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ABSTRACT

We describe a method for creating stippled prints using a quadrotor flying robot. At

a low level, we use motion capture to measure the position of the robot and the canvas,

and a robust control algorithm to command the robot to fly to different stipple positions

to make contact with the canvas using an ink soaked sponge. We describe a collection

of important details and challenges that must be addressed for successful control in our

implementation, including robot model estimation, Kalman filtering for state estimation,

latency between motion capture and control, radio communication interference, and con-

trol parameter tuning. We use a centroidal Voronoi diagram to generate stipple drawings,

and compute a greedy approximation of the traveling salesman problem to draw as many

stipples per flight as possible, while accounting for desired stipple size and dynamically

adjusting future stipples based on past errors. An exponential function models the natural

decay of stipple sizes as ink is used in a flight. Stipples per second and variance of stipple

placement are presented to evaluate our physical prints and robot control performance. For

fully autonmous flight we power our quadrotor using a wired tether. We compensate for

the tether in our control of the robot by assuming a static catenary curve of fixed length

between the robot and the power source. We evaluate accuracy of hovering and flight on

simple paths, and compare the results to untethered flight.
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ABRÉGÉ

Nous décrivons une méthode pour créer des impressions pointillées en utilisant un

robot quadrirotor volant. À un niveau bas, nous utilisons la capture de mouvement pour

mesurer la position du robot et la toile, et un algorithme de commande robuste pour com-

mander le robot de voler à différentes positions pointillées pour prendre contact avec la

toile à l’aide d’une éponge d’encre trempée. Nous décrivons une collection de détails im-

portants et les défis qui doivent être relevés pour le contrôle avec succès dans notre mise en

oeuvre, y compris le modèle de robot estimation, filtrage de Kalman pour l’estimation de

l’état, la latence entre la capture de mouvement et de contrôle, des interférences de com-

munication radio, et le paramètre de commande de réglage. Nous utilisons un diagramme

de Voronoi centroïde pour générer des dessins pointillées, et calculer une approximation

gourmande du problème du voyageur de commerce pour attirer autant de pointillés par

vol que possible, tout en tenant compte de la taille de stipple souhaitée et en ajustant dy-

namiquement pointillés futurs basés sur les erreurs du passé. Un des modèles de fonctions

exponentielles la désintégration naturelle des tailles pointillées que l’encre est utilisée dans

un vol. Pointillés par seconde et de la variance du placement de stipple sont présentés pour

évaluer nos impressions physiques et les performances de contrôle du robot. Pour le vol

entièrement Autonome en nous alimenter nos quadrirotor en utilisant une attache filaire.

On compense pour l’ancrage dans la commande du robot, en supposant une courbe caté-

naire statique de longueur fixe entre le robot et la source d’alimentation. Nous évaluons la

précision de vol stationnaire et vol sur des chemins simples, et comparer les résultats à vol

untethered.
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CHAPTER 1
Introduction

Pen plotters, fax machines, and modern laser printers are all highly specialized robots

that permit the reproduction of images. Over many decades, these machines have been

relied upon to produce physical copies of computer generated images. In contrast, it is

interesting to consider how general purpose robots can be used to apply ink to paper.

Notable recent examples of this alternative approach have used industrial robot arms and

humanoid robots to draw and paint [14, 26]. We explore the benefits and challenges of

using aerial robots for stippling, that is, the creation of images with many small dots.

Flying robots present interesting new possibilities for painting because they can eas-

ily get to hard to reach places. Equipped with a brush, a flying robot can make strokes

at the top of a wall, and can likewise apply paint or ink to curved surfaces. We focus

exclusively on stipples because this lets us avoid the hard problem of controlling contact

between an airborne robot and the canvas during continuous strokes. The simpler problem

of controlling the robot’s trajectory with intermittent contact still remains an interesting

challenge.

The aerial robots we use are quadrotors, which are special because they can effi-

ciently put all power into torque free lift, and are simple and reliable thanks to inertial

measurement units and stability control. Advances in hardware and miniaturization have

made these flying robots very affordable and popular for both serious and leisure appli-

cations. In our work, we use Crazyflie quadrotors (see Figure 1–1 left) because they are
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Figure 1–1: Our stippling aerial robot uses motion capture markers for positioning, and an
ink sponge on a small arm to create stipples. Also shown is an example result: from left to
right, a well known image of Alan Turing, a stippled version of the image with 500 dots,
and a finished print with 500 stipples, drawn using a dynamic correction for the placement
of stipples.

a particularly nice platform for research and development due to the open hardware and

software design and well organized development environment. They are also small and

light, taking up 9 cm2 and weighing about 30 grams, which makes them much safer than

larger quadrotors in an indoor environment.

There are a number of unique challenges to using quadrotors for stippling. The con-

trol task is all about putting a dot in the right place, with the time of placement being

unimportant. At a high level, there are important computational problems, such as path

planning with the constraints of limited battery life, dynamic adjustment of stipples to ac-

commodate errors in placement, and the variability of stipple sizes as ink on the brush gets

used up. At a lower level, there is a critical need for robust and stable control. Trajec-

tory control of position is difficult because the robot is under-actuated. With four motors,

the robot can only adjust its thrust, roll, pitch, and yaw. Therefore, control of horizontal

position can only be achieved by rolling and pitching to let thrust produce accelerations

in directions orthogonal to gravity. Under-actuation, combined with the small size and

weight of our robot, makes absolute accuracy in position challenging as the robot is easily
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perturbed by air currents. State estimation is also challenging for mobile robots. Larger

flying robots often include cameras and GPS systems that allow absolute position esti-

mates for both indoor and outdoor flight. Because of the small size of the Crazyflie, it

has a limited payload for cameras or additional sensors, and likewise has limited compute

power for performing on-board localization. We instead use a motion capture system to

track position and orientation easily and accurately.

Flying robots have been used within a variety of art projects for the creation of light

paintings, for example demos by Ascending Technologies, and Spaxels at Ars Electron-

ica. Quadrotors have likewise recently been used for producing rim illumination for pho-

tography [24]. However, to the best of our knowledge, we are the first to address the

computational issues of painting with autonomous aerial robots.

In the pursuit of fully autonomous flight and stippling we power our quadrotor using a

wired tether. To account for the force and torque caused by the tether on our quadrotor, we

model the tether in our control by assuming it takes the shape of a static catenary curve of

fixed length between the robot and the power source. We compare the accuracy and control

fidelity of using a tether to power the quadrotor opposed to the results of untethered flight.

The remainder of this thesis is organized as follows. We first acknowledge previous

work on robots being used in the creation of artwork, generation of stipple placements

from source images, and quadrotor control problems in Chapter 2 Related Work. Chapter

3 provides a high level look at the platforms we use and how they interact with each other.

We describe our model and controllers for flight control in detail in Chapter 4. Chapter 5

describes the process of stipple generation and how feedback of the placement error can

be used to dynamically update optimal placement of future stipples. Chapter 6 presents
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the model used for the wired tether and how it informs the controller to compensate for the

additional tension force and torque for fully autonomous stippling. We present and discuss

our results in Chapter 7. We suggest possible future extensions that can be made using our

control foundation in Chapter 8.
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CHAPTER 2
Related work

The creation of art by robots is a topic that spans several fields. It involves aesthetic

choices in the placement of brush strokes, selection and tuning of state estimation and

control parameters to make the robot execute these strokes, and computational aspects to

efficiently plan robot trajectories and dynamically adjust for errors.

There are a number of examples where robots have been used in the creation of art

and drawings. One example is the sketches and portrait drawing of Paul the robot [25,26].

In earlier work, Lin et al. [13] use a camera and a humanoid robot to draw a line drawing

portrait of the person in view. In similar work, Lu et al. [16] use cameras and visual

feedback to create images with hatching patterns that capture both texture and tone of the

original image. Indeed, feedback is a critical aspect in robot drawing and painting systems.

Other computational approaches to painting with a robots address feedback guided stroke

placement [4], image stylization with semantic hints [15], and dynamic adjustment of

layered strokes [14]. In our work, the challenge of stippling with flying robots is significant

because of how hard it is to control the position of the robot and the brush, and thus,

dynamic adjustment of stipples is critical.

Understanding the shapes of strokes is useful in the analysis and creation of robot

or computer art. Berlio et al. [1] design a curve representation suitable for creating and

analyzing graffiti tags. Lehni developed a system called Hektor [11], a graffiti robot posi-

tioned by cables. It is small, light, and can work on a large surface, but that surface must
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be flat and there must be places where the cable pulleys can be mounted. By using a flying

robot we are not limited to planar surface, but this comes at the cost of losing precision

in position control. By using stipples to create images, we avoid the problem of modeling

and drawing more complex strokes or curves.

Following the work of Secord [22], we use a centroidal Voronoi diagram to com-

pute stipple positions. When working with a small number of stipples, it can also be

advantageous to encourage stipple placements that reveal important image features such

as edges [19]. In more recent work, Li and Mould describe how error diffusion allows

for reduced stipple counts while preserving structure of an original image [12]. While our

results would benefit from these recent advances, we use Secord’s method because it is

simple to implement, fast to compute for small stipple counts, and easy to update during

the drawing process to account for errors in the placement of stipples.

Stippling robots can be found within the maker community, specifically the eggbot

(available as a kit from distributors such as Adafruit and SparkFun). The eggbot is a pen

plotter that is designed for drawing on the surface of an egg. This is a nice example of

stippling on a non-flat surface. By using an aerial robot, we see the advantage that future

versions of our robot will be able to apply ink to a wide variety of hard to reach non-flat

surfaces.

Finding optimal paths is an important problem for a stippling robot. Optimal paths

have been used in the construction of labyrinths and mazes [20]. Similarly, approximate

solutions to the traveling salesman problem have been used to produce continuous single-

stroke drawings [2, 8]. In our case, we have a problem of finding a path that takes the

robot between a subset of the stipples before returning to a landing pad for a fresh battery
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and an ink refill. This is related to a traveling salesman problem as we would like to draw

as many stipples as possible on a single charge, but there there are additional challenges

and complexity involved. Specifically, the time and distance to fly between the stipple

positions is not the only cost because there is also the time cost of stabilizing the robot

before creating a stipple, and constraints related to the desired stipple sizes.

Optimal path planning for robots has received a vast amount of attention for robotic

manipulators, vehicles, and flying robots [7, 9]. Furthermore, many control problems spe-

cific to quadrotors have been investigated, such as methods to produce aggressive maneu-

vers [18] and flips [17]. The robot control algorithms we implement in this work is largely

inspired by that of Mellinger et al. [18], as well as the PhD thesis of Landry [10].

For continuous flight not bounded by battery capacity, we power the quadrotor using a

wire tether. We model the shape the hanging wire takes and include the forces it generates

into our controller. While these forces may be negligible for larger robots or disregarded in

other applications where absolute position accuracy is less important [24,27], in our appli-

cation it is critical because of the small robot size and our desire for the accurate placement

of stipples. A related problem to adding a tether to the robot is control and planning while

taking into account the dynamics of a slung load [5, 23]. When the slung load is also

allowed to become slack, the problem becomes even more challenging [3]. We take a sim-

pler approach of assuming the dynamics of the cable are small, given air resistance on the

very light weight cable we use, and we show that accounting for a static tether can make

a significant improvement. Tethers are often used for safety, and for testing new control

algorithms, but they are also common for providing power or for communication. We note

the work of Zikou et al. [27] being similar to ours in tether modeling, though they focus
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on controlling a spool to provide additional length or take up slack as necessary. Given

that they use a larger robot, they let the existing quadrotor control handle the disturbance

introduced by the weight of the tether.
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CHAPTER 3
Hardware and software overview

With the interaction of measurement devices, computation, and communication we

are able to precisely control a quadrotor for the purpose of creating printed works. To

accomplish this we make use of various hardware and software systems. We present the

hardware used and the integration with the systems developed and how they communicate.

We make use of optical motion tracking to measure the position and orientation of the

quadrotor. We implement flight control software that uses the motion tracking information

to compute the flight commands to be sent to the quadrotor over radio. The flight control

system also interacts with the higher level stipple server that ultimately takes a source

image and converts it into an ordered set of stipple locations.

3.1 Quadrotor

We use the Crazyflie 2.0 Nano Quadcopter development platform as a launching point

for a stippling quadrotor. The Crazyflie is a versatile, lightweight quadrotor with an open

development environment. This development environment is easy to use and provides full

access to the various sensors and measurement devices on the quadrotor, as well the pos-

sibility to manipulate the controlling firmware. The firmware can be flashed using only a

radio connection, making updates convenient. It is one of the smallest quadrotors available

on the market. Its small size and durable construction is ideal for flying indoors and near
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Figure 3–1: The Crazyradio from Bitcraze.se

people without requiring other safety precautions as with larger quadrotors. It has two on-

board microcontrollers. The first microcontroller is an ARM Cortex-M4 embedded pro-

cessor (STM32F405) with a floating point unit that supports all ARM single-precision data

operations and types. This microcontroller is responsible for running the main firmware

on the Crazyflie. The second microcontroller handles power management and the radio.

3.2 Radio

The Crazyflie supports communication over a 2.4 GHz radio using a Nordic Semicon-

ductor nRF51822. The control software communicates with the chip using a USB dongle

that integrates a Nordic Semiconductor nRF24LU1+ chip, known as the Crazyradio as can

be seen in figure 3–1. The communication software for the Crazyflie using the Crazyradio

is also completely open source. Typically a Crazyradio and Crazyflie communicate on a

one-to-one basis, however work has been done to allow a Crazyradio to communicate with

multiple Crazyflie silmultaneously through the use of PC-sided time slicing [6].
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Figure 3–2: The motive software tracking the quadrotor in flight. The extra markers track
the location of the canvas and the mounting location of the end of the tether.

3.3 On-board sensors

The Crazyflie 2.0 is equipped with an Inertial Measurement Unit (IMU), that contains

a 3-axis gyroscope and 3-axis accelerometer. The on-board controller uses these sensors

to achieve desired orientations. Measurements from these sensors can be provided to the

offboard controller if required. However we elect to use only information obtained from

optical tracking. First, because the radio bandwidth has limited capacity, and sending con-

trol information to the quadrotor as frequently as possible with little latency is paramount.

Second, consolidating optical tracking and IMU measurements from different sources and

latencies would be difficult.

3.4 Optical tracking

The control algorithms we present rely on accurate real-time position information of

the quadrotor. Methods that rely on the on-board gyroscope and accelerometer are not

sufficient for providing the millimeter accuracy in measurement required for stippling. We
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Figure 3–3: An overview of the the control systems and how they interact with each other.

use OptiTrack Flex 3 infrared cameras and the accompanying Motive software to optically

measure the position of the quadrotor during flight. Optical tracking is used to measure

the location of the quadrotor, the canvas and the tether endpoint as can be seen in figure 3–

2. The quadrotor is tracked using 4 markers placed directly on the quadrotor. We stream

measurements of the position and orientation of the quadrotor to our control algorithms at

a consistent frequency of 100Hz using the NatNet SDK from OptiTrack.

3.5 System integration overview

The entire system can be viewed as four independent systems interacting with each

other asynchronously through message passing. Figure 3–3 shows an overview of the en-

tire system and the direction information travels between the sub-systems. The flight con-

trol system receives position and orientation information from the motion capture system

at a rate of 100 Hz. Using this information it computes the orientation and thrust values

to achieve the desired target position and sends a message to the quadrotor. The on-board
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proportional-integral-derivative controller (PID controller) running on the quadrotor up-

dates at a rate of 250 Hz using measurements from its gyroscope to achieve the target ori-

entation and thrust sent from the flight control system. The flight control system receives

the target stipple locations from the stipple server. Following a stipple being placed, the

flight control system sends an estimated placement error to the stipple server and requests

the location for the next stipple. The stipple server uses the placement error to dynamically

adjust the location of future stipples before providing the next stipple location to the flight

control system.
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CHAPTER 4
Flight control

Much of what we would like to accomplish involves having the quadrotor approach

a specific point or maintain its position. In some cases, based on perturbations in the

air or contact with a canvas, we will need to abruptly change the current control plan.

In this section we describe two simple methods that we use to control the flight for the

purpose of being able to draw points on a canvas. These methods both rely on having high

precision measurements of the location of the quadrotor obtained from the motion capture

system. We acknowledge that the model we use has been simplified to avoid a full system

identification of the quadrotor in use, while recognizing that much higher fidelity control

can be obtained with better models, learning, and by controlling the motor torques directly

instead of relying on the Crazyflie’s internal PID control.

4.1 Software based speed controller

Due to its small form factor, the motors of the Crazyflie 2.0 are not brushless (un-

like some larger quadrotors) and are powered by an unregulated power supply. This has

the disadvantage that the torques produced by the motors do not always reflect the com-

mands being sent. We correct for this in software by using feedback from the measured

battery voltage [10]. The duty cycles sent to the motors can be treated as a function of the

measured battery voltage and the desired angular velocities of the motors,

u =
Vmax

Vactual

(√
ω2−β

)
+α, (4.1)
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where u is the command input to the motors, Vmax is the battery’s rated voltage, Vactual

is the most recent measured battery voltage, and α can be interpreted as the minimum

duty cycle that must be sent to the hardware in order to get any angular velocity ω at the

motors. Parameter β then accounts for the fact that the propellers start out at a certain

non-zero velocity. We find that this software based speed controller proposed by Landry

is critical for obtaining reliable thrust control with our Crazyflies.

4.2 Quadrotor model

The simplified model we use represents the quadrotor as a point mass that can align

its pitch and roll instantly. This has the benefit of requiring only two forms of off-line

system identification, and we can accomplish both using an inexpensive scale. First, we

must know (approximately) the mass of the quadrotor. Second, we require a mapping

between the commands sent to the motors and the total force generated by the motors.

The duty cycle commands that are sent to the motors of the quadrotor are represented

arbitrarily by 16 bit unsigned integers. We experimentally determined a mapping between

these values and the actual forces produced by inverting the quadrotor and measuring the

force produced while varying this value. With the software based speed controller in place,

this relationship can be approximated with a linear function.

Absolute accuracy in positioning is difficult because quadrotors are inherently under-

actuated. Any change in position is dependent on the current orientation, therefore errors

in position are acted on indirectly by controlling orientation. The controllers described in

the following sections compute the desired pitch, roll, yaw rate, and thrust and rely on the

Crazyflie’s internal PID to achieve the desired orientation.
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4.3 Hover controller

A PID controller is used to reach and maintain a desired position with zero velocity.

This is accomplished by using the pitch and roll angles of the quadrotor to control its

position. PID feedback on the position error is first used to compute the desired net force

acting on the quadrotor. This is computed as a force,

Fnet = kP(xt− x)+ kI

∫
(xt− x)+ kD(ẋt− ẋ), (4.2)

where xt is the target position, ẋt is the target velocity, and x is the current position of the

quadrotor in world space. In situations where a stable hover at a point is desired, the target

velocity should be zero. Once the desired net force has been computed, the steering force

can be computed by subtracting all other body forces from the net force. For all intents

and purposes, this simply involves subtracting the force due to gravity. Due to physical

limitations, not all steering forces can be realized by the quadrotor. The steering force is

therefore clamped to a maximum force, (the maximum measured force that the quadrotor

produced during system identification).

Once the desired steering force has been computed it is transformed into the inter-

mediate body frame using the most recent reading for the yaw from the motion capture

system. This is accomplished with a simple rotational transform about the yW axis (i.e.,

world vertical). Once in this frame, the desired pitch and roll are computed so that the

yB vector (i.e., robot body vertical) will be pointing in the same direction as the steering

force. The value for thrust that is sent to the quadrotor is computed using the linear map-

ping experimentally determined with the magnitude of the steering force as input, (see
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Section 4.2). Note that we control the yaw of the quadrotor with a separate P controller

that calculates the yaw-rate.

4.4 Yaw controller

The yaw of the quadrotor is controlled by sending a desired yaw-rate to the quadrotor.

We use a P controller that acts on the error between the target yaw and the current yaw.

The target yaw is calculated using the normal of the canvas at the target stipple location.

For a flat canvas the target yaw is constant regardless of the stipple location, however for

curved surfaces, such as a column, the target yaw would vary across the surface.

To decrease stabilization time, we look at the yaw of the quadrotor 400 ms after

performing a stipple. Ideally, following a contact, the impulse from the sponge contacting

the canvas would not affect the yaw of the quadrotor. However, in practice, we observe

small consistent changes in the yaw following impact. These errors can be reduced by

manually re-positioning the brush tip relative to the quadrotor. A better solution is to use

feedback from the measured error following a stipple. We do this by adding a modified I

term to the yaw controller. For this I term we update the integral value only during a period

of 400 ms following contact with the canvas. This PI controller results in improvements

for the rate of stippling as the quadrotor is able to more quickly stabilize and move on

to performing the next stipple. This also improves the reliability of the controller, since

the impulse acts to push the quadrotor directly away from the canvas, which prevents

accidental collisions with the canvas following stippling.

4.5 Stipple controller

The stipple controller is a PD controller that is used to control the position of the robot

in the plane parallel to the canvas. It is used in combination with the hover controller while
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the quadrotor is completing a stipple action. First, the quadrotor’s position is projected into

the plane of the canvas. Then the error between the projected position and the target stipple

location is calculated and used as input to the PD controller for computing the desired net

force. This force of the stipple controller is always in a direction parallel to the canvas.

The quadrotor’s desired net force is the sum of the forces computed by the hover PID

controller and the stipple PD controller.

The act of stippling consists of three stages, preparation, stippling and recovery. Dur-

ing the preparation stage, a target hover position is computed at a distance of 20 cm away

from the desired stipple position along the normal of the canvas, (or 12 cm between the

tip of the brush to canvas). The quadrotor stabilizes around this point before attempting

to draw the stipple by using the hover controller. The quadrotor is said to be stable if it

can maintain an error of less than 2.8 cm for 350 ms between its position and the target

hover position. Additionally, during this period its velocity must not exceed 4.2 cm/s.

These values were determined experimentally. We optimized first for accuracy, by trying

to achieve the minimal standard deviation of stipple placement error. Once this was found,

we minimized time between stipple placements until we began to see a degradation in stip-

ple placement accuracy. Only when the quadrotor is stable may it proceed to the stippling

stage.

During the stippling stage, the quadrotor uses the sum of the desired net forces com-

puted by the hover controller and the stippling controller. The target location for the hover

controller is set to the stipple location. In addition, the hover controller is set to have a

target velocity in the direction of the canvas to increase the momentum of the quadrotor

at the point of impact. The act of completing a stipple is determined when the distance
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Figure 4–1: Stipple tests for the purpose of tuning the controllers. The quadrotor is in-
structed to stipple the same location repeatedly 32 times. The location of each stipple and
the rate of stippling is recorded. The standard deviation of the placement error for the
above images and average stipple rate: from left to right, σh = 6.0 mm, σv = 3.1 mm, 7.5
seconds per stipple, σh = 7.0 mm, σv = 4.0 mm, 3.3 seconds per stipple, and σh = 5.9 mm,
σv = 4.3 mm, 4.0 seconds per stipple.

between the quadrotor and the canvas is less than a fixed threshold. When this is detected,

control proceeds to the recovery stage. The location of the placed stipple is computed

using the location and orientation of the quadrotor measured by motion capture, using the

known position of the sponge in the quadrotor’s reference frame.

The recovery stage is responsible for controlling the robot as it moves away from the

canvas, and preventing any accidental collisions following the stipple. It uses the hover

controller with a set target velocity away from the canvas. The target location of the

hover controller is set to the expected location of the next preparation stage. This puts the

quadrotor in a position nearby to the next target as the dynamic stipple planner typically

makes only small adjustments to future stipple locations between each stipple. Control

transitions to the next preparation stage once 500 ms have past and the location of the next

stipple is known.
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4.6 End to end latency measurement

The amount of latency from motion capture to quadrotor response has an important

effect on the quality of the control. We experimentally measure the latency in the system

and account for it to improve control. To measure the latency we attach an LED to the

quadrotor and turn it on upon receiving a command. The command is sent from the com-

puter upon receiving input from the motion capture revealing that a tracked object was

moved (the threshold to trigger the command is set to 0.4 mm). We measured the end to

end latency using a high-speed 1200 fps Nikon camera. The video records the LED and

tracked object being struck, and thus we count the number of frames between the time of

impact and the illumination of the LED. We find the latency to be ∆T = 49.6 ms± 11.6 ms

after repeating the experiment 20 times.

There are multiple sources that introduce a variable amount of latency into the sys-

tem, such as the amount of processing required to identify the position of the quadrotor by

the motion capture system. This is dependent on the number of markers in the scene, the

visibility of the markers relative to the cameras, and performance can be degraded when

there are reflective surfaces in the capture volume. To minimize potential problems, reflec-

tive surfaces were covered whenever possible and all unnecessary markers were removed

from the capture volume.

Additionally, radio interference may require a command to be resent multiple times

before reaching it’s destination. Depending on how many times the command must be sent,

there may be up to 10 ms of additional latency before the command is simply dropped.
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4.7 Kalman filtering and state prediction

We use a Kalman filter to filter the position obtained from the motion capture sys-

tem. The filter also provides estimates for the velocity and acceleration. To counter the

latency in the system, we predict what the quadrotor’s position and velocity will be at the

time it receives the command and use those values when computing the desired net force.

Specifically, we compute

ẋ = ẋF +∆T ẍF

x = xF +∆T ẋF +∆T 2ẍF

(4.3)

where xF , ẋF , and ẍF are the position, velocity and acceleration estimated by the Kalman

filter, and ∆T is the average latency of the system, which we previously determined ex-

perimentally as described in Section 4.6. Figure 4–2 shows how the filter performs for

estimating velocity when the crazyflie is hovering, compared to a simple numerical differ-

entiation of the motion capture position trajectory.

4.8 Radio communication improvements

The default communication protocol provided by the Crazyflie is not optimal for

real-time control in environments with interference. The Crazyflie communicates using

a 2.4 GHz radio which is the same range of frequencies used by WIFI enabled devices.

A crowded radio spectrum can interfere with the Crazyflie’s ability to send and receive

control packets. The existing protocol maintains a queue of all commands, and sending

a command from the computer to the quadrotor requires an ACK to be sent back before

sending the next command in the queue. If no ACK is received, the computer must retry

sending the same command up to a maximum of 10 times before forcing a disconnect.
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Figure 4–2: The Kalman filter provides a smooth estimation of the quadrotor’s velocity

This implementation has the benefit, barring a disconnect, that all commands are ensured

to reach the quadrotor in the order they were sent. However, in the case of interference,

we often found that commands from the computer were successfully received, but it was

only the ACKs being returned that were not received. In this situation the computer would

continue to repeat the same command, even when new commands were waiting in the

queue. When the interference was high, the computer would force a complete disconnect

despite the quadrotor successfully receiving all commands being sent.

The protocol we implement relaxes the requirement that all commands be received.

If a new command enters the queue, we stop trying to resend an old command and send

the most up to date command instead. By allowing the possibility that some commands
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may never be received, we can focus on sending commands using the most up to date

position information from the motion capture. This is a more appropriate for a real-time

scenario since commands computed using delayed position information are no longer valu-

able. This protocol also prevents duplicate messages being received in the case where the

original command was received but the computer simply did not receive the ACK.
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CHAPTER 5
Stipple generation and planning

To provide our aerial robot with something to draw, we convert a selected image

into a set of stipples given a set of constraints such as the number of stipples and a range

of stipple sizes. Because the robot will make small errors when placing stipples, it is

important that we be able to quickly update the positions of the remaining pixels and to

adjust the order in which stipples are drawn. In this section, we review how we compute

a set of stipples for an image, and discuss the problems of stipple ordering and dynamic

updates.

5.1 Weighted centroidal Voronoi diagrams

The core of our stippling algorithm is based on weighted centroidal Voronoi diagrams

(CVD), as described by Secord [22]. The main idea is to start with a random set of points

and to compute a Voronoi diagram. Then, we compute centroids for each region in the

Voronoi diagram by integrating over the pixels of the target image using the brightness as

weights. We then shift each point to the centroid of its region and repeat these steps until

we reach a stable configuration.

To select the size ri of a stipple i, we use the average brightness of its Voronoi region.

We linearly map the average pixel brightness ρi ∈ [0,1] to a stipple size in the available

range,

ri = ρirmin +(1−ρi)rmax, (5.1)
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where rmin and rmax are the minimum and maximum radii. Because of the limited range

of stipple sizes and our desire to use small stipple counts to minimize print time, a printed

result will generally have a lighter tone than the original image. Furthermore, large light

areas in the image result in a sparse collection of tiny stipples that would be poorly drawn

given our minimum stipple size. Therefore, we prune these points by removing any stip-

ples that fall below a given threshold.

5.2 Brush, ink usage, and stipple sizes

The brush we use to draw stipples is a small spherical sponge mounted at the end of

a stiff wire arm. At the beginning of each flight, we soak the sponge with a black liquid

acrylic ink. While the size and shape of the sponge is an important factor in determining

the size of stipples that we will draw, the amount of ink remaining in the sponge is also an

important factor. The inset image in Figure 5–1 shows several sequences of how stipple

sizes decrease as drawing progresses from left to right and top to bottom. Using a set of

six sequences, we measure the area of the stipples and build an approximate ink decay

model by fitting the exponential function shown in Figure 5–1. This allows us to predict

the size of the next dot the robot will draw. Note that the velocity of the robot at impact

will influence the deformation of the sponge, and will allow for some additional control

of the stipple size. However, to maintain good accuracy of stipple placement we use a

consistent velocity and control strategy for all stipples.

Note that the maximum stipple rmax size comes directly from the exponential function

of our ink model. We set the minimum stipple size by evaluating the function at the

maximum number of stipples that we can draw in a flight (typically no more than 70).
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Figure 5–1: Stipple size decay model fit to six sequences of ink transfer tests. The area
of each stipple is measured in the source images, from which we fit a two parameter
exponential model.

5.3 Stipple order and dynamic updates

While the static set of stipples generated by the algorithm in Section 5.1 generates

good results, the quadrotor will ultimately make errors in the placement of each stipple.

To try and mitigate this error, we use a dynamic update to the remaining stipple positions

to accommodate errors as they happen.

Our dynamic update happens on-line using a server-client architecture. The quadrotor

controller requests the next point to draw from the server and reports back the position it

ended up hitting. The server then sets the position of this point and marks it as unmovable.

The optimal position for the remaining points is then adjusted by running a few iterations

of the CVD algorithm. This is fast because we only constrain one point to a new position,

and we start from a stable configuration. For a image consisting of 2000 stipples, the
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updated positions can be computed in less than 500 ms. Thus, the next point is always

available by the time the quadrotor is ready to start its flight to the next stipple location.

There are three main factors that influence the order in which we want to draw stip-

ples. First, we want to minimize the distance traveled by the robot between stipples

throughout a drawing session. This will increase the rate at which stipples are drawn

and maximize the number that can be drawn on each flight with a fully charged battery.

Second, we want the sizes of a sequence of stipples to be drawn to match as best as possi-

ble the ink usage model estimated in Section 5.2. Thus each flight should start with large

stipples and end with the smallest ones before the battery is depleted. Third, if dynamic

updates are to have a benefit on the final result, it is important that completed regions be

grown progressively. For instance, consider the process of drawing equally spaced stip-

ples to form a line. If we draw from left to right, then we can always adjust the next point

to the left or right to account for the error. In contrast, if the order is random, then we

will have stipples that need to be placed between two others and we must compromise on

minimizing the error to both.

Originally, we implemented an approximate solution to the traveling salesman prob-

lem using a generic algorithm. However for our application we had more constraints then

simply computing the minimum path. Our path is broken up into drawing disjoint seg-

ments at a time, as well as taking into account the desired size of the stipple. Furthermore,

our robot draws an unpredictable number of stipples before the battery is drained (typi-

cally between 50 and 70) at which point the battery is swapped and the ink reloaded. To

handle the shifting stipple positions and irregular session length, we instead design a dy-

namic greedy strategy for stipple ordering. At any given time, the next optimal stipple is
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selected as closest using a metric that combines distance and stipple area. This allows us

to partition the stipples into as many flights as necessary, with no prior knowledge, and

can easily accommodate our dynamic adjustment of stipple positions and sizes. We adjust

the weighting of distance to stipple area in the metric by hand on a per image basis by

observing synthetic results (i.e., a simulation that takes into account canvas size, stipple

sizes, and placement error). A good weighting will produce regions that grow relatively

continuously while also matching stipple sizes.
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CHAPTER 6
Fully autonomous stippling

The previous chapters outline our method for semi-autonomous stippling, with the

limitations being short flight times requiring frequent battery changes and refilling the ink

supply. We present here our methods for achieving fully autonomous stippling.

For fully autonomous stippling an entire drawing containing thousands of stipples

should require no user interaction following start to finish. Considering the duration of

the quadrotor’s battery is typically 6 minutes, this would require an impossibly fast rate of

stippling. Wireless charging of the battery by having the quadrotor accurately land on a

charging platform was considered as a possible solution. A disadvantage to this approach

is the brush drying out during charging. Instead we get rid of the battery, and power

the quadrotor directly from a wired power supply. Such a solution has accompanying

problems that must be overcome.

6.1 Voltage drop

Stippling requires very accurate position control. In order for the wire not to affect

flight control its weight must be small compared to that of the quadrotor but also suf-

ficiently long to not restrict stippling larger canvases. We use 30AWG wire 180 cm in

length weighing 2.4 grams. The quadrotor requires up to 3 A of current in the range of

3.0 V to 4.2 V to run properly. The resistance of the wire is not negligible at these values,

roughly 0.6 Ω, and there would be a significant voltage drop across the wire. The resis-

tance of the quadrotor is variable and dependent on the thrust, so increasing the supplied
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voltage is not a viable solution as the quadrotor would receive an irregular voltage as the

thrust varies. To counteract this we attach a small buck converter to the quadrotor which

drops the 12 V coming from the power supply to a consistent 3.3 V before powering the

quadrotor.

6.2 Tether model

Even at only 2.4 grams, the force and torque from the wire acting on the quadrotor

has a significant negative impact on the control. We account for this by modeling the wire

and estimating the force and torque acting on the quadrotor. Similarly to how the flight

controller accounts for gravity, tension is treated as an additional external force. However

unlike gravity which does not induce torque, connecting the wire directly to the center of

mass of the quadrotor is not feasible and therefore the wire’s tension induces torque.

We model the hanging wire using a catenary curve, which is the shape an idealized

hanging cable assumes under its own weight when supported only at its ends. One end-

point of the cable is fixed to a stand (90 cm high) while the other is attached to the base of

the quadrotor. The motion capture runs at a frequency of 100 Hz. In each time step, we

numerically solve for the unknown parameters a, b, and c in

F(x) = a+
1
b

cosh(b(x− c)), (6.1)

obtaining the catenary curve that a cable of fixed length would assume by the two end-

points. We can find the direction of the tension forces by computing the derivative of

the curve for each endpoint. We can then analytically solve for an approximation of the

tension forces with the assumption that the system is at equilibrium.
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Figure 6–1: The quadrotor in flight attached to the tether with the overlaid green line
showing the curve our model predicts.

For the case of accurate stippling, the ability to hover accurately at a point in prepa-

ration of stippling is paramount; it is only when our system detects that the position error

is below a desired threshold that the quadrotor will perform the stipple. Therefore, the

assumption that the system is at rest is not too restrictive in regards to stippling because

the system will ideally be at rest when accuracy is most required.

One problem with the tether that we faced early on was oscillations of the sagging

cable reducing the quadrotor’s ability to maintain a stable hover, which we discuss further

in Section 7.3. This is most pronounced when the endpoints of the cable are relatively

close together compared to the cable’s length. We dampen these oscillations by tying a

lightweight thread to the midpoint of the cable, which does not have a significant impact

on the mass or shape of the cable but dampens swinging motion by the frictional forces of

it dragging on the floor.
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Figure 6–2: Quadrotor is preparing to refill mid-flight using the ink well. To construct
the ink well, we cut out the bottom of a coffee cup. We then cut a sponge to fit and glue
it to the base of the cup. Before starting a drawing, we fill the sponge of the ink well to
capacity, such that it is fully saturated but will not drip. We finally attach it to the canvas
and record its location so the stipple server knows where to send the quadrotor for refilling.

6.3 Autonomous ink refill

The final hurdle for fully autonomous flight is the ability for the quadrotor to replen-

ish its own ink while stippling. Our solution is elegant in that it uses the existing controller

with no need for modification. We make ink wells and attach them next to the canvas.

When the ink model predicts the ink is running low, we set the quadrotor’s target stipple

location to the center of the ink well. The quadrotor stipples the ink well repeatedly to

refill its ink. All of this is controlled by the stipple server. As far as the quadrotor con-

troller is aware, it is performing a stipple no different than it would on the canvas. We
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Figure 6–3: The quadrotor with a diagram of its body frame overlaid.

use an exponential decaying ink model constructed as outlined in section 5.2. Through

experimentation we find that 10 refill stipples results in a consistent maximum capacity

regardless of the amount of ink already in the quadrotor’s sponge. However for longer

drawings, to keep a consistent range of stipple sizes the ink well should be refilled roughly

every 500 stipples.

6.4 Torque model

The catenary model provides us with an estimate of the force of tension caused by

the wire, but not the torque acting on the quadrotor. Our simplified model of the quadrotor

does not provide an inertia tensor. Also the lever arm is not known, since there is no

estimate of the center of mass. For these reasons an experiment was performed to learn

the torque induced on the quadrotor from the tension force using a simplified model.

For our model we assume that the principal axes run along the arms of the quadrotor

as can be seen in Figure 6–3. The xB, yB, and zB axes correspond to the pitch, yaw, and
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roll of the quadrotor respectively. Let F be the force of tension exerted by the tether on

the quadrotor and r be the lever arm from the quadrotor’s center of mass to the attachment

point of the tether. Through experimentation we found the yaw induced by the tether to be

negligible, so we only care about the torque acting on the pitch and roll of the quadrotor,

which we approximate using

Tp = ryFz− rzFy (6.2)

Tr = rxFy− ryFx (6.3)

respectively. Both Equations 6.2 and 6.3 are linear with respect to the tension force. To

construct the model to approximate the torque we identify the two unknown parameters

for each equation using the following experiment.

First the quadrotor is flown to a variety of positions relative to the mounting point

and allowed to stabilize. The integral term of the quadrotor’s on-board PID captures the

torque induced by the tension force from the wire. This is because when in a stable hover,

the net torque acting on the quadrotor is zero. The tension force from the catenary model,

as well as the integral term of the quadrotor is recorded. The tension force is mapped into

the quadrotor’s coordinate frame and a multi-linear model is used to fit. For one of our

quadrotor setups we obtained

Tp = 2177.69Fz−642.87Fy−16.89 (6.4)

Tr = 740.48Fy +1963.97Fx +6.51. (6.5)

The intercepts for equations 6.4 and 6.5 correspond to the trim of the quadrotor, a small

constant offset applied to a control in order to make an aircraft fly correctly. The trim
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Figure 6–4: Torque Model trained for one of the quadrotors. Prediction errors are colour
coded, with darker red corresponding to larger positive errors, and darker blue larger neg-
ative errors.

encapsulates many unknowns such as differences in thrust generated by the motors and

asymmetries in the distribution of the mass. If it were possible to use a massless tether,

the integral of the on-board PID should be constant and approach these values. The brush

attached to the quadrotor for stippling is responsible for the intercept in Equation 6.4 for

having a large negative value of -16.89.

With the multilinear torque model, the torque acting on the quadrotor can be predicted

from the tension force and sent to the on-board controller. The multilinear model does not

account for all the variability, the coefficient of determination is only 0.613 and 0.764 for

roll and pitch respectively. However we use the model in combination with the on-board

PID which results in faster convergence for the integral term and overall better control.

The improvement in control is most noticeable when quickly traveling between two far

away points, since the torque acting on the quadrotor will vary drastically.

The main disadvantage of this method is that it is specific to the current setup of

the quadrotor. For different configurations, such as changing the brush length, marker

35



placement, or different quadrotor, the process of learning the linear torque model must

be repeated. However, predicting the torque and including a feed-forward term to the

on-board PID drastically improves the stabilization time of the on-board PID resulting in

improvements in overall control.

In addition to the usual control commands, the torque computed for the pitch and roll

are sent to the on-board controller. The on-board controller is then modified to make use

of these values when computing the commands to send to the motors. The integral term

of the on-board PID controller for the pitch and roll is modified and computed as

kI

(
T +

∫ t

0
e(t)dt

)
, (6.6)

where kI is the integral coefficient, T is the torque, and
∫ t

0 e(t)dt is the accumulated error

in orientation over the course of the flight.
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CHAPTER 7
Results and discussion

We have created a number of prints using our system, as well compared experimen-

tally the differences between tethered and untethered flight. We present these results in

this chapter, along with details on the implementation of our system, its limitations, and

possible improvements.

7.1 Implementation details

We perform real time motion capture with Optitrack cameras and Motive software.

Motive tracks the position and orientation of objects tagged with retro-reflective markers,

specifically, the canvas and the robot. We use 12 cameras attached to the ceiling in a

square pattern and facing the middle of the room, providing a cube-shaped capture volume

of about 2 meters in each direction. A Python program reads motion capture data and

sends commands to the robot, but also communicates to a second Python process which

computes and updates the planned stipple points. The software running on the Crazyflie

is modified to improve control of the brushed motors and improve radio communication

in the presence of dropped packets. Table 7–1 provides a list of parameters we use in our

implementation.

7.2 Physical prints

Figure 7–2 shows examples of physical prints compared to their source images and

planned stipples (see also the result shown in Figure 1–1). The accompanying video shows

the process of creating these prints, including high speed video of a single stipple, the
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Parameter Value
Robot mass 29.4 g
Battery mass 5.8 g
Tether mass 2.4 g
Tether length 184 cm
Max thrust 41.0 g
Speed control α 3300
Speed control β 2.8
Horizontal PID gains (kP,kI,kD) (0.36,0.03,0.11)
Vertical PID gains (kP,kI,kD) (0.34,0.05,0.14)
Stipple Controller horizontal PD gains (kP,kD) (0.4,0.2)
Stipple Controller vertical PD gains (kP,kD) (0.2,0.1)
Yaw rate PI gains (kP,kI) (3.0,0.01)
Control rate 100 Hz
Ink model 1.033e−0.0263n

Max stipple area 0.8 cm2

Min stipple area 0.18 cm2

Canvas size 45 cm × 60 cm
Table 7–1: Values of parameters used in our aerial robot stippling implementation.

process of swapping batteries and reloading ink, and a time laps of progress in making a

complete print. Currently, on average it takes several seconds to accurately place a single

stipple. Flight time on a single charge can be as long as 6 minutes. For the earlier prints

during this time we can draw up to 70 stipples. Conveniently this is roughly the maximum

number of stipples producible before requiring a refill. Altogether, the time to create

a print varies from about 10 minutes for the sphere, to approximately an hour for Che,

Turing, and the teapot. Table 7–2 shows a summary of statistics related to the creation of

prints. Finally, Figure 7–3 shows an example of a larger print in the process of stippled.
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Image t µh µv σh σv n f n̄s
Che 6.7 1.70 -2.1 6.9 4.6 10 40
Turing 6.7 0.99 -4.1 6.6 3.8 8 62
Teapot 6.4 0.23 -3.1 7.9 4.2 10 50

Table 7–2: Print information for selected images, where t is the average time in seconds
per stipple, µh and µv are the stipple error means in the horizontal and vertical directions in
mm, σh and σv are stipple error standard deviations in the horizontal and vertical directions
in mm, n f is the number of flights, and n̄s is the average number of stipples per flight.

7.3 Tethered flight comparison

Flight tests were performed to measure the quadrotor’s ability to maintain a fixed

position in order to understand better the variability of the hover controller position when

flying with the tether. Each hover test was performed twice, once with the target position at

a distance of 40 cm from the fixed endpoint of the tether, and once again but at a distance

of 140 cm. In all tests the target position was set to be at an equal height to the fixed

endpoint (90 cm). The x direction measures the horizontal error in the plane orthogonal

to the plane the catenary curve lies, while the y and z directions indicate the vertical and

horizontal error in the plane of the curve.

It is clear that modeling the tension of the tether results in improvements in control,

as can be seen in Table 7–3, the standard deviation of the errors is smaller in almost all

instances compared to the tests where tension is not modeled. For the results in Table 7–3,

the σx error is reflective of errors introduced by cable oscillation. The more the cable sags,

the worse the oscillation, which can be seen in the large error of the not dampened near

compared to far tests. However dampening the tether mostly eliminates this discrepancy.

Finally comparing the σz illustrates the necessity of providing an estimate of the

torque to the controller. When hovering far away, σz errors are larger. This has to do
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Hover Tests µx µy µz σx σy σz
Control -0.10 2.80 2.68 1.58 0.66 1.35
Near -0.60 2.49 0.26 3.60 1.11 2.31
Near with Model 0.05 -0.18 1.07 3.79 0.44 1.75
Near and dampened -1.02 3.14 1.76 2.77 0.45 2.04
Near with Model and Dampened -0.67 -0.04 1.00 1.27 0.42 1.56
Far 0.59 1.86 3.80 2.10 1.13 5.87
Far with Model 0.41 -1.03 0.21 1.25 1.02 2.06
Far and Dampened 0.48 3.91 3.50 2.51 1.13 4.19
Far with Model and Dampened 0.12 -0.86 0.51 1.56 1.71 3.19

Table 7–3: Hover test results, where µ is the mean error and σ is the error standard de-
viation in cm. In these tests the controller is only accounting for the tension force of the
catenary model, and ignoring the torque caused by the tension. The near and far tests were
performed at a fixed height, 40 cm and 140 cm away from the endpoint respectively, in the
z direction. The dampened tests uses a single thread tied to the midpoint of the tether to
dampen oscillations.

with the torques being produced by the tension force. When the tension is pointing mostly

down, little torque is produced since the cable is attached to the quadrotor at a point below

its center of mass. When the robot is far away from the fixed endpoint, the horizontal

tension component is larger and produces a greater torque on the quadrotor.

Table 7–4 shows the improvements in maintaining a stable hover that modeling the

torque provides. The hover test was repeated at the distance of 140 cm away in the z direc-

tion. The hovering results of the quadrotor when using the torque model are comparable

to those of the untethered control; it even out-performs the control with regards to the σx.

This may be due to the dampening thread providing a stabilization effect on the side to side

motion of the quadrotor. Most notable is the improvement of the σz error in comparison to

the tethered test without modeling the torque. Almost all of the additional error introduced

by the large torque the tether is exerting on the quadrotor has been accounted for.

40



Torque Hover Test µx µy µz σx σy σz
Control -0.10 2.80 2.68 1.58 0.66 1.35
Tethered 0.12 -0.86 0.51 1.56 1.71 3.19
Torque 0.10 1.84 1.40 1.48 0.78 1.49

Table 7–4: The final hovering tests results. The control test is performed using battery
powered flight rather than the tether. The tethered test is using a dampened tether and
the controller is modeling the tension but not the torque. The torque test is also using a
dampened tether, but is modeling torque as well as tension caused by the tether using the
learned parameters as described by section 6.4.

In general, the results of tethered stippling is comparable to that of untethered. For

a small trade-off in the accuracy of stipple placement and rate of stipples, what can be

a very involved process of constantly refilling ink levels and swapping batteries becomes

fully automated. Following initial setup of the canvas and the ink well, the quadrotor has

completed over 800 stipples with no interference. Tethered stippling also seems to be no

less reliable then untethered. The most frequent cause of failure throughout our experi-

mentation is the radio disconnecting which occurs equally often in both cases. Tethered

flight works best when the operating volume of the quadrotor is small. This works well

for stippling on smaller fixed size canvases. For other applications, tethered flight may

be a more significant restriction. For example, the navigation of objects as in work by

Landry [10] would be impossible.

As a final evaluation metric a stippling test to compare the tethered model to the un-

tethered was performed. The stippling test consists of the quadrotor repeatedly colliding

with the canvas at set target locations a total of 120 times. Errors are computed as the

difference from the target location and the projection of the quadrotor’s sponge onto the
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Tethered Stippling t µh µv σh σv
Control 3.8 0.97 -1.1 7.2 4.2
Tethered 4.5 1.05 0.3 7.2 4.5

Table 7–5: Stippling test results, where t is the average time in seconds per stipple, µh and
µv are the stipple error means in the horizontal and vertical directions in mm, and σh and
σv are stipple error standard deviations in the horizontal and vertical directions.

canvas at the time of collision. For the tethered test, the tether was dampened and both ten-

sion and torque estimates were provided by the catenary model to the quadrotor. Tethered

tests without the model were also performed, but due to the lower fidelity control, only a

few stipples at most could be performed before the quadrotor would crash; or that reason

these results are not included in Table 7–5. As can be seen in Table 7–5, tethered stippling

performs very similarly to untethered stippling, with the only prominent difference being

a slightly slower stippling rate. This is likely because the catenary model does not account

for the dynamics of the tether as the quadrotor travels between points.

7.4 Discussion and limitations

Figure 7–1 demonstrates the hover controllers ability to maintain a target position.

We measure an average position error of just over 2 cm when controlling the robot to

hover at a point in space. We find the quality of the hover controller to be acceptable, but

the magnitude of the error is not ideal for stippling. Fortunately our stipple controller can

reliably produce stipples with a much lower error. As reported in Table 7–2, the standard

deviation in horizontal and vertical directions is typically closer to half a centimeter. This

is possible because the quadrotor only proceeds to the stippling stage when the error in the

hover controller is below a certain threshold.

42



0 10 20 30 40 50 60 70

Time (s)

0
1
2
3
4
5
6
7

A
b
so

lu
te

 E
rr

o
r 

(c
m

)

0 10 20 30 40 50 60 70

Time (s)

6

4

2

0

2

4

6

X
 E

rr
o
r 

(c
m

)

0 10 20 30 40 50 60 70

Time (s)

6

4

2

0

2

4

6

V
e
rt

ic
a
l 
E
rr

o
r 

(c
m

)

0 10 20 30 40 50 60 70

Time (s)

6

4

2

0

2

4

6

Z
 E

rr
o
r 

(c
m

)

Figure 7–1: Error in the quadrotor’s position while trying to maintain a stable hover. From
left to right, the error magnitude and the x (orthogonal to tether plane), y (vertical), and z
errors. Solid and dotted red lines show the mean and standard deviation respectively.

While we do not adjust stipple positions to better represent edges or salient features

as proposed by previous work [12, 19], we briefly experimented with adjusting our robot

control to improve accuracy for certain stipples, such as those that make up the eyes of a

face or those that lie along a sharp edge. However, this has little benefit because it involves

an increase in flight time to wait for the robot to match the necessary position and velocity

to initiate the placement of a high precision stipple with fractional improvement in the

accuracy of the placement.
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All of our results are printed on flat surfaces, but we note that it would be straight-

forward to stipple on curved surfaces. For the robot to successfully draw stipples, the

curvature of the surface would need to be limited. The current position of the stippling

brush is best suited to vertical surfaces, so it would be necessary to change the orientation

of the brush to apply stipples on non-vertical surfaces (e.g., on an overhang or ceiling).

Finally, computing stipple positions on a manifold rather than a plane is an interesting

problem to explore in future work.

While the previous work on robot drawing and painting makes use of visual feedback

with cameras, we rely solely on motion capture and our ink model to estimate the position

and size of stipples. We expect that our results could be improved by using visual feed-

back. Visual feedback would not only provide more accurate feedback on the placement

of the stipples, but on the size of the stipple as well. The dynamic update for stipple place-

ment could then use both placement feedback and size feedback when computing future

positions. We also expect the results would improve by controlling the orientation of the

Crazyflie at the point of contact. Other obvious improvements would be to perform a more

sophisticated system identification of the Crazyflie, as done by Landry [10]. Finally, note

that some of our final results have artifacts from running ink when too much is applied to

a given area. Improvements to our ink model, the shape of the brush, and velocity control

could all help better control stipple sizes and prevent these artifacts.
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Figure 7–2: Example results, comparing original image, planned stipple positions, and the
result of stippling with the flying robot. Stipple counts for the sphere, Che, teapot, and
Grace are 100, 400, 500, and 2000 respectively.
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Figure 7–3: A photo of our largest print with 2000 stipples in the process of being drawn
on a 100 cm × 70 cm canvas.
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CHAPTER 8
Conclusion

We present a technique for creating stippled prints with a flying quadrotor robot. This

involves commanding the under-actuated robot to fly to different positions, and control in

the presence of a contact. We describe in detail the low level details, including state

estimation, latency issues, PID control, radio communication, and parameter tuning. We

also describe the high level algorithmic aspects involved in creating a set of stipples for

an image, adjusting their positions in the presence of errors, and the issues in computing

a good order for stipple creation. We present a method for fully autonomous stippling

using a tether to provide power in order to not be limited by the capacity of batteries. We

describe a model for the tether and how the existing controller can be easily extended to

account for additional forces and torques acting on the quadrotor.

8.1 Future work

While the results chapter discusses limitations and some simple extensions to our

work, there are a variety of other exciting related avenues for future work. Although we

have eight robots in our fleet, we only use one at a time for stippling. When creating

a larger print it would be advantageous to coordinate multiple robots to reduce the total

printing time. The acrylic ink we use is available in dozens of colors, which opens up

interesting computational challenges to adjust for color in addition to stipple positions,

as well as color blending. Figure 8.1 shows an early result experimenting with multiple

drawing passes, each using a different color ink. Moving beyond stipples, for instance
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Figure 8–1: A colored print of the joker, done in 3 drawing passes each using a different
colored ink. From left to right, the source image, the physical print, and a close up of two
over-lapping stipples illustrating subtractive color blending.

using an airbrush, would be very interesting and could exploit existing work on optimizing

ink transfer in creating murals [21].

By extending the methods outlined and applying them to larger quadrotors, stippling

of surfaces outdoors would be possible. While the crazyflie quadrotor can fly outside, due

to its light weight the accuracy of its stipple placement would be decreased by any breeze.

This opens up a range of possibilities from stippling hard to reach locations, to creating

large murals.

Light painting with aerial robots also has a collection of unique and interesting com-

putational challenges. Figure 8–2 shows an experimental result where we directly apply

the robot control algorithms that we use for stippling to light painting. In this example, the

cube is drawn with a Neopixel, with the total flight path partially revealed by the additional

light trails left by the robot’s battery and communication status lights. Light painting with

flying robots can benefit form dynamic updates similar to those we present here, while

new control strategies can be designed to relax flight trajectories in directions that project

to the same point in the image.
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Figure 8–2: Long exposure photo of light painting of wire frame cube.
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