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A B S T R A C T

Heavy ion collision experiments at the Large Hadron Collider (LHC) in Europe and at

the Relativistic Heavy Ion Collider (RHIC) in the USA create deconfined Quark Gluon

Plasma (QGP). QGP is a high density, high temperature, extreme state of strongly in-

teracting matter. Properties of QGP are deduced by matching phenomenological cal-

culations to experimental data. For an accurate extraction of QGP properties, all the

relevant physical processes should be accounted for in a phenomenological model. We

have investigated the effects of soft thermal fluctuations and hard parton interactions on

experimental observables. We develop a new method to study soft thermal fluctuations

using low pass noise filters. We also developed a framework to simultaneously evolve

the jets and the QGP medium and introduced minijets in QGP simulations. The energy

and momentum lost by minijets is introduced via hydrodynamic source terms in QGP.

We also evaluated the size of viscous corrections on heavy quark transport coefficients.

We observed that these physical processes affect the experimental observables, requiring

a likely recalibration of QGP transport coefficients.
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R É S U M É

Les collisions d’ions lourds effectuées au Grand Collisionneur de Hadrons (LHC) en

Europe et au Collisionneur d’Ions Lourds Relativistes (RHIC) aux USA ont pu créer un

plasma de quarks et de gluons (QGP). Le QGP est une phase exotique de la matière en

interaction forte, où la densité et la température adoptent des valeurs extrêmes. Les pro-

priétés du plasma sont déduites à la suite de comparaisons entre théorie et mesures ex-

périmentales. Les modèles phénoménologiques utilisés pour cette comparaison doivent

donc être les plus complets possible. Nous avons étudié les effets de fluctuations thermo-

dynamiques et des interactions de partons énergétiques sur les variables expérimentales.

Nous avons développé une nouvelle approche pour étudier les fluctuations en appli-

quant des filtres passe-bas. Nous avons également mis au point une approche qui traite

simultanément les jets énergétiques, les jets de plus basses énergies (« minijets ») et le

milieu hydrodynamique. L’énergie et l’impulsion perdues par ces minijets apparaissent

dans des termes qui agissent comme une source pour le milieu hydrodynamique, Nous

quantifions l’effet des corrections visqueuses sur les propriétés de transport des quarks

lourds. L’inclusion de tous ces effets nécessitera une réévaluation des termes de viscosité

de volume et de cisaillement déduits des analyses faites jusqu’à maintenant.
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S TAT E M E N T O F O R I G I N A L I T Y

The original contribution by the author to this work is as follows

• Chapters 1 - 3: These chapters give a general introduction to QCD matter in ex-

treme conditions and heavy ion collisions.

• Chapter 4: This is the outline of the remainder of thesis.

• Chapter 5: This chapter is a general introduction to thermal fluctuations and a

comprehensive literature review of thermal fluctuation studies in the context of

heavy ion collisions.

• Chapter 6: I build on the work done in [1] to do my own calculations. Perturbative

fluctuation framework was developed and the initial code for the same was written

by Clint Young. The evaluation of eccentricities and hadronic and photonic observ-

ables was done by me. This included evaluating fluctuation corrections to photon

rates.

• Chapter 7: I developed the low pass filter method to study thermal fluctuations,

coded it in the hydrodynamic package MUSIC, tested the effects of noise cutoff

parameter on fluctuation modes in static fluid and Bjorken flow and evaluated the

experimental observables.

• Chapter 8: I used the low pass filter method developed in last chapter to study

bulk fluctuations. I encoded bulk fluctuations in MUSIC and evaluated experimen-

tal observables. The work on effects of negative kinematic pressure was done in

collaboration with Scott McDonald. I did the literature review and ran half the

hydrodynamic simulations for this work.

• Chapter 9: This work was done in collaboration with Daniel Pablos. The Mach

cone analysis was done by me. I encoded an artificial jet energy source in MUSIC
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and calculated the energy enhancement at the freezeout surface. Daniel encoded

the hybrid model in MUSIC and did the energy conservation testing. The second

pass framework was developed by me. I also developed the workflow to introduce

PYTHIA hadrons in UrQMD. I did the standardization of the concurrent frame-

work.

• Chapter 10: This work was done in collaboration with Manu Kurian. Manu did

the analytical calculations to get the expressions for viscous corrections to charm

transport coefficients. I did the numerical integration of these expressions. I per-

formed the entire hydrodynamic simulation and wrote a wrapper code to simulate

propagation of charm quark through QGP.
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Part I

Q C D M AT T E R I N H E AV Y- I O N C O L L I S I O N S



In this thesis, our aim is to improve upon our understanding of the quark-gluon

plasma by studying physical processes that have mostly been overlooked in phenomeno-

logical calculations to date. We begin by introducing the basics of quantum chromody-

namics and the role that heavy ion collision experiments play in studying it in chapter 1.

A description of phenomenological tools used to study heavy-ion collisions is given in

chapter 2. Observables measured in these experiments and the physical insights drawn

from them are explained in chapter 3.

Thermal hydrodynamic fluctuations are studied in part II, hard partonic interactions

are studied in part III and our results are summarized in part IV. A detailed outline of

these parts is given in chapter 4.

2



1

Q U A N T U M C H R O M O D Y N A M I C S A N D

H E AV Y- I O N C O L L I S I O N S

By the 1960s, physics had reached the sub-nucleon scale. The quark model of hadrons

was proposed to explain the large number of then-recently discovered particles [2, 3]. The

quark model hypothesized that many of these new particles, called hadrons, were not

fundamental themselves, but rather formed by pairs or triplets of postulated spin-1/2

fundamental particles called quarks.

The quark model ran afoul of the Pauli exclusion principle. If the proposed quarks

were indeed spin-1/2, they should obey Fermi statistics. That meant that two quarks

could not have existed in an identical quantum state inside a composite particle. But this

was not the case. For example, in ∆++ baryon, three identical quarks were understood

to have their spins aligned and have a vanishing net orbital angular momentum. In vio-

lation of Pauli’s exclusion principle, the net wavefunction was symmetric under the ex-

change of any two quarks. A novel color charge was proposed to reconcile this violation

[4]. This color charge created a new quantum number under which the wavefunctions

of individual quarks could be anti-symmetric. This color charge was a consequence of a

newly postulated SU(3) gauge degree of freedom [5].

Deep inelastic scattering experiments performed at the Stanford Linear Accelerator

Center (SLAC) [6] suggested that the constituent particles of protons, i.e. quarks, are

point sized. On one hand, these quarks behaved almost like free particles at high mo-

mentum transfers (or equivalently at short length scales) while on the other hand, these

quarks seemed always confined in hadrons. As a result, the interaction between quarks

had to be mediated by a force that is strong at long distances but weak at very short

distances. This behaviour is now famously known as asymptotic freedom. Gross and

Wilczek [7] and Politzer [8] demonstrated that a unique class of quantum field theories

3
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called non-abelian gauge theories had this property. These theories had interactions me-

diated by vector bosons. These theories based on the generalized non-abelian SU(N)

gauge symmetry were previously discovered by Yang and Mills [9]. This led to the de-

velopment of the theory of strong forces, quantum chromodynamics (QCD).

1.1 qcd lagrangian

QCD is a SU(3) gauge symmetric, fundamental theory of strong interactions. Quarks

are in the fundamental representation of this gauge group. Interactions are mediated

by vector gauge bosons called gluons, which are in the adjoint representation of SU(3).

Quarks and gluons are together referred to as partons. The QCD Lagrangian is given as1

L = ψ̄i(i(γµDµ)ij −mδij)ψj −
1
4

Fµν
a Fa

µν. (1.1)

The SU(3) gauge group is indexed as i, j that run from 1 to 3. ψi is a quark field, γµ are

Dirac matrices and Dµ = ∂µ− igAa
µ is a gauge covariant derivative. Fa

µν are field strength

tensors with the color index a running from 1 to 8. The field strength tensor is given as

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν. (1.2)

Aa
µ are gluon fields, f abc are the structure constants of the SU(3) group, m denotes quark

masses and g is the coupling strength.

As mentioned above, QCD delivers on the requirement of asymptotic freedom and

confinement. This comes from the dependence of coupling strength g on the energy scale,

called the running of coupling. This could be understood in terms of renormalization.

Renormalizing the coupling strength in QCD demonstrates how interaction strength

varies with energy. Let us look at the Callan-Symanzik beta-function [10, 11]

β(g) =
∂

∂ log(Q/M)
g. (1.3)

Here, Q is the energy scale and M is some specific scale at which the coupling g(M) is

known. The β-function can be calculated from the loop-diagrams of QCD. For QCD with

1 Einstein notation of summing over repeated indices is used in this thesis. We use the mostly negative

metric (see section 2.1.2) and h̄ = c = 1 is assumed in the rest of this thesis.
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Figure 1.1: Running of the strong coupling αs as a function of energy transfer Q. Figure is taken

from [13].

three colors and n f flavors of almost massless quarks, up to leading order we have [7, 8]

(for details, see [12])

β(g) = − b0g3

(4π)2 , (1.4)

with

b0 = 11− 2
3

n f . (1.5)

Solving eq. (1.3) for coupling strength αs = g/4π, we get

αs(Q2) =
4π

b0 log(Q2/Λ2
QCD)

. (1.6)

ΛQCD is the scale at which the QCD coupling diverges, ΛQCD ≈ 300 MeV [14]. Eq. (1.6)

shows that the coupling strength αs decreases as energy scale Q increases and reaches

zero asymptotically. Also, αs diverges at ΛQCD and as a result, one cannot separate a

quark-antiquark pair farther than 1/ΛQCD thus achieving confinement. The running

value of αs is shown in fig. 1.1.
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Figure 1.2: Equation of state from lattice QCD. Pressure (p), energy density (ε) and entropy den-

sity (s) are shown as a function of temperature. The yellow shaded area is the crossover

region. Dark lines denote calculations from a hadron resonance gas model and the

lighter broad lines show the result from the lattice QCD calculations. Figure taken

from the hotQCD collaboration [15].

1.2 lattice qcd

Field theories are typically studied by expanding the action, using the coupling constant

as a small parameter. This is the technique of using Feynman diagrams [16]. Perturbative

QCD is such an application of this method. Interaction cross-sections between various

particles can be calculated this way, but only when αs is much smaller than one. This is

true only for very high energies.

Another approach, first developed by Wilson [17], is known as lattice QCD. Partition

function of QCD can be evaluated in the Feynman path integral formalism [18] numeri-

cally, using Monte-Carlo integration techniques on a lattice. This is a head-on approach

to obtain expectation values of various observables by numerical integration, but this

method only works for a system at equilibrium. In other words, a dynamically evolving

system of QCD matter cannot be described by lattice QCD. Also, lattice QCD is currently

restricted to situations with vanishing baryon chemical potential (µB). At finite µB, the

integrands are complex [19] and hence highly oscillating. There is no known method to
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constrain the highly oscillating integrand. This is known as the sign-problem. As highly

oscillating integrands are almost impossible to integrate numerically, it is very difficult

to extend lattice QCD to non-zero µB.

Despite these caveats, lattice QCD provides immense insight into the world of QCD

matter. Crucially, it is a direct first principles calculation. Lattice QCD suggests that the

quarks and gluons are confined in hadrons at low energies, a consequence of strong

coupling. At high energies, they are liberated from hadrons forming a hot plasma of

color-charged particles: the quark-gluon plasma (QGP). This is a direct consequence of

the running coupling.

Lattice QCD also shows that this transition from a gas of hadrons to QGP is a smooth

crossover and not a sudden phase-transition [20]. Fig. 1.2 shows the equation of state

from lattice QCD. At low temperatures, the lattice QCD results are in good agreement

with the hadron resonance gas (HRG) model calculations. This suggests that quarks

and gluons are confined in hadrons in this region. The two calculations start diverging

around the crossover temperature Tc. This is a result of a rapid increase in the degrees

of freedom. In this region, the QCD matter enters the QGP phase. This transformation,

though rapid, is smooth: there is no discontinuity in any thermodynamic quantities or

their derivatives.

1.3 phase diagram of qcd

Even though the sign-problem effectively restricts direct application of lattice QCD to

zero baryon chemical potential, we have some idea as to how the entire phase diagram

of QCD looks like.

Fig. 1.3 shows the conjectured QCD phase diagram. Normal nuclear matter (nucleons)

sits at high µB and very small temperature. At very high densities and low temperatures,

up and down quarks are expected to form Cooper pairs and form a color superconductor

[23–25]. On the other extreme, the early universe is known to be very hot and have very

small µB.

Model calculations suggest that at high baryon densities, the hadron gas changes to

QGP via a first-order phase transition [26]. As we already know that the change is a
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Figure 1.3: A schematic diagram showing phases of QCD matter. It also illustrates different re-

gions accessed by different experiments. Figure taken from [21]. Note that modern

estimates based on lattice QCD place the crossover temperature closer to 155 MeV

[22].

smooth crossover at zero µB [20], this implies that the first-order phase transition line

ends in a critical point where the transition is second-order.

Different regions of the diagram can be accessed by different experimental approaches.

Neutron star observations through multi-messenger astronomy can help us understand

the large µB region of the diagram. Neutron stars can be observed using the various

bands of electromagnetic signals, neutrinos and gravitational waves. These observations

help us constrain the equation of state of neutron stars. For a recent review, see [27]. Low

and intermediate µB regions are accessible through the heavy-ion collision experiments.

While various regions of the phase diagram are schematically known, the exact loca-

tion of the different features such as the critical point and the phase transition line have

not been quantified. Quantitatively locating and understanding the dynamics of the crit-

ical point is one of the goals of many recent heavy-ion collision (HIC) experiments.

1.4 heavy-ion collision experiments

Heavy-ion collision experiments have been performed at the Large Hadron Collider

(LHC) in Europe and at the Relativistic Heavy-Ion Collider (RHIC) in the USA. LHC and
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high-energy RHIC experiments collide heavy nuclei at very high energy at relativistic

speeds to achieve the high temperatures required for QGP formation. The QGP droplet

created is small (a few fm in length) and short lived (of the order of 5-20 fm/c) [28, 29].

A lot happens during the short lifetime of QGP droplets. The droplet keeps expanding

and cools rapidly. There are some very energetic or massive partons created by initial

hard scattering that traverse through the droplet. As they have very high energies, they

effectively interact perturbatively. All these partons, heavy or light, with high or low

energies, recombine to form hadrons when the temperature drops below Tc. Both QGP

and hadron gas also emit photons and lepton pairs. These varied processes create a wide

range of experimental observables that need a gamut of theoretical tools for deducing

the physics.

QGP properties are deduced from the measurements of hadronic and electromagnetic

particles. Unfortunately, we do not yet have a mechanism with which to study dynam-

ical QGP out of equilibrium from first principles. We use phenomenological models to

understand these experiments and draw physical inference. A standard model of heavy-

ion collisions is described in chapter 2. Experimental observables that are measured in

these experiments are described in chapter 3.

These experiments collide heavy nuclei at such high energies (e.g. Pb-Pb collisions at

LHC at centre of mass energies 2.76 TeV and 5.02 TeV and Au-Au collisions at RHIC tat

centre of mass energy 200 GeV) that the amount of baryons and anti-baryons created is

almost equal. This means that the matter created is close to the µB = 0 axis in the phase-

diagram and input from lattice QCD can be used to model these experiments. Recently,

RHIC has started a beam energy scan program that collides nuclei at lower energies. The

goal is to access the intermediate µB range and hopefully probe the critical point. Future

experiments planned at the Facility for Anti-proton and Ion Research (FAIR) in Germany

and at Nuclotron based Ion Collider fAcility (NICA) in Russia plan to explore the even

higher µB region by conducting even lower energy collisions. The regions explored by

these experimental programs can be seen in the schematic in fig. 1.3.

In this work, we have restricted ourselves to very high energy collisions at vanishing

chemical potential. This is because the QGP equation of state is better constrained in
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this region by lattice QCD. The tools developed in this work to understand QGP can be

applied to lower energy collision systems with an appropriate equation of state.



2

P H E N O M E N O L O G Y O F H E AV Y- I O N

C O L L I S I O N S

At present, there is no ab initio approach to study dynamical evolution of QGP. As a

result, we must rely on composite models of heavy-ion collisions to study the physics of

QCD matter. In this chapter, we describe the standard model of heavy-ion collisions that

has been very successful in explaining features of HIC experiments.

Fig. 2.1 is a flowchart of the hybrid model used in this work. Parts of the flowchart

shown in red are original contributions to the field contained in this thesis. We describe

the different components of this flowchart in this chapter. We begin by describing the

collective dynamics of QGP itself followed by the dynamics of hard light quarks, heavy

quarks and photons.

2.1 modelling collective dynamics

Nuclei colliding at HIC experiments travel near the speed of light. In the lab frame, they

appear as flat 2D surfaces due to Lorentz contraction in the beam direction. Immediately

after collision, the QCD matter created rapidly hydrodynamizes at times < 1 fm/c. By

hydrodynamization, we mean that the system reaches a state in which hydrodynamics

is applicable. This value was obtained from fitting hydrodynamic start time in models to

data [30–33]. This was traditionally understood to require the system to be close to local

thermal equilibrium, though recently this has come under revision. There is evidence

to believe that hydrodynamics applies even if the system is far from local thermal equi-

librium [34]. Systems far from equilibrium have hydrodynamic and non-hydrodynamic

modes. Non-hydrodynamic modes have been shown to decay rapidly in a wide range of

theories and the system approaches the hydrodynamic attractor solutions [35, 36]. The

11
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Figure 2.1: Flowchart of our modelling of HICs. Parts indicated in red are new contributions to

the model made in this work.
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system then expands hydrodynamically for about 5− 20 fm/c. At this point, the density

and temperature of the fluid falls below the deconfinement temperature and QGP fluid

transforms to a gas of hadrons. This hadron gas keeps expanding and the hadrons keep

interacting with each other and resonances keep decaying. This stage is the hadronic

cascade. Eventually the system reaches kinetic freezeout and particles free-stream to

detectors.

2.1.1 Initial state

The initial state of the HIC is probably the least understood stage of the collision. It

is difficult to accurately model physics of strongly interacting particles too far from

equilibrium. Many models attempt to simply recreate the initial geometry of the collision.

One of the simplest and earliest models attempting to do this is the Optical Glauber

model [37, 38]. The nucleon density inside a nucleus is well approximated by the Woods-

Saxon parameterization [39]

ρ(r) = ρ0
1

1 + exp
r− R

a

. (2.1)

Here ρ0 is the density at the centre of the nucleus, R is the charge radius of the nucleus

and a is the nuclear skin-thickness. One can then define the thickness function in the

Glauber model as

TA/B(s) =
∫ +∞

−∞
ρA/B(s, zA/B)dzA/B. (2.2)

Here A/B stands for target/projectile, s is the transverse position while z is the po-

sition in the longitudinal direction. The energy density at s is then proportional to

σNNTA(s)TB(s− b) where σNN is the inelastic cross-section of the nucleon-nucleon colli-

sion.

The Optical Glauber model can be improved by using Monte Carlo techniques. Instead

of using the Woods-Saxon distribution to evaluate the nuclear density at a point, it can

be used to sample nucleons. This is the Monte Carlo (MC) Glauber model. Two nucleons

are determined to have a binary collision when the distance between them (d) satisfies

d ≤
√

σNN

π
. (2.3)
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In addition to the impact-parameter geometry that is also captured by the Optical Glauber

model, the MC-Glauber model also captures the fluctuations of nucleon positions.

Both the Optical and the MC Glauber models incorporate geometric considerations

and do not attempt to model initial-state dynamics. The energy density profile from

both Glauber models is fed directly to hydrodynamics as the initial conditions some

time after the collision (typically 0.4-0.8 fm/c). In general, there are no dynamics before

the hydrodynamic start time.

IP-Glasma is a modern initial state model which dynamically evolves initial color

fields [40, 41]. It is based on the color glass condensate (CGC) framework initially de-

fined in the McLerran-Venugopalan (MV) model [42]. The idea is that nucleons travel-

ling at high velocities have high soft gluon densities and thus a classical description of

gluon fields is possible. Hard gluons and quarks act as color sources of this field and ra-

diate gluons, which further radiate more gluons. As the gluon density keeps increasing,

gluon recombination competes with gluon production. The energy scale where gluon ra-

diation and gluon recombination equilibrate is called the gluon saturation scale. Gluon

saturation has not yet been observed directly, though saturation based models have been

quite successful. We will probe the gluon saturation mechanism more directly in deep

inelastic scattering experiments at the upcoming Electron-Ion Collider (EIC) [43].

Like the MC-Glauber model, IP-Glasma begins by sampling nucleon positions using

the Woods-Saxon distribution. At each nucleon position color charge is sampled using

the MV model. IP-Glasma accounts for sub-nucleonic fluctuations in this sampling. The

strength of these fluctuations is determined by the local saturation scale which in turn is

determined by the IP-Sat model [44] which uses deep inelastic experiment data.

Field strength can be obtained from the sampled color charge densities. These fields

are then evolved using the classical Yang-Mills equations

[Dµ, Fµν
a ] = Jν

a . (2.4)

Here, Dµ is the gauge covariant derivative, Fµν
a is the field strength tensor (see discussion

after eq. (1.1) for definition), Jν
a is the color source current, µ, ν are Lorentz indices run-

ning from 0 to 3 and a is the color index running from 1 to 8. At the end of the evolution,

the energy-momentum tensor can be generated from the field strength tensor that can in

turn be matched to the hydrodynamic energy-momentum tensor.
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Recently, there has been increased interest in using QCD based kinetic theory ap-

proaches to evolve the dynamics after the initial state for some time before feeding it to

hydrodynamic models [45]. The idea is to allow for thermalization, after which hydrody-

namics is applicable. We have not used this approach in this work. Such an intermediate

stage could be easily added to our framework in the future.

Both the Glauber model and the IP-Glasma model have been used in different parts of

this work. Other initial state models like MC-KLN [46] and AMPT [47] are also in popu-

lar use, however we have restricted ourselves to using Glauber and IP-Glasma model in

this work.

2.1.2 Hydrodynamic evolution

Hydrodynamics is the macroscopic theory concerned with the evolution of average ther-

modynamic quantities such as energy density and pressure. The relativistic hydrody-

namic equation is basically just the energy-momentum conservation equation and can

be written as

∂νTµν = 0, (2.5)

where Tµν is the energy-momentum tensor, T00 is the energy density, T0i is the energy

flux in ith direction, Ti0 is the ith component of momentum density and Tij is the flux of

ith component of momentum in the jth direction. Indices i and j run from 1 to 3.

When the fluid is in local thermal equilibrium, the fluid is dubbed ideal and Tµν is

given by

Tµν = Tµν
id. = (ε + P)uµuν − Pgµν. (2.6)

ε is the energy density, P is the pressure and uµ is four-velocity satisfying the relation

uµuµ = 1, gµν = diag.(1,−1,−1,−1) is the metric tensor.

As uµ is a unit four-vector, it has only three independent components. Along with ε

and P, Tµν has five independent components. We have four equations in eq. (2.5). To

close the system we need an additional equation of state (EOS) relating ε and P. For

QCD matter at vanishing baryon densities, the EOS can be obtained from lattice QCD

[15, 48]. A lattice QCD EOS is shown in fig. 1.2.
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When the system is away from local thermal equilibrium, it dissipates energy to max-

imize the entropy. In this state, the energy momentum tensor gains an additional dissi-

pative, i.e., viscous, component Tµν
vis.

Tµν = Tµν
id. + Tµν

vis.. (2.7)

Tµν
vis. can be further divided into shear and bulk viscous components as

Tµν
vis. = πµν + ∆µνΠ. (2.8)

Here, πµν is the traceless shear viscous tensor, Π is the bulk pressure and ∆µν = gµν −

uµuν is the projection tensor. There is a choice in how uµ is defined (see [49]). We choose

the definition by enforcing the eigenvalue equation

uµTµν = εuν. (2.9)

This choice is known as working in the Landau frame [50]. It also leads to the relation

uµπµν = 0. This constrains 3 components of πµν. Another is constrained by eq. (2.9).

Also, πµν is symmetric and traceless and so has 5 independent components. Π is another

independent variable. We need 6 additional equations to close the system. In principle,

one can write additional equations for currents of conserved quantities such as charge,

baryon number etc. Each such addition will add 4 more independent components.

The non-relativistic version of the dissipative fluid dynamics is given by the famous

Navier-Stokes theorem. Analogously, one can write the relativistic Navier-Stokes theo-

rem. However, Navier-Stokes theory allows for infinite propagation speeds. This is a

problem for a relativistic theory as it leads to causality violation [51], though recently

a class of causal Navier-Stokes theories have been discovered [52]. These Navier-Stokes

theories are causal for only certain definitions of out of equilibrium values of thermo-

dynamic variables. Causal Navier-Stokes theories are still an active area of research [53]

and their relation to second order theories (discussed below) is being actively investi-

gated [54, 55]. In this thesis, we have not used these causal Navier-Stokes theories but

used second order hydrodynamics.
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Muller, Israel and Stewart first developed causal relativistic viscous hydrodynamics by

including terms up to second order in the gradient expansion [56, 57]. The Muller-Israel-

Stewart hydrodynamic equations are given by

τππ̇〈µν〉 + πµν = 2ησµν − 4
3

τππµνθ, (2.10)

τΠΠ̇ + Π = −ζθ − 2
3

τΠΠθ. (2.11)

Here, η is the shear viscosity, ζ is the bulk viscosity, θ = ∂µuµ is the expansion rate,

σµν = ∂〈µuν〉 is the Navier-Stokes tensor and τπ and τΠ are shear and bulk relaxation

times, respectively. Angular brackets in the indices indicate the traceless part of the

symmetrized tensor as A〈µν〉 = 1
2

(
Aµν + Aνµ − 2

3 ∆µν Aα
α

)
. A dot above a variable denotes

a proper time derivative such that Ȧ = uµ∂µ A = dA/dτ.

There are various versions of second order hydrodynamics. A kinetic theory based

derivation by Denicol, Niemi, Molnar and Rischke (DNMR) [58] uses the relativistic

Boltzmann equation

kµ∂µ fk = C[ f ]. (2.12)

kµ is the particle four-momentum, fk is single particle distribution function and C[ f ]

is the collision kernel. DNMR included 2 → 2 collisions in C[ f ]. fk is expanded in the

complete and orthogonal basis formed by 1, kµ, k〈µkν〉, k〈µkνkλ〉..., where k〈µ1kµ2 ...kµn〉 is

defined as the traceless part of the tensor kµ1kµ2 ...kµn symmetric in µ1 and µn. Terms up

to second order in Knudsen and inverse Reynolds numbers are kept. Knudsen number

(Kn) is a dimensionless ratio of microscopic and macroscopic scale in a system

Kn =
λ

L
. (2.13)

Here, λ is the microscopic length scale while L is the macroscopic length scale. Inverse

Reynolds numbers give the ratio of viscous forces to equilibrium forces. Shear (R−1
π ) and

bulk (R−1
Π ) inverse Reynolds numbers are given as

R−1
π =

√
|πµνπµν|

P
, R−1

Π =
|Π|
P

. (2.14)



18 phenomenology of heavy-ion collisions

The Knudsen number and the inverse Reynolds number serve as appropriate small pa-

rameters in expansions. Small Knudsen number ensures the validity of long range ef-

fective theories like hydrodynamics and small inverse Reynolds number guarantees that

the system is not far from equilibrium.

Along with the coefficients derived in [59, 60], the final DNMR hydrodynamics equa-

tions are

τππ̇〈µν〉 + πµν = 2ησµν − 4
3

τππµνθ +
9

70P
π
〈µ
α πν〉α − 10

7
τππ

〈µ
α σν〉α +

6
5

τπΠσµν. (2.15)

τΠΠ̇ + Π = −ζθ − 2
3

τΠΠθ +
8
5

(
1
3
− c2

s

)
τΠπµνσµν. (2.16)

Relaxation times are obtained from the collision kernel and depend on the underlying

interactions. They essentially provide the timescale in which dissipative modes decay.

They are derived from the linearized collision term in [60] and are

τπ =
5η

(ε + P)
. (2.17)

τΠ =
ζ

(ε + P)
1

14.55 (1/3− c2
s )

2 (2.18)

Relativistic hydrodynamics is a rich and active field. We have only listed two forms of

viscous hydrodynamics here. More elaborate discussions of various versions of hydrody-

namics equations and their derivations can be found in [49, 61].

2.1.2.1 Bjorken flow

The equations of hydrodynamics do not yield themselves to analytic solutions easily and

few are available. The most popular one is the analytic solution given by J. D. Bjorken

[62]. Bjorken introduced the idea of boost invariance, which means that in the z-direction,

the velocity at a point is given by vz = z/t. One can go to Milne coordinates τ, x, y, η,

where x and y are normal Cartesian coordinates. We have proper time τ =
√

t2 − z2

and spacetime rapidity ηs = tanh−1(z/t). In Milne coordinates, Bjorken flow is simply

given by u = (1, 0, 0, 0). The solution is invariant under a Lorentz boost. It is important
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to note that this does not imply a fluid at rest. Here the metric is gµν = (1,−1,−1,−τ2).

So the space itself is expanding in the z-direction. This beautifully captures the rapidly

expanding nature of the system in the z-direction. Assuming a simple equation of state

where ε ∝ P, analytic and semi-analytic solutions can be found for energy density in the

ideal and viscous cases respectively.

The Bjorken solution provides us with a simple solution that closely resembles the

dynamics of HICs and is used as a testing ground of many new ideas. However, more

realistic simulations of HIC require numerical solutions of viscous hydrodynamics. We

use our in-house hydrodynamic approach MUSIC to solve these equations [32].

2.1.2.2 MUSIC

MUSIC uses the Kurganov-Tadmor (KT) method [63] coupled with Heun’s method for

solving hydrodynamic equations in Milne coordinates. Using Milne coordinates ensures

that we do not have to use a rapidly expanding grid in the z-direction. We closely follow

the discussion in [32] in this section to describe the working of MUSIC.

The KT method is used for evaluating spatial derivatives. It has the advantage that

it can accurately propagate discontinuities and shock-waves and has small numerical

viscosity. As HICs can have shock waves and QGP has a very small viscosity, the KT

algorithm is a good fit for our purpose. To illustrate the KT method, let us take a simple

one-dimensional partial differential equation

∂tρ = −∂x J, (2.19)

where ρ is a density and J = vρ is current with propagation speed v . Discretized

coordinates are represented as tn = n∆t and xj = j∆x. Here ∆t and ∆x are step sizes in

temporal and spatial directions, respectively.

The KT algorithm uses spatially cell-averaged values around xj instead of just using

the value at x = xj. So, the cell averaged density is

ρ̄j(t) =
1

∆x

∫ xj+1/2

xj−1/2

ρ(x, t)dx. (2.20)

The discretized version of eq. (2.19) becomes

dρ̄j(t)
dt

=
J(xj−1/2, t)− J(xj+1/2, t)

∆x
(2.21)
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This is important for our purposes. When we solve stochastic hydrodynamic equations

in part II, we will be sampling the cell-averaged noise.

We present the final KT algorithm here:

dρ̄j(t)
dt

=
H(xj−1/2, t)− H(xj+1/2, t)

∆x
, (2.22)

with

H(xj±1/2, t) =
J(xj±1/2,+, t) + J(xj±1/2,−, t)

2
− |vj±1/2(t)|

(
ρ̄j±1/2,+(t)− ρ̄j±1/2,−(t)

2

)
,

(2.23)

and

ρ̄j+1/2,+ = ρ̄j+1 −
∆x
2
(ρx)j+1, (2.24)

ρ̄j+1/2,− = ρ̄j +
∆x
2
(ρx)j. (2.25)

Spatial derivatives (ρx)j are evaluated using a minmod flux limiter as

(ρx)j = minmod
(

Θ
ρ̄j+1 − ρ̄j

∆x
,

ρ̄j+1 − ρ̄j−1

2∆x
, Θ

ρ̄j − ρ̄j−1

∆x

)
. (2.26)

The minmod limiter is defined as

minmod(x1, x2, x3...) =


min{xj} if xj > 0 ∀ j,

max{xj} if xj < 0 ∀ j,

0 otherwise.

(2.27)

Minmod flux limiter constrains the value of flux to realistic values. Second order deriva-

tive is normally preferred. If the magnitude of the second order derivative is larger than

Θ times the first order derivative, we switch to the latter. This puts a weight against the

first order derivative, while still limiting the flux when second order derivative becomes

too large. This preserves the accuracy around sharp edges and shock waves and ensures

that no spurious oscillations are introduced. The weighting factor Θ is the minmod pa-

rameter which controls when that switch needs to be made. We have set Θ = 1.8 in all

recent analysis of hadronic phenomenology.
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Temporal evolution is done using Heun’s method, which is a form of second order

Runge-Kutta solver. Heun’s method solves an ordinary differential equation of the form

dρ

dt
= f (t, ρ), (2.28)

in the following steps:

1. Evaluate the intermediate variable ρ̃n+1 from ρn as

ρ̃n+1 = ρn + ∆t f (t, ρn). (2.29)

2. Finally, evaluate ρn+1 as

ρn+1 = ρn +
∆t
2
[ f (x, ρn) + f (t + ∆t, ρ̃n+1)]. (2.30)

Using Heun’s method is also important for us as it is consistent with the Stratonovich

form of the stochastic integral, which is the physical integration of choice while solving

stochastic equations with non-linear multiplicative noise [64], as we do in part II.

2.1.3 Hadronization

We obtain the values of all hydrodynamic variables on an isothermal hypersurface from

MUSIC. The exact switching temperature between hydrodynamics and hadrons is a pa-

rameter of the theory and is fixed to match the data. We use a switching temperature of

145 MeV as in [41, 65]. We use the Cooper-Frye prescription to switch from a fluid to a

particle description on this hypersurface [66]. The particle production rate is given as

E
dN
d3p

=
g

(2π)3

∫
σ

f (x, p)pµdΣµ. (2.31)

Here, dΣµ is the differential surface four-vector, g is particle degeneracy, pµ is the four

momentum of the surface patch and f (x, p) is the particle distribution as a function of

particle four-position x and particle four-momentum p.

The distribution function has equilibrium and viscous contributions

f = feq. + δ fshear ++δ fbulk. (2.32)
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The equilibrium distribution for a Fermi/Bose particle at vanishing chemical potential is

feq. =
1

exp p · u/T ± 1
. (2.33)

The exact form of the viscous corrections to the particle distribution function depend

on the approach. They could be derived in the Chapman-Enskog [67] or the Grad’s

14 moment [68] approaches. Chapman-Enskog approach expands the distribution func-

tion in powers of Knudsen number (see eq. (2.13)) while Grad’s approach expands it

in the powers of particle momentum. Equations could be further simplified by using

the relaxation-time approximation which assumes that the collision kernel in Boltzmann

equation is proprtional to the out-of-equilibrium correction in the distribution function

divided by a relaxation time. We use the forms for shear and bulk corrections as has

been used in [41, 65]. The shear corrections were derived using the Grad’s approach

[69] while the bulk correction was obtained from the Chapman-Enskog approach in the

relaxation-time approximation [70, 71]. The expressions for viscous corrections are

δ fshear = feq.(1± feq.)πµν
pµ pν

2(ε + P)T2 , (2.34)

δ fbulk = feq.(1± feq.)

(
−Π

ζ/τΠ

)
1

3T

(
m2

E
− (1− 3c2

s )E
)

. (2.35)

Here m is the particle mass while cs is the speed of sound. These terms have the property

that they ensure the continuity of the non-equilibrium corrections. We use the publicly

available particle sampler iSS [72] to sample all the hadrons listed in the hadronic cascade

package UrQMD. In the next step, we feed all these hadrons to UrQMD.

From every event in MUSIC, we oversample. From each freezeout hyper-surface, we

sample particles of the order of 100 times to accurately reproduce the underlying event

and to ensure that random sampling fluctuations do not distort the hydrodynamic signal

[73]. Later, while evaluating particle multiplicities, we divide by the oversampling factor.
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2.1.4 Hadronic cascade

At this stage of the collisions, the Knudsen number becomes large. The mean free path

of particles is large and hydrodynamics is no longer applicable. This is the regime of

kinetic theory.

We use the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) code to under-

take the hadronic cascade [74, 75]. UrQMD evolves hadrons by solving the Boltzmann

equation. Elastic and inelastic collisions are allowed. Measured hadronic cross-sections

are used for the collision kernel in the Boltzmann equation and model calculations are

substituted when experimental measurements are not available. UrQMD also allows for

the decay of hadron resonances.

UrQMD stops when particle density falls so low that no further interaction is possible

and all resonances have decayed. It gives a list of final particles from which all the

observables described in section 3.3 are evaluated.

We will extend this soft-hadronic framework to include thermal fluctuations in part II

2.2 modelling jet physics

While collective dynamics is governed by the strong coupling, hard jets are in the weakly-

coupled limit because of their high energy. We now use the framework shown in the

rightmost column in fig. 2.1.

We use the hybrid model to evolve the jets in medium [76]. This model is a “hybrid"

between the strongly coupled and weakly coupled physics. The jet interaction with the

plasma is assumed to happen by exchanging soft modes in the strongly coupled limit

while the jet splittings happen in the weakly coupled limit.

In our model, we begin by using the PYTHIA event generator [77] to generate parton

showers. Parton showers are created by hard partons that gain large momentum by

hard scattering at the moment of collision. PYTHIA uses the DGLAP formalism [78–80]

to evolve partons to generate a shower. PYTHIA is applicable for p − p collisions in

vacuum. Here, we work under the assumption that the initial showering is unaffected by

initial dynamics of the collision. This is justified because all the hard partons created at
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the collision have very high virtuality, i.e. they are very off-shell. In fact, the virtuality is

much higher than any scale of the medium. We embed these showers at the location of

binary collisions described in section 2.1.1.

We further assume that jet splittings in medium is also governed by the DGLAP for-

malism. This is approximately true for energetic partons with high virtuality. This as-

sumption becomes questionable at later stages of the collision, though we can expect the

jets to have left the medium by that stage. We are neglecting the jet splittings caused by

medium interactions.

In our framework, these showers free-stream until the hydrodynamic initialization

time, at which point shower partons start interacting with the medium. In the hybrid

model, energy loss is evaluated in the approximation of a light quark jet propagating

through a strongly coupled N = 4 Supersymmetric Yang Mills plasma by holography

[81, 82]. The quark-jet stopping in a medium could be mapped to a 1-D string falling

into a black hole in 5-D gravity; which could be solved analytically. In this approach, the

energy loss is given as

dE
dx

= − 4
π

E0
x2

x2
stop

1√
x2

stop − x2
. (2.36)

Here, E0 is the initial parton energy, x is the distance covered by the parton in the

medium, and xstop is the distance a parton will cover before losing all its energy if it

were travelling in a medium with constant temperature. Clearly, xstop must be a function

of temperature. It is given as

xstop =
1

2κsc

E1/3
0

T4/3 . (2.37)

κsc = 1.05λ1/6 where λ is the ’t Hooft coupling. In this model, κsc is a tunable parameter

which can be fit to data.

Traditionally, hard parton energy loss models take temperature information from a

hydrodynamic model such as MUSIC. Hydrodynamics provides the temperature at each

space-time point, allowing one to simulate jet propagation in medium. In part III we will

simultaneously evolve MUSIC with the hybrid model allowing for the feedback from jet

energy loss to hydrodynamics. Energy lost by jets should be added to the soft medium

for total energy-momentum conservation.
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Once the hard partons leave the medium, they could be hadronized using the Lund

string model [83] encoded in PYTHIA. The Lund string model approximates confine-

ment dynamics by taking a linear potential between a quark anti-quark pair. The string

oscillates and fragments, forming more hadrons.

A recent development in the Lund string model allows us to obtain spatial positions

of fragmented hadrons along with the traditional momemtum information [84]. This is

already available with PYTHIA. Complete spatial and momentum information allows us

to feed these hadrons together with the soft hadrons from the Cooper-Frye prescription

to hadronic cascade models such as UrQMD. As before, a final particle list from UrQMD

can be used to evaluate observables described in section 3.4.

The direct PYTHIA shower can be used to provide the p-p collision baseline for eval-

uating the nuclear modification factor (see section 3.4).

We want to point out that there are alternate approaches which treat the jet-medium

interaction in the weakly coupled limit (for example, see [85, 86]). In this work we have

chosen the hybrid model for its simplicity. In our concurrent framework developed in

chapter 9, hybrid model can be easily replaced by any other jet energy-loss model. Com-

paring the predictions of our concurrent framework with data with different energy-loss

mechanisms will potentially help us constrain the models.

2.3 modelling heavy-flavor dynamics

Similar to hard light quark jets, heavy quark (HQ) dynamics in QGP can be modelled

by sampling and propagating HQs through the medium. But instead of using event by

event simulations, we explore a different approach here. We model HQ dynamics using

Fokker-Planck equations and evaluate fundamental HQ dissipation coefficients such as

drag and diffusion coefficients in QGP. Crucially, the HQ-medium interaction is treated

here in the weakly-coupled limit.

We use the formalism developed in [87]. HQ dynamics can be described by the Boltz-

mann equation

pµ∂µ fHQ =

(
∂ fHQ

∂t

)
c
, (2.38)
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where fHQ is the HQ distribution function and the right hand side is the collision kernel.

In the limit of soft momentum transfer, the Boltzmann equation reduces to the Fokker-

Planck equation

∂ fHQ

∂t
=

∂

∂pi

[
Ai(p) fHQ +

∂

∂pj

[
Bij(p) fHQ

]]
, (2.39)

Here, Ai(p) and Bij(p) denote drag force and momentum diffusion, respectively. For an

HQ interacting with a light quark l by HQ(p) + l(q) → HQ(p
′
) + l(q

′
), Ai and Bij can

be written as

Ai =
1
γc

1
2P0

∫ d3q
(2π)32Q0

∫ d3p
′

(2π)32P′0

∫ d3q
′

(2π)32Q′0

× (2π)4δ4(P + Q− P
′ −Q

′
)∑ | MHQ,g/q |2

× fg/q(Q)
(

1± fg/q(Q
′
)
)(

p− p
′)

i

≡ 〈〈
(
p− p

′)
i〉〉, (2.40)

and

Bij =
1

2γc

1
2P0

∫ d3q
(2π)32Q0

∫ d3p
′

(2π)32P′0

∫ d3q
′

(2π)32Q′0

× (2π)4δ4(P + Q− P
′ −Q

′
)∑ | MHQ,g/q |2

× fg/q(Q)
(

1± fg/q(Q
′
)
)
(p− p

′
)i(p− p

′
)j

≡ 〈〈1
2
(
p− p

′)
i

(
p− p

′)
j〉〉. (2.41)

Here, γc are HQ degeneracy and | MHQ,g/q | are 2 → 2 scattering matrix elements

evaluated in [87]. Fig. 2.2 shows the evaluated diagrams. We are including only 2 → 2

scattering between a HQ and a light quark/gluon. There will be additional comparable

contributions to HQ energy loss from radiative loss [88], which has not been considered

in this analysis. This is because our immediate goal here is not to predict experimental

observables but to evaluate the out-of-equilibrium effects on HQ-medium scatterings.

This has been done in chapter 10. A complete calculation including the scattering and

radiative energy loss has been left for future work.

Ai(p) and Bij(p) can be decomposed as

Ai =pi A(p2, T), (2.42)

Bij =

(
δij −

pi pj

p2

)
B0(p2, T) +

pi pj

p2 B1(p2, T), (2.43)
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Figure 2.2: 2 → 2 scattering diagrams for HQ interaction with the medium. In the first three

diagrams, the quarks are HQ.

Here p2 = |p|2. A is the drag coefficient, B0 and B1 are transverse and longitudinal

diffusion coefficients, respectively. The coefficients can be written as

A = 〈〈1〉〉 − 〈〈p.p
′〉〉/p2, (2.44)

B0 =
1
4

[
〈〈p′

2
〉〉 − 〈〈(p.p

′
)2〉〉/p2

]
, (2.45)

B1 =
1
2

[
〈〈(p.p

′
)2〉〉/p2 − 2〈〈p.p

′〉〉+ p2〈〈1〉〉
]
. (2.46)

In part III we will extend this framework to include viscous corrections in light quark

distribution functions.

2.4 modelling photon emission

Finally, we discuss photon emission in QGP. We will restrict our attention to thermal

photons emitted by 2→ 2 scattering in QGP and meson gas.

For a 2 → 2 process 1 + 2 → 3 + γ generating photons, the emission rate for photons

of energy Ep and momentum p is given as

Ep
dN
d3p

=
1
2

∫
p1,p2,p3

|M|22πδ4(p1 + p2 − p3 − p) f (p1) f (p2)(1± f (p3)). (2.47)

∫
q ≡

1
(2π)3

∫ d3q
Eq

. f are the parton/meson distribution functions. For a meson gas, the

matrix elements and shear viscous correction were evaluated in [89].

For 2 → 2 Compton scattering and annihilation in QGP, the situation simplifies even

further under the forward scattering approximation. Assuming that the momentum ex-
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change is soft, we can write the photon emission rate for photons of energy Ep and

momentum p [90]

Ep
dN
d3p

=
5
9

αeαs

2π2 fa(p)T2 log
[

3.7388E
g2T

]
. (2.48)

Here, fa is a medium quark’s distribution function.

In part II we extend these rates to include perturbative thermal fluctuation corrections

and evaluate photon spectra and v2.

2.5 summary

In this chapter we have presented the composite model used to describe the HIC in this

thesis. In section 2.1 we discussed the hydrodynamic framework used to describe the

collective dynamics of QGP. Hydrodynamics is complemented by the initial-state models

and a hadronic cascade framework to simulate the HICs. In part II, we will introduce

the soft thermal hydrodynamic fluctuations in this model.

In section 2.2, we present the hybrid model of jets. This model treats the jet splittings

in the weakly coupled limit and the jet medium interactions in the strongly coupled

limit. We will include the feedback from the medium in this approach by concurrently

evolving the jet and the QGP in chapter 9 in part III. The goal is to evaluate the effects

of medium feedback and see how that helps us extract the properties of QGP. In future,

the hybrid model can be easily replaced by any other jet-medium interaction model.

The HQ-medium interaction is discussed in the Fokker-Planck approach in section 2.3.

Here the HQ-medium interaction is treated in the weakly coupled limit. We will evaluate

the out-of-equilibrium corrections to this approach in chapter 10 in part III.

Finally, an approach to evaluate the photon spectra is discussed in section 2.4. In chap-

ter 6 in part II we will estimate the effects of thermal fluctuations on photon observables.

These different approaches are necessary to study different aspects of HICs. As stated

earlier, the goal of this thesis is to complete upon the existing models to include physical

processes that have largely been neglected until now. For this purpose, our choice of

models has been a mix of realistic and simplistic models. Many studies on thermal

fluctuations have been done using simple flows (see chapter 5). These studies do not
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lend themselves to obvious generalizations in a realistic simulation, which encounters

technical difficulties described in section 5.5. For this reason we have undertaken the

state-of-the-art model of collective dynamics to resolve these difficulties and do realistic

simulations including thermal fluctuations.

So far, the effects of thermal fluctuations on electromagnetic observables have not

been evaluated. Hence we undertake an exploratory study to asses these effects using

the simplifying approximations made in section 2.4. A more realistic calculation using

all the photon-production channels described in [71] will be done in future.

Similarly, we chose the hybrid model of jet-medium interaction for its simplicity. This

helps us develop our new concurrent jet-medium evolution framework. In future, the

hybrid model can be replaced by any other jet-medium interaction model allowing us to

do a comparative study between different models.

Finally a Fokker-Planck approach is undertaken to study the HQ-medium interaction.

This is a deterministic approach which is not computationally demanding and could be

used for doing estimations of the size of out-of-equilibrium effects. The viscous correc-

tions evaluated in this work can be used in more realistic (though also more computa-

tionally demanding) event by event simulations in the future.
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O B S E RVA B L E S I N H I C E X P E R I M E N T S

In this chapter, we discuss some of the observables measured in heavy-ion collisions and

the physical insights derived from them.

3.1 rapidity and pseudorapidity

We begin by describing the coordinate system used to report experimental observables.

The beam axis is used as a reference and defined as the z axis. The plane perpendicular

to the beam axis is identified as the “transverse plane". Experimental observables are

reported in terms of the azimuthal angle on the transverse plane. Along the beam axis,

quantities are reported in terms of rapidity (y) or pseudorapidity (η). Pseudorapidity is

defined in terms of the angle between the particle momentum (p) and the z axis (θ)

η = − log
[

tan
(

θ

2

)]
=

1
2

log
(
|p|+ pz

|p| − pz

)
. (3.1)

In the limit of massless particles, pseudorapidity is similar to another commonly used

coordinate rapidity, which is defined as

y =
1
2

log
(

E + pz

E− pz

)
. (3.2)

Observables at η = y = 0 are said to be at midrapidity. Particle rapidities and pseu-

dorapidities are related to, but not the same as, spacetime rapidity described in sec-

tion 2.1.2.1.

3.2 multiplicity and centrality

Next, we describe centrality, which is another parameter whose dependence is reported

in experiments. It is useful as it is a measure of the size of fireball created in the collision

30
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Figure 3.1: Illustration of the centrality of a collision event. Red and green circles denote projectile

and target nuclei respectively. The overlap area in collisions reduces as one goes from

central to peripheral collisions.

and is thus related to the magnitude of the interaction. Collision events in heavy-ion

experiments are binned in terms of centralities, which have an intuitive meaning in HIC.

Collisions with smaller impact parameter have larger overlap area between the colliding

nuclei leading to more binary collisions between nucleons and are called more central.

Collisions with larger impact parameters have smaller overlap regions and fewer binary

collisions. Fig. 3.1 illustrates centralities. Central collisions have more energy and entropy

going into QGP. They also tend to have a more circular shape in comparison to peripheral

events, which have an increasingly elliptical overlap region.

In experiments, it is impossible to determine the impact parameter. Centrality is con-

nected to entropy in QGP, which directly translates to the number of final particles. Thus,

the final particle multiplicities are used to classify the centrality of an event. Essentially

all the events in a collision are ordered by decreasing multiplicities. This total set of all

events is called a minimum bias set. The top 5% of events by multiplicity are said to be

in the 0− 5% centrality bin, the next 5% are said to be in the 5− 10% centrality bin and

so on. Fig. 3.2 shows this binning process.

With centrality classes determined, average particle multiplicities are reported as a

function of centrality. Within a centrality class, particle multiplicities can be reported as

a function of pseudorapidity or transverse momentum (pT). Fig. 3.3 shows the charged

hadron multiplicities as functions of pseudorapidity and pT as measured in experiment.



32 observables in hic experiments

Figure 3.2: Centrality binning for Pb-Pb collisions at
√

s = 2.76 TeV. VZERO amplitude is a proxy

for multiplicity in an event. Figure taken from the ALICE collaboration [91].

3.3 soft hadronic observables

In this thesis, hadronic observables are broadly divided into “soft" and “hard", according

to the pT of the measured particles. The range of soft observables is typically pT < 2 GeV

while hard observables usually denote pT > 10 GeV. These two ranges are governed by

different physics; the soft region is dominated by the collective behaviour of the QGP

described in section 2.1, while the hard region is dominated by hard partons traversing

the QGP medium as described in section 2.2. Perturbative techniques can be used for

hard physics but they are not applicable for the soft regions. Intermediate pT ranges

between 2 and 10 GeV and is more difficult to capture as it contains both soft and hard

features [94]. We have made some progress in modelling the intermediate pT region,

which is reported in chapter 9.

We now describe some important soft observables evaluated in this work in some

detail.
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Figure 3.3: Charged particle multiplicities for different centrality bins as a function of pseudora-

pidity (left) and transverse momentum (right) for Pb-Pb collisions at
√

s = 2.76 TeV.

Figures taken from the ALICE collaboration [92, 93].

3.3.1 Harmonic coefficients of anisotropic flow

The particle distribution can be decomposed in terms of its Fourier coefficients as

d3N
pTdpTdφdη

=
d2N

2πpTdpTdη

[
1 +

∞

∑
1

2vn(pT) cos(nφ− nΨn(pT))

]
. (3.3)

Here, vn are the harmonic response coefficients of the nth order, φ is the azimuthal angle

and Ψns are the event plane angles. The true reaction plane angle cannot be determined

experimentally and event plane angles work as proxies. Event plane angles can be deter-

mined as [95]

Ψn =

(
tan−1 ∑i sin(nφi)

∑i cos(nφi)

)
/N. (3.4)

Here, the summation index i runs over all N particles and φi are the azimuthal angles of

individual particles.
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Figure 3.4: Polar plots of 1+ 2vn cos(nφ) for small vn (in blue). They denote elliptic (left), triangu-

lar (centre) and quadrangular (right) flow for n = 2, 3 and 4 respectively. Black circles

show isotropic flow and are drawn for reference.

In a similar vein, 2D flow vectors Qn can be defined as

Qn,x = ∑
i

cos(nφi)/N, (3.5)

Qn,y = ∑
i

sin(nφi)/N. (3.6)

In complex notation,

Qn =
1
N

N

∑
j=1

einφj . (3.7)

Note that vn are measured in momentum space. Fig. 3.4 illustrates the momentum

anisotropy quantified by vns. In fact, large vns are strong signal of collective behaviour

and are evidence of the existence of QGP after the collisions [96]. In the absence of QGP

formation, hadrons formed in collisions will still interact with each other to generate vns,

though their magnitude will be much smaller than what is observed in experiments [97].

Fig. 3.5 illustrates momentum anisotropy from collective behaviour.

Harmonic response coefficients are typically measured by correlations between differ-

ent particles. Since all particles are correlated with the reaction plane, it stands to reason

that they are correlated amongst themselves. There are many different methods to ex-

tract vn from experiments and they can be described in terms of the flow vectors for an

event. Two popular methods to measure vns are described here.
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Figure 3.5: Illustration showing the conversion of pressure gradients to momentum anisotropy.

Because of collective behaviour, there is larger pressure gradient in x direction than

in y direction. This contributes to positive v2. v3 is generated from the fluctuations in

nucleon position within the nuclei (and sub-nucleonic fluctuations not shown here).

Figure taken from [98].

3.3.1.1 Scalar product method

The scalar product (SP) method uses correlations between particles of interest (for ex-

ample particles around some pT at mid-rapidity) with reference particles (for example

particles in a broader pT range in some different rapidity bin). vn{SP} is defined as [99]

vn{SP}(pT) =
〈Re[Qn(pT)(Q

re f .
n )∗]〉√

〈Qre f .
n (Qre f .

n )∗〉
, (3.8)

where angular brackets denote an average over events.

3.3.1.2 Two particle cumulant method

Another commonly used method directly calculates two-point correlations between the

reference particles [100, 101]. The 2-particle correlator 〈2〉n is defined as

〈2〉n =
1

N(N − 1)

N

∑
i,j;i 6=j

ein(φi−φj) =
N|Qn|2 − 1

N − 1
. (3.9)

The 2-particle correlator is then averaged over all events with the weight N(N − 1) to

give 〈〈2〉〉n. Two particle cumulant is then given by

vn{2} =
√
〈〈2〉〉n. (3.10)
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Figure 3.6: Illustration of EP correlators. When the event planes of v2 and v3 are perfectly aligned,

then 3 · 2 ·Ψ2− 2 · 3 ·Ψ3 = 0 and cos[6(Ψ2−Ψ3)] = 1 (left). When they are not perfectly

aligned, then the EPs are decorrelated and cos[6(Ψ2 −Ψ3)] < 1 (right).

The procedure can be extended to measure pT dependent differential vn. Instead of 2-

particle correlators, one can also use any 2k-particle correlator to obtain vn{2k}, where k

is an integer [101].

3.3.2 Event-plane (EP) correlators

Correlators between the event-plane angles (Ψn) defined in eq. (3.4) can be measured.

These correlators will play an important role later in this work. These provide informa-

tion about the fluctuations and their correlations in the QGP. Two and three plane EP

correlators are given in terms of the flow vector as [102, 103]

cos[c1n1Ψn1 − c2n2Ψn2 ] =
Re[〈Qc1

n1(Q
c2
n2)
∗〉]√

〈Qc1
n1(Q

c1
n1)
∗〉
√
〈Qc2

n2(Q
c2
n2)
∗〉

, (3.11)

cos[c1n1Ψn1 + c2n2Ψn2 − c3n3Ψn3 ] =
Re[〈Qc1

n1Qc2
n2(Q

c3
n3)
∗〉]√

〈Qc1
n1(Q

c1
n1)
∗〉
√
〈Qc2

n2(Q
c2
n2)
∗〉
√
〈Qc3

n3(Q
c3
n3)
∗〉

.(3.12)

For 2-plane EP correlators c1n1 − c2n2 = 0 and for 3-plane EP correlators c1n1 + c2n2 −

c3n3 = 0.

EP correlators measure the decorrelation between different event planes as shown

in fig. 3.6, which is caused by event-by-event fluctuations in the collision events. EP

correlators are crucial in quantifying and understanding these fluctuations.
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3.3.3 Linear and non-linear response

Higher harmonic coefficients (v4, v5, v6) can be understood as a sum of linear response

to the initial state spatial anisotropy of the same order and a non-linear hydrodynamic

response to smaller order harmonics. If we denote the magnitude and phase of vn as

Vn = vneinΨn , (3.13)

the linear (VL
n ) and the non-linear (χnpq) response coefficients can be defined as

Vn = VL
n + ∑

n=p+q
χnpqVpVq. (3.14)

Specifically, we have [104]

V4 = VL
4 + χ422(V2)

2, (3.15)

V5 = VL
5 + χ523V2V3, (3.16)

V6 = VL
6 + χ6222(V2)

3 + χ633(V3)
2, (3.17)

with

χ422 =
〈V4(V∗2 )

2〉
〈|V2|4〉

, χ523 =
〈V5V∗2 V∗3 〉
〈|V2|2|V3|2〉

, χ6222 =
〈V6(V∗2 )

3〉
〈|V2|6〉

, χ633 =
〈V6(V∗3 )

2〉
〈|V3|4〉

. (3.18)

3.4 jet observables

Energetic parton jets open up another probe into QGP. Usually formed in pairs by an

initial hard scattering, parton jets travel near the speed of light and lose energy by in-

teracting with the medium. While both the jets in a dijet pair are created back-to-back

with the same momentum at the initial collision time, they may lose different amounts

of energy depending on the path-length travelled through the QGP medium. Parton jets

hadronize once they leave the QGP and stream as energetic hadrons to the detector. The

more energetic jet of the pair is called the leading jet while the other one is called the

subleading jet. Our model for jet propagation through QGP is described in section 2.2.

Two popular hard observables that we will focus on are described here.
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Figure 3.7: Nuclear modification factor for inclusive jets with cone size R = 0.4 (left) and charged

hadrons (right). Data is from the ATLAS and CMS collaborations for
√

s = 5.02 TeV

Pb-Pb collisions in the 0− 10% centrality bin and it is compared to model calculations

from the JETSCAPE collaboration. Figure reproduced from [106].

3.4.1 Nuclear modification factor (RAA)

The nuclear modification factor is the clearest signal of jet energy loss in a medium. It is

defined as [105]

RAA(pT, y, φ) =
1

〈Ncoll.〉

dNAA

dpTdydφ

dNpp

dpTdydφ

. (3.19)

RAA is the ratio of multiplicity at nuclei-nuclei (A-A) collision to proton-proton (p-p)

collision. 〈Ncoll.〉 is the average number of binary collisions in a particular centrality class

which can be estimated based on a model. The ratio can be taken for charged hadrons

as a whole or specifically for identified jets inside a jet-cone of specified radius R. Radial

distance in the jet-cone r is defined as

r =
√
(η − ηjet)2 + (φ− φjet)2). (3.20)

Here, ηjet and φjet are the pseudorapidity and azimuthal angle of the jet-cone axis. Jet

cone size R implies r < R.
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Fig. 3.7 shows the RAA as a function of pT for both charged hadrons and inclusive jets.

Notice that the value of RAA is always less than 1, which is a consequence of quenching.

Jets in the QGP are suppressed as compared to vacuum jets.

3.4.2 Jet shape function

Along with total energy loss, we can also measure the distribution of energy inside the

jet cone. The jet shape function (ρ) is defined as [107]

ρ(r) =
1

∆rNjet
∑
jet

pjet
T (r− ∆r/2, r + ∆r/2)

pjet
T (0, R)

. (3.21)

pjet
T (x, y) is the sum of all particle tracks in the jet cone with radial distance x < r < y.

The averaging is over all the jets.

Those are the two ways of analyzing jets that are current, but we will focus on some-

thing different in this work. We will do the Mach cone analysis for jets which is related

to these observables.

3.5 heavy quarks in qgp

Heavy quark (charm and bottom) production in QGP is highly suppressed because of

their large masses. As a result, most heavy quarks are produced at the early stages of the

collision and propagate through the medium. Their typical decay times are usually larger

than the lifetime of QGP. Consequentially, heavy flavor hadrons provide an additional

probe into the QGP.

Similar to eq. (3.19), RAA can be defined for D and B mesons. Comparative analysis of

RAA from heavy and light flavor hadrons can help us understand the flavor dependence

of quenching in the QGP.
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3.6 electromagnetic observables

Electromagnetic (EM) probes (photons and dileptons) provide a unique window into

all stages of heavy-ion collisions. Once produced, EM probes only interact electromag-

netically. Since αEM is much smaller than the strong coupling αs, EM probes escape to

detectors without further interactions.

There are multiple sources of photon and dilepton emissions that cannot be differ-

entiated in an experiment. Photons can be produced through hard parton interactions

at the moment of collision (prompt photons), radiated from QGP and hadron gas or

formed by parton or hadron scatterings (thermal photons), or formed from the decay of

hadrons in the final stages of collisions (decay photons). Similar mechanisms exist for

dilepton production as well. Photon and dilepton multiplicity and v2 can be measured

in experiments. They help constrain physics of all stages of HIC. We have described the

mechanism of thermal photon production in section 2.4 and we will focus on just this

mechanism in this work in part II.

3.7 summary

In this chapter we have described some of the observables measured in the HIC exper-

iments, along the physical motivation in measuring them. Comparison between these

measurements with the phenomenological calculations helps us characterize the proper-

ties of the QGP and constrain the QCD physics. These observables will be calculated in

the framework described in chapter 2 in the remainder of this thesis.
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O U T L I N E O F T H E R E S T O F T H I S T H E S I S

In previous chapters, we have described the heavy-ion collision program, some of the

important experimental observables that are measured in these experiments and phe-

nomenological models that can be used to explain HIC data and extract physical insight.

Our goal in this thesis is to complete upon these models by adding real physical

processes that have so far been largely overlooked. In the soft sector, we study thermal

hydrodynamic fluctuations. In the hard sector, we study the medium response of parton

jets. We also explore the effects of out of equilibrium QGP on heavy quark dynamics.

In part II of this thesis, we explore the phenomenological implications of thermal

hydrodynamic fluctuations. Chapter 5 describes and motivates the study of thermal fluc-

tuations and outlines the progress made so far. We also explain the challenges that have

limited the development of a realistic hydrodynamic simulation with thermal fluctua-

tions. In chapter 6 we build on a previously developed perturbative approach [1] to

evaluate observables and ascertain whether a more realistic stochastic hydrodynamic

simulation is warranted. We even extended this model to calculate the photon spectrum

and anisotropy and obtained an interesting, albeit counterintuitive, result. With excit-

ing and promising results, we move on to chapter 7 and develop the tools for realistic

non-perturbative HIC simulation. We test and then use our new model to evaluate ob-

servables with shear fluctuations and identify those that are most susceptible to them. In

chapter 8, we finally include bulk fluctuations. We also comment on the effects of large

bulk viscosities and what it means for the validity of the hydrodynamic picture.

In part III we move on to hard processes that explore the perturbative regime of QGP.

Chapter 9 explores the consequence of jet energy loss feedback on the medium. We ex-

amine if such a process can be used to independently constrain the viscosity of QGP.

We also introduce our new concurrent jet-hydrodynamics framework. This new frame-

work is now ready to explore the difficult intermediate pT regime of HIC experiments.

41



42 outline of the rest of this thesis

Chapter 10 studies heavy-quark dynamics in QGP. We evaluated the viscous corrections

to the collisional energy loss of heavy quarks. We also evaluated the drag and diffusion

coefficients of heavy quarks in QGP, which is a fundamental transport property of the

system.

In part IV we summarise and discuss our results.



Part II

T H E R M A L H Y D R O D Y N A M I C F L U C T U AT I O N S
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H Y D R O D Y N A M I C F L U C T U AT I O N S I N H I C

Particle anisotropies measured in HIC are often considered to be signals of initial-state

fluctuations (see section 3.3). However, thermal hydrodynamic fluctuations are another

source of fluctuation that could lead to similar indistinguishable signatures in final state

observables. These have largely been ignored in phenomenological simulations up to

now and their effects therefore remain unassessed. One of the purposes of this work

is to remedy this. In order to extract QGP properties from observables, all sources of

fluctuations need to be accounted for in simulations. We have developed a mechanism

to study thermal fluctuations.

5.1 linear response theory

Linear response theory describes the behaviour of a system perturbed slightly from equi-

librium. Thermal fluctuations could be seen as small perturbations from a system’s equi-

librium and hence could be treated by the linear response theory. A detailed discussion

can be found in standard textbooks like [108, 109]. We summarise the theory here.

Suppose a system with Hamiltonian H at equilibrium feels an external perturbation.

In the Heisenberg picture, one can express this as a small perturbation to the time-

dependent Hamiltonian

H′(t) = H(t) + δH(t), (5.1)

where H′ is the new Hamiltonian and δH is the small external perturbation. The per-

turbation was switched on at time t0. The change in value of a field operator φ(x, t) is

governed by the Heisenberg equations of motion

∂φ(x, t)
∂t

= i[H′(t), φ(x, t)]. (5.2)

44
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If |j〉 forms a set of eigenstates for H, we can write

∂〈j|φ(x, t)|j〉
∂t

= i〈j|[δH′(t), φ(x, t)]|j〉. (5.3)

Since δH is only a small perturbation, up to first order we can get

δ〈j|φ(x, t)|j〉 = i
∫ t

t0

dt′〈j|[δH(t′), φ(x, t)]|j〉. (5.4)

For a system in equilibrium, the expectation value of an operator can be given as

〈φ(x, t)〉 = 1
Z ∑

j
e−βH〈j|φ(x, t)|j〉, (5.5)

where β = 1/T, T is temperature and Z = ∑j e−βH is the partition function. So, we get

δ〈φ(x, t)〉 = i
∫ t

t0

dt′Tr

{
e−βH

Z [δH(t′), φ(x, t)]

}
. (5.6)

Now, a perturbation to the Hamiltonian could be considered as the coupling of an

operator to an external field A. We can then write

δH(t) =
∫

d3xφ(x, t)A(x, t). (5.7)

From eq. (5.6) and eq. (5.7), we can write

δ〈φ(x, t)〉 =− i
∫ t

t0

dt′
∫

d3x′A(x′, t′)Tr

{
e−βH

Z [φ(x, t), φ(x′, t′)]

}
, (5.8)

=
∫ ∞

−∞
dt′
∫

d3x′A(x′, t′)GR(x, t; x′, t′). (5.9)

Here we have used the retarded Green’s function GR defined as

iGR(x, t; x′, t′) ≡ Tr

{
e−βH

Z [φ(x, t), φ(x′, t′)]

}
θ(t− t′). (5.10)

θ(t − t′) is the Heaviside step-function ensuring that GR is non-zero only for t > t′.

Consequently, we have changed the upper limit of integration to ∞ in eq. (5.9). The

lower limit is taken to −∞ as the external field A is turned on only at t0.

Since this is for a system in equilibrium, the Green’s function depends only on the

difference of coordinate values, allowing us to write

GR(x− x′, t− t′) =
∫ dωd3k

(2π)4 ei[k·(x−x′)−ω(t−t′)]GR(ω, k), (5.11)

A(x′, t′) =
∫ dωd3k

(2π)4 ei[k·x′−ωt′]A(ω, k). (5.12)



46 hydrodynamic fluctuations in hic

This leads to a useful relation of linear response theory in momentum space

δ〈φ(ω, k)〉 = A(ω, k)GR(ω, k). (5.13)

For t > t′, we could also define the other Green’s functions describing the system as

iG>(x− x′, t− t′) =〈φ(x, t)φ(x′, t′)〉 = Tr

{
e−βH

Z φ(x, t), φ(x′, t′)

}
, (5.14)

iG<(x− x′, t− t′) =〈φ(x′, t′)φ(x, t)〉 = Tr

{
e−βH

Z φ(x′, t′), φ(x, t)

}
. (5.15)

In momentum space, the symmetrized Green’s function is given as

GS(ω, k) = G>(ω, k) + G<(ω, k). (5.16)

Here G>(ω, k) and G<(ω, k) are Fourier transforms of the Green’s functions defined in

eq. (5.14) and eq. (5.15) respectively.

5.2 fluctuation-dissipation theorem

The generalized fluctuation-dissipation theorem can be stated as [110]

GS(ω, k) = −2[nB + 1]ImGR(ω, k). (5.17)

Here nB = (eβω − 1)−1 is the Bose-Einstein distribution function. In the limit ω → 0 and

k → 0, the fluctuation-dissipation theorems reduce to Kubo relations and are used to

give statistical mechanic definitions of the dissipative transport coefficients [111].

The second law of thermodynamics states that a closed system will maximize its en-

tropy. It was soon realized that this law is valid on the level of ensemble averages and

individual systems may deviate from the maximal entropy condition. This was discov-

ered for Brownian motion [112] and for electric field fluctuations [113] before being

generalized as the fluctuation-dissipation theorem by Callen and Welton [110]. As illus-

trated in fig. 5.1, fluctuations take the system away from the maximal entropy condition

while dissipation brings it back. At equilibrium they balance each other out.

Hydrodynamics is a macroscopic theory that is agnostic to the details of underlying

interactions between the constituent particles of the fluid. The scale separation between
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Figure 5.1: Illustration of the fluctuation-dissipation theorem for a closed system of gas

molecules.

the microscopic interactions and the macroscopic behaviour of a system is a necessary

condition for the applicability of hydrodynamics. This is usually quantified by the di-

mensionless Knudsen number defined in eq. (2.13). Consequently, hydrodynamics deals

with locally averaged thermodynamic quantities like temperature, pressure, etc. These

quantities could fluctuate about these average values on a mesoscopic scale. These fluctu-

ations are called thermal hydrodynamic fluctuations and are described by the fluctuation-

dissipation theorem.

Hydrodynamic fluctuations can be seen as a consequence of random microscopic

fluxes. While hydrodynamics treats fluids as a continuum, they are composed of finite

number of particle which interact with each other. Finite particle number effects cause a

deviation from the continuum description. These deviations are the thermal fluctuations.

Studies of thermal hydrodynamic fluctuations, which are quantified by the fluctuation-

dissipation theorem, use one of the two approaches: the deterministic approach and

the stochastic approach. Both of these approaches have their strengths and challenges

and they complement each other; this work focuses on the stochastic approach. But we

begin by discussing the deterministic approach in the next section for completeness and

context.
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5.3 deterministic treatment of thermal fluctuations

Deterministic approaches typically rely on the separation of scales between the micro-

scopic dynamics of the system, the mesoscopic scale of thermal fluctuations and the

macroscopic scale of the long wavelength hydrodynamic modes. Off-equilibrium fluc-

tuations are treated as additional slow modes and are evolved by deterministic partial

differential equations coupled to the hydrodynamic equations. In the context of heavy-

ion collisions, rapid progress has been made in this direction in the last few years. This

has been motivated in part by the search for the critical point in the QCD phase diagram.

We expect to see an enhancement in fluctuations near the critical point. A recent review

of thermal fluctuations in this context is given here [114].

It has been long known that the thermal fluctuations in fluids give rise to fractional

powers in the fluid response function at low frequencies (for example, see [115])

GR ∼ ω3/2. (5.18)

This is formally more significant than the second order terms in hydrodynamics (order

1.5 vs order 2). As described in section 2.1.2, we use second order hydrodynamics for

preserving causality. A consistent treatment of second order hydrodynamics therefore

demands that order 1.5 terms coming from thermal fluctuations be included. This 3/2

response also gives rise to the parametrically slow decay of fluctuation modes. This is

known as the "long-time tail". This has been shown in the context of relativistic hydro-

dynamics [116].

Hydro-kinetics is an approach that has recently become popular in the field [117–121].

In hydro-kinetics, a dissipative scale k∗ is obtained. For frequency ω, k∗ is given as

k∗ =
(

ω

γ

)1/2

. (5.19)

Here γ is the dissipative constant. For example, for shear viscosity, γ = γη = η
ε+P .

Waves with wavenumbers k >> k∗ are damped too fast compared to the timescale

2π/ω. Consequently, these waves are equilibrated. Waves with k ∼ k∗ are of interest as

they deviate away from equilibrium.

One can define equal-time two-point correlators of hydrodynamic fields φ(t, x) as

Nab(t, x, y) = 〈φa(t, x)φb(t, y)〉. (5.20)
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The hydrodynamic equations are expanded up to linear order in thermal fluctuations

with an added stochastic term. The two point correlator of the stochastic noise term

is given by the fluctuation-dissipation theorem. These equations are written in momen-

tum space where the time evolution equation for the Fourier transform of Nab is de-

rived. These evolution equations, coupled with the hydrodynamic equations, can now

be evolved in a 3+ 3+ 1 D space. At any time, we can get the two-point correlation func-

tion Nab by solving these equations that gives us all the information about the thermal

noise in the system.

Hydro-kinetic equations have been derived for a conformal fluid in static and Bjorken

expanding medium [117], for a non-conformal fluid (one with non-zero bulk viscosity)

in static and bulk expanding medium [118], for a Bjorken expanding conformal charged

fluid [119], for a general flow [120] and for a general relativistic flow [121]. The detailed

equations and their derivations can be seen in the appropriate references.

The Hydro+ approach combines the out of equilibrium fluctuations along with pa-

rameterically slow modes near the critical point [122]. Recently, numerical simulations

of QGP near the critical point have been done, albeit in simplified models which do not

capture all the physical effects [123, 124].

An approach analogous to hydro-kinetics is the "diagrammatic approach" that treats

hydrodynamics as an effective field theory. In these theories, two-point correlators are

represented as propagators. Recent progress in this direction can be found in [116, 125–

130].

5.3.1 Renormalization of thermal noise

A universal feature of all deterministic approaches is their treatment of ultraviolet diver-

gences. Hydro-kinetic equations invariably give divergent solutions for high wavenum-

bers. In the diagrammatic calculations, these could be seen as the effect of divergent

loop diagrams. We also see this divergence problem in the stochastic method, where our

approach to deal with this issue is explained in the subsequent chapters.

High wavenumber modes, being near equilibrium, have known analytic behaviour. In

the analytic approach, a high wavenumber cutoff pcut is introduced. These modes above
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pcut are absorbed in the hydrodynamic fields and transport coefficient in the equations

such that the final results are cutoff independent.

This effectively brings corrections to the hydrodynamic quantities like energy density

and pressure and on transport coefficients, e.g. shear and bulk viscosities. As the correc-

tions to transport coefficients derived are inversely proportional to themselves, thermal

fluctuations effectively place a minimum bound on transport coefficients. Lower bounds

on the different transport coefficients have been derived for static as well as expanding

fluids [116–119, 126].

5.3.2 Strengths and Challenges

The deterministic approach is computationally less demanding. As the numerical solu-

tion of the equations does not involve sampling random noise terms, a single solution

run gives all the information about the fluctuations contained in the equation. On the

other hand, the stochastic approach requires large statistics as we need to effectively

cover the entire range of the distributions by our sampling of the random terms.

The major challenge of the deterministic approach is that it is very difficult to obtain

n-point correlators from it for n > 2. In the stochastic method, fluctuations evolve dy-

namically through the non-linear hydrodynamic equations and, in principle, any n-point

correlator can be evaluated. This is crucial for studying critical fluctuations near the QCD

critical point as the signals of these fluctuations will arise in the skewness and curtosis

of the particle multiplicities. Skewness and curtosis are respectively signatures of the

three and four point correlators. There is no way of evaluating these in the most current

deterministic theories. A recent work gives a theory for deterministic evaluation of the n-

point correlators [131]. However, this theory has only been written to tree-diagram level

and it is not obvious how to remove divergences from this theory. Though this theory

presents an important development towards the solution of a long-standing problem, it

remains to be tested if this theory produces cutoff independent results.

Another difficulty of using the deterministic approach is the complication of the equa-

tions. This involves solving for many variables in a 3+ 3+ 1 dimensional space. Because
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of the associated difficulties, the numerical simulations using the Hydro+ evolution of

only the two-point correlators has been limited to simplified flows [123, 124]

5.4 stochastic treatment of thermal fluctuations

In hydrodynamics, thermal fluctuations can be treated by adding a stochastic component

(Sµν) to the energy-momentum tensor as given in eq. (2.7) [132].

Tµν = Tµν
id. + Tµν

vis. + Sµν. (5.21)

Sµν is a random fluctuating term. Consequently, the energy-momentum conservation

equation (∂νTµν = 0) is modified from a partial-differential equation (PDE) to a stochastic

partial-differential equation (SPDE). This cannot be simply solved by ordinary Riemann

integrals. Unlike ordinary PDEs, SPDEs take distributions as boundary conditions and

have distributions as solutions. We need to use the Stratonovich definitions of the inte-

grals [64]. MUSIC uses Heun’s method (see section 2.1.2.2) for temporal evolution, which

is consistent with Stratonovich integrals. For details on various definitions of stochastic

integrals, see [133].

The system of equations are closed by the fluctuation-dissipation theorem. For rela-

tivistic fluids following the first order Navier-Stokes hydrodynamics, this can be repre-

sented by two-point correlation functions [132]

〈Sµν(x1)Sρσ(x2)〉 = 2T
[

η (∆µρ∆νσ + ∆µσ∆νρ) +

(
ζ − 2

3
η

)
∆µν∆ρσ

]
δ4(x1− x2). (5.22)

Here x1 and x2 are space-time four-vectors. The noise correlation, as characterized by a

four-delta function, is called white noise. In this form, noise at any point in space-time

is uncorrelated to noise at any other point in space-time.

Equation 5.22 can be seen as the hydrodynamic limit of eq. (5.17). Hydrodynamics can

be written as an effective field theory were the retarded and the symmetrized Green’s

functions can be evaluated. The fluctuation-dissipation theorem reduces to eq. (5.22) for

Navier-Stokes hydrodynamics. For a pedagogical discussion on this, see [134]. Alterna-

tively, eq. (5.22) can be derived directly by considering the response of hydrodynamic

variables to random fluctuations. This can be seen for the non-relativistic fluids in [135]

and for relativistic fluids in [132].
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In causal hydrodynamics, a fluctuation cannot decay instantaneously, i.e. the noise

cannot be white in the temporal direction. For Muller-Israel-Stewart hydrodynamics, the

noise term is evolved by a differential equation with a relaxation time built in. The noise

term can be further divided into the term associated with the shear dissipation (Sπ) and

the term associated with bulk dissipation (Sµν
Π ).

Sµν = Sµν
π + SΠ∆µν (5.23)

Similar to eqs. (2.10) and (2.11), their evolution equation can be given as

∆µ
α∆ν

β(u.∂)Sαβ
π = − 1

τπ
(Sµν

π − ξµν)− 4
3

Sµν
π θ, (5.24)

and

(u.∂)SΠ = − 1
τΠ

(SΠ − Ξ)− 2
3

SΠθ. (5.25)

Here ξµν and Ξ are random stochastic terms determined by the fluctuation-dissipation

theorems

〈ξµν(x1)ξ
ρσ(x2)〉 = 2Tη

[
∆µρ∆νσ + ∆µσ∆νρ +−2

3
∆µν∆ρσ

]
δ4(x1 − x2), (5.26)

and

〈Ξ(x1)Ξ(x2)〉 = 2Tζδ4(x1 − x2). (5.27)

The derivation of stochastic second-order causal hydrodynamics can be found in [64,

136–139]

The stochastic treatment entails numerically solving the set of SPDEs. The equations

are typically solved on a grid and the noise terms (ξµν, Ξ) are randomly sampled from

a distribution with variances given by eqs. (5.26,5.27). Each possible series of noise term

samplings give rise to a possible sample path. To obtain a statistically significant solution

of the equations, a large number of sample paths are required. We go into more details

of the stochastic treatment in subsequent chapters.

Naively, once we have the energy momentum equations in hand, along with the equa-

tions for the stochastic term (eqs. (5.21) and (5.23) to (5.27)), we just need to use a suitable

numerical algorithm to solve these equations. However, there are certain challenges that

we run into once we get to solving these equations.
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5.5 challenges in stochastic treatment of fluctuations

5.5.1 Arbitrarily large gradients

The primary difficulty lies with the nature of the fluctuation term. The fluctuation-

dissipation theorem eqs. (5.26) and (5.27) describes what is known as white noise. The

delta functions in the two point correlation functions dictate that the fluctuation at a

point in space is un-correlated to fluctuations at any other point.

In numerical hydrodynamics, the natural choice to replace a continuous delta-function

would be the discreet Kronecker-delta divided by the inverse space-time volume of a cell

δ4(x1 − x2)→
1

∆V∆t
δ4

1,2. (5.28)

∆V is the spatial volume of a fluid cell and ∆t is the size of a time step. In discretized

hydrodynamics, the Kronecker-delta ensures that the stochastic-term sampled in a space-

time cell is uncorrelated to the stochastic term in any other space-time cell. This essen-

tially means that stochastic terms could be sampled independently in different cells from

a given distribution.

While independent samplings are technically easier to do, this method leads to an

obvious difficulty. Now, the strength of the stochastic term is inversely proportional to

the cell volume. Discretized hydrodynamics approaches continuum hydrodynamics in

the limit ∆V → 0 and ∆t → 0. To incorporate higher and higher wavenumber modes

in our calculation, we would need to go to lower and lower cell size. However, in this

situation, lower cell sizes imply a larger stochastic term. Also, the stochastic contribution

in any one cell is uncorrelated to any other cell. This leads to arbitrarily large gradients.

All PDE solvers assume a smooth slowly varying function to some degree and no algo-

rithm can deal with arbitrarily large gradients, especially when that gradient is between

every pair of neighboring cells. Eventually, numerical hydrodynamics breaks down.

These large gradients are illustrated in fig. 5.2. In addition to algorithm failure, large

gradients create another issue. As we can notice in fig. 5.2, some cells have negative en-

ergy densities. This happens when we use small cell sizes and fluctuations become large.
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Figure 5.2: Typical energy density profiles for hydrodynamic evolution without (left) and with

(right) thermal fluctuations.

Now fluctuations, by their very nature, could be both positive and negative. Sometimes

fluctuations in local energy density could be larger than the local energy density itself

and also be negative. This leads to net negative energy density, which is obviously un-

physical. The equation of state is undefined for these points and the whole calculation

breaks down.

As we have discussed above, these technical difficulties are a consequence of the dis-

cretization of delta-functions locally at each space-time cell. Delta function source terms

appear in many situations in physics in general and in fluid dynamics in particular. The

most common method to avoid these problems is by smearing the delta-functions. A

delta function can be replaced by some Gaussian function (instead of discrete Kronecker-

deltas, as we have done). This technique has been used in later parts of this thesis for

dealing with energy depositions from jets. However, what makes this problem unique

is that, in this case, these stochastic source terms are present throughout the space-time

evolution. Any naive arbitrary smearing procedure may introduce artificial long-range

correlations. These correlations will be indistinguishable from the physical long range

correlations introduced by the evolution of the fluctuation terms. Consequently, we will

not be able to separate the clear signal of thermal fluctuations from spurious smearing

effects.

Another way around this quandary may be to use a more realistic theory having colored

fluctuations. That will surely give us a physical correlation length and get us around this
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arbitrary smearing width problem. In the next section, we make the case for white noise

and argue why we think that even if there is a theory of colored noise, it may not help

our situation.

Stochastic hydrodynamic simulations have been performed for simplified flows [132,

140], for the diffusion equation [141–145] and using a smearing mechanism [146, 147].

Our goal is to develop a consistent method of solving stochastic hydrodynamics in real-

istic simulations of QGP.

5.5.2 Argument for white noise

In any real physical fluid, local fluctuations at the mesoscopic level arise due to random

fluxes at the microscopic level. Consequently, a more sophisticated theory of thermal

fluctuations would describe a spatially correlated noise or colored noise.

However, a back of the envelope calculation shows that white noise is adequate for

our purposes. The relaxation time is a good approximation for the correlation length of

thermal fluctuations. A fluctuation would decay in a time on the order of the relaxation

time. Because of causality, that is the maximum length it could travel. For heavy-ion

collisions, the peak temperatures (where the fluctuations are highest) can be higher than

0.5 GeV. The shear viscosity over entropy density value is of the order 0.1. From eq. (2.17),

this will lead to shear relaxation time of τπ =
5η

(ε + P)
=

5η

Ts
≈ 5 ∗ 0.1/0.5 GeV−1 = 1 GeV

−1 ≈ 0.2 fm. This is of the order of the cell width used in a typical heavy-ion collision

simulation.

Numerical hydrodynamics relies on the choice of cell widths to be much smaller than

the scale of physics being explored. Strictly speaking, simulations cannot resolve any

mode with wavelength smaller than 2x where x is the cell dimension. However, for the

reasonable convergence of solutions, the wavelength of the mode being studied should

be much larger than 2x.

This shows that even if we had a good theory of colored fluctuations, we would not be

able to resolve it in our simulations, at least not with existing resources. As a rough esti-

mate, it would require us to divide each cell in ten parts to be able to reasonably resolve

a theory of colored noise. This is ten parts in each spatial direction which translates to
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an increment of order 1000 times in number of grid cells. On top of that convergence

requirements dictated by the CFL (Courant-Friedrichs–Lewy) condition [148] would re-

quire the time step size to be reduced by a factor of 10. This would amount to an increase

in the computational resource requirement by four orders of magnitude.

Even if we were to explore the system at those scales, we would not necessarily gain

much insight as most observables that we observe in experiments are not really sensitive

to that scale. What we are interested in is the contribution of thermal fluctuations at the

scales that we are currently exploring in heavy ion collisions.

For that purpose, the theory of white noise is adequate. The requirement is to properly

sum over the very short length scale modes and have a theory of fluctuations at the scale

we are interested in.

5.6 summary

In this chapter we have discussed the theory of thermal fluctuations and how it applies

to relativistic fluid dynamics for HIC. In sections 5.1 and 5.2, we described the linear

response theory and the general fluctuation-dissipation theorem respectively. The deter-

ministic approach of treating thermal hydrodynamic fluctuations in HIC is summarized

in section 5.3 along with its advantages and limitations.

The stochastic approach is introduced in section 5.4. In section 5.5, we explain the

challenges that have so far hindered the inclusion of thermal hydrodynamic fluctuations

in realistic simulations of HIC. In the rest of the chapters in this part of the thesis, we

develop a mechanism to overcome these challenges and do realistic simulations includ-

ing thermal fluctuations. We will evaluate the experimental observables and estimate the

effects of these fluctuations.
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F L U C T U AT I O N S A S P E RT U R B AT I O N

One way to sidestep some of the challenges of the stochastic method is to treat ther-

mal fluctuations as perturbations on top of the background fluid evolution [1]. This

method was extended in this work. In this chapter, we have neglected the contribution of

bulk viscosity (and associated fluctuations) and focus on the effects of shear fluctuation-

dissipation theorem.

6.1 perturbative stochastic hydrodynamics

The conventional non-fluctuating hydrodynamics can be treated as an ensemble aver-

aged version of fluctuating hydrodynamics. All independent hydrodynamic variables

can be expanded around their ensemble averaged values.

A fluctuating correction is associated with every hydrodynamic variable and all the

equations are expanded up to linear order in these fluctuations. In this chapter, we de-

note the averaged non-fluctuating quantities with a subscript 0 and the fluctuations with

a δ. Consequently, we have energy density ε = ε0 + δε, pressure P = P0 + δP, flow

velocity uµ = uµ
0 + δuµ

0 and shear viscous tensor πµν = π
µν
0 + δπµν. Ideal part of the

energy-momentum tensor can also be separated into an average and a fluctuating contri-

bution.

Tµν
id. = Tµν

id.0 + δTµν
id. , (6.1)

=⇒ Tµν
id.0 + δTµν

id. = [(ε0 + δε + P0 + δP)(uµ
0 + δuµ)(uν

0 + δuν
0)− (P0 + δP)gµν], (6.2)

=⇒ δTµν
id. = (δε + δP)uµ

0 uν
0 + (ε0 + P0)(u

µ
0 δuν + δuµδuν

0)− δPgµν. (6.3)

As usual, the full hydrodynamic equations are

∂νTµν = ∂ν(T
µν
id.0 + δTµν

id. + π
µν
0 + δπµν + Sµν

π ) = 0. (6.4)

57
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Also, the equations for averaged quantities also hold

∂ν(T
µν
id.0 + π

µν
0 ) = 0, (6.5)

which gives us the equations for the fluctuating quantities

∂ν(δTµν
id. + δπµν + Sµν

π ) = 0 (6.6)

Equation for δπµν can be derived by starting from the equation for πµν and taking

fluctuations to all quantities up to linear order

δ[∆µ
α∆ν

β(u.∂)παβ] = − 1
τπ

(δπµν − δσµν)− 4
3

δ[πµνθ] (6.7)

Further, we need to satisfy the condition of the shear term being transverse to uµ to all

orders. So, using uµ0π
µν
0 = 0, up to linear order, we get

(uµ0 + δuµ)(π
µν
0 + δπµν) = 0, (6.8)

=⇒ uµ0δπµν + δuµπ
µν
0 = 0. (6.9)

Using eq. (6.7) along with eq. (6.9), we get the evolution equation for δπµν. The details

of the derivation can be seen in [1]. Here we quote the final equation

(u0 · ∂)δπ
′µν =− 1

τπ
[δπ

′µν − δσµν − ξµν]− 4
3
(∂ · δu)πµν

0 −
4
3
(∂ · uu0)δπ

′µν

− δuµ((u0 · ∂)u0α)π
αν
0 − uµ

0 ((δu · ∂)u0α)π
αν
0

+ uµ
0 ((u0 · ∂)δuα)π

αν
0 − uµ

0 ((u0 · ∂)u0α)δπ
′αν

− δuν((u0 · ∂)u0α)π
αµ
0 − uν

0((δu · ∂)u0α)π
αµ
0

+ uν
0((u0 · ∂)δuα)π

αµ
0 − uν

0((u0 · ∂)u0α)δπ
′αµ

− (δu · ∂)πµν
0 . (6.10)

Here we have defined δπ
′µν = δπµν + Sµν

π . δσµν is the fluctuation in Navier-Stokes tensor

(see section 2.1.2). ξµν is a random source term with its autocorrelation given by eq. (5.26).

6.2 hydrodynamic simulations

MUSIC was used to solve the equations for perturbative fluctuations on top of the av-

eraged quantities. MUSIC used the Kurganov-Tadmor method for solving the averaged
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quantities. Fluctuating quantities were solved at each time step using the simpler Mac-

Cormack method [149]. At each time-step, after solving for averaged quantities using

MUSIC, fluctuating quantities were solved for as follows

1. We use eq. (5.26) to evaluate the fluctuating source term ξµν at each time step in

each cell. ξµν is sampled in the local rest frame and then boosted to the lab frame.

In the local rest frame ξ0ν = 0 and eq. (5.26) reduces to

〈ξ ij(x1)ξ
kl(x2)〉 = 2Tη

[
δikδjl + δilδjk +−2

3
δijδkl

]
δ4(x1 − x2) (6.11)

Independent components of ξµν are sampled from Gaussian random numbers with

the width of the distribution given by the root of the two-point correlators given in

eq. (6.11). The central limit theorem justifies our use of Gaussian random numbers.

2. We used eq. (6.10) to get δπµν + Sµν
π at the next time step.

3. δTµ0
id. at the next time step is determined using ∂0δTµ0

id. = −∂iδTµi
id.− ∂νδπµν − ∂νSµν

π .

4. δuµ, δε and δP are evaluated using a root-finding algorithm and eq. (6.3)

The perturbative stochastic hydrodynamic equations need initial conditions to evolve.

For this study, we have used the smooth optical Glauber model [37, 38] to initialize

MUSIC. Optical Glauber conditions simulate the energy distribution at the beginning

of a heavy-ion collision at a given impact parameter by assuming that the overlap area

after the collision contains energy proportional to the amount of nuclear matter pass-

ing through it. Distribution of nuclear matter in an uncollided nucleus follows smooth

Woods-Saxon distribution. For details, see section 2.1.1.

Optical Glauber model gives simplistic initial conditions which crucially miss the ini-

tial state fluctuations. The motivation at this stage of the study is to get an intuition into

the effects of thermal fluctuations rather than doing a realistic quantitative estimation

of experimental observables. To this effect, the optical Glauber model serves our pur-

pose while avoiding the complications of added sources of fluctuations. This simplistic

model also helps us side-step some of the issues described in section 5.5. Hydrodynamic

evolution begins at proper time τ = 0.4 fm. This proper time was chosen to match the

spectrum and flow data.
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Furthermore, we need an equation of state to close the system of equations. We have

used the lattice-QCD motivated s95p parameterization of the equation of state [150]. We

simulated 600 fluctuating events and shear viscosity to entropy density was set to 0.08.

This choice of viscosity is motivated by early phenomenological studies [32, 151, 152] as

well as the lower bound of 1/4π for shear viscosity to entropy density ratio predicted

using string theory methods [153].

6.3 momentum eccentricities

As the system evolves in this perturbative approach, all hydrodynamic quantities fluc-

tuate about the average values. We are interested in the effects of fluctuations averaged

over a large number of events. Thermal fluctuations could be both positive and negative

and cancel over large number of samplings. Consequently, we would not see any effect

on the total energy. This is also guaranteed by energy conservation, which the stochastic

hydrodynamics respects over ensemble averages.

The effects of fluctuations are visible over quantities which are dependent on the

higher order products of the fluctuating quantities. One of the crucial signatures of

collective behavior is the eccentricity (v2) in the observed particles. Momentum eccen-

tricity εp serves as a good proxy for the particle eccentricity during the hydrodynamic

evolution. Like v2, εp is a measure of the difference in momentum between the x and y

directions. It is defined as

εp =

√
〈Txx − Tyy〉2 + 〈2Txy〉2

〈Txx + Tyy〉2
(6.12)

For non-zero impact parameters, even smooth events have non-zero momentum eccen-

tricities. The imbalance in x and y directions come from the almond shape of the initial

energy distribution (see fig. 3.5). Adding fluctuations on top of this initial almond shape

further changes these eccentricities. Evolution of εp averaged over 600 Au-Au collision

events at
√

s = 200 GeV is shown in fig. 6.1. Here the impact parameter is 3 fm which

corresponds to 0− 5% centrality bin.

Both the averaged fluctuating and non-fluctuating curves in fig. 6.1, start at 0 eccen-

tricity as there is no flow at the beginning. They diverge quickly as the fluctuations build
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Figure 6.1: Evolution of momentum eccentricity as a function of proper time with and without

thermal noise. This is averaged over 600 noisy events for Au-Au collision system at
√

s = 200 GeV with impact parameter 3 fm.

flow pretty rapidly. Fluctuations are large at large temperature, so the fluctuation sizes

are also big initially, when the temperatures are higher. This contributes to development

of large flow at early times in fluctuating systems. Eventually, flow also develops in the

non-fluctuating system and the effect of noise is not as dramatic.

6.4 hadronic observables

As described in the first part part of this thesis, hydrodynamic isothermal surfaces can

be converted to hadrons using the Cooper-Frye prescriptions. This requires particle dis-

tribution functions for the hadrons which ensure the continuity of energy momentum

across the surface between hydrodynamics and kinetic theory (see section 2.1.3).

When hydrodynamics deviates from equilibrium, the particle densities used in the

Cooper-Frye distribution also need to have proper corrections. Here we have shear-

viscous and shear-fluctuation deviations from equilibrium. Consequently, there are vis-

cous and fluctuation corrections to the equilibrium particle distribution functions ( f0) [1]

f (p) = f0 + f0(1± f0)π0µν
pµ pν

2(e0 + P0)T2
0
+ δ f . (6.13)
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Figure 6.2: Differential vn for zero impact Au-Au collisions at
√

s = 200 GeV. Bands denote statis-

tical error bars.

Here p is the momentum of the particle. The sign ± is + for bosons and − for fermions.

Second term is the viscous correction derived using Grad’s 14 moment method and given

in eq. (2.34), while δ f denotes the fluctuation correction. We can evaluate δ f by Taylor

expanding equilibrium and shear terms in eq. (6.13) up to linear order in fluctuations.

So we get

δ f = δ f0 + δ f0(1± 2 f0)π0µν
pµ pν

2(e0 + P0)T2
0
+ f0(1± f0)δπ′µν

pµ pν

2(e0 + P0)T2
0

+ f0(1± f0)π0µν
pµ pν

2(e0 + P0)T2
0

(
−δe + δP

e0 + P0
− 2

δT
T0

)
. (6.14)

Here δπ
′µν = δπµν + Sµν

π . δ f0 is the fluctuation correction to the equilibrium term in the

eq. (6.13) and is given as

δ f0 = − exp(p · u/T0)

[exp(p · u/T0)± 1]2

(
δu · p

T0
− (p · u)δT

T2
0

)
(6.15)

In the last equation sign ± is + for fermions and is − for bosons.

We evaluated the hadronic observables described in section 3.3. As total energy is

conserved, particle multiplicities are not affected.

Differential vn is shown in fig. 6.2. One sees that v2 increases marginally with fluctua-

tions. Naively, the effect looks more pronounced on v3 and v4. However, that is because

fluctuations are the only source of triangularity (v3) and predominant source of qua-

druplicity (v4) in heavy-ion collisions. As we have no initial state fluctuations, without



6.5 photonic observables 63

 0

 0.2

 0.4

 0.6

 0.8

 1

 160  210  260  310  360
Npart

cos[8(Ψ2 - Ψ4)]

 0

 0.2

 0.4

 0.6

 0.8

 1

 160  210  260  310  360
Npart

cos[4(Ψ2 - Ψ4)]

 0

 0.2

 0.4

 0.6

 0.8

 1

 160  210  260  310  360
Npart

 0

 0.2

 0.4

 0.6

 0.8

 1

 160  210  260  310  360
Npart

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 160  210  260  310  360
Npart

cos[2Ψ2 - 6Ψ3 + 4Ψ4]

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 160  210  260  310  360
Npart

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 160  210  260  310  360
Npart

cos[-10Ψ2 + 6Ψ3 + 4Ψ4]

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 160  210  260  310  360
Npart

Figure 6.3: Hadronic event plane correlators defined in section 3.3.2 for Au-Au collisions at
√

s =

200 GeV. Bands denote statistical uncertainties.

thermal noise, these quantities are very low. v2 is primarily contributed by the initial

almond shape of energy distribution, hence, it is present even in the absence of thermal

noise.

To further get intuition into the possible signals of thermal fluctuations, we looked

at other observables. Interestingly, we observe significant effects on the event-plane cor-

relators. As described in section 3.3.2, event-plane correlators measure the correlations

between the planes of different vn. As such, they are very susceptible to fluctuations, ther-

mal or otherwise. We simulated 300 fluctuating events per 10% centrality from 0− 50%

centrality bins using smooth optical Glauber initial conditions. Appropriate impact pa-

rameters for different centrality bins were taken from [154]. Fig. 6.3 shows some of the

event-plane correlators. In absence of any fluctuations, all event-planes should be per-

fectly correlated and the value of all these event-plane correlators will be identically 1.0.

In presence of thermal fluctuations, both 2-plane and 3-plane correlators deviate signif-

icantly from that state. Should there be no other source of fluctuations, a measurement

of these correlators deviating from 1 would be a “smoking gun" signal of thermal fluctu-

ations. A more realistic study is performed later in this work.

6.5 photonic observables

As we observed in fig. 6.1, momentum eccentricities for fluctuating events deviated sig-

nificantly from the non-fluctuating events early in the evolution. As we discussed in
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Figure 6.4: Thermal photon v2 for fluctuating and non-fluctuating events with impact parameters

3 fm (left) and 7 fm (right). Bands denote statistical error bars.

section 3.6, electromagnetic observables provide us a window into all the stages of QGP

evolution. As such, we expect that enhanced εp to leave its impact on photon v2.

There is a puzzle in the field known as the photon v2 puzzle. Photon v2 evaluated

in the theoretical calculations [71] under-predict the values observed at the experiment

[155]. Since thermal fluctuations enhance overall hadron v2 (see fig. 6.2), one might ex-

pect it to narrow the difference observed in the photon v2 puzzle.

With this motivation, we evaluated the photon v2 for thermally fluctuating events and

compared them to non-fluctuating events. We added the fluctuation contributions to

2→ 2 photon production channels in the meson gas and QGP phases [156]. We used the

small momentum exchange forward scattering approximation in QGP phase [90] (see

section 2.4). The fluctuation correction in the distribution functions of these channels

is incorporated using eqs. (6.13) to (6.15). Photon v2, once evaluated is correlated with

the charged hadron v2 event-by-event using the scalar product method described in

section 3.3.1.1. This is done to mimic experimental procedure.

Fig. 6.4 shows photon v2 for two different impact parameters. Contrary to naive expec-

tations, thermal fluctuations end up reducing photon v2. It is interesting to investigate

the reasons for this counterintuitive behaviour. The clue lies in the large event plane

decorrelations observed in fig. 6.3.

Even though thermal fluctuations increase εp and consequently photon v2 in indi-

vidual events, this increase is completely uncorrelated to the charged hadron v2 of the
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Figure 6.5: Distribution of photon v2 event planes at pT = 1.413 GeV for fluctuating events with

impact parameter 3 fm.

underlying event. Consequently, when we evaluate the projection of photon v2 on the

charged hadron v2, we end up reducing the overall v2. This procedure is essential as it is

done in experiments. Because of low photon statistics in heavy-ion collisions, all photon

vn measurements rely on the correlation with charged hadron vn [155, 157].

This hypothesis is easy to verify. Fig. 6.5 shows the distribution of photon v2 event

planes between ±90 degrees for one transverse momentum for fluctuating events with

impact parameter 3 fm. Charged hadron event plane is predominantly determined by

the initial almond shape energy distribution and lies along the minor-axis of the ellipse.

However, as we can see in fig. 6.5, photon event planes are almost evenly distributed

across the semi-circle. This ensures a low projection of photon v2 on the charged hadron

v2 event plane.

6.6 summary

The motivation of this chapter was to explore the observable space to find if and where

can one expect to see the signals of thermal fluctuations. We observed, in simple settings,

that event-plane correlators are very sensitive to thermal fluctuations. We also observed
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that thermal fluctuations have a small effect of decreasing the photon v2 because of large

anti-correlations between the photon and charged-hadron planes.

This provides us the motivation to do more realistic studies with fluctuating initial

conditions and non-perturbative solution of stochastic equations. As noted in the begin-

ning of this chapter, this perturbative method only sidesteps the difficulties described in

section 5.5. Some of these difficulties reappear when we try to use small cells or when

we use fluctuating initial conditions, even with the perturbative method. We need more

robust methods for non-perturbative treatment which is the subject matter for the next

chapter.

We focus on hadronic observables from here on. A complete treatment including pho-

tons is left for future work.



7

N O N - P E RT U R B AT I V E T R E AT M E N T O F N O I S E

In this chapter, we move towards direct self-consistent solutions of stochastic viscous hy-

drodynamics equations. In section 5.5 we have discussed the challenges associated with

direct treatment of thermal noise. We saw that large gradients caused by the fluctuation

terms can cause difficulties for numerical algorithm implementations. To overcome these

difficulties, we have used a low pass noise filter.

7.1 noise filter

Hydrodynamics is a long-wavelength theory. The delta-functions in eqs. (5.26) and (5.27)

effectively incorporate fluctuations at all wavelengths, including infinitesimally small

wavelengths. Replacing the continuous Dirac-delta with discreet Kronecker-delta di-

vided by the cell volume as in eq. (5.28) cuts off all wavelengths below 2∆x where

∆x ∼ (∆V)1/3. In momentum space language, this translates to being restricted to small

wavenumber modes. The discrete-grid acts as a low pass filter allowing only modes with

wavenumber less than
2π

2∆x
.

Even after the low pass noise filter provided by discretization, we are left with large

gradients. Most algorithms for solving partial differential equations assume that the

underlying function that we are solving for varies slowly, at least over the length scale of

cell width. Clearly, by its very design, thermal fluctuations vary rapidly over this scale.

We need to put a lower wavenumber cutoff in the noise filter.

In the small wavenumber limit, the dispersion relation for small fluctuations in lin-

earized hydrodynamics is given as [116]

ω = ±csk− iγsk2/2 (7.1)

67
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where ω is the circular frequency of the mode, k is its wavenumber, cs is the speed of

sound and γs is the dissipative constant which is a function of viscosity. For shear modes,

γs =
2η

3(ε0 + P0)
and for bulk modes, γs =

ζ

2(ε0 + P0)
. The imaginary part of the disper-

sion relation goes as ω ∝ k2. As we see here, modes decay in time-frame proportional to

1/k2

In [117], a dissipative scale k∗ for thermal fluctuations was determined by comparing

the macroscopic frequencies to the dissipation rate. For Bjorken expansion, the macro-

scopic scale is given by the expansion rate
1
τ

.

ω =
2π

τ
∼ γsk∗2

2
(7.2)

k∗ ∼

√
4π

γsτ
. (7.3)

Very high wavenumber modes decay very rapidly to reach equilibrium and could be

absorbed in the equation of state. For our simulation, this cutoff scale is determined

by the relaxation time. Shear modes larger than wavenumber of the order
1

τπ
and bulk

modes larger than the order
1

τΠ
decay faster than the relaxation time and are effectively

at equilibrium. We would not be able to observe the effects of such fast modes.

We remove these modes by using an explicit noise filter. We locally determine the

wavenumber cutoff scale pcut in each spatial grid-cell at each sampling of the noise. pcut

is chosen to be of the form

pcut =
x

τπ
(7.4)

for shear modes. Here x is a number of order 1. We will illustrate the effect of explicit

choice of x in next sections. But once an x is chosen, we begin the next steps.

The noise source term tensor ξµν is sampled in the local rest frame (LRF) of each cell.

This step is similar to the sampling done in the perturbative approach. After sampling

our noise in LRF, we boost it to the lab-frame and put it through a wavenumber filter.

This filter is decided locally as temperature and energy density varies throughout the

system and accordingly the relaxation time is also different. In practice, our procedure

is as follows
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Figure 7.1: Sampled noise component ξ1,1 at midrapidity. Left: before removing high wavenum-

ber modes. Right: after removing modes larger than pcut = 0.6/τπ.

1. We numerically take the Fourier transform of all the independent terms of noise

source tensor ξµν. Now we have noise terms in momentum space with wavenum-

bers reaching up to
2π

∆V∆τ
. For numerical Fourier transforms, we use the FFTW

library [158].

2. We then do multiple inverse transforms imposing different cutoffs for each of them.

For example we have a series of cutoffs λ1, λ2, ... , λn. For each of these cutoffs we

set modes above appropriate λ to zero and then inverse transform to position space.

So we end up with a number of realizations of noise, all of which are derived from

our original sampling and have been put through different wavenumber filters.

3. Now in each cell (in position space) we determine what the local cutoff should be

and we use the appropriate inverse transform for that. For example, if λ1 < pcut <

λ2, we use the inverse transform with λ2 for that cell (higher cutoff, fewer modes

removed). So all the modes above λ2 are neglected for that position in space-time.

With this filtered noise source term, we solve the stochastic hydrodynamics equations

until freeze-out point and then follow up with particalization using Cooper-Frye mecha-

nism and hadronic cascade and decays using UrQMD model.
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7.2 tests in simple systems

We can get some intuition to check our implementation of thermal noise from the deter-

ministic calculations discussed in section 5.3. As we know, the average of thermal noise

would be zero. So, we have to go to two or higher point correlators. For simplicity, we

use two-point correlators. Specifically, we take inspiration from the two point correlators

evaluated in [117].

7.2.1 Two-point correlators in momentum space

To evaluate equal time two-point correlators of fluctuation modes, we evaluate 〈δpµ(k1)δpν(k2)〉

in our simulation and compare it to the equilibrium values. The averaging is over an en-

semble. Here δpµ is the fluctuation in four momentum. For convenience, we choose a

direction in momentum space by defining a unit vector (k̂).

As we are using white noise, at equilibrium, the two point correlators take the form

[117]

〈δpµ(τ, k1)δpν(τ, k2)〉 = N0δ3(k1 + k2). (7.5)

Equilibrium value N0 can be given by the equipartition function

N0 = T(ε0 + P0). (7.6)

We conveniently choose k2 = −k1 for our calculations. We evaluate 〈δpµ(k)δpν(−k)〉

at different distances from the origin in momentum-space in direction k̂. We work in

the basis formed by the unit vectors in the radial direction (1,±k̂) and two unit vectors

pointing to the directions orthogonal to the radial direction.

Components of δpµ along the radial directions are denoted by δp+ (for radial outward)

and δp− (for radial inward). Components along two orthogonal directions are denoted
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Figure 7.2: Snapshots of temperature fluctuations in a 2D slice of static fluid at a fixed time for

different values of x.

by δpT1 and δpT2 . Consequently, we have the following diagonal components of N in this

basis.

〈δp±(k1)δp±(k1)〉 = N++/−−δ3(k1 + k2) (7.7)

〈δpT1(k1)δpT1(k2)〉 = NT1T1δ3(k1 + k2) (7.8)

〈δpT2(k1)δpT2(k2)〉 = NT2T2δ3(k1 + k2) (7.9)

7.2.2 Static tests

Before we choose a particular value of x in eq. (7.4), we would like to examine how the

evolution differs for different choices of pcut. We begin by examining a static fluid. A

static fluid is normally at global equilibrium. Thermal fluctuations cause deviation from

this global equilibrium. We begin with a brick of fluid with energy density ε0 = 250

GeV/fm3. Subsequently, we evolve this fluid using the equations of stochastic dynamics

using ultraviolet noise filter with x values in eq. (7.4) as 0.5, 1 and 2. We have used

periodic boundary conditions. For these tests, the conformal equation of state is used. As

we take a conformal fluid, bulk viscosity is set to zero. Shear viscosity/entropy density

is fixed at 0.2.

In fig. 7.2, we see that the fluctuation domains are bigger for smaller x values and

smaller for larger x. Also, it is noteworthy that the fluctuation magnitude itself is larger

for larger x and smaller for smaller x. This of course is the consequence of using a more

stringent low pass filter at smaller x. Removal of high wavenumber modes effectively
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averages noise over nearby regions in physical space and forms bigger patches with

smaller fluctuation sizes.

Fig. 7.3 shows the ratio of two-point correlators in momentum space with their equi-

librium values for different times. These values are evaluated by averaging over 100

fluctuating static fluid events. The values are evaluated in the x-direction in momentum

space. The x-axis of the plot is written in the terms of a dimensionless quantity kx ∗ τπ.

Since, the cutoff scale is pcut = x/τπ, values 0.5, 1 and 2 on the x-axis of the plot represent

pcut for x 0.5, 1 and 2 respectively. We can see that the N/N0 values in our simulations

starts dropping much below the equilibrium values for wavenumbers slightly below the

pcut. Further, we see that the N/N0 ratios hovers around 1 (as expected). Finally, and

most crucially, the correlator values for different x values, i.e., correlator values for dif-

ferent wavenumber cutoffs pcut agree with each other for lowest wavenumber values.

This supports that if we are only interested in the physics over large spatial scales, we

can safely remove large wavenumber modes in our noise sampling by using a low pass

filter and still retain the relevant physics.

7.2.3 Bjorken tests

Tests in section 7.2.2 were done for a static fluid at global equilibrium. Obviously, this

is not a real representation of the situation in a heavy-ion collision. Fluid created in the

heavy-ion collisions is rapidly expanding, particularly in the z-direction.

Bjorken flow captures this feature of the fluid (see section 2.1.2.1). Deterministic calcu-

lations evaluating the two-point correlators for Bjorken expanding fluids have been done

[117]. We use these results to compare the two-point correlators of fluctuations generated

by our stochastic method.

Again, we initialize hydrodynamics with a brick of fluid. But now we evolve this

brick in Milne coordinates used by MUSIC (see section 2.1.2.2 for a discussion on Milne

coordinates and MUSIC). This essentially means that the system keeps expanding in the

z-direction as space expands. Consequently, the energy density and temperature keeps

decreasing. As shear relaxation time τπ is a function of energy-density (see eq. (2.17)),
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Figure 7.3: Ratio of two point correlators of noise terms with their equilibrium values for a static

fluid with different x values. The dashed line is at N/N0 = 1.
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ing with Bjorken solution.

it also changes with time. In fig. 7.4 we can see that the relaxation time increase as the

temperature falls with time.

We initialized the brick at τ = 1 fm at energy density ε0 = 500 GeV/fm3. Again,

for these Bjorken tests, we have used a conformal equation of state. Consequently, bulk

viscosity is set to zero. Shear viscosity/entropy density is fixed at 0.2. We have used

periodic boundary conditions in x and y directions. We used an ensemble of 100 events

for these calculations.

As we use pcut = x/τπ in our low pass filter, pcut decreases with falling temperature.

So, to see the effect of low pass filter, we again plot the correlators as function of kx ∗ τπ

in fig. 7.5. We should keep in mind that τπ value keeps changing with τ and so the

same x-axis values actually correspond to different kx values at different times. Again,

we observe that the N values start to drop below their equilibrium values for kx slightly

below pcut. And again, for low kx values, N values are same for different x values giving

us confidence that low pass filters can be successfully utilized for low wavenumber

physics.

In fig. 7.6, we see another illustration of the same effect. We have plotted the ratio of

equal time correlators of Fourier transforms of δT00 with their equilibrium value. We

have calculated these correlators in the rapidity direction. We should note that when us-

ing Milne coordinates, the length of a fluid-cell in the rapidity direction keeps changing
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with time as τ ∗ dη. Consequently, we can only go so far as 2π/(τ ∗ dη) wavenumber

in the rapidity direction. So, with increasing time, our maximum wavenumber resolved

keeps decreasing. So, in most cases, we do not reach the pcut value in rapidity direction.

In fig. 7.6, we see the noise correlator starting at zero value at τ = 1 fm. There are

no thermal fluctuations at initialization. Slowly, fluctuations build and as it stabilizes

around τ = 2 fm, it quickly goes to its equilibrium value at high wavenumbers.

We did mode analysis of fluctuations in static fluid and in Bjorken flow. We know the

equilibrium behaviour of fluctuations in these systems. We see how fluctuation correla-

tors rapidly go to their equilibrium values with increasing wavenumbers. We show how

our simulations with different pcut are able to capture the low wavenumber physics of

these fluctuations.
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7.3 model details

We now move to evaluate realistic effects of shear thermal fluctuations on experimen-

tal observables. We use the IP-Glasma initial conditions [40, 41] (see section 2.1.1) to

model the initial state of collisions. We switched from the IP-Glasma to hydrodynamics

at proper time τ = 0.4 fm. Equation of state from the hotQCD collaboration [15] matched

with the equation of state from hadron resonance gas [159] is used. η/s value is fixed at

0.13. A temperature dependent bulk viscosity profile parameterized in [160] and used in

[65] is used.

Please note that while a non-zero bulk viscosity is used, for the results in this chapter,

associated bulk thermal fluctuations are not implemented. The purpose of this is to

implement one feature at a time to better study its consequences on observables.

The fluid is hadronized using the Cooper-Frye prescription implemented in the iSS

implementation [72]. This switch from fluid to hadrons is done at a fixed temperature of

145 MeV. Generated hadrons are passed through the hadronic afterburner UrQMD [74,

75] where it goes through hadronic rescatterings and resonance decays.

The value of x in eq. (7.4) is fixed at 0.5. This parameter choice is justified in the

next section alongside the observables we evaluate. We have used 600 events per 10%

centrality bins, both for thermally fluctuating and non-fluctuating calculations.

7.4 mid-rapidity observables

7.4.1 Multiplicity

We start by evaluating charged-hadron multiplicity. Normalization of initial energy is

done to match the multiplicity for 0-5% centrality bin for the non-fluctuating case as in

[41] and is kept same for all centrality bins. It is also kept same for the fluctuating case.

In fig. 7.7, we see that the thermal fluctuations hardly affect multiplicity. Naively, one can

expect thermal fluctuations to introduce additional gradients in the system and increase

the net-entropy and hence increase multiplicity. On the contrary, fluctuations actually



78 non-perturbative treatment of noise

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50

d
N

c
h
/d

η

Centrality

Charged Hadron Multiplicity

ALICE
no fluctuations

with fluctuations

Figure 7.7: Charged hadron multiplicity for Pb-Pb collisions at
√

s = 2.76 TeV with and without

thermal fluctuations. Data points are taken from the ALICE collaboration [91].

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50

〈p
T
〉 

(G
e
V

)

Centrality

π
+

K
+

p
w fluctuations

w/o fluctuations

Figure 7.8: Identified particles’ mean transverse momentum for Pb-Pb collisions at
√

s = 2.76

TeV with and without thermal fluctuations. Data points are taken from the ALICE

collaboration [161].



7.4 mid-rapidity observables 79

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  10  20  30  40  50

v
n
{
2

}

Centrality

v2{2}
v3{2}
v4{2}

w fluctuations
w/o fluctuations

Figure 7.9: Charged hadron integrated vn for Pb-Pb collisions at
√

s = 2.76 TeV with and without

thermal fluctuations. Data points are taken from the ALICE collaboration [162].

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 2  3  4  5  6

v
n

n

x=0.4

x=0.5

x=0.6

no fluctuations

Figure 7.10: pcut dependence of charged hadron integrated vn for 0-5% centrality Pb-Pb collisions

at
√

s = 2.76 TeV with thermal fluctuations.

take the system away from the maximal entropy state while dissipation strives to bring

it back to equilibrium. This balance between fluctuations and dissipation as related by

the fluctuation-dissipation theorem keeps the entropy fluctuating around the maximal

entropy condition. All positive energy contributions by thermal fluctuations are balanced

by the equivalent negative energy contributions keeping the energy conservation intact.

Consequently, we do not expect particle multiplicities to rise or fall which is what we

observe in fig. 7.7.
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7.4.2 Mean pT

Next we look at the mean transverse momentum. These have been measured for iden-

tified hadrons like pions, kaons and protons by the ALICE collaboration [161]. The mo-

mentum spectrum of a particle, and consequently its mean value, is sensitive to the bulk

viscosity and to post hadronization cascade [65]. It is not sensitive to shear viscous tensor,

and by extension, the shear viscous fluctuations. This is shown in fig. 7.8.

7.4.3 vn

Now we look at the charged hadron vn (see section 3.3.1). Like the initial state fluctua-

tions, thermal fluctuations also contribute to anisotropy in the system and consequently

enhance vn. In fig. 7.9, we see a small enhancement in pT-integrated v2, v3 and v4.

It becomes critical to check the effect of choice of pcut. In fig. 7.10, we see the values

of pT-integrated v2, v3, v4, v5 and v6 for different choice of pcut. We see that the vns for

fluctuating simulations are consistent with each other i.e. they are within each other’s er-

ror bars and distinct from non-fluctuating simulation. More crucially, there is no definite

order for different choice of x there. Naively, one would expect any given vn to follow

the order vn(x = 0.4) < vn(x = 0.5) < vn(x = 0.6). This is because we are including

more modes in x = 0.5 as compared to x = 0.4 and even more modes in x = 0.6. The

fact that this ordering is not necessarily followed assures us that within our error limits,

we have attained the possible accuracy to determine the effects of thermal fluctuations.

This suggests, that the modes above pcut = 0.4/τπ are largely at equilibrium.

We should also note the caveat in v2 in fig. 7.10. v2 is largely a consequence of initial

elliptical geometry. Fluctuation contributions to v2, both initial and thermal, are small.

So we cannot really distinguish fluctuating and non-fluctuating v2 clearly in fig. 7.10. An

effort to clearly separate the errorbars there would be computationally prohibitive and

is not undertaken at this stage.

Now let us look at the differential vns. In fig. 7.11 we see the problem of separation of

fluctuating and non-fluctuating quantities is amplified or v2 There is clearly increasingly

enhanced separation of fluctuating and non-fluctuating vn as n increases. Again, this is to
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Figure 7.11: pcut dependence of charged hadron differential vn for 0-5% centrality Pb-Pb collisions

at
√

s = 2.76 TeV with thermal fluctuations.

be expected. Small range fluctuations become more and more important as n increases.

We notice that there is still no clear hierarchy of vn values for different pcut, which is

consistent with our assumption that modes around pcut are already at equilibrium.

In fig. 7.12 and fig. 7.13, we present the effect of thermal fluctuations on differential vn.

We see that the effect is very small and we are still consistent with data. Effect of thermal

fluctuations becomes even smaller for larger centrality as geometric effects take over.

It should be noted that the effect of thermal fluctuations on differential vn is really

small here, which is in contrast with the perturbative calculation shown in fig. 6.2. This is

not a contradiction. The perturbative calculation was done in very simple conditions with

no initial-state fluctuations. Consequently any fluctuation source gave a large relative effect.

In this more realistic simulation, we have already included initial state fluctuations using

the IP-Glasma model and the relative contribution of thermal fluctuations is smaller.
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Figure 7.14: Charged hadron event-plane correlators for Pb-Pb collisions at
√

s = 2.76 TeV with

and without thermal fluctuations. Data points are taken from the ATLAS collabo-

ration [163]. Centrality to Npart conversion was based on MC-Glauber model based

table in [163].

7.4.4 Event Plane Correlators

Event plane correlators are shown in fig. 7.14. As described in section 3.3, event-plane

correlators measure the decorrelations caused by fluctations. Again, thermal fluctuations

are showing small effects and the calculations, both with and without thermal fluctua-

tions are broadly consistent with data which, however, still carry large uncertainty.

7.4.5 Decomposition of vn

The vn can be decomposed into a linear component and non-linear response coefficients.

See section 3.3.3 for more details. The key idea of this observable is to disentangle initial-

state fluctuation’s spatial Fourier decomposition coefficient En and final state momentum

Fourier decomposition coefficient vn. Obviously, En is not accessible to experiments, but

the linear contributions vL
n and the non-linear response coefficients χ can be measured.
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s = 2.76 TeV with and

without thermal fluctuations. Data taken from the ALICE collaboration [164].

Thermal fluctuations mimic initial-state fluctuations in the sense that for the purpose of

vn decomposition, they may act like initial state fluctuations. This will be specially true

for central collisions where geometric impact-parameter effect is not large and fluctua-

tions are relatively more important.

In fig. 7.15, we see a clear distinction between fluctuating and non-fluctuating calcu-

lations of vL
4 and vL

5 for lower centralities. Similarly, in fig. 7.16, a clear signal of shear

thermal fluctuations can be seen in χ532. However both seem broadly consistent with

data within uncertainties and it is early to confidently say which is preferred. Recently,

these quantities have been measured for
√

sNN = 5.02 TeV Pb-Pb collisions [165]. These

higher energy collisions have higher luminosity and thus smaller uncertainties. A sim-

ilar calculation for these higher energy collisions can help us constrain the physics of

thermal fluctuations.

To convince ourselves that these signals have little dependence on pcut, we compare

these quantities for different pcut values in fig. 7.17. We see that this is so.
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7.5 summary

In this chapter, for the first time, we developed a method to do realistic simulations of

heavy-ion collisions including hydrodynamic fluctuations. We used a noise filter to avoid

the large gradients present in the relativistic stochastic simulations. This retains all the

relevant modes. We extensively tested this noise filter on static and Bjorken fluids. The

mode analysis there showed the effects of introducing a wavenumber cutoff. We further

used this novel method to do Pb-Pb collision simulations and evaluated the experimental

observables. All along the way, we tested the effect of different pcut on experimental

observables in a realistic simulation. We have managed to identify observables which

show clear signals of hydrodynamic fluctuations. As data resolution improves, so will

its discriminating power.

Finally, the techniques developed in this chapter could potentially be used for any

other kind of fluctuations in heavy-ion collisions, like the important critical fluctuations

which appear when QCD matter traverses close to the critical point in the QCD phase

space. These techniques could also be used to simulate different systems which obey

stochastic dynamics, do not lend themselves to simple analytic solutions and suffer from

the problems of sustained large fluctuation gradients.
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B U L K V I S C O S I T Y A N D F L U C T U AT I O N S

There is currently not much theoretical guidance on the exact form of bulk viscosity

in QGP, though it is known from some phenomenological studies that bulk viscosity is

important to explain the particle spectra observed in heavy ion collisions [65]. There are

still various forms of bulk viscosity which seem to explain the data [65, 166, 167] and

even systematic studies using Bayesian analysis have not been able to narrow down the

bulk viscosity profile [168, 169]. Bulk viscosity has also been of interest to the community

as it could effectively lead to net negative pressure in the fluid [170], an effect which has

come to be known as "cavitation" in the field. Though it is different from how the word

cavitation is generally used in fluid dynamics. As a first step, we qualitatively explore the

phenomenological effects of bulk viscous hydrodynamic fluctuations. We also examine

the effects of net negative pressure. A more extensive study exploring different viscosity

profiles with bulk viscous fluctuations to do a better matching with data is left for future

studies.

8.1 bulk viscosity profile and noise filter for bulk viscous

fluctuations

Much like the shear-viscous fluctuations, the bulk fluctuations are quantified by the

fluctuation-dissipation theorem given in eq. (5.27). Naturally, the strength of these fluc-

tuations are proportional to the value of bulk viscosity ζ. Bulk viscous fluctuations have

a much simpler structure and can be represented by a scalar.

87
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Figure 8.1: Bulk viscosity over entropy density profile given in eq. (8.1).

We have used the bulk viscosity profile used in [65] which was parameterized in [160]

fitting data from the lattice QCD [171] and from hadron resonance gas [172]. The bulk

viscosity over entropy density is given by

ζ/s =



0.03 + 0.9e(
T
Tc−1)/0.002

+0.22e(
T
Tc−1)/0.022, T < 0.995Tc

0.001 + 0.9e−(
T
Tc−1)/0.025

+0.25e−(
T
Tc−1)/0.13, T > 1.05Tc

−13.45 + 27.55 T
Tc
− 13.77

(
T
Tc

)2
, otherwise

(8.1)

Tc is the crossover temperature taken to be 180 MeV here. This profile is shown in

fig. 8.1. For this profile, bulk viscosity is prominent only in a narrow temperature range

around Tc.

Like shown in section 7.1 for shear fluctuations, we use a noise filter here are well.

Analogous to the shear-relaxation time τπ, we also have a bulk-relaxation time τΠ. For

our exploratory study here, we have defined the cutoff-wavenumber pcut as

pcut =
0.5

τmax
, (8.2)

where

τmax = max(τΠ, τπ). (8.3)
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theorem for the fluctuations for our simulations.

The choice of cutoff in eqs. (8.2) and (8.3) is a temporary one and needs to be studied

further for a more quantitative conclusion. While pcut = x/τΠ is a natural choice for

reasons explained in section 7.1, at high temperatures, τΠ fast approaches zero. This

causes numerical issues as while non-fluctuating quantity Π ∼ ζθ is almost zero, the

fluctuating component ∝ 2ζT could be relatively much larger.

Fig. (8.2) presents an accurate picture of our choice of pcut for bulk fluctuations. The

yellow line shows the strength of bulk fluctuations which is significant in a narrow

temperature range around Tc. Our choice of cutoff in eq. (8.2) removes more bulk modes

than bulk relaxation time would allow in all regions except in a very window near Tc,

where τΠ > τπ. This region coincides with maximum trace anomaly as obtained from the

lattice QCD results. Effectively, we are only focused on the effects of the bulk viscosity

in a narrow region near Tc.

This calculation including bulk fluctuations is exploratory in nature. A more com-

prehensive future study will better explore the choice of pcut such that the observables

are independent of it. It would also explore different bulk viscosity profiles used in the

literature and quantify the effects of bulk fluctuations with those profiles.
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Figure 8.3: This represents one 40-50% centrality Pb-Pb collision event at
√

s = 2.76 TeV without

thermal fluctuations. (a) shows the probability density of a fluid cells to have a certain

Π/P0 value throughout the lifetime of the fluid state, while (c) shows the probability

density of fluid cells to have a certain temperature. (b) is the scatter plot of fluid cells

on the temperature-Π/P0 axis where each point denotes one spatio-temporal fluid

cell.

8.2 effects of bulk viscous fluctuations

Bulk viscous pressure acts against the direction of expansion of fluid. When the fluid

formed in heavy-ion collisions is expanding outwards, bulk viscosity effectively pulls

it inwards and slows down the expansion. This delays the cooling down of fluid and

enhances the lifetime of the QGP fireball. This also reduces the acceleration of the fluid

which results in lower mean transverse momentum (〈pT〉) of particles.

Fig. (8.3) shows the distribution of fluid cells in a 40− 50% centrality event throughout

the lifetime of QGP fluid. This event does not have any thermal fluctuations. We can see

that the Π/P0 distribution is bi-modal. One peak is at Π = 0, which corresponds to
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Figure 8.4: Same as fig. 8.3 but with shear and bulk hydrodynamic fluctuations.

large regions of fluid where bulk viscosity is effectively zero. Another, bigger peak is at

a small negative value ∼ −0.2. So the net kinematic pressure P0 + Π is reduced. Panel

(c) provides further insight. Distribution peaks at the switching temperature 145 MeV,

which is understandable as fluid is very dispersed at that temperature and occupies

a much larger spatial volume. But there is another peak at 180 MeV, which coincides

with the peak in fig. 8.1. This just shows that the fluid there is slowed down because of

lower kinematic pressure. Panel (b) is the scatter plot of spatio-temporal fluid cells on

the temperature-Π/P0 axis.

Fig. 8.4 shows a similar plot for a collision event with shear and bulk fluctuations.

Events in fig. 8.3 and fig. 8.4 have been initialized with the exact same initial conditions.

Only difference in these figures in the presence of thermal fluctuations in the later event.

Just this one realization of fluctuating event already provides us with qualitative insight.

In panel (a) in fig. 8.4, we see that the Π/P0 value is distributed over a much wider

range. Part of this range also covers positive values of Π/P0. This is very significant

as fluctuating Π could effectively enhance kinematic pressure. The net effect of bulk
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tions. Data points are taken from the ALICE collaboration [91].

fluctuations is to counter the effect of bulk viscosity, which makes theoretical sense (look

at our discussion in section 5.2).

There is another subtle issue here which should be addressed. Bulk fluctuations, by

there very nature, either increase or decrease kinematic pressure and consequently in-

crease or decrease net acceleration. But this effect is not symmetric. Increased kinematic

pressure would rapidly expand the fluid lowering the temperature. Decreased kinematic

pressure would just reduce the expansion speed, while not affecting the temperature.

Effectively, there is no counter process to rapid cooling in some parts of fluids. There

is no analogous rapid heating. So effectively, bulk fluctuations lead to faster expansion

and hence faster cooling of the fireball. This effect can also be seen by comparing fig. 8.4

with fig. 8.3. There are very few spatio-temporal cells at higher temperature regions in

the event with bulk fluctuations, which is a consequence of rapid cooling. The parallel

to this effect can be found in the complementary deterministic hydro-kinetic analysis of

bulk noise [118] where a shift in temperature is required to account for the energy in

bulk fluctuation modes. This temperature correction is not present in the shear fluctua-

tion analysis [117].
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Now let us look at some key observables. In fig. 8.5, we observe that the net multiplicity

has decreased by about 4%. Just shear fluctuations alone have no such effect. This is an

effect of the rapid cooling explained above. Bulk fluctuations asymmetrically reduce net

net entropy production and thus cause a decrease in particle multiplicities. This is not

the case for shear fluctuations.

On a similar note, we see the effects of bulk fluctuations on the mean transverse mo-

mentum in fig. 8.6. Rapid cooling caused by bulk fluctuations increases the net 〈pT〉.

Fig. 8.7 and 8.8 shows the effect of bulk fluctuations on the integrated vn and the event-

plane correlators. Bulk fluctuations tend to make more difference in these observables

than their shear counterpart.

We again wish to emphasize that the calculations shown in figs. 8.5 to 8.8 should be

used only to get qualitative insight on the effects of bulk fluctuations. A more compre-

hensive quantitative study to explore different bulk viscosity profiles and different cutoff

wavenumber pcut is left for future work, likely involving Bayesian techniques. However,

it is clear that the inclusion of thermal fluctuations will cause a recalibration of transport

coefficients in general.
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So far, in this chapter, we have avoided discussion on the scenario where Π/P0 < −1.

This implies that the net kinematic pressure Pkin. = P0 + Π < 0. What does net negative

pressure imply? We undertake this discussion in the next section.

8.3 negative kinematic pressure

We know that thermodynamics is the theory of a system at equilibrium. If we relax this

condition and demand only local equilibrium, i.e. equilibrium only in the immediate

neighborhood of any point in space-time, we can use ideal hydrodynamics. Here the

term immediate neighborhood is in the same sense it is typically used in mathematics.

Viscous hydrodynamics is the applicable theory when there are small deviations from

this local thermodynamic equilibrium. Viscous terms are typically added as corrections

to the ideal hydrodynamic terms.

The key assumption in using viscous hydrodynamics is that these corrections are

small. Though recent work has shown [173] that hydrodynamic solutions work surpris-

ingly well even far away from equilibrium. As such, the situation where |Π/P0| > 1,

is troubling from a theoretical consistency viewpoint. However, this situation appears

in heavy-ion collision simulations. This can even be seen in a sample event depicted in

fig. 8.3.

This condition, when Π/P0 < −1, is often termed "cavitation" in strongly coupled

plasma literature [170, 174–185]. This nomenclature extends even to literature of neutron

stars [186] and cosmology [187]. The idea is that when the kinematic pressure Pkin. =

P0 + Π turns negative, the fireball starts experiencing an inward pressure and breaks

forming "cavities".

In a recent work Habich and Romatschke [182] have argued that when P0 + Π (called

effective pressure in their paper) drops below the hadron resonance gas pressure (which

is small but positive), hadron gas will be the preferred state of matter. This will form

bubbles of hadron gas in the QGP medium, akin to the phenomenon of cavitation. Sub-

sequently Byers et al. [170] have suggested that this will lead to immediate hadronization

at higher temperatures and we will get a much different spectra than what we actually

observe in experiments.
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In this section we show that while large negative Π certainly contributes to fragmen-

tation of the fireball, it is not synonymous with it. We also argue against the use of term

cavitation for the condition P0 + Π < 0 as it concocts a misleading image.

8.3.1 Thermodynamic vs kinematic pressure

First of all, let us discuss the difference between the thermodynamic and the kinematic

pressure. Thermodynamic pressure P0, by its very definition, is an equilibrium quantity.

This is the pressure that appears in the equation of state obtained from lattice QCD.

On the other hand, kinematics in the eqs. (2.15) and (2.16) is determined by the kine-

matic pressure Pkin. = P0 + Π. Kinematic pressure determines the acceleration experi-

enced by the fluid.

In most applications of fluid dynamics, Π << P0 and so P0 ≡ Pkin.. However, for our

purposes of simulating heavy-ion collisions, there is this unique situation where Π is

comparable to P0 in magnitude. In the former case, it is reasonable to equate the two

and infer that when Pkin. drops below the vapor pressure, there is a phase change.

For illustration, let us consider water. Water has a well known phase diagram. The

density, temperature and thermodynamic pressure of water are related by an equation

of state. As such, cavitation usually occurs when local thermodynamic pressure drops

below the vapor pressure causing phase transition, often at a fixed temperature.

Now in the case of QCD matter, equation of state relates, energy density, thermo-

dynamic pressure, temperature and chemical potentials related to conserved quantities

like the baryon chemical potential. In absence of a conserved current, which is a good

approximation for high energy collisions such as those at the LHC and the
√

s = 200

GeV collision at the RHIC. In this situation, there is a one-to-one relation between ther-

modynamic pressure and energy density and knowing one uniquely defines the other.

So the phase of QCD matter is determined uniquely by the energy density which is

determined uniquely by the thermodynamic pressure. Claiming hadronization at high

pressure would be claiming existence of hadron gas at QGP densities, which is not

possible. Furthermore, there is not even a possibility of some sort of super-heated hadron
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Figure 8.9: Plots showing temperature(top), Π/P0 (middle) and expansion rate θ (bottom) at dif-

ferent proper times (τ) at midrapidity for a 40-50% centrality Pb-Pb collision at
√

2.76

TeV.

gas as the change between hadron gas and QGP phase at zero chemical potential is a

smooth crossover and not a phase transition.

In a nutshell, we should not argue that negative Pkin. causes phase change from QGP

to hadron gas as phase of QCD material is an equilibrium concept determined by the

thermodynamic pressure P0. Of course, a negative Pkin. is far away from equilibrium, but

that in itself cannot determine the phase of the system.
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Figure 8.10: Same as fig. 8.9 except ζ/s is 10 times the value reported in eq. (8.1).

8.3.2 Large Π and breaking of the fireball

Then what does large negative Π do? A common notion is that the inward pressure

causes the immediate breaking of the fireball. We investigated this scenario.

Fig. (8.9) shows the temperature, Π/P0 and expansion rate θ = ∂µuµ at different time

slices. The regions where Π/P0 ≤ −1 is depicted in purple color. However, as one notices

in the bottom panel, expansion rate never turns negative. Moreover, the hole noticeable

in the last panel (at τ = 5.6 fm), is present in regions where magnitude of Π is relatively

smaller.

To explore this dynamics further, we simulate an event with an artificially large bulk

viscosity. In this case, we take the bulk viscosity to be 10 times the value reported in

eq. (8.1). This is done to exaggerate any effect that large negative Π may have. The result
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Figure 8.11: Same as fig. 8.3 but with condition |Π| < P0 imposed.

is shown in fig. 8.10. Due to exceptionally large bulk viscosity here, much more region in

the middle plot is purple denoting more area where Π/P0 ≤ −1. Here we see that more

holes are forming, but still the expansion rate θ never turns negative. It approaches very

close to zero, but is still positive definite.

The mechanism of the flow shown in figs. 8.9 and 8.10 can be understood as follows.

As Π attains a large negative value, it decelerates the fluid slowing it down. As the fluid

slows down, the expansion rate θ drops. As shown in eq. (2.16), Π approaches the value

−ζθ with a delay. In Navier-Stokes limit, Π = −ζθ is exactly true. So dropping θ implies

that Π also drops such that θ never goes negative. In the extreme artificial case shown

in fig. 8.10, the fluid cells at temperature close to 180 MeV (where ζ/s is the largest)

effectively come to a standstill. At the same time, fluid at lower and higher temperatures

keep flowing forming these holes in the liquid.

So the large negative values of Π do cause breakdown of a continuum fluid, though

that happens in locations where magnitude of Π is relatively smaller, Also Π/P0 does

not automatically imply phase change from QGP to hadron gas.
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8.3.3 Effect of artificially demanding |Π| < P0

Finally we look at the question what are the phenomenological consequences of Pkin.

actually going negative. Though not causing phase change, the situation is somewhat

off-putting as what was initially assumed to be a correction has turned out to be larger

that the zeroth order term. Though we would again like to point out that calling this

as breakdown of hydrodynamics would be premature as hydrodynamics has proven to

be remarkably resilient and has recently been shown to be valid in situations far from

equilibrium [173] Nonetheless, we explore the effects of artificially demanding |Π| < P0

in simulations without thermal fluctuations.

Fig. (8.11) shows the scatter plot of Π/P0 and temperature. This should be looked in

conjunction with fig. 8.3. We look at 〈pT〉 in fig. 8.12. and find that the cells with Π/P0 <

−1 do not have any particular effect on the mean transverse momentum, which is the

principal observable to detect the effects of bulk viscosity. We also explicitly checked

other observables and they showed no effect either.
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8.4 summary

In this chapter, we have explored the qualitative effects of bulk viscous fluctuations. We

chose a recipe to implement a particular noise filter based on both the shear and the

bulk relaxation times. We observe that as opposed to shear viscous fluctuations, the bulk

viscous fluctuations explicitly lower the entropy production and lower the lifetime of the

fireball. As a result, particle multiplicities are reduced and 〈pT〉 is enhanced. We leave

a more comprehensive study using different bulk viscosity profiles present in literature

and exploring different noise filters to make a more quantitative conclusion for future

work.

We also explored the situation where Pkin. pressure turns negative. We argued that

this does not imply hadron gas production or immediate fragmentation of the fireball,

though it does contribute to the later through a mechanism which we elucidated.
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J E T M E D I U M R E S P O N S E

Sec. 2.2 describes the framework we use for light quark jet propagation to evaluate ob-

servables described in section 3.4. Most jet propagation models use hydrodynamic in-

formation to obtain local temperature. But they usually do not account for the energy

lost by jets which is deposited into the soft medium. This is justified by the argument

that the energy deposited is a small fraction of net energy in the bulk medium. However,

other than the obvious issue of theoretical inconsistency, this can cause problems for

observables like the jet-shape function (seesection 3.4.2). Jet-shape function describes the

momentum distribution in the jet-cone. As the deposited energy diffuses hydrodynam-

ically in the medium, lot of it stays in the cone and cannot be subtracted by removing

averaged backgrounds. In simulations, medium response needs to be included. Insight-

ful discussion on this topic can be found in [188, 189].

Energy deposited or picked up by a jet shower can be included as a source term in

the hydrodynamics equations in MUSIC (see section 2.1.2.2). This conserves the energy-

momentum conservation locally. The source term in the hydrodynamics modifies the

equations

∂µTµν = Jν. (9.1)

The source term Jν is negative of the time-differential of the four-momentum density of

jet

Jν = −
dpν

jet

dtd3x
. (9.2)

Note that pν
jet is a jet parton’s four-momentum and dpν

jet/d3x is its spatial density. Since

dtd3x is a Lorentz scalar, the whole expression is a Lorentz vector.

103



104 jet medium response

9.1 mach cones in qgp

We start by observing the effects of the source terms on the medium evolution with

smooth Optical Glauber initial conditions (see section 2.1.1). We initialize hydrodynamics

using an ultra-central event with zero impact parameter. We propagate an artificial jet

through this. We use the term artificial to signify that we have not used any particular

energy loss model or that we have not sampled the jet from any realistic collision model.

This jet moves in a particular direction depositing energy-momentum at each time-

step. This deposition is then fed to the hydrodynamics equations using the source term

as given in eq. (9.1). We use an energy deposition proportional to the square of local QGP

temperature. The artificial jet is moving in the ±x-direction. Crucially, we are using just

a single jet and not a di-jet. The source term is

J0 = T2/fm3,

J1 = ±T2/fm3,

J2 = 0,

J3 = 0. (9.3)

J1 is positive when the jet is moving in the +x-direction and negative when the jet is

moving in the (−x)-direction.

We use different values of shear viscosity in our events to study the effect of viscosity

on the wave-front created by the jets. We are using the conformal fluid dynamics with

bulk viscosity zero and ideal gas equation of state.

We expect the passing jet to form Mach cones. Formation of Mach cones is a very

familiar process in fluid dynamics which happens when an energetic object moving at

speed greater than the speed of sound forms conical wave fronts in the fluid. For the

conformal fluid here, the angle of conical wavefront is given by

θ = 2 sin−1(cs/c) = 2 sin−1(1/
√

3) ≡ 70.5◦. (9.4)

In figs. 9.1 to 9.3, we look at the energy density differences between events with and

without the jets. These show the snapshots of the jet wave-fronts at different times after

evolution, with different shear viscosities and with different jet orientations as compared

to the underlying event. We unpack the information in these figures here.
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Figure 9.1: Top panel shows the energy density profile with white arrows showing the direction

of jet-propagation. Bottom three panels show difference in energy density with and

without jets 3 fm/c after the beginning of hydrodynamic evolution for different values

of η/s. Black lines indicate the expected wavefront in a static fluid.
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Figure 9.2: Same as fig. 9.1 but 6 fm/c after the beginning of hydrodynamic evolution
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Figure 9.3: Same as fig. 9.1 but 9 fm/c after the beginning of hydrodynamic evolution
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9.1.1 Evolution with time

We observe that with time, the wake fronts become larger. This is just because the en-

ergy deposited earlier gets more time to diffuse. For the same reason, the energy deficit

behind region the wake (depicted in blue) becomes larger.

9.1.2 Effect of jet orientation

In a fluid at rest, the wakes will have the perfect angle of 70.5◦ as shown in section 9.1.

These shapes are denoted by the black lines in the figure. We could observe that for

the first column, where the jet is moving in the direction of underlying flow, the wakes

have angle larger than 70.5◦. This is because the underlying fluid flow aids the energy

diffusion and the wake effectively travels at the speed faster than the speed of the sound.

For the second column, the jet is travelling opposite to the flow of fluid for majority of

its evolution. You could notice that the wake angle is smaller than 70.5◦ for zero viscosity

case for snapshots taken 3 and 6 fm/c after the beginning of the event. With viscosity,

the wakes for even this orientation spill outside the black lines. This is discussed in

section 9.1.3. In the snapshot taken 9 fm/c after the beginning of the evolution as shown

in fig. 9.3, the jet has crossed the centre of the fireball and is now moving in the direction

of the fluid flow. Hence, we see that even for the zero viscosity case, wake angle is now

larger than 70.5◦.

In the third columns, we see the jet is moving at an angle to the fluid flow direc-

tion. Here the wavefront itself is deformed. The leg of wake perpendicular to the flow

direction gets aided by the flow and spreads faster.

9.1.3 Effect of shear viscosity

Shear viscosity smooths any sharp edges in the wavefronts and also disperses the energy

making the wakes more diffused. Higher the shear viscosity, smoother the Mach cones

we observe.
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Figure 9.4: Difference in energy flux through the freezeout surface of events with and without

jets. Inset denotes the orientation of the jet with respect to the underlying fireball.

9.2 energy enhancement at the freezeout surface

While our analysis of the jet wakes helps us understand the dynamics of medium re-

sponse of the jets, these wakes cannot be observed directly in experiments. They account

for small enhancement of particle multiplicities in the immediate neighbourhood of iden-

tified jets. This enhancement is difficult to subtract. and is part of the reconstructed jets.

To explore how these wakes contribute to the enhancement in particle multiplicities,

we study their constant temperature freezeout surfaces. Fig. 9.4 shows the enhancement

in the energy flux through the isothermal freezeout surface.

The left panel in fig. 9.4 is for the outward jet. It shows enhancement in energy flux

around φ = 0 which directly translates to enhancement in multiplicity in that region.

We observe that the enhancement is diffused for viscous systems with higher viscosity

contributing to broader and shorter peaks. Also, there is an energy deficit around φ = π

which is the consequence of fluid being dragged with the jet towards φ = 0 direction.

For the inward jet shown in the right panel of fig. 9.4, there is a deficit around φ = 0

which is self-explanatory. Similar to the outward jet, the deficit dip is more diffused for

viscous systems.

Fig. 9.5 is more interesting. In a real event, the underlying flow is not smooth and

symmetrical. Also, jets are randomly aligned and not correlated with the underlying
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Figure 9.5: Same as fig. 9.4 for a different jet orientation.

flow. So, a jet at an angle with the fluid velocity is a more accurate representation of a

real jet. Here, the relation between the final energy enhancement and the viscosity of the

system is not very clear. So it will be very difficult to use medium response of jets to

constrain the viscosity of QGP.

We now move to utilise our implementation of jet induced energy sources in hydro-

dynamics to study jet physics. But first, we need to check the accuracy of the energy

momentum conservation in our framework.

9.3 testing energy conservation

Energy deposited by hard particles is usually a very small fraction of the total energy of

the fireball. Of course, it is still crucial to include this effect in a jet-medium interaction

model as this energy is largely localized in a narrow cone around the jet as we saw in

chapter 9.

We tracked the net energy deposited by a jet in the medium during the evolution. We

also evaluated the net energy in the initial state. Finally, we compared the sum of these

two numbers to the net energy-density flux through the freezeout surface.
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We are able to recover the total energy to high precision (∼ 0.1%), provided we used

a very fine meshing during the freezeout procedure. Freezeout surface generation effec-

tively consists of making patches of the constant temperature surface. If we make too

large patches, the precision goes down. On the other hand, making very small patches

is computationally expensive.

So, effectively we have to go to very fine meshing to recover the tiny amount of energy-

momentum deposited by the jets. Using a coarse mesh (of the order that we typically use)

makes it difficult to resolve this tiny amount of energy. But we argue that this should

not be a problem for our calculations as most of the energy is concentrated around the

jet and it is a much more significant effect in that local region. And our tests have shown

that MUSIC does a good job of energy conservation even with the added sources.

9.4 second pass framework

Typically in jet-quenching calculations in heavy-ion collisions, the medium is evolved

independent of jets. The entire space-time history of the medium is saved. Jets passing

through the medium get local temperature information from this evolution history data.

One way to study the jet-medium response is to keep a record of energy momentum

changes of the jets and simulate the medium again using this information for getting

source terms using eq. (9.2). This is called the second-pass method.

This works for hard jets as they effectively move at the speed of light. Also, it is very

unlikely to get more than one di-jet pair in a single event. Consequently, a jet never sees

the effects of the energy it deposits in the medium. In other words, there is no feedback

from the medium response to the jet.

Fig. 9.6 shows the evolution history of a second pass run. We used the hybrid model

[76]. to simulate the energy loss. The figure shows the typical wake evolution as a conse-

quence of a hard di-jet passing through the medium.
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Figure 9.6: Energy density (left panels) and difference in energy density because of jets (right

panels) in a Pb-Pb collision at
√

s = 2.76 TeV. Jet energy loss is modelled by the

hybrid model [76]. White dots denote the location of energy deposition.
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9.5 standardizing concurrent framework

Moving beyond the second pass method, we have developed a joint hybrid-model-

MUSIC framework where a jet is evolved simultaneously with the evolution of the un-

derlying fluid.

For the hydro-sector, we initialize using IP-Glasma [40, 41]. The IP-Glasma to MUSIC

switch is made at τ = 0.4 fm. Lattice QCD based equation of state is used [15] which

is matched with hadron resonance gas based equation of state [159]. A temperature

dependent bulk viscosity used in [65] is used.

Jets are sampled at the binary collision hotspots. These are the same hotspots which

gives rise to IP-Glasma initial conditions on an event-by-event basis. PYTHIA [190] is

used to sample jets. Jets propagate in vacuum until τ = 0.4 fm.

From τ = 0.4 fm, jets and fluid evolve simultaneously using the hybrid model and

MUSIC respectively. Hybrid model gets local hydrodynamic information from MUSIC

while MUSIC gets information about the energy-momentum source terms from hybrid

model. While both MUSIC and hybrid model have existed for some time (see chapter 2),

their concurrent framework is implemented here for the first time.

At the end, when the jet particles leave the QGP medium and when the temperature

throughout the medium drops below the freezeout temperature (145 MeV), partons are

hadronized. Jet partons are hadronized using the Lund String Model [83] encoded in

PYTHIA [190]. Soft partons are sampled from the freezeout surface for pairing. This

negative energy contribution on the freezeout surface of AA collisions is negligible. A

recent update to Lund model [84] gives the momentum and spatial information about

the hadrons. We do not decay the hadrons in PYTHIA.

The freezeout surface from MUSIC is hadronized using the Cooper-Frye prescription

using the publicly available code iSS [72].

Finally, the hadrons from PYTHIA and those from iSS are listed together and fed to

UrQMD [74, 75] afterburner. UrQMD simulates resonance decays and hadronic rescat-

terings until the system reaches kinetic freezeout.

Particles at the end of kinetic freezeout, sourced from both the soft and hard sources,

are analyzed for observables.
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9.5.1 Choosing minimum jet momentum for minijets

We aim to evolve minijets along with QGP to approach the elusive intermediate pT

region. As such, it becomes critical as to what is our minimum allowed momentum for

a minijet. This minimum jet momentum pmin is a parameter of our model.

We want to emphasize that a concurrent jet-medium framework is essential to study

intermediate pT physics. There are many intermediate pT mini-jets in every event. They

contribute significant amount of energy to the medium and hence medium response is

crucial. Also, their responses affect one another and so second pass framework is not

sufficient.

We observe that if we choose a very small value of pmin, we cannot fit the data in the

soft sector with reasonable parameters. Fig. 9.7 shows the charged hadron multiplicities.

The choice of η/s for different values of pmin will become clear momentarily. In fig. 9.7

we see that both the parameter sets have been appropriately normalized to match the

multiplicity data.
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In fig. 9.8, we observe that η/s = 0.1 for pmin = 7 GeV fits the integrated vn data quite

well while a lower value of η/s = 0.07 fails to fit the data for pmin = 4 GeV. A lower

value of shear viscosity leads to higher value of vns. η/s = 0.07 is already below the

lower KSS bound of 1/4π [153].

Our model is unable to explain the soft-sector data for pmin = 4 GeV while the opti-

mum value of η/s for pmin = 7 GeV is 0.1.

9.6 summary

We added a source term to hydrodynamic evolution equation and qualitatively studied

the dynamics of jet medium response. We observed how the Mach cones are generated.

We also studied the characteristics of jet cones as functions of evolution time, jet orienta-

tion and shear viscosity of the fluid.

We see that the energy deposited to the fluid by jet leads to enhancement or suppres-

sion of energy flux which will lead to increased multiplicity in the jet cone. Finally, our
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analysis shows that it would be very difficult to only use jet-shape function to extract

QGP viscosity.

We have prepared the framework for simultaneous evolution of jets and medium. We

have started with the simple hybrid model of jet-quenching, but this could be replaced

by any desired model.

We have developed a procedure to set model parameter values for different values

of pmin to match the soft-sector data. We observed that the QGP transport coefficients

need to be recalibrated when we introduce minijets in simulations. Now the goal is to

look at differential observables at intermediate pT and see what parameter values best

explain data for a given energy loss model. This will provide us insight into energy loss

mechanisms. This is left for future work.
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C H A R M Q U A R K S I N Q G P

In the last chapter, our focus was on light parton jets. In this chapter, we finally close by

analysing a heavy-quark jet interaction with QGP. We will focus on the charm quarks

though a similar analysis could be performed for bottom quarks as well.

Charm quark jets usually do not thermalize within the QGP and form heavy baryons

and mesons upon hadronization [191–193]. These provide insights into the QGP phase

by observables such as the nuclear modification factor RAA and vn. These are also re-

sponsible for the dilepton signals coming from the open charm decays. See section 3.5

for details.

As charm quarks are much heavier than the QGP temperature, we can treat charm

quark dynamics in QGP as Brownian motion [194, 195]. This model was described in

section 2.3. There we also described the framework to evaluate the drag and diffusion

coefficients of HQ in QGP, which are fundamental properties of the system.

10.1 charm transport coefficients

Here we go ahead and complete the calculation done in [87] and extended in [196]. We

go further ahead and calculate the non-equilibrium effects on HQ drag and diffusion. We

also estimate the energy loss an HQ will undergo in QGP. This work has been published

in [197].

From eqs. (2.44) to (2.46) we have

A = 〈〈1〉〉 − 〈〈p.p
′〉〉/p2, (10.1)

B0 =
1
4

[
〈〈p′

2
〉〉 − 〈〈(p.p

′
)2〉〉/p2

]
, (10.2)

B1 =
1
2

[
〈〈(p.p

′
)2〉〉/p2 − 2〈〈p.p

′〉〉+ p2〈〈1〉〉
]
, (10.3)
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with the notation 〈〈〉〉 defined in eqs. (2.40) and (2.41)

〈〈
(
p
)

i〉〉 ≡
1
γc

1
2P0

∫ d3q
(2π)32Q0

∫ d3p
′

(2π)32P′0

∫ d3q
′

(2π)32Q′0

× (2π)4δ4(P + Q− P
′ −Q

′
)∑ | MHQ,g/q |2

× fg/q(Q)
(

1± fg/q(Q
′
)
)(

p
)

i. (10.4)

Here A, B0 and B1 are the drag, transverse diffusion and longitudinal diffusion coeffi-

cients respectively. The interaction taking place is HQ(p) + l(q) → HQ(p
′
) + l(q

′
). Fol-

lowing the procedure in [196] we can simplify the integral by moving to the centre of

momentum frame

〈〈F(p
′
)〉〉 = 1

512π4γc

1
Ep

∫ ∞

0

q2

Eq
dq
∫ 1

−1
d cos χ

× fg/q(Eq)

√
(s + m2

c −m2
g/q)

2 − 4sm2
c

s

∫ 1

−1
d cos θcm

×∑ | MHQ,g/q |2
∫ 2π

0
dφcme

βE
q′ fg/q(Eq′ )F(p

′
). (10.5)

Here s = (Ep + Eq)2− (p + q)2 and Eq′ = Ep + Eq − Ep′ . HQ momentum after scattering

p
′

is represented in terms of p, q, θcm and φcm. mc is the charm mass and mg/q is the

thermal mass of the gluons/quarks. They are given as

m2
g =

(
1 +

N f

6

)
g2T2

3
, (10.6)

m2
q =

3
2

g2T2

9
(10.7)

where we have assumed chemically equilibrated quarks and gluons. N f is the number

of light flavors.

We have taken light flavor number N f = 2.5, charm mass mc = 1.5 GeV and strong

coupling αs = 0.3. Finally Debye screening mass µD =
√

4παsT is used in gluon propa-

gators of the t-channel exchange diagrams in fig. 2.2.
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10.2 shear viscous correction

Viscous correction to transport coefficients given in eqs. (10.1) to (10.3) appears at two

places, the parton distribution functions and the Debye screening mass. Following the

procedure used in [71], distribution function is given as

fg/q(Q, X) = f 0
g/q(Q) + δ fg/q(Q, X). (10.8)

Shear correction here is given as

δ fg/q(Q, X) = πµνQµQνSX(X)SM(Q, T). (10.9)

Here

SX =
1

2(ε + P)
, SM =

f 0
g/q(q)(1± f 0

g/q(q))

T2 , (10.10)

and ε and P are local hydrodynamic quantities. This shear correction is evaluated using

the Grad’s 14 moment method and is identical to the form given in eq. (2.34).

Linearizing eq. (2.40) in δ fg/q we can write

Ai ' A(0)
i + Ashear

i . (10.11)

Shear viscous contribution Ashear
i is

Ashear
i =

1
γc

1
2P0

∫ d3q
(2π)32Q0

∫ d3p
′

(2π)32P′0

∫ d3q
′

(2π)32Q′0
(2π)4δ4(P + Q− P

′ −Q
′
)

×∑ | MHQ,g/q |2
[

δ fg/q(Q)
(

1± f 0
g/q(Q

′
)
)
± f 0

g/q(Q)δ fg/q(Q
′
)

](
p− p

′)
i,

(10.12)

which can be written as

Ashear
i = πµνPµPν ∑

j
Sj

X(X)S̄j
M(P, T), (10.13)
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with

S̄j
M(P, T) =

1
2[(u.P)2 − P2]

[
gµν +

P2 + 2(u.P)2

[(u.P)2 − P2]
uµuν + 3

PµPν

[(u.P)2 − P2]

− 3
(u.P)

[(u.P)2 − P2]
(Pµuν + Pνuµ)

]
1
γc

1
2P0

∫ d3q
(2π)32Q0

∫ d3p
′

(2π)32P′0

×
∫ d3q

′

(2π)32Q′0
(2π)4δ4(P + Q− P

′ −Q
′
)
(
p− p

′)
i ∑ | MHQ,g/q |2

×
[

QµQνSj
M(Q, T)

(
1± f 0

g/q(Q
′
)
)
± f 0

g/q(Q)Q
′µ

Q
′ν

Sj
M(Q

′
, T)
]

. (10.14)

S̄j
M(P, T) is a scalar which depends only on HQ momentum and temperature and the

shear contribution has been completely factored out in eq. (10.13). Using this simplifica-

tion we finally obtain the shear correction to the integral in eq. (10.5)

〈〈F(p
′
)〉〉shear = πµνPµPν 1

(ε + P)
1

T2 512π4γc

1
4Ep p2

[
Γ1(p, T)± Γ2(p, T)

]
, (10.15)

with

Γ1 =
∫ ∞

0

q2

Eq
dq
∫ 1

−1
d cos χ

√
(s + m2

c −m2
g/q)

2 − 4sm2
c

s
f 0
g/q(Eq)

(
1± f 0

g/q(Eq)

)
×
[

m2
g/q + 3q2 cos2 χ− E2

q

] ∫ 1

−1
d cos θcm ∑ | MHQ,g/q |2

∫ 2π

0
dφcme

βE
q′ fg/q(Eq′ )F(p

′
),

(10.16)

and

Γ2 =
∫ ∞

0

q2

Eq
dq
∫ 1

−1
d cos χ

√
(s + m2

c −m2
g/q)

2 − 4sm2
c

s
f 0
g/q(Eq)

∫ 1

−1
d cos θcm ∑ | MHQ,g/q |2

×
∫ 2π

0
dφcm

(
1± fg/q(Eq′ )

)
fg/q(Eq′ )

[
m2

g/q +
3
p2

(
p2 + pq cos χ− (p.p

′
)
)2 − E2

q′

]
F(p

′
).

(10.17)

Shear tensor is traceless and ultimately does not contribute to Debye screening mass.

The details can be seen in [197].

Finally, the shear contribution to drag and diffusion coefficients can be calculated from

eqs. (10.1) to (10.3) with the integrals defined in eqs. (10.15) to (10.17).
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10.3 bulk viscous corrections

Chapman-Enskog expansion within relaxation time approximation gives a bulk viscous

correction to particle distribution function

δ fg/q(Q, X) = −β f 0
g/q(Q)

(
1± f 0

g/q(Q)
)(

Eq −
m2

g/q

Eq

)
×
(

c2
s −

1
3

)
Π(X)

(ζ/τR)
, (10.18)

where

ζ

τR
≈ 15

(
1
3
− c2

s

)2(
ε + P

)
. (10.19)

This bulk correction is slightly different from the expression given in eq. (2.35). Expres-

sion in eq. (2.35) was used for hadrons. Here we are in the QGP phase. Quarks and

gluons in QGP acquire a thermal mass modifying the bulk correction. The derivation of

this form can be seen in [71].

We follow the same procedure outlined in section 10.2 with this correction in distri-

bution function. The detailed derivation can be seem in [197]. We quote the final result

here. The bulk viscous correction to the integral is given as

〈〈F(p
′
)〉〉bulk =

ΠBX(X)

512π4γc

1
Ep

[
Λ1(p, T)±Λ2(p, T)

]
, (10.20)

where,

Λ1 =
∫ ∞

0

q2

Eq
dq
∫ 1

−1
d cos χ

√
(s + m2

c −m2
g/q)

2 − 4sm2
c

s
BM(Q, T)

∫ 1

−1
d cos θcm ∑ | MHQ,g/q |2

×
∫ 2π

0
dφcme

βE
q′ fg/q(Eq′ )F(p

′
), (10.21)

and

Λ2 =
∫ ∞

0

q2

Eq
dq
∫ 1

−1
d cos χ

√
(s + m2

c −m2
g/q)

2 − 4sm2
c

s
f 0
g/q(Eq)

∫ 1

−1
d cos θcm ∑ | MHQ,g/q |2

×
∫ 2π

0
dφcmBM(Q

′
, T)F(p

′
). (10.22)

Unlike shear viscosity, bulk viscous corrections modify Debye screening mass. Debye

mass comes from the gluon self energy and is given by

µ2 = 4παsβ
∫ d3q

(2π)3

[
2Nc fg(1 + fg) + 2N f fq(1− fq)

]
, (10.23)
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where Nc is the number of colors, and as before, N f is the number of flavors. Conse-

quently, correction to the Debye mass is given by

δµ2 = 4παsβ
∫ d3q

(2π)3

[
2Ncδ fg(1 + 2 f 0

g ) + 2N f δ fq(1− 2 f 0
q )
]
. (10.24)

Now, Debye mass appears only in t-channel diagrams given as

| MHQ,q |2= 256N f π2α2
s
(m2

c − s)2 + (m2
c − u)2 + 2m2

c t
(t− µ2)2 . (10.25)

Here s, t and u are Mandelstam variables. Up to leading order in Debye mass corrections,

we can expand the matrix element

| M̄HQ,q |2= | MHQ,q |2 + | MHQ,q |2
(1)

, (10.26)

with

| MHQ,q |2
(1)

= 512N f π2α2
s δµ2 (m

2
c − s)2 + (m2

c − u)2 + 2m2
c t

(t− µ2)3 . (10.27)

This gives an additional term in bulk viscous correction. Following the same procedure

as before as described in section 10.2, we finally get

〈〈F(p
′
)〉〉bulk(2) = ΠBX(X)

1
512π4γc

1
Ep

Λ3(p, T), (10.28)

with

Λ3 =
2αs

πT

∫ ∞

0

q2

Eq
dq
∫ 1

−1
d cos χ

√
(s + m2

c −m2
q)

2 − 4sm2
c

s
f 0
q (Eq)

∫ 1

−1
d cos θcm | M2 |2

×
∫ 2π

0
dφcme

βE
q′ fq(Eq′ )F(p

′
)
∫ ∞

0
r2 dr

[
2Nc/ f BM(R, T)

(
1± 2 f 0

g/q(Er)
)]

. (10.29)

Now we have everything we need to evaluate the bulk correction to HQ transport

coefficients. The corrections are given by eqs. (10.1) to (10.3) with integral given by

sum of two terms. Those two terms are given by eqs. (10.20) to (10.22) and eqs. (10.28)

and (10.29).

10.4 results

We use MUSIC [32] to simulate a 0 − 5% centrality Pb − Pb collision event with IP-

Glasma initial conditions [40, 41] and hotQCD equation of state [15] matched to hadron
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Figure 10.1: Temperature evolution along y = 0 axis at mid-rapidity. White arrows indicate local

flow.

resonance gas equation of state [159] is used. In choosing fluctuating initial conditions,

our goal here is not to get averaged observables from event-by-event simulations but to

obtain insight into how HQ transport quantities look like in a realistic HIC event.

Fig. 10.1 shows temperature evolution history along the y = 0 line at midrapidity. The

drag and diffusion coefficients given in eqs. (10.1) to (10.3) are solved numerically with

the hydrodynamic information folded in. We used a Monte-Carlo integrator to evaluate

these integrals.

We place a charm quark with momentum p = 5 GeV moving in positive x-direction

on the y = 0 line at midrapidity. The momentum is defined such that charm four mo-

mentum is p = (
√

m2
c + p2, p, 0, 0) in lab frame. We are not dynamically evolving the

charm but actually placing it with the exact same momentum at each (τ, x) depicted in

fig. 10.1.

Fig. 10.2 shows the drag coefficient. Drag coefficient is larger when the temperature is

higher. Charm faces less random kicks in its Brownian motion at lower temperatures. It

is also higher on the lower half of the plane. HQ loses more energy by drag when it is

travelling opposite to the direction of medium flow.

Fig. 10.3 shows the value of diffusion coefficients. As opposed to drag, there is more

diffusion when charm moves in the direction of medium velocity.

Fig. 10.4 shows the ratio of viscous corrections to the equilibrium values. Shear correc-

tions are prominent at early temperatures. Bulk correction is negative and could be up
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Figure 10.2: Drag coefficients of a charm with p = (
√

m2
c + p2, p, 0, 0) in lab frame at each space-

time point. Curves indicate constant value contours.
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Figure 10.4: Ratio of shear (left) and bulk (right) viscous corrections to the equilibrium values for

A (top), B0(middle) and (B1− B0) (bottom). Charm properties are same as in figs. 10.2

and 10.3.
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Figure 10.5: Spatial diffusion coefficient calculated in present work compared with estimations

from LO pQCD [198], lattice QCD [199] and quasi-particle model (QPM) [200].

to 30% in a narrow band. This band corresponds to temperature regions where ζ/s is

high as shown in fig. 8.1.

We also evaluate spatial diffusion coefficient which is defined as

Ds =
T

mc A(p→ 0, T)
. (10.30)

Fig. 10.5 shows our estimation of Ds for different strengths of bulk pressure along with

the calculations from leading order (LO) pQCD, lattice QCD and quasi-particle model

(QPM). Our results are in agreement with LO pQCD. Here we have only included 2→ 2

scatterings perturbatively. In the low pT region, non-perturbative effects become domi-

nant. These are captured by lattice QCD. Hence, our results in p→ 0 limit differ.

Finally, collisional energy loss in Brownian motion can be expressed in terms of drag

coefficient as

dE
dL

= −A(p2, T)p. (10.31)

Here dL is the incremental path length travelled by charm at each time step. We can

propagate charm with different momentum and look at their trajectory in the (τ, x)

plane. We can also estimate their energy loss and the viscous contribution to it.

We start with a charm quark at origin. We initialize it with momentum in the x-

direction with values ±2,±5 and ±10 GeV. We allow it to move in the x-direction with its

velocity which is calculated at each time step from its momentum. At each time-step the



10.5 summary 127

 0  2  4  6  8  10  12  14  16

τ(fm)

−15

−10

−5

 0

 5

 10

 15

x
(f

m
)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

T
e
m

p
e
ra

tu
re

 (
G

e
V

)

−2
−5

−10

+2
+5

+10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

M
o
m

e
n
tu

m
 l
o
s
t 
(G

e
V

)

Local Temperature (GeV)

-10
-5
-2
+2
+5

+10

−5

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12  14  16

P
e
rc

e
n
t 
o
f 
m

o
m

e
n
tu

m
 l
o
s
t

τ(fm)

−10
−5
−2
+2
+5

+10

Figure 10.6: Trajectory of charm quarks with different initial momentum (left). Momentum lost

by charm as a function of temperature along the trajectory (middle). Percentage

momentum lost as a function of proper time (right). Numbers denote the iniital

momentum in the x-direction. Momentum in y and longitudinal directions is zero.

charm loses some energy based on eq. (10.31). A is calculated at each time step locally.

Charm is propagated until it leaves the medium.

In fig. 10.6, we see that energy loss depends on the specific trajectory encountered

by a charm. Charm loses energy more steeply at initial times when temperatures are

higher and flattens as the system cools down. Charm quark with higher energy lose

more momentum but it is a smaller percentage of their initial value.

Fig. 10.7 shows the momentum loss for the charm with initial momentum +5 GeV.

Here we also show the momentum loss if we removed viscous corrections from the drag

coefficient. Black and red lines overlap there indicating that the difference in final energy

loss due to shear correction is negligible. Bottom panel shows the actual difference. With

the inclusion of bulk correction (which is always negative for A, hence less energy loss)

net momentum loss is reduced by about 2%

10.5 summary

In this chapter we calculated the shear and bulk corrections to collisional energy loss

by charm quarks in QGP. We see that charm’s transport properties could change by up

to 30% in some restricted regions of QGP, but without much effect on net energy loss.

However, all known transport properties should be included for theoretical consistency.
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Figure 10.7: Momentum loss in a quark starting

This calculation could be used to evaluate collision rates for use in event-by-event

simulations (like ones described for hard light quarks in section 2.2). Our next step

would be to evaluate these rates along with radiation energy loss rates and calculate

observables in an event by event simulation.

We would also like to use the energy feedback to hydro developed in chapter 9 along

with our energy loss model to evaluate heavy-flavor observables.



Part IV

C O N C L U S I O N



In this thesis, different aspects of soft and hard observables in heavy ion collisions

were studied. We developed a novel mechanism to realistically simulate soft thermal

fluctuations in QGP. We also studied the dynamics of Mach cones created by jets in

QGP and introduced a new concurrent framework to simultaneously evolve the QGP

and the jets. Further, we evaluated the out-of-equilibrium corrections to the heavy quark

transport coefficients in QGP.

In chapter 6, we expanded the perturbative fluctuation technique. We evaluated ex-

perimental observables in simple settings to ascertain weather a more realistic study

of thermal fluctuations is warranted. We observed that the thermal fluctuations signifi-

cantly affected experimental observables; most notable the event plane correlators. We

also found that the thermal fluctuations have the counter-intuitive effect of reducing

photon v2, which could be understood in terms of decorrelation between photon and

hadron planes.

A new mechanism to study thermal fluctuations in HIC was developed in chapter 7.

We achieved this by using a low pass filter to remove high wavenumber noise modes

from our simulations. High wavenumber noise modes decay very fast to their equilib-

rium values and operate on very small length scales. We examined the effect of low

pass filter on noise modes in static and Bjorken flow and compared them to the known

analytic results. We observed that in these simple flows, removal of high wavenumber

modes does not affect the low wavenumber modes, as long as there is a separation in

scale of high and low wavenumbers. We evaluated the experimental observables with

shear thermal fluctuations and identified ones which are sensitive to them. As experi-

mental observables are designed to be dependent on the long wavelength hydro modes,

we did not expect them to be sensitive to removal of high wavenumber modes. We ex-

plicitly tested that by using different cutoff scales. Our results were cutoff independent

up to statistical uncertainties.

In chapter 8, we extended our model to include bulk fluctuations and did an ex-

ploratory study with them. As opposed to shear fluctuations, bulk fluctuations explicitly

lower the entropy production in the system and hence reduce final multiplicity. This

happens as increased positive bulk viscous pressure rapidly cools the system while in-

creased negative bulk fluctuations cannot heat it. This imbalance causes the system to
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expand faster. We observed that apart from reducing multiplicity, it also enhances mean

pT. This calls for a more elaborate study of bulk fluctuations including recalibration of

QGP transport coefficients.

We also commented on the situation when the magnitude of bulk viscous pressure

becomes larger the thermodynamic pressure causing the net kinetic pressure to turn

negative. We argued that negative kinematic pressure, though theoretically problematic,

does not immediately imply hadron gas production or fireball fragmentation. We also

demonstrated that the negative kinematic pressure region of the phase space does not

really affect the experimental observables for Pb-Pb collisions.

In chapter 9 we studied jet medium interaction in QGP. Specifically, we added lost

energy from jets as source terms in hydro equations for QGP evolution. We investigated

the formation of Mach cones in QGP. We found that these source terms definitely cause

an enhancement in multiplicity in the jet cone. We also found that while QGP viscosity

will affect the jet shape function, it will be very difficult to extract it using this effect.

We introduced a new framework to simultaneously evolve the jet and the medium. We

have set model parameters from the soft sector data and our framework is now ready to

explore intermediate and high pT physics. We observed that QGP viscosity needs to be

modified when one introduces minijets in simulations.

Finally, in chapter 10, we evaluated the viscous corrections to charm quark drag and

diffusion coefficients in QGP. We observed that the transport coefficients of charm quark

could change up to 30% in certain regions of QGP. However, net effect of viscous correc-

tions on charm energy loss is negligible. The corrections calculated here could also be

used in an event by event simulation to evaluate heavy quark observables.

We have investigated various aspects and consequences of QGP viscosity. It shows

up everywhere ranging from the soft thermal fluctuations to the hard interactions. A

proper extraction of QGP transport coefficients needs to take all these effects into account.

While a complete self consistent model incorporating all these effects together is yet to

be devised, we believe that this work is a step in that direction.

In future, a robust examination of bulk viscous fluctuations using different bulk vis-

cosity profiles needs to be done. Our concurrent jet medium framework is ready to be

utilised to explore intermediate and high pT physics. Both the thermal fluctuations and
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the medium response to jets will affect photon production, which can be evaluated. And

we can do event by event simulations of HQ interactions in QGP including the viscous

corrections evaluated in this work.

We hope that all these steps will lead us in the direction of a self consistent framework

which includes all these physical effects. A systematic Bayesian analysis like the ones

done in [168, 169] could then be employed to extract the transport properties of QGP.
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