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Abstract

Observed exoplanets span a wide range of masses at given orbital periods, with the most

common types of planets being super-Earths with masses between ∼1–10M⊕ within orbital

periods of ∼100 days. Planets are born in disks of gas and solids, and classical theory of

disk-planet interaction expects such short-period super-Earths to not exist as they would

undergo rapid inward migration and collect at the inner edge of the disk. One way to

address this inconsistency between migration theory and exoplanet observations is to consider

inviscid disks in which planets are expected to prematurely halt their migration. In this

thesis, we explore the orbital dynamics of multi-planetary systems in inviscid disks using

N-body code Rebound, resolving the initial short-lived migration, planet-disk and planet-

planet interaction, and the final collisional mergers over 100 Myrs. We find that planetary

systems that emerge in inviscid disks tend to be more stable against orbital instabilities and

that more than 50% of the final system architectures feature intrasystem similarity and mass

orderings that have been observed in exoplanetary systems. A smaller fraction of systems

show reverse ordering in masses which is not observed in current systems. Whether this is
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physical or a consequence of detection bias should be tested with extreme precision radial

velocity instruments and upcoming transiting mission PLATO.
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Abrégé

Les exoplanètes observées couvrent une large gamme de masses à des périodes orbitales

données. Parmi ces planètes, les types les plus courants sont les super-Terres, dont la

masse varie entre ∼1–10M⊕ et dont la période orbitale est de ∼100 jours. Les planètes

naissent dans des disques de gaz et de solides, et la théorie classique de l’interaction

disque-planète prévoit que ces super-Terres à courte période n’existeront pas, car elles

subiraient une migration rapide vers l’intérieur et s’accumuleraient sur le bord interne du

disque. Une façon de résoudre cette incohérence entre la théorie de la migration et les

observations d’exoplanètes est de considérer des disques inviscides dans lesquels les

planètes devraient arrêter prématurément leur migration. Dans cette thèse, nous explorons

la dynamique orbitale des systèmes multi-planétaires dans les disques inviscides en utilisant

le code N-body Rebound, résolvant la migration initiale de courte durée, l’interaction

planète-disque et planète-planète, et les fusions collisionnelles finales durant 100 millions

d’années. Nous constatons que les systèmes planétaires qui émergent dans des disques

inviscides ont tendance à être plus stables face aux instabilités orbitales et que plus de 50%
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des systèmes présentent une similarité intra-système et des ordres de masse qui ont été

observés dans les systèmes exoplanétaires. Une plus petite fraction des systèmes présente

un ordre inverse des masses qui n’est pas observé dans les systèmes actuels. Il faudrait

vérifier s’il s’agit d’un phénomène physique ou d’une conséquence d’un biais de détection à

l’aide d’instruments de vitesse radiale d’une extrême précision et de la mission de transit

PLATO à venir.
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Chapter 1

Introduction

1.1 Thesis objective

Migration has formed a common thread in modelling planet formation. One of the early

detection of exoplanets was that of a hot Jupiter, a massive planet orbiting very close to their

host stars (≲0.1 AU; Mayor & Queloz 1995). Given that in our solar system, Jupiter-class

objects are found far from the Sun (∼5 AU), a mechanism to bring these planets inward was

considered necessary. In fact, disk-planet interaction in classical viscously-accreting disks

naturally expects an inward migration of planetary-mass objects (Goldreich & Tremaine,

1980; Lin & Papaloizou, 1993). Ever-growing body of observations motivates improvements

to formation models. In viscous disks, disk-induced migration is known to be very rapid, so

much so that classic population synthesis models predicted an absence of super-Earth class
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objects between ∼0.1 and 1.0 AU (e.g., Ida & Lin, 2008); however, these are found to be the

most common types of exoplanets (e.g., Howard et al., 2010; Fressin et al., 2013; Petigura

et al., 2013). By contrast, for inviscid disks, the inner disk feedback torque on the planet

grows over time, slowing and eventually stopping the latter’s migration (e.g., Hourigan &

Ward, 1984; Ward, 1997; Yu et al., 2010). The motivation for this thesis is to investigate the

orbital dynamics of multi-planetary systems migrating (for a short-distance) in these disks.

By estimating the resulting mass and orbital radius distributions and comparing them with

that of observed exoplanets, we aim to test the likelihood of planet formation in inviscid

disks. We simulate the simultaneous migration of multi-planet systems and their subsequent

orbital evolution after the disk dissipates, which advances the current knowledge of planetary

dynamics in inviscid disks which has thus far been focused on single or two planet systems

in gas-rich environment.

1.2 Thesis organization

This thesis is organized as follows. Chapter 2 provides a summary of relevant scientific

literature and the theoretical framework upon which our analyses are built. In particular,

we give an overview of the physics behind planetary migration, comparison of migration

theory against observations of exoplanets, migration theory in inviscid disks, and planetary

core formation. Chapter 3 reviews the methodology of our investigation. We outline how the

concepts introduced in Chapter 2 are incorporated and tested in our N-body simulations,
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and how we set up the disk and planetary core properties. Chapter 4 presents our results.

We describe trends resulting from our simulations including orbital and mass evolution,

as well as the frequency and occurence of merging events. In Chapter 5, we describe the

possible origins of post-migration drift, criteria for merging events, and mass ordering of our

simulated systems. Chapter 6 provides a summary of the text and direction of future study.
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Chapter 2

Literature Review

2.1 Migration

Planets are born in spinning disks of gas and dust. Theoretical works of Goldreich &

Tremaine (1980) and Lin & Papaloizou (1993) established that the tidal interaction

between the planets embedded in these disks and the surrounding gas can lead to rapid

inward migration of the planets, potentially giving rise to the short-period planets,

including hot Jupiters (Mayor & Queloz, 1995). In this type of migration, called Type I

migration, a planet generates spiral waves in the disk gas, and this perturbed gas torques

back on the planet. In typical protoplanetary disks, the torque raised in the outer disk

wins over that raised in the inner disk, resulting in inward migration of planets.

These torques are maximized where the planet’s forcing frequency (in the frame of the
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gas) is resonant with the epicyclic frequency (called Lindblad resonance): (ω −mΩ(r))2 = κ2

where ω ≡ mΩp is the forcing frequency in the inertial frame, m is an integer (equivalent

to the number of spiral arms; i.e., azimuthal nodes), Ωp ≡
√

GM⋆/r3
p is the Keplerian

orbital frequency of the planet, G is the gravitational constant, M⋆ is the mass of the host

star, rp is the orbital distance of the planet, Ω(r) is the gas orbital frequency at orbital

distance r, and κ is the epicyclic frequency. In particle disks, Ω(r) would be given by

the Keplerian frequency; however, we are dealing with gas disk which is subject to the

radial pressure gradient force, and so the gas particles orbit at sub-Keplerian frequency

Ω(r) =
√

Ωk(r)2 − η(cs/r)2 where Ωk(r) =
√

GM⋆/r3 is the Keplerian orbital frequency,

η ≡ d ln P/d ln r is the dimensionless radial pressure gradient, P is the disk gas pressure,

cs ≡
√

kT/µmH is the disk local sound speed, k is the Boltzmann constant, T is the disk

temperature, µ = 2.37 is the gas mean molecular weight appropriate for H/He-dominated

protoplanetary disk (with solar composition elemental ratios), and mH is the mass of the

hydrogen atom.

The number of peaks of the density perturbation are given by the integer m, and the

largest feedback torque on the planet will be given by the perturbed gas closest to the planet

which we can locate by taking the limit of m → ∞. In this limit, the site of resonance is

reached at rL = rp ± 2h/3, where h = cs/Ωk(r) is the disk scale height (see Kley & Nelson,

2012, for a detailed review). This shift in the location of maximal resonance occurs precisely

because the gas particles orbit at sub-Keplerian frequency due to gas pressure gradient.



2. Literature Review 6

There also exists a corotation torque due to the gas that shares the same orbital frequency

of the planet but for the oft-chosen minimum mass solar nebula (MMSN; Hayashi (1981)),

the corotation torques cancel out leaving only Lindblad torque contributions to the total

resulting in (e.g., Kley & Nelson, 2012)

Γtot ≈ −2
(

Mp

M⋆

)2 ( h

rp

)−2

Σpr4
pΩ2

p, (2.1)

where Mp is the mass of the planet, and Σp is the disk surface density evaluated at rp.

Planetary migration timescale can then be estimated with

τmigration =
∣∣∣∣∣rp

ṙp

∣∣∣∣∣
=
∣∣∣∣12 Jp

Γtot

∣∣∣∣
=

∣∣∣∣∣∣−0.25Ω−1
p

M∗

Σpr2
p

M∗

Mp

(
h

rp

)2
∣∣∣∣∣∣ (2.2)

where Jp denotes the planet’s orbital angular momentum. In typical MMSN, the migration

timescale is notoriously short, with one Earth mass core at 1 AU (M⋆ = 1M⊙,

Σp = 1700 g cm−2, h/rp = 0.05) shuttling to the inner disk within ∼105 years (Kley &

Nelson, 2012), which is significantly shorter than the typical disk lifetime of a few Myrs

measured by Mamajek (2009). It follows that classic theories of migration expect planets

to all collect in the inner edge of the disk by the time the disk disappears and the final
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planetary systems emerge.

2.2 Migration Theory vs. Exoplanet Observations

Ida & Lin (2008) performed a population synthesis model and found that under Type I

migration, super-Earths (planets of mass 1 − 10M⊕) within ∼1 AU would be uncommon as

their migration timescales are too short to allow their formation at those distances.

Transit observations (see, e.g., Dong & Zhu, 2013; Petigura et al., 2013; Fressin et al.,

2013) and radial velocity surveys (see, e.g., Howard et al., 2010; Mayor et al., 2011) have

shown that exoplanets exhibit a wide range of masses and orbital periods. In particular,

super-Earth class exoplanets appear prevalent, accounting for approximately 80% of all the

detected planets, and ∼30–50% of all Sun-like stars having at least one of these planets

within orbital periods of ∼300 days. This is in contrast with the findings in Ida & Lin (2008)

who predicted such planets to be absent under the influence of classical Type I migration,

prompting the need to provide a planetary formation model consistent with both the disk

physics that causes migration and with the observed distribution of exoplanets.

While we observe a huge system-to-system variation, the properties of planets within a

given system is much more similar to each other (Millholland et al., 2017; Weiss et al., 2018).

Millholland et al. (2017) analyzed how the masses and radii for observed planets within a

system compare to those in other systems, and find planets to be self-similar in their sizes

within a given system compared to those in other systems. As a result, end-to-end formation
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models of planets that include disk-planet interaction should additionally account for this

intrasystem uniformity.

2.3 Inviscid disk

One suggestion to reconcile the theorized properties of migration with the observed

distribution of exoplanets is to use an inviscid disk where the turbulent “viscosity” of the

disk gas is so low that gas perturbations cannot be easily diffused away. Before we explain

the effect of inviscid disks, we briefly summarize the notion of viscosity in protoplanetary

disks. Protoplanetary disks are observed to undergo draining onto the central star,

implying a loss of angular momentum. A classic way of removing angular momentum is by

viscous diffusion. Since molecular diffusion is too slow to explain the observed lifetimes of

protoplanetary disks, this “viscous” diffusion is believed to be mediated by some unknown

turbulence which is parameterized with Shakura-Sunyaev parameter α where the kinematic

viscosity ν ≡ αcsh.

Without this diffusion, as planets migrate inward and repel the gas, the gas piles up in the

inner orbit while it depletes in the outer orbit until the inner torque completely cancels out

the outer torque, prematurely halting the migration of the planet (e.g., Ward, 1997; Rafikov,

2002); in addition, the gaps carved out by the planets can be large and the lack of gas in the

vicinity also lowers the total torque on the planet (Kanagawa et al., 2018). Yu et al. (2010)

perform hydrodynamic simulations at different values of viscosity and verify migration is
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slowed for small planets in inviscid disks by at least an order of magnitude compared to

viscous disks. Similarly, Fung & Chiang (2017) performed two-dimensional hydrodynamic

simulations of two super-Earth class planets in gas-rich inviscid disks and confirmed the

early halting of migration and the ability of the planets to torque the gas towards the star

to drive the global disk accretion.

Independent motivation for practically inviscid disks derive from the observed ubiquity

of protoplanetary disks showing narrow concentric dust rings even when they are inclined

(Pinte et al., 2016) and the observed molecular linewidths (e.g., Flaherty et al., 2017), both of

which constrain α ∼ 10−4, which is about the right order of magnitude for the aforementioned

feedback torque to take effect (Fung & Lee, 2018)—this is derived by equating the time it

takes for the planet-induced perturbations to become strong enough to torque back on the

planet with the time it takes for viscos diffusion to erase away such perturbations, on the

scale of the local disk scale height.

With more detailed analytic considerations that resolve the reflection of waves at the

outer boundary of the gap carved by the planet, Rafikov (2002) derived an expression for

the critical mass of a planet for which migration is expected to shut off at a given location:

Mfb = 4M⊕

(
h/rp

0.035

)3 (Σpr2
p/M⋆

10−3

)5/13

(2.3)

where Mfb stands for feedback mass. Through numerical and analytic calculations, Fung &
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Lee (2018) found that planets of Mfb still travel a short distance inward because it takes

some time for the planet-driven perturbation to grow enough to make the net torque on the

planet zero. They find the degree of this inward motion to be

∆r

rfb

= −0.5
(

Σr2
fb/M⋆

10−4

)4/13

, (2.4)

where Σ is the gas surface density, rfb is the orbital radius of the planet when it reaches

feedback mass and ∆r is the difference between the stopping radius rf and rfb. Combining

equations 2.3 and 2.4, Fung & Lee (2018) derive an expression for rf , anchored to their

simulation parameters:

rf ∼ 1 AU
(

1.4Mfb

4M⊕

)(
Σ1

1700 g cm−2

)−5/13
1 − 0.6

(
1.4Mfb

4M⊕

)2/13 ( Σ1

1700 g cm−2

)42/169

(2.5)

where Σ1 is the gas disk surface density profile evaluated at 1 AU.

Figure 2.1 compares equation 2.5 to the observed exoplanet population, obtained from

the NASA Exoplanet Archive (2023). Notably, the predicted mass for a given orbital

radius is typically smaller than most of the observed population within ∼1 AU. At larger

orbital distances, there exists a significant number of observed planets whose measured

masses fall below the predicted mass. These planets could be explained by lower disk gas

densities (see Fung & Lee, 2018, their Figure 8) or from the longer dynamical times that

can lengthen the time over which plaetary cores can coagulate, although the quantitative
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details depend sensitively on a variety of uncertain disk parameters such as the gas surface

density, temperature, and the particle size distribution to name a few (see, e.g., Ormel,

2017; Johansen & Lambrechts, 2017, for detailed review on early core formation by pebble

accretion). This implies that, at least in the inner orbits, cores must continue increasing in

mass after reaching Mfb, which can be explained by collisional mergers between initial

cores. Much of the motivation for this work is taking this end result from Fung & Lee

(2018), and simulating further to encompass the multi-core dynamics and the phase of

collisional merger.

2.4 Planetary Core Formation

We have described how planets move around as they interact with the disk gas, but how

exactly do planets reach certain mass up to Mfb and larger? First, large planetesimals of up

to moon-mass objects could emerge from dust-gas instabilities (e.g., Youdin & Goodman,

2005; Chiang & Youdin, 2010; Squire & Hopkins, 2018). These are large enough to trigger

pebble accretion, a mode of solid accretion whereby particles of Stokes number order unity

can efficiently spiral onto the accreting body due to aerodynamic drag (e.g., Ormel & Klahr,

2010; Lambrechts & Johansen, 2012; Ormel, 2017). Pebble accretion is a self-limiting process.

Once the planet becomes massive enough to perturb the surrounding gas and carve out a

gap, the planetary torques repel local disk material, creating a pressure maximum exterior

to the planet’s orbit that prevents pebbles from crossing close to the planet, thus the planet
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Figure 2.1: Measured masses and orbital distances of published and confirmed planets
drawn from NASA Exoplanet Archive (2023) compared to the expected final location
vs. planet mass from Fung & Lee (2018), see our equation 2.5. Most planets lie above
the expected mass-distance curve from short-lived migration in inviscid disks, suggesting the
need for further growth by e.g., collisional mergers.
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is isolated from further accretion (Lambrechts et al., 2014). For an inviscid disk, the pebble

isolation mass is also a good proxy for the feedback mass as explained by Fung & Lee (2018)

as the perturbed gas acts to both trap the pebbles and to cause the feedback effect explained

in our Section 2.3.

After reaching the isolation mass, the core can still grow by collisional mergers.

Collisions between cores require their orbits to cross, which requires their orbits to gain

eccentricity. When embedded in gaseous nebula, the gas dynamical friction damps away

the cores’ eccentricities, preventing orbit crossings and thus mergers. The eccentricity

damping timescale can be calculated by dividing the planet’s momentum relative to the gas

by the dynamical friction force:

τdamp =
∣∣∣∣∣ep

ėp

∣∣∣∣∣
=

∣∣∣∣∣∣−0.25Ω−1
p

M⋆

Σpr2
p

M⋆

Mp

(
h

rp

)4
∣∣∣∣∣∣ , (2.6)

where ep is the planet’s eccentricity. As the disk gas dissipates away and Σp drops, τdamp

lengthens and so the dynamical friction has less effect later in the disk lifetime. As a result,

core eccentricities can be excited by mutual gravitational perturbations once sufficient time

has passed, allowing for orbit mergers, resulting in higher core masses than possible under

pebble accretion alone. By comparing the above damping timescale with the orbit crossing

timescale empirically determined by Zhou et al. (2007), Lee & Chiang (2016) derived that the
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nebular gas needed to be depleted from the solar value by at least four orders of magnitude

to trigger merger events. More detailed N-body calculations that account for disk evolution

report the required depletion factor to be ∼103–105 (e.g., Dawson et al., 2016). The exact

required depletion factor depends on the spacings between the cores as the orbit crossing

timescale is exponentially sensitive to orbital spacings, with cores that are more widely

spaced less likely to merge (Zhou et al., 2007; Pu & Wu, 2015).

This giant impact phase is what we simulate in this thesis. What is novel about the

work presented here is that we start from the initial conditions set by the initial short-lived

migration of multiple cores in inviscid disks. With our simulations, we aim to investigate

the final orbital architectures of the multi-planetary systems and compare their properties

with the observations.
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Chapter 3

Methodology

We use open-source N-body simulation software Rebound (Rein & Liu, 2012) to simulate the

orbital dynamics of multiple protoplanetary cores in inviscid disks of which the gas dissipates

with time, tracking both the cores’ migration as they interact with the gas and the multi-

body dynamics once the disk becomes gas-poor. Below we describe how we set up the gas

disk and the initial location and masses of the planetary cores, as well as how we incorporate

the physics outlined in Chapter 2 to Rebound.
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3.1 Disk Parameters

We adopt the minimum mass solar nebula (MMSN; Hayashi (1981)) as the disk gas surface

density profile, modified for exponential dissipation

Σ(r) = 1700 g cm−2
(

r

1 AU

)−3/2
e

− t
τdiss , (3.1)

where r is the orbital distance, t is time, and τdiss is the characteristic disk lifetime that we

vary between 0.5 and 1 Myr, motivated by the observed disk lifetime of ∼Myr measured by

Mamajek (2009).

The temperature at the disk midplane is assumed to be set purely by the irradiation

from the central star. Accounting for the flaring of the disk due to the vertical hydrostatic

equilibrium, we have

T (r) = 1000 K
(

r

0.1 AU

)−3/7
, (3.2)

following Chiang & Goldreich (1997).

With the temperature profile, we can define the vertical scale height of the disk (computed

from the vertical hydrostatic equilibrium h = cs/Ω) and therefore the disk aspect ratio:

h

r
= 0.038

(
r

AU

)2/7
(

M⋆

M⊙

)−1/2

. (3.3)
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3.2 Initial Condition of Planets

Each run simulates a system of six cores migrating simultaneously, with initially circular

and coplanar orbits. The initial location of cores is determined by the orbital radius of the

innermost core, and the prescribed spacing between the cores. The innermost core always

begins at 1 AU as a reference. Each successive core begins at an orbital radius of the inner

adjacent core, plus a spacing parameter. The spacing for a given run is a scalar multiple of

a local disk scale height h. Dong & Fung (2017) determined the size of disk gaps cleared by

single cores based on orbital distance and mass and found gaps of ∼ 2 − 8h. Migrating cores

must be spaced such that each can clear its own gap. As our goal is to bound the range of

spacings that allow for core merging, we choose values between 2h and 4h with resolution

0.4h. Based on initial experimentation, our choice of spacing gives the lower and the upper

limit on the spacings that allow merging events within the simulation time of 100 Myrs.

Our simulation begins from the initial short-lived migration in inviscid disks once the

cores have already completed their pebble accretion and so we set the initial core mass to

Mfb (see equation 2.3). To detect when collisions occur, we need to estimate the physical

size of our cores. We assume core density is equal to bulk Earth density, and thus each core’s

physical radius scales with its mass as

Rp = R⊕

(
Mp

M⊕

)1/3

, (3.4)
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where Rp represents the core’s physical radius.

3.3 Disk-Planet Interaction

We implement the migration and the eccentricity damping of cores through exponential

decay with e-folding timescale set by equation 2.2 and equation 2.6, respectively:

rp = rp(t = 0)e−t/τmigration ; (3.5)

ep = ep(t = 0)e−t/τdamp . (3.6)

using the disk properties outlined in Section 3.1, evaluating the time-evolving Σ at each

timestep. More precisely, we add an extra force to the usual N-body dynamical effects so

that cores, once orbit-averaged, produce exponential decay in rp and ep; the numerical details

of applying these extra forces can be found in Tamayo et al. (2020a). We stop the migration

when the planet reaches a radius rf (equation 2.5) since at this poin, the net Lindblad

torque is zero, but we do not shut off eccentricity damping since this damping is due to

one-sided Lindblad torque which is non-zero. Even when the disk gas practically disappears,

the gravitational interaction between cores (e.g., secular interaction; Pu & Lai 2019) can

cause their inward drift, in addition to an increase in eccentricity.
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3.4 Planet-Planet Interaction

Our simulation is concerned with both migration and core collisions. At any time throughout

the simulation, a pair of cores collides if the distance between the core centers is less than

the radii of the respective cores. The collision is then resolved by merging the two cores with

the mass, size, and orbital properties of the new core set by conserving momentum, mass,

and volume. Quantities indirectly assigned to cores such as rf , ṙp

rp
, ėp

ep
, are not reassigned to

merged cores as all our merger events take place long after migration and disk depletion,

and thus these quantities are no longer relevant to the motions of the cores.

For each pair of dissipation time and core spacing, we run 100 simulations, identical

except for the true anomaly of each core in each system, which is drawn randomly between

0 and 2π on a linear scale. Simulations were run for 100 Myr. Resulting data were output

to text files including orbital radii, eccentricity, and mass of each core at time intervals of

around 10 kyr for each run.
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Chapter 4

Results

4.1 Orbital Evolution of Cores

Figure 4.1 illustrates the overall orbital evolution of the cores we simulate. We see a rapid

inward migration for all the cores at ∼104–105 years which is short-lived due to a combination

of disk gas depletion and also the cores’ arrival at their rf . The cores do not completely

stop at rf however, and we observe a small drifting in likely due to their secular interaction

with each other. For cores that are tightly spaced (2.0h; left panels), we find that the

cores readily merge at ∼106 yrs. The degree of dynamical inward drift after the halting of

disk-induced migration is shown in Figure 4.2. While the degree of inward drift is not too

dramatic (typically only about ∼20%), we observe a general trend of stronger drift for more

widely-spaced planets. There is no visible dependence of the degree of this inward drift on
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the disk dissipation timescale (left and right panels of Figure 4.2), suggesting the drift is

dynamical in origin. In fact, we have ran a test case of a single core undergoing Type I

migration until it reaches rf and in that case, we did not see any further inward drift.

4.2 Orbital Architectures and Merger Events

To quantify the likelihood of a core merger, we plot the histogram of the number of cores

(core multiplicity) in each system at the end of the simulation, as shown in Figure 4.3. At

one extreme (e.g., cores separated by 4h), all runs result in a multiplicity of six, and thus

no merger occurred, and at the other extreme (e.g., cores separated by 2h), we see just two

cores remaining, indicating nearly all the original cores merged into a pair. More typically,

we see a post-merger multiplicity of 3. As one may expect, as core spacing increases, so does

the core multiplicity. One interesting observation is that none of our simulations end up

with 5 cores, suggesting how if there is a merger, it will always trigger at least one another

merger.

As an example, Figure 4.4 illustrates the evolution of masses and orbital distances of cores

in one of the simulations with disk dissipation time of 0.5 Myrs and initial orbital spacing of

2.0h. From the multiplicity histogram, ∼90% of the runs for this pair of parameters result

in at least one merger event. As can be seen in Figure 4.4, cores 1 and 2, 3 and 4, 5 and 6

merge during the simulation, amounting to a final 3 cores in the end. These mergers occur

long after cores reach their final orbital radii, when the disk gas is significantly depleted, as
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Figure 4.1: The orbital evolution of cores from the start to the end of our simulations. Top
panels illustrate disk gas depletion timescale of 0.5 Myrs while the bottom panels show gas
depletion timescale of 1 Myr. The runs in the left panels have initial orbital spacing of 2h;
the middle panels 3.2h; and the right panels 4.0h. For each track, we indicate with circles
when the core reaches its rf . Even after the cores reach their expected stopping radius, they
still move inward, with the innermost planet drifting in the farthest. We see that the cores
readily merge when they are tightly spaced.
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Figure 4.2: The cumulative distribution of (rf − rstop)/rf where rstop is the final stopping
distance after the dynamical inward drift, measured at ∼2 Myr. Disk dissipation time of 0.5
Myrs and 1.0 Myrs are shown in the left and right panels, respectively. The degree of inward
drift is generally mild, but is slightly more pronounced for more sparsely-spaced systems.
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Figure 4.3: Histogram of core multiplicity for different initial orbital spacing. The left and
the right panel each illustrates the results of simulations with disk dissipation timescale 0.5
Myrs and 1.0 Myr, respectively. In general, we find mergers to more likely occur when cores
are tightly spaced, and we see no merger event for initial spacing of 4h.
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Figure 4.4: Evolution over mass vs. orbital distance plane for τdiss = 0.5Myrs and orbital
spacing of 2.0h of a specific realization. The path A tracks the initial disk-induced migration
and tracks B, C, and D denote the post-migration merger events. Mergers are more likely
to occur in the inner disk due to shorter dynamical time and for this realization, we find the
final mass of the inner planet to be larger than the outer planets.

expected.

A striking feature of Figure 4.4 is that the innermost cores are the most massive due to

successive mergers there over short timescales. While mergers are expected to occur most

likely in the innermost orbits, in typical exoplanetary systems, planetary masses tend to

increase toward longer orbital periods (Millholland et al., 2017). Following Millholland et al.
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(2017), we define a mass ordering parameter

OM ≡
Npl−1∑

i=1
Pi<Pi+1

log Mp,i+1

Mp,i

(4.1)

where Npl is the number of planets in a given system, Pi is the orbital period of the i-

th core, and Mp,i is the mass of the i-th core. Our initial protocores have OM > 0 as

Mfb are larger at longer orbital periods. The cumulative distributions of OM illustrated in

Figure 4.5 demonstrate that merger events tend to flatten and sometimes reverse the mass

ordering in a given system, driving OM closer to zero and sometimes negative. We still

see more than 50% of the systems remain forward-ordered with OM ≥ 0 in agreement with

observed exoplanetary systems. Systems that are initially more widely spaced (≳3h) tend to

maintain their initial OM reflecting the rarity of core mergers in these systems, in alignment

with Figure 4.3.

The positive mass ordering can also be seen in Figure 4.6 which demonstrates how the

typical core masses generally rise towards larger orbital distances. At 0.2–0.25 AU, we see

that all the cores retain their initial, pre-merger mass; this is the innermost edge of the

planetary systems that we simulate and so should the cores exist here, they are part of the

systems that were so stable that they never underwent any merger process over 100 Myrs.

The range of core masses we obtain in our simulations are considerably narrower than what

we see in the observations. We expect to obtain a broader range of masses if we vary the disk
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Figure 4.5: Cumulative distribution function of the mass ordering function OM calculated
over the simulated systems. Disk dissipation time of 0.5 Myrs and 1.0 Myrs are shown in
the left and right panel, respectively. Vertical dotted lines represent initial ordering based
on Mfb before any mergers occur. When spacings allow for mergers, OM is driven towards
≲0 and we find that systems are often reverse ordered, while many remain forward ordered.

properties such as the gas surface density and the temperature profile which will change the

initial masses of the protocores Mfb (see equation 2.3), but reproducing the entire population

of observed exoplanetary systems is beyond the scope of this thesis.
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Figure 4.6: Cumulative distribution function of final core masses for different ranges of
final orbital distances, evaluated over all simulations. Overall, masses tend to increase at
larger orbital distances. We see an exception between 0.2–0.25 AU vs. 0.25–0.31 AU; we see
those found between 0.2 and 0.25 AU to retain its original mass as these derive from systems
that remained stable over 100 Myrs.
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Chapter 5

Discussion

5.1 Origin of the Post-Migration Drift

One surprising result from our calculation is that the cores undergo an inward drift of

(rf −rstop)/rf ≲ 20% after their disk-induced migration is complete and when the disk gas is

on the verge of complete dissipation (see Figure 4.2). Such a drift is not observed in a single

core system, suggesting that the dynamical interaction between multiple cores may be the

cause. Our systems are not deliberately placed in mean motion resonance so the dynamical

interaction is likely secular in nature which does not modify the orbital energies. It follows

that the conserved quantity in such a problem is the angular momentum deficit (AMD),

defined as the deficit in total angular momentum in the system as compared to that of a
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coplanar and circular system (e.g., Laskar, 1997):

Λ = (GM⋆)1/2
Np∑
i=1

Mp,i

√
ri[1 −

√
1 − e2

i ] (5.1)

where Np is the number of cores in the system and Mp,i is the mass of the i-th core, ri is

the orbital distance of the i-th core, and ei is the eccentricity of the i-th core. In writing Λ,

we have assumed coplanar systems as we do not vary inclination in any of our simulations.

We can define the minimum AMD required for the innermost core to drift to r1,stop from r1,f

and solve for the required rms eccentricity of the outer neighboring cores to reach this AMD

(Petrovich et al., 2019):

e2
rms ∼

2(1 −
√

r1,stop/r1,f)∑Np

i=1
Mi

M1

√
ri,f/r1,f

. (5.2)

In Figure 5.1 we show that under the secular theory, the rms eccentricities of the outer

cores need to be ∼0.08, ∼0.16, ∼0.20 to cause an inward drift of the innermost core at

the level of 5%, 20%, and 30%, each corresponding to roughly 20, 50, and 80 percentile of

the distribution of inward drift observed in all our simulations (see Figure 4.2). Comparing

this required eccentricity to the measured eccentricities in our simulated systems prior to

merger evaluated at 2 Myr, we find that typical systems are rather dynamically cold with

maximum eccentricity only at the level of ∼0.01 (see Figure 5.2). Comparing the left and

the right panel of Figure 5.2, we see that the effect of gas eccentricity damping is acute prior

to merger as the eccentricities are significantly smaller for gas dissipation timescale of 1 Myr
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Figure 5.1: The required rms eccentricity erms of outer cores to cause the innermost core’s
inward drift at the level of 5, 20, and 30%, each corresponding roughly to 20, 50, and 80
percentile of overall inward drift rates as illustrated in Figure 4.2. There is a slight decrease
in erms at larger initial orbital spacing due to a slightly larger denominator in equation 5.2.

as compared to 0.5 Myr. The existence of dissipative effects implies a strict application of

secular theory may be incorrect. More careful analysis of detailed orbital dynamics (e.g,. Pu

& Lai, 2019) accounting for disk-planet interaction would be required to definitively identify

the origin of the post-migration drift, which is a subject of future work.
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Figure 5.2: The cumulative distribution of core eccentricity ep, measured at ∼2 Myr.
Disk dissipation time of 0.5 Myrs and 1.0 Myrs are shown in the left and the right panel,
respectively. With shorter disk dissipation time, eccentricities are more likely to be higher
in general, and are more likely to be higher at wider spacings. At τdiss = 1Myr, eccentricity
distributions are consistent for different spacings, implying that the disk damping effects
remain active at ∼2 Myr.
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5.2 Criteria for Merging

Our N-body results suggest that core mergers are generally rare events unless they are

initially spaced apart by ≲3h. We have chosen h as our unit of spacing as these are the

natural spacing of gaps carved out by massive planets as they repel the nebular gas in their

vicinity (Dong & Fung, 2017). However, the natural unit of orbital dynamics is the mutual

Hill radius defined as

rmH =
(

m1 + m2

3M⋆

)1/3 r1 + r2

2 (5.3)

where m1 and m2 are the masses of the inner and the outer planets in an adjacent pair, and

r1 and r2 their orbital distances. Defining the orbital spacing k = ∆a/rmH, Pu & Wu (2015)

derived an expression for the survival probability (i.e., the probability for the multi-planetary

systems to not undergo any merger event):

s(keff , τ) =


1 − exp

[
− (0.5keff − 0.6 − 0.35 log10 τ)2

]
, keff ≥ 1.2 + 0.7 log10 τ

0, keff < 1.2 + 0.7 log10 τ

(5.4)

where keff = ⟨k⟩ − 0.5σk, ⟨k⟩ is the mean k in a given system and σk its standard deviation,

τ = t/P1, t is the time at which the survival probability is measured (i.e., the age of the

system), and P1 is the orbital period of the innermost planet. More accurately, τ is the

physical timescale divided by the first encounter time, which usually occurs at closest-in

orbits where dynamical timescales are short. For a system of 7 planets, keff ≲ 7.3 would
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spell orbital instability and a merger event by 100 Myr with ∼100% probability (see Pu &

Wu, 2015, their Figure 2).

In Figure 5.3, we recast the spacings between our six simulated cores in terms of mutual

Hill radius. We see that for all our simulations, the orbital spacing is always below 7.3 mutual

Hill radii. It is thus surprising that we find mergers to be so rare. It could be that our smaller

initial multiplicity lowers the keff required for mergers as higher multiplicity makes a system

more unstable (see also Funk et al., 2010). Another difference between our study and Pu &

Wu (2015) is that we have cores that are different in masses within a given system, with the

mass steeply rising at larger orbital distances effectively decreasing the Hill spacing there

(for a fixed h-spacing). The non-uniform mass and spacing could be affecting the dynamical

stability of the systems. It may be that the first encounter time is not to be evaluated at the

closest-in orbit but farther out, which would decrease the critical keff at which the mergers are

guaranteed to occur. Testing against the open-source machine-learning prediction suite of

orbital stability SPOCK (Tamayo et al., 2020b), we find that these systems have no chance

of being stable over 100 Myrs. All aforementioned studies of orbital dynamics assume a

completely gas-free environment, so we conjecture that the residual remaining gas in our

simulation still acts to continuously damp away some level of core eccentricities, making

all our systems more resilient against merging events. However, similar N-body simulations

that account for eccentricity damping with outwardly increasing initial core mass found such

tightly-spaced systems to be easily prone to orbital instability (Dawson et al., 2016) so it
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Figure 5.3: Left: expected orbital spacing in terms of mutual Hill radii for each initial disk
scale height spacing. Right: the effective Hill spacing keff for the initial spacing in disk gas
scale height. All of our simulations predict keff small enough compared to the critical spacing
of ∼7 given by Pu & Wu (2015) that they should have all undergone orbital instability and
collisional mergers.

remains unclear why exactly our simulation setups lead to more stable systems. A more

systematic study that gradually introduce complications (i.e., increased number of cores,

uniform Hill spacing vs. uniform h-spacing, uniform mass vs. outwardly increasing mass, gas

damping vs. no damping) would be required to answer this question, which is a subject of

future work.
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5.3 Mass Ordering in Inviscid Disks

In inviscid disks, the initial protocore mass vs. orbital distance expected from pebble

accretion and disk feedback torque is steep, with masses falling below ∼1–2M⊕ within ∼0.3

AU (see Figure 2.1). As shown in Figure 2.1, in the observed planetary systems,

short-period planets are measured to have masses well above ∼2M⊕. Furthermore, given

planetary systems are known to feature relative similarity in both radius (Weiss et al.,

2018) and mass (Millholland et al., 2017) among the constituent planets. Previously, this

intrasystem similarity has been thought to disfavor the formation of planetary cores via

post-disk merger processes due to the latter’s stochastic nature. However, the fact that

mergers occur in the innermost periods first and that in most initial protocore formation

scenario, the innermost cores are the least massive suggest that collisional mergers would

lead to more self-similar systems. Recent N-body simulations that start with initial

protocore properties expected from planetesimal accretion have indeed demonstrated that

such intrasystem similarity is a natural outcome of post-disk merger processes (MacDonald

et al., 2020).

We arrive at similar results with the initial conditions that are specific to protocore

formation in inviscid disks, which lead to the initial mass vs. orbital distance that is steeper

than that adopted by MacDonald et al. (2020). Typically, our systems have OM ∼ 0.2–0.5

(Figure 4.5), which is similar to what is measured in the observed exoplanetary systems (see

Figure 8 of Mishra et al., 2023). We also find ≲50% of all our realizations ending up with
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reverse mass order OM which is not seen in the observations, although the detection bias

against small planets at longer orbital periods imply that we cannot rule out the existence

of such systems, albeit likely rare. Following up on known systems with extreme precision

radial velocity instruments that can probe lower mass planets at longer orbital periods as well

as PLATO that promises to probe down to an Earth-size planets beyond ∼100 days should

be able to determine both the existence and the occurrence of such reverse mass-ordered

systems.
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Chapter 6

Conclusion

In this thesis, we explored the formation outcome of multi-planetary systems in inviscid

disks. Using N-body code Rebound, we simulated the cores’ initial short-lived disk-induced

migration and the gravitational interaction between the cores that eventually lead to

collisional mergers after the disk gas is largely dissipated. Our results show that the cores,

especially the innermost ones, undergo some degree of inward radial drift at the level of

≲20% likely due to dynamical interaction with the outer planets. Our simulations further

demonstrate that planetary systems that emerge from inviscid disks tend to be more stable

against orbital instability and so merger events are rare as compared to what has been

previously reported in viscous disks starting with different initial conditions. Identifying

what the exact source of such stability is requires a more careful study. When the mergers

happen, the core masses tend to become more similar to each other within a given system
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as the innermost pairs merge first and sometimes the mergers are so vigorous that we end

up with more massive objects at shorter orbital periods, which are currently not observed

in the observations. Given the difficulty in detecting small and low mass planets at longer

orbital periods, future ground-based instruments such as extreme precision radial velocity

instruments at extremely large telescopes (ELT) and upcoming high precision space-based

transit mission such as PLATO would be needed to definitively test our calculations.
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