresponds to the choice of the penalty pararnctcr 

in the smoothing spline approach. 

Regression splines are orten criticized for thcir dependcncc OIl thc location 

of knots when they are a posteriori (Hastie and Tibshirani, 1990). Wc shall 

employ the following a priori automatic approach. We shaH locate the kr~ots 
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along the tirne axis so that the nurnber of failures in between any two adjacent 

knots is approximately the same. For instance if 3 knots are used they are 

located at the quartiles of the ernpirical distribution of survival times. 

We shall employ an automated model selection criterion to determine 

the regression spline order and the number of knots. Among these crite­

ria Akaike's Information Criterion, AIC, (Akaike, 1974) seems to the most 

popular (Bloxom, 1985, Slceper and Harrington, 1990, Abrahamowicz et al, 

1992). 

3.7.1 Ale in the fulllikelihood setting 

ln the full likelihood setting the AIC is easily computed. It is simply the 

log-likelihood minus the degrees of freedom in the mode!. (Usually this is 

multiplied by minus 2, but here we shaH disregard this constant factor). The 

AIC rewards models that fit the observed data weIl but penalizes the degrees 

of freedom in the model. There is two ways to regard the penalty. The first 

is that the AIC penalizes complicated models. This is ideal as regression 

models that an analyst cûmmunicates to a clinician, for instance, should be 

as simple as possible. The second way is that the AIC penalizes spurious 

fitting which is usually referred to as overfitting. 

Akaike's (1974) motivation in deriving the AIC was the maximization 

of the expected log likelihood over a class of models. The expected log 

likelihood 

E[logg(Yi X)] == J log9(Yi x)f(YiX) dy 
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is a measure of the closeness of a model g( '; x) to the truc Illodcl f(.; x). This 

quantity is maximizcd over the set of aU Illodels when 9 = J. This rcsult 

follows upon substitution of v = 9(Y; x)/I(Y; x) iuto the illcquality 

-1 + v - log v ~ 0 VvE ~ (:J.20) 

and by then takiug expected values. The expected log-likelihood plays a 

dominant role in information theory (Kullback and Lciblcr, 1951). 

The observed log-likelihood of the model 9('; x) is 

n 

2: log 9(Y,; x,). (3.21 ) 
1 

It is an estimator of nE[log 9(lIi; x,)]. In the maximum likclihood selling 9 is 

parameterized as 9('; Xi, 0) and we find Ô that maximizcs the log-likclihood. 

Let O· be the 0 that maximizes the expected log-likelihood in this particulal' 

parameter space. The maximized log likelihood is a biased estirnator of the 

maximized expected log likelihood. Akaike demonstrates that the difrereIlcc, 

Elog9(Yi;X.,Ô) - nE[log9(Y;X,O*)] (3.22) 

is asymptotically distributed as a chi-square with degrees of frecdom cqualling 

the dimension of the parameter space. Accordingly, the expectcd value of 

the difference is then this dimension. The Ale incorporates this correction. 

The Ale can be conceptualized as follows. The first component, the observed 

log-likelihood estimates, with bias, the distance betwccn the truc distribution 

and the best model in the particular parameter space. The second cornponent 

corrects for this bias. 
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3.7.2 Ale in the partial likelihood setting 

So far wc have discussed thc AIC with respect to a full likelihood inference 

device. Wc must now exicnd the AIC to the partiallikelihood setting. This 

is accomplished by replacing the log-likelihood by the log-partial likelihood. 

The component of the AIC that corrects bias remains the same. In this 

case the AIC estimates the expected value of the partial likelihood. Sev­

eral authors have used the AIC for model selection based upon the partial 

likelihood, (Sleeper and Harrington, 1990 and Durrleman and Simon, 1989). 

In general we propose that the hazard ratio be estimated in the following 

fashionj (i) find the MPL estimate of the hazard ratio for the constant and 

lincar relative risk models as weIl as in aU quadratic and cubic regression 

splines spaces whose dimension do es not exceed sorne reasonable fraction of 

the observed number of failures. For instance there should not be more than 

1 dimension per 10 obscrved failures (Kalbfieisch and Prentice, 1980). (This 

fraction should also decrease as the number of events increases if asymptotic 

properties of the MPLE's are to hold.) (ii) For each estimate calculate the 

AIC. (iii) Choose the model for which the AIC is optimized. 

We shall rercr to this method of estimation as the best-AIC regression 

spline approach. 

3.7.3 Example 

We used the best-AIC regression spline approach to estimate the hazard ratio 

corresponding to the variable prothrombin time in the PBC study. The AIC 
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criterion was maximized using a quadratic regression spline with 0 knots, in 

other words, a quadratic polynomial. Figure 6 illustrates this l'stimùte. W(, 

have included the nominal 95% confidence intcrvals construded as in the 

case where a quadratic polynomial is a prio7-i choscn. This cstimalc llIuch 

resembles the estimate in figure 5 with the except.ion that il is smoot.hcl". 

3.8 Impact of model selection upon infer­
ence 

After having selected a model bascd on a criterion such as the A le aIl <l.Il­

alyst usually constructs confidence intervals. For instance wc would chose 

a regression spline model and proceed to draw the curves cOl'/'esponding to 

the 95% confidence intervals for the relative hazard bascd on the cOllsislcIlcy 

and a.symptotic norma.lity of the maximum likelihood estirnatcs. TheHe COll­

fidence intervals are constructed under the premise that the pararncter Hpace 

of the true model was known a priori, that is, known berme tbe data was 

sampled. The process of model seledion aHers the adual coverage of thesc 

confidence intervals, (Hurvich and Tsai, 1990). This idea is dCIIlollstrated by 

the fundamental variance partitionillg idcntity, 

Var(Y) = E[Var(YIX)] + Var[E(YIX)} (3.2~!) 

where X and Y are any random variables. Suppose we wish to construct. a 

confidence interval for a random var!d.ble Y but first choose a rnodcl frorn a 

family of models that compete to modcl Y. The process of model selectioll is 
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certainly suhject to randornness so let X he the particular model we choose. 

If wc had chos(~n to use a particular model x prior to model selection we 

would use the variance Var(YIX = x) to construct a confidence interval for 

Y. However, this variance undcrestimates, on average, the actual variance 

hy the arnount Var{E(YIX)}. This latter term will be small if the expected 

value of Y does not diffcr much between models or if a particular model is 

choscn at a rate close to 1 or if a subset of models aIl of which differ little with 

regard to E[YIX] arc chosen at a rate close to 1. Furthermore the variance 

Var(Y) will he weU estimated by Var(YIX) if and only if Var{E(YIX)} is 

small and the variance of Var(YIX) as a functioll of the random variable is 

small. So the covcrage calculated from model X will be reasonable if and only 

if the the modcl selection criteria choses with probability approaching 1 a set 

of modcls in the support of X for which E(YIX) and Var(YIX) vary little. 

The severity of this problt:lli of undcrestimating the true variance is addressed 

partially in section 1.6 in which we propose and perform simulations. 

3.9 A modification to the best-AIC regres­
sion spline approach 

The hest-AIC regression spline approach is liheral in its tendency to select 

modcls with time-varying hazard ratios and not the more simple proportional 

hazards mode!. Consider the comparison of a time-dependent regression 

spline modcl of dimension r to the constant relative risk model, which has 

dimension 1. Suppose the corresponding AIC are Ar and Al, The prohability 
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that the time-dependent modcl is sclcdcd is 

Pr[Al < Ar] Pr[ LPL1 -1 < LPLr - 2] 

- Pr[-2(LPLr - LPLd > 2(1' - 1)], (~L2,1 ) 

where LP LI and LP Lr are the maximized log partiallikclihoods corrcspolld­

ing to the constant and time-depcndent relative risk modcls, respectivcly. If 

the true form of the relative risk is constant, then sinee the COliS tant. rdat.ive 

risk model is nested within the regression spline Illodcl then twicc the dif­

ference of the maximized log partiallikelihoods is asymptotically distrihuted 

as a chi-square whose degrees of frecdom is the differcncc r - 1 (Cill and 

Andersen, 1980). This is a likelihood ratio test. Thercfore 

Pr[Al > Ar] = Pr[X;_t > 2(r - 1 )]. 

For instance for r = 2,3,5 and 10 the respective probabilities of rejccti/lg the 

constant relative risk model WhCIl the relative risk is actually COWitdUt. are 

0.15, 0.13, .09 and .04. 

In practise an analyst is certain to reducc the probabilily of rejed ing the 

hypothesis of either a null effect of the covariate or a proportion al hazard 

effect by appealling to hypothesis tests. Both bccause of its simple CUlicep­

tually appealling form and its popularity the analysts would be expected 

to provide strong evidence that the ph modcl is invalid. For instance upuu 

finding that say a cubic regression spline with 2 kuots has the best Ale au 

analyst would test if this modcl is (i) significantly beller than the null modd 
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and (ii) significantly better than the proportional hazards model. Sinee triv­

ially the null modcl is nesied within any space of regression splines and since 

th.: proportional hazards model is also nested in any regression spline space 

a likclihood ratio statistic can be used to test if the best-AIC model fits sig­

nificantly better than the null and constant hazard ratio models. Of course 

these tests are only nominal sinee implicitly by comparing the best-AIC to 

say the constant model one is performing multiple comparisons but this mod­

ification is a reasonable tool for reducing the frequency of type 1 error. The 

exact correction of this type 1 error is not a trivial problem. 

When this modification to the best-AIC regression spline approach is 

appHed to the variable prothrombin time we find that the quadratic polyno­

mial for the relative risk of a 1 second increase in prothrombin time fits the 

observed data significantly better than the constant model, P=.0003. 

In the simulations that follow we refer to this modification as the modified 

best-AIC regression spline approach. 

79 



Chapter 4 

Small Sarnple Behaviour of 
Best-AIC Regression Splines 

4.1 Overview 

The asymptotic properties of the modified best-AIC regressiün spline, as wc 

discussed in chapter 3 may he of limited value. For practical purposcs it is 

more relevant tü examine the hehaviour of tbis approach whcn lhere is only il. 

small number of observed failurcs. A lypical approach to ùclcrrnining srnall 

sample behaviour is to perform a simulation. 

In section 1 we describe the goals of, and the sel-up for a simulation wc 

perform. In section 2 we describe the generation of data for this simulation 

using a novel approach based on the gcneration of ranùom variales from the 

risk sets. Section 3 concerns a few other details of the simulation, for instance, 

the possihility of divergent MPLE's. Finally, in section 4, the results of the 

simulation are reported. 
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4.2 Simulation 

Through simulation we would like to examine the small sample behaviour 

of rnodified best-AIC rcgression spline estirnates with respect to (i) type 1 

error in the sense of rejccting the ph model, (ii) bias, (iii) coverage rates of 

asyrnptotically bascd nominal 95% confidence intervals, (iv) the frequency 

with which the general shape of the relative risk is captured, be it decreasing 

or increasing or U -shaped. 

We shaH gcnerate sarnples of size 25, 50 and 100 where there is assumed 

to be 33% censoring. In the simulations that follow we shall refer to the 

respective sample sizcs as nJ = 17, nI = 33 and nJ = 67, where the notation 

n J is meant to signify the number of failures. The variable whose impact upon 

the hazard function is being assessed is dichotomous taking either value with 

equal probability. Each sample will be simulated 500 times. 

For each sample we consider only smooth regression splines. For instance 

for n J = 67 we consider aU regression splines with cubic or quadratic order 

and with 0 up to 3 knots, as weB as the null, constant hazard ratio and linear 

hazard ratio models. For smaller sample sizes we consider a smaller array of 

lllodcls. For nJ = 33 we consider uull, constant, !inear, quadratic and 1-knot 

quadratic regression splines. For nJ = 17 we consider only the null, constant, 

linear and quadratic models. The choice of knot locations is automatic. It is 

dctermincd by the quantiles of the observed failure times. 

Wc have chosen 4 relative hazard functions from which we shaH generate 
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data. They represent broadly spcaking a range of possibilitics that would oe 

of interest and intepretable to a clinician who is cstablishing the predictive 

ability of sorne measurable fcature or the time of efficacy of a tl'Ctl.t.mcut. 

They are (i) a constant relative hazard, (ii) a tinear relative hazard, (iii) 

an exponentially decaying relative hazard and (Corc, 1984) (iv) a relat.ive 

hazard initially null that increases and eventually dccrcases ocfore thc end 

of follow-up. We sha11 refcr ta the latter as the Rise and Pail model. 

4.3 Data generation 

There is many ways ta gencrate data. The most popular approach for 

generating data from an arbitrary distribution F is to generate a randolll 

deviate, u, from U(O,l). Then F-l(U) is a random dcviate from 1<'. '1'0 

apply this approach ta our problem we would have ta specify the oasc­

Hne hazard function as weU as the relative hazard and calculate F(t) = 

1 - exp( - Ici -Xo(t)exp{,B(t)x }dt) . A closed Corm for the cumulative hazard 

does exist if the baseline distribution is exponential and the relative hazard 

is constant or linear but do es not exist whcn the relative hazard takes on the 

two other forms we are considering for seemingly any choice of the baselinc 

hazard function. 1'0 avoid a complex data gcneration proecss we propose an 

alternative approach based on risk sets that also simplifies the interpretion 

of the simulation. 

Assume that events, be they failures or censorings oceur at fixed points, 

t l , ... , tn. We shaH sample randomly frorn each of the corrcsponding risk 
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sets, RI, .. " Rn. To incorporate censoring into this process we randomly 

consider tirne ti a censoring timc 33% of the time. If it is a censoring time 

we randornly select a subject from the risk set assuming that each is equi­

probable. If it is not a ccnsoring time we randomly select a subject from the 

risk set and say that the subject has failed using the following method: First 

we generate a deviate from U(O, 1), u. The cumulative discrete distribution 

induced by this risk set, R" assuming that the hazard function is given by 

"'(l; x) = "\o(t)et1(t)x, is 

(4.1 ) 

defined for each j ER,. Then the subject failing at time ti is indexed by the 

j satisfying F(j-) < u <= F(j). The i + I-th risk set consists of the i-th 

risk set less the subject randomly selected out of it. 

4.4 Other details 

We shaH assume that the tï's are uniformly spaced over the unit interval. 

This facilitates summarization of the simulation results. When we report 

the results we shaH frequently refer to properties of fi(t) and Var(,â(t)) at 

the quartiles of the empirical distribution of observed failure times, where 

t = 0.25,0.50 and 0.75, respectively. 

For a dichotomous predictor in low sample sizes the probability that no 

finite MPLE exists is reasonably high. For instance for the proportional 

hazards model with k observed failures and equal numbers of subjects on 
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eaeh of the two respective lcvels of the predictor the probability of no finit.l' 

MPLE is on the or der of 2(~)k sinee no finite MPLE would exist if cvcry 

subjeet failing has the same level of the predidor. ln our simulations tht, 

quadratic polynomial has no MPLE whcn nI = 17 with frequcncy ou the 

order of 1 in 25. This would happcn if amongst the scqucnce of predictor 

values eorresponding to failing subjects, ordercd by failure tirne, thcre was 

a run with 2 or less transitions, since then a quadratic polynomial cau be 

fitted that has zero es in at or in between these transition points. Although 

it creates a bias in the simulation rcsults wc chose to ignore a particul<\.r 

estimate if it was not finite. So for instance if the quadratie polynomial 

failed it would not be considered as a choice for best mode!. 

In our report of the results of the simulation we shaH stratify the esti­

mates according to whether (i) the null model was choscn, (ii) the constant 

model was choosen and (iii) a time-dependent relative risk was chosen. This 

seemed advantageous to us from two viewpointsj (i) It seerned unuscful to 

report overall results about the point wise estimated variance and about the 

pointwise coverage when with a rcasonably high frequency the null modcl 

would be selected, in which case the corresponding nominal 100% confi­

dence interval is O. (ii) The overall results would be too much an artifact 

of the particular true models we chose. This way we separatc the cIfcct of 

power for detecting time-dependence from that of the bias and precision of 

time-dependent estimates. 

84 



4.5 Results of Simulation 

Whcn the true Corm of the relative risk is constant, P(t) = 1 for aIl t, a time­

dcpendcnt estimatc of the relative risk is chas en with frequency 11.6%, in 

samplcs with 17 events (on average, Le.; sample size is 25), 13.8% in samples 

with 33 events, (say nI = 3~), and 19% when nJ = 66 (see Table 4.1). The 

fact that cach of thcse frequencies exceeds 0.05 is ta be expected since the 

likelihood ratio test with nominal type 1 error of 0.05 compares the best 

of a set of rcgrcssion splines ta the constant relative risk model. The fact 

that this emiprical type 1 error rate is increasing with sample size may be 

because for each increase in the number of events we consider successively 

more rcgression spline models using the AIC criterion. 

This disturbing type 1 error rate when nI = 67 is in part mitigated 

by the nearly fiat shape of the 'significantly' better fitting timc-dependent 

estimators. The mean values of ,â(0.25), ,â(0.50) and ,â(0.75), respectively 

amongst these time-dependent estimators are 1.4, 1.1 and 1.0. These time­

dcpendcnt cstimators change quickly in the 'tails'. The mean values of .â(0) 

and .â(l) are 3.3 and 5.1, respectively, with very large standard deviations of 

12.4 and 11.6. This erratic behaviour toward the tails is more pronounced in 

smallcr sarnples. Figure 7 depicts the true relative risk (thick line) , the mean 

cstimatc(dashed line) and curves representing plus and minus one standard 

dcviation of thcse estimatcs(dotted line) when nJ = 33 amongst estimates 

that are tirne dependent (Le.; estimates resulting from a rejection of the null 
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TIue 
Hazard Sample Null Constant Timc 
Ratio Size Depcndcnt 

Constant 17 .470 .414 .116 
33 .196 .644 .160 
67 .016 .794 .190 

Lincar 17 .784 .066 .150 
33 .682 .048 .270 
67 .414 .020 .566 

Exponent. 17 .204 .350 .246 
33 .126 .406 .168 
67 .002 .214 .784 

Rise/Fall 17 .746 .144 .110 
33 .564 .240 .196 
67 .330 .330 .340 

Table 4.1: Frequency with which a particular model was choscn 
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and constant models). 

As wc describcd in section 4 any estimation technique that involves model 

selection will yield estimatcs of the variance that underestimate the truc 

variance. In thcse simulations, the extent of this underestimation increases 

as the sample increases for simulations in which the true relative risk is 

constant and the estimate chosen is time-dependent. For simulations in which 

TL 1 = 17 the ratio of the mean estimate of the standard deviation to the 

empirical standard deviation of the estimates is 0.88, 0.96 and 0.83 at the 

25-th, 50-th and 75-th perccntiles along the time axis. Table 4.2 reports the 

coverage rates at cach quartile for cach samplc size. For simulations in which 

there is 33 events on average the corresponding ratios are 0.58, 0.61 and 

0.61. The corresponding ratios for the nI =67 are 0.6, 0.625 and 0.45. Not 

surprisingly the coverage rates of the nominal pointwise 95% c.i.s of these 

relative risk estimates that are time-dependent also decrease as sample size 

increascs. For nI = 17 they range from 0.88 ta 0.98 over the time axis. 

For n! = 33 they range from 0.73 ta 0.88 over the time axis. For n! = 67 

they range from 0.67 ta 0.83 over the time axis. On the other hand amongst 

rel<ltive risk estimates that are constant the coverage remains intact at about 

0.97 for aH three event sizes. 

When the truc log relative risk is linear there is substantial inflation 

amongst the estimates that are time-dependent. Figure 8 depicts for nI = 33 

the true log relative risk (thick line), the mean estimate (dashed line) and 

symcUric plus or minus one standard deviation curves for these estimates 
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True Pcrcntile 
Hazard Sample 0.25 0.50 0.75 
Ratio Size 

Constant 17 .940 .931 .921 
33 .837 .837 .850 
67 .751 .832 .703 

Linear 17 .987 .933 .973 
33 .874 .822 .963 
67 .919 .901 .922 

Exponent. 17 .000 .992 .976 
33 .991 .944 .927 
67 .929 .903 .926 

Rise/Fall 17 .964 .945 .709 
33 .898 .939 .888 
67 .853 .871 .876 

Table 4.2: Coverage rate of nominal 95% confidence interval at quartiles 

(dotted Hnes). The line of unit relative risk is also indicated. For n! = 
33 there is also underestimation of the variance. The ratios of the rncan 

estimated standard deviation to the standard deviation of the estirnates arc 

.89, .72 and .87, respectively at tite quartiles t = 0.25, 0.50 and 0.7.1. The 

coverage rate of the nominal 95% c.i. ranges from 0.82 to 0.96 over the time 

axis. Table 4.2 reports the coverage rates at the quartiles. 

In practise an analyst would likely intcrpret the relative risk as being 
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significantly different from unit y wh en the nominal 95% C.l. interval for 

(3(t) docs not contain O. Figure 9 depicts the frequencies with which (i) the 

lowcr limit of the 95% c.i. exceeded 0 (solid line) and (ii) the upper limit of 

the 95% c.i. is less than 0 (dashed line), when the true log-relative risk is 

lincar amongst those simulations where a time-dependent model is chosen. 

For instance the empirical estimate of the probability with which an analyst 

would conclude that (3(0.25) exceeds 0 is nearly 50%. With frequency of 

approximately 40% the analyst would conclu,;,' that (3(0.75) is less th an O. 

This shows limitcd power but the "significant" conclusions tend ta be correct. 

The actual estimates at each point in time of the relative risk are not, 

in practise, as important as the generallocation (increased risk vs decreased 

risk) and the shape of the log-relative risk function. For each simulation 

in which a time-dependent model is chosen we have identified whether the 

rcIative risk is (i) generally increasing, (ii) increasing then decreasing (iii) 

dccrcasing then increasing and (iv) generally decreasing, based on the esti­

mates of the relative risk at t = 0.25, 0.50 and 0.75. When the true log 

relative risk is linear (and decreasing) 81% (n! = 17), 87% (n! = 33) and 

76% (n! = 67) of the time-dependent estimates are generally decreasing (see 

Table 4.3). The fact that for nI = 67 the correct shape is identified with 

frequcncy of only 76% is troubling. 

lt is Hot surprising that the low-dimensional regression splines had more 

difficulty estimating the exponentially decaying version than the linear ver­

sion of the log-relative risk. For instance when n! = 17 a time-dependent 
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True Shape 
Hazard Sample Incrcasing Incrcasing Dccrcasing Uecrcasillg 
Ratio Size Dccreasing Incrcasing 

Constant 17 .45 .09 .28 .19 
33 .25 .16 .31 .28 
67 .26 .22 .23 .28 

Linear 17 .00 .05 .13 .81 
33 .00 .08 .05 .87 
67 .01 .l2 .11 .76 

Exponent. 17 .02 .02 .26 .71 
33 .15 .51 .11 .22 
67 .06 .71 .05 .18 

Rise/Fall 17 .49 .29 .02 .20 
33 .25 .16 .31 .28 
67 .26 .22 .23 .29 

Table 4.3: Frequency with which a particular shape of mode) was choscn 
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cstimate could eithcr he linear or quadratic. In this case the mean estimate of 

f3(t) is a function that is dccrcasing up to t = 0.7 afterwhich it is increasing. 

The standard deviation of these estimates is large. The true value of ,8(0.50) 

is 0.67 whereas the standard deviation of the linear and quadratic estimates 

is 1.5. For n f = 17 the esti mates of the variance of (3( t) are conservative. The 

mcan estimatcd standard deviation typically doubled the empirical estimate 

of the standard deviation. The mean estimate of the standard deviation of 

(3(0.5) was 8.8. 

Figure 10 dcpicts the exponentially decaying log relative risk (thick line) 

with corrcsponding mcan estimates (dashcd line) and symettric curves repre­

scnting plus and minus one standard deviation of the estimates (dotted line) 

whcn nI = 33, amongst those simulations where a time-dependent model was 

dlOscn over the nuU or constant models. The true value and mean estimates 

are better corrclated than for n f = 17 but there is systematic hias towards 

over-estimation of rcIative risks. There is systematic inflation. Rere the 

variance is slightly undcr-estimated. The ratios of the empirically estimated 

standard deviation to the me an estimated standard deviation at the 25-th, 

50-th and 75-th percentiles are 0.81, 0.79 and 0.87 respectively. The corre­

sponding coverage ratcs are 0.99, 0.94 and 0.93 (see Table 4.2). Figure 11 

depicts (i) the frequency with which the lower limit of the 95% c.i. exceeded 

o (solid line) and (ii) the frequency with which the upper limit deceeded 0 

(dashcd line). An analyst using the nominal pointwise 95% c.i. would con­

cIude that the covariatc hd.d a short-term predictive ability roughly 75% of 
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the time. 

The corresponding rcsults for the cxpollcnlially dccaying log-rdativt' risk 

when n = 67 are similar. ln gcncral, whcn n = 67, estimates arc IC8~ hi'\"<;l'd 

but the coverage averages only 0.90 bctwccn t = 0.25 and 0.75. 

The general decreasiug aspect of the exponentially dccaying log-relat.ive 

risk is captured with frcquency 71 %(nf = 17), 74%(nf = 33), and 74%(111 = 

67) amongst estimatcs that arc tirnc-ùcpenùcnt (sec Table 4.:l). 

Figure 12 depicts the rise and falllog relative risk (thick line) with cur­

responding mean estimates (dashed line) and symmetric plus alld millus OIlC 

standard deviation of the estimates (dotted line) when nJ = :13, amongsl tJw 

estimates that are time-dcpendcnt. The cstimates capture the gcncral fol'Ju 

of the rise and faU except at the tails and exccpt that they arc suhslil.llti.Llly 

inflated. There is a second rise in thesc estimates toward the end of follow-up 

but the corresponding cstirnales of the standard deviation arc large HO thal 

the analyst would rarely be mislead. The mean estirnated standard deviatioll 

compares favourably to the standard deviation of the estimates. The ralio 

of the former to the latter at the 25-th, 50-th and 75-th pcrccntiles is 0.79, 

1.01 and 1.00. betwcen t = 0.25 and 0.75 the covcrage average:; 0.91 (~cc 

Table 4.3). Figure 13 dcpicts (i) the frequency with which the lowcr limit 

of the 95% c.i. exceedcd 0 (so1id line) and (ii) the frcqucncy witl! which 

the upper limit deceeded a (dashed line), amongst thosc simulatiolls where 

the tirne-dependent model was ChOSCH. This figure suggcsts thal an analyst 

would conclude that the prcdidor had a rise and faU impact Oll the relative 
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risk rnidway through fûllüw-up about 75% of the tillll' Tite l'st.ill\<lt.t· of t Ill' 

relative risk was gencr,dly illcrcasillg, then decrc,tsillg wlth ftt'qUt'lll'y ;) 1 % 

For the larger salllple size, Hf = 33, a geller<Llly illtH'M,lIIg, tlll'lI dt,t"lt'tlsinp; 

reprcscntcd 71 % of the tillle-dependcllt estilllates. lll)wl'Vt'I, t.ht' COVt'r.\gt' W.IS 

worse, averat!,ing 0.85 betwccll t = 0.25 and 0.75 (!>l'e T,tble Ln. This WM; 

due to underestirnation of the standard deviatioll. Bdwc('lIl == 0 '25 d.lld 0.75 

the ratio of the cmpirical cstirnate of ~(t) 1.0 the IlIC<111 v:tlt!\~ of ft al'(jJ( l)) 

was 0.8. 

In surnrnary the simulations yicld a rc1thcr ('OIlSll;t('ut picturc, across t1l<' 

variations in the shape of the true hazard ratie and salllpk' siz('s. Somc hia.s 

in the estirnatcs of the hazard ratio is undel'e!>tilIl,lble givclI t.hat t.11(' })(·st.­

AIC regressions splines were orteIl of low dllllen~ioll. This can })(' expl(lilU'd 

ta sorne extent by the pwbleIIl of insuflicicnt. power tn <ideel. more (olllpl('x 

shapes. More importantly, despil.c this bias, the hc~t-AIC r('gn'ssloll splilH's 

often captured the gcnel'al sbdpe of the h<Lz.ud l',üio, he il. iucr:.: .• sing, <le­

creasing or U-shapcd. We bclieve these l'esults justify our applOd.( il iLS il. 

useful exploratory 1.001 l'ven in sIIlall sarnpks. 

As expected the simulc1tiolls cledrly deillollstrdted tltat mode! selection 

has a large effecl on the rate of rejedillg the wn~t.-Ult h(LJ',Mcl rd.ti() alld 011 t1w 

validity of MPLE based confidellce iutervals. Inaeasing s(lIIlple si~e, wlllie 

simultaneously incrcasing Hw al'rdy of ('dfldiddte models, did Hot dlllllfld.te 

these probleIns and even aggrdvateu thern. Furthcr rese(1fch is lIeu~!>!>i1ry tu 

develop pragmdtic strategies to accuunt for the impact of mode! ~e1ec:tion (HI 



M PLl~ bdsed inferencc. 
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Conclusion 

Cox's proportional hazaros wood is conccnlually appeallillg dut' 1,0 it.s silll 

plicity. IIowcvcr this moocl is not alwdys appropiate alld IIlcty Illish'ad t.ll<' 

clinical re'Jcarchcrs who elllploy il,. It may prevellt them from <\('\,('( t.illg illl­

portant cffccts of indcpenoent variables that are liIlliteo to il porlioll of th(' 

follow-up pcrioo such as the short-term. Several test.s cali he wwd to t('st 

the appropiatcness of the COIlstdnt hazard ratio assumption but. V('ry lit.t.l(' 

rcscarch has been conoucteo into the rcpreseutatioll of the hcu~ard r,d,io as il 

function of tirne WhCIl thc dssurnption of a COIlslcl.ut hazdl d rdt io is rejet I.cd. 

In this thesis d. regression spline approach has Lecu proprosed for estllrlil.tlllg 

the variable cffects of an illdep(~udellt variable on the hdzard fUllct.ion over 

time. 

Regression splines can he ernployed wiHI rclativcly low cornputat.iollal 

burden 1,0 estimate the hazard ratio as a fUllction of time. Akdike's Infor­

mation criterion cau be used to guide mode! selection. The combiuil.tioll of 

these two techniques yiclds a cOIlvenient 1,001 for cxploring the tilllc-frallH! 

within ",~,ich variables bdve predictive aLility. 

We have examined the srnctll sarnple propcrtics of the bel>t-AIC regressioll 
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spline appnJdcll. As we expected this approach is liberal. Further research is 

rcquircd to detcrmiIle exact hypothe~is tests of, for instance, the proportional 

ha~d.rds mode! ver~u~ the alternative of a best-AIC regression spline hazard 

r(ltio e:,Limatc. A:, wc also cxpected the 95% confidence intcrvals based Gn 

large sarnplc MPLE thcory have low coverage even whell the number of ob­

sel veu failurcs is dS large as 67. Further research is required to determine 

methods wlth low cornputational cost for creating more precise confidence 

lfltcrvdls. 

Thcrc is a Humber of gcneralizations of our work. First, in our model we 

have assumcd t.hat the effcd of an indepcndcnt variable is log-linear. Our 

rnethod could be incorporated with the methods of Sleeper and Harring­

tOIl(1990), and Durrleman and Simon (1988), who modcl the function farm 

of the impad of the iudepcndcnt vc.Lriablc using rcgression splines and the 

AIC. lutcrc:,tiug idcntifiability problems may arise when both the functional 

fOl'llls for the impact of the val idble aud for the way the hazard ratio changes 

over time compcte to expldin survival. A second abvious generalizatian of 

our work is to 1lI0dd the hdZdl"d rdtio using more than one variable. Other 

possible directious arc to compure the regression spline dpproach to other 

Iloll-paralllctric regrcssion techlliques, such as smoothing splines, and kernel 

slIloothing. 
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Figure 1. Comparison of survival via Kaplan-Meier estlnlates 
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• Figure 2. Log(-log(S(t)) curves to assess proportionality of hazards 
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• Figure 3. Step function estimate of the hazard ratio 
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Figure 4. Partial residuals 

3T 

1 

• 

• • • • • 
2 j 

•• • • • 
•• ... 

• , .. 
0 

•• 

• 
-1 -

-2 -

• . - ~ .. -..... • 
• , 

• •• -. '.- ..... ,.. .~ • •• - .. 
.. \0 • 

• 
• 

• 
• 

• • • 
• •• • • • • • .... •• , • • 

• 
• 

• 
• • • • • • • .. • 

• .- • • • • • 
• , 
• 

1 
1 
1 

1 
1 

1 

1 

1 

o. o.J 
•• ·1 • 
• 

-3+---------~----------_r----------r_--------~----------~ 

o 2 4 6 8 10 
TIME (YEARS) 



• Figure 5. Cubic regression spline with 3 knots 
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• Figure 6. AIC-Best regression spline 
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Figure 7 
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Figure 8 
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Figure 10 
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• Figure 11 
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• Figure 12 
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• Figure 13 
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