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Robert J. McMaster

Abstract \

Let R be an associative ring with unit element, and let Pbe a
projective right R-module with E = EndR(P). A cotorsion theory in

Mod-R associated with P is defined, and for any M in Mod-R a coloc-

alization of M at P is then defined which is unique up to isomorphism.

It is shown that this colocalization of M at P is HomR(P, M) ®}';‘. P.

Equivalent conditions are given for the colocalization functor to be

n

exact. The colocalization of R is an associative ring, in general with-

-

{
out unit elerhent, and equivalent conditions are given for it to have a

A

two_-sided (left, right) unit element. It is shown that this colocalization

‘coincides with the localization it (Mod-R)°P given by Lambek and
.-

Rattray. The localization in Mod-R associated with the trace ideal T

of Pis investigated, and this leads to a characterization of left perfect |

I) ° i

-

rings.
i /
. \ .::
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COTORSION. THEORIES AND %
TORSION THEORIES OVER PERFECT RINGS

Robert J. McMaster

Résumé

Soit R un anneau associatif unitaire, et P un R-module projectif a

P

droite. On établit une théorie de cotorsion de Mod-R associée a
Ainsi, pou; tout M de Mod-R, on peut définir un colocalisé de M a P .
qui est unique sauf par 1somorphisme. On démontre que ce colocalis€
fle M A Pest HomR(P:M) ®E P. Ensuite, on obtient des conditions
équivalentes pour que le foncteur colocalisation soit exact: Le colocal-
ise de R étant un anneau associatif, e;x général sans élément unitaire,
on donne des conditions équivalentes pour qu'il posséde un élément
unitaire bilatér‘al (3 gauche, & droite). De plus(,.'bn démontre que cette
colocalisation correspond a la localisation de‘ (Mod--R)op utilis:;e par
Lambek et Rattray. Finalement, on étudie la localisation de Mod-R
associé€e 3 T, l'idéal de trace de P; on est alors amené i charactériser

les anneaux parfaits 3. gauche.
3

-~
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~ INTR@DUCTION

The primary aim of this thesis is to develop and investigate a

theory of cologalization ihhe category Mod-R of right R-modules,

where R ig anfassociative ring with unit élement. If R i? left perfect,
].
o ~
there is a natural relationship between the usual theory of localization

with respect to a torsion théory in Mod-R, and this colocalization.

) f Chapter T includes some fundamentdl results on torsion theories in

®

Moé-R, and establishes the terminology used throughout. Cotorsion
%4 ’ -
theories in'Mod-R are introduced by defining cotorsion modules, ’ .

cotorsionfree modules, codivisible modules, and codivisible covers of

modules. The colocalization of a given module is then defined uniquely

Y

up to isomorphism, and an explicit form is given for this colocalization.
o

In Chapter II the category of cc;torsionfree codivisibleﬁmotriules is
studied, and in Chapter £II equivalenit conditions are given for the '
cc;loc'alization functor, regarded as an endofunctor of Mod-R, to be e\xact. .
In Chaptér IVa multiprlicaltion is defined on the colocaliiation of R which
gives' it the structgre of an associative ring, but in general without unit

» “~, element. Equivalent conditions are given for it to have a two-sided

N (left, right) unit element. The colocalization of a given module is then

. : c'ompared with that obtained by Lambek and Rattray in their work on




N -

ii

~ ” )

»

localization at injectives in complete categories [25].

L

Given a colocalization functor in Med-R, there is an obvious local-
ization functor‘ associated with it, and in Chaptfr V it is shown that with

a certain condition (which is satisfied by R le/ft perfect) on the colocal-

ization functor, the localization is given by a dual construction. This
"leads to an investigation of rings for which this condition is always
satisfied, and a.characterization of left perfect rings is obtained. A
brief exposition on torsion theories in Mod-RQfor R semiperfect and
left_perfect, respectively, which is relevant to this discussion, has been

included in the form of an®ppendixsince the results contained in it are

s

n&)&briginal, even though the proofs, except as noted, are due to the
‘author. In Chapter VI, chain conditions on the localization of R are

investiga'ted under certain conditions on the localization functor, general-
. L3

— !
izing results obtained by Storrer (37] for the maximal (Utumi, Lambek)

— s .
ring of quotients.

¢

To mIBntion all previous relevant work would be a formidable task,
‘considering“ the va st literature ohf torsion theories in Mod-R . Here, as
»

in the'bibliography, reference is made only‘to research directly connected

to this investigation. ”

e,




iii .

A

Courter [10] dualized rational extensions of modules, and defined
»

a maximal co-rational extension over a module. - He showed that if a
module M has a projective cover ¢: P(IM) ——> M, then up to isomor-

phism P(M)/X is the maximal co-rationa] extension of M, where X =
»*

z £(PM)) and K = Ker ¢. We shall see that this is a certain
fEHomR(P(M), K) .

codivisible cover of M.
]

Sandomiersky [35] has defined a module M to be T-accessible if

MT.= M, where T is the trace ideal of a projective right R-module P,

»

and has showed that there exists a one-to-one inclusion preserving
correspondence between the T-accessible submodules of a module M,

and the submodules of Hom_ (. P

r'e R’MR)E where EzEndR(P). A

T-accessible module is simply a cotorsionfree module in the cotorsion 5
?
theory determined by P.

| ]
¥

©

Miller [ 28, 29j has also studied T-acceasible modules, .and defined

a module M to be strongly T-accessible if every submodule of M is
\ .
T-accessible, and defined P to be a quasi-generator if every T-accesasible

L

'module is strongly ’I“-accessible, i.e. if the class of cotorsionfree mod-’

izfeé is closed under submodules.

-
»

-

N 1
Beachy [4] has called a subfunctor p of the identity functor on Mod-R

4

+



a cotorsion radical if the dual of the functor I/p: M -}———) M/p(M) is
a torsion radical for (Mod-R)op. He showed that this is equivalent to p
being an idempotent radical and every factor module of a p-torsionfree

module being p-torsionfree. Hence what has been called a TTF class

of modules is the torsionfree class of a cotorsion radical, and conversely

the torsionfree class of a cotorsion radical isa TTF class. With our

[
’

definition of cotorsion the—ories}here is not in general a one-to-one_

’

correspondence between cotorsion theories and TTF classes, unless for

the given ring R every idempotent ideal of R is the trace ideal of a proj-

g
ective module .

Ulmer [39] has considered a set M of objects in a Grothendieck

L3

category A. If J:M ——> A denotes the inclusion of the full subcat-

/
egory of A consisting of all finite coproducts of objects of M, then the

functor : A —> [(M°P Ab.Gr.], A +——> [J(),A] where
E@op' Ab.Gr. ] is the category of contravariant additive functors on M

with values in the category Ab.Gr. of abelian groups, has a left adjoint

b

denofed by ® M. The full subcategory of A consisting of all fixpoints of

of the composite A —> [&'{OP, _A_}_)fg_l_‘J —> A, A +—>
{7(),A] &M, i.e. all objects X€ A such that the evaluation morphism
€(X): [J(_*)._X] ®M —> X isan isomorphism, corresponds to a '

1

v

subcateg_o\ry of cotorsionfree codivisible modules if we let A = Mod-R -

ey




—_

. in complete categories. Their work has been the inspiration for inves-

. &

and M = [)P] where P is a projective right R -module.
o s

The author has just recently seen a paper by Bland {6] in which he
defines codivisible modules and codivisible covers of modules, but in

the context of a pre-torsion theory rather than a cotorsion theory.

Larnl';ek and Rattray [25] have studied localizations at injectives-

$

tigating colocalizations in Mod-R, i.e. localizations in (Mod-R)op!.

o
Finally, the term'"cotorsion' is not a new one. If R is an integral -
domain with quotient field Q then an R-module C has been called cotorsion

if HornR(Q,C) = 0 and Extl(Q,C) =0 (seee.g. Matlis [26)).

i With the exception of the Appendix and the background material at

<

the beginning of Chapter I, all results and proofs are due to the author

8
unless indicated otherwise, and to the best of his knowledge are original.

The author wishes to express his appreciation to his supervisor,

J
Professor J.Lambek, for his helpful advice and encouragement. He is

-

also grateful to the National Research Council of Canada for financial ~

support.
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Cotorsion Theories and Colocalization

*
——— ‘ s ¢
»

Let R be an associative ring with unit element. Mod-R and R-Mod

’

will denote the categories of unitary right and left R-modules, respectively,v
\ N

SN e
and all modules are assumed to be in Mod-oR”unless otherwise specified.

~ ¥M, N¢ I\/fod-R, HomR(M,N) will usually be abbreviated as‘[M,Nj. For

an exposition on torsion theoflie's in Mod-R the reader is referx)ed to .
Lambek [22]. However, the definitions of the basic terms are repeated

v i 6 { : .

here to avoid any confusion ari:aing from the existence in the literature of

)

a somewhat different way of defining the same terms.

If B and C are classes of rpo&ulelg, let pfe: {X€eMod-R|[B,X]=0

o

VYBe 8}, and ct - {X€e Mod-R|[X,C] =0 yCeL). A c(ass B of modules is
~ ) h

N ’

«

called a pre-torsion class if it i closed \inde_'r homomorphic imapes, direct

. . . . )
“ sums, group extensions (i.e.'whenever N is a submodule of M, and N-and -

1

Q M/N are in 8, then so is M), and isomofphic images. e =°B'\, th:en Tis

closed under submodules, direct products, group extensions, and isomor-
, .
“phic images,"‘ i.e. it is what is called a pi‘e-torsior}free class, andthe pair 4

(B,C) is called a gre-t&ion theory. If.(8,C)is a pre-torsion theory then
. \
C= B'L and B8 = Cz, and in fact this also defines a pre-torsion theory. A

pre-torsion class is closed under submodules if and only if the correspond-

_— ) . .
. ing pre-torsionfree tlass is closed under injective hulls. A pre-torsion

- g ~ . L]

l&

Ry
k3
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class J which is closed under submodules is called a torsion class, a

pre-torsionfree class ¥ which is closed under injective hulls is called a

\

torsionfree class, and a pre-torsion theory (J,3) in whith J is a‘torsion

'

class is called a torsion theory.

Some authors, notably Dickson [15] and Jans [20], have called a pre-
torsion theory a torsion theory, and a torsion theory a hereditary torsion
theory. Jans [20] has also called a class of modules uwhich is closed under
submodules, direct products, homomorphic images, group extensions, and
isomorphic images a TTF (torsion-torsionfree) class. Since such a class

’

J is not closed under injective hulls, we find this terminology misleading,

and shall instead (following a suggestion by J. Golan) call 3 a Jansian

class from now on. A torsion class J which js closed under injective hulls

is called stable, and hence a stable Jansian class is a true torsion-

torsionfree class.

If (3,%) is a torsion theory then modules in J are called torsion, and
) |

modules in ¥ are called torsionfree. Each M€ Mod-R has a unique max-
imal torsion submodule, denoted by T(M). (It is the unique submodule

XcM such that X is torsion and M/X is torsionfree.) A submodule D of M
6"

is called dense if M/D is torsion. Let §, denote the set of all dense right

3

ideals of R. sll’ forms an idempotent (or Gabriel) filter, i.e. it satisfies

the following cbnditions:

A ]
)

J

(0) Re .03,



(1) De 93 and DcK = K¢ 03

(2) De H._ and re R+ (r:D)€ .03, where (r:D) = {x€ R |rxe€ D}

J

(3) De B, and (d:K)€ 8

T JvdeD=Dr‘Ken

J

L]

Gabriel [17] has showed that there is a one-to-one correspondence between

torsion classes in Mod-R and idempotent filters of right ideals of R: to a
. -
torsion class J associate the idempotent filter 33, and to an idempotent

L

filter § associate the torsion class Ty = {M€ Mod-R [(m:0)€ 8 Yme M].

Jans [20] showed that a torsion class J is a J?ian class iRand only if

#_ contains a unique minimal right ideal T, in which case T is an idempotent

two-sided ideal, and T = C(R) where (C, J) is the pre-torsion theory with J

as the pre-torsionfree class. Thus there is a one-to-one correspondence

between Jansian classes and idempotent ideals of R, with the inverse
correspondence given by T ——> {M¢€ Mod-R |MT = 0}.

Given an injective module I_, one can form the largest torsion theory

R
for which I is torsionfree (where (J,%) < (J3',%') if J <3J'), and in fact every

torsion theory is of this form for some injective I. For a given torsion ]
theory (3’,/3), a module M is called divisible ior J-injective) if I(M)/M€ 3,

where I(M) denotes the injective hull of M. E"/ery module M has-a divisible

hull D(M) defined by D(M)/M = J(I(M)/M). One also defines the quotient
module Q(M) of M by Q(M) = D(M/J(M)). This is also called the localiz-

ation of M at I, where I is an injective module such that (J,¥) is the largest

¥

torsion theory for which I is torsionfree. Q(R) is a ring, and the canonical

)
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'
b

mapping R —> Q(R) is a ring homomorphism. It is also well known

that every torsionfree divisible module is a right Q(R)-module, and every

"

R -homomorphism between torsionfree divisible modules is a Q(R)-homo-

morphism (see (22, Sec. 1]).

¢ "y

%
Let PR be a projective module, let E = [P, P], and let P = [P,R].

As mentioned above, every torsion theory can be thought of as the largest
torsion theory for which some injective module IR is torsionfree, where a
module M is torsion if and only if [M,I] = 0. We duallize this in the

following definitions:

N -

DEFINITION 1.1. (a) A module M is cotorsion if [P, M] = 0.

(b) A module M is cotorsionfree if [M,X] = 0 VX cotorsion.

* *
(c) 3 denotes the class of cotorsion modules, and ¥ the class of

*  *
cotorsionfree modules, then (F ,J ) is a cotorsion theory.

%
(d) (M) is the evaluation mapping [P, M] ®E P—> M, i.e.
€e(M{Zg, ®p;) = Lg./lp).
*
(e) T =€¢(R)N(P ®E P), the trace ideal of P. \
LEMMA 1.2. M€ Mod-R is cotorsion if and only if MT = .

. %
Proof: Suppose [P,M] =0, then Ype P, Yme M, Vi¢ P, mf(p) = 0

-

since mf¢ [R, M], and hence MT = 0. Conversely, if MT = O then Vg€

.
f ~
‘

-y . " s

. , . At

Mas] N s PR - " “ 0 ",
- P "



[P,M], g(P) = g(PT) = g(P)T « MT = 0, and therefore M is cotorsion.

PROPOSITION 1.3, YME Mod-R, the following conditions are equivalent:
(1) M is cotr:n'sionfree
(2) MT = M
“(3) M®RR/T =0
(4) €(M) is an epimorphis‘m
(5) M is an epimorphic image of a direct sum of copies of P
Proof: (1) = (2) M[IV_IT is cotorsion since (M/MT)T = 0, hence the
projection mapping M ——> M/MT = 0. .
(2) @ (3) M/M'I.‘ =M ® R/T
(2) = (4)"Yme M, Vt€ T, mt = mEt,(p,) for some ¢ B PEP i=1...,n
= Emfi(pi) € Im ¢(M), since mfi € {P,M],
.and hence M = MT < Im ¢(M), \i.e. €(M) is an epimorphism.

(4) ® (5) clear

(4) = (2) eM)([P,M] & P) = e(M)([P, M] & PT)

€(M)([P, M] @, P)T & MT
Therefore € (M) an epimorphism = MT = M.
(2) = (1) VX cotorsion, V¢ € [M,X], ¢(M) = ¢(MT) = o(M)T € XT =-0.

R
Therefore M js cotorsionfree.

It is‘clear from the proof that Ir;) ¢(M) = MT, and of course [P, M) @E-P '

-




I -
is cotorqionfree. The class J of cotorsion modules is closed under sub-

modules, direct products, homomorphic imagesp group extensions, and

% ’ .

isomorphic images, i.e. it is a Jansian class. The class ¥ of cotorsion-
~® '

free modules is closed under homomorphic images, direct surmg, group

extensions, isomorphic images, and by [34, Prop. 1] minimal extensions

(and hence projective covers if they exist).

AY

DEFINITION 1.4. A -rnodu].( M is codivisible if for any homomorphism ¢:

L3

B —> A such that Ker ¢ is cotorsion, any homomorphism M —> A

° )

can be extended to a homomorphism M —> B, i.e.

M

/
Hd)'/~\\1‘¢b
. 4
. ["A

) ¢B —2—> A

PROPOSITION 1.5. VM€ Mod-R, [P, M] ®, Pis codivjsible.

Proof: Let ©o: B —> A be any epimorphism such that Ker ¢ is

L B r i

cotorsion. Let Y be ahy homomorphism: [P, M] ®E P .—> A. Define
bs P > A by ylp) = ¢lf @) vi€ [P,M], Vp€ P. Then since Pis

projective there exists J)f': P —> B such that wf' = :pf. ‘Define o

A

(P, M] x; P, —> B by ollf,p)) = ,‘,f"(p). Since P is projective and

-
v

[P,Kerg] =0, [P, B] =[P,A], and it is now easily shown that a is bilinear.

Therdfore there exists P': [P, M] OE P—>B such that @y'(Z t'i @pi) ="

P
%

LS
"?gﬁ;m’ei ~ 7



-

o(Z ;bfi'(pi)) = ):zpfi(pi) = Ezp(fi ®pi) = alJ(z:fi ®pi) \rz:fi ®pi € [P, M] @E ?.

AY

Thus @' £y, and hence [P, M] 8. P is codivisible. - o

~
1

PROPOSITION 1.6. ¥YM€ Mod-R, Ker €¢(M) is cotorsion.
Proof: Let Z,fi ® P, € [P, M] ®E P such that e(M)(EfiE®\pi) = Efi(pi) = 0.
* -
Then Vi€ P, ¥p€ P, (T fi ®pi)f(p) = Z}fi ®pif(p) = Efipif ® p/= 0, since
Yx€ P, (T fipif)(x) = Efi(pif'(x)) = E(fi(pi))f(x) =(T fi(pi)')f(X) =/0. Therefore

. : (Efi ®pi)T = 0, and Ker ¢(M) is cotorsion.

e

CbROLLARY 1.7. P is a generator ® ¢(M) is an isomorphism V¥YME Mod-R.
Proof: P is a geflerator » T = R, i.e. €(R) i; an epimorphism
{ o Ker €(M) = 0 and MT = M YM€E Mod-R
# ¢(M) is an isomorphism YM€ Mod-R
The next theorem is due mainly to Mi’ll;er [2?, Thm. 2.1], in particular
» the equivalencg of statements (2) to (7). (2) e (5)} was also proved by
Azumaya 2, Thm. 6], along with several more ‘équivalent statements..
(2) » (8) was proved independently of any knowledge of the dual result giv'en
_ by Teply [38, Thm. 3.1] for torsion theories, but (2) @ (9) is the result of

duallizing another equivalent statement from Teply's theorem. First we

Need a lemma.

L . - ot ) &
(4 4 . FR N

Sy :‘4

-
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LEMI;/IA 1.8. Let ¥ = {X€ Mod-R| X'T =X' ¥X'cX]}. .Then X€ H if and

only if x€ xT vx€ X. Also, ‘H is a torsion class, ,
Proof: Let X€ H, then ¥x€ X, xR =xRT = xT, and therefore x€ xT.

Conversely, let X' € X, then ’y'x'E X', %€ xT and hence X' = X'T, Thus X

€ . The only non-t;'ivial step in proving that ¥ is a torsion class is to show

that it is closed under direct sums, and this is done by an@ggument given by

Chase [9, Prop. 2.2]. LetX = @Xi, where Xie H Viel. Let X'cX, and

i€l
let x, +..0t X, € X'. We will show by induction on n that 3It€ T such that
1 n ‘

X, =x, t ¥j=1,...,n. Itis true for n =1 since each XiG H . Assume it is

j j \
true for n = k-1, andlett € T suchthat x, =x, t . Then #t'€ T such that

k i i, 'k
k k ’
- = - ¥ ' = -1, =t! - ' =/

xi. xi,tk (xi. xi,tk)t Vi=1...,k-1. Lett=t tkt +tk' then xi't ,

J J J ) J
x t'Yx tt' +x t =x, Vj=1...,k-1, andx, t=x t' -x tt +x t =
-1j 1). k 13. k 13. | i i i k i k

x., . Hence it is true for all n, and therefore X'€ ¥, since x +...+ xi €
1 n
Qe

(x. +...+ x, )T.
i i
1 n

THEOREM 1.9. The following statements are equivalent:
3 .
(1) T , the class of cotorsion modules, is closed under injective hulls.
* : :
(2) & , the class of cotorsionfree modules, is closed undeg submodules,
. .
i.e. ¥ =N,

, , . .
(3) Pec ¥ ”xl
. . e
] R 4

*




(4) Te ¥
(5) R/T is flat as a left R-module.
(6) (p:0) + T =R ,

(7) (t:0)+T =R -

(8) Every cotorsionfuree module is codivisible.

(9) F* M —> M/MT VM€ Mod-R is an exact functor.

Proof: (1) # (2) well known

(2) = (7) Since 3* =H, 3* is a torsion class by Lemma 1.8, and thus

*
has a corresponding idempotent filter .03*. Sinte Te ¥ , (t:0) € 93* Vte T,

! a

i.e. R/(t:0) € 3* and hencg (t:0) + T = R.

(7)=(5) R =(t:0) + T Vte T, and therefore 1l = x + t' for some x€ (t:0)
and t'€ T, Vt€'T. Hencet = tx + tt' = tt'€ tT, Vt€ T, and R(R/T) is flat by
(9, Prop. 2.2]. ‘

(5)=(2) LetX€3 ', then VX'EX, 0 —> X' & R/T — X @ R/T
is exawci: since R(R/T) is flat. But th.en Xt ®R R/T ;‘0 ‘aince X ®R R/T =0
by Proposition 1,3, and X'¢€ 3*. Thereforti =H.

(3)»(6) By Lemma 1.8, vpé P dt€ T suchthat p = pt. Therefore
p(l-t)=0, i.e. (1-t)€ (p:0), andR = (p:0) + T ¥p€ P. Conversely, if
(p:0)+ T=R Vp€E P, thenl =x +t for some x€ (p:0) and t€ T, Vp€ P. Hence
p =px + pt = pt€ pT Vp€ P, and P€ ¥ by Lemma 1.8,

(4) » (7) This is proved in the same way as (3) » (6).
) i 2
(2) » (3) clear '




1 0 {m'

*
(3) ® (2) Let X€ ¥ , then by Proposition 1.3 X is an epimorphic image
of a direct sum of copies of P. But P€ ¥ and H is a torsion class, hence

*
XeEH andF = H.

(2) = (9) Let 0O > A f > B —£35 ¢ —> 0 be an exact sequence

£1 '
in Mod-R. Then A/AT —> B/BT —£5 c/cT — 0 is always exact.

Suppose f'(a,. + AT) =0, i.e. f(a) € BT, for some a€ A. Then since 3* is
closed under aixbmodules, f(a)R = f(a)RT = £(a)T, and therefore dt€ T such
that f(a) = f(a)t = f(at). But fis a monomorphism, and hence a = at, i.e.
a + AT =0, and f' is a monomorphism.

(9) = (8) 0 —> Ker ¢(M) —> [P, M] ®E P ﬂM)’ MT — 0 is
an exact sequence YM€ Mod-R, and therefore, in particular,
0 —> Ker €(M)/(Ker ¢(M)T —> [P,M] & P/({P,M] &, P)T is exact.
But [P, M] ®E P is cotorsionfree, and hence so is Ker ¢(M). By Proposition
1.6 Ker €(M) is also cotorsion, and thus it is zero. Therefore MT =
(P, M] ®E P, and hence is codivisible by Proposition 1.5.

(8) = (1) Let M be a cotorsion module, i.e. MT = 0.  Let I(M) denote

jective hull of M,. We show that I(M)T =0 also. Let 1 be the proj-

(M)T —=> I(M)T/IM)T(M.

M)T

(/ g

\ | s " | -
J -, /gf I(M)T/I(M)Tm
” -

. LT ummumw




11

I(M)T and I(M)T/I(M)T(M are both cotorsionfree, and hence codivisible, and

I{M)T(WM = Ker & is cotorsion since M is cotorsion. Therefore 3I!f such

7, hence

that of =1 and 3!g suchthat g =1

I(M)T /1(M)TMM I(M)T /I(M)TM

g=1fr-= II(M)T’ and 7 is an isomorphism. (The uniqueness of f and g
follows from the fact that any mapping from a cotorsionfree module to a

cotorsion module is zero.) Thus I(M)T/M = 0, but M is essential in I(M)

and therefore I(M)T =0.

The next result isthe dual of a well-known characterization of the

localization of M at I, VYM¢ Mod-R and V injective 1€ Mod-R {24, Prop. 1.1].

PROPOSITION 1.10. VM€ Mod-R,'let ¢: X —> M and §: Y —> M

be homomorphisms such that X and Y are cotorsionfree and codivisible
modules, and @ and ) have cotorsion kernels and cokernels. Then X = Y,

]

Proof: Since X is cotorsionfree, X = XT and therefore ¢(X) € MT.

’ Yoa

But Cok ¢ = M/p(X) is cotorsion, and therefore MT < @(X). Hence ¢(X) =
MT, and similarly y(Y) = MT. We may regard ¢ as ‘akepimorphiam from
X to MT, and ¢ as an epimorphism from Y to MT. Since Ker ¢ is cotorsion
and Y is codivisible, @f: Y ——> X such that of = . Similarly ig: X —
~—> Y such that yg = ¢. "Then ‘9(5( fg) =p-gfg =p-Pg =9 - =0, and
therefore (lx - fg): X —> Ker ¢. Hence ’X = fg since X is cotorsionfree

t
and Ker ¢ is cotorsion. Similarly lY = gf‘, and X =Y,
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We are now able to make the following definition.

-

DEFINITION 1.11. VM€ Mod-R, ¢: X ——> M is (up to isomorphism)

the colocalization of M at P if X is cotorsionfree and codivisible, and Ker ¢

and Cok ¢ are cotorsion,

-

. Lambek and Rattray [25] have formed a colocalizatign at P in Mod-R
| CO
by taking the cotriple (S,¢', §') on Mod-R: S: Mod-R —> Mod-R is

)
defined Ry S(M) = & P where I (f, pf) denotes an element of S(M), YM
f:P—2M f
d €' 6',
€ Mod-R, and lMod-R € S )

S2 where ¢'(M): S(M) —M> M

is given by the evaluation mapping, i.e. €' (M)(Z(f, pf)) =X f(pf). Then
: f f

their colocalization of M is given by the coequalizer of the pair of mappings

€'S(M , -
Se (M) S(M), For P a finitely generated projective module, they

showed that this colocalization of M at P is [ P,M] ®E P. TLe next theorem

SZ(M).

states that this is our colocalization of M at P for any projective P. We
will later verify that the two colocalizations are the same for any project-

ive P.

THEOREM 1.12. ¥M¢ Mod-R, [P,M] & P is the colocalization of

M at P. .

[}

Proof: Since clearly [P,M] QE P is cotorsionfree and Cok ¢(M) =

’ [~
M/MT is cotorsion, the result follows from Propositions 1.5 and 1.6.

' G B
Pt




-

% *
‘(since €S (M)6 = 1_* =S e(M)§).

13 . -

If we let F = — ®g P: Mod-E —> Mod-R and U =[P, ] Mod-R

——> Mod-E, then F is the left adjoint of U, i.e. there exist natural

transformations 7: 1 —> UF, given by 7(B)(b)(p) =b &p VB¢

Mod-E
Mod-E, VYbE B, Vp€ P, and c Fy — lMod-R’ given by e(A)(Z;gi @pi) =
Egi(pi) YA€ Mod-R, VYZ g ® P, € [P,A] ®E P, such that. Ue¢ » U = lU and
€F o Fn = lF.

* *
We can then form the cotriple (S =FU,¢,6) on Mod-R. S (M) is by
Theorem 1.12 the colocalization of M at P, ¥YM€EMod-R. The coequalizer
: % * *2 * \
of the mappings €S (M), S ¢(M): S (M) —> S (M) is just the identity
Ak * : * *
on S (M), since €S (M) is an isomorphism and therefore ¢S (M) =S ¢(M)

S (M)
\

The dual situation (see [24, Sec. 3])Lis more complicated. If I is an
injective module and H = {I, 1], then {,1]: Mod-R — (H-Mod)op has
a right adjoint HomH(__, HI). If we form the triple (S = HomH( (1, HI), n @)
arising from this pair of adjoint functors, then Q(M), the localization' of M
at I, VM€ Mod-R, is given by the equalizer of the pair of mappings g5$(M),

: -

Sn(M): S(M) —-——) SZ(M). S(M) is torsionfree and 'divisible, and Ker n(M)
is torsion, but in general §(M)'# Q(M); (They are equal if [M, I] ;s a
finitely generate:d loa:ft H-module.) In general, the;x, Cok (M) is not torsion.

For exampie’, if R = Z, and we take the largest torsion theory in Mod-ZX

;

for which Z ApZ is torsionfree, where p is a prime number. A Z-module -~

M is torsion if and ox;ly i Ve M, (xii:O)‘ pZ, and Q(ZJ is the usual




LY ]
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localization of the commutative ring Z at the prime ideal pZ, i.e. Q(Z)
consis;s of all rationai numbers whose denominators are prime to p. Every
torsionfree factor module of Q(Z) is divisible (in fact, if D is any dense

ideal DQ(Z) = Q(Z) and hence the localization functor Q preserves all

colimits), and therefore S(Z) is the I(Z /pZ)-adic complétion of Q(Z) [24,

Thm. 4.2]. But the I(Z /pZ)- adic topology on Q(Z) coincides wi;:h the | r
p-adic topology {23, Prop. 4], and thus S(Z) is the ring of p-adic intggers.

But S(Z)/Z = Cok (n(Z):Z ————) S(Z) ) is not torsion, since V z + 2,P +

zzp2 +...€ S(Z:), if ¥ n,m € Z such that n¢ pZ and n(z + z2p + zzp‘2 +...)

= m, then z tzp+ z2p2 +o.. =B equz).

a

O

DEFINITION 1.13, ¢: X —> M is a codivisible cover of M€ Mod-R }d’
if (1) ¢ is 2 minimal epimorphism
(2) Ker ¢ is cotorsion , ' .

g
(3) X is codivisible

PRbPOSITION 1.14. YME€ Mod-R, if M has a codivisibl;a cover, then it
is unique up to isomorphism. -

Proof: Let ¢: X —> M and §: Y ——> M be codivisible covers
of M. Then Ff: X —> Y such that yf = ¢ since X is codivisihle and

Ker § is cotorsion. ¢ an epimorphism and Ker 3 small in Y implies that

fis a; epimorphism, and Ker f i8 cotorsion and small in X since Ker" fc

v

&

,"
%&‘“": :

I T
ves o4l N
REACAAL I, LNy




~

=

3\

Ker ¢. Therefore 3 g: Y —> X suchthat'fg =1, hence X =

Y’
g(Y) ® Ker f. But then Ker f = 0 since Ker f is small in X, and henge fis

F) )

an isomorphisﬁ{ .

We will show that if M€ Mod-R has a projective cover, then it has a

codivisible cover.

| LEMMAj‘l.lS. If M€ Mod-R is codivisible and M' € M is a cotorsionfree
submodule of M, then M/M' is codi:(isible.
Proof: Let mM — M/M‘ be the projection map, an@t ¢o: B —
—> A be any homomorphism with Ke/r ¢ cotorsion, and P: M/M' —> A .
Since M is codivisible d §': ﬂ\—-) B such that oy' = yr. WY'(M') =

Ym(M') = 0, and therefore 0 = ap'lM': M' —+— Ker ¢ since M' is cator-

4
sionfree and Ker ¢ is cotorsion. Therefore j' induces a homomorphism’

$'': M/M' —> B such that g§'' = §, and hence M/M' is codivisible.
)

PROPOSITION 1.16. If -¢: P(M) ——> M is the projective cover of

M€ Mod-R, then @: P(M)/_(Ker ©)T —> M is the codivisible cover of

M, where @ is the homomorphism induced by . .

Proof: Clearly. p: P(M)/(Ker ¢)T is a minimal epimorphiam, and
Ker p = Ker ¢/(Ker )T is cotorsion. It.remainé to show that P(M)/(Ker ¢)T

is codivisible, but this follows from the préced‘ing lemma.

v
v . .
e e
LS v
) ‘ ©
1 ) N 5, 1 AU . of
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COROLLARY 1.17. If ¢: P(M) —> M is the projective cover of
M€ Mod-R, then the codivisible cover of M in the cotorsion theory deter-
mined by P(M) is the maximal co-rational extension over M.

Proof: Courter [10, Thhm. 2.12] showed that P(M)/X is tlhe maximal

J

co-rational extension over M, where X = T f(P(M)). But if T

fe[ P(M), Ker o] P(M)

denotes the trace ideal of P(M), then it is clear from the proof of Propos-

-

ition 1.3 that X = (Ker w)TP(M)’
COROLLARY 1.18. If ¢: P(M) — M is the projective cover of

Mg M‘éé\:R, then M is codivisible if and only if Ker ¢ is cotorsionfree.
Proof: Ker o cotorsionfree implies that Ker ¢ = 0, and hence M =

P(M)/(Ker ¢)T which is codivisible. Conversely, if M is codivisible then

TP: M —> P(M)/(Ker ¢)T suchthat @y = lM. Therefore P(M)/(Ker ¢)T

= w(Mi ® Ker @, but Ker ¢ is small in P(M)/(Ker ¢)T and hence zero, and

therefore Kor ¢ = (Ker ¢)T.

i

THEOREM 1.19. [P,M] 8 P = [P,MT] &_ P is the codivisible cover

of MT.

N
’

Proof: We have already shown that e(M): (P,M] ®E P —> MT iv

1

‘an epiniorpﬁisrh (Proposition l.3),iwith cotorsion kernel (Pz"opositic;n 1.6),

and that [(P,M] GE P is codivisible (Proposition 1.5). Ker ¢(M) is amall
\ . ’ -

. ,
J

L]
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in [P,M] ®E P, since if Ker ¢(M) + U = [P, M] ®E P for some submodule
U & [P,M]®_ P, then U2 UT = (Ker ¢(M))Tj+ UT =((P,M] &_ P)T =

[P, M) ®E P. Hence [P, M] ®E P is the codivisible cover of MT.

-

¥ M€ Mod-R, the torsion submodule J(M) with respect to a torsion
theory (J,J) is uniquely defined by J(M) torsiop and M/J(M) torsionfree.

Dually, M/MT is unique in that M{MT is cqtorsion and MT is cotorsionfree.

We call M/MT the cotorsion factor module of M. And, we can colocalize

in two steps, namely ‘

[P,M]®E P —> MT ——> M

codivigible
cover of MT }

(iuallizing ' M — M/J(M) —————> Q(M) .

divisible \
hull of M/J(M)
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CHAPTER 11

The Category of Cotorsionfree Codivisible Modules

PROPOSITION 2.1. The cotorsionfree codivisiblg modules form a

coreflective subcategory of Mod-R. Let A denote this subcategory,
Proof: YN€ A, , YM¢€ Mod-R, V homomorphism f;: N — xM, since

N is cotorsionfree H!f': N —> MT such that if'=f, where i denotes

! ) '
the inclusion mapping: MT ——> M, defined by f'(n) = f(n) ¥n€ N. And,

since N is cotorsionfree and codivisible Z!f''" N —> [P, M) ®E P
such‘that €(M)f'' =f'. Since i is a monomorphism, f'' is the unique

homomorphism such that ie(M)f'' = f.

[P’ M]®E P e .
<
eSS
MT é\!f' N
i l \\\\ ~

\\
M e—f = N

cotorsionfree
codivisible

~
~
~

Let Q* denote the coreflector, i.e: ‘let tQ*(M) de$te th(; Cfalocalization
of M. - I}Iot; that M cotorsionfree and co;livisible implies that M = Q*(M),
and in particular Q*(M) e Qf(Q*(M))W. Y N’ilfde Mod-R, ¥ homomorphism -
f: N —> M, the unique homomorphism Q*(f) which makes the diagram

* <
below commute is given by Q (f)(I fi Qpi) = 2ffi ®p, YZ fi ®p, €




[P,N] ®_. P
Q'
- Q*m) B 5 9%
G(N)l le(M) .
N 3> M ?

LEMMA 2.2. For any homomorphism f: M '——) N in Mod-R,
*
Q (f) is a monomorphism in A if and only if Ker f (in‘Mod-R) is cotorsion.
In particular, a homomorphism f: M —> N in A is a monomorphism

in A’if and 6nly Ker\f (in Mod-R) is cotorsion.

* .
' Proof: Suppose Q (f) is a monomorplism in A, then if k = ker { (in ,

Mod-R), . fk = O = Q*(fk) =0 =’Q*(f)(.)*(k =0 =’Q*(k) =0 = ¢(Ker f) =0 =

(Ker £)T = 0.

Ker f ‘> M £ > N
e(Ker f) : € (M) . €(N)
> '
' - Q¥ Ker 1) Qg > o* v Q') > Q¥

*
Conversely, Q is the right adjoint of the inclusion f(mctor UGA —>

. #.
Mod-R, hence preserves kernels. Therefore Q (f)‘ihas (inA) the

r f is cotorsion,

kernel Q*(k')t Q*(Ker fy —> Q*(i\dl'. But since K

% . * L 3
Q (Ker f) = 0, therefore the kernel of Q (f) in A is zero, and Q (f) is a

4

monomorphism in A.



THEOREM 2.3. A, the category of cotorsionfree codivisible modules,

is a cocomplete abelian category.

Proof: A is additive, contains the module 0, and is closed under

]
direct sums. It remains to show that A has cokernels and every epimor-

AJ

phism is a cokerne 1, and that A has kernels and every monomorphism is

a kernel.

A has cokernels (and in fact is closed under cokernels), since YV f:
X —/> Y inA, Y/f(X) is cotorsionfree since Y is cotorsionfree, and
codivisible by Le;nma 1.15. To show that in A every epimorphism is a
cokernel, let f: X —> Y be an epimorphismin A. U:A —>
Mod-R is the left adjoint of Q*, hence preserves epimorphisms. There-
fore f is an epimorphism in Mc;d-R, and hence a cokernel in Mod-R.
Since both Y =X/Ker f and X/(Ker f)T are cotorsionfree and codivisible,
it is easily shown that Ker f = (Ker f‘)T, and therefore ¢(Ker f) is an

‘ *
epimorphism. Thus’f = cok (Q (Ker £} ¢(Ker {) > Ker f —> X)

,in A, since f = cok(Ker f —> X) in Mod-R.
To show that A has kernels, let f: X ——> Y inA. Ker { (in
e '
*
Mod-R) is in general not in A, but'since Q is a right adjoint it preserves

Ll

‘ kernels, and therefore in A f has the kernel

*
Q*(l{er f) —— (i(ker £) > X. ‘
€(Ker f\ = /{e:- £
/] Ker f
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To show that in A every monomorphism is a kernel, let f: X ——> Y be

a monomorphism in A, and let X —-—e——) £f(X) ———El—) Y be the factoring
of throug>h its image f(X). We show that f = ker (cok f) inA. Suppose

2:Z — Y in A such that (cok f)z = 0. Since m = ker (cok f) in Mod-R
Ily: 2 —> fiX) such that my = z. Ker e = Ker f and is cotorsion by ~
Lemma 2.2, hence since Z is codivisible and cotorsionfree I!x: Z —> X
such that ex =y. Therefore fx = mex = my = z. If for some g: Z. —> X,
fg = z, then meg =fg =z and hence eg =y, hence g = x. Therefore f=

ker (cok f)in A. !

It is a well-known theorem in category theory that a cocomplete abelian

.

category C is equivalent to a module category Mod-R for some ring R if and

only if C has a small projective generator (see.e.g. [30, Thm. IV.4.1]).

kY

Recall that C€ C is small if and only if for any morphism from Cto a

_cogroduct*® @ Ci there is a factorization C > & (.'2i
i€l \ 4
. ) ° v & C

for some finite set J < 1. jer j

1

-

PROPOSITION 2.4. P finitely generated » A is a module category.
Proof: Since P is projective in Mod-R and P generates all cotorsionfree
modules, A is a cocomplete abelian category with s projective éenerator.
It is easy to see that P is small in Mod-R if and on@y-‘if P is finitely gener-

ated,” and therefore P finitely generated implies P is small in A,

5
L e
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PROPOSITION 2.5. If T is codivisible, then P small in A = P is

finitely generated,

»

Proof: Let f: ® R ~——) P be an epimorphism from a direct sum of

copies of R to P. Since P is projective 3g: P — ® R such that fg = lp.

g(P)=g(PT) s (BR)T =@ RT =8 T. T codivisible implies ® T is codivisible

and hence is in A, Therefore g: P —> @& T has a finite factorization

g P —> @'T\ —> & T, and hence there is an epimorphism f':
" finite .
® R ——> P. Thus P is finitely generated. :
finite .

The question arises as to wlﬂaether (Mod--R)Op is 2 module category.
Although it is tempting to think that with certain conditions on R, for example
R right perfect, this will be true, it is in fact nev;.r true. Duallizing the
definition of a small object, we call an object C in a category C ’cosmall
if and only if for any mﬁorphiam from a product [I Ci to C there is a

i€l

3

: L
finite factorization f: I'lCi C for some finite set

Ic,
jex !

Jecl, (i.e., assuming that § is 'aldditive. £f=2Z fujkj where uj and kj denote
jeJ -

the canonical injections and ptojecti;ms. respectively.)

)

N T s

PROPOSITION 2.6. There does not exist a cpiman injective cogénér-

.

ator in Mod-R, and hence (Moc!-R.)o‘D is not a module category.

W i

5 *at
%

. -

. - + £
R - . N
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v .- ,
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Proof: Let A be an injective cogenerator in Mod-R, and let {Ai|i€ 1}
be a non-finite family of non-zero modules. Since A is a cogenerator in
Mod-R, [Ai,A] #0 Vie I. Let 0 # aie [Ai,A] Vi€ I, and let (ai) be the

canonical map : @Ai —> A such that (ai)ui =a, Vi€ I. Since A is

i€l
injective Ja: l'I.Ai -——> A suchthat (ai) = au. But a does not have a
i€l )
3 «
finite factorization, since if it factors through [I A, where J €1 is finite,
jeJ
then VI§¢ J we have a, = (a.i)ui = auu, = z am.k.uui = 0,. Therefore A is not

€l
cosmall, and hence (Mod;R)Gp is not a module category.
u

3 u 0
\ A.'—'——"—';l A —> [IA
- 1 . 1 .
i€l ' i€l

l‘

If Pis a generator, then we have seen (Corollary 1.7) that ¢(M) is an

i

isomorphiam VM€ Mod-R, and therefore A = Niod-R. However, even

though the cotorsioptheory is trivial, it is still of interest to see what it

. means for P to be finitely generated in this situation.

-
@

PROPOSITION 2.7. I Pis a genérator then the following statements

1

are equivalent:

N

() P is finitely generated
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~

(2) [P,_]: Mod-R —> Mod-E is an equivalence

(3) BE =[P, B ®E P] VBE Mod-E

‘_I_)_l:_(_)_Oi:( (1) # (2) See, e.g. [30, Thm. IV.4.1].

(2)# (3) A functor U: B —> C is an equivallence between categories
‘B and -g if and only if there is a functor F: C —> B togetl:ler with
natural equivalences ¢: IC =~ UF and @: FU= lB . If such is the case, we
can always choose  such that Uy = (<oU)-l and Fo = (ng)-l. Therefore if
U=[P,_]: Mod-R —> Mod-E is an equivalence there exists such a 2
functor F: Mod-E -——> Mod-R. F is then, in particular, a left adjoint (

4

of [P, ], and since _®E Pis alsoa }eft adjoint o ,_], F = -®E P

and BEE [P,B ®E P] VB€ Mod-E. The converse hblds since Pis a

generator, and therefore by Cort?llary 1.7 [P,_] ®E P lMod-R'




25

- CHA PTER 111

%
The Colocalization Functor Q

-

*
From now on, we regard Q ’as an endofunctor of Mod-R, i.e. it is

the right adjoint of the inclusion functor U: A — > Mod-R,- where A is '

~

the subcategory of cotorsionfree codivisible modules, followed by U.

* .
PROPOSITION 3.1. Q preserves epimorphisms, and hence is right
exact since A is abelian. .

e 't'\
Proof: Let £: A —> B be an epimorphism’in Mod-R, then f' =
fIA'I‘ is an epimorphism since f'(AT) = f('AT) = f(A)T = BT. Therefore

. * *
f'e(A) is an epimorphism, and since Ker €(B) is small inQ (B), Q (f) is

an epimorphism.

k4

A s
AT £ — BT
‘ ea)] T )
%

*
o€
‘ Q%) —2E 5 o%m)
’ \

In the' next theorem, the equivalence of (_f},‘, (4), and (5) is due to
Ulmer [39, Thm. 2], who proved these results in a more’general setting.

L : - x
The proof of (5) = (4) is a straight "trafulation',' of his proof. (l)e (2) is

the dual of Qoldman's criterion for the right exactness of the localitﬁt?on




. functor Q (19, Thm. 4.57.

THEOREM 3.2. The following statements are equivalent:
*
(1) Q preserves monomorphisms, and hence is left exact (hence exact).

(2) Every cotoréionfree submodule of a cotorsionfrée codivisible
1
)
module is codivisible.

(3) Ais closed under kernels.

(4) Pis flat as a left E-module.
2 * ) 3
(5) Pgenerates the kernel of every homomorphism f: & P —> P,
finite
Proof: (1) = (2) Let N be a cotorsionfree submodule of a cotorsionfree

codivisible module M. Let i:N “——> M denote the inclusion mapping,

. *
then Q (i) is 2 monomorphism and thus so is ¢(N). But ¢(N) is an epimor-

L

*
phism since N is cotorsior_tfree. and therefore N 22Q (N).

~

' N LI Y .
e(N)T : Q (i) R
*
Q (N)
(2)=() Let f: N ——> M be a monomorphism in Mod-R. Then

* * '
Q (f)(Q*(N)) is cotorsionfree and contained in Q (M), hence is codivisible. -
Ker Q*(f) € Ker fe(N) = Ker ¢(N) sincef is a mo‘igomorphism, and is hence

« * * * * *
cotordion and small in Q (N), Therefore T g: Q (f)(Q (N)=Q (N)/’Ker Q (f)

—— Q*(N) such that Q*(f)g = , and thus Q*(N) =

Q N /Ker 2% (8)
- —yfﬂ -
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‘

+

' * * * *
Im g ® Ker Q (£ But Ker Q (f) is small in Q (N), hence zero, and Q (f)

-

is a,monomorphism.

* *
Q (N)/Ker Q (f)

* *
. _ =a" @ m
.y : ig_.~ , .
e t T NIQ*(N)/Ker Q" (f)
// * Y
Qfy —2 4 > Q*(N)/Ker Q¥(£)

3

() =(3) Let :tA —> A' in A, and let K = Ker f in Mod-R, then

0 —> K > A ! 3 A! —> 0 is an exact sequence in Mod-R.
* *
Q left exact implies 0 —> Q (K) —> A £ A > 0 is

* .
also exact. Therefore K=Q (K), and A is closed under kernels.
(3) = (5) P generates every cotorsionfree module, and hence every
module in A. Since A is closed under kernels; the kernel of every homo-

morphism f: & P —> P isin A. '
finite

(5) = (4) EP is flat if and only if for every finitely generated right ideal

"H of E the inclusion j: H ——> E yields a monomorphism j@E P: -
' He,P —> E6, P. (See e.g. [21, Prop. 5.4.1].) Let H= TLE
N i€l

where each fie E Vi€ Ifinite. His the image of the canonical mapping

([P,fi]): [P, P] —> [P, P]. letk: K —> @P be the kernel of
S el i€l

of the canonical mapping (fi); &P —> P, and let (g) be the canonical
i€l
mapping: & P —> K, \
gP—K s
« » o

S

)
s
W

.

. N N T

’ - G £ T
. . ) -l B .

4 3 - 7
f . e o P
N e “agn 3R S
BRI O A d oL , *wa ority )\fb‘:g* ¢
LN S . FERA Vale woe e e T a0 i R <
’ - CRRs e LT T q%‘#jﬁz‘a 2
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(
[P k] [P,(£)]_
Then 0 —>» [P,K] — [P, 8P] — [P, P] is
i€l ’ ‘
exact, and hence the top row of the diagram below is exact at & [P, P].
‘ i i€l
' -1
can ¢ ([P, keg]) ([P'fi]) .
& [P, P] - 6[P, P] > [P, P]
g:P—K, . . i€l j
P, k. ‘
([P, gl (L gl) can ®
[P, K] [P k] ~> [P, ®P]

i€l

Therefore, in particular, @ [P, P] —> H is the cokernel of
! i€l .

can_1 o ([P,keg]). Since _ ®E P preserves coproducts and cokernels,

there are canonical isomorphisms ( @ [P, P]) ®E P — &P,
g:PK g:PK

( ®(P,P]) &, P -—=3 oP, [P P] ® P —=>'P, and
iel i€l

H éE P —?——) Cok (k*(g)) which make the following diagram commute,
r

. £y .
ko (a) > @P : ~—> P
i€l

&P - ; —
g:P — K \(Q V \ca’n - /(a? |
K ' " Cok (k*(g)) ‘

2 2 Ny ls-_- R £
’ jepP
( ®[P,P))®, P —> (&[P,P)®_. P -—-)*H@EP —> [P,P]®_P
E ) E E
g:P—K i€l

/

. By assumption (g): ® P ———> K is an epimorphism, and.hence
g:P ——?K

- ¥
B

* - o e ” . 'a. s Ta s
- s 3. ¢ E) Sy W
§ Lot wia S Tapes
e D Lol sk i el b
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Cok (kﬁ"(g)) —> P and therefore H®;: P ——-—-) E ®E P are mono-

morphisms. Hence EP is flai:.

- *
(4) » (1) This is clear since Q (M) = [}9, M] @E P VM€ Mod-R.
Since A is always closed under cokernels and direct sums, the
staggments of the above theorem are also equivalent to those of the following

theorem by Ulmer [39, Thm.3], which we state without proof.

THEOREM 3.3. The foliowing statements are equivalent:
(1) P generates the kernel of every homomorphism f: ® P —> X
: finite

where X is a cokernel of some homomorphism &P — & P.
i€l j€J

(2) Ais clgsed under kernels, cokernels, and direct sums.

P is flat, and the composite

(3)

E
A s Mad-R —LBimd 5 pog-p —SBRPEOI: 3 yeod g fKer ® P is
an eqdivalence. where Mod-E/Ker _ ®E P is the quotient category

corresponding to the torsion class Ker __ 8, P (see [(17]).

» v ~

Lambek has showed in [24] that the localization functor Q cérrespond-
ing to an injective 1€ Mod-R is exact if I has zero singular submodule, i.e.

(R/E,1] = 0 for any essential right ideal E€ R. We are able, with the

!

restriction that every cotorsionfree codivisible module have a projective

=

cover, to dualjize this,ryesult. . Y

[
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PROPOSITION 3.4. Assume that every cotorsionfree c;adivisible
module M€ Mod-R };as a projective cover N P(Ni) :—-———5 M. Then if
M is a cotorsionfree codivisib‘le med:lle, Ker O is codivisible if and only
if for any e'p(imorphism f: N —> M where N is a cotorsionfree cﬁdiv—
isible modu—le, Ker"f is codivisible.

Proof: Assume that Ker O p is codiv(ig_ible, and let f: N'——-—) M
be an epimorphism for a cotorsionfree codivisible module N. Then Ker { =
Ker f¢l\;/Ker (pN, and therefore Ker f will be codivisible if Ker fcpN is
codivisible and Ker On is cotorsionfree (Lemma 1.15). Ker N is cotor-
s%nfree since N is codivisible (Corollary 1.18). Since P(N) is projective
and N is an epimorphism, 3g: P(N) ——> P(M) such that O\ = £¢N. "
g is an epimorphism since ﬁpN is an epimorphism and Ker P is 3mall in
P(M), a:id therefore since P(M) is projective Th: P(M) —> P(N) such

that gh =1 Then P(N) = h(P(M)) & Ker g, and Ker f(pN = Ker Ppg8 =

P(M)’
Ker cpM ® Ker g. But Ker (pM is codivisible by assumption, and Ker g is ,

codivisible since it is projective, hence Ker Iqq and thus Ker f is codivisible.

P
) =" HIP(M) .
- ic
/ PN) £-—--- *-> PM) :
o ..
- £

- N > M
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epimorphisms [34, Prop. 1], and codivisible since it is projective, hence
Ker (piv1 is codivi;ible. Q
’ R | /\
COROLLARY 3.5. Assgume that every cotorsionfree codivisible

—

[N

%
module M€ Mod-R has a projective cover <Py P(M) —> M. Then Q
. , . Fed

t -

is exact if and only if Ker @y is codivisible fog any cotogsionfree codivis-

ible module M. '

P

ok -
Proof: If Q is exact, then for any cotorsionfree codivisible moﬁule M,
e P(M) is cotorsionfree and codivisible, and Ker (pM is .cotorsionfree

- : (Corollary 1.18), and hence by Theorem 3.2 Ker Pt is codivisible.

" Y Conversely, suppose A is a cotorsionfre»e,\submod_ule of a_cotorsionfree

o

. , codivisible module B. Then B/A is cotorsionfree a'.nd (by Len;ma-l.’lS)
. R . ' .
codivisible, and therefore Ker YB/a is codivisible. But A = @

~~Ker (B —> B/A), and hence by the above proposition A is todivisible.

LY

%
Q is thus exact by Theorem 3.2%

°

.

PROPOSITION 3. 6. Aasume.that every codivi;ible module h;s a
- . projective cover, then thesi.'ollowing statements are equivalent:

(1) Every codivisible module is projective

(2) {P,D] - 0 for any small right ideal DG R.

(3) For any module M with a projective cover Pos’ PM) /] M,

. , Ker Oy is cotorsion. ( .
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Proof: (1) =(2) Let D be a small right ideal of R,. then R/DT is

codivisible by Lemma 1.15 and hence by assumption is projective.

Therefore DT = 0 since it is small in R, i.‘e. (P,D] = 0.
(2) = (3) Let M€ Mod-R have a projective co:rer (pM PM) —> M '

and suppose Ker N is not cotorsion, i.e. (P, Ker cpM] # 0. LetO#f:
P — Ker Oy and Yt p€ P such that f(p) = x # 0. Let k be a
proje‘ction mapping from Ker O to R (every projective module is a direct
summand of a free module) such that k(x) # 0, then k(Ker (pM) = Dis a
small right ideal of R and O # kf € [P, D].

| ; (3) = (1) For any codivisible module M, M has a projective éover

O P(M) —> M, and Ker Py is then both cotorsionfree (Corollary

1.18) and cotorsion, hence zero. Therefore M = P(M).

Note that (2) « (3) is true in general, and we therefore have the N

o

fol wiﬁg result.

COROLLARY 3.7. Assume that every cotorsionfree codivisible..,

¢

% ,
module has a projective cover, then Q is exact if for any small right
. -

ideal D ofp R, [P,D] = 0.

Proof: Let M be a cotorsionfree and codiviaible mod;xle, -then M has
- by assumption a pf'ojective cover @, P(M)v‘*——*-—*) M. Ker oy is then ﬁ
cotorsion and cotorsionfree, hence zerc;, and the resulm‘now follows from

t
. !

Corollary 3.5. :

rop

IR »
2, e 4

. ! .
"t - e . E
L PR g
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) ) CHAPTER IV

* »- *
Q (R), and an Alternate Construction of Q

) * .
PROPOSITION 4.1. Q (R) is an associative ring, in general without

3
unit element, and €(R): Q (R) —™ R is a ring homomorphism.
Proof: vi,f'e [P,R], Vp,p'€ P, | ®E p(f'(p')) = f GE (pf)(p") =

f(pf')@E P =(f(p))f'<®E p'- Therefore YV a = Zf ®p., b= Zf @p.,
ie1’ ) ¢ JEJ )
Z(, ®p(2f(p))) 2((2f(P))f Sp)

c= X f ®p GQ (R}, defme ab =
k i i
j€l j€J jeJ ier

kéK

This is clearly well-defined, since €¢(R) is well-defined, and XIf, (p } = |
' 161 .

-

e(R)( Ef ®p ). Q*(R) is associative since (ab)c =
1EI 3
(Z( Ef(,’pl))f ®p.N E f ka)
jET i€l 3o kGK
= D Zf(Pl))f QP( zf (Pk))
\ jET i€l T Jkek
S (ZLEP)EL (T £ (7)) = albe). q
ier ' jerd ke ®
. Q*(R) is clearly an abelian (additive) group, and thg distributive laws hold,

€(R)(ab) =

’

therefore it is an asaocfative ring (without unit element).
Z(Zf (P N(p) =(ZE (P W Z f(p)) = C(R)(a)t‘(R)(B) and therefore ((R)
j€J ier’ i ier j€J 3 . .

is a ring homomorphism.

' *
COROLLARY 4.2. . Every right R-module is a right Q (R)-module.




20NN
A e

T

9
3

* . -
Proof: Since €(R): Q (R) —> R is a ring homomorphism, it

*
induces the functor Moad-¢(R): Mod-R —> Mod-Q (R). YMe¢ Mod-R,

’ *
Mod-€(R)(M) is then a Q (R)-module as follows: V =X f ®p € Q (R),
ier '

Ym€ M, ms = me(R)(s) = m( Zf (p ).
1€I

. *
PROPOSITION 4.3. Q (R) has a unit element if and only if T is a ring

. .
direct summand of R, i.e. T = eR where e is a central idempotent of R.

Proof: Suppose Lf ®p is the unit element of Q*(R) then Lf, (p ) =
161 161

e is an idempotent in R such that Re = Te =T = eT = eR. Conversely,
if T = Re = eR for some central idempotent e, thenthere exists an element

}:f ®p on (R) such that Ef(p)'e and for any L f ®p, EQ (R),
ier’ . ier’ . jeJ

( Zfi ®pi)( Zf{®p,)= Z(Z{ (p . @p,. = Lf ®p, since Vi€ [P,R],
e’ jer? ) jeriat U 3 jes :

(Zf. (p ))f = £. By the dual basis lemma (see e.g. [8, Prop. VII.3.1]), a
161

module P is projective if and only if & {fke [P,R]}|ke K}, {pkE P|k€ K}

such that Ype P, p= L pkfk(p) where.f (p) # 0 for only finitely many

keK
k€ K, and therefore p( Zf, (p N=p VpE P. Thus we also have
o der’
(Zf ﬁp)(Zf ®p.) = Zf, @pj( Ef(pi)) Ef.@pj. and L‘f Gp/wthe
jerd T yert jexd i€l jexd ter?

*
unit element of Q (R).
' h
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COROLLARY 4.4. The following statements are equivalent.

(1 Q*(R) ha\s a left (right) unit element. 1y
(2) T =eR (T =Re} for some idempotent e€ R. ,
(3) (!]'*)’L “3,*)!, = 3*) is a Jansian class.

Proof: (1) » (2) This is clear by the above proposition.

(2) & (3) This proof—gis due to Azumaiya [2]. -First ;)f all, it is clear
that if C is a Jansian class witﬁ corresponding idempotent two-sided ideal

C, then C = {X€Mod-R|XC = 0}, ok - {X€ Mod-R | xé =X}, andC"* =" .

{X€ Mod-R|V¥x€ X, xC =0 = x = 0} ’ "Suppose T = eR for some idempotent

e€c R. Let D =R{(l - e), then D is an idempotent twq-sided ideal of R.

Also D+ T =R sinceRecTand D +Re =R, and DT = 0. Let X€ Mod-R

be a member of the Jansian class corresponding to D, i.e. XD = 0. Then

¥x€ X, x =x(1 - e) + xe = xe, and therefore xT =0 =x = 0. Hence X €

* n

*
(3 )". On the other hand, let X€ (3 )" and let x€ XD. Then since DT = 0,

o

xT = g), hence x = 0 and X is a member of the Jansian class corrésponding

4

*
toD. (& )’t is thus the Jansian class corresponding to D.

E-3 3
Converjsely, suppose (J )'.t is a Jansian class. Let D be.the corres-

[

) *
podding id¢émpotent ideal of R. Then since R/T€J , (R/T)D = R/T and -
¢ -
hence D+ T =R. Also DEJ since DD =D, and therefore DT = 0.

Therefore 3fe D and He€T suchthat f+e =1. Then Vte T, t =ft + ét =

| R
et, and in particular e = ez. Thus T = eR where e€ R is an idempotent.

. e *
A qimilar proof holds for (J )‘ =3 . ,
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We now return to the colocalization at P obtained by Lambek and

Rattray [25], and we will show that it is the same as our colocalization

2

at P. Recall that they started with a’cotriple (5,¢',6') on Mod-Rr where

S: Mod-R —> Mod-R is defined by S(M}) = ‘L P YMé& Mod-R,
f:P—>M

o

and an element of S(M) is writtenas I (f, pf). S(M) is a right R-module
f P

in view of the definitions }E‘,(f,pf) + g(f, qf) = ‘f(f, pf + qf), and (?(f,pf))r =

Z(f—,pfr) Yre R. €'(M): S(M) —m> M is given by e'(M)(E(f,pf)) = .
: f

f o
) Zf(pf). If kf: P —> I P is the canonical injeétién then e'(M)kf =f.
f f ’ :

-

For any g: M—> N in Mod-R, S(l\&_ —> S(N) isdgiven by’ 1

S(g)(f(f, pf)) = )f.? (gf, p’f), i.e. for the canonical injegtion kf’ S.(g)kf = kgf'
Their colocalization Q'(M) of M at P is given by the coequalizer x(M):
S(M) ——> Q'(M) of the pair of mappings €'S(M), Se'(M): st M) —

. S(M). The following lemma is the dual of [25, Lemma 1].
¢ ,

LEMMA 4.5. YME Mod-R, x(M) is the_ joint coequalizer of all pairs
of mappinigs u,v: P ——> S(M) which equalize ¢'(M): S(M) ——3 M.

Proof: Let u: P —> S(M), then c'S(M)ku =g and Sc'(M)ku =

ks'(M)u' Therefore ;J((M) coequalizes all mappings (u’ke’(y)u)' Now let
. v: P ——> S(M) be such that ¢'(M)u = ¢'(M)v. Then x(M) coequalizes .
(2,7).since x(Mla = x(M)kt'(M)u ) ”(M)ke'(M)v : u(M’.v" Co?v,er“l’" any w.‘mf
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mapping which coequalizes all (u,v) such that €!'(M)u = €¢'(M)v coequalizes
- R

= ¢'(M)u by definition of ¢'(M),

*

(u,k ) in particular since €'(M)k

€'(M)u €'(MN
and hence coequalizes (€'S(M), Se'(M)). It follows that €' (M) is the joint

coequalizer.

LEMMA 4.6, Let £f: B —> A be an epimorphism‘where Bisa
cotorsionfree module ?.nd A is a codivisible module. Then Ker f is
cotorsionfree’.

Proof: Let f: B/(Ker )T /—-——) A be the homomoréhism induced

\by f. Then since A-is codivisible and f is an epimorphism with cotorsion

L4 .
kernel, @ g:A —> By(Ker f)T such that fg = 1, Thereiy{e

(B/(Ker £)T)T = B/(Ker )T = Im g ® Ker { = (Im g)T @ (Ker £)T = (Ith g)T

®

and ].'xencel Ker f = 0, i.e. Ker f = (Ker )T.

LEMMA 4.7. VME Mod-R, MT is the smallest submodule M' € M

suchthat Vi: P — M, 0=( P ——» M ——> M/M").

—————

Proof: V: P —m> M, (P fn_}_M\ -3 M/MT ) =0 since

P

£(P) € MT. Suppose M' € M is such that Vf: P —> M; ( P '“"f——) M
—3 M/M') =0, then Vg€ [P,M/M'] since P is projt;ctive af: p —
—> M such that the diagram below commutes, and hence g = 0. M/M'

4 s
5 &

is therefore cotorsion, and MT < M'. . u
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. *
THEOREM 4.8. -YM€ Mod-R, Q (M) ‘is the coequalizer of the pair

of mappings €'S(M), Se'(M): S5(M) —> S(M).

Proof: S(M) .
e .
€'(M)
JES QT €M) 5 MmT
\ - .

€(M) and ¢'(M) both have the same image, namely MT, and we
consider then as mappings from Q*(M) to MT and from S(M) to MT,
respectiv;ﬂy. Then since §(M) is projective (since it is a coproduct of
copies ’of P) and Ker €(M) is small in Q*.‘(M)’, there exists an epimorphism
e: S(M}p -—-—') Q*(M), such that ¢ (M)e = ¢'(M). By Lemma 4.6 .Ker e
is cotorsionir;e since S(M) i\s cotorsionfree and Q*(M) is codivisible. But

P
since Ker~e is cotorsionfree and Ker ¢(M) is cotorsion, Ker ¢(M) =

Ker €'(M)/Ker e is the cotorsion factor module of Ker ¢'(M), i.e. Ker e
= (Ker €¢'(M))T. Hence by Lemma 4.7 Kgr e is t_he an.mllest submodule,
X of Ker ¢'(M) such that Vif: P ——> Ker ¢'(M), 0=( P -—-f-'-) Ker ¢'{M)

. = Ker ¢'(M)/X ). Therefore Ker e is the smallest submodule X'

N A
Ll A L

. s f
of S(M) such that Vf: P —> S(M) suchthat (M) =0, 0=(P —> g
= | A
Y




.
. . b
- . °
v , -
v ‘
.
. I !
. ~

S(M) —> S(M)/X ). Hence Ker e is the smallest submodule X of

S(M) such that Yf,f': p ——> S(M) such that e¢'(M)f = ¢'(M){!,

L (P L S(M) —> S(M)/X ) =(P L S(M) —> S(M)/X ), i.e.
S(M)‘——e——) S;(M)/Ker e Q*(M) is the joint coequalize'r of all pairs of N

\mapﬁiﬁgs f,f': P —> S(M) which equalize ¢'(M). . Thus by Lemma

- 4.5 Q" (M) =Q'(M).

4
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CHAPTER V

Localizations in Mod-R for R Left Perfect

If T'is the trace ideal of a finitely generated projective left R-
module P', then Cunningham, Rutter, and Turnidge have showed [12,
Prop. 1.6] that the localization Q in Mod-R corres‘ponding to the idem-
potent filter of all right ideals of R containing T' is given by Q(M) =

' . = ' -
Hom PE" Me P )E')' where E' HomR(RP'.RP), YME€ Mod-R.

E'( R

. " .
THEOREM 5.1. The colocalization functor Q is given by the

compoéite of [P,_]: Mod-R ——> Mod-E and its left a;ijoint -8 P

Mod-E —> Mod-R. I P is finitely generated then Q is given by the

composite of [P, ] and its right adjoint Hom (P ).

E'

Proof: It is routine to chec.}k (see remarks following Theorem 1.12)

*
that _@E P is the left adjoint of [P, _], and of course Q (M) =
[P, MJ ®E P VM€ Mod-R. Assume now that Pis finitely generated.

Define : 1L . — Hom (P*E.[P D) by ((adA)a)e Nep) =

Mod-R
a(p (p)) VA€ Mod-R, Va€ A, Vp € P Vp€ P. Define B: [P, Hom (PE,
— Lyod-g PY B(B)(g) izl(g(pi))(f) ¥YB€ Mod-E, ' Vg€
(P, Hom (PE.B )], where {p |i = 1,...,n} is a set of generators for
Pand {f i =1,...,n} is the ""dual basis" ‘such that Ype P p = Zpi'fi(p)
. i=1

(see .g. [8, Prop. VII.3.1]).

'
N
LIS SR 3
o -
. be fggﬁf,
2 W, ity
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I

Then o« and 8 are natural transformations, and it is easy to check

*
that U8 - qU =1 and BF * Fa =1 where U = HomE(PE,_) and

U ¥

*
F = [P,_]. Therefore HomE(PE,__) is the right adjoint of [P, _].
The localization Q in Mod-R corresponding to the idempotent filter
of all right ideals of R containing T is, by [12, Prop. 1.6], given by

* % %
= % % * : : .
Q(M) HomE (PE g (M ®R P )E ) since P is a finitely generated left

* *
R-module with trace ideal T. ( E = EndR(RP ).) But by [35, Lemma 1]

*
E and E are ring isomorphic, and therefore Q(M) is given by

* * - - » L3 ' *
HornE(PE, (M ®R P )E), which is in turn 1somorpt'nc to HomE(PE, [P, M])

. (seee.g. [8, p.120]).

}
The remainder of this chapter investigates the property that every

idempotent ideal of R is the trace ideal of a finitely generated projective

‘module. It is known that this is the case if R is left or right perfect.
" The Appendix contains a new proof of this and other relevant results,

- and introduces notation and theory which it rr;ight be helpful to read at
[ V]

this point.

-

Let J(R), or J if there is no ambiguity, denotie the Jacobson radical

of+R.

PROPOSITION 5.2. If R is semiperfect, ‘then the following state-

. i t . . ﬂ L
. ments are equivalent: .
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(1) Every idempotent ideal of R is of the form ReR, where e€ R is an

idempotent central module J.

(2) Every idempotent ideal of R is the trace ideal of a finitely gener-

ated projective right R-module.
. . \

(3) There are exactly 2" different idempotent ideals of R, where n
is the number of isomorphism classes of simple right R-modules.
(4) The simple right R-modules determine the Jansian classes in

Mod-R, i.e. if .’JT and 3T' are Jansian classes in Mod~R such that for any

simple right R-module S, S€ J_ o S€ T

T T then T = T'.

Proof: Since R is semiperfect, 1 = e +...+ e »asum of orthogonal

local idempotents, and {elR/elJ, ceey enR/enJ} denotes a representative

’{&? -
o (3 ~
~
~

set of :simple right R-modules for some n € m. \\
(1) ® (2) ReR = tr(eR) (where tr(M) denotes the trace ideal of M,

VM€ Mod-R). - .
r
(2) = (3) P finitely generated projective module = P> & e R (see
j=1

[(32] or [33]). Therefore T = tr(P) = R(ei +...4 e JR for some k < n,

) 1, k ; .

where @ ei R is the basic submodule of & ejR, i.e. each distinct
j=1 '] /g |

isomorphism class of indecomposable direct summands appearing in the

o

(external) direct sum is represented by a single summand.

(3) » (4) Let J. and 3'1" be two Jansian classes in Mod-R such that

T

for any simple right R-module S, S€¢ JT » S¢ 3,1.., or equivalently, S€ 3'1‘

~




%

=y

= S¢ JT" Then for some i, 1 <i<n, S ?.HeiR/eiJ, and eiE T ei'l' = eiR

= ST =S e S¢ 3,1, ®S€F, @ eie T', and hence T = T' = RZ eiR where the

TV

sum is over all e, such that eiR/eiJ €F l1<is<n.,

T!
(4) = (1} Let T be a nonzero idempotent ideal of R, then there exists a

simple right R-module S¢ 3T’ S=>e R/e, J for some h, 1 <h<n, or

h h

equivalently there exists an ehE T, since otherwise every simple module

-

is in. J,. and hence by assumption T = 0. Therefore T/TJ is a nonzero

T

R{J-module, hence T/TJ = @ e,R/e . J where Vi€l e.€ fe.,...,e J.
) i€L i i i 1 n
T2 =T = Vi€ I, eiR = ei'l' and thus eie T. Therefore R(ei o0+ e, R &
1 ) i k

k
T where & e, R/ei J is the basic submodule of & eiR/eiJ. Also, e
=t i€l ~

hGT

= ehR/ehJ = ehR/ehR.{TI‘J =] (ehR + TI)/TI <« T/TJ = i?IczziR/eiJ, hebnce
R =e R for some i€ ],
h i

hE R(e.l +...4 e, JR. Therefore S = ehR/ehJ € 3,1, ©

1 k
ER(ei +...+e, JRe*ScHF
1 x

<

e Rfe J a-”eiR/eiJ for some i€ I, or equivalently e

h h

and therefore e

e €T eoe

b h and thus by assumption

R.(ei +...+e )R
1 "k
T = R(ei +.o..4 e JR. As in Corollary A.6 of the Appendix, T then has
1 k N -

the form ReR, where e is an idempotent of R central modulo J.

COROLLARY 5.3. R is left perfect if and only if idempotents lift

moduld J and every torsion class in Mod-R is of the form JR s where e

eR

3

is an idempotent of R central modulo J.




' whge e is an idempotent of R central modulo J. Then xR & (1 - e)R.

X
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Proof: By Theorem A.4 of the Appenéix, if every torsion class in
Mod-R of simple type is Jansian, then R/J is semiperfect, and R is left
perfect if and only if all torsion classes in Mod-R are Jansian classles of
simple type. Therefore if idempotents lift modulo J and every torﬁsion‘
class in Mod-R is of the form gReR for an idempotent e of R central modulo
J, then R/J is semiperfect, and by the above proposition the Jansian
classes in Mod-R are of simple type.

It does not seem to be possible to eliminate the condition that

idempotents lift modulo J, although one can show that if every torsion clags

in Mod-R is of the form J » where e is an idempotent of R central

ReR
modulo J, then central idempotents lift modulo J. Let R denote R/ J and
r denote r +J, Vr€ R, and let x be a central idempotent modulo J, i.e.

xx = x, and Xr = rx Vr€ R. Then xR is a direct sum of simple R~modules,

and the smallest torsion class in Mod-R containing xR is of the form 3ReR

But the smallest torsion class in Mod-R containing (1 - e)ﬁ is also :‘TReR'

and therefore the isomorphism class of every simple summand of (1 - e)ﬁ

is also represented by A simple summand of ;:ﬁ ﬁence -Ii;cﬁ = -}-1(1 - e)ﬁ ,

and x =1 - e since both are central idempotents.

We do not have an example of a ring R which is not left perfect, but @

for which every torsidn class in Mod-R is of the form JReR where e is an

+ - -~
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idempotent of R ceptral modulo J. Dlab has provided an example {13,

Ex. 2] which shows that the two conditions, idempotents lift modulo J and
every torsion class in Mod-R is Jansian, do not imply that R is left perfect.
Also, the two conditions, R semiperfect and every idempotent id;al of R
has the form ReR, where e is an idempotent of R central ‘modulo J, do not

imply that R is left perfect, since there are.rings which are right perfect

but not left perfect.
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CHAPTER yx

Chain Conditions

Of special interest is the case where the localization functor QT:

Mod-R —> Mod-R associated with a Jansian class J, preserves all

T

colimits, i.e. it is right exact and‘commutes w‘i‘th direct sums. (Some
authors, using Stenstrom's terminology\ [36], have called a torsion class
perfect if the associated Ioca‘lization'functor preserves all colimits. (jthers
have used Goldman's‘ termiqblogy [19] and say-such a torsion class has
property T.) We will show that, in tl;is situation, if R is respectively

left, right, or two-sided Artinian or Noetherian, a right cogenerator, or

quasi-Frobenius (QF), then so is QT(’R).

o

13

_ TP PR
LEMMA 6.1. QT(M) = [T.M/’:T(M)] = ['r/:rT(T).MlsT(M)]

HomK(T/3T(T),M/3T(M)) where K = R/3T(R), YM€E Mod-R.

Proof: The first equality follows from the well-known construction

of the quotient module of a module M, for a localization functor Q assoc-

iated with a torsion class J, given by the direct limit

QM) = lim [D,M/3(M)] (see e.g. [22, Sec."0]) -
._._) .

DED:J . ‘

and the fact that T is the minimal element of 33. Since 8,1.('1‘4 is torsion

% \
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1
and M/.’JT( ) is torsionfree we have the second equality, and the third

module .

o

L —_ —
Let/ T denote T/:rT(T). Note that T = 'r/:rT(R)n'r > (T + 3T(R))/3’T(R)

< R/JA_(R) = K. Also, by the above 1err;ma, QT(R)E' cT (and, in'fact,

o . ’ l o L
QT(7)T =T). N

o

ey

/THEOREI\{I_ 6.2. The following statements are equivalent:

/ s
/ (1) Every right QT(R)-module is torsionfyee {as an R-module).

(2) TQ(R) =Q_(R) (or, equivalently, TQ_(R) =Q_(R).

s 3

(3) Every right QT(R)-module is torsionfree and:divisible (as an - ,

R-module).

(4) Q(M)=M @ QIR) YME Mod-R. '
(5) QT is right exact arid commutes with direct sums.
(6) Tis a finitely generated projective rigﬁt K-module.

(7) T is a finitely generated right R-module and T is projective with

w

respect to the class of epimorphisms &= { A—>B—>0|A, B¢ 3;1.,}:
(8) There exists a ring F and an epimorphism of rings: R —> F

such that o F is flat and 7. = [M€ Mod—R[M.PR F =0}. B

[

Proof: The equivalence of (1) through (5) is proved in [19, Thm. 3]." ;

(2) « (6) This ig a géneﬁrali;.ation of an equivalence in (37, Thm. 5.6]'; ) ‘f

r
o

Taphe  F
T 1

¥ %
AT
x
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' Assume "I'QT(R) = QL(R), then ziie T, q,€ Q(R), i=1, ..., such

tHat qu. =
i

. i : T —> N 2al WVieT . ;=
i IQT(R) De'fme fi' T 'K by fi(t) qit vt€ T, i

L ™Mo

- n _
l,...,n, then t = L ¢t

ifi(i). Therefore T ig”h finitely generated projective
Ji=1 .

’

K-module by the dual basis lemma [8, Prop. VII.3.1]. » f
Conversely, let fi:‘—T- —_— K, EiE E. i=1,...,n, be such that VEE' T .

- n. . - - e =7 .
t= Ltf(t). But f(t) =q.t Vt€ T for some unique q.€ Q_(R), 1 =1,..%,n,
(=1 ii . i i 1 T

R) is torsionfree and divisible, hence V?:GE‘ ,

¢

n- - n.
,E:ltiqi )t = 0. This implies that IQT(R) = i:thiqi, and t?mere-

since K/E‘ is torsion and QT(

(1 -
apm ~ 54

- ) . . _

fore TQT(R) = Q;I,(R), gince t —> (IQT(R) - ifltiqi)t Vte T defines

~

an R-hc;momorphisr;'z: -'i‘ ———— QT(R) / which has a unique extension to an

T en,

] R-homomorphism: K — Q_(R) (i.e. qT=0 = q=0 Vq¢ Q_(R)).

(5) @ (8) Seee.g. [24, Prop. 2.2].

Q

~ 1 . -
’

The following proposition is a ‘generalization of {37, Prop. 3.1].

PR?&)SITION 6.3. Let 3,[. be a Jansian class in Mod-R such that

; T isa finitely generated right K-module. Then K. left Artinian
(Noetherian) = QT(R) left Artinian (Noetherian).
Proof: For some n, there exists an epimorphism: K" — T as'[

L4 , ’ : T - .
| ‘ right K—modui!es, hence 0 — Hom.K(T,K) ——) HomK(K,n, K) is
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. ‘ n
exact as left K-modules. But HomK(Kn, K2 Z HomK(K, K) o £ K is

left Artinian (Noetherian), hence Q_(R)= Hom {T, K) is left Artinian

“

K

k4

{(Noetherian).

A

COROLILARY 6.4. Let 8T be a Jansian class in Mod-R such that -'E[:

is a finitely generated right K-module. Then R left Artinian (Noetherian)

R4

= QT(R) left Artinian (Noetherian). -
Proof: R left Artinian (Noetherian) = K left Artinian (Noetherian)

since K is a factor ring of R.

b4
1

PROPOSITION 6.5. Let 3,1, be a Jansian class in Mod-R such that

—'I-‘QT(R)‘—-: §QT(R). Then R a cogenerator for Mod-R = QT(R) a cogenerator

for Mod-QT(R).

Proof: YM€ Mod-QT(R), # a.monomorphism f: M ~—— RI for
some index set I. M is torsionfree by Theorem 6.2, therefore if g:
RI N KI is the canonical mapping inducéd by the projection mapping:

R —> R/T(R) =K, and if h: k!

—>Q (R)I is the inclusion
m:lpping, then Vmé M, hgf(m) =0 = gf(m) =0 ==“ fm)T =0 = £(mT) =0
= mT =0 *.= m =0, Hence hgf is a monomc:rphism. Q,’I.(R)I is a tc;rsion-
;'ree divisible module since QT(R) is a torsionfree divisible module, and
therefore hgf is a'QT(R)-hompmorphism (see el.g.‘ tZZ. Sec. t]). Thus

QT-(R) is a cogenerator for Mod-QT(R). ) ‘
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COROLLARY 6.5. Let :IT be a Jaﬁsian cla‘sa in Mod-R such that

E‘QT(R) =QT(R). Then R QF (quaai.-Frobenius) =) QT(R) QF.

Proof: A ring R is QF © R is left Noetherian and a cogenerator for

Mod-R. The result now follows from Corollary 6.4 and the above

proposition. »

The following proposition is a generalization of (37, Prop. 5.9].

T
_'I-‘QT(R) = QT(R'); Then there is a one-to-one correspondence between

rg

PROPOSITION 6.7. LetJ_ be a Jansian class in Mod-R such that

the right ideals of QT(R) and the right ideals of K of the form IT for some

right ideal I € K,

Proof: T= T/3’T(T) is an idempotent ideal ofi( = R/-’IT(Ix{),' since T

is an idempotent ideal of R, and :I’T(T) = ‘TﬂTT'(R) is an ideal of R. '
Thereéore for ;ny right ideal X of’ Q,i,(R), the correspondence . X >
'XT is of the desired form' since XT = XTT and XT € T ¢K. Forany

\ right ideal I of K, the inve rse corregpondencg is given by IT —
' ' . |

, and ITQ_(T)T =ITT =1IT.
p il

7

ITQT(R). Th'en XTQT(R) = XQT(R) =X

o . .7 )

©

COROLLARY 6.8. Lét 3’,1, be a Jans}an class in Mod-R such that

9

TQ (R = Q(R). ThenR right Artinian (Nostherian) = Q(R) right .
Artini‘an (Noetherian). } o /:w
. o s
¥
' ) /
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Proof: R right Artinian (Noetherian) = K right Artinian (Noether-

ian). |The result now follows from the proposition, orufrom the obser-

., vation that for any right ideal X & QT(R). X = XQT(R) =2 (XFK)QT(R) =%
T 2 XT = = X..

(X(YI')QT(R) XTQT(R) XQT(R) X
It is clear that the result holds for two-sgided ideals as well as for

right ideals.
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APPENDIX

v —

A ring R is called semiperfect if every f.ir;itely generated right (or

left) R-module has a projective cover. Equivalent conditions are: R/J

-

is semisimple Artinian and idempotents can’be lifted modulo J, where J

ia the Jacobson radical of R (see [3]); every simple right (left) R-

$

module is of the form eR/eJ (Re/Je), e2 = e€ R (and in particular, if
e€ R is a primitive idempotent, a simple right (left) R-module M =

eR/eJ] (Re/Je) if and only if Me # 0 (eM # 0) );© there are mutually
(
mé
orthogonal idempotents e'l, s such that T ei =1 and each ei is local,
' i=1
. . 3
i.e. each eiRei is a local (or completely primary, or sum—irre@ucible)

-~

ring (see-[31] or [32])". C o - ‘

IfR is semiperfect, R=eR® ... ®e R where {e,...,e_} is
' bt 1 m 1 m

a set of orthogonak local idempotents. Let {elR. ceay enR} be a complete’

o

set of representatives for the isomorphism classes of the eiR's, for
somgdn< m. Let R denote R/J and r denote r + J Yr€ R. We can then

forr 2" different idempotent ideals T of the forrn T = R(ei +...te. )R =
1 *x
. Rei R +...+Re, R,.since R=ReR®... Qﬁénﬁ. Now 38: denotes the

I e L

- torsion class in Mod-R which corresponds to the idempotent filter of

" rightl ideals §. If § has a minimal element T, we will also denote the

a

i . .o ' corresponding torsion class by 8'1' (and the corresponding torsion theory
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by (JT,HT) ). .

-

Let M be a simple right R-module, then in the torsion theory

(:IT,:JT) where T zR(ei +...+ e )R, Mis torsion ® MT'= 0 © M =
¢ 1

e R/e J where e.¢ {e.,...,e. }, and Mlis torsionfree ®* MT =M o
i ity i

Ma-eiR/ei J for some j, 1< j < k.
i ( .
A ring R is called left perfect if every left R-module has a projective

cover. Equivalent conditions include: R/Jis semisimple Artinian and

every nonzero right R-module has a nonzero simple submodule (see [3]);
. 3
R satisfies the descending chain condition on fiiitely generated right

. ideals (see [5]).

Therefore if R is left perfect, R is torsionfree with respect to the

\
torsion theory (J 3,1.) o every simple right ideal is torsionfree

Ti

T2T =R(e,+...+e, )R where {e. R/e . J,...,e. R/e, J} isg(epre—
° i h , h oy )h n -

sentative set of nonisomorphic simple right idealﬁs of R.

’

DEFINITION Al Let C be any class of right R-modules. Then -

define C* = {X€ Mod-R| [C.1(X)]=0 YCEC} and C™ = {X€ Mod-R| ,
J (X,1(C)] = OQVCE C} where recall that YM€ Mod-R, I(M) denotes the . 4

injective hull of M. The largest torsion theory in which C is torsionfree

‘.

. '
. * ) '
] ' ‘

. N
o 5

o

F

+. . B
- N ¢
i, - e i
o N PR [
At - ) row L T
~ oow e e wd™ K
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© is (CL, CL

(CRI',CR

'\'), and the smallest torsion theory in which C is torsion is i
) (see [22]).

~

Let 8 ={S,.. .,Sn] be a Tepresentative set of nonisomorphic simple

1'
k] &

right R-modules. For any C< 8, the class of all right R-modules M

such that every nonzero homomorphic image of M has a nonzero submod-

ule isomorphic to a member of C is a torsion class, and was called a

' torsionclass of simple type by Alin and Armendariz [1]. We denote this

torsion class by .3, and if C = {S}, by g3

PROPOSITION A.2. V(C& S8, cZI = CRI, the smallest torsion class

containing C.

cZI, then [M,I(X)] #0 = [S,I(X)] # 0 for sorj,ne

SeC = X¢ CR. Therefore X¢ CR » [M,I(X)] =0 and hence M¢ CR"J‘

Proof: Suppose M€

Conversely, let M€ CR!', and suppose I N & M such that M/ N does no#
have a nonzero submodule isomorphic to a member of C. Then /

/
(S, I{M/N)] =0 ¥S€ C, and therefore M/N € CRFBRL

= 0, Thus Me ,J.
Dlab [13] defined a prime (fundamental) torsion class to be a
torsion class associated with the smallest idempotent filter of right

" ideals containing a class (union of classes) of egu{valent ‘maximal right

. ideals, where M1 and M2 are equivalent maximal right ideals if R/ Ml ™ \\g

14
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)

R/MZ . The fundamental torsian classes are thus the same a’s torsion
classes of simiple type, with the prime torsion classes being the torsion
classes S.’I. Alin and Armendariz [1] and Dlab [13 ] both showed that

every torsion class in Mod-R is of simple type if and only if every nonzero
R-module has a nonzero simple submodule, and they also showed that if

R is left perfect then every torsion class in Mod-R is Jansian (i.e. closed
under direct products). Thus ever;r torsion theory inoMc;d—R, for R left -

perfe.ct, is of tl}e'form ‘(JT’ 3T) and there are exactlf 2" torsion theories,

where n is the number of isomorphisrﬁ'classes of simple right R-modules. '

Rutter [34] has also gi\;en a proof of this result.” A simple proof, pre-

sented by Vamos in a seminar at McGill University (1971-72), makes use

4

of the one-to-one correSpor'xde‘nce between Jansian classes and idempotent

-

ideals of R. His proof is as follows:

As we have seen, if R is semiperfect, there are at least 2" idempotent

-

jdeals T of R, and hence Jansian classes in Mod-R, where n is the
number of isomorphi;sm classes of simple right R-modules. But every
torsion theory can be described as the largest torsion theory for which a
certain injective module IR is torsionfree, and naturally two injectives 1

)a and

and I' give rise to the same torsion theory if and only if I < (I'

I'c Iﬁ for some powers o and f. If R is left perfect, the socle S of 1

o

is essential in I, and hence I =I(S). S s @S =B &... ®B, where
aeAa 1 k

Bi is the sum of all the Sa'Q isomorphic to Si’ i=1],...,k<n (where

¢ o



recall that § = {Sl’ cery Sn} denotes a repx:esentative set of nonisomorphic
simple right R-modules), and A is some index set. Therefore I = I(S) =
I(Bl) ... @ I(Bk). Let I'-= I(Sl) ®... & I(Sk), then clearly I and I'
induce the same torsion theory, and hence there are no more than 23\ l
torsion theories in Mod-R. Thus there are exactly 2" torsion theories in

M(‘)d-R and each one is of the form (3T, 3,1,) for an idempotent ideal T =

R(e. +...+ e, JR. ,
i i

1 k

As a consequence of this and previous remarks, we have the following

b

theorem, which was proved by Storrer [37, Thm. 2.5].

THEOREM (Storrer) A.3. If R is left perfect, then the largest torsion-

P

theory in which R is torsionfree has the minimal dense ideal To =

R(e, +...+ e, )R where {e R/e, J,...,e, R/e.  J} is a representative
5 In Ty Uy oy

!
set of nonispmorphic simple right ideals of R. .

Dlab [13] also proved the following result:

THEOREM (Dlab) A .4. If every torsion class of simple type in Mod-R
is Jansian, then R/J is semisimple Artinian. Hence a ring R is left

perfect if and only if all torsion classes in Mod-R are Jansian classes of

A

simple type.

S 1
B S -+

L
8%
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Dlab [14, Thm. 1] also examined rings R for which O and Mod-R are

the only torsion classes in Mod-R, and gave several equivalent properties.

He did not explicitly give the following one, although it is perhaps clear

-

from his proof that it is equivalent. Gardner [18] has also studied these

rings.

COROLLARY A.5. R is left perfect and R/J is simple if and only if °
0 and Mod-R are the only torsion classes in Mod-R.

Proof: If R is left perfect, then clearly R/J is simple if a..nd only if
R has no nontrivial idempotent ideals if and only if 0 and Mod-R are the
only torsion “classes in Mod-R. If O and Mod-R are the only torsion

classes in Mod-R they are of course both Jansian classes of simple type,

hence R is left perfect. ) . A

We also have the following result, which was proved by Michler

[27, Prop. 2.1].

COROLLARY A.6. If R is left or right perfect, then every idempo -

]

tent ideal in R is of:the form ReR, where e is an idempotent of R central
modula J.

Proof: There are 2" idempotent ideals in R, each one of the form
R(e, +...+.e. )R. If welet {e, ,...,e. } be those idermpotents from
! 'k 1 e : ‘
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the decomposition 1 = e +...4 e which generate a right ideal isomor-

"phic toe, R for asome h, 1 <h <k, then R(e, +...+e, )R =
) i - ‘ i i .

Rie, +...4 ei JR and ei +...+ ei is central modulo J, since
i
1 J 1 j

( - -
(ei +.004 e JR is a sum of simple (or homogeneous) components of R.
. L3

1 J

Dlab [14, Thm. 2] gave several properties equivalent to a ring R

being a finite direct sum of rings Ri for which Mod-Ri has only the two

'

trivial torsion classes, 0 and Mod—Ri. Vamos, again in a seminar at
McGill University (1971-72), gave another equivalent property, and since
it does not seem to hdve appeared in the literature, we also give a proof,

r\)asica‘lly as Vamos presented it except for the use of the primary decomp-

osition of R. A\

. THEOREM (Vamos) A.7. A ring R is a finite direct sum of rings Ri'

- where each R, is left p‘e~rfect‘a.nd Ri/Ji is simple, if and only if every

torsion class in Mod-R is Jansian and stable .

Proof: guppose oR = R1 e... ®‘Rn’“ wlr;ere Ri is left perfect and Ri/Ji
is simple, i =‘1,'. <.y N The;l for any right R-module M,‘ M= MRl ®....
é MRn' and f?r any torsion theory (J,3) in Mod:R, the torsion submodule
J(M) = S‘(MRl) ®...0 3’(MRn). Lgt 3i(MRi) = K(MRi),‘ then {XG‘Mod-Ri[

t

Ji(X) =X} is a torsion class in Mod-Ri and hence bg Corollary A.5 is
K -
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: . n
modules_ (see e.g. [15], [7]). Thus R = & _ J(R), and s J(R) is an

i

either O or Mod-Ri, i=1...,n. Suppose M = 3’(}&), then Ji(MRi) =
MR, i=1,...,n. If MR, =0, then I(MR,) = 0 hence I(MR) = J (I(MR));
if MR, # 0, then J, = r&m-ai and hence I(MR,) = J(I(MR,)). Therefore
(M) = I(MRi) ® “e QQI(MRn) = JI(I(MRI)) @ ... @3’n(I(MRn)) = J(I(M)), and
thus J is stable. R is of course left perfect, and hence by Theorem A .4
J ik Jansian.

Conversely, suppose every torsion class in I:/Lod—R is Jansian and
stable. By Theorem A.4, to show that R is left perfect it suffices to show
that'every torsion class in Mod-R is of simple type, or eciuivalently, that
every nonzero right R-module contains a nonzero simple submodule.
Suppose IME€ Mod-R such that M has no nonzero 'simple submoéulé, then

every simple f'ight R-module is in the torsion class {I(M)]L. But then

every right R-module is in {I(M)}L, since [l I(S) is a cogener'ator for
. . S simple

Mod-R and {I(M)C]L is stable and Jansian. Therefore I(M) = 0, hence

M = 0, and therefore R is -left perfect. R is then an essential extension

of its right socle, hence Re T (the smallest to'raion claas in Mod-R

8
containing every simple right R-module). By a résult of Dickson [15,

Thm. 2.2], since every torsion class in Mod-R is stable, R has primary

4 ) n i .
decomposition, i.e. YME 83, M= & S J(M) where recall that 8 =

o . + i=1 1, e

{s . ,Sn} is a representative set of nonisomorphic simple right R-

S U

. S
o . i=l i i

3 - °




N

Q

essential extension of a sum of simple modules each isomorphic to S_,
. 1

i=1,...,n. Then Vi #j, SjE

J(R), and [s,J(R).S J(R)} =0, 1si,j<n.
# i j ’

Fach s

J(R) may be written in the form eg R where e; = eS' € R, and

i i i i

S, .5

0 = [esiR, eS,R] >~ e JRfv»i implies resi = esir VYreR, 1<sixn. Let

L4

R.=e,R,i=1,...,n, then R=R1®...®Rn is a finite direct sum of
i ‘ :

J since RiE S J, hence Ri/Ji is a sum of
i i Ao

of left perfect rings. Ri/Ji €4 S

simple right ideals each isomorphic to Si and thus is simple, i =1, ... ' n.
J

~

The above theorem, as well as the results by Dlab referred to in the”
remarks preceding the theorem, thus characterize those ;-ings R such
that every torsion class in Mod-R is a torsion-torsionfree class, i.e.
Jansian and stable. Bronowitz and Teply {7, Thm. 3] have characterized
those rings R such that every pre-torsion class is a pre-tor;ion - pre- ”
torsionfree class, or what Kas been called TTF, i.e. Jahsian. No one,

it seems, has been able to characterize those rings R such that every

torsion class is Jansian.

[ . . P
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