
VISUALIZATION TOOLS FOR OPTIMIZING COMPILERS

by

Jennifer Elizabeth Shaw

School of Computer Science

Mc Gill University, Montreal

August, 2005

A THESIS SUBMITTED TO MCGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2005 by Jennifer Elizabeth Shaw

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-24799-0
Our file Notre référence
ISBN: 978-0-494-24799-0

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Optimizing compilers have traditionally had little support for visual tools which

display the vast amount of information generated and which could aid in the develop

ment of analyses and teaching and provide extra information to general programmers.

This thesis presents a set of visualization tools which integrate visualization support

for Soot, an optimizing compiler framework, into Eclipse, a popular, extensible IDE.

In particular, this work explores making the research compiler framework more

accessible to new users and general programmers. Tools for displaying data flow anal

ysis results in intermediate representations (IRs) and in the original source code are

discussed, with consideration for the issue of the mapping of information between

the low-level IRs and the source using flexible and extensible mechanisms. Also de

scribed are tools for interactive control flow graphs which can be used for research and

teaching and tools for displaying large graphs, such as call graphs, in a manage able

way.

Additionally, the area of communicating information generated by optimizing

compilers to general programmers is explored with a small case study to determine if

analyses could be useful to general pro gram mers and how the information is displayed.

This work is shown to be useful for research to find imprecision or errors in anal

yses, both from visualizing the intermediate results with the interactive control flow

graphs and the final results at the IR and source code levels, and for students learning

about compiler optimizations and writing their first data flow analyses.

11

Résumé

Les optimiseurs ont traditionnellement eu peu de support pour des outils visuels

qui présentent la vaste quantité d'informations produites et qui pourraient facili

ter le développement d'analyses et de l'enseignement et fournir des renseignements

supplémentaires aux programmeurs généralistes. Cette thèse présente un ensemble

d'outils de visualisation qui intègrent le soutien de visualisation de Soot, un cadre

d'optimiseur, dans Eclipse, un environnement de développement intégré (Integrated

Development Environment, IDE) populaire.

En particulier, ce travail explore des méthodes pour rendre le cadre d'optimiseur de

recherche plus accessible de nouveaux utilisateurs et programmeurs généralistes. Des

outils pour présenter des résultats d'analyse de flot de données dans les représentations

intermédiaires (IRs) et dans le code source original sont discutés, en prenant en

compte la difficulté d'établir la correspondance entre les IRs de bas niveau et le code

source en utilisant des mécanismes flexibles et extensibles. De plus, des outils pour les

graphes interactifs de flux de commande qui peuvent être employés pour la recherche

et l'enseignement ainsi que des outils pour afficher d'une manière efficace de grands

graphes, tels que des graphes d'appel, sont décrits.

En plus, le secteur de la communication de l'information produit par les optimi

seurs aux programmeurs généralistes est explorée avec une petite étude de cas pour

déterminer si les analyses pourraient être utiles aux programmeurs généralistes et

comment l'information est exposée.

L'utilité de ce travail en recerche est démontrée en l'utilisant pour trouver l'imprécision

ou les erreurs dans les analyses, en visualisant non seulement les résultats intermédiaires

avec les graphes interactifs de flux de commande mais aussi les résultats finaux au

iii

niveau IR et de la reprèsentation intermédiaire et du code source, et pour aider des

étudiants dans leur apprentissage des optimisations employées dans les compilateurs

et l'écriture de leurs premières analyses de flot de données.

IV

Acknowledgments

l am very thankful to my advisor Laurie Hendren for her encouragement and

support throughout this project, for her belief that l could actually finish it and for

her suggestions and enthusiasm.

This work builds upon three large software projects and l am grateful for the

work that has been done before on the Soot framework, the Polyglot tool and the

Eclipse platform. The Soot framework, which is the main basis for this project, was

developed by the Sable Research Group which was an excellent group to work with. l

would like to thank the members of the group. In particular, l would like to thank the

Soot team: John Jorgenson, Patrick Lam, Ondfej Lhotak, Feng Qian and Navindra

Umanee. l would also like to thank Bruno Dufour and Maxime Chevalier-Boisvert

for helping me with the French version of my abstract for this thesis.

This work was mainly funded by an IBM Eclipse Innovation Grant and l am

thankful to IBM for recognizing and supporting computer science research.

Finally l would like to thank my parents for their support and guidance through

out my life and my husband Ondfej, for believing in me and putting up with me

throughout this very challenging time.

v

VI

Contents

Abstract

Résumé

Acknowledgments

Contents

List of Figures

List of Tables

List of Algorithms

1 Introduction

1.1 Motivation .

1.2 Contributions

1.2.1 Basic Eclipse Plugin for Soot

1.2.2 Analysis Results Framework

1.2.3 Graph Tool

1.3 Organization

2 Background

2.1 Tools Overview

2.1.1 Soot ..

VIl

i

iii

v

VIl

xi

XV

xvii

1

1

3

4

4

5

5

7

7

7

/~

2.1.2 Polyglot 11

2.1.3 Eclipse. 12

3 Soot - Eclipse Plugin 13

3.1 Soot Invocation within Eclipse. 13

3.1.1 Launching Soot Within Eclipse 15

3.1.2 Options Dialog 16

3.1.3 Managing Option Configuration 17

3.2 Soot Output in Eclipse 18

3.3 IR Editor 19

4 Java To Jimple 21

4.1 Motivation . 21

4.2 Code Generation 22

4.2.1 Loops .. 24

4.2.2 CalI Expressions 25

4.2.3 Try / Catch / Finally Statements 28
~"

4.2.4 Synchronized Statements . 29

4.2.5 Array Expressions . 31

4.2.6 Field Expressions 31

4.2.7 Other Stmts 35

4.2.8 N ested Classes 36

4.3 Summary 45

5 Viewing Static Analysis Results 47

5.1 Motivation 47

5.2 Mapping Source and IR Position Information. 49

5.2.1 Position Origins 49

5.2.2 Position Information Assignment for Source Input 50

5.3 Visual Results 67

5.3.1 StringTags and Tool-tips 68

5.3.2 ColorTags and Color Highlighting 68
~,

VUl

5.3.3 LinkTags and Links

5.3.4 KeyTags and Legends .

5.4 Collecting Tags for Output ..

5.5 Managing the Display in Eclipse.

5.6 Summary

6 Applications of Tools

6.1 Motivation.....

6.2 Applications for Compiler Research

6.2.1 Analysis Results for Teaching

6.2.2 Analysis Results Specifically for Compiler Research

6.2.3 Analysis Results for Research and Advanced Users

6.3 Applications for Program Understanding

6.3.1 Unreachable Fields and Methods Analyses

6.3.2 Tightest Qualifiers Analysis

6.3.3 Loop Invariants Analysis

6.4 Summary ..

7 Interactive Tools

7.1 Motivation..

7.2 Interactive Control Flow Graph Tool

7.2.1 Running ..

7.2.2 Debugging.

7.2.3 Filtering Data Flow Sets for More Relevant Displays

7.3 Motivation - Displaying Large Graphs .

7.4 Interactive CalI Graph Tool

8 Related Work

8.1 Views Displaying Compiler Information .

8.2 Correlating IR and Source Results

8.3 Static Analysis to Highlight Co ding Problems

IX

69

70

71

72

73

75

75

75

77

80

87

91

94

96

99

100

101

101

101

102

103

106

106

108

111

111

115

116

9 Conclusions and Future Work

9.1 Conclusions .

9.2 Future Work .

Appendices

A User Guide

Bibliography

x

119

119

121

123

125

('

2.1

2.2

2.3

3.1

List of Figures

Java code for Example.java

Corresponding Jimple code for Java source Example.java

Soot Overview. . . .

Plugin Architecture.

3.2 Soot Invocation within Eclipse.

3.3 Soot Options Dialog within Eclipse

3.4 Soot Configurations Dialog within Eclipse

3.5 Soot Output View within Eclipse

3.6 IR Editor within Eclipse . . .

4.1 While Loop Code Generation

8

9

11

14

15

17

18

19

20

24

4.2 While Loop with Branch Statement Code Generation 25

4.3 While Loop Code Generation Before Nop Elimination. 26

4.4 For Loop with Branch Statement Code Generation .. 28

4.5 Try jCatchjFinally with Return Statements Code Generation. 30

4.6 Synchronized with Return Statements Code Generation. 32

4.7 Array Code Generation 32

4.8 Sample Field Reference From Nested Class 34

4.9 Sample Field Reference From Nested Class - Generated Jimple . 35

4.10 Normal Nested Classes - Naming Scheme Example. . . 37

4.11 Anonymous Nested Classes - Naming Scheme Example 38

4.12 Local Nested Classes - Naming Scheme Example . 38

4.13 Simple Final Locals Example 40

Xl

4.14 Simple Final Locals Example

4.15 Final Locals - Local Class Creation Example

4.16 Final Locals - Local Extends Example

4.17 Final Locals - One-level Only Example

5.1 Overview of Generated Position Information

5.2 Assert Statement Position Information Generation

5.3 Constructor Call Statement Position Information Generation

5.4 Do Statement Position Information Generation .

5.5 For Statement Position Information Generation

5.6 If Statement Position Information Generation.

5.7 Local Declaration Statement Position Information Generation

5.8 Swi tch Statement Position Information Generation

5.9 Synchronized Statement Position Information Generation

5.10 Try /Catch Statement Position Information Generation

5.11 While Statement Position Information Generation ...

5.12 Array Access Expression Position Information Generation.

5.13 New Array Expression Position Information Generation ..

40

41

42

42

49

52

54

54

55

55

55

56

57

58

58

59

59

5.14 New Multi-Array Expression Position Information Generation. 59

5.15 Array Initializer Expression Position Information Generation 60

5.16 Assignment Expression Position Information Generation .. 60

5.17 Assignment with Operator Expression Position Information Generation 61

5.18 Conditional And Binary Expression Position Information Generation 61

5.19 Conditional Or Binary Expression Position Information Generation 62

5.20 Call Expression Position Information Generation. 62

5.21 Cast Expression Position Information Generation 63

5.22 Conditional Expression Position Information Generation 63

5.23 Field Expression Position Information Generation 64

5.24 Instanceof Expression Position Information Generation 64

5.25 New Expression Position Information Generation. 65

5.26 Simple Unary Expression Position Information Generation 66

Xll

5.27 Unary Plus Expression Position Information Generation .. 66

5.28 Unary Minus Expression Position Information Generation. 66

5.29 Unary Bitwise Complement Expression Position Information Generation 67

5.30 Unary Logical Complement Expression Position Information Generation 67

5.31 Tool-tip with Analysis Information 68

5.32 ColorTags Representing Analysis Information 69

5.33 LinkTag with Analysis Information 70

5.34 Analysis Visualization Results Legend View 70

5.35 Tag Collection Overview 71

5.36 Analysis Visualization Results Types View 72

6.1 Pro cess for Using Framework for Viewing Analysis Results 76

6.2 Code to Visualize Parity Analysis Results 78

6.3 Code to Add Tags to Visualize Parity Analysis Results 79

6.4 Code to Register Tagger with PackManager 79

6.5 Parity Analysis with Visualization Results . 80

6.6 Code to Add LinkTags to Visualize the CalI Graph 82

6.7 CalI Graph Analysis with Visualization Results .. 83

6.8 CalI Graph Analysis LinkTag with Visualization Results 83

6.9 Code to Add StringTags and ColorTags to Visualize the Live Vari-

ables . 84

6.10 Liveness Analysis with Visualization Results 85

6.11 Code to Visualize Reaching Definition Analysis Results 86

6.12 Code to Visualize Cast Check Elimination Analysis Results 88

6.13 Cast Check Analysis with Visualization Results 89

6.14 Code to Visualize Array Bounds Check Analysis Results 90

6.15 Array Bounds Checks Analysis with Visualization Results . 91

6.16 Code to Visualize Null Check Analysis Results 92

6.17 Code to Add StringTags and ColorTags for Null Check Analysis Re-

sults . 93

6.18 Null Checks Analysis with Visualization Results 94

Xlll

6.19 Unreachable Methods Analysis with Visualization Results. 96

6.20 Code for Tagging Unreachable Methods with Visualization Results . 97

6.21 Tightest Qualifiers Analysis with Visualization Results 98

6.22 Loop Invariant Analysis with Visualization Results .. 99

7.1 Live Variable - Interactive Control Flow Graph Example Code 103

7.2 Add i to Data Flow Set 104

7.3 Propagate Set 104

7.4 Add x to Set 104

7.5 Propagate Set 104

7.6 Partially generated fiow sets on cfg with Liveness Analysis 105

7.7 Annotated cfg with filtered Parity Analysis . 107

7.8 Hello World Java Program 108

7.9 Interactive CalI Graph Tool Options 108

7.10 Interactive CalI Graph Tool 109

XIV

List of Tables

6.1 U nreachable Methods Analysis Results 95

6.2 Unreachable Fields Analysis Results 95

6.3 Tightest Qualifiers on Methods Analysis Results 98

6.4 Tightest Qualifiers on Fields Analysis Results 99

7.1 Reachable Method Counts for Hello World CalI Graph . 106

xv

~ ... xvi

List of Aigorithms

1 Basic Soot Processing. 10

2 Soot using Java source as input 22

3 While Loop Code Generation 27

4 Synchronized Statement Code Generation 33

XVll

xviii

1.1 Motivation

Chapter 1

1 ntroduction

Optimizing compilers seek to analyze and transform the program being compiled

in order to make it more efficient in terms of running time and/or space. Soot

[VROO, VRGH+OO] is a bytecode optimization framework which has successfully been

used for experimentation with optimizations in many areas including pointer analysis

[LH03], array bounds check elimination [QHV02], and virtual method calI resolution

[SHR+OO]. These complex analyses are implemented within Soot and take advantage

of its extensibility, the many available intermediate representations (IRs) and the

flexible series of options. These analyses involve generating, using and understanding

large amounts of information.

Soot was originally available as only a command-line tool, which could be invoked

in a shell environment. While this is a useful interface for advanced compiler develop

ers, it was found to be very difficult to be effectively used by those unfamiliar with the

tool. Therefore, it was necessary to provide access to Soot in a simpler environment,

such as an IDE.

The Soot framework is manipulated by a complicated series of options. These

options are often changed, and new options are frequently added. The need to keep

an up-to-date interface for accessing the compiler framework is an important consid

eration for making the framework accessible or usable to compiler students, general

1

/---

Introduction

programmers and even to researchers who are unfamiliar with the framework.

Soot contains several different IRs, upon which analyses are performed. These

IRs were designed specifically for easily computing analyses and are much simpler

than original source code. For example, they may include fewer statements and/or

express abstract ideas more concretely. This means, however, that they are unfa

miliar to the majority of users and are less compact than traditional source code.

However, despite these issues, there was no type of editor support for these IRs, and

yet compiler students are required to learn about them and compiler researchers need

to understand and manipulate them.

The Soot compiler framework, like many other optimizing compilers, includes

numerous standard compiler analyses, such as liveness and reachability analyses and

is extensible to provide support for developing new analyses. Unfortunately, there

was limited support for generating and visually displaying the analysis results in

relation to the IR. In sorne optimizing compilers, visual displays are available for

specific analyses1 , but there are few tools or formats for generating associated visual

information regarding the results of the analysis, in an extensible way, such that it

may be applicable to new analyses, and displaying that data. Viewing the results of

the analyses is useful for debugging purposes and as time goes on, more advanced

analyses are extensions of basic analyses and thus it is vital to be able to understand

the fundamental analyses and to ensure that they are correct.

Research compiler frameworks generate analysis information which could be useful

for general programmers. Usually, in an integrated development environment (IDE),

general programmers have access to extra program information, such as the type

hierarchy view in the Eclipse IDE [ecl03], which are based on structural analyses.

Compiler frameworks, like Soot, can generate much more precise information, based

on data fiow and control fiow analyses, that could aid in development of large software

projects. However, there was a lack of mechanisms to communicate the information

generated by an optimizing compilers to the end-users. These programmers are un

likely to be familiar with the available IRs and thus there was a need to provide tools

lSee Related Work in Chapter 8

2

1.1. Motivation

to convey the analysis results in a way that is related to the original source.

Soot provides an extensible analysis framework which can be used to compute

intra-procedural analyses until a fixed-point has been reached. This computation

framework usually performs many iterations, generating data for each point in the

program during each iteration. This information changes over time during the analysis

and there were no interactive debugging type tools available to capture the partial

results or the changes being made. It is useful to be able to view this information as

it is being generated before it is hidden by the data generated in the next iteration to

determine where the analysis is broken, or where the analysis loses precision. These

partial results enable the analysis developer to determine which kinds of statements

are handled incorrectly. Additionally, compiler students must learn how standard

analyses work and how to construct their own analyses and it is useful if they can see

the analyses in a step by step procedure.

Often very large graphs, such as call graphs, are created in optimizing compiler

frameworks. These large graphs may then be used to compute more complicated

analyses. Traditional tools to display large graphs have had problems with layout

and size issues. Thus tools are needed to view these large graphs in effective ways,

where the amount of data shown at one time is limited and adequate control over

which data should be displayed at a given time is provided.

Thus, the main goal in this project is to expose the inner workings of a research

compiler framework in a visual way. Much information is generated by compilers

and there were a lack of tools to communicate this information to compiler writers,

students and general programmers. This project seeks to address the lack of tools

and find ways to communicate the wealth of information, generated by optimizing

compilers, to users, taking into consideration methods that may be used for providing

tools in other areas as weIl.

3

~~

Introduction

1.2 Contributions

To address these issues, a generic set of extensible tools has been developed, which

can be used for aiding researchers, students and end-users in working with compilers.

These tools are based in a plugin which links the Soot optimizing compiler framework

with Eclipse a popular IDE.

1.2.1 Basic Eclipse Plugin for Soot

The first contribution of this project is the basic plugin used for invoking the research

compiler in an IDE. This plugin integrates the optimizing research compiler Soot

into the Eclipse IDE, providing menu support, dialogs and views for general use of

the Soot framework. This allows students and general us ers to easily invoke the

compiler framework in a familiar environment. In particular this plugin provides an

extensible, re-generatable dialog to manage the many options found in the research

compiler framework.

As part of the basic plugin, an IR editor which provides convenient support of

the different IRs generated by the Soot compiler, is available. This editor provides

keyword highlighting to help students and researchers to better understand the IRs

and a content outline which is useful for manipulating the IRs, which tend to be

mu ch longer than the original source code.

1.2.2 Analysis Results Framework

The second main contribution is a series of mechanisms for displaying, in a visual

way, the results of analyses computed by the compiler. These mechanisms are generic

enough to handle many different types of analysis results, including new analyses

which have not yet been considered. These mechanisms are designed to handle dif

ferent types of analysis results that may be generated, instead of specific types of

analyses, which makes them suitable for a wide range of analyses. In addition to

the mechanisms to generate the required visu al data, a framework for displaying the

data, again in ways that depend not on the data but on the format of the data, has

4

1.3. Organization

been developed.

A key contribution to this framework is Java to Jimple, a code generation project,

which provides the necessary information for displaying the results of analyses at the

source code level.

As this framework for displaying analysis results has been found to be successful

in helping to debug compiler analyses, easily identifying areas where imprecise or

incorrect results are generated, sorne analyses which generate information for general

programmers: an unreachable fields and methods analysis, a tightest qualifiers anal

ysis and a loop invariant analysis, have been developed and their results displayed in

this framework.

At the intra-procedural level results are computed on control fiow graphs of the

method being analyzed. An interactive control fiow graph tool, which allows re

searchers to develop analyses while being able to easily view intermediate results,

as the fixed point is being computed, is the third contribution. This tool displays

the method as a graph and updates the information generated for each statement in

an interactive way. This allows researchers to debug their analysis and students to

understand data fiow analysis.

1.2.3 Graph Tooi

Finally, to handle the issue of large generated graphs, a second plugin, a graph tool

has been created, which displays graphs and can be extended to display compiler

generated graphs. This generic graph tool has been extended with an interactive

call graph tool which allows researchers to view and manipulate a precise call graph

limiting the size of the partial graph shown at one time. This generic graph tool could

also be used for other compiler generated graphs such as points-to graphs.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the background

tools, including Soot and Eclipse, upon which this work is based. Chapter 3 presents

5

.~.

Introduction

a technical overview of the basic Soot - Eclipse plugin, covering the menus, dialogs and

views, as well as the IR editoI. Chapter 4 discusses the Java to Jimple project which

is used to relate analysis results to the original source code. Chapter 5 explains the

framework for generating and displaying visual analysis results. Chapter 6 introduces

applications of the visualization framework and discusses new analyses which are

useful for general programmers. Chapter 7 introduces the interactive framework for

viewing generated analysis information as it is being generated and the set of tools

used for viewing large amounts of graph data generated by compilers and discusses

the example of a partial call graph tool. Chapter 8 discusses related work. Finally,

in chapter 9 conclusions are given and areas of future work are discussed.

6

2.1 Toois Overview

Chapter 2

Background

This work is based upon three large software projects and in a way integrates the

three tools together. The tools are Soot, Polyglot and Eclipse and in this chapter, we

give an overview of each and describe how they are used in this work.

2.1.1 Soot

Soot1 [VROO, VRGH+OO] is a Java bytecode optimization and analysis framework

developed in the Sable Research Lab over the past several years. It has several

intermediate representations (IRs): Jimple, Baf, Grimp, Shimple and Dava, which

are used for analyses and transformations. The main IR is Jimple: a three-address,

typed, non-stack based representation. Jimple is used for analyses because it contains

far fewer kinds of statements and expressions than Java source, and is also much

simpler to work with than Java bytecode, as it abstracts away the stack and has

type information available for locals. Baf is a bytecode-like representation, Grimp is

similar to Jimple but without the three-address per statement restriction, Shimple is

a static single assignment (SSA) version of Jimple and Dava [Mie03, MH02, MH01] is

a structured abstract syntax tree (AST) representation used for decompiling. Figure

1 http:j jwww.sable.mcgill.cajsoot

7

Background

2.1lists a short Java program and Figure 2.2 displays the corresponding Jimple code.

public class Example {

public void foo 0 {

}

}

int [] arr = new int [10];

for(int i = 0; i < arr.length; i++){

arr[i] = i;
System.out.println(i);

}

Figure 2.1: Java code for Example.java

There are several key features of Jimple to note in Figure 2.2. First, aIl of the variables

have declared types. For example, the variable arr is declared to be an integer array.

Second, the for loop has been translated to a set of if and goto statements starting

at labelO and ending at la..bel1. FinaIly, the three-address code limit is shown in the

translation of the if statement condition. This condition requires four bytecodes: one

to load the variable i, one to load the variable arr, one to determine the array length

and one to perform the comparison. To represent these four bytecodes in three-address

code statements, two statements are needed. The first statement, $iO ;:::: lengthof

arr, handles accessing the variable arr and determining the array length, which is

stored in the intermediate variable $iO. In the next statement, if i >= $iO goto

label1, the variable i is accessed, the intermediate variable $iO is accessed and the

comparison is made.

The Soot framework provides tools for developing inter- and intra- procedural

analyses. In particular, it includes a data fiow analysis framework which facilitates

writing intra-procedural analyses and computing the fixed-point. Additionally, Soot

can compute a precise calI graph which can be used for additional analyses, including

whole program analyses. The general functionality of Soot is given in Algorithm 1.

First Soot loads aIl classes required to process the class being analyzed, this includes

8

2.1. Tools Overview

public class Example extends java.lang.Object

{

}

public void foo 0

{

Example this;

int [J arr;

int i, $iO;

java.io.PrintStream $rO;

this ;= @this; Example;

arr = newarray (int) [10J ;

i = 0;

labelO:

$iO = lengthof arr;

if i >= $iO goto labell;

arr [iJ = i;

$rO = <java.lang.System: java.io.PrintStream out>;

virtualinvoke $rO.<java.io.PrintStream; void println(int»(i);

i = i + 1;

goto labelO;

labell:

return;

}

public void <init>O

{

}

Example this;

this ;= @this Example;

specialinvoke this. <java.lang. Object; void <init>O>O;

return;

Figure 2.2: Corresponding Jimple code for Java source Example.java

9

"...-.,.
,

Background

all referenced classes. Upon loading the classes Soot creates a skeleton SootClass, for

each, consisting of SootFields and SootMethods, but not method bodies. Soot may

optionally perform who le program analyses or may proceed directly to performing

intra-procedural analyses. Method bodies are generated during analyses as they are

needed. This implies that unreachable method bodies of classes referenced from the

class library are never generated. Finally, any generated results are output.

Algorithm 1 Basic Soot Processing
load all required classes

generate SootClass skeletons

<perform whole-program analyses

generating method bodies as needed>

perform intra-procedural analysis

generating method bodies as needed

output results

Soot has been extended with an annotation framework [PQVR+Ol], which allows

Tags to be attached to Hosts. Tags are any piece of information such as the result

of an analysis. For example, a Tag could be added to each array access to indicate

whether it is potentially out of the array boundaries or if it is definitely safely within

the boundaries. Hosts are structures that may need related information attached to

them, such as classes, fields, methods, statements and expressions. These Tags are

propagated throughout the different IRs and updated as required.

As shown in Figure 2.3, Soot takes as input Java bytecode, Jimple and now Java

source code2
, creates Jimple, performs analyses, adding Tags where necessary and

outputs Java bytecode or any of the Soot IRs.

The tools presented in this thesis build upon and extend Soot in several different

ways. First, we integrate the basic functionality of Soot into Eclipse. Second, we

extend Soot to take Java source as input. Third, we provide extensions to the con

trol fiow analysis framework and calI graph to enable visualization. Fourth, we add

2Support for Java source code input to Soot is presented in Chapter 4 of this thesis.

10

~ ..

2.1. Tools Overview
(

command-line args

Soot

Jimple

Jimple, with
Flow Analysis Information

~ _____ t- Jimple with Tags

Generate Bytecode

Figure 2.3: Soot Overview

graphical result Tags for encoding and displaying analysis results. Fifth, we utilize

the framework to build new analyses.

2.1.2 Polyglot

Polyglot [NCM03] is a front-end Java source to Java source compiler. !ts main pur

pose is to allow researchers to easily extend the Java language, providing an extensible

framework for doing so. We do not use it in this capacity, instead, we extract the

AST generated by the Polyglot front-end and from it generate Jimple code. Polyglot

provides aU the information required by a front-end compiler such as position infor

mation, error checking and type checking and we take advantage of this information

to generate Jimple and in the development of our tools. Polyglot covers the entire

11

Background

Java language making it suit able for integration with Soot.

2.1.3 Eclipse

Eclipse [ec103] is an open-source, extensible integrated development environment

(IDE). Eclipse is a framework with multiple graphical views, editors, dialogs and

menus each of which may be extended or customized. The underlying graphical sys

tem is the standard widget toolkit (SWT) , an alternative to Swing, the standard Java

graphical system. We integrate our work into Eclipse as a plugin, as Eclipse was

designed as a plugin framework where one can easily add new functionality. We take

advantage of the many features of Eclipse in order to avoid duplicating user interface

and graph layout work. Our basic integration extends menus, editors and views and

builds upon SWT. Our interactive control fiow graph and call graph tools build upon

the graphical editing framework (GEF) [GEF], which is itself an extension of Eclipse

and provides the basics for graphical edit ors and graph layout.

12

Chapter 3

Soot - Eclipse Plugin

3.1 Soot Invocation within Eclipse

Eclipse is a multi-purpose development framework which includes tools for Java de

velopment in an extensible graphical environment. The Boot bytecode analysis frame

work is a powerful compiler framework which has traditionally been available only as

a command-line tool. Integration of Boot into Eclipse has many benefits to users and

researchers alike. The main benefits include: enabling new programmers to easily

use the framework without any complicated set-up usually associated with research

frameworks, enabling students to become familiar with the Boot framework and all the

options available, and allowing researchers unfamiliar with the framework to develop

new compiler analyses within the environment of an IDE.

The plugin is comprised of the basic plugin, an analysis results visualization frame

work and an extended set of interactive tools as shown in Figure 3.1. In Figure 3.1 the

grey box at the top represents Eclipse, and the big white plug shaped box represents

the Boot - Eclipse plugin. All of Boot is contained within the plugin as shown in

the smaller white box. The four boxes along the bottom of the figure represent the

four modules making up the plugin. The basic plugin consists of the Boot Launcher

module and the IR Editor module. The Visualization Framework and Interactive

Tools modules make up the rest of the plugin. The plugin modules are designed to

interact with Boot in such a way that Boot is kept completely independent from the

13

Soot - Eclipse Plugin

Eclipse

800t Interface

Basic Plugin

Figure 3.1: Plugin Architecture

modules. This design allows Soot to continue to be available as a command line tool,

with no dependencies on the Eclipse project, for those who prefer it in that format.

This chapter discuss the basic plugin, chapters 4, 5 and 6 look at the visualization

framework and chapter 7 describes the interactive tools.

The main contributions to the basic plugin are: menu items, which can be used

to invoke simple Soot operations, a programmatically generated options dialog which

can be used to invoke aIl of the functionality available in Soot, an IR editor and an

output view which displays the standard Soot output. The extended features which

include the attribute visualization framework and interactive control flow and calI

14

3.1. Soot Invocation within Eclipse

graphs are discussed in later chapt ers 5, 7.

3.1.1 Launching Soot Within Eclipse

The Soot launcher module is used for launching Soot within Eclipse. This module

handles many basic components for the invocation of the Soot framework. It handles

the selection of files to be processed determining the source precedence, whether Soot

takes as input class files, Jimple files or Java source files. The Soot output folder is

setup and refreshed from the file system within Eclipse after Soot has run, so that aIl

generated output files are available within Eclipse. This module handles sending the

required options as arguments to Soot, including the classpath required for the files

being processed. Soot is invoked on a separate thread and the Soot launcher provides

a mechanism for handling Soot output.

For beginning users, sever al basic menu items are provided to run Soot with

common options on a single file or a project of files as shown in Figure 3.2, which shows

Run Scot ".

t> Uj Livelnteractive,javci 1: Manage Configurations ...

Figure 3.2: Soot Invocation within Eclipse

the menu item for invoking Soot to create Jimple, using a source file Hello. java

as input. For example, one of the first activities that new users of Soot try is to

pro duce Jimple, one of the intermediate representations (IRs) in Soot. Menu items

are provided, for new users, for commonly performed actions such as producing Jimple

files or decompiling. For more advanced users, an options dialog, with aIl Soot options

available to be set, is provided and also provided is a second dialog for managing Soot

configurations. These are discussed below in sections 3.1.2 and 3.1.3.

15

Soot - Eclipse Plugin

3.1.2 Options Dialog

Soot has approximately 180 options and new options are added often. In order to

keep the plugin synchronized with Soot aIl options and related documentation are

stored in an extensible markup language (XML) file and the option parsing code and

the options dialog are generated programmatically. U sing this method also allows the

documentation to be used as tool-tips for the widgets in the dialog.

In order to create the options dialog, a different visual widget is used to represent

each type of option available. A boolean widget with a check-box is used for boolean

options. These are options that can either be selected or not selected and take no

parameters. A string widget with a text box is used for options requiring a single

string parameter. A list widget with a text box which has multiple lines is used for

options requiring a list of parameters. FinaIly, a multi widget with a set of radio

buttons is used for options which take a single parameter from a designated set.

Generating the options dialog in this way allows the dialog to always stay up

to date and synchronized with Soot, with no extra programming required. This

classification of option types ensures that as long as new options are formed as one

of the specified types, then no user interface work is required. As weIl, updating the

look of the user interface is sim ply a matter of updating the four widgets without

having to change code for approximately 200 options. Additionally, organizing and

classifying the options with an associated visual widget simplifies and streamlines

the dialog. As shown in Figure 3.3, the options are classified into different groups

represented in the tree on the left. These groups can be selected to reveal the options

to be specified. In this figure the Output Options group is selected. Several boolean

options are listed at the top right, shown as check boxes. In the middle right a set of

radio buttons are shown, which represent the Output Format to be produced and at

the bottom a tool-tip is shown, giving a description of the Jimple File - Output

Format option.

16

3.1. Soot Invocation within Eclipse

Soot Launching Options

Output options

Output Jar File

P' Save Tags to XML

Processing Optionj r print Tags in Output

1> Phase Options i i r Don't Output Source File Attribute

Application rv10de 9 1. r Don't Output Inner Classes Attribute
Input A.ttribute opti 1 ., •

: 1 P' Show Exception Destinations
Annotation Option~ 1

Miscellaneous OPt~ i r GZipped IR output

Soot Main Class 1: output Format

1 i n jimple File (': jimp File

produce .jimple files. which contain a textual form of Soot's p File

'rji_m...;.p_le_i_n_te_r_na_l_re...;.p_r_e_se_n_t_at_io_n_. _________ --' eviated Baf File

Run Close

Figure 3.3: Boot Options Dia10g within Eclipse

3.1.3 Managing Option Configuration

Often Soot is run with the same set of options many times. Thus, the basic plugin

provides a dia10g to configure a set of options and save them with a unique name.

This dialog provides several options; new, edit, delete, rename, clone and run

and a list of aH configured option sets, as shown in Figure 3.4. The new option

pro duces a dia10g as king for a unique name, it then displays the options dialog and

allows the user to select the options required for the configuration and then to save

them. It then displays the name of the configuration in the list on the 1eft. After

configurations have been created, they may be selected and manipulated. Selecting

the edit option disp1ays the options dia10g with the configuration's settings selected,

these can then be changed and saved. Selecting delete, removes the configuration

17

Soot - Eclipse Plugin

Soot Configurations Manager

Parity' Analysis New

Edit

Delete

Rename

lU ________________ ~~ Clone

_____ R_u_n ____ ~!I~ ____ C_lo_s_e __ __

Figure 3.4: Soot Configurations Dialog within Eclipse

from the list. Selecting rename pro duces a dialog where the user can set a new name

for the configuration. Selecting clone creates a copy of the set of options, which can

then be slightly modified and saved under a new name.

Configurations are persistent and thus are available on subsequent invocations of

Eclipse. Having this kind of feature is imperative in a system with so many different

combinations of options. This dialog allows researchers, who may need to run the

same set of options sever al times, to configure their system as they like.

3.2 Soot Output in Eclipse

Output from Soot is caught by a stream gobbler and sent line by line to a small output

view as Soot is running as shown in Figure 3.5. The output scrons automatically.

This view allows selection and copying of the text generated. This simple approach

simulates the normal output one would see if running Soot as a command-line tool

18

3.3. IR Editor

Soot Output l:5 =Ej

1 Starting ... soot.Main --d jhomejjlhotal<jeclipse3 .1jruntime-worl<spacejDemojsootoutput
Soot started on Tue May 24 16:34:02 EDT 2005
Transforming Example ...
Writing to ihome/jlhotal</eclipse3. l/runtime-worl<spacejDemojsootOutput;Example .jimp
Soot finished on Tue May 24 16:34:04 EDT 2005
Soot has run for 0 min. 1 sec.

Figure 3.5: Soot Output View within Eclipse

in a shell and is a good way to bridge the gap between the shell and the graphical

based application.

3.3 IR Editor

The IR edit or shown in Figure 3.6 provides syntax highlighting and a content outline

view for sever al of the Soot IRs. The editor part is shown on the left with a sample

Jimple file and the content outline view, which lists the fields and methods in the

class, is on the right. The content outliner is useful as the IRs are often much

longer than original source code. When a selection is made in the outline the cursor

selects the appropriate place in the text editor making navigating simple. Similarly,

selecting text in the edit or updates the selection in the outline. The outline is updated

automatically upon saving the IR text after editing it. Editing the IRs by hand is

sometimes necessary when debugging, especially wh en working with the Jimple IR.

Finally, for the Jimple IR, the editor provides attribute annotations described later

in chapter 5.

As most textual edit ors use many of the same features, it makes sense to simply

extend a basic editor and make slight modifications for special features of a particular

IR. This is the approach used for the IR edit or , as a basic text editor is provided in

Eclipse, allowing reuse of common editor functionality.

19

}

. X = ,x + 2;
i = i + 1;

. label0;

labell:
y = y + 1;
~[~] = 9;

Y < 10

Example this;
, .. ' x, i;

labell;

labell;

this := @this: Example;
x = 0;
j. = 0;

Soot - Eclipse Plugin

T =

myField : int

a. main(java ,lang.String[))

Figure 3.6: IR Editor within Eclipse

20

4.1 Motivation

Chapter 4

Java Ta Jimple

One of the main goals in this work is to provide mechanisms for viewing analysis

results at the source code level. Analyses, within Soot, are usuaUy performed on the

Jimple IR and we therefore need a way to compute a clear translation between Jimple

and the original Java source code on a line and column position granularity, in order

that we may visualize the results of analyses at the source level. Previously, Jimple

could only be generated from Java bytecode. Line number information mapping each

bytecode to its original source code statement line is included in bytecode but col

umn position information for statements and expressions and position information for

methods and fields is unavailable. In order to obtain this extra position information

about the original source code we use Polyglot to generate Jimple directly from the

Java source code. Polyglot, a front-end compiler that converts Java source code to

Java source code stores the start and end line number and the start and end column

position information in each node in the generated AST, including method and field

nodes. When we generate Jimple from the Polyglot AST we assign aU of the position

information to Jimple constructs. When the analysis results are generated, the source

position information is available to provide mechanisms for easily viewing the results

at the source level. This chapter describes the Java source to Jimple code generation

in detail. The next chapter describes the propagation of position information.

21

Java To Jimple

4.2 Code Generation

We invoke Polyglot from within Soot to generate an AST corresponding to the source

file that we want to process. There may be sever al classes represented in the AST

as one can include sever al classes in a single source file, including both other top

level classes (other then the single public top-Ievel class) and nested classes. We first

pro cess the entire AST to find aIl of the class declarations. We then map each Java

class to a SootClass and proceed to pro cess the classes one at a time.

Algorithm 2 Soot using Java source as input
for aIl classes required by Soot do

invoke Polyglot to build AST

create map of pointers to each class in AST

generate SootClass skeleton

for aIl method bodies needed during analyses in Soot do

generate body from saved pointers to Polyglot AST

end for

end for

Each SootClass is initially empty with only a name with which it may be identi

fied. We then build it up incrementally by adding modifiers, setting the super class

and setting the implements clauses. These map one-to-one directly with the origi

nal source except in sorne special cases of nested classes to be discussed in Section

4.2.8. If the original Java class is an interface we proceed in a similar way, as the

Soot representation of classes, like bytecode, does not differentiate between classes

and interfaces.

Once the SootClass is initialized we build the outline by adding fields and meth

ods. Fields are added in the SootClass as SootFields and a map of fields referring

to their corresponding initial values is saved so the initialization code can be later

created inside the initializer method (or class initializer method in the case of static

fields). Methods and constructors are added to the SootClass as SootMethods. The

22

4.2. Code Generation

Jimple IR do es not have a special constructor construct, but represents the construc

tors in methods named < ini t >. At this point parameters and exception lists are

added that correspond to the original source. In the case of nested classes that need

extra parameters, these extra parameters are added later on and described below in

Section 4.2.8. AIso, at this point initializer blocks are also stored in a map so they

can be later created in the initializer method (or class initializer method in the case

of static initializer blocks). This processing algorithm is given in Algorithm 2.

Once this skeleton of the SootClass is built with its fields and methods we build

the method bodies as they are needed for analyses in Soot. The strategy is to create

Jimple statements for each corresponding Java statement, inserting nop statements for

handling control fiow where needed. These nop statements are later removed but they

are useful, enabling us to generate code from top to bottom without the need to patch

up the generated code. Expressions are created completely and assigned to a single

local that can be used when creating more complex expressions or within statements.

This gives us a general mechanism for generating complicated expressions without

worrying about their context allowing us to generate code in a straight-forward and

elegant fashion.

Jimple has only 15 kinds of statements compared to the 24 kinds of statements

m Java. Assignment statements from Java source are mapped directly to Jimple

assignment statements. If, while, for, do, try/catch/finally, break, continue

and as sert statements are aIl generated in Jimple using the Jimple if and goto

statements. The synchronized Java statement is created with entermonitor and

exi tmoni tor Jimple statements along with if and goto. Return statements from

the source are created using the Jimple return and return void statements. Java

swi tch statements are generated using the Jimple lookupswi tch and tableswi tch

statements. CalI and new expressions and constructor calI statements are created

using Jimple invoke statements.

As most code is generated in a straightforward way we will discuss only the inter

esting parts in the sections below.

23

Java To Jimple

4.2.1 Loops

There are two important requirements while generating code for loops: first to mini

mize the number of jumps required and second to correctly and easily handle branches.

It is important to minimize the number of jumps required for the execution of the

loop in the event that it is invoked many times. For example, consider the while

loop shown in Figure 4.1 part a). In parts b) and c) we show two ways to generate

the while loop as Jimple. In part b) we see that we need 2 jumps to start executing

the loop and 1 jump for every iteration. In part c) we do not need any jumps to

start the loop, we need one for every iteration and 1 to end the execution of the

loop. Therefore the code generated in part c), which is in the style of the bytecode

produced by javac, is always more efficient than the code generated in part b).

while (cond)

statement

la) original 1

goto labe11

labelO:

statement

labe11 :

if cond goto labelO

labelO:

if ! cond goto labe11

statement

goto labelO

label1 :

-- lb) code generation 11 -- -- Ic) code generation 21 -

Figure 4.1: While Loop Code Generation

The more interesting part of code generation for loops is when the loop body

contains one or more break or continue statements. These are represented in Jimple

as gotos. We need to keep track of goto targets for each break and continue

statements coming from the original source, as we often generate the target before

generating the gotos. To accomplish this we store a nop, corresponding to each

target, in each loop, in two stacks, one for continue statement targets and one for

break statement targets. A continue statement target is the condition statement

for while and do loops and the iterator statements for for loops as shown in the

example code generated for a for loop containing a continue branch statement in

Figure 4.4. A break target is the statement after the loop in aH cases as shown

24

4.2. Code Generation

in Figure 4.2, showing sample code generated for a while loop containing a break

branch statement. These nops are popped off the stack at the proper location during

the loop creation. Any break or continue statement without a label is created as

goto with the target being the corresponding nop. This method, shown in Algorithm

3, allows us to correctly handle multiple break and continue statements in nested

loops. vVe also create a map storing labels of labelled statements to the corresponding

goto target for use in the cases when the branch statement has a label target. Figure

4.3 shows the considerably longer code generated, for the example in Figure 4.2,

before the nop statements and extra labelled blocks are eliminated.

labelO:

if !E1 goto labe12

Si
while (EU

if !E2 goto label1
Si

if (E2) break
goto).abe12;

label1 :
S2

S2

1 a) original 1 goto labelO

labe12:

lb) code generationl

Figure 4.2: While Loop with Branch Statement Code Generation

4.2.2 Cali Expressions

When creating a call expression we use the following scheme to determine which type

of invoke to generate. If the class containing the method to invoke is an interface

and the method is abstract, then we make an interfaceinvoke expression. If the

method to invoke is static, we make a staticinvoke expression. If the method

to invoke is private, we make a specialinvoke expression. If the call receiver is

this or super, then we create a specialinvoke expression. Otherwise we create a

25

Java To Jimple

labelO:

nop

nop

if ! E1 goto labe13

nop

S1

if ! E2 goto label1

nop

nop

goto labe12;

labe11 :

nop

nop

S2

goto labelO

labe12:

nop

labe13:

nop

nop

IC) code generation with nopsl

Figure 4.3: While Loop Code Generation Before Nop Elimination

26

4.2. Code Generation

Algorithm 3 While Loop Code Generation
cond_true_nop_stack. push (new nop)

condJ'alse_nop.J3tack. push (new nop)

break_nop_stack. push (new nop)

continue_nop_stack. push (new nop)

beginJoop_no~ +-- new nop

endJoop_nop +-- new nop

emit beginJoop_nop

continue_nop +-- continue_nop_stack.pop 0
emit continue_nop

continue_nop_stack. push (continue_nop)

condition_expression +-- generate_expression (while_statement.expression)

cond_true_nop +-- cond_true_nop_stack. pop 0
cond_false_nop +-- condJ'alse_nop_stack.pop 0
condition_expression +-- not (condition_expression)

if condition_expression not (constant and true) then

emit new if statement (condition_expression, endJoop_nop)

end if

emit cond_true_nop

generate_statement (while_statement. body)

emit new goto statement (beginJoop_nop)

emit break_nop_stack.pop 0
emit endJoop_nop

emit cond_false_nop

continue_nop_stack. pop 0

27

/~--

Java To Jimple

inits

labelO:

if ! E1 goto labe13

S1

for (inits, E1, iters) if !E2 goto label!

S1 goto labe12

if (E2) continue labe11 :

S2 S2

labe12:
1 a) original 1

iters

goto labelO

labe13:

-- lb) code generationl -

Figure 4.4: For Loop with Branch Statement Code Generation

virtualinvoke. When a call is in a nested class and it invokes a pri vate method

of an enclosing class or a protected method of a super class of an enclosing class, it

must call a special access method and we discuss this below in Section 4.2.8. Finally,

if the return type of the method to invoke is void we turn the invoke expression

into an invoke statement directly. Otherwise, we create an assignment statement

assigning a local to the invoke expression that can then be used in more complex

expressions or statements.

4.2.3 Try / Catch / Finally Statements

A try statement with any number of catch statements is generated in quite a straight

forward way. The try block statements are created with an additional goto statement

that has a target of the first statement after the try / catch block. This is an example

of a place where we simply insert a nop statement for the target. Then the first catch

block is created again with a goto statement with a target of the first statement after

28

4.2. Code Generation

the try / catch block. Subsequent catch blocks are created in a similar way. Even

when the try or catch statements contain a return statement the code generation is

quite straightforward with return statements replacing the added goto statements.

The interesting part for code generation occurs when finally statements are

introduced. The finally block must always be executed on every path through a

try/catch sequence. In the general case we create the statements for the finally

block at the end of each try and catch block just before the goto statement with a

target of the first statement after the try / catch block or the return. This results

in sorne duplication of code but avoids the use of Java subroutines. In practice, it

appears that finally blocks are used so rarely that this code duplication do es not

cause any problems and additionally, the code generated by j avac for the new Java

1.5 compiler follows this same approach.

If the finally block has a return statement, the return statement must replace

the return statement that may have been generated from the try or catch. To

do this, we push a reference to each try statement onto a stack just before the

try block statements are created. Then, if we are creating a return statement

that is within the try block we check to see if there is an finally block associated

with the try statement. If there is a finally block we create it and then create

the try block return statement. We do not worry about creating multiple return

statements, for example one from the try block and one from the finally block,

because the unreachable code eliminator phase, a standard phase available in Soot,

will eliminate the unnecessary try block return statement if required. Figure 4.5

shows the generated code, where only the return from the f inally block is used and

where the f inally block is always executed even in the case of an extra un-caught

exception. Using a stack allows us to properly handle nested try statements. We

follow a similar method for handling nested catch blocks.

4.2.4 Synchronized Statements

In general, a synchronized statement is generated quite easily. An entermoni tor

on the expression is created and added, then the statements from the synchronized

29

try

81

return El

catch E

82

return E2

finally

83

return E3

1 a) original 1

labelO:

81

83

return E3

labell :

e : = @caughtexception

labe12:

82

83

return E3

labe13:

e2 : = @caughtexception

labe14:

goto labe15

labe15:

83

return E3

Java To Jimple

catch E from labelO to labell with label!

catch Throwable from labe12 to labe13 with labe13

catch Throwable from labe14 to labe15 with labe13

catch Throwable from labelO to label! with labe13

'--------- 1 b) code generation 1 ---------'

Figure 4.5: Try jCatchjFinally with Return Statements Code Generation

30

4.2. Code Generation

block, then an exi trnoni tor on the expression, and then a catch clause for any ex

ceptions that may have been thrown from within the synchronized block. These

exceptions need to be caught because the monitor must exit. 80 we generate code to

catch the exceptions, exit the monitor and re-throw the exceptions. Synchronized

statements can be generated to nest neatly inside each other.

The interesting part for generating synchronized statements is when return

statements occur within the synchronized block as the monitor must exit before the

return. In the case of nested synchronized blocks, the monitors must be exited in

the correct order, so we save a stack of all the enterrnoni tor statements and upon

encountering a return we pop off the enterrnoni tor statements one by one so that

we can generate matching exi trnoni tor statements and then we push them back on

to be able to generate the code to properly generate the exi trnoni tor statements as

if there were no return statements as shown in Figure 4.6. The complete algorithm

is given in Algorithm 4.

4.2.5 Array Expressions

When creating an array access expression that is on the left hand si de of an assignment

expression or as part of a unary expression that needs to be set, it is important to only

generate the array access index once. For example, when generating an expression

such as arr [i ++] ++, the i ++ needs to be generated once and used twice or the

wrong array value will be set see Figure 4.7. Normally, an increment expression

can be represented as an assignment statement with a binary addition expression on

the right hand side, hence arr [x] ++ would be equivalent to arr [x] = arr [x] + 1.

However, this is too complicated for Jimple and the arr [x] needs to be generated in

an intermediate step on both sides. This is fine unless x is a complicated expression

such as i ++ when we need to ensure it is only generated once.

4.2.6 Field Expressions

A field expression, in general, is created as a field reference in Jimple, using the

field target as the field reference base if it is an instance field reference. If the field

31

entermonitor El

labelO:

Sl

exit monitor El

return E2

Java To Jimple

synchronized El label1:

Sl

return E2

e : = @caughtexception

labe12:

exit monitor
'-- ! a) original! -

. . labe13:

throw e

catch Throwable from labelO to labell with labell

catch Throwable from labe12 to labe13 with label1

'--------!b) code generation! ______ _

Figure 4.6: Synchronized with Return Statements Code Generation

arr [i++] ++

la) original!

$iO i

i = i + 1;

$il arr [$iO]

$i2 = $i1 + 1

arr[$iO] = $i2

lb) code generation!

Figure 4.7: Array Code Generation

32

4.2. Code Generation

Algorithm 4 Synchronized Statement Code Generation
expression +- generate_expression (synchronized_statement.expression)

emit new entermoni tor statement (expression)

monitoLstack.push (expression)

starLnop +- new nop

emit starLnop

generate_block (synchronized_statement. body)

emit new exi tmoni tor statement (expression)

monitoLstackpop ()

end_synchronized_nop +- new nop

goto_end_statement +- new goto statement (end_synchronized_nop)

end_nop +- new nop

emit end_nop

emit goto_end_statement

catch_alLbefore_nop +- new nop

emit catch_alLbefore_nop

catch_allJocal +- generateJocaLoLtype_throwable ()

emit new identi ty statement (new caught exception reference, catch_allJocal)

catch_before_nop +- new nop

emit catch_before_nop

catch_allJocal +- generate_locaLoLtype_throwable ()

emit new assign statement (catch_alLbeforeJocal, catch_allJocal)

emit new exi tmoni tor statement (expression)

catch_after _nop +- new nop

emit catch_after _nop

emit new throw statement (catch_allJocal)

emit end_synchronized_nop

generate_exception_regions (starLnop, end_nop, catch_alLbefore_nop,

catch_before_nop, catch_after _nop)

33

,~ ..

Java To Jimple

expression is representing the length of an array, instead of a field reference, a length

expression is created. If the field expression is a pri vate field of an enclosing class

or a protected field of a super class of an outer class, a special access method is

used to get the field. We discuss in detail access methods below in Section 4.2.8.

Here we consider the special case where the field expression is the left hand side of

an assignment expression or part of a unary expression that needs to be set, where

we must be careful to ensure that the receiver is generated only once and then used

multiple times as needed. For example, consider the example shown in Figure 4.8.

When we are creating the method meth () in the class Inner we need to use an access

method to get the x using the foo () receiver as the parameter but we also need to

use an access method to set x using the f 00 () receiver again as a parameter. Thus

we must create an invoke to method foo () only once or else we would actually be

getting and setting x on different instances of MyClass which is generated within

method f 00 () .

public class MyClass {

}

private int x = 9;

public MyClass fooO{

return new MyClass();

}

class rnner {

}

public void me th 0 {

fooO.x += 1;

}

Figure 4.8: Sample Field Reference From Nested Class

The generated Jimple for the access of foo () . x is shown in Figure 4.9, where we

see the variable $rl stores the invoke of method meth and that it is invoked only one

time.

34

4.2. Code Generation

public void meth 0 {

}

this := @this: MyClass$Inner;

$rO this.<MyClass$Inner: MyClass this$O>;

$r1 virtualinvoke $rO. <MyClass: MyClass foo 0 > 0 ;

$iO staticinvoke <MyClass: int access$OOO(MyClass»($r1);

$i1 $iO + 1;

staticinvoke <MyClass: int access$100(MyClass,int»($r1, $i1);

return;

Figure 4.9: Sample Field Reference From Nested Class - Generated Jimple

4.2.7 Other Stmts

Condition Expressions:

When creating conditional binary expressions with double, fioat and long operands

we create special Jimple comparison expressions beyond the regular equal, not equal,

etc. expressions used for integers. If the operands of the expression are fioats or

doubles and the operator is greater than or greater than or equals then we generate

code for a cmpg expression, otherwise we generate a cmpl expression. If the operands

are longs then we generate cmp expressions.

Class literai Expressions:

If there is at least one class literaI declared in the class then we must generate

and add an extra method named class$ which takes a single string argument. This

method contains code to find and load the desired class, as weIl as code for handling

an error in finding or loading the class. This method is added one single time per

class. AdditionaIly, for each class literaI referenced for an object or array type, a

35

Java To Jimple

special field is added. Field names are made up to correspond to the standard field

descriptor naming scheme.

Assert Statements:

If there is at least one assert statement in the class a method named class$ is

added to the class. This method takes a single string parameter and contains code to

determine if the class given by the argument passed in exists, and to throw a no class

definition found exception otherwise. A field named class$ClassName is also added

to the same class as this method. A field named assertionsDisabled$ is added to

the class containing an assert even if it that class is a nested class. Finally, if the

class containing the assert statement does not have a class initializer method, one

is added and the field class$ is initialized with the result of the invocation of the

method class$.

For processing both assert statements and class literaI expressions, if we are pro

cessing a nested class, then the method named class$ is added to the outer class.

If the outer class is an interface, then a special anonymous nested class is created to

contain this method.

4.2.8 Nested Classes

Nested classes present an interesting challenge for us, as they must be created inde

pendently of their enclosing class. Jimple has no concept of nested classes. A nested

class is any class declared within the body of sorne other class. If it is declared to

be static, or declared in a static context, then it is like any normal top-Ievel class

and has no permission to access any members of its enclosing class. If it is non-static

then it can access members of its enclosing class, including any pri vate members.

A local class is a named class declared within a block and an anonymous class is

an un-named c1ass declared within a block. Similarly to static nested classes, local

and anonymous classes that are declared in a static context have no access to their

enclosing class.

36

4.2. Code Generation

Wh en we encounter a nested class we must make up a name for it, following the

code generation strategy of j avac [INN96]. In general the names are composed of the

enclosing class name, a $, and the nested class name, where there could be several

levels of nested classes. When the class is a local or anonymous nested class, we

invent names according to the following the scheme. For anonymous classes, we keep

a counter and assign the class a name composed of the very outer most enclosing class

name, a $, and the next available number. For local classes the name is composed of

the very outer most enclosing class name, a $, the next local class number for classes

with the same simple name, and the local class simple name. The number is needed

for local classes as there could be many local classes with the same simple name in

one enclosing class and they need to be distinguishable.

Consider Figure 4.10 where the first nested class Inner1 is named with a compo

sition of the enclosing class and the second nested class Inner2 named with a chain

of aIl enclosing classes. For anonymous classes consider the example in Figure 4.11,

public class Outer {

class Inner1 {
Outer$Inner1

class Inner2 {}
}

Outer$Inner1$Inner2

} lb) namesl

a) example

Figure 4.10: Normal Nested Classes - Naming Scheme Example

where the three anonymous class names are generated as a composition of the en

closing class and the next available number. For local classes consider the example

in Figure 4.12, where both method and method2 contain a local class dedaration of

type Inner1. The class names are generated as a composition of the enclosing class,

the next available number and the simple local class name.

N ested classes that are not implicitly (declared in a static context) or explicitly

(declared to be static) static can access aIl of the members of their enclosing class.

37

!~--

public class Outer {

}

public void method () {

new Inner() {}

new Inner () {}

new Inner () {}

}

Outer$l

Outer$2

Outer$3

- 1 b) names 1 -

Java To Jimple

'----- 1 a) example 1 ----'

Figure 4.11: Anonymous Nested Classes - Naming Scheme Example

public class Outer {

}

public void method () {

class Innerl() {}

class Inner2() {}

}

public void method2 () {

class Innerl() {}

}

"------ 1 a) example 1 ----'

OuterlInnerl

Outer1Inner2

Outer2Innerl

lb) namesl-

Figure 4.12: Local Nested Classes - Naming Scheme Example

38

4.2. Code Generation

To enable this functionality, sorne special parameters are created in the initializers,

for use when invoking these nested classes. At the beginning of the parameter li st

for initializers of nested classes, we add a parameter corresponding to the type of the

enclosing class. This is used for accessing pri vate members of the enclosing class. If

the class is anonymous and has a qualifier then we also add a parameter corresponding

to the type of the qualifier. This is used for invoking the initializer of the super

class of the anonymous class which is a nested class of the qualifying class. Local

and anonymous classes can, additionaIly, access aU of the final variables from their

enclosing blocks. In order for this to be possible we add the types of variables needed

to the end of the parameter list of the initializer of the local or anonymous class.

When we are creating methods, fields and initializer blocks, we need to determine

which final local declarations and final formaIs are available for use by contained

anonymous and local classes. In methods, we find aIl final locals declared and aIl

final formaIs not including ones declared in enclosed classes (ie: we only look one

level deep). In initializer blocks we find aIl final locals. In field initializers, which

can declare anonymous classes but not local classes, there are no final variables

declared. We take aIl these final locals and formaIs and create a map from enclosed

class type to the list of final locals available. At this phase of creating the method,

field and initializer blocks we do not add the final locals as parameters to the

initializer methods of the local or anonymous classes though, instead we wait until

we can determine which ones are actuaIly used, which we determine when creating

the local or anonymous class.

When creating a local or anonymous class we look in the list of final locals

available and look in the class body to determine which on es are used. These include

locals used directly, locals needed for invoking sorne other local or anonymous class

and locals needed for invoking the initializer of a local superclass (anonymous classes

cannot be extended). We also look for any new expressions in the class body that

are declaring a local or anonymous class that might need a local to be available. The

following provides examples outlining the different scenarios which may arise.

For example, consider the method myMethod, which could be declared in a class

FinalLocals, shown in Figure 4.13. The final variables available are i, j and k, but

39

public void rnyMethod(final int i, String x) {

final String j = x;

}

final String k = "Hello";

new Obj ect 0 {

}

public void foo () {

Systern.out.println(i+" and "+j);

}

Figure 4.13: Simple Final Locals Example

Java To Jimple

we would only make extra parameters for i and j for invoking the initializer method

of the anonymous local class shown in Figure 4.14.

public void rnyMethod (int, java .lang. String) {

}

$rO = new FinalLocals$1;

specialinvoke $rO. <FinalLocals$1: void

<init>(FinalLocals,int,java.lang.String»(this, i, j);

return;

Figure 4.14: Simple Final Locals Example

Now consider the method MyMethod in Figure 4.15. In this case the final variable

available is i. In Class1 it would seem that we don't use i, and therefore would not

create an extra parameter in the initializer method, but in fact i is needed for use in

the initializer method for Class2 where it is used.

Another interesting case where a local appears to not be used but is actually

needed is when a local class extends another local class that uses the final, it is

40

4.2. Code Generation

public void myMethodCfinal int i) {

class Class2 {

}

}

public void foo 0 {

System.out.printlnCi);

}

class Class 1 {

}

}

public void foo 0 {

System.out.printlnC"Hi");

new Class20;

Figure 4.15: Final Locals - Local Class Creation Example

necessary here in Figure 4.16 because of the constructor call. In this case Class2

needs the final local i as a parameter because it will invoke the initializer method

of Class1, its superclass, during it's initializer method and will need to pass the i to

Class1.

80 we modify the parameter lists for initializer methods of these local and anony

mous nested classes to include these final variables used, as the last parameters.

Note that we only pass final locals into the immediately enclosed local class

declared in a given method for the finallocals available, even if the locals are actually

used in a deeply nested class. For example, in Figure 4.17 the i is used in Class2 but

declared in the method immediately enclosing Class 1. Therefore an extra parameter

is added to the initializer method of Class1 to receive i. When Class2 needs to use

the local i an access method is added to Class1 that returns the value of the field

where i is stored, a field named val$i and Class2 invokes the access method to get

the value of i.

41

public void myMethod (final int i) {

class Glass1 {

}

public void do 0 {

System. out .println("Hi: "+i);

}

}

class Glass2 extends Glass1 {

public void do 0 {

System.out.println("hi");

}

}

Figure 4.16: Final Locals - Local Extends Example

public void MyMethod (final int i) {

class Glass 1 {

}

}

public void runO {

class Glass2 {

}

}

public void run 0 {

System.out.println(i)

}

nevv Glass2().run();

nevv Glass1().run();

Figure 4.17: Final Locals - One-Ievel Only Example

42

Java To Jimple

4.2. Code Generation

New Expressions and Constructor Cali Statements

When creating the code for a new expression or a constructor calI statement it is

necessary to generate and use any extra parameters that may not have been in the

original source and hence need to be made up. There are two types of extra pa

rameters; outer class references and final variables from the enclosing method. If a

static inner class is being invoked, then no extra parameters are required. Otherwise

an outer class reference parameter is required. It can be acquired in one of two ways:

from the field named this$O, that was added to the class, or from a qualifier. If

there is a qualifier it is always used, otherwise the field reference is used. In the case

of invoking an anonymous nested class it may be necessary to send both a reference

to the outer class field named this$O and the qualifier. When invoking a local or

anonymous nested class from a static method no outer class field named this$O

will be available and so only the qualifier is sent if one exists. The second type of

extra parameters are necessary when creating new instances of local or anonymous

classes when final local variables from the current method must be made available

to nested class. The final local variables which are needed are pre-determined at

the time of creating the nested class and are stored in a map available at the time of

instance creation.

Inner Class Attribute Tags

When generating inner classes, we must add inner class Tags, which are later turned

into inner class attributes. A class adds an inner class Tag about itself if it is an

inner class, a Tag about any of its immediately enclosed classes, Tags about all of its

enclosing classes, a Tag about any inner class that it makes a new instance of, and

a Tag for any inner class that it extends. In addition, when as sert statements or

class literaIs are created in a nested class of an interface and a special anonymous

class is created to handle the method named class$ an inner class Tag is added to

the interface.

43

Java To Jimple

Accessing Outer Class This

When processing inner classes it is often necessary to get a reference to an enclosing

class sometimes many levels away. We provide a general mechanism to easily acquire

this reference for a given type. First we check to see if the type we need is the current

class then we can return the current this local, then we check to see if we need a

local representing the immediately enclosing outer class in which case we can return

a local equal to a field reference of the field named this$O. Otherwise, we add a

static method to the outer class that takes as an argument a reference to outer class

field named this$O and returns a reference to the outer class' outer class field named

this$O, continuing up the chain of outer classes as necessary. Accessing the outer

class is primarily used when adding the outer class field reference as an argument for

new expressions and constructor calI statements, and when generating this or super

expressions. For new expressions and constructor calI statements the outer class field

reference argument is needed if there is no qualifier, or always for anonymous classes,

in cases where an argument is required. For special expressions it is needed when

accessing super classes of enclosing classes. It is also used when a final local is

needed from an enclosing class, that is possibly severallevels away. In general to find

final locals first we look to see if the local is declared in the current body and if

it is then we use it, then we look to see if there is a field named val$locaLname

and use that if it exists, otherwise we get a reference to the this for the type of the

field named this$O to get the next enclosing class and then look for a field named

val$locaLname there and then continue until it is found.

Accessing Methods

Wh en an nested class accesses a pri vate member of an enclosing class, or a protected

member of a super class of an enclosing class, it must do so via a special access method.

We generate three types of access methods: one for calling methods, one for getting

fields and one for setting fields as they are required, in otherwords we do not gen

erate access methods unless an enclosed class needs to access a particular enclosing

class' member. For calling pri vate methods from an enclosing class or for calling

44

~ ..

4.3. Summary

protected methods of a super class of an enclosing class, we add the access method

to the enclosing class. This access method is static and takes one argument that can

be used as the receiver if the method is an instance method in the enclosing class. The

return type is the return type of the method being invoked. For accessing pri vate or

protected fields, we again add the access method to the enclosing class. This access

method is static and takes one argument that can be used as the receiver if the

field is an instance field in the enclosing class. The return type is the field type. For

setting pri vate or protected fields, we add an access method to the enclosing class

that takes two arguments; one that can be used as a receiver for an instance field and

a value that should be assigned to the field. As these access methods are created we

put them in a map, so they are not re-created but are available for re-use.

4.3 Summary

This chapter explained the challenging parts of generating Java source code into Jim

pIe, the first step in achieving our goal of providing visual attribute information at

the source code level. The next chapter discusses, in detail, how the required posi

tion information is mapped from the source to the Jimple, the schemes for encoding

analysis information and the mechanisms for displaying the analysis results.

45

Java To Jimple

46

r' ..

5.1 Motivation

Chapter 5

Viewing Static Analysis Results

Research compilers are often used when experimenting with new compiler analyses or

for learning about program analysis. They may even be used by general programmers

as specialized tools, for example for information about the code for refactoring. When

compiler analyses are performed, their results are used for transforming the code or

are encoded in the output for use in other tools and thus it was difficult to examine

them. There was no general format for viewing the results generated by compiler

analyses.

In this work, we present a general framework for graphically displaying the results

of compiler analyses. We describe how information needed for displaying the results

is calculated. We describe a general way to encode the generated information, using

three types of Tags, which were created for visualization purposes. We then describe

how this information encoded in Tags is presented to the user.

This framework en ables researchers and students to visualize the results of their

analyses. The mechanisms provide a standard way to view many different types of

analysis results, not only for analyses already in Soot, but also for many new analyses

not yet discovered.

In versions of Soot prior to version 2.0, the results of analyses were generated

in the IR in an embedded textual format. This format was difficult to read as the

47

Viewing Static Analysis Results

results were intermingled with the code and unformatted in any way. As well, the

results were not available at all in the source code. The framework presented in this

chapter provides visualizations of analysis results in the Jimple IR and in the original

source code in a sophisticated, yet easy to understand graphical format. Displaying

the results in the IR provides a way to view the results in an uncluttered way, so

they may be used for debugging and for verifying the correctness of the analyses.

Providing the visual results of the analyses in the original source code is useful for

people who are unfamiliar with the IR, such as new students. They may use the

results displayed in the source code for understanding the analysis, performed on the

IR, in relation to the original code. It is also useful to see the effects of the analysis

on the original code.

Once generated, these visualizations of results can be used by students writing

their first analysis to easily see if and where they are making mistakes. For example,

in writing a simple parity analysis that assigns the colour blue to odd locals and yel

low to even locals, it is easy to see which are correct and which are incorrect sim ply

by glancing at sam pIe test programs either in the generated Jimple IR or the orig

inal source. For researchers writing more complicated analysis, these visualizations

provide a way to quickly see where the analysis is incorrect or imprecise.

The general framework for displaying analysis results in a visual way works as

follows. When creating Jimple, position information is assigned to each Jimple con

struct. The analyses are performed and the results are encoded in special visualization

Tags. AU Tags encoding analysis results and position information are collected and

formatted in a way that enables communication between Soot and the plugin which

can display the information. When the source or IR code is viewed within the plu

gin in Eclipse, the analysis results are displayed automatically in a visu al format.

In the following sections we discuss in detail, the mapping of position information

between the source code and the IR, the Tags for encoding analysis results and the

mechanisms used to display the different types of analysis information, how the Tags

are collected and formatted for use within Eclipse and how the plugin handles this

generated information and manages its display.

48

5.2. Mapping Source and IR Position Information

5.2 Mapping Source and IR Position Information

In order to generate visual information at a high level of precision, access to detailed

line and column position information about the original source code and the IR is

necessary. This section explains the details of collecting the position information and

associating it with Jimple constructs during the Jimple creation phase.

5.2.1 Position Origins

When using bytecode as the input to Soot, the line numbers of statements in the

original source code are stored in the line number table attribute [LY99] as shown in

boxes 1 and 2 of Figure 5.1. Wh en the internaI Jimple representation is generated

line number
1 table bytecode

2

add line
number

information
to Jimple
statements

5

source line position
7 tags

add position
information
to Jimple

statements, expressions,
fields, methods,

classes

6

line and column
position informatio

on AST nodes 4

source line and
column

position tags 9

Figure 5.1: Overview of Generated Position Information

these line numbers are stored in Tags and attached to the corresponding Jimple

statements, as part of the standard Soot attribute framework, shown in box 5 of

Figure 5.1. When using bytecode as input there is no position information available for

classes, methods or fields and there is no column information available. Consequently,

49

Viewing Static Analysis Results

when using bytecode as input the visual information that can be displayed in the

original source code is limited to only visual information relating to entire statements.

When using source code as the input to Soot, line number and column position

information is available in each node in the Polyglot AST as shown in boxes 3 and 4 of

Figure 5.1. When Jimple is created the position information is stored in Tags on the

appropriate Hosts (statements, expressions, fields, methods and classes) as described

below in Section 5.2.2 and shown in Figure 5.1, box 6. This position information

includes column positions. Figure 5.1 shows an overview of the entire collection and

generation of position information wh en starting from bytecode or source and ending

with Jimple, where the Jimple constructs have position Tags, containing aIl available

position information, depending on the original input, attached as shown in boxes 7,

8 and 9. These position Tags contain as much position information as is available

from the input. This implies that the level of precision of the the visualizations is

dependent on the availability of the position information.

5.2.2 Position Information Assignment for Source Input

Each node in the Polyglot AST has position information comprised of start and end

line numbers and start and end column positions. This information is propagated

to the corresponding Soot component as it is being created. This section describes

the mapping between the Polyglot AST nodes and the Soot components and describes

how the position information is assigned to the Soot components, when using source

code as the input.

Each original source file may have one or several class declarations. Each class

declaration is mapped to a SootClass and the SootClass is assigned a Tag with aIl

position information associated with the class declaration. If the source file contains

an anonymous class, a class declaration for the anonymous class is not created or

represented in the Polyglot AST. In this case, we assign the start position of the

new expression containing the anonymous class' declaration and the end position of

the anonymous class' body as the position information assigned to the generated

SootClass.

50

5.2. Mapping Source and IR Position Information

Each class declaration has zero or more class members given in any order. Here we

describe how position information is assigned for each kind of class member. For each

method declaration a SootMethod is created. If the method do es not have a body,

for example if it is an abstract method declaration, then the SootMethod is assigned

the method declaration position information. If the method has a body, then the

SootMethod is assigned the start position information from the method declaration

and the end position information from the block representing the method body.

Each field declaration is translated to a SootField which is assigned position

information from the field declaration. The Jimple statement that creates the field

initializer is assigned the field declaration initializer position information.

Each initializer block is generated inside the class initializer method and the Jimple

statements created are assigned position information corresponding to the individu al

statements in the block.

The position information for each type of statement is derived as described below.

Whenever there is an expression E inside a statement in the original source code, it

may be generated into sever al Jimple statements, each of which expresses part of the

expression E and stores the partial result in a temporary variable. The temporary

variable of the last generated statement is then used in the statement corresponding

to the original statement. Each of these generated statements is assigned position

information of the original expression E, however in the following discussion of position

information assignment of statements we show the expression E in an unexpanded

format.

Assert Statement:

An assert statement of the form assert E1 [: E2J, where E2, the error message

expression is optional, is translated into sever al statements in Jimple. First a field

access statement is generated which determines whether assertions are enabled and

if they are not enabled, code to skip aIl assertion handling. Then an if statement

to determine if the assertion is true is added. This if statement is assigned the

position information of the original assert statement. The if statement condition

51

Viewing Static Analysis Results

box is also assigned the position information from the assert statement condition.

Finally, code to handle an assertion error is generated, including an invocation of the

AssertionError class which takes an error message as an argument. This argument

box is assigned the position of the optional error expression of the original assert

statement. This assignment of position information is shown in Figure 5.2.

1 assert ~E} J : :: ~:~ :: 1

l
$zl = <SimpleAssert: boolean $assertionsDisabled>;

1 if $zl != 0 goto Ll; 1

1 if ~ ~1 ~ goto L1; 1

I$rl = nevv java.lang.AssertionError; 1

specialinvoke $r1.<java.lang.AssertionError: void <init>(E2 type»C:.~.~);

1 throvv $rl; 1

Ll: ...

Figure 5.2: Assert Statement Position Information Generation

In this figure the box before the arrow represents the original source code assert

statement and the boxes after the arrow represent the generated Jimple. The box line

styles represent the position information and how it is propagated from the source

to the Jimple IR. For example, in this example the original source statement could

have line number = 5, start column = 10, end column = 23. This position is

represented by the solid line box. Each of the generated Jimple statements which are

explicitly encoding this source statement are assigned this position information. This

is represented by the solid line boxes around each generated statement. The assert

expression E1 is a second construct which has position information associated with it.

For example it may have the position information line number = 5, start column

= 17, end column = 18 which is represented using the dashed line. In the generated

Jimple as indicated by the dashed line this position information is assigned to the

if condition expression. Finally, the as sert statement error expression E2 could

52

5.2. Mapping Source and IR Position Information

have position information of line number = 5, start column = 22, end column

= 23 as indicated by the dotted line. In the generated Jimple the specialinvoke

expression argument box is assigned this position information as shown with the

dotted line.

Block Statement:

Each statement in a compound block statement is assigned the position information

of the corresponding statement from the original source.

Branch Statement:

A branch statement of the form break [label] or continue [label], where the

label is optional is generated in Jimple as a goto statement. This goto statement

is assigned the position information of the original branch statement.

Constructor Cali Statement:

A constructor caU statement is of the form super ([arguments]) or this ([arguments])

and is translated into several assignment statements to handle the arguments, foUowed

by a specialinvoke statement. Each assignment statement created for handling an

argument is assigned position information of the corresponding original argument.

Each argument box in the invoke statement is also assigned the position information

from the corresponding argument and the invoke statement is assigned the position

information of the constructor caU statement as shown by the box line styles in Figure

5.3.

Do Statement:

For a do statement of the form do body while E, each statement in the body is

generated foUowed by an if statement to handle the loop. The if statement and the

condition box of the if statement are assigned the position information of the while

condition in the original source as shown in Figure 5.4.

53

Viewing Static Analysis Results

r -,
this CI Argll, ... , ; ArgN;)

L ___ J

l
1 xl = ... 1

;xN = ... :

specialinvoke this. <Sample: void <ini t> (int, ... ,int) > (1 xli, ... ,; xN) ; _...

Figure 5.3: Constructor Call Statement Position Information Generation

do

body

while ~

LO:

body

1 if ~ goto LO 1

Figure 5.4: Do Statement Position Information Generation

For Statement:

A for loop of the form for Cinitializers, E, iterators) body is generated into

several statements in Jimple. The initializers are generated as assignment statements

which are assigned the position information of the original initializers. An if state

ment with a reversed condition expression is generated representing the for condition

expression E. This if statement and the if statement condition box are both assigned

the position information of the original for condition expression E. The body is gen

erated and then the iterators are generated as binary assignment statements and are

assigned position information from the original iterators. This assignment of position

information is shown in Figure 5.5.

If Statement:

An if statement is generated as an if statement in Jimple. The generated if state

ment and its condition box are both assigned the position information of the original

if statement condition expression as shown in Figure 5.6. The original if statement

expression may actually be generated into several Jimple statements before being

54

~-

~--

5.2. Mapping Source and IR Position Information

LO:

for (~iË~~i~~i~~~sJ, ŒJ, ::~~~~~~~~:~>
body

11:

1 initializers 1

1 if !ŒJ goto 111
body

:iterators:

goto LO

Figure 5.5: For Statement Position Information Generation

used in the generated if statement. Each of these statements are assigned position

information of the original expression that they represent.

if ŒJ
consequence

alternative
LO:

1 if !ŒJ goto 10 1

consequence

alternative

Figure 5.6: If Statement Position Information Generation

Local Declaration Statement

A local declaration statement of the form T id [= E], where T represents the type

and the initializing expression = E is optional is generated into an assignment state

ment in Jimple. The assignment statement and the identifier box are both assigned

position information from the local declaration statement. The right operand box of

the assignment statement is assigned the position information of the optional expres

sion as shown in Figure 5.7.

1 int@ = ~E~
Figure 5.7: Local Declaration Statement Position Information Generation

55

Viewing Static Analysis Results

Return Statement:

A return statement is of the form return [E] and is generated to a return void or a

return statement which is assigned the position information of the return statement

from the source. If returning an expression E, then the generated expression is assigned

position information of the original expression.

Swi tch Statement:

A swi tch statement is generated into either a lookupswi tch statement or a tableswi tch

statement in Jimple. The key box in the generated expression is assigned position

information of the original swi tch expression. The statements generated for the in

dividual swi tch block statements are assigned corresponding position information

based on the statement type. The position assignment is shown in Figure 5.8.

switch (1 E 1)

case: E1:: body1

case: EN:: bodyN

default : bodyD

--+

lookupswitch(~E~)

case E1 : goto 11

case EN: goto LN

default : goto LD

11:

body1

LN:

bodyN

LD:

bodyD

Figure 5.8: Swi tch Statement Position Information Generation

56

5.2. Mapping Source and IR Position Information

Synchronized Statement:

A synchrûnized statement is generated into a series of entermûni tûr and exi tmûni tûr

statements. The entermûni tûr statement, the entermûni tûr statement operand

box, the exi tmûni tûr statement and the exi tmûni tûr statement operand box are

an assigned the position information of the synchrûnized statement expression as

shown in Figure 5.9. An statements created for the statements in the synchrûnized

statement's body are assigned position information of the corresponding individual

statements.

synchronized cŒ])
body

1 entermonitorŒ] 1

body

-> 1 exitmonitorŒ] 1

$r2 = @caughtexception

1 exitmonitorŒ] 1

throw $r2

Figure 5.9: Synchrûnized Statement Position Information Generation

Thrûw Statement:

A thrûw statement is generated into a Jimple thrûw statement. The Jimple thrûw

statement is assigned position information of the original thrûw statement. The

generated thrûw statement operand box is assigned the position information from

the thrûw statement expression.

Try /Catch Statement:

Statements created from the try and catch bodies are assigned position information

on a per statement basis. The ©caughtexceptiûn statement and the operator on the

left hand si de are assigned position information from the formaI in the catch clause

as show in Figure 5.10

57

Viewing Static Analysis Results

Lü:

body1

try goto L2

body1 L1 :

catchCŒ)
-+ Il $rü 1 = @caughtexception 1

body2 body2

goto Lü

U:

Figure 5.10: Try/Catch Statement Position Information Generation

While Statement:

A while statement of the form while E body is generated into an if statement

which breaks out of the loop if unsatisfied. This if statement and the if statement

condition box are assigned the position information of the original while condition

as shown in Figure 5.11. Each statement in the generated body is assigned position

information of the corresponding original statement.

while ŒJ
body

Lü:

L1 :

/ if !ŒJ goto u/
body

goto Lü

Figure 5.11: While Statement Position Information Generation

The expressions are assigned position information as described below.

Array Access Expression:

An array access expression results in an array reference statement in Jimple. The

array reference statement is assigned the position information of the array access ex

pression. The array reference statement base box is assigned the position information

from the array access expression array and the array reference statement index box

58

5.2. Mapping Source and IR Position Information

is assigned the position information of the array access index, which may be a com

plicated expression. This assignment of position information is shown in Figure 5.12.

~ a!~~ J (~:~~~~) ~ 1 $rO = ~ a!~~ J (~~~~~ :]
Figure 5.12: Array Access Expression Position Information Generation

New Array Expression:

A new array expression results in a newarray expression or a newmul tiarray expres

sion, embedded in an assignment statement in Jimple. The generated assignment

statement and the newarray or newmultiarray expression are assigned the position

information of the original new array expression. The newarray or newmul tiarray

expression box is also assigned the position information of the original new array

expression. The newarray size box and the newmultiarray size boxes are assigned

position information of the original new array expression dimensions, which may be

complicated expressions. This assignment of position information is shown in Figures

5.13 and 5.14.

LI n_e_w __ in_t_[_~_~_I~_:_IJ_-----,1 ~ L __ -=n=e=w=a=r=r=a=y=(=i=n=t=) =[~=~=I=~=J=J =--.J

Figure 5.13: New Array Expression Position Information Generation

1 new int [~~I~) ... [DIM]

l
newmultiarrayCint) [~~I~ JJ ... [. ~~~)

Figure 5.14: New Multi-Array Expression Position Information Generation

59

Viewing Static Analysis Results

Array Initializer Expression:

An array initializer expression is generated into a series of assignment statements, each

of which are assigned position information of the corresponding original expression

as shown in Figure 5.15.

1 $rO = 1 newarray(int) [N] Il

1
[{ - - ~ : ... "} 1---+ 'L

r

$_r_O_[O_J_ = __ E_l ' .. '
new int] ~EJ.~, ... ,:. ~.~ .: .

:$rO[N-1J = EN:

Figure 5.15: Array Initializer Expression Position Information Generation

Assignment Expression:

An assignment statement of the form id [op] = E, where the operator op is optional

and id represents an identifier, is generated into a Jimple assignment statement of the

form id = [id op] E. The generated assignment statement is assigned position in

formation of the original assignment expression. The le ft box is assigned the identifier

position information and the right box is assigned the expression position information.

If there is an operator then a binary expression is created and assigned the position

information of the original expression. The binary expression left box is assigned the

position information of the identifier and and the right box is assigned the position

information of the expression. This assignment of position information is shown in

Figure 5.16 and 5.17.

Figure 5.16: Assignment Expression Position Information Generation

60

5.2. Mapping Source and IR Position Information

Figure 5.17: Assignment with Operator Expression Position Information Generation

Binary Expression:

A simple binary expression of the form E1 op E2 is generated into a Jimple binary

operator expression, where the left operand box is assigned position information of

the left expression E1 and the right operand box is assigned position information of

the right expression E2. The generated binary operator expression is assigned position

information of the original binary expression.

A conditional and binary expression of the form E1 && E2 is generated into a

series of if and assignment statements. The first if statement which evaluates E1

is assigned position information of E1, as is the if statement condition box. The

second if statement which evaluates E2, if E1 was found to be true, is assigned

position information of E2, as is the if statement condition box. The assignment

statements which set the result of the conditional and binary expression are assigned

position information of the original binary expression as shown in Figure 5.18.

I~

1-----------1

1 if ![]TI goto LÜ 1
1 • .,... • .,.... ':".":"': :-: :-: ,..., .-:.-:."" • ..,..1

: if ![gJ goto LÜ:

r $'~o' , ~' '1',' , . , , , , , , , ,
goto L1

LÜ: 1 $zÜ = Ü 1

L1 :

Figure 5.18: Conditional And Binary Expression Position Information Generation

A conditional or binary expression of the form E1 Il E2 is generated into a series of

if and assignment statements. The first if statement which evaluates E1 is assigned

position information of E1, as is the if statement condition box. The second if

statement which evaluates E2 is assigned position information of E2, as is the if

61

Viewing Static Analysis Results

statement condition box. The assignment statements which set the result of the

conditional or binary expression are assigned position information of the original

binary expression as shown in Figure 5.19.

1----------1

1 if ŒIJ goto LO 1
1.-:-. .,.,:-: :-:.-: .-: . ..,..-:-.-:-. -:-.1 ..

: if ![g] goto LO:

1-+ LO: r $'~o' . ~. '1',' :
goto L2

11: 1 $zO = 01
L2:

Figure 5.19: Conditional Or Binary Expression Position Information Generation

Cali Expression:

A caU expression is generated as an invoke statement expression, which is assigned

the caU expression position information. The invoke statement expression argument

boxes are assigned position information of the caU expression arguments and the

the invoke statement expression base box is assigned position information of the caU

expression target as shown in Figure 5.20.

1[~~~~i.method(~~lJ, ... ,::~:~>
l

r----'
virtualinvoke i ~.!:~~ !. <Sample :

void <method>(El type, ... , EN type» (~E}J, ... , :EN)

Figure 5.20: CaU Expression Position Information Generation

Cast Expression:

A cast expression is generated as a cast expression statement. The cast expression

statement is assigned position information of the original cast expression. The cast

62

5.2. Mapping Source and IR Position Information

expression statement operand box is assigned position information of the cast expres

sion as shown in Figure 5.21.

1---+1 $rO = (j ava .lang. String)Cx~

Figure 5.21: Cast Expression Position Information Generation

Conditional Expression:

A conditional expression of the form E1? E2: E3 is generated into several Jimple

statements. The condition expression E1 is generated as an if statement, which is as

signed position information of the conditional expression. The if statement condition

box is assigned position information of the condition expression E1. The consequence

expression E2 is generated as an assignment statement which is assigned position

information of the conditional expression and whose right operand box is assigned

position information of the consequence expression E2. The alternative expression E3

is generated as an assignment statement which is assigned position information of the

conditional expression and whose right operand box is assigned position information

of the alternative expression E3. This assignment of position information is shown in

Figure 5.22.

1 if ~E=1J goto Lü 1

I

r' - . 1 1 $ i 0 = :: ~:2 :: 1
!~_1! ? :E2: 'E31 ---+

L-___ - _________ ~_·-__ • ~ goto L1

LO:I$iO = ~~~jl
L1:

Figure 5.22: Conditional Expression Position Information Generation

63

Viewing Static Analysis Results

Field Expression:

A field access expression is generated as a field reference as part of an assignment

statement in Jimple. This assignment statement is assigned position information of

the field expression, as is the right operand box of the assignment statement. The

base box of the field reference is assigned the position information of the field target

as shown in Figure 5.23.

1----+ 1 $rO = 1 ~tÈ~s~. <Sample: java .lang. String x> 1

Figure 5.23: Field Expression Position Information Generation

Instanceof Expression:

An instanceof expression of the form E instanceof T, where T is a type, is gen-

/-- erated as an instanceof expression in Jimple and embedded in the right hand side

of an assignment statement. This assignment statement and the instanceof expres

sion are assigned the position information of the original instanceof expression. The

instanceof expression operand box is assigned position information of the expression

E as shown in Figure 5.24.

1 ~x~ instanceof String 1----+ 1 $20 = 1 ~x~ instanceof java .lang. String 1

Figure 5.24: Instanceof Expression Position Information Generation

literai Expression:

Position information is not explicitly assigned to generated literaI expressions as they

are always part of sorne other expression. They do not exist on their own.

64

5.2. Mapping Source and IR Position Information

Local Expression:

Position information is not explicitly assigned to generated locals as they are always

part of sorne other expression. They do not exist on their own.

New Expression:

A new expression is generated into a Jimple new expression, which is embedded in an

assignment statement, and a specialinvoke expression statement. The new expres

sion and new expression assignment statement are assigned position information of

the original expression, as is the specialinvoke expression statement. The argument

boxes in the specialinvoke expression statement are assigned position information

of the corresponding arguments in the original new expression as shown in Figure 5.25

Inew Sample (~~1J, ... ,:.~.~)
l

1 $rO = 1 new Sample Il
specialinvoke $rO.<Sample: void <init>(~~1J, ... ,:.~~)

Figure 5.25: New Expression Position Information Generation

Special Expression:

Position information is not explicitly assigned to code generated for special expressions

of the form this. E or super. E as special expressions are always part of the target of

field or calI expressions.

U nary Expression:

The pre- and post- increment and decrement unary expreSSIOns are generated as

assignment statements with a simple binary add or subtract expression on the right

hand side. The assignment statement is assigned position information of the unary

65

Viewing Static Analysis Results

expression and the binary expression left operand is assigned position information of

the unary operand expression as shown in Figure 5.26.

I~E~++ 1--7I~E~ = ~E~ + 1

Figure 5.26: Simple Unary Expression Position Information Generation

A unary plus expression of the form +E is generated as the right hand si de of an

assignment statement. The assignment statement is assigned position information of

the unary plus expression and the assignment statement right operand is assigned

position information of the unary plus expression operand E, as shown in Figure 5.27.

1 +~E~ 1--71 $iO = 1 El

Figure 5.27: Unary Plus Expression Position Information Generation

A unary minus expression of the form -E is generated as a negative expression on

the right hand side of an assignment statement. The assignment statement and its

right operand box are assigned position information of the unary minus expression.

The negative expression operand box is assigned position information of the unary

minus expression operand E, as shown in Figure 5.28.

Figure 5.28: Unary Minus Expression Position Information Generation

A unary bitwise complement expression of the form -E is generated as an exclu

sive or expression on the right hand side of an assignment statement. The assignment

statement and its right operand box are assigned position information of the unary

bitwise complement expression. The exclusive or expression left operand box is as

signed position information of the unary bitwise complement expression operand E,

as shown in Figure 5.29.

66

Viewing Static Analysis Results

5.3.1 StringTags and Tool-tips

StringTags encode textual information and results, and are recommended, even if

other Tag types are used, for ensuring the clarity information being visualized. A

StringTag is displayed in the plugin as a pop-up tool-tip when the mouse hovers

over the text in the line corresponding to the textual information. Each statement

in the code that has a tool-tip available has a small Soot icon SI in the margin

to indicate that there is information available at that line. StringTags, like aIl

Tags available for visualizations, are easy to create. For example, stmt. addTag (new

StringTag(analysisResult)) puts the analysis result string in a StringTag and

attaches the Tag to the statement. When the results are displayed in the editor

with the source file or IR file and when the mouse is hovering above the text in the

line containing the statement, the tool-tip corresponding to the analysis results is

displayed as shown in Figure 5.31.

System.out.println(arr[jJ);

;!,~;:~. j~j~~f~j }~~~rf ~c;~~~lli~~ upper boundJI

Figure 5.31: Tool-tip with Analysis Information

5.3.2 ColorTags and Color Highlighting

ColorTags can be used to encode a set of distinct results with different colours,

or to encode a set of related statements in one colour, or to highlight a specific

result. ColorTags are displayed in the plugin as colour highlighting. By default, the

background of the code is highlighted with the appropriate colour but it is possible

to highlight the foreground text instead. In the event of overlapping colour regions

the colours are set from longest region to short est region so that shorter regions of

highlighting are not hidden. For example, to add a ColorTag to a ValueBox we

could use vb. addTag (new ColorTag (ColorTag. BLUE)), which will add the Tag to

the ValueBox which will cause the background of the expression contained in the

68

5.3. Visual Results

ValueBox to be blue when the source code or IR code is displayed in the edit or

as shown in Figure 5.32. Figure 5.32 shows all odd variables in blue and all even

variables in yellow and is a part of a result for a parity analysis. ColorTags require

iot [] a ~ {1.2.3.4.5.6.7};

Figure 5.32: ColorTags Representing Analysis Information

a high degree of precision in order to highlight regions of the code more specifically

than on a per statement basis. This precise information about column positions is

available for the source only when using source code as the input when invoking

Soot. When using bytecode as the input to Soot, the required information is not

available. ColorTags are however always available in the Jimple IR, as the needed

level of position information can always be generated. This is not really a problem

though, because if one actually wants to see ColorTag visualizations in the source

then presumably one has the source and can use it as input to Soot.

5.3.3 LinkTags and Links

LinkTags encode information associating one part of the code with another part.

Each statement, in the editor, that has an associated LinkTag has a small Soot icon

SI in the margin beside it on the line in the editor. Clicking on this icon pops up

a list of links available. Selecting one of the links causes the cursor to move to the

line containing the statement of the link target. This target may be in a different

file, in which case the file will be opened or activated in an editor as needed. Creat

ing a LinkTag can be done, for example, with the following code stmt. addTag (new

LinkTag(analysisString, linkToHost, className)), which will add a link from

the statement with the text of the analysis string to the target Host linkToHost in

the file specified by className. For example, in Figure 5.33 we see two links corre

sponding to the statement int z = x + 2. These links represent possible definitions

of the variable x which is used in the statement.

69

Viewing Static Analysis Results

int z = x + 2;

Figure 5.33: LinkTag with Analysis Information

5.3.4 KeyTags and Legends

It is also possible to generate a legend which explains the encoding of the analysis re

suIt information. In order to provide legends, a KeyTag is available. It may be added

to the SootClass and contains the colour and the corresponding analysis result text

for each distinct result. This is especially useful for ColorTags which represent a set

of discrete results. For example, the following code

sootClass.addTagCnew KeyTagCColorTag.Green,

"Safe Lower and Safe Upper", IArrayBounds"))

will add legend information to the sootClass indicating a colour ColorTag. GREEN

and associated text Saf e Lower and Saf e Upper for the array bounds check analy

sis. If a legend is specified it is automatically displayed in small view beside the editor

as shown in Figure 5.34, which shows the four different colours used to visualize the

four different possible outcomes of the array bounds check analysis.

=EI

III ArrayBounds: Unsafe Lower and Unsafe Upper

o ArrayBounds: Unsafe Lower and Safe Upper

o ArrayBounds: Safe Lower and Unsafe Upper

o ArrayBounds: Safe Lower and Safe Upper

Figure 5.34: Analysis Visualization Results Legend View

70

5.4. Collecting Tags for Output

5.4 Collecting Tags for Output

Position information and results of the analyses are stored in Tags on Hasts in the

Jimple IR as shown in boxes 1, 2 and 3 of Figure 5.35. Box 1 shows the source

position Tags when using bytecode as input and box 3 shows the source position Tags

when using source code as input. If and when the textual Jimple IR is printed as

output, line number and column position information is generated about this textual

representation and is also attached as Tags to the corresponding Jimple Hasts as

shown in boxes 4 and 5 of Figure 5.35. For the purpose of displaying the resulting

information in a visual way, aIl Tags are collected from each Jimple Host and collated

and output in an XML format as shown in box 6 of Figure 5.35.

source line
1 position tags

Jimple internai
IR

add position
information of
textual Jimple
to Jimple
constructs

collect
Jimple tags
and output

XML
6

source line and
column

position tags 3

Figure 5.35: Tag Collection Overview

71

Viewing Static Analysis Results

5.5 Managing the Display in Eclipse

When a Jimple file or a source file is opened in Eclipse, if there is an associated XML

file containing analysis results and position information, then attribute information

is displayed in the plugin editor in a visual way. The type of visualization depends

on how the information is encoded in the Tag. The plugin handles the management

of displaying the correct information for the file in focus and for updating the visu

alizations when new information is generated. The visu al display is updated when

Soot is run and if a new attribute file becomes available.

Having this attribute file handling mechanism to update the visual display allows

the results to be generated outside of the Eclipse plugin and then have the results

viewed within the Eclipse plugin. This is especially useful for long-running memory

intensive analyses, or for visualizing the results of many analyses that are generated

using complicated scripts.

Several analyses and their results may be generated at the same time and in sorne

cases the visualizations may confiict. To handle this situation, another view, shown

in Figure 5.36, is automatically displayed, which lists all of the generated analyses

Ga Live Variable

Figure 5.36: Analysis Visualization Results Types View

with visual information for the file in focus and permits selection of which ones to

display, by manipulating the check boxes on the left. It is possible to switch between

analysis results and the plugin manages the display and updating.

72

5.6. Summary

5.6 Summary

This chapter described the collection, generation and use of position information

required to display analysis results in the original source code and in the Jimple IR.

First we gave the motivation of why such tools for viewing analysis results are needed.

We discussed where the position information, needed to relate results produced on

the IR back to the original source code, cornes from and how it is assigned to Jimple

constructs. We also gave an overview of the visualization Tags available within Soot

and how they are displayed in Eclipse. In the next chapter we will give several

concrete examples which use this framework.

73

Viewing Static Analysis Results

74

6.1 Motivation

Chapter 6

Applications of Tools

To demonstrate the usefulness of our visualization framework we examined two ap

plications: visualizations for compiler research and visualizations for using compiler

analyses for program understanding. Applications in this chapter also provide con

crete examples of the framework.

6.2 Applications for Compiler Research

In this section we describe several examples which are available within the Soot frame

work, for which we added visual information. These analyses are useful for teaching,

compiler research, advanced users and programmers in general. The general pro cess

for using the framework for viewing analysis results is shown in Figure 6.2. To use the

framework, one may write a new Soot analysis as shown in box la, or use an existing

Soot analysis as shown in box lb. These analyses may be intra- or inter- procedural

analyses. Soot contains standard extendable classes for easily writing intra-procedural

analyses. 1 Once the analysis is available within Soot, one must write a tagger class as

1 soot /toolkits / scalar /ForwardFlow Analysis.java, soot /toolkits / scalar /BackwardFlow Analysis.j ava,
or soot / toolkits / scalar /ForwardBranchedFlow Analysis.java

75

la

write Soot
analysis

use existing
Soot analysis lb

register tagger
with Soot

3 pack manager

Applications of Tools

Figure 6,1: Pro cess for Using Framework for Viewing Analysis Results

shown in box 2, This tagger class must extend the BodyTransformer class2 for intra

procedural analyses or the SceneTransformer class3 for inter-procedural analyses,

Extending the BodyTransformer will cause Soot to apply the tagger code to every

body processed, typically for ad ding visualization Tags to all statements with sorne

pro pert y, and extending the SceneTransformer will give access to the whole program

being processed at one time, As shown in box 3, one must then register the tagger

class with the Soot PackManager,4 The pack manager decides which transformers

will be applied and in what order. After all is setup, one can run Soot on a sam pIe

class to test the implementation as shown in box 4, This will pro duce the all of the

visualization information needed for viewing the results within the plugin, Finally,

as shown in box 5, the results will automatically be displayed when the sample class

is displayed within the plugin,

2 soot jBodyTransformer .java
3 soot jSceneTransformer ,java
4sootjPackManager,java

76

6.2. Applications for Compiler Research

6.2.1 Analysis Results for Teaching

Parity Analysis

The parity analysis is a simple analysis which determines which variables are al ways

odd or always even. It is useful for teaching basic data flow analysis and is an example

which may be used in an introductory optimizing compilers course. In this section

we give a concrete example of how to use the visualization framework from start to

finish.

First, we need a data flow analysis which computes the parity information for each

local variable in the program. The complete intra-procedural parity analysis, which

computes the parity information for each local variable and stores the results in a

map, is available in Soot5 , so we will use it in order to demonstrate the application

of Tags. For the purpose of visualizing the analysis results we want to make aU odd

variables be coloured blue, aU even variables be coloured yeUow and aU others be

coloured red.

The tagger class required is shown in Figure 6.2. This figure shows the first part of

the class needed. It shows that the Pari tyTagger class extends the BodyTransformer

class as the tagger will add Tags to locals in one method at a time. The critical method

which must be overridden is the internalTransform method which will be caUed by

the Soot PackManager wh en it is processing a method body. The method body being

processed will be passed in as a parameter. The first step in the tagger code is to

invoke the Pari tyAnalysis, which will cause Soot to compute the required results.

Then we iterate over aIl the statements in the body. For each statement we access the

parity information for aU the local definitions and add Tags to the definition boxes,

and access the parity information for aU the local uses and add Tags to the use boxes.

The addTags method is shown in Figure 6.3. In this code we iterate over aU the boxes

requiring Tags. For each local we access the textual representation on the result and

store it in a StringTag which we attach to the box. We then determine the parity

of the variable and make a new ColorTag with the corresponding colour: yeUow for

even, blue for odd, red for neither (or top) and green for unspecified (or bottom) and

5 soot himplejtoolkitsj annotationjparity jParity Analysis.java

77

Applications of Tools

public class Pari tyTagger extends BodyTransformer {

}

protected void internalTransform(Body body) {

}

Il compute analysis

ParityAnalysis pa = nevv ParityAnalysis(nevv BriefUnitGraph(body»;

Il iterate over all stmts

fore Iterator it = body.getUnits(); it.hasNext();) {

Stmt stmt = (Stmt) it.next();

}

Il tag aLL definitions with flow information after statement

addTags(stmt.getDefBoxes(), (Map) pa.getFlowAfter(stmt));

Il tag all uses with flow information before statement

addTags(stmt.getUseBoxes(), (Map) pa.getFlowBefore(stmt));

Figure 6.2: Code to Visualize Parity Analysis Results

add the ColorTag to the box. The complete code for the parity tagger is available in

Soot.6

The next step is to register this tagger with the Soot PackManager so that it may

be run by Soot. One way to do this is to create a new Pari tyTagger and simply add

it to the Jimple transformation pack (jtp) as shown in the code snippet in Figure

6.4.

Finally, when we run Soot on a sample program, the parity results will be com

puted, the local variables will be tagged with StringTags and ColorTags and this

visualization information will be available with the plugin. When the sample program

is viewed within Eclipse, each local in the editor has its background coloured in blue,

yellow or red as shown in Figure 6.5.

6 soot fjimple / toolkits / annotation/ parity /ParityTagger.j ava

78

~-

6.2. Applications for Compiler Research

private void addTags(Collection boxes, Map parityMap) {

}

Il iterate over aLL LocaL boxes

for (Iterator it = boxes.iterator(); it.hasNext();) {

ValueBox box = (ValueBox) it.next();

}

Value local = box.getValue();

Il get the fLow information

String parity = (String) parityMap.get(local);

if(parity == null) return; Il no parity information for this vaLue

Il (onLy computed for variabLes of int type)

Il add a String Tag

box. addTag (new StringTag (local. toString 0 +" is "+parity+"."));

Il add a CoLor Tag

if(parity.equals(ParityAnalysis.EVEN))

box.addTag(new ColorTag(ColorTag.YELLOW));

else if(pari ty. equals (Pari tyAnalysis. ODD))

box.addTag(new ColorTag(ColorTag.BLUE));

else if(parity.equals(ParityAnalysis.TOP))

box.addTag(new ColorTag(ColorTag.RED));

else if(parity.equals(ParityAnalysis.BOTTOM)

box.addTag(new ColorTag(ColorTag.GREEN));

else throw new RuntimeException("Unknown parity vaLue "+parity+".");

Figure 6.3: Code to Add Tags to Visualize Parity Analysis Results

PackManager.vO .getPack("jtp") .add(new Transform("jtp.parity" ,

new ParityTagger()));

Figure 6.4: Code to Register Tagger with PackManager

79

Applications of Tools

public static void main(String[] args) {
int x = 0;
int y = 1;
int z = 2;
int [] w = {x, y, z};
int[] 5 = {z, y, x, x, y , z};

for tint i = 0; 1 < 10; i++){
x = x + 2;

}

do {
1 = 1 + 1;
5[1] = 9;

}whi le (1 < 10);

Figure 6.5: Parity Analysis with Visualization Results

Using our visual tools here allows us to easily see where the analysis computes

an incorrect result as parity information is very easy to compute in one's head. This

analysis provides an example for teaching basic flow analysis and describes a concrete

way of using the visualization framework for displaying analysis results.

6.2.2 Analysis Results Specifically for Compiler Research

In compiler research there are several well defined analysis which are often used as

the basis for other analyses. These kinds of analyses are often readily available in

optimizing compiler frameworks. In this section, we describe how visual information

can be added to these existing analyses within Soot, so they may be displayed to

allow us to verify the correctness of the analyses and to understand them more easily,

and to then use them in more complex analyses.

Cali Graph

Soot generates precise call graph information [Lho02] which is used in many different

analyses, for example in the unreachable fields and methods and the tightest qualifiers

analyses which are described later in this chapter in sections 6.3.1 and 6.3.2. To be ,

80

6.2. Applications for Compiler Research

able to easily verify the correctness of the calI graph and. to be able to use this

information while designing other analyses we make the results of the calI graph

analysis available in LinkTags so that it may be viewed in the source code and the

IR code. These LinkTags allow the user to easily navigate to any methods called by

a statement in the source and for any method the user can also easily navigate to

any of the calIers of the method. The code required to add LinkTags representing

the call graph is quite simple for our framework and is shown in Figure 6.6. Again,

like in the parity tagger, we extend the BodyTransformer class and override the

internalTransform method. The first step is to get the call graph which is already

available in Soot, when running Soot in whole-program mode, which enables inter

procedural analyses. We do this by accessing it from the Scene. The Scene is a part

of Soot which stores generated information on a global basis about aIl the classes

being analyzed or used by Soot. We then iterate through the statements and for

each iterate through aIl the edges going out of the statement. For each of these edges

we find the target method and attach a LinkTag to the statement, connecting the

statement to the target method. We also want to tag aIl of the incoming calling edges

for the method of the body being processed. We use the calI graph to find aIl of the

edges into the method, then find the source of the caller and add a LinkTag to the

method for each edge going into it, connecting the method and the source which calls

it. The complete code for adding visualization Tags for the calI graph is available

within Soot.7

In Figure 6.7 we give an example showing the calI graph tagger being applied to a

very small method, with LinkTags being displayed showing the two virtual methods

which could be called at the statement o. foo (). Clicking on one of the links causes

the cursor to navigate to the corresponding code. In this case, selecting the first link

brings Class1 into focus and positions the cursor at the foo method as shown in

Figure 6.8.

7 sootjjimplejtoolkitsjannotationjcallgraphjCallGraphTagger.java

81

Applications of Tools

protected void internalTransform(Body body) {

Il get caLL graph

}

CallGraph cg = Scene.v().getCallGraph();

Il iterate over aLL stmts

fore Iterator it = body.getUnits(); it.hasNext();) {

Stmt stmt = (Stmt) it.next();

}

Il iterate over aLL caLL graph edges out of stmt

fore Iterator edges = cg.edgesOutOf(stmt); edges.hasNext();) {

Edge edge = (Edge) edges.next();

}

Il get caLL graph edge target method

SootMethod target = edge.tgt();

Il add LinkTag - Linking stmt to the target method

stmt. addTag (new LinkTag ("CallGraph: TargetMethod: "+target. getName 0 ,

target,

target.getDeclaringClass()));

Il get this method

SootMethod thisMethod = body.getMethod();

Il iterate over aLL edges caL Ling the method

fore Iterator sources = cg.edgeslnto(thisMethod); sources.hasNext();) {

Edge callEdge = (Edge) sources.next();

}

Il get the source method of caLLer

SootMethod caller = caIIEdge.src();

Il determine actuaL source

Host src = caller;

if (callEdge.srcUnit() != null) {

src = caIIEdge.srcUnit();

}

Il add LinkTag - Linking caL Ling source to method

thisMethod. addTag (new LinkTag (" CallGraph: Source: "+src. toString () ,

src,

caller.getDeclaringClass().getName()));

Figure 6.6: Code to Add LinkTags to Visualize the Call Graph

82

6.2. Applications for Compiler Research

Figure 6.7: CalI Graph Analysis with Visualization Results

7public cldss Classl {

vi public void foot) {
System. out. p r inHn ("Class 1: foo");

}

v public void goo() {
System. out. prinHn ("clas;:; 1: goo");

}
}

Figure 6.8: CalI Graph Analysis LinkTag with Visualization Results

Live Variables Analysis

Another common compiler analysis is a live variable analysis. Soot generates a live

variable analysis which determines which variables are live (may be used again) at

each statement in the program.8 A live variable analysis, like the calI graph, may

be used in many more complicated analyses such as a constructor folder analysis, a

constant propagation analysis, or a copy propagation analysis. Again we can easily

add a tagger class which adds ColorTags to each live variable and StringTags to

each statement with live variables to be able to indicate visually which variables

are live. We show this tagger code in Figure 6.9 In this code first we compute the

liveness analysis. Then for every local in every statement, we add a StringTag to the

statement if the local is live and add a ColorTag to every live local to assign it the

colour green. Once we run this tagger within Soot on a sample program and display

it within the Eclipse plugin edit or , we can see the background colour for aIl the live

locals is green, as shown in Figure 6.10. The complete code for the tagger is also

8soot j toolkits j scalar jSimpleLiveLocals.java

83

Applications of Tools

public class LiveVariablesTagger extends BodyTransformer {

}

protected void internalTransform(Body body) {

}

Il compute anaLysis

LiveLocals sll = nevv SimpleLiveLocals(nevv ExceptionalUnitGraph(body))j

Il iterate over all stmts

fore Iterator it = body.getUnits()j it.hasNext()j) {

Stmt stmt = (Stmt) it.next()j

}

Il iterate over alL Live locaLs in stmt

fore Iterator locals = sll.getLiveLocalsAfter(stmt).iterator()j

locals.hasNext()j) {

}

Value value = (Value) localslt.next()j

Il add StringTag to stmt for each live local

stmt.addTag(nevv StringTag("Live Variable: "+value)) j

Il iterate over the use and definition boxes in stmt

for(Iterator boxes = stmt.getUseAndDefBoxes().iterator()j

boxes.hasNext()j) {

}

ValueBox box = (ValueBox) boxes.next()j

Il add CoLorTag to box if its value is Live

if (box.getValue() .equals(value)) {

box.addTag(nevv ColorTag(ColorTag.Green))j

}

Figure 6.9: Code to Add StringTags and ColorTags to Visualize the Live Variables

84

6.2. Applications for Compiler Research

available in Soot. 9

~ public void run (){

}

int = 4;
int z = (+ 3;
for (int~ = 0; 1 < 10; i++){

z = 1, :t:

}
int ~ = 9;

= Y + 9;
System.out.println(z);

Figure 6.10: Liveness Analysis with Visualization Results

Reaching Definitions Analysis

Soot also generates reaching definition information which computes for aIl the uses

of variables in a statement, which statement defines them. lO A reaching definition

analysis is another example of a common analysis which is used in many other analyses

such as a static method binding analysis, or a local splitting analysis. To show this

information in a visual way, we again represent it using LinkTags, in order to connect

with each local in a statement, the statement or statements where the local is defined.

As shown in Figure 6.11 , for every statement we determine aIl of the locals used in

the statement. For each of these locals we iterate over aIl of the definitions and add

a LinkTags to the statement, connecting the local to each of its potential definitions.

This is again an intra-procedural tagger which extends the BodyTransformer. These

LinkTags provide a list of aIl the statements which may be the definition for each

variable used in the statement. In the visual editor, when a sample program is

analyzed by Soot and displayed, these links can be used to navigate to any of the

potential definitions for the locals in each statement. Again the full tagging code is

available in Soot. ll

9soot /jimple/toolkits/annotations/liveness/LiveVarsTagger.java
lOsoot/toolkits/scalar/SmartLocalDefs.java
Il soot / jimple / toolkits / annotation/ clefs /ReachingDefsTagger .java

85

Applications of Tools

protected void internalTransform(Body body) {

Il get control flow graph for method body

}

UnitGraph graph = nevv ExceptionalUnitGraph(body);

Il compute analysis

LocalDefs sld = nevv SmartLocalDefs(graph, nevv SimpleLiveLocals(graph));

Il iterate over all statements

fore Iterator it = body.getUnits(); it.hasNext();) {

Stmt stmt = (Stmt) it.next();

}

Il iterate over all use boxes

fore Iterator uses = stmt.getUsesBoxes().iterator(); uses.hasNext();) {

ValueBox box = (ValueBox)uses.next();

}

Value value = box.getValue();

Il only consider locals

if (value instanceof Local) {

Local local = (Local) value;

}

Il iterate over definitions of each use

fore Iterator defs = sld.getDefsOfAt(local, stmt) .iterator();

defs.hasNext();) {

}

Stmt def = (Stmt)defs.next();

Il add Link Tag

def.addTag(nevv LinkTag(

local + " has reaching def: " + def. toStringO ,

def,

body.getMethod().getDeclaringClass().getName()));

Figure 6.11: Code to Visualize Reaching Definition Analysis Results

86

6.2. Applications for Compiler Research

6.2.3 Analysis Results for Research and Advanced Users

There are several analyses available in Soot which compute advanced results for code

optimization. In this section we describe how we use the visualization framework to

view these results.

Cast Check Analysis

The cast check analysis in Soot verifies for statements containing casts whether or

not the cast check is required. The code for tagging the results of this analysis is

slightly more complicated then the previous ones and is shown in Figure 6.12. In this

tagging code we again iterate through each statement, but only consider assignment

statements which have a cast expression of a reference type on the right hand side. In

this example there is a pre-computed set of locals and types used. These pre-computed

sets are common for more complicated analysis, to store information which can be

calculated in one pass of the code. We then add a StringTag to each statement

containing a cast expression indicating if the cast check may be eliminated. This

information is displayed in a visual way as shown in Figure 6.13 and again this

complete example is available within Soot. 12

Arraybounds Check Analysis

The array bounds check analysis in Soot determines staticaUy if array indexes may

be out of bounds or if they are definitely safe within bounds. This is a comprehensive

analysis [QHV02] consisting of three related analyses: a variable constraint analysis,

an array field analysis, and a rectangular array analysis. Although the analysis is

quite complex, the code to add tags so that the results of the analysis may be verified

is quite straight-forward as shown in Figure 6.14. In this tagging code we again

iterate through aU the statements, considering only those containing array reference

expressions. We get the results of the array bounds safeness and add ColorTags

as needed. There are four distinct results that can arise and we add ColorTags to

12soothimplejtoolkitsjpointerjCastCheckEliminator.java

87

Applications of Tools

public class CastCheckTagger extends BodyTransformer {

}

protected void internalTransform(Body body) {

}

Il compute cast check eLiminator anaLysis

CastCheckEliminator cee = nevv CastCheckEliminator(

nevv BriefUnitGraph(body));

Il iterate over aLL stmts

for(Iterator it = body.getUnits(); it.hasNext();) {

Stmt stmt = (Stmt) it.next();

}

Il onLy consider assign stmts with casts of reference types in rhs

if(stmt instanceof AssignStmt) {

}

AssignStmt as = (AssignStmt)stmt;

Value rhs = as.getRightOp();

if(as instanceof CastExpr) {

}

CastExpr cast = (CastExpr) rhs;

Type type = cast.getCastType();

if(type instanceof RefType) {

}

if (cast .getOpO instanceof Local) {

Local local = (Local)cast.getOp();

Il get LocaL type set for stmt

LocalTypeSet set =
(LocalTypeSet) unitToBeforeFlow.get(stmt);

Il add StringTag to stmt indicating if cast check

Il is needed

stmt.addTag(nevv StringTag(

cce.getResult(local, type, set)));

Figure 6.12: Code to Visualize Cast Check Elimination Analysis Results

88

6.2. Applications for Compiler Research

public void run(Object o){
if (0 instanceof IntegerJ{

int x = «Integer)o).intValue();
tthis cast check can be eliminated.1 }

else {
string s = (String)o;

}

Figure 6.13: Cast Check Analysis with Visualization Results

indicate the safeness of the array index with respect to the bounds. The colour green

is used to indicate the index is definitely in bounds, yellow is used to indicate the

index is potentially out of bounds at the lower end, orange is used to indicate that the

index is potentially out of bounds at the upper end, and red is used to indicate that

the index is potentially out of bounds at both the lower and upper ends as shown in

Figure 6.15.

Null Pointer Analysis

The null pointer analysis determines if expressions are definitely null, definitely not

null or unknown. This is another fairly complex analysis, as it must consider code

along different paths of branches in the code. Even so, the code to add visualization

tags is again quite uncomplicated. First we add visualizations Tags to the locals

used in the statement and then add visualization tags for the locals defined in the

statement. The two steps are needed to be able consider the branching in the code.

The code to handle the boxes is shown in Figure 6.16. The code that actually adds

the Tags is shown in Figure 6.17, where we obtain the results and add ColorTags

and StringTags to enable visualizing the results of this analysis by making null

expressions red, non null expressions green and unknown expressions blue. The results

of this analysis are shown for a sample program in Figure 6.18. In the figure we

see that formaI args is blue indicating the nullness is unknown which makes sense

considering it cornes from outside the method, the local y is red as it is assigned to

the value null and the local ne is green, as it is definitely not null, being created in

89

Applications of Tools

public class ArrayCheckTagger extends BodyTransformer {

protected void internalTransform(Body body) {

}

}

Il compute array bounds check eLiminator anaLysis

ArrayBoundsCheckerAnalysis analysis =
nevv ArrayBoundsCheckerAnalysis(body);

Il iterate over aLL stmts

fore Iterator it = b.getUnits(); it.hasNext();) {

Stmt stmt = (Stmt) it.next();

}

Il onLy consider stmts containing array references

if(stmt.containsArrayRef()) {

}

ArrayRef aref = stmt.getArrayRef();

Il get anaLysis resuLts for stmt

int result = interpret(analysis.getFlowBefore(stmt), aref,

stmt, nevv IntContainer(O));

Il add CoLorTags indicating array bounds to array references

svvitch (result) {

}

case ArrayBoundsCheck.UNSAFE_LOWER_UPPER:{

aref.addTag(nevv ColorTag(ColorTag.RED));

break;

case ArrayBoundsCheck.UNSAFE_LOWER:{

aref.addTag(nevv ColorTag(ColorTag.YELLOW));

break;

case ArrayBoundsCheck.UNSAFE_UPPER:{

aref.addTag(nevv ColorTag(ColorTag.ORANGE));

break;

case ArrayBoundsCheck.SAFE:{

aref.addTag(nevv ColorTag(ColorTag.GREEN));

break;

Figure 6.14: Code to Visualize Array Bounds Check Analysis Results

90

6.3. Applications for Program Understanding

V" l>ubUc static void main(String[] argsl {
int [] arr = new int [10];
for tint i = 0; 1 c 10; i+=21{

arr = 1*i;
System.out.println(arr[i-1]1;

}
}

Figure 6.15: Array Bounds Checks Analysis with Visualization Results

the same statement. However, if we saw that the local y was blue, we would know

our analysis was imprecise and missing being able to determine that y is null by

assignment, just by looking at the results. In fact, when we first started using the

visualization framework we quickly found areas where the analysis could be improved,

simply by glancing at the results in the editor, within the plugin.

6.3 Applications for Program Understanding

Now that we have shown several uses of the visualization framework for analysis

results in compiler research and educational areas, we must determine if this visu

alization framework may be useful for generating visual information, for program

understanding, that may be useful to regular programmers.

We created three new analyses: to find unreachable fields and methods, to deter

mine the tightest qualifiers possible for fields and methods, and to find loop invariant

expressions. These three analyses are ones that could be used by programmers in

general. For each one, we ran it on a set of Java benchmarks, collected in a graduate

level compiler course, to determine if the analyses are useful at finding suggested areas

of code improvement in real-live code.

91

Applications of Tools

public class NullCheckTagger extends BodyTransformer {

}

protected void internalTransform(Body body) {

Il compute null check analysis

}

BranchedRefVarsAnalysis analysis = nevv BranchedRefVarsAnalysis(

nevv ExceptionalUnitGraph(body));

Il iterate over all stmts

fore Iterator it = body.getUnits(); it.hasNext();) {

Stmt stmt = (Stmt) it.next();

}

Il get analysis results for uses

FlowSet beforeSet = (FlowSet)analysis.getFlowBefore(stmt);

Il iterate over all use boxes in stmt

for(Iterator uses = stmt.getUseBoxes() .iterator(); uses.next();) {

ValueBox useBox = (ValueBox) uses.next();

Il add visualization tags

addVisualizationTags(useBox, beforeSet, stmt, analysis);

}

Il get analysis results for definitions

FlowSet afterSet = (FlowSet)analysis.getFallFlowAfter(stmt);

Il iterate over all definition boxes in stmt

for(Iterator defs = stmt.getDefBoxes() .iterator(); defs.next();) {

ValueBox defBox = (ValueBox) defs.next();

Il add visualization tags

addVisualizationTags(defBox, afterSet, stmt, analysis);

}

Figure 6.16: Code to Visualize Null Check Analysis Results

92

6.3. Applications for Program Understanding

private void addVisualizationTags(ValueBox box, FlowSet set, Stmt stmt,

BranchedRefVarsAnalysis analysis) {

}

Il onZy consider reference types

if (box. getValue 0 instanceof RefLikeType) {

}

Il get resuZt for box

int result = analysis.anyReflnfo(box.getValue(), set);

Il add StringTags to stmt and CoZorTags to box

switch (result) {

}

case analysis.NULL :{

}

stmt. addTag(new StringTag(box .getValue 0+": Null"));

box.addTag(new ColorTag(ColorTag.RED));

break;

case analysis.NON_NULL :{

}

stmt.addTag(new StringTag(box.getValueO+": Not Null"));

box.addTag(new ColorTag(ColorTag.GREEN));

break;

case analysis.UNKNOWN :{

}

stmt. addTag(new StringTag(box. getValue 0 +": Unknown"));

box.addTag(new ColorTag(ColorTag.BLUE));

break;

Figure 6.17: Code to Add StringTags and ColorTags for Null Check Analysis Results

93

Applications of Tools

~ public static void main(String[] argsl {

}

String ~ =
String 1 =

NullExample .=-;
}
else

=
}

run () ;

){

Figure 6.18: Null Checks Analysis with Visualization Results

8enchmark Programs

ConFour is an implementation ofthe game connect four. Dmd is a package to compute

the strongly connected components of a directed graph. Hull computes the convex

hull of a set of points in a plane. Imagematch is a program that performs Template

Matching using sum of square differences. JWBench is a discrete event simulation

program which simulates a cell in a personal communications system (PCS). Knight

sTour finds a knights tour on an n x n grid. Telecom is a telecom system simulation

program. Vignere is a program to break the Vignere cipher.

6.3.1 Unreachable Fields and Methods Analyses

The unreachable fields and unreachable methods analyses use the precise call graph

analysis generated by Soot to determine which fields and methods are unreachable.

These unreachable fields and methods are coloured red in the source code ta indicate

the results ta the programmer. Unreachable fields and methods may be removed

from the code for future maintainability and these analyses provide a simple way

of finding such opportunities. In Tables 6.1 and 6.2 we show the results of running

this analysis on several small applications. For each application we show the total

94

6.3. Applications for Program Understanding

benchmark number methods unreachable methods

ConFour 22 2 (9%)

Dmd 22 0

Hull 23 1 (4%)

ImageMatch 6 0

JWBench 36 0

KnightsTour 21 0

Telecom 43 9 (21%)

Vignere 24 2 (8%)

Table 6.1: Unreachable Methods Analysis Results

benchmark number of fields unreachable fields
non static final un-

reachahle fields
ConFour 34 17 (50%) 0

Dmd 13 0 0

Hull 8 3 (4%) 0

ImageMatch 2 0 0

JWBench 35 0 0

KnightsTour 13 0 0

Telecom 24 11 (42%) 4 (17%)

Vignere 11 1 (9%) 1 (9%)

Table 6.2: Unreachable Fields Analysis Results

95

Applications of Tools

number of methods and fields and the number of unreachable methods and fields.

U p to 20% of methods are unreachable in the one application - Telecom. We find

that there are many unreachable fields found, however, upon closer observation of the

visual results we can see that the majority ofthe fields are final static fields whose

values have been propagated throughout the code at compile time. These unreachable

fields are still useful for code readability. An example of how the visual results for an

unreachable method are displayed is shown in Figure 6.19.

) . , ,

Figure 6.19: Unreachable Methods Analysis with Visualization Results

This is an example which shows sorne of the fiexibility of the framework, showing

that Tags can be added to Hosts other than statements, in this case to methods, and

that the foreground of the text, rather than the background may be coloured. This

is done by setting the second parameter as a true fiag when creating the ColorTag.

The code used for tagging unreachable methods is shown in Figure 6.20. Here we

extend the SceneTransformer because we are interested in the whole application.

We look at aH the application classes, in this case we do not consider library classes,

and find aH of the declared methods. We then determine if the method is unreachable

and add a StringTag and a ColorTag. We describe this example to demonstrate how

simple it is to use the visualization framework even on whole program analyses and

how easy it is to access the precise information generated by Soot.

6.3.2 Tightest Qualifiers Analysis

The tightest qualifiers analysis computes for fields and methods whether or not they

could have, for example, a pri vate qualifier where they currently have a public

96

6.3. Applications for Program Understanding

public class UnreachableMethodTagger extends SceneTransformer {

protected void internalTransform() {

}

}

Il iterate through all application classes

for (Iterator classes = Scene.v().getApplicationClass().iterator();

classes.hasNext();) {

}

SootClass appClass = (SootClass) classes.next();

Il iterate through all methods

for (Iterator methods = appClass.getMethods() .iterator();

methods.hasNext();){

}

SootMethod method = (SootMethod)methods.next();

Il determine if method is unreachable

if (!Scene.v().getReachableMethods() .contains(method)){

Il add StringTags and ColorTags

}

method.addTag(new StringTag("Method is unreachable"));

method.addTag(new ColorTag(ColorTag. RED , true));

Figure 6.20: Code for Tagging Unreachable Methods with Visualization Results

97

Applications of Tools

qualifier. This analysis displays the results by colouring in red aU methods and fields

with qualifiers which could be tightened and indicates with a StringTag to what

level as shown in Figure 6.21. This analysis uses the caU graph analysis to compute

Field: numOfCalls has Package level access, can have: Private level
1 access.

Figure 6.21: Tightest Qualifiers Analysis with Visualization Results

the needed results. Tightening the qualifiers, particularly to private may increase

the runtime speed in that a special invoke can be used for method invocation which

is faster than a virtual invoke necessary for a public method. AdditionaUy, tighter

qualifiers may improve the security of the code. Tables 6.3 and 6.4 show the results

benchmark methods pV3_> pkg14 pb -> prv15 pkg -> prv prt16_> pkg prt -> prv

ConFour 22 2 2 4 0 0

Dmd 22 6 0 0 0 0

Hull 23 7 8 0 0 0

ImageMatch 6 0 5 0 0 0

JWBench 36 0 0 0 0 0

KnightsTour 21 12 7 0 0 0

Telecom 43 11 0 0 3 3
Vignere 24 0 0 0 0 0

Table 6.3: Tightest Qualifiers on Methods Analysis Results

of the analyses searching for tightest qualifiers for methods and fields. Each table

lists the total number of methods or fields and the number of methods or fields which

could be declared with a tighter qualifier.

13public
14 package
15private
16protected

98

6.3. Applications for Program Understanding

benchmark fields pb -> pkg pb -> prv pkg -> prv prt -> pkg prt -> prv

ConFour 34 0 0 8 1 1

Dmd 13 0 0 2 0 0

Hull 8 0 0 0 0 0

ImageMatch 2 0 0 0 0 0

JWBench 35 0 0 0 0 0

KnightsTour 13 0 1 8 0 0

Telecom 24 2 '1 2 0 0

Vignere 11 0 0 0 0 0

Table 6.4: Tightest Qualifiers on Fields Analysis Results

6.3.3 Loop Invariants Analysis

The loop invariant analysis uses a dominator analysis to find an loops and then

determines for an the statements in the loop if the statement is loop invariant, in

other words if the statement could safely be executed outside the loop body without

changing the semantics of the code. The most common loop invariant found was the

recalculation of sorne expression in the condition part of a for loop. This type of

loop invariant was found in half of the benchmark applications. Other loop invariants

found were repeatedly accessing fields whose values did not change, repeatedly setting

fields with unchanging values and other unnecessary binary re-computations. Each

loop invariant expression is coloured red and is indicated with a StringTag as shown

in Figure 6.22.

}

int k = 8;
for (int i = 0; i <
}

. i++) {

lis loop invarian~

Figure 6.22: Loop Invariant Analysis with Visualization Results

99

Applications of Tools

6.4 Summary

In this chapter we looked at various applications of the visual analysis framework.

In particular, we considered examples where this framework is useful for compiler

teaching and research and for general programmers use. We described the steps

required to use the visualization framework and gave a concrete example of the steps

from starting with a data fiow analysis to finishing with the results displayed within

the plugin. We then discussed several analyses and how to add visualization Tags in

order to use the results in our visualization framework. We then looked at sever al

analyses that may be used for program understanding, giving experimental results for

their ability to find code improvement areas in real life code and showed how these

results can be displayed within the visualization framework.

100

7.1 Motivation

Chapter 7

1 nteractive Toois

In chapter 5 we discussed viewing the final analysis results. Up until this point the

Soot framework has functioned very much like a black box. Soot could be invoked

with a set of options and any extra result information from the analysis had to be

encoded somehow in relation to the input or output. While it is very useful to be

able to see the final results, it is necessary to be able to reach that stage, so it

is also useful to have a set of interactive tools which consider partially generated

results as they are being computed and results, consisting of possibly large data sets,

in formats unrelated to the representations available for input or output. In this

chapter we discuss two such tools: an interactive control fiow graph tool which is like

a debugging tool for intra-procedural analyses and a tool for displaying partial views

of large graphs.

7.2 Interactive Control Flow Graph Tooi

In order to view the analysis results as they are being generated we provide a tool that

displays control fiow graphs and annotates them with data fiow analysis information

as the information is being generated.

101

Interactive Tools

This tool is useful for researchers when they are debugging complex analyses

because it allows one to easily view partial data fiow results. It is possible that the

final results may conceal errors that can be easily caught when viewing the results

as they are being generated. It can also indicate at which kinds of statements the

analysis is being incorrectly computed.

For students learning about fiow analysis, this tool gives insight into how fixed

point iterations in data fiow analysis work. It can be used, by students, for debugging

their first analyses and also for viewing simple, standard analyses, such as a liveness

analysis, to explore how they function.

This tool is also useful for teaching data fiow analysis and explaining control-fiow

graphs. It allows professors to generate the examples instead of using the blackboard,

and as it provides back-up functionality, no blackboard erasing is necessary and re

drawing the previous step is trivial, when needed, when students have questions.

Soot analyzes each method for each analysis sequentially. When running Soot

from within the Eclipse plugin in interactive mode, each time it begins a new analysis

on a new method, it displays the control fiow graph using an extension to the GEF

framework [GEF]. Initially the control fiow graph is displayed with only the state

ments as the nodes in the graph. For each new analysis, of each method, a new edit or

window is opened with the control fiow graph. These graphs can also be saved to dot

files [GKN02] for saving and printing purposes.

7.2.1 Running

Once the control fiow graph is generated, the system becomes under the control of

the user and pauses for user direction. The commands available to manipulate the

graph are step forward, step backward, finish method, next method and stop

interaction. The step forward command causes the data fiow sets to be displayed

one at a time as they are being generated. After going forward, it becomes possible

to step backwards to remove the display of the previously generated fiow sets. It is

also possible to use the finish method command to run through the entire method

in an animation automatically. The animation stops at the end of the analysis for

102

7.2. Interactive Control Flow Graph Tool

the method to display the final results for a particular analysis. After the method

has been processed the next method command can be used and Soot will continue

to the next method. At this point the display of previous method is fixed and can no

longer be manipulated. The stop interaction command causes Soot to continue

without further user interaction. Figures 7.2 - 7.5 show the progression of generating

the data fiow sets on several nodes in a control fiow graph while computing the sets

of live variables for part of the trivial method listed in Figure 7.1. In Figure 7.2 the

public void run () {

int x = 0;

}

for (int i = 0; i < 10; i ++) {

X += 2;

}

Figure 7.1: Live Variable - Interactive Control Flow Graph Example Code

first live variable i is generated as the data fiow set on the i = i + 1 node. This set

is propagated to the x = x + 2 node in Figure 7.3. Then in Figure 7.4 the variable

x is added to the set of live variables. This is set is then propagated to the if i >=

10 goto return node in Figure 7.5.

7.2.2 Debugging

Sometimes it is necessary or desirable to see the data fiow sets on each iteration for

a particular node or nodes. A mechanism is provided for adding a small stop sign

icon to each no de to stop at on each iteration. Then the finish method command

can be used to animate the pro cess of generating data fiow sets for each node in the

method, and the animation will stop at each no de with a stop sign icon, highlighting

the node to draw attention to it as shown in Figure 7.6. Then the user can proceed

with any of the action commands.

103

{ }

Igoto [?= (branc}l)ll

{ }

lif i >= 1 0 goto return 1

.....----=--,/ \
Ix=x+21

/
i }

li = i + 11
{ }

Figure 7.2: Add i to Data Flow Set

{ }

Igolo [?= (branch)ll

{ }

~~
lif i >= 10 goto return 1

~~
{ i < x: }

IX=X+21
{ i }

/
{ i }

li = i + 11
{ }

Figure 7.4: Add x to Set

{ }

Igoto [7= (branch)ll

{ }

Interactive Tools

lit i >= 10 goto return 1

.-----:--,t ~
lx = x + 21

{ i

/
{ i }

li = i + 11
{ }

Figure 7.3: Propagate Set

{ }

Igolo [7= (branch)11

{ }

104

{ i }

li = i + <li

{ }

~~
lif i >= 10 goto return 1

/

{i "

{ i , J(

lx" x + 21
{ i }

Figure 7.5: Propagate Set

7.2. Interactive Control Flow Graph Tooi

Igoto [?= (branch)ll

\
{ i }

lif i -< 1 0 goto x = x + 21
{ }

J~
{ } lx = x+ 21

{ }

Figure 7.6: Partially generated fiow sets on cfg with Liveness Analysis

105

Interactive Tools

7.2.3 Filtering Data Flow Sets for More Relevant Displays

Sometimes the data flow sets generated for an analysis are quite large and only a

subset of the data is relevant. We provide a filtering mechanism where the data flow

analysis will be performed on the full sets generated, but the displayed data will be

only the filtered subsets. For example, for the parity analysis for each node a set

mapping each local in the method to its parity is generated, but the filtered set of

only locals that are live is displayed at each node as shown in Figure 7.7.

7.3 Motivation - Displaying Large Graphs

CalI Graphs in Java can grow very large, very quickly, because of the large standard

library which is referenced by even the most basic code. Even for a simple Hello

World program the calI graph may contain thousands of nodes or reachable methods,

depending on the precision of the calI graph. In our small study, the simple program

shown in Figure 7.8 had 3000 - 6000 nodes in the calI graph depending on wh ether the

~- call graph was generated using Spark or a less precise class hierarchy based analysis

as shown in Table 7.1

Spark CHA

classes 1424 1424

methods 3602 6784

Table 7.1: Reachable Method Counts for HelloWorld CalI Graph

Displaying and viewing a large graph is very difficult and we sought a way to

make a manageable display. To accomplish this goal, we developed an interactive,

graph display tool, which is built on top of the GEF framework and interacts with

information generated by Soot. This tool provides the basic functionality for laying

out the graph, updating the graph with new nodes and allowing interaction between

the graphical display and the code controlling the display. The problem of displaying

a call graph has been built on top of this tool and we discuss it here. However, other

106

7.3. Motivation - Displaying Large Graphs

{}

{}

~
{}

lx = 01
{x=even}

{x=even}

li = 01
{x=even, i=even}

{x=even, i=even}

Igoto [?= (brancl1)ll

{x=even, i=even}

{}

{}

/
{x=even, i=top}

lif i <: 1 0 goto x = x + 21
V=even.

1

{x=even, i=top}

li = i + 11
(x=even, i=top}

{x=even, i=top}

lx = x + 21
{x=even, i=top}

Figure 7.7: Annotated cfg with filtered Parity Analysis

107

public class HelloWorld {

}

public static void main (String [] args){

System.out.println(IHelloWorld");

}

Figure 7.8: Hello World Java Program

Interactive Tools

types of large graphs could also benefit from this approach, such as points-to graphs

or sorne other compiler generated graphs.

7.4 Interactive Cali Graph Tooi

This tool displays an interactive calI graph. It interacts with Soot while Soot is

running. Soot pro cesses the calI graph and then using a message system this tool

requests required information from Soot to display the calI graph as required. It

starts off by displaying the first main method that it finds as the start node. From

there the user can exp and the graph, coUapse the graph and jump to the corresponding

source code. Each no de represents a method and each arc represents a caU. Right

clicking on anode displays a list of the options as shown in Figure 7.9 . Selecting the

Figure 7.9: Interactive CalI Graph Tool Options

expand option adds to the graph all methods caUed by the selected method. Each

of these can then be further expanded. Selecting the collapse option will cause

108

7.4. Interactive Call Graph Tool

any nodes that haven't themselves been selected, to disappear. This functionality

provides a pruned call graph where the user can focus on the interesting or important

calls while ignoring insignificant ones. Selecting the show in code option opens a

Java editor window with the corresponding method highlighted. There are also two

toolbar options: stop which ends the interaction with Soot, and collapse all which

resets the display of the graph to its original state. Each node shown in the graph

indicates whether it is public, private or protected and we also show the call type

on the arcs as weIl. This tool also allows the suppression of the display of library

methods, in order that the user may focus on the application. A sample call graph of

the telecom application is shown in Figure 7.10. In this example, the library methods

are not displayed.

Figure 7.10: Interactive Call Graph Tool

109

Interactive Tools

110

Chapter 8

Related Work

There are three broad areas of previous work related to the visualization of com

pilers and compiler generated information. First, there are several projects which

focus on displaying information generated by compilers, visually, in various different

formats. Second, there is sorne past work which explores the issue of mapping source

code to various intermediate representations (IRs) and the challenges associated with

generating information based on the IR and displaying it in relation to the original

source. Finally, there has been recent related work in the area of using compilers

to find programming problems and to present the discovered information in visual

environments. In this section, each area of related work is discussed in turn.

8.1 Views Displaying Compiler Information

In this section we look at research projects which use different kinds ofviews to display

the information generated by the compiler. We compare these views to the views and

displays in our project. We also explore the issue of propagating information between

the underlying compiler and the user interface system.

VISTA [ZCW+02] is a system for interactive code improvement which arose out

of a need to improve tools for compilers for embedded systems. The main features

include displays of register transfer lists, the IR used for analyses, which include views

of the code before the transformations which highlight instructions to be modified or

111

_..----,

~-

Related Work

deleted and views after the transformations which highlight instructions which were

modified or inserted, views showing the basic block structure, functionality for users

to query for a list of loops, a list of live or dead registers at a specific program point,

as well as dominators, successors and predecessors of a node. This system is one of

the systems which is the most similar to our framework. The differences are that

it provides tools for C, Pascal, and Ada code, as opposed to our tools which are

primarily for Java code, and as well the user interface (UI) components are built as

a stand alone system and not integrated into a popular IDE (although realistically,

there probably did not exist a popular extensible IDE at the time this system was

developed). One interesting feature about this set of tools is a view where users can

determine the order in which to run the compiler transformations. This is an area

that would be quite interesting to explore in our framework. Currently Soot, upon

which our visualization framework is based, runs analyses in a very specific order.

A graphical user interface for compiler optimizations with Simple-SUIF [Har96] is

a research project which provides a visual framework where the user may step through

compiler components of the back-end of compiler optimizations as the optimizations

are being performed. It is most related to our interactive control flow graphs, although

our graphs are for analyses which do not affect the structure and this research deals

with optimizations that change the structures of graphs. Similarly to the VISTA

system, this framework allows for transformations to occur in any order and allows

optimizations to be undone. It provides a variety of graph representations and it

would be an interesting future work project to explore these representations and to

determine which ones could be integrated into our Soot - Eclipse plugin.

The UW Illustrated Compiler [AHY88] is one of the earliest attempts at visualizing

compilers. Its main focus was for helping students to learn about compilers and

focused mostly on the front-end, whereas our work focuses on visualization of the

back-end of the compiler. It graphically displays the control and data structures used

during compilation.

Xvpodb [BW95, Boy93] is a stand-alone graphical tool designed to aid in porting

compilers to different platforms. More specifically, its purpose is to provide a graphical

debugging like environment specific to the back-end of a compiler, to help developers

112

8.1. Views Displaying Compiler Information

catch bugs when re-targeting compiler optimizations for different target platforms.

Unlike the tools in this project which are primarily for analyzing Java code, it is

developed on top of the VPO [VPO] an optimizing code generator for C, Pascal and

Ada. It provides a tool similar to our interactive control flow graph tool, which

displays before and after states of the control flow graphs of a human readable form

of register transfer lists, upon which the analyses are performed. This tool functions

by using a message passing system from the compiler to the graphical view and allows

for breakpoints and single stepping through the control flow graph as the optimization

is being performed much like the interactive control flow graph tool described in this

project. The main difference is that xvpodb shows optimizations which actually

change the structure of the methods being analyzed and attempts to highlight the

instructions that will change or have changed, whereas our interactive control flow

graph display data flow sets which are being generated by the analyses as extra

annotations for each node. This project is quite similar to the VISTA project.

The Feedback Compiler [BDJW98] provides visualization tools, which show op

timizations performed in the back-end of the LCC [LCe] compiler, a compiler for C

code. Instead of a general visualization framework, like what has been developed in

this project, the feedback compiler attempts to provide a variety of different displays

each suited to a specific compiler analysis. Two visualization displays are available in

this compiler. It provides a visualization tool which animates the pro cess of common

sub-expression elimination and a separate tool for graphically visualizing the results

of an optimized loop for an iteration space reshaping analysis. The main objectives

of these compiler visualizations are to aid in debugging optimized code, to help in

porting the compiler to new architectures and for showing programmers how com

pilers affect the code, whereas the goals of our work are to provide generic tools for

compiler researchers and students, with only a small emphasis on visualizations for

general programmers.

JAnalyzer [Bod03] is a stand alone graphical user interface (GUI) tool which pro

vides an interactive visual representation of a call graph generated by Soot. It shows

anode, representing a method, and all the caller and callee immediate neighbours.

One can navigate through the graph by clicking on a node. This re-centers the graph

113

/-

Related Work

with the selected node as the center. This tool was built on top of Soot and thus

can visualize any of the caU graphs built by the different algorithms available in

Soot (class hierarchy analysis (CHA), rapid type analysis (RT A), variable type analysis

(VTA)) like our caU graph tool cano It limits the view however to one main node

and its neighbours only, whereas we aUow the user to expand the view to include an

unlimited number of nodes. Also, one of our goals was to reuse existing tools as much

as possible and thus our tools are built into Eclipse taking advantage of the graphical

editor and graph layout tools available, much of the JAnalyzer project focused on

developing the required graphical tools. FinaUy, this tool aUows a user to start from

a source method and create a caU graph, whereas our tools first provide the caU graph

for the class being analyzed and then, from the graph, the user can navigate to the

corresponding source code method.

A static analysis tool for visualizing exception propagation for Java [CJH02] has

been developed as a stand-alone tool, which displays the exception propagation path

using an exception propagation graph. It is built on top of the IDE Jipe [JIP] and

the analysis is done at the AST level and built upon the Barat [BAR] analysis system.

This tool is specific to this exception propagation analysis and do es not generalize to

other analyses or visualizations, which was an important goal for the development of

our tools.

A partial evaluation visualization tool [WD98] has been developed to visualize

the effects of partial evaluation by keeping the source position information and high

lighting in the source code the line being optimized. Side by side with the source

editor, this tool shows a pretty printed version of the IR (Residual Program) relating

to the optimization. The pretty printed version is not an editor like our IR editor but

serves a similar function in that it displays the low-level IR in a human-meaningful

way. These visualizations are for analyses performed on Scheme and Lisp code. The

main purpose of this project is for promoting comprehension of legacy code but the

secondary benefits include helping implementors and users understand the process

and results of partial evaluation, which ties in with our goals of tools for compiler

researchers and students to better understand the pro cesses in the back-end of a

compiler.

114

8.2. Correlating IR and Source Results

Integrating software productivity tools into Eclipse [RD03] is a project which ai ms

to aid programmers of tools in visualizing the information generated. They provide

a general system which atternpts to link external tools which generate large amounts

of structured data into two generic Eclipse views, specifically an XML tree and graph

views. Further, they present two inter-procedural, external, static analyses that use

this frarnework: a memory leak detector and a security vulnerability detector. They

provide a standard XML based mechanism for integrating the generated data into

Eclipse, somewhat like our tools which provide an XML format for generated analysis

data, which is used to view analysis results in Eclipse.

An Architecture for Interoperable Program Understanding Tools [WOL +98] is

a project which provides a framework for combining all different tools related to

pro gram understanding. It standardizes the IRs to accept different languages from the

front-end, to provide cornmon tools for building and accessing the different structures,

such as control flow graphs, built by most modern compilers and to standardize the

visualization tools used to display the information. It was designed to be a plug and

play architecture much like Eclipse. The researchers have extended this framework by

integrating a data-slice computation and visualization tool with a concept recognizer.

They integrate the visualization tools that show the common graphs created by the

framework without depending on the specifie representation of the decomposition

slice graph originally produced by the data-slice tool. This is similar to our tools

which seek to be extensible to any kind of new analyses, however our tools aU use the

IRs available in the Soot framework.

8.2 Correlating IR and Source Results

In this section we look at work which has explored the area of correlating the results

of analyses generated on an IR with the original source code. For each we discuss

what challenges are faced and how they are handled.

OPTVIEW is an approach for examining optimized code [TG98]. This research

indicates that while it is worthwhile to show at the source code level changes made

115

Related Work

by the optimizer, it is difficult to make a correct and precise mapping between low

level and source code. Their solution to this problem is to present a view of partially

modified source code with visual indications of how it was affected by the optimizer.

We also show, at the source level, information generated by the compiler, but do not

find as many difficulties mapping the IR to the original source. This may be because

Jimple, our main IR, is much more similar to the Java source code, in contrast to

assembly compared to C, used in the OPTVIEW project. We discuss our mapping

between the source and IR in section 5.2.

Sorne research has been done on using visualization tools to teach compiler de

sign [VegOl]. This teaching project was essentially a visualizer for the front-end of

a compiler (mainly the AST) and was created for helping students learn about com

pilers. It is similar to our goals in a sense however as it seeks to provide a mapping

between the source code and the IR using an annotated display and is used for stu

dents to see the relation between the source and AST (which in this case is the IR).

The primary objectives for this teaching project were to aid in the debugging of the

students' compiler construction project. Our tools have been used to aid students in

the development of back-end compiler analyses in an advanced compiler optimization

course.

8.3 Static Analysis to Highlight Coding Problems

In this section we discuss work related to fin ding programming problems, using static

analyses and displaying the results in a graphical format. For each area of related

work we look at whether there are analyses that are already handled or could be

handled or could benefit from our Soot - Eclipse framework.

Finding Bugs is Easy [HP04] is a research project which makes use of static anal

yses to automatically detect bugs in large software projects. It performs the analyses

on Java bytecode, using the BCEL library [BCE] to manipulate the bytecode and is

integrated in Eclipse. It finds and highlights bugs in much the same way the front-end

of a traditional compiler in an IDE highlights syntax errors with a list with links to

116

8.3. Static Analysis to Highlight Co ding Problems

and highlighting of the source code line. This project includes many bug checks, sorne

of which are related to standard compiler analyses such as null dereference checks,

synchronization checks and security access checks. In our project we provide a visual

ized view of the results on a null checks analysis as described in section 6.2.3. It would

be an interesting future work project to determine which of the checks performed in

the finding bugs is easy project could benefit from advanced compiler analyses and

be incorporated into the Soot framework.

Models of Thumb - Assuring Best Practice Source Code in Large Java Software

Systems [HS02] is research which is similar to the previous research about finding

bugs, except instead of finding bugs it highlights questionable programming practices

using a different type of static analysis (not standard data fiow analysis). In particular

it finds places where code written with a lack of attention to quality or maintainability,

checking areas such as over-specifying variable types or not handling exceptions in

catch blocks. The results of the analyses are displayed in a graphical tree structure

in a view in Eclipse, from which the user may navigate to the problematic source

code. As this work performs very simple analyses on the Java AST in Eclipse, it is

not necessary to correlate position information of the IR and the original source code.

As weIl, as it performs analyses which may be undecidable it contains a system in

which the programmer can help the analysis by specifying information in j avadoc

annotations. Additionally, it would be interesting, as future work, to perform and

display the results of the over-specified variable types in the Soot - Eclipse framework,

as this analysis may benefit from the more precise points-to information available in

Soot.

SABER: Smart Analysis Based Error Reduction [RSS+04] is recent work in which

deep static analysis is used to find errors in enterprise Java (J2EE) code and to

display the results in a graphical way. It identifies many potential co ding problems

and categorizes them into six categories. It then uses six different techniques to find

occurrences of the problems in the code. Like Soot, it computes a calI graph and

points-to analysis and other standard compiler analyses to use as the basic structures

for information to find the co ding problems. The results are displayed in a stand-alone

user interface where the problem category is highlighted and the specifie instance of

117

Related Work

the problem found in the code is given, then the user may navigate to the actual code.

It would be a very interesting future work project to perform these analysis in Soot

and display the results with our visualization framework. The main goal of this work

is to find code problems which are very difficult to track down during production.

118

9.1 Conclusions

Chapter 9

Conclusions and Future Work

This thesis introduced the Soot - Eclipse plugin, a framework for visualizing an opti

mizing compiler for the purposes of developing compiler optimizations, learning about

compiler optimizations and using compiler optimizations to provide extra program

information to general programmers. It presented the basic integration of Soot into

Eclipse, the analysis visualization framework and the interactive control flow and calI

graph tools.

The basic plugin makes the Soot optimizing compiler framework accessible to new

users and students learning about compilers, in a simple graphical environment. This

basic plugin provides standard menu options for invoking commonly used Soot func

tions and a view for displaying the output generated by Soot. The generated options

dialog, included in the basic plugin, ensures that the plugin always stays synchronized

with the compiler framework and this dialog, along with the managing configurations

dialog, give advanced users the ability to manipulate the Soot framework. The IR

editor, along with its associated content outliner, provides support for learning about

the various IRs produced in the Soot framework.

The analysis result visualization framework provides mechanisms for attaching

and displaying visual information regarding the results of analyses, relating to both

the IR and the original source code, in an extensible and flexible way. It includes Java

119

Conclusions and Future Work

To Jimple a source to Jimple code generator which associates position information

of the original source code with the constructs in the Jimple IR. Three visualization

Tags: StringTags, ColorTags and LinkTags, are provided within Soot to be used

to encode analysis results. These Tags are easy to use to encode analysis results

in a flexible way and are adaptable for future types of analysis results. These Tags

are collected, displayed and updated within the plugin automatically. This frame

work provides tools for verifying the correctness of analyses to advanced compiler

researchers and new compiler students alike. Additionally, this framework along with

the sophisticated compiler analyses which can be computed within Soot provide ad

ditional program information to general programmers.

The interactive control flow graph tool provides an integrated mechanism for learn

ing about compiler analyses and debugging analyses as they are being generated. This

tool displays the control flow graphs as they are being analyzed by Soot and updates

the data flow sets of generated analysis information, alIowing the user to step-through

the analysis to find problems and imprecision.

The extensible graph tool provides a way to display large amounts of data gen

erated by the compiler, by limiting the amount of information shown at one time.

Additionally, the example of the interactive calI graph can be used to verify correct

ness of the caU graph and as reference when building analyses on top of the calI graph

in Soot. This interactive calI graph tool allows the user to exp and and collapse the

calI graph and navigate to the corresponding source code.

As part of this work Java to Jimple, a source to IR code generator was developed

and it has been used further for the abc projectI: an extensible, optimizing research

compiler for the AspectJ language.

AdditionalIy, the analysis results visualization framework has been used by stu

dents in an advanced optimizing compiler course, where the students successfully used

the results to help figure out where their analyses were broken. It has also been used

in other projects for visualizing analyses results for side effect analyses and security

flow analyses.

1 http://aspect bench.org

120

9.2. Future Work

9.2 Future Work

There are several areas of future research which could be developed.

As mentioned in the section on related work there are several analyses and visual

ization displays that could be integrated into this framework, such as sorne of the anal

ysis from the Finding Bugs is Easy project [HP04] or the SABER project [RSS+04],

which could benefit from the precision of information generated by Soot, or could

be enhanced in our visualization environment. Additionally, there are several kinds

of graphs, such as directed acyclic graphs or register interference graphs, and other

information which we do not display but could display as interesting extensions to

this work.

Additionally, views could be added to enable the specification to run the Soot

analyses in any order. This would require support for such a feature in Soot, but

would en able researchers and students to explore the possibilities of how different

analyses interact with each other.

The visualization framework discussed here has already been used to aid advanced

compiler students in designing analyses and learning about compiler optimizations.

More resources could be developed to further enhance this learning opportunity for

future students.

The framework is now being used for different kinds of visualizations and as a

future work more compiler analysis projects that can benefit from the visualization

framework could be implemented.

In this work we describe the mechanisms for communication between the under

lying compiler system and the user interface environment, however, there could be

more tightly integrated approaches possible to streamline the whole system.

121

Conclusions and Future Work

~ ..•

122

Appendix A

User Guide

The Soot - Eclipse plugin is freely available under the Lesser General Public

License as part of the Soot framework. It is available for download as part of the

Soot package. The Soot framework can be found at:

• http://www.sable.mcgill.ca/soot

Documentation specific to the Soot - Eclipse plugin can be found at:

• http:j jwww.sable.mcgill.cajsootjeclipse

123

User Guide

124

[AHY88]

[BAR]

Bibliography

K. Andrews, R. R. Henry, and W. K. Yamamoto. Design and imple

mentation of the uw illustrated compiler. In PLDI '88: Proceedings of

the ACM SIGPLAN 1988 conference on Programming Language design

and Implementation, pages 105-114, New York, NY, USA, 1988. ACM

Press.

Barat.

URL: <http://soureeforge .net/projeets/barat>.

[BCE] Beel.

URL: <http://jakarta . apache. org/beel/>.

[BDJW98] D. Binkley, B. Duncan, B. Jubb, and A. Wielgosz. The feedback com

piler. In IEEE Sixth International Workshop on Program Comprehen

sion, June 1998.

[Bod03]

[Boy93]

Eric Bodden. A high-level view of java applications. In OOPSLA '03:

Companion of the 18th annual ACM SIGPLAN conference on Object

oriented programming, systems, languages, and applications, pages 384-

385, New York, NY, USA, 2003. ACM Press.

Mickey Boyd. Graphical visualization of compiler optimizations. Mas

ter's thesis, Florida State University, July 1993.

125

[BW95]

[CJH02]

[ecl03]

[GEF]

[GKN02]

[Har96]

[HP04]

[HS02]

[INN96]

[JIP]

Bibliography

Mickey R. Boyd and David B. Whalley. Graphical visualization of com

piler optimizations. Journal of Programming Languages, 3:69-94, 1995.

Byeong-Mo Chang, Jang-Wu Jo, and Soon Hee Her. Visualization of ex

ception propagation for Java using static analysis. In Proceedings of the

Second IEEE International Workshop on Source Code Analysis and Ma

nipulation (SCA M '02) , pages 173-182. IEEE Computer Society, 2002.

Eclipse platform technical overview. Technical report, Object Technol

ogy International, 2003.

URL: <http://www . eclipse. org/>.

The graphical editing framework.

URL: <http://www . eclipse. org/gef/>.

Edmen Gansner, Eleftherios Koutsofios, and Stephen North. Drawing

Graphs with dot, 2002.

Brian Keith Harvey. Graphical user interface for compiler optimizations

with Simple-SUIF. Master's thesis, University of California, Riverside,

December 1996.

David Hovemeyer and William Pugh. Finding bugs is easy. In OOP

SLA '04: Companion to the 19th annual ACM SIGPLAN conference

on Object-oriented programming systems, languages, and applications,

pages 132-136. ACM Press, 2004.

T.J. Halloran and W.L. Scherlis. Models of thumb: Assuring best

practice source code in large java software systems. Technical report,

Carnegie Mellon University, 2002.

Sun microsystems: Inner classes specification, 1996.

URL: <http://java.sun.com/products/archive/jdk/1.1/inde x.html>.

Jipe a free java ide.

URL: <http://jipe.sourceforge .net/>.

126

Bibliography

[Lee]

[LH03]

[Lho02]

[LY99]

[MH01]

[MH02]

[Mie03]

[NCM03]

~ ..

lcc: A retargetable compiler for ansi c.

URL: <http://www.cs.princeton . edu/software/lcc/ />.

Ondfej Lhotak and Laurie Hendren. Scaling Java points-to analysis using

Spark. In G. Hedin, editor, Compiler Construction, 12th International

Conference, volume 2622 of LNCS, pages 153-169, Warsaw, Poland,

April 2003. Springer.

Ondfej Lhotak. Spark: A flexible points-to analysis framework for Java.

Master's thesis, McGill University, December 2002.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica

tion. The Java Series. Addison Wesley Longman, Inc., second edition,

April 1999.

Jerome Miecznikowski and Laurie Hendren. Decompiling java using

staged encapsulation. In WCRE '01: Proceedings of the Eighth Working

Conference on Reverse Engineering (WCRE'Ol), pages 368-374, Wash

ington, DC, USA, 2001. IEEE Computer Society.

Jerome Miecznikowski and Laurie J. Hendren. Decompiling java byte

code: Problems, traps and pitfalls. In CC '02: Proceedings of the llth In

ternational Conference on Compiler Construction, pages 111-127, Lon

don, UK, 2002. Springer-Verlag.

Jerome Miecznikowski. New algorithms for a java decompiler and their

implementation in soot. Master's thesis, McGill University, February

2003.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly

glot: An extensible compiler framework for Java. In Compiler Con

struction, 12th International Conference, volume 2622 of LNCS, pages

138-152, April 2003.

127

,~.,

Bibliography

[PQVR+01] Patrice Pominville, Feng Qian, Raja Vallée-Rai, Laurie Hendren, and

Clark Verbrugge. A framework for optimizing Java using attributes.

In Compiler Construction, 10th International Conference (CC 2001),

volume 2027 of LNCS, pages 334-554, 2001.

[QHV02]

[RD03]

[RSS+04]

Feng Qian, Laurie Hendren, and Clark Verbrugge. A comprehensive

approach to array bounds check elimination for Java. In Compiler Con

struction, 11th International Conference, volume 2304 of LNCS, pages

325-341, April 2002.

Will Robinson and Ben D'Angelo. Integrating software productivity

tools into eclipse. In eclipse '03: Proceedings of the 2003 OOPSLA work

shop on eclipse technology eXchange, pages 40-44. ACM Press, 2003.

Darrell Reimer, Edith Schonberg, Kavitha Srinivas, Harini Srinivasan,

Bowen Alpern, Robert D. Johnson, Aaron Kershenbaum, and Larry

Koved. Saber: smart analysis based error reduction. In ISSTA '04:

Proceedings of the 2004 ACM SIGSOFT international symposium on

Software testing and analysis, pages 243-251, New York, NY, USA, 2004.

ACM Press.

[SHR+OO] Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja

Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practical

virtual method call resolution for java. In Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA '00),

pages 264-280, 2000.

[TG98]

[Veg01]

Caroline Tice and Susan L. Graham. OPTVIEW: a new approach for

examining optimized code. In Proceedings of the 1998 ACM SIGPLAN

SIGSOFT Workshop on Program Analysis for Software Tools and Engi

neering, pages 19-26. ACM Press, 1998.

Steven R. Vegdahl. Using visualization tools to teach compiler design.

The Journal of Computing in Small Colleges, 16(2):72-83, 2001.

128

Bibliography

[VPO]

[VROO]

Zephyr: Very portable optimizer.

URL: <http://www . cs. virginia. edu/zephyr/vpo/>.

Raja Vallée-Rai. Soot: A java bytecode optimization framework. Mas

ter's thesis, McGill University, July 2000.

[VRGH+OO] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,

Patrice Pominville, and Vijay Sundaresan. Optimizing Java bytecode

using the Soot framework: is it feasible? In Compiler Construction,

9th International Conference (CC 2000), volume 1781 of LNCS, pages

18-34, 2000.

[WD98] Oscar Waddell and R. Kent Dybvig. Visualizing partial evaluation. A CM

Comput. Surv., 30(3es):24, 1998.

[WOL +98] S. Woods, L. O'Brien, T. Lin, K. Gallagher, and A. Quilici. An archi

tecture for interoperable program understanding tools. In IWPC '98:

[ZCW+02]

Proceedings of the 6th International Workshop on Program Comprehen

sion, pages 54-63. IEEE Computer Society, 1998.

Wankang Zhao, Baosheng Cai, David Whalley, Mark W. Bailey, Robert

van Engelen, Xin Yuan, Jason D. Hiser, Jack W. Davidson, Kyle Gal

livan, and Douglas L. Jones. Vista: a system for interactive code im

provement. In LCTES/SCOPES '02: Proceedings of the joint conference

on Languages, compilers and tools for embedded systems, pages 155-164.

ACM Press, 2002.

129

