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Abstract

Linvestigate the frec field realization (FFR) of various extended conformal
field theories (ECFT’s). Mote specifically, T first present a systematic method
that allows the construction of the exponential type screening, currents in terms
of free ficlds in the case of the ECFT’s with Kac-Moody algebras. This method is
explicitly illustrated through the su(n ) and sp(4)x Kac-Moody algebras Then,
I use the FFR to unravel the embedding stiucture of the Verma modules of the
ECFT with a T3 algebra. This embedding structure is expressed thiough a
set of intertwining diagrams, which in turn is used to compute the irteducible
characters of the 113 algebra. Next, I construct two FFR's for the ECFT with
the su{n); parafermion algebra. Fin=ly, T sketch the FER of the coset maodel
su(n)p x su(n)¢/su(n)ise, which is given in terms of the fields realizing the

su(n)y parafermion model and an extra free field with a backgronnd charge.
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Résumé

J'examine la représentation par des champs libres (RCL) de plusieurs
théories de champs conformes généralisées (TCCG). Plus spécifiquement, je
présente une méthode systématique permettant la construction des courants
d’éeran qui sont exprimés comme des fonctions exponenticlles de champs libres,
dans le cas des TCCG basées sur les algebres de Kac-Moody. Cette méthode est
explicitement illustiée par les algebies de Kac-Moody su(n)i et sp(4). Ensuite,
Jutilise ln RCL afin de déterminet la structure d'inclusion des modules de Verma
de In TCCG basée sur algebie 3. Cette stiucture d’inclusion est représentée
par des diagrammes qui me permettent de caleuler les caracteres irréductibles
de Palgobre 1. De plus, je développe deux RCL dans le cas de la TCCG avec
Palgébie su(n),-parafermionique. Finalement, je considere bricvement la RCL
du modele quotient su(n)g x su(n)e/su(n)a4e. Celle-ci est exprimée en fonction
des champs représentant le modéle su(n)i-parafermionique et un champs libre

possédant une charge de fond.
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Chapter 1

Introduction

In the 19605, the number of known stiongly interacting, particles (hadions)
mereased considerably, with some of them carrying large spins. The squared
mass m? of the lightest particle with spin J approximately follows a nice pat-
tern, known as a Regge trajectory, m? = J/a’, whete o’ ~ 1(GeV) ™2 is ealled
the Regge slope. The high-cnergy contiibution of these particles was deseribed
collectively by this Regge trajectory thiough Regge-pole thieory [1]. At low ener-
gics, once expects an additional contiibution from the s-chunnel resonances, but
this expectation was contiadicted by the experiment of Bloom and Gilinan 2],
who found that the contuibution of the s-channel tesonanees alone is on average
cqnal to the #-channel Regge-pole amplitude, and as suclio it is not an additional
conttibution. This gave rise to the “duality iypothesis™, that is, the equivalence
of the s and ¢ channels in describing the hadionice physies. Meanwhile, in 1968,
Veneziano postulated an ad Loe formula for the seatteting amplitude which is
consistent with the stiingent requirement of the duality hypothesis [3]. Then
Nambu and Goto realized that this formula ean be recovered throngh a elassieal
relativistic bosonic stiing theory [4]. This tuined ont to be of far-reaching con-
sequence in that it overthiew an age-old idea of the Greeks that all elementay
particles are pomt-like 1ather than string-ike.  Neven, Schwiarz and Ramond
[5] quickly generalized the bosonie stiing theory to include fermions, whieh led
to the superstring theory. After that, Goldstone, Goddard, Rebbi and Thorn
worked out the first quantization of the stiing theory {G]. However, it wis soon
realized that the theory suffers from two major diawbacks. First, it 1avolves a

massless spin-two particle which is not present in the hadionie speetrum. See-
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oud, the thearny is not consistent in 4 space-timne dimensions but rather in the
critical dimensions 26 aned 10 for the hosonic string and superstiing respectively.
Nurthermote, the great suecess of QCD 1 describing the hadronic interactions
dashed the hope for the string theory as being the potentially fundamental the-

oty for the hadirons and thus interest in it waned.

Nonetheless, string theory was revived in 1974 when Scherk aud Schwarz
suggested that the appearance of the spin-two particle in its spectium is rather
a blessing in disgnise [7]. Indeed, they identified this spin-two particle with the
graviton and thns they proposed stiing theory as a potential candidate to de-
scribe all the interactions including gravity if the energy scale is pushed farther
to the Planck energy scale (10'? GeV) Interest in string theory increased fur-
ther in 1981 when Green and Schiwiaiz realized that certain superstiing theoties
are anomaly-fice [8] (i.e, self-consistent at the quantum level). However, even
the most promising stiing theory, namely the heterotic stiing [9]. which requires
ten-dimensional space-time, failed to fit the most obvious experimental data that
our unnerse exists in four-dimensional space-time.  The six remaining dimen-
sions pose a prioti a setious problem  Nevertheless in the eaily days of string
theory this problem was by passed by requiring. in the context of the old theory
of Waluza-Klein [10], these extra dimensions to be compactified, that is, by let-
ting them live on a tiny compact manifold with a size of the order the Planck
length. This would account for the experimmental failuie to sce these hidden
dimensions. A modern approach to this problem is provided in the context of
conformal field theory (CE'I) [11]. In this case, four-dimensional string theories
are ditectly constructed without any 1cfeience whatsoever to the compactified
extra dimensions. The previous notion of the compactified dimensions is now

replaced by the concept of an internal two-dimensional CEFT, from which the
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particle spectium and the coupling constants can be fully denved. CET pro-
vides then a power ful framework for making contact with phenomenology in the
context of string theory. In fact CFT’s describe at the classical level different
possible solutions (vacua) of the same sccond-quantized string theory, However,
it is widely believed that dynamical effeets such as dynamical symmetiy break-
ing, which ave considerably difficult to presently calceulate, would single out a
unique vacaum for the quantum stiing theory., A large number of CEFT's have

been investigated in the literature.

Much interest has also been devoted to the study of CFT's in the context
of the critical phenomena of two-dimensional statistical systeins at second-order
phase transitions {12]. Indeed, it has been realized that some statistical spin sys-
tems, consisting of spin variables located at the sites of a two-dimensional lattic o
and interacting with theit near neighbors, can effectively be deseribed by o CFT
at the critical point. The reason is that at the critical point (temperature) these
systems may undergo a sccond order phase transition, whicli is chamacterized
by the divergence of the corrclation length € compared to the lattice spacing «
(a/& — 0). Therefore the behavior of these systems is cffectively seale-invariant
and may be described in this continuum limnit by a field theory. Moreover, it
was realized by Polyakov [13] that at the ciitical point this behavior is not only
scale-invariant but conformally invariaut, that is, invariant under local dilita-
tion, rotation and translation transformations, which preserve the local angles

(sce Figures 1 and 2 for illustration).

In two dimensions, unlike any other space-time dimension, conformal in-
variance has far-rcaching consequences. In particular, it provides in some cases
sufficient information to solve the theoty completely. This is mainly hecause con-

formal invariance in two dimensions is an infinite-dimeunsional symmetry (the

9
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gronp of analytic functions on the complex plane) giving rise to an infinite-
dimensional algebra called the Virasoro algebra. The representations of the
Virasoro algebra, which are well studicd in mathematics, turn out to determine
the critical exponcuts. These critical exponents specify the power law behav-
iors of the thermodynamic functions (free encigy, susceptibility, ...) and are
experimentally measurable. The fact that these systems are largely related to
the representation theory of the Virasoro algebra rather than to the details of
the systems underlines the concept of universality classes in condensed matter
physics. In fact, each CFT is characterized by a positive c-number called the
Virasoro central charge ¢, which in turn, specifies the universality classes of the
systems. For example the following systems are described by CFT’s that are
specified respectively by the following central charges:

Ising modcl: ¢ = %,

Thicritical Ising model: ¢ = 173,

-

4

3-state Potts model: ¢ = %,

[0

-1
.

Tricritical 3-state Potts modecl: ¢ =

We also mention that conformal symmetry in two dimensions is so strong
that it can almost fix the dynamics in the sense that it allows an exact compu-
tation of the coriclation functions and the critical exponents for some s~ecific
statistical systems. Note that in the above examples the central charge c is al-
ways smaller than 1. In fact, the two cascs 0 < ¢ < 1 and ¢ > 1 are significantly
different. In the former case, the CFT can be exactly soluble because in this case
only a finite number of “fundamental” fields exists. In the latter case however,
the CFT may not be exactly soluble because the number of fundamental fields
may be infinite. For ¢ > 1 an intense effort has been devoted to extended CFT’s

that have extensions of the Virasoro algebra (extended symmetries), which in
g
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turn allow the exact solution of the theory by picking only a finite nuber of
fundamental fields. CFT"s with Kac-Moody [14], IV, [15]. parafermion [16], and

superconformal [17] algebras are some examples of the most extensively studied

extended CFT’s.

In summary, CFT’s arc a powerful tool in classifying, on the one hand, the
universality classes of two-dimensional critical phenomena in statistical mechan-
ics and, on the other hand, classical string vacua. CFT's are also intimately
connccted to other topics such as non-conformal cxactly soluble (integrable)

modcls and combinatorial mathematics.

In this thesis, we investigate various extended CEFT’s, which are based on
some local conserved cuirents. Most importantly these cunients can he rep-
resented in terms of fice ficlds. Our main tool in this thesis is this free field
realization (18], which turns out to be far moie convenient than the abstract
algebraic method. In particular, it substantially facilitates the computation of
scveral relevant quantities like the correlation functions and it allows the ex-
plicit construction of the spectrum, that is, it makes more apparent the study
of the representation theory of the conformal group and its extensions. In the
sccond chapter, we give a concise introduction to two-dimnensional CET. This is
necessary in order to make the subsequent chapters more apparent. We review
the terminology and the basic concepts of CFT, following the scminal paper of
Belavin, Polyakov and Zamolodchikov (BPZ) [19]. We begin with an introdue-
tion to the conformal group in any spacc-time dimension D and then we cousider
the special case D = 2, which is the most interesting. The 10le of the energy-
momentum tensor in gencrating the conformal transforinations and its 1elation
to the infinite-dimensional Virasoro algebra is highlighted. We then discuss the

notion of primary ficlds, ficlds that have nice transformations under the confor-
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mal group, as well as the notion of the operator product expansion (OPE) that
unravels the shiort distance behavior of the local fields and currents. We intro-
dnce the highest weight representations, Verma modules, secondary fields, null
ficlds, conformal famnilics, and the completely degenerate representations. Next,
we 1eview the minimal models. After that, we discuss the free ficld realization
of the minimal models and the concept of screening currents [18] that will play
a crucial role in later chapters. The main virtue of these screcning currents
is that they allow the derivation of integral representations for the correlation
functions, which are often expressed in terms of hypergeometric functions. This
method proves to be more convenient than the complicated computation of the
correlation functions through the Ward identities, which translate into differ-
ential equations that are hard to solve directly. Then in the context of the
minimal models, we illustrate how the characters, the fusion rules and the corre-
lation functions can be determined thiough the fiee field realization. Finally, we
discuss the extended CFT’s and rational CFT’s (RCFT’s) such as CFT’s with
Kac-Moody, TV, and parafermion algebras, which will be treated in more detail

in the subsequent chapters.

In the third chapter, we consider extended CFT'’s based on Kac-Moody cur-
rent algebras. These algebras appear in two- dimensional Wess-Zumino-Witten
models and play a cential 10le because most other CFT’s can be expressed
as coscts of them. They arc gencrated from a sct of currents gencralizing the
cnergy-momentum tensor in the case of the Virasoro algebra. The wmain topic of
this chapter is centered on a full study of the screening currents in CFT’s with
Kac-Moody current algebras. In particular, we focus on the screening currents
of the pure exponcential type. We present a systematic method that allows their

constiuction in terms of free scalar ficlds for any Kac-Moody current algebra

12




~ e

~ gy e

s W T T TR SRS £

CRRIOATIT Y BV ¢ A SR R ST SO W T R

2

[14]. This chapter is organized as follows, We start with a concise introduction
of CFT with Kac-Moody algebras. Then we present a background review of
the free field realization of Kac-Moody current algebras, the so-called Wakimoto
realization. More specifically, we display the Wakimoto 1ealizations of both the
su(n)r and sp(4)r Nac-Moody algebras, which are the only ones so far available
in the literatwie. After that, we proceed by working out the technical details
of this method. Next, we explicitly apply this procedure to both su(n)i and
sp(4)k. In particular, we solve some discrepancies present in the literatuie and
derive for the first time the correct form of the screening cunients, which are ex-
pressed as infinite sums of pure exponential terins. The analysis is substantially
simplified through the lattice formulation of both the Kac-Moody and seteening

currents. We conclude this chapter with a few remarks and a note on further

possible investigation about the screening currents.

In the fourth chapter, we consider another extended CEFT, namely the one
based on a 13 algebra. Here, we mainly present a full desciiption of the em-
bedding structure of the Verma modules of the TV; algebra. To this end, we use
the free ficld realization of the 13 RCFT as our main tool. As an application of
this embedding structure we compute the irreducible characters of this algebra.
We begin with a Diief review of the V3 algebra in the minimal unitary series. In
particular, the symimetrics and the degeneracy property of the representations of
this algebra arc highlighted. We then discuss the free field realization of this al-
gebra in terms of a two-dimensional free field. This free ficld is used to constinet
the screening currents, which in turn allow the explicit constraction of the null
states in the completel, degenerate Verma modules of Wj. Next, we deseribe the
cmbedding structure of the Verma submodules generated from thesc mll states

in tcrms of the screening charges. This stiucture is represented throngh a set of
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intertwining diagrams. In particular, we show how these diagrams can be used
to derive the irteducible character of a completely degeneirate Verma module in
terms of the characters of its Verma submodules. The formula for the character

thus obtained fully agrees with the one previously conjectured in the literature.

In the fifth chapter, we investigate another extended CFT, namely the
su(n)y, parafermion theory. More precisely, we propose a realization of this
theory in terms of fiee fields, that is, the analog of the Wakimoto realization in
the case of a Kac-Moody algebra. As a matter of fact, we start from the Waki-
moto realization of su(n); from which we extract two free field realizations for
the assoctated su(n); parafermion theory. Each of these two realizations has its
special properties. The first one involves orthonormal fields making it easier to
obtain the ficld realization of the parafermion currents but harder to get that of
tlie primary ficlds. The sccond one on the other hand leads to a simple field re-
alization of the primary fields but requires linearly dependent constrained fields,
in terms of which the parafermion currents are harder to realize. While working
out the details of our two free ficld realizations we unravel their connections to
the related work recently proposed in the literature. Finally, we briefly address
the free field realization of the coset model su(n)i x su(n)e/su(n)i4e in terms of
ficlds realizing the su(n), parafermion model. The organization of this chapter
is as follows. We begin with a brief introduction to the simplest parafermion the-
ory and that is the Z; model, which is also called the su(2); parafermion model
because it is isomorphic to the coset model su(2)i/u(1)x. Then we present the
details of our first free field realization of the su(n), parafermion model in terms
of orthonormal free fields. Strictly speaking, we express the parafermion cur-
rents associated with the negative root and positive simple root su(n)x currents.

For the sake of clarity, all the su(3)x parafermion currer‘s and the screening

14
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currents arc explicitly displayed. Then, in oider to derive a simple free field
realization for the primary ficlds of the su(n)x parafermion model, we present
our sccond approach involving constrained non-orthonormal ticlds  Finally, we
consider the coset model su(n)y x su(n)e¢/su(n)iye. We show that this model
can be represented in terms of the free fields realizing the su(n)g parafermion
model and a free field with a background charge. The free field realization of

“
the screening currents of this coset model is also addressed.

Hercafter, we summarize the original work achieved in this thesis, First, we
derive a systematic method that allows the construction of the exponential type
screening currents in terms of free scalar fields in the case of extended CFT's
with Kac-Moody algebras [20]. We use a lattice approach that cousiderably
simplifies the detivation of these screening currents. Though our procedure is
completely genceral, we apply it to both the su(n)y and sp(1)y Kae-Moody alge-
bras whosc explicit Wakimoto realizations ate worked out in the literature. In
particular, our method allows us to derive for the first timne the correct expression
for those screcuing currents that are given as infinite sums of terms, and therehy
resolve some discrepancies found in the literature. Finally, we make some 1e-
maziks on the possible applications of these screening currents. Second, we work
out the embedding structure of the Verma modules of the extended CFT with
a W3 algebra thiough the free ficld realization of this theory [21]. More specifi-
cally, we explicitly construct the null states in the completely degenerate Verma
modules of this algebra using the screening currents. We then represent the
embedding structurce of the Verma submodules generaled from these null states
through a set of intertwining diagrams, which in turn are used to dervive the
irreducible characters of the W3 algebra. The result thus obtained confirms the

one previously conjectured in the literature. Finally, we investigate the su(n)g
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parafermion theory [22]. We basically construct two free field recalizations for
this model. The first onc is suitable for the realization of the parafermion cur-
rents in terms of o1 thonormal fields, whercas the sccond one accommodates the
realization of the parafermion primary ficlds in terms of lincarly dependent con-
strained fields. The su(3)y parafermion case is explicitly worked out including
the free field realization of its screening currents. Then we address the free field
realization of the coset model su(n)y x su(n)e/su(n)rt+e. It turns out that it can
casily be represented in terms of the fields realizing the su(n), parafermion and

a free boson with background charge.
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Chapter 2

Conformal field theory in two dimensions

This chapter provides a concise technical introduction to conformal field
thicory (CFT). However, it is by no means complete or exhanstive since the
subject of CFT is extremely rich and rapidly developing. Hete, we focus mainly
on those topics of CFT that will make the next chapters of this thesis more
apparent, especially the free field realization. Mote technieal details ean be

found in the various review articles {12,19,23,24,25,26,27].

2.1 The conformal group

The conformal group is by definition the group of transformations that
preserve the local angles. Let g, be the metric of the D-dimensional Minkowski
space-time RP with signature (p, ¢). Let « and v be two vectors in RP with the
scalar product n-v = g,,u'v”. The angle between 1 and v is preserved under a
conformal transformation if the scalar product u - v/(u20?)'/?% is also preserved
under this transformation. This means that the metric must be invariant under

the conformal group up to a scale change
Iy — fl:w = Q&)gpp- (2.1)

The gencrators of the conformal group can be read off through the infinitesimal

transformation 2 — z* + €*(x). In this case (2.1) becomes

o
o
S

2
6“611 + aué,, = 5(0 . 6){],“,, (

with Q(z) =1+ 30 €(z). For D > 2, the solutions of (2.2) correspond to the

following infinitesimmal conformal transformations:
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i) translations: €'(r) = a”,
b) rotations: €'(2) =whe”, w € so(p,q),
¢) scale transformations: €”(x) = Az*,

d) special conformal transformations: €”(x) = bta? — 2(b- z)z*.

Note that the algebra gencrated by the above transformations is locally
isomorphic to the Lic algebra so(p + 1,4+ 1). When D = 2, the situation
is quite different. In this case, the conformal algebra is infinite-dimensional.

Anticipating the conformal invairiance and after a Wick rotation to the Euclidean

1

0 ?) , in which case

space, one cau map the metric g, to the flat one 6, = (

(2.2) translates into
diey = Ozez,
(2.3)
01 €y = —0261.

The relations (2.3) are nothing but the Cauchy-Riemann equations. It is then
natural to introduce the comnplex coordinates z = 3y — izg and zZ = 1 + 129,

and define €(=,Z) = €1 + i€z, €(2,Z) = €; — iez. Then the relations (2.3) become
0:€(2,%) = O:¢(2,2) = 0. (24)

This means that €(z) and &) are respectively analytic and antianalytic func-
tions. Therefore, two-dimensional conformal transformations coincide with the
analytic and antianalytic transformations

o 2 = (),

z— 2 = f(2).

From now we consider only the analytic sector keeping in mind that the same

(2.5)

treatment is valid in the antianalytic sector. The generators of the infinitesimal
analytic transformation 6§z = €(z) can be read off from the Laurent expansion
of €(z)
oo
e(z) = - Z € z" 1, (2.6)

n=—0o0

18
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It is then clear that the generators of the conformal group coincide with the

differential operators
(p=—:z"119., n=0.41,42,. ., (2.7)

which satisfy the following commutation relations:

[()ln(‘m] = (n - 771)(’,,4.,,,. (28)

The generators C,, satisfy the same algebra as (2.8) and commute with the gener-
ators {,. The algebra (2.8) makes it apparent that the conformal algebia in two
dimensions is infinite-dimensional. This turns out to be of broad consequence in
that in some cases this symmetry is almost sufficient to solve the theory, that is,
it allows in principle the exact computation of all the correlation functions. Note
that from (2.8) the generators (—y, (g and €y form a subalgebra (of the confor-
mal algebra) that is isomorphic to SL(2,C"). The finite form of these SL(2, ()

transformations is
, az+b
o = ——
cx +d

(2.9)

where ¢,b.c,d € C and ad — be = 1. This SL(2,C) group is well known as the

projective conformal group.
2.2 The energy-momentum tensor

The energy-momentuin tensor (EMT) plays a crucial role in CFT [19]. To
sce this, let S be the action of the CFT. Then the EMT T, is defined as

1 s
\/‘;]— 6!//11/ !

where g is the absolute value of the determinant of ¢,,. The translational

Ty = (2.10)

invariance implies that T}, is conserved, i.c.,

8, T" = 0. (2.11)

19




Morcover, invariance under the scale transformation 6¢"* = éAg#¥ requires T,

to be traceless, Indeed,

1 65 _ 1 65 (Sglll’ _ o . .
—-7-1;5 - —_\7}7_60”1/ 6A - Tl"’g — Tu, b 0' (2.12)

In two-dimensional space-time, the equation (2.12) .. .ys a significant role be-
cause if we use the complex coordinates z and Z, then it translates into the
following form:

Tz = TE; = 0- (2,13)

*"»

Combining (2.13) with (2.11), which reads in complex coordinates as
;ng = 0, (214)

we sce that the only two nonvanishing components of the EMT are respectively
the analytic .. = 7(z) and antianalytic T:; = T(Z) functions on the complex
planc. Hereafter, we consider CFT’s only in two-dimensional space-time where
tlie above property holds. For an infinitesimal conformal transformation z# —
a!" + e"(2) the conserved current is T)'€”. In complex coordinates the conserved

charges associated with T/e” are

Qo) = %r?fd:e(:)T(z). (2.15)

Let ¢(z) be a local field in the CFT. Under the conformal transformation z —

z + €(z), we expect Q(,y to generate the transformation of the field ¢(z) as

bed(w) = [Qe, $(w)). (2.16)

The above comumutator is computed as usual at equal time, which in “radial
quantization” is cquivalent to a commutator computed at equal radius. To see

this, let us consider a two-dinmensional Minkowski space-time with time and
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space coordinates T and o, and which has the topology of a evlinder (ie., o
lives on a circle). This cylinder can be paramettized by the complex coordinates
{=7+1i0 and £ = 7 —io. If we anticipate that the field theory has complete

symmetry under the conformal group, we can then conformally map the eylinder

to the complex plane by defining the coordinates of the plane to be

s = Cf — cr+m,
i (2.17)
z=cl =",
Notice tlat the origin z = 0 corresponds to the infinite past (7 = —o0) and the

point at infinity 2z = 0o corresponds to the infinite future (v = 4 20). It is clear
from (2.17) that on the planc different times correspond to concenttie cireles
of different radii. Morcover. the time ordenng that is wnderstood in (2.16)
corresponds to approaching the circle at time 7 with cireles of shghtly bigper
and slightly smaller radii respectively; this is referred to as the 1adial ordering,

Therefore in the radial quantization the commutator (2.16) is given by

1
5e(w) = [Qer é)] = 5 7{»' K f;_m R EOLETES

2 d ) T()b(w),
C

2me

(2.18)

Il

w
where Cy, is a small circle around w as shown in Figuie 3. Notice that the
contour integral in (2.18) will pick up only the contributions fiomn the poles in
the singularities, which appear in the “operator product expansion (OPE)” as
the short distance singularities when the two operators are considered at nearby
points. Thus to compute the commutators of two local operators, it is enough

to know their OPE, which is a key ingredient in two-dimensional CFT [19].
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2.3 Primary fields and operator product expansions

Among the infinite sct of ficlds in CFT, there are certain fields ¢(z) that
transform like tensor fields under the conformal transformation z — f(z),

naincly

AN\ D
6 - ¢ = (252) s 0. (2.19)

These fields ¢(z) are called “primary fields”, and h is known as the “conformal
dimension” (weight) [19]. As we will sce later, unitarity requires h to be a real
non-negative number. The remaining ficlds that do not transform in the nice way
defined in (2.19) are called “sccondary (or descendant) fields”. These secondary
ficlds are usually expressed as combinations of derivatives of the primary fields.
For the infinitesimal conformal transformation z — f(z) = 2z + €(2), (2.19)

translates into

8. (y8(2) = €(2)0¢(=) + hOe(z)o(z). (2.20)

The 1elations (2.18) and (2.20) imply that the short distance behavior of the
product of the EMT T'(z) with the primary ficld ¢(z) must satisfy the following
OPE:

hep(w) + Owd(w)

(z —w)? z—w

T(z)p(w) = + regular. (2.21)

Here “regular” stands for the remaining terms of the OPE that are nonsingular
as 2 — w. This mecans that they do not contribute in the contour integrals
like (2.18). However, they atc necessary in defining normal ordered products of
local fields. It is worth noting that the above OPE encodes ail the information
about the conformal transformation of the ficlds. In fact, the notion of OPE in
CFT replaces the customary notion of commutation relations in the usual field
theory [19]. The OPE's of secondary fields with the EMT involve higher order

singularities than the double pole as in (2.21). The primary ficlds in CFT are the
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most important dynamical variables of the theory. For instauce, we will see later
that the cotrclation functions of arbitrary ficlds can be completely determined

once only the corrclation functions of the primary fields are known.

At the classical level, the EMT (which is a rank 2 tensor) transforms ae-
cording to (2.20) as

6eT = 20€(2)T(z) + €(2)OT(=). (2.22)

However, at the quantum level a possible Schwinger teim may arise due to
an anomaly in the transformation propertics of the EMT. Consistency with the
dimensional analysis implies the following conformal transformation of the ENT
at the quantum level:

§.T = 20e(2)T(=) + e(=)0T(=) + T";o"f(:), (2.23)

-~

where ¢ is known as the “central charge”. Tts value depends on the partienlar

CFT under consideration. However as we will sce later, unitarity restriets it to

be a real positive number. The transformation property (2.23) is equivalent to

the following OPE of the EMT with itsclf:

c/2 2T(w)  OT(w)
+ +

(z—w)t (z—w)? z-w

T(=)T(w) = + regular. (2.24)

This OPE cncodes all the information about the quantum conformal algebra,

which is commonly known as “the Virasoro algebra” {28].

2.4 The Virasoro algebra

Let us represent the EMT as a Laurent cxpansion

+ 00
Ly, 5 o=
T(z): Z ;_n-{-s’ (22-))
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where the Lanrent modes L, arc given by

1
Lo = =— ¢ dzz"'T(2). (2.26)

T i
Duc to the OPE (2.24) and the definition of the commutation relation in the
radial quantization, the modes L, satisfy the Virasoro algebra [28]

d m-1 d= n+1
[Ly, L] =% ndd f z T(z)T(w)
c, Cuw

c
=(n—m)Lptm + i§n<n2 - 1)éntm,o-

Note that the Virasoro algebra (2.27) is the central extension (the quantum
version) of the classicul conformal algebra given in (2.8). Let us also mention

that (2.21) and (2.26) imply that the primary field ¢(z) satisfies

[Li,d(2)] = 2" [h(n + 1) + 29]6(2). (2.28)

Finally, note that Ly, Lo form a subalgebra with no central charge. Thus, this

subalgebra is also isomorphic to SL(2,C).

2.5 Representation theory of the Virasoro algebra

So far we have introduced two real numbers in connection with the Virasoro
algebra, namely the conformal dimension h and the central charge ¢. Therefore
it is reasonable to expect these two numbers to label the representations of the

Virasoro algebra. Indeed, note fiom (2.27) that
[Lo, Ln] = —nLy,. (229)

The importance of (2.29) is as follows. Because dilatations on the complex plane
correspond to time translations on the cylinder, it is natural to identify the gen-

crator Ly with the Hamiltonian. It is clear then from (2.29) (by analogy with the

24




T

harmonic oscillator) that L,, (n > 0) and L, (n < 0) are annihilation and cre-
ation operators respectively. This suggests that the irreducible representations
of the Virasoro algebra require the existence of a highest weight state | h >,
which is an cigenstate of Ly and is annihilated by L, (n > 0). Other states
in the representation are obtained by successive applications of L, (n < 0) on

| >, that is,
Lo |h>=h|h >,

L,|h>=0, n>0, (2.30)
L, | h >= newstates, n <0.
The representation satisfying (2.30) is called a “highest weight 1epresentation”.
The set of all the states in this highest weight representation is called a “Verma

module”. A basis for this Verma module is given by the states
Ly, ...Lop | h>, (2.31)

with 0 < ny € no €... £ ng. It can readily be checked that the secondary
state (2.31) has the conformal dimension h 4 ZLI n, and therefore it appears
at “degrec” (level, height) ZLI n,. To summarize, a Verma modnle V(¢, ) of
the Virasoro algebra is thus completely specified by the central charge ¢ and the
conformal dimension h, which is the Ly cigenvalue of the highest weight state
| b >. Requiring the CEFT to be unitary, amounts to restricting the EMT to be
Hermitian and the scalar product of the Hilbert space to be positive definite.

The first condition yiclds [24]

LY, =L, (2.32)

The sccond condition is implemented through (2.32), which leads to

NLcn | h>|P=<h| L, Lon | h>=<h]|[Ln,Lon]]|h>= [Znh + -l%(ns - n)] ,
(2.33)

[\
[}




with n > 0 and the highest weight state | & > normalized as < A | A >= 1.
Unitarity 1cquires the norm ir (2.33) to be positive at all levels In particular,
letting n = 1 implies that & > 0, whereas large n leads to ¢ 2 0. A complete
analysis of unitary involves the Kac determinant [20]. It has been carried out in
reference [30] where it is shown that unitarity requires V(c, h) to cither satisfy

¢ > 1 and I a1cal positive number, or

c=1~———§—~——-, m=2,3,...
m(m + 1) (2.34)
2 2.
b=y, = [(m+1)r—ms]” -1

dm(m + 1) ’

with 1 < » <m-1and 1 € s £ m. The Verma module V(e, k) is not a
priori irreducible. In fact, it is conceivable that it contains a sccondary state
that itsclf bchaves as a highest weight state. Such a state is called a “null state”
[19], which is justified by the fact that it is orthogonal to all the states in V(e, It)
and therefore it has, as well as all its descendants, a zero norm. Thus it can
cffectively be identified with zero | null >= 0. A Verma module containing a
finite number of null states is called a “degenerate Verma module”, whereas a
Verma module containing an infinite number of null states is called a “completely
degenerate Verma module”. Therefore, to extract the irreducible highest weight
representation from V(e, ), onc has to project out from V'(ec,h) all the null
states together with their descendants. It is shown that Ve, ) contains a null

state if [29]
c—1

1 2
— . 6)
71 + 8(a+7 + a—s)*, (2.35)

h=hys=

where

_V1—ct/25-¢
- 12

and r,s are arbitrary positive integers. Furthermore this state appears at level

ot , (2.36)

rs. The null states play an important role in deriving partial differential equa-

tions (Ward identitics), which are satisfied by the corrclation functions. So far
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the relation between the primary states and the primary ficlds has not yet been

clarified. This will be the subject of the subsequent section.

2.6 Conformal families

Let (=) be a primary field of conformal dimension h. Using (2.28), it is
casy to sce that the highest weight state | i > is created by the action of ¢(0)

on the vacuum | 0 >, that is,
[ h>=¢(0)]0>. (2.37)

The sccondary ficlds creating the sccondary states can be read off fiom the OPE

of the EMT with ¢(w). Indeed, (2.28) implics that

o0
¢V (w)
T(z)$(w) = Z . (2.38)
A=0 ~ - U)
Combining (2.21) with (2.38) lcads to the identifications ¢(®)(z) = he(z) and
(=1 (z) = 0¢(z). It can also be checked that the fields ¢(=H(z) (k > 1) arc not
prinary ficlds, which mcans that they cicate from: the vacuum | 0 > secondary

states of | h >, namcly
R0 |0 >=L_x|h>. (2.39)

The fields ¢(~*)(z) are thus secondary ficlds of the primary ficld ¢(z). Simnilmly,
other secondary fields ¢(=*=F)(z) of &(z) can be generated from the OPE of
T(z) with ¢(=*)(w). Therefore, a general state Ly, ... Lx, | b > in V(c,h) is
obtained by the action of the secondary field ¢(=*1» +~*2)(0) on the vacuum, or
equivalently

G R ()0 >= Loy, ... Do, |h > (2.40)
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In this context, note that the EMT T(z) is itself a sccondary ficld of the identity

operator. This can be seen from

1 dwT(w
T(z) = ‘2—7;; TU'—_—:‘)-, (241)

whicli underlines the fact that 7'(z) is not a primary field. The primary field
¢(z) together with its descendants form a “conformal family”, which is commonly
denoted by [¢]. The uscefulness of organizing the fields of a CFT into conformal
families stems from the fact that only the primary fields are nceded so as to
describe the theory completely. If the Verma module Ve, k) contains a null
state the corresponding field in the conformal family [¢] is then called a null field.
The null fields are used to derive Ward identities for the corrclation functions
because any correlation function containing a null field or any of its descendants
identically vanishes. As will be discussed later, the null fields are also useful in

computing the irreducible characters of the Virasoro algebra.

2.7 Minimal models

Hercafter, we review an interesting class of CFT’s that are completely sol-
uble. These theories are characterized by the complete degeneracy of their con-
formal familics. As mentioned earlier, in order to solve the CFT one necds to
consider only the primary fields. To corroborate this, let us for example consider

the following correlation function:

< ¢l = km) ()41 (). . dnlzn) >, (2.42)
where @,(z1)...¢u(za) are primary fields and ¢(“k"“""‘"‘)(z) is a secondary
ficld belonging to the conformal family [¢]. Using (2.26), (2.38) and (2.40) then

¢(=T1r-s=km)(2) can be rewritten as

m

Glknn=kn) 2y = H f Eii"l(wj —2) b T(w;) | ¢(z), (2.43)
=1

e
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where ¢(z) is a primary field and the contours encircle all the singularitios of the
integrand. Using (2.21) together with (2.43) once can casily see that the above
correlation function (2.42) can be rewritten in terms of the contelation function

< ¢(2)e1(21) ... dn(zn) >, which involves only the primary fields, as
m

< gﬁ(_k“' ""k"‘)(z)¢1(31)- é:x(wl) >= H D. A, ("v{ }) < ¢( )81(=1) .- Pulzn)
(2.44)

where the differential operators D_(z,{z,}) are given by

D_k(:,{z,})=2[(1-k)h' S —1 (2.45)

e AR L CE R

Obviously the above result easily gencralizes to expiress any correlation function

with many sccondary fields in terms of a correlation function with only primary
ficlds. This is an important result because it allows one to detive the correla-
tion functions of the primary ficlds as solutions of partial differential equations.
To see that, let us assume that the sccondary field in the correlation funetion
(2.42) is a null field, that is according to (2.39), it belongs to the confornual
family [@] = [¢,]. However, since this sccondary field is a null field then the
corrclation function (2.42) vanishes. This mecans that the corrclation function

< 3(2)P1(z1) ... ¢nlzn) > satisfics the following partial differential equation:

m

I D=1, (21 {2}) < $(2)81(=1)- .- dulza) >=0. (2.46)

=1
Furthermore, these differential equations restrict the OPE among the primary
fields. A detailed analysis carried out in reference [19] shows that the case wheie
all the conformal families are completely degenerate is particularly interesting,.
Indeed, the conformal families form then a closed algebra which can be symbol-

ically represented as

min(m+r—=1,2p—m~r-1) min(nts—1,2¢g~n—-s—~1)

B(m,n) X B(r,s) = 2 Z [bek,p), (2.47)

k=ime—r]4l (=|n-as|4t
A4+m4r=odd t4n4i=o0dd

29
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where [¢(1,)] denotes the entire conformal family of the primary field ¢y o). The
relations (2.47) are well known as the “fusion rules”. Moreover, it is shown in

reference [19] that if ay and o are so that

a_ p
— ==, 2.48
o p (2.48)
that is,
6 — 2
c=1- 820 (2.49)
Pq

where ¢ and p arc arbitrary positive coprime numbers, then the conformal family
[#r,s] contains infinitely many null ficlds, i.c., @, ] is a completely degenerate
conformal family. Thus, any correlation function containing the primary field
[¢r,s] satisfies infinitely many partial differential equations. This suggests that
all the correlation functions can be in principle computed as solutions of some
of these differential equations. Furthermore, the fucion rules (2.47) close under
a finite nunber of primary ficlds ¢, with 0 < » < p, 0 < s < ¢ and conformal

dimensions hy s

b o lar=ps)? = (p—g)?
rye — .
4pq

Such CFT’s as specified by (2.48) and (2.49) are called “miniinal models”. Note

(2.50)

that when ¢ < 1, the unitary models are also minimal. They are recovered from
the set of minimal models by letting ¢ = p + 1. As argued in chapter 1, some

statistical systems realize these minimal models.

2.8 Free field realization

In this section we propose the explicit realization of CFT’s in terms of a free
(boson) ficld [18]. This is also known as the “bosonization” or the “Coulomb gas
representation”. As mentioned in chapter 1, the free field realization facilitates

substantially the resolution of CFT’s. In particular, it simplifies the computation
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of the correlation functions, the fusion rules and the irreducible charactors. For
the sake of illustration, these quantities will be explicitly worked out in the case

of minimal models in the subscquent treatment.

2.8.1 Free field realization of the minimal models

Let us in this section illustrate how most of the properties of the mini-
mal models can be recovered through a single massless free boson X(a). The

corresponding action is

1 , . .
S = 3 /dga\/ﬂg’” (6)0, X ()0, X (0), (2.51)
where g is the absolute value of the determinant of 9pv. The EMT obtained

from the above action is given by

__1s 1
v = \/Eég;tu - 92

1
0,,,.\'0,/.\— + Z(I'(‘,au.\-(?".\’. (2.52)

Note that this EMT is symmetric and traceless, i.e., Tf = 0, and since the
above action is invariant under conformal transformations, we choose the two-
dimensional space to be the complex plane. In this case, becanse of (2.13) and
(2.14) one can easily sce that the only two nonvanishing components of the EMT

in (2.52) are given by

10 X0, X ¢,

—_
3]
<

53)

=T(5)=~=:0.X0:X :,

[AVEI NV

that is, T(z) and T(Z) are respectively holomorphic and antiliolomorphic func-

tions, and :: denotes the normal ordering, which is defined as

d
s A(2)B(z) = L =

2mi Jo, w— =z

A(w)B(z), (2.54)
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for some local fields A(z) and B(z). Hencceforth, unless stated otherwise, ficlds
or products of local fields at the same point are always assumed to be normal
ordered, and thus for convenience we will diop the normal ordering symbol ::
in the sequel. Again as we have done before, we only consider the holomorphic
scctor while keeping in mind that the same treatment is also valid for the anti-
holomorpliic one. The propagator (the Green function) of the analytic free field

X (z) reads as follows:

< X(21)X(22) >= —In(2; — z2). (2.55)

Using (2.55), the Wick rules and Taylor expansions, it can casily be seen that

the EMT (2.53) satisfics the OPE

T(:)T(w) = 1/2 2T(w) + OT (w)

ar. 2,
(z=w)t ' (z—w)?® " z—w + regular (2.56)

Therefore, the above EMT generates the conformal transformations in a CFT
of a free massless boson, which is characterized by the central charge ¢ = 1. To
sce that T'(=), as represented in (2.53), is indced the generator of the conformal
transformations let us work through a simple example. Consider the field 90X (z).
Under the conformal tiansformation z -+ z + €(z), this ficld is expected to

transform as

OX(z) = OX(2) + 9e(2)0X (=) + €(2)0* X (2), (2.57)
which is due to
X(z) 2 X(z+ €)= X(2) +e0X(2). (2.58)

On the other hand it can readily be checked that

IX(w)  9?X(w)

(z —w)? z—w

T(z)0X(w) = + regular, (2.59)
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which asserts the fact that X is a primary ficld of conformal dimension 1.

Morcover, (2.59) implics this transformation for ONX:
. dw . . 9
6.0X(z) = [% __)—_L_L—lT(u‘)e(w), OX(2)| = 0e(=)OX (=) + €(2)0° X (2), (2.60)

which coincides with (2.57). To appreciate further the usefulness of the free field
realization of T as given in (2.53), let us work through another example, namely
the vertex ficld €3, The OPE of this vertex field with T(z) reads as follows:

(02/2)Cxc\.\(zu) OetoN(w)

(z —w)? z—uw

T(:)cm.\'(uv) —

+ regular, (2.61)

Thercfore, €Y is a primary field of conformal dimension b = a% /2. This fact

can also be deduced from the two-point correlation function

< eia.\'(:)c—t(\.\'(w) S= ec\2<.\'(:).\'(u')> = c—‘a?ln(:—u') = ( 1 ) - (202)
To—-e)?

Note that the above correlation function can he interpreted in the context of the
Coulomb gas representation as being the expectation value of two charged fields
¢V (3) and e~ 1X(¥) with the “Coulomb charges” a and —a respectively. This
just reflects the usual fact that the total Coulomb charge is conserved. The fields
') and e~ N are regarded as conjugates or adjoints of one another. The
above corrclation function (2.62) can be generalized to any n-point correlation
function as follows:

< Vax(zl)---Va,, (Zn) S= { Hi<)(21 - :1)""% if Za. = 0, (2‘03)

0 otherwise,

where Val(g) = i, X(2)

Since T(z), as represented in (2.53) (with ¢ = 1), cannot describe the mini-
mal models that are characterized by ¢ < 1, then one is led to deform the above

T so that it accommodates this casc (¢ < 1) while satisfying the OPE (2.24)
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showld it be the generator of conformal tiansformations. A way to achicve that

is to consider instead
. R
T(:) = ——;(a.’{) +iagd* X, (264)

where ap is a real number. One can easily check that T(2) indceed satisfics (2.24)
with the central charge

c=1-12a2 (2.65)

Thus for special values of ag, T(z) can be the EMT of the miniinal models, i.c.,
with ¢ < 1. The sccond term in T (2.64) can be interpreted in the context of
the Coulomb gas representation as being due to the presence of a background
Coulomb charge —2a¢ placed at infinity. This is created by the vertex operator

~-21ap -\ (ec)

Vioza, =¢ Thus, the out-vacuum is charged and defined in terms of

the in-vacuum | 0 > as [1§]
< =2ap |=< 0| V_ogq,(00). (2.66)

Therefore, with this charged out-vacuum, the nonvanishing two-point correlation

function is given by

1
(2 — w)a(a-—?ao) .

< Va(2)Vaag-a(w) >= (2.67)

The new conjugate of V4 is no longer V_, but rather Vi = V24y-q. Note that

both V, and V5 have the same conformal dimension h(a), which reads from
(2.67) as follows: )
h(a) = (@) = %(02 — 2a0a). (2.68)

The above two-point correlation function (2.67) generalizes easily as

oo i Y a, = 2a,

- > = iy (20 = 2 9
<Vai(21). - Vo, (2a) >= {0 : otherwise, (2.69)
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2.8.2 Screening currents

The cquation (2.68) implics that there are two vertex fields S4(2) of con-

formal dimension 1

Si(z) = oM (2.70)
with
a4+ a- = 2ag,
(2.71)
oy = -2,

Thesc vertex fields Sy are called “sereening currents” [18]. The main property
of these screening currents is that they satisfy OPE’s with the EMT that are

total derivatives. This means that the “scicening charges” Q4

o

-1

1
~—

Qs = fsi(:)dz (

commute with the EMT T. Thercfore, these screening charges (2.72) ean he
inserted inside the correlation functions in any nuber without changing the
conformal propertics of the original correlation functions [18]. Their only effeet
is to make the corrclation function nonvanishing by scieening the background
charge placed at infinity. For the sake of illustration let us wotk through an

cexample, namely the four-point functions of the minimal models.

2.8.3 Four-point correlation functions of the minimal models

First let us require, as is customary in some statistical systems, that the
Vertex fields {V,} ( which arc identificd with physical operators) are so that the

four-point correlation function is nonvanishing for cach of them [18], that is*

< Vi(21)Va(22)Va(23)Valze) > 0. (2.73)

* This choice is requited in order to be able to balance the Coulomb charge

placed at infinity by the screening charges.
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However, the total Coulomb charge in the above correlation function is 2a +
204 # 20q. Therefore, this corielation function vanishes unless we insert r — 1
and s — | screening charges Q4 and Q- respectively. This mecans that the
conformal properties of the correlation function (2.73) can be read off instead

from the expectation value
< Va2 Walz2)Wal2s)WVa(z)Q4]7 Q-] >+£0. (2.74)

Henece we can build four-point corrclation functions with properties natural for
some statistical systems (nonzero if the four operators are the same) out of the
vertex fields V,(2) if the Coulomb charge a is restricted to take the discrete set
of values a, 4 so that

l1-r 1-s
5 ¥+t 3

-~ o

a-, r,s>1 (2.75)

Qpg =
The corresponding conformal dimensions h,. s are obtained from (2.68), namely

1 1 )
hps = ——50'3 + -S-(ra+ + sa_)2. (2.76)

The cquations (2.75) and (2.76) are precisely the Kac-speetrum for degenerate

conformal families. For the minimal models, ay. and e read

2q
QA =/
)
! (2.77)
2p
Qo = —y[~—
q

in which case h, 4 is given in (2.50). The relations (2.71) and (2.77) imply that

=4-F 2.7
= o (278)

A gencric four-point correlation function is then

(ltl . f (lt,_l f (lt’l .. f dt;_l
(o Cres C !

; -1
X < Vo(21)WVal(22)Va(23)Va(2a) S+ (t1) - . S+ (tr=1)S-(1]) . .. S=(th_y) > .
(2.79)
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The contours in (2.79) wind around the points 2y, 20, 23,21, 50 as they do not
lead to zero integral. In fact the above expectation value (2.79) stands for the in-
tegral representation of the corrclation function that satisfies partial differential

cquations as discussed carlier.

2.8.4 Fusion rules of the minimal models

Here, we rederive the fusion rules of the minimal models (2.47) in the free
ficld realization. The form of the fusion rules in (2.47) suggests that we should
only consider the three-point correlation funetions. There are three equivalent
ways of representing the three-point corrclation function in the free field realiza-

tion, namely

< ‘fak,t(z!)‘fam,n(:'-,)‘for,s(zs)Q'i' "'Q+Q— "‘Q—' >’ (?‘S())
< Vak.l (zl)valn‘n(z2)‘/0’r,s (33)Q+ "'Q'*‘Q‘ "‘Q—‘ >’ (2'81)
< Vot Vo (2)Va,, ()@ - Qe Qe . Qo >, (282)

Requiring the conservation of the Coulomb charges in (2.80), (2.81) and (2.82)
lcads respectively to

E<m+4r-1, k-=m-—r+1 cven,

<n+s-1, (—n—-s-+1 even, (2.83)

m<k+r—-1, m-k—r+1 cven,

n<l+s-1, n-L-s+1 ecven, (2.84)

r<k+m-1, r—k—m+1 even,

s<l4+n-1, s—L-—n+1 even (2.85)
The cquations (2.83), (2.84) and (2.85) translate into

E<m4r-1, (<n4s-1,
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m<r+k-1, n<s+0-1,
r<k+m-1, s<(l+n-1,

E+m+4r odd, {+n+s odd (2.86)

The relation (2.86) implics then the following fusion rules:

m+r—1 n+4s—1

é(m,n) X d)(r,s) = Z Z [QS(L,e)] , (287)

k=|m-r|4+1 L=|n-e]+1
hdm4r=odd {4+n4s=odd

where ¢,y is a primary ficld in the minimal model whose free field realization

is given by V,, ,. From (2.50) it can readily be checked that
hrps=hp_rq-s. (2.88)

Combining (2.87) with (2.88) we get

2p—-m—r-12¢g—n—-s-—-1

¢(p—m.q-u) X ¢(p—r,q—-s) = Z Z [¢(k,€)] . (289)

k=fm-r|4+1 €=|n-s]41
k4+m+4r=odd {4n+4s=odd

The equations (2.87) and (2.89) arc consistent with each other if

nun{m+r—1,2p~m—r—1) nin(n+s—1,2¢g—-n—s—1)

(IJ)(m,n) X ¢(r,s) = Z Z [45(].;,[)] s (2.90)

A=im-ri41 t=|n—-sl+1
k4 mr=odd {4+n+4es=o0dd

which are the fusion rules for the minimal models as given earlier in (2.47).

2.8.5 Irreducible characters of the minimal models

Here, we derive the irreducible characters of the minimal models. Let us
for example consider the Verma module V(c, h,y), where h, is the conformal
dimension of a highest weight and is given in (2.50). We know that in the
minimal series the Verma module V(c, b, ) contains an infinite number of null

states. In the free ficld realization a highest weight (which can be a null state) is
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represented by V, = ¢'*Y, where a is to be determined. The screening charges
(Q+ can be uscd to construct explicitly the null states in the Verma module
[(Va). Indeed it can readily be seen that the following two fields y(2) and ya(z)
create from the vacuum two states having the properties of null states in [Vy]
and carrying the same Coulomb charges as the states created by Vi _ga, (2) and

Va—na_ () respectively

£
() = f TT 60 S () Vamtas (=) = Q% Vot (),
'j‘ (2.91)
,\'2(3) = fHduus-(ux)vo—na_(z) = Q'_l.vn—na_(z)a
=1

where Qi and Q7 are the screening charges and a 3 are given in (2.77). Working
out the OPE’s involved in the integrals (2.91), it can be shown that the fields
N1(2) and x2(2) have the following general free field realizations:
X1~ [PX]MeY e (1],
, (2.92)
N2 ~ [a_\-]N;cuu\ € [Vo],
where [OX]M (the same definition applies to [OX])V?) is a certain linear combi-

nation of terms of the type (9X)4 (92 X)"2..(3? X )b so that

J

) id, =Ny (2.93)

=]
N; and N, are respectively the degrees of xi(z) aud y2(z). They measure the
level of the null fields y; and 32 over the highest weight field V. A ficld with

a ncgative degrec is by definition zcro. N; and N, are given in terms of the

conformal diincnsions as follows:

N; = Ia — Lay) — h(a),
(2.94)
Ny = ha —na) - o),
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with the conformal dimension L(a) as defined through (2.68). Requiring the
degrees Ny and Ny to be positive integers amounts respectively to (see [20] and

references therein)

1+¢ 1
o= -: o4 tma_, m > 0,
“ . (2.95)
14m 14+n ,
a = 5 oy 5 a_, m 20,
m and m' arc arbitrary positive integers. In this case Ny and N, read
N] = Cm,
(2.96)
Ny =nm'.

Combining (2.95) with (2.96), clearly the samc null state in [V,] with degree (m
can be constructed as in (2.91) using cither ( or m screening currents S+ or S—
respectively. Thus in the sequel we specify the Coulomb charge o of the highest

weight field V, by a single formula as follows:

¢
= 1‘2* ap+ 20 (2.97)

-~

where now € and m stand for the numbers of S and S_ respectively. Let us for

convenicnce denote the highest weight field V,, as
Vo = (aem) = (€, m). (2.98)

Note that { and m are not uniquely defined because of the following translation

invariance of a, which can be read off from (2.97):
(¢,m) = (€ + kp,m + kq), (2.99)
where p and ¢ are defined in (2.77) and & is any integer. .
Furthermore, we know that there is a Z3 invariance in the Virascro algebra.

Indeed, the conformal dimension /i(a) (2.68) is invariant under @ — & = 29 —a,

which amounts to the identification

(&,m) = (-¢,—-m). (2.100)
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That the integers in (—(, —m) arc negative is not an inconsisteney because of
the translational invariance (2.99). From the equation (2.91) it is clear that
starting from the null field V, = ({,m), one can construct other null fields as
Va=tay = (~0,m) and Vo na_ = (¢, —m) by means of Qi and Q™ 1espectively
t
(¢, m) 94, (=, m),

o (2.101)
(€,m) = (¢, —m).
The screening charges @4 and Q_— (the superseript is dropped) map between two
null ficlds so that the Verma submodule generated from the second is embedded
in the Verma module generated fiom the first (as previously remarked null states
generate themsclves Verma submodules). However, Q and Q- as given in
(2.101) are not uniquely (well) defined because ¢ and m are themselves not
uniquely defined. To fix this problem we further require that Q4 and Q- map
ouly from a module to its maximal submodule (i.e.; so that the degree of the field
generating the submodule is the smallest possible positive integer)  Moreover,
we hiave to specify the primary field, which creates from the vacuum the highest
weight of the primary completely degenerate Verma module. By definition, the
latter module is not embedded in any other Verma module exeept itself. If (r, s)
specifies a primary ficld then it cannot be the image of any other fickd under Q¢

and Q_. It can be easily scen that such a primary ficld exists if

0<r<p,

(2.102)
0<s<yq,

which is indeed the result obtained via other algebraic methods. Starting from
the primary field (r,s) (2.102) and using the screening charges Q4 and Q-,
one can construct an infinite number of null states in the primary completely

degencrate Verma module [V, 4)]. They fall into two classes A and B that arc
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defined as follows:

A = {a(k) = (r +2kp, s) = (r,s — 2kq), ke Z},
(2.103)
B = {b(k) = (=r + 2kp, s) = (r,—s + 2kq), ke Z}.

It can be readily checked that the actions of Q4 and Q_ as described above are

now uniquely (well) defined on A and B, namely

k>0:

o) B bk +1), bk) D agk),

a(k) 5 (1), (k) 5 (),
(2.104)
k<O0:
a(k) 25 k), o) T a(k — 1),
Qr Qv

a(k) = b(1 ~ k), (k) = a(1 - k).
In (2.104), in order that Q4+ (Q-) maps only form a module to its maximum
submodulg, its superscript is then required to be either r or p—r (s or g—s). This
requirement can always be fulfilled because of the translational invariance (2.99)
and the Z, invariance (2.100). The embedding relations (2.104) are represented
by the embedding diagram of Figure 4. The primary state is identified with «(0)

in the notation defined in (2.103).

Let us now show Liow one can make use of such a diagram to compute
the irreducible character of the Verma module Vi1, ,) = Viaoy [25,31]. The
irreducible character is arduous to compute directly, however the character of
thie reducible Verma module can be casily computed. Thus, we should first
compute the characters of all the Verma (sub)modules involved and then use
them to extract the irreducible character through the embedding diagram of
Figure 4. The character of the Verma module [V, (g)] is given by

B (hr,a—c/21)
Trqlo=f) = 4~ (2.105)

ohin = el G-

=
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where the trace is taken over all the states in [Vyp)]. The character of any
Verma submodule generated from a(k) or b(k) is readily obtained from (2.105)

by replacing (7, s) with (r 4+ 2kp, s) or (—r 4 2kp, s) respectively.

Let us denote the irreducible module hy [ 4]. If there were no null states
at all in the Verma module [V, ,], the character of the irreducible module 7, ,]
would coincide with that of [V,,,s] itsclf. This mecans that we would have the

following relation:
chi,,,) = ehpv, ) = chpy, o1 (2.100)

According to Figure 4 though, this is not so because [V, gy} contains two maximal
Verma submodules [Vy(o)} and [Vi(py), which are generated respectively from the
null states 0(0) and b(1). Consequently, one has to subtract their contributions
from the character of [V}, ,]. This would then lead to

Ch[I,,,] = ch[‘;

o] — ch[vb

o] — vl (2.107)

This is not the whole story however, because [V,0y] and [Vi(1)] overlap and their
intersection contains the maximal Verma submodules [Vy(y)] and [V, (-], This
means that the contributions of the latter submodules to the character of {1, ,)
were over subtracted. Therefore, in order to further coriect the character of

[Irs] we should add them back, that is

ChUr.n] = Ch[Va(o)] - Ch[Vb(O)] - Ch[vb(l)] + Ch["an)] + Chlvu(-l)]' (2.108)

From the embedding diagram of Figurc 4, clearly, onc can repeat by induction
the same argument of over addition and over subtraction (of thie contributions of

tlic null states) infinitely many times to end up finally with the correct itreducible
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character of {I, 4], which is

+o00
ey, ) = Z (Ch[\’a(:.)] - ch[vbm]),

k=-—00
c/2l

= s 3 {gte g,
n=

k=—o00

(2.109)

Notice how similar the embedding diagram of the CFT with the Virasoro algebra
is to that of the CFT with the su(2); Kac-Moody algebra [20].

2.9 Extended CFT’s and rational CFT’s

It has been shown in reference {17] that, for the fractional values of the
central charge c as given in (2.49), that is ¢ < 1, the CFT is rational (minimal).
This means that it has a finite number of primary fields. It is then exactly
solvable, i.c., the spectrum, the fusion rules, the irreducible characters and the
corrclation functions can be exactly computed in principle. However, it has been
shown in reference [32] that a CFT which is1ational w.r.t. the Virasoro algebra
necessarily has central charge ¢ < 1and a CFT with ¢ > 1 has an infinite number
of primary ficlds w.r.t. the Virasoro algebra and therefore it is not solvable. In
order to construct a rational CFT (RCFT) with ¢ > 1, one is then led to consider
a CEFT with a larger symimetry algebra than the Virasoro one. In this case, only
a finite number of primary ficlds w.r.t. the extended algebra is allowed. As in-
dicated in chapter 1, the most extensively studied RCFT’s with ¢ > 1 (extended
RCFT's) are CFT’s with Kac-Moody [14], 1V, [15], parafermion [16] and super-
conformal {17] algebras. The first three of these RCFT’s will be respectively the
main topics of the next three chapters of this thesis. Therefore, we decide to
introduce cach of them throughout the corresponding chapter. Finally, let us
mention that the classification of all RCFT’s is currently an interesting ongoing

rescarch subjeet that is far from being accomplished.
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Chapter 3

Free field realization of the screening currents

in Kac-Moody conformal field theories

This chapter is devoted to the study of the extended CFT’s with Kae-
Moody (IXM) algchras [14,33,34,35,36,37]. Morc specifically we present a sys-
tematic method that allows the construction of the screening currents [18] that
arc expressed as purc exponential terms of fice fields. Contrary to the screening,
currents of purc exponential type, the other sereening currents are extensively
studied in the literature [38] and thus we are not interested in them here. Hence-
forth, we only consider the screening currents of the pure exponential type.
Except for the trivial case of su(2);, much less is known about the screening
currents for general KM algebras in the literature. As we will show later, it
turns out that beyond su(2); the screening currents are indeed nontiivial in
that they are expiessed as infinite smns of exponential terms of fice fields. We
start out this chapter by first reviewing the extended CFT with a KM algebra.
We then discuss the free field realiziation of a KM algebra, which is known as the
Wakimoto rcalization {35,36]. After that, we present the details of the method
and finally we apply explicitly this procedure to only those IKXM algebras whose
Whakimoto realizations are presently available in the literature, namely su(n
[36] and sp(4)i [37]. For illustration, the derivation of the sereening currents for

the su(2)r, su(3)r, su(4)r and sp(4)r KM algebras is displayed in detail.

3.1 Introduction to CFT’s with Kac-Moody algebras

A Kac-Moody algebra is another infinite-dimensional algebra extending the

Virasoro one (14,33]. It plays a central role in string theory and CFT. ludeed,
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many other RCFT’s can be traced back to CFT’s with cosets of KM algebras.
As indicated in chapter 2, CFT’s with IXM algebras are rational even with the
Virasoro central charge being larger than 1. It also appears as the local symmetry
of the Wess-Zumino-Model in two dimensions [14). A KM algcbra is basically
the two-dimensional current algebra associated with the Lic algebra. To see
that, let J* a=1,...,d =dim g, be the gencerators of the Lie algebra g, which
is defined as

[72, JY =ifebeUe, (3.1)
where f**¢ are the antisymmetric structure constants of g. Then the KM algebra

gr associated with the algebra (3.1) reads as follows:
(Je, I8 = ifebege, . + knbutmo (3.2)

Here, n,m € Z, 2k/8? is a c-number called the “level” of the KM algebra and 6 is
the highest root of g. The level is restricted to be a positive integer by unitarity
[33]. Note that in (3.2) the J@'s satisfy a subalgebra that is isomorphic to the
Lic algebra g given in (3.1). As argucd in chapter 2, commutation relations are
cquivalent to OPE’s. As a matter of fact, the KM algebra g given in (3.2) is

equivalent to the following OPE, which is referred to as the current algebra:

k&b ifachc(w)
G + TTw + regular, (3.3)

J(2)Jb(w) =

with the KM currents J%(z) defined on the complex plane as

o0

T z)= Y z7"lg. (3.4)

n=-—0oc

The above KM algebra and the Virasoro algebra introduced in chapter 2 are
not unrelated. Sugawara has shown that given a KM algebra one can always
construct out of it a Virasoro algebra whose EMT T(z) is [33,39)

1 ()]0
TG = 531G EajJ (2)7°(2), (3.5)
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where the normal ordering is understood and Cy stands for the quadratic Casimir

in the adjoint representation, namely

facdfbcd — Czb‘ab. (3.6)

It can rcadily be checked that T'(z) satisfies the required OPE (2.24) with the

central charge
_ 2kd N
S (3.7)

c

Note that the KM currents J%(z) are primary field w.r.t. T(z) with conformal

dimension 1, i.e.,
J(w) + aJ"(w)

(z — w)? z—w

T(2)J*(w) ~

, (3.8)

where the symbol ~ means that the equation holds up to regular terms which
are being omitted, that is, only the singular terms are displayed. Similarly to
the Virasoro algebra case, there are primary ficlds ¢,(z) w.r.t. the KM algebra.

They are characterized by the OPE
tt w
74 (2)0, ) ~ B2 (9)

where ¢§, are representation matrices for g. The primary fields 4,(z) create from

the vacuum a highest weight state | j >, that is,

|7 >=¢,00)]0>. (3.10)

| 7 > is annihilated by J$, (eithern > 0, ¢ = 1,...,d or n = 0 and the index
a denotes positive roots), whereas the successive applications of J2, (cither
n>0 a=1,...,d or n = 0 and the index a denotes negative roots) on
| 7 > lead to secondary states. The secondary states together with the highest

weight statc | 7 > constitute a Verma module w.r.t. the KM algebra. Again,

this Verma module is a priori reducible, i.c., it contains null states and thus the
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irreducible module is obtained by modding out the null states together with their
descendants fromn this Verma module. As discussed in chapter 2, a way to locate
the null states in the Verma module is provided through the screening charges.
For thic screening charges to commute with the XM algebra, the corresponding
screcning currents must then satisfy OPE’s with the KM currents that are either
regular or total derivative. They must also have conformal dimension 1. These
conditions arc at the heart of our method presented in the rest of this chapter. As
our procedure relies on the free field realization let us first review the Wakimoto

realization of KM algebras.

3.2 The Wakimoto realization of KM algebras

In this section we discuss the explicit Wakimoto rcalization of the IKM
currents satisfying the XM algebra (3.3) in terms of free massless fields. We
choose the Cartan-Weyl basis where the XM currents are denoted by H,(z),
Jo(2) and J_,(2). Here, o labels the positive roots of g, whereas: = 1,...,r
(r is the rank of g). These KM currents correspond respectively to the Cartan
subalgebra, the raising and lowering step gencrators. In principle, it is possible
to represent any IXM algebra for gencral level 2k/682 in terms of free fields,
however, the only explicit realizations so far available in the literature are those of
su(n)y (35,36] and sp(+4)x [37]. Therefore, we only give the Wakimoto realizations
of these two algebras, though our method to derive the screening currents is
completely general and can be applied to any KM algebra provided that its

Wakimoto realization is worked out.

3.2.1 The Wakimoto realization of su(n)y

In this case r = n — 1 and therc are R = n(n — 1)/2 positive roots ay;j
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given by

apy=e—e; =(y), 1<i<j<n, (3.11)

where {e,, 7 = 1,...,n} is the set of orthonormal n-dimensional vectors. In

particular, the simple roots a, of su(n) arc in this notation given by

o, =¢, — e = (1,0 +1). (3.12)

To represent su(n)y KM currents we need a vector X = (@, t14;04) of d = n? -1

frec massless ficlds, which are correlated in the following way:
Xo()N(w0) ~ —napIn(z —w), 1<a,b<n?-1 (3.13)

where 7,4 stands for the diagonal metric of a flat Lorentzian space with signature
()7, (+)%; (=)F]. To write the Wakimoto realization of su(n)i in a convenicnt
form, namely to avoid carrying square root terms along, let us introduce the

(n? — 1)-dimensional lattice [20]
Ap =gt g 200 g 21 (3.14)

where h = n is the dual coxeter number of su(n) and g is the root lattice of
su(n). Its dual lattice, namely the weight Iattice of su(n), is denoted by g*. Zp
is the R-dimensional orthonormal Euclidean lattice. To clarify the significance
of the superscript in (3.14), let T be a lattice whose dual is T*. Then for any
positive intcger ¢, we can construct a scaled lattice IO = {Vr|z € T'}, with
D) = [0 = {y/Vely € T*} being its dual. Thus, the dnal lattice of Ag
is

AL =g+ g Z;{l/'l) @ Zﬁzl/")- (3.15)
This lattice A§ will be useful in avoiding cluttering the notations with square

root factors. Indced, it turns out that all the vectors involved in the Wakimoto
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realization belong to this lattice. Let us denote a vector in this lattice by

(z,9;2) = [2/VE + h,y/V4; 2/ V4], (8.16)

;e

where @ € g* and y,z € Zp. This means that the vectors with round brackets

and squarc bracket span respectively the unscaled lattice and the scaled lat-
tice. Hence, the scalar product of two vectors with round brackets (z,y; z) and
(z',y'; ") reads

z- 2 y-y z-Z

- At e ) = _
(r,y;2)  (¢',y';2") k+lz+ 1 7 (3.17)

The (n — 1)-dimensional vector x € g* is defined through its components, given

in the basis of the fundamental weights A, € g*, as follows:

T = (T1,T2,...,Tn=1), (3.18)

which is equivalent to z = Z?___ll r:A,. With the above notations, the Wakimoto

realization of the su(n); KM currents is given byt [20]
H(z)=1H,-0X(z)exp[iH' - X(2)],
J_o(2) =1J_o(0) - OX(z)exp[iJ. (0) - X(2)]

+0 Y Joa(0)- 0X () expliJLo(0) - X(2)],

UEA+

J1o,(3) = iJ44,(0) - OX(2) exp[e.]} 4, (0) - X(2)] (3.19)

F1Y Tra(>) OX(explidha, (G >) - X(2)

1=i1+2

+13 Tra (s <) 0X(2)expliJha, (i <) - X(2)],

=1

T Note that only the Wakimoto realization of the KM simple root currents
Jta, is given. The Wakimoto realization of the KM compound root currents
is very complicated though it can be derived from that of the KM simple root

currents through the KM current algebra (3.3).
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where

H; =0,

H = (=(k+May, 0; 0) + Z (@, - o),
ocE€EA L

JLa(0) = pa + a,
J-a(0) = —pa,
JLa{0) = Pato + Gato = Po — qo,
j—a(U) = —Po+o,
Ja, (0) = =pa, = ¢a,, (3.20)

-]_a.(o) = ((k+n)a,,—~(k 4+n - Dta; 6),
-1

f = _'(k +n—1+4 1)tm + Z[t(ﬁ) - t(j,l-H)]a

=1
Ta,(J >) = plat1g) = Py + Qettng) = Q)

jo.(j >) = =DPli+1,7)
J;.(j <) =piey — P(i+1) 90 — 4(5,041)>
jax(j <) = P30

Here, . stands for the sct of the positive roots, whereas py, ¢4 and t, are

defined by
Pa = (O,tﬂ;()),

9o = (0,0;ta), (3.21)

(ta)p = 260p.
In (3.19) ¢ > o means that if @ = (i7) € A4 then a + 0 = (&) € A4 according
to the notation defined in (3.11). It can be checked that the cnergy-momentuni
tensor T'(z), constructed through the Sugawara method described carlier, is given

in terms of the free ficlds as follows:

T(z) = —2[0X(2)]? +iag - X (2), (3.22)
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—r 1 1]
/k + 'h"’ 27 2 )

where p is the sum of the fundamental weights of su(n) and h = n is the dual

ag = (-p,1;1) = (3.23)

Coxcter number for su(n). With the above T(z), the conformal dimension of a

pure exponential ficld Vp(2) = explif - ¢(2)] is

h(B) = -;-ﬂz —~ao - B, (3.24)

and the Virasoro central charge is given in (3.7).

3.2.2 The Wakimoto realization of sp(4);

Here, we will follow closely the treatment of the previous section (with
the obvious changes) and thercfore many details are omitted while the same
notations carry over to this case. For sp(4), r = 2, R = 4 and the positive roots
arc given in terms of the two-dimensional orthonormal vectors e; and e, as

a(rz) = e3 — ez = (12),

gy = 2ep = (2),
(3.25)
Q’[12] =€) + €2 = [12],
aqy) = 2ey = (1).
The simple roots of sp(4) are (12) and (2). With this normalization, the dual
Coxeter number of sp(4) is A = 6 and k (which defines the level through 2k/62)

is a positive cven integer. The appropriate lattice is again
. 1/(k+h : 1/4 '
AO = [g ]l/(k'*") @ Z;{l/l) @ Z;{/ ), (3-26)

where g* is the weight lattice of sp(4), which is generated by the fundamental

weights
Al =e1,
(3.27)
A2 == €3 + es.
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The vectors in this Lorentzian lattice, with signature {(+)?, (4)'; (=)'}, are again

denoted by

(2,932) = [o/VE+ T, y/VE =/ V4] (3.28)

with ¢ € g*, and y,z € Zr. The Wakimoto realization of the KM currents of

sp(4)x is also of the form
H,(z)=iH, - 0X(z),

Joa(z)=1 J_o(0) - 0X(2)ex 1JL () X(2)),
(2) ag;a (o) - OX(z)exp[iJL (@) - X(2)] (3.20)

Jral2) =1 3 Tya(0) - ON(2)explidiq(0) - N(2),

6€[+n

where the index scts I_q and I, as well as the vectors J _q, J s Tt J;",
which span the lattice Aj, are given in Table 5 (the reason for introdueing this
table before Tables 1-4 will become apparent in the section 3.4). As we will
sce later, this table encodes all the necessary information in order to detive the
screening currents. For that matter however, the vectors H, are not needed and
thus they are omitted from this table, but for completeness let us write them

here _
Hy = (=2(k+6),k+6,0,0,0,0;4,—4,0,4),
7 (3.30)
Hy = (2(k +6),—-2(k +6),0,0,0,0; —4,8,4,0).

The energy-momentumn tensor T(z) derived from sp(4)s through the Sugawara
counstruction is again given in (3.22) and (3.23) with p and h being now the sum
of the fundamental weights and the dual Coxeter number of sp(4) respectively.
The conformal dimension of a pure exponential field and the Vitasoro central
charge are also given in (3.24) and (3 7) respectively. In fact, these resnlts are

completely general and hold for any KM algebra [33).
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3.3 Theory of screening currents

This scction is the core of this chapter. Here, we propose to develop a sys-
tematic method designed for the explicit construction of the screening currents
in terms of free ficlds in a CET with a KM algebra. The treatment is completely
general and can be applied to any IXM algebra once its Wakimoto realization is
explicitly achieved. We limit the analysis only to the screening currents of the
pure exponential type since so far these are the least analyzed in the literature.
In fact, the only results available in the literature about this type of screening
currents are just inconclusive conjectures based on some guess work, and which
arc not valid in some cascs [36]. On the other hand, our results are derived in
a natural way fiom first principles and most importantly they lead to genuine
screening currents which explicitly check out all the necessary criteria [20]. To
begin with, let again d be the dimension of the Lie algebra g. The most general

form of a screening curient in terms of the d-dimensional free ficld X (=) is

S(z) =Y exp[iS"(0)- X(2)]. (3.31)

oCls
Clearly, to completely determine the above screening current one needs to specify
the index set I, and the vectors S”(o). As previously discussed, the main
property of a screening current is that it must be of conformal dimension 1 and
must have an OPE, with any KM current, that is regular or a total derivative.

The first condition translates into

WS"(0)] = 3[S"(o))* - a0 - §"(0) =1, (3.32)

N | =

where ag is given in (3.23), which is valid for any KM algebra. The second
condition however is subtle. The reason for this subtlety stems from the fact

that a KM current may consist of a sum of several terms. Therefore, within the

54




Fa

same IXM current. S(z) may have an OPE that is regular w.r.t. some of the
terms and singular w.r.t. the remaining ones. This makes the second condition
mentioned above nontrivial to satisfy. The terms of a given KM current will
be then separated into “irreducible units™ J(z). An irreducible unit J(z) is
defined as the sum of the minimum numiber of terms so that the OPE J(2)S(wr)
is cither regular or a total derivative in w As we will see shortly, it turns out
that S(z) is completely detenmined from the irteducible unit J(z) whose OPE
with S(w) is a total derivative. Therefore the number of the sereening curtents
one can construct will be equal to the mumber of all the possible nredneible
units (leading to total derivative OPE’s) available in the Wakimoto realization
of the XM currents. However, not all of the sereening curtents are independent,
We will addiess the issue of the nnumber of the independent sereening currents
at the end of this chapter. These irreducible units are not arbitrary but rather
conform to very stringent conditions. To see that, let J(z) bhe an trreducible unit
consisting of a sum of several terms
¢ ¢
J=) =) J0) =) J0)-0X()explI'(G) - X(2)).  (3.33)
7=1 1=1

The vectors J(j) and J'(j) lic in the d-cimensional lattice A} as indicated in
the previous section. For the sake of clarity, let us proceed in steps of inereasing
order of complexity, Then we first assiune that both the irteducible unit J(z)

and S(z) consist of a single term, that is,

J(z) =T - 0X () expled’ X ()]

(3.34)

S(z) = exp[iS" - X(2)).

In this casc, the OPE of J(z) with S(w) reads
J(2)5(w) ~ 0, J'-S" >, (3.35)
~ expli(J' + S") - X(w)], J'-S§" =0, (3.36)

< —w
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+— —(CJ'+J) - X (w)|expli(J' + S") - X(w)),
J'§" =1, (3.37)
with

c=J-5". (3.38)

It is clear that S can be determined from (3.37) and (3.38). Indeed, requiring

(3.37) to be a total derivative implies that

cs" =J,
(3.39)
J - J=-C.

Thus, S” is completely determined and so is S(z) through (3.39) because both

J and J' are a prioii known. Combining (3.38) and (3.39), one can easily see

that the proportionality constant C satisfies
c?=J% (3.40)

Moreover, using (3.40) and requiring the conformal dimension of S(z) to be 1

amount to

C=—2-J. (3.41)

The example just displayed turns out to be trivially simple and well treated
in the literature because it corresponds to su(2)x. The next example however,
nanely when ( = 2, though more complicated, is by far more appealing in that
it displays most of the features of the general case and much less is known about

it in the literature.

In this case, according to the definition of the irreducible unit, neither the
OPE J(1)S(w) nor J(2)S(w) is a total derivative but the sum of the two is. As

can be seen from (3.37), this is possible only if S(z) consists of at least 2 terms,
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I in which case a cancellation might occur between the terms whose phases arve so
that J'(1) 4+ S5"(1) = J'(2) + §"(2). However, the OPE of the terms with phases

J'(1) and §"(2) requires a priori a third term S"(3) in S(2), for the same reason

as above. Continuing this manner, clearly, S(z) must involve a sum of an infinite

number of terms whose phases are so that $”(2) — S”()) 1s an integral multiple

of AJ = J'(2) — J'(1). This means that there is a one-to-one correspondenee

between the set of the integers Z and the set of the phases defining S(2), i.c.,
S"(k)y=8"(0)-kAJ, ke€Z (3.42)

Let us denote by Aay the one-dimensional lattice generated by AJ. The equa-

tion (3.42) amounts then to S"(3)=S"(0) € Aay. In this case, (3.37) generalizes

as
2 R 2 . ) - .
IS~ 33 U+ L (CURT ) + T 0N )
x esplit'(1) +8"(k)) - X(w)], (3.13)
with

C(5,k) = J(5)- §"(k),
S"(k+1)=8"(k)=J'(1) - J'(2).
The OPE (3.43) is a total derivative provided that the following condition is

(3.44)

satisfied:
C(,E)S" (k) +C2k+1)S"(k+1)=J(1)+J(2)=J (3.45)
This equation must be true for any k € Z. The quadratic term in k leads to
J-AJ=0. (3.46)

The lincar term gives

(3.47)
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while the constant term together with (3.47) yield

Ccs"(0)=J, (3.48)

J(1)-J=J(2)-J =C% (3.49)
Let us recall that (3.43) is valid only if
J'G)-S"(k)=~=1, j=1,2 keZ, (3.50)

which means that -
J(J)-J::-—C,
(3.51)
J'(j)-AJ = 0.
The above equations (3.46) through (3.51) fully determine $"(0), that is, S(z)

according to (3.42).

We are now in a position to generalize the previous treatment to general £.

In this case (3.42) becomes
S§"(c) = S"(0)+0, o€Aay, (3.52)

where Apy is an (€ — 1)-dimensional latticc genecrated by the vectors AJ(i) =
J'(+) = J'(1), i = 2,...,¢ This means that the screening current S(z) consists
of an ({ — 1)-fold infinite sum of terms, i.c.,
Y S(o,2)= Y expliS”(0) X(2)). (3.53)
o€Aay oCAay

The gencralization of (3.43) naturally follows as:

1500 ~3 Y | LI 4 (CU )T ) + T - 0X(w)
J—laG\AJ
xespli(7'() +8"(0) - X)), (354)

with

58




Cl,o)=J(3J)- S"(o).
S"o + AJ(j) = §"(0) = ~AT(), s =1.....0 (3.55)

Again, (3.54) is a total derivative, i.c.,

J(2)S(w) ~ Z Z C(I,U)au{

5 SPLG) 4+ 8"(0) - X)), (3.56)

J=10€ENAy
if
I3
Zcu,a - AUYS (o - AN =Y () = 4. (3.57)
=1 =1
Using (3.52) and (3.55), (3.57) becomes
£
D U6 - (5"(0) ~ AJGY + oNIS"(0) ~ AT ()4 o] = 4, (358)
=1

which is true for any ¢ € Aay. The quadratic term in o leads to
J-AJ(j)=0. (3.59)
The lincar term in o and (3.59) yicld
J(@) AJ(G)=Cby, (i3 2 2), (3.60)
C=J—-S"(0)—ij( ) AJ(i) = J - S"(0) - (¢ -1)C,
or )
(C=J-8"0). (3.61)
Furtherniore, the constant term together with (3.60) and (3.61) give

C5"(0)

J, (3.62)

i
]

Ct=J)- J. (3.63)

The equation (3.63) gives C, which in turn determines $"(0), ve., S(z). Agnin
(3.54) is valid only if J'(i) - $"(0) = —1, which is equivalent to
J'(i)-J = -C,

(3.64)
J(@)-AJ(5) =0 1<4,j<8,
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which is just the natural generalization of (3 51). Morcover, each term S(o) in
the sum defining S(z) is required to be of conformal dimension 1. This condition

translates into

AJ(i)-AJ(3) =0,
ap-AJ(j) =0, (3.65)
2a9 - J =C(L - 2).
In summary, the screening current S(z) = ZaeAM exp[i§”(e) - X(2)] has an

OPE, with the irreducible unit J(z) = }:f:l J(2), that is a total derivative if

the following conditions are satisfied:

J-AJ(@) =0, (3.66)
J(@) - J'(j) = K, + Cé,;, (3.67)
cs"(0)=J, (3.68)
C*=J@G)-J or (C?=J?, (3.69)
=-J'(i)-J, (3.70)

J'(G) AJ(5) =0, (3.71)
ag- AJ(F) =0, (3.72)
20 - J =C(€ — 2), (3.73)

with 1 <, j < Cand K, is some constant independent of j, whereas ag is defined

in (3.23).

Let us now pausc to make some interesting remarks. First, note from the
Wakioto realizations of su(n); and sp(4)x given in the previous section that
the equations (3.71) and (3.72) are trivially satisfied. In fact, the equation (3.71)

is a special case of the following more general equation:

J@)-J'(G)=0, 1<i,j<e (3.74)
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Sccond, we have checked explicitly in the cases of su(n)a and sp(4)x that the
number of the irreducible units is always larger than the number of the WM
curitents themselves. More preciscly, the total nimber of the irreducible units
from the KM simple root currents is always cqual to 2R (R being the number
of the positive toots). However, not all of the cortesponding 2R sereening cur-
rents are linearly independent, in fact, only R+ 7 (r being the number of the
simple roots) of them are. Morcover, the sereening currents obtained from the
irreducible units of the IKM compound root currents are always dependent on
the R 4 r independent screening currents obtained from the XN simple root
currents. In addition, the KM curients H (), cotresponding to the Cartan sub-
algebra, do not include any irreducible unit and thus they do not lead to any
screcuing current. The reason is that their phases in the Wakimoto realization
are always zcro, i.c.. H! = 0. which is imposed by the NN algebra. This can
be secen from (3.70). Indeed, H] = 0 amounts to € = 0, which is not consistent
with (3.68). To swmmarize, there are only r+ I? lineauly independent sereen-
ing currents of the pute exponential type. Third, by explicit computation, the
maximum dimensions of the lattices Aa s are n— 2 for su(n); and 1 for sp(4),
respectively. This translates into the existence of at least one sereening eurrent
with an (n — 2)-fold infinite sum of terms for su(n ) and a single infinite sum of
terms for sp(4)x respectively. Finally, let us mention that in the case of su(n )y,
tlic screening cuirents obtained through our procedure coincide with those ob-
tained in reference [36) except those involving infinite sums. Those conjectured
in (30] involve only semi-infinite sums rather than lattice sums as is demon-
strated through our method. As far as we know the screening currents in the
casc of sp(4); have never been reported on in the literature, so our procedure

provides them for the first time.
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Althongh the relations (3.66) through (3.73) convey enough information to
construct the screening current S(z) fiom the irreducible unit J(z), this is not
the end of the story however. In fact, S(z) is in addition required to satisfy the
condition of having OPE’s that are cither 1cgular or total a derivative with all
the temaining irreducible units (i.e., the oncs that are different from J(z)). Let
then Jy(z) = Zf;l Juy(i) denote any of the remaining irreducible units. If the
OPE of S(=z) with Jy(z) is a total derivative, then the set of equations (3.66)
through (3 73) must still hold with J(2), J'(1), ¢, J, C, K, being substituted by
Jo(i), J5(1), o, Jo, Co, Ko, respectively. Here the quantities with the subscript 0
are derived from Jo(z) exactly in the same way as the corresponding quantities

without this subscript are obtained from J(z). The OPE Jo(2)S(w) is a total

derivative in w only if
S"(N)=S"0)+ X\, XeAay,, (3.75)

where $”(\) is defined through S(z) = 3",

A aJ

. exp[¢S"(A) - X (z)]. Combining

(3.52) with (3.75), it is clear that A € Aay, ic.,
Aay, CAay. (3.76)
Furthermore, the combination of (3.52), (3.62) and (3.75) implies that
Jo/Co=J/C+0, o€y (3.77)

On the other hand, if the OPE Jp(2)S(w) is not a total derivative then Jy(7) -
S”(\) must be cither a positive integer or zero. In the former case, this OPE
is trivially regular according to (3.35), and thus S(z) survives this test with no

more checks. In the latter case however, namely

J@) - 8"\ =0, (i=1,..,6), (3.78)
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l S(z) must also satisfy the following condition should the OPE Jy(2)S(1) be
regular:
£y
D Jo(2) - [S"(0) + A = AJo(2)) = 0. (3.79)
1=1

for every A € Axy, C Aas. The equations (3.62) and (3.78) imply that

J - Ji(1) =0, (3.80)

Jo(2) - A7) =0, 1<4,j<0. (3.81)

Morcover, (3.62) and (3.79) lead to

Jo-AJ(j)=0, 1<,<¢, (3.82)
Lo

T-Jo=CY " Joli)- AJo(0). (3.83)
1=1

Let us conclude this section by the following remark. For Jy(z) = H(z), where
H(z) is the Caitan subalgebra curient, H'(z) - §"()) = 0 because H' = 0. This
mecans that the equations (3.89) through (3.83) must be satisfied for the OPE
H(z)S(w) to be regular. H' = 0 means that (3.80) and (3 81) e trivially
satisfied. For the same reason, the r.his. of (3.83) vanishes, Moreover, it can be
readily realized that the Lh.s. of both (3.82) and (3.83) vanish also because of
the restriction imposed on the OPE H(z)J(w), where J(z) is any KM curient,
through the KX\ current algebra (3.3), and thus both these equations are satisfied
as well. The fact that H(z)S(w) is always regular, instead of a total derivative,

accounts for the remark made earlier and that is the Cartan subalgebra currents

H{=) do not lead to any screening current. As our goal is precisely to construet
the screcuing currents, we then omit to consider these curvents H(z) in the
subsequent treatment. For the same reason, these currents do not appear in the

tahbles we are about to introduce in the next section.
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3.4 Examples

The purpose of this section is to illustrate through explicit examples, namecly
su(n)i, n =2,3,4 and sp(4);, the construction of the screening currents in terms
of free ficlds. To aclueve that, our main tool will be the set of equations (3.66)
through (3.73) and (3.80) through (3.83). But to make thesc equations easy to
use i a systematic way, let us first introduce some convenient notations and
conventions As argned before, we expect to derive screening currents only from
the 2R KM root currents and not from the Cairtan subalgebra currents. However,
cach of the KN root currents consists in general of a sum of several terms. Let
J(z) = 1J*-0X(z)exp[eJ * X (2)] (a=1,.. ,N) denote a generic term coming
from any of these 2R KM root currents. N here is the total number of all the
terms involved in the 2R KM root currents and thus it is expected to be in
general larger than 2R In addition, we introduce 2 matrices constructed out of
the dot products J%-J'® and J*-J®, which are called the P matrix (P for “prime”)
and the B matiix (B for “bar”) 1espectively. Then we divide these matrices into
2R x 2R submatrices called “blocks”, cach of them corresponds to the subset of
terms coming fiom a pair of KM currents. As our method relies on irreducible
units, we further subdivide these blocks into submatrices of irreducible units.
However, this last operation is subtle and nontrivial because the notion of an
irreducible unit is scicening current dependent and cannot be defined in an
intrinsic way only fiom the IXM curients. In fact, we should subdivide the blocks
mto irteducible units only simnltancously while fulfilling the conditions (3.66)
through (3 73). Next, we refer to the submatrices of irreducible units by the
name of the corresponding currents, for example, Py, stands for the submatrix
of the dot products J()J5 (1), where J = 31 J (i) and Jy = 5% Jo(5) define 2

irveducible units. Finally, let us denote the sum of all the entries in any column
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in the matrices Py, and By, by C'Pyy, and CByy, respectively, With the
above definitions and conventions, the fulfillment of all the necessary conditions
beconies more transparent. More specifically, the equation (3.67) means that all
the entries in cach row in Py must be the same except for the diagonal entry
which must be larger than them by C; let us refer to this as “the P row rule”.

The equation (3.69) translates into
CB;;=C", (3.84)
for all column sums of B;;y. Furthermore, the cquation (3.70) reads now as
CPyy = —C, (3.85)

for all column sums of Py also. In principle, the P row rule together with
(3.84) and (3.85) are cnough to single out the irreducible units and thereby
the construction of the screening currents follows. However, one must make
sure that all the screening currents thus constiucted are indeed genuine in that,
they still mect all the criteria w.r.t. all the other irreducible units and not just
w.r.t. the irreducible units from which they are derived. For that matter, let
J(z) be an irreducible unit giving rise to the screening cunient S(z) through
the P row rule together with the equations (3.84) and (3.85), and let Jy(z) be
any other irrcducible unit. To check the condition that the OPE Jy(2)S(w)
is acceptable, we first compute C'Pyj,. If CPyy, 2 C, then S(z) suvives the
test already and no more checks are needed. If CPyj, = —C, then we must
check that the P 1ow rule together with (3 84) and (3.85) arc also satisfied
with J and C bcing replaced by Jp and Cp. In addition, we must make sure
that (3.77) is satisfied and Aay, C Aay. Finelly, if CPyy, = 0, the equations
(3.82) and (3.83) must then be satisfied. In particular, (3 82) means that the

column sums C Pj,; must all be identical, let us call this the “P column rule”.
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Morcover, (3.83) amounts to requiring the sum of all the entries in By, divided
by C to be equal to the sum of the diagonal entries in Py, ;, minus CPy,j,;
let us refer to this as the “P diagonal rule”. Again, one must also check that
Asyy C Aay. Note that if cither J(z) or Jy(z) is a one-dimensional irreducible
unit, that is the corresponding P and B matrices are 1 x 1 matrices, then all
the above conditions are trivially satisfied except the P diagonal rule, which
further requires us to check that the single entry in By, is zero. We now
further proceed by applying the above rules and conditions to explicitly derive
the sercening enrrents for su{n)y, n = 2,3,4 and sp(4)x. To avoid cluttering the
notation, let us denote the screening current S(z), which is obtained from the

irreducible unit J(z) = iZle J - 9X (2)expls] % - X (2)] = Jevezmmae(5) by

St w(z)= Y expli(S”(0) + o) - X(2)], (3.86)

o€AAy

where 1 < a, £ N. What is missing in (3.86) is the lattice Aa s, that is the set
{a1,...ae}, and the vector S"(0) = C(J% + ...+ J%). The derivation of these

quantities is illustrated below.

Example 1. su(2);

In this case R = 1, the two KM root currents are written in Table 1. Each
of them consists of a single term, that is, N = 2. The corresponding 2 x 2 P and
B matrices are given in Tables (2a) and (2b) respectively. At this point, we can
already deduce that no screening current involving infinite sums of terms exists.
This is because the maximum dimension of the lattice Aa s is zero in this case.
Morcover, we cxpect only two screening currents, each of them consisting of a
single term. Indeed, Tables (2a) and (2b) show that £ = 1 and C = 1 for both

cases, which means according to our notation (3.86) that the screening currents
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are Sz} and §7(2). Morcover, it can casily he seen that the OPE's J'(2)S%(w)

and J*(2)§ (w) are both trivially regular beeause €0y, = C = 1 for both eases.

Example 2. su(3);

In this case, 2R = 6 but 4 KM root curtents are expressed as sums of
2 terms, i.c., N = 10. These terms are presented in Table 3, whereas their
corresponding I’ and B matrices are respe.tively given in Tables ((la) and (4b).
There, the lines separate the blocks of KN currents. The next step s to look
for the irreducible uuits in each block. For this putpose we resott to the P
row rule together with the equations (3.84) and (3.85) to fitst figure out af the
whole block is f1reducible  If not, we further proceed by dividing the block to
smaller and smaller units until we get nieducible units, in which case we sepatate
them by dotted hnes as shown in Tables 3 and 4 It can easily be checked from
these tables that the ireducible units are JY, J2, J3, JY 0%, J0, J78 and J910
because they satisfy the P row rule and the eqnations (3 84) and (3 85)  All these
irreducible units have C = 1. The independent sereening currents are therefore
SY2). S2(2), S¥(z), S¥(2) and STE(z). Because there ate two mdices in S7¥(z),
this screening currtent consists then of a single infinite sum of tenns associated
with the lattice Aay, which is zenerated by J# =77, The other irnteducible units
lead to screening currents that are dependent on the above five In particular,

we have the following identifications:

1 2
S'z)=S5(2),

S%(z) = §%(=), (3.87)

5§910(z) = §7¥(2).

This is not the end of the story though, becanse we must still check that the

above five screening currents are indeed consistent w.r.t. all other KM currents.
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Sinee most of the irteducible units are only of a single term type let us remind the
rematk made previonsly and that is all consistency conditions are automatically
satisfied except that the single entry of By, must be zero. To illustrate that,
let us content ourselves to work through an examnple For that, we present the
details of the treatment leading to §1(z) from J'(z) We start out by looking
at the first row of the P matrix given in Table (4a) If this row contains any
nondiagonal entry in Ppja, @ # 1, that is larger o1 cqual to 1, then S!(z) is
consistent w.r.t. the irreducible unit J¢. This is the cise fora =5 and a = 9. If
however the entry jj. = 0, then we must make sure from the first row of the
D matrix that B e = 0. It is casy to sce fiom Table (4a) and (4b) that this is
so if « is equal to either 2, 3, 4, 6 or 7. Finally. that ;i 3 = —1 simply means
that S'(z) = §%(2) as expected from J' = —J% The other 3 screening currents
52, 8% and §° can similarly be checked to satisfy all the consistency conditions
also. Let us now illustrate the process of chiecking the consistency conditions
of ST involving an infimte sum of terms, w 1.t. all other KM currents. First
we compute the value of CPyy,, where now the irreducible unit is J = J8
according to our notation (3.86). For that, we focus only on the Tth and 8th
rows of the P matrix and sum the entries i1 each column except the 7th and
the 8th. If CPyy, > 1, this means that ST is consistent w.r.t. Jy and no more
cheeks are requited. This is the case if J, is aither J* or J'. If CPyy, = 0, we
must cLeck that the P column rule and the P diagonal rule are sutisfied and
in the process determine the unit Jy because CPyy, = 0 alone is not enough
to do that. It can readily be checked that this case happens with the above

rules satisfied if the unit Jy is either J1'? or J%5. For the remaining columns

however, C'Pyj, = =1, that is, we should satisfy the P row rule for Jy together
with CBy, 4, = C3 and CPy, 5, = —Cy. The latter conditions are also satisfied

with J = J»!'% and C¢ = 1. This means that S7% = 5219 and Aay = Aay,,

68




I which is confirmed by NJ = J® — J'7 = J'W0 1" = \ J,.

Example 3. su(4)

Here. there are 2R = 12 KM root currents giving 1se to N = 32 terms. This
case. though too long, displays the same features of su(3); the only difference
is that now a two-dimensional lattice Ayy arvres. We have omitted to display
the 32 x 32 P and B matiices for su(4)x becarise they are lengthy. However, we
carried out the explicit treatment of constructing the screening ennrents, This
is displayed below without much details. The <u(-); KM root curtents together

with the terms involved in cacly of them are
J_gay:  JLTHTY
ooy JNIY
J iy J%
J_qa: JLJIY
J_(21y: Jo
J_ (1) Jlo;
Jeaay:  JU TV

J+(23) : JM,J”),J“'.

Jeany:  J TR TN
Tiiay : J20 g2 g
Tizny - B CAI EAN R L
Jore) : JB g0 g0 gm g
Fiom their respective P and I matrices we consistently construct 9 independent
T screening currents, which are 1, §2, §3, S, §7%, §%, S11, (1016 GITIEII ynd
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the following dependent. ones:

pied

ST= 5",
S8 = 8%
5% = §5,
SIO = 53’
S? = 5!,
513 = 55’
315 = SG,
52021 = g11,16, (3.89)
§7 = §°,

23,24,25 __ o17,18,19
S y ) = S 1 s

§% =5,

o

S$¥ =gt
528 = Sll,
529 = 511’

§30,31,32 — ¢17,18,10

Example 4. sp(4);

In this case, there are 2R = 8 KM root currents leading to N = 20 terms,
which are given in Table 5. The corresponding P and B matrices are displayed
in Tables (6a) and (Gb). The treatment of constructing the screening currents
follows exactly that of su(3);. More precisely, we find 6 independent screening

g cuirents. They are according to our notation (3.86) St, S?, 83, 85, §910 and
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S§1+13 In addition, we find 12 dependent ones, which are the following:

St=8"=8%=g%

S§P = Sl = 82,
S = g2 = g3
(3.90)
SIHI6 = G190 — gI213
s = gt

318,19 — Sl(‘),l? — 59,10

3.5 Explicit formulas

Here we propose to give the screening currents in a familiar form that is
widely used in the literature [20,36,37]. For that, note fiom the above examples
that the number of the independent sereening currents is always r + R, where
r and R arc again the numbers of the simple roots and the positive 1oots re-
spectively. We may then label the independent sereening currents as S, and
Na, Where a, stands for a simple 100t while o stands for a positive root. It can

casily be checked that the following screening currents are common to su(n)y:

o = eXp(—1tty), (3.91)
and
Sa, = exp{e[(k + h)va, = (K + h = Duqa, + VE+ hay - ]}, (3.92)

with 2 = n. The above formulas with h = 2 exhaust all the screening currents
for su(2);. However, for su(3)y there is one more independent screening cutrent

given by

Sa, = Z exp{i[(k+ h —n)vg, —(k+ h—1—nlug, — n(ve, — Ua,)
n=—o0
+ NVg tag = (7 = DUay+ay + VE + has - @}, (3.93)
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with o = 3. For su(4),, besides all the above screening currents with A = 4,
‘ there is one more screening current (corresponding to the third simple root a3)

expressed as a double infinite sum of terms. It reads as follows:

o0

Sa, = Z exp{if(k+h=n—mg, —(k+h~1=n—mus, —n(va, — tUg,)

n,m=-—00

- "71(”014-02 - u01+02) + NMVas+as — (71 - 1)u02+03

+ MV, +aztas = (M = Dla,+astas + VE + has - o]}, (3.94)

with i = 4. Finally, for sp(4)s the i, type screening currents are again given in

(3.91), whereas the S, type screening currents read as follows:

Sa, = z exp{i{(k+6—n)vg, = (k+5—n)ua, —n(vVag — Uag)
+nvg, — (n— g, + VE +6a, -]}

Sar = 3 exp{i/2[(k+4+2n)va, = (k+2 + 20)uq, +2(n = 1)(va, — Ua,)

( —2n — 1)va, + 2nua, + VE+ 6ay -]},
(3.95)
where a) = aq2), 02 = a2y, a3 = o)1) and a4 = o). Note that both of the

above screcning currents consist of a single infinite sum of terms.

3.6 Conclusions

In this chapter, a systematic method, to construct screening currents in
terms of free fields in CFT with a KM algebra, is presented. For the sake «.
illustration, a detailed treatment is explicitly displayed in the cases of su(n),
n =2,3,4, and ap(4)s. These are the KM algebras whose Wakimoto realizations
arc presently available in the literature. However our method is completely
general and can be applied to any other KM algebra provided that its Wakimoto

( realization is achieved. Even at this point, building upon the explicit examples
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we have worked out, we may expect some general results to hold for any K2\
algebra. In particular, the nuinber of the sereening currents is always r + I,
and the expressions of the sereening curtents of the 7 type are still as given in
(3.91). Clearly, further investigation is required to elarify this point. Finally, o
method gives rise to the lattices Ay which encode all the information needed
to unravel the stiucture of the sereening currents. In fact, these lattices are
interesting in their own 1ight in that they may encode enough information to
derive the Wakimoto realizations of the KM algebras themselves hesides their
screcning currents.  As discussed in chapter 1, the scereening curtents can be
applied to detive the characters, the fusion 1ules and the correlation functions in
the Coulomb gas formalism. Now that the screening curtents for KM algebras
are available, it 1s then in principle possible to derive the above gnantities in
CFT’s with KNI algebras. In fact, some work in this direction hias already been
achicved in the case of su(2); [20,38,40]. Unfortunately, this case is trivial and
does not display most of the features of the su(n )y o1 general KNFalgebras This
is because for su(2); » = R and the screening enrrents involving jufinite sums
of terms are absent  The use of the latter screening currents is not trivial and
investigating it may lead to new insights about KM algebras. Therefore, a full
treatment of su(3)y which embodies all the features of general KM algebras is
highly appealing and desirable. Finally, let us mention that though this method
is designed for CFT’s with KM algebras, we believe that it can also be applied

to other CFT’s such as the parafermion CFT’s for example [41].
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Chapter 4

Embedding structure of Verma modules of the 1V algebra

Thie purpose of this chapter is to desciibe the embedding structure of the
Verma modules of a 1V3 algebra [15]. This is carried out through the free field
realization (FFR) of this algebra. This structure is summarized in a set of in-
tertwining diagrams, which in turn allows us to derive the irreducible character
of a ptimary completely degenerate Verma module (PCDVM) of V3 in terms
of the chaacters of its Verma submodules. The irreducible character thus ob-
tained through our method [21] proves to coincide with tlic one conjectured in
the literatuie [42]. Our approach adopted here can be regarded as the direct
generalization of the Virasoro case presented in chapter 2. The layout of this
chapter is as follows. We begin with an introduction to the 13 algebra in the
minimal unitary series and fix the notation. Then we review the free ficld realiza-
tion of this algebra. Next, we use the screening charges to explicitly construct,
in tetms of free ficlds, the null states in a PCDVM. This allows us to describe
the embedding stiucture of V3 Verma submodules contained in this PCDVM.
After that, we represent this structure through a few intertwining diagrams in-
volving the Verma submodules and the screcening charges. Finally, we use these
intertwining diagrams to compute the irreducible character of a PCDVM of the

TFy algebra.

4.1 11; algebra in the unitary minimal series

A two-dimensional theory with a W3 algebra is another example of a RCFT
based on an infinite-dimensional algebra that extends thi Viiasoro one. In par-

ticular, this mcans that a CFT with a W3 algebra is still exactly solvable despite
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' that the central charge ¢ is larger than 1. Here we consider only the unitary 11,
l algebra, which is characterized by the cential charge
=921 - ——— .

=21 p(p+1)]’ (+.1)

wliere p is a positive integer larger than 3 Note that 1 is related to the su(3)

Kac-Moody algebra. Indeed, the above central charge is the same as that of the

cosct model su(3), x su(3)1/su(3)p41. This coset model is obtained through

the Goddard-Kent-Olive (GKO) construction [33] and the associated energy-

momentum tensor is derived out of the su(3)xy Kac-Moody cuntents via the

Sugawara procedure [39]. In analogy to the Vitasoro algebra which is generated

only from an energy-momentum tensor, the Wy algebra is generated from an

energy-momentum tensor T(z) and a spin 3 operator 117(z). The oscillator modes

of T(z) and T'(z) satisfy the algebra
[an Lm] =(n — m)Lngm + 11) C(” ”)5n+m.0»
(L, W] =(2n —m)Whym,
(W, Won) = 550 0 im0~ b

1
+(n — m)[ (n +m+2)(n+m+3)— =(n+2)(m +2)|Luym,

(4.2)
1
wlicere lz ~ 16
t T '77+ 5¢’
1
A, = ,\Z s LpLn i +'5°ann7 (43)
=—00

=1 +D01=1), Tasr =2+ D1 =1).
The states in the Verma module V (I, w), with primary state denoted by | hyw >,

are given by

| >= H H L" IVf’] [ hyw >, ny,ny =0,..,00 (4.4)

1=131=1




where | Iy > satisfies

Lol lyw>=h|hw >,

Wo | hyw>=w|hw >, (4.5)

Ly | hyw>=W, |hw>=0, n > 0.
Note that the above equations (4.5) generalize the relations (2.30), which are
required in the case of the Virasoro algebra. The ecigenvalues h (conformal
dimension) and w are specified by four positive integers ny, ng, my and my (or
eqnivalently by the two-dimensional vector (gl) whose components in the
9

orthonormal basis are A1 and 82) in the following wayt:
Ny 1y — LN . — _—f___
h (n; m_») A= 2005 12p(p+1)’
£=3(p+ Dy +na) = plmy +m2))> + {(p+ 1)(n1 = n2) — p(m1 — ma)]? — 12,

{)
o (n ) = 3005 3918 + 6o — 03l (46)

with the condition that ny, na, m; and m, are so that

ny +ny < p,
(4.7)
my+ms<p+1.

In the course of the subsequent trecatment and depending on the context we will

— B\ _ ny My
ﬁ:ﬂ<ﬂ2)=ﬂ<nz m2>' (48)

ny mqy
2 N2
mary state unless it is clearly stated that ny, ng, m; and mo satisfy the inequal-

use the notations

However, let us point out that g ( > does not necessarily specify a pri-

ities (4.7). In the orthonormal basis, the vectors 8 and oy are given by

[3(”] ml> _ ((‘2-{-711 +n2)a++(2+m1+mg)a_>

1]]"‘"'>a+ + 1111—3m2a_

ns m
i , Ve v (4.9)
ap = ("‘(C\'+J'a'—)) — <\/1)(0p+1)) .

i We will elaborate more on the origin of the integers ny, ng, m; and my, and

3\ . .
the vector 4 (;3' in the scction 4.2,
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bis defined in (4.3) whereas a4 and a_ read as follows:

pt1
P

) T (4.10)
a-= 2V

4.1.1 Symmetries of the 113 algebra

o}
+
|
IS | »—

Here we summarize the symmetries of 17 representations, which are per-
tinent to the subsequent analysis. It can readily be checked through (-1.6) that
the following transformations are synimetries of the TV algebra:

a) Translation symmetry:

h(m m,):h(nl—}-k,p 771.+L‘1(])+1)>

2 Ma na+ kap a4 ko(p + 1) (4.11)
wl(™ MY (M +Rkip my+ky(p+1) Ky ko € Z:
my ma na+kap ma+hy(p+1)/)° e ’
b) Z2 symmetry:
ny m —ny  —m.
g Mo =Ny -1y
(4.12)
ny m —-ng  —m;
w(x 1)=w< 2 z);
na Mg —ny; -
¢) Z3 symmetry:
] (n1 7Tl1> h(—nl—-ng —-1my —7712)
1 = 9
ng My n my
(4.13)
7y 1y —Nn); =Ny —My — My
w =w .
Na My ni m
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4.1.2 Degenerate representations of the 13 algebra

As discussed in reference [15], the representations of the minimal series of
the TV algebia are completely degenerate. This means that the PCDVM V (k)
(henceforth, we consider only the eigenvalue h but we should keep in mind that

whenever A is known so is w, as is indicated in (4.6)) contains an infinite number

of null states | hy >, where N stands for the degree of the states, as mentioned
in chapter 2. Thesc null states are such that

Lofhy >=W, | hn >=0, n >0,
(4.14)
Ly ‘ hn >=hy l hy >= (h-{- .N) | Iia >,
where 7 is given in (4.6). Using the symmetrics of the 113 algebra, we will see

in the subsequent sections that Ay can always be written as:

hy =1 (”1 "“) = h[ﬂ(Z: "“)], (4.15)

ny My me
for some integers ny,ny, m; and ma (not necessarily positive), which will specify

the set of null states.

4.2 Free field realization of the W; algebra

The RCFT with a 1175 algebra whose central charge is given in (4.1) can

xXl
Xz) [15]. The ficld

be represented in terms of a two-dimensional free field X (

components X; and X, are now correlated like
< XNo(2)Xp(w) >= =26 log(z — w), a,b=1,2. (4.16)

From now on, we only consider the Virasoro part of Wy, though we keep track of
all the syminetries induced by the whole W’ algebra [15]. The energy-momentum

tensor T(2) is represented in terms of the vector X as
1 . 2
T(z)= —:1-[0X(z)]2 +iao - 0° X(2), (4.17)
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where the normal ordering is understood. ap is the same vector as the one
introduced in (4.9). Again, it represents a background charge placed at infinity.

The highest weight states are represented as exponential vertex operators, i.c.,

Vs(2) = expliB - X(2)], (4.18)

my

, . n
and are specified by singular vectors ( !
ny, mp

). B specifies a primary state
if the sct of integers ny, ny, mi and my satisfies the inequalities (4.7); otherwise
it specifies the null states for special values of this set of integers. This will be
worked out in the subsequent analysis. The conformal dimension of V() is still

as given in (4.6). However, the constraints (4.7) are not necessarily satisfied.
) y

Furthermore, in this FFR the central charge is given by
¢ =2(1-12a3). (4.19)

Substituting ag in (4.19) by its value given in (4.9), we recover then the formula
(4.1) of the central charge. The other important ingredient in the FFR recipe is
the sct of screening currents [18,20). In the present case these screening currents
are operators of conformal dimension 1, whose OPE’s with both T'(z) and 1V(z)
are either regular or a total derivative. Four screening cuirents meet these

criteria. They are expressed as exponential functions of the fice field X'(z)

5%(z) = explied - X(2)], a=12 (4.20)

+

Here the vectors e

are given by
eF = azu,, a=1,2, (4.21)

where a4 are defined in (4.10), and the vectors u; and u, are

Uy = (1, \/g),
(4.22)
U = (1, —-\/5)
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As cxplained in chapter 2, the screening currents allow the construction of
an infinitec number of unll states in the module V3. More specifically, these null

states arc derived by means of the above screening currents as {15,20]

%dz SH(z)Vy_p22(0) =QV,_2.2(0), a=1,2 (4.23)
1—]
In nfeF nosum w.r.t. ais meant and the integers n¥ are obviously non-negative.

Let us point out that the states thus constructed in (4.23) do not fully satisfy
all the criteria of the null states unless the last integral contour is closed. As
cdiscussed in references [18,43,44,45], the closure of the last contour amounts to
requiting the difference of the degrees of the states QV,;_ + 1+ and Vj to be a

non-negative integer. This difference of degrees can easily be worked out as

No = Mp - nj +. )—- h{(B)

(4.24)
= —n3[1 +2¢F - B — (na + 1)(63)2]’ a=1,2,

where 2() is defined through (4.6). QV;__ 2 4, introduced in (4.23), is a null
state in the Verma module Vy only if the above N, is a positive integer. In this

case, the equation (4.24) translates into

+ l-i-na(:,:2 1+mjlt

Ber = 5 a=1,2, (4.25)

for some positive integer m, so that N, = n, :4. This means that QVﬂ_nie:t is
a a
a null state whose degtee is n,m, above tha* - ¢ ;. Moreover, it carries the same
quantum numbers w.r.t. the V3 algebra as thor 2 ) Vg _nt ety and consequently
a a

these two modules are identified.

As argned in reference [H4], if we require the vacuum state (8 = 0), which

corresponds to the identity operator, to be singular, the equation (4.25) then

implics that (eX)? is rational. It can be readily scen that this condition is
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satisficd by the four screening vectors ¢, a = 1,2 given in (44.21) and (4.22).

a -

Indeed, the latter relations together with (4.10) lead to

(e7)? =4a? = p-{-l’
P (4 26)
—-\2 2 I
(e;) =4n_,::—-—_*—-1—, a=1,2
p+

According to (4.25), the intesers n¥ and mZE may be negative as well.  This
is however not incompatible with (4 23) and (4.21), which suggest that these
integers must be positive. The reason is that the dot product 5. ¢ in (4.25) is

@

invariant under the translations discussed earlier, namely,

(nf.mi) = (0¥ + kfp,md +1F(p + 1)),
(4.27)
(n,my)— (ng +k(p+1),mg + k. p), l.';”,k;’ €t, a=1.2

This means that when these integers are negative it is always possible to use
(4.27) to replace them with positive numbers. Consequently, the singular veetors

ﬂ(nf,mf) may be without ambignity patametrized by nk,

mflt cZ,a =12
This iinplies that sums and differences of singular veetors are also smgulin vee-
tors, that is, the set of all singular veetors {23} spans « lattice, which is
denoted by Ag. Since the conformal dimension of the sereening enrrents is 1,

(4.6) leads to

(521 .
Gceg =5 T 5 a=1,2 (4.28)

This trauslates into
V2as(nE =0,m¥ =0)e Ay, a=1,2. (4.29)

Let us wow introduce another lattice, referred to as A., whose basis is given
by the “positive scctor” vectors {\/:é(,a"’, a = 1.2} (we could have chosen the

“negative scctor” basis instead {V2¢7, @ = 1,2}; the choice of the basis is not
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relevant). In the oirthonormal basis {&,7}, the singular vector # is written as

3 (ﬂ' ) Let us define the vector 8* so that

2
8 (g‘) =3 (_ﬂéz) . (4.30)

This means that 8* is obtained through the Weyl reflection operation S; on f

w.r.t. the & axis, i.e.,

o (2)=s08()=p—2s-mi=p( %) @an

Note that #* is also a singular vector, that is, it sutisfies (4.25). This is so

because of (4.26) and the relations
ﬂ* ) eih = IB - eét’

ﬂ*-ef:,@-eli.

Now taking into account the Z, invariance introduced in section 4.1.1 together

(4.32)

with the equation (4.32), and replacing in (4.25) 3 by 2a9(nE = 1,m = 1), it
is clear that there exist four null states at level 1 above V,4,, whose quantum

numbers are the same as those of

Vyoott =V,2,  a=1,2. (4.33)

/
200—¢g

This means that the screening vectors {v2eF, a = 1,2} are themselves singular
veetors and thus belong to Ag. Consequently, they must satisfy the equation

(4.25), which amounts to the relations

e ef € Z,
(4.34)
2p +1)et ey €Z, a,b=1,2.
It is shown in reference [44] that the lattice A whose basis is {v2pe}, a¢=1,2}
or {V2(p+1)es, a=1,2}isan evenintegral lattice. Furthermore, it satisfies

the inclusion relation

ACA.CAg =A%, (4.35)
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where A* is the dual lattice of A. Let {w/v/2, @ = 1,2} be the basis vectors

of the dual lattice of A,, that is,

wj . c;,'" =w, * ¢, = bap, ab=172 (4.36)

It can easily be seen that (4.36) is satisfied if

W= —Q Py, a=12; (4.37)

where g are given in (4.10), and

1 (4.38)

The relations (4.36) allow us to solve for the singular vector £ from the equation
(4.25). We obtain the following solutions, depending on whether we consider
the positive scctor serecning vectors {¢F, @ = 1,2} or the negative sector ones

‘at

{ex, a=1.2},

>

S 1+mt
g = Z[—i.;ﬂi(c:f = —izn—'l wi, (4.39)
a=1 =
2
1+n; 1+m>
B= Y [ - ey (4.40)
a=| - -

Notice that (4.39) and (4.40) are not mutually exclusive; this is because (4.26)

and (4.37) lead to
(ed)? = (eg) 7",

(4.41)
wE = —(eF)2F, a=1,2
These relations, in turn, allow us to rewtite (4.40) as
2 14+ m] 14+n,
B= [l -~ (4.42)
a=1 -




Pty

Thus, (4.39) aud (4.40) are consistent with each other provided that

n> =m] modp,
(4.43)
my =n) mod(p+1), a=12

Therefore, in order to specify the sct of the singular vectors 3, we need only to
speeify the “Coulomb charges” of the positive sector, namely 8(n},m?), a =
1,2. Henceforth, we w.” consider only the positive sector and omit the super-
seript {+} from the subsequent formnlae, but we should keep in mind that the

positive sector ‘s equivalent to the negative one through the redefinitions (this

remark will considerably simplify the subsequent analysis)

ng — m, mod p,
(4.44)
a = Nne mod(p+1), a=1,2.

This amounts to the interchange of the first column with the second one in the

. ny oy . . .
matrix ( ) , which defines . A singular vector 3 may then, without any
Tt mao

ambiguity, be written as

— ny Ny
3&1‘3«») - ﬂ(ng 7713)

This is the notation we will adopt throughout the remaining part of this chapter.

=Z[1+"“<ca>2 )

a=1

Table Tis a recapitulation of the various lattices that have been introduced in this

section. Ag = {l;1. {p} is a two-dimensional lattice constructed as a direct product
of the one-dimensional lattices Z(1)) = {VI;Z} and Z(l) = {VZ}. In Table

7, all the basis vectors (gencrators) are scaled by ({;,12) = [Qp(p +1),6p(p+1)].

4.3 The Weyl-like group of the V; algebra

By analogy with a Kac-Moody algebra [46], where the firite Weyl group

and the infinite translation group associated with the root Liuce are used [38]
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to map a highest weight state to its null state deseendants. we introduce (as in
reference [44]) in the case of the 11y algebra a finite Weyl-hke group called G
and an infinite translation group T, associated with the lattice .\, to fulfill the
same role of mapping among null states  In fact, the relation between ¢ and
the usual Weyl group is explicitly worked out at the end of seetion 4.5 of this
chapter. From the expression (4.23) of the null states belonging to the Verma
module V}y, we read off the following action of G Let ¢, be a generator of G

and B(nq,mq) be a vector in Ag/v2. that is it satisfies (4 23), then
gal =B =neeq,  a=12, (4:16)
where again there is no sum w.r t. a.

As indicated previously, only the positive sector is considered, and henee the
subscript {+} is understood on any quantity with the subsetipt a. Obviously,
g.8 itself satisfies (4 25). Let us then for convemence rewrite (4.46), which

defines the two generators of G, in the “matnx form™

n my —In mij - Yy
18 = p = /3 .
12 Ma o —ng{l4wye) mo—ni(1+0v9) ny 4 ne Mg

3 ny  m 3 ’nl—ng(1+um) my—n(1+vyn) 3 ny 4 Ny 1y
2 = = *
T \ng ma -1, m, -1, My

where the matrix elements 14, and v,y are given by

l+uar o 1+ va
= Cb - “.
) 2

<

€q ' Cy

(4.48)

The four remaining group clements of G (including the identity) are obtained
through products of ¢; and ¢, Again by analogy with the Kac-Moody algebra,
one expects G to be well defined only on Ag/A, meaning that it is not well

defined on Ag, which is in fact the lattice of singular vectors. This is hecause
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the integers 1, used in defining G through (4.46), arc themselves not uniquely
defined. Indeed, according to the translational symmetry described in (4.11),

the relation (4.46) translates into
!/aﬁ = ﬂ — Ng€q — k][’(’a = ﬂ —Ng€q + ﬁ') ky € Z, (449)

where V28 € A. As the relation (4.49) suggests, it is the direct product of
G with the translation group T, associated with A] that is well defined on Ag.
This, in turn, defines the infinite-dimensional Weyl-like group of the 115 algebra.
Let us denote it by G

G=GxT. (4.50)

The generators of G are obtained as direct products of the generators of G
given in (4.47) and those of T, which are the two fundamental translations with
respect to the basis vectors of .\, As defined in (4.49) and (4.50), G can be used
to specify the set of null states contained in the Verma module V3. However,
it does not explicitly display the embedding structure of the Verma submodules
generated from these null states, that is, which Verma subimodule includes which.
Nevertheless, one can unravel this embedding structure by appealing to the
formula (4.24). To sce that, let us note that the transformations (4.47) amount
respectively to

Ny =MgpB) = h(A) =h ( i m1) - h (nl ml) = nymy,

ny +ny mo ng Mo

Ny = h(g28) — h(B) = h (nl +tnyom ) ~h (m ml) = ngmy.

—TM2 meo Ny My

(4.51)

Hence, a nccessary condition for the Verma module Vs to include the Verma

submodule specified by ¢,0 or g, is respectively

nymy >0, or mnymy > 0. (4.52)
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Furthermore. since we are interested in the embedding structute, we should
define the operators g; and gy in such a way that they map any singular state
specified by J to its “closest™ independent null states (generating maximal sub-
modnles in 17). in the sense that the degree difference they mduee must be the
smallest possible positive integer for cach possible form of 3 Recall that there

is a Z2 x Zg symmetry, and therefore 3 may be written in six different forms
n,

before it is mapped by gy or ¢go. For instance, if 3 (n

my i .
specifies a primary

m, 1 aprimnary

state, that is. ny, ny, my and my satisfy (L.7), the “closest” null states to this

primary state ate given by

LSy oy —-n mn .
3 =4 , Ny =nymy,
ny mq ny 1. om;
ng om ny 4 ny my
7253 Y=y v Na=n,my,
11 19 ~N) ma
y—ny p+1—1my 2p — 1y ny
ns ! =/ ! o No=(p—r)p4 1 =),
ny+ng o my 4 nn ny+ne—p m
| 2 2 2
ny+no ny - M ny+ne—poomy .
g3 =3 ’ ! v No=(p-n)p b=y,
p—n2 p+1-—m, 2p -1, My
ng+ny my4 )\ -1 ~ My - N Iy
913 = g2f = /3 :
—na -m; ny 4y g4 mo -y My

Np=(ny 4+ no)my + my),

03 p=ny—n: p+1l—my~mg — 19 My
‘ ny my TTAp—ny—ny o p41—1my -1y
D —n m .
= 5(2_7: mi y Na=(p—ni—n)p+1-—my —my). (4.53)

Let us now generalize this example to determine the “closest” states included in

!
n, i,

i . . . . . .
addition, let us consider the case where this singular state is in turn ineluded

t !
. Lo oo ny m
the Verma module of any singular state, which is specified by < ! ! ) In

ny ooy
o 19
reserve the mtegers ny, mg, my and my to label just this primary state, i.c.,

in the primary Verma module specified by /3 ( ) In the sequel, we will

they satisfy (4.7). As previously discussed, we want to define the generators ¢,

and ¢; so that they map the singular vector (written in its six possible forins)
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. n m . .« . " .

Iy ( ) n’l ) with the minimum positive degree difference. For that purpose,
n, T 2

we resort to the set of screening charges {Q,, ¢ = 1,..,6}, in such a way that
they specify which one among the six forms of 7 is being considered before the
genetators ¢y o1 g is applied on it. Notice that gy and g2, as defined in (4.47),
leave the second column invariant. This means that we can uniquely specify
the singular vectors /7 by means of the Zz x Z3 and the translation symmetries.
This is accomplished in such a way that the second entry of the first (second)
row is between zero and p + 1 (zero and p+1), and the first entry of the first
(second) row is a positive integer, before gy (g,) is applied on 8. Since there are
six possible ways for the second entry to be between zero and p + 1, then we
need six operators Q,(1 = 1,....6) to uniquely define g; and g, on Ag. These Q,

are

| !
S @
[ —
w ()

I
Lw
=

ny p+1-mg
n{ my+me\ _ ny' my’ "

" 1" = g2 " y Ny > 0,
n, m, ny myp+mg

ny p+1—ml—mg>
n
n; my

I
=
=

" 14
nj my "

1 1 , ny > 0.
ny p+l-—my—my

(4.54)

In the next scction we will use these screening charges to classify the Verma

submodules of the 113 algebra and to describe their embedding structure.
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4.4 The embedding structure of the 11y Verma submodules

Let again 13 be a primary module specified by the primary vector
ny Mo . . .

Je) N whicli means that the integers ny, no, my and my satisfy the
2 2 )
inequalities (4.7)  According to (4.53) and (4.54), if we apply a few times the
sereening charges 2, on 3, theu clearly the submodules of Vi fall into six differ-
ent classes of modules, whose highest weight states are specified by the following

singular vectors:

_ Fyp+ny mp\ _ o o ) ) .
A—{lj(l\"gp'*‘ﬂg ms =A(A1al‘.’)5 ]'I,L'ZEZ, AI""’JES& \

p= {5 (g0 ) =k ke -k et}
C= {5 ("";{;)’;‘ " " Z;‘) =C(ky k), kikr€Z, ki—ko€3Z},
D= {3 (i e ) =D, et bz},
E:{a(“xyf;"zzx)smmwﬁ kiky €2, ky—ky €37,
F={ﬂ<££:2: Zx)szuMJg, kiks € Z, M—AuESZ}.Mﬁm

With this notation, the primary state reads

ﬂC“’m>szm (4.56)

Ng Mo

It 1s noteworthy that this classification of null states of the V3 algebra may
be thought of as a generalization of the Virasoro algebra case [25]. In order to
find the embedding structure of the Verma submodules generated from these
null states, we need to work out through (4.54) the mappings of the sereening
charges @, between the various classes of the submodules (4.53) in Vy. Table 8
summarizes these mappings {the conditions set on k) and/or b, fix the domain

of definition of @,). Let us recall that the superscript {4} has been understood
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in the previous treatment

It is now explicitly restored in Table 8. This is

to emphasize that, in order to determine the complete embedding structure of

these Verma submodules, we need to consider the negative sector as well. As

explained helow the equation (4.43), the negative sector screening charges Q;

ate equivalent to the positive sector ones QF by simply interchanging the “roles”

of the n's and the m's in (4.53).

as those leading to QF, we define Q. in the following way-

Qlﬂ(,’
D
Q; i ("
Q,/i<
Q,/i(

*<

Q¢

il

il

it

7, 8

TN TN TN N

"
n} Tn] "
,,) ,y my >0,

n n
n m "

! lll ) 7"2 > 0?
£ o

"
1) —n 7”1 "
H n 1 7771 > 07
n, 7712

" n
n n
1 1 "
,,> , mg >0,

P —n2 m,

))1+7h my\ _ -3 nf'  mY
1l m! | =92 nm+n, mf )’

" 1y
P —Nn;p — N 7711 =g_ﬂ ny
ny my ] T I0\ p—ny —ng

Thus, using the same arguments and notations

my >0,

m
1

"
m

),m, > 0.

(4.57)

Again, we need to work out the ()7 mappings between the six classes of

submodules (4.55) in order to unravel their intertwining structure. These map-

pings are summarized in Table 9. It can readily be scen from Tables 8 and 9

that the sereening charges Q%

. satisfy the independent relations

QTQF =0f

Q7 Qt = Qfaf,

Qf T Qf =t Qi of,
QfQF = QFaf,
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Qi QT = Qi at.
QF QT QF = QfQf ot (4.59)
Qi Q3T = Qat,
QI QT = QfaQt,

Qi QI QY = QT QT (4.60)

together with a similar set of relations with the superscript {4} being replaced

by {-}, and the equations

QrQT =Q;Q;, i#i, Li=1,...,6; (4.61)

QfQT =0;Qf, iy=1,....6 (4.62)

The relations (4.58), (4.59) and (4.60) are schematically represented through
thie basic hexagons (a), (b) and (¢) of Figure 5, whereas the relations {1 61) and
(-£.62) arc schematically represented through the basic squares (d) and (e) of
Figure 6. Two plane projections of the three-dimensional intettwining, diagram
are respectively diawn in Figures T and S. Let us point out that Figure 8 dis-
plays the embedding of the Virasoro representations in those of the 1y algebra.
Indeed, if we single out any straight line of Figure 7 and folds it at its unique
point (submodule), from which two arrows emerge in opposite directions, then
we obtain exactly the same embedding structure as in the Virasoro case, which
is illustrated in Figure 4. The examples displayed in Figure 8 arce about the

straight lines of Figure 7 that cross the primary state A(0, 0).

4.5 Irreducible characters of the IV; algebra

In this section we will make use of the embedding structure, which is dis-

played through Figurcs 7 and 8, to compute the irreducible character of the
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PCDVM Vyy .0y, which is specified by the primary vector 4(0,0), in terms of

the characters of its Verma submodules Va C Vy(g,0y, where 8 is any singular
vector. Let us denote the itreducible module contained in Vyg,0) by Ta(e,0). Our
approach to derive the irreducible character is the extension to the W; algebra of
the method of Rocha-Caridi [31] and Feigin-Fuchs [47], which has been applied
to the Virasoro algebra. The “Virasoro contribution” to the character of the

Verma module ¥y, specified by the singular vector 8, is
A, (9) = ¢ 7% Tr gl (4.63)

The states in V3 arc given in (4.4). They lead to this more explicit formula for

AV

1 2=-c N
;\“r" = n2(q)q 21 +’(ﬂ), (4.64)

where 5(q) = ¢/ T]°2 (1 = ¢™) is the usual Dedekind eta function, and ¢ and

h(B) are respectively given in (4.1) and (4.6); but the relations (4.7) are not
meant unless 3 = A(0,0). The character shown in (4.64) can be simplified even

more to read

_.i._+;,(/3) _ 1 (ﬂ—ao)2
qp(p+l) = q . 4.65)
7@ (

Let us now compute more specifically the irreducible chatacter of I4(o,0). If

NV = =
7 1% (q)

there were no null states in V(g,9), we would have according to (4.65)

XIA(O.O) = va(o,o)' (466)

Figures 7 and 8 indicate, though, that V49 0y contains the maximal submodules
Vb(o,0), VE(0,0y and V(s 1), which are not contained in any other submodule of

Va(0,0)- Consequently, the character given in (4.66) would be corrected as

XTag0,0) = XVao,0y — (XVD(O.O) + XVgo,oy T XVFu,x))' (4.67)
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However, the equation (4.67) is not quite true because Figure 7 and diagrams

analogous to those in Figure 8 show that
Voo [ ) Veen = {Vioe + Vepn )
Voo [V ¥ran = {Tean + Vo b (4.68)

Veoo [ 1Vean = {Vaa.n + Vea,-n}-
This means that the characters of the submodules in traces were over subtracted
in computing the character through (4.67), and henee they should be added back,

that is,
NTag,0) = AN Vago,0y — (\‘o(o 0y T We o, o)+/\Vr(1 1))

+ (,\Vn(o,o) + A'¥e(0,0 + XVea + \Vp(<1,2) + AVhay + r\"c(z,-x))‘
(4.69)

The same argunient as before still holds and we 1nust then further correct the
character given in (4.69). In fact, it can be shown by induetion that the cotrect
final answer for y T10.0y 15 given by

F

Xlaom = 2 €(X)xx, (4.70)

NXN=A4

where A, .., F arc as defined in (4.55), and the sign function () is defined as
e(X) = +1, X =4, B,C;

(4.71)
X)) = -1, X=D,EF;
and
1 )
XX =D, Xtk =3 D, gqremm G, (4.72)
Ly, ko€Z 77 ky,ko€2
Ay -kyE3Z ky -k €32

Due to the relations (4.6), (4.55), (4.70) and (4.72), it is possible to explicitly

write X1, 4, in the following form, which agrees with the conjectured result 42]:

F
1 X))/ 12 ,+1)
Xaooy = _5 E : § \)qE( )/12p(,
\'=A JEZ
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§(X) = 3[(na(X) + na(X))(p + 1) — (my + ma)p + p(p + 1)(2k + j))?
+ [(m1(X) = na(X))(p + 1) — my —ma)p + 3p(p + 1)5]%,

(4.73)

where m; and mg satisfy (4.7), and n;(X’) and ny(X) are defined through (4.55)

as
nl(X) my — -
B (nz(X) m2> = X(0,0). X=A,.,F (4.74)
For instance
ny(C) = —ny — ng,
(4.75)
ny(C) = ny.

The character given in (4.73) can also be written as a lattice sum over A,
which is defined in (4.35). This can be readily achieved if we use the third
member of the relation (4.65) and the following formula for 8 (being replaced

by X(k1, k2)), which is obtained from (4.45) and (4.55):

X(k1,7) =(1 + 2n1(X);- ng(X))e+ e 2n2(X);- nl(X))e;'

_p+1 ( + zml;'mQ) + +(1+2m2;_n?‘] )8-2{-] (4.76)

+ (ky = j)pef + (ks — 2j)ped, X =A4,.,F;
where n1(X) and no(X) are defined through (4.74), and j = (k1 — k2)/3. Let
us note that X(ki,j) may in general be written as

‘Y(klaj) = X(O’O) + 6, X=A,.,F, (4‘77)

6 being a vector in A/v/2. Substituting (4.77) in (4.65) and using (4.70) together

with (4.72), we derive the character in terms of A

F
1 ) .
XIam = 73 §: > : e(A)q‘X‘°'°’ o) (4.78)
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where ag is the background charge, which in this notation reads

(ef +€7). (4.79)

Qg = --p+1

Furthermore, we can readily see from the Weyl-like group G as defined in (4.47)
that the vectors X(0,0), X = A,..., F, are all related to the primary vector
A(0,0) as

X(0,0) = g:A(0,0), gi €G. (4.80)

Conscquently, substituting (4.80) in (4.78) yields the following formula for the

character:

- 2
Xlio,0) = 2 z Z G(J)q(gA(o 0) a°+6) (481)
IEG A/V2

Let us further express the character given in (4.81) as a lattice sum over the root
lattice Ap of the finite su(3) Lie algebra and the associated finite Weyl group
W. For that purpose, let us first unravel the relation between G and W. We

choose as a basis for Ap the vectors

Q) = (\/5’ 0),

4.82
Qg = ("715’\/—.%_) ( )

Moreover, A(0, 0), as defined through (4.76) and (4.77), can always be rewritten

in the form

A(0,0) = 44(0,0) + An(0,0), (483)

where
2 1 - 1
4,(0,0) = n;\-}-inz p-;)- o + n13\/;22 P: g
Y4 .
= 2(p T 1)(n1wi*' + nawy),
2 -m +1

om0 2t [, o (e P,

1 1
_my 4 ot me + wi

2
=~ = Tt + p (w1+w ). (4.84)
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Using this notation, we can easily sec that
gi4(0,0) = 4,(0,0) + w,4,(0,0), 1=1,..,6 (4.85)

where g, € G and w, € W. Furthermore, after making a change of basis from

A to Ar and substituting (4.85) in (4.81), we realize that the character forinula

then becomes
— 1 @k
Xlapo) = n? Zwe(w) VER(An(0.0)+wAn(0,0))—a (0 95 0)s (4.86)
we

where the “level” of the Wj algebra is given by

k=p(p+1), (4.87)

and © is the usual theta function, which is dcfined here on the root lattice of

su(3) as

Ok (u,q,z) = e72miku Z q”z/ze—z"i”’. (4.88)
PEAR+S

4.6 Conclusions

In this chapter, we have fully described the embedding structure of the
Verma submodules of the W; algebra through the free ficld realization. This
embedding structurc is schematically represented through Figures 5, 6, 7 and 8,
which in turn allow the computation of the irreducible character of the PCDVM
of the W3 algebra. The form of the character thus obtained proves to coincide
with the one conjectured in [42]. The analogy betwcen the Kac-Moody and the
1173 algebras has been emphasized. This method can be in principle applied to
any other RCFT. In particular, it will be interesting to carry the present analysis
to the RCFT with a Kac-Moody algebra, where some screening currents are

expressed as infinite sums of terms.
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Chapter 5

Free field realization of the su(n); parafermion theory

This chapter is devoted to the study of the su(n); parafermion theory,
which is anothcr rational CFT. More specifically, we proceed from the Waki-
moto realization of su(n)r presented in chapter 3 to derive two free field real-
izations for the associated su(n); parafermion theory. In particular, we express
the parafermion currents, associated with the ncgative root and the simple root
su(n)r Wac-Moody currents, in terms of free ficlds. For the sake of illustra-
tion, the full free ficld realization of su(3)x parafermion currents and screening
currents is explicitly displayed. Each of our two free field realizations has its
advantages and drawbacks. The first one involves a set of orthonormal free
fields so that the ficld realization of the parafermion currents is easily obtained
from the Wakimoto realization of su(n)x. However, the field realization of the
parafermion primary ficlds turns out to be messy. On the contrary, the second
onc leads to simple field realization of the parafermion primary fields but in-
volves some lincarly dependent constrained fields. The relations between our
free ficld realizations and those recently proposed in the literature are outlined.
Finally, as the su(n); parafermion theory is closely related to the coset model
su(n) x su(n)e/su(n)ir+e, we then use the free ficld realization of the former to
sketch that of the latter. This chapter is organized as follows. We begin with
a background review of the simplest parafermion theory, namely, the su(2)
parafermion, which is commonly knovm as the Z; parafermion CFT. Then we
present our first free field realization of su(n)x parafermion theory in terms of
orthonormal free fields. As an example, the su(3); parafermion currents and

screening currents are explicitly written in terms of these free fields. After that,
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t we display our second free field realization, which is based on some constrained
non-orthonormal ficlds. Finally, we sketch the frec field realization of the coset

model su(n)r x su(n)e/su(n)r+e together with its screening currents.

5.1 Introduction to the Z; parafermion theory

This is yet another extended RCFT based on an infinite-dimensional alge-
bra [16,41]. It is called the Z; parafermion because it deseribes self-dual eritical
points in Z; symmetric statistical systems in terms of a set of fields with frac-
tional spins, i.e., parafermion fields generalizing the usual fermion field of the
Ising model, which is nothing but the Z, mmodel. Unless otherwise stated, we
consider in the sequel only the holomorphic sector bruring in mind that the same
treatment is valid for the antiholomorphic one. The Z; parafermion theory in-

volves the parafermion currents 1¢(z), { = 0,1,...,k — 1; where ¢y is identified

™
with the identity operator and £ is a positive integer. These parafermion cur-
ad
rents arc the analog of the Kac-Moody currents in that they, too, give rise to
a current algebra (i.c., infinite-dimensional algebra). Moreover, they satisfy the
Liermiticity condition 1/);r = tpr—¢. The conformal dimension (which is also the
spin) d; of 1 is given: by
(k¢
4=t (5.1)
k
for € =0,1,...,k—1. The parafermion (current) algebra is defined through the
following OPE’s (only the most singular terms are shown):
~2tm
Ye(2)hm(w) = com(z —w)"F [thegm(w)+...], L+m <k,
.'. -20(k—1)
'wf(z)d)m (w) = Ce,],-_m(z - w) ¢ [7»b€—m(w) + .. ‘]a m< E, (52)
-2k -0) 2d
Pe(2)p) () = (2 = w) |14 22 - wPT(w) +..0|,
where the structure constants ce,,m are so that
2 Fe+m+ 1)k~ L+ 1INk —m+1)
- .= : , (5.3)
k ’ T+ DI(m+ 1)k —£€~m+ 1)I(k+1)
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with I'(n) being the usual gamma function. In (5.2), T(z) stands for the energy-

momentum tensor of the parafermion algebra and satisfies the usual OPE

with the central charge
c= -2—(15{:—_;-_-—2-1—) (5.5)
The parafermion currents v, are primary w.r.t. T'(z), that is,
depe(w) | Ope(w) (5.6)

T(2)g(w) ~ (z — w)? +

zZ—W

Note from the equations (5.2) that all the parafermion currents can be generated
fiom 1, (z) = ¢(z) and 1/):[( )= t,blf(z). Therefore the representation theory of
the Zj parafermion model can be described in terms of these two parafermion
currents only. For that purpose, let us define, in analogy with the Virasoro case

as shown in (2.30), the primary states |{ > of the parafermion algebra to be
Agjanlt>= AT oy ile>=0, (5.7)

where n 2 0, € =10,1,...,k — 1, and the parafermion opcrators A and Al are

defined by
(= <]
Ple>= Y. 2714, e s,
n=-—oo
00 (5.8)
pele>= 3 atnmial, o>,
n=-—eo

The cquations (5.2) lead to the following conformal dimensions of the
parafermion primary states |€ >:

_l(k=20)

T ok(k+2) (5.9)

he
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The other states in the parafermion Verma module V¢ are obtained through
successive applications of the operators 4 and Al on |€ >. Morcover, as discussed

in the references [16,41,48], V¢ splits into a sum of submodules V! as

"l y (5'10)

The submodules V¢ arc generated from the Virasoro primary states, which are

defined as

|C, m>= A(m—-‘z)/k-—lA(m—-d)/k—l R A[/L_IIC >, (<m <2 - l,
; (5.11)
[€m > = Ai(m-{-'z)/kA.({m-{--t)/k . ..Az/kll’ > =t<m<L.
These states |¢,m > have conformal dimensions
b—0\(k — )2
hfn=( Ok —0+2) (k—m) Cl<m<o—t
4k +2) 4k (5.12)
¢ LE+2) m? T
hyy=——="-—, =(<m<\{.

4(k+2) 4k’
To conclude this scction let us mention that the Zp parafermion model is iso-
morphic to the cosct model su(2)r/u(1)s, that is, to the su(2); Kac-Moody
algebra with the u(1); (Cartan) subalgebra factored out. This can be seen from

the central charges. Indeed, the central charge of su(2); which is I%Lz can be

rewritten as
3k 2(k - 1) -
T n ) =1 TR (5.13)

2(k~-1)
k42

In (5.13), we recognize as being the central charge of the Z; parafermion
given in (5.5), whereas 1 is the central charge of the u(1)x factor. Therefore,
the Z; parafermion theory is sometimes referred to as the su(2)y parafermion

modcl. In the remaining part of this chapter we will concentrate on the free field

realization of the su(n); parafermion theory, namely, su(n)x/u(1)F =" [49)].
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5.2 Free field realizations of the su(n); parafermion model

As onr approach relies on the Wakimoto realization of the Kac-Moody al-
gebra su(n), [20]. let us then briefly remind some of its characteristics relevant
for the subsequent investigation; more details can be found in chapter 3. This
Wakimoto realization requires an r-component free scalar field ¢ and two R-
component frec fields u and v, whose components u, and v, are associated with
the positive roots a of su(n). Here r = n—1 is the rank and R = n{n—1)/2 s the
number of positive roots of su(n). Fuithermore, as already indicated through
(3.13), all the components of the field X' = (¢, u:v) are orthogonal, with the
Lorentzian signature (+,4;—). The Wakimoto realization of the su(n)x cur-
rents I7(z) and Ji, is given in (3.19), whereas that of the cnergy-momentum

tensor is displayed through (3.22), which can he rewritten explicitly as
i 9+
T= —5(0,\) +iag - 0°X

___.1~.2L.2_l 2 __ ;02 2, :92
= —=(dp) t o O o~ 3 Y [(Bua) = i0*uq — (9va)? + i%va),

2
a€dy
(5.14)
where A 4 is the sct of the positive roots and ayg is the background charge, which
reads
p 1 1.,
aop,u;v) = [Z\:’ (§)R,(§)’] . (5.15)

Here, p is the sum of the fundamental weights of su(n) and ay = Vk+n; &

being the level of the Kac-Moody algebra su(n)i.

5.2.1 Realization in terms of orthonormal fields

In analogy with the su(2)r (Zi) parafermion model, which is equivalent
to the coset model su(2)y /u(1)k, we construct the su(n)y parafermion theory

through the coset model su(n)x/u(1)f~", that is, we must factor out the fields
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that give risc to the Cartan subalgebra u(1)P~! associated with the Kae-Moody
(XM) current H(z). To this end, we must rewrite the KM currentas, which were
expressed in terms of (p,u;v) in (3.19), in such a way that this factorization
becomes apparent. This translates into imposing the following field realization

on the su(n); currents:

H = iVkdB, (5.16)
Jia = Vkiiqexp (iaB/VE). (5.17)

This defines the su(n)r parafermion currents i, and the r-component field
B. Note that 4o and '~y arc respectively the wnalogue of ¥ and ll':r, which
generate the Z; parafermion algebra (5.2). Combining the equation (5.16) with
thie expression of H as given in (3.19), we can easily read off the definition of B

in terms of (@, u; v). namely,
B= —I—(Q-W - > ava). (5.18)

\/7”: a€EA

As the number of the components of the old free fields ¢, v and v is r 4+ 2R,
clearly besides the r-component new frec ficld B, we need to introduce two new
R-component free fields f and g, whose components f, and ¢, are associated
with the positive roots of su(n). The components of the new set of fields (B, f; g)
are mutually orthonormal, with the Lorentzian signature (4, +; —). As can read-
ily be seen from (3.19) and (3.20), the J'4’s always depend on the combinations

u — v. This is consistent with (5.17) only if
U — Vo = —aB/VE+ . (5.19)

The equation (5.19) alone does not determine the ficlds f and g in terms of

(9, u;v). However, for simplicity we propose the following ansatz which is con-
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sistent with (5.19) (we are proceeding in a similar way to that of reference [50}):

Ug =5 faa (520)
1
ve = —=(aB + Z Aovgy)- (5.21)
Vi V€A

The equation (5.21) together with (5.18) yield
= 7=(0f+B +— Z D BApagy). (5.22)
* yeay feay

The matrix clements A,g introduced in (5.21) are determined through the or-

thonormality of the fields (p, u;v) as

a-f )
\/E(C¥+ + \/_k-) .

Therefore, the rclations (5.20) through (5.23) define the transformation from

Aap = VE(bap + (5.23)

the new sct of ficlds (B, g; f) to the old one (¢, u;v). This transformation is
cquivalent to that found in reference [50] (in fact, it is the inverse transformation
that is given there). As our aim is to factorize the u(1) ficlds in the KM currents

given in (3.19), it is convenicnt to define the transformation in the above way.

The energy-mowmentum tensor in this realization (B, f; g) reads

T=Tp+Tp,

1
Tp = - 5(0BY,

1 ; 1 .
Tp =Y [—g(afa)'-’ + %a’fa + 5(0.%)2 - za;'@*ga] : (5.24)

a€d 4

This means that the background charge ag takes on the following form in the

basis (B, f; g):
1
(B, i) = [07,(3) o5 (5.25)
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with
p . a/
0’+((¥+ + \/I)

That the background charge of g is more complicated is expected according to

a0 = L _
2

0 (5.20)

the equation (5.21).

Let us now claborate on the free field realization of the su(n)y parafermion
theory. The substitution of (¢, u;v) by (B, f; g) in (3.19) (according to (5.20)
through (5.23)) and the relation (5.17) cnable us to read off the free field re-
alization of the su(n); parafermion currents. Indeed, the parafermion currents
corresponding to the negative roots and positive simple roots of su(n) are thus

represeuted in terins of (B, f;¢g) as

Vo \/_Ofa oxp(iFa)+ Y Ofarpexsp(i(Foyp— Fy)),  (5.27)

BEa;
g>e
-1 n
Y, (0) +Z'r/""(l <)+ Z Yo, (I >), (5.28)
=1 I=J+2
where o stands for positive roots, a, (j = 1,...,n — 1) denotes the simple

positive roots, while the relation # > a has already been explained below the

equation (3.21) in chapter 3, and

tha, (0) = f{m 0f;+~\7—z Y Bgsl—(al + 1~ j)Aa,s

BeL
1—1
+ ) araydag+ ) (Aups = Augenp)l) exp(-iF; ) (5.29)
a€dy =1
1 .
’l/vaj(l <) =-—af(11) exp Z[F(IJ) - F(I,j+1)] (530)
vk _
Yo, (1 >) = \/—0f(1+1 0 expi[F(41,0 = Fy) (6.31)

The notation (ij), sometimes used for su(n) roots, is explained in (3.11), and

the fields Fy arc dcfined by

Fo=fo- ,,2; f(m + 5% (5.32)

104




DR B ey

In snminary, the equations (5.27) through (5.32) constitute the free field re-
alization of the su(n)r parafermion currents. This is the analog of the Wakimoto
realization of su(n)i given in (3.19) through (3.21). To conclude this section let
us mention that a full ficld realization of the su(n)y parafermion model must
include, in addition to the parafermion currents, the screening currents. In this
regard, we note that provided that the screening currents of su(n); are derived
in terms of (¢, u;v), the screening currents of the su(n)x parafermion model can
casily be obtained in terms of (B, g; f) through the relations (5.20) to (5.23) and

the mndding out of the D ficlds.

5.2.2 Example: the su(3); parafermion model

For the sake of illustration, let us present the explicit field realization of
the su(3)r parafermion currents and scrcening currents in terms of (B, f; g). To
avoid encumbering the notation. the two simple roots of su(3) arc denoted by
1 and 2, whereas the compound one by 3. The Wakimoto realization of su(3)x
given in chapter 3 and the relation (5.17) imply the following free ficld realization

of the su(3)x parafermion currents:

Yoy = - \—}'-;;[afl exp(iFy) + 0fs exp(i(Fs — Fy))),

thog =— -\;—k_;a 2 exp(iF2),

YPog == ﬁafs exp(iF3),

) 1
== —=((k+2)0f + —= ) (a1 - o — (k + 3)8:1) Audgi] exp(—iF})
Vi VE 4

- -ﬁ@fg exp(i(Fy — F)),
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g = — -\;_—[(L + 1)0f; — \/—ZAglagz]e\p(-—ng)
-I-i ‘—‘\/':—:afl cxp(i(ﬂ - F;g)),
s _—.7_;[(1» 2)0f, + \/. Z(al - @i — (k + 3)8,1)Audgi] exp(—~i(F) + F))

+ ‘7[—(13 +1)0fs + VEY . Audgi) exp(—iFy). (5.33)
k l

The su(3)r parafermion screening currents split iato two classes. The first
class screening currents are not expressed as pure exponential terms und are

associated with the two simple roots; they read

s§“) = — 10 f) exp(iGy),
(5.34)
S{) = — i0fs exp(iGa) — i8fs expli(Gs — Gy)).

On the contrary, the second class screening currents arc expressed as pure expo-
nential terms and are associated with the negative and the siinple positive roots.
They are given by

S = exp(—ifi),

Sf;) =exp(—if2),

S5 =exp(~if),

(5.35)

S =expi(fi - ok Gy),

S_(,_';) = Z expz’{fg + f3 — aiGg

nez
+n(fi+ fa— fr—=(g1 + 92 — g3)]}.
The G ficlds introduced in (5.34) and (5.35) are defined by
o-p
Go = fo T, (5.36)
o sex, o+las +VE)
o
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5.2.3 Realization in terms of constrained fields

As we have seen, su(n)r KM currents written in terms of the orthonormal
ficlds (B, f;¢), allow the u(l)’g"l factorization in a natural way, and thereby
the frec field realization of the su(n)r parafermion model can be readily de-
rived. However, as far as the primary ficlds, that is, the representations of the
parafermion algebra, are concerned, this set of fields (B, f; g) proves to be in-
convenient in that it makes harder the derivation of the free field realization for
the su(n), parafermion primary fields from that of the su(n)r primary fields,
through the modding out of B. To sce that, let us consider the Wakimoto real-
ization of the primary fields of su(n)i. It readsin terms of the fields (¢, u;v) as
[20]

Pax = exp —-Ez:_:A - -:l— z a (A= A)(uq —va)|, (5.37)

a€A,
where the r-component vector A is a highest weight of su(n) and X is a weight
belonging to this highest weight representation. Again to factor out the B field

let us substitute the fields (p,u;v) in (5.37) with the fields (B, f; g) by means
of the relations (5.20) through (5.23). This leads to

Par = darexp (—-——-\;—E/\ . B) . (5.38)

After factorization, the parafermion primary field @ax reads

i )
dar =cxp |———= z Aagy— = E (A=X)-aFq]. (5.39)
a‘*'\/":'-aEA.g. h €Ay

As a check, let us verify that the conformal dimensions of these fields are con-
sistent with each other. They are evaluated independently using their respec-

tive background charges. Thus, they are derived respectively for ®ax, ¢ax and
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Clearly, by = hz + h3 as expected. Taking into account the equation (5.32), the
above expression (5.39) is indced cumbersome and not suitable for the compu-
tation of the parafermion corrclation functions for example. To make it more

tractable let us define the following r-component ficlds:

¢ = 4 ak,,
n Q€A 4 ( )
5.41
¢2 - —'ﬂ CVFOI,
n x€A 4

where the ficlds E, are defined as

E, = fa - Z Baﬂgﬂa

ped+ . (5.42)

B.s = -——2——)50, o-f.
’ (1 arVk ﬂ+\/ﬁ(a++\/ﬁ) ¢

It can easily be checked through (5.42) and (5.32) that the fields ¢; and ¢, arc

orthonormal with a Lorentzian signature (+;-). In terms of these ficlds, the
cumbersome expression (5.39) of the su(n)y parafermion primary fields reduces

to the following simple form:

éa,\ = exXp [—i (i—A 1+ _}ﬁ'\ : m)] . (5.43)

Consequently, the 2r fields ¢; and @; prove to be convenient to represent the
parafermion primary ficlds. However, as the old basis (f; ) involves 2R ficlds,

we must then complete the new basis with 2(R — r) new fields. As ¢; and ¢,
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arc cxpresscd as sums over positive roots of fo and g, we propose then the

following form for the latter ficlds:

fa= z. (ardr + VEd2) + fa,
- (5.44)
Jo= " (Vg1 + ey d2) + fas

where f, ard §o are new fields assumed to be independent of ¢; and ¢,. But
then their number 2R is 2r larger than what is needed. In fact, this problem is
naturally solved because these fields are not linearly independent but satisfy 2r
constraints. This can be read off from the orthonormality of f, and g4 together

with that of ¢; and ¢, which yield

Y afa= ) afa=0, (5.45)

a€dy a€A G
fa(z)f,;(O) ~—Inz (60,,3 - %a . ﬂ) , (5.46)
Ga(2)§s(0) ~Inz (60;; - ;];-a . ,B) . (5.47)

Thus, the new basis, which is suitable for the field realization of the parafermion
primary ficlds, involves the fields (@1, fa; ¢2, 7o), With the constraints (5.45). In
this new basis, the cnergy-momentum tensor of the parafermion theory Tp reads

2
a+p

Hl+s T [eazeids -], e

a€hy

1 ' '
Tp =3 —¢7 + ¢ +

where the primes denote derivatives. Our energy-momentum tensor, containing
the constrained fields fo and §q, coincides with that obtained in reference [36].
It also proves that the set of orthonormal fields (f;g) is equivalent to the set
of constrained fields (¢1, f; é2,§) in representing the su(n); parafermion model.
To conclude this scction, let us note that the expression Tp in (5.48) can easily

be obtained from the energy-momentum tensor in (5.14) through the following
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redefinitions of the fields:
B
"\;— \/_(f 81 + ay ),
a-(asd1+VEda) + fa, (5.49)

Vo = \/—B \/_Oz (\/-d’l + a4 82) + Ga-

QFSIF—‘

5.3 Free field realization of the coset model su(n); x su(n)e/su(n)r+e

In this scction, we address the free field realization of the coset model
C = su(n)y x su(n)e/su(n)ise. As argued in the previous sections the su(n)i
parafermion model is isomorphic to the coset model su(n)i /u(1)], without any
background charge associated with the «(1)" B field. Sumilarly, we may ex-
pect the su(n); parafermion model to be schematically expressed as C/u(1)5.
u(1)% means that now the B ficld does have a background charge denoted by a.
This can be seen from the central charges. Indeed, since the central charge of
su(n)y is kd/(k +n) (d = n? — 1), the central charges c, ¢, and cp of C, su(n)y

parafermion model and u(1)} are respecctively given by

c=cp +cp, (5.50)
kd  2R(k—1) ]
Cp—k+n—r— k+n ) (5'01)
knd "
cp=1r— m, (052)

where r = n—1, R=n(n-1)/2 and k' = £ + n. The equation (5.52) clearly
reveals that the background charge associated with the B ficld is now nonvan-

ishing,.

As indicated in references [50,51], the free field realization of the cosct C
is derived through the Goddard-Kent-Olive procedure {33] in a nontrivial asym-

metric way. The currents of su(n)r4+¢ are not, as usual, direct sums of those of
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su(n), and su(n)e, except the Cartan subalgebra currents, which are still con-
structed in the standard way. In fact, su(n); is expressed in terms of (B, f; g)
with the energy-momentum tensor as given in (5.24), whereas both su(n), and
su(n)g+e are rcalized in terms of (¢, uq;va), Whose energy-momentum tensors
read as in (5.14). Furthermore, the fields (uq;va) corresponding to both su(n),
and su(n)i4+¢ are identified. These conditions translate into the following rela-
tions (the subscripts of the fields indicate which algebras the fields are associated

with):

VEF 0+ ngrge = VEBr + VI + no, (5.53)
T =T+ Ty —Tivye
1 2 1 2 1 2
=Tp = 5(0Bx)" — 5(0¢e)" + 5(O¢k+e)

, 1
+ip. O? <\/mtpe —Vk+ L+ mpH.e) , (5.54)

where T, Ty and T'p stand respectively for the energy-momentum tensors of
C, su(n)r and the su(n)r parafermion model. In (5.54), T — Tp is then the
cnergy-momentum tensor of u(1)%. It can be further simplified if we express it
in terms of the field B, which is defined to be orthogonal to @4 It can readily
be checked through (5.53) that B reads as

1
B= m(—\/ + 1By + Vo), (5.55)

In terms of B, the encrgy-momentum tensor Tp = T — Tp of u(1)} reduces to
1
Tp = --2-(613)2 + idop - 6°B. (5.56)
This Tp yiclds the following central charge cp:

ep =71 —12(a@op)? = r — adn(n? - 1). (5.57)
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The identification of this cp with that given in (5.52) determines the background

charge associated with B as
ao = k/\/kE'(k + k). (5.58)

Let us now sketch the free field realization of the screening currents of the
coset model C. These screening currents can be expressed as the products of
the parafermion currents and a vertex operator exp(iya - B) in such a way that

their conformal dimension is 1, that is,

S = ui exp(iveas - B), (5.59)
2
Sl - redosi o+ A =1, (5.60)

where A, = 1 — a?/2k and the screening currents Sg) arc associated with the
positive and negative simple roots a;. Solving the quadratic equation (5.60) in

Y+, we obtain

Y = (o 1)/ VRECR & ),
e =~k [/KlE + ).

To conclude this scction let us briefly sketch the free field realization of the

(5.61)

primary ficlds ® of the coset model C. Again, they are obtained as products of
the parafermion primary field @ A, as given in (5.43), and the vertex operators
exp(ef - B), for some g,
® = ¢p A exp(if - B). (5.62)
The equation (5.62) means that the conformal dimension h of ® is given by
h=A(AA) + hg, (5.63)

where

A-(A+2p) A

A(AAN) = -,
’ 202 2k

. (5.64)
hg = 55 (B — aop).
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Now let pe P{ and g € P.f.'”, with the symbol P§ being the set of dominant

weights of level £, i.e.,
Pi={plp-2:>0; p-p<k}, (5.65)

where A; denotes the fundamental weights of su(n). Then if we choose § as

(et K — kg

ki(k + &)

we recover the spectrum of the conformal dimensions of the primary fields @ as

B = (5.66)

given in reference [42].

5.4 Conclusions

In this chapter, we have constructed two free field realizations of the su(n)i
parafermion model. The first one is appropriate for the parafermion currents
whercas the sccond one is suitable for the parafermion primary fields. We have
also derived the free field realization of the screening currents of the su(3)x
parafermion model. Finally, we have sketched the free field realization of the
coset model C = su(n)y x su(n)e/su(n)k+e. Its energy-momentum tensor,
screening currents and primary fields are expressed in terms of the fields re-
alizing the su(n)r parafermion model and u(1)%. A case of particular interest is
¢ = 1, which means that C is nothing but the W, algebra [15]. Therefore, the
analysis presented in the section 5.3 is also valid for the W, algebra. Moreover,
the free ficld realization of the su(3)x parafermion model suggests that the the-
ory of the screening currents presented in chapter 3 in the case of Kac-Moody
algebras can also be applied to the parafermion algebras. Finally, let us mention
that the results obtained in this chapter can be straightforwardly generalized to

a parafermion model associated with any other Kac-Moody algebra.
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Conclusions and outlook

In this thesis we have shed some light on two-dimensional conformal field
theories (CFT’s), and we hope that new insights into this rapidly developing
subject have thereby been gained. We have highlighted the fact that the free
field realization provides a comprehensive and solid framework to describe several
extended CFT’s. Although most of the analysis presented in this thesis ean be
casily gencralized to more complicated cases, further investigation of the fiee field
realization is certainly needed, in particular, the usc of the screening currents,
which are expressed as infinite stuns of terms, in order to explicitly compute
the characters, the fusion rules and the correlation functions of CFT’s with
Kac-Moody algebras. A detailed study of the su(3)1 IKac-Moody algebra which
features all of the characteristics of gencral IKac-Moody algebras may serve as a
useful orientation. So far this free ficld realization has been applied only to CIFFT's
that are valid just at somne critical points (dimensions), it would be interesting
to explore its possible applications to non-conformal two-dimensional theories
such as perturbed CFT1's and integrable models. Finally, let us note that the
classification of all rational CFT’s is still an open problemn, which is far from

being solved.
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Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table captions

The vectors J%, and Jxqo for the KM root currents of su(2);. The
arst column denotes the IXM current, the second column the enumer-
ation of the individual terms, the third, fourth, and fifth columns are
the components of these vectors, in the round-bracket notation (see
cquations (3.16) and (3.18)) along the directions i, 1(13), and v(q) re-
spectively. The first row in each case is J', and the sccond row is J. &

is the level of the KM algebra.

(a): The dot product J*-J 'b: (b) the dot product J®-J®, calculated
from Table 1 and formula (3.17).

The vectors J%, and Jzq for the KM root currents of su(3)x. The
first column denotes the IXM current, the second column the enumera-
tion of the individual terms, the third, fourth, and fifth columns are the
components of these vectors, in the round-bracket notation (see equa-
tions (3.16) and (3.18)), along the directions ¢, uq, and v, respectively.
The first row in each case is J', and the second row is J. In order to
fit everything into the table, we have used the abbreviation k, = k4 ¢,

where £ is the level of the KM algebra.

(2): The dot product J2-J'%; (b) the dot product J¢-J?, calculated
from Table 3 and formula (3.17). The solid horizontal lines separate
the different KM currents; the dotted horizontal lines delineate the

different irreducible units within a XM current.

The vectors Jk, and Jzq for the KM root currents of sp(4)x. The
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Table 6.

Table 7.

Table 8.

Table 9.

Figure 1.

first coluinn denotes the IXM current, the second columm the enumer-
ation of the individual terms, the third, fourth, and fifth columns are
the components of these vectors, in the round-bracket notation (see
equations (3.16) and (3.18)), along the directions ¢, uq, and v, respec-
tively. See the text for notations of the roots. The first row in each
case is J', and the sccond row is J. In order to fit everything into the
table, we have used the abbreviation k, = k +4, and k] = (k/2) + ¢,
where k is the level of the KM algebra, which in this case must be a

positive even integer.

(a): The dot product J%-J't; (b) the dot product J*- J*, ealculated
from Table 5 and formula (3.17). The solid horizontal lines separate
the different KM currents; the dotted horizontal lines delineate the

different irreducible units within a XM current.

A recapitulation of the various lattices involved in the free field

realization of the CFT with a W3 algcbra.

:  The mappings of the positive sector screening charges QF,i =
1,...,6, in (4.54) among the six classes of the W; submodules, which

are defined in (4.55).

The mappings of the negative sereening charges Q7,7 =1,...,6, in
(4.57) among the six classes of the W3 submodules, which are defined

in (4.55).

Figure Captions

An example of a conformal transformation that preserves the local
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Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figurce 8.

angles in string theory.

An example of a conformal transformation that preserves the local

angles in two-dimensional statistical mechanics.

The contours involved in the computation of the commutators in

the radial quantization.

The embedding structure of the Verma submodules in the minimal

models.

The fundamental hexagons describing via the screening charges QF

the embedding structure of the W; submodules (4.55).

The fundamental squares describing the enhancement of the embed-

ding structure of the W3 submodules, when @7 are taken into account.

A plane projection of the whole embedding structure; this is ob-
tained by using the @7} only. Notice that this embedding structure is
the same as that of the su(3)x Kac-Moody algebra [38].

This corresponds to the straight lines in Figure 7 that cross the
primary state A(0,0). They are folded at A(0,0) so that they exhibit
the embedding of the Virasoro modules (see Figure 4) in the W3 ones.
The same kind of diagram corresponds to any straight line in Figure
7, and the tip of this diagram will be the unique point (module) from

which two arrows, pointing in opposite directions, emerge.
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Table 1
1 (12) (12)
J-12) 1 0 2 2
0 -2 0
Jrazy | 2 0 -2 -2
2k +2) —2(k+1) =20k + 2)
Table 2a
1 2
1| -1 1
2 1 -1
Table 2b
1 2
1 1 k+1
2 | k+1 1
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Table 3

1 2 [(12) (23) (13)[(12) (23) (13)
J_aznll] 0 0] 2 0 0]2 0 0
0 0(-2 0 00 0 O
T_an2[ 0 00 -2 2[0 -2 2
0o 0|0 0 =270 0 0
T3] 0 0]0 2 060 2 0
o 00 -2 0 0 0 0
T4 0 0] 0 0 2]0 0 2
0O 070 0 =210 0 0
Jran5] 0 0]=2 0 0]-2 0 0
2ky —ksf—2ky 0O 0 |-2k3 0 O
Ji2)6] 0 0] 0 2 2|0 2 -2
0 00 -2 0 0 0 0
Jean]7| 0 010 -2 0]0 —2 0
—k3 2131 O =2k O 2 =2k, =2
0 0412 0 0 0 u 0
Teand] U 0]=2 =2 0 |2 -2 ©
—2]93 163 '2’\‘_2 0 0 2’»3 0 0
Teaayl 0 0] 0 0 —2{0 0 =2
I\'g 11‘3 0 0 —2]61 -2 =2 —-2’\?2
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Table 6a
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Table 6b
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Table 7

Ag basis vectors | Iy = 2p(p+1) | I =6p(p+1)
A V2pe p(p+1) 3p(p + 1)
V2pef p(p +1) ~3p(p +1)
V2(p + et -p(p +1) =3p(p +1)
Va(p +1)e; -p(p+1) 3p(p+ 1)
V2aq 2ap 9 0
A v2el p+1 3(p+1)
\/.56-2*- p+1 -3(p+1)
\/’ie; =P —3p
V2e; —p 3p
Aﬂ = A* \/§,Bl 0 D)
V26, 1 1
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Table 8

A(ky, ka) B(k1, ks) C(ky, k2)
Q7 D(—Fky,ky + k2) F(=k1, k1 + k2) E(—ky1,ky + k2)
kl 2 0 kl >0 k] > 1
7 E(ky + ko, —k9) D(ky + ky,—k2) F(ky + k2, —k2)
ky >0 ke > 1 ks >0
OF TPE M bt 1) | FC-F it =1) |E@ k1, b+ 52 =)
ky £0 ky <0 k<1
Q;F E(k1+k2-—1,2—k2) D(kl +k2——1,2-—k2) F(k1+k2—1,2—k2)
ky <0 ky <1 ky <0
il F(—ky,—k1) E(—k2,~k1) D(—kq, —k1)
ki+ky 20 ky+ky >1 Ey+ ke >1
g— F(l—l\'g,l—kl) E(l—kz,l—-kl) D(l-—kg,l—kl)
ky+ky <0 ky+ky <1 ki+ky <1
D(k1, k2) E(ky, ko) F(k1, k2)
Q7 A(=ky, by + ko) C(—k1, k1 + k2) B(—ky, k1 + k2)
By > 1 By 20 By > 1
3 B(ky + ko, —kg) A(ky + ko, —k2) C(k1 + k2, —k2)
ky 20 ko > 1 ko > 1
;. A(2-—k1,k1 +k2-—1) C’(2-—k1,k1 +k2—1) B(2—k1,k1+k2—1)
k<1 ky <0 k<1
::' B(k1+k2—1,2—k2) A(kl +k2—1,2—k2) C(k] +k2—1,2—-k2)
ky <0 ky <1 k<1
;- C(—kQ,—kl) B(—kz,—kl) A(—kz,-—kl)
ki4+k, >0 ki+k2 >0 ki+ky 21
is C(l =k, 1—~ky) B(1 —kg,1—ky) A(l = kg, 1~ k)
ki+k <0 k1+k2 <0 k14 ky <1
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Table 9
.4(]\71,]\72) B(k],kg) C(k],k'))
Q7 D(ky, k2) E(ky, ko) F(ky, k2)
kB <0 kFy + Ry >1 ky <0
Q5 E(k1, kq) F(ky, k) D(ky, k)
ky <0 ky <0 ky4+ke 21
QS— D(kl + 2,&‘2 - 1) E(l\l - 1,k2 - 1) F(k] - 1, ,\'2 + 2)
ki 20 Py + k<1 ka >0
Q; E(,\] —1,k2+2) F(}\] +2,k2 —1) D(k] —1,1\‘2 -—1)
ke >0 ky >0 By + ko €1
Q5 F(ky,k2) D(ky, k2) E(ky, k?)
ki + ke €0 by 21 ky>1
QE F(lcl +1, kz + 1) D(/m] -+ 1,162 _ 2) E(l\l — 2,“2 + 1)
ki +k2 >0 ke <1 k<1
D(k1, ka) E(k1,k2) F(ky, k2)
o TR Bk, k) Gk, Fp)
ky > 1 ky + k<0 ky > 1
Q; C(kq, ko) ARy, ko) B(ky, ks)
kBi+k €0 kr 21 ky > 1
Q; A(k} - z,kg + 1) B(k] -+ 1,k2 -+ 1) C’(k] + l,kz - 2)
k<1 ki + k>0 ky <1
0. [ Crit Lt D) [ Al ¥ Lk —2) | Bk =20t 1)
By +ky 20 kr <1 k<1
07| Bl ko) O T Ak, )
ky <0 k1 <0 ky+ky 21
O | Bl — L ks +2) | Clhi+ 2.0 = 1) | ACk1 =1, %2 = 1)
ko 20 k120 ki +ky <1
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