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ABSTRACT

An amalytical amtl computational procedure for the study of
acoustiz surfate wave exsiiatlion Lo anlsotropic layered atructures
has been developed, The analysis i3 based upon solution of the
coupled vave equations and i directed toward “low coupling™
naterials which can be oriented auch that the particls displacenents
are in the sagistal plane,

The adnitlance characteristics (complex) of intardigital
trassducore, a8 uvaad 0 excite surface waven in such astrvctures, are
calovlated and compared with experinoental reaults, ‘The belaviour and
interaciions of susface waves within the reglon ocoupled by the

wransducer are pregsented and analyzed. Also & ainplo mathematical

nodel for an intexdigital transducer is discussed amd the results
taleulated ualing this noadel are compared with the goneral theory.

The computstional nethods and procedures are also considered,
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The fallowing i3 a List of the nost commonly used aysdols. Other
syubols are uaed in apecife iratarces and they will be defined as their
uze dictates. Punations are, in genoral, éele‘:ni froa this list, dut will
be dofired a3 they appear. The following notes apply to the aymbolic nota-

tion:

(1) Sudaeripts asd superazeripts wl)1 be added to the baaie
varisble, az required, but the dasic dafirdtion of the
varisble will resalin uschanged.

(2) A "-® appearing over a varisble will be used to irmly

© the Pourdar tranzforz of the variable.

(3) A "a" appearing over a variable will donote that the
varishle {3 evaluated in the layer,

(3) The aymbol ®*® 13 uszed to irdicate the complex conjugate.

LIST:

coelTiclents of the harmonic electric potential expansion

u(' "axplitude factora® for the wave solutions

c coelficionts of the homogonoous wave solutions outside the trans-

ducor region

4 101§ elozents of the elastic tensor in tensor and matrix notation,

reapectively

D, D/2 length and "half-length® of the transducer, reaspoctively

Dn cozponents of the oloctriq displacemont vector

Diz) coe’flicionts of the houogoncous wave aclutions within the transducer
region

-3 width of individual fingers in the transducer

Ba componenta of the electric field

°

B

iy’ e“ eclozents of the plozceloctric tonnor in tonsor and matrix nota-
% tion, reapecotively

layer thicknessz



oy

%k ,% the mm: nvbor (general, surface wave, branch point, respec-
2 stvoly)

conter-to-contar spacing of adjseant fingers in the transducer
roots of e “secviar equation®

L
1
¥ decay conatanta for the electric potential funotion

m,  ‘the mmber of finger patrs in the transduwer (D/2=s=L)
2 3,3 emorm:ta P tha atrain in tenser and zatrix notatlon, rospectively
?1 J’T‘t comporenta of the atress in tansor and satrix notation, respectively
t tino
( % a gonoral particle displacesent, alao particle displacements in
layer
v 3 a geroral particie dizplacesent

Yo the applied siml voltuge
¥, T, T, ¥8vO voloelty (zeneral, swrface vave, branch point,reapectivoly)

§ "& particle dizplacements in the udatrate
g 'o fingor overlsp, or aperiure, of the transducor
.
L x, 1
. ¥, 2 }aoordimtn axes ags lotters and nushors
g “Jz elgenvectors for the hosogoneous solutions
% T 13 olezonts of the gonoral wave oquations
% Yyy the clemonts T 14 aftor spplication of the Pourier tranafora
E
% € *a clozents of the diolectric tersor in tenser and satrix notation,
® respectively
8 1 driving terms for tho inhomogenoous wave equations
A loft~-hand side of the boundary condition aquationa
£ e mass density

i_;‘ K

@ general clectric potential function
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CHAPTER I
INTRODUCTION

.t History

Developrenta of the last decade in the fleld of ultrasonics have
foeussed increaning attention on the generation and propagation of eolas-
tie surfsace waves in anisotrople antur!nla’. This interest originally
resulted from thelr wse in ultrasondie delay linws amd gulded wave atruo-
m:rcaz'&s'éz'as'?ﬁ, a2 well as zurface wave azyli?inr327’?2’?5'77. More
recentiy it han been shown that acoustie nurfuce wave filtera can dbe fadb-
ricatn&zg’15'65 and zurface waves shos consideradle promiae in the genaral
field of slgnal proccsa&neks’sa. I% haz boen proposed that surfuce wave
devrices, with properties analogous %0 those of olaatromagnutic waveguide
devicaesz, can bde developed with n conzlderadle overall reduction in 312062.
It has alao been ahown that =many of the techniques which ovolved for the
analysis of electromagnotic problemu can de applied %o the analyais.of -

3

acouatic wave dovices .,

The atudy of elastic surface waven began with the theoretical for-
milation for wavea on the fre¢ surface of an iaotropic solid dy Lord
Rayleigh®?, which was later oxtended by Love™  and Lasb ., In 1924,
Stcncleyﬁgcnaidotad tho oroble= of olaatic waves propagating at the interface
of two sexmd-infinite isotropic solids; however, the propagation of elastie
waves on the free swurface rommined the dominant intereat for many years,

®ith tho increasing sophistication of surface wave devices, the study of

® The intervsted reoader 13 roferrod to the excellent review paper by
R.M. White”?, with its completo bibliography, in addition to the
gonoral bibliography by Smith and Damon®*. The paper of Slobodnik
and Conway®® contalins extensive information on the charactoristics

of surxrface wave materials,



O s TS

AR b a s

A Gl R L b B s B SR TR

elastic atrrface waves haa dean fully extasded ints the reals of aniaotro-
pde layered wodia in the laat fow }m.a:-am'g:"m'ﬁa‘sl. layored media have
proved o be of coualderadle interest, with reapoct to aurface wave do-
rices, decause ol the aklility %o derdiwve denefit frex the Iifferant =aate-

rials uzed, €.3. 8 plazoelectrie layer may de used to excite surface
waTR2 O A ma-p&c#wlmt:&a aui«a‘a'ﬁ‘:uz} .

Barly transdusers for the generation and detection of elastic aur-
face waves consiatel of & wedge arrungesent, fnrough which a homogencous
bulx ware waz sonverted inte a zurface n’mﬁg. Other variations on the
duli-to surface =ave hesd ary ;san:khh”, although they have largoly
bheoen rostricted to the generallon af muves on free swrfaces. The intro-
dustion of the “interdigital® (ID) sransduoer 270 ,?a.. shich has bocome
the standasd means af generaiing and deleeting olaztic aurface wawves,
oade rosaldle the direet generation of waves on free surfaces, as woll as
in Iayered struoturus.

The theorelloal atudy of the oxeltation and deotection of slastie
rurfage waves on the free surface of plesoelectric matoriala, uaing ID
tranaducars, has beon the topic of several mpora‘s’}s’ss. 0f these
asudies, that by Smith ot ai.sa haa heen very succesaful in dariving a
"nodel” that can be [Miited to exparimental data. With the growing inter-
est in layered structurss, some af*forts have beon zmade %o use this "model"
to deacride the hehaviour of ID transducers in such structures
Jowever, a theorotical troastment of aurface wave oxcitation in lavered

structures, of the type perfoarmed by Joshi and N'Mto}é for the free sur-

face, has not yet beon attezpted,

£ i s

20,30, 32,60, 61
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™his thests evolved from expurdments being conducted at NeGill
University an the geseratien and propagation of asoustic surface waves In
layered structurea, in the £l of 1969, The purpose of these expericents
was to gerarate and detect maface wares in layered struetures uaing aput-
tored layera of C3S as the plazcelectrlio material, and nom-plezoelostric
subatrates, aueh as allicon) The work of Joshi and mw‘*’é had appeared
only a few montha prior tc these inveatigations, while the work of Smith
34 .1.53 aspeared during the courae ¢f the experizesnts. The analysis of
Joshi ard m:u’é‘ waz "apatheiloally” satiafying in the séaao that it was
based on the true phyales of the probdlem; howevar, it was felt that it
lacked completenens in ita failure to obtain the wave solutions within
S8

the transducer reglon. Tha "Stanford Nodol™ of Smith ot al,” was not aa

satiafying, for it la dirficult to Justify asuch a sodel from a theoroti-
es) analysis of surface wave behsvlour; although, undeniably, it could pre-
dizt the transducer adnittance characteristics with considerable accuracye
The axperizents using Cdskon Si wore sufforing from severe inser-
tion lous probless, for reasons that were not fully underatood until such
later. Thus, it wma decided to poatpane the experimental effort and
attezpt a theoretienl study of ncoustic surfase wave oxcitation in laversd
medis. The intent of this atudy was %o concentrato on "low—coupling™ mate-
rials, such as C4S and 2Zn0, in conjunction with non-piesoelectrio materi-
als, for the layer anl subairate, respectively. It waa felt deairable
to i1l in some of the apparont gaps left in the analysis of Joshi and
‘hih% , and at the sazme timo try to obtain greater insight into the de-

havicur of the surface waves in the roegion of the ID transducer. An

* Recently, Schniteler et nl." have reported surface wave excitation with
CdS on glass.



: &:.tmpt would also be zade o add "rigor® to the asalysia of 3mith at
58 .

£ Rk

1.5 Theals Summare
™he regaisder of this sasuseript will bo devoied to the atudy of

neguatie surface wave exeltation in Jayered strueluwrea, and related pro-

blems. It will be seen that the dispersien present in such struciures oan

be izplleitly ineluded, axd the effact suck dispersion has on the electri-
4 ' ‘ ‘
¥ eal properties of the transducer xt1) be domonsirated, The wave solutions

ziihds the trassducer will be derived and uzed to akow how the waves inter-

act within thiz rezion. The transducer adsitlance sharssteristics will be
ealculsted using the wave solutions both inalde and outaide the transducer
region, and will be ahown %o agrve very well with seasured data. A aimple
nathesatiosl model, which containa the easence of the "Stanford !odol‘ss,
will be derived and used %o descridbe both the wave behaviour within the
transducer reglon and the transducer adzmittance. The analyais will also
be used So oxaminoe the effect of changes in the elastlc and piezoelostrie

constants on the transducer adzittance o&mrécto:&aties.

R N T TN oo s 0t o o e o s

As with sany atudies of this na'are, extenslve une of a high spoed
dizgital compuler i3 necessary for the detercination of thoo‘rntieul ro-
sults, Thus, one chapter and a portlon of one appondix will be devoted

to the scaputatioral methods irvolved.

Ao AR R,
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2.3 Intwodusntion

Before progeading with the formal aclution of the "inhomogeneous
layer prodlem”, a zertain amount of groundwork must be propared. In this
szation the toplea %o be prosonted inelude:

{1} the nature of the trassducer atruoture (2.1.1)

(2) the coordinate syates %o de used (2.1.2)

(3) the general equationa of notios for a plezoelectris
matesial (2.1.3)

(n; the general irhonogoneous prodlem
(») the inhomogeneous probles with a low coupling
approxization

(8) the cleetriz potential funciion %o bo uned (low
soupling) (2.1.4)

(5) the ateps leading %o the solution of the “irhozmo-
goeneous layer prodlea® (low coupling) (2.1.5) .

A lox coupling approximstion will be introduced ms an approxima-
tion nhich groatly 2implifics the mothod of aclution and ane which is
rossonadle for aatecrials such as quarta, cadnmium sulfide and cadmium
ulaﬁ&es’&. A3 ahown in section 2.1.3, this parnita the analysia %o be
soparnted into two parta: a purely elcotrostatic portion and a forced
¢lastic portion. The solution to the electrostatic part 13 then used as
tho driving terz for the elastic portion. If the piezocelectric coupling
of the zaterials is not azall, as ia the case for LLMbOj, one would ex—
poct thal the analysis cannot de separated in the samo fashion. Howover,
a3 will be shown, for certain orientations of LiNbOy the orrors intro-

duced by separating the analysis in thias fasnion are not serious, It will
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to assumed that the materiala used for the layer and subastrate are perfect
dlolectrics and the poszidle effecta of conductirify will do ignored.

2.0, The Interilpiesl Tranaduser

The interdizital (ID) transducer, which haz decome the gensrally
sccepted methed for the geraration of elastic surface wmyes, canaists of a
18 of parallel metallie atrips, as shown in Pig. 2.1a. Froo an electrical
standpoint, the V:"Sr.sﬁw; of the ID tracaducer cuan do driven in sdeveral ways.
™e meat common iz b0 operstée the fingera in a pushepull fashion, with
sd jagent Mlrgers of oppostte polarity, as ahown in Plg. 2.1b. This drive
zehome 1z suitable for an ID tranasducer lotated on the free surface, or at
the interfaae, with or without 4 metsllic plating. Anothar drive aschewe,
suttahle only for an ID tvanaducer In cosjuncotion with a metallie plating,
i3 to operate all af the fingers in phaze and of oppoaite polarity to the
plating .‘ his Pors of deive iz ahown in Plg. 2.%c. Por most transducer
applications, the separation between adlacent Tingers, as woll as their width,
is the saze “hroughout the length of the transducer and the overlap of adja-
cent Tingers, ’lo, s oonatant. Thia is the only situation that will e con-
sidered in the analyais %o follow; however, it has been shown that dy varying
both the finger overlap and the spacing it ia poasidble to make ID tranaducers

that behave as filters with sany useful propcrtieaza’js 63,

2.1.2 Coordirate Svatem
The coordinate asystem, shown in Pig. 2.2, has the origin located
st the interface of the layor and subatrate such that the subatrate occu-
ples the half-spagce a2 € 0, while the layer iz in the reglon O¢< 2< H. Fig-
ure 2.3 showa the oriontation of the ID transducer with respoct to the co-

ordinate systome Tho fingers of the transducer are parallel to the y-axis,
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and are ajaumed to he very lonmg compared to their widsh, Thia assumption
izplies that there s no compoment of the applied eloctrisc fleld parallel
to the yeaxis; and thus Mﬂy » O, were ¢, Topresenta the applied elec-
trie potential funetlion. The center-to-contar distance of adjlacant fin-
gors iz giver by L, xhille the width of iadiridan) fingera i3 &, The con-
ters of the end Ningers of the transducer ame located A%t x = 2D/2, with
the center of n finger loeated st the origin, Honee, D/2 12 an integer
times L. It wil) deo sasused thaz the thickness of the fingera i1a much
Ipzs than their width, The overlap of adlscent fingers, 'o' will of'ten
b2 referTed fo ns the "spertoe® of the Sranaducer,

2.1.3 Bgquations of Motion for a Plozoolocric Maserial

The atudy of wave gensration and Fropagniion in plezoeleatric mate-

mials begine with tho "equations of atae” for a plezooloctric aodiwas,

Tyt e paSa o 84/8::: (2.1)
and na - °=-.i:13k1 - c:..'} %/8!3 i (2.2)

vheo: 'r“ are the elosenis of the atress Senasor

8
are the eloxents of the strain tensor, - uk¢ uk
Sa Satz o 9%,

Uk are the particle diasplacomonts
X, are the coordinate ayate= axes

) is the eleotric poteniial function, B= —grad(e)
I)== are the elomonta of the elestiric displacemant veotor
°1.ﬁd are the olements of the stiffneas tensor at constant E

LY § oxe tho cloments of the plosoceloetric tensor

‘m are the olements of the dieloctric tensor at conatant S.

Nowtoti'a Law can be vcrittons

® An abridgod symbols list will de found on pago v ,
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A_. wbare p = zasy denasity of the mtarisl,
. L9
By fnvowing the aymmetsy proportiss of the ey 5’ *
S1pa Y %k T %yua
f equations (2.1) and (2.3) can he conbined %o ohtain the general wave equa-
tlon Tor plepoeleciric matoerisls,
27, atu :
e a'd
6. — -p -0 : . (2.4)
$ e Bx ;5:_1 e =l a:aax I
: In the adsence of atored chargw, the application of the divergence opera-
tor to (2.2} gives the gesersl form of Laplace's equation,
a'n 2
& a
} T 5:3&1 Eon 8x=§:n_ =9, (2.5)
]
§ slnve o it * oam&".
: The deaired solutions of the equatdons (2.4) and (2.5) are "straight
crested® in  the senge that the planes of constant phase are perpondicular
§ . to the propagation vector [i] and the wave azplitudes are indepondent 61’
distance in the direction perperdicular to the zagitial plane®. In the
£ coordirate aystes of Pig. 2.2, the propagation veotor [k] is parallel to

the xy = x axiz ard thus the sagitial plane is the (x,z) plane. Henco, all

30‘/83’ = D,
The equations (2.4) and (2.5) can then bhe writtan as

* This results froz the assumntion that hoth media are of infinite ox-
- tent in the (x,y) olane, and no reflesting boundaries exist in the y-
( 4 dirvction.
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The oquations {2.6) are valid for both sudstrate and layer materials and
circunfleoxes «ill be usoed to donote the layer parameters wien nacessary.

It 43 assumed that the material tensors for both regions have deen rotated

£
i; to the coordinate systox of FPig. 2.2, T¢ will be oxserveld that Maxwell's
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equations have bn# igrored in the derivation of equations (2.6). This is
bazed on the sasumption that the seoustic wave voloaity i3 much losa than
that of eloctramagrwiic waves, and thus those wavez =high mmza with
the veloolty of light in the materis) cas be ignored ?,

The equation: (2.5) are valid in the rezton extorsal to the trans-
ducer, tha homogeaeous problex, ss well as within tha transducer region,
the inhomogeneous prodlem. Az will be zhown, the omly difference in
theze twa regiony lies in the formulation &!’ the doundary conditiona. The
homogenactia problex has been considared mr‘i‘o\:alyn, and 1t han shown
that the oquations {2.6) lead to an eighth order secular oquation in each
region. In the substrate, only the four decaying roots are allowed; how-
ever, in the leyer all elght roots are sccepiadle because of the “inite
thickneas of thia ruglon. Thus, a %otal of Swelve arbitrary conatants
mizt be deternined froz the bouwrdary conditiona.

The necessary mechaniesl bourdary conditions for the homogencous
prodlex include the comtiruity of the displacemanta and the traction com~
porenta of atress (Tiz, Ti> and D3) at the interface, as woll as the
vendshing of the latter stress components at the layer aurx‘aoozj « Thoease
mochanical regquirvaments jaroﬁde nine boundary conditions and tho reosain-
ing threo are rou&, in the electrical requiresments. These requira both
the potentinl and the normal comporen’ of the electric displacemont weetor,
Dy, to be continuous at the interface and at the layer smurface>, In
the presencoe of a metallic plating at eithor the layor surfaes or inter-
face, the continuity of D3 will bo replaced by the condition that B, = O.
These boundary corditions are "homogereous™ and thus the constants evalu-
ated from them lack an absolute scale factor. (The effect of mass loading
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by the setallic plating will be ignored,)

Then solving the irhomogoneous probles within the tranaducer rezien
tho zaze eguations (2,8) are uzed, 83 woll a3 the same mechanical bound-
ary canditlens. The only ehunges sre in the eleatriend dour ¢ condd-
tlons to aceount feor the presence of the matallic fingors of the trana-
ducer (mozlecting the pass loading of the fingera), Aastming, for the
noment, that the transducer is located as the layer substrate intarfuce,
these conditions become:

(1) contimity of D, and & as she layor surface, a5 before

(2) contirmity of Dy snd & in the region bhatwean the trans-
ducer fingers, and B, = 0 on the flrgors,

The prezence of z matallie Plating on the layer surface would require

At ByaQ at 2 = 8 ns tn the hozogeneous ease., Theae boundary conditions
are alszo "hosogureous® and thus ey do not provide an adaclute scale fag-
tor for the soefficlents, This ta provided by the additicmal requiremont
that the voltage between adjasent tlectrodes is oqual %o the applied volt-
age, “hen the “ramaducer fingers are driven in a "rashesudl® fashion, as

i3 the usual case, ihis requires that
ny_ L-a/2
-/3.(;:,0)&: A
niht /2

whore niL ard “1-11' Tepresent the loeatlion of the centers of adjacent
fingers of the ID transducer, with respoct to x. 0, ard Vo in the applied
voltaze,

In spite of the oaze with which one can describe tho formulation

of the complete inhomogoneous prodlem, the actual solution is an involved
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procesas as a result of the parledic electriec boundary conditions. (m;-aoa-
iz 83 8 reault of the tranaducer atruchumre.) Hense, the complete exant
solution wil) not de attezpted; rather a sizpler, but approxinzate, prob-
ler which can e solved will heo conaidered. This nppra:imﬁ probles
could be used as the Iirat atep in the solution of the exast problem by

an iterative technique.

It i3 apparont that the equations (2.6) separate into a puraly moshan-

feal  part and a purely elevtrioal part iF the olements of the plezowlec-

trie tenser are zoero. Ihe sleotrical egustion i

£ af 8% at
Ka, W«v?ﬁ;m#:yw ¢ =0, (2.7)

azich 1s the wsual foso taken by Laplace's eguation. In this context,

equation (2.7) desoribes tha olootric potential fusction &(x,z) of the ID
transducer, for a given applied voltage, in the shaence of any plesoelec-
tric ofTects. If one now nllows the elemends of the piezoslectric tensar
%0 be nen-gere, hult sulTiciontly small that they do not affect tho solu-

tton & of (2.7), the elaatic equations of (2.6) can be approxieated by

Bﬁ
Toe=p T Trz Tia Uy 8,
2
Tia Taa=-p gp T23 . % | Up w | 8 . (2.8)
Tis Ta> Ta-pggr| | B 0

where
Oy n <Tya®p, 0 = =Tpadp, G5 = «Tr.¢ .
Bquations (2.7) and (2.8) describe the aessence of the "low coup-
ling approximation™. It 13 asasumed that the eleotric potentiasl function

of the trunsducer can bo soparated and solved independently of the slastic
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equations, and then used as the foreing term in the inhomogoncous elastie
equationa. QOne 12 thus conaidering the effvet of the clogtric potential
upen the elsatlie waves, dut not the raveras, Wnen salving the kezozenaous
prodiea only, the righi-hand side of equationa (2.8) 12 tdentically gero.

Prom this polnt on we ahall asaume the “low coupling appraxixa.
tian”. Bguation (2.7) will Ye used %o deacribe the alostric npotential
furmetion, azsceiated with the ID tranaducer, which i3 used as the driving
ferm in the elastle equations (2.8). Simce the low coupling approxiza-
tien has separated the irhomogesmoun prodles inte two parta, only olec-
Trical doundary conditions are used in tho salution of equation (2.7)
wille ordy mechanieal boundary corditlons wil} appaar in the aoclution of
equationa (2.8),

det.4 Apnlled Potonsial Punotion of the Transducesr

In. the aork %o follow, 4t will be asasumoed that the ID tranaduser
L3 located at the layor-sudatrate interface, with or without a metallic
Plating on the frve awrlace; however, this i3 not a reatriction on the
analyzis as such. By auitadle alterntion of the eleotric potential func-
tion of the tranaducer, ¢ can also be looated, frosm an analyais standpoint,
en the free surface with or =ithout & conducting plate at the intorface.
The anmalysis of tauia papar has been performed in such a way a3 to allow
a.l of thene confMgurations to be cenaidered.

As ohgerved in section 2.1.,1, the nmoat common method of excitation
is to drive the fingors of the ID transducer i{n a push-pull fashion, al-
though the fingers can alaso be oparated in phase. In the work of Cermak

ot 11.12 2’: thesa drive schemes are reforred to as "bipolar™ and "uni-

polas", respectively,
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Several authors have recently published "closed fore® :olutions of
equation (2.7) for an ID transducer located on the {veo urface of a di-
eleairic nosmplezoslectrie sediun with the restriction that ¢, = ¢ = 019"56’68.
The more inrolved prodlem of datermining the #leld of such a transducer
lecated at the Interface of an Infinitely thick sudatrate and a layer of
Tinite thlckress la not as eazily selved. Neverthelesa, the solution of
equatton (2.7) for such a situation (ks » O in both reglons) 33 a probles
wileh ean bo handled by sumerical methoda using a kigh speed digital com-
putor with s "boundary relsxation® bﬁc.!m*.qmzw'&. Corzak ot al, have
rropared a computer program, knoen as “CAPAX™®, shich asauses an ID
transducer of Infinite extent alonz the x-axis locatod at the interface of
a finite layer and an infinite aubat:ruu‘e. The vaiuve of the electric
potﬂmt:f.nl, resulting from an applied volfage, i3 caloulated at overy point
on & grid which coccupies the reglion shomn in Pilg. 2.4, This grid conaists
of meszh points equally aspaced along the X and z axes and oty allows
it %o be extended along the x-axia to cover aa sany fingers as deasired.

Once the potantial haz boen caleulated at every point; on the grid,
it can be expanded in a Pourier serien along the x-axis at gvery level of
the grid on the z-axia., In this fashion it 43 possidle to write the poten-

tisl  function for such an array anee
'(:’51) L Anen(’i) cos (nax/L) . (2.9a)

The potential 43 an even function of ™x™ aa a result of the assumption

that the origin is locatod at the conter of a finger. The functions

*  ASIS-NAPS Document No., NAPS-00700.
¢® For "bipolar” drive, ne1,3,5, ... 1 for “"unipolar® drive, n«2,4,6, ... .
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{2,) are "discrete”, and are dofined by the rusders
Enly

gyla ks glaadieeeis, g.(2) ;

which are the Fourler coefTisienta of the uw hRarzonic at the level z, on
the orid, norsalised %0 the canatant &, There are ¥ levels on the grid,
Az will Yo zhown in Appandix B.3, it i poaaible to derive a sontinuous set
of funetions rn(a) which agree with the diserote Amotions gn(zi) at every
lovel of the grid, so that (2.9) ean be written

(x,2) = i An:’n(a) con (nwx/L) . (2.9)

Bquation (2.%) 11 derived for a transducer of infinite extent amd
Tor s tranaducer of finite longth §% is neceasary %o zodify (2.9) in a suit-
able mamner to obtain the proper driving ters for oquations (2.8). There
are varicus posaidle zodifiications; howover, if one assuzes a transducer
of "reasonadle length®, tho aimpleat 43 to define a transducer potontial
function &(x,2) by%
% knfn(u) cos (nwx/L), x| ¢ p/2
o, Ix| » p/2 .

&{x,2) .( (2.10)
(It 43 poasible to extend the potential funation ¢ in & contiruous fash-
fon for x| > D/2; howaver, this adds sonaideradly to tho mathomatical com-
ploxity and actual cosputations indicate that it will not approciably
alter the final result'.)

Bquation (2,10) can be used to deseribe the potential function
¢(x,2) for both layer and substrate, on the assupption that ¢y » 0 in doth

® This point i3 considored in Chapter VII, scotion 7.4,



=egiona, and 1a appiiosble to amy of the trasaducer confipurationa pre-
vioualy mentioned, ondy the harmonic content and the terma A asd rn(z)
will charge. In Appendix R.2, the zoans of determining the harmonic con-
fent, as well as i aml fa(a}. for the Aifferent tranaducer configurations
=11} be dtacuased. At thia jJuncture the actual form of the funotions rn(n)
i3 unipportant; it i3 sufTicient to knmow that they oan be derived when
required.
a3 shown in tye™?, the omly saterials with non-disgonal dielectric
senaers are thoaz of the triclinie ard monoclindc syatexa, both of xilah
are tery anisotrepic. Heoauze of thelr high degree of anlaotropy, materi-
als of these Stwo clasges are usually of anly academic interest nnd are
ot uzed in the fahrication of seftual surface wmave devices, Honce, we can
asaume, =itk ressonable sertainty, that the =aterials to bhe annlyzed will
kare only disgonal diclectrie tenzors and the ressriction applied to ¢ 1o
a ronsorable one.
The “CAPAX™ prograz imposes two additional reatrictions on the solu-
tion of equation (2.7), nelther of which i3 serioua:
(1) It cannot caloulate the potential function for layer
thickness, H, in the range O<H< 0.5 L; and, for rea-
sonable computational ascuracy, the layer thickneas,
H, zuat be equal to an integral nuzdber of stens on
the coxputational grid; also,

(2) 1t assumes that the zaterials are diclectrically
isotropio.

The fi~3¢ restriction does not affect tha theoreiioal derivationa to follow,
only the computation of asctual rosults,and arises from the finite meah size
used in the calculationa. Zero layor thicknoas does not prasont any prod-

lems. The socord rastriction requires scze form of “averaging™ of the
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cliomants of the dialectrde tonsor o cbtain an effective izotroplic value
for the materiala, Pith 2. 5, the anly elements to be "averaged" are

£ and £y. The “arversging™ can be dore in saveral maya, ani the method to
he ua0d in thia theals is to defise an lsotropic dislactric conatant Tor
sach of the mmlorials s the g¢ .'}:ntricz mean of the appropriate o ard c;a.
Thite,

t
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Y nothiod of corvecting the potential Tunction caleulated by "IAPAX" for
the iasctrople dleleciric nasumpiion ia desurided in Appendix 3,3,
2.0.5 Outline of thwe Yothod of Solution

The aalution of the inhomogenacus layer prodlex for materials with
peseral aymretsry 13 an extresely ifnvolved process, even with the "low
goupling approxization™, However, by applyisng soze =inor reatrictions to
the symeelry of thoe zaterials to be amalyzed, the task oan be considernhly
:\in;pl;iﬂéa. The restricsions o Ye made in the folloring sectionsa will
restrict the anndysliz So thoas malerials in =hich the direction of surface
save erergy flow ia along the x—axia. The selutiona thua odiained ean dbe
used na a gulde for othor cages, & the gereral ease if ao deaired.

T¢ w21l be assumed thad hoth layer and aubatrate are plezocelectric,
and thus a large rusher of the equatians in the thoory will be valid for
both reglons. “hen this aituation ocours, the equation in question will
not be written out in dupliente; inatead it will be indicnted that the
equation i3 waild for doth reglons and 1ifferent notationa will de uzed

~nere recoisary,

The atops which are involved in the soclution of the "inhomogeneous



ayer problea® can be outlined as fallowa:

(t) deriration of the indomoguncous wave aguations with
the "low coupling appruxization®  (2,1,3)

(2) dorivation of the sleotrio potential function (ox

[
coupling)  (2.1.4 and Appesdix B)

(3) derteation of the inhomegenaous wave equations with
symmetry conalderatiens  (low coupling) (2.2.%)

(L) application of tw one-dimenaioral Fourter transfore
%> the wave equationa  (this follows tho meihod of
Jour! and "hite?®, az woll as that of Miller and
Poraey®® ) (2.2.2)

(s} %a}\ut’it‘:ﬂ of the transforsed hosogeneous equations
2‘20 }},

{8) dertvation of the tranaforsed "particular intesral”
solutions to the inmhomogencous equations  (2.2.4)

{7} uatatesent of e tranaforced boundary conditions and
the zolution of the resulting equations (2.2.5)

(8) applicatlon of the irverse Pourder transfors (2.2.6).
2.1.6  Sumeary

In this scction me have Introduced the interdigital (ID) tranaducer
and the soordinate ayates 2o be used. The "low coupling approximation®
has been spplicd to the sereral oquations of motion ard the set of equa~
tiona (2.7) and (2.9), shich descride this approximation, have been do-
rived. The potentinl function mhich is n solution of the low coupling
elrctrostatic prodles has beon deternined and the atepa requirad to solve

the inhozogenoous problex have boon outlined.
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«2 Low Coupnlire In oous Problon

Sywme ey Considerations

In seotion 2.1.3% the "low coupling® wave equationa (2.8) were do-
rived, and it i3 thede equatliens which will be uzed %o obtain solutions to
the “inhomoguneous layers prodbles™:

>

Faa=p Tg—,:'! Pez ) P 1 &,
vz Tiz=p 'a%;? T2 % U. a |3 .(2.8)
Ty | ¥ % Taa=p 'gi:z L) &

The electric potential funetien of the ID transducer ¢, which appears in
whe torsza [8,], waz derived in seetion 2.1.4 and iy given by equation
2.10):
£ af® (2)eos (nex/t), |xl < D/2
o e { A “a'n . (2.10)

e Ix| > o2

The equations (2.8) oan be used to obtain the wave solutiona for
the general aymmeltry case; however, it ia poasible to =mke some simplify-
ing assuxptions =nlch do not seriously restrict the uzefulneas of these
agquations. In zoat aurfmce wave devices 4% ia desirable that the direc-
tion of surface wave onergy {low be along the x-axis, for this i3 the
dirvction in which the wave %5 launched by the ID transducer. In this sit-
uation, the x~axiz is reforred to az a “pure mode nxis® for surface waves;
and requires that tho oloments

Giay Oray Csep Ore, C3a, Ces (matrix notation)
of the 3tiffness tenaor ba equal to zore in our cocrdinate ayatem, MNoat

of thoso matoriala shich are uged for surface wave devices can be orionted
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in such a way as =0 allow hia rescriction on the S Prom a plezo-
aleatric atardpolnt, only those mmterials for which the oloments

Bire, Ova, 3¢, %4 {matrix notation)
of the plercelectric Zexser are alwars sero, in our reference Trame, will
be considered. (Thoze elozesnta of the form gy wore dropped in the deri-
vation of (2.8) aince M/% = 0.) ThHe latcer assumntion on the oy ali-
ninates both E.cmas'} anl ‘;iia;:.:aei:;? waves Moz the analyala, Thus, the
asalysis 13 restricled Zo TRoze wmves which have displacementa in the sag-
Iatal niane ondy.

Witk the spplication of these additional assuwmntions, one {inds that
Teo wToy 28, =2 0

and e equations (2.3) can bde reduced o

r!"P 'é’L. 0 T., U, d
b 1
o Tez-p 357 0 » U = JOo. (2.1%)
a%
Tea o ?3:"?'3? Us 8y

Tt cAr be seon that the U, displacesmnt is uncoupled from the
athera and, in the absence of a &, driving ferm, 4% will not be excited.
Thus, the U, diaplacesent i3 of no frther use and it can de dropped.

“he oquations (2.411) can then de »ritten

42
Tev=p e Tes U, 8,
et 5 | = . (2.12)
T Tas-p 32 Us 8,

A3 was obiserved in section 2.1.3, the exclusion of Maxwell's

ations in the derivation of equations (2.6) is an implicit nasumption
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that the mechanieal warve veloeity is much loas than that for eleatromagz-
sotlc waves in the sedium, Therefory 1% 13 reasonsdle to assume that a
*ine deperdence exp(-iwt) can be used for hoth the U p and the 0 p through=-
eut the reglons of interest. The operazor -pd°/2¢7 can then be written
72, and both the i?_j and a} bocare functions of the spatial variables onmly.
Thia 12 knowm a2 the “quaszl-statle approxisation”.

The equationa (2.12) are walid for doth thu Tajur amd audatrate,
-ith the subatitution af the appropriate olastlie amd plezoolectric ole-
zenta, IF elther layer ar aubatrate ia sor=piegoelectric, the right hand
2tde 2 equatien {2.12) ror that partioular regtion, will be identically
zero.

=z
-

-e

+2 Applieation of the One-Dimonnloma) Pourter Tramafors

Pallowing the mothed of Joashi and !?;‘.:ae‘}ﬁ » 83 woll a3 that of

L )
Wiler and Purzey , conalder the one-dimonsions) Pourier tranalors glven

by

P(k) = !rp(x)c ) (2.13)

*
~here & muat de real to lnaurv the comvergence of the intaprnl at infin-

Q
it:f‘s’. The inverze Pourler transforam is then given by
F 2
p(x) = (é‘f)j?(k)e‘hék , (2.1%)

where the range of inltegration 12 along the real cudasg.
If the transform, defined by (2.13), is applied to the oquations

{2.12), the verfadle "x" i3 eliminated, giving the equations

b AR £ ¥ §. é-! (2‘15)

Yie  ver |¥|B| T [A ‘
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The bar, *=", appearing over & variable dzpliea that it s the variadle

in (k,2) space. As i3 shown in Apperdix A, the elementa of (2.15) are

deftmod My

”, ¥ 2 ? "
Yer F Qus T e Ui ‘-xg:-auk - pis

. Y _'“L & 2
-« 2035 1% -y task e pu

5 3
Yoz B O3y "‘"’33{ b (Qag,# . eu)ﬁkz{; - o.,k*

-

- a® ) - -
| — o {4 : T wam- -}
&, = [@;ﬁ 327 {813 » @31 ),I: 2 e [

“‘ #,
. {-\m%o!f -;-’-; - 2o, "} #{D72) sin (kx D/2)

7 = Lo, |3
3 = -lea 7. {012« ¢1s )ik Er g k msJ
. [zzm, 3% - 2’:#;;]¢(Df2)sza(k B/2)
whoras
E.} - T}'J(k,n), $ u Sk,z) = £ AR (k) (3)
sinf (k- n 2/L)D/2 ai:‘:]é)con =%§y2|
Pn(k) ® k-0 ® * ken ¥
#(D/2) = ¢(D/2,2) = §E J\nﬁnfn(!)

T "‘, ir Ne i1s odd
n 1, ir N {n even

/2 m CRN 'ao' ia an integer .

The terma Involving 3in(kD/2) appear because the potentinl function, ¢,
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a3 defined by (2.10), ia not a continuouz function of x at |x| = D/2.

Bquations (2.15) ave the tranaforzed, low-coupling wave ogua-
tions sifeh are valid in both the laser and substrate s ¥ith appropriate
values of the ey and the Sy These vquations, (2.15), are differential
epatliona In the vardable "z® and, in guneral, the solution will consist
ef a zelutlon o the b mreons fors of (2,15) plua a particular solution
to the inhomoguneesis eguatlions, often referred o ns the "partioular inte-
era3® salution,

T™he applisation of the Pourler trunsfors,(2.13), to the wave oqua-
tiona . (2.12) .23 st u superfluous atep, ns it nlghs appoar, Tishout thia
step it »ould 3tM11 be posaidbie to aclve the equationa (2,12), howover,
the proceas would hecose such more invalved, Without the tranaforaation,
hozogereous aslutiona in the two regiona |x| > D/2 (8, « 8, = 0) would have
to de obtained in addition %o the solutions for the reglon |x| ¢ b/2.
These throe separate sets of solutiona must each aatisfy the usual mechan-
teal doundary condfitions at the interface and “ree surface, in addition to
being ontohed st the boundaries, x = = D/2, This would result in a total
6 thirty-four boundary cordition equations! By applying the Pourier
tranalors in the proper fashion, the necossary eontinuity at xw 2 D/2 has
been asaured and the mechanionl Soundary conditions at the interface and
free surface,in the three separate rogions, have been coszbined.

2.2.3 MHomoponeous Solutions

The homogonacus solutions to the oquations (2.15) are obtained by

setting the right hand nide of the equations equal to zero, and assuming

a trial solution of thoe fornm
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Tubatitating thia solutien inte the homogerwous Tara of equation (2.15)

¥laiia
{0323 %2 2005 oor = p® A Measd B {oss+ cra)lecry) a4
, | S =0 (2.18)
(2331 %« (Gas+ @43)3= 0vs) (0332 %« 20251+ 025 - pa’ /x*) ay

To avold trivial salutions far o, and a3, 4% is necessary that the deter-
minant of the equstioras (2.18) wardah., This roguiresont givea the ao-
calied “secular equation™ whinh 13 valid for elther lgyer or aubstrate,

with the appropriate walues of %he o wl®

(cascar=32°)1¢ « 2(cracas = 025000 )27

elenieny e 0ss” « 2oineaz = (as o 613)7 = (ors » 02y ) /K2 )]2 %

s2fcererg = ovacey = (0ry ¢ eee Y(pu' A Y2 (2.17)
+[eriesr = 0rs® = (Gane o J(pe® i) o (pu®/%%)*] = 0 .

For o given », this equation ia quartic in i, with the parameter

k. In general, there will exia® four roots and aince the soo?ficients are

real, axy complex root will appear in conjugate pairs, The roota ln can
be zonsidered "cigenvaluos™ of the hozogeroous form of equations (2.1 5)
and the functions oﬁd‘a' a3 the "eigenfmotions™ of the homogonecous prob-

leme  Associated with each “elgenvalue” there is an "eigonvector"®,

R|u
R;n )
which can be detormined from eithor of the aquations (2.16). The complote

tran: formod homogoneous sclutiona can then be vritton



wzcm

whare the Cu are, as yel, arditvary conatants,

Siree the selutions to the inhozogersous aquations represent the
“far fleld" or propazating solutiens, {5 12 neceasary to impone the sur-
face wave conditlion that the salutiona in the audatrate vanish as g = -w.
Thus, the subatrate roots ln with poattive lzaginary parts muat be diascarded
for k > 0, and those »ith nogative imaginary parts for k < 0, Therefore,
ore i3 left with only two valid "eigenfumosions™ For the homogoreous solu-
tioma in the aubatrate, at a partiewlar value of k. Al four "oigonfunc-
tionme™ are valild in the layer, due %o the Tinite thicicwess of this region,

To avold futurwe confusion, it ia best %o nusber the roots ln 20 that
it will be clear xhather 2he layer or substrate solutions are bolng dis-
guazed. Those roots in the subatrate are 1y and 1., while the four roots
in the layer are 1y, ... , 4. Introdiueing the notation 'Inzmd U_} ]

refer to the transfecwed homogenvous zolutions in the subatrate and iayer,

respectively, ore can write:

2 i) o
')'I! Cay_o 2
5o
.
-n iklnu
LA ca“’a ]
- (2.18)
i1 =
-}
U;’- i Cac‘a e a
-t ]
N ikl s
Uy = Cnﬂam o .

* k' is puroly real at this juncture.



The evalusation of the ca w1l be considered in section 2.2.5.

2.3.4 Deterpimation of the Particular Integral Solution

The partiswlar inteziwml selustion o an inhomogenecus differential
ejoation 33 that solutlon uhich can be found to satialy the given equation
ard ta met & sciution of the honogendous squation. Ian the physical sense,
the partiowdar integral solution reprezents the reaponse of the aystes o
a ziven “Poreing funetlon® asd uauslly is darped out with olither tloe or
Xistanoe. This solution s uaually Tunctiomally related %o the “forcing
fumetion®. In our caze, sclutions which satisfy the 202 of eguations
I2.15) are required. As shown in section 2.2.2, the furctions & and
@{D/2), shich aprear on the right hard stde of the equationa (2.15), are
represesnted by a summation of terms, Thua, it {s logical o lock for a
particular integral solution which is reprezented by a suzeation conaist-

Ing of the sam¢e nusber of tormi:

Since the differentin) operators of (2.15) are linear, they can be
applied to cach term of the solutions E;Aﬂd the right hand 2ide sepn
ntnlyr,. Thus, it is possible to write equation (2.15) for the nﬁ‘ tors

of the solutiona EP

5&3
-p -
Yie Yia x E‘;f‘ - it ; (2.19)
Yie Yaz U’n &n
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where:

7 Cons 2. ¢ R

e &< %23:5;2" G!:'Q-n)ikgg‘ @y ‘%

3 -

«f Plos é-i - T, gﬁq(n/z) ain (k WE)

— - A& 2 - -

6,3 W o=t By, é% * (013 23 }ik ??; = Koy ¢a

g 8

- 2}-51: ‘é’; - &‘#q; ‘iéw(wz) aln (k 5/2) .

The terzs ;a and _&n(b/Z) are the o torzs of the sucmations for @ and

#(0/2), respectively. The right hand nide of (2.19) consiats of two gon—

eral terma, one involving ;ﬂ and one with 1}':(11/2). Thus, the nt> tore of

e seluticns can be further divided, ard one oan write;

&Pn » Rln‘ SQB

wP
U;n - R_ga - s;n .

Phere the terma R}a are solutions of the equations

-y

F' 7 B 7] r [ ¥
Yit Yia Rin -1 oy :;'T} + k(013 + €3¢) ‘g; - Onka]
» - 1R (2.20)
v n
Yez ¥ R -FQ £<ik(n .0 )i_c i
2 Yar 3, 33 7= 13 e3) 3= s
- J - J aad -
and tho terms § n are solutiona of
- - r - a -
Yit Y2 Sﬂn 20y 3;“‘&91'
x . $,(0/2) atn (x D/2) (2.21)
a L]
Y2 Y22 S 210!: bwade &01;
n an
L J YL J

Froo this point thore are mmerous mathods which ocan be used to obtain the
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deaired zelutions, R In ard 33!1; howover, before proceedins to that 3tep
it i3 necesszary thad the Mmotiona fn( 2), =hieh apoear in both 35 ard
aneam, be dofired. These functions were introduced briefly in section
2.%.4 and are direuased in cousideradle detall in Appendix 3, Tt ia
shows, in Apperdix B, that the gereral form of these functions, apolicadle
te Roth larer and ngtrate, in

Xz ¥z

fla)se ¥ o st 2.22)

whare )

M =2 nw (6n/e) .
The chelce of sign for M, depusds  on the locatlon of the transducer and
the reglen in question, as ahown in Appondix B. Tho value of T, for the
abstrate is zero in all eases} however, =hon a melallis piating ia used,
thisz i3 not true for the layer, Agaln, this point {2 covered in dotall

in Appendix B, Por the purpose of obtaining the solutdons R, and S tn?

$n
the 2ot general form of f‘n(n), given by (2.22) w411 bo used. In this way,
the restriotions w=hich are peoulinr o a particular region or transducer
configuration can be oasily applied to the firal reault. Using (2.22),

$n ard e.n(n/e) can bo writton:

- - -ﬂnz ¥s
“"n = A_n.‘n‘k, [o nn‘ . rnon .
¢'u '2-) * Anh'n o= erpe ] .

Ore can then assume solutions of the form:
-an Hnn
" anPn(k)o + b.in?n(k)"
-K 2 Ma
n

n
in = anNn o * djn"n o

R

8
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Subatirnting the solutiona R 1n inte oguation (2.20) and separating the

terms, givea two equations:

r- — e -—y o, “y

He ez By 3¢

_&'2 é;zd » -‘”:‘ b -&?- A!; (2-23‘)

LI S'it: - &g

avs 3 x ..b’:.. » 5. ’\n’a 3 (2.2%) :
Qe ® 0;;%’(‘)2&!3&,}" Q\\k: . P‘"a :
drp = %a’l:(:)(ha* Qt’)ik.xa' Y o ‘
dzr » %:1;(:)2%a£k!n— 033k’ « pu’
$¢ = Q)sx;(:)(m:‘ #;t)ikﬁa—o'qu
32 = Q:K;(:)(M: . %s)ﬁﬂia““vak: .

The mirus sign 12 uzsed in equatien (2.23a) =hile the plua align s used
in (2.2%).

The subatitution of the solutions § 4n n%0 (2:21) al3o sives wwo

oquationas
(B1r Bez] x EE R (2.24a)
| 8v2 Bez | | Sy | |8 Antn *
ard
Tavs &2 ) [a ] 8¢
P M S ARz (2.2uD) |

The Akl are thoe saze as defined above, with tho samo alternation of sign
for oquation (2.2ha) and (2.2ub). Tho torma, 8}, are dofined by

3 = [(:) 21015}~ 2Ke, ,]
8y = [(:) ;ZLTRY W 2):0.,] )

and



with the same alterzation of aizgn a3 the other tarsa.
The equations (2.23) ean be zolved for the wrm ag, ard b in? xhile
equations (2.24) ean be solved for the o, and éé . The o0lutiony 34“ and

=~ -
4

§, ,  ecan than be arittent

g
-z ¥z
Ry = 2P0 [" T Yy al (2.252)
-¥ 2 ¥z
S:‘,::’cj.n:‘n(k D/Z)[e * ‘Ijaca-] ; (2.25)
where!

'!3:; " (b'}' am)
Ij.n = (a:.::/':ju) .

The partioular integral solutions are than delfined by

.f - Z{?a(k) [03: (o-!“' . Téneunk)]

« 3in k D/2 [o_.m (;*,,n‘ Isaen"")]} ' (2.26)

Prom a computatioral standpoint, it 2s useful to obdserve that, if

n K(k)AﬂRn

a -c(;c).\.: ard ¢

Jn 3n

then
LA (G‘/G)z-== and xjn' (K'/ﬂ)rn
froz oquations (2.23) and (2.24). (Whore '®' implies the complex conjugnte.)
It will bo observed, fros equations (2.23) and (2.24), that thore is
sho possibility that values of k will aoxist for which the left hand aida of

ejuationa (2.23) and (2.2%) w111 vanish. Thia doos not mean, however, that

PN
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the particular integral aslutlona do not exial at those valuas of X,
merely that the Torm of the particular intezral solution whilch has been
chosen does not satlafy the equations (2.20) and (2.21). This situation
aceuwrs at thoae values of k for whiech the lern aw is n zolution of the
homogonmaus problen. The problien ia elisinsated by relurning to the oqua-

Tlons (2.20) and {2.21) and assuning new trial selutions of the fora s
-ﬂnu !l._:zz
4 ; b 4 y *
Ry, a[a (Fak)e e P (i) ]

and
-»l(ra !"‘!-I
R N i « ¥ S
Sma a[ﬁ‘w‘ :‘.ﬁ 0333’{”@ J

It iz worthahlle obzerving that the lef't hand alde of egquations
(2.23) and (2.25) =111 eaniah for k read omly 4f o5 % 635 = O,

2.2.5 Solutian of thoe Boumisry Condition Prohlexn

It s now poasihle to detecnine the coefficients c:‘ of the homogen-
couz solutians (2.18) froz the boundary conditiona. Sinee the €, are aix
in nusber, it i necesaary to have a 28t of alx boundary condition egqua-
Zons., 3ince the electrionl hourdary conditions have dbeon eliminated in
the "low goupling aporaxisation™, these cquations anre oassily found in the
meohanical reatrictions on the prodlem:

(1) continuity of the displacements at the interfnoe

(2) continuity of Tys and Tys at the interface

(3) T3 = Ty = 0, at the surface of the layer (free surface).
Those conditiona can be written as:

% (x,0) a W (x,0) (2.27a)
Uy (x,0) = % (x,0) (2.27)

™ (x,0) = B (x,0) (2.27¢)
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Ta(x,0) = T (x,0) (2.274)
% (x,%) = 0 (2.270)
eg(x,ﬁ} = 0 2 (?...2?1‘)

uhere the 2iresses are given in mytrix notasion . ™he Sterms SJ and 'l'.} o
Fredast the total salutlons (Rosogeneous « partisular istegral) in he
layer and mdatrate, respectively, while the auparsoeript "A™ refers %o thoze
torns evaluated in the layer, s zentiomed sreviocualy,

Applying the Pourler tranaform of equatlon (2.13) fo the aquations

{2.27) yielda he tranafeor=ed boundary condition equationa:

Ta(k,0) = % (x,0) 2.28a)
Ty (x,0) = %,(x,0) (2.280)
%(R.O} » 35(x,0) (2.28¢)
5 (,0) = T, (x,0) (2.28a)
%(k,ﬁ) a0 (2.280)
Tz'ﬁ,(s:,a) . Q . (2.281)

The i‘J can be deterxined by application of the Pourder tranafors of (2.13)
to equation (2.1) in the zazaner shown in Appendix A. Substitution of the
tranaforaed wave aclutions (homogeneous « particular integral) into oqua-

tions (2.28) gives the following zet of equations:

é
Qe =c= - Zﬂgaca ![aqp‘- ;qj (2.29&)
. I

I~

zul

® The equations (2.27) reproaent the dourdary conditions for a "rigiar
bond betweon layer anl substrate, the most common case., Tho case of
& "szmooth™ or "sliding” bond 1s considered in Apponiix R,
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ik { tma‘%sl ]“Q }ca

o[Bya s 0:9.12]‘1:

—p A ’y o
a;i" Susdlk e Gas % 2 Qn’?(nf")f‘ n(kD/2)]

™ o ’
——de 0ypBik+ 032 % 21@\%¢(D/2)3 n(m/z)l

an
(2.292)
2. & A 11 o
(o), ~ ) { [:" : i"lal“'efio “c_ =
& o {23y + h:ln}‘l:a»
Tid yriid
E_suﬁ 1k » Oy3 %%l‘ sl ?ik* o33 %U;‘* TR !Jt* 32 g- 2301:3(3/2)3-‘»’\(3@/2)1
. B
(2.2%)
2 € ix1 K
N ~
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Theae aix equationa allow one to solve, in formal fashion uaing
Crazer'z Rule, for the cvefficients Cg. It is useful to note that the
Iaft~hand agamr*:l@::% satrix {3 the 3azmo a2 would be chtained inm the solu-
teon of the "low coupling™ hosogenaous problem (no exsitation terms) with
fha applied boundary conditiona. If we ropresont the deterzinant of the
left-tard sido of the equatliona (2.29) by A, one oan write

, C. =AM,
shero A ia the determimant of tho left-hand side of (2.29) with the o™
coluzn replased by the column vector of the right-hand side. The resulbe
ing exproasions are very cozmplicated and there in little purpoas in writ-
ing thez out in detail, it iz sufficiont to stato that the complote
tranaformed solutlons in both layer and sudbatrato are now known.

It should be rezochored that, at this point, the (cal are the co~
efficlenta of the tranaforved homogenvous solutions. In the following
seqtion the inverse tranaforz of those torss will bo considered and it
will becose apparent how thoy oan de evaluated %o obtain the homogoneous
solution in “real-space®. The notual computation procedurs will bde des-

cridbed in Chapter IV,

2.2.6 The Cozplate Solutiona in "Renl-Space"

2.,2.6.1 Application of Inverse Pourier Tranaform
Having obdtained the cozplete ‘ranaformoed solutions in both layor
and subatrate, the solutions in terms of the spatial variables (x,2) are
given by the application of the inverse Pourier tranaform, defineld by
(2.14). Thus, the soluticns to equationa (2.12) can be written:



«& 1A 2 Lex > o
o {x,3} = *:1!/ C i @ 2o dx e 2F [O5(k,2)0 0 (2.30a)

- ?iﬁ - ‘
e B3 g . ,
By (x,2) w?&lanmaa Fetan {;ﬁfﬁi&:,u)em& (2.3m)
B it

-

i‘a ‘ . 4
% (x,2) = ﬂ[ Zc IR = am&' o 0 70,200 ax  (2.300)
o OB .

e M,

2 ix) o ;
% (x,2} = 1}.‘1[26&&;&@ o = ay - > ’l‘f(k u}a ax , (2.304)

-

where the range of integration ia along the real axls in k-apaeo.ig Though
these integralas represent the cooplete theorutioal solutiona, the solution
of any practieal problem requires thelr svaluation, |
fore contimiing with the eraluation of the integrala (2.30), it ia

usef) and enlightening to sonsider briefly some of the points comserning
the "exiztence™ of tho soluiions. In general, the exiatonce of the a0lu-
siona of (2.30) requires that the intugranda aatisafy Dirchlet's conditions
for -m ¢ &k < w and that the integrals be abzolutely aom‘urgunt’. The funcw
tion f(k) is 3ald o antiafy Dirchlet's conditions in the interval (a,b)
ifss:

(1) £(k) has only a finite musher of maxima and minima in (a,b)

(2) f(k) haa only a finite nusber of finite discontimuities and
no infinite discontinuities in (a,b).

Foeping in mind the above requiroments, lot us now conalder the sclutions

(2.30).

* Zeo section 3.2, Thoorem 7, of Ref. 59.

SR |
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Conslder Tirat =he particular integral portion of the equationa
{2.32), ziven by the zemaral Torm

v é“? 13:::.
‘ﬂ;"';° .

[
-

Prom (2.24) one has

wd -xnn xnnj
- :&,ﬂ(k W) 032{3 * djna j} ’

Az can bo zeen from equationa (2.2)) and (2.24), the terss Ry bjn’ ®4n

and &, are "plecewise® contimous and finite Tfor all roal k; and the

in
terma o, and &, deear iike 1/ as |k} - w, not only for % real but for

In Jo
% commlex az well., The situation where the left hand aide of equations
£2.2Y) and {2.78) vanishes at cortaln values of k, as zentioned earlier,
allows the concept of "olecowias™ continuity. The approprinte functions
are redefined at these pointa and thus do not represent infinite discon-
tinuttios. There say, however, be an irnfinite nuzder of these 'finite’
discontinuitien since the suzmation over the index 'n' represents the
expansion of the applied potential function nnd sy include an infinity
of ter=a. Novoertholess, one should resosher that these points can occur
on the real axis only if €12 = ¢33 = 0 and because dissipation has been
ignored in the precceding derivationa. In a true physioal aituation these
points would not occur on the path of integration (the roal axis) because
of loas and thus one my consider thom as being slightly removed from it.

As showm earlier, the terms bjn and djn can only he non-zero in

the layer region where z ia finite. Hence, the expression for V; romains

S~
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fintta, over the allowed range of 2, Tor all [real x| » 0. Since the
funetion ?B&} 1s sontimsous anl comverges to gero a3 |k| - = along
tha peal axls, the lorm "'é'"'f 1a than cantisuous anl converges o zero ag
Pk} = »  along the real axia, for all a. BExanination of equations {(2.23)
and {2.28) also shows that & = O ia not a pole, for the left hand side of
these 2quations doen not vanial; nor do the terss Byn h.tn’ ®in and djn
wanish st k= 0, However, e ters ain(eD/2) w2l) waniak,

The homogeneouz portien of equations (2.30) is represented by a
sazmation of terms of the goneral ferm

3 'mu: 1ix
é’?!caa.me e dxX .
il

The C_ are defined by the bousdary conditien equatlona, (2.29), while the
2, aTe dofined by the equatlons (2.16) and the ) are the roots of the
speular equation (2.17). Ths aaymptotic behaviour of tha 1 can be deter-
mined by wvxamining equation (2.17). As lk]l = = (k real), equation (2.17)

reducon to

4 2
Ec”c:;-e”’}l > 2{9!35':3@3“3!:]1
z 2 .
- gcnca: ~ Cgy » 204ty = (Gu . Ou) ]1’ A ?»(cucu - c-scnh

« forrcag=cys”) = 0.

~he aolutions of this equation are finite and in general will be complex.
In the isotropic case, as shown in Appandix D.3, they have the values (=) 1.
As |k| = = along the real axis, the equation (2.16) can bo written

2
(o551 ™ ¢ 20431 _+ ¢
“’u (ﬂn 1ad n)

@1, - [0331: + (c3s+ cn)lu* Cial



-}-"‘ -

23 —EQQQ}.; - (Qg; - 313)1’“' Qt;}
il -
E 3 il y 4 i
) €331% o el o )]
':’& ( ;gla - cu.a [-2F P

fince the lax are Dnite for this altuation, tho a 3= will de bounded
though not rwevasarily zere. Thun, the L »1l]l be well beharoed and
contimions as [kl = » along the Teal axia.

In the subatrate, where 2 CAN g0 0 «w, only thoso values of ln
winich give rise %0 decaring solutions are allowed; and Lt ia this restric-
tion which loads to the axisterme of "branch point contributions®, as shown

in Appendix D. Thus, whan referring to the zubatrate zolutions, the term

x> 2
¢ 2 in the abore integrand remains finite (2= 0) or convarges to zero

a3 |k} = w. Homever, in the layer where 2 i3 Tindte, all four roots are
‘ Ul 2
sllowed and thace are two Sersa of the form e © which can approach in-

fNntty a3 i - . Inspection zhows that this situation will be countered

mua
in

by the sppropcriate t:31 *hich contaln the anxe terma in the fors o
the denominatar®. Thus, aince the right~hand aldo of the equations (2.29)
goos to zero a3 k| - w, the integrand

Ca ﬂma"em

B
converges to sero as |X| - = along the real axis.

Ono ahould alszo consider the behaviour of the homogeneous aolutions

at k« 0. Miltiplying the equation (2.17) by k*, gives the following squa-

L 1 2
tion for k‘-kl:

* H is the layer thickness, s< H, in the layer.
*¢ Remoshoring that the 'k' being used i3 really k!: and k1 reprosents kz.
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..x (Gnﬂas - Gigﬁu) - k(%: * ‘&-a)@‘:}ka

» [¥'(eriers - s ) ¥ (euy » eas o’ ¢ (pe® )] s 0,

i

in the linde, sa k -0, the odd order coefTicionta vanish, and ore has

der

(h:ﬁn ?%:“)k; - E.(Qﬂ hd %a)?“g]k: i (P@E )' =0,

The solutiona of thia equation arv finite and thus, a3 X -0, the values
of & . = (kK1) remain finite. The 4y, Are defined by equations (2.16) and

can we weittas

ﬂ;a ‘(0331;* 3!2‘ gla* Crs - pdé:/k:} ﬂ.;a -{Q;;l;a. (c,s 'Y Q")lzi + Oy ,)
™ or = .
a'n Etzazlé* (Q;.:. . Qqy )la‘ Q‘;J sh..".. (Qaal;. 2@;31;:* Cusg - pﬁa/kz)

By multiplying both top uad bottion of those expressaions by ¥ they can de
used for evaluating the LA L kK5 0e In general, or at loast when ess £ 0,
there iz no losa of generailty in choosing “je,-.' 1e In thia tsae, one can
shou that the &2, are all defined at k=0 and that the 1eft hand 2ide of
oquntions (2.29) does not vanish a2 k= 0, for there are no rows or columna
which are repeated or identienlly zoro. However, when a3y = o, k'
(pw®/013) or (pu’/oss) at k= 0, and the evaluation of the P becomes more
involved. In thia situation,a, = 1 and @ = 0 for k2 = (p”/es3); and
@, =0, 8 =1 for k: = (pu®/e33). Honoo, the loft hand side of (2,29)
3ti1l does not vanish at ke 0 and thus k= 0 &s not a singularity (pole)

for the homogensous aolutions.



There do exist, however, values of k(real) for which the left hand
side of equatiens (2.29) doos vanlah and hence ropresent alngulardties
{(polea} in the Cuo It 13 these values of k which ropresent the propagat-
ing surface mwmg}“ﬁ’f’s. and thay w1l be discuased in detail in see-
zlon 2.2.8.3. The locations of these discontiruiiies ean be removed from
the zenteur of integration (rval axia) by assusming that sthey have a amall
positive imaginary part for Real(k) > 0 and » 2ma)) megative immginary
part for Resl{lk) < 0. T™hia 12 egquivalent %o to imdenting the zontour c:"v
integration to pans abave or bhelow the poles, as s the usual procedure,
azd 12 conslatant with the presence of loas in the ayates,

Thuz, having exanined the integrals (2,30} in 20ze dotail, one can
bhe confident that they astiafly the nocessary conditions Ter the aspplica-
tion of the inverze transform, and hence the required solutiona do exiat,

2.2.6.2 Rvaluation of the Particular Intesra) Solutions

The particular integral solutions represont the foreed motion of
the saterianl, within the dounds of the Sransducer region, in response to
the exciting electric field of the transducer. In thia section wo ahall
not solve for the particular inmtoegral solutisns in both layer and aude-
strate, rather s general soclution will bo obtained aleong tho aame lines
a3 the tranaformed particular integral solution in seotion 2e2e4+ The
solutiona thus obtainoed can then be appliod to either layer or substrate.

The problem is to evaluste the integral

é-r["" o (2.3

whero ?5 i3 a general transformel particular intogral solution in eithor



P

Jayer or suhabrate. It has boeen shown thal Ei i3 given by oquation

{2.28},

| ' -xﬁa i!na
@umgm(mjz) ﬁ e I‘me j} ' (2.26)

sroviding the left-hand alde coefPicleat detersimast of equationa (2.23)

and (2.24) does not wamish, lHence, the ioverse transfors, (2.31), can be

wrl tton
e X ‘ Xz *
2 s tex,, n 1kx
ﬁ_}d{e [Pﬂ(k)“ga" % - o /rn(k>bia° ,&}
1+ - A

»

—pr =Na . ¥eg
¢~fgr2-'{n » {azz,n(kn/a)ewumame ® [azn(wﬂ)ajno”“&} ; (2.32)

ik -

and dja = o‘énxéa, a3 beforo.

v
a}n.j&

Ja
Thus, the prodlem reduceaz to that of finding the inverse transform of the
functions

?n(k}a o’ Pn(k)b in? 2in(kd/2}e 5 A sin(kb/z)&éu :

E
W
shich represent an amplitude (the torzsa n? b 3n* %in and 4 Jn) miltiplied
by functions which deseribe the behaviour of the electric potential func~
tion in k-space (P“(k) and sin(kD/2)).
The discontinuities in the torms a‘jn’ bj“, an, ajn ropresent so-
cnlled "rozovable ainsulaz*itiea'm’. The functions are still delfined at

those points, only the definition is differont from that in other ropions

of k-space. Since tho Pourler expansion convergea to the average of the

DRI INER

N e S e b 5 g 2



values on elther alde of a flnite diacentimuity, this fora of atneule
arity doss soh add any comtridution Lo the intezrals of (2.32). Tho inte-
grala of (2.32) do not contaln any brasch pointa, and in the ahsenca of
ather singularities, f.e. poles, the last two integrals of (2.32) w22
vanish, a3 shows In Appondix C.4, The first shree integrala are evalu-
ated a2 shown in Appendix €.3 and the particular integral centridution

can he written

o+ Tfon 0 )

, -¥ 2 z
= n _ 8% :: inex/L} |
*4n ':.)[“ r#n( L)° e 15 (2233)

Ve
b}
g

vhere 'an(?t) " 'bsa(k)/a.m(k), a3 bulore

p «[® 05 lsl <2

s o, Ix! > p/2 .
It la worthwhile noting that the solutiona (2. 33), for the range
2 ¢ [x! < D/2, are the saze as would be obtained by aolving equations
(2,12} without the application of the Pourfer transfors and uaing

coa(nr x/1) = *{oinw x/L . o-inw :/L] .

2.2.6.3 Evaluation of the Homogenoous Solutions

The homogenvous solutions are conaideradly more involved than the
particular integral solutions, and there is little point in evaluating
the cozplete solutions in both layer and substrate » 3ince tho approach is
idontical for the two regions. Wo shall consider a "genoral™ homogenoous
a3lution V? (z,2) =hich would apply to oither region, and indiocate those
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sharnoteristlics that apply only to s particular reglon. Prom equationa

(2.30), = typlesl hemogermous aslutien can be written
. & p in -
wxx) = cm[}}.ﬁ R R CEY

wiere T @ A A\ {(Por the subatrate aolutiom,!ﬁx,a), == (1,2) while

o4
$
4! far the layer =dlutiensa, zz'* {x,2).) The ters A_ 12 the determin-

oy

=13

)

ant of the lefi-hand-zide of eqmtium {2.29) with the a"h coluzn replaced
by the yolumn vestor of the right-hand alde, [RMS) , and A ia the deter-
zinant of the left-hard aside of (2.29).

Conatder the right~hasd aide colusm voolor of equations (2.29),

{aMS). There are alx terpa in [RUS], ome for ench of the equatlons (2.29a-

2.297), and inspection of eguations (2.24) shows that each tors consista
of llnens operators (algebraic in %' and linear differential in 'z')
ap&mti&; on funettons which are reprosented by summaltlons of termi, Since
the operators are iinear they can be moved within the sumpation adgna so
that they act upon oach irdividual ters of the nmt&cna’n. If one groupa
the resudting Serms alter performing this operntioen, it Bocomes apparent
that thoy can bo divided inte two groups invelving the faniliar oxpresas-
fons Pn(k) and sin (kD/2). Thus, after consideradle algebraic manipula-

th

tion, one can write the §  term of [RHS] as

RKSJ-

P08 1 = 1n(a/20 . |
where the terss pjni and 53::2 are functions involving the linear opora-
tors mentioned above, oporating on the individual torms of the summations.

The suzmation over 'n' is over the numder of terms prosent in the original

i
-
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Pourler expanaton of the electrde potential funotien, glven by (2.10).

LA

Invoking the familizr propertles of determinants” , one can then

vet b
A = y ¥ (kA + 2is(eh/2)a §
Pam T T e RS ma_j ’
St
whre " -
Pae
Parg
ﬁ" o et »
AL, e | 8 substituted dnto the oo
mnd 8 Ind
hxd goluzn of the lef't-hand side
Beng of {2.29)
Pens | -
Thus,

¢ Sqr(‘)'\’“""‘- in(in/2) 2222
s/ AL e S A Y '

o

-
e

asd {2.%) can be written
"7 A A ikl 2
7% (x,0) » &szz‘j [’n(“) =1 . in(kp/2) -—}"2] 0 o ax, (2.35)
NE -

The function & has zeroos at ik = :k; , corresponding to those wvalues of k
which represent propagating surface m\'us% » 36 ’:‘6. Theaa values of k

occur on the real axisas a result of having noglected the effects of dis-
sipation in the precoeding derivations, To correet for this lact, and to

onsure cutgoing waves which decay as lxl - =, it zust be assumed that ka

* That the values are symmetric is, of course, required by phyaical symmetry.



kas a axall positive izagimary pare far Real (}:a) > 0 and & axall noga-
ire ixagirary part far Real (5::) < 0, as w3 observed in section 2.2.6.1.
Sirce the rooty I, of equation (2.17) are multivalued funotions of ¥, one
oXpects to find valuos o ke :k: zhich aru branch points of the intogramd
of (2.35) and represent the ecowrTerce of hulk wave ﬁ.olutim}'; . The.
branch peints are dizcuszed {n detatl in Appordix D; however, duo to the
complexity of the intogrands, no attecpt will be 2ado to obtain the exact
braseh point contributions o 2.35). A3 i3 also shown in Appendix D.1,
it L2 only the mudatrate selutions I‘:(x,a) which have branch point contri-
butions. There are no brased point contridutions to the layer solutiona,
Haring odaerved that the fumetion A has zeroes located nt k= :ks.
it ahould be noted that the walue of ’ka} =ay not be unique. The propaga-

tien of mmerous®™ szfase wave "=odes® in layered struotures ia posaidle

=hen the aubatrate is a "fastes” saterial than the l-ucmr”SG. Te ahall only

conalder the contrihustions arising froa n particular »ode, defined by lksl,
and ignore the contridutions fros the other aurface wave modes, if thay

f
exist .

Befere proseeding fixther, consider the behaviour of A in the
vicinity of its zeroca. In the neighborhood of k:kn, A can be defined by

the Taylar's expanaion ,

® That the values are ayzeirie is, of sourse, roequired by physical asymmo try.

®® An infinite numder of "modos™ ean, in fact, occur,

t This restriction allows the effect of cach surface wave mode to be con-
sidered separately, and the complete solution will bde a composite of all
the modes present. It should also be observed that tho 'multi-mode'
aituation can ccour for the case of a ‘amooth' bond botwoon layor and
subatrate, as shown by Aronbach and Bpstein',
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(=X ) (x-Xx )
Ak} = A'(k Hue=% ) - a%(k,) 23” + A% (x,) —-—ﬁ-’-‘— * eeny

where A'(x,) w:w[ﬁiﬂ The "order® of the zaro of A at k=k_is
determined by the firat non-fare derirative of A svaluated at k'*, Rance,
i &'(k } £ 0, the zero 12 of first order. Howsver, u‘A‘(k,) = 0 but
A'(ka) £ 0, then the zero is of necond order, ¢to. Replacing k dy -k in
the loft-hand aide of (z.m‘)‘ &e?a not change the magnitude of A, though
it doea replace the terma aq‘l”:! by their conjugates., Bgquation (2.17)
showa that the 1, asd thua he %y AT functions of k% Since the term
'4k® which aprears in the laat four rows represents a multiplying factor
of X', these terma are not affected by a change of aign in X,  Thus,ome
can expect the behaviour of A in the vioinity of ):-ka and k-—k’ to be
aizilar, though the derivatives in the Taylor'as expansion say be replaced
by thelr conjugates. Nevertholesa, the zoroaz of A at k-ks and kwx-&:a
will be of the sazo aorder,
The terss Amt' Aw nrad nw are defined for all k and have no

stngularities (poles). Thus, the expressions

Am‘! o.mna and iﬁ . oiklna

A e A Cin

can be exparded about the singularities at |k| =k, nak0

B0 4 (r )
f."'.’.‘l ay ,(:) 1\m12 )
A Z[ (ke ¥ (k*ka)r] Jvim(k,z)} (2.36a)

5,(r) 3, (x)
Amz Aot (=) Aw(l) .
= {Z[ T T 8y, 0], (2360)
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xere N 1a the order of the sere of A at ] = kye (e equations (2,36)
Feprasent a 'partial fraction expasaion'.) The torea JAg) are ovaluatod
in the uaeal Tazhion, az i3 shown by M&gﬁm. T™he functions Ji;’ and
‘xrgm contaln the other aingularities of (2.35) at different values of
E:caf iz the milti-oode case a3 well as the bramch point inforsation which
a3 in (2.35). Az obierved earlier, it 43 onmly in the auhatrate that
braneh polnt somtridustons sesur, and thus in the layer the funetions
énz%w angd Jq&m erly contaln infarmation on other almpularitios which may
exixe,

Thouzh not mecesaarily obvicus, cozputation indicates that in mosd

€a3es Nwl, In thia simumeien ore haa:

A L1 3}
AN (a)-;?[(z-k,)—?—‘-nmé ”? (2.57a)

:g;! ‘ “ont1

(’)()

=a!3

ikl
1,{:) = 113 [ kek )-_3'“3::" ab-} (2.37)

wad

WD ey o ! A .
toi(2) = A oq(2) = ;{z[(k-x’) -i—“-zsajao ”7 (2.37¢)

(1)()

A ikl
"A 22(:z) s 1lim [(koka) —J-\’?‘—z a0 a] . (2.379)
k ky

el 2
Aszumding that the terms Aam’ Aw and ﬂm# R do not have zeroes loocated
at k = :ks, the above exprosazions ovaluated by tho use of L'Hoapital's
Rule give:
3 mﬂ: .
t
SRNORT LR A ] (2.380)
kaks
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1K) g

4 2, .

Am!a‘a‘;‘('} ‘E’“m‘?jn” /A :;Iik tﬁ; (2.38)
il 2

,‘5 ) 2 g ,—?

Aomr(2) l[Amzaéa" /A e X, 2.3%)

3 Ul |

A pmaal2) 'E“m.z“ e /A ]h_kn , (2.332)

- && o *
ware At > - ¥enco, for firat order polea at ¢ = :ka, one can write

(2.%}) aa

- 3 J
u \ 1 Senty . Aemiz g
V’j (x,2) = ﬁZZ} {’n(k) (Ha} ' (kokﬁf v "1.'-.::]
B2 oam

J 3
A A R
ot )] . 2 . 3 tix
» aia(kD/2) [‘(&” ;5 W 7, }} e  dk (2.39)

The function ?_‘(k) has beon defired in zectdon 2.2.2 ng

ain[ ’k‘ﬁ%%}bé?l a}g} ikmsé ;DZEI
Pu(k) ® X=nnll, * RengL *

™e intograla of (2.39), =tth the avbatitution of the oxprossion for
Pn(k)’ are ovaluated in Appordix C.%C.6 and there are two rogions of int-

eroal:

51; the region within the l1imits of the transducer, |x] < D/2
2} the region external to the transducer, [x| > D/2.

Let us first connider the region 0 ¢ |x| < D/2.
*

Using the reaults of Appendix C, and grouping terms, one has

* Tho branch point contributions have beon noglected, as woll as the poa-
2idle ocourance of other polea in the functiona Jn“m and an ey 0 allow
consideration of tho poles at |k = k, only.
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I’x z) = (%) Zazu{[ wﬂ &mé J"Wm(*’“):] JRELE 4

¥k s ng'l
4 3
f.} A
_ mmtl | _Temi2 -inw x/L
¢ [{M’) Taoke, ] "1m(“")~g
kn-ﬁﬂ
» - y LY g. p M
. Amﬂca(a} A0y 802 (xD/2) i e
L=
s z
. '-'3*. G (%) - 3 cos (kD/"")- e-ikax [
et n 7 22 =
k!-'ks
-i ‘&a:
2], P (XY mm sin (kD/2)
— w s
- -1k x
S T AC R NPT (wz)] } ' (2.40)
&n-k

share
coaf (k~na/L)D/2 ooaf (ken 2
C,lk) = {k-'aqﬂ.; * ikmw.}
(It should be rosesberwd that k haa beon assused to have a aenll imagi-
nary part, and thus (kn ¢ n¥/L) £ 0.) Using oguations (2.36) and (2.38),
equation (2.40) givea

vitx.e) = ZZ{[Q,) ﬁ%n_'. ‘] JAnw /L

k=n w/L

[(4«) o= @0 F' o in® X/L} (2.41)

—

k=-n wv/L

. Z{D; [,Jn,magk:ﬂa oo™

K==k s
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The terms 'a; asd D are defined by

o} 2:,}) ([0 - coa(xn/z)]
(:):E’;”‘ ¥ (x) - =2 aJ(xn/a)]} .

X = (:)ks
In the region x > D/Z.
. 'maz ﬂcax
W) o) [ertdege = o (2.420)
4 LL* =
[ = ka
and in the region x < -b/f2
, 1l 2 =ik x
PHe,2) « ¢ Y["éf"')‘;a" e ]o = (2.420)
‘73‘ ke -ka

(Agalsn the contributions frem branch pointa and other posaidle values of
e al have doen ignored.) The term Cé(k) is given by

Cé(k) . Z{ [rn(k)t\m‘ . ntin(kb,"a)lt& ‘2] /A'(k)}
b+
» Aa(k)/h'(k) . (2.42¢)

It =ay apvear that we have porformed an oxcesaive amount of work
to obtain the results (2.542), which would be obtained by the immedimte
application of Cauchy's Theorem to equation (2.34); however, approaching
the proble= in the latter fashion doos not give the homogencous solutions

within the transducer region.

*Ignoring the contributions from dbranch pointa and other possidle values

of lkul.




e

The reaults (2.41) and (2.42) are, of awaq; valid only for first
arder poles at a partiowlar k= k,e If tho poles are of hisher order,
a3 indicated by the fact that A'(k&) = 0, the process for the ovaluation
of (2.36) and the functicns which follow 1a a well eatablished, though
involved, procedure. (See, for example, Refs. 37 and 4L0). As indicated
in Qhapter IV, whon computing solutiona, the ccourrenceol a higher order
pole i3 handled in a somowhat difTeront faahion.

2.2.7 Suzmary

Thias commletes the algodraio solution of the inhozogenoous layer
vrodlem, as outlined in section 2.1.5, for a particular value of lkal.
The corplete wave solutiona (2,30) are now known in both the transducer
region and outside, with the oxception of the branch point contribu-
tiona (bulk wave solutiona in the aubatrate). In the region x > 5/2, tho
solutiona for layer and subatrate are, rezpectively,

&
ixd ik
0‘?(:,1&) =4 Z [C;(k)a 1a° Ez]o s (2.43a)
o kw ka

| 2 VA g e
‘?(I,!) =i y [;(3)3350 Bj e nx ’ (Z-I&ﬁ)
=4 Kn ka

from oquation (2.42a)s Por x < =D/2, the solutions are

6 U g =ik
Ug(x,z) = -1 Z [C;(k)ﬂjae nj e s (2.442)

k--ka

| 2 1K1 g -1k
I‘?(x,l) n -4 Z [;(k)a 3 "j: :x (2.44))
o =K,

ook
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fron {2.43%), ®Wishin the tranaducer region, -D/2 ¢ x < B/2, the solutions
conalst of both homogeneous ard particular intagral solutions. Uaing equa-~
tlone (2.33) and (2.41), the general form of the wave solutions within
:his region oan be divided into s “wave packet™ propagating in the posi-
tive x-direction, V;(x,a), and ome propagating in the nogative »di:ec‘.‘:iop,

Vf;(x,a}. Theie cun be written

SR (IO [’Jﬂa Y"”‘(k)o!”j

| 131 ins x/L
(*) éf’laino ap} e

ka2 v/L

. a2 ik x
D [aho ajq 3 (2.45a)

- Z(é‘) Auﬂ a omn’]o-inrx/i.
-

A =
k=-n x/L
_ iﬂdn -ﬁt“x
N an [“Jn° j e . (2.45b)
k= -ka

The equations (2.45) are applicadle to oithor the layer or subatrate with
the proper range of the indax 'm' and the correct choico of the coeffi-
cientan_ and an, as woll as the doesy factor Rn.

b ik _x ~dk_x
By factoring the torm o from (2.45a) &nd o from (2.45b),
one can define "amplitude factors®, APS(:,:) and APS(::,:) , for the "mve

packots® propagating in the pozitivs and nogative directions, respectively,
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%3 v x

M;(x.a_) - V;(x.a)lo ? (2.48a)

ix x

u;(x,,).wgcx,,)f; o (2.465)

¥ore will be said about theae “azplitude factors® in Chapters VI and VIT,
where their full sipnificance will Yeocosme apparest,
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CHAPTIR YIT

31 Imereduetion

In Chapter II the ™low soupling inhomogeraoua layer probles™ haa
been selved. Mathepstionl m%&im for the amplitude of the generated
surface snrns both inzide and outnide the tranzducer region, as functions
of applied voltage ard frequency, have been proszented in section 2.2.6. 1In
this chapt&r & waothed by which the total transducer admittance can be
determired will be presented. There i3 no aep&mtion betweon bulk and

surface waves in the following analyalis; howover, it will be assumed that
the results obtaired will be applied only to the aurface wave solutiona of
sectlion 2.2.6. The bulk wave contridutions to the transducer ndnittance

will Ye dlacusoed briefly in Apperdiix D whioh ia devoted to the discussion

of branoh nointa and bulk waves.

Y2 Tranazducor Adzlittamce Uaing Complex Poynting's Thearens

Assuxing a time depondence exp(-iwt) and in the adsemve of mameatic

|
i
i
F3
1
5
H
H
¢
2
¢

Flelds within the zateria), the complox Poynting's Theorem for a plozo-
electric raterial 13’3

[l [
: v ! ! v

W nere: Ji are the components of tho conduction curront donsity within V

T~

Py

Ti § are the usual components of atress, defined by equation (2.1)

are tho components of internal body force donaity



uzl are the displacesent camponenta

%13

Et and Di are the components of electric field and diaplacesent,
namunly

are the usual componenta of strain

is the mass denaity

¥  1ia the volume of saterial under consideration

A s the smeface of ¥ |

5 ta the outwand normal veotor for the incresental area 3k

*  preprezents the complex em&zgﬁu.
Sauation (‘Li) represents the cmrﬁ*‘ Eﬂmu within the voluse V. The
temn on the Jeft hard alde iz the complext power delivered to V by inter-
wa) mochantes) sowrves. The right hasd aside contalina the powr loa% in
cleztrical heating of the volume ¥, the power lost by radiation and the
rato of change in the net ztored ecnergy within V. The aurface integral
on the right hand 2ide will be recognized as the familiar complex acoustle
Povnting veetor. Applying equations (2.1) and (2.2) %o the last tern on

the right hand aide of (3.1), ome can write

][p; '?eﬂ“ - [ (833, )av - f['r;d f;tl]niu (3.2)
v v A

3u3 au,
. < B®
‘“][}unsusn BieE, - P‘é""at-l“v
v

Only one subseript is required for the dieloctric constants &, since we
have assumed that the dieleetric tenaor is diagonal,in section 2.1.4.

In the case of a piezoolectric material being excited by an axter-
ral source, one can think of the material as being filled with internal

mochanical sources (F ), coupled to the source by the olectric field of

Qs o)
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the transducer. The complex power provided by these “sourcea®™ muat be
esual to that supplied by the exterral gererater connected to the trans-

ducer sloctrodes. Mence, the'b integral
£ 14
' i
] [-_’; ac]“
v -

gas »o replaced by the term ?%I ¢’ e vg‘ ard I g e the applied voltage

and ourrent from the genmerator, rospectively. Thus,

W~
P, * VI, .[ (233,)av - ][r:j ?{ n,dA (3.3)
v A

2Uy AU
- b - ) ——
’-“][_”mzsxﬁu UL robr rad R
v

The complex cleotrical power into the transducer ia written V;IS to de
consistent with the tera EQJ,. If the transducer admittance is Y, 1% can
be dofined by
r P v 2 ® L 4
= /17 (3.0)

The cogplex conjugate of Ps appoara in (3.4) because clectrical admittance
iz norsally defined for an exp(iwt) tize depordence, ard wo have usod
exp(-iwt) }’7.

In the situation where the material onclosed by volume V 13 an

insulater, J, = 0, and equation (3.3) is written

20 . 80; 801
- - * » - ———— e———
rye- [[ew oo 1o [fwatttas temor ]
A v (3.5)

The calculation of the transducer admittance by the use of equations (3.4)

and (3.5) is analogous to the"Poynting Voctor Mothod" used in the deter-

o e ki
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zinstion of the impodance of eleetro-eagnstie mtsenma}a. v
The tine average power delivered by the generator iz given by

3 nm(s»a} L am[/(s:;_’ ;ii) nid.k] ;. (5,6).
A

=hick 12 & well knows result. Inspeation ahows that the intogrand of the
voluze integral &a (3.5) ia purely *eal, ad henco the volums integral is
not Ireluded in (3.6).

In gorural, the field 8, appearing in equation (3.5) wil) contain
the driving term resdting fron the applied voltage ns woll sy 8 fiold
comporent coupled to the particle displacerents, However, in the low
toupling approxisation ¢ i3 this latter fMeld which has been ignored,
ard thuz the electris fleld tors appearing in (3.5) 1a only the driving
field.

To detaraine the transducer ad=ittance fros equations (3.4) and
(,}.S), £t 12 necessary to use a volupe V that totally onclosea the trans-
ducer region. The odvious voluze for this pun:han is shown in Pig, 3.1,
The "enda® of the volume V are planes A and A,, parallel to the (y,s)
Plane and located outside the transducer region. The "top" of the volume
is plane A3, parallel to the layer-substrate interfaco and located at
2 > H, while the "botton" is located at g & ~m. The two "sides" are
Planes parallel tg the (x,8) plane and located at the enda of the trans-
ducer fingera. In the strictest sonsa, the transducer fingers should be
excluded from the volume V; however, aince we A33umed that the fingers have
negligidble thiskness in Jection 2,1.1, their inclusion in the volume de-
seribed by Pig. 3.1 has no effect on the results of (3.5),
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Figure 3.1 - Boundaries of region used for evaluation of Equation (3.5)
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Because of the olastic and piezocelectric aymmotry restrictions
introduced in section 2.2.1, the components Tp¢ 8o Tos are zero; and

since the U, component has not bheon exnited, there is no qouﬁ%ihmion 2o

the surface integral of (1.5) from the “aides® of V. o zcoustic waves

are launoded into the region adove zaHj and since .ﬁm'pﬁrtﬁm diap’lmq—-
Mt 4o Z0re 4% ga - w, the only cmtrﬁ.m&iﬁn to the :m‘rmé integral
of (3.5) camea from the 'r“ camporent over the axn*tm‘:ua'i‘.ﬁaxﬂ Aze Sthoe
the surfmcea Ay and A, are located ocutside the m&m&j region, only
the homogemeous wave aolutions, given by oqmtio# (H.M).baﬁ’uuﬂ in the
avaluation of the mcrface integral in (3.5) . '

In the regiona x| > D/2 the volume integral of (3.5) 43 sero. This
i3 easlly nroved by conaldering the ssall voluzme V' forzed by placing the

rlane A4 parallel %o &y, at x = D/2,as ahown in Pig. 3.2,

4

!
| AN
.. S
!
— ¢ SN l >
' X-axis
A ,, A, \'
|
x=D/2 Figure 3.2
* Since T,, i3 evaluated outside the transducer region, T, J-c. Jklskl

only, in Jthc low coupling approximation.
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Tithin this reglon there i3 no spplied power from the gonerator and
the left Pand aide of equatien (3.5) for this region ia zero. In the
ahsence of losa, the mmface intepral of (3.5) far this msi,oh will alao
Yo rero and hence the volure integral muat .Qso vanish, mnmﬁ. the
only contridution to the volume integral of (3.5) somes froz the volume -
hounded by [x] = DA2, the olane Ay and the "atdos™ loeated at the onda of
she transducer fizgera. Ip evaluating the volume intagral of (3.5) the
solutiona within the transducer region, given by (2.15) aro used.

The means af porforming the aem.emtationa required to deter-

zine the tranzducer sdxidtance Y is dlscussed in Chapter IV,




CHAPTER IV
 COMPUTATIONAL METHODS

L1 Intveduotion
In the preceeding chapiers, a consideradle amount of thecretical

analyais bas been maeﬁtﬁ& This aralysis 18 not of mich use unless it
can leal to m.m to specific problems. Due to the cozplaxity of the
azalyals, one ia forced to rely on a high-speod digital computer for the
aztual caleulation of resulla, A Pwm-ﬂ G-lavel program known as
"LAYER" wa3 mm'm—v porforming the numerical analyais; however, due
to the aire of the prograsz, it will not be deserided in dotall. Rather,
the important furnctions of the progras will de conaidered, and the way
in whioh anavers are odtained will be discussed. A airplified flow chart
showing the sajor stops is shown in Pip, 4.1,

4.2 Sclution of the Masstrostatic Problen

After cheoking the irput parameters %6 be cortain that the cosmplote

prodblez can be sclved and performdng a for routine computations to dater-
cine the bulk wave velocities in bdoth layer and aubstrate, aa well as the
location of thoe substrate branch pointa, the "lowm aoupling” eolectroatatio
prodlem 45 solved, As deseribed in section 2.1.4, the solution to this
prodlen 1s perfarzed i:y the progran "CAPAX" prepaved by Corsnk et al.u
The asteps invelved in the use cf "CAPAX" are doacribed in Appondix B. The
eall of "CAPAX" fills the grid which overlays an adjacent pair of fingers,
as descridbed 4in section 2.1.4, with the values of the "low aoupling”
electrostatic potential funotion for the chosen transducer configuration.

The level z, on the grid, corrosponding to the level at which the &ms-

i
ducer 13 located, is chosen for the expansion of the potential function in
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- a Pourier seriea along the x—ax#.a; Once the harsonic analyais is pcrf‘ur#u:!,
the notential funotion within the transducer region, defined by equation
(2.9}, can be written -
f’(:,a)_u-y:\&(;unl - raoxaa) coa(nz x/L) ,  (&.1)
B S |
as shewn in Appesdix 1.3, equatien (8.10). The coafficients A, are normal-
1204 for & potestial of 1-volt (poak) botseen adjacent electredea. “Adja-
‘centPelectrodes refers to adjscent fingers in the sase of "bipelnr® drive,
and the fingerz snd plating in the caze of “unipolar® drive. |
Aftor normalization of the An’ the large:zt one ia chosen and ita
harwonds mgsber stored. As many as six more coefficients are than chosen,
providing they are equal to or greater than & certain porcentage (an dnput
paraseter, usually chosen to be 5%) of the largesat. Thus, at most, the
smmation (h.1) w11l contain seven terss. Though this zay appoar to de an
exgoasive aiarpliﬁeaucn, in all cases analysed the magnitude of &n is
found to decrevase very rapidly with inoreasing n. Nor does increasing the
ruzber of harmonics, by including additional szaller terms, significantly
alter ’tha final results*. The appropriate values of “n and r are then com-

puted and atored for later use, and the progras proceeds o the next atep.
A : de the Transducer Rexion

In the caloulation of wave solutiocns, the homogencous solutions
outside of the transducer rogion ropresent a convenient starting point.
Recalling from Chapter II, these particular solutions are def'ined for aither

layer or substrats by equations (2.42):

® This ia discuased in Appendix P,

R TR
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0 o fex
'V;s(”“) s 3 Z[C;(k)a@o 5?9 LI  (2.428)
) ma :
for waves propagating in the positive x direction, and by _
| U o -tk x
2 3(1,3) » -4 ZEJ;‘(&): 1e° ”1e ® - (2.42)
[ = s ‘

Tor waves propagating in the negative x ddrection, The term cg’z(k) i3 do-

- fined by

cilic) = A (x)/A'(x) (2.420)
wioce A_ La the left-hard aife coofficfent detersinant of the boundary con-
dition equaticna, (2.29), =ith the o' coluzn replaced by the right-hand
aide column of the saze equationa. The terz A' i3 tho dordvative of 4, the
loft-hand side coefficlent determdnant of equations (2.29), taken at the
value of k= ﬁ‘a a% uhich A vaniazhea, Honco, the firat prodlem to be
taskled s that of finding the value of Xe :ka at which the detersinant A
#2111 vanishe Proz a computational standpoint it {2 auch easler to choose
& froquency ra and then find the value of phase volocity v, at which A will
vanish, Once the value of v, ia detorsined, ono has k = 2% tc/va.

There i3 no easy sethod of locating the veloeilty Vo and the method
which has been adopted 13 %o use a convergent numerical soarch technique
known as a "Golden Section® scarch’C, A judicious guess at the approxi-
wate value of v is =ade and an upper and lower dbound for the search are
specified, The range coversd by theso limits iz then subdivided into fin-
{te intervals (original stop size), and the value of |A| ia caloulated at
ecach one. This calculation involves computing the roots, la’ for both

S —]



Iayer and substrate, uzlng the zecular aquation, (2.17), and the “eigen-
roctert [:; ﬂ, for each value of veloodty. Those values are then assemblod
mearﬁiia& ta equations (2.29), and the value of |A| caloulazed. Since the
valma of B am!;m;a in the “sigemvector” are relative, &y is always
chozen to Ye 'u.-si":cr.k k

T# the initia) gueas at the zearch rango waa & gool one, the valun

of 1] will have a minimm at soze value of velocity vev,,.. The two

values of volocity which bracket v, 6re then chosen aa pow boundaries for

the search, and the srocess is repanted in the appropriate fazhion. In
this sanner, the progras will rapidly converge toward the value of velocidy
fer which |A] iz spproximately sero. Of course, perfect comvergence would
require an almost unlizited azount of computing time, and thus "conver-
gonoe™ is defined az the point at which thoe variation fros one value of
wvelocity %o the next 1a leasy than a prosot fraction of the original atep
size. Thiz fraction iz usually chosen to be 1072, In spite of the many
computations to be performed, convergence in this fashion i3 obtained |
sithin & matter of seconds using an IBM 360/75 systez. If, perchance,
the irdtial zueas at the seardh range wss a podr omw and the minisum of A
Y1gs cutaide the chosen range, tho program has a built in adjustment feo-
sre that will aizer the origiml search range by as ruch as & 1000 =/s00.
Az pointed out in scotion 2.2.6.3, there may be soveral "modes® of
propagation for a partisular configuration, and hence different possible
values of h‘a! . Those will correspond to different valuss of v, and,
aince only one "mode” oan be considerod at a time, the search range mat
be chosen so that tha value of A for the desired "modo" will be found. If

two or more "moles" exist within the chosen soarch range, the one which

NS AR



A R R e g e e

Ltk RS R I Y i 1155

-89 -

*12} be selected ia uncertain.
Onee the 'm.?.% of ¥se, for the doxired "mzod2™ has boon choaen,

the values of the reots, 1, ard the *oigonreotora® [:;:] , Por the layer
and substrate are recaloulated at that velooity and stored for future use.
So that thoe homogenecus solutions propagating in the negative x direction
can slzo be determined, a separale et of rools, 1;, and “eigenvectors’,
[::.i:] , are ealoulated and atored Yor vw -¥ .

| Contirming with the homogencous solutions Tor x > D/2, the naxt
step 1s to deternmine the derivative of A at k=k . The derivative, which
13 complex, is found numerloally by evuluating A at kek s and at pointa
equally apaced on elither sida., As mentioned in sectlon 2.2.6.3, in moat

cases the derivative of A at ke ka 13 not e¢qual to gero. However, in cor-

tain cases, the derivative say vanish, Rather than evaluate a second ordor
pole in this attuation, 4t ia far easier to change tho frequency i‘o slightly
asd repeat the provess, deginning at the atart of this section. sincé all
ealsulations are done at a fixed froquency, the changing of the frequency
by a 3eall ancunt, wnen seoond ordor poles ococur, is found to oliminate
the problome

The final atop in obtaining the sclutiona for x > D/2 involves
caloulating the right hand aide of the boundary condition equations,
(2.29), s0 that Aa(kn)' as def'ined by (2.42c), can be evaluated. This re-
quires tho detarmimation of & (k,2) and ¢(D/2) in both the layer and sub-
strate, as well ss the transformed partiocular integral solutions. The
values of a(k,z) and ¢(D/2) are given in tho dofinitions acoompanying equa-

sions (2.15):
$(k,2) = E&‘P (k)r (z)
. n\"
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1, B +n even . D2 = 2% .

5
tha ealuyaz of A“ snd the haroonie  musdber o have already beern caloulated

-¥ 2 s
The Nunetlons .‘E‘”(a) -[o B ere® :}, 43 ahoan in Appordix 3,3, Since

and stered, as desaribed in the preceeding scotion, the functions Pn(ka)
and N, are readily evaiuateds Thus, the funotions #(k,z) and ¢(D/2) eval-
usted al ks ka are doternined. Naxt the tranaforsed particular integral
solutions are obiairwd by solving equationa (2.23) and (2.2L) for oach
harsanle n. The terms on the right hand side of eguationa (2.29) are then
szzexliled from their cowponent parta, all of which have now boen detormined.
The torma on the left hand aide of equations (2.29) are then asserbled
ualng the previously atored roots, 1 ,and ‘e!gunvectorn",,—:;:]. One can
then calculate the valuwa of Aa(k,) by subatituting tho—risht hand side
of (2.29) into cach colurn of the left hand side and evaluating the dater-
- =inant. The coefTiclenta Cl(k ) are then found by dividing A (k) by A",
which was preriously determined. In this fashion the complate homogeneous
solutions, for waves oxternal to the transducer region and propagating in
the pozitive x direction, are specified,

To detormine the sacw solutions for the waves propagating in the
negative x direction, one returns to the oaleulation of A' and ropoats

the entire proceas using k--ks, the roots, 1;,a.nd the “eiganvectora’) [:.‘.J .
3



L4 Sclutions Within the Trans &ncex_-‘ Rogion
© The selutioma within the tranaducer reglen cenalat of ﬁvaml_ d4ffer-
ent paris,  Pirst to be considered i3 the particular integrad aolutiian;
given in pereral torm by oquatien (2.33):
‘ -M .z ‘l
o . n' | ~inw x/L
?3 LR Z{u@(nw) [& - !,Sn(“"ﬂ‘)‘ ]e
£

B [;”nn‘ | .tn('“ﬂ')'%g:]"‘w %} , @3

Y. 2b ad P ow ¥, 0¢|xk p/2
3 Jn/“.i&n ° {Q,thn/z .

The ter=ms B in and b gn A detor=ined by solving equationa (2.23) with k=
snr /L. The saze compwier subroutine is used to perform this function as
sma wsed to determine the transforsed particular integral solutlon in the
rrevious section. A change of vardable in the argumont list allows the
subroutine to perforn those someshat d.&fi‘mnﬁ, but related, functiona.

After dotermining the particular integrsl solutions, the homogune-
ous salutions within the tranaducer reglon, of the gonaral form given by
(2.8},

o« T T ([0 ]

ku ror/L

s [(i-) ﬁ:"‘l “Jm°m‘;’] o~in¥ ’/L}
kn-nw%/L

(e i e kx HA e -1k,
. }__,{Dm[ndnn .]e +D=[a3mo .]e x3’(2.!»*1)
® L k,..ks



are aalaulated. The ‘u'ova‘f‘,f‘.‘,_uxém.:\ of the terms ém' :/Lm ca‘lguiaﬁd
immediately after &ota.*aﬁ:xw the particular integral iola‘t:iom. ?5:':‘
the roots, l ard the 'e*mmwm' l:“,a , AT% cmluum zmd tmd
for kenwle The value of & for kenwL involves ea.culatiaa the detorsi-
st of the loft-hard side of equationa (2.29) using only these roots and
"olgonvoctora® ssioointed alth k'-'mp’h. ‘?o evaluate the ters A i ? _.ho
- righeehand side of equation (2.29) must be conatrusted uaing the ﬁ‘.tn:--
of &(k,z), &(0/2) and the purtimslu interr«l solution, only. Thia spe-
clally constructed column wveoter ia then m&mﬁimuﬁ in ench columm of the
1aft-band alde of (2.29) which uses only the values of 1 ard (:;ﬂ oal-
culated at ke=nn/l, and the resulting determinania caleulated, In this
wr A /A s u@laﬂah&. for every value of n (maximum of seven different
valuns). The entire process ia then repeated for k« -nw/lL, beginning at
the caloulation of the roots and "eigonvectiors”,
Por the terms which propagate with the surface wave k= :ks; the
soefficlionts D; azd D; are defined by (see cquations (2.41))

°§”=Z‘*‘9 ([ eud - 3R coatinv)

A, A -
(2) & A, L AOR —513 2in(kD/2) } .
k-(:)ka
Ono can recognize the terms c;, caloulated in the provious section, as

dofined by (excopt for the factor '(%)')

ct = Z A‘“" P (k) \ 22 = ain(kD/z)]
]

ktks
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ikax'
m, thcnwcv » m‘i

[%; 2, (0) « R m(wm]
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for the wave e, .!‘rw oquation (2.420). The othar terms, given by

Zf%)["' 6 (x) + -Er**mwm]

(= )k

caal (k-nw/L -t
R

dirfer from the terss C! only in the faotors G (k) and cos(kB/2). Thosze
addttianal terms are caloulated in the sane canner as the €l were in the
prerioss section, oxtept that the funotions & (k) and coa(kD/2) are aub-
asttuted into the right~hand side of the equationa (2.26) 4in place of the
funotiona P (k) and sin(kD/2). In mctual fact, the calculation of those
altitional terms is perforsed aimultanaously with the caloulation of the
C;e
v “e h.sw thua far ocutlined how mmical values for the wave solu-
t:io:zs, both inside and outside the trsnnauoar region, are ocbtained. In
apite,~c£‘_ the very large nuzber of oaloulations required, the deotercine-
tion of thésc acluticns, at n single froquency, roquires about 10 seconds
of CPU tine using an IBN 360/75 systea.
L.5 Caloulation of Transdugor Adsd ttanco

The odcuiation of the transducer admittance, at a particular fre-
quency ro, 13 the lnst 3s%ep in a long chain of oporations. Since it do-

ponds on the values of tho wave aolutions both inside and outalde the

st Yty
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transducer reglon, it zust de caleulalted after the other values are
dotarnined, .
It wilil be socalled that the tranaducer adnmittance T i3 defined by

equations (3.4) and (3.5):

a z
Y pz/ lvsl (3.4)
and !
2
oo [ e
A | 30y Ay
"“[Euusiﬁu AL e A (3.5)

¥
As mentioned in section 4.2, all of the wave solutions are caloulated with

a roltage of one-volt(peak)botwean aljacent electrodes. Thus, lvsl' =1, in
(3.4). It was observed, in section 3.2, that the electric field B,,
appearing in (3.5), i3 only th¢ driving field =hon using the low coupling
spproxisation. Therefore, the term |

- 1»[[3;:131] av

rogresents the admittance of the static capacitance of the transducer only.
The program "CAPAX", =hich &35 used to calculate the electric potontial
funotion, also calonlatos the transducer capacitance 20 that the admit-
tance of this oapacitance can be deloted from (3.5)s The expression to

be used in caloulating the transducer ad=mittance will then de

X' =Pt " (4.2)
where
au 2U? 2u
. : e
PG'-[[T;J t]nidh-iul °ijklsijskl'PT -t] av (8.3)
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and the ainitiande of the statle capazitance will be sdded at the end of
:i':a canputation, Prom a gosparizon standpolnt, it 12 also convenlent to
have the adnitiamce af the ztxtic onpacitance 2eparated from ihe other
santributions,

It =az shonw, in szection 3.2, that the snly contridbutions %o the sur-
face lotegral of (4.3) came froz integrating over the "enmd” faceas of
she ancliosed volume ¥V, while only the volume of the transducer reglon con-
sxibutes to the volume intezrsl of (4.3). Hovever, becauze of the sy=metry
of our syatem, the murface iategral meed only be evalualed over the plane
located at x> D/2, wiile the volume integrel need only conaider the volume

_ntkem.seetxsn/z. 'Z&n.aom nan-n'itn

‘ "{[ [["":?“]""""“"[ ]/E;msusn Pg%]m
T2 - (4at) :

whore 'a!'o equals the overlap of the transducer fingera. Since only “straight
crestod” waves have boen considereld in the analysis, tho integration along
the y-axia introduces the multiplying factor ¥ only. Thereforoe,

”'--2‘! {[[T:j-é-;é ﬁzoiu//[ikl ijskl p%l'gzt hﬁx}(h-f’)

au
The firat of those integrals, invoelving TV 3 15%1 miat be broken into

two parts, one for the substrate and ono for the layer.  Bach i2 roadily
ovaluated algebraically using the "externsl™ homogencous aolutions given
by equation (2.42) and evnluated a3 deserihed in seotlon L.3s The ovalua-
tion of this torm iz n trivial programming oxorc¥ae, once the algebra has

been performed, and it will not bo connidered further,
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The avcend integral is not such a simple problem, It 2 an inte-
gl over %two varia®les and the complaxity of the aolutions »ithin the
transducer region furthar cocplicate the aitustion. Without becosing .
involved in lengthy algebralec derivations, it oan do shown that it is
possible to integrate this Ametion directly from xx0 to x= D/a,at any
fixed value of z. Thias fact ia wseful ainco soveral terza always inte-
£rate o gere over thia range. Thus, the latter integral of (4.5) oan bo
ersluxted by s combiratlion of mumerdeal amd direct integration. m} g~
axis froz 2= to 2=} iz suddivided into a‘mzbur of points and at oach
raint, 240 the value of the inhm!al#ns the s-axis is detormined, Then
the resulting veotor of walues along the z-axis in intagrated by Simpson's
Rule. The zame procedure is repestod in the subatrate, dut atarting at
zx 0 nand golng dewn into the zmaterial, This allows ona o torzinata the
intozration whon the torma are suffiaiently aszall that the rexaining ones
will not appreciably alter the value of the final result,

L4 Summary

In this chapter we have presented, in reasonadle depth, the compu-
tationnl mathiods involved in  the attaining of numarical results to the
"low counling inhomogenvous layer prodlea™. Any furthoer deacriptien
would involve one in explaining the partiocular ateps in dotail from a pro-
grac=ing stanlpoint, and that 2a not the purpose of thia chapter.



CHAPTER V¥
COMPARTSON EETHEEN COMPUTND AYD MEASIRED ADNTTTANCE DATA

Haring commloted a considerable amount of analysis in the pre-
ceeding sectiona, one requires :ém forz of exparizent %o tmb the valid-
ity of the 4mmmn>nmu. Prozu seasureseat ka&nﬂpuint, porhaps
the easieat parazeter to acourataly detersine is the adzittanse (impedansce)
of the ID transiucer. A cosmpardsoen bomm‘mnm‘a and caloulatod admit-
tance for a given conliguration, as a M‘titm of frequenay, serves a3 a
test far all parts of the thecretleal uml;éu!.a and the cw.xv‘wr program,.

This chapter desoribes the experizentsal procodire used to perform
the measurements and the comparizon betweoen maasuremsent and amdry. Both
non-layered ard layered structures were mensured,asd in sll cases the
interdigital tranaducer wan located at the layer-subatrate interface (on
she free surface in the sbzence of a layer) and the transducer was d.riven
in the common *push=pull® (bipolar) fashion.

It will be assumed :h#t the ID tranasducer is reprosented by the

following 'equivulcnt circuit?

W R, = series electrical loas
in the transducer and

o connectiona
, cp(w‘) = transducer radiation
Rﬂ(“’) —_— rosistance

Cp- total tranaducer
capacitance

O

Transvosing the serjes rosistance R s’ gives the cirocuit
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Rolw) » €. {w)
O
where Ry+G w'et
R (u) » = - 3 ’
? Y YR yeG

y = q’"oufc;, C= 1/'3?1. .

he inatrument used for purforming sho admittance measuresents of

the ID transduger was n Boonton RX-Moter, type 250-A. This unit provides
a direct mesmuzezent of the parallel resiatance (Rp) and capacitance (cp)
which represeat the potwork being moasured at the deaired frequency. The
frequency range of the U-Mater extonda from .5 Mz to 250 Miz. To anadle
acourate frequoncy Seasuromsnts, & tap wal plaged on the output of the
signal oscillator in the RX-Meter 1o that the test frequency could be
continuously monitored with o Hewlott~-Packard froquency counter, typo
5245L. A 10 dB pal was used in the line botweon oscillator and counter
to isolate the counter and prevont *pulling” of the ogemator frequency.
Por toat {requencies greater than 50 Miz, tho counter was used in conjunc-
tion with n typo 5253-B frequendy convorter which extonds the range to

500 Wiz. Both the RX-Moter and tho counter wore the property of RCA



Limited, Montreal, and received calibration by their Inatrusent Services
Division at regular interrals,
The tcleramce of errer iammmwmatoz‘npwcphy the RX-

© Meter is givendy the samfacturer as

‘ - A% = 2(2.0+ P/200- 'ap/sooows Q/20)%20,20 (5.1)
et : A,cp‘ & 2 (0,50, SPx C, x 1077 Y% 20.15pf (5.2)
whaTer '
Hyaaﬁcpvm the measured values in ohzms and pf
¥ is the frequency in ¥z
¢ = 27RCP» e,
Iz all cases, the 20.20 appearing in (5.1) oan de reglocted. With the
txim of' tha external counter, the test froquendy could be easily maintained
to wdthin 210 Wiz of the desired value. Since the test frequensies of
interest are in the tenas of Miz, this represents an imperceptedle error in
the teat frequenay. The lizdts of seasurement accuracy will de zhown for
pach case that follows s &nd are derived from the above ogquations.
To me.i}.itz.;to the czometion of the aurface wave dﬁv*.ooa to the
“ :"ax-mear, soall printed cirouit boards of the typo ahomn in Pig. 5.1
rere prepared. These boards were out from 1/16" copper—clad phenolic
laxinate and the eqr.meﬂng pads were proparel by atandard photo—atching
procelures, M‘i;er etching, the copper pads were nickel plated to enaure
low resistance contact to the RX-Moter. The surface wave Jovices were
mounted ua:iﬁs bhek wax® and conmnction from the pads on the circuit doard
to the ID transducer was made with a doudled length ofQ.010" gold wire which

* Black wex was also used at tho odgea of ocach sampla to prevent undesirabla
refloctions, and as an absorder betwoen transducers whon more than one
tranaducer was prosent on the zame swurface.
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Figwe S.1  Zn0 - $I0, structure mounted for use with RX-meter showing one
transduces connected.
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was soldered to the alrcuit board, and zonnected to the ID transducer
with a preased plece of freshly cleaved indium. The indliux, when freshly
cloaved, ia very “atieky” and forms a very good, low muiatémdo contact
shat can de resoved sithout seriousz diffioulty or dasuge to tho devico.
Pize 5at k:zzom s mourted surfage wave devioe with one of the transducers
cormeated in the zarmer described. The olrouil doard with the mounted
device a3 then conncoted 20 the thumbegorew terminals of the RX-MNaoter.

Mosxurerents wore carried out at appropriate fMregquency intervals
for eack dorice, with the circult doard deing resoved nt oach interval for
proper balancing of the RE-Meter. The atatic capacitance of tho ciroult
b«w& ma #um:-e& with the aurface wave dovice zounted hut eleotrically
disconnected. The value of thia additional capacitance was on the order
of 0,5 pf, wilch was audsequontly audtructed from the measured values of
Cp to odtain the true value of cp for the dovice. The only wvariation in
this procedure was =ith a free surface LiNd0y device. Duo to the high di-
elestric conatant of this saterial, the atatic capacitance of the trans-
ducer m too large to bde measured directly by tho RX-Meter, To counter
this diffioulty, s saall coil of apprdx:lmtoh 0. 7uH with a @ > 100 was
prepared and soldered across the pads on the circuit board to parallel
tune the transdicer. After perforaing the soasurements of Rp and cp of
the 0oil-ID transducer combination, the tranaducer was disconnscted and
the moasurcesents were repoated for the coil and cirocuit doard alone.
With these two sets of moasurements, it ia a asimple task to oxtract the
true adnittance charnctoriatica of the ID transducer. -

The series resiatance, Ra' which represcnts the 1osa.ea in the

connnctions to the ID transducer and in the transducer itself, can de

S
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doternined by measurezent of R, At several points either outaide the
“pass dani® of the device or at the "rulls® in the response cwrve. In
these instances, ome can assume that the tranalucer i not launching sur-
face waves (Ry.r = w) amd the value of R 5 32 glven by

R, = YRu'C)
providisg 2:0‘6; <t
5¢3 Pree S:rfzce LiNdO.

The excitation of acoustle surface waves on  the free surface of
L0, hes been well doourented and &Wu@d‘a’%’%. Por the amalyais
rezented horeln, it reprezents an interesting teat came sinee I.ifs'bb; ia
kretn %0 de s "high coupling™ zaterial, xhoreas wo have conaidered only a
"low corpling® theory.

A nlece of XY cut I propagating Li¥b0, of dirensions 1."%x0,5%0,04%
with one surface f1at and poliszhed waa used or this masuresens. The
eaterial waz supplied by Cryntal Technology Ine. and the g-axis was
varallel to the long dimension to within = 1%, A pair of ID tranaducers,
aligned 30 a3 to launch surface waves along the s-axis, wore fabricated
on the polizhed surface. The transiucers were fabricated by evaporating
a 3OO0 A layer of aluminuz and then photo-otching., Tho transducer dimen-

sions were:
L = 50.8 u= ()Lr- 101.6 pm, A = fundazental "rosonant® wavelsasth)
4 = 25.4 unm

¥ slbSm ('l‘o i3 the finger overlap, or "aperature™),
ard gonzisted of 15 finger pairs.
The zeasurod behavior of the R and Cp is shown in Pig. 5.2a and

P
Pige 5¢2b, respectively, for doth transducers, and is cozpared with theoroti-
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cal calculations, Noasuresoats of ap at frequencies below the "pass
band® imdioated that both devices, in their sounting, had an R s of approx-
izately 3 0, and this value was used in the caloulation of the thooretical
curve. The values of dlsatle and plezcelectric constants approprista to
thiz orientation of LUNBO, are:®

Cyy = 2’.&5!10“ ‘N/ﬂa gy & 1.3 c/ﬂe'
Cay # 200} Sy ® 0;2

Cas = Q, 6 &3 = 2.5 (5;3)
03 = 0,75 o33 = 3.7
Sy l~0.09

p = AT00 kg/m’, < = 29, €3 » &4
asd represent the values used in the caloulation of the thooretical curve,
By ohaerving the relative positions of the “mulls® on the two

curves, it can be scen that the theorotionl curve ia shifted by about .5
W2 with resneet to the moasured values. This ahift results froz the

fast that the theoreiical cizrve is for & "low coupling® zaterial and hence
the presence of plezovlectricity does not alter the surface wave velocity.,
As is well known, the true aurfuce wave velooity for Lid0; is somewhat
igher than that predicted by a low coupling theary. Honse, the measured
pointa appoar to lic on a curve that is shifted to a 3lightly hizher freo-
quency than that of the predicted curve, Nevertheless, tho cemperiigas Do-
treen the values of % at the "resonant™ point as woll as the poak to peak
voariation in € p agree reasonably woll. As discussed in Appendix D, the
branch points for Lifb0; may cocur at tho values of the transverse and longi-
tudinal bulk wave velooitles, or slightly leas since the material is not
fzotropic in the X2 plane. This implies that bulk wave gororation by this

¢ The values given by (5.3) are obtained by applying the proper teonsor ro-
tation to the unrotated single orystal valuos given by Warner et al.T®.



T transducer-oaterial cosbination can begin at adout 35 Mz, and may
Yo the reasen for the spparent Asymme Ty of the measured points for freo-

S - guenziea greater than 35 Mg, Behaviour of this mature has boen observed

by do Derk and Mﬂm. Skt e kas alao ohserved asreetrical behaviour

loading of the m&m fingors. Since none of these additioml offocts
(bl wavea, intermal reflections or Za3s dloading by the Tingors) have
'heam ednsidored in the analysia prescated hore, they are not ineluded in

L0 the caletated curve,

o Az 3 test oase, howover, the comparison botwoen the zeasured pointa
' - and the theoretiesl curve indicates reazonable agreesent in spite of the

"lew  coupling” approximation used in the theory,

- Jeh Proc Suwrface Znt

Another material, suitable for free surface soouatic wave propaga-

‘ ' tion, and nove in keeping with the Approxizations which have beon made in
tha theory, ia ind. Three sllaes of high resistivity single crystal Zn0,
| ten ¥ tom x 1o, with &ae-manmluw:m‘aomdbhmdm

s A Adrtron Corp., The three nieces were acquired without polishing and hence
it was muary to ;n-opm the surfaces for the fabrication of ID trans-

dwera. Both morfaces of each slice were mchaniuuy lapped and polished,

the final poliah&ns boing done witha, 3 micron (Linde "A") powder. A single

ID transducer was fabricated on one surface of each alico and measured with

. , the RX-Moter in the manner proviocusly described; however, since 2n0 s a
photocorductor, the Roasuwremonts had to be porformed in the dark. After
porfarning a complete et of moasurements on each davice, the transducers

“ore removed, and a new set fabrioated on tho reverso side of the slioces,




The reasuverents were then repeated. In this faahion, a set of aix ID
tranaiucera were easured, uaing both surfaces of the Znd slices. The

transivenr dizensions were:

3« ® im 06 ”a' (}\r = 2@}-2 “a)
d = 5’00& fit-
‘&0‘ 305‘ - »

ant conaiated of 15 finger pairs., The transducers were produced dy the
evaporation of 1500 A of alumirun followed by photoetahing.

Proz the messuresents it soon bhecazme obvious that though Zn0 zay be
& 3ultable zaterial for our theary, it is far froxz being suitable in prac-
tees Thiz altustion iz evident in Plga. 5.3a nnd 5.3, in nhich onmly
three  of the 3ix sets of moasuremonts have boon presented to avold ox-
cessive confusion. The reasons for the wide variation in perforsance from
ere device to another, particularly in the side lobe rezponse seon in
Plge Se3a, are unknoxme (It should be noted that the thaoretical side
icde ruosponse is mich less than was actually obsorved, i.0., the theoreti-
cal Rp #a3 such greater than the soasured Rp in the aide lodes,) The
spread in the masuresents appeared o be indopendent of tho side of the
zlice used for the measmmesent; dut rather, zay de caused by “work dam-
aged” surfaces as the result of the mechanical lapping and polishing of
the material. Damage of this nature could croate mobile carriers at the
surface of the devices, resulting in ohanges in the plezoeleciric activity
and Vthe aldition of conduction loss. Anothor possidility 4s that the
sacrles wore not kept in the dark for a sufficlently long period of time
beflore the measurements commenced, and the spread in the roaults is caused

by latent photooarriers,



o
= o
[*7)
2 3
u ws
o =
| - o~ -
. M : w
(- 2 2 -
‘-Il:l.lllT‘ll'.l‘ —
L aaaan o« Ammaman
. " Pyt
bt s
L
> - 4 bl I g =
» Aa . Iﬁ'ﬁ
oot 'ITA'II‘. "ﬁul
lllll !"'-'!'l""-l""‘-'
- ""‘-!'l‘.ﬁ
et Y.
—— s S, 4T
'Lr-‘l - -
L o ] H ““““
lll ..‘-I.Il‘-nll‘"‘ll"“
nslnll“-llll..lunll.ll v Rel ¢ i
> -2 ;.  ——— J s =
———t gy
> ’T 4 'I.ll.lll-l
—— -
pasy
o » » » x » Oy S >
x x x x - - v "y a2 a

~—= FREQUENCY (MH2)
Figure 5.3(s) - Rp for free surface Zn0




- C, (oF)

CALCULATED — — —

No.l *
MEASURED  No.2 &
No.3 }
"“‘
v \
# )
''''' " '
.. } \
|
\ PR

&

1} 12 13 14 15
—= FREQUENCY (WH2)

Figure 5.3(b) - Cp for free surface Zn0



hatever the reason for the spresd in results, it sade the task of
determining the ﬁ"a of the transducer very difficult, and an altsrnative
approach was used, An ID transducer was fahricated on a clean glasa alide,
using the zame thickress of aluminum a3 defore, the only difference deing
that the fingers were contirmcus froz onw aide to the other; hence, the
transducer comalated of a muzhar of thin electrical condustors, all in par-
atlol. This "duzmy® transducer sas gonneoted in the same faahion as the
other: ard the DC rusistance of the dovice and connections was found %o de
appraxizately 100, Thia value of 25 was used in the theorotisal calcula-
tions which appear in Plgs. 5.3a and 5. R

Thore has boen Asm degree of conflict in the literature regarding
the plezowlectric and elastic conatants of ZnO‘G’S?: and more will be said
adout thia polnt in the following chapter, section §6.3. The constanta
which wore uszed to provide the thearetical curves of Pigs. 5.3a and 5.3
ms '%:

2.097 = 10"/ o5 = -0,59 C/n*

Cyy =
3y = 2,109 e3¢ = =0,61
(5.4)
oss a 0.425 ey = 1.1h
Q3 = 1.051 p = 5676 k&/ﬂ’

€y » 8.}3, c, » 8.&- .

Ono can cbsorve that thore is reasonablo agroomsnt betwsen the measured and
caloculated values of Rp at resonance and in the peak to peak variation in
cP. The caloulated and messured resonant froquancy are in good agreomont,
althouzh there may be some ovidence of “stiffening™ of the Zn0 by the pleso-

elactric eoffect,



T

A

Unfortunately there are problems which are not fully underatood,
put whilok are affecting, to A very large ex‘.nét, the =easurerents of the
D transijeer characteristics. Hence, the agrecsont betwsen theary and ex-
perizent for this partioular caze i3 not As good as one would expec:) in
faet, it appears worae than the comparisen for LINH0, prosented in the pre-
vigus section. It would thus appear that aingle erystal En0, though a
eultanle mateslal for free surface propagation from the standpoint of o
*low coupling® theory, i3 not very aatisfactory for experimental purposes.

5e5 Thin Pilma af Zu0 on SiG.

Sirce the goal of thia amalysis has been the atudy of acoustic sur-
face wave generstlon in layered structures, it is dosiradble o have some
exporizental resulfs shich can be compared with thearetical calculations
on layered struetures. Through the courtesy of M. Holland (Raytheon Rescarch
Division, Taltham, Masa.), sereral samplea of thin aputtered layers of Zn0
on Puded quarts were obtained®. The sampleos woere identical, except for the
thickness of the 200 layer, and conaisted of two ID transducers on & fused
quartz subatrate 1.%x 0.5"x 0.040%, with the 2n0 sputtered over the surfaces.
(Figzre 5.1 showed one of these samples mounted for seasurerent.) The

sam>les were designated as follows:

Sasple usber Layer Thickness
ZMI=-50C 10,4 un
2w-63/58 13.5 um
Z¥0-68/508 3.3 um .

(Thozo samples with a / in the nuzber indicate that the sample had its Zn0

® Those samples wero among thoso used by M. Holland in the papar presented
at the IEEE Ultrasonics Symposium, December 1971, ref. no. 32.
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Yayer produced by two separate depoaitions, with exposure to air between.)

™e ID tranadugers mere of the following dimansionas

L=195um (A =39 um)

& = .75 im

'.l’on 1.5 o= ’
and comainted of 20 fimger pairs.

5.5.1 Sample TMG-50C
The firat of the aamplas %o he received and annlyzed was 2¥8-50C,
of the two transducers on this sazple, one of thez contained s defect
which caused the transiucer 0 appoar shunted by a DC resistance of several
»tlohma. Though this would not sordcusly affect the operation of the trans-
duger 23 8 pensrater or iotector of agoustic surface waves, it cozpli-~
eates thu adxitiance seasizezentd. As & result, this transducer was not
oeammed and the experimental polints in Pige Sek arc from one transducer
onlye
Proliminary caloulations,using the 2ingle crystal elastic and piezo-

eleatric constants for IZn0 given by (5.4), indicated that the sazplo was not
pesforming az it should. However, it is a well Jnown fact that the bulk
wave coupling constants {X?) for thin evaporated or sputtered films of
2a0 are 12- 80K lower than the corrasponding singlo oryatal values, indi-
cating reduced values of the pleszoclectric commu17,22,25,29. In order
to clarify the situation with reapsot to this sazple, it was decided to
seamuxe the niesoelectric olesent e33. Since the c=axis of the ilm was
norzal to tho substrate, to within a few legrves , this measurement re-
quired that the Zn0 £41m be operated in the bulk "thickness" mode. This

was achiaved by the ovaporation of four aluminum do%s,0.015" in diameter,

A T 9]
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on the surfage of the Znd, each dot deing located over ono of the "side
hars® of the ID tranaducer, By connecting a source batweon ono of the
»atda Bass® and the dot above, it =as posaidle to launch longitudinal

wulk vaves into the subatrate. Severv prodlezs were initially encountored
sith reflections from the back surface of the aubatrate; however, these
asere slmoat totally eliminated by sand-dblasting the back aurface until it
usas suffiolestly roughened to zealtter the insident waves.

The reaomant frequency of the dulk =ode transducers on this sample
wns beyord the range of the RX-Meter amd thns another technigue had to de
uaed. A special sounting was prepared for the sazple and i3 ahown in
Pie. 5.5 with the aazple in piace., Conmection waa sade to the "alde dars"
of the ID transducer as before, using a doubled langth of Q010" gold wire
and a preased indium contact. Contact *to the center dot was by =means of
a pointed nrobe. ALl of the parts of the apooial holder shomn in Fig. 5.5
were zold plated for minizmuz resiatance. The instrument used to deteramine
the bulk wave charadteriatics was a Howlet®-Packard Hetwork Analyser, type
2L10A,%ith a type 87414 Reflestion Teot Unit. The signal source was a
Favotok, model 2001, sweep csoillator. It waa expocted that the reflection
coeffictents dotormined by the network analyser would be very close to
unity; and thus oxtreme onre had to be taken in performing the moasure—
monts, for s ssell exrror in the obdervations could raosult in a large error
in the firal result., Por accurate reading and interpolation, both rofloc-
tdon coefficiont and phase were plotted on graph paper using a dual-pen
Horlntt Packard X-Y recorder. (Ono pen provided frequency marker points
from the oacillator, while the othor recorded the desired information.)

The moasuremants procceded in tho follewing manner:



e

Figure 5.5 Showing the method of mounting the surface wave samples to
pa{om butk wave measurements
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(t) with the ozcillator adjusted for a 3low awmep rate,
the output of he Reflection Teat Unit way termin-
ated in a short eiroutit and the refleation coeffi-
clont recarded as a Punction of fMrequancy.

{2) Using an 0S¥ to AFC-7 adapter, the holder with
samle was connectad to the Reflection Teat lnig,
hut with the prode shorted %o the pressed indiux
contact, In thia sode the reflection coelTicient
waa peamsed.

Stepa (1) amd (2) allow the reflection coefficieont of the holder, up to the
probe tip whilch contacts the semple, to bo determined,

(3) Step (%) was repeated uaing another piece of graph
papers

(&) Stop (2) mma repeated, but thiz time with the prode
tin contueting the setallized dot on the IZn0,

Stepz (3) a=d (L) zive the reflection coefficisnt of both holder and samplo.
Stepz (1) = (&) rere then ropested for the phaze angle aissocinted with the
rofloction coefficlent,

By following thia procedure one can thon caleoulate the values of %
and cp for the bulk wave transducer as n function of frequenoy. Pigure
5.6 shows the measured points for Rp, with ostisnted saxisum experimental
erTor®, for one of the dulk wave transducers. Thore is soze aproad ovident
in the soasured points, which may still be caused by reflections from the
back swrface; however, tho noints are cluatered ressonadbly well around the
resonant poind. The area of the =etallic dot was accurately measured us-
ing a =icroscope with a microzoter eyeplece. In order to calculate the
response of the bulk wave transducer, one must know tho matorial constants

of 51C,, and the following valuos were uaodm:

® This orror ia estimated on the baslas of the probadble error in measuring
the reflection cocefflicient and phase angle.
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o1 = Gy = 0,784 x10' ' i/n?
S (5.5)
013 = 00158
p = 2202 Xg/o’ .
(These values were alaso used for the surface wave caloulations,) To
obtain the fitted curve ahown in Pig. 5.6,1t was oecossary to use & valus
of o3y =8 C/zf for the Zn0, and to reduce the elastic conatant ¢33 for
Zn0 by about %%  (The reduction in o33 was required %o bring the celou-
1ated ard peasured resonunt freguencies into correspondance. Since sput-
tored or evaporated filsa are cozposed of "mioro-crystallites’ it is not
surprising to chserve that the sputtered film is alightly "softer® than
the aingle crystal material.) A saleulated curve using tho values given
by (5.4) for aingle crystal Zn0 is included for comparison in Pig. 5.6
The required reduction in oy, to obtain the fitted curve,is about 30K
ard ropresents a reduction in the bulk wave coupling constant (K¥) of
about 50%. Applying the 30X reducticn to all of the plozoslootric slessnts
of Zn0 previously given, and reducing the elastic constants by 5%,gives
the following for the "reduced” valuea of the 2Zn0 crystal constanta®:
ors = 1.990 x 10V'8/a? ey = O3 C/a®
ey = 2,00 o3y = =026 (5.6)
cas = OJdOL o33 = 0.8
o3 = 1.0 &
(The density and the diclectric conatants were not altered.)
Using the mothod proviously described, the R, of the transducer on

® Due to the "quasi-isotropic® nature of 2n0, it i3 logical to assume that
all of the constanta of a similar type will be affootedin the same manner.
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this sazple wes fourd to be about 10 Q. The caleulations for the sazple
EM3-30C wore then repeated, using the reduced crystal constanta in (5.6)
adore and  the measured value of R g* Tesulting in the theoretical curve
atwn in Plg. 5.7, Also ireluded in Plg. 5.7 are the oxperimental points
from Plg, 5.4 and a ealoulated curve ualing the aingle erystal values of
{5.4). Tt should2 alao be mentioned that these sazples did not show any
ovioua aho:oolactr&# effects, and tence the moasurosenta were carried out
in subdued 1ight but not in the dark as waz the case far the £n0 froe mu
face sazples.

A3 can be seen from Piz. 5.7, the agroesent between the caloulatod
ralues, uaing the reduced zaterial conatants, and the moasured valuas is
vary good. Xot cnly is the resonant walue of &p carrectly predicted bdut
t..fw peak-to-poak varistion in cp i1 a0 corroct, as well as the gonoral
ahape of both ‘Rp ard CP ourves,

5¢5¢2 Sazple EMI-63/58

Soth of the transducers on this sazple were roasured, asd were found
to be ldentical with respect to their admittance characterdstica. Thus,
the experizental points shomn in Pg. 5.8 apply to both transducers. The
theoretical curve ahown in Pig. 5.8 was caloulated uaing the redused values
of pidzoelactrie ard elaatic constants, given by (5.6), that were used for
the sample ZMU-50C, The value of Rs was determined in the ranner Qde-
scribed previocusly, and employed in the thearetical calculations. One can
gec that, excopt for a relative frequoncy shift of about 4 Mig (1.5%), the
agreozent betwoen the calculated curve and the measured points is very
close, oven in the side lobes of the Rp curve., The exact origin of the

relative frequency shif't botween the two curves is not known. The thickness/
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wavelength ratio for this structure ia adhoutQ3 at resonance; and the
aysten of In0-5:0, 12 not ;u?ﬁeiaaﬁly disperaive®, at that value of HA,
to explain the ahift by an error in the thicknoas mumnt’o. Rather,
it zay Yo the result of having produced the Zud layer by two separate dep~
ositiona. I the bard detween the separate depositions was alighﬂ.y
“rofter® than the rest of the filz, the resulsing surface wave velooity
could be depressed, as i3 kown to be the casa with a "sliding bond".
3+5.3 Sazple ZM)-68/503

The two franaducers on thiz sasple were moasured in the manner used
for the previcus two sazples and were fourd %o be alsoat identical. The
experizental points for doth transducers are shown in Pig, 5.9, along with
the thecretical cwrve. The value of 14 01 far R’ w23 determined in the usual
fashion and accounted for in the calculated curve. An attompt was made to
zeasure the plesselectric cenatant exs for this asample, in the sasme manner
uged ffor the sample ZWU-50C. Mowover, duo to the greater thickness and
hence incroased wavelangth of the bulk wave, the refloctions frozm the back
swrfaco could not be aufficiently eliminated to onable an accurate measure-
zent, Thus, the values of the piesoelectric and elastic constants used in
the calcoulated ourve for this sample were the saz0 as those used previously
- and given by (5.6).

As can bo seen, tho agreomont botween the zmeasured results and theory
is very goed, oven assuxing that the material constants for the thick film
are the saze as those far tho thinner films. There is very little evidence
of a relative froquency shift between the moasured and ocaloulated curves

® See Hﬁo 6010, page 119.
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for this sample,since even the positions of the nulls in the measured
angd esloulated !? QUITeS agTee very olosely,.
Sebels Comparizon with an "Souivaient Civoult® Avproach
Another fars of comparisen can be cbtained from the single erystal

eurve of Plz. 3.7 Tor the aazple IMU-50C. The "resomant® frequency for
this atructure, using aingle erystal constants for 2n0, ia £9.2 lﬁa, with
an ap of 1.1 KO, a capacitance of 3.5 pP and a "' of 1.67. (Since the
"active” partion of the transducer susseptance equals goro at "reacnance®,
the total statiec capacitance of the trassducer, Ces oquals 3.5 pP.) From
the “equivalent olrouit® approach of Sxith ot nl.ss, the rediation con-

ductance at "resonance” can bo written
Glu ) = (&/3)R*u Co) ; (5.7)

=are K 1s the "cleatro-smechanieal coupling conatant®, and N i3 the nusder
of finger pairs (pericdic scctions) in the transducer. The tora K2 43 de-

fined b?a

K® = 2P|av/y] ’ (5.8)

zshore F is the "filling factor®,

Substituting the above caloulated values into (5.7) yields a value
of K*» 2,34 x 10°%,  That we have assumed an R, of 10 ohma for this trans-
ducer his negligible offect on the value of K%, Por a structure of 2n0 on
fused quartsz, the thoarotical analysis of So}.m61 predicts a value of Av/v
equal o 1.1x10°%, for this value of 'kH'®, The "filling facter” noc-
easary to relate cur theoretically determined value of K® to the value of

* See Pig. I11.19, pp. 77 of ref. 61,

-
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shich compares Yavorably with F= 1.0, the value comsanly used Lfor L4ID0;
free surfage tmimt%msa . |
Se8 Suzmary

The results presented in this ehapter have shown that, knowing only
the material parazeters, it ia posaible to ascuratoly predict the complex
adnittance charscteristics of an ID transducer unoﬁ to‘ launch acouatic sur-
face waves in layered structures. Thile the real part of the admittance
has beon previcusly determired in this fashion for free surface propagation
wo have also determimed the imaginary part. The MIM of the thoory
to layered atruntires proﬁden for izplicit incluaion of the dispersion
sresent in auch structures. Although the analysia has boen concerned with
low couplirg saterials, it is useful %o observe that the apprmintions
shich have beon zade do not seriously alfect the accuracy of the mmta
when compared to zeasuresents ade on X-Y out I propagating LiNbO. (It

| may be that with other orientations of Lilb0y the thooretical and moasured

rosults would not agree 30 well.) It ia not surpriaing to obsorve that the
calouinted roal and lmaginary parts of tho admittance of the ID tranaducor
appear to have the same form that is predicted by tho familiar "Stanford
uoderss; however, more will be said concerning this fact bin a later section,
The rosults using the Zn0-5i0: structures indicate that the 2n0
films deposited by Me Holland are consistent in their quality and prode
ably represent the curront "gtate-of -the-art®, in spite of their reduced

piezoelectric nctivity.

36
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Yo have also shomn that theerqt&nal results using aingle eryatal
eonatanty for layered atfwcturua compare favarably with utteapté to use

‘ ) 1
an "eguivalent cireuit® upy:uaaha .
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CHAPTER VI
SIRPACE WAVE NEMAVIOLR WITHIN THE TRARSDUCER
W

Bt Int:rv-&wt:!m

The pmeea ing e..,apter used emriaoa dotweon the =oasured and edcu-
Isted admt ttance ehane:e*za::ica of ID tranaducera %o give cndonec “to the
theorotioal analyais. !!mw y the caloulation of such aizple curves,

~ though useful in its omn right, was not a primary aiz of this work, Rathar,
_ Iw are intercsted in ﬁw DOre bmie xave bchavinur asapeiated ws.ﬂx an ID |

Mducer when used as & launching structure rnr ssouatic aurface m'ns.
The use of an equivalent cireudt m&clsa enables ono to predict, with

Teasonable sccurncy, the adnittance ouwrves that have boen prosonted in
Chapter Vi however, such an approach does not zhow wave behaviour within the
transducer reglon. Joshi and M'u}é wore able to predict the real part of
the tramaducer sdzittance; however, their analysis was not axtended into the
transducer reglion and hence they dia not caloulate the "active® portion of
the t:-amdmur suseuptunce or a::mnamm the wave behaviour inside the ID
transducer. on thc other hand, our am.lyaia has been oxtended into the
transducer region and hence u capablo ci‘ caleulating the “active" portion
of the transiucer susceptance, sa was ﬁo:onamtod in Chapter V, as well as
rlase;-ibmg the wave behaviour -dthin the transduser region.

This ch#pter i3 dovoted, primarily, to the presentation of wave
boehaviour within the ID transducer and explanations thercof'. We will show
how the basic wave behaviour can be doscribed on the basis of a simple
phyaical “"model™ involving two surfaco wnves which propagate in opposite
directions and whose magnitude changes as they travel through the ID trans-
ducer. In Chapter VII, these same results wiil be dorived on the basis of
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a :n::;,ﬂe mﬂwmtim ‘Mﬂl‘
~ The amwmm pra«wdnre which hw beon amlopod -s.n an bo
ured to dam,nmm the mw ni" a_a;:emion on tlw traaadunur chumc‘bcriz- :
tdos am ’:;o :ﬂ:x.&y tb& affect o-i‘ &m& pioaoalnatrin noaamt:a for Zn0
an tha tra.,s&mczr mz*m o.!’ & froe mu-raec nx:d lmmd atruchm
6.2 Sutace mma umn tho m Mméuear ' ’

 The ma}y'ieul a:ﬁ uwmtﬁom& pmm!m dmlopoa in. cmpm II
asd IV adlow one to caleulate and plot the total pu.rtialo ﬂisplmemta‘
within the w.:&mer region as a funetion of froquancy. In this seotion
we will present resulta ocaloulated for the layered structure ZMI-58/63,
Qlzcuzzed in zection 5.5.2. These results are prosented a3 beins typical
of both the particle displacements and surface wave dohaviour within the
region of the ID transducer for both layered and froe surface atructures.

~ Pigure 6.1 shows the magnitude of the x and 2 cosponents of the

total ;m-t.cle Maplacemnta, ]v | and lv |,at 2z = 0, over the range -D/2¢
x¢ 4, for ﬂw &.%ﬁ‘umnt ‘frequenaies. The structure ZMI~58/63 has a total
of trenty ﬂnser pairs, hence, there are twonty fingers in the range -D/2¢
%€ 0. Since symeotry about x= 0 haa ’oeerf. assumed, it 13 not nocessary to
presont the particle displacesents for x> 0. The analytical procedure
detormines the true particle displacements for a signal of 1-volt (poak)
across the fingers of the ID tranaducerj and thua the diaplacements shown
in Pig. 6.1 are absolute, howover a logarithmic amplitude scale has been
used for case of presentation. The horizontal acale indicates the relative

® The "total particle displacemonts™ ropresent the sum of both partiocular
integral and homogoenoous wave solutions within the transducer region,

given by (2.45) in seotion 2.2.7.
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pmitim of the fingers of the I:D tranaducer, in the range -n/z< x5 0,
m !‘nqmmsou chosen for thia ﬂstm are:

_(A)‘ §7.30 Mia - the “resonant® frequency of the de'dee, L

() 70.66 Mta - anahﬂ,y matar than the frequency of the
first “mll® adove f_, G = 0.0076 =zhos

(e} T1.78 Mz - approximate center m«;.mmy of the first
"zide lode™ abm e » &= 0,039 m=hos

(&) 73.6) Wiz - a;prcximtn froquency of the second “null”
‘ nhove £, G = 0.00025 sxhoa

- (e) .75 Wiz ~ a;xy:m::i.atc center frequency of thoe second
‘ s:idn locke" adove t G = 0,015 =zhos,.

Trere, "resonant®, "rull® and ®side lobe” refer to the R charanteriatics
&1“ thiz deviee ax shomn in Pig. 5.8, aection 5.5.2, and G refers to the
vm«mlawdv radiation conductamnce of the transducer, aasuming R’ = 0,

At firat glance ,' the "standing wave® pattorns® shown in Pig. 6.1 may
sppesr scouwhat ursaunl and Qifficult to interprot; however, they can, in
- Tact, de oxplaired in a very sizple manner. Let us dogin by assuming that
each fingor y@ir of the ID trensducer launches only surface waves, amd that
thoy are pencrated quuliy;_in both the positive and negative x-directions.
Thus,‘ one can view the surface wave which 1s rodiated by the transducer at
x = D/2 as & superpoal 1tion of all of the wavos goneratod in the positive
x-direction, by all of tha finger pairs. An equivalent viewpoint is to
think of thix wave a3 atarting at x=-D/2 and travelling through the trans-
ducer, gathoering contribdbutions from cach fingor pair, until it is rediated
at xxD/2, In a similar fashion, ono can imagine that the wave which is
radiated by the transducor at xw= -D/2 starts at x=D/2. These two surface

® A tizo depondence oxp(-iwt) is atill implied, for overy point shown.
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| waves, propagating in oppoaite &Meﬁm ﬂzrm&h the trmancur rosion, |
zill interset with each other to "‘m aumdiag L] ;attnm, the o!mr-
mw.-i:s of shich will be determined hy the relative wpl,‘.h:éaa of the
two waves at each point (x,z). A "model™ of thia mm was nnt;ioipatpa,
in seotion 2.2.7, equation (2.45), when we divided tho total wave solutions
within ths transducer rezton inte two ‘-m'a packota®, V}(x’,z)’ and Y}(xﬁ),’
oach composed zolely of wave-like tem prwtiaa m positiw or the
negative x-direction, respectively. It was then uomnient‘to define '
“amplitude factors®, ﬂg:z by | E

A (x,0) 2 Vyxa)/e B (2.460)
i A
w(x,e) = Vilxae O, )

. ahere k is the propagation conatant foz? the auri_‘mo‘nyo,' a3 representing
‘the relative amplitudes (cosplex) of .1 umt of tho “wave packots®
v 3 and V‘J » Tospectively. Coaparmam above. té our sizple "model” consiab~
ing of two surface waves propagating in opposite: directions through the
© transducer, we ase that they are nmlogwa. The two mﬂ‘abo wavos are
momcul to the “wave packeta™, and tho 'u@litmlc i‘notar.-." will describe
“the rolnuve azplitudes of the two surf‘aoo waves. a.-s thoy propngnte throush
the transducer. , ‘
Pigure 6.2 shoms the magnitude of the asplitude factor for the s-
component of the wave packet propagating in the positive x-direction, }A.‘?;l »
at 2= 0, for the saze froquencies that wore used in Pig. 6.1. Tho magnitude
of the aszplitude factor for the s-component of the wave packet propagating
in the opposite direction, |AF;|, will be tho mirror image, about x=0, of
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~ the curves am in Piz. 6.2. The magnitude of the amplitude faotors fa-
the x-uozporest of bath wave packeta will bo essentially the same as those
of the u-cmmm.axwgh the phase at esch point may de different.

At the resorast frequernay, 67.30 :m, the smuface wave which o
>gg-msmtm5 within t&ﬁ ‘m&éau i3 exactly in step with the appnql alg-
oal; and hence it gets a"}amh“, at exactly the éi@t ﬁm, froa.owhknmr
pair®, Thus, the wave linearily incresses with dlatance Tros its start at
xx-D/2 until 4t is radiated at x=D/2, as shom in Pig. 6.2, At the
frequenay which 13 apprexizately oqual to that of the first "rull®, 70.66
iz, (we have chosen the "rull® > rr' k, however, the “rall® < f,_will 'bﬂ)mn
in s z;!milu :?aahio#) the surface ware mm to build up linearily from
x==D/2, aa waa the case at rvsonance. However, the wave i3 not quite in
stop with the applied aignal and hence it slowly slips out of phaso with
respect to the applied signal, as 4t passes through the transducer, At
about x3 0, the surface wave i3 90° out of phase with the applied aignal
and cannot me}w any ld&itioml erorgy. Az the wave oontimes, it will
~ give up energy until it has reached zero azplitude, at which point it is
180° out of phaso. As seen in Pig. 6.2, the wave amplitude, 3], 18 approx-
inately zero at a point about four firgers froo the end of the transducer,
for this froquency. sm?c the wave is aﬂll within the transducer region,
the process will atart agnin, as 1t aid at x= ~D/2, and continue until the
wave i3 rodisted by the transducer. Aa lr-rx_l inoreasea, the phase of the
surface wave with rospest to the applied asignal changes more rapidly as the

® In roality, it is tho particles which are being moved about a fixed point
by the applied signal (particular integral aolution); and if their motion
13 exaotly in step with that of tho wave, as it passes, the wave will in-
crease in amplitude.

e i s
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ware jropagates through the transtucer; and thus the magnitude of the
acplitude facter changes nore repidly with distance froz x= -0/2, as seon
in Pig. 6.2. | o
Returning now to the explasation of the standing wave patterns in
Pig. 6.1, let ua consider Pig. 6.3 which shows the magnitude of the azpli-
tude factars for the t»-ooupom%: of the wave packets (au:"‘ue Irma) Ihzah
are mpu&nm in hot.h direotions, over the range ~D/2¢ x< 0. The same
frequencies that are used in Piga. 6.1 and 6.2 are also used in . 630
One can qualitatively explain the patterns of Pig. 6.1, using the curves
of Pig. 6.3, by resesbering that for two waves of equal wavelongth, but
shich are ;srcmat!ne in opposite directions, the raximn and minimm
sxplitudes of the remulting starding wave pattorn are |AP*|« |AF"| and
ar’] - lar7], nmmw. Wore [AP"] and |AFT] are the magnitudes of
the two waves. Thus, if |AP®| and JAP7] are oqual, the standing wave pat-
tern will have the maximm peak-to-poak azplitude; whoreas, if either |APY]
or IA?"I i3 zero, thu standing wave pattern will bo conatant in a=zplitude.
We have assumed that the trnmdﬁcer i2 sym=etric about x= 0, with the result
that JAP*] = |AP7| at xw 0, Honce,the stenling wave pattorns will always
have a large .pnak-ta—pod; a=zplitude in the vicinity of x=0, as sven in
Pig. 6.1. .Hmm. prcri&ins that the transducer is of eoqual finger spao-
ing ﬂ:rdushout, the standing wave pattern will always have a large peak-
té-penk. azplitude in the viecinity of the centor of the traaslucer, irrespec-
tive of the location of the origin. It should also be noted that if the
origin is contervd botwoen an adjacont pair of fingoera, and the transducer
is symrotric about this point, the standing wave patterns for val will
have & saximum at x= 0, whilo those for IV,I will have a minimum. In light
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of ?‘.g. 8.3, e!u exp&mtiam for the Nmizdx}a wrtiom c!’ the uttmu.ns
wave patterns ahm in ﬁs. R 1: n."y atmishﬁform Por 8 qunuy
of 67.} mn, P:!.s:. 6.}@ irdicates that tha zta!d,na um pn*'m wnl do- '

crease ‘imar.‘.q :“-ua xaQ L&"‘" is mma emwm at xu-blz, u is ’

shown in Pig. u.1a. Plzure 6e® shows t.?mt; the amumg :m pn!:'bom ahmﬂd(
hare & ‘mﬁm‘ :h t&m viginity of tlzn 13 ﬂmr m.-.-. thc ea::.m- nn:l a

"zlnim' at abaut e 162, arter -auu; tlw amm wave. pntt&m Wil

i
. 3
&
e R T

;:-u&ua.ly Smﬁmu unt,.l Mch&r.e a ‘mx&m‘ nt xn 0. ‘nxia c!muhrintic i

is Appnﬂnt in F‘g. .1, The other atmd,uzg mrg plttemn an.n hc R

in a sinnu' !!'n}doa, it would be nyet!timz to Macuu ench om o!‘ thez.

In tho abore analysis of the wave hmviw ahm :!,n Fis. 6.1 wo
b.an loat aight of the particular mtasral aolu:ioaa nh:lch repreunt ﬂm
forced pcrt&cle sotion in response to the appl&od ai@ml Thaao tom are
present in the arplitude fastors u’j(x,a) and APJ(x,z). as daﬂ.mﬂ by oqua-
tions (2.46), but are very szall, and hence do not appoar mcpt.when the
mgurface wave® tercs vanish. It 4s for this renson that the amplitdo fao-
tors shown in Pig. 6.2 never qu&f.o go to zero at points othor than x=-D/2.
(Resesber that the edges of the transducer region, |x| =D/2, ropresont dis-
contimuities in the driving potential function, as defined by oquation
(2.10), amd in Appondix Ce3 it way irpoasidle %0 evaluats one portion of
the hoaosuhﬂma'f sclutions at this point.) Por a frequoncy of 73.63 M,
Pig. 6,32 shows that at x= 0 and x=<D/2 thore are virtually no surface
waves present and f.t i3 the contributions from the forced particle dis-
placements that cause the edges of Fig. 6.1d4 to appear distorted. In the
resaining patterns shown in Pig. 6.1, the surface wave aotivity is suf-
ficient to obsoure the effects of the forced motion,




"ra..w o 7 mﬁ:ur m@wim, m am baa:&c chamc* ia%ics will n:.:pbr

| e oth«r Wa of :mu&tuw.,, b thﬁ)’ ..a@ma or rme surface, piated or

| .m:;mmy, 2‘ o is d:mhlﬁé. mﬂ&:&ng thﬁ t:m..m!mﬁr disonsions are not
altered. nm,m 'm&len;&' of the umam; wave pattorns of Plg. 6.1
;wmu huln& hmnr. for the ‘3am0 nhu of‘ (k- k‘_)/k 83 uzed in
,"vua. s 1= 6 :.* the mxawn rum-a aaa the poaitiona of the maaxiza®
m! aanm- of the awm wve pa:mm un o a3 shown, with the pos-
v.aibh mcpt.ion af a eomtu;t aeuh t‘uotor "_m -ave nuzber k is. used, ‘ (

' instead of mQuomy, to ueemnt i‘or tba diapomion presmt in layered ‘ (5

it to tho other end, at which point they aro radiated into the surrounding

'E‘:t.a t‘ar "R twm op.ly umidnmd tim mm ledour within the

'm“ u':;,a* ax @, and for a ains,ln ::;pﬁ cf“ zmem 3 - 1:, however,

chﬁwa that abm and below 2wl é.he aam bmiu b«zhw:'w:- shown in Pigs.
&.1-6.} wr*n PEAVE thwg,h the w.nt.% aezﬁa ’mwa may change from ono

urqxlatw. m :mly w.*&atioa u&n mxzur u&ﬂm zhc ﬂwa of the trans-

euew- are a} mwma An phﬂm ard of m uygo&ita poluri.:; to & sotallic
plattsm, Mermﬁ to as “u:xiwlur‘ &riw i,u a@atim 2.1.1. In this-case,

the - nme:m 'mwlansth‘ of the mﬁudwcﬁr iz hslvud, and the “resonant®

amchxros.

Wo have thus shown how tho wave behaviour within an ID transducer
can be a&equntcly doscrided by & "two surface-wave approach®; in thich tho

mrtnco xaves start at opposite onds of the transducer and propagnzo through

codin, Axn f.heyktmwl through the tranaducer, the change in amplitude of

the surface waves is determined by the rolative phasing botween tho waves

® ‘%' »w/v, vharo v is the phase veolocity of the surface wave, k_ is the
value of k at "resonance”.
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o the agpnaa atgral. Chaptﬂr VIT wil) dosonstrate how thia 3830 bo-
"’v">"'.:v§.m.. m Yo Mctnd on the bms ci“ a ory aizplo uthautinal mz
‘ ﬂmt can Alae be meé to &cumim tbe tmmduocr u!:aithm It was also
| indicated that the contributions to the total particle displacessnts fron
m Tareed wtieh mﬂmmv&rx 22all and their effoct can onl:fbo
L :bohamo& w!ms t.be nn-!‘m wave eouﬁihutiom are mslisible. The surface
. wave emtamumumahmmngxmcrmm—
| »~“‘ﬁue«u~ !;y omqt&ne at an nyp:-opruu mmy, as shown !n naa. 6,1 -
| ..6.}, crbymitias thutrmalmcr Atnmmy‘mahu "nrrommd
from ib.ve “mamt‘ Mwmy.
s-.s_ »

m stmctmu uhich hmru boea atudied thna far m os.thar ma- :

| '?-mwam (x:m am-rn«), o:mm littlu me ﬂiaperaion (zno-
o E.ffsm;). The M ﬂnom' \!hich m booa dowlopo& for the um of layer
' *z““_-fmzuuon has. m aﬂ‘oetn d‘ &.iapcraion mneaw imludoa, and it 4s
‘ 'Emtmaﬁng to ﬂluntrate tha uﬂ‘ect ot' a larso munt of diapu-aion on
. tho aloctrioal czmnuwzaﬁes of an D transducer. Pigwe 6.4% shows the
|  1 surrnce wave velccity u a nmntion of KA !‘cx' llvmd ntvotu.ms, using

Zn0 as ‘the layer, with various substrates. Tt can be pbmmd ‘that the

200~ 510, systsm i3 not very dispoersive, as proviously zentioned. Howsver,
" & structure utilising Zn0 on either S or sapphire should show consider-
 able dispersive offeots. Pigure 6.5 shows the R, charecteristic, as a

function of frequency, for an ID transducer located at the interface of a
Zn0= Al1,05y structure®®. The transducer is assumed <¢o have the Tfollowing

®* Frowm Hickernel, ot al?°,

¢® The effect of dispersion on the cp characteristio, for this aystem, is
negligible, and thus tho c ourve ia not ahown.
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direnalona:
o= 508u= (A = 101.6 2)
4 = 25.%L um
¥ a LSo ,
and conalsts of 15 finger patra. Since those calovlationa are not being

compared with mossured data, it ij

L]

onvaeniont %0 assime that Ra = 0, Both
zaterisls are asmuzed %20 bo orlented sush that thelr c-axes are norsal to
e Interface. The zaterial conatants o be uzed for the Zn0 were givun

by (Seh), asd are:

Gre = 2.097% 10" W' a5 = -0,59 O/t
Sy = 2.?@9 Gaq = "0.61
' (544)
C3y = 0.535 023 = T4
iy & 1,051 p = 5676 xg/7
€ = 8.33, & =B.84.
The appropriale material constants for the Al0s maz
Cye = 4,902~ 10" R/&e ’
Cs - 2‘.902 é
’ (6.4)
css = 1,454
G143 = 1,130 p = 3986 xg/e? .

An “isotropic dielectric conatant” equal to 10 was used; and since Al,0,
is non-pieszoelectric, all of the o, " 0. Tho Zn0 laysr was chosen to be
20 px thick which gives a “resonant™ value of B/A~ 0.2, This places our
calculation in the rogion of maxirus disporaion for a struoture of this
nature, The presenco of disperaion is apparent in the asymmotry of the
np curve of Pig. 6.5, about the conter froquency. Ono will observe the
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Telative "punching® of the "aide lebes® for frequemetes grester than I,
a3 compared to the "aide loke®™ apacing for fregquencies leoss than x‘r. The
R;a- eharneteristics for the Znd- 510, syatem, shomn in Plea, 5.7 = 5.9%¢
t&a previous ahapter, will alzo be asymeetric but the offect is oo amall
to be notlced. additignal salculations were porformed for the Zrd-A,0,
aysten, ualrng layer thicknesses of 15 an ard 80 ps. The caleulated values
of ap at “rescrance”, for these additlional structures, are cospared with

that calculated Tor s 20 um layer in Tadle 6.1, beolow,

TAHLE 6.%
Hue) sy(m) & (xmbos) Co (p¥) kit ! (saiz) x?
15 §0.0 0.0125  10,% 0.96 L7.7 0.014 x 40°*
20 2.0 0.5 10.8 1.25 FENR 0.875
& 0.5.5 2.74 1.2 L 28.6 7.15

Tere G = 1/%, :r iz the "resoramt™ frequency, k¥ = 2r H/A nt "rosonance"”,
ard K 12 the “"electramechanienl coupling constant® detormined fro= ofua-
tlon (5.7) in section 5.5.4,

c(ur) s (L/e K& (nrc.rﬂ) » (5.7)

Tesenboring that Na 15 for this struotures Tho value of the total trans—
ducer capacitance, C,z., i3 doternined fron the "CAPAX" progra=.

The valuos of K calculated from the above thoorotical values cozpare
qualitatively with the values of 4v/r caloulated by Solie for Zn0 on YZ
upph.m"' however, they indicate that a Zn0- A1,03 atruoture with the oc-axis

* Figs. 5.7-5.9 axe found on pages 100, 101 and 103, respectively.
** See Flg. ]} of ref. 60, or Fig. III.20, pp. 78 of ref. 61.
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o the sapphire normal to the ipterfsce vil)l have higher coupling to sur-
face waves, by perkaps a fsoter of 2, shar that analyzed by Solie, which
has the c—axis parallel o the interiase.

feh Material Conutants of A

In Chapter ¥, seotiems 5.5.1 - 5.50%, 41t was cdserved that the
roanmed yalues of the transducer sdmlttance charasteristica for Znd - 540,
struetures acxid anly bhe ohtalned shaorotically if aoze form of *roduc tion”
waz appiied to the plezceloctric conatants of the Zn0 layer. There lave
been, however, different walues of these constants reported in the litera-
sure, and one may worder if perhapa the exporizentally dotorzined values
of ay and c? can %o derived thecretically by using other pudlished valuea
of the plercelectric conatants for 3n0, without having to reduce thez,

Mhenever we have heen required to perfors calcoulations involring
7n0, we have used the zaterial constants given by (5..) and published by
Jaite and Mrlincau.-‘t;’m. I 1908, Crisler ot u?..’é =essured the zaterial
constants and found them to be sonsideradbly differont from those of Jaffe
and Berlincourt. Xore recently, S:r.‘.t!zs-i has monsured these constants
and his firdings are sore in line with thoze of Jaffe and Borlincourt.
Brperizontal messuresents of the change in surface wave volocity whon the
froe surface of Zn0 in shorted by o sotallic filz indicate that tho values
of Sxith may bo tho corruvet ones, and not thoso of Jaffe and Bax-li.nootu'és.
The values detormined by Smith are:

oy = 2.096% 10" N/s?  ous = -0,48 C/F
033 = 2.106 a3y 2 =0,.573 (6.2)
esy = 0,425 ey = 1321
ciy = 1.0L6 p = 5665 xg/=?
¢y = 7.57, 63 = 9.03
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and can be cozpared o those of Jaffe and Berlinsourt:
e1r = 2,097 10" W vy = -3.59 c/a'

@"} & 3.1{}5; e 2 -0.61

(5.4)
T3 @ 0,426 23 = 1.14
¢y @ f.Q’S* p = 5676 ks/a’

ty = 8.}}, ty = 8.8, .

It L2 odrious that there is megligidle difference botweon ths olus-
tlc consiants ard the denality, ard ondy a minor change in the "iaotropic
dielectric comstast®, Vi3, There appears to be, howsver, a considerable
differesce in the plezovlectric constanta. To obaerve the affect of these
differerces, two sets of computationa wore performed, the rosults of which
are shown in Plge, 6.8 and 6.7, In Plg. 6.6, the adzittance characteris-
tiea of an ID tranaducer on the free muface of In0 are calculated, using
both sets of conatanta. The tranaducer dimonsions were:

Low 10t um (A = 203.2 uz)

4 = 50,8 ps

‘a‘on J.5 s,
ard conalated of 15 finger peirs. It was assumed that Ra’ for this trans-
ducer, was oqual to 10 ohma. A portion of the curve shown in Pig. 6.6, and
caleulated uaing the Jaffe and Berlircourt data was shown in Pig, 5.3s* and
used for comparison with the monsured data for free surface Zn0 in sootdon
Sebe As one would expect, from the negligidle differences in the two asots
of eluatic constants and donsities, the "rezonant® frequoncies are identiocal,
¥ore interesting 1s tho difference in the two values of Rp at "resonance®,
The value of % caloulated from the Smith data is higher than that calculated
from the data of Jaffo and Berlincourt by about 30%, indlocating reduced

* Fig. 5.3a is found on pago 88,
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*face wave exoitation. This would indlcate that she plezoelactric con
stants ews and oy play a greator role inm She ceraration of murface waves
than eyy, For thia sordiguration,

Plgure 6.7 showa an equivalent 20t of cwves calculated for a
layered struycture of In0 and 5i0, identical to the sarple ZMI-50C, which
wa3 discuszed in seotlion 5.5.1, The tranaducer dizonaions are

L= 9.5 uz (A, = 39 uz)

d a 3,75 un

ton WS
ard consiats of 20 ringer palra, It was asaumed that the transducer had
an Ra of 10 ohma, The curve calmuletod using the Jaffe and Borlincourt
data {3 shown aa the “single erystal® eurve in Pig. £.7.° Onoce again, ther
12 no dirffervnce in the “resonant® Trequency; although the Rp nt resonance,
an detarmined by the Szith data, 1s greater than that caleulated using ¢the
Jaffe and Berlincourt constants. In thia structuixe, however, the different
iz enly about 168 Although the RF ealoulated using tho S=ith conatants is
higher, 4t 43 not mu'fielent %o axplain the moasured data for thia sazplo,
»hich i3 shown in Plga, 5.47and 5.7 of scotien 5.5.1. Thus,one must stild
consider sore form of "reduction” of the plozoelecotric olemonts of Zn0 to
explaln the measured results for the Zn0=- 510, structures oxamined in the
provicus chapter,
6.5 Sumsary

In this chapter we have shown how the charnctoristic wave behaviour
within the tranaducer region can be explained on the basis of a "two sur-
face wavo” model. The theoretical analyais of Chapter II allowed us to

* Fig. 5.4 will be found on page 93, and Fig. 5.7 on page 100,
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aaparate the wave solutiona within the ID transduscer into two “wmave
packets®, each represesting a surface wave with propagation constast |k sl sand
propagating in oppeaite directions, These tTwo waves atart at oppoaite ends
of the transducer and propagate through it to the other end, froz which
thoy are radiated into the morrounding medis. Az the waves [ropasate
through the tranxducer, their azplitude changes by an asount determined by
the relative phaaing of the muwrface wave and the applied signal at overy
point. This fact i: used as the basls for a alcple natho=atical odel of
an ID transducer which {3 prosented in the following chapter.

%o have also demonstrated the effect of dispersion on the R? char-
actertstio of an ID Sransducer and considered the result of using different

reported values of material constants for In0 in Yoth free surface and layor

axcitation.
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CHAPTER VIT
A _SIMEE TRANSDUCER wODEL

T.1 Introdustion

The preceding chapter uszed the results of the general theory to
denonatrate how surface accustic waves develop as they propagate under the
tramaducer fingers and the resuliing standing wave behaviour., This chap-
tor discustses & very alzple zathexzatical mxdel of an ID transduser, as a
generator of mocfage waves, which does not reguire apecific reference to
the wave oquations of Chapter II. This model can predict the “azplitude
faotors™ presented in Chapter VI, ard shich are rospenaidle for the obd-
served stamding wave behaviouwr, %0 within a =multiplicative conatant., It
can alze be uzed %o ascurately predict the admittance results of Chapter
¥V and Chapter VI, axcept for a constant ncale factor which =uat be deter-
mined from olther experizentation or the goneral theory. A2 will bo seen,
this model containa the ossence of the “Stanford” z:odulsa which 43 in
CORDON UlCe

Since we are interosted in tho derivation of a plausidle zodel,
and not a rigorous description, the approach to be taken will, at times,
be approxizate and without oxcesaive concern for physical or mathoratical
rigor. Por simplicity, the argusonts will be based on thoe assumption that
the transducer is located on the free surface of a materjal, however, some
of the data used flor comparison will bo taken from layored struotures.
7.2 A Sizple Mathomatical Model of an ID Transduscar

We shall begin by considering an ID transducor as a one dimensional
structure oriented along tho direction of wave propagation, without con-
corn for possible variations in other directions. Acsume that an ID
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sransducer can then be desorided by a generating fumction g(x) which acts
upon propagating surface wuve: such that e change in amplitude of the
ware, over the interrval 'dx', 23 glven hy z(x)ax. (A tizo dependence

e 29t 11y e ssgumed.) Thua, if the wave has a propagation constant

k> 0%, the charge in amplitude, as ohaerved at the point x' » x, resulting

frox the zeserating Huwetion acting at x ia

A’ = 5(:)9*(:":‘}&: . (7.1)

Toere the '+' algn uzed na a superacript implles the wave propagating in
the positive direction. Nemce,the total change in amplitude over the

interval x €x¢ x', a3 ohaerved at x', 12 glven by
x.
- & ta
Au[&&k““ *ay . (7.2)

b 4
(]

vhilak will bde recagnized as the convolution of the gonerating function with
a propagating wavee 1hus, the asplitude of the wave propagating in tho posi-

tive direction nt x°, V;(x'). can bo written
xl
1 . ]
V:(x‘} 2 ‘%’;(;:a)u“k(:t xo) . I’g(::)aik(x 'x)dx . (7.3)

-

x
-]

Physically speaking, the gonerating function g(x) will be rolated
%o either the applied clectric potential or field, and for the purposes of
sizplification we will make the following assumptions:

(1) finger spacing = L = constant

(2) finger overlap (aper ture) = ¥, = constant

* Por k < 0, the analysis proceeds in a similar fasahion.
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(3) ertain, xa 0, 2 lrested ay the center of a Pinger,
ard the trassducer extendas fros -DF2 o D2,

Then one can arite

g(x) = avor(ex/L), [xl < D/2

glx) = ¢ , Ixl>p/2
a3 a reazonable flrst apprexisation to an sppropriste generating function.
Asauming that the wave v;('x') atarts a% xu-D72, (i.0., v;(-o/f.’) s 0) sudbe

snttgttan of 2{x} iste (7.3) gives

E : ] o d . | w»
W'(x') .- iﬂno &,R;Q/&_a IKex
-] 2 Ry

’ (7.8)

-

o FeD/2 _ o Hox' '} !

»

where K, = (& = 7L} and X, = {k+2/L). The ters within the bracketa then
reprosents he “azplitude factor™ for the wave em.
Procecding fren {7.1) in the saze sanner, but Jor the surface wave

propagating in the negative direction (k < 0), one ohtaina

V;(:() a -

ia - D/2_ iKx
2 3

(7.5)

R )

* e .

K:

It is obvious that the “amplitude factor® of (7.5) i3 the mirror image,

nbout x=0, of that in (7.h). Inspoction of (7.4) shows that the magnitude
U

of the "amplitude factor® for the wave oI e x'=9/2 (i.o., tho magni-

tude of the wave radiasted fros the ID transducer) is proportional to

ain(ic~2/L)0/2  ain(ke »/L)D/2
no[ P L‘# ] . (7.6)

k+ o



The ters within the brackets is recognized. as the axpression Pn(k), for
n=, used in Chanter II,

Pigurea 7.1a and 7.1 compare the zagniiude of the "azplitude fac-
tar® of the wave \’:(x'}, dofined by (7.4), with that derived by the sore
gereral theary, respectively. Pimme 7.1b was proviously introduced as
Plge 6.2, and the same finger spacing asd mushuy of fingur pairs were used
In the determimation of the curves presented im Plz. T.1a. As oan be zeen,
the deraviour of the almple medel and the mare general approach are very
sizmilar with regard to the arplitude factore The differonces are a eultie
plicative conatant, uhich 22 the same for all of the curves shomn in the
Plgse 7otn and 7.1h, and the adusence of the forced particle diaplncomants
in the simple medele The lat%er s evidenced by the fact that the azpli-
tude factor, as defined by (7.4}, has ‘zorcea! within the tranaducer region,
shereas the anplitude factor caleulated from the general theory never
cemvletely vanishes®., Thus, it would appoar ovident that the one dimensional
model defined by (7.2), with the gererating function g(x), provides an
adequate deseription of the generation and propagation of acouatic surface
waves along the x-axis within the tranaducer. It ias obvious that the
asplitude factors of (7.4) asd (7.5), combined with the appropriate prop-
agating wave, will create standing wave patterns that are identical to
those shown in Pig. 6.1 of the preceding chapter, and are derived from the
general thecry.

Thua far wo have concentrated on the surface wave behaviour along

* The axplitude factors calculated frosm the general thoory, and shown in
Pige 7e1b, vanish at x==D/2 only a2 the reault of our inability to
corpletely evaluate the zolutiona at that point.
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FREQUENCY = 6.3 MHz

ARBITRARY UNITS —

Figwe 7.1(a) ~ Magnitude of “‘Amplitude Factor’ delermined by ‘Simple Model’ from ~D/2to D/2
for 3 20-finger pair transducer,
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the dirvotion of propagntion; however, 1t fa well inown that the surface

wive characteristica are alze a fumctlion depth in the material. Hense,one

can censider the remsit (T.a) as 2 deseription of the azplitude of the sur-
face vave propagating in the positive direction at s particular z= 2,0 For
convertence, 1t will hanceforth de azmumed that z = . To coxplote the
description of surtace wave beharleur with owr aizple model, 1t 12 necel-

sary to conatder the z-deperderce. It haz been ahown by =awy authara:'z}'gé’ﬁa
tn addition to the theery of Chapter II, thal surf{ace waves decay wxith
depth into the saterial in a sanmer deserided by the aums of expaentiala,
and that the deeay conatanta are proportional to the wave nusber k. Thus,

1+ will be cemvenlent to write, as sn appraxization off the suriace wave

¥ (x,3) »ithin the ID transducer,

v{x,z) = v;(x)

& el ]
> e ’ (7.7)
4

where the B are conatants anl v;(:) ts givon by (7.4). The range of the
tadex 'nt 15 determined by the mmber of terza nodezsary to Mully daseribe
s surface wave in the reglon under cenaideration.

7e2e! Adzittance Caloulations

The proceding section used a convolution approach to detormine tho
x-dependence of an acountic surface wave within the tranaducer, and the z-
depordence »ac added in a somewhat arbitrary fashion. We will now dem-
onstrate that the exyression (7.7) 43 an adequate doacription of acoustie
surface wavea from the atandpoint of the tranaducer admitiance. Uaing
(7.6) ard (7.7), the zurface wave leaving the transducer in the positive

x-direction can beo written
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"'( naf =

X
2 ain KeD/2 -$_xla| ix(x-p/2)
[-ﬁoﬁ R D/2 3] Kgb c,] ZQ n -] . (7.8)
zhore Xaa (T-7/%) a0d K, = (kRew/L). In Chapter ITI, section 3.2, it was
shown that the poser irn the radlated wave iz given Yty
aw[ [( - 5 — ):: eu.'l : (3.6)

rhare & {2 ke area shrough shich the xoface wave propagates. decsuse of

the zyrowery reatrictions presioualy introduced, equation (3.8) can be

u
'}'Q[ (wj ng\‘u ’

froz equazien (L.3). The ferm ¥, 12 the overlap, or aperture, of the
sransducer and ¥ 43 the thickmwaa of the layer. The ters TYJ will intro-

duce zixed derivazives with respect fo x and 2 with the appropriate elas-

tic conztants. Howerwr, in ald) cazes, the mave nusher X is a common factor.

Thus, sudbstituting the expression (5’.3) into the adove, ono can write

seie

%
'y -( - L] k
P« wic .: L’ata gl‘bf'.. L, &in & p/2 IIE E o an pz) hl! (7.9)

a3 an apprexiszate expression for the radiated power, whoere the symbdol "a"
izplies proporticnality. The torma ﬁ; appear na coofficionts upon the
ovaluation of TP 3 ard have beon absorbed in the propartionality, along
zith the appropriate elastic constanta, The total radiated power is doter-
mined dy integrating over the a-axis and can be approximated

[nin KD/2 | ma ]‘ ’ (7.10a)



when the conatanta (f_- ﬁ;} have beon ahsarded in the proportionality.
Since u=licr, where v ia the wave veloelty, the equation (7.10a) can be

expressed .
Pk a: [3&:&5,‘312 . aﬁxinﬂ.’ } . (7.1®)

azsuming that the change in velocity with k i3 2zall. The total input
power ia proporticosal to the trarsducer sdmittance and thus the transducer

sendustarce, G(k), oan be expressed ax®

6(k) « k a2 (0/2)° [z(;;ﬁgz. l{%g,g?]:. (7.19a)

The relation (F.112) 2z sixilar to that uzed by Snith et al.sa, who pro-

glct =hat

G(k) = %% ’ (7.110)

Hhore ¥ u(k-kr)f‘tr. The ters ‘r reprasenta the value of k at resonance
amt M 1a the mumber of finger pairs. The originsl relationship uzed by
Srith et Al."C for the transducar adzittance waa dorivod as a funotion of
frequency; however, iff the aystes under atudy fa diapersive, the wave nusbor
k 43 a zore aperopriate varisdble. The imaginary part of the transducer
drittarce, B{k), can be determined from the Hilbart tranaform of the

condue‘:_ancow. Thus, if the conductance i3 given by G(k),

B(k) = = 1/ /“ saday . (7.12)

Subatituting the expression (7.11a) for G(k), and integrating, gives

® The equation (7.11a) 13 essentially identicnl to oquation (42) of Joshi
and Ihito, rofe 360
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(k) « k 2 (p/2)° {[ﬁ"maf’:; 25K

.[%%-&]-%f‘é@} y (7a13a)

where Xi = RO/2, Ko = X0/2 and & » v/lk. Again, thia result is similar

ta that of Sxith ot a}..f‘a, given by
") - (22 ) - (7.13)

™he lazt term mhied appesrs in (7.13a) results from the croas-produst in

the expresaion .
{_a 1nX,D/2 | ately n@]
K K ’
and has regligidle sontribution to the equation (7.13a). In the lizdt, as
Pl = 2/%, this ters has the value L/e.

Plpwres 7.2a amd 7.2b cozpare the tranaducer conductanse nrd auscep-
tance, respeatively, nz determined by the Stanford zodel and given by
equations (7.410) ard (7.1R), =ith that caleulated by the 'aimple model!
discuazed in this chapter and given by (7.11a) and (7.13a)e Thosze reaults
are also compared with theoretical onleulations on a layored struoture®,
uzing the genoral theory of Chaptera II ard IXT. The transducer used for
all of the caleulations had 2¢ finger pairs and, in the calculations from
the general theory, it was assumed that tho tranaducer had no sories resis-
tarnce. The curves caloulated froc the two 'models® have been normaliszed to
the peak value of tho conduc“ance determined from gonaral theory. The
auaceptance of ths static capacitance of the transducer has been aubtracted

* The structure which waz aimulated for this comparison was tho sample ZNU-
50C, provided by M. Hollamd, using single cryatal conatants for the 2n0.
The change in velocity from the lowost to the highest value of k shown is
on the order of 1%,
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Figure 7.2(8) - Compatison of G(k) calosiated by Stanford Model and ‘Simple Mode!’
with general theory
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Figure 7.2(b) - Comparison of Bk) calculated by Stanford Model and ‘Simple Model’

with general theory
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fron the results determined by the general iheory, and shown in Fig. 7.2
Aa can Se sean, in Pig. 7.2a, hoth the 'sizple model! and that of Szith ot
‘1‘58 are in good agreczent with each ether, and the Masults of the genaral
thaory, in the region of the contral lobe, The only apparent varistion is
in the roglon of the side lodes, whare our 'aizplo model' is a slightly
Sotter £t to the thecreticsl results than the Stanford zodel. As soen
ir Pig. 7.2%, there iz vory 1is2le variation botwoan oither of the ‘models’
ard the theoretical results in the ceatral reglon, it is caly at the extren-
isipn where ayy variation ccours. The comparisons botwoen the gonoral
shocmotical results and measurezents, showr in Chapter ¥, tond to support
sho gemeral theary; thus, the differences between the two '=odels* and the
shocretical results shich appear in Plgs. 7.2a and 7+2> zay result from
failuros in the 'models!, and not tho guneral thoorYe

7.2.2 Purther Disougsier of the 'Simnle Model!

One can sec that the simple sathezatical zodol for an ID transducer

stiich has been propozed in thia chapter »ill behavo in essontially the sax=e
fashior as the Stanford codel, whon doseribing the transducer adzdttance,
but in addition it can roadily doscrido the behaviour of the surfeco waves
within the transducer. Further consideration shows that tho relative
correapondance betwoen the two modols is to bo expeoted. The approach used
by Szith ot ﬂ.sa is to represent each finger pair of the ID transducer by
a discrete "oquivalent circuit", and tho cascaded rosults gives the trana-
ducer admittance characteristics. The "aquivalont oirouit" approach was
originally dorived for bulk wave dovices, and relates the outputs at the
scoustic "terminals" (force and volocity) to the inputs at the electrical



terzinals (voltage ard ezxmnt)s. Tho alezonta within the equivalent cir-
euit are exprossed as froquoncy dependent olootrical impedances., Waile
this approach facilitates the Tapid caloulation of the devioce admittance
(izpedance), 2t ia oot a vory satialsotary approsch far presenting surface
vave behaviour. The aimple cathesatioal sodel xhich has boon discussed in
this eMpur is, however, capable of doscriding both tho surfase wave be-
haviour and the transducer adzittance characteriatios. The convolution of
the “gererating fumetion®, g(x), with o travelling wave, axpressed by equa~
tion (7.2), 13 tho equivalent of casoading the discrote seotions in the
approasch of Spith ot !:Zl..58 « The equivalonce botwoen the two approaches
Tesults in both methods producing similar prodiotions of transducer char-
scteriatica. The sain difference fa that the sodol discussed in thia chapter
is derived on the bdasis of a contimuous function, whareas the funotional
represontation used by Saith ot al.sa 13 discrete.

One zay argue that the “equivalent circuit® approach can relate the
transducer adsdttance directly to the "eleoctro-cechanical coupling factor™,
& ceasurable or calculable paraseter of the zatorial. However, inspection
shows that a z2ingle zeasuremernt on the device in question 1s still required
to define the *f1lling factor® for the ID transducer aso that the relation-
ship can bo compleoted. Our "aizple 20del" alao requires a single measurement,
or calculation, to provide the absoclute acale faotor for the transducer
adzittance, The zoasurement, or calculation, usually performed will deter-
mine tho transducer conductance at "resonance®, KNoither model is capable
of providing a moasure of the atatlo capacitance of the device,



7o} Bxtanaion to Other Transducor Tvpea

One ean visuallize how thia ‘aizple zodel' could be used to do-
seribe the hehaviour of & tranaducer in which the finger overlap (aperture)
and spasing vary along e length of the tranaduser. Roturning %o oqua-
tton (7.1}, one haa

aa{x') = 5(320&(:."‘)&: ’ (7.1)

for the wave propagating in the posisive direction. I the finger overlap
varies, g{x) can be written

2({x) = ao'l‘(x)acar /L, Ix| ¢ p/2

efx) = 0 s Ixl >p/f2 ,
uhore W(x} {2 the "orarlsp® or welghting function. Subatituting into (7.3)

one hazn

a oﬂt.D/a D/Z D/Z
vo(0/2) « =2 { [ e ™% o f r(x)o"”‘"‘dx] s (714)

2

v

-0/2 -p/2

shere Ky s {(k=%L) and K; » (kew/L), n2 before. The intograla which appoar

n {(7.14) are, of course, the Pourler franaforma of the function W(x) with

respect to the variadles Ky and Kp , thus Llustrating the well known fact

that the frequency response of an IN transducer is proportional to the

e
Pourtier transform of its "overlap t\mt&on“ze'b’ss.

If the apacing botweon the fingers, L, also varies, equation (7.2)
oan be written
x'
Y
AT = [‘ﬁ(x)f(!.(:))o

x
o

ik(:'-x)dx » (7.15)

where '(L(x)) ropresonts the x-dopendence of the "gonerating function®, The



caze with whioh (7,15) can be solved will, of course, depend on the
funetional representationa for ¥(x) amd r(L(x))e In very invelved cases,
it may ho prefersble to segment the tvranzducer inte regiona in which either
T(x) or L{x) 12 approximately econatant, and then aum the resulting inte-
grals. The mathod of including second order effects, auch a3 internal ro-
lectieons and zass loading of the fingera ia not so odvious, however, ard
1t may e in this aspeet that the "equivalent oircuit™ approach of Szith et
ul.‘ﬁ& ta superier,

TA The '"Bnd Correction' for an ID Tranaducer

In Chapter IT, scetion 2.1.4, and in scction 7.1 of this chapter,
the 'potential’ functien of the TD transducer was defined so as to terminate
ahruptly at x = :D/2, It was obzerved, in seotion 2.1.4, that the potential
function could be extended into the reglon outslde the transducer in a
consinzouns faghion, but that such an exzension would not sppreciabdbly alter
sho reaults for a transducer of “reasenadble length®. In this soction the
*aimple zmodel' will be uzoed fo oxamine thiz atatament,

Plrat $t 45 necezsary %o decide on an extonaion of the potentinl
function at the ends of the transducer. I¢ is obvious that the potential
funetian mist docay auymplotically to zero outside the transducer, and it
iz unlikely that there will be any measurable potential at a distance greater
than L from 2D/2. It is alaso necessary that the amplitude and first deriv-
ative of the extenaion match the potential inside the transducer at X= /2,
A sizple function which fulfills these requirewents, and is compatidle with
g(x) = cos(rx/L), is

g1(x) = s cosMw coa®(zx/L), D/2¢|x|e¢p/2+L .
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The terz M represents the mumber of Pinger paira (D/2 = ML), and the
caefTiclent ws(!z} iz nevessary for the continuity of both amplitude amd
derivative zith cas(wx/L) at x= 2072, The transducer oan then be divided
into three reglians:

g{x) = gufx) = s, c0Mr oz’ (wx/L), ~(D/2+L)¢ x¢ -D/2

glx) = 5@(.:} % nowzg(mﬂ} , =Df2cxz /2

g{x) = gx) = a cosducas *{ex/L), D/2<xe¢D/2+L.
Prom equation (7.3), the wave lesving the transducer at xaD/2+ 1,

?;(9/3‘ L), azauming V;(-alz- L)= ¢, can be written

D/2.L
?;(D/?t L) = v;(n/z)c*’“‘ * ‘,[ St(x)am (3/2‘3)-«]&: y  (7.16)
n/2
»hoTe D,
v;(afe) * v;(-n/a)a"km . f so(r)o&(b'x)dx
-D/2
arcd -D/2 .
v;(-‘n/z) o &(x)u&('nj‘?q)&x .

-D/2-L

Evaluation of (7.16) yields

VI(D/2sL) = n o ¥ (H/20L) {[“—”%‘-‘ﬂ . "—”—j—%‘i@-] . A} , (7.17)

=mhere the “erd correction”, 4, ia given by

‘ — -\
& = coasMs {5..:;): D 2‘1‘): aink D/2 - %[_QLHK D 2“;‘, ainkK .D/2
3inK 4 (D/2+L }-ainx aD/2
+ X, .



e terms Ki, Ki, Ky, ard K, are defined by
Ky ® (k=-2/0)
Kp 2 (kew/L)
K= (k-?,ﬁf'z.)
Ka=® (ke 2%/L) .
Using the reaulls of seotion 7.2.%, the radistion conductance {for the trans-.

duser with the "end correction®, G(k), osn de writlen
&(x) « kxv;(a/au.)l .

Substituting the result (7.17) into the above gives

Gl) = krZ { [."—"2‘%!‘-% . ”—*”-%9@-] . a} . (7.182)

A reasonable mossure of the vffect of the “end carrection” on the trans-
ducer hokariour would Be to ocorpare the radiation conduatance ealoulated
with the "erd carrection”, using equation (7.18a), and the radiation con-

ductance without the “end correetion®, G'(k), which ls given by

(7.18)

6 (k) « ka auxx,‘ogz . ainxxingzj ‘
Bquation {7.18b) 42 cbtained from (7.11s). Such a comparison is shown in

the Pigs. 7.3a- 7.1, for values of ¥= 1,3,5,10, respectively. Tho verti-
cal seale s the same for all of the figures, and is in arbitrary units.

The horizontal axis i3 in units of mr' and all of the curves are centered
about k/kr- 1, howover, the range of tho horizontal axis varies. The term kr
oquals #/L. As can bo seen in Pig. 7.3a, tho “end correction” will have a

consideraple offect on the transducer conductance for M= 1. This 1s to be
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expeciad almce, in thia case, the region cccupied by the "end correction®
i3 as large as the region hetween the fingera, Figure 7.3 shows that,
far M= J, the tranvducer condustance in the central lode will he largely
uraffected by the “end correction®, Only in the aide lodos will ita offect
be apparent. Plgure 7o alse contalns exporizental seasurenmenta of the
conduatance of a J finger pair ID transducer on LiXb0,;. The pesk conduct-
ance of the transducer was naerzalized to the peak value of the curve cal-
euisted without the “end correctlien®. The seasurements were performed as
descrided earlier in Chapter V, using the same LUNDO; sazple that was used
tn seotion 5.3, Az can be aeon, the measuremonts are more in keoping with
the transiucer behaviour with the "end correcticn®™ than without it, The
renaining two figwmres, 7.l¢ and 7.3, ashow that the offect of the “emd
correction” in the central lohe rapidly dizinishes as M inocroases, and for
Ma 10 L2 has easentially disapweared. A small, but noticadble offect does,
homgver, rezain in the alde lobes for N¥= 10, Hence,it would apooar that,
for a transducer whose length %a groater than a fow finger paira, the
effect ol the "end ¢orrection® 13 szall, and will appear only in the side
lobo responszea,

It ia interesting to obzerve that, with the oxcaeption of N= 1, the
doxinant effeat of the “end correction” is to “"lovel out" the side lobe
response of the tranzducer, and this faot warrants further discussion. Let

us return to equation (7.17),

V:(D/2¢L) = nooik(b/&t.) {[—J—Lsm!;‘n 2. ——--'-MKKED 2 ] + A} y (7.17)

rnore & 12 glven by



3 = cosky | 200k(D/2.1) - atny p/2 .3 310K (D/2+L) = adnK yD/2
x 3
o 2nK 4(D/2+L) ~ ainK D/2
A = .

In the adserce of the "eamd correation®, 4, (7.17) contains two *sin(x)/x*
pe Werma invelwing X, and K2, fegpectively, and can de written

v;(n/z.z.) w3 aeﬂ(m“‘) E‘iﬂg‘?@ * Mﬁfmj - (7.19)

Bauation (7.19) &3 zymmetric about the origin, k=0, with maxi=um values
of D/2 vcourring at ksz/L asnd kw-%/Le Por transducers which are only a
few finger pairs in longth, 4% 45 evident that consideradble “overlapping®
of the two “sin(x)/x® terms &n (7.19) ean ocour, whiech results in asyemotry
sbout the points kaw/L and km-3/L. This i3 ovident in Mg 7.2, for
=3, and 2o some pxtent, in Plg. 7.3¢, for Nu 5., The side lodes of the
corductance curve oaloulated without the “end correction® (solid curve)
have greater asymmetry than onn be accoaunted for by the sultiplying fastor
"' which appears in equation (7.18v).

The incluaion of the "end correction™, 4, in (7.17) edds thres
additional terma which are also "ain(x)/x" in nature, dut have variadle
poriodicity. The first of these tormy is centored adout k» 0, and has a
sexizum value of 1. Tho other two torns, involving K, amd K4, aro contered
adout kw 2%/L amd k= -2%/L, respectively, also with maximum values of Le
The term which 4a contored about k= 0 i3 the mirror imago of the tern
vontored at k=2%L about the point k=v/L, a3 woll as the mirror image
of the term involving K. about the point k= -5/L, Hoxevor, because the
terms involving K3 and Ks are accompaniod by a sultiplying factor of (%)
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in the expresaien for 8, these terss have less offect on the G(k) char-
acterizties far 2/LS Jil ¢ 207l  than does the tornm centered at k=0 in
the rarge [kl & £/L. A1} three of the additional tercs are identically
gore at 1%} = 27L. TInspootion showa that the effect on the G(k) char-
asteriztica ia always additive in the range k| < »/%L; whereas, in the
range 2/L¢ [k} € 227L 1t zay bo additive or subtractive, depending on the
ruzber of Pinger palrs in the transdueer. Thus, the inclupion of the “end
cervection®, &4, effocta a "lovelling out™ of the aide lobe response in
we (k) characteristica, as shown in Plga, 7.3(b) - 7.3(;’1).

7.5 An Alterpative Apnroach to tho Snleulation of Transducer Admittance
Charantoristion

In section 7.2.2,1% wus chazerved that both the simple “mathomatical

2odel® and the spproach of Smith et ::.3.,.58 regquire a “zeale factor™ for
the caloulationz of abaclute adzitiance values. In the Stanford model it
L3 uzual %o rely upon experimentation; however, thia nced not be the case
for elther model. It is poasidble to obtain the roguired factor from the
general theory prosented earlier by performing a calculation of the

ssducer conductance at the "rescnant® frequency. This value can then
be used as & scaling factor for equation (7.11a) (or the Stanford =molel)
wnich can rapidly calculate the cocplote conductance charactoristic with
considorable accuracy, as proviously shom, Once the conductamce G(x) has
been determined, the susceptance B(k) can bde found numerically, uaing the
orocedure outlined by lialamwar and Epatainw. Those caloulations can be
performed in the variadble k dirsctly; however, if the sdmittance as a func-
tion of frequency is desired, one must have knowledge of the dispersion

relation for the atructure,



In this chapter we have introduced a aimple mathemmtiocal modol of
an ID transducer hazed on the gongept of the transducer acting as a con-
tinuous generating funetien, It waz shoan that this model predicts
dehaviour mhich is essentially ldontieal to thas of the model proposed by
Snith et ul.ﬁa; but, in addiclion,it can bhe used to ahox more directly how
the surtane wavea are alPested by the tranaducer az they propagnte along
1ts length. This 'nodel! waz also uzed to exanine the "end correction”
of an TD transducer) and 1% wan shown that, for a transducer whose length
is greater than a few finger palra, this correction has megligidle offect.
i alternative apmroseh to the ealoulation of adzittance characteriatics

waa alao presented.
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CRAPTER VIXX

CONCLUSIONS

An analytical and cowputational procedure for atudying the acoustie
surface wave excitation of layered strueturesa, dy moans of an ID transducer,
haz deon developed. A& "low soupling®™ approach has been used throughout amd
the aralyais oan he appiied to an ID tranaducer located on the free aurface
or a% the interface, and with ar without a metallie plating, Cosparison

tween the ocaloulsted and measured sdmitiance characteristies of ID trans-
ducers for hoth free mufuce and layored atructures havo boen uzed ¢to ostad-
ilsh the validity of the theory. These comparisona have aliao ahown that
the low zoupling spproach can de applied to Qertain criontationa of high
coupling saterialg with roasonabdle accuracy, The thearetical resulis have
sisg beon ashown to azree with reoent theoretical worik on the “ocoupling

constanta”™ of layered a ’:ruama& .

The wave helariour within the transducer region has bdeon demonstrated
ard explaimed on the hasls of two surface waves propagating in opposite
directiona, A aimple mathesatical model which can bde used teo descridbe the
wave bohaviour within the ID transducer, as well as calculate the adazit-
tarce characteristics of the transducer, has also deen developed. Tho results
caloulated fros thia =clel have been compared to the modelling techniques of
Szith ot ul.58 ard it has been shown that tho two approachea are very similar,
This sinple model has alzo deen used to exazine the offect of the distorted
electric field at the ends of the ID transducer and a procodure whoredby
both the general theory and the aluple model can be used to rapidly and
acsuratoly prodict tho admittance characteriaties of an ID transducer haa

boen presonted.



AFPEIDIX A
In the mpplication of the Pourler tvansfors, defined by equations
(2.13) and (2.14), ene mmat remesber that, far all "x", the displacements
% and Ua, a3 well a2 the atreszes TyizTe and TH = Ty3= Ty, are continu-
“ouze To zeo hom this effucta the application of the Fourler transforsm,

let us retursn, Tor » moment, to Yewton's law, equation (2.3):
1 4 » 4

a’g, T,
f -5?‘ = -é;.f . (2.3)

Ay wrlting cut the components of this equation in full, and assuxming a

. -tut
time depandence e » O hasg
ATy 0% .« 3T By - 2Ty 2a - P’U:v\ = 0 (3\-1‘)
2T fdx ¢ AT,y + ATes /R0 « U, = O (A.10)
ATy /2% o Moy « 3D« U3 = 0 (a.1e)
The ?’} are defined by equation (2.1):
Ty " GgaSa * tmy MR (2.1)

In section 2.2.1, the following symeetyy restrictions were imposed on the
ciJ&l and the °m14:
Cra B Cyg = Ugp B Qg 203420y = 4]

O1eM0yamOxgn03a 2 0,
in matrix notation. A3 waa showsm in seotion 2.2.1, these restrictions
oliminate both Ty; and T;y and uncouple tho U: displacement which, in the

absonce of a driving term, will not be axcited. With thoae restriotions,

the oquations (A.1) reduce to



AT .
R ewoeo (4.20)
and
¥ @ o
Erabl Y R (4.20)

In seotlnn 2.%.3 it waz shown that,in the lox coupling approxi-
zation, the potential function in equation (2.1) beucomes that of the trans-
duger only. With the ahove symemetry roatriotions, and assusing the low

conupling approximtlon, the ?i of equations (A.2) are given dy:

%0»&.‘&« Qu&Om:g‘g&*Qu%‘Qn é

R '* 32 B 32 3z
A i34 2 2

™ = Gr '&"‘é &3y g}‘%s}%' Q33 ‘5%’0 O3 %'Qn%
ag Fiil a ]

Ts ‘!atsgx‘:“ﬁaagt*cazz-;%'* Qs %0 h:%‘h:% ]

and the equationa (A.2) are iden2ieal with (2.12). Applying tho Pourder

sransfars defined by (2.13) to equations (A.2) gives

{éﬁe &x‘ga—{i‘:o'mdxopn’ [0 ex w0

ax e | )
-
aed
- -
!;:.’_T.I.O &0% e dx«pualn,\ﬂ‘mdxnﬁ .
-

Since Ty and Ts nre contimious, this reduces t059
6T + 2T, o pu'ly = 0
' as 4% pw Uy
and
iﬁg 4%8-8'5’ opu’-lf, ﬂo.

where the "= repreaenta the transformod functions
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YNow conaider the value of T :
- - -
T Oy {%z-:‘-'emdx - @14 'g-; fr Ggo-nuéx v Oyy ‘ %{?_ Q'u:dx
e - -
-

a - -iy 3 a -
'%:5';‘{%01“&!*0"-%3 0:-'3';[¢omdx.

-t

ﬂ‘“ﬂ-

9
Since ¥ and Uy are fantiruens, this pan de t!'itto:sﬁ s

?l % QHQ‘JEQ * Oy '5’—5; * o.,ik-a; * % %ﬁ’

"ht"'#‘ﬁn[ﬁ dx;

and dectause thw Punctien ¢(x,2), as defined by (2.10),

#(x,2) = {““n" (2)eoshr e x/1), x| « n/z
' ¢, Ix| > b/2

{2 not » econiinuous funotion of

(2.10)

"x®, the final tors mmat be ovaluated by
parts as follows:

{go'm:k-w'm, .t [w e
- D/2 -ﬂ
=-1icx
. ,-n/z $

Because ¢ i3 an ever funation of "x%, this can bo written

~21¢ (D/2) 3in (kD/2) « ik & ,

where $(D/2) = $(D/2,2). Thus T, 13 given by:

Ty = cuik'ﬁ"‘ou %Ui‘cuikua‘- CIT) 5‘;03 + o34 a‘;‘¢

+ 04y ik - 2%041¢(D/2)s1n(kD/2) .



The terms Ty and ‘?; aan be evaluated in a sizdlar faskion, and the trane-

formed equationa (A.2) zan be written

¥ie Yiz & KT I
vie ¥er | 1 Ts] " ! (A.3)
whare:

él
Yoo 2 Css ‘fé"!' -

h3

Gwﬁf% - o . ;W’

]

"w

Yz ® 03 32% + 26astk 3 - osak” o puf

&

¥

. B
27

]

al‘
Yip ® 33 :{? - fagg‘ ﬁ::]'.-k % - m:k‘

L :u 4. (ory « &30 Yik g’i,- - mk’— T« 204 %bez)ain(kh/?)
T - 2xe,@(D/2)s1n(XD/2)

at .

8 = - ;.0:: 'g;‘l‘ « (o413« 023 }ik ;?;’ - euﬁf‘:J $ + 2l -,‘%!- #(d/2)ain(xd/2)
~ 2koy32(D/2)8in(XD/2) .

Now consider the functions 3 and $(D/2). By using (2.10), the term

¢ in defined by
- Y
"y n[qs(‘:,n)o-md.: » Lknfn(n) [ cos(nw» x/L)o-mdx

~D/2
= anrn(k)fn(a) ’

zind (lo=n D/2 ain} (cen D/2
P (k) « SECUoRERE] , stalfentD/Al L ()

The term ¢(D/2) i3 given by
&(D/2) = Zﬁnfn(n)cos(nr D/aL) .

whore

8ince D/2 = :aot.,w!‘mre s, is an intogor, this is oqual to



¢(n/2) = yanz:ara(z) ’ (A.5)

whore
- y A
% - ez 1a odd
5 e, ez, ia even
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APTENDIX B
As ahown in seatien 2.1.3, when ualng the "low coupling® approxiza-
slon the only elsctric potential function appoaring in the wave equations
ts that of the trassduger izbedded In x dielectris non-pliozoelectric sodius.

Is this case Lapisce's equaxien i3 glves vy (2.7),

(‘1 F‘"’ - ‘::2 n_,a. - €3 -‘s.. )9 = 0 ] (2.7)

uxing satrix notatlon for the 4o I* hns been aszumed that the transducer
fingors are vary long and compared to their width and thus terms involving
3/2y 4o not appenr in (z2.7).

1# tha saterial dieleotric lenaor ka2 only diagonal torms, equation

(2.7) ean de written

( --;}4» =0 . (3.1)

Assuning, for the mocent, shat the material is dielectrically iaso-

eropio, € w€3 amd (3.1) reduces to
a? o
( éT’ $ = . (8.2)

Bquation (B.2) i3 the differential equation to which numerical solu-
tions are obtained by the prograx *CAPAX", over the region shown in Fig.
2.1.,' as deoscribed in section 2.1.k. The rumorical solutiona to (8.2),

within the tranasducer, are "disorete” ard given by

a——

¢ = ¥(x,z) = ) Ag(sg)cos(nm /L) (2.90)

as shomn in sootion 2.1ehe It is desiradle that a continuous potontial

funoction

e Fig. 2.4 will bo found on page 17 .
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ox2) = Z £_(2) cosfasx/L) (8.3)

o

Yo found to aatiafy (8.2}, Om aubatitutien of the szolution (B.3) into
(3.2) one ohtaina the following differential equation for f n(‘):

-3
2°2 (a)22® = [22) 1 (2) . (8.4)
n L] n
The gereral solutlon 2o (3.4) ia
-2 n,%
£ (z) =2 *be ’

*here n_ = /L. Thua, the so0lutien ¢¥(x,z) can bo written

¥(x,2) = ykn(ﬂ-%n * rneqaa)"’a("' x/L) » (3.5)

depending on the lecaflion of the tranaducer and the region of interest.
This will be dinscussed in grester dotall in the following section, for the
mommnt  axsume that the tranaducer ia loonted nt the layer subastrate inter-
face. For this situation, n_w» snw/l in the layer and r)n--n;/L in the
subgtrate, In the audatrate, :-n-O for all caspa, while in the layer rn-O
in the adaence of A motallic plating. In the plated layor case, the
tangential electric field (8:) zust do sero, for all x, at z=H, which
requires that

o-nE WL | °m'}{,/I. . 0

n

r = 27 nH/L .

In tho caso whereo the transducer is located on the layer surface and the

interface ia plated, E =0 at z=0, and thus r_=-1, from (B.5).



7“;3-&»,5

The procedure fer establishing (B.5), using "CAPAX® would bde as

followas
(1)

(2)

(3)

(5)

Parforn ihe "TAPAI® computatian to caleulnte the potential
At every paint on the grid deacridbed in asation 2.1.4.
Cheose any lnvel 2, in the reglon of intarest (either
layer or aubatrate) and expand the potential at that level
in a Pourier series az {ndicased in seotion 2.1.4. (In
zoat aituationa it 1s beat to choose z, within the layer.)
T™hua, uaing (3.5),%he potential at this level can do written

v(:,az) @ 5" Bn(ai)coa(nv x/L)
g

=Rz n.2
Bnnkn[é%itrneaij .

Proz the chozen reglon and the bourdary conditions ono can then
deterzine N angd Toe

Having dotermired r, ard 5, and knowing both z, and Bn(zi),
the conatant An i dotermined fro=

A, " Bn(’i)/ [o- i N rnnnnzi:] .

Replacing z, by the contimious variadble z, the poteontial

function in the chosen rogion can then do written

*(x,s) = Zo\n [e-"“’ . rncnn _J cos(nz x/L) .

The role played by the program "CAPAX™ 43 very important for it

provides tho potential at overy point on the computation grid, by solving
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equation (B,2) =hiile taking into sccount the nocessary boundary condi-
tdaonz. Theze corditiena inelude:

(1) different isotrvepie dislestrie consdants in the throe
soparate regions (aubatratae, layer, vacuum)

(2) existance of petallic platirg (4F deaired)

(3) tangential electric field equal to zero on tranaduger
firngers {and plating 1 present)

(%) snoras) component of D centimucus in gaps hetween fingers
ard at interfacen xhere no plating is preanent,

These corditiona are reflected in the ccefficionts Bu of the Pourier
exvansion of the potential fumetion at the level 3,. lowaver, once the
Pourier exvansion within a particular region !5 estadlished at a level 8,
{step Xo. 2 adove), the derivation of ¢{x,2) for that particular reglon
follows a3 ocutlined above (ateps No. 3 - No. 5).

3,2

In this seetlon, the seans of proparing tho “"CAPAX™ prograsm to
handle different tranazduver configurations and the determination of the
funations rn(n) in the reoglions of intereat will be discussed. Thore are
three bausic onsea to be conaldered:

(1) transducer at interfnce, plated or unplated layer

(2) transducer on free surface of layer, posaible plating
at interface

(3) tranaducer at 2= 0, no layer.
The argument liat of "CAPAX™ containa the following variables:

(1) an intoger "IFPLATE® which ia set to zero if the layer is
plated, and not zero, if unplated

(2) ¢4, the isotropic dielectric conatant of the layer

(3) ep, the isotropic dirlnctric conatant of the substrate
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(5} a variadle "DL™ » &/L (L ia firger apacing, ¢ ia
finger width)

{5) a variable *TD" = finger thickness/d (in our caze,
D baa boen asximed ezzentialily equal to gero in
ssetion 2.1.2)

{(6) a rariadle "ML® = WL (¥ ia layer thickness).
The dieleotric gonstant of the material sabove the layoer wvacuum 1s assumed
to o unity, and for "HL® > 1 an infinite layer is azaumed, A "Bloeck
Data® sutiroutine provides the appropriate ahift operatora for "unipolar®
or "bipolar® drive, The proranm roturna the capacitance/meter/finger-
kalfepair and the potential at every point on tho grid as mentioned in
soetion 2.1.4. By suitadle alteration of the alx input variables, it is
poasible %o zake "CAPAX™ anmalyze any of the three tranaducer configurations
mentioned abhove.

Considar the conliguration with the transducer at the intorface and
a plated, or unplated, layer., This 1s tho configuration for which "CAPAX™
was inltially intended, and no alteration of the input variadbles is required,
In the case of the plated layer, "HL™ should not exceed unity or tho effect
of the plating »ill be ignored.

When the potential array ia filled, it i3 convenlent to choose tha
level z, = 0 for the Pourier expansion. Thia resulta froz having previocusly
chozen the finger thicknoss %o be zero. Thua,the layer potontial at 220

can be given by
¥(x,0) = L ﬁn(D) cos{nw x/L) . (B.6)

)
(A" rofors to the layer aolutionz.) As zhown in the proviocus section, the

funetion fn(s) for the layor can then bo writton
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AT enr 2t v
3.‘.}(!) . ‘g‘n[" a% 2L ?:e"m mﬂ-! (,‘.‘na 0 4f unplated),

N
whore gn‘ 8 (02 ?a}.
(re can alae write the potentis) funetion in the subatrate, at

2, =0, a2

¢(x,0) = S—aa(o)aoa(aw x/t.) . (8.7)
-

The funztions fu{-.a} in the sudstrate ave

. o 3/L

:‘a(a) » Ao

irceo Tt 0 in this reglon. Since the potential in the layer and that in

the substrate muat be equal at 2s 0 (zero finger thickneaa),

J

o>

iaﬁ . ?u] gog(ac ):/‘L)- Z A= cos(m x/L)
a

Por 2his %o be true for 831 x 4n the range 0< x< L, the “coll™ over which
the Pourler oxpansien is gerornted, the Pourter coefficients miat be identi-
cal ard hence N

A = An(1 . ?n) .
Thus, for this configuration, with goro finger thickness, the Fourier
expanision at 8. 0 complotely detormines the potential function in both

regions,
Now conalder the secomd configpuration of intorest, that with the

transducer located on top of the layer. To analyzo this aituation with
"CAPAX™, cortain modificationa in the input variables are required. Pirat,
divide all of the isotropic diecloctric constants by that of the substrate,

cs, forming a now 20t of isotropic dieolectric constants:
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‘§ w1
e = &/
t; ® 1/%5 .

after performing this opecation, the dielectric constants to "CAPAX™ are

enterad aa
gy = !
' T
ard
ﬁ,}' w &' -
o

Proez a computatlional atandpoint, this operation interchanges the substrate
ard the Tegion above e layer, and acales the dielectric constants so that
*CAPAX™ can asmme a unity dicleotric consiant above thoe layer. This proce-
dure does not alter the harsonic content of the potential fumotion; however,
1t 12 mecessary to multiply the caloulated value of capacitance/meter/finger-
Balf-pair by the vwalue of the factropic subatrate dielectric constant to
obtaln the correet walue of oapacitance, If » metallic plate is present at
the layer-substrate intoerface, “IPLATE® = 0, othorwize "IFLATE" = 1, Par
the Pourier expanzion of the potentianl function, chooso the level at which
the tranaducer i3 located, 2,® He. The "CAPAX™ progranm fills the computa-
tion grid as if the transducer were located at z, = 0, and thua the poten-
tial 3(:,8) correaponds to ﬁgn(o)enann:/l, for this case. Again, it is

desirable to write the potential funotion in the forn
A

3(:,:) = qu [a-n“. . ?nan“j oos(nv x/‘L) . (B.8B)
R

It the interface ia unplated, r_=0; but if it is plated

A
v(x,0) = 0 ’

and ;n--t. Setting 'I;n w -nw x/1, (B.8) can then be written
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;(x,a) » y}; [é'n: /L - %&“’" l/ﬁ:) cas(asx/&),

A = a..(o)f[ STWE 2 gune m]

The potential funetion in the 2datrate can be written

N aﬂ'coa(ar x/L),

¥{x,z) = A

o™~

a2 has been done previcualy. In the osse of a plated interface, all A=- 03

however, i the interfage is not pPlated

Z A, 002 (=z m)aZgaoa(aw x/L) . (0€ x¢ L)
n

[
Again, the above expreasions must be vqual on a tors by term basis and
'“‘n :\n Thua, the progras “CAPAX™ can be uael to analyme this configura-
tion by suitadle alteration of the input variablea. The harmonic analysis
at the lovel of the tranaducer ¥ields all the information needed to con-
struet the potential function throughout both rogions,

The third configuration, that with no layer and the transducer
located at z= 0, 43 a trivial case of the second configuration. To analyze
thia case, the input variables to "CAPAX"® would be altered to road ;

€y = €
€x 2 9
YHL*> 1 .
The harmonic analysia 1s porformed at 8y = 0 such that

¥(x,0) = Z Bn(O)coa(n /L) .

n
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The comtinucua funational forz of the substrate potentisl ia thon glven

by -

t(x,2) = > &aan’ ’ﬁ‘oon (ew x/L) ,
sheore "
A, = nn(e) .
B2

The results of the preceding sectiona have hoan derived on the
assmmmntion af an izotrople dielectric constant in all of the rogiona. Thia
assumption was required to sccozodate the "CAPAX™ progras; howsver, having
obiained the “isotropic™ results, it i3 poassidle to correct for this

assumption. Let vz return to equation (B.1),
2y 2° a¥
[(E:}'é;goé?]¢a0 ) (3.1)

ard aznme 5 aclution

¢ =9'(x,n) = S—A’f'(n)coa(nz x/L) .
/ nmn
Tudbatituting into (B.1) resulta in the cquatien
av e s ¥
-—p o (EL) (BE
g " (c,) (L) fa (8.9)

The solution to (8.9) ia
W3 ~¥e

r‘;(u) =alo " +blo ,

=hare %

v (@E)

¢ (x,s) = S“A;‘ [o-*‘z . rt'lou"n]cos(nw x/L) (B.10)

Thus one has
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for oaoh vezion. In the substrate, (3.10) would be written

' {x,z) = E&;{ e (&-}émt 2/L eos {aw x/L),

ast s tdentical %o the results of Jeah!i and 'mita}s.

ohe scmewhat sodified potential furction of (3.10) will replace
shat of (B.5) and can be calculated in the sa=e Tashion s outlined in
sectlon (3.1}, with only a few minar alterations in the procedure. The
altered provedure would be az followa: (* are changed)
(1) Perforz CAPAX™ calculations aasuning an iasotropic dislectric
conatant.

(*2) Choose the levsl of the transducer, 31-0 ar z, =B, and

expard the potential funotion in a Fourier series at that

lovel. Thus, the potential fMunction at thia level is

v(:,ni) = > B“(ui) coslnw x/L)
p——
o
(*3) Determine X, in and ?;z (r:;- 0, alwnys). In the abasence

of a metallic plating, ?-."- 0; otherwiss,
2M R
;.;i,.q or ?;}n-o-ln ) 89 before.

¥ 3
(*.) The constant A 1a then given by

A A
A A i B ¥z
A; = Bn("'i)/[} !ln i . ?-;u b 1], as bdefore.
The coefficiont Ax" {a thon defined by
A A
AERUCTEA I
(*5) Replacing s 4 by s, the potontial functions for layer and sub-

atratoe areo



~ s
- -¥ z ¥
¥(x,2) = > 2!‘ [e LY RS nn] sos(aw x/1L)
w - n
"
and
¥{x,z) = S‘&a [ﬁ ”‘“ﬂ cos(ny x/l.) »
& i

reapectively.

By chooaing the level of the Mamar for the Fourier expansion,
we have inaured that the potential difference hotwoen ad jacent oh;otrodaa.
a3 given by (3.10), is unchanged from (1.5). This alteration does not
provide a perfect carrection, for thia atep will have affocted the boundary
condition invelving the contirmity of the normal cocponent of D, However,
since for most materials g ia approxizately tqual %o €3, it i3 a reason-
akle firast step to correet for the “iszotropic” dielectric constant A33ump~—

tian,
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APPEMDIX C
Thiz apperdix ia devoted to the evaluation of various inthg,ra.la.
which are required in seetion 2.2.6. The firat integral, in section C.1,
is included for Instruetive pu-poses, xhile the Integral of asction C.2

13 a well known Pourisr transfors,

(X}
Conaldor the integral -
,,’3-30'
T &k » (Co1h)
it

where the range of integration is the real axia, The "pole™ at k=0 is
located on the path of integration, amd for y> 0 it can be removed by using

tho contour co. given b;ry:
- T~ "
/.r N\ 2
/
/ 2 K
/ ‘ \
' \
I Ci™v, $
1 %
L-—-&-—-—- L“"‘*"‘"'J
cf
Thus, -r R
éu [0 ["]‘]
Co -R 6 r G

ard, a2ince thore are no poles within Co,

§i o .

cO

Along the semicircle Cy, k 4s givon by k=R 2%, 0¢Oew. Tus, the inte-

gral along this portion of (:0 can be written
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x
4 f o B 2ind iyRaos 8ap

-

O,’
The adselute walue of thiz intesral (s dominated 'hy} 1

* /2 v/2
_ e ) - ;
ff;' JTYRAIRG, , o g'o“ﬁ““éda < a{u 2058/ ';E (127 .
o o o

Thus, for y> U, iy intezral tords %0 zero 23 Ree. The integral over C o

cnsn then ba wrddten

-y -

SUORR

L4

- »

o
1
Over the econtour Co, knr o.'a, € 8< 0, and one can wrilte

0 0
iky e oM _ 4 . tyr(e*?
frmee [E- [l Ru [ s [10576T) ) o
Cl G C' -4 z

Iz the &=, a2 re 0, the last integrnl adore will mish}1, ant one i3
left with

ﬁw i OQL“:’.. -nijg' 0
éT&-[TM‘[T&‘[:“.O -
Co i Y T

Thus, the integral (C.1a) haz the value 4w, for ¥ > 0. In a aistlar fashion,
(Ce1a) for y< 0 has the valuo -iz. If ¥ 0, the integral (C.1a) reduces to

feee

-ith

aince the integrand 413 an odd function of k.

To summarise:

= dk = /0, y=0 . (c. )

f’oﬁQ’ [ﬁ.’, y>0
ir,y<¢ O
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Conatder the integral
.-
{Ei"';ﬂﬁ)em&k , b0, (C.2a)

g

-

his can ho written

(‘/2 z){ f“’oik(x; n/2) - [‘*ew(::- b/2) dx} .

Uairg the results (C.1h), 2% can be zcen that

"'““ . -, 0 D/2
][&:%Dﬁ)g.n& n {:/2, ,:',:';/2/ y) (CQ&)
2 ¢ , |x] > b/2

. 1N
which 43 a woll known rosult .

Csl
Now consider the integral

L _J
4,
225 :::D?’ f(k,a)omdk p>0 |, (C.3a)

where A 13 real and £(k,2) hes no poles in the k-plane, but theme is the
posaidility of dranch pointa ocourring in £{k,2). (In the ovaluation of
(2.32) there are no branch pointa, while in (2.35) there are.) The variadle
g can be considered a parazeter. In the advent of branch points, assume
that their locations arve known and given by Ke, Koy cae,y Ra’ where n must
be finite. (The moans of looating the branch pointa in the evaluation of
(2.35) 13 considored in Appendix D.2.) Substituting k'=k+ A, (C.3a) can

be writton

-iAx . ik '(x+ D/2) - 1k'(x=-D/2)
S {ls(k')———w——’ - dk'-[s(k')" - ax-} ,

-t
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shore g(k') = f(k'=4,2)s Hence (C.3a) can be dotormined by evaluating

integrals of the forn

[ﬁfﬁl 'y ax!

Comalder first the caze for 3> 0. One wiashes %o use a contowr
identical to that nsed in C.Y, emsloaing the upper-half of the k'-plane;
howerer, one mist take in%o account those branmch points whioh are located
in the upper-half of k'-space amd draw the contour ao &3 to pass around
these pointa, when they exis?, and not cross 4o dranch cuts®. Such a

contoux is Branch cuta (only
{ wo have boen
- — T S~ shoun as an
\ oxaaplo)
7 1l
Cy=~/ i S
2 : l'\
/7 : | : | \
/ . 1‘:' 11" \
A 83,-;13 : ' B K
/ o \
| ”c&? Branch pof;u Ko %y |
Lo o e . - e ]

This contour remains on the same sheot of the Riemann awrface for k'31 ard

since there are no pclos contaimd within tho contour,

[[-f 3]

R C =

® Since A 13 real, those branch points located in the upper~half of k-
space are aliso J.ocm;ed in the upper half of k'-space.
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The aumpatien over the index g remrezents those contours, B;, wihich exslude
the branch pointa in the upper-half plane, as shown. Along that portion
o the contowr daroted by €., &' is ziven by R oia. One can then show, in

& fashion aixtlar to that used in C.t, that the integral
] %o Poo

ranizhes along any portion of C; a3 Rew, providing g(k') 4s bounded (fer
all z) along the contour C; 83 Rew. That g(k') resaina bounded izplies
that the branch cuts have bees proparly chosen *, (™he moans of properly
choosing the branch cuts is zhown in Appendix D.3).

Az in the evaluatlon of (C.1a), tho integral over the contour C, can

de zristten

]
] [5(:‘,@)&9 - !5%,—')- X'y ]dk' .

2
Ch
Stnoe g(k') remalna finite in the linmit as r <0, (nc peles in the k-plane)
the sccond integral above will vanish., The funotion g(k') is complex amd
can be written g{k')eg'(k')+ ¢ 5*(k*), which whon substituted into the

f4rat integral adove gives

0 0
i jg'(r,e)da - [5"(1-,9) a0 .
z .4
Both of these integrals can be ovaluated Yy use of tho "mean valuoe theoroen"

as followa .
0

i[s(r,&)de < [-i= 5'(:-,05) . :g-(r,o;)]. 0¢0)cw, O¢ acw .
-

(Since g(k') is complex, tho roal and imaginary parts must bo separated,



since the maximun values of the two parts will not necessarily ocour at the

saze paint on €,.) Thus,

] ')
el BED '8y ¢ a7 2am [6°(r,02) 0 16%(=,07)] -
3 k Q -]
b X s I ™0
Ch
In the limit, as re{, the equality sign is used bocauao 6 has no zeaning

when re ) hemwe,
fm '8 4 12 g(0) - S—b’(y), ¥y>0 .
L f. R
- q
The tarca bé(};} represent the contridutions froz the dranch points in the

upper half plane.

In a siptliar fashion,

£
! ' L1 by,
H d?-:—l a“ J&Q' fo:- y( O J

&

-

can be eraluatod, and the rezult i
-15 6(0) - ) v0)
K

where b;(y) ropresents the contridution of the pth branch point located in
the lomer-half of the k=-plane. (Resozber that the branch points in the
lower-half plame are circled in tho opposite secnse to those in the upper-

half plane.)
Thus, for 0¢ |x| < D/2, the integral (C.3a) has the value:
ix(x-D/2)
ﬂ‘(-a\.s)o’m N Zii' {e'”‘ b/2 S-j £(x,s) 9—-(;’—;7— dk
P B;
- ix(x+ D/2
_oi:'\ D/2 3 j‘ £(x,a) L—é%x;_).dk} :

+

3
q
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whare 3; and 5; represent contoura, of the type ahown on the coentour C,
around the branch points located in the uppor-half axd lower-half of k-
space, reapectively.

Por x > D/2, the integzra) (C.3a) has the value
v atnf (ke A)DA2 Sicx
- L [ o e300 ax .
P 3'
1 3

Por x=D/2, the integral (C.Ja) can do wmritien

1AX
- Eg 02 Fi ™ ]
= g! b (FP-naer
e

.m\i urloss move Lo known about the mature of g(k'), f.e., "odd" or “even®,
this {ntogral cannot bo evaluated,

In section 2.2.6.3 1t was cbserved tha’ the actual contribdutions from
the branch pointa are foo involved to evaluate exactly, and henco will not
be considered in the cvaluation of the integrals (2.35) and (2.32). The
solutions of (C.3a), as used &n the evaluation of (2.32) amd (2.35), oan

bo then suzmsarized as

}‘ ax_x_aik(:c;ﬁ«)!)éa] £, 2)0 %0 = {;f(-.\[:fn:’:;é oc |x] <0/2

47 the absence of branch point contributions.

b
A variation of the integral (C.3a) ia the intogral
-
[ atn(k D/2)g(k,2)e"Fax  D>0
-l

where g(k,z) has the asamo properties ns f(k,2) in C.3. Tho integral (C.ka)
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oan he written

:.f-;{ ;r stk adetk(xe 220y ;’ sk, a)o K==/ 2)&]

-
-8

These inteprala we of the form
o
j ale,2)e¥ax .

-

Por y> O, the contouwr far the shove integral ial

‘/’—_‘_\(\
// \r\
1
/ l
2y T
S ap i
/ R ! q]\
/ w8 kL
' UU X
/ \
!
L—.—.—.—_.-—.—.—.—- ;—-—-—--’—--———-J

where the a; are the contours arocund tho branch pointa in the upper-half
plane, as in the previcus seotion. (Again, only two such branch cut con-

tours are shown as an exasple.) Since no poles are enclosed dy this con-

7[*2[ -0 . (C.Lb)

R C, qa;

tour

Unloss mare is known about the function g(k,z), one cannot guarantee that

the integral over C, will vanish a3 Reaw.



Considering firat the particular integral zolutionz, given by
2.32) in seatlon 2.2.6.2, the terz s(k,2) represents sither c:::;:(--u“tz)(:.sn
o W(”na')dj.n’ ard contains no braseh points. As obaerved in seotion
2.2.841, the Nunotions a:gz(k) ard & .m(") bohave a3 /% 4F [x| < w, for X

complex az well as real. Thus, for large valuea of Xk, one can write

. s,z
glk,a) = ==

Singe the integpral
P wf 4
[ .g;,n o %4y . >0,
€
vanishes a3 R=w, a3 shown in C.3, and there are no branch points for the

particular integral salutiona, the integral

[‘g(k,a)o%&k

e
must vardah according to (C.ib). The samw 43 true for y< 0, and thua the
iatogrnl (Coba) will wandah, for all x, =hon applicd to the partioular
integral aclutiona of (2.32).

Considering the hozogencous zolutiona in section 2.2.6.3, one can soe
that g(k,z) is {dentical to 3"2.-.:.': in equation (2.39). Tracing tho origins
of this term through the equations (2.36b) and (2.29), one finds that the
boehaviour aof thiz term ia controlled by the torma ¢ in and & in? which are
associated with the particular intogral solutions, as |k] + w. This rosults
from the fact that oxp(ikl_z) remains finito as |k| + =, as shown in
section 2.2,6.1, providing the branch cuta have boen properly chosen. Thus,

the intogral
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jf sle,2)e* e, y>o0
€z
wilt vaniah a2 Rew, 23 with the partioudar integral solutions.

one then has
L. 4 —
) 4% X
/s(k,a)ﬁ“‘w&k w - > fg(k,a)c‘wdk, >0,
St §

.

-l q B‘

Proz (C.4d)

for the homogenaous aolutiena. In a aizilar fashion, for y< 0, ona has

Ll ] yg
P

[5(3;,3),,’”@& ® - YI 5(&.:\;}0""‘3& .

fence, for the homogerecua solutions, and O¢|xjc D/2, (C.ia) has the value

& f ;‘ g{ RORRI ) N 5" { s(k’.}aﬁk(xw/z)&}
-5 T

% %

Amd for x> D/2, the value ia given by
- 2_'/ s(k,s)ain(kb/'z)om dak )
Y 5*

]

xhoro n; and a; are as previoualy defined in C.3.

Whon one ignores the branch point contributions, as is the case

when evaluating the hosoguneous sclutiona in asetion 2.2.5.3; ar in the

abaence of branch peints,as is the case for the partlicular integral aolu-

tions in 2.2.6.2, the intogral (C.4n) has the value zero for all x,

£.5

Consider now tho intagral

faud
[Li?ﬁﬁn{_zlomdk, D> 0 ’
J k+d

(C.5a)
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T™his integral can be written
o de(x=0/2)
ax} :

whore hwBe g, € <2 B,
. “'am{x-afz} -
-

5|
Thus 18 i3 nocossary o evaluate integrals of the form
hall |
ﬁ"‘kf ax
{k’tb’ *
-

The adove integral has a pole at k= =b, which doos not lle on the real axis.

{
£
L
.

wowam §
~

Thuz, fer y> 0, the zoentour of integratien is glven by31:

- ~
/7
e &\
/ \
J \
b e o g o b e = op e -l
°.y

Since no poles owcur within thls ceontour,
ﬂow
[mdkuo, for y> 0.
-l
1
Por y< 0, the contour ia given by} :

===
LY

\ /

/

The pole at k= =b ocours within thia contour, ard hence
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!&;-b-}&ka-‘auia'w, for y< 0.

{=27 { aince the comtour ia deing travelled in a clockwisze direction,)
In the ease for y=, the integral

EE

-

&k L] L R [
[ (Ket) "[ YD) "‘ji}:'itcss ’
- - il -

hecozes

whero
k'lk‘tao

The firat of these integrala ia zere, aince the integrand is an odd func-

ticn. The zecord integral can be written

-
21 [-r——n -2 ..zm“:]q = -ir , xek'le .

Thuas,

” K

P
(m!-iw, for y= 0 .
EA

Therefore, the integral (C.5a) can be written:

(0, x>D/2

9/2 x=D/2
-ib(x-D ), 0¢ |[x] <p/2 _ (C.5b)

- oibD

—,

- fdex
f sin(kbéi’}o &
o . -%/2, x=-D/2
274 ain(bD/2)e %, x<D/2

In & aixiler fashion:
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2w & atn(bD/2)e >, x> p/2
- . t@im—-wfa x = D/2
! am‘&z 0”7 4k« { ,,,ih(x@fas, 0¢ |x] <0/2 (C.5¢)
A z/2, x=-D/2
0, x<-D/2

A

Conaider the integpral

Real

4
}' sixf (ead)D 2]0 7 (C.6a)
whore & ia roal and bw Be {2, €<< B, Uaing a partial frection exvansion,

{C.6a) can de written

w

C 4 U0 T atnd (kea)n/2)e N5 [ a2 p/2]0 =
Lo { [ 2 igle— o - [anllgpile — o

Substituting k' =k« A, and uaing (C.2), the firat integral has the value:

, 0¢ Ix] ¢ p/2
x {=/2, |x]| aD/2 .
e , |x|>D/2

‘--m

The zecerd intepral oan be written

y Ak(x+D/2) - o 1k(x-D/2)
e C B el e e e I

-l -y

Both of thoze integrals are of the form
/ b:ob,dk ’
-

which i3 evaluated in saction C.5,

Thorefore:
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[ o= iAx ) wo-&x@i(b-&)ﬁ/&

m rCery) y ~D/2¢ x¢ D/2

>
sinf (xed )D/2}0 = }
T — o - o, x»1/2

and 2in oz aimitlaw faahlen:

L] 43
[ XeA JD/2) 0"

{ Toay ot=l (ad /2™, 1y 5

e 4 330 (A1 )D/2 o ibx

(c.&)

r- go—tAX roibx, 1(Asd)D/2
sy TAss) » ~D/2¢< x€ D/2

-

(C.6c)

.



APTENDIX D
T seotion 2.2.6.) our attention was drawm to ths exiatence of

beaneh voints in the integrasda of the oquatdens (2.35)

Vitxe) = (39) \)*g‘}? i [?n(") RNV ‘1?*-’-] . h.,mn',m& .

(2.35)

mads appendix presents a gemeral discusalen of thase hranch points; however,
a copplete mathesatieal treatment of branch peints will be avoided. Thoro
are pasy texts avalladble whick cover the tople in conaidoradle detail, of
which that by Puchz and S!‘.zabatzﬁ is s good exazples Our discussion will
corcers the origina as well az Ww msthematical and physical i=zpliscations
of the traseh points in (Z.25). Alzc the seana of looating thea ard the
problems they present in the evaluation of (2.35) will be conaidered. A
moans of evaluating the "draseh point contributions™ %o the intograla (2.35)
w11} be presented; howerer, due o the complextty of t.hn. exprosaiona, no

attompt will be czade to obtaln theze contributions,.

The secular squation (2.17),

{03533 = 0351 » 2{ eeg033 = c3s013 )2
2
- [0\ 1Can c;,'* 2ay3033 ~ (Gn * On)’ - (033 * Oﬂ)( %‘l)]ﬁ
. . (
- 2{e"c” =~ CtsCi3 = (ess e o,,)(akr)]l
2
* E.encn*euk‘ (%s‘ 0«.1)(%) + (e%?)’} =0 ’

represents the relationship between the wave mmber, k, and the roota,lao

2.17)

shich determine tho "eigenfunctions®, u:p(iklmn), of the homogonoousa solutions.
Bquation (2.17) ia quartic in 1, and for any value of k, at a fixed frequoncy
&, thore axist four roots ly,ece,lae Thia iz true for both layer and sub-




- -

iate zaterdals and ror a1} ¥alues of k, gren those which are tezplex,
though our interest s Isrzoly éqﬁf.ﬁmd to roal values, Thua, eguatien
(2.17) ean de considarea % “mapping® from k-space to i-apace, to de
abdrovisted (k- 1), Baltivalued Punotions of thig Rature lasd to representa-
Hon prodless sinee the aciutions are nat unique, and honce 4t ia diffe.
eult %o eatadliask a “ane=to-gma® correspandente hetwoon iho variables. Por
commlex variables, this Fepresentation prodlesm has boon 30lved with the
concept of the "Rezamn murface* ™I 1 n uisiaetes deacrided by (2.17),
the Riezamn murface for kesnace conatata of four "sheots”, oach shoet con-
tainirg an ontire coznlex plare, Zach of the roots 1::: i3 ssscoiated with
X upen a pn:-t.zc:_ular aheot; however, tha value of k on each akoot suat be
tho aaze. The polnts in k-apace whion give equal values %o the "branches”,
lee., ToOts of e aul tivalued :‘umtsa::,am ¥nown as "branoh pointa», e
TRe iines of interseetion betwven the differant sheets of tho Riemann sur.
face, by which moans GRe oan pass from one sheet %o another, are known ag
ranch cuts®,  The hrarch points are unigque snd ¢+ in peneral, the branch
tuta are not unique, though this =y depernd on the particular situation,

A3 an exszple, conntder the asiwnle funcilon way%, whore both variadles
fre cocplexe Tho Riozanmn surface for tho varisble Y has two shoots, with
branch points at ¥e0 nrd ye (D, 2 branch cut will axiat batwoon those
two lixits ard a posaidle plotorialization of this Riemann mwface is showm

in ?‘os. D.1 .

* In the atrictest sonno, we should roally consider the separato branches
of (k1) as a funotion of k, Ra will bdo seen in D.3, However, any point
'?mh i; & branch voint for (k- 1) must obviously be a dranch point

f k" u .



BRANCH POINT -

BRANCH CUT-

Figure D.)

To flluatrate the prodlem to bo encountared in parforming the inte-
gration of (2.35), conalder the aizple integral

e (p.1)

¢’ .
where € 13 a closed contour In complex kespace, and 1 is dofined by 1= k7.
There are two roots, 1 and 1. (for the positive and negative sign, res-
neetively), for everr walue of k, ard bramch points ccour at kwO arnd kw e,
Henco, the Riozann moTace for k-zpace, in $his problem, consists of two
sheets which could be zhown as in Plz, D.1. Asmeeo that P(1) = P15 ), and
thus the variable X L3 taken fros the firat sheot for the evaluation of
(B.1). Purthermere, azause that F{1) ia analytic over tho whole of k-space.
Due to the presemce of branch points, the contour C must bdo conatructed so
83 to rozaln on tho firat aheet only, amd hance it cannot intorseot the
branch outs Such a contour iz shomn in Pig,. D.2, where the bdbranch cut has
boen arbitrarily chosen to lie on the poaitive ronl axin, Thus C=C +35:

Ct » the circular portion of the contour

By » that portion of the conteur which goon arocund the branch
point,



i 8 |}
A
A ‘_{‘1* ) 8R SH cuT

»
R
amm/x !

Figore 0.2

Stree P(1) 1 analytic over md) of keapsce, 4rd thus within and on the
cantour
[raiac e [ra0m . [ra0a o .
C‘ C‘.| 3.‘
Howewor, due %o the presence of the branch ocut, the intogral over By ia not
aqual to mro#ﬁ. Heice, the integral over ¢y is nof equal to gzerc, and the
integral (D.1) han a "branch point contridution" ariaing from the integra-

tlan over B,

A uaeful wariation of (D.t) is the integral

j (FQL)s P(L )]k, (0.2)
: _

whore 1o and 1 are the roots of lak%, as befere. This integral zeparates

into two aeparste integrala

fP(l.)dk ad  [P(L)dk .
[ c



The wvalve of k, ard hance the sontouwr ), for the firat integral i3 on
" cha firat sheet of the Riesann awfase for k-space, and on the aecond shoot
for the latter integral. The conftour € muiat be the samo in Yoth ahoots in

thia inatance. Using the resulta of {D.1), one can write

fraoae - frtaee « [ paaoee « [raoa - JRESER [ P

¢ c 6, 3 Ca 2
wvhero Cp and 3. are the equivalenta of Gy and By, but on the secord shoot,
Howover, airce the sontours G and C; desoride a contour that circles the

branch point twise, it can be shown thatw

f’“"‘”‘ s[!(lg)dk 20 .

& Ca
(This 12 the equivalent of integrating P(1) fxics around tho branch point.)

Harce,
[?(1., Mk + [ P(2 )ax = 0,

By Be
and tho integral (D.2) dces not have ary "branch point contribution®,

Thua, if the inlegrand involves all of the roots 1, in the fashion
shown by (D.2), %hoe waluo of the intogral will be unaffectod by tho inter-
motion of a branch out with the contour of integration. If, however, the
integrand doea not involve all of the roots in a like fashion, the inter-
section of branch cuta by the contour of integration must be avoided, and
the resulting integral has a "branch point contridution”,

The integral (2.35) can involve all four of the layor roots, but
only two of the possible four substrate roots due to the necessity of
having solutions which do not inocrease as z §003 t0 -w. Tro funotional
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dapendorce upon each root iz identieal, Thus, the contour of intsgration
used in the evaluation of (2.35) (see Apperdiz C.3 and Cob) =ust be com-
sruated to areld the braseh peints and hranch outs for the sudatrate
selutiona. IF the contour crosses s hrareh cul originating from the layor
reots, these roots will he porzuted m:}%‘
Iy i~ dge 1gey |
and the value of the integrard will remailn unchanged. Thus, the only bdranch
point contridutions to the integral (2.33) arise in the sudatrate solutions,
dve %o the neceszaily of avolding the intarasction of the contour of into-
tion with the sudatrate hranoh cuta,

D.2 looatien af the Hrarmoh Points

As mentioned in seotion D.1, the hraseh suls torminate at the branch
pointa; asd, %o be able to conatrust the contour of integretion for the
integrala (2.35) in = logieal fashion, one mist know the looation of the
branch peinta. The location of tho tranch points for (ke 1), as defined
by (2.17) 12 not obvious; however, it can be shown that *he branch points
of a miltivalued Nuwtion can bo fourd by conaidoring the imverse mapping,
if aingle valued"®, 7o sizplify the algedra, let viaw®/k? in oquation
(2.17), which can then be represonted (v - 1), and consider the inverse

zapping (- 7 ), given by

v {?. (1) = {P,(l)]ﬂ/ap ; (D.3)

(the ay=bol ¥ impliea tho positive square root)

* As mentioned in the mreceeding section, one should look for branch points
in (k- k1); however the inverse (kl- ks, obtained by mltiplying (2.17)
by k* 13 more involved than (1. v?). Henco, since the branch points in
(k- k1) coincide with those in ?t-o 1%, wo shall bo contont to atudy (1 v*)
to obtain tho branch points in (k- 1) or (v¥e1).



where:
A (1) = (s » 622 )27+ 2(ers = 03301+ (001 & v3)
2 (1) = [(o3a = 033} = b J2* + [4(er5 ¢ 033 Meas + avs )+ Boga(egs - 043127
o [8{ean® » ges® ) 2{cer ~ops Moas =233 ) L(oss » 043 ) - Boass J1F
« [Aleya « 0ug Mers o 039 )= Bleagore = ersee3)]d
o [levy=033)® < Sos®) o
Tt i3 tnteresting %o observe that (D.}) representsz two soparato aingla
valued mappirgs from l-space %o ¥ -apase, depanding on the cholce of signm,
asd each must bo considored scparately. Branoh points in (v' < 1) are located
at values of }.nlo auch thatm

[=)20)), =0 .
-]

Taking the dorivative of (D.3) gereratos two equati
2P 2B w0, (Dos)
where the prise denotes &( )/d(2). Bquation (D.4) ylelds three roots, 1,
for each 2ign; and upon aubstituting thez into (De3), tho values of ¥V uvg,
shich are the branch points for (v = 1), are detormined. The values of
k-kb , which are the branch points in k-space, are then given by
K, w2 u/vb .

Athough equation (D.L) yielda three values of 1, for oach aign,
cozputation showa that oach set of three roots (one set for sach sign)
corresvonds to only one valuo of ¥v'. lHence, there oxiat only two values
of v, and four values of k=l , at which branch points coour. The roason-
ing behind this aituation will de considered further in assction D.k regard-

ing the physical implioations.
It i3 useful to noto that, if oy3 =033 = 0, the valuoes of v at



which the brangh pointa ocowr are ogqual %o the bulk wave tranasverse and
lorgltudiral velocitles®s Alse, when considerirg s real aysten in wxhich
less oooura, the walues of kb #i2) be aomplex,

DeF location af the Drameh Cuds

The location of the branch cuta is arbitrary with respect to the
integrala (2.30), for these are intesrals alonz tho real axis only. It
s =hen one has o wraluate the intograls (2‘.,39) in tho mannor outlined in
Appordix C that the location of the branch cuts becomes important. As
indioated in Appendix €.} and C.4, the branh cut =uat bo chosen such that
the integrals vanish along that periion of the contour which emcloses the
upver or lower hulf of the complex k-plane ({kj-»w). Thia prodlez 4s
analogous to that encountered in the atudy of eloctro-cagnetic surface
mave generstion and pwmtionm, and similar techniques can be employed.
The branch cul muat be chosen 3o as %0 separato those aoclutions with
Imag(kl) < 0, asd that decay in the substrate, from those with Imag(kl)> 0,
which do not decay*®. The contour (branch cut) which provides this sopara-
tlon ia given by the solution of *

Izag(ll) =0 . (D.5)

Since there are four values of X which are branch pointa, a3z mentioned
earlier, there will ho two sots of branch cuts determined by (D.5). Onco
the path of the dranch cut is dotermined, tho contour of intogratica around
tho branch points, a2 used in Appondix C.3 ard C.4, i3 chosen so as to

® Tho allowed valuea of velocity for bulk waves whose planea of constant
phase are normal to tho x-axis,

*® It 13 for this roason that one muat conaider the branch points for
(k- k1), 4in the strictest asense, as provioualy mentioned.



exalude the drameh point frow the desired reglon of k~-space without crose-
L2z the branch out, This contour must he chosen %o follow the bdranch
cut For 4t is oxly along thiz path 2hat ome can entar from [k|= w, and
reson, shiile keeping the intepral on tho sase sheet aof' the Riomann surface.
Conzider now tha shape of the drameh outs for the sizpleat of audb-

strate matordala, ore uhieh is lzotroplea. In this instamce

thy % O3

S13 % 0p » 0

Gy & Gy = 2093

and equation (2.17) oan be written
2
2 2
cnc»ss‘—‘*[‘zmt%s‘(ﬁn - 013) Ek‘;'] @ "[.Qn%s A CTE Ou) %“ b (%’)] =0.

This has the solutions:
1’-(%;—,3-- 1} ad 17 .(;5:—,- 1) .

Thus, a3 (ki = = (k real), 1= 2%, as zentioned in section 2.2.6.i. One
then has
() = (A2-3)
where A' = ;&5‘ or ;’-‘-:;- . This oquation, combined with (D.5) gives
Teag(i) = Tmagl (47 - 1)3) = o,
zhich dotarminos tho shape of the branch cute Assume, for tho moment,

that
A=nante dia"

ko k' 1x" )

then tho above aquation onn bo writtion
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€
Tnag {i'(a"- A" %)= (R F-k"%)e Z«?‘i(u’n"-k‘k’}]!} =0

L

This equation can de satiafied My

a'a" = ®'&"

[(ar®-arf)=(x**=x"0)] 2 © .

The Piest of thase rolatiscnaliips desaribes a set of Ryperbolas passing

through the branch polnt X = A,

The secerd relationahip defines the range

o & over which the hyperdolss are valid represontations of the hranch cuts,

As oan be seen, the hyperbolie brasch cuts are walid fer [xt] « Ja'| ard thua

the brasch cuta sppear sa akown in Plz. Dede In the ahsoerce of loas, the

brasch cuta degenerate to paths lwing on the ezl and Imaginary axes.

IMAGINARY AXIS

| BRANCH CUTS

BRANCH POINTS

o</

!
/I
/71

i

7

-

o

—— . — A o —

-

i e S o—— e —r

REAL AXIS

Figure 0.3



To complate shisz sectian, it ia usaT™l to conaidar, gualitatively,

the Pollowing two altuationa:

(*)} "Slow" layer salerial on a “fast® subatrato

(2) "Puze™ layer material on s "alow" substrate
whare *fast® xnd "slow™ reflar te the ralative nuerface wave velocitios of
the fwo materializ, Plrst let uz axamize the zituszion (1). In the
absence of a layer, the xnofice ware veloolily i: alightly leas than the
transverse bhulk wave wloei!yﬁo e« Thua in kespsce, the Troe surface k= kd
iy alightly greater than the wvaluea of X corvesponding %o the bdranch
pointe, ¥, and iy o {(Frere kg a0k, are equal, or alvost aqual, to
the values of 2 for transverae and longltudinal dulk waves in tho asude
strate, respootively.) Thia L3 ahown in Fig, D.ka. Upon the addition
of o "adowr® laver zaterial, the nmrface wave velociily ia depreased and

the alue of ka incroases, as shown by the arrows in Plg. I).-‘ux1 '50.

< ——y
» D &

L '
~kgy =k ~kip kby kb ks

Figute D.42a

Even if numorous modes are preaont, as is posaible in this situation‘ '50, all
ks.a kﬁ. Thus, for a "alow” layer on a "fasi” subatrate, tho surface wave k
does not como very closc %o the hranch pointa )c,m and kbz' the closeat

value being k., the valuo for free surfece propagation. ¢

® Assuning & fixed frequency in the vicinity of the "reaonant" frequency.
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Conalder now the isverae situation. Again, in the abaence of a
iayer zaterial, the relatlonshipa between X wt? kbt and kb, are shown by
% -

Pz, Do

> ¥ 4 s L ‘
—kg iy ¥y, Ry kyy K
Figure D.4b

Howerer, upan the additlon of a "faster® layer matorial the suwrface wave
L d

Telocity inereases , amd k, soves in the direction of the arrows in Pig.
Doib. Thus, the surface savv & approaches the values of X at the branch
points a3 the layer ihickmeas ia incressed.®

In the abzence of laoas, kn’ Et.m ard %2 will be real and thus it
iz poaaible for kn to equal kg or khz' Thia jrononta s problem since the
branch points must be oxvluded froc the contowr that includes kaz howevar,
this prodlem & reselved by the inclusion of loaze
Dol Phyaieal Imnlications of the Rranch Pointa

Tho branch pointa were dof'ined in scction De1 a3 those values of
k at =hich the roots (or pairas of roots) of oquation (2.17) are oqual,
If one were to plot thoe locus of a singlo pair of roots of (2.17) as a
function of k (roal ami with docreasing magnitude), it would appear as

shown in Pig. D.5 .

* See footnote on page 193
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IMAGINARY AXIS
$
.l
,I
r'd
/A"
‘,e' REAL AXi
““““ Ao “’“‘t\‘:,".v"Jy—— o—
\‘s
i e lg
Figute D.5

Por large ralina of Fel , the moots are cozplex and appear in conjugate paira.
A3 hd decreasex, the roots approash oach other until they meet on tho roal
axia, at =hich point they are cqual. As [x] tends toward zoro, the roots
diverge along the real axis; however, {x1) approactes a Tinite valuo as
Fe] = 0, aa ahovn in sectlon 2.2.€,1, Since the branch points ocour at those
values of k at shich 2he roota of (2.17) become equal, and honce real as
seen in Fig, D.5, they reprosent the maximum values of k, or pinisurm values
of phaze velocity v, a% which bulk waves (l.e., waves which do not decay
with depth) can oao'.:r}é. There are only three diatinct roota at these
values of k (two of the fowr are squal), and hence the fact that equation
(D.4) had only three roots for esch sign, all corrTesponding to tho same
velocity, i3 to bo expectod.

As montioned earlier, if ovs ® 033 » 0, tho branch point velocitles
correspond with the hulk wave iranaverae and longitudinal velocitios in
our coordinate aystems If, howover, o,s and/or ;s are not equal to zero,
one finda that tho valuea of ¥, Are lesa than the appropriate values of
volocity for tranaverae and longitudinal bulk wavea. This can de obsorved

by reconsidering Pige D.5 and remozbering that 1= 0 is tho required condition
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for dulk transveras and longitudingl waves as dalined n?;ow. This leads

0 a new arnd more Pundazental definition of the bdranech points; howaver, it
will be stated without preaf, for sathematiend proal’ is difficnlt, although,
1t oan be aeen rrow phyrsieal intuition, "The braneh points represent the
ainimuz valuos of veloeity for which & bulk wave zode can propagate in the
subatrate with ity Poymtdne vootor parailel to the swrface (x-axis),®

In the Meory of vloetrommenetio murfave wavea, the "branch point
eantribution” represents the centimiouz spectrum of wavea which carry
energy aswny from the :ru.-!’maﬁ‘. By amalogy, the aame i3 fvun for our
situation, ard the "branch point costrihuzdon® (1etey, the mm of the into-
gals around each of the hranoh pointa) represents s contimioua apectrun
e propagatirg sodos which QATTY enargy Into the sudatrate. No such podea
oan be launched Into the layer Tor there 4a no plsze for the energy to go
(Lt has boen asmmoed that 2= % ia 4 atvess free surface), providing furthar
PRyaleal proof for the abrence of Lranch pointa in (2.35) for the layer
20lutiona,

Thus, one can think of the ID transducer a3 launching, 4n addition to
the maface waves, a whole apectrum of bulk modes =hich carry energy into
the substrate and whose Poynting vectora wre included at overy angle from
o® to 90° with ros pect o the interface.

D.5 Branch Point Contributians (Bulk Wave Modes )
It has proviously been shown that only the subatrate aoclutions come

tain branch points, These solutions are given hy equation (2,39) as:

L
-—

2
w"(:.:):(—-—L ”")Lrﬁ"’% kf;"" ,m]

R iw
JA JA ,
. ni,n(kD/Z)[ kf;:m +* ki’:“a + ngm]} umdk o« (2.39)
)

3



A3 monttoned in sectien 2,5.4.3, the hransh point contridutions, renresent-

ing bulx =ave poden, ardze Moo the tares

Lot ua comsider only those contributions in the region x> D/2. As ahown in

Appendix C.3 and C.4, for x> D/2 the two integrals adove can bo written

s

2.
-<§;)> > [ pn(k)”'fmﬁm&
=t W,
(N

and
2 e
-(:;:_-g > \) [ aink D/2 ngmewdk »
C & .
=
respectively { lgnoring the posaidle contridusions from other alngpulari-

tiea in the "mulil-mode” cane), By subatituting for nfﬂ ard ng!m, ond

can conhine the adove integrals and write the axact dranch point contri-

Yution, for x> /2, na®

4 2 Aa ,.‘.klnz -
!!?(:,n) * - -5-;\2; T %40 e dx . (p.€)

It will be useful %o cocbine the expotential terms in (D.6), so that one

can write

* This result can also be obtained by the direct integration of equation
(2.29), using Cauchy's theores and including the branch cuts to insure
that the integral romains single-valued.
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e

where fa(&,é)n (ke tan §), tan @= 2%,

Before contimiing, let us reconaidar the shupe of the bramch cuta.
In section Do¥ 2% wna showmn that for an lsotrople, loasleas material, the
hraseh guts lay on the real and isaginary axes of lo-apase. Flgure D.5 showa |
shat for k on the real axis, each palr of “"conlugate® roots to oquation
(2.17) bescmes real for [k} ¢ & , the value of the branch point for that
partioular voot palr. Thus, for Il « K+ the ters i3 1s purely real,
the cardition regquired for the Yranch cut. Therefore, the branch cuts for
any lossless caterial which is appropriate %o aquation (2.17) will have a
portion that lies on the real ¥k axis, in the roglon Id € k. The value
of k for the remaining portion of the branch cut will do complex, and
though 4% fa purely imaginary in the lsc'roplc case, 4%t {a not obvious
shat this fa Srue for a sare zereral situation. Por convenience, wo will
restrict ourzelwes %o that portion of the branch cut which lies on the roal
axias, for in the “far field" the coniributions for a complex k will have

docayed %o zero. (Rezechor that k-i&.) Thua, (D.7) can be approximated

by

Jf(x,n):-( )if‘: . aw(n,s)& . (D.B)
b

whore the nbbrevinted contour b’ in ahown in Plg. D6, Over the contour
b o0 the function £ (x 8) ia puroly real (in the abaence of loas), and thus

the squation (D.8) ropresonta an integral that can bo avaluated by the
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€x0
PORTION OF
BRANCH CUT —— /bn
T Yy~ .

o

4

Figute D.§

«y =
method of "ataticrary phase” 67,

At this lunoture wo wil) terwminate our dlacussion of hranch points
and bulk maves. The smethod of ®:tatlonary phaze”, applied %o (D.8) wild
give an spproxisate, saymptotic solution to equation (D.7); however, it
13 ohivious that *he doxbinant centridution %o the integral will ocour in
the vioinity of kak . Once the solution %o (D.B) 13 found, the addi-
tdomal radiation condustance resulting Mros the zomaration of bdulk wave
podes can be found by retuwrning to the Poymting veotor uzed in Chaptler
IIT, ard performing the caleulations of the radiatod onergy using the

solutions to equation (D.8).



APPRNDIX B
The doundary conmdition eguations (2.27) are written ror the case

af a “rigid™ bdom! betwven lsyer ard sudatrate. In the situntion whaere
he w0 zaterisla are free to alide ome upon the other, representing a
famooth® band, the bourdary corditions suat de altered slightly, One can-
ot have continulify of tangential atvess and dlsplacesests for the swmooth
Yord, dut rather the langential stresnez muat m‘xiah‘. Thus the eguation
(2.278) mest bo replaced by

Ts(x,0) = &, (8.1a)
and the equation (2.274) by

Talx,0) = 0 . (B.1b)

Applying the Pourder transform of (2,13) fo the aliered oquationa (2.27)

gives e szel of equations:

Tolk,0) = 0 (5.2a)
Talk,0) = Fy{x,0) (2.2v)
Ta(e,0) » To(x,0) (5.20)
2a(k,0) = 0 (8.24)
%,(’x,x) a 0 (Be20)
%g(k,x) = 0 (8.2r)

Roplacing the equationa (2.28) by the eguationa (B.2), ono can pro-

ceed to the solutions in the aaze fashion as shomn in Chapter IT.
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APTRQIX ?
Tt was atated, in seotion 4.3, that a saxisoun of soven harmonic
soros were used for the sxpansion of the applied potential function of

she tvansduser, given by equation (7.9u)

t{x,n) = :} ,Anfr(n}qoa (n= x/L) (2.3)

and the usual procedure iz fo tarmizate the serles shon the ters % is
losz thas 5% of the largest. Thiz sppendix will prosent a alzple argument
sa lustlry this srunsation of the harsonie expansions For convenlence, we
will coztriet ourzelves o sonzideratian of the "bipolar® drive caze, for
whteh tho sllowed wvalues of 'nt are

na 1, 5,5,7, ece H
rowever, a diascusalon of the “unipolar® drive cnae will follow in a aimi-
lar fashion. Since ihe purpose {1 to odaorve the rolative contridutiona to
she total wave solutions at a partioular value of ¥k, 4% ia oasier to con-
alder the wave aolutlons in (k,z) space.

Inapection of the boundary condition equations, (2.29), shows that
the coofficients CG far the homogercous solutiona are directly related to
the particular integral solutions as well as the terms & and &(D/2)ain(xD/2).
Bquations (2.23) - (2.26) show that tho particular intogral solutions are
directly rolated to the furctions & and ¢(D/2)3in(kD/2) and thus wo will

restrict ourgolves to the two basic funotions
S(k,2) and  $(D/2)aks(kD/2) ,

whioch are furdarontal to all of tho wave aclutionas.



™he harmenie structure of the lerms & and ¢(D/2) was detersmined in

a

Appendix A and presented in the definitions nccompanmying equations (2.95)

Ba

and !

Azt

where
e {
(%) . atef(ics nz/L)D
=Y XKen
R o= {"‘; I m en La odd
Toolely M omoen Ls even, with :oLuD/Z.

(Simze |8(d/2)] » [&(D/2)91n(1D/2)] we ahnl) conaider the harsonic behaviour
of $(D/2) only.} It ha» been shomn that the “walghting factora® A_ are

3
proportional mz‘

?._:( cosz /L)

>
e

xhera n=23e %, ma,1,2,3, .ia o The P_ are the Logendre polynomials, &
13 the fingor width and L 12 the centor-to-conter spacing of adjacont fin-

gers. Por 4/L = 0.5, which is the usual caze, the first three harmonies

??’2&

far the "hipalar" case are
ne1,59 (== d,::‘.h) ,
th relative values of )‘n givan by:
Ay x 1,0
Ag~ 0.1

l.\.: 0005 .



s

&

Prom the propertles of Legendre p.-@h':mf&&é“, eng can readily dotormine
that the next four harmonies will be na 13,17,21,25 amd that:

Ay ~ =0.025

Ay o~ D018

day v =002

Az ~ D008 .
One can thus see that the additian of harsonic terma for n> 25 will have
ne zeaszurable effoct on the fumation 3(D/2) amd,in fact, the cusulative
offfect of the last fou terma a conaiderably lvss than the effect of A,.
Thus, on thia bdasls £t would appear evident that soven torms of the harronie
exvansion will certainly de suf¥ficlent, and to cut off the summation when
the barzonle term is less than 9K of the largest s reasonadble,

This sasumpilon {3 oven sore valid for the funotlon &. Por any

alue of k £ k.o where Kk » /L, the funetion ?n(k) dearessea as 1/n,
Hence, the relative contridullonz w0 §, given by E.n = a\nPn(k)i‘n(n) are:

E:'a1¢0

<
|

: —G.QZ

o

s ~ 0.C055, e,
A3 can bde zeen, these terms decay very repidly with inereasing 'af, amd
hence termination of the summation after the first two or three torms is
suffielent for scourate computation, Inapection ahows that for knkr, the
only tors to contribute %o 7:‘,. is -;q .

¥o have zade no mention of the layer thickness in tho adove disocus~
3lon; however, as shown by Parnell ot nl.m‘, when the layer thickness, H,
is groater than about 0.2, the harmonic torms within the layer are esson-

tially indovendeont of H and are identical to those in the subatrate,
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