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ABSTRACT

Cells are the basic units of life, and yet they are regulated by many delicate

and to some extent, fragile, subcellular processes that are crucial to their survival. A

simple genetic mutation could possibly clog up some important regulatory processes,

or perturb the function of the product it encodes, which might ultimately bring the

demise of the entire system. Therefore, it is important to gain more insights into

the many control processes of cell and the regulatory factors associated with them,

one prominent example of which would be the mechanism related to the RNA sub-

cellular localization that we would focus on almost exclusively in this study from a

computational perspective.

RNA subcellular localization mechanism is one of the most important, yet under-

appreciated, facets of the broader gene regulatory process, which helps with the

cellular organization and regulation on gene expression, via transporting the RNA

transcripts to their designated locations where their function, structure or translated

proteins are needed. It is generally accepted as a fact that RNA traicking mech-

anism is mediated between the trans-regulatory factors such as the RNA binding

proteins, and the cis-acting elements — short snippets of the transcript that contain

the RBP binding sites — which we call zipcode as they are considered to contain

information on its address of delivery.

The release of new RNA subcellular localization dataset has enabled us to build the

irst computational tool using state-of-the-art deep learning techniques, to predict

the localization outcome for the protein-coding RNA from mere transcript sequence,
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and subsequently to identify the zipcode elements thereof. Our proposed method

has achieved good accuracy compared to the baseline methods based on the k-mers

features, despite the intrinsic diiculty that arise from the complex and stochas-

tic interactions during traicking events, as well as the limitations imposed by the

available dataset.
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ABRÉGÉ

Les cellules sont les unités de base de la vie, et pourtant, elles sont régies par de

nombreux processus subcellulaires délicats et, dans une certaine mesure, fragiles, qui

sont essentiels à leur survie. Une simple mutation génétique pourrait éventuellement

obstruer des processus de régulation importants ou perturber le fonctionnement du

produit qu’elle encode, ce qui pourrait éventuellement entraîner la disparition de

l’ensemble du système. Par conséquent, il est important de mieux comprendre les

nombreux processus de contrôle de la cellule et les facteurs de régulation qui leur sont

associés, un exemple frappant étant le mécanisme lié à la localisation sous-cellulaire

de l’ARN sur lequel nous nous concentrerons presque exclusivement dans cette étude

à partir de une perspective de calcul.

Le mécanisme de localisation sous-cellulaire de l’ARN est l’une des facettes les plus

importantes, mais sous-estimée, du processus plus général de régulation des gènes,

qui facilite l’organisation cellulaire et la régulation de l’expression des gènes, via le

transport des transcrits d’ARN vers leurs emplacements désignés, où leur fonction,

leur structure ou des protéines traduites sont nécessaires. Il est généralement admis

que le mécanisme du traic d’ARN est régulé par des facteurs de régulation trans,

tels que les protéines de liaison à l’ARN, et les éléments agissant en cis, des extraits

courts du transcrit qui contiennent les sites de liaison à la RBP, qui nous appelons

zipcode car ils sont censés contenir des informations sur son adresse de livraison.

La publication d’un nouvel ensemble de données de localisation subcellulaire des

ARN nous a permis de créer le premier outil de calcul utilisant des techniques
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d’apprentissage approfondi de pointe, ain de prédire le résultat de la localisation

de l’ARN codant pour une protéine à partir d’une simple séquence de transcrip-

tion, puis d’identiier le éléments de zipcode de ceux-ci. Notre méthode proposée a

obtenu une bonne précision par rapport aux méthodes de base basées sur les car-

actéristiques de k-mers, malgré la diiculté intrinsèque résultant des interactions

complexes et stochastiques lors d’événements de gestion de traic, ainsi que des lim-

itations imposées par l’ensemble de données disponibles.
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CHAPTER 1
Introduction

1.1 Overview

This study is focused on the utilization and evaluation of machine learning

methods for the inference and prediction of RNA subcellular localization. Relevant

biological concepts on the gene regulatory landscape and the roles assumed by RNA

subcellular localization are given in Section 1.2, along with a succinct description

in Section 1.3 on the various mechanisms behind the multitude of subcellular traf-

icking events. The importance of RNA intracellular transportation is particularly

emphasized in Section 1.4. Our computational models are evaluated on a number of

RNA subcellular localization dataset, and we will introduce the relevant technolo-

gies that are used to generate these data in Section 1.5. We also provide a suicient

background on the deep learning tools that make up our computational models in

Chapter 2, as well as a literature review on the machine learning approaches used to

predict RNA-protein interaction and RNA subcellular localization in Chapter 3.

1.2 RNA subcellular localization in the gene regulatory landscape

As framed in the hypothesis of the Central Dogma irstly established by Francis

Crick [33], once the information has reached proteins, it cannot be transferred to

other proteins or reversed back to nucleic acids. The information encoded in the

DNA, on the other hand, may be passed down to the RNA via transcription, and
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henceforth to protein from messenger RNA (mRNA) via translation 1 . The dogma

itself, however, has eluded the discussion on the relevant control mechanism, which

is about the rate at which these transfers occur.

The product of a gene, in most cases a kind of protein, undergoes many steps in

the process of gene expression in eukaryotes, that are transcription, capping at the

5’ end, polyadenylation at the 3’ end, RNA splicing, RNA transportation and inally,

the translation into a protein, with or without post-translational modiication. These

procedures, beyond doubt, are highly controlled so that the gene product quantities

are maintained at a proper level spatially and temporally, to serve a lot of purposes,

one of which is to modulate the complex and intertwined events that often require an

appropriate amount and distance of cellular substances and molecules, for example

in the stage of embryonic development.

The various control mechanism constitutes the greater gene regulatory land-

scape, all serving the same purpose — to regulate the gene expression level — but

from diferent angles and at diferent stages. RNA, and more speciically, the mRNA

transportation plays an imperative part in this broad drama. The traicking of

mRNA to where the proteins are needed and then performing rapid on-site transla-

tion, indirectly lays its impact on the translation phase that entails a spatial control

over the protein distribution in the subcellular territories [22, 14]. It also represents

1 Although there are other types of information low, such as the reverse tran-
scription, in this study we would only look at the one that is most well-known , i.e.
DNA→RNA→protein, for simplicity.
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Figure 1–1: RBPs can bind to mRNA possessing speciic sequence/structure pat-
terns, at the 3’UTR or the protein-coding regions of the transcript.

an economical version of protein localization, since transporting the RNA templates

preserve more energy than its countless protein products.

The RNA localization mechanism is a stochastic process that involves many un-

certainty during the traicking events. A pool of RNA transcripts of a gene can be

transported to many diferent subcellular fractions, although a consistent and asym-

metric distribution can often be observed for the majority of the transcriptomes in

the previous experiments [12, 60]. Once a gene is transcribed in the nucleus produc-

ing a nascent RNA transcript, it will be prepared by diferent RNA binding proteins

(RBP) for the maturation event, forming ribonucleoprotein (RNP) complexes, and

then exported out of the nucleus if not retained, by the same regulatory elements

but probably of diferent types, into the cytoplasm and possibly to the membrane,

or even excreted beyond the boundary of the cell [22, 14].
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It is believed that the RNA localization mechanism involves a diverse popula-

tion of trans-regulatory factors, the RBPs, which stochastically bind to speciic RNA

sequence/structure patterns and cooperatively carry the transcript to its intended

destination. The RBP binding also happens dynamically during the traicking event,

i.e. an already bound RBP may fall of at some point and another RBP may bind

to the transcript and steer it to a new direction. A short and consecutive region

containing one or more RBP binding sites is usually identiied as the cis-acting el-

ement of localization, which has been named in the previous literature as zipcode

that usually resides in the 3’UTR as well as the protein-coding regions as shown in

Figure 1–1.

A set of known sequence-speciic RBP binding motifs have been mapped in

several previous studies [27, 80, 96, 97], as well as a recent one that augmented

sequence motifs with annotated RNA secondary structures [29]. They can be used

to align to the computationally imputed RBP binding motifs as an important mean

of model veriication.

1.3 Cellular mechanisms driving mRNA localization

The mRNA subcellular mechanism has been adequately characterized in various

studies of embryonic development. In general, it is mainly driven by three cellular

mechanism, that are transporting through the cytoskeleton, difusion followed by

local entrapment and localized from degradation [22, 14], as illustrated in Figure 1–

2.

The transportation through the cytoskeleton is via the microilament network

of cells for short range delivery, whereas long range transportation is through the
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microtubules. Once in the cytoplasm, messenger RNP complexes can be bound by

various motor proteins that favours directional movement through the above two

pathways, enabling subcellular traicking. A few examples are given in Figure 1–2:

(a) localization of ASH1 mRNA through the microilament network to the bud tip

of yeast cell, a highly modulated process involving various RBPs and translational

repressors [59]; (b) localization of β-actin mRNA from the nucleus to the leading edge

in some migratory cell types that enables directed cell migration, accompanied by

the zipcode binding proteins (ZBP1 and ZBP2) during the nuclear and cytoplasmic

transport [91]; (c) CAMKIIα mRNA to the dendrites synapses of neuron cells [39];

(d) localization of gurken and oskar mRNA to the anterior and posterior poles in

Drosophila oocytes [69]. A more detailed and dedicated explanation on these above

mRNA traicking examples are given in [14].

The difusion and entrapment scheme is simpler to the extent that in general

fewer transportation agents are involved. The RNA transcripts simply difused to

the lower concentration area of the cell and subsequently become anchored to that

location, albeit still could be assisted by a few RBPs. An example is provided in

Figure 1–2 (e), demonstrating the METRO pathway for Xcat mRNA difusion in

Xenopus oocytes [67].
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Figure 1–2: The three mechanism that drives mRNA intracellular transport, that

are transporting via cytoskeletal pathway (a)-(d), difusion followed by entrapment

(e) and protection from degradation (f). Reproduced from [14].
6



The third mechanism deals with protection from degradation, in which RNA

transcripts are degraded globally except for some speciic subcellular sites where the

degradation is disabled, therefore allowing mRNA transported there to be translated

into proteins. An example is given in Figure 1–2 (f), where the mRNA are degraded

in the cytoplasm and are only protected in the posterior pole of the Drosophila

embryo during its development [11].

1.4 Importance of the RNA localization

RNA subcellular localization takes on signiicant roles in the gene regulatory

landscape, especially in its ability to coordinate gene regulatory events in the post-

transcriptional phase, which necessitates the transportation of certain regulatory

RNAs to the periphery of or partitioned from their targets, such as the group of

microRNA (miRNA), base-pairing with the mRNA to obstruct translation [3, 10],

and the group of small interference RNA (siRNA) to cleave and degrade the mRNA

before translation [17]. Other examples from the short non-coding RNA (ncRNA)

include small nuclear RNA (scRNA), small nucleolar RNA (snoRNA), as well as

many long non-coding RNA (lncRNA) [22, 14], which all exhibit unique localization

pattern in the subcellular territories.

Recent studies have also suggested the existence of a certain RNA species called

enhancer RNA (eRNA), another kind of short ncRNA, that promotes gene expres-

sion, although the exact mechanism of their functionality has not been known [65,

100].

As for the family of mRNA, its localization accounts in part for the major

asymmetry observed in the protein distribution [110, 22, 14], since localizing the
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mRNA templates is a more eicient and energy-preserving option than transporting

the countless copies of translated proteins, a feature especially relied on by the neuron

cells for dendritic plasticity [22, 14]. It can also prevent protein from being translated

at positions that can have a wasteful or deleterious efect [22, 14]. mRNA may also

take on non-coding roles similar to those of ncRNA, such as acting as a scafold to

RNP complexes [22, 14].

The signiicance of RNA subcellular localization can also be appreciated from

the related disease pathogenesis, should the normal RNA traicking pathway be

afected either on the transporting agents leading to critical RBP malfunctions, or

on the cis-acting zipcode regions of mRNA. The related disease includes cancer,

neurological and muscular dysfunction [30, 22, 110]. One notable example would

be the Alzheimer’s Disease (AD), a dementia with symptoms of cognitive decline

and memory loss. According to the prevailing explanation, AD is triggered by the

abnormal accumulation of amyloid β-peptide (Aβ) plaques [51], the exposure of axons

to which further leads to increased localization and translation of ATF4 encoding

mRNA in the nucleus, which ultimately turns on a neurodegenerative program [9].

Additionally, the aberrant mis-localization of the lncRNA BC200 is also found to

be highly correlated with AD, whose implicated regulatory function leads to the

synaptodendritic deterioration [88].

Thus, understanding further into the RNA subcellular localization mechanism

would equip us with the necessary knowledge to design smart medicines that could

possibly have a remedial efect on the malfunctioned transportation agents.
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1.5 Technologies to map RNA localization

To the extent of our knowledge, the study into transcriptome subcellular local-

ization can either proceed with possibly time-lapsed microscopic imaging with the

help of luorescent tagging directly or indirectly to the mRNA molecules to visual-

ize its movement, or through biochemical manipulation followed by high-throughput

microarray or RNA-seq sequencing to measure the enrichment of RNA transcripts in

some speciic subcellular compartments [14]. We will later discuss more on the latter

approach, where two major technologies have emerged that enabled the evaluation

of our computational models, in Section 1.5.2 and Section 1.5.3. A complementary

overview on the microscopy based methods will be also given, although it is less

relevant to this study.

1.5.1 Microscopy imaging

This family of approaches has evolved chronologically from directly using ex-

ogenous luorescently labeled mRNA, to using luorescent probes, then to indirectly

labelling mRNA via luorescent RBPs.

The earliest approach via injecting exogenous luorescent-labelled mRNA can

be traced back to the experiment on maternal mRNA Vg1 in Xenopus oocytes [119].

Despite its welcoming simplicity, this approach has some major disadvantages, in

that the introduction of external mRNA molecules may have a deleterious efect, or

possibly alter the actual intracellular traicking dynamics due to mRNA saturation.

Improvements have soon been made, introducing the luorescent probes, which

only labels an mRNA when the transfected luorescent oligos have successfully at-

tached to the mRNA molecules. No longer interfering with the endogenous dynamics
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of the cell, however, it still brings up a new obstacle, which is the high background

noise due to the unattached luorescent oligos. A broad line of works have thus been

published to circumvent or suppress the background noise, such as the luorescence

only co-occurs with the oligo binding events [68, 70]. We would not discuss its many

variants in detail, and we would refer the interested readers to a review given in [14]

Section 5.2.

Finally, a newer and more appreciated technique has emerged that relies on the

interplay between two components: the Green Fluorescent Proteins (GFP) fusioned

to MS2 bacteriophage coat protein forming the MS2-GFP fusion protein, and RNAs

that contain the multimerized MS2-hairpin elements. The MS2-GFP fusion pro-

tein can bind to the MS2-elements of RNA, when both are co-expressed, therefore

identifying the RNA traicking pathways along its movement inside the cell. Key

disadvantages of this method can be attributed to the concatenation of multimerized

MS2-hairpin to the target RNAs may interfere with their regulatory role inside the

cell, as well a high background noise due to unbound GFP-MS2.

The general disadvantages related to the microscopy based methods lie in their

relatively low throughput, and the requirement of more complex and unafordable fa-

cilities. Therefore, our work only uses data generated via biochemical manipulations

coupled with deep sequencing.

1.5.2 Fractionation based approaches

Compartment speciic RNA proiling is generally achieved through subcellular

fractionation followed by RNA deep sequencing. A series of work based on the

biochemical fractionation approach have successfully identiied RNA associated to a
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number of subcellular fractions, such as nucleus and cytoplasm [74, 18, 113], to name

a few. Frac-Seq [107, 84] and CeFra-Seq [75] are both speciic examples belonging to

this category.

Fractionation based methods have also been used to study protein subcellular

localization, for example in a recent paper the authors proposed a method called

SubCellBarCode [90] that separates a subcellular-wide proteome into ive subcellular

fractions in duplicates for each of the ive diferent human cancer cell lines, resulting

in 50 samples per protein. The fractionation step is followed by a mass spectrometry

to identify the proteins localized to each of the isolated compartments.

According to a clustering analysis based on t-SNE dimensionality reduction, 15

clusters of the proteins localization proiles are identiied, which are further grouped

into 4 subcellular compartments, that are secretory, nucleus, cytosol and mitochon-

dria, via aligning to the compartment enrichment annotations given by Gene Ontol-

ogy (GO) and Uniprot. A machine learning method is then developed to predict a

single subcellular localization site for each protein, that appears to possess notable

predictive capacity.

In the RNA domain, on the other hand, CeFra-Seq is another fractionation based

method that combines biochemical fractionation and high-throughput RNA sequenc-

ing to map RNA in speciic subcellular compartments [75]. Biochemical fractionation

part irst breaks the cell membrane using a mild hypotonic lysis and later undergoes

the Douce homogenization. Matters from a number of subcellular compartments are

subsequently separated with centrifugation, recovering the nucleus from the puriica-

tion of sucrose cushioned ultracentrifugation, as well as the soluble cytosolic fraction

11



from the supernatant. The re-solublilized portion of the pellet subject to the Triton

X-100 (1%) and ultracentrifugation is assigned to the endomembrane, whereas the

residuals goes to the insoluble fraction.

Then followed by high-throughput RNA sequencing, the overall protocol is able

to measure the transcriptome enrichment in four intracellular compartments, that are

nucleus, cytosol, endomembrane and cytoplasmic insolubles. A later study based on

the CeFra-Seq protocol has further revealed that around 80% of the RNA transcripts

have exhibited asymmetric subcellular localization pattern [12].

The limitation of fractionation based approaches mainly lies in the diiculty of

mapping RNA in some organelles or compartments that are inefective under the

classical biochemical puriication scheme. Also, the fractionation step is susceptible

to contamination and loss of materials, from or to other subcellular components.

1.5.3 Protein-RNA cross-linking based approaches

Another category of biochemical manipulation for RNA proiling follows from

a general scheme of cross-linking proteins and RNAs to form RNP, which can be

later precipitated with the help of immunoprecipitation (Clip or RIP) and puriied

to enable RNA deep sequencing.

The irst experiment of this kind was done on the mouse brain [115], which irstly

undergoes an ultraviolet in-situ cross-linking step, forming covalent bonds between

the protein and RNA that are in direct contact. Then following the cell lysis, protein

immunoprecipition and proteinase K pull-down in the puriication step, the RNA can

be subsequently isolated and sequenced.
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The main disadvantage of this scheme is that it only enables cross-linking be-

tween protein and RNA that are in direct contact, which is too restrictive to reveal

a broader picture of RNA subcellular distribution.

An newer protocol called APEX-RIP has been recently developed to map tran-

scriptome enrichment in membrane-enclosed cellular organelles, e.g. the nucleus and

mitochondrial, as well spaces in between the membranes such as the cytosolic and

endoplasmic reticulum but only up to a limited eicacy [60].

This technology combines APEX and RIP, that are peroxidase catalyzed prox-

imal endogenous protein biotinylation, and RNA Immunoprecipitation to target on

RNP for the subsequent protein pull-down and sequencing. APEX is an artiicial

peroxidase that can be genetically integrated to a number of subcellular compart-

ments, via implanting APEX-encoding DNA to the cell which can then be translated

into many APEX protein copies that exhibit deterministic localization traits. Upon

the attachment of its substrates, APEX catalyzes the formation of biotin-phenoxyl

radicals which later triggers the biotinylation of endogenous proteins within close

proximity (a few nanometers). The APEX-tagged proteins can be used to bind the

co-localized RNA transcripts in their vicinity, via cross-linking with formaldehyde.

The bound RNA transcript can be later enriched and identiied with streptavidin

pull-down and deep sequencing.

APEX-RIP was also used to map RNA enrichment in four subcellular com-

partments, which are nucleus, cytoplasm, endoplasmic reticulum and mitochondrial.
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While it is not straightforward to compare in terms of the accuracy between CeFra-

Seq or APEX-RIP, it is generally believe that APEX-RIP represents a more promis-

ing direction of RNA intracellular traicking mapping protocol.

A more precise approach to directly make use of APEX enabled biotin-tagging on

RNA, instead of cross-linking RNA to the biotinylated protein, has been developed

and named as APEX-Seq [42], which addresses the problem of poor cross-linking

resolution in non-membrane enclosed cellular space.

1.6 Learning RNA subcellular localization and identifying the zipcodes

In this study we propose the irst computational method to predict mRNA

localization from RNA sequence (with or without secondary structural annotation)

inputs, using advanced deep learning techniques such as convolutional neural nets

(CNN) [71] and long short term memory (LSTM) [56]. A review on these deep

learning components will be given in Chapter 2.

We name our method RNATracker, which will be presented in Chapter 4, along

with the complementary analysis of some learned model components including a

visualization of sequence motifs learned by its irst convolutional layer, attention

weights to highlight that the 3’UTR regions of RNA transcripts are more informative

to infer localization, as well as a mask test to identify zipcodes regions from the RNA

sequences in the dataset.

1.7 Motivation

In light of the recent advances of high-throughput sequencing technologies and

improved biochemical manipulation methods to identify RNA localized at some spe-

ciic organelles or compartments, an unprecedented opportunity has emerged, where
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a systematic and large-scale training and evaluation of bioinformatics/machine learn-

ing methods on RNA subcellular localization have become possible. These algorith-

mic progression on the available RNA localization dataset may provide the system

biology community with a clearer understanding into the underlying RNA traick-

ing dynamics, and a more comprehensive identiication of the associated regulatory

elements.
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CHAPTER 2
Background on deep learning

Deep learning is often praised for its powerful end-to-end and automatic feature-

extracting capability, provided that the data structure of the inputs has been ade-

quately exploited, which usually requires carefully designed neural architecture and

reasonably selected hyper-parameters, as well as a suicient amount of training data.

We will irst provide the background on two of the most widely used building

blocks in deep learning — Convolutional Neural Net (CNN) and Long Short-Term

Memory (LSTM). Then we will talk about the residual neural net, which is a more

advanced organization of CNN. Finally, we will touch briely on the deep generative

adversarial neural net and activation maximization, the combination of which would

enable us to design RNA zipcodes.

Figure 2–1: A nutshell of convolution and pooling operations in sequence scanning.

16



2.1 Convolutional Neural Net

Since their irst invention, CNNs [71] have gained great popularity inside the

machine learning community. The original CNN is designed to classify digit images,

which surpassed the previous methods at the time. A number of its distinguished

advantages compared to a simple feed-forward neural net are listed as follows:

• CNN exploits the topological information of the inputs, such as the order and

structure in a patch of pixels which would identify an object, and the order

and structure of a snippet in a sequence of nucleotides which deliver an RBP

binding motif.

• Each neuron is computed from a small patch of neurons in the previous layer

(called a local receptive ield). This sparsity in connectivity enables CNN to

compute relatively faster than a fully-connected neural net, and forces the CNN

to learn a sparse solution which acts as a strong regularization.

• The same set of kernel is used to parse every patch of the input, thus facilitating

weight sharing, which in turn reduces overitting.

• CNN is also able to parse patches of inputs in parallel, allowing for eicient

training and evaluation of high dimensional data.

CNN usually consists of a convolution operation, coupled with a non-linear

activation and a pooling stage. The size of the output is usually smaller, unless

speciically chosen to retain the same size as the input. Down-sampling the input

is, in general, preferable since a smaller output would improve the computational

eiciency in the subsequent layers, albeit sufering from a minor information loss,

unless the down-sampling ratio is grossly out of proportion.
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However, CNNs can also be used in an up-sampling fashion, namely to increase

the size of output, resulting in, for example, larger images or longer genomic se-

quences. This genre of convolution is called transposed-convolution.

An example of 1-dimensional convolution on a batch of genomic sequences is

given in Figure 2–1, complemented with Rectiied Linear Units (ReLU) as the non-

linear activation function, and a max-pooling stage. We will talk about each com-

ponent in more details in the rest of this section.

2.1.1 Convolution

Denoting the 1-dimensional convolution kernel as K of shape (L,Din, Dout),

where L is the length of the kernel, Din is the number of the channels in the input

and Dout is the number of ilters/channels in the output, the convolution operation

can be expressed as follows,

Oj =

Din
∑

i=1

Ii
⊕

Ki,j

where Oj is the jth channel of the output for j = 1...Dout, and Ii is the ith channel

of the input. Note that for simplicity, the inal addition of a bias vector has been

omitted.
⊕

is the convolution operation, which moves Ki,j, a vector of length L to be

thought as a scanning window, along Ii. At each scanning window position, Ki,j is

element-wise multiplied with a local patch of data in Ii, whose sum is illed in for

that position as the convolution outcome.

Additional parameters of the convolution operation include the length of paddings

to either size of the sequence denoted as p, and the length of strides when moving
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the scanning window denoted as s. The length of the output o can be then given as

follows, denoting the input length as i and the length of kernel as k,

o = ⌊
i+ p− k

s
⌋+ 1

Therefore, to obtain the output with the same length as the input, the least amount

of paddings is determined to be

p = (i− 1)s+ k − i

Note that in this case, i + p − k is a multiple of s, and for all p′ = p + j where

j = 1...s−1 would result in the same output length. The down-sampling of an input

feature map can be achieved with s ≥ 2.

2.1.2 Pooling

Pooling provides small invariance to the translation of inputs. There are a few

types of pooling, such as max pooling and mean pooling, just to name a few. The

pooling operation splits the input into patches, and each patch is summarized with

the max operator or the mean operator accordingly. The parameters associated with

pooling are the length of the patches k and the size of the stride s, without trainable

weights. The length of the output o can thus be determined as

o = ⌊
i− k

s
⌋+ 1

The role taken by pooling layers is mainly for dimensionality reduction on the

feature map, although this function can still be fulilled with a down-sampling con-

volution layer with stride greater than one. Down-sampling with convolution layer is
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usually more computationally eicient than pooling. For example, the same down-

sampling efect of a uni-stride convolution layer followed by a stride two pooling

layer, can be equivalently replaced with a single convolution with stride two that

consumes at least four times less computation.

2.1.3 Transposed-convolution

Considering the usual convolution as a mapping from the input to the feature

map, fulilling its role as a encoding operation, then its inverse operation would be

to recover the input from the feature map as a decoder while maintaining the same

convolutional connectivity patterns between the input and the feature map. The

inverse operation is usually termed as the transposed-convolution, which has been

proven useful in the design of convolutional decoders and generators, where an up-

sampling operation is usually performed to map a latent-encoding to an input data

point.

Since convolution is in essence an aine mapping, and to preserve the same

convolutional connectivity, one only needs to transpose the weight matrix implied

by the convolution kernel, which takes place during the backward pass. Therefore,

the transposed convolution can be then thought as the gradients of some convolution

with respect to its input [41].

2.2 Long short-term memory

Despite their great applicability and pattern extraction capacity, CNNs are not

yet powerful enough to infer from time series data when used by themselves. Whereas

CNN looks for similar patterns recurring at diferent patches of the input or feature

map, a Recurrent Neural Net (RNN) investigates the correlation between diferent
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locations (or time step) of the input with a built-in order of information that have

been processed sequentially.

A Long short-term memory (LSTM) network is a speciic type of RNN that is

used more frequently in practice, along with other types of RNN such as the Gated

Recurrent Unit (GRU) [24].

A diagram of a standard LSTM cell, a time step from an unrolled LSTM, is

shown in Figure 4–2 (B), accompanied with the formulas that deine its operations

from Eq. 4.1 to Eq. 4.3. The LSTM maintains a so-called cell-state, which memorizes

information accumulated from the previous time steps. The LSTM is also autore-

gressive, in that the output from the last time step is also an input to the current

LSTM cell/time step.

The LSTM prevails in discovering long range dependencies and correlations in

the input, implemented by its use of the forget gate which eliminates information

from the cell state that is deemed no longer relevant, the input gate to update the

cell state with new information from the current input, as well as the output gate

which decides what portion of the current cell state should be present in the output.

A more detailed LSTM explanation can be found in Section 4.4.

2.3 Residual neural net

Due to the sparse-connectivity of the convolution operation in CNN, each neuron

in the output is only connected to a (small) patch of elements in the input, which is

called the local receptive ield of that neuron. The size of the local receptive ield is

ixed for all neurons in one convolution layer, and by stacking multiple convolution

layers, each having a small local receptive ield to capture the ine-grained features, a
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broader receptive ield can be obtained step-by-step, allowing the network to compose

these ine-grained local features into a more meaningful global representation of the

inputs. Therefore, the depth of the convolutional network is crucial to achieving a

better accuracy, as has been discussed in many previous papers on image classiication

tasks [105, 112].

However, naively stacking many convolution layers can also impede the training

as a side efect, due to the vanishing gradient or the exploding gradient problems.

Although these problems can be to some extent alleviated with various normalization

techniques such as the batch normalization [58] or layer normalization [77], the gen-

eral efect of adding more convolution layers has still been observed to be deleterious

over the shallower networks [52], even accompanied with the normalization layers.

Figure 2–2: A basic residual neural net building block — adding skip connections at
the output of the convolution layer. Reproduced from [52].

In order to bring out the full anticipated capacity of deeper convolutional neural

architecture and to ease the diiculty that arises during the training, a residual

neural net (resnet) architecture [52] has been proposed that adds skip connections

(or equivalently, residual connections) interleaving the convolution layers, feeding the
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input together with the output to the next convolution layer, as shown in Figure 2–

2. To intuitively explain the beneits of adding skip connections, one could imagine

that in the beginning of training, the residual net can learn to skip some weighted

convolution layers, thanks to the skip connection, to learn some simpler features and

use them to make a prediction, which helps speed the convergence. Once better

features can be learned or manipulated at the skipped layers, the network will shift

its attention back to the training of those layers.

We note to the readers that an actual residual block can be more complex

than the one shown in Figure 2–2. In particular, if F performs down-sampling/up-

sampling, or alters the number of channels, the shape of F(x) will not equal to that

of x. In this case, an additional 1 × 1 convolution layer is usually placed at the

shortcut to match the shape and dimension. Also, a batch normalization layer is

often placed after each weight layer in the residual block.

The above paradigm of organizing the convolution layers to build deeper net-

works enables researchers to stack tens or even hundreds of convolution layers that

expedites the development of many areas of deep learning application, such as ob-

jective detection and text mining. Its applicability, beyond doubt, also extends to

genomic sequence analysis tasks.

2.4 Activation maximization

Once having trained and ixed a predictive model that maps an input (im-

age/genomic sequence) to a prediction, say a vector of categorical probabilities in

a multiclass classiication task, a question that one could ask in the context of ac-

tivation maximization, is to devise an example (or a population of examples) that
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maximally activates a neuron at some intermediate layer or a logit at the output

layer.

We are interested in maximizing the output of a speciic logit, since it gives rise to

designing an input that maximizes its probability of belonging to the corresponding

category.

Expressing the predictive model as o = f(θ∗, x), where o is the vector of logits

at the output layer given input x and ixed weights θ∗, ∂oi
∂x

= ∂f(θ∗,x)i
∂x

provides the

gradients to maximize the objective function f(θ∗, x)i. Therefore,

x = x+ λ ·
∂f(θ∗, x)i

∂x

gives the general formula for activation maximization, where x is a randomly initial-

ized input, or chosen randomly from the dataset.

This naive approach has a signiicant drawback, in that the optimized input x∗

may not resemble any real data, or in other words, has very low idelity. To capture

the prior on real data distribution, [89, 64] have proposed to stack the predictive

model on top of a generator function capable of mapping an input code to a realistic

output, and the activation maximization is thus done solely on the input code, ixing

the generator function as well as the predictive model.

In addition to the striking simplicity of the method, pretraining the generator as

well as the predictor separately before the actual activation maximization begins also

gives room for a lot of lexibility. However, considering that the optimization on the

input code is a long iterative process, and that a whole new optimization process is
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needed each time to obtain a new batch of input code, this method is unsurprisingly

ineicient, hence unit for the purpose of performing large-scale sampling.

2.5 Deep generative models

The club of deep generative models has been expanding and accepting new

members ever since the boost of deep learning. A number of its notable members

include the autoregressive models (e.g. LSTM), variational autoencoders (VAE) [66],

generative adversarial nets (GAN) [47], as well as their predecessors the deep belief

nets (DBN).

The VAE operates under a general probabilistic setting, assuming that each

data point is associated with a latent variable, whose prior and likelihood function

are from a parametric family of distributions, which are continuous and diferen-

tiable almost everywhere. However, the true posterior can be intractable, which

necessitate its construction of a probabilistic encoder that models the distribution

of the latent variable given an input to approximate its true posterior. A proba-

bilistic decoder is also employed to learn the likelihood function. A variational lower

bound can be then established on the marginal log data likelihood, together with

the reparameterization trick, one could easily adopt a standard of-the-shelf gradient

descent technique to jointly optimize the decoder and encoder, which learns better

approximate distribution to the true posterior as well as improves the marginal data

likelihood.

A GAN, on the other hand, does not have an encoder component that explic-

itly models a distribution on the latent variable, nor does it optimizes directly or

indirectly on the marginal data likelihood. It has a generator/decoder function that

25



maps a latent encoding to a data structure that mimics the real data, and a dis-

criminator function to diferentiate the real and fake data. The interplay between

the generator and discriminator, to put it simply, is for the discriminator to assign

higher scores to the real data and to penalize the generated data, whereas the goal of

the generator is to fool the discriminator into assigning higher scores to its solutions.

Usually, the equilibrium is reached when the distribution Pθ implied by the generator

function equals to the real data distribution Pr.

For brevity concern, in this section we would only mention two types of GAN

— the original GAN whose objective can be framed as minimizing the Jensen-

Shannon Divergence (JSD) between Pr and Pθ, as well as the Wasserstein GAN

(WGAN) which minimizes the Wasserstein distance between the above two distri-

butions. There are other good formulations of GAN, and various conditional GANs

using style transfer, as well as add-on tricks to stabilize training, such as spectral

normalization [85].

2.5.1 Original GAN

The training objective for the original GAN for both two components is

min
G

max
D

Ex∼pr [log(D(x))] + Ex∼pθ [log(1−D(x))]

where G stands for the generator and D stands for the discriminator. However, this

formula sufers from the vanishing gradients on the generation function, when the

discriminator is too close to optimal, as pointed out in [47, 111], which impedes the

convergence.
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One way to salvage this is to carefully mitigate the discriminator and gen-

erator updates such that the discriminator won’t overwhelm the generator, albeit

how to manipulate and schedule the updates are more of an engineering issue. An-

other alternative is to replace the generator objective minG Ex∼pθ [log(1−D(x))] with

minG Ex∼pθ [−log(D(x)], which unfortunately, makes the update unstable when the

discriminator is imperfect [111].

2.5.2 Wasserstein GAN

Wasserstein GAN (WGAN) is a new formulation of GAN that equivalently min-

imizes the Wasserstein distance between the real data distribution pr and pθ implied

by the generator, that is,

W (pr, pθ) = inf
γ∼Π(pr,pθ)

E(x,y)∼γ[∥x− y∥]

. Much of its theoretical background is borrowed from optimal transport [117],

whereby the original intractable Wasserstein distance is allowed to be transformed

into an optimizable objective function with some additional constraints, via the Kan-

torovich duality theorem,

W (pr, pθ) = sup
∥dφ∥

L
≤K

1

K
Ex∼pr [dφ(x)]− Ex∼pθ [dφ(x)]

where ∥dφ∥L ≤ K means the discriminator function is K-Lipschitz continuous. The

constant K can be subsumed into the learning rate.

It is shown in [4] that the Wasserstein distance assumes a weaker topology than

JSD or KL divergence, which will either be discontinuous or not well-deined, when

the data generating distribution pθ is supported by a low dimensional manifold in a
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way either it does not exist or it has disjoint support to pr. The Wasserstein distance,

on the other hand, is still continuous and diferentiable almost everywhere.

The Lipschitz continuity constraints can be met with weight-clipping up to some

constant K, by practically clamping all weight parameters into a compact set e.g.

[−0.01, 0.01]. An alternative and even better technique is to use gradient penalty [49]

which adds an additional term to the loss function,

Ex∼pint
[(∥∇xdφ(x)∥2 − 1)2]

where pint is a uniform distribution deined on the line segment between two points,

each sampled from pr and pθ, thus a sample from pint is a linear interpolation between

a real data point and a fake fake data point.

Gradient penalty allows for a greater expressivity in the discriminator function,

so that the generator can also learn to generate data with richer features. In practice,

people would always use gradient penalty instead of weight-clipping when training a

WGAN.
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CHAPTER 3
Machine learning to study RNA-protein interaction and RNA

localization

3.1 Deep learning for RNA-protein interaction

There have been a grand series of works that leveraged the advances of deep

learning in the context of predicting DNA/RNA-protein interaction, ever since its

irst successful application in the DeepBind paper [2] in 2015, which predicts binding

speciicity on short snippets of DNA or RNA sequences to certain DNA or RNA

binding proteins. DeepBind is a deep neural net based on the convolutional archi-

tecture, and can be itted with dataset from a multitude of sources, such as the

Protein binding microarrays (PBM) which reveals the transcription factor binding

speciicities [86], and the RNAcompete assays [96] generated in vitro that informs

on RBP binding sites. The output from DeepBind is a binding intensity given by a

sigmoid function that can be used to perform classiication.

DeepBind has been demonstrated to be superior over the traditional methods

based on position weight matrices (PWM) of binding proteins, in terms of the ei-

ciency on large-scale training and inference, as well as the prediction accuracy. The

authors also revealed that the DeepBind model, having its parameters itted with

in-vitro dataset such as the PBM or RNAcompete, was still able to make good pre-

dictions on in-vivo data collected from ChIP-Seq or CLIP-Seq. This acts as an extra

validation that given suiciently large training set, end-to-end deep learning methods
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are able to learn meaningful biological assumptions from plain supervised genomics

sequence data, without any built-in prior knowledge on the underlying regulatory

process, or resorting to manually-curated feature sets.

Despite the great success of DeepBind, it invites to improvements from various

aspects. One of the most obvious would be to build a more optimal neural architec-

ture to better explore the inherent structure of the sequence data, with the addition

of complementary features such as the RNA secondary structures in the RBP binding

speciicity prediction tasks.

One another possible improvement, though not having been addressed enough

in the line of works despite its signiicant relevance to the understanding of the

functional roles of these genomics, is to improve the model interpretability. A more

robust and meaningful inference is often lacking in the deep learning application

literature, compared to the more traditional machine learning methods.

Afterwards, a broad family of works have emerged on making use of deep learning

to predict DNA/RNA sequence functions or properties, such as the DanQ model [95]

on DNA functions that stacks a bidirectional LSTM networks on top of convolu-

tion networks, and the iDeep [93] that integrates another sets of manually imputed

features such as the basepairing probability of each nucleotide into the prediction

pipeline.

It has been long known that RNA secondary structure has a signiicant inluence

on the RNA-protein interaction, and many algorithms for RBP binding predictions

and motif identiications have attempted to integrate the structural information into

the model pipeline.

30



3.2 RNA secondary structure enhanced RBP motifs discovery and bind-
ing prediction

MEMERIS [55] is the irst algorithm of its kind that searched for sequence

motifs with general structural properties, rather than sequence-structure pairs with

speciic composition or constrains. This method favors searching sequence motifs on

single-stranded RNA, such as the hairpin or the bulge between two stems, over the

ones located in double-stranded regions. MEMERIS is viewed as an extension over

the MEME motif searching program [7] that modiies the Expectation Maximization

(EM) algorithm with priors on the likeliness of a substring being located on single-

stranded RNA, in a way that the EM algorithm will prefer to identify sequence motifs

on single-stranded RNA areas over double-stranded areas.

The limitation of MEMERIS, such as the restricted scope of structural prefer-

ence, as well as its reliance on unrealistic minimum free energy, has been addressed

in RNAContext [62], which notably uses an ensemble of all possible secondary struc-

tures estimated by SFOLD [37] and annotates structural context for each nucleotide

with a ixed vocabulary set. The probability of a motif binding to a substring is

jointly estimated with the sequence and structural contexts, according to the stan-

dard biophysical model [102]. The predicted binding probability is then linearly

mapped to a binding ainity, and the model parameters are estimated using Limited

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [20] on the least square cost

function between the estimated binding ainity and its supervised target.

GraphProt [83] informatively represents an abstracted RNA secondary structure

obtained from RNAshape [106] as a hypergraph that encodes relationship among

groups of stable subgraphs such as hairpin, stem, bulge, and the basic nucleotides.
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It is derived from a predecessor model called GraphClust [54], making a few improve-

ments and adaptations in the RBP binding scenarios in addition to the hypergraph

representation mentioned earlier, such as enforcing the order of RNA folding from

5’UTR to 3’UTR on a directed graph, and focusing on local RNA folding around the

RBP binding sites.

The same graph kernel, Neighborhood Subgraph Pairwise Distance kernel (NSPD) [32],

is used as in GraphClust, where two features are computed for a pair of subgraphs

in relatively close proximity, that are the maximum size of the subgraphs (radius)

and the maximum distance between the two subgraphs. A standard support vector

machine is then used to classify RBP binding with a set of very high dimensional

features (up to millions) extracted by this kernel.

The integration of secondary structural information of RNA into deep learning

pipelines is usually achieved by some sequence based structural annotation instead

of exploiting its full graphical capacities, such as in [92]. One of the more promising

directions of leveraging RNA secondary structural information in deep learning would

be to adopt the graph neural net [103] approaches that implicitly learn graph kernels

on RNA graphs.

3.3 Predictive models for RNA localization

There have been a few works that attempt to classify lncRNA localization.

LncRNA is a type of non-coding RNA whose length exceeds 200 nucleotides, with

regulatory roles well-studied and characterized at the gene transcription level, as well

as various post-transcriptional steps including RNA splicing [114], mRNA transla-

tion [120] and degradation [46]. LncRNA may also take on certain trans-regulatory
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roles in the context of localizing mRNA, via base-pairing with the mRNA and indi-

rectly allowing the RBP attached to itself to maneuver the mRNA [22]. Mutation in

the lncRNA function may also hold implication for a variety of disease [5]. There-

fore, it is of equal importance to understand the underlying mechanism of localizing

lncRNA.

These previous studies have mainly relied on an online database called RNALo-

cate [121], which contains manually recorded RNA localization entries for 42 subcel-

lular locations across 65 species. RNALocate only associates a discrete subcellular

localization label per RNA for a certain cell type in a certain species, without pro-

viding any further intensities or enrichment values. However, RNALocate is indeed

a very convenient database for developing and evaluating machine learning methods.

LncLocator [21] and iLoc-lncRNA [109] are two machine learning methods that

are developed under the RNALocate database, trained and evaluated on less than

1000 lncRNA data. LncLocator irstly learns a hidden representation of the lncRNA

sequences with an autoencoder, then makes prediction with an ensemble of machine

learning algorithms. iLoc-lncRNA improves fairly drastically over LncLocator with

a simpler multi-class support vector machine, but with pseudo 8-tuple nucleotide

compositions (PseKNC) as features.

DeepLncRNA [48] is a deep neural network built for large-scale lncRNA subcel-

lular localization classiication, with 8678 lncRNA samples collected from the EN-

CODE project [26]. Each lncRNA is associated with a binary label of either nuclear

retention or cytosolic export, after applying a certain threshold on the weighted and

averaged log2 fold-change values across all cell types.
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The authors in [48] have followed a feature-engineering approach. The inputs to

DeepLncRNA are manually selected features including k-mers (k=2..5), lncRNA sub-

types annotated by the Ensembl database [1], chromosome location and RBP binding

annotations computed from known RBP binding motifs given in [97]. DeepLncRNA

is composed of three fully connected layers, with ReLU activation function, dropout

and L1, L2 regularization. It is shown that DeepLncRNA outperforms LncLocator

and iLoc-lncRNA, in terms of accuracy and sensitivity — the ability to correctly

classify lncRNA retained at the nucleus, when evaluated on a very small test set

under a train-test split.

In a recent paper [124], B. Zuckerman et al. identify splicing eiciency as the

predominant factor inluencing the nuclear retention and export mechanism of cells,

along with the other factors including the transcript length, sequence content and

etc.

It has been empirically observed that lncRNAs tend to be retained in the nu-

cleus since their regulatory roles are best characterized in the nuclear and chromatin

areas [116, 87], whereas mRNAs are usually exported to the cytoplasm where their

products can serve certain structural or functional roles after translation. A recent

studied also revealed that lncRNAs are more subject to alternative splicing than

mRNAs, leading to more possible isoforms that are ineiciently spliced [36].

Motivated from the above observations, the authors gathered the RNA-seq data

in the cytoplasmic and nuclear compartments of nine human cell lines covered by the

ENCODE project, and obtained a number of features for the downstream predictions.

Gene level splicing eiciency were estimated as the ratio between exon-exon reads
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and the sum of exon-exon and exon-intron junction reads as deined in [87], selecting

only the non-overlapping introns with the most conident support in the RNA-seq

data. Gene level splicing speciicity was also estimated which relects the frequency

of the predominant splicing pattern.

A preliminary study on the (Spearman’s) correlation of the individual feature

to the cytoplasmic/nuclear target ratio has given a lot of insights. Splicing eiciency

is observed to be negatively correlated with the nuclear enrichment for both lncRNA

and mRNA, and is strongly correlated to the target ratio for the mRNA faction.

Other factors also contribute non-trivially, for example cytoplasmic enrichment is

correlated with gene expression level, splicing speciicity and etc.

The authors also tried a linear regression model to learn a mapping of the

features to the target ratios, to see if a combination of features would lead to more

accurate prediction, but with limited success. A random forest classiier is later

used to classify the samples into three binned groups (cytoplasmic, intermediate and

nuclear), after applying appropriate thresholds on the ratios. The random forest

classiiers have attained satisfying accuracy.

3.4 Conclusion

With the emergence of larger scale and higher resolution RNA subcellular local-

ization dataset obtained via biochemical manipulation and RNA deep sequencing,

the timing is right to devise more catered end-to-end machine learning methods to

gain deeper insights into the underlying mechanism driving RNA subcellular local-

ization. One major advantage of adopting a sequence based predictive pipeline that
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is possibly enhanced with RNA structural information, would be the identiication

of ine-grained sequence determinants considered as zipcodes.
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CHAPTER 4
Prediction of mRNA subcellular localization using deep recurrent neural

networks

4.1 Preface

The following Chapter is taken from a recent publication: Zichao Yan, Eric

Lécuyer and Mathieu Blanchette. Prediction of mRNA subcellular localization using

deep recurrent neural networks. Intelligent System on Molecular Biology, 2019.

The contributions came from Zichao Yan who implemented and evaluated the

computational models and wrote parts of the paper, as well as Eric Lécuyer and

Mathieu Blanchette who validated the biological concepts, analyzed the biological

interpretation and also wrote parts of the paper.

4.2 Abstract

Motivation: Messenger RNA subcellular localization mechanisms play a crucial

role in post-transcriptional gene regulation. This traicking is mediated by trans-

acting RNA-binding proteins interacting with cis-regulatory elements called zipcodes.

While new sequencing-based technologies allow the high-throughput identiication

of RNAs localized to speciic subcellular compartments, the precise mechanisms at

play, and their dependency on speciic sequence elements, remain poorly understood.
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Results: We introduce RNATracker, a novel deep neural network built to pre-

dict, from their sequence alone, the distributions of mRNA transcripts over a prede-

ined set of subcellular compartments. RNATracker integrates several state-of-the-

art deep learning techniques (e.g. CNN, LSTM and attention layers) and can make

use of both sequence and secondary structure information. We report on a variety

of evaluations showing RNATracker’s strong predictive power, which is signiicantly

superior to a variety of baseline predictors. Despite its complexity, several aspects

of the model can be isolated to yield valuable, testable mechanistic hypotheses, and

to locate candidate zipcode sequences within transcripts.

4.3 Introduction

RNA subcellular localization constitutes a key but underappreciated aspect of

gene regulation [23]. Once transcribed, capped, spliced, polyadenylated, mRNA can

be shuttled to diferent parts of the nucleus, or exported to the cytoplasm, where it

can further be transported to speciic sites, or even excreted in extracellular vesicles

(Figure 4–1). In the case of messenger RNA (mRNA), subcellular localization can

control how much will be available for translation by ribosomes and where transla-

tion will occur, thereby allowing both a quantitative and spatial control over protein

production. In particular, this mechanism represents an economical mean of protein

localization, by transporting the messenger to the site where the protein is needed

and performing on-site translation. While the importance of RNA subcellular local-

ization is best characterized in embryonic development [73] and neuronal dendrites

[19], it is also highly prevalent in other cell types, with more than 80 % of human

transcripts showing asymmetrical localization in human and insect cultured cells
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[13]. Defective RNA traicking, due to mutations either in the cis- or trans-acting

molecules, are linked to a number of muscular and neurodegenerative diseases, as

well as cancer [31]. Improving our understanding of the mechanisms of mRNA local-

ization, and its dependency on transcript sequence or structure, is thus important for

the fundamental understanding of molecular biology and has profound biomedical

implications.

The RNA traicking process is mainly driven by a diverse population of trans-

regulatory factors called RNA binding proteins (RBPs) [43, 44, 98, 38], which stochas-

tically, cooperatively, and dynamically bind to speciic RNA sequence/structure

patterns. While non-speciic protein-RNA interactions are common and help sta-

bilize mRNAs, sequence-speciic binding to short sequence/structure patterns allows

transcript-speciic regulation [15]. Indeed, sequence motifs have been mapped for a

large set of RBPs [28, 81].

mRNA localization cis-regulatory elements (also known as zipcodes) are short

(20-200 nt) RNA regions that harbor binding sites for one or more RBP that help

mediate the transport mRNAs to their intended destination, either actively along the

cytoskeleton, difusion, or compartment-speciic degradation. Although the number

of well-characterized zipcodes remains very limited (only about a dozen in human),

most are observed to be located in the 3’ UTR (but many exceptions exist) [15].

While the importance and prevalence of mRNA subcellular localization has been

known for a long time based on experiments such as luorescent in-situ hybridiza-

tion (FISH) (Lecuyer et al. 2007), it is only more recently that high-throughput

sequencing-based assays emerged. APEX-RIP is a technique that takes advantage of
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protein proximity based biotinylation, mediated by a compartment-speciic APEX2

fusion protein, to identify localized transcriptomes [61]. The organelle-localized

APEX2 fusion protein will biotinylate proximal interacting proteins and, following

cross-linking and streptavidin pull-down, co-localizing mRNAs can be identiied by

deep sequencing. This technology was recently used to map the transcriptome of

the nucleus, cytoplasm, endoplasmic reticulum (ER), and mitochondria. CeFra-seq

is an alternate technology relying on biochemical separation of subcellular compo-

nents, followed by RNA-seq [76, 13]. It was used to map transcript abundance in the

nucleus and cytosol, as well as those associated to endomembranes (ER, golgi, etc.)

and those left in the insoluble fraction, consisting of mRNAs associated to cytoskele-

tal and mitotic apparatus-associated proteins. Both technologies yield reproducible

assessments of relative mRNA abundance in the subcellular component they probe

and demonstrate the breadth of localization patterns observed in a variety of human

cell types.

In this paper, we aim to build a predictive model of mRNA localization that

will quantitatively determine the relative expression of a given transcript among a

predetermined set of cellular compartments, based only on sequence information.

Such a model is essential to generate testable mechanistic hypotheses about the cis-

and trans-regulatory molecules at hand and predict the impact of mutations on this

key step of gene regulation.

The computational identiication of functional regulatory elements within bio-

logical sequences is one of the key problems addressed by bioinformatics approaches.

Recently, new types of machine learning approaches emerged for sequence function
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prediction. Those are based on deep neural networks, and often combined convolu-

tional [72] and recurrent neural networks (e.g. Long-Short Term Memory (LSTM)

[57]). These approaches were shown to be highly efective at deciphering complex

regulatory mechanisms such as alternative splicing [78], transcriptional regulation

[2, 95, 122], RBP binding [93, 79], and RNA polyadenylation [35]. In those ap-

proaches, feature extraction and learning are combined in an end-to-end fashion

that often yields better performance compared to conventional feature engineering

approaches. The advantage of CNNs lies in their capability of performing automatic

and parallel feature extraction by learning parameterized sequence motifs analogous

to the position weight matrices (PWM) commonly used in classical sequence analysis

algorithms. LSTMs, on the other hand, are more suitable for analyzing sequential

data to discover correlations between diferent positions, allowing to capture sequence

context and cooperative binding.

To our knowledge, no computational predictor of mRNA subcellular localiza-

tion exists to date. This is the challenge we tackle in this paper. We introduce,

evaluate, and interpret RNATracker, a deep neural network predictor of subcellular

localization combining two convolutional layers, a bidirectional LSTM layer, and an

attention module. Although the architecture of our model has some similarities with

previously proposed approaches [95, 93, 79], mRNA subcellular localization difers

from most previous applications of deep learning to biological sequence function pre-

diction in several aspects that make it particularly challenging. First, the process of

subcellular localization is a long chain of complex events mediated by a large number

41



of protein-RNA and RNA-RNA interactions, and may depend on both primary se-

quence and secondary structure. Second, our goal is to learn a multi-output function

that predicts the expression distribution of a given transcript across several cellular

fractions, instead of a single positive/negative label. Third, most mRNAs only ex-

hibit a moderate degree of subcellular asymmetry, and experimental measurements

are somewhat noisy and potentially biased. Finally, transcripts have greatly variable

lengths, an issue generally not encountered in previous applications.

In this paper, we introduce the RNATracker model and demonstrate its supe-

rior ability to predict subcellular localization on two recently published data sets

obtained by CeFra-seq [13] and APEX-RIP [61]. We then dissect the trained models

to learn new biology about the mechanisms involved. Finally, we use a sliding win-

dow masking strategy to identify the regions most likely to be conferring the observed

localization pattern, and present evidence in support of the regulatory function of

those regions.

4.4 Methods

The goal of RNATracker is to predict an mRNA’s subcellular localization proile

from its sequence alone (including possibly its secondary structure inferred from

the sequence). To this end, we designed a convolutional bidirectional Long Short-

Term Memory (LSTM) neural network with attention mechanism, inspired from

previous work on the prediction of protein-mRNA interactions [2, 93, 79] and DNA

function [95]. Here, we introduce the methodological aspects of training data, feature

encoding, model architecture, training, and evaluation.
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Figure 4–1: Schematic representation of RNA traicking mechanisms and outcomes
in eukaryotes.

Subcellular localization data

Messenger RNA subcellular localization data was obtained from CeFra-Seq [13]

and APEX-RIP [61] experimental data, in the form of normalized expression values

(FPKM) for each annotated human protein-coding gene. The irst data set covers

four subcellular fractions (F = {cytosol, nuclear, membranes, insoluble}), whereas

the second one identiied transcripts enriched in a diferent set of compartments

(F = {endoplasmic reticulum, mitochondrial, cytosol, nuclear}). Although FPKM

normalisation can sometimes distort relative expression values across samples, this

was not a major concerned here because most genes had similar expression across

fractions.

We averaged replicates and excluded genes with low total expression, keeping

only those whose total FPKM expression across all fractions exceeds 1. This resulted

in a set of 11,373 localization-annotated transcripts in the CeFra-Seq dataset and
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13,860 in the APEX-RIP dataset. Let e(g, f) denote the expression level of gene g

in fraction f ∈ F , expressed in FPKM. The normalized localization value for gene g

in fraction f ∈ F was deined as loc(g, f) = e(g,f)∑
f ′∈F

e(g,f ′)
, which measures the relative

abundance of g in each fraction.

Sequences and RNA secondary structure

Messenger RNA sequences were downloaded from the Ensembl database [1],

keeping only the longest protein-coding isoform. We inferred RNA secondary struc-

ture information for each transcript using RNAplfold [16] (window size=150, span=100).

The output of RNAplfold, which is a list of base pairing probabilities, are converted to

an intermediate dot-bracket annotation by greedily creating as many nested basepairs

as possible. The resulting predicted structure was parsed using the forgi library [63],

part of the Vienna RNA package [82], to annotate each position as belonging to an

internal loop (I), hairpin loop (H), multi-loop (M), dangling start (F), dangling end

(T) or stem (S).

Feature encoding

RNA nucleotides are represented using 1-hot encoding over 4 bits. When RNA

secondary structure is considered, a 6-bit encoding of the structural state is used, or

a 24-bit encoding of the joint representation of sequence and structural states.

Input sequence length varies from ∼200 nt to more than 30,000 nt. RNATracker

can either operate on individual input sequence of arbitrary lengths, or on ixed length

inputs, the latter allowing a variety of mini-batch optimizations and normalizations.

In the ixed-length mode, sequences longer than 4000 nt are truncated at the 5’ end

(working under the assumption that localization signals are more often found in a
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transcript’s 3’ end [15]). Sequences shorter than 4000 nt are left-padded with empty

nucleotides encoded as 0000. We also investigated ixing the length at 1000, 2000,

and 8000 nt, but obtained reduced prediction accuracy at 1000 and 2000 nt, and

little accuracy beneits at 8000 nt.

Model Architecture

RNATracker is a convolutional neural network (CNN) coupled with a Long

Short-Term Memory (LSTM) recurrent neural network with attention mechanism.

The overall structure of our model structure is shown in Figure 4–2. Each component

is described in details below.

Our network includes two sets of CNN+pooling layers (Figure 4–2 A). Each CNN

layer consists of 32 convolutional ilters of length 10 with ReLU activation, initialized

with Xavier uniform. Each pooling layer takes a window of size 3 and a stride of 3, to

aggregate local information along the sequence as well as to efectively downsample

the sequence by a factor of roughly 9 before passing it on to the subsequent LSTM

layers. A network with a single convolutional layer was also evaluated but proved

less accurate.

The output of CNN+pooling layers is fed into the subsequent LSTM layer (Fig-

ure 4–2 B), which is a recurrent neural network that allows information to low from

positions to position, while being updated based on the data at the current position,
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Figure 4–2: Structure of the RNATracker deep neural network. (A) Top-down model
architecture, from the feature encoding, convolution and LSTM layers to the atten-
tion module. (B) Details of a LSTM cell. (C) Details of the attention module
employed in this study.
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Ct = ft ∗ Ct−1 + it ∗ Ĉt (4.2)

ht = ot ∗ tanh(Ct) (4.3)
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where it, ft and ot denote the input, forget and output gate respectively, each as an

independent function of previous cell output ht−1 and input to the current cell xt.

Ct is the cell memory, composed in part of Ĉt which is the candidate cell memory for

time step t, whose element-wise multiplication with the input gate it determines how

much information to update into the current cell memory Ct. Similarly ft controls

how much information to forget from previous cell memory Ct−1, therefore ft ∗ Ct−1

makes up the other part of Ct. Finally ot controls the information of the current cell

output ht. ◦⃝ stands for component-wise function composition.

The use of bidirectional LSTM has previously been shown to be advantageous

compared to ordinary unidirectional LSTM, since they are able to aggregate informa-

tion from both directions [104]. Our network includes both a forward (5’ to 3’) and a

reverse (3’ to 5’) direction LSTM. For each time step, the output of the bidirectional

LSTM is the concatenation of the outputs of the two directional LSTMs.

Attention Mechanism

Based on previous studies [23], we expect the localization signals contained

within most mRNAs to be conined to a relatively short contiguous portion of the

sequence, often (but not always) located in the 3’ UTR. To take advantage of this,

RNATracker integrates the notion of attention mechanism [6], which is a popular

add-on technique for multiple tasks in ields such as document classiication [118] and

relation classiication [123]. This allows RNATracker to learn to pay more attention

to regions of the sequence that convey more relevant information about localization.

The details of the attention module are shown in Figure 4–2 C.
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Let us denote output of the bidirectional LSTM layer at time step t as ht =

[
−→
ht ,
←−
ht ]. The attention layer performs the following computation:

st = tanh(w · ht + b) (4.4)

αt =
exp(st)

∑l

i=1 exp(si)
(4.5)

c =
l

∑

i=1

αihi (4.6)

where w is a trainable weight vector in lieu of a context vector, l denotes the

length of the output from the biLSTM layer, and c is the vector that summarizes

the output at diferent time steps in h weighted by αt.

Finally, we attach a fully connected layer with softmax activation after the

attention module, to form a 4-categorical output.

Loss function and regularization

The entire network is trained to minimize the Kullback-Leibler divergence be-

tween the predicted and true subcellular distributions p and q:

KL(p, q) =
N
∑

i

∑

j∈F

pij log
pij

qij

where N is the size of batch, and p is the observed distribution of normalized lo-

calization values across the subcellular fractions. Regularization is achieved using

dropout units after convolutional layers, with a ratio empirically determined at 0.2.

When using ixed-length input sequences, we use a mini-batch of size 256, which

signiicantly speeds up training. We have investigated the use of batch normaliza-

tion [58], which in other contexts has been shown to speed up convergence. However,
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we observe that with our 5’ zero-padding of short sequences, this leads to extra in-

put variability being introduced at the 5’ end when the sequences in the batch have

unequal lengths, resulting in slightly decreased prediction accuracy. Therefore in

practice we choose not to use batch normalization, which however would be worth

considering if training eiciency is more of a concern, or in situations where input

sequences are of equal lengths.

The set of hyper-parameters reported in this study are selected based on the

previous literature [93, 79] and subject to a small amount of manual tuning. Overall,

we found our model robust to the choice of reasonable hyper-parameters.

Use of RNA secondary structure

To assess the extent to which RNA secondary structure can be used to inform

subcellular localization prediction, we trained three variants of RNATracker: (i)

RNATrackerseq uses only primary sequence information; (ii) RNATrackerseq×struct
represents sequence and structure information jointly using 1-hot encoding over 4×

6 = 24 bits/nt; and (iii) RNATrackerseq+struct, which uses diferent encodings for

the sequence and secondary structure, and processes them via diferent convolutional

layers, whose outputs are concatenated before going through the LSTMs.

Training and evaluation

Our model is implemented using Keras [25]. Training uses the Adam optimizer

with Nesterov momentum [40]. For all experiments we used 10-fold cross-validation

to evaluate our models. A maximum of 100 epochs is used for training each fold, and

a validation set consisting of 10% of the training data is used to monitor the loss in

the training process to detect overitting.
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The variable length of mRNA transcripts poses a unique challenge to this study

in terms of training time, as this prevents the use of mini-batches. Training examples

thus need to be presented one at a time, which results in slow training (7 days for

10-fold cross-validation on a single GTX1080Ti graphic card, using a learning rate

of 10−4). Skipping the LSTM layers allows somewhat faster training (2 days), but

at a small cost in terms of accuracy (see Results). Sequence truncation/padding to

4 kb allows batch training, which yields signiicant gains in training time (8 hours

for 10-fold cross-validation, with a learning rate of 10−3).

Baseline predictors

Since we are not aware of any previous work on the prediction of mRNA sub-

cellular localization, we chose to compare the diferent versions of RNATracker to

two baseline predictors based on the popular k-mer representation. The simplicity

of k-mer based approach stems from the fact that the ordering information is lost

in this representation. However, it has proved efective for related types of sequence

function prediction, such as transcription factor binding [45]. Here, we use a feature

vector of k-mer counts that combines features from 1-mer to 5-mer extracted from

the full RNA sequence, resulting in a 1367-dimensional input vector. We actually

investigated going up to 7-mers, but obtained no beneit in terms of accuracy.

Two types of predictors were trained: a fully connected neural network (DNN-

5Mer) with two hidden layers of size equal to the input dimension, each followed

by ReLU activation and dropout, and a smaller neural network (NN-5Mer) with no

hidden layer.
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Locating zipcodes within individual transcripts

RNATracker can be used to quantify the extent to which speciic subsequences

of a given transcript contribute to the localization prediction, thereby identifying

candidate zipcode elements. This is achieved by temporarily masking (zeroing-out)

the sequence of a given portion of the transcript, and computing the Kullback-

Leibler distance between RNATracker’s localization predictions on the original and

masked sequences. We use a mask of 100 nt and slide it (with 1 nt stride) along the

transcript’s sequence to obtain a relative importance vector. Because all the masked

sequences have the same length, they can be evaluated in batch, which considerably

speeds up the execution. We also experimented with another masking scheme where

the masked portion is randomized rather than zeroed-out (100 repetitions), but this

did not signiicantly change the results, while taking signiicantly longer. Therefore,

the results presented here are for the zero-masking approach.

4.5 Results

The diferent versions of RNATracker were evaluated on two mRNA subcellular

localization data sets. The irst was obtained by CeFra-seq in HepG2 cells, and con-

tains 11,373 transcripts analyzed in the nuclear, cytosolic, membranes, and insoluble

fractions [13]. The second was produced using APEX-RIP on HEK 293T cells, and

contains 13,860 analyzed in the endoplasmic reticulum, mitochondrial, cytosolic, and

nuclear fractions [61]. Figure 4–3 shows the distribution of normalized localization

values for each of the four CeFra-seq subcellular fractions, conirming the previously

made observation that the cytoplasmic, nuclear, and insoluble fractions contain a

larger number of strongly localized transcripts, compared to the membrane fraction.
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Normalized localization values of diferent fractions are generally negatively corre-

lated, except for the cytosolic and membrane fractions, which are unsurprisingly

positively correlated due to physical colocation (Suppl. Fig. S2). This will have

important consequences on the results presented later. Furthermore, transcripts lo-

calized to the cytosol tend to be shorter. See also Suppl. Fig. S4 and S3 for analogous

analyses of APEX-RIP data.

Figure 4–3: Summary statistics for the CeFra-Seq dataset. (A) Distribution of the
normalized localization values for each subcellular fraction. (B) Number and average
length of transcripts whose predominant localization is in each of the four fractions.

Performance of RNATracker

We used 10-fold cross-validation to evaluate the performance of the diferent

versions of RNATracker and the two baseline k-mer proile predictors, on both the

CeFra-seq and APEX-RIP data sets. To limit computational burden, more detailed

analyses of some key model components such as the attention weights and the learned

sequence motifs were performed exclusively on the CeFra-Seq dataset.
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Figure 4–4 compares the true localization values to those predicted by RNA-

Tracker on the ceFra-seq dataset (see Suppl. Fig. S5 for analysis of the APEX-RIP

dataset). Correlation coeicients obtained vary from 0.54 for the nuclear and mem-

brane fractions to 0.705 for the cytoplasm faction, and all are signiicantly diferent

from zero (p-value≈0). In APEX-RIP data, the accuracy is slightly lower, ranging

from 0.456 (nuclear fraction) to 0.626 (endoplasmic reticulum), but again all are

highly signiicant (p-value≈0).

Table 4–1 compares the Pearson correlation coeicients between the experimen-

tal and predicted localization values of the combined folds, obtained by diferent

predictors. This reveals several observations. First, for both data sets and across

all fractions, the best results are obtained using RNATracker applied to full-length

sequences (i.e. no trimming/padding) and without RNA secondary structure in-

formation. These correlation coeicients are consistently 10 to 25% higher than

those obtained by the k-mer based neural network, and 2-14% higher than those

obtained by RNATracker operating on ixed-length sequences. Gains compared to

ixed-length sequences are particularly signiicant for the membrane fraction (CeFra-

seq) and endoplasmic reticulum (APEX-RIP), suggesting that localization to those

fractions may often be mediated by sequences located in the 5’ end of the transcript.

This makes sense since targeting to the ER membrane is known to be mediated by

the signal sequence that can be found in mRNAs encoding secreted proteins [53].

We also observe that the two variants using RNA secondary structure information

consistently perform 1-3% worse than the version using sequence information alone

(analysis only performed in the ixed-length setting, for running time reasons).
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Our LSTM-based RNATracker was also compared to a pure CNN model (NoL-

STM), revealing a consistent 3-7% increase in correlation coeicients due to the

LSTM component. Similarly, a version of RNATracker without the attention module

was evaluated but performed signiicantly worse than its attention-based counterpart

(esp. on APEX-RIP data, where the diference ranges from 25 to 30%). These re-

sults show that both the LSTM and attention layers are essential for good prediction

accuracy.

However, the signiicantly shorter training time makes the ixed-length training

a viable alternative when resources are limited.

Table 4–1: Pearson correlation coeicients by subcellular fraction of various model
and input settings. NoLSTM and NoAttention are the two ablation tests without
the bidirectional LSTM or the attention module.

Full-length RNA Inputs Fixed-length Inputs (4 kb) 5Mer Inputs
Dataset Compartment RNATrackerseq NoLSTM RNATrackerseq NoAttention Seq+Struct Seq×Struct DNN-5Mer NN-5Mer

CeFra-Seq

Cytosol 0.705 0.676 0.685 0.625 0.666 0.652 0.637 0.558
Insoluble 0.641 0.626 0.619 0.557 0.604 0.591 0.552 0.478
Membrane 0.540 0.509 0.469 0.306 0.451 0.409 0.421 0.384
Nuclear 0.542 0.515 0.502 0.379 0.475 0.449 0.485 0.432

APEX-RIP

ER 0.626 0.554 0.485 0.150 0.469 0.394 0.407 0.368
Mitocondria 0.482 0.449 0.423 0.139 0.376 0.320 0.292 0.224
Cytosol 0.561 0.522 0.501 0.259 0.493 0.423 0.446 0.363
Nuclear 0.456 0.402 0.397 0.235 0.384 0.338 0.332 0.238

We next assessed the ability of RNATracker to identify the predominant local-

ization of a given transcript, deined as the fraction where the transcript’s expression

is the highest. Instead of retraining RNATracker for this new classiication task,

we simply turned this regressor into a classiier by making it output the fraction

with the highest predicted localization value. Suppl. Fig. S6 reports the receiver

operating characteristic (ROC) and precision-recall (PR) curves for each predictor,

micro-averaged across the four fractions. Consistent with the results on the regres-

sion task, RNATracker trained with full-length sequences slightly outperforms all
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Figure 4–4: RNATrackerseq predictions for the CeFra-Seq dataset by fractions,
trained with full-length transcripts. Each point is a transcript with its true lo-
calization value shown on the x-axis and the predicted value shown on the y-axis.

other models, although by a narrow margin compared to the ixed-length version.

These results also conirm the strong beneit of the attention module, and the slightly

deleterious impact of including RNA secondary structure information. Similar ob-

servations can made for the APEX-RIP dataset (Suppl. Fig. S7).

To better illustrate the diference between various models, we used Delong’s test

from the R package pROC [101] to compare the ROC curves, conirming that the

performance gain from ixed-length to full-length version is statistically signiicant
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(p-value = 6.1×10−9), and so are the beneits of the LSTM and the attention module

(both p-values < 2.2× 10−16).

Given its slightly superior performance, for the rest of this section, we focus an-

alyzing RNATracker with full-length input sequences but no RNA secondary struc-

ture, and with LSTM and attention layers. Figure S6 (C) and (D) dissects the

prediction performance per subcellular fraction. Consistent with correlation results

previously shown in Figure 4–4, RNATracker has the best performance for the cy-

tosolic fraction (ROC AUC = 0.851, PR AUC = 0.716), slightly better than results

on the insoluble and nuclear factions, and much better than those on the membrane

fraction. Several factors may explain these diferences. First, very few transcripts

(∼1000) are predominantly found in the membrane fraction, and almost none have

membrane localization value greater than 0.5 (see Figure 4–3 (A)). Second, tran-

scripts predominantly localized to the cytoplasmic fraction tend to be signiicantly

shorter than others (see Figure 4–3 (B)), which is a clue our predictor takes advantage

of.

Dissecting the attention module

As demonstrated earlier, the attention mechanism is beneicial to predicting

localization proiles. To better understand its role, we studied how the attention

weights αi vary along the sequence, under the ixed-length setting. Figure 4–5 shows

that most of the attention weight concentrates at the ∼400 nt at the 3’ end of the

transcript. This is likely caused by two factors. First, the few well characterized

cis-acting localization regulatory elements tend to be located in the 3’ UTR [23],

so it is likely that this is where the most meaningful signal is located. Second, the
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Figure 4–5: Attention weights αi, for RNATracker with ixed-length inputs, aver-
aged over the transcripts predominantly localized to each of the four fractions, as a
function of position in transcript.

zero-padding introduced in transcripts shorter than 4 kb is always introduced at the

5’ end, making this region generally less informative. It is worth noting, however,

that RNATracker is fully able to identify zipcodes located outside that region (see

Suppl. Fig. S1).

Analysis of sequence motifs

The weights learned by the 32 ilters from the irst CNN layer are akin to

position-weight matrices used in classical sequence analysis. We used weblogo [34] to

visualized the learned motifs, and Tomtom [8] to map learned motifs to binding pref-

erences of known RBPs [98] (keeping in mind the caveat that this is an incomplete

catalog and that matching motifs to RBPs is error-prone). 9 of the 30 convolutional

ilters were found to match a the binding proile of a known RBP (Tomtom pvalue
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Figure 4–6: (A) Visualization of selected learned sequence motifs (above) mapped to
those of known RBPs (below) from [98] that are TIA1 (up) and BRUNOL5 (down)
. (B) Hierarchical clustering of 32 ilters with 1024 strongly localized transcripts (256
transcripts per fraction), using the cosine distance between the 1024-dimensional
vectors of average activation values, averaged across the transcript length.

< 0.05). Representative examples are shown in Figure 4–6 (A), with strong matches

to RBPs TIA1 (p-value=7.63× 10−4) and BRUNOL5 (p-value=1.64× 10−6).

To better understand the role of the 32 motifs learned by RNATracker, and the

way in which it combines them to obtain predictions, we clustered them based on

their co-occurrences across a subset of 1024 transcripts consisting of the 256 tran-

scripts most strongly localized to each of the four fractions. Two broad sets of motifs

emerge. The irst (top half of heatmap), contains several C/G-rich motifs as well
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as more complex motifs, which are strongly associated to cytoplasmic transcripts.

The second (bottom half of heatmap), is characterized by A/U-rich motifs, as well

as A-G or U-G dinucleotide repeats, which are mostly found in transcripts from the

nuclear and insoluble fractions.

To study how RNATracker uses individual sequence motifs to obtain its local-

ization predictions, we iteratively zeroed-out the output of all but one of the ilters,

and computed the Pearson correlation coeicient between the predicted localization

values in the full and zeroed-out model, separately for each fraction. In this way, we

are able to crudely isolate the contribution of each single convolution ilter to the

inal prediction.

Locating zipcodes within transcripts

RNA subcellular localization is generally believed to be linked to the presence of

discrete contiguous regulatory elements called localization zipcodes. By iteratively

masking small portions of a transcript and studying how the predicted localization

changes, one can identify candidate zipcodes, deined as regions whose masking sig-

niicantly alters the localization prediction (see Methods and Figure S1 for examples

on speciic transcripts). A candidate zipcode can further be assigned an enhancing

or repressive label for a given fraction, depending on whether its masking results in a

reduction or increase in the predicted localization score for that fraction. Figure 4–

7 shows the number of positive and negative zipcode regions identiied at diferent

stringency levels (KL cutof). At the KL cutof of 0.0075, we identify 374 unique

positive zipcodes, but only 167 unique negative zipcodes.
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Because the number of experimentally characterized zipcodes is very small (less

than a dozen in human), we had to rely on indirect measures to assess the validity

of the predicted zipcode elements. Due to their important role in regulating proper

gene expression, we would expect most zipcodes to be under negative selection, and

thus to be more highly conserved across species than their neighboring regions.

We thus used PhyloP conservation score [94], calculated from the multiple

genome alignments of 100 vertebrates and available from the UCSC Genome Browser [50].

Focusing on the 2392 transcripts exhibiting strong subcellular localization (maximum

localization value > 0.5), we compared the distribution of average PhyloP scores

within the top 541 predicted zipcodes to the PhyloP score distribution of regions

of 3’ UTRs not predicted to be zipcodes (Figure 4–8). While the two distributions

largely overlap, large conservation scores (>1) are roughly two times more frequent

in candidate zipcodes than elsewhere, and the two distributions have means that are

signiicantly diferent (p-value close to 0 using a Kolmogorov-Smirnov (KS) test).

This shows that predicted zipcodes are under stronger negative selection than the

rest of the 3’ UTRs, although this may be caused by functions other than localiza-

tion. Varying the KL threshold used to identify zipcodes, we observe that higher

KS statistics (i.e. higher interspecies conservation values) are obtained for our most

conidence predictions (Figure 4–7). With the caveat mentioned above, this sug-

gests that RNATracker’s KL score can be used as indicators of zipcode prediction

reliability.
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Figure 4–7: Number (left) and inter-species conservation (measured using the KS
statistics (right) of enhancing and repressive candidate zipcode regions identiied at
increasingly strict KL cutofs.

Figure 4–8: Distribution of average PhyloP scores for 541 regions predicted to be
zipcode elements (KL score > 0.0076, in blue) and 3688436 regions predicted not to
be (KL score ≤ 0.0076, in red). Dotted vertical lines indicate the means of the two
distributions.
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4.6 Discussion and Conclusion

Along with two recently published approaches ([124] and [48]), RNATracker

is among the irst computational predictors of mRNA subcellular localization. It

achieves satisfactory (but certainly perfectible) performance on two of the largest

subcellular localization data sets currently available, thanks to its use and adaptation

of cutting-edge machine learning approaches such as LSTM and attention modules,

without which prediction accuracy is generally inferior. Although the problem of

predicting localization from sequence has some similarity to other sequence-based

function prediction, its diiculty stands out because of the complexity of the mecha-

nisms at play and the relative weakness and noisiness of the localization signal of most

transcripts, among other reasons. The variable length of transcripts also leads to new

challenges, both in terms of generalization and computational eiciency. Beyond be-

ing able to predict subcellular localization of full-length transcripts, RNATracker is

able to locate candidate cis-regulatory regulatory regions (zipcodes) in strongly local-

ized transcripts. In the absence of a large set of experimentally identiied zipcodes,

validating these predictions is challenging, but an analysis of inter-species sequence

conservation, used a proxy for negative selection and thus function, indicates that

many of our predicted zipcode are under stronger selection than surrounding 3’ UTR

regions.

Somewhat surprisingly, and despite our best attempts, we were unable to demon-

strate signiicant beneits from the consideration of RNA secondary structure. This
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may be explained by a number of factors, and certainly does not suggest that struc-

ture plays no role in localization. First, our ability to accurately characterize sec-

ondary structure is imperfect, and our use of RNAplfold, which only considers rel-

atively short-range interactions, may be limiting; the probabilistic structure proile

proposed by [29] may be good alternative. Second, incorporating RNA structure in-

formation increases the size of the input feature space, from 4 bit per position for pure

sequence, to 10 or 24 depending on whether the seq+struct or seq×struct encoding is

used. This may more easily lead to overitting, thereby negating the beneits of this

potentially valuable information. More condensed encodings (e.g. paired/unpaired)

may prove beneicial. Finally, rather than feeding as input precomputed structural

information, one may consider letting the model learn to reconstruct them from some

lower-level sequence/structural features.

Several factors may be limiting the accuracy of RNATracker. First and foremost,

the quantity and speciicity of RNA localization data remains relatively low, which

limits the sophistication of the models learned from it and forces the use of strict

regularization (limitation in model complexity, early stopping, dropout) to avoid too

severe overitting, which in turn limits the space of reasonable hyper-parameters.

This is in part due to the fact that isoforms are currently not distinguished (all ex-

pression data is mapped to the longest annotated isoform), although this could be

addressed by more advanced processing of future ceFra-seq/APEX-like data, pro-

vided higher sequencing depth is obtained. Second, localization data produced by

ceFra-seq/APEX is inherently noisy and may sometimes inaccurately relect a tran-

scripts true localization. Combined with the fact that many transcripts exhibit only
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slightly asymmetrical localization or strong localization to more than one subcellular

fraction, this makes for hard data to train from.

Improvements to our current approach could be considered in several directions,

most of which are currently being explored. First, we may be able to take advantage

of transfer learning to exploit models trained for other types of prediction tasks rel-

evant to mRNA localization, such as the easier prediction of RBP binding [2, 93, 79]

or possibly alternative splicing [78]. This would involve building a predictive model

initialized from a model previously trained for one of these tasks, or re-using cer-

tain components of it, such as its convolution ilters. Our initial attempts in that

direction, based on re-using the convolutional ilters trained to predict RBP binding

events from Clip-Seq data [108], did not provide improved accuracy. Indeed, the

convolution ilters only take up a small proportion of all trainable weights. Alterna-

tively, we could directly use prior knowledge about RBP binding ainities, e.g. from

[98, 38], to initialize convolutional ilters.

Second, in this study, we used inter-species conservation as an indirect valuation

of our zipcode predictions. One could instead make direct use of this information as

an input to the predictor or to its attention module.

Finally, bootstrapping techniques, e.g. reconstruction loss [99], can be integrated

into the training to account for the noise of the targets, together with unlabeled RNA

sequences.

With mRNA subcellular localization increasingly recognized as a key player in

regulating gene expression, new and improved data sets will rapidly become available,

and the power of approaches such as RNATracker will increase. At the same time, the
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predictions made by RNATracker, both in terms of location of zipcode elements and

the way in which individual motifs combine to results in its localization predictions,

constitute testable hypotheses that will fuel discovery in the ield. All in all, this

represents a rich, promising, and challenging area for future research in bioinformatics

and machine learning.
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CHAPTER 5
Conclusion

The main focus of this study revolves around the prediction of RNA subcellu-

lar localization and the identiication of sequence determinants from the input RNA

transcripts from a machine learning standpoint. It is important to gain a broader

and clearer understanding into the underlying mechanisms, which has a strong impli-

cation over the regulation of cellular activities and subcellular protein distribution.

Another important aspect is to fully understand the pathogenesis related to RNA

localization, and to develop treatments that can for example take advantage of the

existing RNA traicking pathways.

Our proposed model, RNATracker, is able to achieve a good accuracy evaluated

under two datasets collected from previous experiments. RNATracker is based on

deep learning, performing end-to-end learning on RNA transcript sequences with or

without annotated secondary structure. Due to the fact that RNATracker is heavily

parameterized, in contrast to the limited quantity and quality of data, the model is

susceptible to overitting and only demonstrated limited prediction eicacy, despite

its reliance on powerful deep learning tools such as CNN and LSTM.

A number of future directions are worth exploring, such as to more efectively

incorporating the RNA secondary structural information into the prediction pipeline.

It may be better to sample from an ensemble of all possible secondary structures

instead of keeping only one that has the minimum free energy, and abstraction of
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the subgraph is also necessary to cope with excessively long RNA transcripts. A

graph neural net representation of the RNA secondary structures would also enable

a richer exploration of the structural motifs associated to RBP binding and RNA

traicking, possibly leading to more accurate predictions. On the other hand, to

address the noise levels intrinsically involved in RNA localization and experimental

protocols used to obtain the data, it is necessary to evaluate the model with larger and

better dataset. A more carefully chosen neural architecture would also hypothetically

suppress overitting along with more and better training data.

It is also important to integrate the biological factors related to RNA subcellular

localization into the design of the predictive model pipeline. For example alternative

splicing should be taken into account to make a more biologically coherent gene-level

localization prediction, instead of merely representing each gene with only its longest

protein-coding RNA transcript.

Finally, having obtained a predictive model which associates a localization proile

to each RNA transcript, the design of RNA zipcodes can be achieved from the

opposite direction, which is to synthesize RNA oligos that possess some preferred

localization target according to the predictive model. This inverse design operation

can be aided by the deep generative framework described in the background section,

and represents a whole new direction of RNA design.
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Appendix

Figure S1: Alignments of KL scores and average conservation scores for 6 selected
genes.
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Figure S2: Pairwise joint distribution of the normalized expression values between
diferent subcellular fractions over all genes in the CeFra-Seq dataset.
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Figure S3: Pairwise joint distribution of the normalized expression values between
diferent subcellular fractions over all genes in the APEX-RIP dataset.
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Figure S4: Distribution of the localization values for the APEX-RIP dataset. KDEL:
endoplasmic reticulum, Mito: mitochondria, NES: cytoplasm, NLS: nucleus.
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Figure S5: Scatter plots for RNATracker applied to full-length sequences in the
APEX-RIP dataset.
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Figure S6: Analysis of RNATracker variants evaluated on their ability to predict the
predominant localization of a transcript. (A) and (B) present the micro-averaged
ROC and PR curves for the four fractions of the diferent modalities of RNATracker
and baselines. (C) and (D) ROC curves and PR curves for RNATrackerseq, for each
fraction.
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Figure S7: (A) and (B) compared the micro-averaged ROC and PR curves of diferent
RNATracker modalities and baselines. (C) and (D) presents ROC curve and PR
curve on a fraction basis, for the best performing RNATracker model trained with
full-length sequences.
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