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Abstract
Food insecurity is a major global concern, especially in remote areas, such as

Indigenous communities in northern Canada. Even though enough food is produced to feed

the entire human population, agricultural malpractice causes important food loss in the

farming industry. Therefore, our vision is to address the issue of food insecurity in areas with

nutrient-deficient waters and soils. To achieve this, our mission is to minimise produce loss

from plant health deterioration through root monitoring in hydroponic systems to halt the

spread of disease and maximise yields. The social, environmental and economic benefits

include producing higher quality and safer food for consumption, generating higher yields,

promoting local engagement and stimulating local economies. However, the drawbacks are

startup costs, the use of non-sustainable materials, and significant water and energy

demands. In our experiment, root health was determined based on colour, with white

indicating healthy roots, and the overall weight, with healthy plants having denser roots and

foliage. Our hydroponic system consisted of four bins following a deep flow technique (DFT)

setup. Bin A was the control system, Bin B had 100% of its true leaves removed, Bin C had a

calcium deficiency, and Bin D had an oxygen deficiency by removing the air stone. The root

monitoring was done manually with a GoPro to image the roots of each plant. Furthermore,

each tray was periodically weighed using two load sensors to measure plant growth (in kg).

Data collected was sorted and compiled for analysis. An image analysis model was

constructed from healthy and unhealthy images. The model created could successfully

identify root health in a binary fashion. Only regenerative stress could be detected, other

stresses did not impact the rootzone significantly enough and as such is not suitable for use

with the image classification model.
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1. Introduction
Food insecurity threatened 50.8% of First Nations households in Canada in 2019,

compared to 12% of non-native Canadian households (Deaton et al., 2020). The Food and

Agriculture Organization (FAO) of the United Nations states that “a person is food insecure

when they lack regular access to enough safe and nutritious food for normal growth and

development and an active and healthy life.” From this definition, the four pillars of food

security can be recognized: availability, accessibility, utilisation, and stability (Shafiee et al.,

2022). Factors affecting the degree of food insecurity include food prices, income, family

size, geography and community size (Deaton et al., 2020).

Indigenous communities in northern Canada reported decreasing populations of

wildlife, which directly impacts food availability because they rely on hunting and harvesting

for traditional food sources (Shafiee et al., 2022). The migration and decrease in abundance

of wildlife is likely due to human activities that Indigenous communities have no control

over, such as deforestation, overfishing and environmental pollution. As climate change

progresses, the availability of traditional foods will further decrease as global temperature,

biodiversity loss, resource loss, and extreme weather events increase. Thus, these

communities are becoming more dependent on market foods coming from urban centres,

however, selection is limited, dairy products and fresh produce are scarce, and access

depends on the presence of an all-season road (Shafiee et al., 2022). Furthermore, fresh,

nutritious, and healthy foods coming from urban areas are often unaffordable for low income

households and might spoil during transportation. This forces them to buy junk food from

local convenience stores. Finally, growing crops is increasingly difficult due to unfavourable

climatic conditions and restrictions imposed by the government on hunting and harvesting

activities.

Therefore, growing food hydroponically in those areas with nutrient-deficient waters

and soils could not only save water, but also increase food production locally, thus increasing

food availability. However, hydroponic systems are not without drawbacks. Bacteria, fungi,

and pests are the culprits of a variety of health issues and diseases in food such as in Lactuca

sativa L. (lettuce) (Raid, 2004). Lettuce that is grown hydroponically is not at risk for

soil-borne pathogens, however, it is not exempt from all diseases either. Depending on the

disease, the symptoms can be noticeable on the upper and lower leaf surface and it can affect

the lettuce at any point in its development. Furthermore, it may restrict plant growth and

development, thus reducing overall yield (Davis et al., 1997). Once the disease has been
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detected, managing and minimising its spread can be challenging because sometimes the

disease can spread through air particles (Raid, 2004). However, other preventative measures

including the use of fungicides and limiting the amount of water through proper irrigation

practices can be taken as well as controlling the humidity levels and temperature. Some

common plant health issues that arise during the production of lettuce in indoor farms are

Downy Mildew, Powdery Mildew, Grey Mould, and more (Davis et al., 1997).

Our vision is to address the issue of food insecurity in areas with nutrient-deficient

waters and soils. To achieve this, our mission is to minimise produce loss from plant

deterioration through root monitoring in hydroponic systems. We proposed a root health

monitoring system for hydroponic systems that could successfully catch plant deterioration

early to limit the spread of pathogens and maximise yields. Our selected crop for this project

was Valley Heart lettuce, but ideally our root monitoring design can be expanded to any crop.

Moreover, though our target population is food insecure Indigenous households, we

encourage the implementation of our design in both remote and urban regions to avoid

unnecessary food loss.

2. Literature Review

2.1 Plant Overview

2.1.1 Plant & Root Physiology

The basic plant physiology is composed of three organs: the stem, the root and the

leaves. The stem grows up above soil and supports leaves while the root grows underground

to anchor and absorb nutrients and water. The leaves undergo photosynthesis and grow out

from the nodes along the stem (Taiz & Zeiger, 2014).

The roots have nodules and hairs that have essential roles in the water and nutrient

uptake of the plant. Indeed, not only does root hair help better anchor the plant in the soil, but

it increases the surface area of the plant root, which enhances water absorption by passing

between soil particles. The xylem is a vascular tissue in the stem and root (not in the root

hair) that transports water and nutrients from the root to the rest of the plant. Therefore, by

having root hair absorb most of the water and nutrients, the chance of pathogens entering the

xylem and spreading the disease throughout the plant is limited. Moreover, root hair increases

interaction between the plant and beneficial microorganisms such as mycorrhizal fungi. They
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form a symbiotic relationship that points to root hair in nutrient rich areas when the plant

experiences nutrient deficiency. Thus, root hair will grow longer to reach those rich nutrient

areas (Grierson & Schiefelbein, 2002; Petruzzello, 2022; Taiz & Zeiger, 2014).

Furthermore, root hair forms nodules around rhizobia to absorb nitrogen fixed by

those bacteria from the atmosphere. This is another symbiotic relationship that enhances root

growth and nutrient absorption (Doyle, 1998; Taiz & Zeiger, 2014).

The root physiology of lettuce plants are shown in figures 1 and 2 below. They have a

main taproot and secondary roots, meaning that the primary root grows like an anchor, deep

in the soil and smaller roots branch out from it. As the taproot grows longer, new roots grow

from the sides, therefore, making it difficult to be pulled out (Li et al., 2018; Neumann et al.,

2014; Taiz & Zeiger, 2014).

Figure 1. Lettuce plants grown on loess loam in a window of a minirhizotron (rhizobox)(Neumann et
al., 2014).
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Figure 2. Lettuce plants grown in substrate, hydroponics, and aeroponics (Li et al., 2018).

2.1.2 Plant Requirements & Nutrient Uptake

Plants require several macro and micro nutrients in order to attain healthy and nutrient

rich produce. The distinction between macro and micro nutrients refer to the amount they are

taken up by the plant. Macronutrients constitute a majority of the plant's structure and are

about ten times more present than micronutrients. Nitrogen (N), phosphorus (P), potassium

(K), calcium (Ca), sulphur (S), and magnesium (Mg) are inorganic minerals the plant must

absorb along with organic elements, such as carbon (C), hydrogen (H), and oxygen (O),

which altogether represent the macronutrient demand (Grusak, 2001). The currently

identified micronutrients are as follows: iron (Fe), zinc (Zn), manganese (Mn), copper (Cu),

boron (B), chlorine (Cl), molybdenum (Mo) and nickel (Ni). Other potential micronutrients,

such as cobalt (Co), sodium (Na), silicon (Si), selenium (Se), iodine (I) and vanadium (V),

have shown to be beneficial and essential in some plant varieties, but have yet to be widely

established. Many other elements are found within plants, but it is theorised that these are

absorbed non-selectively and present little to no benefit for the plant. Absence of critical

nutrients will result in plants “unable to complete either the vegetative or reproductive stages

of its life cycle”, e.g. lack of flowering, fruiting, etc. (Grusak, 2001). Many of the required

nutrients are absorbed as ions and depend on different mechanisms within the plant to be

absorbed.

Nitrogen can be absorbed as ions through ammonium and nitrate, while nitrite is

chemically reduced to ammonium within the plant before synthesis of organic molecules.
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Alternatively, nitrogen is available as atmospheric nitrogen (N2) through bacterial processes

that fixate the nitrogen. This element is a significant constituent in the synthesis of amino

acids and proteins within the plant, and represents a major structural component of

chlorophyll.

Potassium is not metabolised by the plant, but is rather absorbed and remains as a K+

ion. It is abundantly present in the cytoplasm of cells along with other anions. This serves to

create electrochemical gradients within the plant and regulate several processes to ultimately

determine cell extension and growth (Grusak, 2001). Calcium is absorbed as an ion (Ca2+)

and is employed as a signalling chemical. Calcium is responsible for the activation of several

enzymes in plant structure, which in turn regulates many cellular processes such as

metabolism (Grusak, 2001). Magnesium is available to plants as an ion (Mg2+) and also plays

a role in the construction of chlorophyll like nitrogen. Its other purposes involve promoting

several enzymes and is essential for ATP synthesis (Grusak, 2001). Phosphorus is crucial for

metabolism through synthesis of ATP and attaching phosphate groups to sugars which are

essential for cellular respiration and photosynthesis. It is commonly absorbed as

orthophosphate anions, (H2PO4)- and (HPO4)2-, and is a structural component of

macromolecules and amino acids (Grusak, 2001). Organic macronutrients, such as oxygen,

carbon, and hydrogen, are readily available through either the atmosphere, or acquired

through hydrogenous compounds and dissolved gases in solutions. Deficiencies in these

compounds are rare as they are abundant, with the exception of dissolved oxygen in the

solution needed for respiration in the rootzone (Morard & Silvestre, 1996). These

components are used extensively structurally and in metabolism. Iron and sulphur

micronutrients are employed to regulate redox reactions in the system and construct proteins.

Iron is also required in the synthesis of chlorophyll. Sulphur is more crucial in metabolism

and can be used to detoxify hazardous components in the plant (Grusak, 2001). Sulphur can

be absorbed by the plant either through the atmosphere as SO2 or through the root system as

an ion SO4
2-. Iron is absorbed as an ion, Fe2+ and Fe3+, but exists primarily as Fe3+. Different

plant species have different mechanisms for absorbing these two ions.

Deficiencies of essential nutrients often characterise themselves in discoloration or

lesions in the leaves of the plants. Deficiencies in nitrogen, iron, and magnesium are

associated with the yellowing of leaves as these compounds contribute to the production of

chlorophyll. Compounds related to metabolism and nutrient transport (phosphorus, potassium

and sulphur) cause necrosis in the tip of leaves, also known as tip burn. Calcium deficiencies

are also identified by tip burn, however, calcium is not as active or easily transported through
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plant systems as potassium ions are. As a result, tip burn will occur in newly developed

leaves due to calcium deficiencies while potassium deficiencies appear on mature leaves first.

Other micronutrient deficiencies from a lack of zinc, copper, and manganese will reduce

enzyme activity and result in dressed metabolism, causing similar lesions to calcium,

phosphorus, potassium and sulphur deficiencies (Grusak, 2001). Lack of dissolved oxygen in

the root zone will cause a decrease of cellular respiration in the roots. Consequently, root rot

sets in and appears in the form of root browning (Morard & Silvestre, 1996). This will hinder

the uptake of any nutrients in the water because the roots lack the required energy. Excess

nutrients also hinder plant quality because too much of one nutrient will promote the

formation of toxic compounds. The presence of these nutrients in soil is determined by soil

and water properties, while in hydroponic cultures the available nutrients can be controlled

through the addition of salts.

Hoagland’s solution is the most common mixture used in soilless cultures, at least

scientifically, and was first developed in 1933 by Hoagland and Snyder (Meselmani, 2022).

This solution is popular because it contains every essential nutrient needed for plant growth

and is applicable to a wide variety of plants. The solution has been modified several times

since conception, mainly to add iron chelates and other micronutrients (Meselmani, 2022).

Other compositions of nutrient solutions exist such as Hewitt, Cooper and Steiner solutions,

however, these solutions are not as encompassing as Hoagland’s (Meselmani, 2022). A

breakdown of each solution and their components can be found in figure 3 below.
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Figure 3. Nutrient solutions suggested by various scientists (Meselmani, 2022)

As seen in figure 3, Hoagland’s solution contains relatively large amounts of nitrogen

and potassium, which may be excessive for low nutrient demand species. Although individual

plant species have unique nutritional demands and absorption rates, Hoagland’s solution can

be used as long as the electric conductivity, pH, and nutrient availability remains within the

plant's bounds. Often, solution strength is reduced (quartered or halved) for less demanding

plants like lettuce, while large plants, including tomatoes and bell peppers, are better suited

for full strength (Meselmani, 2022). This is done to avoid excessive salt accumulation and

potential toxicity in plants. Nutrient imbalances in the solution can cause precipitation and

affect uptake through different antagonism and synergistic structures within the plant

(Meselmani, 2022). Different ionic compounds are absorbed by the plant at different rates.

Nitrogen, phosphorus, potassium and manganese sources are actively transported and quickly

removed from the solution, while calcium and boron sources are passively absorbed (Bugbee,

2004). Other nutrients such as magnesium, sulphur, iron, zinc, copper and molybdenum have
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intermediate uptake and removal (Bugbee, 2004). Furthermore, the rates at which nutrients

are absorbed are subject to change in response to a plant’s growth stage. For example fruiting

plants often require less calcium and magnesium (Bugbee, 2004). If the solution is refilled

without addressing potential nutrient imbalances, the system will encounter a build up of

passively absorbed nutrients and shifts in pH. The normal operating range for plants is 5.5 to

6.5 pH, although it can go as low as 4 pH with no major consequences depending on the

species (Meselmani, 2022). The pH plays a pivotal role in promoting dissolution and

precipitation. Dissolved gases, mainly carbon dioxide, also have an effect on precipitates and

will form carbonates out of calcium and magnesium ions (Meselmani, 2022). A solution with

a pH above 7 will begin to precipitate iron, zinc, copper, nickel and manganese as hydroxides

(Meselmani, 2022). Correction of the solution can be done using acid-containing nutrients,

such as carbonic, formic, citric and acetylsalicylic acid (Meselmani, 2022). However, this

may cause toxicity from excessive nutrients, and thus a mixture of acids (HNO3, H3PO4, and

H2SO4) can be used for better balance instead (Meselmani, 2022). Naturally, hydroponic

solutions are poor buffers and pH is subject to rapid changes, thus it is imperative to monitor

pH and electrical conductivity to identify issues.

2.1.3 Root Health and Disease

Bacteria, fungi, and pests are the culprits of a variety of health issues and diseases in

Lactuca sativa L. (lettuce), including Valley Heart romaine (Raid, 2004). Lettuce that is

grown hydroponically is not at risk for soil-borne pathogens, however, it is not exempt from

all diseases either. Some common plant health issues that arise during the production of

lettuce in indoor farms are described below.

2.1.3.1 Downy Mildew

Downy mildew is caused by Bremia lactucae, a type of parasitic fungus that develops

under cool (about 20℃, but may vary between 5-24℃) and wet conditions (Raid, 2004). It is

noticeable on the upper and lower leaf surface with the early signs being light green lesions.

As the disease progresses, the lesions become more yellow (chlorosis) and angular, and plant

tissues eventually die (necrosis). Lettuce can be affected by downy mildew at any point in its

development, though seedlings in particular are susceptible to stem tissue discoloration and

fatal infections (Davis et al., 1997).

10



Managing and minimising the spread of downy mildew can be challenging because B.

lactucae spreads through air particles (Raid, 2004). Ideally, lettuce cultivars that are resistant

to this pathogen should be grown, but genetic variants could still defeat more resistant plants.

However, other preventative measures including the use of fungicides and limiting the

amount of water through proper irrigation practices can be taken. Furthermore, sporulation

can be inhibited by lowering humidity levels and exposing sporangia to bright light

conditions (Davis et al., 1997).

2.1.3.2 Powdery Mildew

Powdery Mildew is another fungal disease caused by the parasite Erysiphe

cichoracearum, and it targets the upper and lower surfaces of the leaves, especially older

leaves (Raid, 2004). The most obvious indication of the disease is a white and powdery layer

of spores, however, black spotting on the tissues and a “brown, scorched appearance” of the

leaves are other possible indicators. Powdery mildew that affects seedlings and young plants

may restrict their growth and development, thus reducing overall yield. However, applying

sulphur at the first sight of disease can prevent Powdery Mildew from spreading.

Furthermore, knowing that E. cichoracearum favours a relative humidity between 95% to

98% and a temperature of 18℃, measures to limit humidity can be taken to minimise risks of

Powdery Mildew.

2.1.3.3 Grey Mould

Greenhouse farming is more susceptible to grey mould, another fungal-related health

issue, than traditional farming, especially post-harvest (Raid, 2004). The fungus Botrytis

cinerea causes lettuce tissues to look saturated with water before developing grey or brown

lesions. If the growing conditions are ideal for sporulation, infected areas may appear fuzzy.

The ideal temperature for this pathogen is between 20 and 25℃, but it is possible for the

fungi to develop at temperatures between -2 and 25℃.

Measures to prevent the development of grey mould include using fungicides,

adequately ventilating the growth space to limit humidity, and avoiding excessive watering.

During the post harvest stage, storing the lettuce at cool temperatures of 1.1 to 2.2℃ and

under increased carbon dioxide conditions will create an unfavourable environment for grey

mould.
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2.1.3.4 Pythium Root Rot

Pythiaceae are categorised as aquatic fungi, and therefore, present risks for

hydroponic farming (Blancard et al., 2006). Species that cause root rot include Pythium

aphanidermatum, Pythium uncinulatum, Pythium myriotylum, Pythium irregulare, Pythium

dissotocum, and Pythium polymastum. Pythiaceae develop in cool, wet environments with the

optimal temperature being between 15 to 20°C. However, Pythium can develop under a range

of temperatures from between 2°C and 42°C, depending on the species. The symptoms of

Pythium root rot in hydroponically-grown lettuce are root browning, inhibited growth,

wilting, and permanent yellowing of the leaves.

These fungi thrive in aqueous environments and spread very easily in water, and they

can sometimes spread through air via splashing. To minimise the risk of Pythium

propagation, humidity and temperature must be controlled by adequate ventilation, infected

plants should be identified and removed immediately, and fungicides may be added to the

nutrient solution in low doses.

2.1.3.5 Aphids

Aphids are a common type of pest that easily transmit diseases and viruses to lettuce

through their migration and feeding patterns (Davis et al., 1997). There are two forms of

aphids, apterae and alatae, with the latter having wings and being more problematic because

of their increased mobility. Although there are more than 250 species, the ones of primary

concern are Acyrthosiphon lactucae, Aphis coreopsidis, cowpea aphid (A. craccivora), melon

or cotton aphid (A. gossypii), glass-house potato or foxglove aphid (Aulacorthum solani),

sowthistle aphid (Hypermyzus lactucae), potato aphid (Macrosiphum euphorbiae), shallot

aphid (Myzus ascalonicus), violet aphid (Myzus ornatus), green peach aphid (Myzus

persicae), and lettuce aphid (Nasonovia ribisnigri).

Aphids have “strawlike mouthparts” which allow them to probe the leaf surfaces

and/or penetrate the phloem (Davis et al., 1997). Aphids will become infected with

non-persistent viruses if they probe only the leaf surface, however, probing of the phloem

may result in persistent viral infections. Infected aphids may transmit viruses, such as

cucumber mosaic virus (CMV) and lettuce mosaic virus (LMV), to other lettuce plants during

probing via their saliva.
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2.1.3.6 Thrips

Thrips are a less common vector of lettuce pathogens than aphids and they are

responsible for transmitting tomato spotted wilt virus (TSWV) (Davis et al., 1997). The most

common species include tobacco thrips (F. fusca) and onion thrips (Thrip tabaci). Thrips

spread TWSV by inserting eggs into plant tissue layers, which eventually hatch and feed off

of the plant, causing eventual damage. Immature thrips that feed off of infected plants may

catch the virus and remain infected for the entirety of their lifespan. Infected plants can be

treated with insecticides.

2.1.3.7 Whiteflies

Whiteflies are another vector of pathogens that cause lettuce infectious yellows virus

(LIYV) and lettuce chlorosis virus (LCV) (Davis et al., 1997). Two species of concern are

Bemisia tabaci and B. argentifolii. Whiteflies lay eggs on plants, which hatch after about 4 to

5 days. Initially, nymphs are able to crawl, then they become sessile, and once they finally

reach their full adult form, they can fly for kilometres. Whiteflies are often found feeding or

laying their eggs at the bottom of leaves.

2.2 Deep Flow Technique (DFT) in Hydroponics

2.2.1 Open vs Closed Loop Systems

Soilless culture systems may be open cycle in which nutrient solution is drained and

discarded, or closed cycle, wherein the solution is collected and recycled (see fig. 4).

Evidently, a closed loop system is the more environmentally friendly and water efficient

method. Unfortunately, closed loop systems pose many challenges to the hydroponic grower,

such as high initial investment, rapid spread of pathogens, and the accumulation of

phytotoxic metabolites or organic matter in the recirculating nutrient solution (Maucieri et al.,

2019). Despite closed loop systems being mandatory in some European countries, the

majority of hydroponic farms remain open cycle. The buildup of salts in irrigation water is a

major challenge since it causes an accumulation of ions that the plants cannot fully absorb

(Maucieri et al., 2019). Salt accumulation may be addressed by adding a desalination

procedure to the closed loop (Goddek & Keesman, 2018).
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Figure 4. Scheme of open cycle (left) and closed cycle (right) (Maucieri et al., 2019)

2.2.2 Deep Flow Technique (DFT)

In deep flow technique, plants are floating on raft panels or boards in reservoirs

containing 10-30 cm of nutrient solution as illustrated in figure 5 (Maucieri et al., 2019).

Different installations will have varying depths of nutrient solution, oxygenation and water

recirculation. DFT is known for being low-cost and easy to maintain. Minimal nutrient

solution corrections are needed, especially in fast growing crops like lettuce, wherein the

nutrient solution only needs to be replenished at the end of the cycle and only the oxygen

levels need to be maintained around 4-5 mg/L (Maucieri et al., 2019). Moreover, the benefits

of using DFT is that the plants can easily float on the water surface without a fixed support.

Additionally, DFT is great for water thirsty crops such as lettuce (Soto, 2023). Plus, if a

power outage happens or the water pump is down, the plants will have plenty of water to

survive. Furthermore, even though DFT are deep to hold a lot of water, the system is small

and light enough to be stacked for vertical farming (Soto, 2023).

Figure 5. Example of DFT with floating panels (Maucieri et al., 2019)
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2.2 Image Analysis & Deep Learning
The purpose of morphological image analysis is to identify an object and derive

characteristics based on visual data. In the context of roots, image processing will identify the

root from the background and other interferences, and then determine characteristics such as

root diameter, discoloration, length, etc. The computer sees images as an array of numbers

correlating to each pixel with a distinct value corresponding to their colour. In order to use

this information, machine learning and deep learning techniques must be used to process raw

data and properly identify objects.

Classical approaches employed machine learning in which an algorithm is created,

then the machine learns to identify relationships with this algorithm (Soille, 2004). The basic

operation of this technique involves filtering images and feeding them into an algorithm

where relationships are formed and validated through testing (Soille, 2004). Many different

forms of this approach are used and differ in their targets and structure, but operate similarly

(Huisman et al., 2021). Nevertheless, this approach struggles to learn quickly from new tasks,

and requires a large source of data and heavy computational power to achieve robust results

(Hospedales et al., 2021). However, more comprehensive models have been developed, such

as meta-learning, where the program “learns to learn” (Huisman et al., 2021). This method

employs prior knowledge to facilitate and accelerate the process of model generation

(Hospedales et al., 2021). Meta/deep learning, contrary to machine learning, allows the

machine to modify algorithms to alleviate computational stress and improve data usage

(Hospedales et al., 2021). This technique is also more aligned with human learning, where

results are improved in lifetime and evolutionary timescales (Hospedales et al., 2021). This is

accomplished through the employment of inner and outer tasks: inner tasks operate a single

task and try to create associations, while outer tasks gather data on inner tasks to modify the

inner tasks and operate multiple tasks (Huisman et al., 2021). The inner task can also be

referred to as base learning, similar to classic machine learning, and solves the problem at

hand, such as image classification (Hospedales et al., 2021). Outer tasks collect metadata on

the performance of inner tasks, such as accuracy or speed. The outer tasks then modify inner

tasks to improve the performance of outer tasks (Hospedales et al., 2021). The introduction of

these parameters can facilitate the process of many similar techniques, such as transfer

learning, domain adaptation and domain generalisation, continual learning, multitask

learning, etc (Hospedales et al., 2021). For example, in transfer learning where the algorithm

attempts to transfer knowledge from a data set, it is trained on to a new distinct data set, the

15



outer task can serve to mitigate variation and act as reference to performance (Huisman et al.,

2021). Currently, there are three main categories of meta-learning: metric, model and

optimization of which there exist many systems employing each technique, but only

principles will be discussed (Huisman et al., 2021).

Contrary to meta-learning principles, metric based meta-learning does not change its

algorithm during execution, and is a form of non-parametric learning (Huisman et al., 2021).

It is still classified as meta-learning because this method employs prior knowledge from other

data sets to “learn” new tasks quicker (Huisman et al., 2021). This method operates by

comparing two inputs and determining their similarity to match them to a corresponding

output from known inputs and outputs, and aims to improve the outer task (Hospedales et al.,

2021). Consequently, this program is typically used for classification purposes with small

datasets. Larger datasets may require too much computation to be feasible when creating

similarities (Huisman et al., 2021). Advantages of this system include its ability to rapidly

create models and the conceptual simplicity of its design, making it convenient and adjustable

(Huisman et al., 2021). On the other hand, a drawback is that it has poor adaptability when

targets stray too far from the dataset used to train the model, and thus requires supervision

(Huisman et al., 2021).

Model based meta-learning, also referred to as black box, focuses on the internal

structure of data, which is modified at each step of the process (Huisman et al., 2021). The

program attempts to predict a target by creating an asymptomatic model to fit the data

(Hospedales et al., 2021). As a result, these systems must feature a memory component as

previous data is constantly used to update the algorithm with the inner and outer tasks being

closely coupled (Hospedales et al., 2021; Huisman et al., 2021). Similarly to metric, datasets

of example train and test data are used to train the program. Unlike metric, the user can

determine the internal dynamic of the system rather than simple comparison (Huisman et al.,

2021). Furthermore, the internal structure used to predict future samples is modified and

improved by the algorithm, providing additional flexibility and adaptability (Huisman et al.,

2021). Overall, model-based learning can be applied to a larger range of applications than

metric, but still struggles to predict distant data out of its domain (Hospedales et al., 2021).

Optimization-based models are specifically designed for fast learning and often

perform bi-level optimization operations on the internal structure of the algorithm (Huisman

et al., 2021). As the system optimises the internal functions, the metadata is stored and used

to increase the optimization performance (Hospedales et al., 2021). This is done to reduce the

amount of steps needed to reach satisfactory validation levels (Hospedales et al., 2021). This
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process behaves similarly to classical machine learning (gradient learning), but differs in its

ability to focus on several tasks, which allow it to learn new tasks faster (Huisman et al.,

2021). Similar to the challenges faced in machine learning, this process is computationally

heavy as every task assigned is optimised and modified during operation (Huisman et al.,

2021).

For the purposes of our design, a combination of model and metric based learning is

used where the model attempts to minimise error loss between each training session. This is

done to avoid heavy computations and large datasets while still keeping the model effective.

Since only inputs and outputs are used for analysis, a black box approach seemed appropriate.

An optimization based approach was deemed unnecessary due to limited categories. More

specifically, “resnet” structure is used which applies nonlinearity to intermediate functions in

order to increase layer capacity as well as skip certain layers during training to avoid

vanishing gradient issues (He et al., 2015). Overall, this allows us to have the complexity and

accuracy of deeper neural networks without a massive dataset or heavy computation.

3. Design

3.1 Final Design Drawings

17



26cm

30cm

AIR

PUMP

AIR

STONE

LED

LIGHTS

1" INSULATION

PVC SUPPORT

FRAME

58cm

drawing dessin

project projet

No d'étudient

No. du dessin

Dessiné par

Drawing no.

Drawn By

Student No.

11X17  (431x279) W2021

EchelleScale

Root Monitoring of

Valley Heart Lettuce in

Hydroponics Systems

DateDate

A-1.0

1:200

CHOINIÈRE

Abigail

April 20, 2023

CONTROL

SETUP

AUTHORSHIP:

ABIGAIL CHOINIÈRE

KYLE GEDDES

JENNYFER LIANG

EMILY LAFOND

Department of

Bioresource

Engineering

McGill University

DIMENSIONS IN CM



TOP VIEW

Opening

For GoPro

3cm

6cm

5cm

16cm

1.25cm

58cm

40cm

drawing dessin

project projet

No d'étudient

No. du dessin

Dessiné par

Drawing no.

Drawn By

Student No.

11X17  (431x279) W2021

EchelleScale

Root Monitoring of

Valley Heart Lettuce in

Hydroponics Systems

DateDate

A-1.1

1:200

AUTHORSHIP:

ABIGAIL CHOINIÈRE

KYLE GEDDES

JENNYFER LIANG

EMILY LAFOND

Department of

Bioresource

Engineering

McGill University

CHOINIÈRE

Abigail

April 20, 2023

FRAME AND

STYROFOAM DESIGN

TOP VIEW

DIMENSIONS IN CM



3.2 Calculations

3.2.1 Dilutions

Solution Quantity (ml)

KNO₃ 5

CaNO₃ 5

MgSO₄ 2

KHPO₄ 1

Solution B 1

Solution C 1
Table 1. Proportions of solutions added to 1 L (1000 mL) of water

Total Volume= (1000 +5 +5 +2 +1 +1 +1) mL = 1015 mL

% KNO₃= 5/1015 x 100 = 0.5 %

% CaNO₃= 5/1015 x 100= 0.5%

% MgSO₄= 2/1015 x 100= 0.2%

% KHPO₄= 1/1015 x 100= 0.1%

% Solution B= 1/1015 x 100= 0.1%

% Solution C= 1/1015 x 100= 0.1%

% H₂O= 1000/1015 x100 = 98.5%

3.2.2 Energy Requirements

Energy consumption (per week):

Lights: 300W x 17h x 7d = 35700 Wh

GoPro + GoPro light: 3.885 Wh + 11.36 Wh = 15.245 Wh

Airstones: 3W x 24h x 7d= 504 Wh

Raspberry pi: 4.8W x 24h x 7d= 806.4 Wh

Total energy consumption per week: 27.025645 kWh

Price of energy in Quebec: 6.08 cents per kWh

Total price of energy: 6.08c/kWh x 27.025645 kWh = 164.31 cents = $1.64
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3.2.3 Data / storage space

Image file size: 2Mb

Sd card storage: 64 Gb

Max images on card: (64Gb x 1000 Mb/Gb)/2 = 32000 images per card

3.3 Materials & Costs

Item Cost (CAD) before tax Paid (CAD) before tax Supplier

4 LED Lights 79.88 0 Lefsrud Lab

2 Load Sensors 37.98 37.98 Amazon

Digital Timer for
Lights

25.99 0 Lefsrud Lab

Stainless Steel Wire 12.64 12.64 Home Depot

8 Carabiners 14.56 14.56 Home Depot

PVC ~$0.81/sq.ft 0 Mac Shop

4 Styrofoam Sheets 51.96 0 Mac Shop

2 Airstone Kits
(stones, pumps,
tubing, accessories)

41.98 41.98 Amazon

GoPro ~ 400 0 Abigail

32 Rockwool Cubes 22.42 0 Lefsrud Lab

64 Valley Heart
Lettuce seeds

5.30 0 Lefsrud Lab

5 Bins 49.95 0 Lefsrud Lab

Solution Chemicals Solution A
KNO3: 9.99
CaNO3: 8.99
MgSO4: 5.99
KHPO4: 11.99

Solution B
H3BO3: 15.75
MnCl2: 19.00
ZnSO4: 14.99
CuSO4: 56.67
Na2MO4: 36.99

0 Lefsrud Lab
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Solution C
Na EDTA: 88.23
FeSO4: 32.01

Camera Light
Attachment

38.99 38.99 Amazon

Battery Packs 65.98 65.98 Amazon

SD Card (64GB) 15.38 15.38 Amazon

Temperature Sensors 18.65 18.65 Amazon
Table 2. Materials Purchased and Costs

4. Methodology

4.1 Plant Growth & Care

The initial stage of the project involved planting the seedlings and nurturing them

until they were transplanted to the complete hydroponic system. Thirty-six rockwool cubes

were placed in a single growing tray and 2 seeds were inserted into each rockwool cube, for a

total of 72 seeds. Our design only required 32 rockwool cubes (8 per bin), therefore, we had 4

extra cubes as backups. Then, water was added to the growing tray and the seedlings were

placed in the pilot chamber to germinate for 3 weeks. Every two days, more water was added

to the tray for about two weeks. About halfway through the germination period, nutrient

solution was introduced to the plants.

4.2 Assembly of Hydroponics Setup

The hydroponic system involved the construction, assembly and preparation of many

components: assembling the LED lights, constructing PVC support frames, drilling holes in

the styrofoam sheets, conceptualising and testing the weighing system, calibrating the

Raspberry Pi and sensors, sanitising the bins and ordering additional materials (air stones,

load sensors, etc…).

The LED lights were suspended from the ceiling using thin wires and placed directly

above the four bins. A light timer was set to allow for 17 hours of light and 7 hours of

darkness per day. The light intensity was adjusted to the maximum setting on the dial.
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The PVC frames were constructed in the shop on campus by sawing a large sheet of

PVC into smaller rectangular pieces (See Drawing A1.1). The pieces were then assembled

together into 4 frames using PVC glue and primer. The styrofoam sheets were also measured,

cut, and drilled with holes in the shop. The styrofoam sheets were attached on top of the

frames using tape and thin metal wires.

The weighing system is composed of two load sensors, a metal support frame,

carabiners, and thin steel wires. Four small holes were drilled into each PVC frame and

styrofoam sheets, two on each end. Thin steel wires were passed through the holes and loops

were created at the ends. The load sensors were attached to the metal support frame using

carabiners. Then, the wire loops were attached to the hanging hooks on the load sensors.

The raspberry pi was assembled in the pilot chamber along with all its sensors.

Relative humidity, air temperature, and water temperature sensors were all connected to a

sensor box which was connected to the pi. This would reduce the amount of wires connected

directly to the pi and reduce accidental plug outs. The raspberry pi is then connected to a

power supply and screen monitor along with pins from the sensor box in the proper

configuration. First, the date is set on the raspberry pi to ensure measurements are properly

identified. Then previous data files are cleared from the system and uploaded to the laptop for

further analysis. After this the script can start by typing a command into the raspberry pi. The

script would then record measurements from the sensors every 6 minutes. Data from the

system would be collected every imaging session and the raspberry would be restarted.

Other miscellaneous tasks included ordering hydroponic accessories, such as air

stones and pumps, and sanitising the bins with bleach to eliminate any contaminants present.

4.3 Stressing the Plants

The plants were left in the hydroponic systems for two weeks to adapt to their new

environment to avoid causing unwanted stress on the plants, and therefore faulty data.

Therefore, each bin possessed all the components to ensure the plants would thrive, including

an air stone and nutrients. Following the two weeks of rest, the stresses were applied as

planned. Bin A remained the control system. Bin B had 100% of its true leaves cut. Bin C

was emptied and filled with a calcium deficiency solution. Bin C had its air stone removed to

create an oxygen deficiency. No additional water was added to any of the bins during the

following weeks of testing. Moreover, the leaves grew back rapidly in Bin B and the roots
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were still white (i.e., healthy), so 100% of its true leaves were cut a second time, one week

before the experiment ended.

4.3 Imaging

The imaging procedure involved submerging a GoPro with a light attachment

underwater to image the roots. Prior to imaging, slits were made in each styrofoam tray to act

as an opening for the GoPro to pass. Furthermore, pink duct tape was adhered to the bottom

side of the styrofoam to contrast with the white roots. The camera settings were adjusted to

capture photo bursts at a speed of 1 second. Once the GoPro was submerged, each plant was

imaged for about 30 seconds before rotating the camera clockwise to capture the next plant.

This technique was repeated for the other three bins in the following order: Bin A, Bin B, Bin

C, Bin D. Imaging was performed twice a week, Monday and Thursday, for about four

weeks. After each session, the images were downloaded to a computer, uploaded to a shared

drive, and organised by date into their respective folders. It was important to sort the images

the same day they were taken to organise them prior to deep-learning analysis.

4.4 Image Analysis

Before image analysis, more organised datasets were needed in which the folder

would contain the output label needed for the plants. Training and validation sets were

created from the stored images and sorted as either healthy or unhealthy. After this, a portion

of the data, around 20%, was used for validation while the rest would be used for the training

dataset. These folders were then uploaded to kaggle, a programming platform, as two distinct

datasets so that they can be easily managed.

For image analysis, several fast AI libraries were imported into the kaggle platform

using python. Many of these libraries provided data management and optimization tools as

well as the resnet structure that will be used to create the model. The imported libraries are

pictured below.

22



Figure 6. Imported Python Libraries

A data block was used to load and parametrize training data into the image analysis

model. The data block was set to accept images as inputs and sort these into categories as

outputs. The model uses the parent folder names as categories so it is crucial to appropriately

name these folders as healthy and unhealthy. Additionally, input images are squished and

resized into smaller images, 192 x 192 pixels, in order to reduce computational times and

allow for additional fine turning. The data block itself will also set aside some data to be used

as validation so that error can be computed in between training sessions. An image of the data

block code is included below where these functions can be seen implemented.

Figure 7. Data Block Code

The next step in the process was to load the data block into the visual learner, select

our desired image analysis structure, determine metric used to train, and optimise the model

using fine tuning. The code for this process is included below and will be explained in more

detail.
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Figure 8. Model Learner Code

Despite being relatively simple code, this is all that is needed to create the model with

imported libraries and the properly configured datablock. Here, resnet18 is being used in

which resnet is the convolutional neural network used and the number refers to how many

layers are being used. The error rate between modelled outputs and data block created

validation sets were used as the metric that the model would reduce. Fine tuning is the

process of the model being trained again using layers previously created and adjusting

weights and biases for each layer to create a more robust model. Three fine tuning sessions

are used as error rate no longer decreases after two sessions but an additional session was still

added to reduce training and validation loss. Results from training the model are included

below with runtimes, loss values and error rates.

Figure 9. Model Accuracy and Train Times

In total, the model took just under five minutes to train and achieved a minimum error

rate of 14% which could be attributed to improper sorting of images. This was especially

apparent in the unhealthy dataset where many images were ambiguous due to lighting and

limited as less unhealthy roots were imaged than expected. Nevertheless, an adequate model

was able to be trained.

Figure 10. Prediction Input Code

Lastly, the model was asked to predict root health using the validation set by inputting

an image into the learn.predict function as seen above. The model would then analyse the

image and output a category along with a probability score measuring the confidence of the

model. The image being analysed was also displayed using the image.open command so that

results could be validated by human observation.
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5. Results & Discussion

5.1 Results

5.1.1 Image Analysis Results

Figure 11. Model Prediction Results

Sample results of the model’s predictions can be seen above, the top row features

unhealthy roots and the bottom row features healthy roots. The model was able to

successfully identify roots with reasonable confidence scores for each category. Furthermore,

early signs of root rot could be detected such as in the top right image, where only a small

portion of the root is actually brown. Some healthy images received lower confidence scores

than others despite appearing just as healthy. This is particularly apparent in the third healthy

image from the right. This is most likely due to the nature of unhealthy roots to shrink and

bunch up, which the model associated with unhealthiness. This bias could be potentially

removed with more additions of healthy root images with high root density. Nevertheless, the

model was able to detect unhealthy roots in our experiment but will likely need additional

images and calibration to be applicable in the industry.

On the other hand, only roots in Bin B were unhealthy enough to be detected by the

system. Calcium deficiencies were able to be identified upon inspection of the canopy zone

as tip burn was observed, but roots of these plants appeared healthy to the model. The

dissolved oxygen deficiency also showed no signs of root rot, this is most likely due to

oxygen mixing into the water with every imaging session. This could also introduce bin bias,

where the model detects the bin as being unhealthy instead of the roots. However, this was

tested against by using earlier images of bin B when the roots appeared healthy. The model
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was successfully able to distinguish the two and did not detect unhealthiness in the early

images. We also suspect there is some sort of lighting bias where poorly lit images will be

considered more unhealthy since they appear less white. Poorly lit images are also harder to

sort and validate due to lack of observable details. In the images, some roots appear to be

blurry since they are too close to the camera but ultimately have no significant effect on the

performance of the model contrary to what was expected. Overall, this suggests that this

system could prove useful for measuring regenerative stress as seen in bin B, but requires

more images and testing to fully eliminate potential biases.

5.1.2 Load Sensor Data

Figure 12. The total weight (in kg) of each lettuce tray as a function of time

The weight of the plants was taken every imaging session simply as a means to verify

that growth was occurring. As expected, the Control, Bin A, had the highest average weight,

whereas bin D, lacking oxygen, grew the poorest. Bin B, from which the true leaves were

removed was still weighed to validate growth once on March 1st and on March 20th, 2023.

Due to the removal of the leaves, the weight of lettuce plants in bin B cannot be compared to

the other plants weight, since leaves were cut twice.
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5.1.3 Raspberry Pi Data

A drop of approximately 6 degrees celsius occurs in the water temperature and air

temperature graphs (Figure 13 and Figure 14 respectively). Although we do not know the

exact cause of this drop, possibilities are explored in section 5.3.4 (Nearby Construction, the

AC Unit Changing). Changing of a ventilation system, as well as the frequent opening and

closing of the growth chamber door by other teams and construction workers are possibilities.

Figure 13. Water Temperature near roots of Lettuce Plants vs. Time
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Figure 14. Air Temperature of Growing Room vs. Time

The relative humidity rested at around 30% at the start of the experiment which is too

low. A bucket of water was filled and placed in our growth chamber to bring the relative

humidity up to 60%, a satisfactory level (See figure 15).

Figure 15. Relative Humidity of Growth Room vs. Time
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5.1.4 Harvest Data

At the end of all imaging, all lettuce plants were removed, leaf and root length were

measured, as well as fresh weight. Root length is approximate since we recognize roots are

easily damaged during the imaging process, but provide an indicator of plant growth

nonetheless (See Figure 16). Bin B fresh weight was not recorded seeing as entire leaves had

been cut 6 days prior (See Figure 17).

Figure 16. Average Root Length at Harvest

Figure 17. Plant Fresh Weight

5.2 Challenges & Constraints

5.2.1 Asbestos
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The closure of the buildings on campus posed a challenge for material acquisition just

as our experiment was ready to begin. During the seedling growth period, only a small

amount of Hoagland’s solution was needed since no more than 2 litres of water was used at a

time. The actual experiment required 40 litres of water per bin, thus all the solution quantities

in 3.2.1 Dilutions had to be multiplied by a factor of 160 to account for the four bins. When

the Raymond building closed due to asbestos, we could not access the solutions or the

Raspberry Pi equipment that we needed from the Lefsrud lab. Therefore, the start of our

experiment was delayed and dependent on the individuals who could access the building.

This delay caused us to fall behind by 2 weeks according to our GANTT chart.

5.2.2 Raspberry Pi

Under normal circumstances, the Raspberry Pi is connected to a wireless internet

router and timely data may be monitored remotely. Due to the asbestos situation, the growing

space we were allocated was far from the central wireless internet on campus.

The power supply in the pilot chamber suffered from voltage change which would at

times turn off the Raspberry Pi, meaning there are time spans of hours without data

collection. Had the data been connected wirelessly, team members would be aware of the

issue and capable of rapidly reprogramming the python code of the device, but due to there

being no remote access, data lags were only discovered hours later.

5.2.3 Camera Focus

Initially, the quality of the GoPro images was satisfactory when the lettuce roots were

still short as seen in figure 19. There were no issues with underwater distortions or camera

focus. However, as the roots grew longer over the course of the experiment, they eventually

reached the camera lens, which resulted in blurry photos. Imaging in storage bins was

especially challenging because of the limited depth of the bins. Once the roots reached the

camera lens, there was no space left to distance the GoPro from them. Other possible factors

that contributed to poorer image quality to a lesser extent were the imaging speed, the

movement of the camera, the presence of light and the presence of airstone bubbles. To avoid

blurry images, the imaging speed was increased from 0.5 seconds to 1 second. The outcome

of this change was not significant, however, because the main issue was root length.

Moreover, the water resistance in the bins would sometimes cause the camera to move, which

resulted in blurry images. Other controllable factors were the presence of the LED lights and
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airstone bubbles. If the LED lights were not turned off prior to imaging, a glare would appear

in the images. Likewise, if the air stones were not unplugged, bubbles would appear in the

images.

Figure 19. Decreasing camera focus as the roots grow longer

5.2.4 GoPro Live Stream Function

The GoPro live stream function was not available once the camera was submerged

underwater. Though the live stream function was more of a luxury than a necessity, it could

have helped capture better images by allowing the user to simultaneously see exactly what

the camera saw. Instead, imaging was performed blindly, which required practice and

coordination by each team member to ensure consistency in the results.

5.2.5 Weighing System

The weighing system was supposed to be used during each imaging session, however,

the system that was developed, shown in figure 20, was difficult to use because of the limited

space in the pilot chamber. The black metal frame was not practical to place over the four

hydroponic bins, and the water-filled bins were too heavy to move to the frame. Thus, in the

end, only the metal rod with the two load sensors was used to suspend the growing trays. This

adapted method was sufficient to generate an overview of plant growth over time, however,

the load sensor measurements were not accurate or precise enough.
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Figure 20. Hydroponic tray weighing system
5.2.6 Frame Fitting

The dimensions of the original PVC frames that were constructed were too large for

the bins, thus preventing the trays from resting on the water surface. It was important that the

frames fit properly to ensure the plant roots could reach the water level, especially as the

water levels dropped from plant absorption throughout the experiment. Therefore, the frames

were trimmed to fit the bins and to ensure they could move upwards and downwards with the

variations in water level.

5.2.7 Plant Resilience

The plants were more resilient to the stresses than originally expected. By the end of

the experiment, the majority of the roots were still healthy (i.e., thin and white), which did

not provide enough distinctions for classification during image analysis. In the case of bin B,

stressed by cutting the true leaves, the plants continued to regenerate their leaves significantly

after the initial cutting, leading to an unplanned second cutting. Thus, either the time required

to stress the plants was underestimated or the stress factors were not intense enough.

5.2.8 Underwater Distortions

Most photography devices are designed to be used in dry environments, so

underwater photography poses a challenge of encasing the imaging device. There are a
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number of different shells an imaging device may be enclosed in, and reviewing the

applications of diving photography has led us to consider either a flat or dome encasing for

our camera.

As is discussed in section 5.2.3 Camera Focus, imaging the roots within their solution

made focus and lighting extremely challenging. Despite the GoPro camera being waterproof,

lighting accessories were a separate purchase, and it became difficult to fit the camera and

light source in our bins; especially as the root systems grew larger and crowded the inside of

the bins. All images were taken underwater and therefore the AI had the same bias for every

image during its training period. The underwater distortions of the images will not affect the

colour values, and therefore is not a concern for measuring the discoloration of lettuce roots.

5.3 Sources of Error

5.3.1 Uneven Light Exposure

Lighting is critical for overall plant health and growth. A light metre was used to map

the lighting intensity over the area of our growing space (Figure 21, 22, 23). The lighting

intensity was not evenly distributed for all treatments, a major flaw within our experiment.

Due to the asbestos in the main building and time constraints of our project, we were not able

to access more LED lights or a different space to grow in with even lighting conditions. The

light mapping provides a further explanation for many of our results. First off, despite having

the highest average light intensity (See Table 3), Bin B had the most discoloured, unhealthy

root appearance which then must be attributed to the stress applied: removal of true leaves.

Furthermore, the control bin grew best, despite having the lowest average light intensity,

confirming the stresses had an effect on the other lettuce. Lighting is not the main focus of

our experiment, but there remains potential to test the stresses under uniform lighting

conditions to undoubtedly know the effect our stresses had on the lettuce plants.

Treatment Mean (µmol/s2) Variance Standard
Deviation

Bin A : Control 145 1.35e+03 36.7

Bin B: Cut 100% of true leaves 186 624 25.0

Bin C: Eliminate calcium from solution 154 1.05e+03 32.3

Bin D: Remove airstone 177 1.06e+03 32.6
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Table 3. Statistical analysis of Lighting Intensity by Bin Area

Figure 21. Light Map of LED Intensity Over Growing Space

Figure 22. Light Map of LED Intensity Over Growing Space, Data Points (8 per Bin)
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Figure 23. Topographic Light Map of LED Intensity Over Growing Space

Figure 24. Number of Counts v.s LED wavelength (nm)

A spectroradiometer was used over the growing space to determine the exact

wavelength of light the lettuce will receive. The lettuce will receive a combination of indigo

and red LED light, as shown in figure 24.

35



5.3.2 Air Stones Unplugging

During the acclimatisation period, the new air stone tubing loosened and disconnected

from the pump. Indeed, the tubes were reattached as soon as the team members noticed the

disconnection, but it should be noted that Bin D and Bin B experienced no aeration for

approximately two periods of 12 hours during the acclimatisation phase.

5.3.3 Weighing System

Since the plants were only weighed once per imaging session, it is possible roots were

removed during the imaging process, changing the true weight of the plants. Bin D (No

airstone stress) accidentally had two lettuce plants growing in a single cube of rockwool,

which would cause it to make one treatment weigh more than another. The double plant was

only discovered halfway through the experiment, and it was decided that it should be kept

rather than removed because the latter would cause a sudden weight change.

5.3.4 Nearby Construction, the AC Unit Changing

Due to the asbestos closure, the pilot chamber underwent renovations to allow for

more masters and doctoral experiments to continue on campus. The growing room we used

had a door removed and replaced, a new ventilation system installed and the original air

conditioning unit was removed, causing the growing environment to change considerably

during the growing period. When relative humidity was found to be too low, the team placed

a bucket of water in the grow space to mitigate air dryness.

5.3.5 Change in Background Colour

Initially, white styrofoam was used as the background for root imaging. However,

after meeting with Dr. Shangpeng Sun (Professor in the Department of Bioresource

Engineering at the Macdonald Campus of McGill University), it was decided to cover

styrofoam sheets with pink duct tape to ensure a better contrast between roots and

background. Therefore, the photos from the initial imaging sessions have white backgrounds

(and low contrast), and the rest of the photos have pink backgrounds (and high contrast) as
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can be seen in Figure 19. To minimise sources of error due to background contrast, only

images with a pink background were used to train the image recognition AI.

5.3.6 Image Sorting

The same number of images were taken from each treatment bin in equal proportions

to train and validate our model. Images of varying quality, focus, and clarity were used in an

attempt to make a more robust model. However, we recognize that there may have been

human bias when selecting which images were used from each bin.

6. Recommendations

This technology shows great promise in remotely sensing root health in an effective

and inexpensive manner with accuracy. However, the data collected was very limited and

would benefit from a larger dataset in different growing systems. This method is also unable

to detect certain stresses as root rot can manifest after deficiencies or stress can be identified

in the canopy zone. However, for regenerative stress, where the leaves are unable to be

observed and the only indication of health lies in the roots, this can prove an invaluable asset.

Our model also only sorts images into a binary state: healthy or unhealthy. For better

categorization and identification, multiple stages of root health could be presented on scale,

for example, numbers 1-6 indicating the state of root, 1 for being most healthy and 6 for

being dead. In order to measure these different stages, more trial data is needed as the roots

showed signs of degradation but dead roots were not able to be imaged before the experiment

ended. For more applicability, more stresses that could potentially relate to root health should

be identified. In brief, only regenerative stress was able to be detected in the experiment and

our data was lacking severely damaged roots which results in the binary and limited nature of

the model.

Regenerative stress was successfully predicted by the model and can have further

implications when used in practice. Plants will typically regenerate a few times before death

and by using image analysis these regenerative cycles can be monitored. With more data

pertaining to regenerative stress cycles, empirical relations can be formed examining the

roots. Image classification could potentially be used to determine when a plant will no longer

be able to regenerate. This could allow for earlier identification of plants that will no longer

regenerate and avoid waste of nutrients and time spent into these plants. Image analysis could
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also potentially reflect the quality of regenerative plants through root health, since poor

quality plants will typically not be sold since they are less desirable, this can further avoid

wasting resources. Root health is the only indicator of health for these plants since the leaves

are cut off, and excessive lights in the root zone or examining the plant out of water will

damage the plant itself. This proves to have invaluable potential for growers seeking to

maximise usage of a single plant.

Other than regenerative stress, we have found the system is unable to detect other

stresses tested in this experiment and as such is not suitable for these uses. Dissolved oxygen

stress in our experiment seemed to fail as each imaging session would allow for oxygen and

water to mix. For further testing of this deficiency, we recommend that a different setup is

adopted, where the camera remains in the water to avoid mixing. On the other hand, other

stresses could be identified to allow for more applicability of image analysis on the root zone.

Hydroponic diseases could be tested for instead as these are typically waterborne and will

initially interact with roots. We recommend that fungal disease such as downy mildew,

powdery mildew, and grey mould should be examined to determine if premature signs can be

detected. This can be conducted in a similar experimental style with different environmental

conditions to favour fungal growth. Additionally other nutrient deficiencies can be tested but

judging from our results, are unlikely to be detected in the root zone before the canopy zone.

Nitrogen has some promise as nodules can form depending on the form of nitrogen which

could be an indicator of health.

A significant limitation of our design was our limited data, only one of bins showed

signs of root degradation and we were unable to image the plants until death. This prevented

us from employing a scale instead of binary sorting and limited the amount of unhealthy root

images. We recommend that plants are imaged until root death to obtain a full spectrum of

root health stages. This is important because even though the roots may be unhealthy the

quality of the product will be relatively fine with small damage. However, more damaged

roots will begin to affect the quality of the plant and can be discarded. Our model is currently

unable to distinguish between these two cases and as such will have limited use for this

purpose. This may result in premature removal of viable plants. However, with a scale

implemented growers can use their own discretion for the degree root degradation deemed

unacceptable for growth.

Overall, image classification is a powerful tool that has been demonstrated to function

well for binary identification. Further research with more extensive datasets would be able to

improve the model and allow it to be used for more practical applications. Ultimately, this
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system allows for monitoring of root health as a noninvasive or destructive method while

being cost and time efficient.

7. Considerations

7.1 Social

7.1.1 Safe for Consumption

Overall, hydroponically-grown lettuce will be safer for consumption because no

fertilisers, pesticides or fungicides will be used under controlled environment conditions.

This will minimise both consumer and farmer exposure to these carcinogens and irritants.

Furthermore, root monitoring will allow early detection of disease and pest outbreaks to

prevent the spread and amplification of pathogens. This includes preventing plant-to-human

pathogen transmission.

7.1.2 Higher Quality and Yield

Lettuce grown in nutrient-rich solutions have higher nutrient content because they can

absorb the nutrients they need without any losses to the environment, for example, losses

through runoff. Thus, the lettuce will be of higher quality (i.e., little to no deficiencies) and

plant growth will occur at a faster rate since nutrient utilisation by the plants is more efficient.

Moreover, monitoring root health will prevent diseases, and therefore food loss. Less food

loss and faster plant growth means more produce available to alleviate food insecurity in

remote communities.

7.1.3 Promotes Local Engagement

Root monitoring increases local food security by providing nutritious options to

community members and minimising waste. This allows consumers to engage in healthy

decision-making and learn about sustainability topics, such as food waste and urban

agriculture. It also allows community members to obtain hands-on experience through job

and volunteer opportunities.
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7.2 Environmental

7.2.1 Pathogens & Vectors of Disease

An advantage of growing lettuce hydroponically is the lack of soil-borne pathogens.

However, the presence of water-borne pathogens is still possible in the environment of our

system, which could lead to the development of grey mould, downy mildew, root rot or other

diseases caused by water-craving pathogens. The emergence of unhealthy roots was desired

for our project to test the feasibility of the root monitoring and image classification

procedure. However, it presents an environmental risk for large-scale hydroponic operations

by threatening yields and profits. Thus, our design could help minimise these losses.

Furthermore, any crop, including lettuce, has the potential of attracting vectors of

diseases, such as aphids and thrips. Therefore, another environmental risk is pest invasion

which may compromise the quality of the lettuce, resulting in financial losses and food waste.

Additionally, there will be costs involved in dealing with a pest invasion, if it were to occur.

7.2.2 High Energy Consumption

The air stones and dehumidifier required power for 24 hours a day, and the LED lights

ran for 17 hours a day, resulting in relatively high electricity consumption. In regions capable

of producing fully renewable energy, such as hydroelectricity or wind power, the

environmental impacts of this consumption will be minimal. However, other regions that

depend on non-renewable energy sources, such as coal or natural gas, will have higher carbon

footprints by allowing the system to run continuously. Thus, the environmental sustainability

of this system will vary based on geographic location, and environmental assessments should

be conducted to determine whether the system provides more benefits than burdens, or

vice-versa.

7.2.3 Non-sustainable Materials

Eight rockwool cubes were required per tray, for a total usage of 32 cubes. An

additional four rockwool cubes were used to act as backups if needed. Rockwool is a popular

choice of growth medium in the hydroponic industry because of its average porosity, high

water retention capacity, and its ability to maintain its structure (Xiong et al., 2017).

However, rockwool is inorganic and does not degrade over time, eventually making its way
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into landfills. Therefore, rockwool is an unsustainable material, especially when experiments

are conducted for an extended period of time or when large quantities are used in large-scale

operations.

7.2.4 High Water Consumption

The selected design holds 40 litres of water per tray, adding up to a total of 160 litres

for the four trays. This represents only the initial amount of water needed for the system and

does not account for the tri-weekly water replacement. At the end of the three week

experimental period, the water in the trays was dumped and refilled before starting a new

trial. Thus, this small-scale system required a decent amount of water and the demand would

be further amplified for commercial use.

7.2.5 Fertilisers, Pesticides & Fungicides

Unlike traditional farming, hydroponically-grown crops do not require fertiliser

applications, therefore restricting extensive usage. Moreover, no pesticides or fungicides were

needed for this experiment. However, the water contained nutrients, including phosphorus

and nitrogen, which can enter bodies of water after disposal. Depending on how carefully the

water is disposed of, the nutrients in the system could trigger or contribute to eutrophication

and algal blooms.

7.2.6 Less Food Waste

A successful root monitoring system can limit the amount of crop losses and food

waste by identifying diseases as they emerge and preventing their propagation. By

minimising food loss, some of the pressure on the environment to meet the agricultural needs

of the growing population can be alleviated. During this experiment, no crops were lost to

disease and the lettuce was consumed by the team members post-experiment. Only a

percentage of the lettuce was disposed of. However, effective waste management strategies

should be developed at a commercial level.

7.3 Economic

7.3.1 Potential for Profits
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Through root monitoring, diseases and unhealthy plants can be identified, isolated

and/or treated. This will limit the amount of lettuce that is lost from disease outbreaks or

insufficient plant requirements. By reducing the amount of produce loss, more lettuce can be

sold, hence, more profits can be made. Furthermore, a benefit of growing lettuce

hydroponically, compared to traditional methods, is increased yield. The controlled

environment allows for year-round production and shorter cycles between harvests (Barbosa

et al., 2015). Thus, the combination of reduced produce loss and higher yields increases

lettuce supply and availability, as well as the potential to generate revenue.

7.3.2 Startup Costs

Startup costs of hydroponic systems are expensive as there are many equipment

requirements (varies based on setup), such as artificial lighting, pumps, air stones, water

chamber, temperature controls, growing trays, growth mediums, nutrients, and other specific

equipment. Our design requires additional equipment including load sensors, a GoPro, battery

packs, camera light attachment, and other miscellaneous materials. For a small-scoped

project, the costs were relatively affordable (about $300), however, the extra features in our

design will add up for commercial hydroponics. It should also be noted that many of the

materials were borrowed, so $300 is an underestimate of the actual costs. Thus, the additional

root monitoring features must provide a reasonable return on investment to compensate for

startup costs.

7.3.3 Energy Costs

The system requires electricity for many of its components, including lighting,

heating and cooling, air pumps, load sensors, and air stones. Thus, the energy demand of

these components can be costly and will vary based on region. In areas where relatively

cheap and renewable energy sources, such as solar, wind or hydroelectricity, are available, the

energy costs would be minimal, making our hydroponic design a suitable choice. However,

this design may not be suited for areas that operate on more expensive energy sources, such

as nuclear or gas. In Quebec, our system costs $1.64 per week in electricity to operate, which

is negligible thanks to hydropower.
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7.3.4 Local Economy

The fact that hydroponic systems are grown in soilless mediums and indoors allows it

to be done anywhere during any season. Thus, commercial hydroponic operations can be

implemented in urban, rural or remote communities to stimulate local economic activity.

Furthermore, it provides local communities with job opportunities and fresh produce

year-round, which would be especially beneficial for isolated Indigenous communities that

are considered food insecure. Our system could hypothetically create jobs because it requires

people for maintenance, plant care, harvesting, imaging, and image analysis using AI.

Conclusion

Often deficiencies in plants are identified through the leaves of the plant, however,

sooner identification is needed as these plants will no longer be usable or profitable.

Furthermore, identification of deficiencies requires sufficient technical knowledge on plant

physiology and will result in difficulty for growers. Root monitoring through a digital camera

can lower the amount of technical knowledge required and provide early stress detection.

Calcium deficiency was selected due to its slow transport through the plant which typically

manifests in young leaves. Dissolved oxygen deficiency was selected since it directly

interacts with root cellular respiration. Finally, regenerative stress was also chosen due to the

roots being the main observable part and indicator of plant health. Several sets of plants were

subject to these stresses for five weeks while being imaged twice a week.

Images of the stressed plants were then sorted and fed into a deep learning algorithm

where a model learned to sort healthy and unhealthy root pictures. However, only

regenerative stress was able to be detected in our experiment but functioned effectively.

Calcium deficiency identification was considered undetectable or ineffective in the root zone

as tip burn will occur before root rot is observed. The dissolved oxygen deficiency system

likely received enough oxygen to remain healthy through mixing when the camera was

inserted. Overall, the model was able to identify root rot where root rot was observed and can

effectively identify the health of roots. This is also limited by our design due to the limited

nature of unhealthy root pictures since only one bin was observed to have degraded roots.

This also caused the binary nature of sorting rather than the use of scale. Further implications

are possible but require more extensive testing examining regenerative stress under a longer

duration.
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In conclusion, image analysis of plants in the root zone is a powerful tool that can

lower required technical knowledge and assist in hydroponic cultivation. This system was

demonstrated to function as intended in our experiment but overall lacked extensive data on

failing roots. If this system was implemented in numerous growing setups in collaborative

effort, a more robust system can be developed. With extensive and accurate data, several

biases would be eliminated or mitigated and create a stronger algorithm overall. Our system

could also be built upon to include more categories such as scale or potential identification of

individual stresses through root rot. As of now, this system shows the most promise to

observe and detect regenerative stress as roots are the main observable indicator of health in

these plants. This can also be improved through longer observation of regenerative stress to

create empirical categories.
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Appendix
Harvest Data

Bin A: Control

Table 4. Images of Each individual for Bin A

PLANT # # of
Leaves

Plant height
(inches)

Root length
(inches)

weight
(grams)

1 13 10.25 17.5 74.3

2 15 10.25 17 118.1

3 17 10.25 13.5 107.3

4 17 11 14 127

5 18 10 19 118

6 15 10 18.25 101

7 15 9.75 14 106

8 15 9.75 18 114
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AVG 15.6 10.2 16.4 108.2

Table 5. Harvest Data Bin A

Bin B: Cut 100% of true leaves

Table 6. Images of Each individual for Bin B

PLANT # # of Leaves Plant height
(inches)

Root length (inches) weight (grams)

1 - 0 18.5 -

2 - 0 15.5 -

3 - 0 12.5 -

4 - 0 13.5 -

5 - 0 5.5 -

6 - 0 13.5 -

7 - 0 11 -

8 - 0 17 -
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13.4

Table 7. Harvest Data Bin B

Bin C: Eliminate calcium from solution

Table 8. Images of Each individual for Bin C

PLANT # # of Leaves Plant height (inches) Root length (inches) weight (grams)

1 - N/A -

2 11 8 11 45.9

3 13 10.5 18.5 78.4

4 16 10.25 13.5 72.6

5 15 10.25 15 82.3

6 13 9.75 13 81.4

7 16 10.5 15 94.2

8 18 10 15 129.3

14.6 9.9 14.4 83.4

Table 9. Harvest Data Bin C
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Bin D: No Airstone

Table 10. Images of Each individual for Bin D

PLANT # # of Leaves Plant height
(inches)

Root length (inches) weight (grams)

1 16 11 10 85

2 14 9.75 15 64.5

3 17 9.5 12 84

4 17 9.25 18 102.5

5 17 9.5 13 86.9

6 18 9.25 10.5 120.8

7 14 10.25 9 81.6

8 13 9 9 48.2

15.8 9.7 12.1 84.2
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Table 11. Harvest Data Bin D
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