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Abstract 

Infants recovering from surgery and anesthesia are at risk of life-threatening Postoperative 

Apnea (POA). There is no way to predict which infants will experience POA, and therefore all 

infants with postmenstrual age (PMA) ≤ 60 weeks need to be monitored in hospital for at least 

12 h postoperatively. Evidence shows a link between abnormal postoperative respiratory patterns 

and the occurrence of POA. Thus, study of these patterns might be useful to predict an infant’s 

risk of POA, as well as the time when such risk abates. 

Comprehensive study of the postoperative respiratory patterns has been limited by two main 

factors. First, no representative set of respiratory data from infants at risk of POA is publicly 

available to investigators, and so any POA study involves a data acquisition phase that requires 

planning, approval, and execution. All these activities consume extensive resources and so the 

number of infants that can be enrolled is limited by the available budget. Second, there are no 

appropriate tools for the comprehensive analysis of the respiratory patterns. The most accepted 

method is conventional manual scoring (CMS), performed by expert scorers following guidelines 

from the American Academy of Sleep Medicine (AASM). CMS has several limitations: it has 

low intra- and inter-scorer repeatability, is labor intensive, time-consuming, and expensive. 

Moreover, CMS does not produce a comprehensive analysis of the respiratory patterns, but 

rather a list of “clinically relevant” events and the time of their occurrence. Thus, any pattern not 

considered “clinically relevant” by the AASM guidelines is not scored and cannot be analyzed. 

This thesis addresses these limitations by creating a library of infant data and developing several 

tools for the comprehensive analysis of infant respiratory patterns. We accomplished this in 5 

stages. First, we acquired a representative dataset comprising cardiorespiratory signals from 

infants at risk of POA, and made these data available to the public. Second, we developed a set 

of tools for the efficient, repeatable, and reliable manual scoring of infant respiratory patterns. 

We demonstrated that use of these tools produced an analysis with high accuracy and 

consistency, and improved intra- and inter-scorer repeatability. Third, we developed a method 

based on Expectation-Maximization (EM) to combine analyses from multiple manual scorers to 

minimize the effects of intra- and inter-scorer variability and yield “gold standard” results with 
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very high accuracy and consistency. These two developments improved the accuracy and 

repeatability of manual analysis but did not address its labor intensive, time-consuming and 

expensive nature. The fourth stage of this thesis addressed these limitations by automating the 

analysis. To do this, we developed an Automated Off-line Respiratory Event Detector (AORED) 

that analyses respiratory patterns by comparing metrics of respiratory behavior to thresholds to 

determine the presence of patterns. Optimal threshold values were selected using Receiver 

Operating Characteristics (ROC) analysis using manual analysis results as reference. AORED 

analysis agreed well with the “gold standard” manual analysis. However, its thresholds were 

based on the results of manual analysis so its performance will be influenced by the limitations 

of manual scoring. The fifth stage of the work addressed this through the development of 

AUREA, an Automated Unsupervised Respiratory Event Analysis system that applies 

unsupervised, K-means clustering to the metrics of respiratory behavior to classify the 

respiratory patterns. K-means requires no human intervention to work, so AUREA is completely 

automated and is not affected by the limitations of manual scoring. The validation results showed 

that AUREA had substantial accuracy (significantly higher than AORED), and almost perfect 

consistency. 

The contributions from this work will impact the study of infant respiratory patterns and POA in 

several important ways: (i) the public data library allows investigators to contribute to the study 

of POA and the analysis of infant cardiorespiratory signals without the need for data acquisition, 

which is especially relevant for investigators who do not have access or resources to acquire 

clinical data, or those who focus only on technical aspects such as signal processing; (ii) the 

methodology establishes a new paradigm for the study of cardiorespiratory data by classifying 

every sample, which opens the possibility to apply advanced techniques such as time series or 

time-frequency analyses to the study of respiratory patterns; (iii) these techniques enable the  

study of the relationship between postoperative respiratory patterns and the occurrence of POA, 

which could in turn be used to develop a predictor of POA risk; (iv) the manual scoring tools 

give researchers the ability to study infant respiratory patterns even if they do not have the 

resources of a sleep laboratory, since these tools are readily available at no cost, and yield a 

highly accurate and consistent “gold standard” classification of the respiratory patterns; (v) 
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AUREA enables studies of infant respiration involving large amounts of data (e.g. multi-

institutional, longitudinal) because it can analyze the respiratory patterns in an accurate, 

consistent, objective, fast, and low cost fashion; (vi) AUREA has the potential for real-time 

implementation, so it could be used to monitor infants at the bedside to provide more detailed, 

instantaneous information about the respiratory patterns compared to conventional clinical 

monitors; moreover, (vii) AUREA can be used  to analyze adult data and be used in the study of 

Obstructive Sleep Apnea Syndrome. 
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Résumé 

La récupération post-chirurgicale et anesthésique des nourrissons présente un risque d'Apnée 

Postopératoire (APO) qui est potentiellement mortelle. La prédiction d'une APO est impossible, 

par conséquence tous les nourrissons d'âge post-menstruel (APM) ≤ 60 semaines doivent être 

surveillés à hôpital, pendant au moins 12 heures après la fin de l'opération. Des données ont 

montré un lien entre des schémas respiratoires postopératoires anormaux et l’occurrence d'une 

APO. L'étude de ces schémas pourrait ainsi se révéler utile quant à la prédiction d'un risque 

d'APO chez le nourrisson, mais également à la prédiction du temps nécessaire pour que ce risque 

disparaisse. 

L'étude complète des schémas respiratoires postopératoires a été limitée par deux facteurs 

principaux. Tout d’abord, aucun échantillon de données représentatives provenant de nourrissons 

à haut risque d’APO n’est disponible publiquement pour les chercheurs, et donc toute étude sur 

l'APO doit impérativement comporter une phase d’acquisition de données. Ceci implique 

planification, approbation et exécution, et ces tâches nécessitent de vastes ressources. Par 

conséquence, le nombre d'enfants participant à l’étude est limité par le budget disponible. 

Deuxièmement, aucun outil dédié à l’analyse complète des schémas respiratoires n'est 

actuellement disponible. La méthode généralement acceptée, le Score Manuel Conventionnel 

(SMC), est effectuée par des opérateurs experts qui suivent les directives de l'Académie 

Américaine de la Médecine du Sommeil (AAMS). Le SMC a plusieurs limitations: une faible 

reproductibilité intra- et inter-opérateur, ainsi que beaucoup d'efforts, de temps et d'argent. De 

plus, le SMC ne produit pas une analyse complète des schémas respiratoires, mais plutôt une 

liste d’événements “cliniquement pertinents”, accompagnés du moment de leur occurrence. 

Ainsi, un schéma considéré comme n’étant pas “cliniquement pertinent” d’après les directives de 

l’AAMS n’est pas évalué et ne peut être analysé. 

Cette thèse se penche sur ces limitations en créant une banque de données et en développant des 

outils pour l’analyse complète de schémas respiratoires chez le nourrisson. Ce travail se découpe 

en 5 phases. En premier lieu, nous avons acquis une banque de données représentatives 

comprenant des signaux cardio-respiratoires de nourrissons à risque d’APO, et avons rendu ces 
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données disponibles au public. Deuxièmement, nous avons développé une série d’outils 

permettant d'évaluer manuellement les schémas respiratoires des nourrissons de façon efficace, 

reproductible et fiable. Nous avons démontré que l’utilisation de ces outils produisait une analyse 

précise et robuste, et améliorait la reproductibilité intra- et inter-opérateur. Troisièmement, nous 

avons développé une méthode basée sur l’algorithme Espérance-Maximisation (EM) pour 

combiner les analyses de plusieurs marqueurs manuels afin de minimiser les effets de la 

variabilité intra- et inter-opérateur, et produire des résultats “gold standard” plus exactes et 

robustes. Ces deux développements ont amélioré la précision et la reproductibilité de l’analyse 

manuelle, mais n’ont pas résolu le problème du temps, du coût et des efforts nécessaires. La 

quatrième étape de cette thèse s'est plus particulièrement penchée sur ces limitations en 

automatisant l’analyse. Pour cela, nous avons développé un Détecteur d’Évènements 

Respiratoires Automatisé Hors-ligne (AORED en anglais) qui analyse les schémas respiratoires 

en comparant des métriques du comportement respiratoire à des seuils afin de déterminer la 

présence ou non de schémas. Les valeurs optimales des seuils ont été sélectionnées avec l’aide de 

l’analyse ROC (de l’anglais Receiver Operating Characteristics), en utilisant l’analyse manuelle 

comme référence. L’analyse AORED a montré une très bonne corrélation avec l’analyse 

manuelle “gold standard”. Cependant, les seuils étaient basés sur les résultats de l’analyse 

manuelle, donc sa performance était influencée par les limitations du score manuel. La 

cinquième étape du travail s'est intéressée à ce problème avec le développement d’AUREA (en 

anglais), un système d’Analyse d’Évènements Respiratoires Automatisée et non-Supervisée, 

utilisant un clustering non supervisé, basé sur les K-moyennes, et des métriques du 

comportement respiratoire afin de classifier les schémas respiratoires. L'algorithme des K-

moyennes n’a besoin d’aucune intervention humaine pour fonctionner. Ainsi, AUREA est 

complètement automatisé et n’est pas affecté par les limitations du score manuel. Les résultats de 

validation ont démontré qu’AUREA avait une très bonne précision (significativement plus 

élevée qu’AORED) et une très grande robustesse. 

Les contributions de cette thèse auront un impact sur l’étude des schémas respiratoires chez le 

nourrisson et l’APO de plusieurs façons: (i) la banque de données disponible publiquement 

permet aux chercheurs de contribuer davantage à l’étude de l’APO et l’analyse de signaux 
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cardio-respiratoires du nourrisson, sans avoir à acquérir plus de données ; ceci est 

particulièrement pertinent pour les chercheurs qui n’ont pas accès à, ou les ressources pour 

acquérir, des données cliniques, ou ceux dont le centre d'intérêt principal traite les aspects 

techniques du traitement des signaux; (ii) la méthodologie établit un nouveau paradigme pour 

l’étude des signaux cardio-respiratoires en classifiant chaque donnée, ce qui permet d’appliquer 

des techniques avancées telles que l’analyse de séries temporelles ou temps-fréquence sur l’étude 

des schémas respiratoires; (iii) ces techniques rendent possible l’étude de la relation entre les 

schémas respiratoires postopératoires et l’occurrence de l’APO, qui par la suite pourrait être 

utilisée pour développer un modèle de prédiction de l’APO; (iv) les chercheurs ont à leur 

disposition les outils nécessaires pour évaluer manuellement et étudier les schémas respiratoires 

chez les nourrissons, même s'ils n’ont pas les ressources pour un laboratoire de sommeil; ces 

outils sont en effet facilement accessibles, gratuitement, et produisent une classification “gold 

standard” des schémas respiratoires, très précise et robuste; (v) AUREA permet d’étudier la 

respiration du nourrisson à une plus grande échelle (études multicentriques, longitudinales), car 

le système peut analyser les schémas respiratoires de façon précise, robuste, objective, rapide et à 

faible coût; (vi) AUREA a le potentiel d’être exécuté en temps-réel et pourrait ainsi être utilisé 

au chevet les nourrissons, pour mieux les surveiller et permettant de fournir instantanément des 

informations détaillées sur les schémas respiratoires, en comparaison à des systèmes de 

monitoring cliniques conventionnels; (vii) AUREA peut analyser des données provenant 

d’adultes, et ainsi être utilisé dans l’étude du Syndrome de l’Apnée du Sommeil Obstructive. 
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Preface 

Drs. Robert E. Kearney (REK) and Karen A. Brown (KAB) from McGill University have 

collaborated over the last decade to develop methods to comprehensively analyze infant 

respiratory patterns. One of the main goals of this research has been to enable the study of 

respiratory patterns of infants recovering from surgery and anesthesia, since these infants are at 

increased risk of life-threatening apneic events. To this end, this collaboration has: (i) developed 

the technology required to acquire cardiorespiratory data from infants in the recovery room 

following surgery [1, 2]; (ii) developed a series of algorithms for the automated detection of key 

respiratory patterns including pause, movement artifact, thoraco-abdominal asynchrony, and 

synchronous breathing [3-6]; and (iii) demonstrated the potential clinical application of these 

algorithms in the evaluation of infants at risk of postoperative apnea (POA) [7]. 

Summary of Original Contributions 

I expanded this research during my Ph.D. studies by: (i) acquiring representative data from 

infants recovering from surgery and anesthesia, (ii) developing a formal methodology to 

comprehensively analyze infant respiratory patterns with high accuracy and consistency, and (iii) 

developing methods to perform the analysis automatically. This thesis describes my work in 

detail. 

Chapter 3 describes a library of clinical data acquired for the development of this project. These 

data represent a valuable collection of cardiorespiratory signals because they: (i) are 

representative of infants at risk of POA; and (ii) were acquired continuously, starting 

immediately after surgery and lasting for up to 12 h. I made this data fully available to the public, 

without restriction. There is no other similar POA data available, so in addition to the 

development of this thesis, this contribution will enable the development of new methods to 

analyze infant cardiorespiratory data, and will also help advance the clinical understanding of 

POA. 

Chapter 4 presents a set of tools I developed to assist manual scoring of infant respiratory data. 

Conventional manual scoring (CMS) has been the preferred analysis for respiratory data [8], but 
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it has been limited by several factors, especially low intra- and inter-scorer repeatability [9]. I 

developed the tools in Chapter 4 to improve manual scoring to make it a more reliable, “gold 

standard” analysis. The tools, which I made publicly available [10-12], include: (i) definitions 

and scoring rules for 6 unique, mutually-exclusive infant respiratory patterns; (ii) RIPScore, a 

software to apply these rules to infant data; (iii) a curated library of segments representative of 

the 6 respiratory patterns; (iv) a fully automated training protocol; and (v) a quality control 

method to monitor scorer performance over time. The tools allow to comprehensively analyze 

infant respiratory patterns in a continuous, sample-by-sample fashion, while also allow to 

establish and maintain high intra- and inter-scorer repeatability.  

Chapter 5 describes a method I developed to combine the analyses from multiple, manual scorers 

to further reduce the variability inherent to manual scoring. By using this post-processing 

method, it is possible to obtain an analysis of the respiratory patterns that has excellent accuracy 

and consistency, and that significantly improves from results produced by individual, manual 

scorers. The results obtained by using this method represent a much improved “gold standard” 

analysis of the respiratory patterns, compared to those obtained with CMS. 

Chapter 6 presents a first attempt to automate the analysis of infant respiratory patterns. In this 

Chapter I introduce AORED, an Automated Off-line Respiratory Event Detector that combines 

the algorithms previously developed by the group of KAB and REK, to automatically analyze 

infant respiratory patterns. AORED classifies respiratory patterns by comparing metrics of 

respiratory behavior to thresholds; the thresholds are selected based on a representative sample 

of manually analyzed data. AORED classifies the respiratory patterns on a sample-by-sample 

basis, is robust in high noise conditions, and is amenable for real-time implementation. 

Chapter 7 describes AUREA, an Automated Unsupervised Respiratory Event Analysis system. 

AUREA makes use of clustering, an unsupervised learning technique, to automatically classify 

respiratory patterns. Because of this, AUREA requires no human intervention to work, contrary 

to AORED that required a sample of manually scored data to determine classification thresholds. 

This makes AUREA a fully objective, completely automated method for analysis of infant 

respiratory patterns. AUREA reduces the analysis time and costs because it eliminates the need 
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for manual scoring, and also delivers an analysis with near-perfect consistency and substantial 

accuracy. Similar to AORED, AUREA is also amenable for real-time implementation. 

Contribution of Authors 

I carried out the work in Chapters 3 to 7 in collaboration with other authors. The author 

contributions are described next for each Chapter. 

Chapter 3 

I wrote the Chapter; acquired data from 15 of the 24 infants recruited; scanned and transcribed 

into text files all handwritten annotations obtained during data acquisition; stored these files 

together with the acquired physiological data into a central repository; and made the data 

publicly available after inspecting and anonymizing them by removing all possible identifiers (as 

indicated in [13]). I also maintained the custom built data acquisition system by calibrating the 

pulse oximeter and replacing the battery once. 

KAB obtained initial approval and annual renewal of the studies; recruited all subjects and 

obtained parental consent; acquired data from the 24 infants recruited; and provided comments, 

corrections and suggestions for the written Chapter. 

Dr. Gianluca Bertolizio (GB) assisted with data acquisition from 2 infants. 

REK provided comments, corrections and suggestions for the written Chapter. 

Chapter 4 

I conceived and designed the study in conjunction with KAB and REK. I developed RIPScore, 

compiled it to work as a standalone application, made its source code publicly available, and 

wrote its manual. I coordinated all manual scorers, stored their results in a central repository, and 

analyzed all manual analysis results. I created all figures and tables, wrote the Chapter, submitted 

it for publication to PLOS ONE, and was the corresponding author. 
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KAB and I obtained a second study approval that was necessary to secure funding for 

recruitment of 2 manual scorers. 

KAB provided feedback for the development of RIPScore; manually analyzed the clinical data 

from Chapter 3; and provided comments, corrections and suggestions for the manuscript. 

GB manually analyzed the clinical data from Chapter 3; and provided comments, corrections and 

suggestions for the manuscript. 

REK provided feedback for the development of RIPScore; and provided comments, corrections 

and suggestions for the manuscript. 

Chapter 5 

I conceived the algorithm to combine analyses from multiple, manual scorers using Expectation-

Maximization, and implemented it in MATLAB; designed the simulations and the study of 

clinical data; carried out all simulations and evaluations using clinical data; analyzed the results; 

generated all figures and tables; and wrote the manuscript. 

KAB and REK collaborated in the design of the simulations and the study of clinical data, and 

provided comments and suggestions for the manuscript. 

Chapter 6 

Initial work in this study was performed by Ahmed A. Aoude (AAA). He conceived the 

algorithm that combines detectors to classify the respiratory patterns, and implemented the 

individual, automated detectors in MATLAB. KAB manually analyzed the clinical data, and 

AAA used this manual analysis to carry out a preliminary validation of the detectors. AAA also 

wrote a draft of the manuscript in collaboration with KAB, REK, and Dr. Henrietta L. Galiana 

(HLG), which incorporated preliminary versions of the figures and Tables 6.1 and 6.2.  

Following the completion of AAA master’s degree, it was determined that substantial additional 

algorithmic development, simulations and analysis were required to bring level of the manuscript 
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to that required for publication. I was asked to undertake this as part of my Ph.D. research. To 

this end I: 

(i) standardized the filter bank from Table 6.1 so that all filters were the same order, and had 

the same peak-to-peak ripple in the pass band and minimum attenuation in the stop band; 

(ii) redesigned the simulation study to make the movement artifact simulation consistent with 

previous work [4], make the simulation of asynchronous-breathing more realistic by adding 

a transition window during the phase shift, and increase the number of realizations; 

(iii) improved the analysis of clinical data by incorporating the area under the Receiver 

Operating Characteristics (ROC) curve as a metric of detector performance, and devised 

and implemented a method to obtain optimum detector thresholds based on ROC analysis; 

(iv) implemented the full, combined AORED classification algorithm in MATLAB; 

(v) organized all MATLAB scripts, clinical data and manual scoring results in a central 

repository; 

(vi) carried out the final analyses, including all simulations, evaluation of individual detector 

performance, and assessment of agreement between AORED and the manual scorer; 

(vii) designed and generated all  figures (except  Figs. 6.1 and 6.3 prepared by AAA which were 

slightly modified), as well as Table 6.3 to reflect all final results; 

(viii) rewrote the manuscript with input from KAB and REK to describe the updated methods, 

results, and interpretation of the findings; and 

(ix) acted as the corresponding author when the paper was submitted to IEEE Trans Biomed 

Eng. 

In recognition of the fact that both AAA and I made major contributions to the paper, all authors 

agreed that AAA would be listed as the first author and I as the senior author. 

Chapter 7 

I conceived the metrics of respiratory behavior and all algorithms underlying AUREA, and 

implemented them in MATLAB. I designed and carried out the study; designed and generated all 

figures and tables; analyzed and interpreted the results; and wrote the manuscript. 
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KAB and REK provided comments, suggestions, and corrections for the manuscript, figures and 

tables. 

Publications 

I have prepared several publications and conference presentations throughout the course of my 

Ph.D. studies, including: 

Journal Articles 

(i) A. A. Aoude, R. E. Kearney, K. A. Brown, H. L. Galiana, and C. A. Robles-Rubio, 

"Automated Off-Line Respiratory Event Detection for the Study of Postoperative Apnea in 

Infants," IEEE Trans Biomed Eng, vol. 58, pp. 1724-1733, 2011. 

(ii) C. A. Robles-Rubio, J. Kaczmarek, S. Chawla, L. Kovacs, K. A. Brown, R. E. Kearney, 

and G. M. Sant Anna, "Automated analysis of respiratory behavior in extremely preterm 

infants and extubation readiness," Pediatr Pulmonol, vol. 50, pp. 479-486, 2015. 

(iii) C. A. Robles-Rubio, G. Bertolizio, K. A. Brown, and R. E. Kearney, "Scoring Tools for 

the Analysis of Infant Respiratory Inductive Plethysmography Signals," PLoS ONE, vol. 

10, p. e0134182, 2015. 

Conference Articles 

(i) C. A. Robles-Rubio, K. A. Brown, and R. E. Kearney, "Automated Unsupervised 

Respiratory Event Analysis," in Conf Proc 33rd IEEE Eng Med Biol Soc, Boston, USA, 

2011, pp. 3201-3204. 

(ii) C. A. Robles-Rubio, K. A. Brown, and R. E. Kearney, "Detection of Breathing Segments 

in Respiratory Signals," in Conf Proc 34th IEEE Eng Med Biol Soc, San Diego, USA, 

2012, pp. 6333-6336. 

(iii) C. A. Robles-Rubio, K. A. Brown, and R. E. Kearney, "A New Movement Artifact 

Detector for Photoplethysmographic Signals," in Conf Proc 35th IEEE Eng Med Biol Soc, 

Osaka, Japan, 2013, pp. 2295 - 2299. 
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(iv) C. A. Robles-Rubio, K. A. Brown, G. Bertolizio, and R. E. Kearney, "Automated Analysis 

of Respiratory Behavior for the Prediction of Apnea in Infants following General 

Anesthesia," in Conf Proc 36th IEEE Eng Med Biol Soc, Chicago IL, USA, 2014, pp. 262-

265. 

Conference Abstracts 

(i) C. A. Robles-Rubio, R. E. Kearney, and K. A. Brown, "Automated pause frequency 
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2012. 

(iii) C. A. Robles-Rubio, R. E. Kearney, and K. A. Brown, "Automated Classification of 

Pauses, Breathing and Movement Artifacts in Infant Respiratory Data," presented at the 

Soc Anesth Sleep Med Annu Conf, Washington DC, USA, 2012. 

(iv) C. A. Robles-Rubio, R. E. Kearney, and K. A. Brown, "Inclusion of Lissajous Plot on 

Scoring Software Improves Classification of Thoracoabdominal Asynchrony," presented at 

the 13th Int Symp Sleep Breath, Montreal, Canada, 2013. 

(v) C. A. Robles-Rubio, K. A. Brown, and R. E. Kearney, "Improving the Accuracy of 

Manual Analysis of Respiratory Behavior by using Expectation-Maximization to Combine 

Results from Multiple Scorers," presented at the 37th Annu Int Conf IEEE Eng Med Biol 
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Manuscripts in preparation 

(i) C. A. Robles-Rubio, K. A. Brown, and R. E. Kearney, “Improving Manual Scoring of 
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(ii) C. A. Robles-Rubio, K. A. Brown, and R. E. Kearney, “Automated Unsupervised Analysis 

of Infant Respiratory Patterns,” to be submitted to IEEE Trans Biomed Eng. 



    
 

 
 
 xxiii Final e-Thesis 

List of Acronyms 

Acronym Definition 

AAP American Academy of Pediatrics 

AASM American Academy of Sleep Medicine 

ABD Abdomen 

AHI Apnea-hypopnea index 

AI Apnea index 

ANN Artificial Neural Network 

AOP Apnea of prematurity 

AORED Automated Off-line Respiratory Event Detector 

ASB Asynchronous-breathing 

AUC Area under the ROC curve 

AUREA Automated Unsupervised Respiratory Event Analysis 

BAD Bad Data 

CHIME Collaborative Home Infant Monitoring Evaluation 

CMS Conventional manual scoring 

ECG Electrocardiogram 

EDR ECG derived respiration 

EM Expectation-Maximization 

IMC Isovolume Maneuver Calibration 

IP Impedance Pneumography 

IRB Institutional Review Board 

IS Individual Scorer 

IQR Interquartile range 

LDA Linear discriminant analysis 

McCRIBS McGill CardioRespiratory Infant Behavior Software 

MCH Montreal Children’s Hospital 
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Acronym Definition 

MV Majority vote 

MVT Movement artifact 

NAF Nasal airflow 

OSAS Obstructive Sleep Apnea Syndrome 

PACU Postanesthesia Care Unit 

PAU Respiratory pause 

PDF Probability density function 

PMA Postmenstrual age 

POA Postoperative Apnea 

PPG Photoplethysmography 

PSG Polysomnography 

QB Quiet breathing 

QDC Qualitative Diagnostic Calibration 

QDA Quadratic discriminant analysis 

RCG Ribcage 

REF Reference scorer 

REM Rapid eye movement 

RIP Respiratory Inductive Plethysmography 

RMS Root mean square 

ROC Receiver Operating Characteristics 

SAT Blood oxygen saturation 

SC1 Scorer 1 

SC2 Scorer 2 

SC3 Scorer 3 

SIDS Sudden Infant Death Syndrome 

SIH Sigh 

SNR Signal-to-noise ratio 
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Acronym Definition 

STFT Short-Time Fourier Transform 

SYB Synchronous-breathing 

TAA Thoraco-abdominal asynchrony 

UNK Unknown 

XOR Exclusive OR 
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List of Symbols 

Note that symbol usage may be different in different chapters due to publication issues.  

Chapter Symbol Description 

2 φ  Degree of thoraco-abdominal asynchrony 

2 μ  Air viscosity 

2 σ  Standard deviation operator 

2 F  Flow of air 

2 RCGM , ABDM  Magnetometer signals from ribcage and abdomen 

2 P  
Pressure drop occurring along a length l  on an infinitely 
long tube of diameter d  

2 DP , FAP  Probabilities of detection and false alarm 

2 SUM , DIF  Signals representing the sum and difference of rcg  and abd  

2 SUM , DIF  Rectified averages of SUM  and DIF  

2 RCGV , ABDV  Respiratory volume of ribcage and abdomen 

2 TOTV  Respiratory volume 

2 a , b , c , RCGc , ABDc  Linear model parameters for RCGV  and ABDV  

2 d  Normalized distance of any point on the ROC curve to the 
chance line (scaled to the range 0 to 1) 

2 k , m  Proportionality and scale parameters for RIP calibration 

2 rcg , abd  Raw RIP signals from ribcage and abdomen 

4 Θ  Set including the 6 unique respiratory patterns (SYB, ASB, 
SIH, PAU, MTV, UNK) 

4 κ  Fleiss’ statistic for assessment of inter-scorer agreement 

4 Cn  Consensus RIP pattern function 

4 TN  Length of the transition window T  

4 iN  Number of samples with consensus pattern i  

4 jN  Number of times the iN  samples had been assigned to 
pattern j  

4 P  Confusion matrix of manual scorers 
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Chapter Symbol Description 

4 ,i jP  Element of P  with consensus pattern i  and scored pattern j  

4 T  Transition window for concatenated segments 

4 kx  A data sample 

5 α , β  Parameters of the beta distribution used in the simulations 

5 ε  Convergence error 

5 κ  Fleiss’ statistic for assessment of inter-scorer agreement 

5 C  Number of unique, mutually exclusive RIP patterns 

5 I  Indicator function 

5 N  Number of samples of RIP data 

5 cP  Marginal probability of pattern c  within the whole dataset 

5 realQ  Combined confusion matrix from 3 manual scorers 

5 sQ  Confusion matrix for scoring sequence s  

5 ,s simQ  Simulated confusion matrix for simulated scoring sequence s

5 R  Number of scorers 

5 S  Number of individual scoring sequences 

5 [ ]T n  Most likely pattern of sample n  

5 simT  Simulated true pattern vector 

5 ÊMT  Expectation-Maximization estimate 

5 ˆ sim
EMT  Expectation-Maximization estimate in simulation study 

5 [ ]ˆ s
IST n  Pattern assigned by scoring sequence s  to sample n  

5 ,ˆ s sim
IST  Simulated scoring sequence 

5 M̂VT  Majority vote estimate 

5 ˆ sim
MVT  Majority vote estimate in simulation study 

5 [ ]cW n  Probability that sample n  has the pattern c  

6 rc℘ , ab℘  Median power of all segments of length PN  in frc  and fab  

6 rc
i℘ , ab

i℘  Power of a segment of length MN  in irc  and iab  

6 PTΔ , MTΔ , ATΔ  Detection delay for pause, movement and asynchrony 
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Chapter Symbol Description 

6 φ  Asynchrony test statistic 

6 Eφ  Asynchrony estimation error 

6 trueφ  Actual simulated asynchrony 

6 Aγ  Threshold used with A  

6 Aopt
γ

 Optimum threshold for A  

6 rc
Mγ , ab

Mγ  Thresholds used with rcM  and abM  

6 
rc
Mopt

γ , ab
Mopt

γ  Optimum thresholds for rcM  and abM  

6 rc
Pγ , ab

Pγ  Thresholds used with rcP  and abP  

6 
rc
Popt

γ , ab
Popt

γ  Optimum thresholds for rcP  and abP  

6 11ρ , 12ρ , 13ρ  Scaling parameters used to construct RC  

6 21ρ , 22ρ , 23ρ  Scaling parameters used to construct AB  

6 sF  Sampling Frequency 

6 rcM , abM  Movement detectors used with rc  and ab  

6 PN , MN , AN  Window lengths used with rcp , abp , rcm , abm , and φ  

6 P , M , A  Overall detectors for Pause, Movement and Asynchrony 

6 DP , FAP  Probabilities of detection and false alarm 

6 rcP , abP  Pause detectors used with rc  and ab  

6 RC , AB  Simulated RIP signals for Ribcage and Abdomen 

6 PT , MT , AT  Start time for simulated pause, movement and asynchrony 

6 PDT , MDT , ADT  Actual detection time of pause, movement and asynchrony 

6 nT  Simulated signals period 

6 LW  Length parameter for w  

6 maxf  Breathing frequency estimate 

6 1g , 2g  Simulated electronic noise in RC  and AB  

6 maxi  Filter from the bank with the output with highest power 

6 k  Degree of simulated asynchrony 

6 rcm , abm  Movement test statistics for rc  and ab  
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Chapter Symbol Description 

6 1m , 2m  Simulated movement process in RC  and AB  

6 0n  Sample where simulation of asynchrony begins 

6 rcp , abp  Pause test statistics for rc  and ab  

6 rc , ab  Raw RIP signals from ribcage and abdomen 

6 Src , Sab  Selectively filtered version of rc  and ab  

6 bprc , bpab  Band-pass filtered rc  and ab  

6 irc , iab  Output from the ith filter in the bank for rc  and ab  

6 w  Transition window for simulation of asynchrony 

7 STΔ , ETΔ  Detection start and end delays 

7 clusterα , metricα  Cluster and metric outlier detection parameters 

7 jmγ  Point in the decision boundary produced by K-means 

7 κ  Fleiss’ statistic for assessment of inter-scorer agreement 

7 jmν  Vector normal to the K-means decision boundary 

7 jC , mC  Clusters produced by K-means 

7 PAUFP  Number of samples incorrectly classified as PAU 

7 L  K-means class-assigning function 

7 BN  
Length of the window used to estimate the power of HPSUM  
and HPDIF  

7 DTN  Length of the trend removal window 

7 MAN  Length of the moving-average filter 

7 PAUN  
Number of samples with “gold standard” score not equal to 
PAU 

7 QVN , QRMSN  Length of the quantile estimation windows 

7 RMSN  Length of the root mean square estimation window 

7 SMON  Length of the smoothing window 

7 VN  Length of the variance estimation window 

7 P  Number of input metrics for K-means 

7 DP , FAP  Probabilities of detection and false alarm 
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Chapter Symbol Description 

7 ASB
DP , ASB

FAP  Probabilities of detection and false alarm for the ASB pattern 

7 BAD
DP , BAD

FAP  Probabilities of detection and false alarm for the BAD 
pattern 

7 PAU
DP , PAU

FAP  Probabilities of detection and false alarm for the PAU pattern

7 SYB
DP , SYB

FAP  Probabilities of detection and false alarm for the SYB pattern 

7 PAUP  Total number of samples “gold standard” scored as PAU 

7 RCG , ABD  De-trended ribcage and abdominal RIP signals 

7 BRCG , BABD  Binary ribcage and abdominal signals 

7 MARCG , MAABD  Moving-average filtered ABD  

7 SMORCG  Smoothed RCG  

7 TRCG  Low frequency trend of rawRCG  

7 rawRCG , rawABD  Raw ribcage and abdominal RIP signals 

7 SUM , DIF  Sum and difference of the binary RCG and ABD signals 

7 HPSUM , HPDIF  High-pass filtered SUM  and DIF  

7 PAUTP  
Number of samples correctly classified by the automated 
method as PAU 

7 ST , ET  Segment start and end times 

7 ŜT , ÊT  Detection start and end times 

7 b+ , b−  Synchronous- and asynchronous-breathing metrics 

7 jc , mc  Centroids of jC  and mC  

7 d  Normalized distance of any point on the ROC curve to the 
chance line (scaled to the range 0 to 1) 

7 sf  Sampling frequency 

7 RCGnpp , ABDnpp  Non-periodic power of RCG  and ABD  

7 RCGnv , ABDnv  Normalized variance of RCG  and ABD  

7 RCGrms , ABDrms  Root mean square of MARCG  and MAABD  

7 ( )q
RCGrms , ( )q

ABDrms  Qth quantile of RCGrms  and ABDrms  

7 RCGv  Variance of RCG  
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Chapter Symbol Description 

7 ( )q
RCGv  Qth quantile of RCGv  

7 jmw  K-means decision boundary weighting factor 

7 [ ]nx  A data sample 
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1. Introduction 

Newborn infants, especially those born prematurely, may be affected by a number of respiratory 

conditions due to an underdeveloped respiratory system. One of the main respiratory problems 

faced by infants is apnea, defined as a period during which there is no respiratory airflow. If 

prolonged, apneic episodes are life threatening. In infants, four conditions are associated with 

apnea: Sudden Infant Death Syndrome (SIDS), neonatal Obstructive Sleep Apnea Syndrome 

(OSAS), Apnea of Prematurity (AOP), and Postoperative Apnea (POA). The focus of this thesis 

is on the development of general methods for the analysis of respiratory signals that are 

applicable to the study and management of POA. 

Infants recovering from surgery and anesthesia are at increased risk of life threatening POA [14, 

15]. Reports indicate that the prevalence of POA in these infants ranges from 3 % to 49 % [16-

18], although this varies depending on the definition of apnea, monitoring technology, anesthetic 

technique, and method of analysis [17]. Many risk factors have been evaluated to date: age, 

weight, prematurity, surgical procedure, history of apnea, anemia, and the use of perioperative 

medications, including anesthetics, analgesics and opioids. Of these, a postmenstrual age (PMA) 

less than 60 weeks is the most important [14, 17, 19-23]. Thus, clinical guidelines recommend 

that all infants with PMA ≤ 60 weeks be continuously monitored postoperatively in a hospital 

setting [14]. 

However, POA occurs only in a minority of infants, so many at-risk infants are kept in hospital 

unnecessarily, which adds stress to families, increases costs, and consumes hospital resources 

reducing their availability. This is because there is as yet no way of predicting which infants will 

develop apnea, nor is possible to determine at what time following surgery the risk of apnea 

abates [17]. However, there is evidence that POA events are associated with abnormal 

postoperative respiratory patterns [24-26]. This suggests that an analysis of the underlying 

postoperative respiratory patterns could result in a better prediction of POA. 

Some studies involving sleep laboratories have applied conventional manual scoring (CMS) [8, 

27] to study POA and the postoperative respiratory patterns [24-26, 28-32]. However, CMS is 

labor intensive, subjective, very costly, and suffers from low intra-, and inter-scorer repeatability 
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[9]. Full automation of the analysis has not yet been achieved, and therefore the mainstay 

analysis continues to be CMS performed by sleep laboratory technicians [8]. 

Since POA events are rare, long postoperative records from many infants will be required to 

establish their relation to abnormal respiratory patterns. CMS is an inappropriate method to 

analyze such long records due to its limitations as results would be obscured by the inherent low 

intra- and inter-scorer repeatability, and the costs to analyze such long records would be very 

high since it is a very labor intensive, specialized task. Consequently, the study of POA and the 

postoperative respiratory patterns has not advanced appreciably recently. 

1.1. Objective 

The overall objective of this thesis was to improve the analysis of infant respiratory patterns by 

developing an automated, comprehensive, reliable (i.e., high accuracy), repeatable (i.e., high 

consistency), fast, and low-cost methodology to classify the respiratory patterns as a function of 

time. The intention of this methodology is to address the limitations associated with CMS, to 

enable the analysis of long infant data records, and support the comprehensive study of how 

POA, and other disorders of infant respiration, relate to abnormal respiratory patterns. 

1.2. Thesis Overview 

Chapter 2 provides a review of topics relevant to this thesis including: (i) postoperative apnea, 

(ii) respiratory monitoring technologies, (iii) current methods for respiratory pattern analysis, and 

(iv) existing cardiorespiratory datasets from infants. Chapter 3 describes the representative infant 

data acquired for the development of the thesis. The next two Chapters describe the development 

of a comprehensive methodology to manually analyze infant respiratory patterns with much 

higher repeatability than CMS, with the objective to provide a “gold standard” reference for 

evaluation of automated methods. Thus, Chapter 4 presents and validates a set of tools for 

manual scoring of infant respiratory inductive plethysmography (RIP) data, which improve upon 

CMS by making the analysis comprehensive, reliable, and repeatable. Chapter 5 shows how to 

enhance the accuracy and consistency of manual scoring results obtained using the tools 

developed in Chapter 4, by combining the analyses from multiple scorers using machine learning 
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methods. Then, the two following Chapters describe methods that automate the analysis of 

respiratory patterns using supervised and unsupervised machine learning. Chapter 6 describes 

and validates AORED, an Automated Off-line Respiratory Event Detector that analyses infant 

respiratory patterns by combining detectors of respiratory pauses, movement artifacts, and 

asynchronous-breathing. Chapter 7 presents and evaluates AUREA, an Automated Unsupervised 

Respiratory Event Analysis system that improves the classification of infant respiratory patterns 

from that of AORED, and requires no human intervention. Lastly, Chapter 8 discusses the 

original contributions of this thesis, implications of the findings, and avenues for future work, 

and provides a summarizing conclusion of the work. 
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2. Review of Relevant Literature 

This Chapter reviews topics important to this thesis. Section 2.1 describes postoperative apnea 

(POA), provides a review of previous POA studies, and discusses the main limitations found in 

these studies. Section 2.2 reviews the technologies available for respiratory monitoring. Section 

2.3 provides a survey of existing methods for the analysis of respiratory patterns. Section 2.4 

describes an existing infant cardiorespiratory dataset and discusses its suitability for the study of 

respiratory patterns and POA. Section 2.5 summarizes the findings and provides the rationale for 

this thesis. Special attention is given to aspects relevant to newborn infants. 

2.1. Postoperative Apnea 

Apnea is a clinical event that is defined as an extended cessation of airflow during which there is 

no supply of fresh oxygen or elimination of carbon dioxide. If the pause in respiration is 

prolonged, it may cause a life-threatening fall in blood oxygen saturation and cardiac arrest. 

There are 3 types of apnea: (i) central, which originates from an interruption of the respiratory 

rhythm generator in the respiratory control centre resulting in no central drive to the respiratory 

muscles; (ii) obstructive, which is produced by a physical obstruction of the airway at the level 

of the pharynx or larynx [33]; and (iii) mixed, that is a combination of central and obstructive 

apneas [34]. 

Conditions that may predispose a young infant to apnea include: (i) drug administration, 

including anesthesia, (ii) gastro-esophageal reflux, (iii) central nervous system lesions, (iv) 

infection, (v) fluctuations in ambient temperature, (vi) cardiac abnormalities, (vii) immunization, 

(viii) metabolic derangements, (ix) anemia, (x) upper airway obstructions, (xi) abdominal 

distention, and (xii) chronic lung disease of prematurity [15, 34]. 

In infants there are 4 clinical conditions where apnea plays an important role: (i) postoperative 

apnea (POA), where life threatening apnea may occur in the immediate period following surgery 

and anesthesia; (ii) apnea of prematurity (AOP), which occurs in premature infants due to 

underdeveloped respiratory systems; (iii) Sudden Infant Death Syndrome (SIDS), that is the 

sudden, unexplained death of an infant, and generally occurs during sleep; and (iv) neonatal 
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Obstructive Sleep Apnea Syndrome (OSAS), which consists on repetitive episodes of obstructive 

apnea during sleep. 

Postoperative apnea (POA) is a subset of Apnea of Infancy, a category defined by both the 

American Academy of Pediatrics (AAP), and the American Academy of Sleep Medicine 

(AASM) in its classification of sleep disorders [35]. POA was first described in 1982 by Steward 

[15] who hypothesized that immaturity represents a potential complicating factor that may persist 

as the child grows older. In Steward’s study, infants who experienced apnea were younger and 

weighed less than those who did not. Based on these results, Steward recommended that all 

surgeries in young, ex-premature infants be performed as inpatients, so that they could be 

monitored postoperatively for at least 24 hours. 

At present investigators do not understand the etiology of POA, but hypothesize that it likely 

arises from the stress of surgery and the influence of anesthetic drugs on the immature 

respiratory control system of the infant [14, 15, 36-38]. 

2.1.1. Occurrence Time of Apnea 

In his retrospective study [15], Steward found that POA events occurred immediately after 

surgery, and up to 12 h postoperatively. Kurth et al. [14] observed that the majority (72 %) of 

infants who experienced prolonged POA had their first episode within 2 h after surgery; the 

remainder had their first POA episode from 2 h to 12 h postoperatively. Infants with 

postmenstrual age (PMA) between 32 to 40 weeks continued to have prolonged apneas from 12 

h to 48 h postoperatively [14]. In contrast, infants with PMA from 48 to 55 weeks had prolonged 

apnea from admission to recovery room only up to 10 h postoperatively [14]. Later, Bell et al. 

[39] reported that POA events may occur up to 72 h after surgery. Therefore, it is generally 

recommended that infants recovering from surgery and anesthesia be continuously monitored in 

hospital for at least the first 12 h postoperatively, and those infants who exhibit POA episodes 

within the first 12 h should be monitored for an additional 12 h, and up to 72 h.  

 

 



2. Review of Relevant Literature   
 

 
 
 2-3 Final e-Thesis 

2.1.2. Type of Apnea 

Initial studies of POA focused on the incidence of central apnea [14, 15, 20-22, 40-42]. 

However, airway obstruction is a frequent cause of apnea in preterm infants [43, 44]. Thus, 

Kurth and LeBard [19] prospectively studied 74 former preterm infants with PMA < 50 weeks, 

and found that more than 70 % of the POA episodes were central, 21 % to 24 % were mixed, and 

less than 10 % were obstructive in nature. Central and mixed apnea occurred in most infants with 

POA, while obstructive apnea occurred only in one third. All mixed apneas started with a central 

respiratory pause which was followed by airway obstruction. Additionally, blood oxygen 

desaturation was significantly larger and more frequent during mixed and obstructive apneas, 

compared to central apneas. The conclusion from this work was that airway obstruction is a 

frequent component of POA that leads to larger decreases in blood oxygen saturation (SAT) than 

apneas without obstruction. 

Thus, the majority of POA events in infants can be expected to be central in nature; however, a 

significant proportion of apneas will involve an obstructive component. Since POA episodes 

with an obstructive component lead to larger drops in SAT, infants should be continuously 

monitored to detect these periods of airway obstruction. 

2.1.3. Risk Factors 

Several studies have investigated potential risk factors that predispose infants to POA, including: 

demographics, prematurity, anesthetic management, and the pre- and postoperative respiratory 

patterns. Four risk factors have been identified to date. The first and most important is age, 

specifically a PMA ≤ 60 weeks [14, 17, 37, 39, 41, 45, 46]. The second is prematurity [15, 37, 

45], although full-term infants may also develop POA [24, 39, 47-50]. The third is anemia [41], 

particularly for infants with PMA > 43 weeks [17]. The fourth may be weight at surgery [51], 

however, only a single retrospective study identified this as an independent risk factor. 

Due to these findings, it is generally recommended that all infants with PMA ≤ 60 weeks 

undergoing any surgery be placed in extended cardiorespiratory monitoring postoperatively. 
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No significant differences in the incidence of POA have been found in the following variables: 

(i) birth weight [14]; (ii) body temperature in the recovery room [14]; (iii) history of apnea [14, 

19, 41]; (iv) use of perioperative drugs [14, 17]; and (v) surgical procedures, including inguinal 

hernia repair, orchiopexy, ventriculo-peritoneal shunt, bronchoscopy, esophagoscopy, tracheo-

esophageal fistula repair, colostomy, circumcision, laparotomy, central line placement, and other 

miscellaneous minor procedures [14, 37]. However, these variables should be prospectively 

assessed using larger sample sizes to verify that they do not constitute a risk factor for POA [17]. 

2.1.4. Respiratory Patterns 

Welborn et al. [20] found that preterm infants with PMA < 45 weeks had a higher incidence of 

postoperative periodic breathing. Later, Kurth et al. [14] studied the perioperative respiratory 

patterns of preterm infants (PMA ≤ 60 weeks) before, and after surgery with general anesthesia. 

They found that the patterns of infants who experienced POA were different pre- and 

postoperatively; the latter being characterized by breathing interspersed with respiratory pauses 

in the recovery room. Conversely, the respiratory patterns of infants without POA were similar 

pre- and postoperatively. The pre-operative respiratory patterns did not predict well the 

occurrence of POA. Similar results have been observed elsewhere in preterm [19, 39] and full-

term infants [24]. 

These findings suggest that a comprehensive analysis of the postoperative respiratory patterns 

may provide insight about POA. We believe this analysis should aim to describe all respiratory 

patterns that an infant may display while recovering from surgery. Moreover, the analysis should 

describe the occurrence of these respiratory patterns as a sequence in time, as well as the 

properties of each occurrence including the pattern type and length. By having these properties it 

would be possible to study the relation between different patterns, their time of occurrence, and 

POA; which could help to determine which infants are at risk, and at what time after surgery the 

risk of POA abates.  
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2.1.5. Limitations of Studies of Postoperative Apnea 

The study of POA has been limited by two main factors [17]: (i) non-standardized monitoring 

periods, and (ii) different methods to detect apneic events. This section describes these factors in 

detail. 

2.1.5.1. Monitoring Period 

The monitoring period in previous studies of POA has not been standardized. Most studies have 

monitored infants only postoperatively, but some have done it preoperatively as well. 

Preoperative monitoring has been done for at least 2 h, with a minimum of 30 min of sleep [14], 

or immediately before surgery [50]; and for at least 12 h in hospital [20] or in the infant’s home 

[52]. The postoperative monitoring period has varied more, lasting 2 h [19], 4 h [20, 53], 12 h 

[20-22, 40, 41, 50, 52], or up to 24 h [45, 53]. Also, the start of the monitoring has varied from 

the immediate postoperative period [45, 50, 52] up to 30 min after surgery [14]. 

Preoperative monitoring has been found to have no predictive ability for POA [14, 19, 39], and 

so it may not be necessary. However, appropriate postoperative monitoring is essential to detect 

apneic events, and study their relation to postoperative respiratory patterns. Based on the 

literature [14, 39], the monitoring period should include at least the 12 h right after surgery. 

Studies that monitored for less than 12 h, or that started monitoring some time after surgery, may 

have missed important events, limiting the validity of their conclusions. 

2.1.5.2. Monitoring Technology and Method to Detect Apneas 

Another limitation of POA studies is the technology used to monitor infant respiration and detect 

apneic episodes. Retrospective studies retrieved the information from the annotations on patient 

charts [15, 45]. Other studies used alarm monitors, and events were recorded by nursing staff 

[39, 53]. Most studies monitored respiration continuously using the impedance pneumography 

signal [14, 19-22, 39-41, 50, 52], but only a few measured airflow [19, 50], or blood oxygen 

saturation [19, 50, 52]. In those studies where cardiorespiratory signals were acquired, the data 

was manually analyzed by one of the authors [14, 19, 50], pulmonologists [20-22, 40, 41], or a 

trained scorer [52]. 
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The selection of methods to monitor respiration and detect apnea is important because of their 

different sensitivities. There is considerable variation in the number of apneas detected  among 

POA studies, and this difference is related to the combination of monitoring technology and the 

method used to detect apnea [17]. The incidence of apnea is greater when recordings of 

cardiorespiratory signals are manually scored, than when estimated using annotations from 

nurses that describe the clinical state of the patient when the monitor alarmed. In fact, Bell et al. 

[39] reported that 80 % of infants who experienced POA were incorrectly classified as non-POA 

based on nurse observations. Thus, we think that for proper detection of POA, infants should be 

comprehensively monitored using continuous cardiorespiratory signals. 

Moreover, infants with POA frequently have mixed apneas, and the obstructive component is 

difficult to detect using impedance pneumography without a measure of airflow [19]. Thus, 

previous studies [14, 15, 20, 37] likely overlooked the obstructive component of POA. The 

respiratory inductive plethysmograph (RIP) is an alternative sensor that measures respiratory 

movements of the ribcage and the abdomen, and does detect both central and obstructive apnea 

[8, 54-56]. Thus, we believe that POA studies should use RIP to monitor respiration, detect 

apneas, and distinguish between central and obstructive components.  

Finally, there is a need to monitor SAT to determine the clinical significance of apneic events 

[52], and many early studies did not take this into account. 

2.2. Respiratory Monitoring Technology 

There are several sensors available to monitor infant respiration, and so it is important to review 

them to determine the best option for POA studies. These sensors measure airflow, concentration 

of carbon dioxide, or respiratory volume. Airflow is the rate of change (i.e., first derivative with 

respect to time) of volume, and so only one of these variables needs to be measured to obtain the 

other. The following sections describe the main sensors for each variable. 

2.2.1. Airflow Sensors 

In general, airflow sensors measure the flow coming from, or entering the airway opening [57]. 

The most common devices are the pneumotachograph and thermal sensors. 
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2.2.1.1. Pneumotachograph 

The pneumotachograph is connected to the airway opening, such that inspired and expired air 

flows through the device. The internal structure of the device is designed to maintain the flow 

nearly laminar. Laminar airflow along a tube produces a pressure drop given by the Poiseuille 

equation 

 
4

128 lFP
d
μ

π
= , (2.1) 

where P  is the pressure drop occurring along a length l  on an infinitely long tube of diameter d , 

and F  is the flow of air with viscosity of μ  [57]. Thus, measuring this pressure drop with a 

differential pressure transducer gives a measurement of airflow. 

The pneumotachograph is considered the “gold standard” sensor for monitoring respiration 

because it is connected directly to the airway and measures airflow [58]. However, it has some 

important limitations. First, the tubes and connectors attached to the pneumotachograph greatly 

affect the relationship between differential pressure and airflow [57]. Thus, pneumotachographs 

must be calibrated with the same tubes and connectors that are used during measurement, and 

calibration must be repeated every time the system is reassembled [57]. Second, during 

prolonged use, secretions or condensation may collect inside the pneumotachograph and change 

the calibration. Consequently, pneumotachographs must be recalibrated after extended use [57]. 

Third, the space inside the pneumotachograph, a.k.a. dead space, can cause rebreathing due to 

the accumulation of expired carbon dioxide [57]. Consequently, It is necessary to apply an 

external, bias flow to clear expired gases from the transducer and respiratory circuit, and this bias 

flow must be removed from the measured airflow [57]. The magnitude of the bias flow that can 

be applied is limited by the measurement range of the pneumotachograph. Fourth, 

pneumotachographs must be attached directly to the airway, and so continuous, prolonged 

monitoring is uncomfortable and impractical, especially for infants in the recovery room whom 

are continuously handled by parents and nursing staff. For all these reasons, the 

pneumotachograph is not a viable sensor for long term studies of infant respiratory patterns. 

 



2. Review of Relevant Literature   
 

 
 
 2-8 Final e-Thesis 

2.2.1.2. Thermal Sensor 

Thermal sensors are small, heated elements (e.g., thermistor, thermocouple) that are placed close 

to an airway opening to measure changes in temperature experienced due to contact with moving 

air. These temperature variations are approximately proportional to the square root of the air 

velocity [57], so they can be used to measure airflow. 

Since they are smaller than a pneumotachograph, thermal sensors interfere less with respiration, 

and so represent a better option for monitoring airflow in infants for extended periods of time. 

The main disadvantages of thermal sensors are that they: (i) have a nonlinear relationship to 

airflow, (ii) require careful control of environmental temperature, (iii) cannot determine the 

direction of flow and so cannot distinguish between inspiration and expiration, and (vi) measure 

local air velocity, contrasted to pneumotachographs which measure volumetric flow [57-59]. For 

these reasons, thermal sensors are mostly used for qualitative determination of airflow [58]. 

2.2.2. Carbon Dioxide Sensor: Capnograph 

The capnograph measures the concentration of carbon dioxide during respiration [60]. To do 

this, the capnograph emits infrared light that passes through a sample of breathed air and is 

detected by a photo-detector, and analyzes the frequency spectrum of the received light [60]. 

Carbon dioxide strongly absorbs infrared light while oxygen does not [61]. Consequently, an 

increase in the concentration of carbon dioxide during expiration will result in a drop of infrared 

power in the received signal. Conversely, a drop in carbon dioxide concentration during 

inspiration will result in increased infrared signal power. 

Several factors limit the use of capnographs for monitoring infant respiration for extended 

periods of time: (i) if the tubing is not heated properly condensation may occur, changing the 

optical properties of the medium and thus affecting the measurements; (ii) tubing may get 

obstructed by moisture and/or sputum especially during extended monitoring sessions [62], and 

(iii) leaks in the system can lead to distorted measurements. 
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2.2.3. Respiratory Volume Sensors 

Devices that measure the respiratory volume do so in one of two ways: (i) spirometers measure 

volume changes at the airway opening, and (ii) impedance pneumography and respiratory 

inductive plethysmography (RIP) measure changes in volume in the body surface (i.e., at the 

torso) [57]. These devices are described next. 

2.2.3.1. Spirometer 

A spirometer connects the airway opening to a sealed chamber. Inhalation and exhalation 

produce changes in the volume of air inside this chamber, and these changes are transduced to a 

volume signal [57]. The spirometer most commonly used with infants connects the airway to a 

hollow cylinder, open at the bottom, which floats inside a water-filled reservoir [57]. Thus, with 

each breath, the volume of air inside the cylinder varies displacing the cylinder which is 

transduced to an electrical volume signal using a potentiometer [57]. 

Spirometers have a number of limitations, including: (i) volume measurements are inaccurate if 

there are leaks in the system; (ii) the amount of water in the reservoir constrains the measurement 

range; (iii) ideally, the spirometer volume should be similar to the volume being measured to 

maximize the measurement accuracy, however commercially available spirometers are designed 

mostly for adults, children, and older infants, and so have much larger volumes than the low 

respiratory volumes of newborns; (iv) during prolonged monitoring excess of carbon dioxide 

must be eliminated after expiration to maintain a normal air composition and minimize 

rebreathing; and (v) similarly to pneumotachographs, spirometers are fully connected to the 

airway and may interfere and alter the natural respiratory patterns [57].  

2.2.3.2. Impedance Pneumography 

Impedance pneumography [63] uses surface electrodes similar to those used to record an 

electrocardiogram, to measure the changes in thoracic electrical impedance produced by 

respiratory movements [58, 64]. The underlying principle is that during inspiration, an increase 

in air volume reduces the electric conductivity of the chest by: (i) changing the electrical 

properties of the medium, and (ii) elongating the conductive paths [65]. This results in increased 

impedance. The opposite effect occurs during expiration. 
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The most common type of impedance pneumograph applies a small, constant, alternating-

current, carrier signal to the subject [63, 66]. In this setup, the carrier peak to peak voltage is 

proportional to the magnitude of the thoracic impedance, and so impedance variations produced 

by respiration modulate the carrier amplitude. A demodulator is used to extract these impedance 

variations, yielding the respiratory signal [64]. This signal can then be scaled to match the output 

of a spirometer to represent respiratory volume [65]. 

This technique is non-invasive, and does not interfere with the natural breathing patterns, so it 

can be used for prolonged monitoring of infants [67]. However, it is prone to cardiogenic 

oscillations that may often be misinterpreted as breathing [30], leading to missed apneas. 

Moreover, impedance pneumography cannot detect obstructive apneas because it cannot 

distinguish between normal and paradoxical chest movements [30, 59]. Consequently, 

impedance pneumography is not recommended for research of POA. 

2.2.3.3. Strain Gauges 

Strain gauges are belts that are placed around the torso to monitor respiratory movements [58]. 

Changes in volume due to respiration produce a stretching of the belts, which is transduced to an 

electrical signal. There are three types of strain gauge [58]: (i) wire, (ii) mercury in Silastic, and 

(iii) piezoelectric crystal. The output of the wire and mercury strain gauges is directly related to 

the stretching force [58], and according to Adams et al. [68] they can reflect volume amplitudes 

relatively accurately. The output of the piezoelectric strain gauge, on the other hand, is related to 

instantaneous changes in strain, and exhibits exponential decays when the strain is kept constant 

(e.g., during a breath-hold). For this reason, it is recommended that piezoelectric strain gauges be 

used only for qualitative assessments [58]. 

2.2.3.4. Respiratory Inductive Plethysmography 

An alternative, non-invasive sensor of respiration is the Respiratory Inductive Plethysmograph 

(RIP) [69]. RIP uses two elastic bands, a.k.a. respibands, placed around the ribcage (RCG) and 

the abdomen (ABD) to measure cross-sectional changes produced by respiratory movements. 

These respiratory movements are then transduced into electrical signals, scaled, and summed to 
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yield a signal proportional to respiratory volume. RIP has been frequently used for monitoring of 

respiration in infants, especially in research applications [7, 30, 70-72]. 

Each respiband consists of an elastic cloth with an insulated, sewn-on wire that follows a quasi-

sinusoidal pattern [73]. This wire is connected to an oscillator that generates a low-amplitude, 

sinusoidal voltage at around 300 kHz [59]. Changes in the cross-sectional area enclosed by the 

respiband produce variations in the self-inductance of the wire, which modulates the frequency 

of the signal [59]. Thus, during respiration, these frequency variations can be demodulated to 

yield a signal representing respiratory movements [59]. Experiments have shown that changes in 

the cross-sectional area of physiologically-shaped phantoms enclosed by a respiband have a 

linear relationship with the demodulated, output voltage [73]. 

2.2.3.4.1. Relationship between RIP Measurements and Respiratory Volume 

The theory relating displacements in RCG and ABD to respiratory volume is based on the work 

by Konno and Mead [54]. They proposed that the respiratory volume could be modeled with two 

degrees of freedom, one corresponding to the volume in RCG, and the other to the volume in 

ABD. They found that variations in RCG volume were linearly related to antero-posterior 

displacements of RCG. A similar, linear relationship was found between ABD volume and ABD 

displacement. These displacements were measured from reference points situated at the level of 

the nipples for RCG, and the umbilicus for ABD. 

Stagg et al. [74] used this relationship to estimate respiratory volume using magnetometers to 

measure antero-posterior displacements of RCG and ABD. In this study, respiratory volume (

TOTV ) was equal to the sum of the volumes of RCG ( RCGV ) and ABD ( ABDV ).  RCGV  and ABDV  were 

estimated from the Konno and Mead model as 

 RCG RCG RCG

ABD ABD ABD

V aM c
V bM c

= +
= +

, (2.2) 

where RCGM  and ABDM  were the magnetometer signals, and a , b , RCGc , and ABDc  were linear 

model parameters. The total volume was determined as the linear combination of the RCG and 

ABD magnetometer signals as 
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 TOT RCG ABDV aM bM c= + + . (2.3) 

The values of a , b , and c  were determined by calibrating the signal TOTV  against a volume signal 

obtained by integrating the output of a pneumotachograph [74]. 

Similarly, Sackner et al. [75] later evaluated the ability of cross-sectional area measurements by 

RIP to estimate the respiratory volume, and compared it to the volume measured by an 

spirometer. Thus, respiratory volume was modeled as 

 TOT RCG ABDV V V a rcg b abd= + = ⋅ + ⋅  (2.4) 

where rcg  and abd  were the RIP signals, and a  and b  the model parameters. Their results 

showed that this relation could estimate the spirometer volumes accurately. 

2.2.3.4.2. Calibration 

Several studies sought to determine the best method to estimate the parameters of the model in 

equation (2.4) [75-78], a process referred to as RIP calibration. Calibration methods often rewrite 

equation (2.4) as 

 ( )TOTV m k rcg abd= ⋅ +  (2.5) 

where the parameter k  determines the proportional relationship between rcg  and abd , and m  

scales the calibrated sum to make TOTV  match the volume measured by a spirometer or an 

integrated pneumotachograph signal. 

Two methods have been widely used for RIP calibration: (i) isovolume maneuver calibration 

(IMC), and (ii) qualitative diagnostic calibration (QDC). The isovolume maneuver was first 

described by Konno and Mead [54], who found that volumes on RCG and ABD are negatively 

correlated when the airway is occluded. During IMC [76], the subject performs an isovolume 

maneuver in which they voluntary occlude the airway, and shift volume from RCG to ABD and 

vice versa. This makes 0TOTV =  and the volume changes in RCG equal to those in ABD but with 

opposite sign [77], yielding 
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abdk
rcg

−= . (2.6) 

Thus, for IMC the RIP signals are recorded and plotted against each other. If the signals are 

scaled correctly, the plot should be a line with an angle of –45o
. If this is not the case, k  must be 

adjusted to achieve this proportion. To complete calibration, the subject then breathes into a 

spirometer or pneumotachograph that measures the actual volume, and m  is determined such 

that TOTV  equals the measured volume. 

IMC requires subjects to voluntarily perform an isovolume maneuver; this is not possible in 

uncooperative subjects like infants. QDC was introduced by Sackner et al. [77] to estimate the 

calibration parameters without requiring either an isovolume maneuver, or measurements from 

spirometers or pneumotachographs. 

They claimed that a relation similar to equation (2.6) could be established during natural, 

unobstructed breathing [77]. This was based on the observation that relative volumes of RCG 

and ABD vary from breath to breath, even when breaths have a similar TOTV  [74]. Thus, QDC 

assumed that if a subject was breathing with a constant TOTV , taking the standard deviation of 

both sides of equation (2.5) would yield ( ) 0TOTVσ = , and k  could be approximated as 

 
( )
( )

abd
k

rcg
σ
σ

−
≈ , (2.7) 

where σ  is the standard deviation operator. Since in practice TOTV  will not be constant, QDC 

made the additional assumption that an approximately constant TOTV  could be obtained by 

collecting a large number of breaths, and discarding those whose amplitudes were very different 

from the mean. Sackner et al. also concluded that it was not necessary to determine the value of 

m  in equation (2.5) to monitor apnea, since relative changes in volume or flow would be 

sufficient [55, 56, 77]. 

The assumptions of QDC are not well-founded, which translates into poor estimates of TOTV  [56, 

79]. This is especially true when there are postural changes after calibration [28, 56, 79]. This 
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severely restricts the use of QDC in studies involving long respiratory records. Indeed, Weese-

Mayer et al. [70] reported that inaccurate RIP calibration was responsible for more than 30 % of 

the obstructive apnea events missed in infants using the Collaborative Home Infant Monitoring 

Evaluation (CHIME) monitor. 

Since neither IMC nor QDC represent a suitable option for calibration of RIP in infants, the 

focus of recent studies in infants has moved to the use of uncalibrated RIP [4, 55, 56, 80]. 

2.2.3.4.3. Advantages 

RIP has several advantages for the study of infant postoperative respiratory patterns, compared to 

other sensors of respiration. First, unlike pneumotachographs, thermal sensors, capnographs, and 

spirometers, RIP does not require any equipment to be attached to the airway, which would 

interfere with natural breathing and might distort the breathing patterns. Additionally, infants 

recovering from surgery are continuously handled by nursing staff and parents, and require 

feeding, so it is not practical to have a sensor blocking the airway for extended periods of time. 

Second, in contrast to impedance pneumography, RIP is not affected by cardiogenic artifacts that 

produce missed detections of central apneic events.  

2.3. Analysis of Respiratory Patterns 

Sensors of respiration generally yield signals following a quasi-sinusoidal pattern representing 

regular breathing. This pattern is the most common and arises when a person breathes normally. 

However, a person may display a number of different respiratory events over time, which will be 

manifested as different patterns in the respiratory signals. For example, a central apnea will 

produce a “flat” signal pattern, while a sigh will produce an oscillation with larger amplitude and 

length compared to that of regular breaths. Analysis of “respiratory patterns” comprises the 

identification of the different patterns in respiratory signals, and the temporal relation among 

them.  

Initial attempts to study infant respiratory patterns and POA relied on nurse’s annotations of 

apneic events detected by standard clinical respiratory monitors using apnea alarms. More recent 

studies have used a more formal, manual analysis where expert, trained scorers scroll through 
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epochs of respiratory data to detect relevant events [8]. This is currently the most accepted 

analysis method, and is considered the “gold standard”. However, this conventional manual 

scoring (CMS) is very labor intensive, expensive, and suffers from low intra- and inter-scorer 

repeatability [9, 81]. Consequently there have been a number of attempts to automate the 

respiratory pattern analysis. These manual and automated approaches are reviewed in the 

following sections. 

2.3.1. Manual Analysis 

In 2007 the American Academy of Sleep Medicine (AASM) published guidelines for the manual 

analysis of respiratory data from both pediatric and adult subjects [27]; these were revised in 

2012 [8]. These guidelines were designed to detect sleep apnea and analyze a subject’s sleep. 

The AASM guidelines describe the sensors that should be used to detect apnea as either: 

recommended, which should be routinely used; or alternative, which may be used if the 

recommended sensor fails or produces an unreliable signal. The recommended airflow sensor for 

detection of apnea is an oronasal thermal sensor. The sum of RCG and ABD RIP signals, 

calibrated or uncalibrated, is listed as an alternative sensor for detection of apnea (volume 

estimate). Another option is the time-derivative of this sum (airflow estimate). A sensor of 

respiratory effort is required to distinguish between central and obstructive apnea. The 

recommended sensors for respiratory effort include esophageal manometers and RIP from both 

RCG and ABD. Pulse oximetry is the recommended sensor for blood oxygen saturation (SAT). 

Additionally, the guidelines list a number of scoring rules classified as: (i) recommended rules, 

which should be routinely used; (ii) acceptable rules, alternative to the recommended rules that 

may be used at the discretion of the investigator; and (iii) optional rules, which do not need to be 

followed but are available. Separate rules are provided for pediatric and adult subjects [8]. 

However, the pediatric rules do not distinguish between infants and older children, but are 

indicated for any child less than 18 years of age. 

In pediatric patients, a pattern is scored as apnea if it meets all the following criteria [8]: 

(i) The peak respiratory signal excursion drops by ≥ 90 % from the pre-event baseline. 
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(ii) The duration of the ≥ 90 % drop lasts at least the minimum duration as specified by central, 

obstructive, or mixed apnea duration criteria. 

(iii) The event meets respiratory effort criteria for central, obstructive, or mixed apnea, as 

described next. 

The guidelines classify pediatric apnea according to the following rule [8]: 

(i) Central apnea: The event meets the apnea criteria, is associated with no inspiratory effort 

throughout the entire duration of the event, and meets at least one of the following 

conditions: 

• The event lasts 20 s or more 

• The event lasts at least the duration of two breaths during baseline breathing, and is 

associated with an arousal, or a SAT drop of 3 % or more. 

• For infants aged < 1 year, the event lasts at least the duration of two breaths during 

baseline breathing, and is associated with a decrease in heart rate to less than 50 beats 

per min for at least 5 s, or less than 60 beats per min for 15 s. 

(ii) Obstructive apnea: The event meets the apnea criteria for at least 2 breaths during baseline 

breathing, and is associated with respiratory effort throughout the entire period of no 

airflow. 

(iii) Mixed apnea: The event meets the apnea criteria for at least the duration of 2 breaths 

during baseline breathing, and is associated with absent respiratory effort during one 

portion of the event, and the presence of inspiratory effort in another portion, regardless of 

which portion comes first. 

These conventional manual scoring (CMS) guidelines have helped to standardize the analysis of 

infant respiratory patterns. Use of these guidelines became widespread by the development of 

commercial software that facilitated their application to infant cardiorespiratory data. Some 

examples of these software are: Crystal PSG by Cleveland Medical Devices Inc.; Embla 

Sandman Elite, REMbrandt PSG, and Embla RemLogic by Natus Medical Inc. 

However, CMS analysis is limited by 5 important factors: 
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(i) Only expert, trained scorers may perform the analysis, which limits the availability of scorers 

and increases the costs. 

(ii) Even when the guidelines are applied by expert scorers, results have very low intra- and 

inter-scorer repeatability [9]. This variability makes it difficult to compare the manual 

analyses from different scorers, or from different patients. This limits the statistical power of 

any test, since high variability in the analysis method would obscure important findings. 

Moreover, if the objective was to minimize the effect of scorer variability, only one scorer 

should perform the analysis. However, this approach is inadequate because the results would 

be biased towards the subjective judgments of a single scorer, making any findings less 

universal. 

(iii)Results are not available in real-time nor close to it, since the analysis is very time 

consuming and labor intensive. 

(iv) Rules only define “clinically relevant” events (e.g., apnea), but do not require the 

comprehensive scoring of the complete, continuous respiratory patterns, consequently large 

sections of the respiratory data are not scored. This is only useful to describe the occurrence 

of events, but it does not allow establishing any relation between different respiratory 

patterns and the occurrence of apneas. Thus, it is not possible to estimate the risk of future 

apnea based on previously observed respiratory patterns. 

(v) Analyses based on the AASM guidelines generally report results as an index of disordered 

breathing known as the apnea index (AI), defined as the number of apneas per hour. Studies 

may also report a similar apnea-hypopnea index (AHI), where hypopneas are defined as 

partial decreases in ventilation. Both AI and AHI represent a summary of relevant respiratory 

events; however, these indices ignore all the relationships, and time correlations between 

different respiratory patterns. This means that an analysis using AASM guidelines reporting 

AI or AHI cannot determine if a particular respiratory pattern, or a sequence of patterns, is 

predictive of apnea. Sighs [7], and short respiratory pauses [82] are examples of respiratory 

patterns not defined by the AASM guidelines that have been linked to apnea in infants. Thus, 

at the end of all the effort required to apply the AASM guidelines, the result is only a log of 

respiratory events rather than a sample-by-sample, continuous sequence of respiratory 
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patterns that can be used to determine the temporal correlations between respiratory patterns 

and apneas using signals and systems analysis. 

Investigators have aimed to address some of the limitations of manual scoring by automating the 

analysis of respiratory patterns. The following section reviews these efforts. 

2.3.2. Engineering and Machine Learning Applied to Respiratory Pattern 

Analysis 

Automated methods for analysis of respiratory patterns have focused on 3 aspects: (i) apnea 

detection; (ii) estimation of thoraco-abdominal asynchrony and its relationship to obstructive 

apnea; and (iii) detection of artifacts in respiratory signals. These methods use detectors and/or 

classifiers that evaluate a portion of data and decide whether a pattern is present or not. This 

section provides a brief description of how detectors and classifiers are evaluated, and then uses 

this to review and compare different methods developed for the analysis of respiratory patterns. 

2.3.2.1. Evaluation of Detectors and Classifiers 

Before reviewing automated methods for analysis of respiratory patterns, it is important to 

understand how to assess the performance of detectors and classifiers. The standard approach to 

characterize a detector is in terms of its probabilities of detection DP  and false alarm FAP  [83].  

DP , also known as sensitivity, describes the probability of marking a candidate event as apnea 

when it is in fact a true apnea (i.e., true positive). Conversely, FAP  indicates the probability of 

marking a candidate event as apnea when it is not an apnea (i.e., false positive). Specificity, 

another term commonly used, is equal to 1 FAP− . Thus, the performance of a detector or classifier 

can be summarized as a single pair of DP  and FAP , with the ideal detector having values of 1DP =  

and 0FAP = . 

In many instances it is possible to vary the values of a detector’s parameters to obtain various 

combinations of DP  and FAP . The relation between DP  and FAP  as a function of the parameter 

defines the receiver operating characteristics (ROC) curve. Fig. 2.1 shows an example of an 

ROC curve. The area under the ROC curve (AUC) is a measure of performance [84].  
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Fig. 2.1. Example of a Receiver Operating Characteristics (ROC) curve (blue). 

The diagonal, black, dotted line corresponds to the performance expected by 

chance. The maximum d-value indicates the best tradeoff between probabilities of 

detection and false alarm, and occurs at the point farthest from the chance line. 

AUC = Area Under the ROC curve. 
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An 1AUC =  indicates perfect detection/classification and 0.5AUC =  corresponds to chance 

performance. 

The ROC curve defines the detector/classifier performance as a function of the parameter and so 

can be used to select its optimal value. One approach is to select the point on the ROC curve that 

is furthest from the chance line ( D FAP P= ) [85]. The relation 

 ( ) 1
,

2 2
D FA

D FA
P P

d P P
−

= = −  (2.8) 

defines the distance of any point on the ROC curve to the chance line scaled to the range 0 to 1. 

Higher d-values indicate a better combination of DP  and FAP , and therefore represent a better 

overall performance. 

Automated methods are generally compared to a reference, manual analysis performed by expert 

scorers to estimate the DP , FAP , ROC curve, and d-value. However, there are three different 

approaches to compare the analyses produced by automated methods to the reference: 

(i) The first is event-by-event, where events of interest (e.g., apneas) are defined as segmented 

in the reference, and each event is deemed detected if at least part of it was identified by the 

automated method. 

(ii) The second is epoch-by-epoch, where the reference is used to classify epochs (i.e., fixed-

length segments of continuous data) as positive if they contain the event, or negative 

otherwise. Note that epochs are assigned to a positive event regardless of event length. 

Then, a positive epoch is considered detected if at least part of it is detected as positive by 

the automated detector. 

(iii) The third is sample-by-sample, which takes into account that each reference event consists 

of several data samples. This approach compares all samples produced by the automated 

analysis to the corresponding samples in the reference. Thus, if the automated detector only 

detects a portion of an event, only those samples are considered detected and the rest are 

counted as missed detections. 
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Each approach has implications on the final results. The sample-by-sample approach is the 

strictest, since all samples are comprehensively evaluated. In fact, by analyzing every sample the 

result gives a combined assessment of two properties; the ability to: (i) detect the event of 

interest, and (ii) determine the event start and end times. The event-by-event strategy is more 

lenient because it only requires a portion of the event be detected, but by doing this it does not 

evaluate the start and end times. Moreover, the event-by-event strategy produces results that 

overestimate DP , since some of the samples need not be correctly detected to be considered 

correct. The epoch-by-epoch strategy suffers from the same limitations as event-by-event, but in 

a larger scale. This is because although one epoch may contain different types of events, it is 

labeled as only one type. Then, if a part of the epoch is detected by the automated method, it is 

considered as correct. This will overestimate DP  and misclassify significant portions of data 

when the events are shorter than the epoch length (usually 30 s) or span more than one epoch. 

Based on this analysis, we believe that whenever possible analyses produced by automated 

methods should be evaluated sample-by-sample, so that results represent more accurately the 

actual performance and not just an approximation. This is especially important for methods 

trying to yield a detailed analysis representing the respiratory patterns as a function of time. 

2.3.2.2. Apnea Detection 

Accurate detection of apneic events is fundamental for the study of respiratory patterns. Due to 

the limitations of conventional manual scoring (CMS), several automated apnea detectors have 

been developed. Table 2.1 summarizes the different apnea detectors that will be reviewed in this 

section.  

During a central apnea, the respiratory effort is close to zero and so the respiratory airflow and 

volume signals are “flat”. Based on this, detectors have been designed based on the amplitude 

property of respiratory signals. Macey et al. [86] used the standard deviation of abdominal 

respiratory signals as a metric of “flatness”, and apnea was detected when the standard deviation 

was less than a threshold. Similarly, Lee et al. [87] used the standard deviation of impedance 

pneumography signals to estimate the probability of apnea, and compared the estimated 

probability to a threshold to determine the presence of apnea. These methods showed very high 
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DP , but suffered from increased values of FAP  (see Table 2.1). Thus they detected most apneas at 

the cost of having many false alarms. This would require an additional step to distinguish 

between true apneas and false alarms to enable a realistic analysis of the incidence of apnea. 

This strategy was followed by Macey et al. [89] in an effort to reduce FAP . The apnea detector 

from [86] was coupled with a two-hidden-layer, artificial neural network (ANN) to classify 

segments as apnea or non-apnea. The rationale was that a very sensitive detector would detect 

candidate apneas, and then the features of these candidate apneas would be supplied to an ANN 

to refine the classification. A variety of features [89, 97, 98] related to the “flatness”, duration, 

thinness, and smoothness of the event were tried with nonsuccess; the resulting detector had 

worse FAP  than the original detector (see Table 2.1). 

A similar, two-step approach was followed by Álvarez-Estévez and Moret-Bonillo [90], who 

used a detector of candidate events to feed information to a fuzzy logic decision system. Their 

method classified 30 s epochs as apneic or non-apneic, but had only a slightly higher d-value 

than the simpler detector based on standard deviation from Macey et al. [86] (see Table 2.1). 

It is likely that the high FAP  values from [86, 87] arose from inappropriate thresholds, since they 

were selected arbitrarily rather than based on any objective criteria. In contrast, Han et al. [91] 

selected detector thresholds based on data manually analyzed by expert scorers. This likely 

helped to obtain a low FAP  while maintaining a high DP  (see Table 2.1). The metric used was the 

mean of the absolute value of the second difference of the nasal airflow signal. Even though this 

method performed better than previous methods [86, 87], its implementation was limited by the 

need to estimate the second difference, a process that will amplify noise especially when signal-

to-noise ratio is low. 

Van Houdt et al. [92] used a different approach; the nasal airflow signal was segmented on a 

half-breath basis, and characterized in terms of the half-breath’s: (i) duration, (ii) amplitude, and 

(iii) slope. Apnea was detected by comparing these metrics to thresholds. However, this method 

had two important limitations: (i) thresholds were determined arbitrarily, and (ii) it required 

estimation of the first derivative for breath segmentation, which is not robust to noise. 
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De Groote et al. used an ANN classifier with no pre-detection step to detect obstructive apnea in 

full-term infants [80]. The inputs to the ANN were 15 s segments of RCG and ABD respiratory 

movements measured with piezoelectric strain gauges. The ANN performed poorly (see Table 

2.1); however, many of the false alarms occurred during central apneas or in segments corrupted 

by movement artifact. This suggests that performance of the ANN could have been significantly 

improved by adding a pre-processing step to systematically detect and exclude segments with 

central apnea or movement artifact. 

Varady et al. also used an ANN classifier to detect apnea [93], but used the instantaneous 

respiration amplitude and instantaneous respiration interval as inputs to the ANN. This 

significantly improved the performance (see Table 2.1), suggesting that it is more effective to 

first extract representative metrics from the raw signals, and then use these metrics to classify or 

detect events. 

Other studies attempted to detect apnea using cardiac signals such as the electrocardiogram 

(ECG), the photoplethysmogram (PPG), or SAT [94, 99-104]. The rationale for this is that the 

heart rate is modulated by respiratory sinus arrhythmia, a cardiorespiratory synchronization that 

shortens the inter-beat interval during inspiration, and prolongs it during expiration [105, 106]. 

Additionally, during apnea, hemoglobin oxygen saturation may drop, especially during 

prolonged events [107]. These studies followed three main approaches: (i) to extract a respiratory 

signal from a recorded, cardiac signal [108, 109], and then detect apnea from this signal [88, 94, 

96]; (ii) to estimate a signal representing the inter-beat intervals, then extract features from this 

signal, and use these features with a classifier to detect apnea [88, 94, 96]; and (iii) to extract 

features directly from the raw signals (e.g., wavelet decomposition, number of times SAT drops 

below a given threshold) and input these to a classifier to detect apnea [95]. Table 2.1 shows that 

these methods gave performances similar to those of methods based on respiratory signals. 

However, while cardiac signals can detect apnea, they are not useful when trying to study 

multiple types of respiratory patterns such as sighs, and thoraco-abdominal asynchrony.  

All these methods were evaluated event-by-event or epoch-by-epoch, strategies that overestimate 

DP  and do not take into account the start and end times of events, and consequently neither the 
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event length. This is a problem especially for apnea, since the distinction between a short pause 

and an apnea depends on the event length. 

In summary, methods using sophisticated machine learning, fuzzy logic, or features from cardiac 

signals performed little better than the simpler detectors based on thresholds of standard 

deviation or absolute value of respiratory signals. We believe that an optimization strategy for 

threshold selection might yield similar or better detection than the use of specialized classifiers, 

since this would improve the d-value by maintaining a high DP  while reducing FAP , as occurred 

for the method by Han et al. [91]. 

2.3.2.3. Thoraco-abdominal Asynchrony Estimation 

Thoraco-abdominal asynchrony (TAA), a respiratory state where RCG and ABD movements are 

out of phase, is an important indicator of obstructive apnea [110]. TAA also occurs in infants 

during rapid eye movement (REM) sleep [111] and during anesthesia [112-115]. Thus, 

appropriate detection of TAA is important for management of respiratory disease [71] and infant 

respiratory monitoring in general. 

Prisk et al. [116] evaluated different methods to measure the degree of TAA (φ ) using simulated 

signals resembling RCG and ABD movements. They evaluated 3 waveform-independent 

methods: maximum linear correlation (i.e., Pearson correlation [4]), paradoxical motion, and 

cross-correlation; and 3 waveform-dependent methods: Lissajous plot analysis, signal averaging, 

and linear modeling. 

Maximum linear correlation estimates a linear fit of RCG as a function of ABD, and obtains the 

correlation coefficient. Then, one signal is shifted and a new correlation coefficient is obtained. 

The shift at which the correlation coefficient is maximal is normalized by the signal average 

period to determine the degree of TAA. Paradoxical motion estimates the degree of TAA as the 

proportion of time the two signals are moving in opposite directions. The direction of motion of 

each signal is determined by estimating their time derivatives, a process that is vulnerable to high 

frequency noise. The cross-correlation method estimates the cross-correlation function between 
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two signal segments which will have its maximum at the delay between the two signals. The 

degree of TAA is estimated by dividing this lag by the average period of the signal segments. 

The Lissajous plot analysis employs a parametric representation of respiration using the RCG 

and ABD signals. ABD is plotted on the x-axis, and RCG is plotted on the y-axis. If both RCG 

and ABD were sinusoidal, the resulting curve would be an ellipse (i.e., a “loop”) [117]. The 

ellipse will be tilted to the right if breathing is synchronous, and tilted to the left if breathing is 

asynchronous [117]. To estimate the degree of TAA it is necessary to measure two horizontal 

distances: (i) the width of the ellipse at the midpoint on the y-axis ( MPw ), and (ii) the total width 

of the curve from minimum to maximum x-axis values ( Tw ). The degree of TAA can be 

estimated from the relationship sin MP Tw wφ = , combined with the sign of the slope of the major 

axis of the ellipse [116, 117]. 

Signal averaging computes two new signals from the original RIP signals: (i) the sum of ABD 

plus RCG ( )SUM , and (ii) the difference of ABD minus RCG ( )DIF . If the signals are sinusoidal, 

the rectified average (i.e., the average of the absolute value) of both SUM  or DIF  would be 

constant for a sufficiently long time. Based on this, it is possible to establish the following set of 

two equations with two variables [116]: 

 
( )
( )

cos 2

sin 2

SUM C

DIF C

φ

φ

= ⋅

= − ⋅
, (2.9) 

where SUM  and DIF  are the rectified averages of SUM  and DIF  respectively, and C  is a 

constant. The TAA degree is obtained by solving the equations. 

The linear modeling method hypothesizes that RCG is a linear function of ABD and its 

derivative with respect to time, i.e., ( )1 2rcg k abd k d abd dt= ⋅ + ⋅ . If the signals are assumed to be 

sinusoidal, the degree of TAA will be given by ( ) 2 1tan k kφ =  [116]. 

According to [116], maximum linear correlation performed the best with an error of less than 1o 

for both sinusoidal and triangular signals and in noise-free and noisy conditions. It was closely 
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followed by cross-correlation, which had errors of < 3o. The remaining techniques had larger 

errors, especially with triangular signals and in the presence of additive noise. The main 

limitation in this study was that the simulated RCG and ABD signals were modeled as sinusoidal 

or triangular which is not realistic. Furthermore, the effects of noise were evaluated with white 

Gaussian noise, which is not representative of low-frequency noise found in RIP signals [4]. 

Brown et al. proposed a method to estimate TAA based on the Lissajous plot of RCG against 

ABD [71]. The parameters of the function rcg abdα β= ⋅ +  were estimated on 10 s segments using 

recursive linear regression. Each segment was classified into one of two categories: (i) 

synchronous-breathing (SYB), when 0α >  for > 90 % of the time; and (ii) asynchronous-

breathing (ASB), when 0α >  for < 10 % of the time. Segments classified as ASB had 

significantly higher TAA (estimated with the cross-correlation method described above [116]). 

The main limitation of the method is that it does not provide a quantitative estimate of the degree 

of TAA, but only a binary classification. Moreover, segments with > 10 % and < 90 % of the 

time with 0α >  were excluded from the evaluation and not classified. These segments represent 

threshold data that are more challenging to classify, and it is unclear how the method would 

behave under this circumstances. 

De Groote et al. presented the mirror index as another estimator of TAA [80]. Each ABD breath 

was divided by its amplitude, and a similar operation was performed on RCG, and the two 

normalized breaths were summed to yield a SUM breath. The mirror index was defined as the 

area enclosed by the SUM breath, divided by the breath length. During ASB, the mirror index 

should approach a value of 0, while during SYB it should by higher. This index was only  

evaluated as a detector of obstructive apnea in infants and not as an estimator of φ . It had a poor 

performance with DP  of 0.79 and a FAP  of 0.89. Further analysis is necessary to determine if this 

mirror index is an accurate estimator of φ . 

The most reliable method to estimate φ  in infants to date was introduced by Motto et al. [4]. It is 

based on a principle similar to that of the paradoxical motion method (i.e., samples where the 

signals move in opposite directions have a higher TAA, while samples moving in the same 
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direction have a lower TAA). To estimate φ , the RCG and ABD signals were converted into 

binary signals, and the exclusive-OR (XOR) was estimated, sample-by-sample, between the two 

binary signals. The degree of TAA was estimated as the average value of the XOR over a sliding 

window. If breathing was asynchronous in the window, the output would be close to 1; 

conversely, if it was synchronous then the output would be close to 0. The method was compared 

to maximum linear correlation, which according to Prisk et al. [116] was the best option to 

estimate φ . This analysis showed that the XOR method had less bias and variance probably 

because it reduced noise by converting signals into binary signals and averaging, while the 

paradoxical motion method amplified noise by differentiating. 

2.3.2.4. Movement Artifact Detection 

It is essential to distinguish clean data segments from those corrupted with non-respiratory 

movement artifacts (MVT) for appropriate diagnosis of clinically significant abnormalities [5]. 

MVT in RIP occurs when the subject moves or is moved and the resulting non-respiratory 

movements are measured in RCG and/or ABD. When RIP is used to detect obstructive apnea by 

estimating TAA, MVT will generate a significant number of false alarms [80]. Thus, accurate 

detection of obstructive apnea using RIP requires the detection and exclusion of MVT. 

Motto et al. [3] designed a MVT detector based on the hypothesis that RIP would have larger 

amplitudes during MVT than normal breathing. RIP amplitude was estimated in terms of its root-

mean-square (RMS) value. The detector was tested on infant data, where it distinguished well 

between MVT and normal breathing (see Table 2.2). However, the problem of how to select the 

optimal detection threshold was not addressed. 

Later, Aoude et al. [5] presented a RIP MVT detector specific for infant data. The detector was 

based on 3 observations: (i) the fundamental frequency of normal, infant breathing is band 

limited to 0.4 Hz to 2.0 Hz [4]; (ii) MVT usually has larger amplitude than regular breathing [3]; 

and (iii) MVT occurs predominantly at lower frequencies (i.e., from 0 Hz to 0.4 Hz). A metric 

was designed to quantify the relative power between the breathing and MVT frequency bands, 

and MVT was detected by comparing this metric to a threshold. This method performed better 
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than the one from Motto et al. [3] (see Table 2.2), but it also failed to address the optimal 

selection of the threshold. 

Van Houdt et al. [92] developed an approach based on a breath-by-breath, period-amplitude 

analysis of nasal airflow or RIP signals to identify MVT. The signals were segmented in half-

breaths to identify the times at which inspiration and expiration started for each breath. The slope 

of each half-breath was estimated as the ratio of its amplitude to its duration, and was compared 

to a threshold to detect MVT. The underlying hypothesis was that half-breaths corrupted by 

MVT would have larger slopes compared to regular half-breaths. Similar to the previous two 

methods [3, 5], the threshold was selected based on arbitrary criteria. This method had a slightly 

lower performance (see Table 2.2) than the method by Aoude et al. [5], but higher than [3]. 

However, the method was evaluated event-by-event, contrary to [5] and [3] which were 

evaluated sample-by-sample. It is likely that performance of this method would decrease if 

evaluated sample-by-sample. 

In conclusion, the method by Aoude et al. [5] provides the best detection of MVT. The method 

was evaluated using the strict sample-by-sample approach, and had the highest d-value, 

indicating the best combination of DP  and FAP . The three methods detected MVT by comparing 

metrics to thresholds, but thresholds were set based on arbitrary criteria. 

2.4. Existing Infant Cardiorespiratory Datasets 

Access to representative clinical data is a prerequisite for the development of tools for analysis of 

infant respiratory patterns and the study of POA. These data must be acquired from infants 

recovering from surgery and anesthesia in the immediate postoperative period, and consist on 

cardiorespiratory signals (e.g., RIP and SAT) recorded continuously for at least the first 12 h 

postoperatively [8, 14, 17, 19, 39, 52, 54-56]. There are no such data available to date. 

A dataset with similar properties is the one from the Collaborative Home Infant Monitoring 

Evaluation (CHIME) study [118], which is a collection of overnight, cardiorespiratory signals 

from more than 1,000 infants. However, it is impossible to use the CHIME dataset to study the 

respiratory patterns and POA due to two important limitations. First, data were not acquired from 
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infants recovering from surgery and anesthesia, but rather from infants sleeping at home to 

assess their risk of SIDS. Therefore, the respiratory patterns observed in these data would not be 

representative of infants at risk of POA. Second, CHIME data were not recorded continuously 

throughout each session. Instead, only brief segments were recorded starting a few seconds 

before, and ending a few seconds after automatically-detected periods of slow heart rate or 

apnea. This recording protocol omitted a significant portion of each session, making it 

impossible to identify the temporal relationships between different respiratory patterns. 

2.5. Summary and Thesis Rationale 

Infants with postmenstrual age (PMA) ≤ 60 weeks who are recovering from surgery and 

anesthesia are at risk of life threatening POA [14, 17, 37, 39, 41, 45, 46]. The first POA episode 

may occur within the first 12 h postoperatively [14], and episodes may occur up to 72 h after 

surgery [39]. Thus, it is a generally accepted guideline to monitor infants at risk in hospital for at 

least the first 12 h after surgery, and if they experience POA in that period then continue 

monitoring up to 72 h. 

While PMA [14, 17, 37, 39, 41, 45, 46], prematurity [15, 37, 45], and anemia [41] represent 

important risk factors for POA, it is not possible to predict which infants will develop POA 

based only on these variables. However, studies have found that the postoperative respiratory 

patterns of infants with POA are different from those of infants who do not exhibit POA [14, 19, 

20, 24, 39]. This suggests that a comprehensive analysis of postoperative breathing patterns may 

provide insight about POA. We believe that this analysis should describe all respiratory patterns 

that an infant may display while recovering from surgery and anesthesia (e.g., regular breathing, 

respiratory pause, thoraco-abdominal asynchrony, sigh), while also describing the properties of 

these patterns (i.e., type, time of occurrence, and length). Knowledge of these properties would 

enable the study of the postoperative respiratory patterns and their relation to POA, and could 

help to identify specific infants at risk of POA and the time at which this risk no longer exists. 

To enable this analysis it is important to have a representative clinical dataset from infants at risk 

of POA, and tools to analyze the respiratory patterns from such dataset. None of these are 

currently available publicly. 
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The only available pediatric cardiorespiratory dataset is the Collaborative Home Infant 

Monitoring Evaluation (CHIME) study, which deals with infants at risk of Sudden Infant Death 

Syndrome while sleeping at home, and not with infants recovering from surgery. Data from 

previous POA studies are not available, and monitoring technologies and recording periods in 

these studies were not standardized [17]. Therefore, there is need for a standardized dataset 

representative of infants at risk of POA. Based on the times of occurrence of POA [14, 17, 39], 

this data should comprise continuous recordings of cardiorespiratory signals starting immediately 

after surgery, and lasting for at least 12 h postoperatively. A significant proportion (≈ 30 %) of 

POA episodes may contain an obstructive component [19], which can lead to significantly larger 

drops in blood oxygen saturation (SAT) than central apneas [19]. Therefore infants must be 

monitored with a pulse oximeter to measure SAT, and a respiration sensor capable of detecting 

episodes of airway obstruction. We believe that the Respiratory Inductive Plethysmograph (RIP) 

is the best means of monitoring respiration because it is non-invasive, and can be used to detect 

apneas and distinguish between central and obstructive components [8, 55, 56]. We consider that 

other sensors of respiration such as pneumotachographs, thermistors, thermocouples, 

capnographs, and spirometers are much less appropriate because they must be attached to the 

infant’s airway, which alters the natural respiratory patterns and interferes with feeding and 

handling.  

With respect to data analysis, there is currently no available method to comprehensively analyze 

the respiratory patterns. Conventional manual scoring (CMS) is the most accepted method to 

date. It is based on several guidelines published by the American Academy of Sleep Medicine 

(AASM) [8, 27]. However, CMS is labor intensive, expensive, and suffers from low intra- and 

inter-scorer repeatability [9, 81]. Moreover, CMS only describes the occurrence of “clinically 

relevant” events, but does not score any other respiratory patterns such as short pauses, sighs, or 

thoraco-abdominal asynchrony (TAA). Thus, it is not possible to establish possible relations 

between these excluded patterns and POA. This is a significant limitation since sighs [7] and 

short pauses [82] have been linked to apnea in infants. 

There have been efforts to automate the analysis of infant respiratory patterns, and methods have 

been designed to analyze apnea [80, 86-96, 99-104], TAA [71, 80, 116], and movement artifact 
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[3, 5, 92] in respiratory signals. However, these efforts represent only the initial steps towards a 

comprehensive analysis. We identified three important missing aspects necessary to bring the 

analysis to the level required for the study of POA. First, the analysis method should detect all 

possible respiratory patterns from infants in the recovery room, so that their relationship to POA 

can be studied. Current methods fail to do this, since they focus on a single pattern of interest. 

Second, detector thresholds should be determined based on optimization criteria, so that 

performance is maximized. Current methods did not address this challenge, but rather selected 

threshold values arbitrarily [80, 86-90, 92-96, 99-104]. Third, most automated methods available 

in the literature have been evaluated using an event-by-event, or epoch-by-epoch approach. As 

described above, these approaches tend to overestimate performance, and do not take into 

account the start and end times of events. Thus, we believe that automated methods should be 

evaluated using the sample-by-sample approach to provide a comprehensive assessment of 

performance. 

The objective of this thesis was to address these needs by acquiring a representative dataset from 

infants at risk of POA, and developing automated methods to comprehensively analyze the 

respiratory patterns in these data accurately, consistently, quickly, and at a low cost. 
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3. Representative Infant Data 

It is mandatory to have access to representative clinical data to develop tools for analysis of 

infant postoperative respiratory patterns. There are no such data available to date. A dataset with 

similar properties is that from the Collaborative Home Infant Monitoring Evaluation (CHIME) 

study [118]. The CHIME dataset is a collection of overnight, cardiorespiratory signals from more 

than 1,000 infants. However, this dataset is not appropriate for the development of tools for 

analysis of respiratory patterns because cardiorespiratory signals were not recorded continuously; 

only short segments related to periods of slow heart rate or apnea were stored. This recording 

protocol does not allow identifying the temporal relationships between different respiratory 

patterns. 

Therefore, we set out to acquire a representative, clinical dataset from infants to enable the study 

of postoperative respiratory patterns. We recruited infants at risk of postoperative apnea (POA) 

who had received general anesthesia, and continuously recorded their respiratory patterns in the 

recovery room for up to 12 h, anticipating that these data would include breathing, respiratory 

pauses and movement artifact. This Chapter describes the details of the data acquisition and the 

dataset.  

3.1. Study Design 

Data were acquired from infants at risk of POA in the Postanesthesia Care Unit (PACU) of the 

Montreal Children’s Hospital (MCH). Potential recruits were identified from the Operating 

Room booking office. Inclusion criteria were: (i) postmenstrual age (PMA) < 60 weeks at the 

time of surgery in preterm and former preterm infants, and < 48 weeks in full-term infants; (ii) 

elective surgery for inguinal herniorrhaphy; and (iii) American Society of Anesthesiology 

physical status 1 or 2. Exclusion Criteria were: (i) post-operative admission to the Neonatal 

Intensive Care Unit or Pediatric Intensive Care Unit; (ii) emergency surgery; and (iii) spinal 

anesthesia. 
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The study was approved by the Institutional Review Board (IRB) of McGill University Health 

Centre/MCH (approval number PED-07-30), and informed written parental consent was obtained 

for each infant. A second study was approved by the IRB of MCH (12-308-PED) allowing the 

manual analysis of the data by 3 additional manual scorers. 

Since the purpose was to create a library of representative, manually-scored respiratory patterns 

from infants at risk of POA, and not to test a specific hypothesis, our intention was to recruit a 

convenience sample of infants instead of fixing a sample size. 

3.2. Data Acquisition Setup 

Upon arrival at the PACU, infant respibands (Ambulatory Monitoring Inc., Inductobands, 

Ardsley, NY, USA) were placed around the ribcage, at the nipple line, and abdomen, at the 

umbilicus, and interfaced with a respiratory inductive plethysmograph (RIP, Ambulatory 

Monitoring Inc., Battery Operated Inductotrace, Ardsley, NY, USA), to measure respiratory 

movements.  An infant oximeter probe (Nonin 8600 Portable Digital Pulse Oximeter, Plymouth, 

MN, USA) was taped to a digit to measure blood oxygen saturation (SAT) and the 

photoplethysmography (PPG) signal.  The outputs were low-pass filtered (cut-off frequency 10 

Hz) with an 8-pole Bessel anti-aliasing filter (Kemo, Jacksonville, FL, USA) digitized (16 bit 

resolution) and sampled at 50 Hz and recorded on a computer using MATLAB (The MathWorks 

Inc., Natick, MA, USA) for off-line analysis. This data acquisition system was described in [2]. 

The system is battery operated to avoid interference with clinical equipment, and has an 

operating time of 12 h to 15 h [2]. No attempt was made to calibrate the RIP signals since recent 

manual scoring guidelines list uncalibrated RIP as a recommended sensor of respiratory effort 

and an alternative sensor to detect apnea [8]. We recorded data until infants were released from 

the recovery room (up to 12 h as permitted by the acquisition system) in accordance with the 

MCH practice guidelines for apnea monitoring in full-term and former preterm infants. 

We continuously attended the data acquisition sessions and annotated a paper record of 

behavioral state of the infant (sleeping, feeding, diaper change, etc.), referenced to the clock time 

and recording time. We then converted these handwritten entries to an electronic entry by 
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scanning and manually entering the data. We also recorded demographic data as well as potential 

confounding clinical variables: perioperative anesthetic drug administration, analgesic, and 

postoperative medications. 

3.3. Results 

We recruited a total of 24 infants to the study. Table 3.1 shows a summary of variables recorded 

during data acquisition. Three recordings had to be excluded from further analysis; one recording 

was corrupted due to continuous handling of the infant by nurses and the parents, and the 

remaining two had bad data quality due to problems with the data acquisition system battery. In 

fact, halfway through the study we had to replace the battery since it had run out after several 

years of use. 

Drug regimens differed among infants because anesthetic management was not standardized. At 

the induction of anesthesia, all infants received atropine, and 21 received propofol. One infant 

received a dose of propofol at the end of surgery. One infant received a second dose of atropine 

at the time of extubation. The maintenance anesthetic agent was either sevoflurane (n = 14) or 

desflurane (n = 10).  An opioid was administered to 16 infants (fentanyl = 10, sufentanil = 2, 

remifentanil = 4). Acetaminophen was administered to 21 infants. Rocuronium was administered 

to 12 infants, and the muscle relaxant was antagonized with neostigmine and atropine. 

Subjects received different anesthetics and perioperative drugs, including opioids; this should 

help to eliminate, or at least reduce, any bias induced by a specific drug, making the data library 

more general. 

3.4. Public Availability 

The complete dataset from infants at risk of POA described above has been made fully available 

without restriction in the Dryad Digital Repository (doi:10.5061/dryad.72dk5) [10, 11]. To our 

knowledge this is the only such dataset. 
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Variable Value 

Gender (% of males) 79 
Postmenstrual Age (weeks) 43 ± 2 

Birth Age (weeks) 31 ± 4 
Weight (kg) 3.7 ± 1.0 

Duration of surgery and anesthesia (min) 99 ± 27 
Recording Time (h) 9.0 ± 2.2 

Table 3.1. Summary of variables from data acquisition sessions. 
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Consent for publication of raw data was not requested specifically at the time the study was 

carried out. However, we thoroughly inspected all materials, and removed all possible identifiers 

(as defined in [13]) before making the data available publicly. Thus, we believe that publication 

of these data poses negligible risk to the privacy of study participants [10]. 
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4. Scoring Tools for the Analysis of Infant Respiratory 

Inductive Plethysmography Signals 

4.1. Preface 

Manual scoring is considered the “gold standard” method to analyze infant respiratory data. 

However, conventional manual scoring (CMS) has low intra- and inter-scorer repeatability, and 

does not comprehensively describe the respiratory patterns, but only short segments regarded as 

“clinically relevant”.  This has limited the study of postoperative apnea (POA) and its relation to 

abnormal postoperative respiratory patterns. While the objective of this thesis was to develop 

automated methods for analysis of respiratory patterns, it was still necessary to develop an 

improved, high quality, manual scoring method to be used as a “gold standard” reference for 

evaluation of the automated methods. 

In this Chapter I describe the development of a set of tools for manual scoring of infant 

respiratory data, designed to address the limitations of CMS. These tools support the scoring of 

all samples in long data records, provide a fully automated training protocol, improve intra- and 

inter-scorer repeatability, and incorporate ongoing quality control procedures to maintain this 

repeatability throughout a study. This Chapter also presents the results of a validation study 

demonstrating that respiratory data can be efficiently analyzed with high intra- and inter-scorer 

repeatability using these tools. 

The material in this Chapter has recently been published by PLOS ONE [10] under the terms of 

the Creative Commons Attribution License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author and source are credited. The full 

citation is: 

C. A. Robles-Rubio, G. Bertolizio, K. A. Brown, and R. E. Kearney, "Scoring Tools for the 

Analysis of Infant Respiratory Inductive Plethysmography Signals," PLoS ONE, vol. 10, p. 

e0134182, 2015. Digital Object Identifier: 10.1371/journal.pone.0134182. 



4. Scoring Tools for the Analysis of Infant Respiratory Inductive Plethysmography Signals   
 

 
 
 4-2 Final e-Thesis 

This work was supported in part by the Natural Sciences and Engineering Research Council of 

Canada (www.nserc-crsng.gc.ca, grant NSERC RGPIN 1051-13), and in part by the Queen 

Elizabeth Hospital of Montreal Foundation Chair in Pediatric Anesthesia, McGill University 

Faculty of Medicine (www.mcgill.ca/medicine/faculty-medicine). CARR was supported in part 

by a scholarship for graduate studies from the Mexican National Council for Science and 

Technology (www.conacyt.gob.mx). The funders had no role in study design, data collection and 

analysis, decision to publish, or preparation of the manuscript. 

  



4. Scoring Tools for the Analysis of Infant Respiratory Inductive Plethysmography Signals   
 

 
 
 4-3 Final e-Thesis 

4.2. Abstract 

Infants recovering from anesthesia are at risk of life threatening Postoperative Apnea (POA). 

POA events are rare, and so the study of POA requires the analysis of long cardiorespiratory 

records. Manual scoring is the preferred method of analysis for these data, but it is limited by 

low intra- and inter-scorer repeatability. Furthermore, recommended scoring rules do not provide 

a comprehensive description of the respiratory patterns. This work describes a set of manual 

scoring tools that address these limitations. These tools include: (i) a set of definitions and 

scoring rules for 6 mutually exclusive, unique patterns that fully characterize infant respiratory 

inductive plethysmography (RIP) signals; (ii) RIPScore, a graphical, manual scoring software to 

apply these rules to infant data; (iii) a library of data segments representing each of the 6 

patterns; (iv) a fully automated, interactive formal training protocol to standardize the analysis 

and establish intra- and inter-scorer repeatability; and (v) a quality control method to monitor 

scorer ongoing performance over time. To evaluate these tools, three scorers from varied 

backgrounds were recruited and trained to reach a performance level similar to that of an expert. 

These scorers used RIPScore to analyze data from infants at risk of POA in two separate, 

independent instances. Scorers performed with high accuracy and consistency, analyzed data 

efficiently, had very good intra- and inter-scorer repeatability, and exhibited only minor 

confusion between patterns. These results indicate that our tools represent an excellent method 

for the analysis of respiratory patterns in long data records. Although the tools were developed 

for the study of POA, their use extends to any study of respiratory patterns using RIP (e.g., sleep 

apnea, extubation readiness). Moreover, by establishing and monitoring scorer repeatability, our 

tools enable the analysis of large data sets by multiple scorers, which is essential for longitudinal 

and multicenter studies. 

4.3. Introduction 

Anesthesia enhances the susceptibility to apnea in infants [14-17, 19], leading to Postoperative 

Apnea (POA) events that may be life threatening, so infants require continuous cardiorespiratory 

monitoring [14, 15, 35]. POA events are rare with most occurring in the initial postoperative 
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hours, but a delayed onset, as late as 12 hours after surgery, has been reported [14, 17, 19]. Thus, 

any comprehensive study of POA requires the analysis of long data records. 

Measuring infant respiration for extended periods of time requires a sensor that is well tolerated 

during both sleep and wakefulness. The initial studies of POA monitored respiration with 

thoracic impedance [14, 22, 52], the sensor of respiration most commonly used clinically in 

Postanesthesia Care Units (PACU).  However, this sensor has important limitations leading to 

missed apneas, as both obstructive apnea and cardiogenic oscillations may often be 

misinterpreted as breathing [30]. Consequently, thoracic impedance is not recommended for 

research applications. The American Academy of Sleep Medicine (AASM) recommends the use 

of an airflow sensor (e.g., oronasal thermistor, or nasal pressure) to measure respiration and 

detect apnea [8]. However, airflow measurements require that sensors be attached to the face. 

These sensors are poorly tolerated by infants during recovery from surgery as they interfere with 

both sleep and feeding. 

The AASM guidelines also designate the respiratory inductive plethysmograph (RIP) as an 

alternative sensor for apnea detection [8]. RIP uses two elastic bands that encircle the torso to 

measure ribcage (RCG) and abdominal (ABD) respiratory movements. These bands are well 

tolerated by infants and do not interfere with clinical care or the infant’s behavioral state. RIP is 

the standard sensor for respiratory effort [8] in polysomnography and cardiorespiratory studies. It 

is also used to study respiration in other research applications including: prediction of extubation 

success in mechanically ventilated infants [119, 120], study of sudden infant death syndrome 

[118],  and investigations of asthma [121] and bronchopulmonary dysplasia [122]. We have 

developed a data acquisition system that incorporates RIP sensors to monitor respiration, and a 

digital pulse oximeter to measure blood oxygen saturation (SAT) and photoplethysmography 

(PPG) [2], for the study of respiratory behavior of infants at risk of POA. 

The investigation of POA using these data requires a consistent, reliable analysis method that 

fully characterizes the respiratory behavior of infants. The AASM endorses manual scoring as 

the “gold standard” for the study of apnea, and has published a set of rules to standardize the 

manual detection of apneas using RIP signals [8]. However these rules have 4 important 
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limitations. First, they assume that the RIP signals are calibrated; that is, the RCG and ABD 

signals are scaled so that their sum is proportional to tidal volume. This process is valid for a 

fixed spinal angle and constant posture [54], but becomes inaccurate when the measurement 

conditions and/or breathing patterns change [28, 79]. Consequently, the RIP calibration is likely 

to change throughout a long recording session invalidating the accuracy of the calibrated sum, 

making its use questionable. Second, the AASM rules only define clinically relevant apnea 

events, but do not define other respiratory patterns such as short respiratory pauses, thoraco-

abdominal asynchrony, sighs, and normal breathing. Yet, these other patterns are relevant to the 

comprehensive study of respiratory behavior, since there is evidence that POAs are associated 

with abnormal respiratory patterns [14]. Indeed, we have found that an increased frequency of 

respiratory pauses, longer than 2 s, was associated with POA [82].  Third, the AASM rules must 

be applied by certified sleep laboratory technicians. As a result the analysis is costly and not 

widely available, since many sleep laboratories have long waiting times [123]. This severely 

constrains the amount of data that can be analyzed. Fourth, even when the AASM rules are 

applied by certified sleep laboratory technicians, the results have low intra- and inter-operator 

repeatability [9]. This adversely affects studies where multiple scorers are needed (e.g., large 

datasets, longitudinal, multicenter), because the repeatability of the analysis decreases with the 

number of scorers. 

Advancement of the study of POA requires that these limitations be addressed. To do so we 

believe it is necessary to: (i) adapt the manual scoring rules to analyze uncalibrated RIP data; (ii) 

define a comprehensive set of RIP patterns; (iii) provide a computer-aided, scoring tool to 

improve accuracy and consistency, and reduce the time required for manual analysis; and (iv) 

develop a training and evaluation strategy to standardize the analysis and improve intra- and 

inter-operator repeatability. This Chapter describes a comprehensive set of tools developed to 

address these needs. These tools comprise 5 components: (i) a clear, comprehensive set of 

definitions and scoring rules for 6 mutually exclusive RIP patterns, (ii) a computer aided tool for 

efficient manual scoring, (iii) a library of data segments representing each of the 6 RIP patterns, 

(iv) a formal training protocol for scorers to standardize performance, and (v) a method to 

monitor the ongoing performance of scorers. 
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This Chapter is organized as follows. Section 4.4 describes the 5 manual scoring tools introduced 

above. Section 4.5 describes the methods used to evaluate these tools. Section 4.6 reports the 

results obtained by applying the tools to representative data from infants recovering from 

anesthesia. These results demonstrate that use of our tools produces efficient and accurate 

scoring with high intra- and inter-scorer repeatability regardless of operator expertise. Section 

4.7 discusses the findings, and Section 4.8 provides concluding remarks. 

4.4. Tools for Manual Scoring 

4.4.1. Pattern Definitions and Scoring Rules 

Our objective was to define a comprehensive set of respiratory inductive plethysmography (RIP) 

patterns that would provide a complete description of the respiratory behavior on a continuous, 

sample-by-sample basis. To this end, we carried out an extensive literature review related to the 

scoring rules for infant RIP data. Key sources included: (i) the Infant Sleep Apnea section of the 

revised International Classification of Sleep Disorders:  Diagnostic and Coding Manual from the 

American Academy of Sleep Medicine (AASM) [35]; (ii) the updated AASM Manual for the 

Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications [8]; 

(iii) a series of articles on manual scoring published in the Journal of Clinical Sleep Medicine 

[124-131]; (iv) publications on POA in infants [7, 14, 15, 17, 19]; and (v) publications on 

thoraco-abdominal synchrony in infants [117, 122, 132]. This led us to define 6, mutually 

exclusive, unique patterns that would comprehensively characterize RIP signals. These patterns 

are: synchronous-breathing (SYB), asynchronous-breathing (ASB), sigh (SIH), respiratory pause 

(PAU), movement artifact (MVT), and unknown (UNK). Table 4.1 describes each pattern in 

detail, and provides the scoring rules for the unambiguous assignment of each data sample to one 

of the 6 patterns.  
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4.4.2. RIPScore 

RIPScore is an interactive computer application with a graphical user interface developed to 

support the efficient, manual scoring of RIP signals on a sample-by-sample basis. RIPScore is a 

redesign, and re-engineering of a rudimentary, prototype, manual scoring interface described in 

[6]. 

4.4.2.1. Main Screen  

RIPScore displays data in 30 s epochs, and allows the scorer to segment the signals and assign a 

RIP pattern to each segment. Fig. 4.1 shows the main screen of RIPScore which comprises these 

main components: 

(A) RIP Pattern: a color-coded bar showing the RIP pattern assigned by the scorer at each time; 

(B) Signals: plots of the cardiorespiratory signals including ribcage (RCG), abdomen (ABD), 

photoplethysmograph (PPG), and blood oxygen saturation (SAT). Clicking on a breath 

from RCG or ABD plots three horizontal cursors, one at the estimated breath’s amplitude, 

and two at ± 90 % of that amplitude. Note that these cursors are not an exact amplitude 

reference for the epoch because they do not take into account low frequency trends 

frequently observed in RIP signals [5]; 

(C) Notes: text boxes showing time stamped notes made during data acquisition, and comments 

entered by the scorer during analysis; 

(D) Segment and Epoch Control: text boxes showing the start and end times for the current 

segment (highlighted in red in Signals); command buttons to add a “Comment” or “Delete” 

the RIP pattern assigned to the current segment; command buttons to scroll through epochs 

(“Previous”, “Next”), and a text box with the start time of the current epoch; 

(E) Lissajous Figure: a plot of RCG versus ABD for the current segment to aid the user in 

evaluating thoraco-abdominal synchrony. During breathing, the plot will be an ellipse tilted 

to the right for a phase less than 90 degrees, a circle for a phase of 90 degrees, and an 

ellipse tilted to the left for a phase greater than 90 degrees; 
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Fig. 4.1. Elements of the RIPScore interface. (A) Respiratory Inductive 

Plethysmography (RIP) Pattern; (B) Signals from ribcage (RCG), abdomen 

(ABD), photoplethysmograph (PPG), and blood oxygen saturation (SAT); (C) 

Notes; (D) Segment and Epoch Control; (E) Lissajous Figure; (F) RIP Pattern 

Scoring; and (G) Mode Control. The epoch shows a representative example of 

Pause (PAU). The quasi-sinusoidal pattern in RCG and ABD stops during the 

PAU highlighted in red. The horizontal dotted cursors in RCG show an estimated 

variation of ± 90 % of the amplitude of the breath preceding the PAU. Note that 

these cursors do not take into account low frequency trends, and so are only an 

approximate reference. a.u. = arbitrary units. 
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(F) RIP Pattern Scoring: color-coded command buttons that assign a RIP pattern to the current 

segment; each button may also be activated by hitting the corresponding keyboard “hot-

key” defined by the character in parenthesis for each button (e.g., the hot-key for Pause is 

‘1’);  

(G) Mode Control: command button to switch between scoring and visualization mode. 

4.4.2.2. Operating Modes 

RIPScore has 4 operating modes: Visualization/Review, Scoring, Training, and Evaluation. 

These modes support different aspects of the scoring process. 

Visualization/Review Mode supports viewing the signals and reviewing the RIP patterns and 

annotations assigned throughout the record. In this mode, the “Previous” and “Next” buttons 

scroll the data in 20 s increments. Entering a value in “Epoch Start Time” moves the epoch 

display to that value. The RIP Pattern Scoring buttons move the data to the next segment 

assigned to that pattern. 

Clicking a segment on the RIP Pattern bar selects the segment, highlights the segment in 

Signals, plots the corresponding Lissajous Figure, and updates the segment start and end time 

text boxes. The “Comment” command can be used to assign a comment to the segment, while 

the “Delete” command removes the RIP pattern assigned to it. 

Scoring Mode supports manual scoring. When activated, the cursor changes to crosshairs, the 

display moves to the first unscored segment, the segment start is set to the first unscored sample, 

and RIPScore prompts the user to select the end of the segment. The selected Signals segment is 

highlighted in red, and RCG and ABD are plotted in the Lissajous Figure. The scorer then 

assigns a RIP pattern to the segment using a RIP Pattern Scoring button or its hot-key; the 

segment’s assigned pattern, start and end time, and a timestamp are stored. The RIP Pattern bar 

is updated; and the display moves to the start of the next, unscored segment. This procedure 

continues until the scorer stops (by selecting the“(S)top Scoring” button) or all data have been 

scored.  RIPScore then returns to Visualization/Review mode. 
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Training Mode supports the training of scorers by having users analyze simulated data with 

known RIP patterns. The interface is similar to that in Scoring Mode with the addition of an 

Actual Pattern bar for scored segments. If the trainee assigns an incorrect pattern to a segment, 

RIPScore displays an error message and provides the trainee with the opportunity to review the 

scored segment and reassign the pattern. Conversely, if the trainee assigns the correct  pattern, 

RIPScore updates the Actual Pattern bar and allows the trainee to continue. A Training Mode 

session ends once the trainee has either: (i) scored the complete record, or (ii) correctly scored 5 

patterns of each type consecutively. 

The simulated infant RIP records used in Training Mode are generated by concatenating, i.e., 

linking together, signal segments with known RIP patterns to yield continuous signals. Fig. 4.2 

illustrates the concatenation method, which consisted of the following 4 steps: 

(i) two input signal segments were selected to be concatenated; 

(ii) the 2 signal segments were aligned with an overlap (transition window T )  of TN  samples; 

that is,  the last TN  samples of the first segment overlapped the first TN  samples of the 

second segment; 

(iii) the samples of the first segment in the transition window were gradually attenuated by 

multiplying them by a decaying sigmoid factor that varied from 1 to 0 over the length of 

the window; samples of the second segment were gradually amplified by multiplication 

with a sigmoid factor that increased from 0 to 1 over the window length; the modified 

signals in the transition window were then added to yield a smooth transition; and 

(iv) the output signal consisted on the first segment up to the start of T , followed by the 

transition, and then by the second segment starting after T . 

The concatenation method overlapped the input segments to produce a smooth transition. This 

was done to avoid transition artifacts, which could generate sharp transients that do not resemble 

natural RIP patterns. 
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Fig. 4.2. Concatenation of signal segments. (A) Sample input segments. (B) Input 

segments are aligned and overlapped over a transition window T . (C) The output 

during this window is computed by gradually attenuating the end of the first 

segment, gradually incrementing the start of the second segment, and adding the 

two parts to yield a smooth transition. (D) The output signal consists on the first 

segment up to the start of T , followed by the transition, followed by the second 

segment starting after T . 
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RIPScore uses two types of simulated data, and investigators are required to configure which 

type to use before scoring sessions start. Type I “simulated-pattern” data was based on signals 

generated using a breath-by-breath time-series model of infant breathing; other RIP patterns were 

simulated by manipulating these signals as described in [85]. Type II “true-pattern” data 

comprised segments of real data whose RIP pattern was determined during a reference analysis 

(REF) performed by one of the authors (KAB) as described below. Type II data were more 

complex and realistic than Type I because they incorporated the inherent variability of real infant 

breathing. 

A new, 1 hr long, Training Mode data record is generated for each training session as follows: 

(i) segments of each RIP pattern category are simulated and stored in a list, until the total 

length of data is > 1.5 hr; 

(ii) the list of simulated segments is re-ordered randomly; 

(iii) the list is examined to ensure that contiguous segments have different RIP patterns, if two 

contiguous segments have the same pattern, the second segment is pushed to the end of the 

list; 

(iv) the list is truncated to the first N  segments whose total length is 1 hr; and 

(v) the segments on the list are concatenated as described in Fig. 4.2. 

Evaluation Mode is used to evaluate a scorer’s accuracy and consistency. In this mode, the user 

analyzes a simulated data record with an interface similar to Training Mode, but with no 

feedback. Upon completion, RIPScore: (i) estimates the accuracy and consistency of the scorer; 

(ii) stores the accuracy and consistency values, the simulated data record, and the assigned RIP 

patterns; (iii) displays the accuracy and consistency to the scorer; and (iv) reveals the Actual 

Pattern bar in Review Mode so that the scorer can compare their assigned patterns to the actual, 

simulated patterns. 

Data for Evaluation Mode are generated as follows: 

(i) the first 30 min of data segments are simulated and stored in a list as for the Training data; 

(ii) the list is duplicated; 
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(iii) the duplicate list is re-ordered randomly, and contiguous segments with equal RIP patterns 

pushed to the end; 

(iv) the two lists are joined, and the segments concatenated. 

Thus, in the evaluation data record each simulated segment appears in both the first and second 

half but in a different, random order. 

Performance is assessed in terms of the accuracy and consistency of the assigned RIP patterns. 

Accuracy is measured as the agreement between patterns assigned by the trainee and the actual 

pattern. Consistency is measured as the agreement between the patterns assigned to the same 

segments in the first and second half of the evaluation record.  Agreement is quantified using the 

Fleiss’ kappa (κ ) statistic [133, 134] computed  on a sample-by-sample basis as in [85, 135]. 

This kappa implementation generalizes the traditional Cohen’s κ  statistic [136] to evaluate 

agreement between multiple scorers when classifying observations into two or more categories. 

4.4.2.3. Sample Patterns in RIPScore 

Examples of the RIP patterns and special cases defined in Table 4.1 are illustrated in the 

following figures. 

• Synchronous-Breathing (SYB, Fig. 4.3): the selected breaths in RCG and ABD (in red) are 

in phase, and the Lissajous plot is an ellipse tilted to the right; 

• Asynchronous-Breathing (ASB, Fig. 4.4): the selected breaths are out of phase, and the 

Lissajous plot is elliptical and tilted to the left; 

• Sigh (SIH, Fig. 4.5): the dotted horizontal cursor in RCG provides an approximate 

reference showing that the sigh has an amplitude of more than 190 % of that of the 

preceding breath, with a duration longer than that of the other breaths; 

• Movement Artifact (MVT, Fig. 4.6): low-frequency motion corrupts both RCG and ABD; 

• Pause (PAU, Fig. 4.1): the pause at the middle of the epoch has an amplitude of less that 10 

% of that of the preceding breath, as evidenced by the horizontal cursor in RCG;  

• PAU which follows a SIH (Fig. 4.7): the horizontal cursors in the ABD signal show 

approximate reference amplitudes for the breath preceding the sigh; it is clear that the 
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sigh’s amplitude is much larger, and that at least part of the pause’s amplitude is below the 

10 % dotted line;  

• PAU which follows a MVT (Fig. 4.8): the horizontal cursor in RCG suggests that the 

amplitude during the pause is less than 10 % of that of the breath that follows the pause; 

• Unknown (UNK, Fig. 4.9): RCG and ABD have different patterns; RCG shows low-

frequency movement artifact, while ABD shows breathing. 

4.4.3. Library of Segments with Known Patterns 

A library containing “true-pattern” data segments representative of each of the 6 RIP patterns 

was created for use in RIPScore Training and Evaluation Modes. 

4.4.3.1. Infant Data 

The library was built using data acquired from 24 infants (19 male, birth age 31 ± 4 weeks, 

postmenstrual age 43 ± 2 weeks, weight 3.7 ± 1.0 kg) recruited for a prospective POA study. 

Inclusion criteria were: (i) postmenstrual age < 60 weeks at the time of surgery in preterm 

infants, and < 48 weeks in term infants, (ii) elective surgery for inguinal herniorrhaphy, and (iii) 

American Society of Anesthesiology physical status 1 or 2. Exclusion Criteria were: (i) post-

operative admission to the Neonatal Intensive Care Unit or Pediatric Intensive Care Unit, (ii) 

emergency surgery, and (iii) spinal anesthesia. The anesthetic technique was not standardized. 

Data were acquired in the Postanesthesia Care Unit (PACU) of the Montreal Children’s Hospital 

using a custom-built monitoring system [2]. Upon admission to the PACU, infant respibands 

(Inductobands, Ambulatory Monitoring Inc., Ardsley, NY, USA) were placed around the ribcage 

(at the nipple line) and abdomen (at the umbilicus) and interfaced with a Respiratory Inductive 

Plethysmograph (Battery Operated Inductotrace, Ambulatory Monitoring Inc., Ardsley, NY, 

USA).  An infant oximeter probe (Nonin 8600 Portable Digital Pulse Oximeter, Nonin Medical 

Inc., Plymouth, MN, USA) was taped to a digit.  The outputs were low-pass filtered (cut-off 

frequency 10 Hz) with an 8-pole, anti-aliasing, Bessel filter (Kemo, Jacksonville, FL, USA), 

sampled at 50 Hz, and stored. Subsequent, off-line analysis was performed using MATLAB (The 

MathWorks Inc., Natick, MA, USA). No attempt was made to calibrate the RIP signals.  
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Fig. 4.3. Representative example of Synchronous-Breathing (SYB). The ellipse in 

the Lissajous plot of ribcage (RCG) against abdomen (ABD) is tilted to the right. 

PPG = photoplethysmograph, SAT = blood oxygen saturation, a.u. = arbitrary 

units. 

  

-0.1

0

0.1

-0.2

0

0.2

-0.5

0

0.5

17658 17663 17668 17673 17678 17683 17688
96.5

97

97.5

Time(s)



4. Scoring Tools for the Analysis of Infant Respiratory Inductive Plethysmography Signals   
 

 
 
 4-17 Final e-Thesis 

 

Fig. 4.4. Representative example of Asynchronous-Breathing (ASB). The 

Lissajous plot of ribcage (RCG) against abdomen (ABD) for the segment 

highlighted in red shows ellipses tilted to the left. PPG = photoplethysmograph, 

SAT = blood oxygen saturation, a.u. = arbitrary units. 
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Fig. 4.5. Representative example of Sigh (SIH). The SIH highlighted in red has 

larger amplitude and longer duration than the other breaths. The horizontal dotted 

cursors in the ribcage (RCG) signal show an estimated variation of ± 90 % of the 

amplitude of the breath preceding the SIH. Note that these cursors are not an 

exact amplitude reference. Also, the Lissajous plot shows an ellipse tilted to the 

right. ABD = abdomen, PPG = photoplethysmograph, SAT = blood oxygen 

saturation, a.u. = arbitrary units. 
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Fig. 4.6. Representative example of Movement Artifact (MVT). The MVT in the 

ribcage (RCG) and abdomen (ABD) signals is highlighted in red. PPG = 

photoplethysmograph, SAT = blood oxygen saturation, a.u. = arbitrary units. 
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Fig. 4.7. Representative example of a Pause (PAU) which follows a Sigh (SIH). 

The horizontal dotted cursors in the abdomen (ABD) signal show an estimated 

variation of ± 90 % of the amplitude of the breath that precedes the SIH. Note that 

these cursors are not an exact amplitude reference. RCG = ribcage, PPG = 

photoplethysmograph, SAT = blood oxygen saturation, a.u. = arbitrary units. 
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Fig. 4.8. Representative example of a Pause (PAU) which follows a Movement 

Artifact (MVT). The horizontal dotted cursors in the ribcage (RCG) signal show 

an estimated variation of ± 90 % of the amplitude of the breath that follows the 

PAU. Note that these cursors are not an exact amplitude reference. ABD = 

abdomen, PPG = photoplethysmograph, SAT = blood oxygen saturation, a.u. = 

arbitrary units. 
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Fig. 4.9. Example of Unknown (UNK). It is not possible to determine the pattern 

in the selected segment (red) because the ribcage (RCG) signal shows a low-

frequency, chaotic pattern, while the abdomen (ABD) signal has a quasi-

sinusoidal breathing pattern with an additional low-frequency movement 

component. PPG = photoplethysmograph, SAT = blood oxygen saturation, a.u. = 

arbitrary units. 
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Recordings were 9.0 ± 2.2 hr long. Subsets of these data have been used in previous work [135, 

137-139]. 

Recording sessions were continuously attended, and a paper record of the infant’s behavioral 

state, i.e., sleeping, feeding, diaper change, etc., was kept, referenced to the clock time and 

recording time. These handwritten entries were transcribed to an electronic text file and 

displayed as acquisition Notes in RIPScore. Demographic data and relevant clinical variables, 

including anesthetic and analgesic drug regimen, were recorded. 

4.4.3.2. Ethics Statement 

The study was approved by the Institutional Review Board of the McGill University Health 

Centre / Montreal Children’s Hospital (approval numbers PED-07-30, and 12-308-PED).  

Written, informed parental consent was obtained for each infant recruited to the study. Consent 

for publication of raw data was not requested specifically at the time the study was carried out. 

However, all materials have been thoroughly inspected, and all possible identifiers (as defined in 

[13]) were removed before the data were made available publicly. Thus, we believe that 

publication of these data poses negligible risk to the privacy of study participants. 

4.4.3.3. Reference Manual Analysis 

One of the authors (KAB) served as the reference scorer (REF). REF has extensive experience in 

the manual scoring of infant cardiorespiratory data, participated in the data acquisition, and 

contributed to the development of RIPScore. 

REF used RIPScore to analyze the full records of 23 infants in two independent instances; the 

order in which the data records were analyzed was randomized between instances. One record 

was excluded because the infant was continuously handled by nurses and parents throughout the 

recording session. REF’s overall intra-scorer repeatability, measured with the Fleiss’ kappa 

statistic [133, 134], was “substantial” ( 0.80κ = ) [140]. Samples where REF assigned the same 

RIP pattern in the two instances were considered to be correct and defined the “true-pattern” for 

these samples. 
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This reference scoring task was very labor intensive and required 8 months to complete. For this 

reason, data were partitioned into two subsets: (i) a validation subset used to evaluate the 

performance of scorers, and (ii) a library of “true-pattern” segments used to generate the Type II 

“true-pattern” simulated data. Fig. 4.10 summarizes how the validation subset and the “true-

pattern” segment library were created. 

The validation subset comprised data from 21 infants, truncated to a maximum of 20,000 s per 

record, representing a 54 % of the complete data set. Records from 2 infants that were analyzed 

by REF were excluded due to bad quality in the recordings. To ensure that the validation subset 

was representative, the proportion of “true-pattern” samples assigned to each RIP pattern was 

computed for both the complete and truncated data records. The Wilcoxon signed rank test [141] 

indicated that the proportions were not significantly different as Table 4.2 shows. 

The library of “true-pattern” segments was created from remaining data and comprised 16,285 

segments. 

4.4.4. Training Protocol 

All scorers underwent a common training protocol, using RIPScore Training and Evaluation 

Modes, to standardize the analysis and performance of scorers using our tools. 

Fig. 4.11 shows a block diagram of the training protocol. Training had 2 levels, each having two 

stages: training and evaluation. Trainees started at Level 1, where they were familiarized with 

RIPScore, the 6 mutually exclusive RIP pattern definitions, and the scoring rules, by analyzing 

Type I “simulated-pattern” records (Fig. 4.12A). Each level began with a training stage where 

trainees scored data in RIPScore Training Mode. Upon completing the training stage, their 

accuracy and consistency were evaluated using RIPScore Evaluation Mode. If their performance 

was adequate (see Fig. 4.11) they advanced to Level 2 of training, if not, they repeated the Level 

1 training stage.  
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Fig. 4.10. Study Data Flowchart. 
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Pattern Complete Record Truncated, Validation Record p-value 
SYB 0.73 [0.08] 0.75 [0.06] 0.13 
ASB 0.03 [0.05] 0.02 [0.05] 0.13 
SIH 0.01 [0.00] 0.01 [0.00] 0.28 
PAU 0.02 [0.03] 0.02 [0.02] 0.25 
MVT 0.12 [0.03] 0.12 [0.06] 0.15 
UNK 0.08 [0.04] 0.08 [0.04] 0.39 

Table 4.2. Proportion of “true-pattern” samples in the records used to create the 

validation data subset. Results presented as median [interquartile range]. SYB = 

synchronous-breathing, ASB = asynchronous-breathing, SIH = sigh, PAU = 

respiratory pause, MVT = movement artifact, UNK = unknown. 
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Fig. 4.11. Scorer training protocol. Criteria to successfully complete levels: (A) 

Level 1, the trainee obtained accuracy and consistency values of 0.8κ ≥ ; and (B) 

Level 2, the trainee obtained accuracy and consistency values of 0.8κ ≥  on two 

consecutive sessions. 
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Fig. 4.12. Data formats. (A) Type I, and (B) Type II data segments were 

concatenated to generate the training records. (C) Validation records were pre-

processed such that Type II segments were inserted into the validation subset. Red 

vertical lines indicate the concatenation point. 
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Level 2 training proceeded in a similar manner except that the data analyzed were the more 

realistic Type II “true-pattern” data records (Fig. 4.12B). Training was completed after 

successful completion of the Level 2 evaluation stage (see Fig. 4.11). 

Reference values of performance were obtained by having REF analyze two sessions of each 

training level. These analyses showed that REF had excellent consistency and accuracy values 

ranging from 0.76κ =  to 0.89κ = . 

4.4.5. Monitoring of Scorers for Quality Control 

Scorer accuracy and consistency were evaluated on a record-by-record basis using a quality 

control method based on the pre-processing phase described next. 

4.4.5.1. Pre-processing 

The validation dataset was pre-processed by inserting Type II “true-pattern” segments into each 

data record (Fig. 4.12C). Thus, for this pre-processing phase, a total of 152 segments (1,000 s 

worth of data) were selected from the “true-pattern” segment library, such that each RIP pattern 

was equally represented.  The distribution of these 152 segments was: 25 SYB, 26 ASB, 27 SIH, 

22 PAU, 27 MVT, and 25 UNK. 

For each data record in the validation subset, the 152 segments were randomly ordered and 

inserted into the first 3 hrs of the record at randomly selected times. These “true-pattern” 

segments were then randomly re-ordered, and inserted into the last 3 hr of the record at random 

times. Segments were inserted by splitting the data record (see Fig. 4.12C), and concatenating 

the segment as in Fig. 4.2. Thus each of the 21 pre-processed data records contained two copies 

of the 152 “true-pattern” segments. 

These inserted “true-pattern” segments were then used to evaluate scorer accuracy and 

consistency using the same methods as in RIPScore’s Evaluation Mode. 
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4.5. Evaluation of the Manual Scoring Tools 

The manual analysis tools were evaluated by examining the performance of three scorers in the 

analysis of the pre-processed validation data subset. 

4.5.1. Scorer Recruitment and Training 

The three scorers had quite different backgrounds and experience in the analysis of respiratory 

data. The first (SC1) was a pediatric anesthesiologist with expertise in infant respiratory 

physiology, who participated in data acquisition and is a co-author (GB). The second (SC2) was 

a senior respiratory pediatric sleep laboratory technician with extensive experience in manual 

scoring of pediatric cardiorespiratory data. The third (SC3) was a computer network analyst with 

a master’s degree in telecommunications but no clinical expertise. All three scorers were trained 

using the protocol.  

4.5.2. Validation of the Manual Analysis Tools 

The three scorers analyzed the entire, pre-processed, validation data subset in two independent, 

blinded instances; the order of the data records was randomized between instances and between 

scorers. Scorer performance was evaluated in terms of the following parameters. 

4.5.2.1. Accuracy and Consistency 

The two copies of the 152 “true-pattern” segments inserted in each data record were analyzed to 

evaluate the scorers’ ongoing accuracy and consistency. 

4.5.2.2. Scoring Rate 

The time required to score a data record was estimated by summing the difference between the 

timestamps of consecutive scores. Differences greater than 2 min were excluded because they 

likely resulted from interruptions in the analysis. The overall scoring rate was estimated as the 

ratio of the length of a data record (in data hours) to the hours required to score it. Pattern-

specific scoring rates were estimated as the ratio of the total length of segments assigned to a RIP 

pattern to the time required to score those segments. 
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4.5.2.3. Intra- and Inter-Scorer Repeatability 

Intra- and inter-scorer repeatability of the RIP patterns assigned to the validation data were 

assessed using the Fleiss’ kappa (κ ) statistic [133, 134] on a sample-by-sample basis. 

4.5.2.4. Confusion Analysis 

Confusion in the scoring of the 6 RIP patterns { }, , , , ,SYB ASB SIH PAU MVT UNKΘ =  was assessed by 

computing the confusion matrix P  whose elements ,i jP  gave the conditional probability that a 

sample with consensus pattern i would be scored as pattern j . A sample kx  was assigned a 

consensus RIP pattern ( )kCn x ∈ Θ  if it was assigned that pattern in the absolute majority (4 or 

more) of the 6 scoring iterations.  Samples without consensus pattern were excluded from the 

confusion analysis. Thus, to estimate ,i jP  for each scorer, the iN  samples with consensus pattern 

i  were identified. Then, jN , the number of times the iN  samples had been assigned to pattern j , 

was determined. Finally, the conditional probability was estimated as ,i j j iP N N= . Confusion 

matrices were computed for each scorer separately, and also as a group. 

To assess the effects of segment length, confusion matrices were also computed after excluding 

scored segments shorter than a threshold (varied from 0 s to 20 s). 

4.5.3. Statistical Analysis 

Bootstrapping [142] with 100 resamples was used to estimate the standard deviation of the κ  

values and the confusion matrix probabilities. Values of κ  were interpreted according to the 

intervals proposed in [140]: 0κ <  = poor, 0 0.2κ≤ ≤  = slight, 0.2 0.4κ< ≤  = fair, 0.4 0.6κ< ≤ = 

moderate, 0.6 0.8κ< ≤  = substantial, and 0.8 1κ< ≤  = almost perfect. Random selections were 

drawn from a uniform distribution where all instances had equal probability of being selected. 
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4.6. Results 

4.6.1. Training 

Tables 4.3 and 4.4 show the accuracy and consistency of the scorers for each training session and 

level. All scorers reached the required Level 1 performance ( 0.8κ ≥ ) after the first session. None 

of the scorers reached the required performance in the first Level 2 session; SC1 and SC3 had 

low accuracy, and SC1 and SC2 had low consistency. Scorer performance improved with 

training and all 3 achieved the required level of accuracy and consistency ( 0.8κ ≥ ) in sessions 2 

and 3 of Level 2, completing the training protocol requirements. 

4.6.2. Accuracy and Consistency 

Fig. 4.13 documents the performance of the scorers as a function of the number of records 

scored. Fig. 4.13A shows that the overall scoring accuracy was substantial and nearly constant 

throughout the scoring effort for all three scorers (SC1: 0.66 0.02κ = ± , SC2: 0.74 0.02κ = ± , SC3: 

0.67 0.03κ = ± ). Consistency (Fig. 4.13B) was high throughout for SC1 ( 0.79 0.03κ = ± ) and SC2 (

0.79 0.02κ = ± ); SC3 ( 0.77 0.05κ = ± ) started slightly lower, but quickly reached a level similar to 

the other scorers. 

Analysis of pattern-specific accuracy and consistency revealed some substantial differences 

between scorers for 3 RIP patterns: PAU, MVT, and UNK. For PAU, Fig. 4.14 shows that two 

scorers had high, nearly constant levels of accuracy (SC1: 0.76 0.06κ = ± , SC2: 0.72 0.06κ = ± ) and 

consistency (SC1: 0.73 0.07κ = ± , SC2: 0.78 0.06κ = ± ). In contrast, SC3, the scorer with non-

clinical background, had lower accuracy ( 0.34 0.14κ = ± ) and consistency ( 0.44 0.11κ = ± ). For 

MVT (Fig. 4.A1), the three scorers had similar consistency, but a range of accuracies, with SC2 

having the highest ( 0.75 0.03κ = ± ), followed by SC3 ( 0.65 0.07κ = ± ), and SC1 with the lowest (

0.53 0.02κ = ± ). For UNK (Fig. 4.A2), the accuracy of SC2 ( 0.54 0.07κ = ± ) and SC3 (

0.46 0.06κ = ± ) were moderate, while that of SC1 was poor ( 0.03 0.05κ = ± ). As would be expected 

the consistency of SC1 for UNK was much lower ( 0.29 0.09κ = ± ) than those of SC3 (

0.66 0.11κ = ± ), and SC2 ( 0.58 0.06κ = ± ).  
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Scorer 
Level 1 Level 2 

Session 1 Session 1 Session 2 Session 3 
SC1 0.94 0.72 0.82 0.81 
SC2 0.94 0.81 0.86 0.87 
SC3 0.94 0.79 0.82 0.81 

Table 4.3. Training accuracy. Level 1 = Type I “simulated-pattern” data. Level 2 

= Type 2 “true-pattern” data. Performance was measured using the Fleiss’ κ

 statistic [133]. The standard deviation was < 0.01 in all cases. 
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Scorer 
Level 1 Level 2 

Session 1 Session 1 Session 2 Session 3 
SC1 0.89 0.74 0.86 0.81 
SC2 0.90 0.76 0.83 0.84 
SC3 0.93 0.86 0.85 0.80 

Table 4.4. Training consistency. Level 1 = Type I “simulated-pattern” data. Level 

2 = Type 2 “true-pattern” data. Performance was measured using the Fleiss’ κ

 statistic [133]. The standard deviation was < 0.01 in all cases. 
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Fig. 4.13. Overall scoring performance. (A) Accuracy (Fleiss’ κ ); (B) consistency 

(Fleiss’ κ ); and (C) rate (hours of data per hour of scoring) as a function of 

number of data records analyzed. SC1 was a pediatric anesthesiologist; SC2 was 

an experienced sleep laboratory scorer; and SC3 was a data networks analyst with 

no clinical experience. Standard deviation of each accuracy and consistency point 

was < 0.01. 
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Fig. 4.14. Evaluation of manual scoring of Pause. (A) Accuracy (Fleiss’ κ ); (B) 

consistency (Fleiss’ κ ); and (C) rate (hours of data per hour of scoring) as a 

function of number of data records analyzed. Results are shown for the 42 data 

records analyzed (21 files scored twice). 
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The 3 scorers had similar accuracy and consistency for SYB, ASB, and SIH (Figs. 4.A3, 4.A4, 

and 4.A5). 

4.6.3. Scoring Rate 

Fig. 4.13C demonstrates some significant differences in scoring rate among the scores. All three 

scorers began scoring at a rate of 1 data-hr/hr, but SC1 and SC3 gradually increased the scoring 

rate by two- to three-fold throughout the study. In contrast, SC2 maintained a constant rate 

throughout. Analysis of the pattern-specific rates showed that the increase in scoring rate was 

primarily associated with SYB (Fig. 4.A3), and MVT (Fig. 4.A1), while scoring rates for ASB 

(Fig. 4.A4), SIH (Fig. 4.A5), PAU (Fig. 4.14), and UNK (Fig. 4.A2) were fairly constant 

throughout. 

4.6.4. Repeatability 

Each scorer analyzed the pre-processed validation subset in two independent, randomized 

instances. Intra-scorer repeatability was assessed by comparing the RIP patterns each scorer 

assigned to the same data in the two instances. Table 4.5 shows that the overall intra-scorer 

repeatability was very good; the scorer who participated in data acquisition SC1 had the highest 

repeatability ( 0.84κ = ), followed by the sleep laboratory technician SC2 ( 0.77κ = ), and the non-

clinical scorer SC3 ( 0.72κ = ). The pattern with the highest intra-scorer repeatability was SYB (

0.84 0.89κ≤ ≤ ), and the pattern with the lowest intra-scorer repeatability was UNK ( 0.49 0.56κ≤ ≤

). 

Inter-scorer repeatability was computed for each of the 8 unique analysis combinations (each 

combination comprised one analysis iteration from each of the 3 scorers, and each scorer 

performed 2 iterations). Table 4.6 reports the result as mean ± standard deviation. The overall 

inter-scorer repeatability was 0.65κ = . The RIP pattern with most repeatability was SYB (

0.81κ = ), and the repeatability on PAU was substantial ( 0.65κ = ). 
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Scorer Overall SYB ASB SIH PAU MVT UNK 
SC1 0.84 0.89 0.78 0.73 0.79 0.88 0.49 
SC2 0.77 0.86 0.79 0.58 0.78 0.76 0.56 
SC3 0.72 0.84 0.70 0.67 0.74 0.64 0.53 

Table 4.5. Intra-scorer repeatability. Repeatability was measured using the Fleiss’ 

κ  statistic [133]. Standard deviation was < 0.01 in all cases. SYB = synchronous-

breathing, ASB = asynchronous-breathing, SIH = sigh, PAU = respiratory pause, 

MVT = movement artifact, UNK = unknown. 
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Overall SYB ASB SIH PAU MVT UNK 
0.65 ± 0.02 0.81 ± 0.01 0.69 ± 0.01 0.53 ± 0.01 0.65 ± 0.02 0.58 ± 0.04 0.28 ± 0.03

Table 4.6. Inter-scorer repeatability of scorers SC1, SC2, and SC3. Repeatability 

was measured using the Fleiss’ κ  statistic [133]. Results are presented as mean ± 

standard deviation. SYB = synchronous-breathing, ASB = asynchronous-

breathing, SIH = sigh, PAU = respiratory pause, MVT = movement artifact, UNK 

= unknown. 
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4.6.5. Confusion Analysis 

Table 4.7 presents the proportion of samples assigned to each consensus RIP pattern in the 

validation dataset. There was a consensus for 90 % of the samples; with the most common 

pattern being SYB (65 %), and the least frequent being SIH (1 %). For completeness, we 

computed the pattern proportions for the remaining 10 % of samples with no consensus even 

though these data were not used in the confusion analysis. We found that the majority (60 %) of 

the non-consensus samples were scored as either UNK or MVT, and the rest were: SYB 22 %, 

ASB 8 %, SIH 3 %, and PAU 7 %. We later found that the proportion of samples without 

consensus pattern could be reduced to 5 % if all samples scored as MVT were to be re-assigned 

to UNK. 

Fig. 4.15 shows the confusion matrix for the full data set (3 scorers combined for all segment 

lengths). It is evident that there was no systematic confusion of samples with consensus pattern 

of SYB, ASB, PAU, or SIH. A significant confusion was evident between UNK and MVT (Fig. 

4.15F). The confusion matrices for the individual scorers showed similar results (see Figs 4.A6, 

4.A7, and 4.A8). 

Note that segment length had no effect on the confusion matrix for SC2 and SC3, but for SC1, 

confusion of PAU varied with segment length. Fig. 4.16 illustrates that SC1 confused PAU 

segments longer than 15 s with UNK, and this confusion increased with segment length. 

4.7. Discussion 

This Chapter describes a novel set of tools for the manual analysis of infant respiratory inductive 

plethysmography (RIP) data. The tool set includes 5 components: 

(i) A set of clear, concise definitions of RIP patterns, and scoring rules based on uncalibrated 

RIP data. These definitions and rules make it possible to fully characterize an infant’s 

respiratory behavior across extended periods of time, thus enabling the analysis of long 

data records required for the study of Postoperative Apnea (POA).  
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Consensus Pattern Number of Samples Proportion 
SYB 12,877,448 0.65 
ASB 859,835 0.04 
SIH 145,352 0.01 
PAU 632,694 0.03 
MVT 2,606,271 0.13 
UNK 810,583 0.04 
None 2,017,540 0.10 

Table 4.7. Proportion of consensus patterns for the confusion analysis. SYB = 

Synchronous-breathing, ASB = asynchronous-breathing, SIH = sigh, PAU = 

respiratory pause, MVT = movement artifact, UNK = unknown. 
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Fig. 4.15. Confusion matrix. Conditional probability of each respiratory inductive 

plethysmography (RIP) pattern for samples with the consensus pattern of: (A) 

synchronous-breathing (SYB), (B) asynchronous-breathing (ASB), (C) pause 

(PAU), (D) sigh (SIH), (E) movement artifact (MVT), and (F) unknown (UNK). 

When there is no confusion, the consensus pattern has a probability of 1 and the 

others have probabilities of 0. During total confusion all patterns have equal 

probabilities. Standard deviations of all probabilities were < 0.01. 
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Fig. 4.16. Confusion of SC1 on samples with consensus pattern of pause as a 

function of segment length. SYB = synchronous-breathing, ASB = asynchronous-

breathing, SIH = sigh, PAU = pause, MVT = movement artifact, UNK = 

unknown. A probability of 1 for PAU indicates no confusion. Lower PAU 

probabilities indicate increased confusion. Standard deviations of all probabilities 

were < 0.01. 
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(ii) An interactive, computer application (RIPScore) that supports the application of the scoring 

rules to infant data in an efficient manner. RIPScore incorporates the capability to track the 

rate at which scorers analyze data; providing the objective measurement of the time 

required to analyze a dataset.  

(iii) A library of “true-pattern” segments representing each of the 6 RIP patterns, used for 

training, assessment of scorer performance, and development of evaluation methods.  

(iv) A formal training protocol based on the interactive, completely automated RIPScore 

Training and Evaluation Modes. This protocol allows scorers from varied backgrounds to 

become proficient with RIPScore and the scoring protocol, and reach a standardized 

performance level similar to that of an expert. This training protocol obviates the 

requirement of certified sleep laboratory technicians, helping to reduce analysis costs, 

while increasing the feasibility of recruiting new scorers. 

(v) A method to monitor the ongoing performance of scorers over time. This quality control 

measure allows the monitoring of scorers throughout the study to ensure they maintain a 

standardized performance. An advantage of this method is the early identification of 

underperforming scorers, which might allow for corrective action to assure the analysis 

quality. 

The validation experiment demonstrates that analysis with these tools is accurate, efficient, and 

has high intra- and inter- scorer repeatability. These characteristics make our tools appropriate 

for studying respiratory conditions where large datasets (e.g., POA), and multiple scorers (e.g., 

longitudinal, multicenter trials) are a necessity. 

4.7.1. Comparison to Existing Manual Scoring Tools 

Commercially available scoring software is designed to analyze data based on the AASM 

scoring rules [8]. Using this software, scorers analyze data records and detect clinically relevant 

respiratory events such as central, obstructive, and mixed apnea. This analysis does not provide a 

comprehensive description of respiratory behavior as a function of time, because it focuses only 

on detecting and scoring isolated segments of data. As a result, the AASM analysis ignores 

potentially informative data segments. For example short respiratory pauses are not considered, 
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even though they are more frequent in infants with POA than in controls [82]. Additionally, the 

AASM rules require scorers to scroll throughout long records and visually detect candidate 

events. This strategy is prone to fatigue, leading to missed detections and increased variability. 

In contrast, analysis with RIPScore requires that signals are analyzed continuously, on a sample-

by-sample basis. An advantage of this continuous analysis is that the complete data record is 

classified. As a result, the instantaneous respiratory pattern is fully characterized as a function of 

time, enabling a comprehensive signals and systems analysis approach to the study of disorders 

of respiration such as POA. Additionally, the focus of scorers is changed from visual detection of 

events to classification of data segments. This design requires scorers to analyze all data 

segments and so it is not possible to miss events. Moreover, contrary to the AASM rules, our 

tools impose no arbitrary segment length definitions that may exclude short but relevant 

segments [82]. 

4.7.2. Training of Scorers  

RIPScore provides an interactive Training Mode that familiarizes trainees with the interface, 

provides practice in scoring with immediate feedback using simulated data, and evaluates their 

performance. Three scorers with very varied backgrounds were trained in this way. All trainees 

reached the desired performance after four 2-hour training/evaluation sessions. Thus, by the end 

of training, all 3 scorers regardless of their clinical expertise, reached a standardized performance 

similar to that of the experienced reference scorer (REF). This implies that for large projects 

requiring multiple scorers, it should be possible to efficiently train a cadre of naive scorers to 

have performance similar to that of an expert. 

4.7.3. Accuracy and Consistency 

The scorers used our tools to carry out a comprehensive manual analysis of the pre-processed 

validation dataset, comprising 21 infant data records that incorporated quality control segments 

with known “true-patterns”; a total of 125 hours of data were manually analyzed twice per 

scorer. The ongoing accuracy and consistency of each scorer was assessed by analyzing the RIP 

patterns assigned to the quality control “true-pattern” segments. All scorers maintained a high, 
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relatively constant overall accuracy throughout the analysis of the 42 data records. The 

consistency of the two scorers with clinical expertise (SC1 and SC2) was nearly constant 

throughout, while the consistency of the third, non-clinical scorer (SC3) quickly rose to a level 

similar to that of the other two scorers after 10 data records. The high, nearly constant values of 

overall accuracy and consistency are evidence that the training protocol was effective, since 

scorers were able to achieve and maintain the desired performance level throughout. 

It is noteworthy that for the PAU pattern, SC3 had lower accuracy and consistency for most of 

the data records, suggesting that a minimum clinical expertise with infant respiratory patterns 

may be necessary to maintain the desired performance. Figs. 4.14A and 4.14B suggest that even 

though the PAU-specific performance of SC3 was lower than expected, the initial 3 values of 

accuracy and consistency were likely influenced by training since they matched the values of 

SC1 and SC2. It was until after the third record that the performance of SC3 dropped. It is 

possible that an intervention at this point might have mitigated deterioration in PAU-specific 

performance. 

4.7.4. Scoring Rate 

We measured the rate at which scorers analyzed infant data throughout the study. Scoring was 

efficient, occurring at a rate of at least 1 hr of data analyzed in 1 hr. Scorers with no previous 

scoring experience gradually increased their rate, with no loss of either accuracy or consistency. 

In contrast, the sleep laboratory technician (SC2) maintained a constant rate. We believe that the 

design of the RIPScore Scoring Mode interface, which only required a single cursor selection 

and one key stroke to score a segment, facilitated this efficient analysis rate. 

4.7.5. Repeatability of the Manual Analysis 

The repeatability analysis showed that the two scorers with clinical background had very good 

intra-scorer repeatability, similar to that of REF. The scorer with no clinical expertise had a 

slightly lower intra-repeatability but it was still substantial.  
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The inter-scorer repeatability was very good in most categories. Indeed, the overall inter-scorer 

repeatability was much higher ( 0.65κ = ) than that reported between expert scorers from sleep 

laboratories using conventional scoring tools ( 0.31κ = ) [9]. For the particular pattern of PAU, 

intra- ( 0.74 0.79κ≤ ≤ ) and inter-scorer ( 0.65κ = ) repeatability were substantial, which is relevant 

for the study of apnea. UNK was the pattern with lowest repeatability. Intra- and inter-scorer 

repeatability were also low for SIH, the only pattern requiring a breath-by-breath manual 

analysis. 

4.7.6. Confusion of Patterns 

Analysis of the confusion among RIP patterns found that SYB, ASB, SIH, and PAU were not 

often confused with other patterns. MVT and UNK were frequently confused with each other. 

This was the main reason for the low repeatability of UNK. This was expected since UNK 

grouped ambiguous patterns and segments of low signal quality. Even though this was a 

misclassification, both MVT and UNK correspond to corrupted data segments meant to be 

excluded from further analyses. 

Additionally, we evaluated the influence of segment length on confusion, and found that segment 

length was a factor for only one scorer (SC1), who confused PAU segments longer than 15 s 

with UNK. A possible explanation is that SC1 might have interpreted long periods without 

respiratory movements as missing data resulting from technical problems, rather than as long 

PAU segments. 

4.7.7. Implementation and Availability 

RIPScore was implemented in MATLAB (The MathWorks Inc., Natick, MA, USA), compiled as 

a standalone application, and installed on the scorers’ personal computers for the validation 

study. RIPScore and the pre-processing algorithm have been made available as open source, free 

of charge software; the manual and complete function repository are in GitHub 

(www.github.com/McCRIBS). The standalone application is available from the authors upon 

request. 
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4.7.8. Future Work 

A difference between the manual scoring tools presented in this work and the AASM 

methodology is that respiratory behavior is classified in terms of 6 mutually exclusive patterns, 

instead of the occurrence of respiratory events such as apnea. At present, no direct link has been 

established between the 6 patterns and respiratory events. However, the patterns could be post-

processed to identify respiratory events. For instance, a PAU with duration longer than a 

threshold (e.g., 15 s) would define a central apnea. Similarly, a combination of PAU with ASB 

would define a mixed obstructive apnea. Future work is necessary to evaluate the utility of a 

secondary set of rules based on pattern post-processing for the identification of clinically 

relevant respiratory events. 

A direct application of the tools presented in this Chapter is the study of POA, and its relation to 

postoperative respiratory patterns. There is a variety of evidence suggesting that infants who 

experience POA have abnormal postoperative respiratory patterns [14, 24, 82]. Based on this, 

one could hypothesize that postoperative respiratory patterns may have information that is 

predictive of POA. The manual scoring tools from this Chapter could be used to investigate this 

hypothesis because they provide the means needed to comprehensively describe the respiratory 

patterns. Thus, for example, it would be straightforward to extract features from the manual 

scoring results related to information of the respiratory patterns such as the frequency of pauses, 

the proportion of time spent in each pattern, the relative proportion of synchronous- versus 

asynchronous-breathing, or the temporal sequence of patterns. Future work will investigate these 

and other features extracted from the respiratory patterns, and their ability to predict POA. 

4.7.9. Significance 

The tools for manual scoring introduced in this Chapter provide a comprehensive framework for 

the analysis of infant RIP data. These tools offer a significant advance in the study of respiratory 

behavior by providing: a comprehensive analysis method for large data sets, a means for the 

training and standardization of scorers, a method for the ongoing monitoring of scorer 

consistency and accuracy, and open source access to software and data sets. 
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Comprehensive Analysis: The tools provide a clear, concise definition of RIP patterns, and a 

software application (RIPScore) to locate these patterns along data records. The analyzed data 

record represents a sample-by-sample characterization of respiratory behavior as a continuous 

time series of patterns. All data points are classified and thereby significant segments are not 

missed. This approach facilitates the study of respiratory behavior from a signals and systems 

perspective by enabling the study of the temporal correlation between POA and the varied 

respiratory patterns (e.g., the relation between pause frequency and POA). The development of 

models that predict POA occurrence becomes possible, and preemptive interventions to enable 

preventive actions may follow. 

Training & Standardization: The tools can be used to train any person to be a scorer, regardless 

of background, to achieve a standardized performance level similar to that of an expert. The 

ability to quickly train new scorers recruited from varied backgrounds increases the availability 

of potential scorers, thus helping to reduce the analysis cost by obviating the need for certified 

sleep laboratory technicians. 

Monitoring of Scorer Performance: Another major contribution of this work is that the manual 

scoring tools make possible multicenter and longitudinal studies requiring multiple scorers. 

Conventional scoring tools have heretofore limited these types of study because of a low intra- 

and inter- scorer repeatability [9]. Intra-scorer repeatability is important to ensure that scorers 

maintain consistency throughout the period of data analysis.  Inter-scorer repeatability is 

necessary to maintain the consistency of results among multiple scorers.  The quality control 

method introduced in this work evaluates the ongoing scorer performance on a record-by-record 

basis. This quality control tool can identify underperforming scorers at any time throughout the 

duration of the study. This timely identification enables investigators to take corrective actions 

(e.g., additional training, scorer replacement) to maintain the desired performance. This ability 

will in turn help to reduce intra- and inter-scorer variability. 

Open Source Access: Importantly, all the tools presented in this work are openly available to 

researchers interested in the analysis of respiratory patterns using RIP, and the study of POA. In 

addition to the RIP pattern definitions, scoring rules, representative examples, and training 
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protocol described in this manuscript; the software, including RIPScore and the pre-processing 

method for quality control, are freely available (www.github.com/McCRIBS). Finally, the 

library of “true-pattern” data segments, the complete dataset from infants at risk of POA, the 

training sessions, and analysis results from the 4 scorers are available from the Dryad Digital 

Repository (doi:10.5061/dryad.72dk5). 

4.8. Conclusion 

The tools presented in this work provide an excellent framework for study of infant respiratory 

behavior because they: (i) classify all respiratory patterns as a time series, (ii) standardize scorer 

performance using a training protocol which employs simulated data, (iii) monitor scoring 

repeatability by providing an ongoing quality control supervision of scorers, and (iv) are openly 

available and can be readily used in any study involving RIP. 
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4.9. Supporting Information 

This section presents the additional figures published as supporting information in [10]. 

 

 

Fig. 4.A1. Evaluation of manual scoring of Movement Artifact. (A) Accuracy 

(Fleiss’ κ ); (B) consistency (Fleiss’ κ ); and (C) rate (hours of data per hour of 

scoring). Results are shown for the 42 data records analyzed (21 files scored 

twice). 
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Fig. 4.A2. Evaluation of manual scoring of Unknown. (A) Accuracy (Fleiss’ κ ); 

(B) consistency (Fleiss’ κ ); and (C) rate (hours of data per hour of scoring). 

Results are shown for the 42 data records analyzed (21 files scored twice). 
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Fig. 4.A3. Evaluation of manual scoring of Synchronous-Breathing. (A) Accuracy 

(Fleiss’ κ ); (B) consistency (Fleiss’ κ ); and (C) rate (hours of data per hour of 

scoring). Results are shown for the 42 data records analyzed (21 files scored 

twice). 
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Fig. 4.A4. Evaluation of manual scoring of Asynchronous-Breathing. (A) 

Accuracy (Fleiss’ κ ); (B) consistency (Fleiss’ κ ); and (C) rate (hours of data per 

hour of scoring). Results are shown for the 42 data records analyzed (21 files 

scored twice). 
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Fig. 4.A5. Evaluation of manual scoring of Sigh. (A) Accuracy (Fleiss’ κ ); (B) 

consistency (Fleiss’ κ ); and (C) rate (hours of data per hour of scoring). Results 

are shown for the 42 data records analyzed (21 files scored twice). 
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Fig. 4.A6. Individual confusion matrix of scorer SC1. Conditional probability of 

each respiratory inductive plethysmography (RIP) pattern for samples with the 

consensus pattern of: (A) synchronous-breathing (SYB), (B) asynchronous-

breathing (ASB), (C) pause (PAU), (D) sigh (SIH), (E) movement artifact (MVT), 

and (F) unknown (UNK). When there is no confusion, the consensus pattern has a 

probability of 1 and the others have probabilities of 0. During total confusion all 

patterns have equal probabilities. Standard deviations of all probabilities were < 

0.01. 
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Fig. 4.A7. Individual confusion matrix of scorer SC2. Conditional probability of 

each respiratory inductive plethysmography (RIP) pattern for samples with the 

consensus pattern of: (A) synchronous-breathing (SYB), (B) asynchronous-

breathing (ASB), (C) pause (PAU), (D) sigh (SIH), (E) movement artifact (MVT), 

and (F) unknown (UNK). When there is no confusion, the consensus pattern has a 

probability of 1 and the others have probabilities of 0. During total confusion all 

patterns have equal probabilities. Standard deviations of all probabilities were < 

0.01. 
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Fig. 4.A8. Individual confusion matrix of scorer SC3. Conditional probability of 

each respiratory inductive plethysmography (RIP) pattern for samples with the 

consensus pattern of: (A) synchronous-breathing (SYB), (B) asynchronous-

breathing (ASB), (C) pause (PAU), (D) sigh (SIH), (E) movement artifact (MVT), 

and (F) unknown (UNK). When there is no confusion, the consensus pattern has a 

probability of 1 and the others have probabilities of 0. During total confusion all 

patterns have equal probabilities. Standard deviations of all probabilities were < 

0.01. 
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5. Improving Manual Scoring of Respiratory Patterns using 

Expectation-Maximization 

5.1. Preface 

In the previous Chapter I presented a set of tools for manual scoring of infant respiratory data 

that yield high intra- and inter-scorer repeatability. However, the results from any one scorer will 

be subjective and will have some inherent variability. One approach to reduce this variability 

might be to have multiple scorers analyze the data, and combine the individual scores in a 

meaningful fashion. In this Chapter I explored this hypothesis, and developed a procedure based 

on Expectation-Maximization (EM) to optimally combine multiple analyses of the respiratory 

pattern. I demonstrated that the EM estimator performs significantly better than individual 

scorers, and the more traditional majority vote approach. The results constitute a better estimate 

of a “gold standard”, since respiratory pattern estimates are highly accurate, very consistent, and 

much less subjective than those from individual scorers.  

This Chapter is a manuscript that I will submit for publication: 

C. A. Robles-Rubio, K. A. Brown, and R. E. Kearney, “Improving Manual Scoring of 

Respiratory Patterns using Expectation-Maximization,” to be submitted to IEEE Trans Biomed 

Eng. 

This work was supported in part by the Natural Sciences and Engineering Research Council of 

Canada. The work of C. A. Robles-Rubio was supported in part by the Mexican National 

Council for Science and Technology. C. A. Robles-Rubio and K. A. Brown were supported in 

part by the Queen Elizabeth Hospital of Montreal Foundation Chair in Pediatric Anesthesia. 
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5.2. Abstract 

Conventional manual scoring (CMS) is the preferred method to analyze respiratory data. 

However, it is limited by low intra- and inter-scorer repeatability. We recently developed a set of 

tools to assist manual scoring, which improved the repeatability of the analysis. However, its 

results were still limited by the inherent subjectivity and variability of any one scorer. To 

mitigate this, it is possible to have multiple scorers analyze the same respiratory data repeatedly, 

and combine the results in some fashion.  A common approach is to use a simple majority vote 

(MV). However, MV has two important limitations: (i) the majority may be determined by less 

than 50 % of the votes in situations where most of the scorers disagree; and (ii) all scorers are 

assumed to have similar performance. This paper presents a method that addresses these 

limitations to obtain a better estimate of the most likely respiratory patterns. This is 

accomplished using an expectation-maximization (EM) method to combine results from 

multiple, manual scorers weighted by their individual performance. 

The accuracy of the EM method was compared to those of individual scorers (IS), and the MV 

approach in a study that simulated the performance of real, manual scorers. The simulation 

evaluated the accuracy with which EM and MV estimated the true respiratory patterns from 

analyses by multiple, simulated scoring sequences. The accuracy of both methods improved with 

the number of scoring sequences, but EM was significantly better than IS and MV. In fact, with 

only 5 scoring sequences EM had the same accuracy and less variability than did MV with 25 

scoring sequences. 

We then applied the EM method to the results of the manual analysis of 21 data records from 

infants. These data contained quality control segments with known, “true” patterns that were 

used to assess the accuracy and consistency of the EM, MV, and IS estimators. Each record had 

two copies of these quality control segments, one in each half of the recording. For each record, 

accuracy was measured as the agreement between the estimator and the “true” pattern, and 

consistency was measured as the agreement between the estimator and itself in the two copies of 

the quality control segments.  EM estimates were significantly more accurate than those from 
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either IS or MV. EM and MV had similar consistency, which was significantly higher than that 

of IS.  

The excellent accuracy and consistency of EM means that it can be used to produce objective, 

“gold standard” analyses of respiratory behavior that dramatically reduce the effects of intra- and 

inter-scorer variability. This “gold standard” analysis opens the door for large multi-institutional 

or longitudinal studies, by making it possible to obtain reliable results with a reasonable number 

of scorers.  

5.3. Introduction 

Infants recovering from surgery and anesthesia are at risk of life-threatening Postoperative 

Apnea (POA) [1-3]. The majority of these POA events occur within 2 h after surgery, but the 

onset of apnea may be delayed up to 12 h postoperatively [14]. To date there is no way to predict 

the risk of POA in a specific infant, and so all infants with postmenstrual age (PMA) ≤ 60 weeks 

are hospitalized for monitoring for a minimum of 12 hours after surgery [14]. It has been 

hypothesized that characteristics of the respiratory patterns can predict the risk of POA [7, 24]; 

thus, investigators have analyzed the respiratory behavior of these infants in an attempt to 

identify possible predictors. To this end, cardiorespiratory signals were acquired using 

respiratory inductive plethysmography (RIP), including ribcage (RCG) and abdomen (ABD) 

respiratory movements, as well as pulse oximetry, including photoplethysmography (PPG) and 

blood oxygen saturation (SAT) [2, 7, 85, 135, 139]. These signals were then analyzed to 

determine the occurrence of POA and other cardiorespiratory events. 

The preferred method to analyze these cardiorespiratory signals has been conventional manual 

scoring (CMS), with a focus on the visual detection of respiratory events based on a set of rules 

defined by the American Academy of Sleep Medicine (AASM) [8] . We recently developed a set 

of tools to assist manual scoring [10] that includes a set of definitions for 6 unique, mutually 

exclusive patterns that fully describe the RIP signals; a library of representative data segments; 
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and a quality assurance component to monitor scorer performance that involves pre-processing 

of the data by inserting segments with known “true” patterns (see Table 5.1 for definition of the 

term “true” pattern). We showed that the use of these tools improves intra- and inter-scorer 

repeatability. 

Nonetheless, any manual scoring method will be limited by the inherent subjectivity of human 

scorers. Employing multiple scorers may help eliminate individual bias but will add additional 

variability. Fig. 5.1 illustrates this by showing the patterns assigned to the same data segment by 

three different scorers. The pattern sequences are generally similar but there is both intra-scorer 

variability, evident in the pairs of scores assigned by the same scorer, and inter-scorer variability, 

evident in the results from the different scores. For the samples assigned the same pattern by all 

scorers (e.g., gray-shaded segments on Fig. 5.1), it is reasonable to assume that the assigned 

pattern is the most likely pattern (see Table 5.1). However, for the majority of the record there 

was some disagreement among scorers (e.g., non-shaded segments on Fig. 5.1) and the most 

likely pattern is not evident. This raises the question of how to combine the results from multiple 

scorers to estimate the most likely respiratory pattern. 

A simple approach would be to use the majority vote (MV), where samples are assigned the 

pattern receiving the most votes [10, 143]. This approach has two important limitations: (i) when 

there is much disagreement among scorers the majority may not be absolute, and so the final 

pattern would be determined by a minority of votes; and (ii) votes from all scorers are weighted 

equally regardless of their performance [144]. A more informed estimate should take into 

account the individual performance of each scorer and weight their votes accordingly. This can 

be achieved using Expectation-Maximization (EM) [145], where votes are weighted based on 

estimates of individual scorer performance [144, 146]. Indeed, this approach has been used to 

evaluate the performance of annotators of patient records [146], and also to evaluate the 

segmentation of medical images [147]. 
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Term Definition 
Most likely pattern It is not possible to determine the ground truth respiratory patterns 

in real, clinical data. In the absence of a ground truth, the most 
likely pattern is the one that has the highest probability of being 
correct. 

“True” pattern An estimate of the most likely pattern in real, clinical data, obtained 
from the analysis of a very experienced, expert scorer. For details 
see [10]. 

Assigned pattern The pattern assigned by a manual scorer to a sample of data 
Estimated pattern The pattern estimated by any of the estimators described in this 

paper. 
True pattern The simulation ground truth 
Table 5.1. Definition of terms used by this paper to describe respiratory patterns. 
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Fig. 5.1. Results of the manual analysis of a typical of respiratory data performed 

by three scorers (SC1, SC2, and SC3), twice each. Gray-shading indicates the 

same respiratory pattern was assigned to the segment in all 6 scoring sequences, 

representing the most likely pattern. Ribcage and abdomen are respiratory 

inductive plethysmography measurements in arbitrary units. Assigned patterns are 

color coded as: SYB = Synchronous-breathing, ASB = asynchronous-breathing, 

SIH = sigh, PAU = respiratory pause, MVT = movement artifact, UNK = 

unknown. 
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This paper explores how to combine the patterns assigned by multiple scorers to estimate the 

most likely respiratory patterns. To this end, we evaluated the performance of three estimators: 

(i) individual scorers (IS), (ii) MV, and (iii) EM. The paper is developed as follows: Section 5.4 

describes the MV and EM estimators; Section 5.5 describes the materials used for the evaluation; 

Section 5.6 describes the simulation experiment used to examine the accuracy of the three 

estimators; Section 5.7 demonstrates the application of the estimators to data from infants at risk 

of POA; Section 5.8 discusses the results; and Section 5.9 provides some concluding remarks. 

5.4. Estimation of Most Likely Respiratory Patterns using 

Expectation-Maximization 

This section describes an expectation-maximization (EM) method to estimate the most likely 

respiratory patterns from multiple scores. It is adapted from the method by Raykar et al. [144], 

which estimates the ground truth from a set of multiple noisy segmentations. Consider a set of N  

samples of respiratory inductive plethysmography (RIP) data acquired from the ribcage and 

abdomen of an infant, which were manually analyzed by R  scorers to yield S R≥  individual 

sequences of respiratory patterns [10]. These sequences classify samples into one of 6C =  

unique, mutually exclusive RIP patterns: synchronous-breathing (SYB), asynchronous-breathing 

(ASB), sigh (SIH), movement artifact (MVT), respiratory pause (PAU), and unknown (UNK). 

The EM algorithm estimates [ ]T n , the most likely pattern of each sample as follows: 

(i) Initialize [ ]cW n , the probability that sample n  has the pattern { }1, 2, ,c C∈  , as the 

proportion of sequences that assign that  pattern to it: 

 [ ] [ ]( )0

1

1 ˆ ,
S

s
c IS

s
W n I T n c

S =
=  , (5.1) 

where [ ]ˆ s
IST n  is the pattern assigned by scoring sequence s  to sample n , and 

 
[ ]( ) [ ]ˆ1 ifˆ ,

0 otherwise .

s
s IS

IS
T n cI T n c

 == 
  
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The pattern with the highest probability is the majority vote (MV) estimate 

 [ ] [ ]{ }0ˆ arg maxMV c
c

T n W n= . (5.2) 

This initialization defines the basic MV estimator and the pattern probabilities 0
cW  for the 

first iteration ( 1i = ) of the EM estimator. 

(ii) Estimate the marginal probability of each pattern within the dataset as 

 [ ]1

1

1 N
i i

c c
n

P W n
N

−

=
=  . (5.3) 

(iii)  Estimate the confusion matrix ,s iQ  for each sequence s  as 

 [ ] [ ]( ), 1
',

1

1 ˆ , '
N

s i i s
c c c ISi

nc

Q W n I T n c
NP

−

=
=  , (5.4) 

where the index 1, 2, ,c C=   spans the most likely patterns, and ' 1, 2, ,c C=   those assigned 

in the sequence. Each element ,
',

s i
c cQ  is an estimate of the conditional probability that 

sequence s  assigns the pattern 'c , to samples whose most likely pattern is c. 

(iv) Refine the estimate [ ]cW n , the probability that sample n  has the most likely pattern c, by 

re-weighting the votes of each sequence based on its confusion matrix as 

 [ ] [ ]
[ ]

*,

*,
'

' 1

i
ci

c C
i

c
c

W n
W n

W n
=

=


, (5.5) 

where 

 [ ] [ ]
*, ,

ˆ ,
1

S
i i s i

c c sT n cISs
W n P Q

=

= ∏ . (5.6) 

is proportional to the probability that sample n  has the pattern c taking into account the 

patterns assigned by each sequence and their probability of being correct. 
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(v) Increment the index 1i i= + , and repeat from (ii) until changes in the estimates of the 

confusion and sample probability matrices are smaller than some convergence error ε . The 

EM algorithm has been demonstrated to converge to a local optimum [148]. 

(vi) Set the estimate of the most likely pattern of each sample to that with the highest 

probability 

 [ ] [ ]{ }1ˆ arg max i
EM c

c
T n W n−= . (5.7) 

5.5. Clinical Dataset and Manual Analysis 

A portion of the materials presented in [10], which are openly available from the Dryad Digital 

Repository (doi:10.5061/dryad.72dk5) [11], were used to evaluate the estimation methods. This 

section describes this material briefly. 

5.5.1. Infant Data 

Data were acquired from 21 infants at risk of POA (16 male, birth age 31 ± 4 weeks, 

postmenstrual age 43 ± 2 weeks, weight 3.6 ± 1.0 kg) immediately after surgery in the 

postanesthesia care unit of the Montreal Children’s Hospital. The study was approved by the 

Institutional Review Board of the McGill University Health Centre / Montreal Children’s 

Hospital (approval numbers PED-07-30, and 12-308-PED). Written, informed parental consent 

was obtained for each infant recruited. 

The signals acquired were ribcage (RCG) and abdomen (ABD) respiratory inductive 

plethysmography (RIP). Signals were low-pass filtered at 10 Hz, sampled at 50 Hz, and stored. 

No attempt was made to calibrate the signals. Record lengths for each infant varied from 3.9 h to 

12 h; the total length of data was 191 hr. 

5.5.2. Data Pre-processing 

Each data record was pre-processed using the McGill CardioRespiratory Infant Behavior 

Software (McCRIBS) [12]. This pre-processing truncated each record to a maximum of 20,000 s, 

and inserted two copies of 152 data segments, with known “true” patterns, into each record at 
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random times, once in the 1st half of the record, and then again in the 2nd half. The same 152 

“true” pattern segments were inserted into all data records and comprised: 25 SYB, 26 ASB, 27 

SIH, 22 PAU, 27 MVT, and 25 UNK segments. Details of this pre-processing are described in 

[10]. These “true” pattern segments were used to design the simulation and to evaluate the 

accuracy and consistency of the algorithms. 

5.5.3. Manual Data Analysis 

Three trained scorers with varied backgrounds analyzed all 21 pre-processed data sets in two, 

independent, randomly ordered instances [10]. This yielded 6 pattern sequences describing the 

respiratory behavior for each data record. 

5.6. Evaluation of Performance with Simulated Data 

A simulation experiment was used to examine the estimation accuracy of individual scoring (IS), 

majority vote (MV), and expectation-maximization (EM). 

5.6.1. Simulation Method 

To do this we modeled the performance of the simulated scorers based on an estimate of realQ , 

the combined confusion matrix of the 3 manual scorers. The elements of this matrix, ',
real
c cQ , were 

estimated from the “true” pattern segments as the proportion of samples with “true” pattern c 

that were assigned the pattern 'c . Table 5.2 shows the values of realQ . 

We generated one scoring sequence for each simulated scorer. Thus, each scoring sequence s  

was assigned a specific confusion matrix, termed ,s simQ , generated by perturbing realQ . The 

diagonal values of ,s simQ , i.e., ,
,

s sim
c cQ , representing the probabilities that the assigned patterns were 

correct, were sampled from a unimodal beta distribution with parameters α  and β  set as 

 
,

,

2 0.5

1

1

real
c c

real
c c

if Q

otherwise
Q

α
 ≤
= 
 −

 (5.8)
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“True” Pattern 

SYB ASB SIH PAU MVT UNK 

Assigned 
Pattern 

SYB 0.90 0.02 0.06 0.02 0.02 0.10 

ASB 0.06 0.81 0.01 0.00 0.01 0.03 

SIH 0.00 0.00 0.69 0.00 0.03 0.01 

PAU 0.01 0.01 0.00 0.58 0.02 0.01 

MVT 0.01 0.06 0.15 0.09 0.80 0.39 

UNK 0.02 0.10 0.08 0.30 0.12 0.46 

Table 5.2. Values of realQ , the combined confusion matrix of 3 real, manual 

scorers. SYB  = Synchronous-breathing, ASB = asynchronous-breathing, SIH = 

sigh, MVT = movement artifact, PAU = respiratory pause, and UNK = unknown. 
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and 

 
,

,

1
0.5

2

real
c creal

c c

if Q
Q

otherwise
β

 <= 



, (5.9) 

such that the mode of the resulting distribution was equal to ',
real
c cQ . 

The off-diagonal elements of the simulated confusion matrix were assigned the probabilities 

 
( )

( )
,

', ,,
',

,

1
, '

1

real s sim
c c c cs sim

c c real
c c

Q Q
Q c c

Q

−
= ∀ ≠

−
. (5.10) 

Simulated scoring sequences were generated as follows: 

(i) The samples of the 152 “true” pattern segments were pooled to form a collection of true 

pattern samples. 

(ii) A realization of the true pattern vector simT  of length 10,000N =  samples, was generated by 

randomly sampling, with replacement, samples from the collection. 

(iii) A simulated scoring sequence ,ˆ s sim
IST  was generated by assigning each sample a value 

sampled from the probability distribution [ ]' | simf c T n   , i.e., 

 [ ] [ ],ˆ ' |s sim sim
IST n f c T n   , (5.11) 

where the [ ]simT n  was the true pattern of sample n , and [ ]' | simf c T n    was defined as 

 [ ] [ ]
,

',
' | , ' 1, , 6sim s sim

simc T n
f c T n Q c  = =   , (5.12) 

so that the probability of [ ],ˆ s sim
IST n  being set to pattern 'c  given true pattern [ ]simT n  was 

equal to 
[ ]

,

',

s sim
simc T n

Q . This procedure was repeated for as many scoring sequences as needed. 
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Monte Carlo simulations using 10,000 realizations of simT  were carried out to evaluate the 

accuracy of the estimators. For each realization, a total of S  simulated scorers with one scoring 

sequence each were generated and the true patterns were estimated using the IS ( ),ˆ s sim
IST , MV 

( )ˆ sim
MVT , and EM ( )ˆ sim

EMT  methods. The accuracies of ,ˆ s sim
IST , ˆ sim

MVT , and ˆ sim
EMT  were assessed  as the 

agreement between the estimated and true patterns using the Fleiss’ κ  statistic [133] in each 

realization, resulting in one vector of 10,000 accuracy values per estimator. These vectors were 

summarized by their median and interquartile range (IQR). 

The standard deviation of the median and IQR were then estimated using the bootstrap method 

[142]. Thus, a resampled accuracy vector for a given estimator was generated by sampling with 

replacement from the original accuracy vector, and its median and IQR were computed. The 

procedure was repeated 10,000 times to estimate the standard deviation of the median and IQR. 

5.6.2. Simulation Results 

The convergence of the EM algorithm was examined using the Monte Carlo setup described 

above, fixing the number of simulated scorers to 3 to yield 3S =  scoring sequences, and 

measuring accuracy as a function of the number of iterations. Fig. 5.2 shows that the change in 

the average accuracy of EM was positive for all iterations demonstrating that accuracy increased 

with the number of iterations. The change in accuracy became almost 0 by the 40th iteration. 

Next, the effect of the number of scorers on the accuracy was evaluated by running another 

Monte Carlo simulation, this time by varying S  from 3 to 25 and keeping the number of EM 

iterations constant at a value of 50. Fig. 5.3A shows the median accuracy of both EM and MV 

increased with the number of sequences, but the increase was both larger and more rapid for EM. 

An important remark is that using MV alone improved the performance of the individual scorers. 

Fig. 5.3B shows that the IQR of accuracy of all 3 estimators decreased as the number of 

sequences increased. EM had the lowest IQR for any number of sequences, while MV had the 

highest variability. EM reached near perfect accuracy by 25 scorers, having a median of 1 and an 

IQR approaching 0. 
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Fig. 5.2. Change in accuracy of Expectation-Maximization (EM) as a function of 

the number of iterations. 
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Fig. 5.3. Simulation of the effects of number of scorers (one scoring sequence per 

scorer). (A) Median and (B) Interquartile Range (IQR) of accuracy of 

Expectation-Maximization (EM), Majority Vote (MV), and Individual Scoring 

(IS) estimates as functions of the number of simulated scoring sequences. 
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5.7. Evaluation of Performance with Clinical Data 

The performance of the estimators was also evaluated using the results from the manual analyses 

performed by the 3 scorers. The two copies of the 152 “true” pattern segments inserted into the 

21 data records were used to evaluate the accuracy and consistency of individual scoring (IS), 

majority vote (MV), and expectation-maximization (EM). Accuracy was assessed as the 

agreement between the “true” patterns and the estimated patterns. Consistency was assessed as 

the agreement between the patterns estimated in the first and second copies of the “true” pattern 

segments. Overall and pattern-specific agreements were evaluated using the Fleiss’ κ statistic 

[133]. The significance of differences in accuracy and consistency between the estimators was 

evaluated using the Wilcoxon rank sum test [141]. 

5.7.1. Method Convergence 

First, we examined the number of iterations needed for the EM algorithm to converge. To do this 

we carried out 10 EM iterations, and evaluated the overall accuracy and consistency of ˆ
EMT  in 

each iteration. Fig. 5.4 shows both overall accuracy and consistency became almost constant by 

the 6th iteration. Accuracy changed most increasing from 0.74 to almost 0.8, while consistency 

remained almost constant.  

5.7.2. Accuracy and Consistency 

Next, we compared the accuracy and consistency of the IS, MV, and EM estimates. Fig. 5.5A 

shows the results. The accuracy of EM estimates [ ]( )0.79 0.03κ =  was significantly higher than 

those from either IS [ ]( )0.68 0.07κ =  or MV [ ]( )0.74 0.03κ = . The consistency of EM [ ]( )0.83 0.02κ =  

and MV [ ]( )0.83 0.03κ =  were similar, while IS [ ]( )0.79 0.04κ =  was somewhat lower. It is also 

noteworthy that the variability in accuracy and consistency of the EM estimates was lower than 

those from IS, as evidenced by the narrower IQRs.  
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Fig. 5.4. Performance of the Expectation-Maximization estimator as a 

function of the number of iterations in “true” pattern clinical data. 
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Fig. 5.5. Consistency and accuracy of respiratory pattern estimators applied to 

“true” pattern clinical data: individual scoring (IS, red-square), majority vote 

(MV, green-circle), and expectation-maximization (EM, blue-triangle). The points 

represent median values, and the bars interquartile ranges. P-values < 0.05 

between EM and IS are indicated by ‘*’, and between EM and MV by ‘^’. 
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Fig 5.5B shows a similar comparison for the PAU pattern, since pauses are particularly relevant 

for the study of POA. EM estimates were significantly more consistent [ ]( )0.81 0.07κ =  than those 

from IS [ ]( )0.71 0.24κ =  and MV [ ]( )0.77 0.08κ = , and were significantly more accurate 

[ ]( )0.76 0.07κ =  than those from IS [ ]( )0.70 0.36κ = . The median accuracy of EM was greater than 

that of MV [ ]( )0.74 0.08κ = , but the variability was too large to achieve statistical significance. 

5.8. Discussion 

We presented an expectation-maximization (EM) method to combine the results from multiple 

scorers of respiratory behavior, and applied it to the analysis of data from infants. The method 

estimates the most likely respiratory pattern by weighting the contributions from each scorer 

according to their individual performance; it was adapted from the ground truth estimator in 

[144], and uses expectation-maximization (EM) to iteratively refine the estimates. Application of 

the method to both simulated and real data demonstrated the method to be more accurate and 

consistent than individual scorers (IS), or majority vote (MV). 

5.8.1. Simulation Analysis 

We used Monte Carlo simulations to compare the performances of EM, IS and MV in estimating 

the true respiratory pattern.  

The use of MV improved the accuracy of true-pattern estimates from that of IS, because the 

method reduced the inherent subjectivity of manual scoring by averaging the votes to obtain the 

estimates. Thus, it is reasonable to say that MV was an appropriate starting point in our search 

for a true-pattern estimator. 

Using EM to refine the true-pattern estimates further improved the accuracy. This improvement 

was evident for any number of scorers. Accuracy of EM increased faster and higher than that of 

MV with the number of scorers. The analysis revealed that the same accuracy was obtained with 

the 5-scorer EM and the 25-scorer MV. This means that EM achieved a given accuracy with 
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much less scoring effort than MV, and this boost in accuracy required only post-processing of 

the manual analyses, with no additional monetary costs. 

The variability of accuracy estimates, evaluated using the interquartile range (IQR), improved 

with the number of scorers for all 3 estimators. The IQR of EM estimates decreased much faster 

than those of IS and MV. In fact, EM had the lowest IQR at any number of scorers, and with 7 

scorers had lower IQR than IS and MV with 25 scorers. 

In summary, the EM estimator was much better than IS and MV for any number of scorers, and 

was able to achieve a given level of accuracy with much less effort than the other 2 estimators. 

5.8.2. Evaluation with Real Infant Data 

We then applied the estimators to 125 hrs of real infant data, and evaluated them using the two 

copies of the 152 segments with known “true” patterns that were inserted in each data record. 

MV had better accuracy and consistency than IS, similar to that found in the simulation study. 

Since MV had better performance than IS, it was the most appropriate starting point for EM. 

Overall accuracy increased with the EM iteration, while consistency remained mostly constant. 

Once EM converged, it had significantly higher accuracy than either IS or MV. The EM results 

were also more consistent than those from IS, maintaining the consistency gained by MV. The 

performance of the EM estimator was excellent; it had a consistency of 0.8κ > , and an accuracy 

of 0.8κ ≈ . Both EM and MV produced estimates more objective than IS, because they reduced 

subjectivity by averaging assigned patterns from multiple scorers. As a consequence, the 

estimates had lower IQR values as the number of scorers increased. However, the EM approach 

was significantly better than MV. This was due to the informed combination of manual analyses 

by weighting the contribution from each scorer by their individual performance. 

These results with clinical data confirmed what was found in the simulation study. The EM 

estimator represented an excellent choice to combine analyses from multiple, manual scorers, 

since it had the highest accuracy and consistency. Additionally, they also showed that 

performance of EM improved with the number of iterations, until the method reached 

convergence. 
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The pattern-specific analysis showed that EM had an excellent accuracy and consistency for 

PAU, making it the method of choice to study POA. Further analysis revealed that the patterns 

Unknown (UNK), and Movement Artifact (MVT) had the largest gains in performance with the 

EM estimator. UNK is a pattern that groups ambiguous patterns, bad signal segments, and any 

other pattern not defined by the other 5 patterns. In [10] we found that UNK had the most intra- 

and inter-scorer disagreement and the highest confusion with other patterns, especially with 

MVT. By using EM, we were able to significantly reduce the ambiguity of UNK, and improve 

the distinction between MVT and UNK. 

5.8.3. “Gold Standard” 

EM classified the respiratory patterns better than MV and IS, in both simulated and clinical data. 

In fact, EM was the only method to have excellent consistency ( )0.83κ =  and near-excellent 

accuracy ( )0.79κ = . Thus, the use of EM to estimate the most likely respiratory patterns should 

be considered a better “gold standard” than manual scoring because it has better accuracy and 

consistency and reduces subjectivity and variability by combining the patterns assigned by 

several, manual scorers. Fig. 5.6 shows an example of applying EM to estimate the “gold 

standard” respiratory patterns, using the example from the introduction (i.e., Fig. 5.1). 

5.8.4. Possible Limitations 

With the MV method more than one pattern might have the highest number of votes, i.e., there 

might be ties. An unbiased strategy to deal with ties is to randomly select one of the patterns 

holding the majority at every sample that this occurs. In this work we used the MATLAB 

function ‘max’ to determine the MV. When there are ties, the ‘max’ function returns the index of 

the pattern that is found first, instead of randomly selecting one of the tied patterns. Only 5 % of 

the clinical data set used in this work had ties, so the bias that might have been added to the 

performance of MV by this implementation is minimal. 
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Fig. 5.6. Respiratory patterns on a sample epoch of respiratory data as estimated 

by Expectation-Maximization (EM) and 3 manual scorers (SC1, SC2, and SC3). 

Ribcage and abdomen are respiratory inductive plethysmography measurements 

in arbitrary units. SYB = Synchronous-breathing, ASB = asynchronous-breathing, 

SIH = sigh, PAU = respiratory pause, MVT = movement artifact, UNK = 

unknown.  
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A limitation of the simulation study could be the manner in which the scorers were simulated. 

The confusion matrix of each simulated scorer was modeled after the combined confusion 

observed in real manual scorers. The simulation of each individual scorer’s confusion matrix 

required the use of unimodal beta distributions. The unimodal beta distribution was selected 

because it is defined in the domain [ ]0,1 , which spans all possible probability values. Also, it is 

bell-shaped so most probable values are located around the mode. To verify that the beta 

distribution was an appropriate model, we estimated the confusion matrix for each scoring 

sequence in each data record (for a total of 126 matrices), and looked at the probability 

distribution of each diagonal element. We found that the distribution in 4 out of 6 patterns (ASB, 

SIH, PAU and MVT) had a shape similar to a unimodal beta (see Figure 5.7), justifying the use 

of such distribution. 

A problem in the evaluation of performance with real respiratory data is that the ground truth 

respiratory patterns are not known. Consequently, we evaluated accuracy using the patterns 

assigned by a very experienced, independent, expert, manual scorer (REF) as reference. In 

addition, only segments assigned the same pattern by REF in two, independent scoring sessions 

were used. Consequently we believe that these “true” segments provide an unbiased basis for 

comparison. This contention is supported by the results presented in Table 5.2 where in all cases 

the probability of assignment was greatest for the “true” pattern. 

Furthermore, the results of the consistency analysis support the effectiveness of the EM analysis 

since these estimates were not dependent on the analysis performed by REF, but only on the 

agreement between the patterns assigned to the first and second copies of the 152 “true” pattern 

segments. 

5.8.5. Implications for Analysis of Respiratory Data 

Respiratory data is generally analyzed using conventional manual scoring (CMS), based on the 

guidelines provided by the American Academy of Sleep Medicine (AASM) [8]. We recently 

developed a set of tools to assist manual scoring whose use  improves the analysis repeatability 

from that obtained with CMS [10]. Nevertheless, the results from any one scorer will always
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Figure 5.7. Probability density of the diagonal value of the confusion matrix 

estimated from real, manual scorers for each respiratory pattern type. (a) 

Synchronous-breathing (SYB), (b) asynchronous-breathing (ASB), (c) sigh (SIH), 

(d) respiratory pause (PAU), (e) movement artifact (MVT), and (f) unknown 

(UNK). Bars correspond to the histogram of the actual data estimated with 20 

bins, and red lines show the fitted beta densities. 
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suffer from bias and subjectivity. In this paper, we demonstrate that the accuracy of manual 

estimates of the most likely respiratory patterns can be further improved by combining the results 

from multiple scorers using an EM algorithm. Using EM permits a specified accuracy to be 

achieved with many fewer scorers than for MV. Thus simulations demonstrated that using EM 

with 5 scorers resulted in estimates with the same accuracy and less variability than using MV 

with 25 scorers. These factors greatly improve the feasibility of respiratory pattern studies 

because the need for fewer scorers reduces the analysis costs and time. 

EM post-processing, combined with the tools we described in [10], provides a significant 

improvement in the repeatability of manual analysis, and also provides a comprehensive 

description of the respiratory pattern as a function of time. The result is an objective, 

comprehensive “gold standard” with high accuracy and consistency, compared to the more 

limited, highly variable CMS. 

This comprehensive “gold standard” that better documents the respiratory patterns will be useful 

for the study of POA, and any other study related to respiratory patterns such as, the prediction 

of extubation readiness in preterm infants [120], sleep apnea, asthma, opioid effects, etc. The 

repeatable, reliable analysis made possible with these methods opens the door for large multi-

institutional and longitudinal studies, where the volume of data to be analyzed is too large to be 

performed by a single scorer, and so multiple scorers are a necessity. With CMS using multiple 

scorers will add noise due to high intra- and inter-scorer variability. This will reduce the 

statistical power of the study making it necessary to use larger sample sizes. EM enables the 

development of these large studies because it yields accurate and consistent analyses of the 

respiratory patterns while minimizing the number of scorers. 

The availability of this objective “gold standard” will also help efforts to automate the analysis 

of respiratory behavior. It can provide the reliable reference analysis to which automated 

methods need to be compared, since it minimizes the effects of scorer bias and subjectivity. It 

also represents a reliable, unbiased source for training supervised learning algorithms, which 

perform better when the reference is accurate. 
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5.9. Conclusion 

We presented a method based on expectation-maximization (EM) to combine analyses from 

multiple scorers of respiratory patterns, and compared it to individual scorers (IS), and the 

majority vote (MV) approach. EM estimated the most likely respiratory patterns with higher 

accuracy and consistency than IS and MV. Moreover, this improvement came at only minimal 

computational cost and no additional manual effort. The EM method represents an improved 

“gold standard” for the analysis of respiratory data. 
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6. Automated Off-Line Respiratory Event Detection for the 

Study of Postoperative Apnea in Infants 

6.1. Preface 

In the previous Chapters I presented methods to make manual scoring a repeatable, reliable, and 

comprehensive analysis of infant respiratory patterns. However, these methods still rely on 

manual analysis, which is labor intensive, time consuming, and expensive. 

This Chapter describes AORED, an Automated Off-Line Respiratory Event Detector I developed 

to automate the analysis of respiratory patterns, with the objective to make it fast and low-cost. 

AORED first automatically estimates metrics of respiratory behavior related to the amplitude, 

frequency, and phase of ribcage and abdomen respiratory signals. These metrics are then used as 

inputs of a set of respiratory pattern detectors that compare the metrics to thresholds to detect 

events. Thresholds are obtained from Receiver Operating Characteristics (ROC) analysis of the 

metrics using as reference a sample manual analysis performed by an expert. The outputs of 

these pattern detectors are then combined using a decision tree to classify the respiratory patterns 

on a sample-by-sample basis. I carried out a simulation experiment showing that the metrics are 

robust in high noise conditions, and compared the results from AORED to those from an expert, 

manual scorer, and found that both analyses agreed well. 

This is the first study I carried out during my Ph.D. The results of this Chapter helped identify 

two important aspects in the analysis of respiratory data that were addressed in this thesis. The 

first aspect was the need for a comprehensive “gold standard” reference for evaluation of 

automated methods. In this Chapter we evaluated the performance of AORED in terms of its 

agreement with a single, manual scorer. This is an important step but it was necessary to 

establish a more objective, repeatable, reliable reference since a single human scorer is 

subjective and has inherent variability. This led to the development of the manual analysis tools 

described in Chapter 4 and 5, which enable a comprehensive, reliable analysis of infant 

respiratory patterns with very low variability. As part of this process we identified that to 
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produce a more objective “gold standard” it was necessary to recruit several manual scorers to 

perform the analysis, and that it was necessary to obtain scientific and ethics approval to secure 

funding for recruitment of these additional manual scorers. The second aspect that this Chapter 

helped to identify was the need to make the analysis of respiratory patterns fully automated, 

removing the need for manual scoring to determine detection thresholds. The result is a method 

named AUREA (Automated Unsupervised Respiratory Event Analysis), which is presented in 

Chapter 7. 

I used a separate dataset from the one described in Chapter 3 for the development of this 

Chapter. These data were acquired by Brown et al. before I started my Ph.D. The data were 

originally reported in [7, 71]. These data were not included in the public data set. The data 

acquisition methods were generally similar to those described in Chapter 3. Key differences are: 

(i) the cut-off frequency of the anti-aliasing filter of 15 Hz compared to 10 Hz; the resolution of 

the analog-to-digital converter was 12 bits in this Chapter and 16 bits in Chapter 3; and recording 

sessions were not supervised for the present Chapter. 

This Chapter was published in IEEE Transactions on Biomedical Engineering [85]: 

A. Aoude, R. E. Kearney, K. A. Brown, H. Galiana, and C. A. Robles-Rubio, “Automated Off-

Line Respiratory Event Detection for the Study of Postoperative Apnea in Infants,” IEEE Trans 

Biomed Eng, vol. 58, pp. 1724-1733, 2011. Digital Object Identifier: 

10.1109/TBME.2011.2112657, © 2011 IEEE. 

This work was supported in part by the Natural Sciences and Engineering Research Council of 

Canada. 

  



6. Automated Off-Line Respiratory Event Detection for the Study of Postoperative Apnea 
 

 
 
 6-3 Final e-Thesis 

6.2. Abstract 

Previously, we presented automated methods for thoraco-abdominal asynchrony estimation and 

movement artifact detection in respiratory inductance plethysmography (RIP) signals. This paper 

combines and improves these methods to give a method for the automated, off-line detection of 

pause, movement artifact and asynchrony. Simulation studies demonstrated the new combined 

method is accurate and robust in the presence of noise. The new procedure was successfully 

applied to cardiorespiratory signals acquired postoperatively from infants in the recovery room. 

A comparison of the events detected with the automated method to those visually scored by an 

expert clinician, demonstrated a higher agreement ( 0.52κ = ) than that amongst several human 

scorers ( 0.31κ = ) in a clinical study [9]. The method provides the following advantages: 1) it is 

fully automated; 2) it is more efficient than visual scoring; 3) the analysis is repeatable and 

standardized; 4) it provides greater agreement with an expert scorer compared to the agreement 

between trained scorers; 5) it is amenable to on-line detection; and 6) it is applicable to 

uncalibrated RIP signals. Examples of applications include respiratory monitoring of 

postsurgical patients and sleep studies. 

6.3. Introduction 

Respiratory inductive plethysmography (RIP) is a widely accepted method for qualitative and 

quantitative respiratory monitoring [149, 150] that is used commonly in sleep laboratories and at 

home [151]. RIP offers noninvasive, robust monitoring which is well tolerated by patients and 

recommended for diagnostic testing. Therefore, we have applied RIP to study respiration in 

infants who have received anesthesia and are at risk of postoperative apnea [17]. 

Visual scoring of cardiorespiratory data is the preferred analysis to identify clinically relevant 

cardiorespiratory events, including central and obstructive apnea, in part because no reliable 

automated method has been accepted to date [152-154]. The likelihood of human error in visual 

coding is high and the results can be subjective [155]. Thus, the development of a reliable 

automated method to detect respiratory events would provide for a more objective and efficient 

analysis and have potential application for on-line apnea detection. 
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Automated methods for the analysis of cardiorespiratory data have employed a wide range of 

approaches including: hidden Markov models [156], artificial neural networks [80, 89], recursive 

least squares [71], and fuzzy logic [157]. In general, these methods perform well on simulated 

data, but encounter difficulties when applied to clinical data where movement artifact is 

prominent. The need to automatically segment cardiorespiratory signals into epochs with and 

without artifact has been well recognized. Indeed it has been reported that the performance of 

automated cardiorespiratory monitoring procedures can be improved significantly if signal 

segments corrupted with artifacts were systematically and reliably identified [70]. Automated 

signal segmentation procedures would also be useful in the off-line analysis of the long records 

of respiratory data acquired during sleep. 

Automated event detection algorithms used in clinical practice have been developed for 

polysomnography (PSG) where RIP is widely used. These are for the most part commercially 

available algorithms that rely on a calibrated RIP system, frequently based on the Qualitative 

Diagnostic Calibration (QDC) method [77]. They also require a measure of airflow [158, 159] to 

detect respiratory events. Sensors at the nose and mouth are poorly tolerated in the recovery 

room in a patient population of infants who are continuously monitored regardless of their 

behavioral state. 

We previously presented methods for detecting movement artifacts [3] and estimating the 

thoraco-abdominal asynchrony [4] in uncalibrated infant RIP data, which do not require a sensor 

applied to the face. The current work describes how these methods were improved and combined 

with a pause detection algorithm, to yield a comprehensive off-line method that identifies pauses, 

segments corrupted by movement artifact, and asynchrony between the ribcage and abdomen 

RIP signals. Some aspects of this work have been part of a conference presentation [5]. 

The paper is organized as follows: Section 6.4 describes each event detector and how their 

outputs were combined; Section 6.5 presents the results of simulation studies validating the 

performance of these detectors using artificially manipulated respiration signals; Section 6.6 

provides results obtained by applying the new methods to real infant respiration signals and 
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compares the events detected automatically to those resulting from visual scoring; Section 6.7 

discusses the results and provides some concluding remarks. 

6.4. Methods 

The proposed method uses detectors for pause, movement artifact and asynchrony. Each detector 

decides whether or not an event is present by comparing a test statistic to a threshold. The 

following sections describe the initial filtering of the data, detail the operation of each detector, 

and demonstrate how they are combined to estimate the respiratory state. 

6.4.1. Filtering 

Offsets and exponential decays observed in real infant data [5], were removed by applying a 

digital high-pass elliptical filter of order 6 with a cut-off frequency of 0.08 Hz to the clinical 

data. The peak-to-peak ripple in the pass band was set to 0.1 dB and the minimum attenuation in 

the stop band was 50 dB. 

The movement artifact and asynchrony detectors use the outputs of a bank of digital elliptical 

filters with low and high cut-off frequencies lf  and hf  respectively defined in Table 6.1. The 

order, peak-to-peak ripple in the pass band and the minimum attenuation in the stop band were 

the same as for the high-pass filter. These filters were chosen to span frequencies from 0 to 2 Hz 

since most power in infant quiet breathing lies in the range 0.4 - 2.0 Hz, while movement 

artifacts occur primarily at lower frequencies [4]. The sets { }3,4, ,13I =   and { }1,2J =  define the 

filter numbers that span the quiet breathing and movement artifact bands respectively. A filter 

bandwidth of 0.2 Hz was used to ensure that the breathing frequency was estimated within a 

narrow band. 

It should be noted that the filter bank could have been implemented using the Short-Time Fourier 

Transform (STFT). We opted to use a filter bank instead because:  (1) the objective was to detect 

events on a sample-by-sample basis which would require the STFT windows to overlap by N-1 

samples for a window of length N which would be computationally inefficient; (2) the analysis 

focuses only on the low frequency components (0 – 2 Hz) and so does not require the greater
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Filter Number (i) fl (Hz) fh (Hz) 

1 - 0.20 
2 0.15 0.35 
3 0.30 0.50 
4 0.45 0.65 
5 0.60 0.80 
6 0.75 0.95 
7 0.90 1.10 
8 1.05 1.25 
9 1.20 1.40 
10 1.35 1.55 
11 1.50 1.70 
12 1.65 1.85 
13 1.80 2.00 

Table 6.1. Filter Bank 
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frequency resolution provided by the STFT; (3) the filter implementation gives the selectively 

filtered signal used by the Asynchrony Detector (Section 6.4.4) with no additional computation. 

We define ab  and rc  as the raw abdominal and ribcage RIP signals respectively, while iab  and 

irc  are the corresponding outputs from the ith filter. We assumed that a quiet breathing segment 

would have the most power at a frequency equal to the breathing rate. Therefore, the breathing 

frequency maxf  was estimated as the central frequency of the filter with the highest power maxi . 

This yielded a sample-by-sample estimate accurate to within 0.2 Hz, calculated over a time equal 

to the filters’ window length. Note that because we used symmetric two-sided filters the 

breathing frequency estimates have no associated time delay. The value of maxf  was set to zero if 

the highest power was found in filters 1 or 2, since these filters correspond to the expected 

frequencies of movement artifact. In addition, if the abdominal and ribcage signals produced 

different breathing frequency estimates, the abdominal signal was given precedence since we 

found that it generally had a better signal-to-noise ratio. 

6.4.2. Pause Detection 

Pauses are defined by a lack of respiratory effort and so the RIP signals would be expected to 

have low power in the quiet breathing band. Consequently, we designed the pause test statistics 

abp  and rcp , to quantify the power of quiet breathing in the abdominal and ribcage signals 

respectively. The test statistic for the abdomen over a window of length PN  was defined as: 

 

[ ]
( 1)/2

2

( 1)/2

1
,,

P

P

n N

bpab
k n NP

ab
P ab k

N
p n N

+ −

= − −
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= 
 (6.1) 

Where ab℘  is the median power of all segments of length PN  in bpab , and bpab  is the band-pass 

filtered abdominal signal, with frequencies in the quiet breathing band only (i.e., using a band-

pass filter with cut-off frequencies at 0.4 Hz and 2.0 Hz). Note that the method was developed 

for off-line use, so the entire data record is available to determine the median power of all data (

ab℘  and rc℘ ). The abdomen pause detector was defined as: 
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Thus, a pause candidate is detected in the abdominal signal if the pause test statistic abp  is below 

the threshold ab
Pγ . A similar pause test statistic rcp , threshold rc

Pγ , and detector rcP ,  were defined 

for the ribcage signal. The overall pause detector was determined by the logical AND of the 

ribcage and abdominal pause detectors, that is 

 [ ] [ ] [ ], , & , .ab rc
P P PP n N P n N P n N=

  (6.3) 

6.4.3. Movement Artifact Detection 

Movement artifacts were detected using a test statistic that compares the output power from the 

filter with highest power in the quiet breathing band to that from the filter with highest power in 

the movement artifact band. The output power for each filter output was defined as: 
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Next, the movement test statistic for the abdomen ݉௔௕ was defined as: 
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Using the output signal with maximum power ensures that the breathing energy is isolated from 

that of any other source in the breathing band (such as electronic noise). 

The movement test statistic abm  is compared to the threshold ab
Mγ  to decide whether or not a 

movement artifact is present in the abdominal signal. This detector was defined as: 



6. Automated Off-Line Respiratory Event Detection for the Study of Postoperative Apnea 
 

 
 
 6-9 Final e-Thesis 

 

[ ] [ ]
[ ]

1, ,
, .

0, ,

ab ab
M Mab

M ab ab
M M

if m n N
M n N

if m n N

γ

γ

 ≤= 
>  (6.6) 

A similar test statistic rcm , threshold rc
Mγ , and detector rcM  were defined for the ribcage signal. 

Since movement is expected to cause artifacts in both abdomen and ribcage signals, the overall 

movement detector for the subject was determined as: 

 [ ] [ ] [ ], , & , .ab rc
M M MM n N M n N M n N=

 (6.7) 

6.4.4. Asynchrony Detection 

In [4] we described an automated phase estimation algorithm that has the advantage of working 

with uncalibrated RIP measurements to provide quantitative phase estimates (φ ) in the range 

[ ]0,1 , corresponding to [ ]0,180  degrees. 

For the present work, we modified this phase estimator to enhance its performance as an 

asynchrony test statistic. We improved the signal-to-noise ratio of the input by using selectively 

filtered RIP signals, rather than the band-pass filtered RIP signals used in [4]. These selectively 

filtered signals were obtained using the breathing frequency estimate maxf  at each sample n , by 

making [ ] [ ]S imax
ab n ab n=  and [ ] [ ]S imax

rc n rc n= . Fig. 6.1 shows an example of this signal. 

Asynchrony is detected ( 1A = ) if the test statistic φ  is above the threshold Aγ : 
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6.4.5. Combining the Detectors 

The respiratory state at each sample n , was determined by combining the three outputs of the 

detectors logically as shown in Fig. 6.2 to ensure that only one event is detected at each time.
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Fig. 6.1.  Typical RIP signal from a 47 week old infant: A. Raw original Ribcage 

RIP signal ( rc ), B. Band-pass filtered Ribcage RIP signal ( bprc ), C. Selectively 

filtered version of the Ribcage RIP signal ( Src ). 
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Fig. 6.2.  Block diagram of detector combination. P=Pause, M=Movement 

Artifact, A=Asynchrony, QB=Quiet Breathing. 
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Pause detection is assigned the highest precedence so that when a pause is detected the other 

states are forced to zero. The rationale for this is that during pauses there is, by definition, very 

little power in the quiet breathing frequency band. Consequently, even a low power signal in the 

movement artifact band would trigger the movement detector leading to false positives. 

Similarly, the asynchrony detector output will be noisy at low power levels leading to false 

alarms.  Movement detection is assigned the second level of precedence with the output of the 

asynchrony and quiet breathing states forced to zero when movement is detected. The rationale 

for this is that movement artifacts may have components in the quiet breathing frequency band 

causing asynchrony detection to be unreliable. Asynchrony detection has the third level of 

precedence. Samples not assigned to any of the three previous categories are scored as quiet 

breathing. 

6.5. Method Validation: Simulation Results 

6.5.1. Simulated Data 

We evaluated the performance of the method using simulated data sets with known properties. 

To this end, we isolated a representative segment comprising 30 s of infant quiet breathing 

sampled at 50sF Hz= . As Fig. 6.3 shows, the segment contained synchronous thoraco-abdominal 

oscillations and no significant movement artifact. The data from this segment were manipulated 

to simulate different respiratory conditions as follows: 

(i) Pause was simulated by attenuating the quiet breathing signals. 

(ii) Low frequency movement artifact was modeled as a stochastic diffusion process called 

mean reverting Ito process (see [160]). This was implemented with the stochastic 

differential equation ( ) ( ) ( ),dm t m t dt dW tμ σ= +  , where ( )m t  is a random process that 

fluctuates randomly, but tends to revert to 0μ = , ( )W t  is a standard Wiener process, 

( ) ( )( ),m t c m tμ μ= −     is the drift function, 0.5σ =  is the short term variance, and 0.1c =  is the 

speed of the reversion; all defined as in our previous work [4]. 

(iii) Asynchrony between the abdominal and ribcage signal was simulated by shifting one 

signal with respect to the other.  
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Fig. 6.3.  Isolated quiet breathing segment from an infant used in the simulated 

data. Ribcage and Abdomen are in arbitrary units and offset for clarity. 
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(iv) Electronic and sensor noise were simulated by adding Gaussian white noise. 

Hence, the simulated thoracic and abdominal RIP signals were defined as follows: 

 [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]( ){ } [ ] [ ]

11 12 1 13 1

21 22 2 23 21 ,

RC n rc n g n m n

AB n ab n w n ab n k w n g n m n
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


 (6.9) 

where [ ]w n  is the transition window for the start of an asynchrony, defined as 
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and 0n  is the time of asynchrony, 2 1LW +  is the length of the transition window for a smooth 

asynchrony simulation, k  is the degree of asynchrony (e.g., if k  equals half the period ( 2nT ), 

then it represents a shift of 180o), ab  and rc  are the experimental RIP signals recorded from the 

abdomen and ribcage, 1g  and 2g  are the processes for sensor and electronic noise, 1m  and 2m  are 

mean reverting Ito processes representing low frequency movement artifact, and 11ρ , 12ρ , 13ρ , 

21ρ , 22ρ , 23ρ  are positive constants. All random numbers used in the simulations were generated 

using the pseudo-normally distributed random number generator in Matlab 7.10 (MathWorks, 

Inc, Natick, MA). 

The Signal-to-Noise Ratio (SNR), was defined as the ratio between the power in the quiet 

breathing signal, i.e. ab  and rc , and the power in the added noise and movement signals ( g m+  ). 

To obtain the different values of SNR we varied the values of 11ρ  and 21ρ , while keeping the 

other four parameters 12ρ , 13ρ , 22ρ , 23ρ  constant. 

We evaluated two aspects of the performance of each detector: the static behavior, to assess the 

robustness of the algorithms in the presence of noise; and the detection delay, to examine how 

long each detector takes to identify the corresponding event. For the static performance we 

varied the SNR on the signals while keeping a fixed start time. In contrast, the SNR was fixed 

and the start time varied when evaluating the detection delay. The start time was fixed when 
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evaluating the static performance of each detector to isolate the effect of noise from that of start 

time. 

6.5.2. Pause Detector Performance 

Fig. 6.4A shows a sample simulated epoch with a pause starting at 20t s= , and 5SNR =  before 

the event.  Fig. 6.4C shows the value of the pause test statistic rcp  for this epoch; its value falls 

quickly after the start of the pause. 

To examine the static performance of the pause test statistic, we generated 500 realizations of 

RC  and AB  at SNRs in the range [ ]0.01,0.35  during the pause. Each realization had a pause start 

time PT  of 20 s, 11ρ  and 21ρ  were varied from 1.5 to 22 in the quiet breathing region ( 20t s< ); 

pauses were simulated by scaling 11ρ  and 21ρ  by a random coefficient uniformly distributed in 

[ ]0,0.1  so that they varied from 0 to 2.2 in the pause region ( 20t s> ) to give the desired range of 

SNR values in this last section. The remaining parameters were defined as follows: 12ρ  and 22ρ  

were set to 0.25, 13ρ  and 23ρ  were set to 0 since pauses are not expected to occur during 

movement artifacts, and there was no asynchrony ( 0k = ). The detector window was set to 

51PN =  (1 s at 50SF Hz= ). 

Fig. 6.4B shows the mean and standard deviation of rcp  for each SNR. It is evident that even at 

low SNR values (i.e., 0.1SNR ≥ ), the pause test statistic was a good indicator since the mean 

value of rcp  was close to 0.1, the theoretical limit from the pause simulation.  It also shows a 

threshold of 0.3rc ab
P Pγ γ= =  would detect most pauses where the respiration power was less than 

10% of quiet breathing. 

To evaluate pause detection delay, we simulated 5,000 epochs starting at random times PT  

uniformly distributed in [ ]18,28 . This range of onset times was selected so that most of the signal 

had a normal quiet breathing power, to mimic clinical data, where short pauses occur between 

long sections of quiet breathing. The SNR was 5 in the quiet breathing region and pauses were 

simulated by scaling 11ρ  and 21ρ  by a random coefficient uniformly distributed in [0,0.1]. There
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Fig. 6.4.  Pause detector performance: A. Simulated epoch with pause starting at 

20t s= , Ribcage and Abdomen are in arbitrary units and have been offset for 

clarity, B. Mean and standard deviation of the pause test statistic rcp  as a function 

of SNR, C. rcp  for the simulated epoch, D. Probability density of the pause 

detection delay ( PTΔ ). 
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was no movement artifact or asynchrony simulated. The detector window size was 51PN = . The 

pause detection delay was defined as P PD PT T TΔ = − , where PDT  is the detection time defined as the 

first time when ܲ = 1. Fig. 6.4D shows the probability density of PTΔ . It is clear that the pause 

detector has a short reaction time, ranging from 0.2 to 1.2 seconds. The detector was also very 

efficient; it identified pauses in 99% of the epochs simulated (5 misses in 5,005 realizations). 

6.5.3. Movement Detector Performance 

Figure 6.5A shows an epoch containing a simulated movement artifact starting at 10t s= . Fig. 

6.5C shows that the movement detection statistic, rcm , drops as soon as the simulated artifact 

starts. 

The static performance of rcm  was examined simulating epochs of quiet breathing with different 

relative amplitudes of movement artifact. The values of 11ρ  and 21ρ  were varied from 0 to 2.6, 

while holding the other simulation parameters constant (i.e., 12 22 0.25ρ ρ= = , 13 23 1ρ ρ= = , 0k = ) 

so that the SNR during the movement artifact was ranged from 0 to 3.5. We simulated 500 

epochs of 30 s for each SNR using a detector window size of 251MN = . Fig. 6.5B shows the 

mean and standard deviation of rcm  as a function of the SNR; the mean value of the test statistic 

increases monotonically with the SNR demonstrating that it provides a good estimate of relative 

magnitude of the movement artifact. The standard deviation was relatively constant across the 

SNR range. 

Next, we investigated the detection delay of the movement detector by simulating 5,000 

realizations with movement artifacts starting at a random time MT  within the epoch. We set the 

SNR to 0.2 during the movement, corresponding to the large artifact contributions observed in 

the clinical data presented in Section 6.6. The window length was set to 251MN = , and the 

thresholds to 0.2rc ab
M Mγ γ= = . Values of rcm  and/or abm  less than zero indicate that there is more 

movement power than breathing power, which is the case for 0.2SNR = .   
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Fig. 6.5.  Movement artifact detector performance: A. Simulated epoch with 

movement starting at 10t s=  ( 0.2SNR = ) , Ribcage and Abdomen are in arbitrary 

units and have been offset for clarity, B. Mean and standard deviation of the 

movement test statistic rcm  as a function of SNR, C. rcm  for the simulated epoch 

with movement starting at 10t s= , D. Probability density of the movement artifact 

detection delay ( MTΔ ). 
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We computed rcm  and abm  from RC  and AB  respectively, and combined them as in equation 

(6.7). Movement artifact was detected in all but 3 of the 5003 realizations simulated. The 

detection delay was defined as M MD MT T TΔ = − , where MDT  is the time in which M  was set to 1 

(i.e., movement as detected). Fig. 6.5D presents the pdf of MTΔ ; it is evident that artifacts have a 

high probability (0.94) of being detected within the first 10 seconds; that is, within twice the 

detector window length. Moreover, the probability of detecting an event between -2.5 and 5s was 

approximately 0.71, meaning that the majority of the events were detected within a delay less 

than the window length. These relatively long latencies arose due to the low frequency content of 

the artifact. 

6.5.4. Asynchrony Detector Performance 

Fig. 6.6A shows a sample simulated epoch with an asynchrony of 180o ( 2Nk T= ) starting at 

10t s= . Fig. 6.6C presents the corresponding asynchrony test statistic φ  calculated with a 

window of size 251AN = . It is evident that φ  begins to change at 2AN  samples before the onset 

of the event, and it reaches its maximum value after approximately AN  samples. This predictive 

effect is because the window used to obtain φ  is symmetric about the origin. 

To evaluate the static performance of the asynchrony test statistic, we tested its capacity to 

estimate the actual asynchrony trueφ  for different values of SNR, in the range [ ]0,3.5 . For this, we 

set the simulation parameters to 12 22 0.25ρ ρ= = , 13 23 0ρ ρ= =  (i.e., no movement artifact), 11ρ  and 

21ρ  were varied from 0 to 3.5, LW  samples for a smooth asynchrony transition, 0 0n =  (i.e., 

asynchrony started at the beginning of the epoch), and k  was selected from a random uniform 

distribution with limits [ ]0, 2NT  to span the 0o-180o range. Fig. 6.6B shows the mean and 

standard deviation of the asynchrony estimation error E trueφ φ φ= −  for 500 realizations at each 

SNR value. This demonstrates that the accuracy of the asynchrony test statistic increases with the 

SNR, as expected. Nevertheless, the asynchrony test statistic produces accurate estimates of 

phase between the RIP signals for SNRs as low as 1. This makes it valid for clinical applications, 

since the asynchrony test statistic is only considered in quiet breathing segments, which have 

high SNR.  
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Fig. 6.6.  Asynchrony detector performance: A. Simulated epoch with asynchrony 

starting at 10t s= , Ribcage and Abdomen are in arbitrary units and have been 

offset for clarity, B. Mean and standard deviation of the asynchrony estimation 

error ( Eφ ) as a function of SNR, C. Asynchrony test statistic φ  for the epoch 

shown in A, D. Probability density of the asynchrony detection delay ( ATΔ ). 
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To explore the detection delay the window length was set to 251AN = , the transition parameter 

was 10LW = , and we considered asynchrony as a phase between the RIP signals greater than 35o (

35 180Aγ = ). This value is based on the results presented in [122], which reports asynchronies 

between abdomen and ribcage from 35o to 160o. We generated 5,000 realizations of equation 

(6.9), with 5SNR =  and 13 23 0ρ ρ= = , simulating quiet breathing without movement artifact. Each 

realization had a random asynchrony k , uniformly distributed between 35o and 180o, starting at a 

random time 0A sT n F=  uniformly distributed along the epoch. The detector performed very well; 

the overall probability of detection was 0.99 (40 misses in 5,040 realizations). 

Fig. 6.6D shows the pdf of A AD AT T TΔ = − , the asynchrony detection delay as the difference 

between the time of detection ADT  and the true time of the asynchrony AT . It demonstrates a very 

rapid detector response, within 2.5 2.5AT− ≤ Δ ≤  seconds. This means that it takes at most 2AN  

samples, half the window length, to respond while most detections occurred much earlier. 

6.6. Application to Infant Data 

The simulation results presented above were very encouraging but we felt important to assess the 

performance of the method when applied to real data acquired from infants using RIP bands. 

6.6.1. Description of Infant Data 

The data comprised records acquired from 19 infants aged 44 ± 5 weeks (postconceptional age), 

weighing 4.0 ± 1.5 kg in the postoperative period after elective herniorrhaphy with general and 

caudal anesthesia. Written informed parental consent was obtained and the procedures were 

approved by the Institutional Ethics Review Board. These data were previously reported by 

Brown et al. [7, 71]. 

The ribcage and abdominal signals (Non-Invasive Monitoring Systems, Inc., Respitrace Plus, 

North Bay Village, Florida), were amplified, low-pass filtered at 15 Hz with 8-pole Bessel filters 

(Frequency Devices, Haverhill, MA), and sampled at 50sF Hz=  with a 12-bit analog-to-digital 

converter (Data Translation, Marlborough, MA). Blood oxygen saturation and finger 
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plethysmograph signals where acquired with an oximeter (Nellcor N-200, Nellcor Inc., Hayward, 

CA). Data were stored on a computer using LABDATTM data acquisition software (RHT-

InfoDat, Montreal, QC, Canada). After initial setup, the investigators did not supervise the 

recording session. No attempt was made to calibrate the signals in absolute terms. 

6.6.2. Visual Scoring Analysis of Infant Data 

In view of the time required for visual analysis, only a subset of 500 epochs for each of the 19 

infant data sets was visually scored. This yielded a total of 9,500 epochs, which provided a 

“gold” standard for comparison with automated results. This was performed by one of the 

investigators (KAB) using an interactive, graphical visual scoring tool to mark the start and end 

times of segments comprising: 

(i) Pause: Little or no respiratory movement in both the ribcage and abdomen signals, 

(ii) Movement Artifact: Non-sinusoidal irregular signals, 

(iii) Asynchrony: Asynchronous movement between the ribcage and abdominal signals, 

(iv) Quiet Breathing: Quasi-sinusoidal breathing patterns in both the ribcage and abdominal 

signals. 

Fig. 6.7 shows representative data for each category. 

The data were scored in epochs of 30 s. The scorer was required to identify the start and end 

points of all events within the epoch.  Thus, if an epoch contained 10 s of quiet breathing, a 

pause of 6 s, a movement period of 6 s and a final section of quiet breathing of 8 s, the scorer 

would identify 4 events. Events that spanned more than one epoch were concatenated into a 

single event. Table 6.2 shows the number of visually scored events in all data sets; there were a 

total of 10,928 events identified in 9,500 epochs. 
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Fig. 6.7.  Representative data for: A. Pause, B. Movement Artifact, C. 

Asynchrony, D. Quiet Breathing.  From top to bottom the signals are: ribcage, 

abdomen, finger plethysmograph in arbitrary units, and blood oxygen saturation 

(in %). 
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Event Number of Events 

Quiet Breathing 4,539 
Movement Artifact 2,753 
Pause 2,480 
Asynchrony 1,156 

Table 6.2. Visually scored events. 

  



6. Automated Off-Line Respiratory Event Detection for the Study of Postoperative Apnea 
 

 
 
 6-25 Final e-Thesis 

6.6.3. Automated Scoring 

We examined the relation between events visually annotated and those identified automatically 

by our detectors by performing a sample-by-sample comparison between the two results. To do 

so we estimated two probability density functions (pdf) for each test statistic; one for samples 

visually scored as containing the event and one for data scored as quiet breathing. 

These probability densities were then used to generate the receiver operating characteristics 

(ROC) summarizing the performance of each test statistic as a function of the threshold. FAP  

denotes the probability of false alarm, and DP  denotes the probability of detection for each test 

statistic. For example, from the pdf of the test statistic used to detect movement in the abdominal 

signal ( abm ) shown in Fig. 6.9A, DP  and FAP  for a threshold ab
Mγ  can be found by solving: 

 
1 0

1 1

( , ), ( , ) ,

ab ab
M M

ab m ab m
D FAP dF m H P dF m H

γ γ

− −

= = 
 

(6.10) 

Where 1
mH  and 0

mH  are the hypotheses of movement present or absent respectively. Each DP  and 

FAP  pair in the ROC plot corresponds to a unique threshold value. Thus, the choice of threshold 

determines the tradeoff between DP  and FAP . For comparison purposes, we chose the threshold 

optγ  for each detector that represented the point with the largest distance from the chance line (

D FAP P= ), as the best tradeoff between DP  and FAP . This is shown in Figs. 6.8B, 6.9B and 6.10B, 

for pause, movement and asynchrony respectively. The area under the ROC curve (AUC) was 

also computed as a measure of detector’s performance [84]. It is defined as: 

 

( )
1

0

,D FA FAAUC P P dP= 

  
(6.11) 

where ( ){ },FA D FAP P P  defines the ROC curve. A value of 1AUC =  indicates perfect detection, while 

0.5AUC =  represents the performance expected by chance. 
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6.6.4. Pause Detection 

The pause test statistics ( abp  and rcp ) were calculated using a window size of 51PN = . Fig. 6.8A 

shows the pdfs of abp  for segments visually identified as quiet breathing and pause for all data. 

The ROC of abp , shown in Fig. 6.8B, had an 0.82AUC =  with an optimum threshold of 

0.53ab
Popt

γ = . For the ribcage signal the values were 0.74AUC =  and 0.49rc
Popt

γ = . 

6.6.5. Movement Artifact Detection 

The movement artifact test statistics ( abm  and rcm ) were calculated using a window size of 

251MN = . Fig. 6.9A shows the pdfs of abm  for segments visually identified as quiet breathing and 

movement artifact. The two pdfs are widely separated indicating that abm  is a useful statistic to 

identify movement artifact in real infant data. The ROC plot for abm  (in Fig. 6.9B) had an 

0.92AUC =  and optimum threshold 0.22ab
Mopt

γ = . The values for the ribcage signal were 0.85AUC =  

and 0.13rc
Mopt

γ = . 

6.6.6. Asynchrony Detection 

The asynchrony test statistic (φ ) was calculated using a window size of 251AN = . Fig. 6.10A 

shows the pdfs of φ  for segments visually identified as quiet breathing and asynchrony.  The 

pdfs of the asynchrony test statistic were not as well separated as those for the movement 

statistic. This is not surprising since the visual identification of asynchrony involves the 

subjective estimation of the phase difference between the RIP signals, a noisy process. This 

difference is reflected in the ROC curve in Fig. 6.10B, where 0.88AUC =  and the optimum 

threshold is ( )0.32 58Aopt
γ = ° . 
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Fig. 6.8.  Pause detection: A. Probability density of the pause test statistic for the 

abdomen ( abp ) for all patient data visually identified as quiet breathing and pause, 

B. Receiver Operating Characteristics (ROC) of abp , showing the optimum 

threshold ( ab
Popt

γ ) and the Area Under the ROC curve (AUC). 
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Fig. 6.9.  Movement artifact detection: A. Probability density of the movement 

artifact test statistic for the abdomen ( abm ) for all patient data visually identified 

as quiet breathing and movement artifact, B. Receiver Operating Characteristics 

(ROC) of abm , showing the optimum threshold ( ab
Mopt

γ ) and the Area Under the 

ROC curve (AUC). 
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Fig. 6.10.  Asynchrony detection: A. Probability density of the asynchrony test 

statistic (φ ) for all patient data visually identified as quiet breathing and 

asynchrony, B. Receiver Operating Characteristics (ROC) of φ , showing the 

optimum threshold ( Aopt
γ ) and the Area Under the ROC curve (AUC). 
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6.6.7. Overall Performance 

To evaluate the overall performance of our system, we verified the agreement between the state 

estimated by the automated scoring system and that scored visually, using the Fleiss’ Kappa (κ ) 

statistic [133] for inter-rater reliability.  A value of 1κ =  indicates perfect agreement, while 0κ =  

reflects the performance expected by chance. 

We assessed the agreement in the scores given to each sample that had a single score by the 

clinician (i.e., scored as only one event type) in the 19 infant data sets.  We obtained the overall 

κ  value, and also the category specific agreement for each of the four main classes: Pause, 

Movement, Asynchrony and Quiet Breathing (QB). 

For the detectors we selected the window sizes used before: Pause 51PN = , Movement 251MN = , 

Asynchrony 251AN = . The thresholds were set to the optimum values determined in the previous 

sections. 

The overall detectors for pause and movement defined in equations (6.3) and (6.7) respectively, 

combine the results obtained for the ribcage and abdominal signals using a logical AND. This is 

because both pauses and movement artifacts were expected to be manifested in both RIP signals. 

To test this assumption we evaluated four different methods of combining the ribcage and the 

abdomen detector outputs: 

A: rcP P=  and rcM M= , where only rc  is used to detect pause and movement; 

B: abP P=  and abM M= , where only ab is used to detect pause and movement; 

C: ( )OR ,rc abP P P=  and ( )OR ,rc abM M M= , where either rc  or ab  is used to detect pause and 

movement (logical OR ); 

D: ( )AND ,rc abP P P=  and ( )AND ,rc abM M M= , where rc  and ab  are used simultaneously to detect 

pause and movement (logical AND). 

Table 6.3 shows the results. The best performance was obtained in scenario D, where the ribcage 

and the abdomen candidate detections were combined with a logical AND to define the pause 

and movement overall detectors, as in equations (6.3) and (6.7) respectively. Note that agreement
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Scenario Pause Mvt Asynch QB Overall 

A 0.13 0.48 0.37 0.42 0.39 
B 0.22 0.58 0.45 0.43 0.45 
C 0.06 0.48 0.36 0.31 0.33 
D 0.42 0.59 0.44 0.53 0.52 

Table 6.3. Agreement (κ ) Between Automated and Expert Scorer 
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for the asynchrony class changed with the method even though the asynchrony detector uses the 

ribcage and abdominal signals in all 4 methods. This is because both pause and movement have 

higher precedence as defined in Section 6.4.5. 

6.7. Discussion 

This paper describes and validates an automated method for detecting respiratory events in 

uncalibrated RIP data obtained from infants after surgery by combining detectors for pauses, 

movement artifacts, and asynchrony. Simulation studies demonstrated that the detector for each 

event distinguished them from normal breathing. Thus they detected most (> 99 %) of all 

simulated events and were robust in the presence of noise. Moreover, detection was timely: the 

pause detector identified most of the events within the first 1.2 PN  samples (1.2 s); the asynchrony 

detector took from 2AN−  to 2AN  samples (i.e., from -2.5 s to 2.5 s) to detect the events; and 

the movement artifact detector needed twice the window length ( 2 10sMN = ) to identify most of 

the events. This longer latency is expected since movement artifact involves low frequencies.  

To be clinically useful, any method for the automatic segmentation of respiratory data must 

distinguish between multiple states (e.g., pause, movement, asynchrony and quiet breathing). 

This is a more complex situation than the binary choice examined in our simulations. Therefore, 

we assessed the ability of our combined method to estimate the respiratory state for clinical data 

by evaluating the agreement between the visual scores provided by an expert clinician, and the 

respiratory state determined by our method. The overall agreement was 0.52κ = . This compares 

favorably to the agreement between human scorers. Thus, a study on scoring variability between 

expert technologists in sleep laboratories [9], found a κ  of 0.31 among 11 scorers for a 

respiratory index, consisting in the total number of apneas plus hypopneas (pauses). A study in 

progress at our laboratory of postoperative apnea in infants, found the average agreement in 

respiratory event classification between two clinician scorers was 0.50κ = , while the overall 

agreement among three scorers was lower 0.47κ = . Moreover, the agreement between the three 

raters for asynchrony was 0.02κ =  (unpublished observation), while for the automated system 

was 0.44κ = . This is relevant for the differentiation between central and obstructive apneas. 
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The results we obtained by applying our method to clinical data are very promising, especially 

since we consider that the performance evaluation methodology was very conservative. Thus, we 

performed a sample-by-sample analysis which can be expected to exhibit lower probabilities of 

detection and overall agreement than would an event-by-event evaluation. For instance, if the 

clinician identified a segment as being 10 s long while the automated method detected an event 

of 5 s within that segment, then with a sample-by-sample analysis DP  would be equal to 0.5, 

while with an event-by-event evaluation DP  would be 1, since the event was indeed detected.  

It is important to highlight that the data recording was unattended. Even though this source of 

uncertainty can impact the performance of the method, the results were satisfactory. This is an 

indication of robustness in data acquisition quality. Further work is required to assess the effect 

of supervised data recording on the overall agreement between our automated method and an 

expert scorer.  

It should be noted that the scorer had access to the finger plethysmograph and the blood oxygen 

saturation signals which were not used by the automatic system. This might have an influence in 

the visual scores, which could have led to a lower agreement. Future studies are necessary to 

evaluate the relevance of using these two additional signals for the automated scoring of 

cardiorespiratory data. 

As presented, the method is well suited for the off-line study of long data records such as studies 

of sleep disordered breathing. The detection parameters can be tuned with the scores from an 

expert clinician, eliminating the need to train additional human scorers.  We believe that the 

automated detectors have the potential to provide more consistent and less subjective results than 

visual scoring.  Thus, when visually scoring, the rater must judge if an event was present. This 

judgment can differ from scorer to scorer or indeed, from epoch to epoch with the same scorer.  

Further work, using multiple scorers to annotate data, rather than the single visual scorer in this 

study, will be required to confirm this. 

The method presented here is easily customized. It allows the user to define threshold values for 

pause, movement artifact and asynchrony to his/her preference. The event detectors can then be 
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used in combination to identify apnea events to the user's preferred definition. For example, 

central apnea events might be defined as pauses of a given length. Hypopneas and apneas could 

be distinguished by using two threshold values for the pause detector, one for medium power 

(hypopnea), and one for low power (apnea). Obstructive apnea events might be defined as 

periods with some degree of asynchrony and low power RIP signals for a given period of time. 

Future studies to explore the method's effectiveness in detecting apneas of specific definitions 

and lengths, as well as differentiating between central and obstructive apneas are indicated. Note 

also that even though the reported results are very satisfactory, further work is required to 

determine the optimal detector window length and filter bank frequency resolution for a given 

application. 

It should also be possible to use the methods in an on-line near real-time use. The only parameter 

that depends on the complete recording is the term ab℘  from equation (6.1) which defines the 

power associated with quiet breathing. For real-time use, an initial estimate could be obtained 

from a short training segment (e.g., 10 min), and then adaptively updated thereafter. 

Postoperative apnea (POA) events are rare and so large data sets are required to determine how 

they relate to other respiratory events. The acquisition of such a large database has not been 

feasible because visual scoring is labor intensive, expensive, and complicated by low inter-scorer 

agreement. Thus, we regard one of the primary contributions of the present work as the 

development of an automated, reliable and repeatable means of analyzing data sets to provide 

high quality estimates of breathing pauses and asynchronies, while identifying segments 

corrupted by movement artifacts. This will make it possible to evaluate simultaneously the 

clinical implications of these respiratory events on infants at risk of POA. 

Our methods should also help resolve the clinical significance of the degree of asynchrony. The 

notion of a continuum from synchrony (0o) to complete paradox (180o) was introduced in [117]. 

The optimum threshold for asynchrony from our ROC analysis, ( )0.32 58Aopt
γ = ° , is consistent 

with this notion. In [161] they reported little asynchrony (9o ± 3o) in healthy term infants, in 

contrast to preterm infants whose value was 38o ± 9o. Inspiratory loading in the preterm infant 

increased the asynchrony to 56o ± 7o and was associated with a decrease in respiratory frequency. 
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Therefore, even small asynchrony increments may be of clinical importance, possibly indicating 

maturational changes in the respiratory system and potentially linked to respiratory compromise. 

Our methods could also be used for the objective definition of cardiorespiratory events. We 

suggest building a consensus of scores, based on the threshold values defined by expert visual 

scorers from different laboratories for the pause, movement artifact and asynchrony detectors. 

For the specific case of asynchrony detection, the use of an automated method as a “gold” 

standard should be considered, given the lack of agreement reported among scorers, compared to 

the results presented in this study. 

In summary, we have presented a method for the automatic detection of pause, movement 

artifact corruption and paradoxical respiratory movement in infant RIP data. The main 

advantages of this method are: (i) it provides full automation and simple implementation; (ii) it is 

more efficient than visual scoring; (iii) the analysis is repeatable and standardized; (iv) it 

produces greater agreement with an expert scorer than that between trained scorers; (v) it is 

amenable to on-line detection; and (vi) it is applicable to uncalibrated RIP signals. This last point 

is of great importance since the Qualitative Diagnostic Calibration method for RIP has been 

shown to be limited by changes in measurement conditions and breathing patterns [28]. 
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Symbol Description 
rc , ab  Raw RIP signals from Ribcage and Abdomen 

irc , iab  Output from the ith filter in the bank for rc  and ab  

bprc , bpab  Band-pass filtered rc  and ab  

Src , Sab  Selectively filtered version of rc  and ab  
RC , AB  Simulated RIP signals for Ribcage and Abdomen 

maxf  Breathing frequency estimate 
maxi  Filter from the bank with the output with highest power 
P , M , A  Overall detectors for Pause, Movement and Asynchrony 

rcP , abP  Pause detectors used with rc  and ab  
rcM , abM  Movement detectors used with rc  and ab  

rc
Pγ , ab

Pγ  Thresholds used with rcP  and abP  
rc
Mγ , ab

Mγ  Thresholds used with rcM  and abM  
Aγ   Threshold used with A  
rc
Popt

γ , ab
Popt

γ  Optimum thresholds for rcP  and abP  
rc
Mopt

γ , ab
Mopt

γ  Optimum thresholds for rcM  and abM  

Aopt
γ   Optimum threshold for A  

rcp , abp  Pause test statistics for rc  and ab  
rcm , abm  Movement test statistics for rc  and ab  

φ   Asynchrony test statistic 

PN , MN , AN  Window lengths used with rcp , abp , rcm , abm , and φ  

DP , FAP  Probabilities of detection and false alarm 
rc℘ , ab℘  Median power of all segments of length PN  in frc  and fab  
rc
i℘ , ab

i℘  Power of a segment of length MN  in irc  and iab  

sF  Sampling Frequency 
nT  Simulated signals period 

1m , 2m   Simulated movement process in RC  and AB  

1g , 2g  Simulated electronic noise in RC  and AB  
w  Transition window for simulation of asynchrony 

LW  Length parameter for w  
0n  Sample where simulation of asynchrony begins 

k  Degree of simulated asynchrony 

11ρ , 12ρ , 13ρ  Scaling parameters used to construct RC  

21ρ , 22ρ , 23ρ  Scaling parameters used to construct AB  

PT , MT , AT  Start time for simulated pause, movement and asynchrony 

PDT , MDT , ADT  Actual detection time of pause, movement and asynchrony 

PTΔ , MTΔ , ATΔ  Detection delay for pause, movement and asynchrony 
trueφ   Actual simulated asynchrony 
Eφ   Asynchrony estimation error 
Table 6.4. Symbols 
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7. Automated Unsupervised Analysis of Infant Respiratory 

Patterns 

7.1. Preface 

Chapter 6 presented AORED, an Automated Off-Line Respiratory Event Detector that performs 

repeatable, reliable, comprehensive, fast, and low-cost analyses of infant respiratory patterns. 

However, it is a supervised classifier that must be trained with the results of the manual analysis 

of a representative data set. Thus, although it addresses many of the limitations of manual 

scoring, its application still requires substantial manual analysis that is labor intensive, time 

consuming, and prone to scorer variability. Moreover, the results are still subjective because they 

reflect the particular biases of the scorers who carried out the manual analysis used for training. 

This Chapter describes my development of a fully automated method to analyze infant 

respiratory patterns that is based on unsupervised classification and so requires no human 

intervention. This Automated Unsupervised Respiratory Event Analysis (AUREA) system 

estimates several metrics of respiratory behavior from infant data, and uses K-means clustering 

to classify them into the respiratory patterns. AUREA’s results agree very well with those of the 

“gold standard” manual analysis described in Chapter 5, and are more accurate than those of 

AORED. AUREA provides a fully automated, reliable, and repeatable analysis of the respiratory 

patterns that is completely objective, low-cost, fast, and involves no human judgments. I believe 

that AUREA will be of great value as a research tool; moreover, AUREA can be readily 

implemented for real-time use and so could also be used clinically. 

This Chapter is a manuscript to be submitted for publication as: 

C. A. Robles-Rubio, K. A. Brown, and R. E. Kearney, “Automated Unsupervised Analysis of 

Infant Respiratory Patterns,” to be submitted to IEEE Trans Biomed Eng. 

This work was supported in part by the Natural Sciences and Engineering Research Council of 

Canada. The work of C. A. Robles-Rubio was supported in part by the Mexican National 
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Council for Science and Technology. C. A. Robles-Rubio and K. A. Brown were supported in 

part by the Queen Elizabeth Hospital of Montreal Foundation Chair in Pediatric Anesthesia. 
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7.2. Abstract 

We previously presented AORED, an Automated Off-line Respiratory Event Detector of infant 

respiratory patterns from uncalibrated respiratory inductive plethysmography signals. The 

application of AORED requires a training set comprising a sample of respiratory patterns 

classified by expert manual scorers. Manual analysis is labor intensive, time consuming, and 

involves the subjective judgment from the experts which may bias the automated classifier. To 

address these problems we developed a novel method for Automated Unsupervised Respiratory 

Event Analysis (AUREA). This paper describes the algorithm underlying AUREA, and 

demonstrates its successful application to respiratory signals acquired from infants recovering 

from general anesthesia by comparing it to a “gold standard” manual scoring. AUREA has the 

following advantages: (i) it is much faster than the “gold standard” manual scoring; (ii) it is fully 

automated and requires no human intervention, so it is low-cost and objective; (iii) its output has 

perfect consistency and agrees substantially with that of the “gold standard” manual analysis; 

(iv) it is significantly more accurate than AORED and has no detection delay; (v) it assigns a 

respiratory pattern to every sample of infant respiratory data in a repeatable, reliable fashion; and 

(vi) it is amenable for real-time classification of respiratory patterns. 

7.3. Introduction 

Infants with postmenstrual ages (PMA) of 60 weeks or less are at increased risk of life 

threatening apnea following surgery and anesthesia [15, 17, 39]. The first postoperative apnea 

(POA) event generally occurs within the first 12 hours after surgery, and POA events may 

continue to occur up to 72 hr postoperatively [14, 39]. Thus, current clinical guidelines suggest 

that infants with PMA ≤ 60 weeks undergoing surgery and anesthesia should be monitored 

continuously in hospital for extended periods following surgery [14].  

There is evidence suggesting that POA events are related to abnormal postoperative respiratory 

patterns [14, 19, 24, 39]. However, this relation has not been studied comprehensively because 

there is no appropriate method to do so systematically. Thus, conventional manual scoring 

(CMS) is currently the preferred analysis method for respiratory data, which requires an expert 
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scorer to scroll through the data and visually detect “clinically relevant” events based on 

guidelines published by the American Academy of Sleep Medicine (AASM) [8]. This method is 

labor intensive, time consuming, expensive, subjective, and produces results with low intra- and 

inter scorer repeatability [9]. 

We recently developed a set of manual scoring tools for the analysis of infant respiratory 

patterns, whose use substantially improves repeatability amongst scorers compared to CMS [10]. 

These tools also enable the comprehensive scoring of all samples in a data record, rather than 

only segments deemed as “clinically relevant”. We then developed a method to accurately and 

consistently estimate a “gold standard” scoring of respiratory patterns, by using Expectation-

Maximization (EM) to combine the results from multiple scorers optimally. Use of this EM 

algorithm significantly improves the accuracy and consistency of scores. 

Even though this approach produces results with good repeatability, manual scoring remains 

very labor intensive, time consuming, and expensive. For this reason, it is highly desirable to 

automate the analysis. To this end, we developed AORED, an Automated Off-line Respiratory 

Event Detector to automatically classify respiratory patterns, and tested it on data acquired from 

infants at risk of POA [85]. AORED’s results agreed well with the manual analysis from an 

expert scorer, but its use still requires a sample of manually analyzed data for classifier training. 

There are two main problems associated with the manual analysis required for training: (i) even 

though only a sample of the data needs to be analyzed, manual scoring it is still labor intensive, 

time consuming, and expensive; and (ii) AORED will incorporate any biases and subjective 

judgments produced by the reference, training scorer(s). 

The objective of this work was to develop an automated method for the analysis of infant 

respiratory patterns that eliminates the need for manually scored data. Some aspects of this paper 

have been a part of a conference presentation [135]. 

This Chapter is organized as follows: Section 7.4 presents the Automated Unsupervised 

Respiratory Event Analysis system (AUREA) that we developed for fully automated analysis of 

the respiratory patterns; Section 7.5 describes the clinical dataset and “gold standard” manual 
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analysis, and presents the methods for evaluation of AUREA; Section 7.6 reports the evaluation 

results; Section 7.7 discusses the findings; and Section 7.8 provides some concluding remarks. 

7.4. Automated Unsupervised Respiratory Event Analysis System 

(AUREA) 

7.4.1. Overview 

AUREA was designed to automatically classify infant respiratory patterns observed in 

respiratory inductive plethysmography (RIP) signals into one of 5 types: respiratory pause 

(PAU), synchronous-breathing (SYB), asynchronous-breathing (ASB), movement artifact 

(MVT), and unknown (UNK). These patterns were previously identified in RIP signals from 

infants at risk of postoperative apnea (POA) in [10, 85]. Fig. 7.1 is a schematic of the two 

analysis stages AUREA applies to RIP signals to yield this classification. In the first stage, 

AUREA estimates a set of metrics describing respiratory behavior from the RIP signals. These 

metrics extract information about amplitude, frequency, and phase of the ribcage (RCG) and 

abdomen (ABD) respiratory movements on a sample-by-sample basis. In the second stage, these 

metrics are used by K-means classifiers to yield an estimate of the instantaneous respiratory 

pattern. 

7.4.2. Metrics of Respiratory Behavior 

This section describes the metrics of respiratory behavior that AUREA uses to classify the 

respiratory patterns in RIP signals. 

7.4.2.1. Trend Removal 

The RIP signals were pre-processed to remove any low frequency trends which are common in 

RIP signals [5]. This trend is estimated as the mean of rawRCG  over a two-sided, sliding window 

of length DTN , i.e., 

 [ ] [ ]
( )

( )1 2

1 2

1 i n NDT

T raw
i n NDT DT

RCG n RCG i
N

= + −

= − −
=  , (7.1)
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Fig. 7.1. Automated Unsupervised Respiratory Event Analysis (AUREA) 

overview. Metrics of respiratory behavior are estimated from the ribcage (RCG) 

and abdomen (ABD) respiratory signals. Then these metrics are used by a series 

of K-means classifiers to classify the respiratory patterns into the following: 

respiratory pause (PAU), synchronous-breathing (SYB), asynchronous-breathing 

(ASB), movement artifact (MVT), or unknown (UNK). 
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and the de-trended signal is computed as 

 [ ] [ ] [ ]raw TRCG n RCG n RCG n= − . (7.2) 

7.4.2.2. Pause Metric 

The pause metric is intended to discriminate the PAU pattern, defined as segments where the 

RCG and ABD signals have amplitudes less that 10 % of those of the preceding normal breath 

[10]. It is expected that RIP signal variance will be lower during PAU than during any other 

respiratory pattern. Thus, the pause a metric is based on sample-by-sample variance estimates. 

The estimation procedure for the the RCG signal ( )rawRCG  comprised the following steps, but a 

similar metric was used for the ABD signal ( )rawABD . 

(i) The variance of RCG  is estimated sample-by-sample, over a two-sided, sliding window of 

length V DTN N  as 

 [ ] [ ]
( )

( )1 2
2

1 2

1 n NV

RCG
i n NV V

v n RCG i
N

+ −

= − −
=  . (7.3) 

(ii) The variance estimate is normalized to ( )q
RCGv , the qth quantile of RCGv  in the most recent QVN  

samples ( QV VN N ), as: 

 [ ] [ ]
[ ]( )

ln RCG
RCG q

RCG

v n
nv n

v n
 

=   
 

. (7.4) 

This normalization is intended to compensate for nonstationarities in the amplitude of RCG  

due to postural changes and/or slight displacement of the respibands. 

7.4.2.3. Movement Artifact Metric 

The second metric is designed to detect  the MVT pattern, defined as segments where rawRCG  and 

rawABD  display a chaotic, non-sinusoidal, low frequency motion associated with active or passive 

movement of the infant [10]. This is a non-periodic power metric that we first used to detect 



7. Automated Unsupervised Analysis of Infant Respiratory Patterns 
 

 
 
 7-8 Final e-Thesis 

MVT in photoplethysmography (PPG) signals [138]. This metric is based on two observations: 

(i) the artifact-free signal has a quasi-periodic waveform; and (ii) MVT comprises stochastic, low 

frequency noise whose amplitude is larger than that of the artifact-free signal [3, 5]. Since both 

these assumptions should hold for RIP signals we felt that the same MVT metric could be used. 

The MVT metric is estimated using the following steps. 

(i) Moving-Average, Notch Filtering: The de-trended RCG signal ( )RCG  is filtered by a 

moving average, low-pass filter of length MAN . This filter has deep nulls at integer 

multiples of s MAf N , with sf  being the sampling frequency. MAN  is chosen so that these 

nulls occur at the respiratory frequency and its harmonics. Consequently this filter will 

attenuate periodic components related to respiration, pass other lower frequencies, and 

attenuate high frequency noise. 

(ii) The root mean square (RMS) of the moving-average filtered signal MARCG , is computed 

over a two-sided, sliding window of length RMSN  as 

 [ ] [ ]
( )

( )1 2
2

1 2

1 n NRMS

RCG MA
i n NRMS RMS

rms n RCG i
N

+ −

= − −
=  . (7.5) 

(iii) The RMS is normalized in a similar fashion to the PAU metric. Thus, the non-periodic 

power MVT metric is 

 [ ] [ ]
[ ]( )

ln RCG
RCG q

RCG

rms n
npp n

rms n
 

=   
 

, (7.6) 

where ( )q
RCGrms  is the qth quantile of RCGrms  in the most recent QRMSN  samples ( QRMS RMSN N ). 

Similar MAABD , ABDrms , ( )q
ABDrms , and ABDnpp  are obtained for ABD. 

7.4.2.4. Synchronous and Asynchronous-Breathing Metrics 

The last metrics are designed to detect SYB and ASB. Breathing is defined as quasi-sinusoidal 

patterns in both RCG and ABD [10]. During SYB, RCG and ABD movements are in phase (< 
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90o), and during ASB these movements are out of phase (≥ 90o). The metrics to detect SYB and 

ASB are described in detail in a previous paper [137]. Briefly, they are estimated as follows. 

(i) The de-trended RCG signal ( )RCG  is first smoothed to reduce additive noise using a two-

sided, sliding window of length SMO DTN N  as 

 [ ] [ ]
( )

( )1 2

1 2

1 n NSMO

SMO
i n NSMO SMO

RCG n RCG i
N

+ −

= − −
=  , (7.7) 

and then converted to binary signal as 

 [ ] [ ] [ ]1

0
SMO T

B
if RCG n RCG n

RCG n
otherwise

 >
= 


, (7.8) 

where TRCG  is the low-frequency trend from the raw RCG signal ( )rawRCG  estimated using 

equation (7.1). In other words, BRCG  is set to 1 if the value of SMORCG  is above the trend, 

and to 0 otherwise. The binary ABD signal ( )BABD  is also estimated similarly. 

(ii) The sum and difference of the binary signals is computed as 

 [ ] ( ) 2B BSUM n RCG ABD= + , 

and 

 [ ] ( ) 2B BDIF n RCG ABD= − . 

When breathing is completely synchronous, SUM  will oscillate between 0 and 1 at around 

the respiratory frequency while DIF  will stay constant at 0 [137]. Conversely, when 

breathing is asynchronous, SUM  will remain constant at 0.5 while DIF  will oscillate 

between -0.5 and 0.5 at around the respiratory frequency [137]. 

(iii) SUM  and DIF  are high-pass filtered at a cut-off frequency of 0.5 Hz to extract the power 

associated with breathing (for details see [137]). In infants, most respiratory-related power 
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lies in the frequency band 0.4 Hz to 2.0 Hz [4, 85]. In contrast, PAU and MVT occur at the 

lower band 0 Hz to 0.4 Hz [5, 85].  

(iv) The power of the high-pass filtered sum signal, HPSUM , is estimated over a two-sided, 

sliding window of length BN  as 

 [ ] [ ]
( )

( )1 2
2

1 2

1 n NB

HP
i n NB B

b n SUM i
N

+ −
+

= − −
=  . (7.9) 

The values of the SYB metric, b+ , will be large for SYB and tend to zero otherwise [137]. 

The ASB metric, b− , is the power of the high-pass filtered difference signal, HPDIF . The 

values of b−  tend to zero during patterns other than ASB, and higher during ASB [137]. 

7.4.3. Unsupervised Classification of Respiratory Patterns 

AUREA applies K-means clustering [162] to these metrics to automatically classify each sample 

into one of 5 categories: PAU, MVT, SYB, ASB, and UNK. 

7.4.3.1. Sample Unbalance and Decision Boundary Adjustment 

Initially, K-means with Euclidean distance was used to classify our data into one of 4 patterns 

(PAU, MVT, SYB, and ASB) applying all metrics as inputs. This provided acceptable results 

when the number of samples for each pattern was similar (i.e., the data set was balanced). 

However, infant respiratory patterns are heavily unbalanced since PAU is rare (< 5 % of the 

data) while SYB is common (> 60 %) [10]. We observed that for such an unbalanced data set the 

clusters produced by K-means misclassified a significant number of the samples belonging to the 

most prevalent category. 

Fig. 7.2 illustrates this showing the decision boundary obtained by K-means (solid, red line) 

when discriminating between samples with “gold standard” classification of PAU against non-

PAU. Using this decision boundary 11 % of the PAU samples (located to the top and right of the 

solid, red line in Fig. 7.2B), and 11 % of the non-PAU samples (from the red line to the bottom 

and left in Fig. 7.2C) were misclassified. However, in this example PAU represented only 15 %
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Fig 7.2. (A) Representative samples of infant data with “gold standard” 

classification of pause (PAU), or non-PAU, scattered as a function of the 

normalized variance of ribcage RCGnv , and abdomen RCGnv . (B) Detail of only PAU 

samples from panel (A). (C) Detail of only non-PAU samples from panel (A). The 

solid, red line corresponds to the original decision boundary determined by K-

means, and the dotted, red line to the boundary adjusted for unbalanced sampling. 
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of the total data, while non-PAU was the remaining 85 %. This meant that misclassified PAU 

samples corresponded to only 1.65 % of the total data, while misclassified non-PAU samples 

corresponded to a much higher 9.35 %, which resulted in a substantial loss of overall 

classification accuracy. 

Consequently, we adjusted the K-means decision boundaries to mitigate the effects of the 

unbalanced data. 

We identified that in a dataset with P  input metrics, the K-means decision boundary between 

two clusters, jC  and mC , forms a hyperplane containing the point P
jm ∈γ   with normal vector 

P
jm ∈ν  ,  

 
,

,

jm m j

jm jm jm jw
= −

= +

ν c c

γ ν c
 (7.10) 

where P
jc ∈  and P

mc ∈  are the centroids of jC  and mC  respectively, and 0.5jmw =  is the 

decision boundary weighting factor that determines the proportion of the Euclidean space 

covered by each cluster. The assignment of sample [ ] Pn ∈x   to cluster jC , termed [ ]{ }L nx , is 

determined as 

 [ ]{ } [ ]( ) 0,j jm jmL n C n m j= ↔ ⋅ − < ∀ ≠x ν x γ . (7.11) 

To adjust for the sample unbalance, we modified decision boundary weighting factor to reflect 

the relative proportion between jC  and mC  as 

 j
jm

j m

w
w

w w
=

+
, (7.12) 

where jw  and mw  were the proportion of samples belonging to jC  and mC  respectively once K-

means had converged. This re-weighting effectively shifted the decision boundary allowing the 

cluster with more samples to cover more space, mitigating the effect of sample unbalance. 
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Fig. 7.2 illustrates the original and adjusted decision boundaries using the example from above. 

Using the adjustment resulted in a net decrease of total misclassifications (from 11 % to 7 %), 

which was produced by reducing the amount of misclassified non-PAU samples (from 11 % to 4 

%), at the expense of increasing the amount of misclassified PAU samples (from 11 % to 24 %). 

7.4.3.2. Training 

AUREA is trained using K-means to determine the classification parameters automatically 

following the next steps. 

(i) Metric Outliers Detection: The metrics may attain unreasonable values during UNK 

segments where the signal quality is bad. For example, an absent signal may have a very 

low variance, which is much lower than that of PAU. K-means tends to create very small 

clusters for such outlying samples, rather than focusing on the data of interest. To avoid 

this, samples corresponding to metric outliers are removed from the training data. Thus, all 

samples with metric values below the 2metricα  quantile, and above the 1 2metricα−  quantile 

are excluded. In this work this parameter was set to 0.001metricα = , since we expected only a 

small fraction of our data to be corrupted since data acquisition was continuously attended 

to ensure high quality in the recordings. 

(ii) Input metrics with large scale or great variability strongly affect the results of K-means 

[163]. To control for this, it is necessary to standardize the metrics. To this end, the median 

and interquartile range (IQR) of each metric are estimated from the training data. Then, 

each metric is standardized by subtracting its median, and dividing by its IQR. 

(iii) Determination of Classification Parameters: Shifting the decision boundaries for all clusters 

simultaneously to adjust for unbalanced sampling will generate an uncertainty region in the 

input space, where instances will not be assigned to any cluster [135]. To avoid this, 

AUREA uses 4 binary K-means classifiers instead of a single, multi-class K-means 

implementation. These classifiers are implemented in series, as illustrated in Fig. 7.3, and 

each decision boundary is adjusted separately. The detailed steps of this implementation 

are: 
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Fig. 7.3. Automated Unsupervised Respiratory Event Analysis (AUREA) training. 

(A) The pause (PAU) metrics from the training data are input to K-means to 

detect PAU samples. (B) The movement artifact (MVT) metrics from the 

remaining data are input to K-means to detect MVT samples. (C) Then, the 

synchronous-breathing (SYB) metric is used with K-means to detect SYB 

samples in the remaining data. (D) Finally, the asynchronous-breathing (ASB) 

metrics is input to K-means to discriminate between ASB and unknown (UNK) 

samples. Classification parameters of the 4 K-means classifiers are stored to use 

with new data. 
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(A) Identify PAU samples. A K-means with 2 clusters is applied to the PAU metrics to 

discriminate between PAU and all other patterns. The starting point for each cluster is 

listed in Table 7.1. The decision boundary is adjusted using equations (7.12) and 

(7.10). Samples belonging to the adjusted PAU cluster are removed from the training 

data set. 

(B) Identify MVT samples. K-means with 2 clusters is applied to the MVT metrics to 

discriminate between MVT and the remaining patterns. Samples classified as MVT 

are removed. 

(C) Identify SYB samples. Apply K-means with 2 clusters to the SYB metric to 

discriminate between SYB and the remaining patterns. Adjust the decision boundary, 

and remove samples classified as SYB. 

(D) Identify ASB samples. Apply K-means with 2 clusters to the ASB metric to 

discriminate between ASB and UNK. Remove samples classified as ASB. 

(E) Classify all remaining samples as UNK. 

(F) Store the metric standardization parameters (i.e., median and IQR of each metric), 

and the classification parameters for each of the 4 K-means classifiers to use with 

new data. These classification parameters comprise the point on the adjusted decision 

boundary ( )jmγ  and the vector normal to this boundary ( )jmν . 

The precedence of patterns was determined based on our previous work [85]. PAU was classified 

ahead of MVT because PAU data could be erroneously classified as MVT. This is because there 

is very little respiratory power during PAU, and even a low-power, low-frequency signal could 

trigger the MVT classifier. MVT was classified second because MVT may have components in 

the respiratory frequency band, which could cause false positive classification of SYB or ASB. 

SYB was classified third because the SYB metric showed better detection performance than the 

ASB metric in our previous work [137]. 

7.4.3.3. Classification 

Once training is completed, new data can be classified using the following steps to yield a signal 

representing the respiratory pattern at each time.  
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Pattern 
of 

Interest 

Metrics 
Used 

Cluster Starting Points 
Justification of Starting Points Pattern of 

Interest 
All Others 

PAU RCGnv  and 

ABDnv  
( )
( )

min

min
RCG

ABD

nv
nv

 
 
 

 ( )
( )

max

max
RCG

ABD

nv
nv

 
 
 

 
Metrics tend to lower values during 
PAU, and higher values for other 
patterns. 

MVT RCGnpp  and 

ABDnpp  
( )
( )

max

max
RCG

ABD

npp
npp

 
 
 

 ( )
( )

min

min
RCG

ABD

npp
npp

 
 
 

 
Metrics tend to higher values during 
MVT, and lower during other 
patterns. 

SYB b+  ( )max b+  ( )min b+  
Metric tends to higher values during 
SYB, and to zero otherwise. 

ASB b−  ( )max b−  ( )min b−  
Metric tends to higher values during 
ASB, and to zero otherwise. 

Table 7.1. Clustering parameters. Starting points were selected based on the 

properties of each metric. PAU = Respiratory pause, MVT = movement artifact, 

SYB = synchronous-breathing, ASB = asynchronous-breathing. 
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(i) Estimate the PAU, MVT, SYB, and ASB metrics from the RCG and ABD signals. 

(ii) Standardize each metric using their median and IQR values obtained during training. To do 

this, subtract the metric median and divide by its IQR. 

(iii) Classify samples using the procedure in Fig. 7.3 and the classification parameters 

determined during training. 

(iv) Identify outliers in each adjusted cluster and reclassify them as UNK. Samples that are 

outliers in a cluster have characteristics different from other samples in the cluster, so they 

should be classified as UNK. To implement this, the adjusted PAU, MVT, SYB, and ASB 

clusters are represented as functions of the 6 input metrics. The centroid of each cluster is 

estimated as the median of the metrics for all samples within each cluster, and the 

Euclidean distance of each sample to its cluster centroid is computed. Samples whose 

distance is greater than the 1 clusterα−  quantile are deemed to be outliers and classified as 

UNK. The cluster outlier detection parameter was set to 0.001clusterα = . 

(v) Patterns are assigned to all samples to generate a continuous signal. The minimum 

expected length of an infant breath is 0.5 s, since infant respiratory frequencies are limited 

to the band 0.4 Hz to 2.0 Hz [85]. Therefore, assigned pattern segments less than 0.5 s long 

are removed to eliminate multiple segments of very short length and reduce fragmentation. 

This operation results in short segments with no pattern assigned, and so interpolation is 

necessary to reclassify their samples. To do this, the first half of the segment is assigned the 

pattern of the preceding segment, and the second half is assigned the pattern of the 

following segment. 

7.5. Performance Evaluation 

This section describes the methods we used to evaluate the performance of AUREA, including 

the clinical dataset, “gold standard” analysis, a classifier from the literature [85] for comparison, 

the cross-validation setup, and a number of performance parameters. Note that clinical data and 

manual scoring analyses used to evaluate performance are described only briefly. They have 

been described in detail previously [10], and are freely available from the Dryad Digital 

Repository (doi:10.5061/dryad.72dk5) [11]. 
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7.5.1. Infant Data and Manual Analysis 

Data were acquired from 21 infants at risk of postoperative apnea (16 male, birth age 31 ± 4 

weeks, postmenstrual age 43 ± 2 weeks, weight 3.6 ± 1.0 kg) immediately after surgery in the 

postanesthesia care unit of the Montreal Children’s Hospital. The study was approved by the 

Institutional Review Board of the McGill University Health Centre / Montreal Children’s 

Hospital. Written, informed parental consent was obtained for each infant recruited. 

The signals acquired were ribcage (RCG) and abdomen (ABD) respiratory inductive 

plethysmography (RIP), as well as photoplethysmography (PPG) and blood oxygen saturation 

(SAT) from an oximeter taped to a digit. Signals were low-pass filtered at 10 Hz, sampled at 

50sf =  Hz, and stored. No attempt was made to calibrate the RIP signals. 

Three scorers with varied backgrounds were recruited and trained to analyze the data. Each data 

record was truncated to a maximum of 20,000 s, and each scorer analyzed the 21 truncated data 

sets twice in independent, randomly ordered instances [10]. Thus, there were 6 sequences 

describing the respiratory patterns of each infant at each time. 

During manual analysis, scorers assigned data samples to one of 6 unique, mutually exclusive 

respiratory patterns [10]: synchronous-breathing (SYB), asynchronous-breathing (ASB), sigh 

(SIH), respiratory pause (PAU), movement artifact (MVT), or unknown (UNK). 

7.5.2. “Gold Standard” 

The 6 manual scoring sequences were combined using Expectation-Maximization (EM) as 

described in Chapter 5 to yield a “gold standard” classification of the respiratory patterns. 

Briefly, an initial estimate of the “gold standard” was obtained using the majority vote, i.e., each 

sample was scored as the pattern assigned/voted by the majority. The confusion matrix of each 

scoring sequence was then estimated using the initial “gold standard” as reference. After that, the 

“gold standard” was re-estimated by weighting the votes in each scoring sequence by its 

estimated confusion matrix. The final estimate of the “gold standard” was obtained by iterating 

this process until convergence. 
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7.5.3. Supervised Classifier 

The performance of AUREA was compared to that of the Automated Off-line Respiratory Event 

Detector (AORED) presented in [85]. AORED compared metrics of respiratory behavior to 

thresholds to individually detect PAU, MVT, or ASB patterns. These metrics were similar in 

concept to those used in AUREA, although implemented quite differently [85]. 

Training. To determine AORED thresholds, the “gold standard”, manual classification was used 

to estimate two nonparametric probability density functions (PDF) for each metric: one for 

samples classified as the pattern of interest (e.g., PAU, MVT, or ASB), and one for samples 

classified as SYB. Regarding the metrics as pattern detectors, the PDFs were used to generate the 

Receiver Operating Characteristics (ROC) curves relating the probability of detection ( DP ) to the 

probability of false alarm ( FAP ) as a function of the threshold. The value of the threshold for each 

metric was selected to provide the best tradeoff between DP  and FAP , defined as the point in the 

ROC curve farthest from the chance line (this line is where D FAP P= , and corresponds to the 

performance of a coin-toss classifier). 

Classification. The respiratory pattern was determined by combining the output of the individual 

pattern detectors with the following precedence: PAU had the highest priority so when PAU was 

detected the other pattern detectors were forced to zero. MVT was assigned the second level of 

precedence with the output of the ASB detector forced to zero when MVT was detected. ASB 

had the third level of precedence. Samples with no pattern assigned were scored as SYB. This 

method was not designed to classify UNK samples. 

7.5.4. Cross-validation 

Leave-one-patient-out cross-validation was used to evaluate the generalization ability and 

repeatability of AUREA and AORED. Fig. 7.4 illustrates the cross-validation procedure. The 

dataset was split in three disjoint parts: (i) 1 record was used for testing, (ii) 19 records were kept 

for training, and (iii) 1 record was excluded. Thus, for a given testing record, it was possible to 

have 20 different training sets by keeping 19 of the remaining 20 records in the training data and 

excluding 1 at a time. This allowed the evaluation of the classifiers under varied training 
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Fig 7.4. Cross-validation setup. The full dataset was split into three sets: (i) 

training, with 19 data records, (ii) testing, with 1 record, and (iii) excluded, with 1 

record. 
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conditions, while still maximizing the amount of data used for training. Classification parameters 

for both AUREA and AORED were obtained using the training set, and then these parameters 

were used to classify the testing set. The process was repeated for all possible combinations of 

data records in the testing and excluded sets, giving 20 different classifier instances for AUREA 

and 20 for AORED to be used with each testing record. 

7.5.5. Performance Evaluation Parameters 

We compared AUREA to AORED in terms of the ability to reproduce the “gold standard” 

classification. The following sections describe the evaluated parameters. All results were 

obtained from the testing performance obtained with cross-validation. 

7.5.5.1. Preliminary Considerations 

Segments scored as MVT in the “gold standard” are data corrupted by non-respiratory 

movements. These data should be excluded in studies using the analysis of respiratory patterns to 

obtain physiological information. A similar argument applies to segments scored as UNK, since 

they have high noise, bad signal quality, or ambiguous patterns. For this reason, we joined MVT 

and UNK to form a single pattern category termed “bad data” (BAD). 

Additionally, AUREA does not support classification of SIH, so all samples scored as SIH were 

excluded from all analyses. This amounted to < 2 % of the total dataset. 

The values of the parameters used to estimate AUREA’s respiratory metrics are described in 

Table 7.2. Parameters for AORED were set as indicated in [85]. 

7.5.5.2. Statistical Analysis 

Significant differences in median values were assessed using the Wilcoxon rank-sum test [141] 

with a p-value < 0.01 considered to be statistically significant. 

7.5.5.3. Detection Performance 

AUREA and AORED were used to classify all samples in the test set and the probabilities of 

detection ( )DP  and false alarm ( )FAP  for each pattern were determined. 1DP =  indicates that all 

samples were correctly classified, and 0DP =  indicates that no samples were correctly classified.
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Metric 
Type 

Parameter Value Rationale 

PAU 

q  0.5 In [10] we observed that infants have a SYB pattern more 
than 60 % of the time. Thus, we considered that a 
normalization quantile equal to the median should provide 
an appropriate reference to normal SYB values on a 
normalization window 2 min long. 

QVN  2 min 

VN  1 s 
To allow for a fast response and the detection of short 
pauses. 

DTN  5 s Based on previous work [85, 138]. 

MVT 

MAN  1.42 s 

The length of the moving average filter was selected such 
that the filter nulls were at harmonics of the most frequent 
respiratory frequency, defined by the mode of the 
respiratory frequency histogram computed from the entire 
clinical data set. This frequency was 0.7 Hz (i.e., 42 breaths 
per minute). 

q  0.01 Based on previous work [85, 138] 
QNPPN  10 min 
RMSN  5 s 
DTN  5 s 

SYB 
and 
ASB 

SMON  0.42 s Based on previous work [137] 
BN  2 s 

DTN  2 s 
Table 7.2. Parameter Selection for Metrics of Respiratory Behavior 

  



7. Automated Unsupervised Analysis of Infant Respiratory Patterns 
 

 
 
 7-23 Final e-Thesis 

0FAP =  indicates that no samples were incorrectly classified, while 1FAP =  shows that all negative 

samples were false positives. Thus, the ideal detection performance corresponds to 1DP =  and 

0FAP = . 

The DP  for PAU was estimated as 

 
PAU

PAU
D PAU

TPP
P

= , (7.13) 

where PAUTP  was the number of samples correctly classified by the automated method as PAU, 

and PAUP  was the total number of samples “gold standard” scored as PAU (i.e., positives). 

Similar SYB
DP , ASB

DP , and BAD
DP  were estimated for SYB, ASB, and BAD respectively. 

The FAP  for PAU was estimated as 

 
PAU

PAU
FA PAU

FPP
N

= , (7.14) 

where PAUFP was the number of samples incorrectly classified as PAU (i.e., false positives), and 

PAUN  was the number of samples with “gold standard” score not equal to PAU (i.e., negatives). 

Similar SYB
FAP , ASB

FAP , and BAD
FAP  were estimated for SYB, ASB, and BAD respectively. 

D-values, D FAd P P= − , were estimated for each classifier to provide a single performance 

parameter. The d-value measures the normalized distance of any point on the ROC curve from 

the chance line [139]. A value of 0d =  corresponds to a DP  and FAP  combination that lies on the 

chance line, while 1d =  indicates perfect classification. 

7.5.5.4. Accuracy and Consistency 

The cross-validation procedure generated 20 different classification sets for each of the 21 test 

data records, yielding a total of 420 classification sets. Accuracy was measured as the agreement 

between the classifier and the “gold standard” for each classification set. Consistency was 

measured as the agreement among the 20 classification sets produced for the same test data 

record. 
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Agreement was assessed on a sample-by-sample basis using the Fleiss’ κ statistic [133] for inter-

scorer agreement. This κ implementation generalizes the traditional Cohen’s   statistic [136] to 

evaluate agreement between multiple scorers when classifying observations into two or more 

categories. Values of κ were interpreted according to the intervals proposed in [140]: κ < 0: poor, 

0 ≤ κ ≤ 0.2: slight, 0.2 < κ ≤ 0.4: fair, 0.4 < κ ≤ 0.6: moderate, 0.6 < κ ≤ 0.8: substantial, and 0.8 

< κ ≤ 1: almost perfect. Results are listed as: Median [1st Quartile, 3rd Quartile]. 

7.5.5.5. Detection Delay 

To assess the delay with which AUREA and AORED detected each pattern, we identified all 

“gold standard” classified segments, defined as sets of contiguous samples with the same 

assigned pattern for a minimum length of 0.5 s. Each segment was described by 3 properties: (i) 

pattern type, (ii) start time ( )ST , and (iii) end time ( )ET . Fig. 7.5A illustrates these ST  and ET  with 

an example. 

A “gold standard” segment was considered to have been detected by a classifier if more than 50 

% of its samples were assigned the correct pattern. 

The detection start ( )ŜT  and end ( )ÊT  times of AUREA and AORED were estimated for each 

“gold standard” segment. Fig. 7.5B illustrates ŜT  and ÊT  with examples. ŜT  was defined by the 

first sample that was correctly classified, and either it was part of the “gold standard” segment, or 

it occurred before the “gold standard” segment but was contiguous to a detected segment. ÊT  was 

determined by the last sample that was classified correctly, and either it was part of the “gold 

standard” segment, or it occurred after the “gold standard” segment but was contiguous to a 

detected segment. 
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Fig. 7.5. Segment properties. (A) “Gold standard” segment. (B) Sample segments 

detected by an automated classifier. ST  = start time, ET  = end time, ŜT  = detection 

start time, and ÊT  = detection end time. 
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The start delay was estimated as ˆ
S S ST T TΔ = − ; a positive STΔ  indicated that the segment was 

detected late, and a negative STΔ  meant that the segment was detected ahead of time. The end 

delay was estimated similarly as ˆ
E E ET T TΔ = − ; a positive delay indicated that the segment was 

terminated late, while a negative value showed that the segment was terminated prematurely. 

7.6. Results 

This section reports the results of the performance evaluation, comparing the ability of AUREA 

and AORED to replicate the classification provided by the “gold standard”. 

7.6.1. Detection Performance 

Fig. 7.6 shows the d-values for AUREA and AORED. AUREA performed better than AORED 

for all patterns. The difference was greatest for PAU, where AUREA had a 0.73d =  and AORED 

a 0.53d = . The second greatest difference was in SYB, with a 0.78d =  for AUREA and 0.70d =  

for AORED. The differences in ASB and BAD were ≤ 0.03. 

Table 7.3 shows the DP  and FAP  values of AUREA and AORED for all respiratory patterns. All 

AUREA DP  values were greater than 0.7. PAU
DP  and SYB

DP  were significantly higher for AUREA 

than AORED. BAD
DP  reached statistical significance, but the values were very similar as 

evidenced by the equal medians and similar quartiles. In the case of FAP , differences between 

AUREA and AORED reached statistical significance, but these differences were small. 

7.6.2. Accuracy and Consistency 

Fig. 7.7 shows the accuracy and consistency results. AUREA had substantial accuracy (κ = 0.68 

[0.64, 0.69]), and this accuracy was significantly higher (p-value < 0.01) than that of AORED (κ 

= 0.6 [0.56, 0.62]), as expected from the differences in d-values. The two classifiers had almost 

perfect consistency, with κ values of 0.98 or higher. 

7.6.3. Detection Delay 

Table 7.4 shows the start and end delays for AUREA and AORED. Overall, AUREA was always 

as good as or better than AORED. Both AUREA and AORED had negligible (i.e., STΔ  and 
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Fig. 7.6. Comparison of AUREA (blue) and AORED (green) in terms of their d-

values (i.e., the probability of detection minus probability of false alarm). Bars 

indicate the median, and the red error bars span the interquartile range. An ‘*’ 

indicates a p-value < 0.01. PAU = respiratory pause, SYB = synchronous-

breathing, ASB = asynchronous-breathing, BAD = bad data. 
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Parameter AUREA AORED p-value 
PAU

DP  0.77 [0.74, 0.81] 0.55 [0.51, 0.62] < 0.01 
SYB

DP  0.86 [0.83, 0.88] 0.78 [0.75, 0.83] < 0.01 
ASB

DP  0.71 [0.69, 0.80] 0.71 [0.65, 0.76] 0.05 
BAD

DP  0.76 [0.72, 0.79] 0.76 [0.72, 0.80] < 0.01 
PAU

FAP  0.04 [0.03, 0.04] 0.02 [0.02, 0.03] < 0.01 
SYB

FAP  0.07 [0.06, 0.09] 0.08 [0.07, 0.11] < 0.01 
ASB

FAP  0.03 [0.03, 0.05] 0.05 [0.04, 0.08] < 0.01 
BAD

FAP  0.11 [0.11, 0.13] 0.15 [0.11, 0.20] < 0.01 
Table 7.3. Probabilities of Detection ( )DP  and False Alarm ( )FAP  of the automated 

classifiers of respiratory patterns. Results presented as: Median [1st Quartile, 3rd 

Quartile]. PAU = respiratory pause, SYB = synchronous-breathing, ASB = 

asynchronous-breathing, BAD = bad data. 
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Fig. 7.7. (A) Accuracy and (B) consistency of AUREA (blue), and AORED 

(green). Bars indicate the median, and the red error bars span the interquartile 

range. An ‘*’ indicates a p-value < 0.01. The black-dotted line in (A) indicates the 

limit between moderate and substantial accuracy. 
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Parameter Pattern AUREA AORED p-value 

STΔ  (s) 

Overall -0.08 [-0.78, 0.36] -0.22 [-2.14, 0.42] < 0.01 
PAU 0.00 [-0.26, 0.20] 0.06 [-0.18, 0.34] < 0.01 
SYB 0.12 [-0.42, 1.00] 0.04 [-0.80, 1.48] < 0.01 
ASB -0.16 [-0.88, 0.28] -0.58 [-3.10, 0.22] < 0.01 
BAD -0.84 [-2.22, -0.02] -1.88 [-4.58, -0.40] < 0.01 

ETΔ  (s) 

Overall -0.04 [-0.46, 0.64] 0.18 [-0.44, 2.20] < 0.01 
PAU -0.12 [-0.32, 0.14] -0.12 [-0.36, 0.10] < 0.01 
SYB -0.20 [-1.02, 0.28] -0.12 [-1.50, 0.68] < 0.01 
ASB 0.10 [-0.42, 0.82] 0.62 [-0.22, 3.04] < 0.01 
BAD 0.64 [-0.16, 2.22] 1.96 [0.38, 4.80] < 0.01 

Table 7.4. Start ( )STΔ  and end ( )ETΔ  detection delays of the automated classifiers 

of respiratory patterns. Results presented as: Median [1st Quartile, 3rd Quartile]. 

PAU = respiratory pause, SYB = synchronous-breathing, ASB = asynchronous-

breathing, BAD = bad data. 
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ETΔ  < 0.5 s) overall median start and end delays. This indicates that there was no systematic 

error for either classifier when considering all respiratory patterns combined. The main 

difference between the classifiers was in the interquartile range (IQR), defined as the difference 

of the 3rd quartile minus the 1st quartile. A shorter IQR indicates higher precision, a desirable 

property. AUREA overall delays were very close to the median with IQR values of around 1.1 s, 

less than half those of AORED, which were around 2.5 s. 

In the pattern-specific evaluation on Table 7.4, AUREA showed negligible median start and end 

delays for PAU, SYB and ASB. AORED behaved similarly for PAU and SYB only, but showed 

significantly higher delays for ASB; it started segments 0.58 s ahead of time, and terminated 

them 0.62 s late. AUREA detected BAD segments 0.84 s early, and terminated them 0.64 s late. 

This represented a median lengthening of 1.48 s per BAD segment. This was significantly 

shorter than that estimated by AORED, which started BAD segments 1.88 s early, and 

terminated them 1.96 s late, representing a total median extension of 3.84 s. 

AUREA was more precise than AORED for SYB, ASB, and BAD. The IQR values of AUREA 

were between 1.6 ( STΔ  of SYB) and 2.9 ( STΔ  of ASB) times lower than those of AORED. The 

precision of both classifiers was similar for PAU (IQR values were around 0.5 s). 

7.7. Discussion 

This work presented AUREA, a novel, completely automated method to classify respiratory 

patterns from respiratory inductive plethysmography (RIP) signals. AUREA classifies 

respiratory patterns sample-by-sample into one of 5 types: respiratory pause (PAU), 

synchronous-breathing (SYB), asynchronous-breathing (ASB), movement artifact (MVT), and 

unknown (UNK). AUREA has the following advantages: 

(i) it is much faster than the “gold standard” manual scoring; 

(ii) it is fully automated requiring no human intervention, so it is low-cost and objective; 

(iii) it comprehensively classifies the respiratory patterns on a sample-by-sample basis; 

(iv) it performs significantly better than AORED, a previous Automated Off-line Respiratory 

Event Detector [85]; 
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(v) it has perfect consistency, and substantial accuracy when compared to the “gold standard”, 

which makes it a repeatable, reliable means to comprehensively analyze infant respiratory 

patterns; and 

(vi) it is amenable for real-time classification of respiratory patterns. 

7.7.1. Interpretation of Results 

AUREA had substantial accuracy when compared to the “gold standard”, as well as almost 

perfect consistency, which makes it a reliable and repeatable method. Additionally, it had 

negligible detection delays. 

AUREA classified respiratory patterns with substantial accuracy, contrasted to AORED, whose 

accuracy was only borderline substantial, and about 50 % of the times it was only moderate. 

AUREA had better detection performance than AORED in all respiratory patterns. This was 

especially marked for PAU, where the probability of detection of AUREA was 0.77DP = , 

compared to a 0.55DP =  of AORED.  Moreover, AUREA was able to achieve high DP  values, 

while keeping low probabilities of false alarm ( )FAP . In fact, when we combined DP  and FAP  to 

yield the d-value, a measure of overall detection performance [139], AUREA was significantly 

better than AORED in all patterns. 

AUREA was also better than AORED at detecting the start and end times of pattern segments. 

AUREA estimated these times with negligible bias (< 0.1 s), and high precision (IQR ≈ 1.1 s). In 

contrast, AORED had a small bias (≈ 0.2 s) and lower precision (IQR ≈ 2.5 s). Thus, AUREA 

was better at estimating the length of a segment, a property that is very important for the study of 

apnea, since apneic events are defined by PAU length. 

7.7.2. Training Considerations 

AUREA assumes that all respiratory patterns exist in the training data. The validity of this 

assumption increases with the amount of training data, so it is recommended to train with the 

most possible data. A large training set from several subjects can also help to minimize over-
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fitting, since its use would result in a more generalized classifier that would be more 

representative of the population. 

AUREA was designed with the intention to be implemented in real-time. For this reason, training 

and classification were split as two independent stages; training occurred first, and classification 

of an independent record was performed once the classification parameters had been obtained. 

However, there may be situations where the analysis can be performed off-line, or there is few 

data available for training. In these cases, it may be better to use all available data to train 

AUREA, and then use the classification parameters to classify them. Such an off-line 

implementation would maximize the amount of training data, which increases the chances of 

having all patterns represented. 

7.7.3.  Comparison to Other Methods 

AUREA performs a comprehensive, sample-by-sample classification of the respiratory patterns. 

AORED was used throughout the paper as a comparison to AUREA because it is the only 

available method in the literature that performs a similar analysis. However, other methods have 

been developed to analyze some aspect(s) of the respiratory patterns. This section compares 

several characteristics of these methods to those of AUREA. 

7.7.3.1. Trend Removal 

Respiratory signals often contain a low frequency trend [85]. The method in [91] de-trends the 

signal by using the second difference with respect to time. This process may be problematic 

since it tends to amplify high-frequency noise, especially when signal-to-noise ratio is low. In 

contrast, AUREA estimated the low frequency trend by passing the signal through a moving-

average filter. This averaging process attenuated additive white noise, removed high frequency 

noise, and yielded a smooth estimate of the trend [138]. The de-trended signal was obtained by 

subtracting the trend from the raw signal.  

7.7.3.2. Unsupervised Classification 

Previous detectors of respiratory patterns have required the selection of thresholds to perform the 

classification. The approach has been to either select an arbitrary threshold [3, 5, 86, 87, 92], or 



7. Automated Unsupervised Analysis of Infant Respiratory Patterns 
 

 
 
 7-34 Final e-Thesis 

determine the threshold based on data manually analyzed by experts [85]. The first strategy is 

subjective, and may not yield optimal results due to poor threshold selection. The second strategy 

can find the threshold that optimizes the relation between DP  and FAP , but still requires a sample 

of data manually analyzed by expert scorers. 

AUREA automatically determines the classification parameters with no human intervention by 

using clustering, an unsupervised machine learning approach. This made AUREA a fully 

automated, completely objective method, which was fast to implement given that no manual 

analysis was required. 

7.7.3.3. Comprehensive Classification of Respiratory Patterns 

Most of the methods for the study of respiratory patterns have focused on detecting a single 

pattern of interest, e.g., PAU or apnea [86, 87, 89-91, 93], ASB [4, 71, 116], or MVT [3, 5]. 

However, it may be possible that simultaneous classification of multiple patterns would 

significantly improve the overall classification performance, as recognized by De Groote et al. 

[80]. 

AUREA discriminates between multiple respiratory patterns simultaneously by combining 

several metrics of respiratory behavior. By doing this, AUREA yielded a comprehensive 

classification describing the full sequence of respiratory patterns at each time, with high accuracy 

and consistency, and almost no delay.  

This analysis produced by AUREA describes the occurrence of patterns in time, as well as the 

sequencing of these patterns. These properties could be used to determine the relationship 

between different postoperative respiratory patterns and postoperative apnea (POA), and study 

other respiratory conditions like extubation readiness [120], bronchopulmonary dysplasia, and 

others. 

7.7.3.4. Sample-by-sample Analysis 

The manual scoring guidelines provided by the American Academy of Sleep Medicine (AASM) 

require scorers to classify only segments with apneic events [8]. Thus, much of the data is not 

classified, and so cannot be used for further analysis. In contrast, AUREA assigns a respiratory 
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pattern to each sample. This comprehensive, continuous classification enables the application of 

signals and systems, and time-series analysis to the data, broadening the spectrum of tools that 

may be used to study the respiratory patterns. 

AUREA analyzes data on a sample-by-sample basis, so we thought it was important analyze its 

performance on the same sample-by-sample scale. This type of evaluation is the most accurate 

because it takes into account every sample, but it is also the strictest, because every misclassified 

sample reflects negatively on the performance. AUREA performed very well under this scheme. 

In contrast, most other studies involving automated detectors of respiratory patterns have opted 

for more lenient evaluations. 

The most popular approach is an epoch-by-epoch scheme, where data are split into epochs of 30 

s, or epochs of 15 s [80], and up to 1 min [94]. However, with this approach if an epoch contains 

the pattern of interest (e.g., a PAU), the full epoch is deemed to be correctly classified even if 

only a short portion of the pattern of interest was actually identified. Thus it will overestimate the 

detection probabilities. 

Another scheme is the segment-by-segment, or event-by-event evaluation, in which an 

automatically detected segment is deemed to be detected if at least part of it overlaps a “gold 

standard” scored segment [92]. This scheme will also overestimate performance, since segments 

are counted as correct, even if only a fraction of the data is classified correctly. 

7.7.4. Possible Limitations and Future Work 

7.7.4.1. Management of Sample Unbalance 

We used K-means clustering to classify respiratory patterns in an unsupervised fashion. 

However, K-means required an adjustment to the decision boundaries due to sampling 

unbalance. Future work should attempt to improve classification performance by implementing a 

different sample re-balancing strategy [164],  where training is performed on data pre-processed 

such that all respiratory patterns are evenly represented. Sample re-balancing could be done by 

reducing the samples from the pattern that is oversampled, and obtaining additional pseudo-

samples with a procedure like the Synthetic Minority Over-sampling Technique (SMOTE) [165].  
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7.7.4.2. Training with Limited Data 

When there is few training data it may be possible that one or more respiratory patterns are not 

represented. This is especially important for PAU and ASB, since each is present less than 5 % 

of the time in infants at risk of POA [10]. It is possible that the K-means classifiers would not 

find clusters for such patterns, but this hypothesis was not evaluated. Future work should 

evaluate this scenario in an attempt to determine the minimum amount of data required for 

appropriate training. This could be achieved by training AUREA with subsets of the clinical data 

where the number of samples with “gold standard” classification of PAU and/or ASB is 

gradually reduced until they are completely removed, and assessing the accuracy of AUREA 

under these circumstances. 

7.7.4.3. Sigh Classification 

The work in [10] defined 6 unique, mutually exclusive respiratory patterns. AUREA was 

designed to classify 5 of them: PAU, SYB, ASB, MVT, and UNK. The 6th pattern was sigh 

(SIH), which only represents a small portion of the respiratory patterns (e.g., SIH comprised only 

< 2 % of the clinical data set used in this work). AUREA assigned samples with “gold standard” 

classification of SIH to the other 5 patterns with these probabilities: PAU 0.01, SYB 0.11, ASB 

0.01, MVT 0.81, and UNK 0.05. Since AUREA assigned most “gold standard” SIH samples to 

MVT, SIH classification could be accomplished by having a post-processing step to distinguish 

between SIH and MVT in samples classified as MVT. Future work should attempt this to enable 

SIH classification in AUREA, since literature reports that in infants SIH and apnea may be 

linked [25, 153]. 

7.7.5. Significance 

7.7.5.1. Evidence-based Definition of Apnea 

AUREA detected PAU segments very well, and estimated their start and end times with no bias 

and high precision. Thus, AUREA can accurately determine the length of PAU segments. This is 

a relevant property that is required by studies of apnea, since a key component in the definition 

of apnea is PAU length. 
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Apnea definitions often qualify events as clinically relevant if they are accompanied by 

decreased heart rate (bradycardia) or drops in blood oxygen saturation (desaturation). However, 

these definitions are arbitrary and are based on physician experience and subjective judgments. 

AUREA, in conjunction with measures of heart rate and blood oxygen saturation, could provide 

the means to establish better, evidence-based, objective definitions of apnea, by studying which 

sequences of respiratory patterns are associated with bradycardia and/or desaturation. 

7.7.5.2. Improved Analysis of Respiratory Patterns 

AUREA provides an objective, fast, reliable, repeatable, and low-cost means of analysis of 

respiratory patterns. It had substantial accuracy when compared to the “gold standard”, and did 

not share limitations associated with manual scoring. 

AUREA makes it possible to carry out large studies of respiratory patterns, involving multiple 

institutions, given that it can analyze data quickly and with no added costs. Moreover, AUREA 

has almost perfect consistency, so results can be easily compared among institutions. This 

consistency also enables the development of longitudinal studies, where the respiratory patterns 

of patients need to be assessed in a repeatable way, to be compared at multiple times in life. 

These types of studies have not been possible with conventional manual (CMS) scoring due to its 

high variability and cost.  

AUREA is amenable for real-time implementation. Thus, it could be implemented at the bedside 

at hospitals or even at home. This would allow for a comprehensive, real-time monitoring of 

respiratory patterns of patients, which would provide evidence for improved clinical decision 

making. This evidence could be used to improve patient management, as well as to better 

distribute hospital resources.  

7.7.5.3. Study of Postoperative Respiratory Patterns 

There is evidence that postoperative apnea (POA) events are associated with abnormal 

respiratory patterns [14, 20, 24]. This suggests that an analysis of the underlying postoperative 

respiratory patterns could be used to estimate the risk of POA, and the time at which this risk 

abates. AUREA enables this by providing an objective, and reliable classification of the 
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respiratory patterns, which could be used to identify relationships between patterns, or sequences 

of patterns, and the risk of POA. 

In fact, Cote et al. [17] recognized that standardized, continuous monitoring was necessary to 

better study POA. This can be performed with AUREA, which also has the potential to be 

implemented in real-time at the bedside.  

7.7.5.4. Other Studies of Respiration 

AUREA was developed for the study of the respiratory patterns of infants at risk of POA. 

However, it has multiple applications in other fields involving respiration such as: (i) apnea of 

prematurity, (ii) prediction of extubation readiness [120], (iii) sudden infant dead syndrome, (iv) 

asthma, (v) bronchopulmonary dysplasia, and (vi) sleep apnea, among others. 

7.8. Conclusion 

We presented AUREA, a completely automated method for unsupervised classification of 

respiratory patterns using RIP signals, and successfully applied it to data from infants recovering 

from surgery and anesthesia. AUREA eliminates the shortcomings of human intervention, while 

comparing favorably to the “gold standard”, and performing substantially better than a previous 

method based on supervised classification [85]. 
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8. Discussion and Future Work 

8.1. Summary 

Evidence suggests that a comprehensive analysis of the postoperative respiratory patterns may 

provide insight about the probability of an infant suffering postoperative apnea (POA) [14, 19, 

20, 24, 39]. This could help to identify those infants at risk, and also determine how long after 

surgery this risk persists. 

However, two main limitations have hindered the study of the postoperative respiratory patterns. 

First, there is no available data representative of infants at risk of POA. Second, existing analysis 

methods are not adequate. The most accepted method is conventional manual scoring (CMS), 

which is performed by expert scorers using the guidelines from the American Academy of Sleep 

Medicine (AASM) [8]. This method has several limitations: it has low intra- and inter-scorer 

repeatability [9], is labor intensive, time-consuming, and expensive. Automated methods have 

been developed that address some of these limitations, but as yet there is no comprehensive, 

reliable alternative to CMS. 

The objective of this thesis was to address these limitations by: (i) acquiring a representative 

dataset of postoperative respiratory patterns from infants at risk of POA, and making these data 

available to the public; and (ii) improving tools for the analysis of infant respiratory patterns by 

developing a comprehensive, reliable (i.e., high accuracy), repeatable (i.e., high consistency), 

fast, and low-cost methodology to classify the respiratory patterns as a function of time. 

The work described in this thesis included the acquisition of cardiorespiratory data from infants 

at risk of POA. Infants recruited to the study had a postmenstrual age (PMA) of 60 weeks or less, 

since this is the most important clinical risk factor [14, 17, 37, 39, 41, 45, 46]. Data acquisition 

started immediately after surgery, and continued for up to 12 h [14], since the first POA may 

occur within the first hours and up to 12 h postoperatively [14-16]. Measurements were made 

using Respiratory Inductive Plethysmography (RIP) for respiratory movements and an oximeter 

for blood oxygen saturation (SAT) and photoplethysmography (PPG). These sensors were 

selected because they are noninvasive, do not cover the face (and so do not interfere with the 



8. Discussion and Future Work 
 

 
 
 8-2 Final e-Thesis 

infant’s breathing, feeding or care), and RIP measurements can detect periods of airway 

obstruction [8, 55, 56]. This last point was especially important because a significant proportion 

of POA events has an obstructive component, which leads to larger decreases in SAT than do 

central POA [19].  

With respect to the analysis of these data, it was necessary to develop a method to analyze large 

datasets with high accuracy and consistency. Given the length of records in the data set (~12 h 

per recording), it was necessary to automate the analysis to make it low-cost and fast. However, 

to establish the validity of the automated method, it was essential to evaluate it against an 

accurate “gold standard” reference. Currently the most accepted analysis of respiratory patterns 

is CMS based on AASM guidelines [8]. However, CMS cannot produce a reliable analysis due 

to its low intra- and inter-scorer repeatability [9]. Moreover, AASM guidelines only define 

“clinically relevant” events (i.e., central, obstructive, and mixed apnea), but do not consider the 

other respiratory patterns that occur postoperatively (e.g., short pauses, sighs, thoraco-abdominal 

asynchrony). As a result large sections of data records are not scored, and therefore no 

conclusions can be drawn from the respiratory patterns in those sections. Moreover, in infants 

there is no consensus as to the length threshold that separates an apnea from a short pause. For 

instance, the American Academy of Pediatrics (AAP) defines the threshold as 20 s [166], but 

other studies frequently use lengths of 15 s [14, 22, 34, 52, 167, 168] or others [169]; moreover 

these thresholds were chosen based on subjective clinical observations and judgment, rather than 

objective experimental evidence. 

For these reasons, we felt it necessary to develop a set of tools to support the comprehensive, 

manual analysis of infant respiratory patterns, to use as a “gold standard” reference. The 

resulting tool set included: definitions for all patterns encountered in infant respiratory data, i.e., 

synchronous-breathing (SYB), asynchronous-breathing (ASB), sigh (SIH), respiratory pause 

(PAU), movement artifact (MVT), and unknown (UNK); rules to apply these definitions; and 

software to facilitate application of the rules to infant data. Use of these tools yields an improved 

manual analysis that assigns a respiratory pattern type to every sample in the recording, resulting 

in a continuous signal describing the instantaneous respiratory pattern. 
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To further reduce intra- and inter-scorer variability of the manual analysis, we developed a 

method based on Expectation-Maximization (EM) to combine the results from multiple, manual 

scorers. We showed that this method yields a more accurate and consistent analysis than those of 

individual, manual scorers, resulting in a high quality “gold standard” reference. 

An important aspect not available in the literature was an automated method that could 

comprehensively analyze the respiratory patterns, and deliver a continuous signal representing 

the instantaneous respiratory pattern similar to the “gold standard” analysis. Previous methods 

were designed to detect isolated segments of either PAU or MVT, or to estimate the degree of 

ASB. Thus, we combined PAU, MVT, and ASB detectors to yield AORED, an Automated Off-

Line Respiratory Event Detector for comprehensive classification of the instantaneous 

respiratory pattern. 

In the literature there were two main types of automated PAU detectors, those based on metrics 

from the amplitude of respiratory signals compared to thresholds [86, 87, 91], and those that 

estimate several features and input these to specialized classifiers [89, 90]. Our review in Chapter 

2 showed that PAU detectors based on amplitude metrics and thresholds performed as well as 

methods using more complex classifiers. Thus, AORED estimated metrics of respiratory signal 

amplitude and compared them to thresholds to detect PAU. With respect to ASB, we decided to 

incorporate the XOR method developed by Motto et al. [4] into AORED since it performs better 

than any other available method, especially during high noise conditions. Finally, in the case of 

MVT detection, our review revealed that for infants, the best available detector was that 

developed by Aoude et al. [5], and so we decided to incorporate this detector as well. 

An important limitation of many previous, threshold-based, PAU detectors is that they suffer 

from high probabilities of false alarm ( )FAP  [86, 87]. We believe that this likely resulted from 

inappropriate threshold selection, since these studies used only arbitrary thresholds. In fact, one 

apnea detector that optimized the threshold based on the manual analysis from expert scorers 

[91] had a much lower FAP  than those with arbitrary thresholds. However, neither the TAA 

estimator from [4] nor the MVT detector from [5] addressed the problem of how to estimate the 
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optimum threshold. For AORED, we developed a systematic, evidence-based method for 

threshold selection using ROC analysis based on a reference set of manually analyzed data. 

Later, we explored the use of K-means clustering [162], an unsupervised machine learning 

technique, to determine the thresholds automatically and classify the instantaneous respiratory 

pattern without the need of any manual analysis. As a result, we developed AUREA, an 

Automated Unsupervised Respiratory Event Analysis system that requires no human intervention 

to reproduce the “gold standard” analysis with high accuracy and consistency. 

AUREA estimates metrics of respiratory behavior from RIP signals, and uses them to classify 

samples into one of 5 types of respiratory patterns: SYB, ASB, PAU, MVT, and UNK. The 

analysis produced by AUREA agrees substantially with the “gold standard” analysis, but is much 

faster and does not share the limitations associated with manual scoring. Moreover, AUREA is 

significantly more accurate than AORED, which makes it the method of choice for analysis of 

infant respiratory patterns. 

8.2. Original Contributions 

8.2.1. Library of Infant Data 

The first contribution from this thesis is the acquisition of a library of cardiorespiratory data from 

infants at risk of POA, and its deposition in a public archive [11]. These data represent a valuable 

collection of cardiorespiratory signals because they: (i) are representative of infants at risk of 

POA; and (ii) were acquired continuously, starting immediately after surgery and lasting for up 

to 12 h, and so can be used to study the postoperative respiratory patterns and their relation to 

POA. We made these data fully available to the public, without restriction [11]. 

This is a unique set of data since there is no other equivalent data available. The most similar 

dataset is from the Collaborative Home Infant Monitoring Evaluation (CHIME) study [118], 

which is a collection of overnight, cardiorespiratory signals from more than 1,000 infants. 

However, the CHIME dataset is not from infants at risk of POA, and it only comprises a few 

seconds before and after automatically-detected periods of slow heart rate or apnea, so it is not 
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possible to study respiratory patterns as a continuous sequence of events. This library will enable 

the development of new methods to analyze infant cardiorespiratory data, and will also help 

advance the clinical understanding of POA. 

8.2.2. Comprehensive Classification of Infant Respiratory Patterns 

The second contribution of this work is a methodology for the comprehensive classification of 

infant respiratory patterns. We identified 6 unique, mutually exclusive patterns that may be 

observed in Respiratory Inductive Plethysmography (RIP) signals from infants recovering from 

surgery and anesthesia. Furthermore, we developed explicit, concise definitions for these 

patterns, established manual scoring rules to assign the patterns to signal segments, and made 

these definitions and scoring rules publicly available [10]. 

Previous CMS analyses only produced a list of “clinically relevant” events (e.g., apnea) and the 

time of their occurrence, but failed to account for patterns not considered “clinically relevant” by 

the AASM guidelines [8]. However, these discarded patterns may provide information about 

future POA events, so it is important to include them in the analysis. Our definitions and scoring 

rules addressed this by including these patterns into the analysis. 

8.2.3. Manual Scoring Tools 

We developed a set of tools that support the efficient, manual scoring of cardiorespiratory signals 

according to these rules. These tools include: (i) RIPScore, a software to visualize 

cardiorespiratory signals and apply the rules to these data; (ii) a curated library of segments 

representative of the 6 respiratory patterns; (iii) a fully automated training protocol, which is 

incorporated into RIPScore; and (iv) a quality control method to monitor scorer performance 

over time. 

The tools allow to comprehensively analyze infant respiratory patterns in a continuous, sample-

by-sample fashion, while also allow to establish and maintain high intra- and inter-scorer 

repeatability. This provides significant analysis improvements compared to CMS, which is 

limited by low intra- and inter-scorer repeatability [9]. We made these tools fully available to the 
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public [10, 12] so software is readily available at no cost, unlike commercial software that 

requires licensing fees. 

Previous studies of infant respiration using CMS required manual scorers to be certified by the 

AASM in an attempt to maintain the analysis quality. However, this approach did not resolve the 

low intra- and inter-scorer repeatability of CMS [9]. We addressed this with our automated 

training protocol and quality control method. These tools make sure that trainees transition to 

trained scorers once they have reached an excellent level of accuracy and consistency. Then, 

when scorers analyze data for a given study, the quality control tool monitors their performance 

session-by-session, making investigators aware of scorer performance. Using this tool, 

investigators can ensure quality by taking prompt, corrective actions if a given scorer shows 

evidence of diminished performance. For example, the scorer could be re-trained, or if low 

performance is a recurrent problem, a new scorer could be recruited. 

Other benefits of the automated training are its efficiency and cost-effectiveness. This is because 

trainees need only to install RIPScore on their personal computers, and carry out the training 

protocol guided by the software. Trainees do not require continuous supervision and feedback 

from senior scorers, which is an advantage over CMS. Thus, automated training permits to better 

allocate the effort of senior scorers that would otherwise be spent in coaching trainees. 

8.2.4. “Gold Standard” Analysis of Respiratory Patterns 

This thesis also presents a method to combine the analyses from multiple, manual scorers using 

Expectation-Maximization (EM) to reduce the inter-scorer variability and yield a “gold standard” 

analysis. This post-processing method has excellent accuracy and consistency, and its 

performance is significantly higher than that of individual, manual scorers. The “gold standard” 

produced by this method represents a comprehensive, highly accurate and consistent option, 

which is superior to that produced by CMS. 

Another approach to find a consensus between multiple, manual scorers is the majority vote 

(MV), where samples are assigned the pattern with the most votes [10, 143]. However, when 

there is much disagreement among scorers the majority may not be absolute, and so the final 
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pattern would be determined by a minority of votes. Also, votes from all scorers are weighted 

equally regardless of their performance. Our method based on EM was able to significantly 

increase the classification accuracy from that of MV by taking into account the individual 

performance of each scorer and weighting their votes accordingly. We showed that the EM 

method requires many fewer scorers to reach a given level of performance, as evidenced by the 

simulation study in Chapter 5. 

8.2.5. Supervised Classification of Respiratory Patterns 

We developed AORED, an Automated Off-Line Respiratory Event Detector that automated the 

analysis of infant respiratory patterns. AORED combines individual detectors of pause, 

movement artifact [5], and asynchronous-breathing [4], to automatically classify the respiratory 

patterns by comparing metrics of respiratory behavior to thresholds. AORED classifies the 

respiratory patterns on a sample-by-sample basis, is repeatable, standardized, robust in high 

noise conditions, and amenable for real-time implementation. 

AORED classifies samples into one of several respiratory patterns in a manner similar to the 

“gold standard”. This improves over previous automated methods aimed to detect a single 

pattern of interest [4, 5, 86, 87, 89-92], which failed to comprehensively describe the multiple 

respiratory patterns. 

AORED provides a strategy to select optimum threshold values based on representative manual 

analysis results. This is an improvement with respect to previous methods that selected 

thresholds arbitrarily [5, 6, 86, 87]. This threshold selection is based on Receiver Operating 

Characteristics (ROC) analysis to determine the optimum threshold values. ROC curves are 

generated for each respiratory pattern using a representative sample of manually analyzed data, 

and the threshold is selected as the optimal point in the curve, i.e., the point that is furthest from 

the diagonal “chance” line. 

8.2.6. Fully Automated Analysis of Respiratory Patterns 

The final contribution of this work is AUREA, an Automated Unsupervised Respiratory Event 

Analysis system that comprehensively analyzes infant respiratory patterns in an accurate, 
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consistent, fast and low-cost fashion. AUREA makes use of K-means clustering [162], an 

unsupervised learning technique, to automatically classify respiratory patterns. Because of this, 

AUREA requires no human intervention to work and makes the analysis fully objective, which is 

a significant improvement from AORED that requires manually scored data to determine 

classification thresholds. 

The full automation of AUREA reduces the analysis time and costs, and at the same time 

delivers an analysis with near-perfect consistency and substantial accuracy. In other words, 

AUREA addresses the subjective, variable, costly, time-consuming nature of CMS that has 

limited the study of infant respiratory patterns and POA. 

Additionally, AUREA makes it possible to accurately analyze large datasets from multiple 

institutions with almost perfect repeatability, enabling the development of large, multi-

institutional studies of infant respiration. AUREA also opens the possibility for real-time 

monitoring of respiratory patterns, which could provide important information with potential to 

improve patient care. 

8.3. Implications of the Results 

8.3.1. Advance the Study of Postoperative Apnea 

The contributions described in this thesis address two aspects that have limited the study of POA 

and its relation to the postoperative respiratory patterns. First, we acquired a representative 

dataset from infants at risk of POA, and made it available publicly. Second, we developed a set 

of tools to analyze the respiratory patterns in a fully automated, comprehensive, high quality 

manner. These contributions will help advance the study of POA in a variety of important ways: 

(i) The dataset is a valuable collection of cardiorespiratory signals from the immediate 

postoperative period, which can be used to explore possible hypothesis related to POA and 

the respiratory patterns. These will allow investigators to focus their efforts in exploring 

new approaches to the analysis of respiratory patterns, without designing, obtaining 

approval, and carrying out a data acquisition protocol. 
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(ii) AUREA can be used to characterize the respiratory patterns in a dataset, and the resulting 

information used to study the relation between these patterns and POA. This could result in 

a predictor of POA risk able to determine when such risk no longer exists, so that infants 

could be promptly released from the recovery room. The ability to identify infants at risk 

for POA would help to appropriately distribute clinical resources: subjects that require 

more attention would be able to receive it, while those at low risk would reduce the demand 

of resources. This would yield an improvement in health care service. 

(iii) AUREA produces a comprehensive analysis of the respiratory patterns in a fully automated 

manner; it has high accuracy and consistency, so it can be used to analyze large datasets. 

This opens the door to multi-institutional and/or longitudinal studies, which were not 

previously feasible because CMS, the only available analysis method, is very labor 

intensive, expensive, and has high variability. 

(iv) AUREA has the potential for real-time implementation. Thus, it could be used to monitor 

infants at the bedside to provide more detailed, instantaneous information about the 

respiratory patterns compared to conventional clinical monitors. 

8.3.2. Definition of Postoperative Apnea 

An important limitation in previous studies of POA is that investigators have used a variety of 

definitions for apnea, which has made it difficult to compare the results, and generalize the 

conclusions. The literature has defined two main types of apneas based on the perceived clinical 

relevance: (i) prolonged, life-threatening apnea, and (ii) short, brief apnea. Tables 8.1 and 8.2 

show a comprehensive list of these definitions. 

These definitions of POA have 3 problems. First, the term “apnea” is used indiscriminately to 

refer to either brief or prolonged events, even though their consequences may be very different 

clinically. This leads to confusion and misinterpretation of the results. Second, the duration 

threshold that defines an apnea varies widely; the most common threshold is 15 s, but there are 

definitions with thresholds of 6 s, 10 s, and 20 s. This makes it impossible to compare the results 

and conclusions from different POA studies. Third, life-threatening POA has two definitions: in 

one case it is defined as a respiratory pause accompanied by a decrease in heart rate or blood 

oxygen saturation, while the second definition is based only on the duration of the respiratory 
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Table 8.1. Definitions of prolonged, life-threatening postoperative apnea. NS = 

Not specified. 

  

Manifestation Duration (s) As defined in 
Respiratory pause ≥ 20 [53] 

> 20 [37, 169] 
≥ 15 [17, 21, 22, 40, 41] 
> 15 [14, 39] 
> 10 [45] 

Respiratory pause that may be accompanied by 
slow heart rate 

≥ 15 [20] 

Cessation of breathing associated with slow heart 
rate, cyanosis, or pallor 

NS [37, 169] 

Respiratory pause accompanied by slow heart rate NS [14, 17, 21, 22, 40, 41] 
Respiratory pause accompanied by slow heart 
rate, or blood oxygen desaturation 

> 10 [16] 

Cessation of airflow ≥ 15 [50] 
> 6 [19] 

Cessation of respiratory movement >15 [52] 
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Manifestation Duration (s) As defined in 
Respiratory pause < 15 [20] 

> 6 but < 15 [14] 
Respiratory pause not associated with slow heart 
rate 

< 15 [21, 22, 40, 41] 

Cessation of respiratory movement 11 to 15 [52] 
Cessation of airflow > 5 but < 15 [50] 

Table 8.2. Definitions of short, brief postoperative apnea. 

  



8. Discussion and Future Work 
 

 
 
 8-12 Final e-Thesis 

pause. These two definitions are treated as equivalent, although they may correspond to two 

different types of events. Thus, the first definition concerns a clinically significant apnea that 

results in hypoxia and/or heart rate instability. In contrast, the second definition could be a 

respiratory pause that does not pose an immediate clinical concern, but should be closely 

monitored. 

It is therefore necessary to standardize the definition of apnea to advance in the study of POA. 

The dataset and methods presented in this thesis could assist in the development of these 

definitions. AUREA can analyze the respiratory signals to obtain the respiratory patterns; the 

SAT signal can be used to detect periods of desaturation, and the photoplethysmography signal 

to estimate the heart rate. These data could then be mined to identify different groups of 

respiratory pauses (e.g., life-threatening apnea, long pause without desaturation or slow heart 

rate, and short pause), and these groups could define different types of apnea. Indeed, a pilot 

study of this idea found that the threshold between short and long respiratory pauses is 14.6 s 

[139], which is very close to the most common value used to define POA in previous studies. 

8.3.3. Other Studies of Infant Respiration 

The tools for analysis of infant respiratory patterns from this thesis were developed to study 

POA. However, they have multiple applications in other studies related to infant respiration. For 

example, we have used them to study the respiratory patterns of intubated preterm infants with 

the intention to predict extubation readiness [120, 170]. AUREA is also amenable for use in 

studies of sleep and breathing, where CMS performed by sleep laboratory technicians is still 

considered the preferred method of analysis in spite of its multiple limitations. 

8.4. Future Work 

8.4.1. Robustness of AUREA in High Noise 

We have previously shown that the MVT metric from AUREA is robust in the presence of high 

wideband, and low-frequency noise [138]. However, a similar study has not been performed for 

the remaining AUREA metrics. These metrics are estimated from RIP signals which may exhibit 

low frequency trends [5], so it is especially important to verify the robustness of AUREA in low 
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frequency noise. Moreover, recordings might have low signal-to-noise ratio (SNR) due to 

incorrect sensor placement, electromagnetic interference, or faulty wires. Thus, future studies 

should assess the robustness of these metrics using a procedure similar to our previous work [85, 

138]. 

This robustness assessment is especially important if AUREA is to be used to analyze data from 

studies with long, unattended data acquisition sessions. During unattended data acquisition the 

sensors may be displaced due to patient handling, and this might yield noisier recordings. In our 

data, we observed that unattended recordings (i.e., data used in Chapter 6) had lower SNR than 

continuously attended recordings (i.e., the data library described in Chapter 3). 

8.4.2. Outlier Detection 

AUREA requires detection of outliers in the pre- and post-processing stages. Outliers were 

detected as those points situated beyond a pre-defined quantile threshold. This is efficient and 

simple to implement, but may exclude samples that should be included, or vice versa. Outlier 

detection is particularly important for the training step in AUREA. This is because AUREA uses 

K-means clustering [162] to determine the classification parameters, and K-means is very 

sensitive to outliers. Thus, having outliers in the training data would result in inaccurate 

classification boundaries biased towards the outliers, and this would yield an invalid 

classification of the respiratory patterns. Thus, it is important that all outliers are excluded from 

the training data. Future work should implement an automated detector to find optimum outlier 

thresholds. 

8.4.3. Real-time Implementation 

AUREA is amenable for real-time, or near real-time use, because only training needs to be 

performed off-line. After training, data can be classified as soon as the input metrics are 

available. Most of the input metrics used by AUREA were implemented using two-sided, finite 

impulse response (FIR) filters, so they can be estimated in near real-time with a delay of only 

half the length of the filter windows. Only the SYB and ASB metrics use zero-phase, forward-

backward, band-pass infinite impulse response filter [137]. Future work should redesign this 

filter as a FIR filter to enable real-time implementation of AUREA. 
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Real-time usage would allow clinicians to use AUREA for comprehensive, bedside monitoring 

of respiration, which could provide important, prompt information about the state of the patient. 

This could help inform clinical decision making in a better capacity than current clinical 

monitors based on impedance pneumography, which have a slow response, miss apneic events, 

and have many false alarms [30]. 

AUREA employs a training dataset to determine the classification parameters based on the 

respiratory patterns from the population, and then these parameters are used to classify separate 

test data from new individuals. Classification could be improved if the parameters were adjusted 

to match the individual variations of each patient’s respiratory patterns. Future experiments 

could evaluate this possibility by making the classification parameters patient-specific, adapting 

them based on newly observed test data.  

8.4.4. Application to Adult Data 

The band-pass filters in AUREA’s metrics were designed to pass frequencies in the infant 

respiratory band (i.e., 0.4 Hz and 2.0 Hz [85]). To implement AUREA in adult data, it is 

necessary to modify the cut-off frequencies to span the adult respiratory band. Future studies 

could implement this modification, and test AUREA in adult data from sleep studies. 

Many adults suffer from Obstructive Sleep Apnea Syndrome (OSAS) [123], and the diagnosis 

requires CMS analysis of overnight recordings [8]. AUREA could significantly improve 

reliability of the analysis, while also dramatically reducing the time required to analyze the data. 

This would make the diagnosis of OSAS more efficient, which would contribute to alleviate the 

long waiting times that exist in sleep laboratories [123]. Moreover, systematic implementation of 

AUREA would help to establish a very high consistency among different institutions. 

8.5. Conclusion 

The study of POA and its relation with the postoperative respiratory patterns has been hindered 

by the lack of two main factors: (i) appropriate data from infants at risk, and (ii) a method to 

analyze the respiratory patterns in a comprehensive, reliable (i.e., high accuracy), repeatable (i.e., 

high consistency), fast, and low-cost fashion. 
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In this thesis we addressed these limitations by: (i) acquiring cardiorespiratory data from infants 

recovering from surgery and anesthesia, and making these data publicly available; (ii) 

establishing definitions and scoring rules to comprehensively analyze infant respiratory patterns; 

(iii) developing a set of tools to enable the application of these rules to infant data, and making 

these tools publicly available; (iv) providing a method to consolidate several manual scoring 

results into a highly accurate and consistent “gold standard” manual analysis; (v) developing 

AORED, an automated, supervised detector able to replicate the analysis by learning from the 

“gold standard” reference; and (vi) developing AUREA, a fully automated, unsupervised 

classifier that requires no human intervention to replicate the “gold standard” analysis, and that 

performs better than AORED. With AUREA it is possible to produce a comprehensive, reliable, 

repeatable, fast, and low-cost analysis that can be used to study respiratory patterns from infants 

at risk of POA. 
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