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Abstract 

 This study evaluated the use of a 17-sensor Xsens MVN Link IMU system to measure 

joint kinematics in comparison to an 18 Vicon camera (4 V5, 4 Vero 2.2, 2 T40S and 8 T10S) 

optoelectronic system during ice hockey shooting tasks. Ten high-level ice hockey players 

performed 10 static wrist shots and slap shots on an in-lab artificial ice surface. Concurrent 

Xsens and Vicon recordings were obtained of each participant’s ice hockey shots.   

 Root Mean Square Error (RMSE) and the Coefficient of Multiple Correlation (CMC) 

were used to compare the participant’s joint angle measures between the two systems. Across all 

joints, average RMSE were comparable about the X- and Y-axes (within 12°), though RMSE 

were much higher about the Z-axis. CMC about the X-axis indicated very good curve similarity 

(0.91), with good (0.78-0.80) and moderate (0.70-0.74) curve similarity observed about the Y- 

and Z-axes, respectively.  

 The relative errors observed in this study were predominantly attributed to differences 

between Xsens’ and Vicon’s biomechanical models rather than due to differences in 

technologies. Hence, future research should focus on the standardization of models and 

calibration procedures, as well as investigate tasks of longer duration and greater complexity. 

Given the good to moderate agreement between Xsens and Vicon’s X and Y axes’ absolute 

measures and measures over time, Xsens is a practical option to quantify representative and real 

time movement technique of hockey shot skills.  
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Abrégé 

 Cette étude a évalué l’utilization d’un système 17-capteurs Xsens MVN Link IMU pour 

mesurer les kinématiques des joints en comparaison a un système de 18 cameras optoélectric 

Vicon (4 V5, 4 Vero 2.2, 2 T40S and 8 T10S) durant des lancers de hockey sur glace. Dix 

joueurs de hockey sur glace de haut niveau ont performé dix lancés du poignet et lancés frappé 

sur une surface artificielle en laboratoire. Des mesures concurrentes de Xsens et Vicon ont été 

obtenue pour chaque lancé des participants.  

 Root Mean Square Error (RMSE) et la Coéfficent de Multiple Corrélations (CMC) ont 

été utilisés pour comparer les angles de joints des participant entre les deux systèmes. Dans 

l’ensemble des joints, les RMSE moyenne ont étés comparable dans les axes X et Y (dedans 

12°), par contre, le RMSE était beaucoup plus élevé dans l’axe Z. Le CMC dans l’axe X a 

indiqué une très bonne similarité de courbe (0.91), avec bien (0.78-0.80) et modéré (0.70-0.74) 

observé dans les axes Y et Z, respectivement.  

 Les erreurs relatifs observés entre l’Xsens et le Vicon dans cette étude étaits 

principalement attribué aux differences entre les modèles bioméchanique et non aux technologies 

eux même. Donc, la recherche future devrait concentrer sur la standardization des modèles et les 

procedures de calibration, ainsi d’enquêter des tâches de longeur durées et de plus grande 

complexité. Etant donné l’accord de bien à modéré de mesures absolue et en série de temps entre 

l’Xsens et Vicon dans les axes X et Y, l’Xsens est une option pratique pour quantifier les 

techniques de mouvements de compétences des lancés de hockey sur glace en temps reels et 

représentatif. 
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1.  Introduction 

 Biomechanical research relies heavily on the use of technology and instrumentation to 

collect data. With regards to recording human body joint kinematics, three-dimensional motion 

capture by means of multi-camera optoelectronic systems within a fixed, delimited field of view 

laboratory conditions has been viewed as the gold standard to estimating these measures with 

high accuracy. Unfortunately, for rapid, complex and unpredictable human movement skill 

sequences that occur over large fields of view and with multiple subjects, optoelectronic systems 

are impractical. This is especially the case for sport and exercise biomechanics research where 

the ideal environment to capture data in is the expansive environments where an athlete trains 

and competes. In sports such as ice hockey, capturing detailed quantitative movement data 

without sacrificing the natural dynamics has been challenging.  

An alternative, potential technological solution is to adopt advanced inertial measurement 

units (IMUs) to track subject’s body movements. IMUs are wearable sensors containing an 

accelerometer, magnetometer and gyroscope that can be used to measure segment kinematics 

without the required lab-camera set-up. Wearable IMUs have been shown to be practical and 

accurate for occupational assessment, gait analysis and some sport contexts. The potential of 

IMUs to evaluate whole-body kinematics in ice hockey has not been studied extensively, in 

particular, for stick and shot related skills. Hence, the purpose of this study was to evaluate the 

use of a commercial IMU system to record whole-body kinematics during ice hockey shooting 

tasks. If successful, future validation of this technology will expand the possibilities of data 

collection in future ice hockey research to aid athlete and coaching skill development. 
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2.  Review of Literature 

2.1 Human Motion Capture and Analysis 

 Human body and segment motion capture is a commonly used tool within the study of 

biomechanics. The evolution of this technology has been critical in the advancements in our 

knowledge of kinematics: the study of motion without referencing the forces that influence that 

motion (Oatis, 2017). One of the earliest examples of motion capture was in 1872 when Eadward 

Muybridge used cameras to photograph a series of images of a horse’s trot in order to determine 

whether there was ever a point in time when the horse had no hooves on the ground (Baker, 

2007). Concurrently, Jules-Étienne Marey developed camera shutter techniques that allowed him 

to use a single photographic plate to capture several images, known as the chronophotograph 

(Baker, 2007). In the late 1800’s, walking gait was quantitatively analyzed in terms of body 

segment and joint kinematics by Otto Fischer and Willhelm Braune. During this analysis, 

Geissler tubes were used to illuminate the segments of the body and were strapped to the 

participant. The participant was then instructed to walk in the dark while images were captured 

using a camera with rotating shutter opening intervals. Fischer and Braune then measured points 

on these images and used these point coordinates to calculate joint centres and eventually joint 

moments (Baker, 2007). The work of Muybridge, Marey, Fischer and Braune highlights the early 

developments of motion capture research made possible by various scientists, mathematicians 

and photographers. With the introduction of computer tracking tools, the development of today’s 

modern and practical motion capture systems became possible.  

 Measuring human kinematic data may be achieved through a variety of different 

technologies, ranging from a simple goniometer, electromagnetic sensors or optoelectronic 

camera systems. Electromagnetic systems can track spatial position of sensors without need for 
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visible line of site in contrast to optoelectronic systems. Electromagnetic systems are limited, 

however, with respect to the sensors’ sensitivity to ferromagnetic materials, the presence of noise 

in the signals and the sensors’ limited range that can decrease the accuracy of the data (H. M. 

Schepers & Veltink, 2010). In general, optoelectronic systems outperformed all electromagnetic 

systems in terms of data accuracy (Eline van der Kruk & Reijne, 2018). An optoelectronic 

system uses a fixed camera set-up to determine the position of a marker in three dimensional 

space. In passive systems, the cameras emit and detect infrared light that reflects off of the 

markers. In contrast, active systems use markers that emit infrared light pulses detected by the 

cameras. Optoelectronic systems have become the standard reference for motion capture 

validation (Bidabadi, Murray, & Lee, 2018; Robert-Lachaine, Mecheri, Larue, & Plamondon, 

2017b; Seaman & McPhee, 2012). Despite their popularity, optoelectronic systems are limited 

primarily to lab settings for with a fixed multicamera set-up, and the need for constant marker 

visibility (Bidabadi et al., 2018; Eline van der Kruk & Reijne, 2018).  

2.2 Inertial Measurement Units (IMU) 

 Optoelectronic systems lack the portability and field of view required to be practical for 

the analysis of sport skills, thus; researchers have recently explored the potential of inertial 

measurement units (IMU) to track body movement. IMUs are small sensors that can be easily 

attached to and removed from different segments of the body or to an instrument or piece of 

equipment (Bidabadi et al., 2018; Seaman & McPhee, 2012). These lightweight sensors are 

wearable and require lower energy usage (De Vries, Veeger, Baten, & Van Der Helm, 2009; 

Taylor, Miller, & Kaufman, 2017). A single IMU sensor is typically comprised of an 

accelerometer, a magnetometer and a gyroscope, sensitive to movements in the X-, Y- and Z-

axes respectively (Bidabadi et al., 2018). Forward navigation algorithms (e.g. Kalman filters) are 
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used to fuse data from these three sensors to determine sensor angular velocity, acceleration and 

orientation (Eline van der Kruk & Reijne, 2018). IMU systems, however, are susceptible to drift 

error in global position and distorted signals near ferromagnetic materials (Eline van der Kruk & 

Reijne, 2018). Consequently, optoelectronic systems’ accuracy are often used to validate the use 

of IMU systems in new environments or contexts (Robert-Lachaine et al., 2017b). 

 2.2.1 Xsens MVN System 

 Xsens (Enschede, Netherlands) is one of the leading manufacturers of IMU technology. 

The Xsens system consists of 17 IMU sensors that are attached along the whole body that 

communicate wirelessly to an access point. Each sensor contains a three-dimensional gyroscope, 

a three-dimensional accelerometer and a three-dimensional magnetometer (H. Schepers, 

Giuberti, & Bellusci, 2018). The tri-axial gyroscope is used to capture angular velocity, while the 

accelerometer measures the acceleration based on the gravitational force of the earth. Finally, a 

magnetometer provides yaw (heading) orientation based on the earth’s magnetic field. These 

three sensors’ signals are fused by way of Kalman filter algorithms, to estimate body segment 

position and trajectory. From the 17 IMUs, the MVN Analyze software builds a 23-segment 

virtual model used for visual animation and data analysis (see Section 4 for more details).  

2.3 IMU Validation 

 Given the rapid development of wearable smart sensor technologies, IMUs have become 

more common in the field of biomechanics research.  Each IMU system must be validated in 

terms of their ability to accurately track body movement. For example, Taylor et al. (2017) used 

a motorized dynamic arm to move an IMU sensor (Opal version 2, APDM Inc., Portland, USA) 

through known angular displacements and velocities. Controlled angular displacement and 

velocity movements were tested. These IMUs demonstrated sufficient accuracy (within 0.6° for 
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static, 4.4° for dynamic) with small angular displacements and at low angular velocities during 

the dynamic testing (Taylor et al., 2017). 

 More recent studies have explored IMU accuracy for tasks of greater complexity and 

duration (Robert-Lachaine et al., 2017b). For example, Kim and Nussbaum (2013) compared the 

Xsens MVN system to the Vicon MX optoelectronic system’s estimates of joint kinematics and 

moments during five different manual materials handling (MMH) tasks over an extended period 

of time. They reported this IMU system to be relatively stable over time; however, mean and 

peak absolute error was task-dependent with greatest error observed during larger or whole-body 

movements and more pronounced during the later testing phases. Overall, however, the data 

collected by the IMU system was found to be more affected by the task complexity rather than 

the time (Kim & Nussbaum, 2013). 

 In a similar study, Robert-Lachaine et al. (2017b) compared an Xsens MVN system and 

Optotrak optoelectronic system (Northern Digital, Waterloo, Canada) during a series of MMH 

tasks, taking into account task complexity and duration. Twelve participants were instructed to 

move empty boxes between four platforms. It was concluded that the technology data differences 

(optoelectronic vs IMU) were relatively low whereas large discrepancies between respective 

biomechanical models were observed (Robert-Lachaine et al., 2017b). With respect to task 

complexity and duration, a higher root mean square error was associated with longer and more 

complex tasks (Robert-Lachaine et al., 2017b). These results were supported from prior studies 

that also found that IMU performance with respect to accuracy was dependent on task 

complexity (Brodie, Walmsley, & Page, 2008; Godwin, Agnew, & Stevenson, 2009; Plamondon 

et al., 2007).  
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 The feasibility of in situ task analysis is promising for sport, rehabilitation and gait 

analysis research (Robert-Lachaine et al., 2017b). For example, Bidabadi et al. (2018) studied the 

use of an IMU system (built in-house) to measure foot pitch angle during walking in comparison 

to a Vicon optoelectronic system. Participants were tasked with walking in a straight line while 

RMSE and correlation measurements of foot pitch angle measurements were compared between 

the two systems. A mean correlation of 99.5% was calculated, with a standard deviation of 

0.834%, while the RMSE between the two systems was found to be low, 1.6-3.7° (Bidabadi et 

al., 2018). Ferrari et al. (2010) conducted a study comparing the use of Xsens and Vicon systems 

during different gait analysis protocols. Ferrari et al. (2010) also performed multiple comparisons 

including an analysis comparing the two technologies. Quantifying curve similarity using the 

coefficient of multiple correlation (CMC), very good or excellent similarity was found in all 

lower limb joints (Ferrari et al., 2010). The CMC measurement used in this study has also been 

adopted by multiple comparative studies (Lee, Laprade, & Fung, 2003; Mayagoitia, Nene, & 

Veltink, 2002; Robert-Lachaine et al., 2017b). For example, J. T. Zhang, Novak, Brouwer, and 

Li (2013) used CMC to compare an Xsens system to an optoelectronic system during level 

walking and walking up and down stairs. Excellent CMC values (CMC > 0.96) were observed in 

the sagittal plane, while these values decreased in the other two planes. J. T. Zhang et al. (2013) 

attributed potential differences to discrepancies in the anatomical frames used by the two 

systems.  

 With regards to running tasks, Wouda et al. (2018) compared treadmill running 

kinematics using an Xsens IMU system and optoelectronic system and Plug-In Gait marker set-

up. The ankle, knee and hip joint kinematics were analyzed in all three axes. Comparison across 

the two systems showed a strong correlation for joint angles in the sagittal plane, however 
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greater differences were observed for the frontal and transverse planes (Wouda et al., 2018). 

These discrepancies were consistent with other literature (Robert-Lachaine, Mecheri, Larue, & 

Plamondon, 2017a; H. Schepers et al., 2018). In a similar study, H. Schepers et al. (2018) 

collected joint angle data during treadmill running and over ground walking in order to compare 

the Xsens MVN system to OpenSim software (Stanford University, Stanford, USA). In general, 

RMSE for the hip, knee and ankle were all comparable but with slightly lower amplitudes in the 

sagittal plane in comparison to the frontal and transverse planes. Additionally, two different 

calibration procedures were implemented including the Xsens N-pose and a static pose obtained 

from OpenSim. When applying the OpenSim calibration to the data, RMSE values were found to 

decrease (H. Schepers et al., 2018). 

2.4 IMU Validation Studies in Sports 

 2.4.1 IMU Validation Studies in Sports 

 Other than gait analysis studies involving walking and running, few studies of other sport 

activities have compared IMU motion tracking to optoelectronic or video based systems. Krüger 

and Edelmann-Nusser (2010) conducted a validation study for the Xsens IMU system in alpine 

skiing. The IMU system was compared with a video based optical system and the two systems 

were found to be highly correlated. Despite promising results, the authors noted that the 

performance and accuracy of the system may vary depending on the conditions, such as the snow 

quality’s effect on skiing speed. Nevertheless, it was concluded that an IMU system was a very 

useful tool in sports such as alpine skiing where an unrestricted capture area is necessary (Krüger 

& Edelmann-Nusser, 2010). Another sport-related validation study from Fulton, Pyne, and 

Burkett (2009) used an IMU system (MiniTraqua™, version 5, Cooperative Research Centre for 

Microtechnology, Australian Institute of Sport) to measure leg kick count and rate during 
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freestyle swimming and kicking-only swimming. IMU and underwater video-based results were 

compared. A correlation of 0.96 and 1.00 was found between the two systems for the freestyle 

and kicking-only swimming styles, respectively. Overall, they concluded that the IMU system 

was both valid and reliable and that other swimming strokes should be investigated in order to 

implement the technology in coaching and biomechanical performance enhancement (Fulton et 

al., 2009). In tennis, Ahmadi, Rowlands, and James (2010) used inertial sensors (Kionix Inc., 

Ithaca, USA) to measure the angular velocity of the upper arm during tennis serving. Results 

showed that the IMU sensors’ data were consistent with that of the reference video records. As a 

final study example, Koda et al. (2010) examined baseball pitchers using inertial sensors placed 

on the upper arm and forearm in comparison to an optoelectronic system. Joint kinematics of the 

upper limb were recorded by the sensors and were found to have a strong correlation (> 0.90) 

with those captured by the optoelectronic system. 

 In addition to the above, IMUs have been explored for the analysis of sports equipment. 

For example, Seaman and McPhee (2012) compared the tracking of golf club swings using both 

an IMU system and an optoelectronic system. In brief, the two systems were very comparable 

when tracking the orientation of the golf club; however, large differences were observed with 

respect to the club’s position. This is consistent with other reports wherein IMU systems have 

difficulty with tracking position as a stand-alone system (Eline van der Kruk & Reijne, 2018). 

Another equipment-based study and, to our knowledge, one of the few published studies using an 

IMU system in ice skating was published by E van der Kruk, Schwab, Van Der Helm, and 

Veeger (2016). The purpose of this study was to validate measurements of the lean angle of the 

skate using IMU-based skating stroke detection. A klapskate was instrumented with an IMU as 

well as reflective markers to be tracked by the optoelectronic system reference. The two systems 
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were used to track the orientation of the skate to better understand the push-off phase of the 

skating stride. The IMU system provided a reliable measurement of the skate’s lean angle, 

suggesting that it can provide useful performance feedback to skating athletes (E van der Kruk et 

al., 2016). While these validation studies show promising results with respect to implementing 

IMU systems in in situ biomechanical sports research, numerous researchers have applied this 

technology to studies analyzing movements and providing performance feedback for athletes. 

 2.4.2 Examples of IMU use for Movement Analysis in Sports 

 Collecting movement analysis data in athletes in their natural environments has become 

feasible with IMU’s. For example, Ahmadi et al. (2014) used IMU sensors for the purpose of 

movement analysis during different tasks such as running, box jumps and agility cuts. 

Acceleration and orientation data from the knee and hip were compared using a discrete wavelet 

transform and machine learning were able to classify the different activities with 98% accuracy. 

(Ahmadi et al., 2014). 

 As another example, a study of marathon running demonstrated the use of IMU 

technology to analyze movement in a sport specific environment (Reenalda, Maartens, Homan, 

& Buurke, 2016). Three marathon runners wore Xsens IMU sensors during a full 42.2 km 

marathon. As the participants ran, data from the sensors were transferred to receivers transported 

by bicycle within range of the sensors. Lower body kinematic parameters, such as maximum hip 

and knee angles, were measured at different phases of the running gait cycle throughout the race. 

This study evaluated how the lower body kinematics changed throughout the race. Significant 

differences in lower body running mechanics between the early and late stages of the race were 

identified. Although the study was limited by sensor battery life and sample size, the feasibility 
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of conducting an extended analysis of movement in a sport specific environment was displayed 

(Reenalda et al., 2016). 

 2.4.3 Examples of IMU use for Sport Performance Feedback 

 In golf, technological tools have been used to provide athletes and their coaches with 

sport specific feedback on their swing in relation to shot performance. For example, 

Ghasemzadeh, Loseu, and Jafari (2009) used sensors embedded with tri-axial accelerometers and 

bi-axial gyroscopes to track wrist rotation during golf swings. Sensors were placed on the golf 

club (one by the club head and one by the gripping region), and the athlete’s right wrist, left arm 

and waist. The data from these sensors were used to model the golf swing with respect to wrist 

movements in order to provide useful feedback for golfers (Ghasemzadeh et al., 2009). A similar 

feedback-oriented study detected ball contact and kinematic parameters during golf putting 

(Jensen et al., 2015). A golf putter was instrumented with a single IMU sensor containing a tri-

axial accelerometer and tri-axial gyroscope. They developed a system that could detect when a 

putt had occurred and provide feedback with respect to kinematic parameters such as the 

duration of the putt, club head angle and angular velocity at ball impact. Similar to Ghasemzadeh 

et al. (2009), this IMU-based system was designed to provide useful feedback to help train 

golfers and keep track of learning progress (Jensen et al., 2015). 

 Bächlin and Tröster (2012) used accelerometer sensors placed on the wrist and back to 

develop a feedback system to evaluate athlete swimming performance. An algorithm was 

developed and used to calculate performance variables from IMU signals such as swim velocity 

and distance per arm stroke. This study demonstrated the feasibility of using wearable sensors to 

provide feedback on specific parameters that are difficult to assess from a coach’s perspective 

outside of the water (Bächlin & Tröster, 2012). 
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 In summary, the above studies exemplify the growth of interest and feasibility of 

adopting IMUs in the context of different sports, and how they can enhance the training of elite 

athletes in their natural training or competition environments. 

2.5 Current State of Ice Hockey Research 

 Ice hockey biomechanics research has primarily focused on the two main pieces of 

equipment, skates and sticks, and their respective tasks: skating and shooting. With respect to 

sticks and shooting, previous research has focused on the material and design properties of the 

stick, as well as techniques of the two most common types of the shots: the wrist shot and the 

slap shot. For example, Pearsall, Montgomery, Rothsching, and Turcotte (1999) examined the 

effects of stick shaft stiffness on slap shot velocity. Four different sticks of varying stiffness were 

compared during slap shots within a lab setting. Puck velocity was measured using a radar gun, 

while stick deformation was captured using a high-speed camera. The differences in puck 

velocity across stick types were relatively small, while greater variability was seen between 

participants. This study suggested that shot quality was more dependent on player behavior than 

stick stiffness. Similar results were reported by T.-C. Wu et al. (2003) comparing puck velocity 

between skilled and unskilled players for both wrist and slap shots. Similarly, stick stiffness did 

not appear to affect shot velocity, whereas, player technique and individual strength factors were 

more relevant (T.-C. Wu et al., 2003).  In comparison, Worobets, Fairbairn, and Stefanyshyn 

(2006) found that stick stiffness also had no effect on slap shot velocity but had some influence 

(50% variance) on wrist shot velocity. The way the player loads the stick, to store elastic 

potential energy, was considered to have more influence on shot velocity (Worobets et al., 2006). 

In addition to studying the material properties of sticks, a few ice hockey shot technique 

and execution studies have been done. Michaud-Paquette, Pearsall, and Turcotte (2009) 
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examined the important mechanical predictors of wrist shot accuracy. This study consisted of 25 

subjects performing stationary wrist shots in a lab environment. The kinematics of the stick’s 

shaft and blade, as well as the puck, were measured via an optoelectronic system. Several 

variables were examined such as blade orientations, shaft bend, puck velocity at release. Multiple 

regression analyses were then used to determine which variables best predicted the accuracy of 

the shot. A subsequent study examined the whole-body kinematic predictors of wrist shot 

accuracy (Michaud-Paquette, Magee, Pearsall, & Turcotte, 2011) using whole-body kinematics 

of participants derived from optoelectronic motion capture. Multiple regression analyses were 

used to determine the variables most related to shot accuracy. In summary, the analysis of whole-

body, stick and puck kinematics can provide useful information in understanding the motor 

control strategies necessary for an accurate wrist shot performance (Michaud-Paquette et al., 

2011). Such information provided in real-time would have valuable coaching applications.  

Despite the recent advancements made in our understanding of ice hockey biomechanics, 

most of the previous research has been limited to simulated ice surfaces within a laboratory 

environment. Recent work prior to 2017 was conducted on an artificial ice surface in a lab 

environment with limited space. As such only stationary wrist shots and slap shots have been 

studied precluding game intrinsic concurrent skating and shooting dynamic movements common 

in ice hockey. 

To address this limitation, Renaud et al. (2017) recently demonstrated the feasibility of 

collecting 3D motion capture data on ice to study the lower body kinematics of ice hockey 

skating starts. In comparison to the previous research, the results of on-ice data collection 

provided comprehensive insight into factors affecting skate start performance (Renaud et al., 

2017). The ability for testing in situ within the ice arena environment and to capture movements 
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over a greater area demonstrated the feasibility and coaching translatable value of their results. 

This subsequently led to further on-ice studies: Shell et al. (2017), Budarick et al. (2018) and 

Robbins, Renaud, and Pearsall (2018) have since published research on ice hockey skating 

biomechanics using data collected on-ice. 

One drawback to the on-ice data collection, however, is the logistical challenge of camera 

set-up: unless a permanent set-up is available, the repeated set-up and take down of cameras and 

equipment between data collections is labour intensive and time consuming (Renaud et al., 

2017). Furthermore, unless the cameras can be mounted off the ice, the feasibility of capturing 

data in an actual game or game-like scenario remains in question due to the caution that must be 

taken to avoid damaging equipment.  

Hence, an on-ice data collection method that would not require the labour intensive set-

up of an optoelectronic system would be the use of wearable IMU sensors. The feasibility of 

using IMU technology in lieu of optoelectronic motion capture has been demonstrated in the 

aforementioned validation studies in various ergonomic and sport contexts. Furthermore, IMU 

technology has shown promise in sport-specific studies analyzing movement patterns and 

providing feedback. For example, in an on-ice specific example, E van der Kruk et al. (2016)  

demonstrated the use of IMU-instrumented klapskates to study the push-off phase in speed 

skating. As an example in ice hockey, past studies investigating sticks and shooting have 

demonstrated the feasibility to embed accelerometers in the puck to obtain performance specific 

measures of shooter technique (Lomond, Turcotte, & Pearsall, 2007; Villaseñor, Turcotte, & 

Pearsall, 2006). Most notably, Whiteside, Deneweth, Bedi, Zernicke, and Goulet (2015) used an 

Xsens IMU system to measure hip mechanics in ice hockey goalies in a study investigating the 

development of femoro-acetabular impingement. Whiteside et al. (2015) demonstrated the 
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feasibility of using the Xsens system in a study where the use of an optoelectronic system would 

not be possible due to the marker occlusion caused by goaltender equipment. Thus, IMU 

technology shows promise in analyzing whole body kinematics in ice hockey.  
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3.  Objectives and Hypotheses 

Adopting IMU technology in ice hockey movement skill evaluation may enhance the 

efficiency in data collection and rendering (i.e. real time; making it practical for training and 

coaching use) as well as bring the “lab to the ice” to offer externally valid measures of 

performance within the actual expanse of the ice hockey arena. Adoption of IMU technology in 

ice hockey would save time and financial resources and may increase the quality of research 

conducted.  However, the verification of IMU measurement accuracy for body and stick motion 

in selected ice hockey skills is warranted. 

 Hence, the objective of the proposed study is therefore to evaluate the use of a 

commercial IMU system (Xsens, Enschede, Netherlands) to capture whole-body kinematic data 

during an ice hockey shooting task. The kinematic data captured by the Xsens system will be 

compared against the data captured by a Vicon optoelectronic system, which will act as a 

reference standard. The measurement error and curve similarity between the data measured by 

the two systems will be assessed during static shooting tasks in an in-lab environment.  

 Similar to previous IMU validation studies, it is hypothesized that the Xsens system will 

perform with greater accuracy when measuring joint angles within the sagittal plane in 

comparison to the frontal and transverse planes. Furthermore, due to the dynamic nature of the 

task being measured, it is hypothesized that the observed measurement error in this study may be 

greater than what has been reported in other studies. Lastly, it is hypothesized that marginal 

temporal effects on measurement error may be present, resulting in greater error in the later 

phases of data collection sessions. 
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4.  Methods 

4.1 Participants 

 Ten ice hockey players participated in the current study. Participant playing levels ranged 

from junior to university ice hockey; all participants had played hockey in the past calendar year 

and were free of serious injuries at the time of data collection. Descriptive statistics for the 

participants are given in Table 1. Prior to data collection, testing procedures were explained in 

written and oral format to the participants, who then signed an information and consent form in 

accordance with the Tri-Council Policy Statement on Ethical Conduct for Research Involving 

Humans (McGill REB II, File #: 375-0216). 

Table 1 Descriptive statistics of participants. 

Age (yrs) 

mean ± SD 

Height (m) 

mean ± SD 

Weight (kg) 

mean ± SD 

Experience (yrs) 

mean ± SD 

26.70 ± 5.0 1.8 ± 0.1 87.6 ± 7.9 21.3 ± 3.8 

 

4.2 Testing Instrumentation 

 4.2.1 Vicon Optoelectronic Motion Capture 

 A Vicon optoelectronic system (Vicon, Oxford, UK) was used as a standard reference of 

comparison to the Xsens MVN Link system. The Vicon system consisted of 18 cameras: 8 T10S, 

2 T40S, 4 Vantage V5 and 4 Vero 2.2 cameras recording at a sampling rate of 240 Hz. The 

cameras were mounted on tripods at various heights surrounding the capture area and were 

connected to an MX Giganet connection Hub and desktop computer. The camera positions 

remained consistent throughout the entire data collection. The in-lab motion capture volume’s 

dimension was approximately 8.0 m long x 3.4 m wide x 2.0 m high, described in more detail in 

Section 4.3. 52 retroreflective spherical markers (14 mm diameter) were placed on the 
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participant in accordance with an adapted version of the Plug-in Gait full body model (Nexus 

2.6, Vicon, Oxford, UK), Figures 1 and 2. The single forearm marker was replaced by a cluster 

of four markers with medial and lateral forearm markers placed distal to that cluster. The wrist 

and hand markers were replaced by clusters of five markers placed on each hockey glove worn 

by the participants during data collection. Foot marker placement remained the same; however, 

these markers were placed on the exterior of the ice hockey skates worn by the participant. An 

additional four markers were placed on the puck, ten markers were placed along the stick’s shaft 

and blade and eight markers were placed along the posts and cross-bar of the net. These markers 

were used primarily for event detection calculations in post data processing. Pre-testing for the 

Vicon system involved a palms-down, forward-elbows bent static calibration pose held by each 

participant for five seconds. This calibration was done to expose all markers to determine the 

model of each participant’s initial coordinate system’s reference frame. 



28 
 

 

Figure 1 Reflective marker placement in adapted Plug-in Gait model. 
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Figure 2 Reflective marker placement on gloves, stick and puck. Markers on the stick are 

indicated by the red arrows. 

 

 4.2.2 Xsens IMU Motion Capture 

 The Xsens MVN Link system (Xsens, Enschede, Netherlands) was the Inertial 

Measurement Unit (IMU) system used for this study. The MVN Link system consists of 17 IMU 

sensors connected through wires about the entire body. Sensors were placed on the head, pelvis, 

sternum and along all four limbs of the body, as seen in Figure 3. Through the wire leads, the 

sensors communicate vis-à-vis to a “body pack” worn on the participant’s back that in turn 

communicates using a Wi-Fi connection access point. Like the Vicon system, the MVN Link 

system captured data at a sampling frequency of 240 Hz. The indoor office and outdoor/indoor 

open space range for data capture is reported to be 50 m and 150 m, respectively (Xsens, 2018), 

greatly exceeding the typical capture volume of an optoelectronic system. The Xsens system 

must also be calibrated prior to data collection. This calibration process required the participant 

to stand in a static N-pose (neutral posture) or static T-pose (arms out 90° to the side, and palms 

down) for approximately 4 seconds before walking in a straight line forward for approximately 

10 m, then walking back to the origin to resume the static posture. Xsens then will indicate the 
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quality of calibration which may result in “good”, “acceptable”, “poor” or a failed calibration. 

The N-pose was used, as recommended by the manufacturer (Xsens, 2018) and only “good” 

calibrations were accepted during this study. The Xsens MVN software provides different 

“scenarios” to choose from that are mainly dependent on the way the user interacts with the floor 

of the environment. The “No-Level” scenario, where the user’s avatar is fixed in one global 

position at the pelvis, was selected for this study. This scenario was best for studies that were not 

concerned with global positioning or environmental interactions. Furthermore, this scenario was 

best suited for tasks such as skating where, unlike walking or running, contact events between 

the foot and the ground are not well defined (H. Schepers et al., 2018). 
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Figure 3 IMU sensor placement in accordance with Xsens MVN model. 

 

4.3 Testing Protocol 

 In-lab testing allowed for the evaluation of the Xsens system in a controlled and 

optimized environment prior to its use on-ice. This environment ensured strong marker visibility 

and high data quality captured by the Vicon cameras to serve as a reference. Furthermore, the 

fixed and dedicated in-lab set-up allowed for the collection of a large amount of trials in a shorter 

period of time. The testing took place in the Ice Hockey Research Lab at Currie Gymnasium on 
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campus at McGill University in Montréal, Québec. The 18 Vicon cameras were placed around a 

synthetic ice surface (Viking, Toronto, Canada) of dimensions 3.4 m wide x 8 m long (Figure 4). 

 Prior to testing, a participant’s body anthropometrics were measured as necessary for the 

respective three-dimensional models associated with the Xsens and Vicon systems (see Table 2). 

Subsequently, the Xsens system was mounted on the participant. The Xsens sensors were 

secured to the body using double-sided tape placed between the sensor and participant’s skin, 

with additional medical tape placed over top of each sensor for security. This process was used 

for all sensors with the exceptions of the hand sensors (worn via gloves), head sensor (placed 

inside of a headband) and the foot sensors (taped exterior to boot laces). With sensors in place, 

the participant put on a tight fitting Xsens T-shirt that contained pockets for the Xsens body 

pack, battery pack, and sensors’ wires. In addition, the participant was fitted with a full-body, 

tight fitting Velcro suit (OptiTrack, Corvallis, USA). Retro-reflective markers for the Vicon 

system were placed on the Velcro suit at the appropriate anatomical locations in accordance with 

the adapted Plug-in gait specifications. The participant was then fitted with a pair of skates 

(Bauer Vapor 1X) and were given a pair of gloves (Bauer Nexus) and a Bauer Vapor 95 flex P92 

curve stick (Bauer Hockey Ltd., Blainville, Canada). Once the participant was fitted with their 

appropriate skate size, the Xsens sensors for the feet were placed on the top of the skate boot 

(roughly the center of where the laces lay) and secured with Gorilla Tape (Gorilla Glue 

Company, Ohio, USA). The participant was then required to complete the calibration process for 

both systems, as described in Sections 4.2.1 and 4.2.2. Subsequently, the participant was given 

time to warm-up and get accustomed to the synthetic ice surface by taking practice shots on the 

net. Once the warm-up was complete, the Xsens system was calibrated once more prior to the 

start of testing.  
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Table 2 Required anthropometric measurements for the respective biomechanical models  

of motion capture system. 

Vicon Plug-In Gait Model Xsens MVN Link Model 

Height Height 

Mass Foot Length 

Ankle Width Ankle Height 

Knee Width Sole Height 

Leg Length Knee Height 

Hand Thickness Hip Height 

Wrist Width Hip Width 

Elbow Width Arm Span 

Shoulder Offset Shoulder Width 

Shoulder Width Shoulder Height 

 

Each participant performed 10 static standing wrist shots and 10 static standing slap shots 

for a total of 20 shots. Trials were recorded by both motion capture systems simultaneously. The 

two systems were synchronized using the Xsens MVN Awinda Station (Xsens, Enschede, 

Netherlands) at the start of recording, allowing both systems to capture the exact same 

movements in the same time. For each trial, the puck was placed approximately 5 m from the 

center of the net. At the beginning of each trial, participants stood adjacent to the puck and did 

not skate into the shot. Once instructed to begin, the participants were asked to aim at a 0.3 m 

diameter circular target suspended from the crossbar, then shoot the puck at maximum velocity 

and accuracy. Additionally, participants were asked to shoot like they normally would in a game 

and did not receive specific instructions with respect to their technique. Shot trials were divided 

into one test block of 10 wrist shots and one test block of 10 slap shots. Test order was 

randomized between participants. In between testing blocks, a brief rest period was provided and 

the Xsens system was re-calibrated.  
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Figure 4 Layout of the in-lab data collection set-up.  
 

4.4 Data Analysis 

 4.4.1 Data Processing 

Data captured using the Vicon cameras was processed using Vicon Nexus 2.6 software. 

Processing consisted of marker data identification (“labelling”) and gap filling (interpolating 

missing marker positions). This “processed” data from the Nexus software were then imported 

into Visual3D software (Ver 5.01.23, C-Motion, Germantown, USA) where data were filtered 

using a 4th order Butterworth filter with a cut-off frequency of 25 Hz and all 3D calculations and 

event detections were performed. With respect to the data captured using the Xsens system, this 

data were processed using the built-in Xsens MVN Analyze software (Xsens, Enschede, 

Netherlands) while joint angles were imported in Matlab R2018b software (Mathworks, Natick, 

MA, USA). Through the use of the biomechZoo toolbox (Dixon, Loh, Michaud-Paquette, & 

Pearsall, 2017), shot events were verified and data was organized and normalized.  
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 4.4.2 Joint Kinematic Variables 

 The MVN Link joint angle data were compared to their respective data from Vicon \ 

Visual 3D during the two static shooting tasks. Joint angles were measured for the ankle, knee, 

hip and shoulder joints of both sides, as well as the head and trunk. The elbow and wrist joints 

were excluded due to the presence of hockey gloves covering the wrists, reducing the accuracy 

of elbow and wrist kinematics captured by the Vicon system. The selected variables were 

consistent with the variables measured by Michaud-Paquette et al. (2011). 

4.4.3 Joint Angle Calculations 

 Joint angles calculated with Vicon \ Visual3D data served as the reference angles (“gold 

standard”) for comparison with the Xsens angles. Joint center locations were estimated using 

anatomical landmarks and anthropometric measurements. Joint angles for the ankle, knee and hip 

were defined by XYZ rotation, consistent with the joint coordinate systems described by G. Wu 

et al. (2005) and Grood and Suntay (1983). X-rotation was defined as flexion (+) and extension 

(-), while Y-rotation was defined as adduction (+) and abduction (-) and Z-rotation was defined 

as internal rotation (+) and external rotation (-). Similarly, head angles were measured with 

respect to XYZ rotation around the thorax where X-rotation was defined as extension (+) and 

flexion (-), Y-rotation was defined as side flexion (right +/left -) and Z-rotation was defined as 

rotation (left +/right -). Trunk angles were defined by YXZ rotation with respect to the pelvis 

where X-rotation was defined as extension (+) and flexion (-), Y-rotation was defined as side 

flexion (right +/left -) and Z-rotation was defined as rotation (left +/right -). Finally, shoulder 

angle calculations used a Z-Y-Z rotation sequence, in accordance with the ISB recommendations 

and G. Wu et al. (2005). Consistent with the C-Motion Plug-In Gait guidelines, the shoulder joint 

centre was inferior to the acromion marker by a distance combining the measured shoulder 
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radius and the marker radius (C-motion, Germantown, USA). X-rotation was defined as 

horizontal abduction where 0° was abduction and 90° was forward flexion. Y-rotation was 

defined as rotation about the humerus Y-axis where negative values represent elevation. Lastly, 

Z-rotation was defined as internal (+) and external (-) rotation. 

 With respect to the Xsens MVN system, joint angles followed ISB calculation 

recommendations (H. Schepers et al., 2018). Kinematic measurements require “sensor-to-

segment calibration” and anthropometric measurements in order to track segment orientations 

(H. Schepers et al., 2018). When calculating joint angles, Xsens uses a coordinate frame with the 

Y-axis aligned with the vertical, the X-axis pointing forward and the Z-axis pointing laterally. 

The difference in orientations between the distal and proximal segments is determined when 

calculating joint angles. The resulting difference is a quaternion that then undergoes Euler angle 

conversion in accordance with guidelines set by ISB and Grood and Suntay (1983). Joint angles 

are then calculated using the ZXY sequence where Z-rotation is defined as flexion/extension, X-

rotation is defined as abduction/adduction and Y-rotation is defined as internal and external 

rotation. The “C1/Head” joint was used to define the head, while the Pelvis/T8 joint was used to 

define the trunk. It should be noted that this sequence of rotations is the same as that for most 

joints calculated using the Plug-In Gait model in Visual3D, with the exception of axis names. 

Subsequently, the axes in the Xsens MVN system were re-named to correspond with the Vicon 

system data where X-rotation represents flexion/extension, Y-rotation represents 

abduction/adduction and Z-rotation represents internal and external rotation. A limitation when 

using superficial markers and sensors to estimate joint locations and kinematics is the presence 

of soft tissue artifact which can cause increased error, especially during dynamic tasks. 
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 4.4.4 Event Detection 

 Signal events were defined in Visual3D, based on the data recorded using the Vicon 

system, but were applied to both data sets’ waveforms recorded by both systems. Events were 

calculated using the stick and puck markers with respect to the global coordinate system. The 

global coordinate system was defined where the Z axis was vertical to the synthetic ice surface, 

with positive Z was towards the ceiling of the lab space. The X-axis was perpendicular to the 

direction facing the net. Alternatively, the X-axis was parallel to the cross-bar of the net (positive 

towards the right post). Finally, the Y-axis was the cross-product of Z and X where the midpoint 

between the net’s post was situated on the positive Y-axis in the global coordinate system. Six 

events in sequence order were defined for the slap shot, while four events were defined for the 

wrist shot. These events are described in detail in Table 3. 
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Table 3 Names and descriptions of events for the slap shot and wrist shot. 

Shot Type Event Description 

Slap Shot 

DRAW The global minimum of the B3 marker of the blade in the 

global Z direction. i.e. the beginning of the backswing   

TOP 
The top of the backswing when the B1 marker of the blade was 

at its highest position along the global Z-axis. i.e. the 

beginning of the downswing  

GRND 
The maximum blade acceleration in the Z direction between 

the TOP event and the CON event. i.e. when the blade made 

contact with the ground   

CON 
The frame prior to the frame when the velocity of the puck in 

the Y direction exceeded 5.0 m/s. i.e. when contact was made 

between the puck and the stick  

REL 
The frame when the distance between B3 marker on the blade 

and the puck exceeded 0.075 m. i.e. when the puck had been 

“released” and is no longer in contact with the stick  

FOLTHRU 

The frame when blade velocity in the Z direction crossed 0, 

indicating that the stick was heading in the downward 

direction after the shot was taken. i.e. the start of the follow-

through phase of the shot  

Wrist Shot 

BACK 

The final instance when blade velocity in the Y direction 

passed 0.05 m/s prior to the FOR event. i.e. the frame where 

the puck was drawn back with the stick just prior to the 

beginning of forward progression of the puck  

FOR 

The frame where the blade begins to accelerate in the positive 

Y-direction (direction of puck movement) with a minimum 

threshold of 150 m/s2. i.e. when the participant began loading 

the stick and the blade was advancing forward  
 

REL 
The frame when the distance between B3 marker on the blade 

and the puck exceeded 0.09 m. i.e. when the puck had been 

“released” and is no longer in contact with the stick  

FOLTHRU 

The frame when blade velocity in the Z direction crossed 0, 

indicating that the stick was heading in the downward 

direction after the shot was taken. i.e. the start of the follow-

through phase of the shot 

 

Additionally, events known as PRE20 and POST20 were defined for both shot types. The 

PRE20 event was defined as 20 frames prior to the first event. More specifically, the PRE20 

event was defined as 20 frames before the DRAW event for the slap shot and 20 frames before 



39 
 

the BACK event for the wrist shot. The POST20 event was defined as 20 frames after the 

FOLTHRU event occurred and this was consistent between both shot types. 

 All trials were inspected for completeness, data quality and event placement prior to the 

statistical analysis. Trials were removed if certain events were unable to be detected in Visual3D; 

for example, when stick or puck markers had fallen off or went undetected by the Vicon system. 

Trials were also inspected for dropped frames. It was found that Xsens MVN Awinda Station 

synchronization resulted in inconsistent discrepancies in the number of frames recorded by the 

two systems for a given trial. On other occasions, the “stop recording” trigger from the Xsens 

system did not always trigger the Vicon system to stop recording, resulting in larger 

discrepancies. As a result, trials with frame discrepancies exceeding three frames (0.0125 sec) 

were excluded from the analysis.  

 4.4.5 Data Normalization 

 . Waveforms were normalized to 101 data points, scaled to 100% of shot execution, with 

the PRE20 and POST20 events serving as the beginning and end, respectively. The TOP event 

served as the division event between back and fore swing for the slap shot trials, while the FOR 

event served as the middle event for the wrist shot trials. The data were also normalized to 

account for shot side handeness. “Contralateral” and “ipsilateral” replaced “left” and “right” 

when identifying limb-specific joints. For example, a left-handed participant’s left ankle was 

referred to as their ipsilateral ankle, while their right ankle was referred to as their contralateral 

ankle and vice versa. 



40 
 

4.5 Statistical Analysis 

 Root mean square error (RMSE) and the coefficient of multiple correlation (CMC) were 

used to compare the joint angles in all three planes derived between Vicon and Xsens systems. 

RMSE was used to identify the differences in joint angle values and CMC was used to evaluate 

curve similarity between respective joint angle waveforms. Both descriptive statistics were 

calculated using Matlab R2018b. Additional analysis included assessing the performance of the 

Xsens system over time. Paired Samples T-tests (α = 0.05) were used to analyze the differences 

in mean RMSE between the first and last trials. 

 4.5.1 Coefficient of Multiple Correlation 

 The coefficient of multiple correlation (CMC) is an effective and standard method of 

evaluating the curve similarity between waveforms (Di Marco et al., 2018; Garofalo et al., 2009; 

Kadaba et al., 1989). Demonstrated by Kadaba et al. (1989), CMC is a commonly used method 

to compare time series measures (Di Marco et al., 2018; Garofalo et al., 2009; Lee et al., 2003), 

including similar studies comparing the waveforms of motion capture technologies (Mayagoitia 

et al., 2002; Robert-Lachaine et al., 2017b). The CMC calculation returns a value between 0 and 

1, with the criteria where:  

- CMC ˂ 0.60 indicates “poor similarity” 

- 0.60 ≤ CMC ˂ 0.75 indicates “moderate similarity” 

- 0.75 ≤ CMC ˂ 0.85 indicates “good similarity” 

- 0.85 ≤ CMC ˂ 0.95 indicates “very good similarity” 

- 0.95 ≤ CMC˂ 1.00 indicates “excellent similarity”  

 

(Di Marco et al., 2018; Garofalo et al., 2009) 
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The CMC formula used in this study is outlined below. The formula was based on the 

calculations performed by Ferrari et al. (2010), which was an adapted version of the formula 

demonstrated by Kadaba et al. (1989). 

𝐶𝑀𝐶 =  √1 −  
∑ [∑ ∑ (𝑌𝑡𝑠𝑓 −  �̅�𝑡𝑓)

2
/ 𝑇𝐹𝑔(𝑆 − 1)𝐹

𝑓=1
𝑆
𝑠=1 ]𝑇

𝑡=1

∑ [∑ ∑ (𝑌𝑡𝑠𝑓 − �̅�𝑡)
2

/ 𝑇(𝑆𝐹𝑔 − 1)𝐹
𝑓=1

𝑆
𝑠=1 ]𝑇

𝑡=1

 

T = Trials (number of trials for a given participant) 

S = Systems (2 systems: Xsens and Vicon) 

F = Frame (101 frames per trial) 

 

In the CMC formula above, 𝑌𝑡𝑠𝑓 represents the data point at frame f of the waveform for 

system s of trial t. �̅�𝑡𝑓 represents the mean data point at frame f for trial t, while �̅�𝑡 represents the 

grand mean of all frames for the waveforms of both systems for trial t. Variables T, 𝐹𝑔 and S are 

constants where S is 2 and 𝐹𝑔 is 100. T is the number of trials for a specific participant and 

therefore varied depending on the participant.  

Ferrari et al. (2010) also described the calculation of the offset between waveforms where 

the mean of one waveform was subtracted by the other waveform. Calculating the CMC with this 

offset included takes into the account the effect of this magnitude offset on overall similarity. If 

this offset is comparable with a joint’s range of motion however, this can lead CMC values to 

become complex numbers. CMC values were thus recalculated with the removal of the offset, 

and CMC values increased noticeably (Ferrari et al., 2010). In the current study, the offset 

between system waveforms was set to zero, removing the effect of the offset on the CMC value 

and using CMC solely to evaluate curve similarity while RMSE served as a measurement of 

angle magnitude differences.  
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5.  Results 

 An RMSE value was calculated for each trial, while CMC values were calculated for 

each participant. Both RMSE and CMC values were averaged across all participants in the study. 

RMSE and CMC values were comparable between wrist and slap shots (Tables 4 and 5). In 

general, the Xsens system’s best accuracy (in reference to Vicon measures) were about the X-

axis for both wrist shots and slap shots. Lower limb joint measures were more accurate than in 

the upper body: ankle and knee joint RMSE were less than 10° (except for ipsilateral knee). Hip 

joints’ RMSE were lowest about the Y-axis (less than 7°) and were comparable between the X- 

and Z-axes. Both contralateral and ipsilateral shoulder joints had large RMSE, particularly about 

the Z-axis. Higher Shoulder RMSE were also found during the slap shot than the wrist shot. 

Trunk RMSE values were least in lateral flexion about the Y-axis while those for the head 

RMSE were least about the Z-axis.  

When averaged across all joints (Tables 6 and 7) RMSE were slightly lower about the Y-

axis than the X-axis for the slap shot trials, while the opposite was seen for the wrist shot trials. 

RMSE values were substantially higher in the Z-axis for both shot types. In the tables, below, 

CMC indicating very good or excellent curve similarity were represented by the green cells. 

Moderate or good curve similarity was represented by the yellow cells while poor similarity was 

represented by the red cells. It should be noted that the averages presented below do not capture 

the inter-subject variability that was observed. On average, ranges of approximately 14° were 

observed across subjects about the X and Y axes, with higher ranges observed about the Z-axis. 
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Table 4 Mean RMSE (degrees) and CMC (R) values for all joints during the slap shot trials. 

RMSE values were averaged across all trials and all participants, while CMC values were 

averaged across all participants. Missing CMC values indicate complex numbers. 

Joint X Y Z 

RMSE CMC RMSE CMC RMSE CMC 

Contralateral Ankle 4.9 0.89 5.1 0.82 25.5 0.40 

Ipsilateral      Ankle 4.2 0.87 5.9 0.75 25.6 0.57 

Contralateral Knee 9.7 0.96 9.5 0.86 27.8 0.69 

Ipsilateral      Knee 6.9 0.95 10.6 0.78 35.2 0.74 

Contralateral Hip 15.4 0.97 6.9 0.99 14.1 0.82 

Ipsilateral      Hip 14.4 0.97 4.9 0.92 19.5 0.76 

Contralateral Shoulder 23.9 0.91 25.7 0.57 88.2 - 

Ipsilateral      Shoulder 19.0 0.93 28.2 0.65 105.5 0.37 

Trunk 15.2 0.80 6.6 0.91 13.5 0.96 

Head 14.4 0.82 17.9 0.52 10.5 0.98 

 

Table 5 Mean RMSE (degrees) and CMC (R) values for all joints during the wrist shot trials. 

RMSE values were averaged across all trials and all participants, while CMC values were 

averaged across all participants. Missing CMC values indicate complex numbers. 

Joint X Y Z 

RMSE CMC RMSE CMC RMSE CMC 

Contralateral Ankle   4.6 0.89   5.5 0.86 26.6 0.40 

Ipsilateral      Ankle   4.4 0.92   7.7 0.74 28.9 0.57 

Contralateral Knee   9.3 0.96   8.34 0.84 27.6 0.82 

Ipsilateral      Knee   7.9 0.90 12.5 0.78 35.1 0.59 

Contralateral Hip 11.5 0.95   6.4 0.98 13.2 0.84 

Ipsilateral      Hip 16.4 0.98   5.5 0.84 19.0 0.80 

Contralateral Shoulder 14.7 0.83 14.3 0.85 94.8 - 

Ipsilateral      Shoulder 15.3 0.93 39.3 - 58.8 - 

Trunk 13.1 0.91   5.3 0.87   8.9 0.94 

Head 20.4 0.80 15.3 0.47 11.2 0.96 

 

 Comparing joint angle-time series curves between Vicon and Xsens, CMC values about 

most joints’ X-axes were greater than 0.85, indicating a very good or excellent curve similarity. 

CMC values were lower about the Y and Z-axes, suggesting good and moderate curve similarity, 

respectively. These ratings are in accordance with the criteria provided by Garofalo et al. (2009) 

and Di Marco et al. (2018).  
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 While CMC values in the Y-axis were lower on average, some joint waveforms did 

exhibit very good or excellent similarity. For example, the contralateral hip joint waveforms, in 

particular, showed excellent curve similarity with a CMC values of 0.99 and 0.98 during the slap 

and wrist shots, respectively. While other joints exhibited strong similarity, such as the trunk or 

contralateral knee, average CMC was brought down by poor curve similarity seen in joints such 

as the head and shoulder. Finally, CMC values for the rotation waveforms in the Z-axis ranged 

from poor similarity to good similarity with the exception of the head and the trunk that 

conversely demonstrated very good or excellent similarity values. 

Table 6 Mean RMSE (degrees) and CMC (R) values across all joints. 

Shot Type X Y Z 

Mean 

RMSE 

Mean 

CMC 

Mean 

RMSE 

Mean 

CMC 

Mean 

RMSE 

Mean 

CMC 

Slap Shot 12.8 0.91 12.1 0.78 36.5 0.70 

Wrist Shot 11.8 0.91 12.0 0.80 32.4 0.74 

 

Table 7 Mean RMSE (degrees) and CMC (R) values across all joints with the contralateral and 

ipsilateral shoulder RMSE excluded. 

Shot Type X Y Z 

Mean 

RMSE 

Mean 

CMC 

Mean 

RMSE 

Mean 

CMC 

Mean 

RMSE 

Mean 

CMC 

Slap Shot 10.7 0.91 8.4 0.78 21.4 0.70 

Wrist Shot 11.0 0.91 8.3 0.80 21.3 0.74 
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Figure 5 Radar charts displaying Mean RMSE (degrees) values for each joint across all 

participants. RMSE values are displayed in each axis (Top- X, Middle- Y, Bottom- Z) and for 

each shot type (Left- Slap, Right- Wrist)
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Figure 6 Average knee waveforms of all participants during the slap shot task. Blue waveforms represent Vicon reference data while 

the red waveforms represent the Xsens data. 95% confidence bands are represented by the coloured bands. 
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Figure 7 Average shoulder waveforms of all participants during the slap shot task. Blue waveforms represent Vicon reference data 

while the red waveforms represent the Xsens data. 95% confidence bands are represented by the coloured bands
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RMSE values were also compared between the first and last trials as an assessment of 

system performance (i.e. stability) over time. Paired samples T-tests indicated that there were no 

significant differences (α = 0.05) in RMSE values between the first and last trials across all 

joints, all axes and both shot types. Mean RMSE values for the two trials are displayed in Tables 

8 and 9 where it can be observed that, in some cases, RMSE actually decreased from the first 

trial to the last. It should be noted that one participant was excluded from this analysis for the 

slap shot as the first and last trials were removed during the data verification process. 

Table 8 Mean RMSE values of participants for each joint during slap shot trials: first and last 

trials and their differences shown. No significant differences (p < 0.05) found. 

Joint X Y Z 

Mean RMSE 
Diff 

Mean RMSE 
Diff 

Mean RMSE 
Diff First 

Trial 

Last 

Trial 

First 

Trial 

Last 

Trial 

First 

Trial 

Last 

Trial 

Contralateral Ankle 5.1 5.6 0.5 4.6 5.4 0.8 24.4 25.7 1.3 
Ipsilateral Ankle 4.9 4.3 -0.6 6.0 5.5 -0.5 24.3 25.8 1.5 
Contralateral Knee 9.7 10.5 0.8 8.8 10.5 1.7 25.7 27.8 2.1 
Ipsilateral Knee 7.0 7.0 0.0 10.5 10.5 0.0 33.1 34.0 0.9 
Contralateral Hip 15.2 15.9 0.7 6.3 7.5 1.2 14.8 15.4 0.6 
Ipsilateral Hip 14.6 14.3 -0.3 4.8 5.3 0.5 19.7 19.2 -0.5 
Contralateral Shoulder 22.3 24.6 2.3 24.9 26.8 1.9 87.3 86.1 -1.2 
Ipsilateral Shoulder 17.6 18.6 1.0 26.1 29.5 3.4 106.9 101.9 -5.0 
Trunk 14.2 15.2 1.0 5.5 6.9 1.4 12.2 14.4 2.2 
Head 13.6 14.9 1.3 17.2 18.4 1.2 10.0 10.3 0.3 
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Table 9 Mean RMSE values of participants for each joint during wrist shot trials: first and last 

trials and their differences shown. No significant differences (p < 0.05) found. 

Joint X Y Z 

Mean RMSE 
Diff 

Mean RMSE 
Diff 

Mean RMSE 
Diff First 

Trial 

Last 

Trial 

First 

Trial 

Last 

Trial 

First 

Trial 

Last 

Trial 

Contralateral Ankle 4.8 4.6 -0.2 5.3 5.7 0.4 26.1 25.5 -0.6 
Ipsilateral Ankle 4.8 4.1 -0.7 7.2 7.7 0.5 30.9 27.1 -3.8 
Contralateral Knee 9.8 8.8 -1.0 8.4 8.8 0.4 28.4 26.0 -2.4 
Ipsilateral Knee 7.1 7.9 0.8 12.6 12.4 -0.2 34.6 34.7 0.1 
Contralateral Hip 11.1 11.9 0.8 6.6 6.7 0.1 12.1 12.8 0.7 
Ipsilateral Hip 16.4 16.7 0.3 5.3 5.3 0.0 19.4 19.4 0.0 
Contralateral Shoulder 13.3 15.6 2.3 13.0 14.1 1.1 97.4 93.9 -3.5 
Ipsilateral Shoulder 15.9 15.2 -0.7 39.9 39.8 -0.1 56.3 60.7 4.4 
Trunk 13.2 13.2 1.0 5.5 5.4 -0.1 9.7 9.4 -0.3 
Head 19.2 20.8 1.6 14.6 15.5 0.9 10.6 11.2 0.6 
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6.  Discussion 

 This study examined movement techniques of static ice hockey slap and wrist shot tasks 

by way of body joint angular movements derived concurrently from two motion capture systems: 

the Xsens and Xsens MVN model versus the “gold standard” Vicon and an adapted Plug-In Gait 

model. The purpose of this study was to determine how consistent these angular measures 

compared between the systems. In general, RMSE of joint angle measures indicated moderate 

correspondence about the X- and Y-axes (flexion/extension; abduction/adduction) but poor 

correspondence about the Z-axis (internal/external rotation). There were exceptions: in 

particular, the shoulder joints showed poor agreement between Vicon/Xsens measures. Trunk 

RMSE was lowest about the Y-axis, while rotation about the Z-axis yielded the lowest head 

RMSE. With regards to the hips, agreement varied by axes: good agreement was seen about the 

Y-axis in contrast to moderate agreement about the X- and Z-axes. This was consistent with the 

findings of H. Schepers et al. (2018).  

On average across all joints, CMC’s about the X-axis indicated very good similarity 

(0.91) between Vicon/Xsens joint angles-time series waveforms, as well as good (0.78-0.80) and 

moderate (0.70-0.74) curve similarities were seen in the Y- and Z-axis, respectively. This 

suggests that the Vicon and Xsens systems detected proportionally similar relative joint angular 

movements throughout the task, despite higher RMSE values. The above results are consistent 

with those of Wouda et al. (2018) who found lower joint angle differences and higher correlation 

values in the sagittal plane, while lowest correlation values were found in the Z-axis. H. Schepers 

et al. (2018) also found slightly lower RMSE’s in the sagittal plane compared to the frontal and 

transverse planes.  
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 Notably the mean RMSE’s of all joints and axes were inflated due to the substantial 

shoulder joint’s RMSE, especially in the Z-axis (see Table 7 with adjusted mean RMSE 

excluding shoulder joints). Removing the shoulder from the sum average would decrease X, Y, Z 

axes RMSE’s by 2°, 4°, and 15°, respectively. In general, shoulder angle measures, particularly 

about the Z-axis, should be interpreted with additional caution compared to other axes or joints 

(Figure 7). Inconsistencies in Vicon measurements about the Z-axis may have been the result of 

soft tissue artefact or the occurrence of collinearity when the upper arms were fully extended (Y. 

Zhang, Lloyd, Campbell, & Alderson, 2011). Consequently, shoulder rotation about the Z-axis 

measured by the Xsens system may have been compared to erroneous data and should be 

interpreted with caution.  

Results from other comparative IMU versus optical 3D motion capture studies support 

the above findings. Kim and Nussbaum (2013) measured the mean and peak average errors 

(MAE/PAE) for the knee, hip, shoulder and L5/S1 joints. Across three different axes, shoulder 

joint movement showed the greatest MAE and PAE (less than 6°) for the majority of tasks. In 

comparison, a study from Luinge, Veltink, and Baten (2007) investigated upper arm orientation 

during basic tasks commonly performed during morning and eating routines, such as brushing 

one’s teeth. When comparing IMU results to a Vicon reference, Luinge et al. (2007) found errors 

in orientation of over 40° that were further decreased by incorporating anatomical elbow 

constraints. The study by Godwin et al. (2009) of upper limb dynamic movements such as 

washing a table and asymmetric lifting found higher RMSE for upper arm segment orientations 

compared to other segments including mean Z-axis RMSE of up to 25° and a maximum Z-axis 

RMSE of 74°. Thus, it was suggested that these RMSE were higher in the non-dominant axes 

during the movements (Godwin et al., 2009; Kim & Nussbaum, 2013). While the motions 
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examined by Godwin et al. (2009) are quite different from those examined in the current study, 

they involved similar rapid changes in direction in upper limb motion. Zhou and Hu (2007) 

suggested that rapid changes can cause IMUs to “overshoot” their measurements resulting in 

increases in the calculated error. This may apply to the current study as mean RMSE for the 

shoulder joints was typically higher during the slap shot than the slower executed wrist shot. 

Additionally, Robert-Lachaine et al. (2017b) reported that largest shoulder RMSE’s occurred 

between 20 and 40° and was “attributed to differences in the biomechanical models where the 

joint coordinate system and centre of rotation are not as anatomically comparable, as they are in 

other joints, between the MVN model and ISB recommendations.”   

While CMC and RMSE comparisons across joints and axes appear consistent with the 

literature, the overall magnitude of RMSE was slightly higher in the current study. For example, 

Robert-Lachaine et al. (2017b) reported lower limb RMSE’s within 7° about all three axes. The 

dynamic nature of the shooting tasks may have contributed to increased error, however, the error 

between the two systems has primarily been attributed to the sum of differences in their 

respective technologies and biomechanical models. Robert-Lachaine et al. (2017b) suggested 

that the error due to technology was relatively minimal, with most error attributed to model 

differences. As well, differences in upper limb calibration procedures (Xsens’ static neutral or T-

pose, in contrast to Vicon’s static pose: palms down, elbows flexed to 90°, forearms pronated 

from option 2 of the ISB Recommendations, G. Wu et al. (2005)) may contribute to divergent 

shoulder joint measures. In summary, though Vicon’s kinematic output was posited as the 

reference gold standard, the measurement (difference) observed between the Vicon and Xsens is 

largely an artefact of different anatomical models (i.e. a comparison of “apples and oranges”, 
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particularly with respect to the shoulder).  Further standardization of joint model definitions is 

required.    

In addition to the above, the accuracy of IMU systems is dependent on the complexity 

and duration of the tasks measured. Kim and Nussbaum (2013) concluded that greater error was 

typically associated with the tasks that required larger or whole-body movements. Furthermore, 

they found accuracy of the Xsens system decreased over time, suggesting a potential temporal 

effect on system accuracy. Robert-Lachaine et al. (2017b) stated similar conclusions, as RMSE 

values rose with increased complexity and duration of the task. Similar results were seen in other 

studies (Brodie et al., 2008; Godwin et al., 2009), while Plamondon et al. (2007) found lower 

error during shorter tasks compared to longer tasks when measuring trunk posture with an 

inertial sensor-based system.  

Thus, task complexity and duration must be taken into consideration when interpreting 

results or making comparisons between an IMU system and optoelectronic system, or across 

different tasks (Brodie et al., 2008; Godwin et al., 2009; Kim & Nussbaum, 2013; Plamondon et 

al., 2007; Robert-Lachaine et al., 2017b). In the current study, no significant differences were 

found between mean RMSE from the beginning and end phases of data collection blocks of 

approximately 10 minutes in length (10 trials per block with re-calibration between blocks).  

Further study is warranted to determine IMU based measurement accuracy of longer task 

duration and increased complexity within the context of ice hockey, as well as address how best 

to adapt biomechanical models (e.g. Vicon Plug-in Gait model when gloves worn) and 

calibration procedures to yield joint angle measures that end users have confidence in. 

Additionally, the presence of inter-subject variability should also be investigated in future studies 

that explore different task complexities and movement patterns during task completion.  
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This in-lab study’s controlled environment yielded high-resolution reference data that 

demonstrated the feasibility of using Xsens to examine ice hockey tasks. Ultimately, future 

Xsens based studies can be conducted within ice arenas, to examine skating drills, dynamic 

shooting drills or a combination of skating and shooting to mimic a game-like scenario over 

longer time windows. Xsens demonstrated its potential for practical (i.e. real time angle 

presentation) and less cumbersome data collection than optoelectronic camera-based systems.  

With further attention to model design and calibration procedures, Xsens joint angle 

measurement accuracy and/or agreement with other motion capture systems can be improved.  
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7.  Conclusion 

 The Xsens MVN Link system demonstrated comparable measures to those of the Vicon 

optoelectronic system. In general, when measuring joint kinematics during slap and wrist shots, 

low RMSE and high CMC about the X (sagittal) and Y (frontal) axes were observed between the 

motion captures systems. The RMSE and CMC across different joints and axes were consistent 

with the literature, though the dynamic nature of the tasks studied may have raised the overall 

RMSE, especially about the Z (transverse) axis (in particular about the shoulder). While some 

technological differences in capturing movement and computing angles were expected to 

contribute to RMSE, it is speculated that a large portion of the calculated difference error 

between systems was the result of differences in the systems respective biomechanical models 

and calibration procedures. Finally, no temporal effects (i.e. testing duration) on measurement 

error were observed over our testing blocks of approximately ten minutes. Future research is thus 

warranted to evaluate the performance of the Xsens system during longer and more complex, 

game-like tasks in an ice arena. 
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