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Abstract 
 

Current safety assessment for novel crops, including transgenic crops, uses a 

targeted approach, which determines crop safeness by assessing the content of a few 

specific chemical components. However, microarray technology can simultaneously 

assess the whole transcriptome and can therefore be used to analyze target genes as well 

as unintended effects. In this study, we used this technique as a non-targeted approach. 

Gene expression data from a microarray experiment with five soybean cultivars was 

analyzed using bioinformatics. Two cultivars were transgenic (RoundUp®) and three 

were non-transgenic. We show that the variation in gene expression between transgenic 

and non-transgenic soybean is less than that between non-transgenic cultivars. A MySQL 

database coupled with CGI web interfaces was developed to store and present the results 

(http://thor.agrenv.mcgill.ca/cgi-bin/soy/soybean.cgi). By integrating the microarray data 

with gene annotations and other soybean data, a comprehensive view of differences in 

gene expression can be explored between cultivars. 
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Résumé 
 
 

Les méthodes actuelles d’évaluation du risque pour des cultures nouvelles, 

incluant les cultures transgéniques, utilisent une approche ciblée; elles évaluent le 

contenu en composés chimiques spécifiques. La technologie des micropuces étant 

maintenant disponible, il est possible d’évaluer la totalité du transcriptome. Nous avons 

utilisé cette technologie comme approche non-ciblée. Dans la présente étude, les données 

d’expériences de micropuces comparant l’expression des gènes de cinq cultivars de soja 

sont analysées par des méthodes bioinformatiques. Deux de ces cultivars sont des soja 

transgéniques RoundUp® et trois sont non-transgéniques. Nous montrons que la 

variation de l’expression des gènes entre soja transgéniques et non-transgéniques est 

moins grande qu’entre des cultivars non-transgéniques. Une base de données MySQL et 

une interface web CGI ont été développées pour entreposer et récupérer les données. 

L’intégration avec d’autres données sur le soja a rendu possible l’exploration de données 

génétiques globales entre cultivars en terme de fonctions biologiques. 
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1 Introduction 

 

Soybean (Glycine max (L.) Merr.) is one of the most economically important 

crops in North America and worldwide, providing abundant proteins and vegetable oil for 

human and livestock consumption. Being a member of the Fabaceae family, soybean is 

also one of the major contributors to the global nitrogen cycle. In order to improve 

performance in different climates, many new varieties of soybean are developed every 

year using traditional breeding and/or genetic engineering. These plants with novel traits 

have for instance improved seed quality, cold tolerance, and disease, pest and herbicide 

resistance (Dunwell, 2005). Before commercialization, all crops with novel traits have to 

undergo safety assessment in order to assure that it is safe for human and animal 

consumption. In this study, the overall gene expression profiles of five soybean cultivars 

are compared using microarray technology. Two of the cultivars are transgenic for 

resistance to the herbicide glyphosate (RoundUp®) and three cultivars are conventional 

counterparts. The aim of this project is to develop a computational environment where 

soybean gene expression, whether from transgenic or conventional cultivars, can be 

objectively compared. To our knowledge, there is no published report to compare 

‘substantial equivalence’ in transgenic soybean at the gene expression level and this is the 

first database specially designed to assist researchers in crop safety assessment. Our 

objectives are to develop a database with web tools to store and retrieve the results of the 

microarray experiment, and link to other soybean genomic information in order to assist 

researchers to identify changes in gene expression and determine whether these changes 

alter biological processes in soybean.  

 

1.1 Safety assessment of transgenic crops 

 

Concerns have been raised for crops with novel traits developed by transgenic 

techniques that the incorporation of foreign genes into organisms may produce 

unintended toxins or allergens, or nutrients and essential gene products may be 

down-regulated. For example, one report found that genetically modified potato with the 
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insertion of a modified soybean glycinin gene unexpectedly over-expressed a toxin 

glycoalkaloid, although this did not negatively affect rats fed the transgenic potato 

(Hashimoto et al., 1999). This showed that unintended effect can occur in transgenic 

crops. However, it is also important to point out that, because of genetic recombination, 

unintended effect can also occur in novel crops developed by traditional plant breeding. 

Therefore all crops with novel traits must undergo crop safety assessment.  

 

Current safety assessment of new crops is based on the concept of ‘substantial 

equivalence’. If the chemical component in the new crop is substantially similar to their 

counterpart that means it possesses no health risk and the new trait is safe for 

commercialization (Millstone et al., 1999). However, this is a target approach, which 

only analyzes a certain number of specific compounds known to be a safety concern. 

Unknown and unintended effects on metabolism outside of those specific compounds are 

not assessed on a regular basis. Therefore, a non-target, profiling approach using 

microarray technology can be used to evaluate potential changes on global gene 

expression (Kuiper et al., 2001). A number of new studies have shown that microarray 

technology, based on non-target and unbiased approaches, is a potential tool to detect 

unintended effects (Gregersen et al., 2005, Ouakfaoui and Miki, 2005, Baudo et al., 

2006). The whole transcriptome, representing all genes in the plant of study, is spotted on 

a glass slide, or printed on Affymetrix microarray GeneChips (Affymetrix, 2001). Then, 

by hybridizing the microarray with mRNA from the plant samples, global gene 

expression profiles can be generated. The gene expression profiles from a sample of 

novel crops can be compared to the gene expression profiles from a conventional crop in 

order to detect any potential differential gene expression. If information such as 

annotations of the sequences and their functional identification of the gene products is 

available, this may give further insight into biological functions and metabolic pathways 

that are relevant for crop safety assessment (Cellini et al., 2004). Knowing in which crop 

each gene is up- or down-regulated, will also allow a targeted assessment of individual 

genes of particular interest. Thus, both targeted and non-targeted effects on gene 

expression can be assessed with microarray technology. 
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1.2 Rationale of this study 

 

The rationale of this study was to analyze gene expression data in transgenic and 

conventional soybean cultivars and to develop a database for soybean transcriptome and 

ancillary data that can be applied as a part of crop safety assessment strategies. Five 

replicates of each of five soybean cultivars, totally consisting of data from twenty-five 

microarray hybridizations were obtained (Beaulieu, 2005). Two of the cultivars were 

transgenic and the other three cultivars were non-transgenic soybeans. The first scope of 

our study was to survey changes in gene expression among these five different cultivars 

in order to evaluate the range of variation within and between the groups of transgenic 

and/or non-transgenic cultivars. The second scope was to compare gene expression 

profiles of transgenic soybeans to non-transgenic soybeans to obtain lists of differentially 

expressed genes.  

 

Since the hybridization on the whole transcriptome is carried out on one 

microarray chip, there is massive amount of data to process within one single experiment 

and bioinformatics tools are necessary to analyze the data. Most importantly, we need to 

integrate the gene expression data with other available information such as gene function 

to provide a comprehensive description of the experiment data. Therefore, a database is 

essential to handle, organize and interpret the results from the microarray experiment. 

With the integration of available soybean information into a database, it is possible to 

interpret and analyze the microarray experiment using meaningful terms, which describe 

the biological functions. Therefore, our third scope was to develop a database with a suite 

of web interfaces to allow users to easily retrieve data and results of the microarray 

experiment with cross-reference annotations of the expressed sequence tags (EST) and 

hyperlinks to external public databases. This environment makes it possible to explore 

differences in gene expression, if any, between transgenic and non-transgenic soybean 

cultivars and to interpret the results based on gene functional annotations to determine 

any changes that could alter biological processes. 
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1.3 Hypotheses 

 

Our hypotheses are:  

A. Transgenic and non-transgenic soybean genotypes can be distinguished by the 

analysis of global gene expression profiles using bioinformatics tools;  

B. Gene expression profiles are more accurately compared on a gene function level 

than on a single gene level. 

 

1.4 Objectives 

 

Our specific objectives were:  

1. to create a database for storing and analyzing soybean EST and gene expression 

data;  

2. to combine gene expression data with information on gene product, molecular 

functions and metabolic pathways, to give biological meanings to EST sequences 

and microarray probes;  

3. to establish methods and tools to compare gene expression profiles of different 

soybean cultivars based on a single gene level and on a biological functional level, 

such as gene ontology (GO) terms, to reveal possible changes in biological 

processes;  

4. to create a web interface to analyze and visualize the data and results. 
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2 Literature review 

 
2.1 Assessment of transgenic crops 

 

Genetically modified (transgenic) plants have been designed to improve crop 

resistance to disease, pest, herbicide or abiotic stress; or to improve the crop’s qualities 

and nutritional values (Dunwell, 2005). However, commercialized genetically modified 

crop has raised concerns relating to the safety of consumption. Since the insertion of 

transgenes (genes from another species) into plant DNA can cause disruption at the 

integration site. If the disruption site is a gene-rich region, it can induce mutation due to 

loss of gene function (Koncz et al., 1992). New gene products could potentially be 

produced due to the rearrangement of sequences. In addition, transgenes might interfere 

with other genes by unpredictable gene-gene interactions or gene regulation (Kuiper et al., 

2002). The expression of one gene can also regulate the activity of other pathways due to 

metabolic crosstalk between them (Tattersall et al., 2001). For example, over-expression 

of phytoene synthase in transgenic canola not only increased the production of 

carotenoids, but also altered the production of other unexpected metabolites such as 

tocopherol, chlorophyll, fatty acyl composition and phytoene (Shewmaker et al., 1999). 

Therefore transgenic crops have the potential risk of expressing unintended toxic or 

allergenic proteins. However, traditional plant breeding also alters the genotype by 

introducing genetic recombination and therefore unintended effects are not limited to 

transgenic crops. 

 

One desired crop trait is herbicide resistance, so that herbicide application in the 

field does not damage the crop. Glyphosate (RoundUp®) is a popular herbicide that 

inhibits the production of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and 

inhibits the shikimate pathway to produce aromatic amino acids and essential 

components of protein productions (Steinrucken and Amrhein, 1980). Since the shikimate 

pathway is very important for plant growth, application of glyphosate is lethal to plants. 

In RoundUp® ready soybean, the gene for a glyphosate tolerant EPSPS that is found in 
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Agrobacterium sp. (strain CP4) is inserted into the soybean genome to make soybean 

survive glyphosate applications (Padgette et al., 1995).   

 

The current safety assessment of crops with novel traits (including transgenic 

plants) is based on the concept of ‘substantial equivalence’. New crops are compared to a 

group of conventional crops (i.e. GRAS, Generally Recognized As Safe) that have a long 

history of safe use by compositional analysis (FAO/WHO, 2000). This is a “target 

approach” to assess the intended effect due to transgenes activity in known metabolic 

pathways. It also analyses major compounds such as essential nutrients and anti-nutrients, 

and naturally occurring toxins and allergens. It is assumed that if the chemical 

components in the new crop are substantially similar to the GRAS, it is as safe as the 

crops in our market and therefore the new trait is safe for commercialization (Millstone et 

al., 1999). However, the target approach has its limits to assess unexpected pleiotropic 

effects, because the key compounds being analyzed are restricted to a certain number of 

known compounds. Therefore, a non-target approach is needed to assess unpredictable, 

unintended effects.   

 

One non-target approach for the assessment of unintended effects is the use of a 

profiling method (Kuiper et al., 2001). The idea is to screen for potential changes at the 

genome, transcriptome (gene expression), protein or metabolic pathway level (Kok and 

Kuiper, 2003). Currently only the whole genome or transcriptome of the species that have 

been sequenced can be used for profiling. The whole proteome or metabolome of any 

species has yet to be measured. The development of microarrays has allowed the 

simultaneous analysis of many thousands of genes (the transcriptome) (Baudo et al., 

2006). Therefore microarray technology is an important tool for evaluating the 

pleiotropic effects on global gene expression (Ouakfaoui and Miki, 2005). Gene 

expression profiles can be generated from mRNA of a transgenic crop and compared to 

mRNA of a conventional crop. Thus, targeted and non-targeted changes to gene 

expression can be detected, which can lead to further study to explore their effects on the 

metabolic pathways and the food safety. 
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2.2 Previous studies to compare transgenic with non-transgenic plants 

 
A few studies have been performed to compare gene expression profiles of 

transgenic plants with their non-transgenic counterpart, but to date no report present 

comparisons of gene expression profiles in transgenic soybean. One of the most 

remarkable studies using microarray technology was done on transgenic Arabidopsis 

plants generated with simple T-DNA constructs with the marker genes nptll and the 

reporter uidA, and subjected to various environmental stresses (Ouakfaoui and Miki, 

2005). Gene expression data was analyzed using the Affymetrix Microarray Suite 

software (MAS 5.0), and only genes assigned by the software to have a two fold change 

(increase or decrease) were considered significantly differentially expressed. When 

comparing the global gene expression in the transformed lines to the control line under 

optimal growth conditions, only a small number of differentially expressed genes were 

found (varying between 39 and 180). These represented a very small portion 

(0.17%-0.8%) of the genes screened using the Affymetrix ATH1 Arabidopsis GeneChip 

(22,500 probe sets, representing the Arabidopsis transcriptome). The results showed that 

the insertion of the commonly used marker genes uptll and uidA has minimal effect on 

the global gene expression levels in transgenic Arabidopsis under optimal growth 

conditions, and that the T-DNA insertion of the transgenes leads to very little functional 

disturbance to the genomes of transgenic plants. More importantly, the number of genes 

affected by the insertion of transgenes was significantly lower than the number of genes 

affected by common abiotic stresses such as heat, cold, salt and drought (varying between 

1080 and 4406). Also, when the gene expression profiles of transgenic lines were 

compared with the profile of the control line under abiotic stresses, the stress response 

was not different, meaning that the transgenes did not affect the stress response. The 

conclusion was that transgenic plants generated with simple T-DNA constructs 

containing common marker genes are equivalent to non-transgenic plants (Ouakfaoui and 

Miki, 2005).  

 

Two studies on wheat reported the comparison of substantial equivalence of 

transgenic and non-transgenic crops at the transcriptome level (Gregersen et al., 2005, 
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Baudo et al., 2006). The first study compared the gene expression profiles of the 

developing seeds in transgenic wheat transgenic for an Aspergillus fumigatus phytase 

with wild type wheat (Gregersen et al., 2005). A 9K cDNA microarray was employed to 

evaluate the use of microarray-based technique for detecting potential unintended effects 

in transgenic plants (Gregersen et al., 2005). The study applied the LIMMA software 

package (Smyth et al., 2005) from the Bioconductor package (Gentleman et al., 2004) for 

diagnostic plots and statistical analysis of the gene expression data, and real time 

RT-PCR analysis to validate the differentially expressed genes. The lmFit function of the 

LIMMA package was used to fit a linear model to the gene expression data, then 

followed by constructing a design matrix and a contrast matrix. The eBayes function was 

used in order to generate a list of differentially expressed genes based on the p-value 

calculated by a modified t-test. The estimated log2 fold changes (M-score) and log odds 

values (B-score) were also calculated by the eBayes function. The comparison between 

two wheat lines showed very slight variations for the three sampling time points (8, 16, 

32 days after pollination) but the differentially expressed genes could not be confirmed 

by real time RT-PCR. The authors concluded that the expression of A. fumigatus phytase 

had no significant effects on the global gene expression pattern in the developing seeds of 

transgenic wheat (Gregersen et al., 2005).  

 

The second study reported the comparison of gene expression profiles of 

transgenic and conventionally bred wheat lines that over-express genes encoding high 

molecular weight subunits of glutenin (Baudo et al., 2006). The same 9K cDNA 

microarray was used for pair-wise comparisons between the transgenic wheat line, 

conventionally bred wheat sister line and the non-transgenic control line. Gene 

expression data was analyzed using the commercial software GeneSpring (GeneSpring 

6.2, Silicon Genetics, USA) and GenStat (GenStat 7th Edition, GenStat Procedure Library, 

Release PL15, Lawes Agricultural Trust, Rothamsted, Harpenden, UK). Genes with 

significant differential expression (p < 0.05 and 1.5 fold change) were identified. The 

numbers of differentially expressed genes in the comparison between transgenic line and 

the non-transgenic line at 8, 14, 28 days post-anthesis were 6, 5 and 2 respectively. It 

only represented a small proportion (0.06%, 0.05% and 0.02 %) of the genes spotted on 
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the microarray. In the comparison between conventional bred line and non-transgenic line, 

the number of differentially expressed genes varied from 26 to 527 (0.27% to 5.59%). In 

the comparison between transgenic line and conventional bred line, the number of 

differentially expressed genes varied from 4 to 154 (0.04% to 1.63%). The results showed 

that transgenic manipulation led to very small changes in expression profiles. Most 

importantly, there were greater differences in gene expression due to conventional 

breeding than genetic modification in transgenic wheat. This implied that the presence of 

the transgene and associated T-DNA with marker and reporter genes has smaller impact 

on global gene expression patterns than gene recombination thru conventional breeding. 

As with the previous study, the conclusion is that a single transgene has minimal effects 

on the transcriptome and a transgenic crop can be substantially equivalent to the control 

non-transformed line (Baudo et al., 2006).  

 

All three studies demonstrate the use of microarray technology in the comparison 

between transgenic and non-transgenic plants and indicate that microarray is a potential 

tool to determine substantial equivalence in crop safety assessment. Also, the 

comparisons between transgenic and non-transgenic control lines imply that transgenesis 

has minimal effects on the global gene expression patterns in these transgenic plants. 

    

2.3 Soybean microarray technology 

 

Although the soybean genome sequence is not completed, there are many 

expressed sequenced tags (EST) available in public databases, which can represent the 

transcriptome (a collection of all transcribed genes). For example, about 330,000 EST 

sequences were generated by the Public EST Project for soybean (Shoemaker et al., 

2002) and the Functional Genomics Program for Soybean (Vodkin et al., 2004) together. 

Global gene expression profiles can be studied with cDNA microarrays containing 

around 30,000 representative soybean genes (Vodkin et al., 2004) or with Affymetrix 

GeneChip arrays (Affymetrix, 2001). 
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The Affymetrix Soybean GeneChip contains 35,611 soybean transcripts 

(Affymetrix 2004-5). It also contains probes for the transcriptomes of two pathogens: the 

fungal pathogen Phytophthora sojae (represented by 15,421 probe sets) and the cyst 

nematode Heterodera glycines (represented by 7,431 probe sets). An Affymetrix probe 

set represents a transcript or a gene and consists of 11 oligonucleotide probe pairs, each 

25 nucleotides long and spanning regions of each gene. The probe pair contains two 

probes, a perfect match probe (perfectly matches its target sequence) and a mismatch 

probe (where the 13th nucleotide is a mismatch), in order to also assess non-specific 

hybridization (Affymetrix, 2001). Including control probes, there are a total of 61,170 

probe sets on the soybean Affymetrix GeneChips, consisting of over 1,340,000 probes.  

 

2.4 Previous studies using Affymetrix Soybean GeneChip 

 
Several studies have been made using soybean cDNA arrays, but to date very few 

have used the Affymetrix GeneChips. Two examples of the experiments using 

Affymetrix Soybean GeneChip were the analysis of gene expression profiles of host and 

pathogen in nematode-infected soybean (Ithal et al., 2007) and the study of changes in 

gene expression affected by the Asian soybean rust disease (Panthee et al., 2007). In the 

first study, the root tissues of soybean cyst nematode (H. glycines) infected and 

uninfected soybean were compared at three time points (2, 5 and 10 days post-infection) 

(Ithal et al., 2007). GeneChip Operating Software version 1.0 (GCOS v. 1.0) was used for 

statistical analysis. An F test followed by converting the p-values to q-values (Ithal et al., 

2007), identified genes with q-values less than 0.05 and 1.5 fold change as significantly 

differentially expressed. Four hundred and twenty nine differentially expressed genes 

were identified among the 35,611 soybean genes present on the array; and 1,850 

differentially expressed genes identified among the 7,431 H. glycines genes present on 

the same array. The soybean EST sequences corresponding to the identified genes were 

used as a query and search for the Arabidopsis orthologs in the TAIR database using 

WU-BLAST2 search. The top hit with an e-value less than 10-3 was used to annotate the 

soybean genes. Among the 429 differentially expressed genes, 320 of them were assigned 
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with putative functions. The putative annotations were not experimentally confirmed, but 

serve as useful information for selecting genes of interest for further studies.  

 

The second study used Affymetrix soybean GeneChip for gene expression 

profiling of soybean with Asian soybean rust disease that caused by Phakopsora 

pachyrhizi (Panthee et al., 2007). Gene expression data was analyzed using ArrayAssist 

Software from Stratagene. Differentially expressed genes were identified using unpaired 

t-test by a cut-off p-value < 0.05. The functions of putative encoded proteins were 

assigned to the differentially expressed genes using ExPasy protein database 

(htty://us/expasy.org). There were 112 differentially expressed genes found in 3-weeks 

old leaves (V2 growth stage) in response to P. pachyrhizi infection after 72 hours of 

inoculation. Most of the upregulated genes are identified as being involved in defense- 

and stress-related responses (Panthee et al., 2007). Both studies demonstrate that the 

Affymetrix Soybean GeneChip is a reliable and comprehensive platform to perform 

hybridization experiment for the soybean transcriptome. 

 
 
2.5 Public data resources for soybean gene annotations 

 

Since one single hybridization experiment produces massive amounts of data, 

handling, processing and analyzing pose a challenging task. Thus, the application of 

bioinformatics to microarray data analysis is essential. Before analysis, data has to be 

stored and organized in a database, which can serve as a repository. The database has to 

be extensible and flexible to compare data from different microarray experiments. It can 

incorporate statistic methods and algorithms to allow the detection of unintended effects 

on gene expression. It is feasible to combine transcript data with information on genetics, 

homology, functions, metabolic regulations and toxicology. Thereafter, it can correlate 

gene expression data with known biological processes and pathways, and hence, allow us 

to understand what the expression data tells us about the difference in transgenic and 

non-transgenic soybean.  
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2.5.1 Soybean expressed sequence tag (EST) data 

 
An Expressed Sequence Tag (EST) is a short sequence (tag) of a transcribed gene. 

A collection of ESTs is sequenced from cDNA libraries constructed from mRNA 

extracted from different tissue and organ systems at various developmental stages. The 

EST sequence is obtained from the raw chromatograms generated by the DNA sequencer 

and subsequently processed into high-quality sequences for publication by deleting the 

cloning vectors, poly-tails and short repeat sequences. Assembly software such as Phrap 

(www.phrap.org/) is used to align and assemble them into longer consensus sequences 

(contigs), which represent a gene. The Public EST Project For Soybean (Shoemaker et al., 

2002) produced over 300,000 5’ ESTs from around 80 cDNA libraries representing many 

different tissues and physiological conditions of the soybean plant. A concurrent project, 

The Functional Genomics Program For Soybean (Vodkin et al., 2004) selected around 

35,000 of the 5’ ESTs and sequenced the corresponding 3’ sequence to construct cDNA 

microarrays. The data is housed in the Soybean Genome Initiative 

(http://soybean.ccgb.umn.edu/) within the BioData system (http://biodata.ccgb/umn/edu/) 

at Center for Biomedical Research Informatics (formerly the Center for Computational 

Genomics and Bioinformatics) at University of Minnesota. This system contains the EST 

sequences, contig data, BLAST (Basic Local Alignment Search Tool) (Altschul et al., 

1990) results, and statistics information, which are organized in a data file system. It 

displays very detailed information about each library, includes cloning method, cultivar, 

tissue type, developmental stage and number of ESTs. It also contains GenBank 

Accession number, raw and filtered sequences for each EST. There is also a graph to 

show the quality of each sequence and its metadata. Protein annotation can also be 

obtained from the BLAST results.  

 

The Legume Information System (LIS) (http://www.comparative-legumes.org) is 

a comparative resource for legumes includes soybean, Medicago truncaula and Lotus 

japonicus (Gonzales et al., 2005). LIS gathered transcript data from legume plants and 

Arabidopsis from NCBI High Throughput Genomic division (Benson et al., 2007). These 

unfinished sequences were generated from large-scale genomic projects and are 
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undergoing various stages of assembly processing. LIS takes these sequences and their 

constituent contigs from GenBank, and obtains their consensus sequences using a sliding 

window of 10,000 bp with an overlap of 3,000 bp. Then, these consensus sequences are 

analyzed using different sequence databases and provide protein name, protein blocks, 

and motif information. Also, LIS developed their EST database from NCBI raw EST and 

cDNA data. The raw EST data are screened for quality and contamination. Then, the 

cleaned EST data are assembled using Phrap (htp://www.phrap.org). These consensus 

sequences are then annotated with protein names, blocks, motif information. LIS also 

integrates genetic maps, physical maps and pathway information from collaborate 

projects such as SoyBase (http://www.soybase.org/) and Southern Illinois University 

soybean genome project (http://soybeangenome.siu.edu/).   

 

The Institute of Genomic Research (TIGR) is the major institute participating in 

the Human Genome Projects. They also collected publicly available EST sequences 

(including soybean ESTs) to assemble into tentative concensus (TC) sequences, which 

represent genes (Quackenbush et al., 2000). TIGR developed bioinformatics tools to 

assemble EST sequences and assign annotations to TCs. Soybean EST and TC 

information can be retrieved from their Gene Indices web page 

(http://compbio.dfci.harvard.edu/tgi/plant.html). TC number is also widely used by the 

scientific community and it is also mapped to Gene Ontology (GO) terms to obtain 

biological functional terms.  

 

2.5.2 Nucleotide data and resources 

 

The NCBI (National Center for Biotechnology Information) public genome 

database GenBank (Benson et al., 2007) is part of the International Nucleotide Sequence 

Database Collaboration. Comprehensive DNA sequence information is collected from 

genome projects around the world and can be retrieved from the world wide web 

(http://www.ncbi.nlm.nih.gov/). The data is further organized into different databases 

such as dbEST for transcripts data and UniGene for gene-oriented clusters of transcript 

sequences. Also, other databases include whole genome sequences, three-dimensional 
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macromolecular structures, taxonomy, single nucleotide polymorphism, chemical 

molecules and substances, protein domains, microarray data, cancer and disease related 

chromosomes, and journals. These databases provide comprehensive information about a 

gene or protein of interest and a web tool BLAST (Basic Local Alignment Search Tool) 

to compare nucleotide or protein sequences by sequence similarity searches (Altschul et 

al., 1990). Therefore it is widely used by researchers to obtain information, and has 

become the core data system for the scientific community. Including GenBank Accession 

numbers as identifiers facilitates communication between different databases.  

 

2.5.3 Protein data and resources 

 

Swissprot is a protein knowledgebase maintained by The Swiss Institute for 

Bioinformatics (SIB) and the European Bioinformatics Institute (EBI) 

(http://ca.expasy.org/sprot/). It integrates protein sequences with updated biological 

knowledge and manually curated entries (Boeckmann et al., 2003). The core data consists 

of amino acid sequence, protein name, taxonomic data and citation information. Each 

protein entry is provided with high-quality annotation on protein function, enzymatic 

information e.g., enzyme commission (EC) number, secondary and quaternary structure, 

etc. The nomenclature is standardized to facilitate communication across different 

databases. It is designed especially to closely follow the format of other EBI databases. 

Therefore the SwissProt identifier is excellent to use for making links to other important 

databases such as Gene Ontology (http://www/geneontology.org) and Kyoto 

Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/).    

 

2.5.4 Functional annotations 

 

Gene and protein sequences require annotations to describe their functions. Gene 

Ontology (GO) (http://www.geneontology.org/) provides a standard set of terminology to 

describe gene products across different databases consistently. Gene products are 

classified according to their biological processes, molecular functions and sub-cellular 

location (The Gene Ontology Consortium, 2000). The GO terms are organized into a 
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tree-like structure called directed acyclic graphs (DAGs) to resemble a hierarchy. This 

allows a more specialized child term to have one or more less specialized parent terms.  

All the child terms inherit all the properties of their parent terms. Therefore, when a gene 

product is annotated with a child term, then all the parent terms also apply to that gene 

product. GO terms are written, maintained and curated by the GO collaborators. They 

also make association between GO and other genomic and proteomic public databases 

such as Swissprot and TIGR, thus it can facilitate uniform queries across them.  

 

In order to understand the metabolic function of the gene products, the curators of 

KEGG (Kyoto Encyclopedia of Genes and Genomes) have organized information of 

metabolic pathways manually entered from published materials (Kanehisa et al., 2004). 

The pathway database (http://www.genome.jp/kegg/pathway.html) integrates current 

knowledge on molecular interaction networks and biological processes. The reference 

maps of metabolic network were generated to show protein interaction, for example, 

direct protein-protein interaction, gene expression relation, and enzyme-enzyme relation. 

All these enzymes are assigned with EC numbers.  

  

2.6 Previous study on interpreting gene expression data using functional terms 

 
Biological interpretation of microarray experiments is needed to provide 

biological knowledge and facilitate communication among different laboratories and 

across platforms. The list of differentially expressed genes resulted from microarray 

analysis are usually translated into functional annotations by searching through literature 

and multiple public databases gene-by-gene manually (Draghici et al., 2003). However, 

this is a tedious and slow process. Therefore, several tools for automatically assigning 

functional annotations (such as GO terms) to microarray experiment have been developed, 

such as GOStat (Beissbarth and Speed, 2004) and FatiGO (Al-Shahrour et al., 2007). 

However, annotations are only provided for a limited set of organisms, for instance, yeast, 

human, mouse, Drosophila and Arabidopsis. Most of all, the frequency of occurrence of 

a functional annotation from differentially expressed genes may be misleading because 

the number of genes involved in different gene classes (represented by GO terms) are 
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different, and thus, the probability to observe each GO term varies. In order to measure 

significance of observed GO terms, both tools apply hypergeometric distribution to 

calculate the probability for the observed numbers of each GO term resulting from 

random distribution (Draghici et al., 2003). A χ2 test or Fisher’s Exact Test is used to 

compare the expected probability with the observed probability, and provides p-values 

for ranking the list of GO terms. 

 

2.7 EST and microarray databases  

 

ESTIMA, Expressed Sequence Tag Information Management and Annotation 

project, is an open-source database system designed to organize EST data from multiple 

high-throughput EST sequencing projects such as honeybee, cattle, and songbird (Kumar 

et al., 2004). The database, which was developed for the Oracle database management 

system (www.oracle.com), includes cDNA library information, EST sequences and their 

metadata, contig information, and gene function annotations such as Gene Ontology 

terms and homolog ID through BLAST search. The web interface allows users to access 

the database and retrieve results (http://titan.biotec.uiuc.edu/ESTIMA/). 

 

There are several database projects that combine EST data with microarray data, 

for example, SGMD and BarleyBase. 

 

SGMD (the Soybean Genomics and Microarray Database) stores EST and 

microarray data to explore the interaction of soybean with the major pest, soybean cyst 

nematode (SCN) (http://psi081.ba.ars.usda.gov/SGMD/Default.htm). The database stores 

over 50 million rows of DNA microarray data and around 20,000 EST data (Alkharouf 

and Matthews, 2004). Relevant EST information is stored in the database such as cloning 

information, GenBank accession number, BLAST results and links to PubMed to view 

relevant journal citations. The web interfaces are embedded with analytical tools, for 

example, analysis of variance (ANOVA), t-tests and K-means clustering to show the 

result and its significance and reproducibility of measurement.  
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The SGMD web interface provides on-the-fly statistics analysis to compare 

cDNA microarray data. However, the SGMD database only contains around 20,000 EST 

data from the soybean root libraries. There are only GenBank IDs and BLASTX reports 

to show the homology of genes and proteins, and no annotations are provided to give 

information of the biological function and metabolic pathway.  

 

BarleyBase (www.barleybase.org) is developed as a database for cereal 

microarray data (Shen et al., 2005) but has the capacity to included data from other plants 

as well. It houses raw and normalized microarray data from Affymetrix Barley and 

Arabidopsis GenChips with comprehensive annotations. It is also integrated with analysis 

and visualization tools to explore and compare microarray experiments. The database 

stores data of the microarray chip, experimental protocols, raw and normalized gene 

expression data, and annotations such as plant ontologies, BLAST hits, Gene Ontology, 

pathway and gene family information. The analysis tools are very flexible allowing data 

analyses based on experiment, between hybridizations or treatments, gene-centric 

expression profiles, (for example, the analysis a subset of data with certain biological 

criteria such as annotation keywords, gene family or KEGG pathway.) The data can be 

analyzed using the R statistical toolbox (Hornik, 2007). The results can be displayed in a 

tabulated format with profile plots and heatmaps. Gene lists can also be exported in 

tab-delimited text files. There are many visualization tools including box plots and 

histograms for expression values, and scatter plots to show reproducibility and variability 

of experiment comparison. BarleyBase also links to other public plant databases.  

 

BarleyBase is an excellent database system to analyze and visualize microarray 

data. It is planning to expand to support multiple species experiment including maize, 

rice, wheat and soybean. Currently, it contains Affymetrix soybean GeneChip data with 

annotations. The soybean annotations include BLAST hits against UniProt/TrEMBL, 

TIGR, Barley GeneChip, and Arabidopsis GeneChip sequences. UniProt/TrEMBL is a 

bigger set of data contains all the computer-annotated translations of The European 

Molecular Biology Laboratory (EMBL) (in nucleotide sequences but not in SwissProt.) 

To date, there is no microarray data and no functional annotation, for example, GO or 
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KEGG for soybean in BarleyBase. In order to investigate unintended effect of transgenic 

soybean, we need additional information on the metabolic process and toxicology. 

However, currently no bioinformatics system is set up for this type of integrated soybean 

data.  

 

2.8 Conclusion 

 
A non-targeted method based on microarray technology is needed to compare 

cultivars from the same crop to assess the significance of changes as a result of trait 

modification. Two studies have been done to examine substantial equivalence between 

transgenic and non-transgenic wheat for safety assessment and demonstrated that these 

transgenic plants were substantially equivalent to their conventional counterparts. 

However, no published journal paper reported on transgenic soybean using microarray 

technology. The Affymetrix Soybean GeneChip has been used to study differences in 

gene expression due to infection by pathogens and demonstrated that it is a reliable 

platform to screen for changes in the whole transcriptome. Several EST and microarray 

databases were developed, however no database is specially designed for interpreting 

biological knowledge in the comparison between transgenic and non-transgenic soybean.  
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3 Materials and methods 

 
3.1 Data processing and database construction 

 

All computations were performed on a Mac Power PC G5 (dual) running Mac OS 

X operating system version 10.4.9 equipped with 8 GB RAM. Perl (version 5.8.6) 

(www.perl.com) scripts were written for parsing data files and to load data into a MySQL 

relational database (version 5.0.18) (http://www.mysql.com). Perl CGI 

(http://search.cpan.org/dist/CGI.pm/) scripts were used to create the web-interfaces, the 

perl module DBI and DBD::mysql (http://dev.mysql.com/downloads/dbi.html) was used 

to connect CGI scripts to our database and the CGIwithR package (Firth, 2003) was used 

for running R (Hornik, 2007) statistical analysis within the CGI script.  

 

3.1.1 Soybean sequence data 

 

Three types of information were obtained before being organized and stored into 

our database: soybean EST sequence data, corresponding annotations, and microarray 

data. We obtained soybean EST sequences in the BioData file format from 84 cDNA 

libraries constructed by the groups of Dr. R. Shoemaker (Iowa State University) and Dr. 

L. Vodkin (University of Illinois) (Shoemaker et al., 2002, Vodkin et al., 2004) courtesy 

of Dr. Ernest Retzel, CBRI (formerly Center for Computational Genomics and 

Bioinformatics) University of Minnesota. A total of 279,714 5’ EST sequences were 

obtained from “A Public EST Project for Soybean” (Shoemaker et al., 2002) and 29,772 

3’ EST sequences, sequenced from clones chosen from among the 5’ EST sequences, 

were obtained from “A Functional Genomics Program for Soybean” (Vodkin et al., 2004). 

An additional 8,936 EST sequences from two re-rack cDNA libraries of the two soybean 

EST projects were obtained from NCBI GenBank. In addition, 61,673 soybean (mRNA) 

sequences other than the above projects were also obtained from NCBI GenBank 

(downloaded in Sept 2005). All the essential information from these soybean sequences 

such as EST ID, sequence length, sequence processing information (e.g., location of 

repeats, trim, polyA-tail), clone ID, library and vector information, and their 
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corresponding GenBank accession and gi number, were stored in our database. Raw and 

processed soybean EST sequences and mRNA sequences downloaded from NCBI were 

organized in our computer file system, which was adapted from the University of 

Minnesota BioData system (http://biodata.ccgb.umn.edu/). 

 

3.1.2 Protein annotation using SwissProt 

 

Sequence similarity searches were performed on all the soybean EST sequences 

against 168,297 SwissProt protein sequences (http://ca.expasy.org/sprot/) (Gasteiger et al., 

2003) using the BLASTX program (Altschul et al., 1990) to obtain corresponding protein 

annotations. SwissProt protein sequences were downloaded in Feb 2005 and formatted 

into a BLAST target database. BLASTX was done using the standalone BLAST program 

(version 2.2.10) downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/executables/. 

Corresponding protein annotations such as protein ID and definition, blast search hit 

score and e-value were obtained from the BLASTX results and stored into our database. 

 

3.1.3 Functional annotation using Gene Ontology 

 

The Gene Ontology databases (The Gene Ontology Consortium, 2000) including 

the MySQL tables: term, term_definition, term2term, and graph_path were downloaded 

in January 2005 from http://www.geneontology.org/GO.downloads.database.shtml and 

directly reproduced in our database. The GO terms link to our soybean sequences through 

the BLAST results with the SwissProt protein ID. The associations between SwissProt 

and GO terms were obtained from the file: “UniProt GO Annotations” downloaded from 

http://www.geneontology.org/GO.current.annotations.shtml/ and were integrated into the 

database.  

 

3.1.4 Functional annotation using the Enzyme Commission numbers 

 
A list of recommended enzyme names and EC numbers were obtained in Jun 

2005 from the Enzyme Nomenclature site http://www.chem.qmul.ac.uk/iubmb/enzyme/ 
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and integrated into the database. In additional, enzyme names and EC numbers were also 

extracted from MeSH (Medical Subject Headings, National Library of Medicine) 

(http://www.nlm.nih.gov/mesh). 2005 MeSH files were downloaded in May 2005 from 

http://www.nlm.nih.gov/mesh/filelist.html. The associations between Enzyme EC 

numbers and SwissProt protein IDs were obtained from ExPASy Enzyme nomenclature 

database (version 36) http://ca.expasy.org/enzyme/ in Jan 2005 (Gasteiger et al., 2003). 

All EC numbers and enzyme names were integrated into the database and linked to the 

soybean sequences through SwissProt protein IDs.  

 

3.1.5 Functional annotation using KEGG pathways 

 

Metabolic and regulatory pathways were downloaded from the ftp site at KEGG 

(Kyoto Encyclopedia of Genes and Genomes) http://www.genome.jp/anonftp/ (Kanehisa 

et al., 2006). Enzymes identities within each pathway were obtained by extracting EC 

numbers from each of the pathways (downloadable XML files from the ftp KGML/map 

folders, version 0.6 Mar 2005). EC numbers, pathway names and map numbers where 

extracted and integrated into the database. By linking soybean EST ID through SwissProt 

protein ID through EC number to the metabolic pathway, an EST sequence, representing 

a gene coding for an enzyme involved in a particular metabolic pathway can be retrieved 

from our database. Diagrams of the pathway maps were also downloaded from KEGG 

and were organized in our computer file system.  

 

3.1.6 Sequence annotation using TIGR   

 

Information of 31,928 tentative consensus (TC) sequences was downloaded from 

The TIGR (The Institute for Genomic Research) Glycine max Gene Index Project 

(Release 12.0) (Quackenbush et al., 2000). TC numbers, GenBank accession numbers of 

the member ESTs of the TCs and GO annotations were integrated into our database and 

linked to our soybean sequences through GenBank accession numbers. 
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3.1.7 Soybean microarray data 

 

 Twenty-five raw data files (CEL files) of a microarray experiment using 

Affymetrix Soybean GeneChip (Affymetrix, 2004-5) were obtained from Dr. Marc Fortin 

(Beaulieu, 2005) and used as a starting point for the processing and analysis in this thesis. 

The data analysis of this microarray experiment is described in the next section. All raw 

data (e.g., probe intensities), pre-processed data (e.g., normalized probe-set intensities), 

and results from statistical analysis (e.g., fold change, statistics scores and p-value) were 

organized and stored in the database. Information about the microarray GeneChip such as 

probe sequences, probe location of the chip, and corresponding GenBank accession 

number of the probes were integrated into the soybean EST and annotation database to 

describe the microarray data. Probe identifiers were linked to GenBank accession 

numbers, which were further linked to the SwissProt protein identities and functional 

annotations. Information on the probes (such as soybean probe sequences, consensus 

sequences of the probes, probes’ locations on the chip) was downloaded from Affymetrix 

website   http://www.affymetrix.com/support/technical/byproduct.affx?product=soy. 

 

3.2 Microarray analysis 

 
3.2.1 Soybean biological samples 

 

The microarray experiment was designed and mRNA extracted by Julie Beaulieu 

under the supervision of Dr. Marc Fortin (Beaulieu, 2005). The hybridizations and scans 

were carried out at the Genome Quebec and McGill University Genome Centre. Five 

biological replications were performed for each of the five cultivars for a total of 

twenty-five microarray hybridizations (CEL files) using the Affymetrix Soybean 

GeneChips (Affymetrix, 2004-5).  

 

Two of the soybean varieties (2601R and PS46RR Monsanto Canada Inc. Guelph) 

are transgenic (resistant to the herbicide glyphosate (RoundUp®)), whereas three 

cultivars (Mandarin Ottawa, S03W4 and Bayfield) are conventional. The soybean 
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cultivars were selected because of similarities such as maturity group, field trial 

performances (yield and days to maturity), and biochemical content (Beaulieu, 2005).  

 

Plants were grown in a growth chamber under optimal growth condition: 16-hours 

photoperiod and 25/19° day/night temperatures. The first trifoliate leaves were harvested 

at the V2 stage when they were completely unrolled. RNA extraction was done using the 

RNeasy Plant Mini Kit (Qiagen). Quality assessment was tested by Agilent 2100 

bioanalyzer (Palo Alto, CA). Affymetrix GeneChip hybridization and processing were 

done at the McGill University and Genome Quebec Innovation Center Microarray 

platform (Beaulieu, 2005). 

 

3.2.2 Microarray pre-processing  

 

Data analysis was done using R (Hornik, 2007) and the BioConductor packages 

(Gentleman et al., 2004) such as affy, limma, cluster and made4. Quality assessment of 

the microarray data was done using affyRNAdeg function from the affy package. All 

61,170 probe sets (138,734 probes) including control probes and probes for Glycine max, 

Phytophthora sojae and Heterodera glycines were pre-processed and normalized together. 

The microarray data was pre-processed using three different normalization methods: 

RMA (Irizarry et al., 2003), MAS5 (Affymetrix 2002) and dChip (Li and Wong, 2001).  

 

3.2.3 Analysis method 1: gene expression at the gene level 

 

Soybean cultivar specific pattern of gene expression (classifying them into 

groups) was examined by principle component analysis (PCA) analysis for the 

twenty-five non-processed chips and unsupervised hierarchical clustering for the 

twenty-five normalized chips was carried out using Euclidean distance and average 

linkage. The closest related non-transgenic soybean to each transgenic soybean is defined 

from the clustering where the distance between two cultivars is the shortest. 
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The comparison of gene expression profiles was based on two approaches: (1) 

pair-wise comparison of a transgenic cultivar with its closest related non-transgenic 

counterpart (as per group clustering analysis); and (2) one transgenic cultivar compared 

with a group of non-transgenic cultivars based on the concept of “substantial 

equivalence”.  

 

To evaluate the variation of gene expression between different soybean cultivars, 

pair-wise comparison for every two cultivars was done using LIMMA (Linear Models for 

Microarray Data) (Smyth et al., 2005) at p-value < 0.01 and fold change > 2. The data 

from each transgenic cultivar was compared with the data from the closest related 

non-transgenic cultivar to differentiate gene expression. The RMA processed data are in 

log2 base; MAS5 and dChip processed data are in log10 base. Before using the LIMMA 

package, MAS5 and dChip processed data were transformed to log2 base for statistical 

analysis. However, for calculating the differences of intensity in two samples by fold 

change, RMA processed data were transformed to log10 base.  

 

The possibility of applying the concept of “substantial equivalence” in microarray 

experiment was evaluated in our second approach by grouping the data from the three 

non-transgenic cultivars as the reference group and compare the gene expression with 

each of our two transgenic cultivars using LIMMA at p-value < 0.01 and fold change > 2. 

 

All microarray data, including raw intensities from CEL files, pre-processed data 

using three normalizations and summarized methods, log transformed intensities, t-scores 

and p-values from LIMMA analysis and information about the probes, were stored and 

integrated into the soybean database.   

 

3.2.4 Analysis method 2: gene expression at the functional term level 

 

To analyze gene expression by functional groups (based on GO terms) rather than 

by individual probes, the parent GO terms (describing the biological function in a more 

general term) were traced back from the child GO terms and associated with the probes. 
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All probes were first filtered in order to prevent uninformative probes averaging out the 

changes. Probes that had larger than two-fold change in any pair-wise comparisons were 

included. Each probe was linked with GO terms and parent GO terms, and then 

(normalized) intensities of probes that shared the same GO terms were averaged as the 

combined intensity for each GO term. The combined intensities were then transformed 

into log2 base and used for LIMMA analysis to analyze gene expression at a 

functional-term level. Pair-wise comparisons between each of the two transgenic 

soybeans to non-transgenic soybean Bayfield were done. A list of GO terms that were 

distinguished at p-value < 0.01 was obtained. GO terms, t-scores and p-values from 

LIMMA analysis for each comparison were stored in the database.  
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4 Results 

 
4.1 Database development 

 
4.1.1 Database description: soybean transcripts data 

 

We have integrated soybean EST sequences with functional annotations and 

microarray data and coupled the database with web interfaces to access and display the 

information, shown as an overview in Figure 4.1. The core of our database is the 318,422 

EST sequences and ancillary information about the soybean cDNA libraries from which 

they were obtained. Figure 4.2 shows the tables that organize the sequence information. 

The table DNA_SEQUENCE specifies the sequence ID, length and location where the 

sequence is stored in our file system (the path) whereas the ancillary information about 

the EST sequences such as the locations of the clone vector, polyA-tail, repeat sequence 

and the trim site are stored in the tables VECTOR, TAIL, REPEATS and TRIM, 

respectively. The cDNA library information including the library ID, tissue type, and 

growing conditions are stored in the table LIBRARY. The library information is linked to 

the sequence information through table SEQ_ACCESSION, which maps the sequence ID, 

library ID and GenBank accession number. The SEQ_ACCESSION table can link to the 

BLAST table by using sequence ID as the query ID for linking to the BLASTX search 

results. The GenBank accession number from the SEQ_ACCESSION table can link to 

the TIGR contig information through GenBank accession number to obtain the 

corresponding contig ID for the EST sequences (from table TIGR_GB) and the GO terms 

associated with each contig (from the table TIGR_GO). Other information for the 

additional 8,936 EST sequences downloaded from NCBI websites are stored in the table 

GB_ACCESSION, which also links to the BLAST table by using the GenBank accession 

number as the query ID.  
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Figure 4.1. Overview of the soybean database structure. 

a) Soybean EST and contig information obtained from public EST projects, 
GenBank and TIGR were organized in tables modified from the ESTIMA 
database schema to include EST sequencing pipeline data  

b) Functional annotations such as GO terms, EC numbers and KEGG molecular 
pathways link to the EST and microarray data through the protein names 
obtained from the BLASTX results  

c) Microarray data and results link to the annotations through BLASTX results and 
GenBank accession numbers of the EST sequences.  
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Figure 4.1 
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Figure 4.2. Database structure of the section for gene transcript (sequence) information. 

a) Tables for EST sequences (DNA_SEQUENCE, LIBRARY, REPEATS, 
SEQ_ACCESSION, TAIL, TRIM, VECTOR), table for mRNA sequences 
downloaded from GenBank (GB_ACCESSION) and tables for TIGR contigs 
data (TIGR_GB, TIGR_GO) 

b) Tables GB_ACCESSION and SEQ_ACCESSION link sequence data to 
annotation data 

c) Table SEQ_ACCESSION links sequence data to microarray data. 
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Figure 4.2 

 
 
 
 
    
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 
 

 

 

 

 

 

 

 

 
 
SEQ_ID : varchar(20) 
SEQ_END : varchar(14) 
DNA_SEQ_CLEAN : text 
DNA_SEQ_END : text 
HIGH_QUAL_START : int(10) 
HIGH_QUAL_END : int(10) 
SEQ_LENGTH_CLEAN : int(10) 
SEQ_LENGTH_RAW : int(10) 
SEQ_TYPE : varchar(10) 

DNA_SEQUENCE
SEQ_ID : varchar(20) 
POLY : varchar(10) 
START : int(10) 
END : int(10) 

TAIL 

SEQ_ID : varchar(20) 
REP_START : int(10) 
REP_END : int(10) 
STRAND : char(2) 
CLASS : varchar(25) 
ELEMENT : varchar(20) 

REPEATS 

SEQ_ID : varchar(20) 
TRIM : char(2) 
LEFT_ST : int(10) 
LEFT_END : int(10) 
RIGHT_ST : int(10) 
RIGHT_END : int(10) 

TRIM SEQ_ID : varchar(20) 
SEQ_VECT_START : int(10)
SEQ_VECT_END : int(10) 
VECT_NM : int(10) 
VECT_START : int(10) 
VECT_END : int(10) 

VECTOR

Links to BLAST 
table and other 
annotation data 
(Figure 4.3)

LIBRARY

LIBRARY_ID :  
varchar(8) 
DESCRIPTION : text 
SPECIES : varchar(15) 
GENOTYPE : text 
TISSUE : text 
SITE : varchar(15) 

GB_ACC : varchar(12) 
TC_ID : varchar(12) 
ASSEMBLY_ID : int(11) 

TIGR_GB 

GB_ACCESSION 

GB_ACC : varchar(12) 
DEFINITION : text 
LENGTH : integer(10) 
CLONE : varchar(50) 
LIBRARY : varchar(50) 
ORGANISM : varchar(50) 
TISSUE : varchar(50) 
CULTIVAR : varchar(50) 

TC_ID : varchar(12) 
GO_ACC : varchar(25) 
GO_TERM : varchar(255) 
EC_NO : varchar(12) 
GO_CAT : char(2) 
OLIGO : varchar(255) 

TIGR GO 

SEQ_ACCESSION 

GB_ACC : varchar(12) 
SEQ_ID : varchar(20) 
GI : varchar(10) 
CLONE_ID : varchar(14) 
LIBRARY_ID : varchar(8) 

Links to table 
PROBE_SET and 
other microarray data 
(Figure 4.4) 

(b)

(c)

(a)
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4.1.2 Database description: soybean protein data 

 
The BLASTX analysis against SwissProt allowed us to assign protein annotations 

to 175,910 ESTs (over half of the 318,422 EST sequences). Figure 4.3 shows the 

annotation section of the database. The BLAST table contains the BLASTX search 

results and links our EST data to their corresponding protein information. Of the 37,637 

soybean probe sequences on the Affymetrix GeneChip, we assigned protein annotations 

to 8,667 sequences. These BLASTX search results are also incorporated into the BLAST 

table and link to other protein and functional annotations. The SwissProt protein names 

are stored as the hit IDs. Other information about the proteins such as the protein 

descriptions, hit scores and e-values are also stored in the BLAST table. The SwissProt 

protein IDs link to other functional annotations such as gene ontology (GO terms) and 

KEGG molecular pathways through the GENE_ANNOTATION and EC_SWISS tables. 

The protein descriptions that describe the enzymes with appropriate EC (enzyme 

commission) numbers are linked to the KEGG pathways (stored as tables EC_DEF, and 

EC_MAP) through EC_SWISS table. There are 73,996 EST sequences assigned with EC 

numbers, around 23% of the EST sequences were enzymes. By linking the transcript 

sequences data to protein SwissProt annotations through BLASTX search result in the 

BLAST table, we can map the transcript sequences to their corresponding functional 

annotations such as GO terms and KEGG molecular pathways providing a more 

comprehensive description of the soybean data. 
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Figure 4.3. Database structure of the section for protein and functional annotations. 
a) Table for BLASTX search results (BLAST); tables for gene ontology terms 

information (GENE_ANNOTATION, GRAPH_PATH, TERM, TERM2TERM, 
TERM_DEFINITION) and tables for KEGG pathways with the enzyme 
commission numbers (EC_DEF, EC_SWISS, EC_MAP) 

b) BLAST table links protein annotation data to transcript sequence information 
and hence links to microarray experiments data.  
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Figure 4.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

BLAST_ID : int(11) 
QUERY_ID : varchar(60) 
HIT_ID : varchar(60) 
HIT_DESCRIPTION : text 
HIT_NUM : int(6) 
HSP_NUM : int(6) 
HSP : integer(6) 
BIT : decimal(,2) 
E_VALUE : int(10) 
E_BASE : varchar(20) 
IDENTITY : int(10) 
ALIGN_LENGTH : int(6) 

BLAST 

Links to  tables 
SEQ_ACCESSION and 
GB_ACCESSION and other 
transcripts and microarray 
experiments data  
(Figure 4.2) 

NAME : varchar(15) 
EC : varchar(12) 
ACC : varchar(8) 
 

EC_SWISS 

EC_NO : varchar(20) 
NAME : varchar(255) 

EC_DEF 

EC_NO : varchar(20) 
MAP_ID : varchar(20) 
MAP_NAME : varchar(255) 
 

EC_MAP 

NAME : varchar(15) 
ACC : varchar(8) 
GO_ID : varchar(12) 
 

GENE_ANNOTATION 

ACC : varchar(255) 
NAME : varchar(255) 
TERM_TYPE : varchar(55)
ID : int(11) 
IS_OBSOLETE : int(11) 
IS_ROOT : int(11) 

TERM

ID : int(11) 
RELATIONSHIP_TYPE_ID : int(11)
TERM1_ID : int(11) 
TERM2_ID : int(11) 
COMPLETE : int(11) 

TERM2TERM
TERM_ID : int(11) 
TERM_DEFINITION : text 
DBXREF_ID : int(11) 
TERM_COMMENT : mediumtext 
REFERENCE : varchar(255) 

TERM_DEFINITION 

ID : int(11) 
TERM1_ID : int(11) 
TERM2_ID : int(11) 
DISTANCE : int(11) 

GRAPH_PATH 

(b)
(a)
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4.1.3 Database description: soybean microarray experiment data 

 

The section of the database that organizes the microarray data is shown in Figure 

4.4. Data for the Affymetrix Soybean GeneChip, for example the probe IDs, the 

sequences of the probes, and the locations of the probes on the chip are stored in the table 

CDF_FILE. The whole transcript sequences representing the genes with the 

corresponding probe IDs and GenBank accession number are stored in the table 

PROBE_SEQ. The PROBE_SET table contains the probe IDs, GenBank accession 

number, and the corresponding sequence and clone IDs to map to our soybean EST data 

and hence, associates the microarray data with their corresponding transcript, protein and 

functional annotations. Also, the microarray data can directly link to the BLAST table by 

using probe ID as the query ID to provide biological information for our microarray 

experiment. 

 

The raw data for our microarray experiment are stored in the table CEL_DATA, 

which contains the information for every chip, for example, the chip IDs, probe IDs, and 

the intensity of each probe. The processed data for our microarray experiment using three 

normalization methods RMA, MAS, dCHIP are stored in three tables RMA_RESULT, 

MAS_RESULT and LIWONG_RESULT respectively. All the raw and processed 

microarray data is linked to the PROBE_SET table by the probe IDs. For the analyzed 

results, the EXPERIMENT table describes which chips are used for the pair-wise 

comparison. The NORMALIZE table describes which normalization method are used in 

each pair-wise comparison. The microarray results for each pair-wise comparison 

analyzed by the LIMMA package are stored in the LIMMA_RESULT table. It includes 

the scores and p-value from the statistical test for each probe in all pair-wise comparisons. 

Also, the fold change and average intensity for each probe in all pair-wise comparisons 

are stored in the table FOLD_CHANGE. All the analyzed microarray results are linked to 

the PROBE_SET table and hence integrated with the soybean transcript, protein and 

functional annotations that can provide insight into biological and functional differences 

between samples.  
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Figure 4.4. Database structure of the section of the section for microarray experiment 

data.  
a) Tables for chip information (CDF_FILE, PROBE_SET); table for raw data 

(CEL_DATA), tables for normalized data (LIWONG_RESULT, 
MAS_RESULT, RMA_RESULT); and tables for analyzed results 
(EXPERIMENT, FOLD_CHANGE, LIMA_RESULT, NORMALIZE) 

b) PROBE_SET table links microarray data to transcript sequence information 
and protein annotations data. 
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Figure 4.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

  EXP_ID : varchar(5) 
CHIP : varchar(50) 
DESCRIPTION : text 
METHOD : varchar(25) 
NORMALIZED_FILE : text 
TABLE_NAME : varchar(50) 

NORMALIZE 

  

 

 

Links to tables 
SEQ_ACCESSION 
or BLAST and maps 
to other transcripts, 
proteins annotations 
(Figure 4.2) 

GB_ACC : varchar(20) 
SEQ_ID : varchar(20) 
CLONE_ID : varchar(14) 
PROBE_ID : varchar(55) 

PROBE SETPROBE_ID : varchar(50) 
X_AXIS : int(11) 
Y_AXIS : int(11) 
PBASE : varchar(1) 
TBASE : varchar(1) 
INT_POSITION : int(11) 
PROBE_SEQ : varchar(64) 

CDF FILE 

PROBE_ID : varchar(50) 
CHIP_ID : varchar(50) 
X_AXIS : int(11) 
Y_AXIS : int(11) 
INTENSITY : float 
SD : float 
PM : int(11) 
MM : int(11) 

CEL DATA 

PROBE_ID : varchar(50) 
CHIP_ID : varchar(50) 
INTENSITY : double 
SCALE : varchar(15) 

RMA RESULT 

PROBE_ID : varchar(50) 
CHIP_ID : varchar(50) 
INTENSITY : double 
SCALE : varchar(15) 

MAS RESULT 

PROBE_ID : varchar(50) 
CHIP_ID : varchar(50) 
INTENSITY : double 
SCALE : varchar(15) 

LIWONG RESULT 

PROBE_ID : varchar(50) 
FOLD_CHANGE : double 
CHIP1_AVG : double 
CHIP1_STD : double 
CHIP2_AVG : double 
CHIP2_STD : double 
EXP_ID : varchar(5) 
CHIP1 : varchar(20) 
CHIP2 : varchar(20) 

FOLD CHANGE

PROBE_ID : varchar(50)
M_SCORE : double 
A_SCORE : double 
T_SCORE : double 
B_SCORE : double 
P_VALUE : double 
EXP_ID : varchar(5) 
CHIP1 : varchar(20) 
CHIP2 : varchar(20) 

LIMMA RESULT

CHIP : varchar(50) 
FILENAME : varchar(50) 
DESCRIPTION : text 
REPLICATION : int(10) 

EXPERIMENT 

(a) (b)
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4.1.4 Web interfaces allow navigation and querying of the database 

 

Aside from using SQL (Structured Query Language) with a command line shell to 

retrieve data from the database, a couple of web interfaces were developed to access the 

database and display the data in a tabular format. Figure 4.5 shows the SOY Search Page 

to retrieve all available IDs and annotations for a soybean transcript or a group of 

transcripts that share similar protein name or function from our database. Data can be 

retrieved by entering any EST ID, GenBank accession number, Affymetrix probe ID, 

SwissProt protein ID/name, EC enzyme number or GO term/number. A clickable GO tree 

that illustrates the hierarchy structure of the ontology is available to select a GO term for 

searching the associated IDs and annotation for the corresponding soybean sequences 

from the database.    

 

Figure 4.6 shows the SOY Search Result page for displaying all available IDs 

and annotations for the query IDs from the SOY Search Page. After receiving the query 

ID, the corresponding EST sequence, Affymetrix probe sequence and TIGR TC contig 

will be retrieved from our database. The BLASTX results for the EST and the Affymetrix 

probe sequences, such as the SwissProt protein IDs and descriptions, BLAST scores and 

e-values, are displayed in the EST and AFFY tables. The associated GO numbers, GO 

terms and EC enzyme number are also displayed. The TC table displays the information 

for the TIGR contig, such as TC ID, the IDs and GenBank accession numbers for the 

EST that involved in the assembling of that contig, the associated GO number/term and 

EC enzyme number. All these IDs are hyperlinked to the original public databases, such 

as the Soybean Genomics Initiative website (http://soybean.ccgb.umn.edu/) for the 

information from the soybean EST projects, the GenBank (http://www.ncbi.nlm.nih.gov) 

for the sequence information, the SwissProt protein database (http://ca.expasy.org) for the 

protein information, the Gene Ontology (http://amigo.geneontology.org) for the 

functional annotations, the KEGG database (http://www.genome.jp) for the biological 

pathway maps and enzyme information and the TIGR Gene Index for the contig sequence 

and information (http://compbio.dfci.harvard.edu), to facilitate detailed database searches 

for the soybean search results.  
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Figure 4.5 

 
 

 
Figure 4.5. The main page of the soy database.  

(http://thor.agrenv.mcgill.ca/cgi-bin/soy/soybean.cgi) Users can submit queries to the 
database to retrieve all available IDs and annotations for the soybean transcript of 
interest. Queries can be made using: 
a) EST ID 
b) GenBank accession number 
c) Affymetrix probe ID 
d) SwissProt protein ID or name 
e) GO number or term 
f) a clickable GO tree to assist searching for a GO term from the gene ontology 

hierarchy structure. 
  
 

a)

b)

c)

d)

e)

f)
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Figure 4.6. Database result page, showing information about an Affymetrix probe ID: 
Gma.1137.1.S1_x_at.  
Data are organized into three tables: 
a) EST table displays the BLASTX result with scores and e-value for the EST 

sequence 
b) AFFY table displays the BLASTX result with scores and e-value for the 

Affymetrix probe sequence 
c) TC table displays the information for the corresponding TIGR contig 

The SwissProt protein ID/description, GO number/terms and EC enzyme 
numbers are displayed to the corresponding EST ID, GenBank accession 
number or Affymetrix probe ID with hyperlinks to the original public database. 
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Figure 4.6 
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The results for the microarray experiment can be retrieved from the database 

through a special section of the interfaces. An overview of the query flow is presented in 

Figure 4.7. Figure 4.8a shows the SOY Microarray Analysis webpage where samples 

(any of the five soybean cultivars) can be selected for pair-wise comparison. Diagrams to 

assess the quality of the data, such as boxplot of the intensities of the chips, RNA 

degradation plot and the individual chip image are visualized. After selecting two 

samples, the web page allows a choice of normalization method for pre-processing the 

raw data as shown in Figure 4.8b. Diagrams such as boxplot, PCA analysis and 

hierarchical clustering are available to visualize the pre-processed data. After selecting 

the pre-processing method, the webpage allows selecting the cut-off p-value and fold 

change for differentially expressed genes from the results of the statistical analysis 

(Figure 4.8c). The list of differentially expressed genes for the pair-wise comparison is 

displayed by the probe IDs (Figure 4.8d). Statistical scores such as t-score, p-value and 

fold change are also displayed. A hyperlink is provided to display a plot of the intensities 

of an individual probe against five soybean cultivars. Check boxes are also available to 

submit a list of probe IDs to the Soybean Search Page to retrieve all the available IDs and 

annotations for those probes. It links to the annotation view by clicking on the Annotated 

Probe List button on the left panel. The annotation view (Figure 4.8e) displays the 

associated SwissProt protein ID/description and the GO number/term with the fold 

change and p-value for the list of differentially expressed genes. All these IDs are 

hyperlinked to the original public databases to facilitate detailed database searches. To 

retrieve results from the gene class analysis based on GO term annotations, similar query 

pages are developed (Figure 4.7). The list of GO terms (represents changes of the gene 

class) is displayed in the result pages (Figure 4.8f) with the statistical scores and the 

number of the genes involved in each gene class. The intensities of the individual genes 

of each identified GO terms can be displayed with log2 fold change (Figure 4.8g), which 

can allow users to identify whether the genes were regulated in a similar pattern.  
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Figure 4.7. Flowchart of the microarray web interface to access the database for 

displaying differentially expressed genes or functional gene class based on GO term. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

- 43 - 

Figure 4.7 
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Figure 4.8a 
 

 
 
 
 
 
 
Figure 4.8a. Step 1 of the microarray analysis webpage: to select samples to compare. 

The first view is used to select samples for pair-wise microarray experiment and to 
display links to diagrams for visualization the raw data. 
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Figure 4.8b 
 

 
 
 
 
 
Figure 4.8b. Step 2 of the microarray analysis webpage: to select pre-processing method 

The second view is used to select pre-processing method for the microarray data and 
to display links to diagrams for visualization the pre-processed data. 
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Figure 4.8c 
 

 
 
 
 
 
Figure 4.8c. Step 3 of the microarray analysis webpage: to define cut-off p-value and 

fold change. 
The third view is used to select cut-off p-value and fold change for displaying 
differentially expressed genes using LIMMA package.  
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Figure 4.8d 
 

 
 
 
 
 

Figure 4.8d. Step 4 of the microarray analysis webpage: to display the list of 
differentially expressed genes. 
The fourth view is used to display the list of differentially expressed genes based on 
individual probes ID. The p-value, fold change and t-score are displayed. A link to a 
plot to illustrate the intensities of an individual probe in five soybean cultivars is also 
provided. The check boxes submit the list of probe IDs to the SOY Search Page to 
display available IDs and annotations.  
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Figure 4.8e 
 

 
 
 
 
 
Figure 4.8e. Step 5 of the microarray analysis webpage: to display the result list with 

annotations. 
The fifth view is used to display the annotation view of the list of differentially 
expressed genes. The SwissProt protein ID/description, GO number/term, fold change 
and p-value for the probes are displayed. The protein and GO IDs are hyperlinked to 
the original public databases. 
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Figure 4.8f 
 

 
 
 

Figure 4.8f. Result page 1 of the functional gene class analysis showing list of GO terms. 
The webpage is used to display the GO terms (that represent functional gene classes) 
have changes in microarray analysis. The GO number/term, number of genes 
involved in this function, statistical test score such as M-score (log2 fold change), 
t-score and p-value are displayed. The GO IDs are hyperlinked to the original public 
databases. 
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Figure 4.8g 
 

 
 
Figure 4.8g. Result page 2 of the functional gene class analysis showing probes involved 

in the gene class (GO:0004869). 
The webpage is used to display the genes belong to the functional group (cysteine 
protease inhibitor activity) showing up or down regulation in each gene. The GO 
number/term, intensities of each gene of the two compared cultivars, log2 fold change 
and GenBank accession number are displayed. The GO IDs and GenBank accession 
number are hyperlinked to the original public databases. The probe IDs also link back 
to the SOY search page. 
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4.2 Identification of cultivars based on microarray data 

 
4.2.1 Quality assessment of microarray data  

 

Initial RNA quality assessment (Beaulieu, 2005) showed that the integrity of the 

twenty-five cRNA samples was preserved with no obvious degradation (Beaulieu, 2005). 

However, when the quality assessment was repeated using affyRNAdeg functions from 

the R-Bioconductor affy package without transforming the intensities of probes to log2 

base, as presented in Figure 4.9, the RNA degradation plot using all 61,170 probes for 

twenty-five microarray chips showed that there are two degradation patterns. Five 

samples are shown to have steeper slope than the other twenty samples. This indicates 

that these five samples (S03W4-1, S03W4-3, 2601R-2, 2601R-4 and 2601R-6) have a 

higher degree of RNA degradation. The plot shows the average intensity of the probes 

ordered by their proximity to the 5’ end of the gene, from left to right. Since RNA 

degradation usually starts at the 5’ end, probes close to the 5’end of the gene have lower 

intensity than that of the probes closer to the 3’ end. If the difference in intensity between 

the 5’ and 3’end of the probes is larger (steeper slope), it indicates poorer quality of RNA 

material (The GEPAS team 2005).  

 

4.2.2 Group classification to define variations in 25 samples 

 

Multivariate analysis was used to identify groups of cultivars based on gene 

expression. In Figure 4.10, the results of group classification using principal component 

(PCA) analysis for 25 non-processed chips is shown. It demonstrates that Mandarin form 

a group separate from the other samples. The five samples shown to have higher degree 

of RNA degradation (S03W4-1, S03W4-3, 2601R-2, 2601R-4 and 2601R-6) group 

together, and the remaining 15 samples from transgenic and non-transgenic form one 

heterogeneous group. These results show that PCA clustering does distinguish a cultivar 

if it is different enough from the others, but does not distinguish transgenic cultivars from 

non-transgenic ones. Furthermore it is clear that the RNA quality has a great impact on 

the clustering analysis.  
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Hierarchical clustering using Euclidean distance and average linkage for the 25 

RMA normalized arrays is presented in Figure 4.11. Confirming the results of the PCA 

analysis, all five samples of the Mandarin cultivar form a separate cluster, the five 

samples (S03W4-1, S03W4-3, 2601R-2, 2601R-4 and 2601R-6) that were shown to have 

a higher degree of RNA degradation in Figure 4.9 cluster into a separate group and the 

other 15 samples of non-transgenic and transgenic soybeans form one cluster (Figure 

4.11). This indicates that the variations in gene expression between the four 

(non-Mandarin) cultivars are very small. The results also show that quality of cRNA 

targets for GeneChip hybridization might skew the results of cultivar classification in 

hierarchical clustering. This experimental error can not be corrected using our 

pre-processing tools. It also demonstrates that our pre-processing and quality assessment 

tools can detect the differences between poor quality samples and real differences in gene 

expression profiles among different cultivars.  

 

Although these five samples (S03W4-1, S03W4-3, 2601R-2, 2601R-4 and 

2601R-6) show differences in the RNA degradation plot and form a closer group in PCA 

analysis (for raw data) and hierarchical clustering (for RMA normalized data), due to 

weak statistical power, it would be difficult to use only two 2601R chips in the statistical 

analysis. We continued our analysis using all 25 chips and took notice that RNA 

degradation might have an effect within each S03W4 and 2601R cultivars, and the genes 

that were degraded in these two cultivars might not be identified as differentially 

expressed genes in the comparisons. 

 

Except for the poor quality samples, all samples of the transgenic 2601R and 

PS46RR group together with Bayfield and S03W4 in both the PCA analysis and 

hierarchical clustering. These two transgenic cultivars do not cluster into a separate group 

from the non-transgenic cultivars. Therefore, the transgenic cultivars cannot be said to be 

different from the non-transgenic cultivars in a group-classification based on gene 

expression.  
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The results from the hierarchical clustering analysis (Figure 4.11) show that the 

five Bayfield samples, the five PS46RR samples and the two good quality 2601R samples 

cluster together. Therefore, it is likely that of the three conventional cultivars used in this 

study, Bayfield is the most closely related non-transgenic cultivar to the two transgenic 

cultivars.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

- 54 - 

 

Figure 4.9 
 

 
 
 

 
 
 

Figure 4.9. RNA degradation plot of 25 cRNA targets for Affymetrix GeneChip 
hybridization. 
The average intensities for most samples have similar degradation patterns except for 
samples from two cultivars: S03W4 (light blue) and 2601R (red).  
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Figure 4.10 
 

 
 
 
 

 

 

 

 

 

 
 
 
Figure 4.10. PCA analysis of the 25 microarray (raw data) from the five cultivars. 

Mandarin forms a separate group from the other soybean cultivars. Soybean cultivars 
cannot be classified into independent gene expression groups, based solely on 
whether they are transgenic or not (distance=0.02). 
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Figure 4.11 
 

 

 
 

Figure 4.11. Hierarchical clustering for 25 samples of five cultivars using all probes on 
the arrays. 
Three main clusters are:  
a) Mandarin samples 
b) poor quality samples of S03W4 and 2601R 
c) the remaining 15 transgenic and non-transgenic samples of 2601R, PS46R, 

S03W4 and Bayfield. 

a) 
c) 

b) 
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4.2.3 Pair-wise comparison to define variations in five cultivars  

 

In order to make exhaustive inter-cultivar comparisons, pair-wise comparisons 

using LIMMA was carried out between each soybean cultivar. Data preprocessed with 

different methods (RMA, MAS5 and dCHIP) show similar results. Mandarin has the 

highest numbers of differentially expressed genes among all five cultivars (Figure 4.12). 

After processing with RMA or MAS5 normalization methods, more than 1000 genes out 

of 37,583 total soybean genes on the chip are differentially expressed at p-values less 

than 0.01 and intensities greater than two-fold-change in the comparisons between 

Mandarin and any other cultivar. While the other four cultivars Bayfield, S03W4, 2601R 

and PS46RR are less different from each other (with less than 350 differentially 

expressed genes out of a total of 37,583 genes). After RMA preprocessing, only 44 genes 

are differentially expressed between Bayfield and 2601R, while 109 genes are 

differentially expressed when comparing Bayfield to PS46RR. The number of 

differentially expressed genes between Bayfield and each of the two transgenic cultivars 

is less than the number of differentially expressed genes between the two transgenic 

cultivars (137 differentially expressed genes). In the comparison of the other 

non-transgenic cultivar S03W4 to both transgenic cultivars, there are 248 genes 

differentially expressed when comparing S03W4 to 2601R; and 290 genes are 

differentially expressed when comparing S03W4 to PS46RR. The differences between 

transgenic and non-transgenic soybeans are less than the differences between two 

non-transgenic soybeans (332 differentially expressed genes). Based on the fewest 

differentially expressed genes, Bayfield is again shown to likely be the closest related 

non-transgenic cultivar to each of the transgenic cultivars.  
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Figure 4.12 

Pairwise Comparison between Cultivars
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Figure 4.12. Pair-wise comparison between five different soybean cultivars. 

LIMMA analysis on three sets of different pre-processed microarray data (using 
RMA, MAS5 or dCHIP). The numbers of differentially expressed genes (p-value < 
0.01, intensities greater than 2 fold change) are located above the bars. 
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4.2.4 Resolving differences in gene expression at the probe level: comparison of 

one transgenic cultivar to one non-transgenic cultivar 

 

Bayfield, being the cultivar found to likely be the closest conventional relative to 

the two transgenic cultivars, was compared individually with the transgenic cultivars 

2601R and PS46RR to detect differential gene expression. Within the 44 and 109 

differentially expressed genes found in the previous pair-wise comparison of 2601R and 

PS46RR to Bayfield (using RMA pre-processing method, cut-off at p-value < 0.01 and 

fold change > 2), only eight genes are differentially expressed in common in both 

transgenic cultivars (Table 4.1). Only three of these genes are annotated with Gene 

Ontology (GO) terms. Two genes that were down-regulated are in the category “cysteine 

protease inhibitor activity” and one gene that was down-regulated is in the category 

“dihydroflavonol-4-reductase activity”. One of the up-regulated genes belongs to a TC 

(tentative contig, www.tigr.org) annotated with the category “cinnamoyl-CoA reductase 

activity”. 

 

In order to understand the molecular function of these genes, pair-wise 

comparisons in each of the transgenic cultivars are interpreted in terms of GO molecular 

function (using parent terms that describe the functions in more general annotations). In 

the comparison between 2601R and Bayfield using the RMA preprocessing method (cut- 

off at p-value < 0.01 and fold change > 2): two genes are identified as involved in 

“endopeptidase inhibitor activity”; five genes are involved in “transferase activity”; five 

genes are involved in “binding”; and one gene is involved in each of the functions “lyase 

activity”, “signal transducer activity”, “isomerase activity”, “oxidoreductase activity”, 

“transporter activity” and “hydrolase activity” (Table 4.2).  The results are similar in the 

comparison of PS46RR to Bayfield using the same method: two genes are involved in 

“endopeptidase inhibitor activity”; thirteen genes are involved in “transferase activity”; 

eleven genes are involved in “binding”; five genes are involved in “hydrolase activity”; 

five genes are involved in “oxidoreductase activity”; three genes are involved in “signal 

transducer activity”; one gene is involved in “transporter activity and “nutrient reservoir 

activity” (Table 4.3). 
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4.2.5 Resolving differential gene expression at the probe level: comparison of one 

transgenic cultivar to a group of non-transgenic cultivars 

 

In the comparison of one transgenic soybean to a reference group (that represents 

the GRAS to assess substantial equivalence) of three non-transgenic soybeans instead of 

comparing to one non-transgenic soybean (Bayfield), the numbers of differentially 

expressed genes are reduced from 44 to ten genes in 2601R, and 109 to 49 genes in 

PS46RR. There are only five genes differentially expressed in common in both 2601R 

and PS46RR. However, only two of them are assigned with GO annotation, both 

involved in “cysteine protease inhibitor activity”. Table 4.4 shows the ten differentially 

expressed genes in 2601R. Three of them (protein sequences similar to flavonol 

3-O-glucosyltransferase, Phytochrome A, and Zeatin O-xylosyltransferase or 

Indole-3-acetate beta-glucoxyltransferase, respectively) are involved in “transferase 

activity”. Phytochrome is also involved in “binding” and “signal transducer activity”. 

Two other genes (protein sequences similar to Cysteine proteinase inhibitor A and 

Multicystatin) are involved in “endopeptidase inhibitor activity”. Nine of these ten genes 

are also differentially expressed in the comparison using only Bayfield as the comparator 

except the probe GmaAffx.52838.1.S1_at, which has a p-value of 0.06 in the comparison 

with Bayfield. However, it is significantly down-regulated in the comparison with 

Mandarin and S03W4 at p-value smaller than 0.0002. Unfortunately, there is no similar 

sequences found from the BLAST search using e-value < 0.01, therefore, there is no 

annotation for this gene and no information of its molecular function is thus provided. 

Table 4.5 shows twelve (out of 49) differentially expressed genes that have GO terms 

annotations in the comparison of PS46RR using a reference group of three non-transgenic 

soybeans (Bayfield, Mandarin and S03W4). Six of the differentially expressed genes are 

involved in the molecular function “binding”; four genes involved in “transferase 

activity”; and two genes are involved in “cysteine protease inhibitor activity”. Some of 

the genes have multiple functions such as GmaAffx.55247.1.S1_at and 

GmaAffx.54889.1.S1_at, which are involved in both “transferase activity” and “binding”. 

Most of these twelve genes are also differentially expressed when using only Bayfield for 

comparison, except in the cases of Gma.16328.1.S1_at and Gma.2590.1.A1_s_at, whose 
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fold changes between PS46RR and Bayfield were slightly below 2 (i.e. 1:1.92 and 1:1.82 

respectively) and consequently can not be said to be differentially expressed with the 

same strict criteria. 
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4.2.6 Resolving differential gene expression at the functional-term level: 

comparison of one transgenic cultivar to one non-transgenic cultivar  

  

In order to explore whether there are broad trends in gene expression for genes 

that share the same biological function, we averaged the gene expression levels 

(intensities) of all probes that were assigned with the same GO terms as the gene 

expression value for each GO terms and made comparisons between samples based on 

individual GO terms instead of individual probes. When comparing differentially 

expressed genes between 2601R and Bayfield by their GO terms, there are 27 GO terms 

(in Molecular function category) shown to be different at p-value < 0.01 (Table 4.6). The 

GO terms can be defined as a gene class having a group of genes with related functions. 

The gene class with molecular function “cysteine protease inhibitor activity” is shown to 

be significantly down-regulated in 2601R. In addition, the bigger gene classes consisting 

of a group of genes annotated with the parent GO terms describing more general 

functions such as “endopeptidase inhibitor activity”, “protease inhibitor activity”, 

“enzyme inhibitor activity”, and “enzyme regulator activity” is also significantly 

down-regulated. Gene classes are bigger when they are more general, and hence, the 

numbers of genes belonging to these gene classes for the statistical analyses increased 

from three to 41. Within these 41 genes for gene classes “enzyme regulator activity”, 

only two (Gma.3314.2.S1_x_at: cysteine proteinase inhibitor A and Gma.3314.1.S1_a_at: 

multicystatin) correspond to genes that are significantly down-regulated when analyzed 

based on individual probes instead of GO terms. However, the differences of expression 

in these two genes were very large. Even after combining the intensities of other (26 

down-regulated and 13 up-regulated) genes, gene classes annotated with the parent GO 

terms of “cysteine protease inhibitor activity” are significantly down-regulated. The gene 

class “carbon-oxygen lyase activity, acting on phosphates”, which it is the parent term of 

“(+)-delta-cadinene synthase activity”, “aristolochene synthase activity” and “casbene 

synthase activity”, is significantly down-regulated. Both “(+)-delta-cadinene synthase 

activity” and “aristolochene synthase activity” are also significantly different in the 

analysis based on individual probes. The sub-class (represented by a child term) “zeatin 

O-bega-D-xylosyltransferase activity” and its parent classes (represented by parent terms) 
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“UDP-xylosyltransferase activity” and “xylosyltransferase activity” are also 

down-regulated. Although only one of the three genes (GmaAffx.70608.1.S1_at: zeatin 

O-xylosyltransferase) included in the analysis is significantly differentially expressed in 

the individual probe level analysis, all three genes are down-regulated in the gene class 

analysis. In addition, genes belonging to the gene class annotated with child terms 

“indole-3-acetate beta-glucosyltransferase activity” and “dihydrokaempherol 4-reductase 

activity” are also shown to be significantly different in the analysis based on individual 

probes. 

 

In the comparison between PS46RR and Bayfield, gene classes annotated with the 

GO term “cysteine protease inhibitor activity” are significantly down-regulated just as in 

the comparison between 2601R and Bayfield (Table 4.7). Two of the three genes that are 

included in the analysis for this GO term are also differentially expressed based on the 

comparison using individual probes (Gma.3314.2.S1_x_at: cysteine proteinase inhibitor 

A and Gma.3314.1.S1_a_at: multicystatin). However, the gene classes annotated with the 

parent terms are not significantly differentially expressed after combining the intensities 

of other probes for genes that are involved in the same functions, because the intensities 

for the probes of the up-regulated genes averaged out the difference in gene expression 

due to the down-regulated probes Gma.3314.2.S1_x_at and Gma.3314.1.S1_a_at. Gene 

classes annotated with the GO term “histone-lysine N-methyltransferase activity” with its 

parent terms “protein-lysine N-methyltransferase activity” and “Lysine-lysine 

N-methyltransferase activity” are up-regulated in this analysis. Many probes are 

annotated with the parent terms of “cystein proteinase inhibitor activity” as opposed to 

the parent terms of “histone-lysine N-methyltransferase activity”, for which there are 

only one annotated probe. Therefore, no other probe would decrease or increase the 

intensity of up-regulation of this one gene within the parent gene classes of 

“histone-lysine N-methyltransferase activity”. Other gene classes annotated with child 

terms are differentially expressed based on GO term analysis and also individual probe 

analysis such as “chlorophyllase activity”, “tropine dehydrogenase activity” and 

“tropinione reductase activity”.  



 
 

- 7
0 

- 

T
ab

le
 4

.6
. G

O
 te

rm
s d

is
tin

gu
is

he
d 

in
 th

e 
co

m
pa

ris
on

 b
et

w
ee

n 
26

01
R

 a
nd

 B
ay

fie
ld

. 
 

               

 
* 

In
di

ca
te

s t
he

 n
um

be
rs

 o
f p

ro
be

s t
ha

t w
er

e 
in

vo
lv

ed
 in

 e
ac

h 
G

O
 te

rm
 g

en
e 

cl
as

s. 
 

 
 

   

 
GO

 ID
 

 

 
GO

 te
rm

 (m
ol

ec
ul

ar
 fu

nc
tio

n 
ca

te
go

ry
) 

 
No

. o
f p

ro
be

s *
 

 
P-

va
lu

e 
 

Fo
ld

 ch
an

ge
 (L

og
2)

 
 

 
GO

:00
04

86
9 

 
Cy

ste
ine

 pr
ote

as
e i

nh
ibi

tor
 ac

tiv
ity

 
 3 

 
1.8

52
8E

-0
7  

 
-3

.21
5 

GO
:00

47
46

1 
(+

)-d
elt

a-
ca

din
en

e s
yn

tha
se

 ac
tiv

ity
 

2 
3.1

97
2E

-0
6 

-2
.07

2 
GO

:00
45

48
3 

Ar
ist

olo
ch

en
e s

yn
tha

se
 ac

tiv
ity

 
3 

1.1
55

4E
-0

6  
-1

.69
6 

GO
:00

47
21

5 
Ind

ole
-3

-a
ce

tat
e b

eta
-g

luc
os

ylt
ra

ns
fer

as
e a

cti
vit

y  
4 

0.0
00

15
 

-1
.27

7 
GO

:00
04

86
6 

En
do

pe
pti

da
se

 in
hib

ito
r a

cti
vit

y 
18

 
0.0

00
21

 
-0

.75
6 

GO
:00

30
41

4 
Pr

ote
as

e i
nh

ibi
tor

 ac
tiv

ity
 

18
 

0.0
00

21
 

-0
.75

6 
GO

:00
50

40
4 

Ze
ati

n O
-b

eta
-D

-xy
los

ylt
ra

ns
fer

as
e a

cti
vit

y 
2 

0.0
17

18
 

-2
.28

7 
GO

:00
35

25
2 

UD
P-

xy
los

ylt
ra

ns
fer

as
e a

cti
vit

y 
3 

0.0
02

64
 

-1
.58

0 
GO

:00
42

28
5 

Xy
los

ylt
ra

ns
fer

as
e a

cti
vit

y 
3 

0.0
02

64
 

-1
.58

0 
GO

:00
16

83
8 

Ca
rb

on
-o

x y
ge

n l
ya

se
 ac

tiv
ity

, a
cti

ng
 on

 ph
os

ph
ate

s
5 

0.0
02

64
 

-1
.28

3 
GO

:00
50

44
9 

Ca
sb

en
e s

yn
tha

se
 ac

tiv
ity

 
1 

0.0
02

68
 

-0
.94

4 
GO

:00
08

86
3 

Fo
rm

ate
 de

hy
dr

og
en

as
e a

cti
vit

y 
2 

0.0
02

95
 

0.6
00

 
GO

:00
46

54
7 

Tr
an

s-a
co

nit
ate

 3-
me

thy
ltra

ns
fer

as
e a

cti
vit

y 
1 

0.0
02

97
 

-1
.08

5 
GO

:00
04

85
7 

En
zy

me
 in

hib
ito

r a
cti

vit
y 

24
 

0.0
02

99
 

-0
.60

9 
GO

:00
08

13
4 

Tr
an

sc
rip

tio
n f

ac
tor

 bi
nd

ing
 

3 
0.0

02
99

 
0.6

60
 

GO
:00

08
60

5 
Pr

ote
in 

kin
as

e C
K2

 re
gu

lat
or

 ac
tiv

ity
 

2 
0.0

07
84

 
-0

.63
0 

GO
:00

45
55

2 
Di

hy
dr

ok
ae

mp
he

ro
l 4

-re
du

cta
se

 ac
tiv

ity
 

5 
0.0

08
83

 
-0

.71
7 

GO
:00

30
23

4 
En

zy
me

 re
gu

lat
or

 ac
tiv

ity
 

 
41

 
0.0

08
89

 
-0

.48
4 



 
 

- 7
1 

- 

T
ab

le
 4

.7
. G

O
 te

rm
s d

is
tin

gu
is

he
d 

in
 th

e 
co

m
pa

ris
on

 b
et

w
ee

n 
PS

46
R

R
 a

nd
 B

ay
fie

ld
. 

 
 

 

 
* 

In
di

ca
te

s t
he

 n
um

be
r o

f p
ro

be
s t

ha
t w

er
e 

in
vo

lv
ed

 in
 e

ac
h 

G
O

 te
rm

 g
en

e 
cl

as
s. 

 
 

 
        

 
GO

 ID
 

 

 
GO

 te
rm

 (m
ol

ec
ul

ar
 fu

nc
tio

n 
ca

te
go

ry
) 

 
No

. o
f p

ro
be

s *
  

 
P-

va
lu

e 
 

Fo
ld

 ch
an

ge
 (L

og
2)

 

 
GO

:00
04

86
9 

 
Cy

ste
ine

 pr
ote

as
e i

nh
ibi

tor
 ac

tiv
ity

 
 3 

 
9.7

60
3E

-0
7  

 
-2

.94
9 

GO
:00

16
27

8 
Ly

sin
e N

-m
eth

ylt
ra

ns
fer

as
e a

cti
vit

y 
1 

1.9
87

6E
-0

6 
1.0

59
 

GO
:00

16
27

9 
Pr

ote
in-

lys
ine

 N
-m

eth
ylt

ra
ns

fer
as

e a
cti

vit
y 

1 
1.9

87
6E

-0
6 

1.0
59

 
GO

:00
18

02
4 

Hi
sto

ne
-ly

sin
e N

-m
eth

ylt
ra

ns
fer

as
e a

cti
vit

y 
1 

1.9
87

6E
-0

6  
1.0

59
 

GO
:00

47
74

6 
Ch

lor
op

hy
lla

se
 ac

tiv
ity

 
2 

7.5
60

7E
-0

5  
-1

.12
6 

GO
:00

50
35

6 
Tr

op
ine

 de
hy

dr
og

en
as

e a
cti

vit
y 

4 
0.0

00
23

 
1.9

88
 

GO
:00

50
35

8 
Tr

op
ino

ne
 re

du
cta

se
 ac

tiv
ity

 
3 

0.0
00

63
 

1.8
00

 
GO

:00
50

51
3 

Gl
yc

op
ro

tei
n 2

-b
eta

-D
-xy

los
ylt

ra
ns

fer
as

e a
cti

vit
y  

 
1 

0.0
00

85
 

0.7
25

 



 
 

- 72 - 

5 Discussion 

 
5.1 Effect of transgenes on global gene expression is within the natural range of 

variation of their conventional counterparts 

 

In this study we are comparing the global gene expression profiles of leaves from 

five different soybean cultivars. The results of the study demonstrate that the insertion of 

a transgene has minimal effects on global gene expression. The conventional cultivar 

Mandarin Ottawa is the cultivar most different from the others as defined by a higher 

number of differentially expressed genes in pair-wise comparisons and in cluster analysis. 

This is not surprising, as Mandarin is an older cultivar, released in 1934 (Kumudini et al., 

2001, Beaulieu, 2005), and has a longer history of commercialization than the other four 

soybean cultivars. Although Mandarin is a major ancestor of North American soybean 

cultivars and has contributed 11-22% to the genomes of present-day northern soybean 

elite lines (Kisha et al., 1998, Sneller, 2003), its contribution to the northern gene pool 

has been reduced in the past 10-15 years (Sneller, 2003). Therefore the more ancient 

soybean cultivar might be more distant genetically compared to the recently developed 

cultivars, which are more inbred. However, it is somewhat surprising that the expression 

profiles of leaves of two different, though not remotely related, cultivars can vary by that 

many genes (over 1,000), and a study of even more distant conventional cultivars could 

be expected to show that the natural range of variation at the gene expression level in  

soybean is quite large. Four of the other soybean cultivars are very similar in global gene 

expression pattern. Our hierarchical clustering analysis could not distinguish the group of 

transgenic soybean cultivars (2601R and PS46RR) from the other (non-Mandarin) 

non-transgenic cultivars (Bayfield and S03W4), and less than 332 genes (>1% of the total 

soybean genes arrayed) differed significantly (p-value < 0.01) with expression levels 

higher than twofold in any pair-wise comparisons among these four cultivars. Most 

strikingly, the number of differentially expressed genes between non-transgenic cultivars 

(Bayfield/S03W4) was higher than the number of differentially expressed genes between 

transgenic and non-transgenic soybeans. Ouakfaoui and Miki had already demonstrated a 

single insertion of T-DNA and common reporter genes did not affect gene expression 
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level in transgenic plants (Ouakfaoui and Miki, 2005). Our result implies that the 

insertion of a transgene into a plant genome does not have great impact on global gene 

expression in plants. The result is similar to a previous finding that the expression of A. 

fumigatus phytase had minimal effect on the gene expression pattern in the transgenic 

wheat seedlings (Gregersen et al., 2005) and also similar to a recent cDNA microarray 

study in wheat lines expressing genes encoding high molecular weight subunits of 

glutenin (Baudo et al., 2006) that suggested the presence of transgene has less impact on 

the transcriptome than conventional breeding. However, we could not distinguish 

transgenic and non-transgenic soybeans based on the minimal differences between them; 

therefore, we reject our first hypothesis that transgenic and non-transgenic soybean 

genotypes (cultivars) can be distinguished by their global gene expression profiles.  

Cultivars can be distinguished from others, if they are sufficiently distant genetically (e.g. 

Mandarin and Bayfield), however the dataset available is too limited to determine the 

boundaries. 

 

In our microarray experiment, there was a problem of choosing the appropriate 

comparators to assess only the transgenic effects rather than the genetic diversity among 

these soybean cultivars. The ideal comparator would have been the near isogenic parental 

line grown under identical conditions (FAO/WHO, 2000). However, such comparators 

are difficult to obtain in practice, since companies rarely reveal their breeding programs. 

Both transgenic soybean cultivars that were used in this study are derived from the same 

line, 40-3-2, and the same insertion event, although we do not know where in the genome 

the transgene is integrated. This is the soybean cultivar A5403 that has been transformed 

with the transgene 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase found in the 

CP4 strain of Agrobacterium and which confers tolerance to the herbicide glyphosate 

(RoundUp®) (Padgette et al., 1995). Line 40-3-2 is used in various breeding programs to 

develop new cultivars with the RoundUp® ready gene to adapt to the northern soybean 

growing area (Delannay et al., 1995). Using the parent line A5403 for comparison might 

have been more appropriate. However, A5403 is a southern cultivar from Asgrow Seed 

Company (Padgette et al., 1995, Sneller, 2003), which may not have the same gene 

expression characteristics as our northern soybean cultivars under the same growing 
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condition. Therefore, we identified the closest non-transgenic cultivar as the conventional 

counterpart for the comparison to determine substantial equivalence between transgenic 

and non-transgenic crops. The five soybean cultivars in our study were carefully chosen 

based on field trial reports and literature paper (Beaulieu, 2005). Our analyses 

demonstrate that our examined non-transgenic cultivars (Bayfield and S03W4) are very 

close in terms of global gene expression profile to our transgenic cultivars, Bayfield 

being the closest. Each transgenic cultivar is closer to Bayfield than to each other. 

Therefore, Bayfield was used as the comparator in the pair-wise transgenic versus 

non-transgenic comparisons. 

 

In the comparison between each of the two transgenic cultivars (2601R and 

PS46RR) and Bayfield, only eight genes are differentially expressed in common in both 

transgenic soybean cultivars. It is possible that these eight genes are affected by the 

insertion of the transgene (which again, is the same insertion event in the parent 40-3-2) 

resulting in intended or unintended effects, but it may also be that the differences are due 

to the variation of the plant genotypes themselves. Only four of the eight genes have GO 

annotations, the other genes have no similar sequence found from the BLASTX search 

result having. Two of them (Gma.3314.1.S1_a_at: multicystatin, Gma.3314.2.S1_x_at: 

cysteine proteinase inhibitor A) are down regulated and annotated as having cysteine 

protease inhibitor activity. One of the genes (Gma.15664.1.S1_at: 

dihydroflavonol-4-reductase) involved in dihydrokaempferol 4-reductase activity and 

flavonoid biosynthesis is down regulated. Further experiment such as quantitative 

real-time RT-PCR will be needed to validate the results.   

 

In addition, we applied the concept of substantial equivalence to investigate if a 

group of conventional breed cultivars (GRAS, Generally Recognized As Safe) could be 

used as the control (FAO.WHO, 2000) in gene expression experiments to assess whether 

our two transgenic cultivars are within the natural range of variation of their conventional 

counterpart cultivars that have similar performance and phenotype. The comparisons 

between each transgenic cultivar to the group of three non-transgenic cultivars show 



 
 

- 75 - 

similar results, which implies that differentially expressed genes can be identified using 

this approach. 

 

5.2 Annotation database integrated with biological functional terms provides 

information to predict unintended effects  

 

In order to obtain biological information from the gene expression data, many 

researchers translate a list of differentially expressed genes to relevant biological 

processes and pathways manually through literature and public databases searches 

(Draghici, 2003). However, this is a tedious and time-consuming process. Integrating 

nucleotide information for the soybean genes on the microarray with BLAST search 

results (SwissProt protein IDs), GO terms annotation and KEGG pathways in our 

database, minimizes the time and effort for retrieving all these cross-references 

gene-by-gene manually. Also, with the help of the database, we can interpret the 

differentially expressed genes based on functional annotations in terms of gene ontology 

molecular function category.  

 

A GO term does not only provide functional annotation, but it also represents a 

gene class whose members share the same biological function. We observed many of the 

differentially expressed genes assigned to the parent terms “transferase activity” and 

“binding” from the cross-references we obtained from the database. However, GO terms 

are organized in a hierarchy(tree)-like structure, so that a gene assigned with a child term 

is also associated with the parent terms that describe the function of that gene in a more 

general term (The Gene Ontology Consortium, 2000). Therefore, many genes can be 

assigned to one parent term as opposed to the child term, which describes a very specific 

function of only a few of genes assigned to it. Thus, we do not know if observing the high 

frequency in “transferase activity” or “binding” is due to real significantly regulated 

biological processes or because these are random events (since they represent very large 

gene classes that have a high probability to be observed). Currently, there is a statistical 

method to calculate the probability that a certain GO term occurs several times just by 

chance in the list of differentially regulated genes (Draghici et al., 2003). This approach 
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makes use of the cumulative hypergeometric or binomial distribution and χ2 or Fisher’s 

exact test to identify significantly over-represented GO terms (Khatri and Draghici, 2005). 

However, this approach only calculates the probability of random events but it does not 

consider the expressing levels of the other genes on the same microarray chip. Therefore, 

by the help of our database, we generated a value of the combined intensities of all the 

genes assigned to each GO term in each microarray chips and used these values for 

statistical analysis to identify which GO term is more relevant. And hence, by averaging 

the intensities of the genes belonging to each GO term, none of the protein classes with 

“binding” function is shown in our GO term list.  This is because the number of genes 

assigned to each binding function is large and the other genes do not have a consistent up 

or down regulation pattern. Therefore expression levels of other genes averaged out the 

expression differences of the individual differentially regulated genes. These results show 

that identifying differentially expressed biological functions (i.e. obtaining GO terms) by 

averaging intensities can identify gene classes that consist of genes expressing consistent 

patterns. This provides better ranking of the functional gene classes. However, we could 

not accept our second hypothesis that this method is more accurate than obtaining GO 

terms from the annotated list of differentially expressed genes, because genes within the 

same functional group might not necessarily be co-regulated within the same tissue at the 

same time. Further investigation into individual genes within the gene class has to be 

done based on scientific knowledge, and our web tools can provide individual expression 

intensities for each genes to assist investigators to identify whether the expression pattern 

is biological relevant or not. 
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6 Conclusion  

 

We have created a database to integrate existing genomics data for the soybean 

nucleotides, transcripts, proteins and results from our microarray experiment, and 

developed web interfaces to retrieve and display these data. By mapping information in 

the soybean database, results from the microarray experiments are associated with 

corresponding protein names and functional (GO) terms, which provide insight into 

functional differences between samples and enhance the prediction of unintended effects 

in transgenic soybean cultivars. 

 

Although we could not distinguish transgenic cultivars from non-transgenic 

cultivars due to minimal difference between our transgenic and non-transgenic cultivars, 

our microarray analysis shows that the analysis of gene expression profiles of transgenic 

crops and their conventional counterparts can identify differentially expressed genes 

under similar growth condition. The pair-wise analysis in the comparison of transgenic 

soybean to the closest conventional counterparts produced a list of differentially 

expressed gene and revealed that, in both transgenic cultivars, genes involved in cysteine 

protease inhibitor activity and dihydroflavonol-4-reductase activity were down-regulated. 

It may reflect an effect of the insertion event, an effect of the transgene product and thus 

a real unintended effect, or a natural variation of the parent genotype. Further 

investigations in the laboratory will be needed to assess effects like this.  

 

We could not show that analysis based on functional gene class comparison is 

more accurate than analysis based on individual genes, because there is no laboratory 

data to validate our results. Most importantly, genes within the same gene class might not 

be necessarily co-regulated in the same tissue at the same developmental stage. However, 

by combining intensities of genes within the same gene class, we could provide better 

ranking of the functional terms by average out general terms that have high probability to 

be observed randomly. Also, the gene class with genes showing consistent expression 

patterns can be moved up on the list to reveal biological relevant event. Our web tool 

provides functions to display individual intensities for each gene, which assist research to 
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observe if there is any consistent expression pattern within the same functional gene class 

and identify relevant biological processes.  

 

Our study demonstrated the use of microarray technology and the development of 

database with web interface as a tool for crop safety assessment. It is important to point 

out that obtaining a target gene list cannot conclude whether the transgenic soybean is 

absolutely safe or not, since gene expression might not necessarily influence metabolite 

accumulation. Furthermore, it has been agreed that the concept of substantial equivalence 

was developed as a practical approach to the safety assessment process, but it is not a 

safety assessment itself. It was not established to characterize the hazard; rather it is used 

as a starting point that is to lead to further safety assessment (FAO/WHO, 2000).  

 

In conclusion, we have shown that the insertion of a transgene in our examined 

transgenic soybean cultivars has minimal effect on gene expression, and we demonstrated 

the screening of unintended effects by analyzing gene expression data using 

bioinformatics tools and the development of a database for obtaining relevant biological 

information on the differentially expressed genes. Hence, we provided a tool for easier 

prediction of the molecular functions and pathways likely to be influenced by the 

transgene insertion or gene product.  
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7 Recommendation for future studies  

 

A general problem for a database project is the burden of version control that 

requires regular download and update of the new release data from the public databases. 

Since new data for soybean is not released as often as for species like human or mouse, 

our database is still considered to be comprehensive to provide information for our 

transgenic and non-transgenic soybeans comparison. In addition, a common problem for 

many sequence projects is that the existing annotations are incomplete. Therefore even 

though we obtained a list of differentially expressed genes, only a subset of those genes is 

annotated with biological functions. Therefore any differentially expressed genes and 

gene class we find from our analysis need to undergo further investigation for safety 

assessment, and regular updates of the database have to be done. 

 

In the attempt of making use of GO terms for gene class differentiation, we only 

performed a simple calculation to average all the intensity of the genes assigned to one 

GO term. However, genes with high intensities may mask the expression values of the 

low intensities genes, although the fold-change of the high intensities may not be larger 

and more significant than the low intensity genes. A use of mean or median could be used 

to normalize the intensity between these genes. Therefore further development of the 

statistical method has to be done.  

 

Currently, there are groups using very sophisticated statistical method for 

functional class group testing, such as functional class score (Pavlidis et al., 2004, 

Mootha et al., 2003) or global test (Goeman et al., 2004). However, due to the 

incompleteness of our soybean data, functional gene class analysis is still difficult even if 

we used the most sophisticate statistical analysis. Therefore, better annotation of soybean 

has to be done in order to interpret biological functions related to the gene expression 

data. 

 

Also, it is very important to do a follow-up experiment to validate the 

differentially expressed genes, using for instance real time RT-PCR technique. In the end, 
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to see if there are any phenotypic effects of the gene expression, it would be necessary to 

also identify whether the differences in gene expression level significantly correlate with 

the production of protein and metabolite components.  

 

Further studies can be carried out to understand the intended effect of the 

transgene that encode EPSP synthase. Since the glyphosate herbicide targets the 

shikimate pathway (Steinrucken and Amrhein, 1980), it would be expected to affect the 

downstream metabolic pathways that produce aromatic amino acids (phenylalanine, 

tyrosine and tryptophan), and their secondary products isoflavones (genistein, daidzein, 

bound coumestrol and biochanin) (Taylor et al., 1999). In addition, further comparisons 

of soybean with and without the treatment of glyphosate herbicide can also be done to 

assess whether the application of herbicide would affect the change at gene expression 

level. However in the previous compositional analysis of transgenic soybeans treated 

with glyphosate herbicide demonstrated that these treated soybeans were comparable to 

the parental soybean cultivar and other conventional soybeans (Taylor et al., 1999). Since 

full proteome and metabolome profiling method is not available yet (Metzdorff et al., 

2006), microarray technology is the only available tool for analyzing the full 

transcriptome and it does have the potential to be a useful tool for screening for 

unintended effects in transgenic crops.   
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