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ABSTRACT

DNA methylation occurring at a cytosine-guanine (CpG) site blocks binding to

the DNA and hence can influence gene function and regulation. Therefore, it is often

valuable to investigate which methylation sites are associated with diseases or other

phenotypes of interest. Though a large proportion of CpG sites in mammals are

methylated, methylation signatures differ notably between cell types. Consequently,

when measuring methylation levels on whole blood or other types of tissues involv-

ing multiple cell types, it can be difficult to distinguish the changes associated with

a phenotype of interest from those occurring as a result of varying proportions of

different cell types among subjects. This phenomenon is of concern when changes

in cell type proportion are associated with the phenotype itself, thereby making cell

type proportion a confounder. There are several recently developed methods that

attempt to correct for this confounding, including one method based on an external

validation data set (Houseman et al., BMC Bioinformatics 2012), a reference-free

method (Houseman et al., Bioinformatics 2014), Surrogate Variable Analysis (Leek

and Storey, PLoS Genetics 2007), Independent Surrogate Variable Analysis (Teschen-

dorff, Bioinformatics 2011), the FAST-LMM-EWASher method (Zou, Nature Meth-

ods 2014), Deconfounding (Repsilber, BMC Bioinformatics 2010), and CellCDecon

(Wagner, PhD Thesis 2014). In order to compare the performance of each method, we

have artificially re-combined measures of methylation obtained from cell-separated

analysis of whole blood. Specifically, methylation measures are available for mono-

cytes and CD4 T-cells. We randomly chose a subset of the samples to be disease
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cases, then we designated a set of CpG sites to be associated with the disease. A

new artificial set of methylation measurements was generated by combining the val-

ues from each cell type with variable proportions of each cell type in each subject.

We uncovered notable differences between the methods in terms of statistical power,

reduction in false discovery rate, the extent to which the confounding has been cor-

rected, and in computational performance. The reference-based method, due to its

ease of use and generally good performance, was selected as the best method under

the specified circumstances. ISVA was selected as the best alternative if no external

data set were available.
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ABRÉGÉ

La méthylation de l’ADN, qui a lieu à un site cytosine-guanine (CpG), empêche

la liason et ainsi peut influencer la fonction et la régulation génique. Il y a donc

intérêt à investiguer quels sites méthylés sont associés à une maladie ou tout autre

phénotype. Malgré qu’une grande proportion de sites CpG soient méthylés chez les

mammifères, la structure de la méthylation varie d’un type de cellule à un autre.

Par conséquence, lorsque les niveaux de méthylation sont mesurés à partir d’un

échantillon sanguin ou un autre tissu hétérogène, il peut être difficile de séparer les

changements associés au phénotype étudié de ceux relevant de différents niveaux

d’hétérogénéité parmis les sujets. Ce phénomène est particulièrement important

lorsque le phénotype est associé avec cette hétérogénéité, créant ainsi un facteur con-

fondant. Plusieurs méthodes ont récemment été dévelopées pour tenter de corriger ce

phénomène, incluant une méthode utilisant un jeu de données externe (Houseman et

al., BMC Bioinformatics 2012), une méthode sans jeu de données externe (Houseman

et al., Bioinformatics 2014), Analyse de variables latentes (Leek and Storey, PLoS

Genetics 2007), Analyse de variables latentes indépendantes (Teschendorff, Bioin-

formatics 2011), la méthode “FaST-LMM-EWASher” (Zou, Nature Methods 2014),

“Deconfounding” (Repsilber, BMC Bioinformatics 2010), et “CellCDecon” (Wagner,

Thèse de doctorat 2014). Afin de comparer la performance de chaque méthode, nous

avons artificiellement recombinés les mesures de méthylation obtenues à partir d’un

échantillon sanguin pour lequel chaque type de cellule a été analysé séparément. Plus

précisément, les mesures de méthylation sont disponibles pour les monocytes et les
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lymphocytes T CD4. Nous avons aléatoirement désigné une portion des échantillons

comme étant affectés par, ainsi qu’une portion des sites CpG comme étant associés

à, la maladie. Un nouveau jeu de données synthétique contenant des mesures de

méthylation a été généré en combinant les valeurs de chaque type de cellule en pro-

portions variables, et ce, pour chaque sujet. Nous avons découvert d’importantes

différences entre les méthodes en ce qui a trait à la puissance, la réduction du taux

de fausses découvertes, la capacité de corriger les biais dus à l’hétérogénéité, et la

performance computationelle. La méthode basée sur un jeu de données externe a

été sélectionnée comme étant la meilleure méthode, grâce à sa simplicité et sa bonne

performance générale. L’analyse de variables latentes indépendantes a été choisie

comme meilleure alternative lorsqu’aucun jeu de données externe n’est disponible.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 DNA Methylation and the Epigenome-Wide Association Study . . . . . . 5

2.1 What is DNA Methylation? . . . . . . . . . . . . . . . . . . . . . 5
2.2 Measuring Methylation . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Statistics calculated from methylation data . . . . . . . . . 7
2.3 Data Quality Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Functional Normalization . . . . . . . . . . . . . . . . . . . 11
2.5 Epigenome-Wide Association Studies . . . . . . . . . . . . . . . . 12
2.6 Cell Type Heterogenity as an Unmeasured Confounder . . . . . . 14

3 Description of Adjustment Methods . . . . . . . . . . . . . . . . . . . . . 18

3.1 Reference-based method . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 External data set . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Regression Model . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Reference-free method . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Surrogate Variable Analysis . . . . . . . . . . . . . . . . . . . . . 25
3.4 Independent Surrogate Variable Analysis . . . . . . . . . . . . . . 28
3.5 FaST-LMM-EWASher . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Description of FaST-LMM . . . . . . . . . . . . . . . . . . 30
3.5.2 Extending FaST-LMM . . . . . . . . . . . . . . . . . . . . 32

viii



3.6 Deconfounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 CellCDecon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Test Data and Simulation Details . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Cell Type Separated Methylation Data Set . . . . . . . . . . . . . 37
4.1.1 Description of Data Set . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Data Quality Issues . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Simulation Steps . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 QQ-Plot for P-values . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Power After Controlling for False Discovery Rate . . . . . . 48
4.3.4 Kolmogorov-Smirnov Statistic . . . . . . . . . . . . . . . . 49

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.1 Scenario 1: Distinct Associations with Phenotype in Cell

Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 Scenario 2: No Confounding . . . . . . . . . . . . . . . . . 62
5.1.3 Scenario 3: Opposing Effects . . . . . . . . . . . . . . . . . 63
5.1.4 Scenarios 4 and 5: High vs. Low Precision of Cell Type

Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Using methods on ARCTIC data set . . . . . . . . . . . . . . . . 72
5.3 Computing Performance . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Scaling over Sample Size . . . . . . . . . . . . . . . . . . . 77
5.3.2 Scaling over latent dimension . . . . . . . . . . . . . . . . . 79

6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Summary of methods . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendix A - Singular Value Decomposition . . . . . . . . . . . . . . . . . . . 86

Appendix B - Available Software . . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

x



LIST OF TABLES
Table page

3–1 List of adjustment methods . . . . . . . . . . . . . . . . . . . . . . . . 19

5–1 Summary of parameters in simulations . . . . . . . . . . . . . . . . . . 52

5–2 Performance metrics comparison for the distinct associations in cell
types scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5–3 Performance metrics comparison for the no confounding scenario . . . 66

5–4 Performance metrics comparison for the no confounding scenario . . . 69

5–5 High precision - performance metrics . . . . . . . . . . . . . . . . . . . 71

5–6 Low precision - performance metrics . . . . . . . . . . . . . . . . . . . 71

5–7 Number of CpGs from top 100 in common with unadjusted model . . 73

5–8 Ratio of 500 sample size time to 50 sample size time . . . . . . . . . . 79

5–9 Ratio of latent dimension 10 time to latent dimension 2 time . . . . . 79

6–1 Available software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xi



LIST OF FIGURES
Figure page

2–1 EWAS DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2–2 Cell type heat map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4–1 Example of QQ-Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4–2 Example ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5–1 Cell type effect distribution . . . . . . . . . . . . . . . . . . . . . . . 54

5–2 Simulated T-cell distribution . . . . . . . . . . . . . . . . . . . . . . . 55

5–3 EWASher overcorrected plot . . . . . . . . . . . . . . . . . . . . . . . 57

5–4 Distinct associations in cell types QQ-plot . . . . . . . . . . . . . . . 59

5–5 ROC curves for methods . . . . . . . . . . . . . . . . . . . . . . . . . 60

5–6 Cell type effect distribution - no confounding . . . . . . . . . . . . . . 64

5–7 No confounding QQ-plot . . . . . . . . . . . . . . . . . . . . . . . . . 65

5–8 Cell type effect distribution - opposite effects . . . . . . . . . . . . . . 67

5–9 Opposite effect QQ-plots . . . . . . . . . . . . . . . . . . . . . . . . . 68

5–10 T-cell distributions high/low precision . . . . . . . . . . . . . . . . . . 70

5–11 ARCTIC QQ-Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5–12 ARCTIC effect distributions . . . . . . . . . . . . . . . . . . . . . . . 75

5–13 Computing performance over sample size . . . . . . . . . . . . . . . . 78

5–14 Computing performance over latent dimension . . . . . . . . . . . . . 80

xii



CHAPTER 1

Introduction

The word ‘epigenetics’ encompasses changes in the functionality of DNA (i.e.

gene expression) not explained by DNA sequences themselves, in particular, changes

procured by phenomena such as DNA methylation, RNA-silencing, and histone mod-

ification [11]. The problem addressed in this thesis is specifically concerned with DNA

methylation. In recent years understanding the role of epigenetics has become vital in

disease etiology at the genetic level. There is, in fact, a subset of diseases referred to

as ‘epigenetic diseases’ that are primarily caused by the improper regulation of genes

[11]. Similarly, deviant hypermethylation has been shown to fundamentally affect tu-

mor development in humans [21]. Diseases such as Beckwith-Wiedemann syndrome,

Prader-Willi syndrome, and Angelman syndrome, among others, are also associated

with aberrant methylation, clearly demonstrating the importance of methylation in

proper gene regulation [32]. It is therefore of great interest to study how changes in

methylation can associate with diseases or other interesting phenotypes.

One study design allowing such an association to be detected is the Epigenome-

Wide Association Study (EWAS). An EWAS is, at the most basic level, a regression

model testing for association between methylation levels and a phenotype. Though

one could conceivably run an EWAS analysis on methylation measurements recovered

from any kind of cell type, it is essential that the same kinds of cells be sampled among

all subjects, as methylation profiles differ notably between cell types. Herein lies
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the crux of the problem addressed in this thesis: when drawing samples containing

multiple cell types (e.g. whole blood or adipose tissue), between-sample variability

in cell type composition can act as a confounder. This occurs when the disease being

studied is associated with changes in cell type composition, something that is known

to be true in blood samples coming from cancer patients [43] as well as in synovial

and cartilage cells in patients affected by rheumatoid arthritis [34].

The advancement of high-throughput technologies in recent years has enabled

the development of a number of methods that can account for this unmeasured con-

founding. Though there are numerous similarities between the approaches, there

remain some fundamental differences in terms of limitations and performance. Ul-

timately, it would be valuable to do a careful review of how these methods perform

relative to each other in terms of adjustment, statistical power, as well as comput-

ing performance under controlled conditions. In this thesis I will undertake such a

review.

The methods will be compared through the use of a rare data set containing

methylation measurements on separated blood cell types. This data set comes from

the research of Dr. Marie Hudson at the Lady Davis Institute in Montréal, QC. The

possession of this kind of data is a privilege, as separating cell types is not a trivial

task. A more detailed description of the data can be found in Section 4.1.

The fundamental idea of this work is to use the measurements from the separated

cell types in a cell mixture simulation. We can specify, for each cell type, associations

between a phenotype and various methylation sites. Then, as one would often see

in real cell mixture data, a change in the relative proportion of cell types in each

2



sample can be induced between cases and controls. This allows us to set simulation

parameters that each cell type adjustment method will try to estimate, while simul-

taneously preserving the natural variation coming from the methylation data across

individuals and across sites in the genome. Because the associations are prespeci-

fied, calculating power and detecting type I errors will be relatively straightforward.

Furthermore, a range of different situations can be tested to see if the performance

of methods is significantly affected (i.e. changing simulation parameters).

Additionally, I will examine performance on a data set of mixed cell types (blood)

in order to compare results in a study with no simulation involved. These data are

from the Assessment of Risk in Colorectal Tumors in Canada (ARCTIC) study.

Details of this data set can be found in Section 5.2.

The thesis will be structured as follows: Chapter 2 will provide some background

about DNA methylation and the different challenges researchers face when working

with this kind of data, and will more concretely describe the problem of cell type

heterogeneity in epigenomic studies. Chapter 3 will describe each of the cell type

adjustment methods, and will function as the literature review. Chapter 4 will

provide a description of the separated blood cell data set, simulation details, and

define the performance metrics that will be used for method comparison. Chapter 5

will provide the results of the simulation as well as results of analysis of the ARCTIC

data set. Finally, Chapter 6 will provide discussion and conclusions, and will outline

possible directions for future work.

In order to properly describe the work done in this thesis, it will be necessary to

delve into the details of DNA methylation and how measurements on methylation,
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in conjunction with one or more phenotypes of interest, will be used to formulate an

EWAS. This is addressed in the next chapter.
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CHAPTER 2

DNA Methylation and the Epigenome-Wide Association Study

The purpose of Chapter 2 is to provide a simple description of DNA methylation

which is the principal focus of the methods presented in this thesis. In doing so it is

imperative to provide details of how methylation is measured, underscore issues with

the quality of methylation data, and specify how to deal with such issues. Finally,

the EWAS will be more precisely defined, and in due course, the underlying problem

of cell heterogeneity will emerge.

2.1 What is DNA Methylation?

The purpose of DNA methylation is to block the binding of transcription factors

to the DNA thereby acting as a regulator of DNA activity, and therefore, gene

expression. This phenomenon occurs when there is a transfer of a methyl group

to the fifth carbon on a cytosine nucleotide, which occurs almost always when the

cytosine is succeeded by a guanine nucleotide [28]. Sites along the genome housing a

cytosine-guanine dinucleotide are referred to as ‘CpG’ sites and measurements taken

on a subset of these sites will form the basis of the EWAS. There are approximately

7.4 million CpG sites in the human genome that could be methylated or unmethylated

[9].

CpG sites in vertebrates are largely methylated, and most of the unmethylated

sites are found in what are referred to as ‘CpG islands’, regions in the genome

containing a high density of CpGs [6]. Humans have been shown to possess more than
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25,000 CpG islands [8]. Naturally, it is imperative to ensure methylation analyses

accommodate a good coverage of CpG sites within islands.

2.2 Measuring Methylation

One platform from which methylation measures can be easily obtained is the

Infinium HumanMethylation450 BeadChip. The 450K array features probes corre-

sponding to 482,421 CpG sites as well as over eight hundred negative control probes

that allow assessment of the quality of the signals [39]. CpGs from all chromosomes

are included on the array and about 30% are located in CpG islands [33]. The CpG

sites on the array were chosen to include a high proportion of CpG islands (96%)

and RefSeq sites (99%), among other criteria [4].

The underlying process of the Illumina method involves performing a bisulfite

conversion on the DNA which is manifested by a change from a cytosine to a uracil.

Methylation can then be inferred at a specific CpG site if the cytosine remains

untouched by the bisulfite reaction [5]. Among the 482,421 probes spanning the

genome, two types of probes exist: Infinium I which contains both a methylated and

an unmethylated probe for every CpG site, and Infinium II which contains only one

probe for both the methylated and unmethylated signals [4]. Though the signals from

either probe type can be used to calculate easily interpretable statistics measuring

methylation, there does exist a probe type bias that must be accounted for in the

normalization step, which is outlined in Section 2.4.

DNA extracted from any type of human tissue can be used to measure methyla-

tion on the Illumina platform, however, blood is the most common and is relatively

simple to obtain. Methylation can also be estimated for tissues that are more difficult
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to sample. In some cases, calibration models have been developed to use samples

taken from tissues that are easier to obtain as surrogate measures for tissues that are

hard to obtain. For example, measurements taken on peripheral blood leukocytes

have been used to predict profiles for artery and atrium tissue [27].

It is also well known that methylation patterns can differ with respect to factors

such as age and sex. For example, models using methylation information at selected

sites in the genome have been shown to be fairly accurate age predictors in a vari-

ety of cell types [16, 42]. Also, substantial differences in methylation between the

sexes exists even on the autosomes, and hence sex should be taken into account in

methylation analyses.

2.2.1 Statistics calculated from methylation data

Measuring methylation within a cell, due to the presence of two homologous

chromosomes, results in one of three outcomes: the cell could have zero, one, or

two methylated signals at a CpG site. However, in practice a tissue sample contains

a very large number of cells which necessitates the need for a summary measure

that estimates the global level of methylation within a collection of cells. Here we

define two statistics, β and M , to summarize the extent to which a given CpG site is

methylated in a sample. For these two definitions, we use a slightly modified version

of the notation found in [10]. Firstly, we examine the more common of the two: the

‘beta’ value.

Definition 2.2.1 Let yi,m and yi,u be the methylated and unmethylated intensities

at CpG site i, respectively. Then the ‘beta’ value, i.e. the ratio of methylated and

overall intensities, is defined as:
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βi =
max(yi,m, 0)

max(yi,m, 0) + max(yi,u, 0) + τ
(2.1)

where τ ≥ 0 is an offset term to regularize in the event that the overall signal is

low.

After normalization for technical artifacts (details of which will be covered in

Section 2.4), the intensities yi,m and yi,u could potentially be negative. By this defi-

nition such values are set to zero. The term τ in the denominator is a regularization

term which, on the Illumina platform, is set to 100 by default.

From this definition it is obvious that beta will lie between 0 and 1, allowing it to

retain a nice interpretation. It can be thought of as an estimator for the proportion

of cells in the sample that are methylated at a given CpG site. The other statistic

that is common in the literature, but less so than the β value, is the M value, which

is defined as follows:

Definition 2.2.2 Using yi,m and yi,u from Definition 2.2.1, the M-value for CpG

site i is defined to be:

Mi = log2

(
max(yi,m, 0) + τ

max(yi,u, 0) + τ

)
(2.2)

where τ ≥ 0 is a regularization term.

Du et al. note in [10] that the M-value is “more statistically valid for the

differential analysis of methylation levels”, as it has been observed to give a more
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stabilized variance over technical replicates. Even so, a few of the methods that will

be introduced in Chapter 3 specifically require the use of the β value. This fact,

combined with its ease of interpretability, means the β value will be the de facto

measurement of methylation within the context of this thesis.

It turns out that methylation estimates are quite reliable. The Illumina array

was used to analyze technical replicates, and was shown to give highly reproducible

results for normal lung tissue and lung adenocarcinoma tissue [5]. There remain,

however, a number of potential technical artifacts that can arise and must be ac-

counted for. The next two sections will outline issues in data quality one might

encounter in the analysis of methylation data, and will mention some of the tools

used to remedy them.

2.3 Data Quality Issues

A number of data quality issues exist within the realm of methylation data as one

would expect when extracting measurements from high-throughput genomic data.

These kinds of problems mostly entail systematic differences in methylation patterns

resulting from different technical artifacts that exist in Illumina’s chip design, but can

also include unexplained noise possibly due to laboratory environment, technician

precision, or random error.

Probe type is one source of variation in the data. It has been shown that different

distributions of signal intensity can be observed between the type I and type II

probes. Two possible ways of dealing with this include: transforming the observations
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from one probe type to match the distribution of the other, or normalizing the data

from each probe type separately [29].

There is also a significant amount of background noise observed in methylation

data from the 450K array. The array’s design includes a set of negative control

probes that are not expected to hybridize. Readings from these control probes can

be used in statistical models to perform adjustment for background noise [44]. The

control probes can also be used to estimate probe type bias as mentioned above.

One of the biggest challenges in EWAS is the potential for batch effects. The

Illumina BeadChip is designed so that individual chips are capable of holding up to

12 samples, with up to 8 chips per plate. Additionally, chips are manufactured in

batches of several hundred at a time. Multiple chips/plates will usually be required

to acquire measurements for all samples in the study, and multiple batches may also

be needed. Environmental factors such as changes in laboratory conditions and time

of experiment can lead to notable differences in distributions between these batches

[37]. It is imperative that any kind of normalization technique take into account

which samples came from the same batch in order to attempt to rectify the problem.

Batch effects also create the need for prudence in study design. If, for example, all

disease cases were included on a chip and controls on another, it would be difficult

to normalize for batch effect without erasing the effects due to case/control status.

2.4 Normalization

Normalization attempts to correct artifactual or technical biases present in the

methylation data. Many normalization algorithms have been posited in the last

few years. One common method is Quantile Normalization (QN). This technique
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involves a non-linear transformation that forces uniformity in distribution over all

methylation loci [37]. It can be seen in the literature that several other methods are

build upon QN. The method used for the methylation data included in this work is

called ‘Functional Normalization’, and was presented in 2014 by Fortin et al. [13],

the details of which are found in the next subsection.

2.4.1 Functional Normalization

Functional Normalization (FN) is a normalization technique that takes a known

covariate or set of covariates and removes only the (unwanted) variation associated

with that covariate. This is advantageous as the näıve version of QN, which does

not take covariates into account, runs the risk of eliminating the true biological

variation in the data. FN does not require the user to input information on specific

experimental information (i.e. batch number). It is demonstrated in [13] that the

first two principal components from the 450K control probes can act as a proxy for

chip and position biases. Similarly, FN can be used on any kind of genomic data

containing some kind of control probes.

First, FN calculates the empirical cumulative distribution function for each of

the samples (in our case each sample containsmmethylation measurements). The re-

sulting quantile vectors are used to form regression models with the empirical quantile

function as a response, and the covariates as predictors (separately by probe type).

The variation resulting from the covariates is then subtracted off the original set of

methylation vectors. Any subsequent analysis (i.e. an EWAS) is then performed on

these adjusted vectors.
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It was shown that FN is able to outperform many of the other current normal-

ization techniques. For example, the authors observed better comparability between

experimental replicates, even in the presence of batch effect. It was also able to

improve prediction of differentially methylated positions on the sex chromosomes.

Finally, it was able to reduce variability between technical replicates in a single

study. Motivated by these advantages, FN is performed on all methylation data

before any of the simulation or cell type adjustment occurs.

2.5 Epigenome-Wide Association Studies

The Epigenome-Wide Association Study (EWAS) is a natural extension to the

well-known Genome-Wide Association Study (GWAS). The GWAS tested for asso-

ciations between a phnotype and a series of single nucleotide polymorphisms across

the genome, wheras the EWAS implies a series of statistical tests that attempt to

find associations between a phenotype and each of the CpG sites on the array. In

this thesis, such associations are tested for through the use of regression models. It

is important to note that though the model is framed in a way that there are predic-

tor and response variables, we are making no claim as to the direction of causality

when an association is found. Furthermore, the nature of the EWAS is exploratory;

that is, any observed association should be taken as a stepping stone for further

investigation, rather than absolute proof of a biological link.

The EWAS in this thesis will be designed in a somewhat peculiar way: the

methylation measurements will be used as the response variable, and the phenotype

of interest will be a predictor (which further stresses why no causal link is implied).

One can also include other covariates such as age, sex, etc. that must be accounted
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for in the context of the study. There is no specific form that the regression model

for the EWAS must take, however, most of today’s literature specifies the model to

be a linear combination of the phenotype and covariates. The regression model used

here will do the same, specifically because it is a necessary condition for the use of

some of the adjustment methods. A directed, acyclic graph illustrating the assumed

relation can be seen in Figure 2–1.

Definition 2.5.1 Let Y be an m × n matrix (CpG sites × Subjects), and let X be

a matrix containing a column of ones, followed by a column corresponding to the

phenotype of interest, followed by columns corresponding to other covariates. Then

the regression model for the EWAS is defined to be:

Y = BX
� +E (2.3)

where B is the resulting matrix of associations between the CpG sites and the

columns of X and E is a matrix of errors.

This is, essentially, a set of m separate linear regression models, where m is the

number of CpG sites in consideration. Consequently, an assumption of normality

exists for each row of E. Each of the regression models implies a statistical test;

specifically, for CpG site i ∈ 1, . . . ,m the corresponding null hypothesis is H0 :

Bij = 0, and the alternative hypothesis is Ha : Bij �= 0, where Bij is the ith entry of

the jth column of B which corresponds to the phenotype of interest.

Due to the large number of tests being done (one for each CpG), it is important

to make some kind of correction for multiple testing. Given 480,000 CpG sites, one
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would expect about 24,000 false positives at significance level α = 0.05 (assuming

independence between tests), among which it would be very difficult to discern any

true associations.

2.6 Cell Type Heterogenity as an Unmeasured Confounder

The main problem addressed in this work arises from the fact that methylation

profiles can differ between cell types—enough to be able to accurately identify cell

types in homogeneous samples solely based on methylation [2]. Figure 2–2 nicely

illustrates the idea. Plotting a heat map for three different cell types (Monocytes,

T-Cells, B-Cells) shows how drastically the methylation profile can change over cell

type.

From the perspective of an EWAS, cell type heterogeneity can complicate things.

If, for example, the phenotype studied were a disease such as a malignant tumor,

part of the observed immune response would involve an increase in proportion of

regulatory T-cells in blood [35]. Therefore, one would observe variability of cell type

proportions in whole blood samples between cases and controls in addition to any

between-subject variability that already exists within these groups. Hence, cell type

composition can be a confounder when studying methylation on samples containing

multiple cell types, i.e. whole blood or adipose tissue.

A confounding variable can usually be dealt with by inclusion in the regression

model. Of course, if we had some kind of direct measure of cell type composition

for each subject we would easily be able to perform such an adjustment. In most

cases, however, no direct measure of cell type composition is available. It will be

necessary to estimate the effects of confounding through other means. We can do so
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Methylation

Cell type

Phenotype

Figure 2–1: Directed acyclic graph for the EWAS regression model including cell
type as a confounding variable. The model is most concerned with estimating the
phenotype-methylation link. Though the model implies the direction of the arrow is
from phenotype to methylation, the result of the EWAS makes no claim as to the
direction of causality.
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by using different methods that uncover hidden patterns in large scale, genome-wide,

methylation data that can be used to construct a set of latent variables. Including

these variables in the regression model will, ideally, rectify the problem at hand.

One ultimate question remains: how is it possible to use observed methylation

data to capture information about cell type heterogeneity in order to form these

latent structures? The next chapter will introduce a number of existing methods

that address this concern.
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Figure 2–2: A heat map showing differences in methylation profiles at 200 CpG
sites for different cell types on the Marie Hudson data set (see Section 4.1). The
columns represent samples of different cell types and the rows represent the 200
CpG sites. Yellow means unmethylated, green means partially methylated, and
blue means completely methylated. Dendograms show clustering, which correctly
identified the differences due to cell type. Monocytes are found on the left side,
B-cells are in the middle, and T-cells are on the right.
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CHAPTER 3

Description of Adjustment Methods

Having developed a more intimate understanding of DNA methylation and the

problem at hand, we now focus on providing an overview of some of the currently

available methods attempting to correct for confounding by cell heterogeneity. This

chapter can be thought of as a literature review, and will also provide some de-

scriptions of the supporting mathematical and statistical techniques these methods

employ. Though their performances will not be compared until Chapter 5, some

advantages and disadvantages of each will naturally arise from the details.

The first two methods come from the same first author, Andres Houseman, and

the more recent of the two is more generally applicable as it does not assume any kind

of cellular composition. The methods SVA and ISVA are very similar conceptually,

but the former applies singular value decomposition, and the latter, independent

component analysis. The FaST-LMM-EWASher method is somewhat unique in its

construction, and uses only a subset of the data. The Deconfounding method uses

a decomposition similar to that of independent component analysis. Finally, the

method ‘CellCDecon’ is a very new method formulated by James Wagner in his PhD

thesis, which tries to explicitly estimate the cell type composition, something the

other algorithms (aside from reference-based) do not pursue.

It should be noted that some methods are also applicable to data other than

DNA methylation. SVA, ISVA, and Deconfounding, and CellCDecon are capable of
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Table 3–1: List of adjustment methods

Method Abbreviation First Author Year

Reference-based Ref-based Andres Houseman 2012
Reference-free Ref-free Andres Houseman 2014
Surrogate Variable Analysis SVA Jeffrey Leek 2007
Independent Surrogate
Variable Analysis

ISVA Andrew Teschendorff 2011

Factored Spectrally Transformed
Linear Mixed Model ‘EWASher’

FaST-LMM-EWASher James Zou 2014

Deconfounding Deconf Dirk Repsilber 2010
Cell Composition Deconvolution CellCDecon James Wagner 2014

adjusting any kind of high-throughput data, as long as they can be summarized in

the correct format. Moreover, SVA and ISVA can potentially correct for other kinds

of unmeasured confounding: there is no assumption made that the observed genomic

inflation is due solely to cell type heterogeneity.

Throughout the chapter, the methods’ notations will be unified for the sake

of consistency. The measured methylation beta values from the target study will

be found in the matrix Ym×n, where m represents the number of CpG sites in

consideration, and n represents the number of samples. The covariates are contained

in p − 1 vectors, which include the phenotype of interest as well as other known

confounders. They form the matrix Xn×p, which also contains an intercept column.

3.1 Reference-based method

The reference-based method was introduced by Houseman et al. in [17]. The

idea here is to use an external data set containing methylation measurements on six

separated blood cell types, common in whole blood, in order to ‘calibrate’ a regression
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model. This would be expected to make the connection between methylation and

the phenotype more apparent.

3.1.1 External data set

The six separated cell types included in the external data set are: Monocytes,

CD4T-Cells, CD8T-Cells, B-Cells, Granulocytes, and Natural killer cells. Currently,

any use of this method is restricted to blood samples. On this front, the authors

leave the door open by providing a parameter in the R package which could house

measurements on other separated cell types. Measurements on the separated blood

cells were made using the Infinium HumanMethylation27K Beadchip platform, with

27 additional samples of whole blood included from the same subjects to estimate

chip effect. The method has also been updated for use on the 450K platform.

3.1.2 Regression Model

Let m be the number of CpG sites under consideration and assume d0 cell types

for our sample data (In this case d0 = 6). Consider initially the external data on

separated cell types. Let the methylation measurements for sample h in this data

set be the m × 1 vector Y0h, and let wh be a vector of length d0 containing the

known proportions of cell types in the sample. Since these are separated cell types,

wh should have the value one at exactly one entry, and zeros elsewhere.

Next, let Yi be a vector of length m × 1, representing the ith column of Y.

It contains methylation measurements for subject i in the study data (containing

n subjects). The vector Xi is the ith row of the covariate matrix X, containing an

intercept, followed by the level of the phenotype for subject i, followed by other

covariates to be included in the model for this subject.
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Two separate regression models are formulated corresponding to the reference

data, and the study data, respectively:

Y0h = B0wh + e0h (3.1)

Yi = B1Xi + ei, (3.2)

where e0h and ei are error terms. The two matrices, B0 and B1 contain param-

eters, including a column corresponding to each intercept. Then these two matrices

are assumed to relate to each other in the following way, which will link the two

regression models:

B1 = 1γ�

0 +B0Γ +U. (3.3)

Γ is a d0 × d1 matrix containing the estimated associations between B0 and

B1 from which the estimated change in cell type compositions for subject i’s set

of covariates can be extracted as ΓXi. There was no specific dependence structure

assumed in the error vectors e0h and ei. Therefore, this formulation is useful in the

case where the error matrix contains dependence, i.e. if there were a known batch

effect that should be included as the random component of a random effects model.
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The paper also suggests a more simple (and more convenient) individual level

model that should be used if one is only interested in correcting for cell type het-

erogeneity, but not explicitly measuring changes in cell type distribution associated

with the covariates. Here, the left hand side of Equation 3.3 is replaced with the

methylation measurement for a given subject. This suggests that the cell type in-

ference will not consider the measured phenotype of the target data; rather, it will

depend solely on the subject’s methylation profile. The model is:

Yi = B0Γ
∗ +U∗. (3.4)

The estimate Γ̂∗ will contain direct estimates of cell type composition for subject

i and can be obtained by projecting Yi on the column space of B0. Houseman

et al. also suggest using quadratic programming to ensure the components of Γ̂∗

remain non-negative. Interestingly, the sum of the proportions for a sample is not

constrained to one. Despite the absence of such a restriction, it turns out that the

sum of the proportions of each subject is often quite close to one, as seen in the

paper, as well as in the data considered in this thesis.

Once the estimated cell proportions are obtained for each individual, adjustment

occurs simply by including the estimates as covariates in the usual regression model

after having deleted one of the columns (due to linear dependence). One limitation

of this method is the assumption of the cell type composition. At this point only a

small number of validation data sets exist for this method. Therefore, inference can
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only be performed if working on the same kinds of cells in the validation data, or

at least a subset of these cells. In 2014, Jaffe and Irizarry extended the use of the

reference-based method by providing a blood cell separated data set on the 450K

platform [20]. The authors also applied the method on samples of flow sorted cells

from the dorsolateral prefrontal cortex obtained from the research of Guintivano et al.

[14]. The absence of a wide variety of cell separated data sets led to the development

of a more general method which is similarly formulated, but contains no specific cell

type assumption.

3.2 Reference-free method

The reference-free method was also developed by Houseman et al., in his more

recent paper [18]. The motivation for this method was to have an algorithm that

would not be constrained to specific cell types. Indeed, the reference-free method

can be run on any kind of cell mixture and as its name suggests, there is no reference

to an external data set. The algorithm was inspired by Surrogate Variable Analysis,

which is introduced in the next section.

To begin, assume we have a matrixY of dimensionm×n containing methylation

‘beta’ values for m CpG sites on n subjects. Let X be a matrix of covariates; the

first column is the intercept, the second is the phenotype, and the remaining columns

(optional) contain other covariates. The method starts by fitting an unadjusted

model, in other words, a model ignoring cell type composition:

Y = B∗X� + E∗. (3.5)
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The matrices involved in (3.5) undergo a recharacterization: B∗ = B + MΓ�

and E∗ = MΞ� +E, where M (n×K) contains average methylation measurements

for K cell types, Γ contains cell type specific effects, and Ξ contains cell type specific

errors. The parameter of interest is B, i.e. the cell type independent effects between

the covariates and the CpG sites. It should be noted that the reference-free method

does not explicitly estimate the number of cell types present among the mixtures,

rather, it attempts to estimate a set of d latent vectors that will adjust for cell

type heterogeneity. The latent dimension d is estimated through “Random Matrix

Theory” [30].

Next, a singular value decomposition (SVD) is performed on the matrix (B̂
∗

, Ê
∗

),

as outlined in Appendix A. The SVD from this concatenated matrix can be expressed

in a factor-analytic form:

(B̂
∗

, Ê
∗

) = ΛÛ
�

+ Φ̂, (3.6)

where Λ is an m× d matrix and Û is (p+ n)× d.

The actual form of the above decomposition will depend on the chosen latent

dimension d. The columns of U form the latent variable structure. The estimated

associations between the covariate matrix and the methylation sites are obtained by

taking the residual from regressing B̂
∗

on Λ. That is,

B̂ = B̂
∗

−Λ(Λ�Λ)−1Λ�B̂
∗

. (3.7)
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The standard errors are more difficult to obtain for the reference-free method.

As a result of the complicated (and rather improvised) estimation procedure, the au-

thors suggest bootstrapping by sampling from the columns of E∗ to obtain standard

errors for B̂. Another limitation of the method is that it specifically stipulates that

the methylation measurements be on the beta scale. Logit-transformed data would

violate the assumption of linearity in the cell type mixture step.

3.3 Surrogate Variable Analysis

Surrogate Variable Analysis (SVA) was introduced in 2007 by Leek and Storey

in [24]. Unlike the first two methods, SVA is not explicitly tailored for analysis

on methylation data, nor is it particularly concerned with confounding by cell type

composition. Rather, it can be run on data from any kind of high-throughput ex-

periment provided the data can be summarized into a matrix in the correct format

along with a set of covariates. It attempts to adjust for ‘unmeasured’ or ‘unmodeled’

confounders, which do not specifically need to be consequences of variability in cell

type composition. Even so, methylation data turns out to be well-suited for analysis

via SVA.

Here we slightly modify Leek and Storey’s notation in order to remain consistent

with the other methods outlined in the thesis. SVA attemps to find a set of mutually

orthogonal vectors hk, k = 1, . . . , K, that span the same linear space as g�, � =

1, . . . , L with K ≤ L, which represent functions of unmeasured confounders. The

vectors g� are assumed to be additive in the underlying model, and the authors

maintain that this assumption is quite general. In our case these vectors will contain
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the unobserved cell type proportions among samples. The vectors hk are then referred

to as ‘surrogate variables’, and are essentially a set of vectors that try to capture

the same information that is contained in g�. The algorithm begins by fitting the

unadjusted model which is defined to be:

yij = μi + fi(xj) + eij, (3.8)

where yij is the methylation beta value for the jth subject at the ith locus, μi is

a baseline methylation level for locus i, xj contains the phenotype of interest for

subject j, and fi is some function of the phenotype. In our case we assume fi is

simply linear over all loci, though in general this assumption is not necessary. The

error term in this model is then reparameterized to take the form:

eij =
L∑

�=1

γ�ig�j + e∗ij, (3.9)

which, given the fact that g� and hk span the same linear space, can be rewritten

as:

eij =
K∑
k=1

λkihkj + e∗ij . (3.10)
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The goal is to use the residual matrix of the unadjusted model to capture infor-

mation that will help formulate a set of surrogate vectors. This begins by performing

a SVD (see Appendix A) on the residual matrix R = UDV�. The singular values d�

can be found on the diagonal of the matrix D. Let the number of non-zero singular

values be n0. Then calculate the proportion of variance explained by eigengene k to

be:

Vk =
d2k

n0∑
�=1

d2�

. (3.11)

Randomly permute the elements of each row of R and use the resulting matrix

as the response in equation 3.8. Perform B such permutations and use the resulting

residual matrices to obtain the statistics V 0b
k , b = 1, . . . , B which are calulated from

the singular values like in equation 3.11. Set ρk = 1
B

∑B

b=1 1(V
0b
k ≥ Vk), and then

invoke the restriction ρk = max(ρk−1, ρk) so that if an eigengene k is declared signif-

icant, all eigengenes k′ (such that k′ < k) are also declared as such. Finally, declare

eigengene k to be significant if ρk < α for some significance level α ∈ (0, 1). The

number of surrogate variables that will be estimated is then K̂ which is defined as

the number of eigengenes declared significant.

Next the surrogate variables must be constructed. Let ek (dimension n) be the

kth significant eigengene from V for k = 1, . . . , K̂. For each of the significant eigen-

genes form a series of linear models with ek as the response and yi (dimension n) as

the predictor for i = 1, . . . ,m. Choose the m̂1 most significant loci from this model,
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where m̂1 is the estimated proportion of loci truly associated with the eigengene, ob-

tained through Storey and Tibshirani’s “General Algorithm for Estimating q-Values”

[36]. Form the matrix Yr by selecting from Y only the m̂1 rows corresponding to

significant loci. Calculate ej, j = 1, . . . , n, the eigengenes of Yr. Choose ĥk to be

the ej that is the most correlated with the original eigengene ek.

The ĥk for k = 1, . . . , K̂ are the estimates of the surrogate variables. Now that

they have been obtained, the analysis becomes quite simple: include the estimated

surrogate vectors as covariates in the original model:

yij = μi + fi(xj) +
K̂∑
k=1

λkiĥkj + e∗ij. (3.12)

As stated earlier, within the context of this thesis we assume fi to be a linear

function. Consequently, finding a fit for equation 3.12 is not difficult. The fact that

we obtain estimates for λki is merely incidental; at the end of the day the parameters

of interest are the methylation-phenotype associations contained in f̂i.

3.4 Independent Surrogate Variable Analysis

Independent Surrogate Variable Analysis (ISVA) is a method that is very similar

to SVA, but uses a different kind of matrix decomposition in its approach. The

method was introduced in 2011 by Teschendorff et al. [38].

In SVA the surrogate variables were assumed to be orthogonal, and were chosen

to span the same linear space as some unmeasured set of confounding vectors. Simi-

larly, ISVA involves ‘Independent Component Analysis’ (ICA) which constrains one

28



of the matrices in its decomposition to have columns that are “statistically as inde-

pendent from each other as possible” [19]. ICA boils down to a decomposition of the

formY = SA+ε with ε as small as possible. The algorithm begins by providing inital

matrices for each of the decomposition terms, and performing an orthogonal, linear

transformation on both in a manner that seeks to preserve statistical independence

among the columns of S.

Akin to SVA, the algorithm begins by fitting the unadjusted model as in equa-

tion 3.8. The latent dimensionK is estimated through “RandomMatrix Theory”[30].

Let K̂ be the estimated value of K. Perform ICA on the residual matrix R from the

unadjusted analysis. The result is:

R = SA+ ε, (3.13)

where S is m× K̂ and A is K̂ × n.

The following steps are repeated for each row of A, denoted as Ak, for k =

1, . . . , K̂. Regress Ak on each CpG site, Yi (i.e. each row of Y). The resulting

p-value is denoted as pi. The q-values are then calculated as outlined in [36] and

choose CpG sites with q < 0.05, or the top 500 CpG sites if the former quantity is

less than 500. Let the number of chosen sites be rk. Yr is a simplified methylation

matrix which includes only the rk chosen CpGs.
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The matrix Yr undergoes an ICA to obtain Yr = SrAr + εr. Finally, the kth

independent surrogate variable, vk, is chosen to be the column of Ar exhibiting the

greatest correlation with Ak.

The analysis proceeds by including the estimated independent surrogate vari-

ables:

yij = fi(xj) +
K̂∑
k=1

λkivkj + eij. (3.14)

3.5 FaST-LMM-EWASher

FaST-LMM-EWASher was introduced in 2014 by Zou et al. [47]. The acronym

FaST-LMM stands for “Factored Spectrally Transformed Linear Mixed Models”, and

refers to an algorithm designed by Lippert et al. [25] to address confounding resulting

from population and family structure in genome-wide association studies. The usual

linear mixed model (LMM) could certainly be used to correct for confounding, but

FaST-LMM sought a more computationally efficient alternative.

3.5.1 Description of FaST-LMM

The FaST-LMM algorithm involves an initial linear mixed model (LMM) where

the phenotype of interest and other covariates (as found in the matrixX) are included

as fixed effects. Only one methylation site will be considered at a time, i.e. at locus

j ∈ 1, . . . ,m, the response would be Yj (the j
th row of Y). The variance of the error

term is expressed as σ2
gK + σ2

eI where K is the similarity matrix between samples

i = 1, . . . , n and I is the identity matrix. The terms σ2
g and σ2

e scale the genetic and
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random variance, respectively. Therefore, the LMM model for CpG site j is written

as:

Yj|X ∼ N
(
Xβj, σ

2
gK+ σ2

eI
)
, (3.15)

for a set of fixed effects βj. Normally, fitting the LMM would be computation-

ally intensive, but the authors propose a formulation that allows the model to be

expressed in a similar form.

A spectral decomposition is performed on the similarity matrix. This suggests

that the matrix can be expressed as K = USU� where S is diagonal, and U is

an orthogonal matrix. Consequently, the variance component in the normal log-

likelihood from the LMM can be rewritten as:

σ2
gK+ σ2

eI = σ2
gUSU� + σ2

eI

= σ2
gUSU� + σ2

eUU�

= σ2
gU

(
S+

σ2
e

σ2
g

I

)
U�. (3.16)

The matrices U and U� can be redistributed in the log-likelihood to form a

transformed response U�Yj and transformed set of predictors U�X. Now the new

variance term in the log-likelihood is diagonal. Estimation proceeds by analytically
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maximizing the log-likelihood and extracting coefficient and variance estimates for a

fixed δ = σ2
e

σ2
g

, and then using a numerical method to find the optimal δ.

3.5.2 Extending FaST-LMM

FaST-LMM-EWASher is an extension of this algorithm specifically designed to

be used on epigenomic data in the presence of cell type heterogeneity. Its approach

is a bit different than the others in that it filters out loci having methylation beta

values that are unilaterally above 0.8 or below 0.2 for cases and controls; that is, it

considers the methylation status at these loci to remain unchanged between cases

and controls. One disadvantage of the method is that the phenotype of interest must

be binary. The other covariates, however, may be categorical or continuous.

The method, like the others, begins by fitting the unadjusted model (after having

filtered out methylation loci as mentioned above) and ordering all the loci by their

significance. The total number of loci that will be included in the similarity matrix for

the LMM is determined by ten-fold cross-validation to maximize the log-likelihood,

as suggested in [26]. Let the number of chosen CpG sites be K̂. The similarity

matrix K is calculated using the realized relationship matrix [15] from the top K̂

loci.

Next, the FaST-LMM algorithm is performed on the chosen subset of CpGs with

the calculated similarity matrix. The p-values are calculated at each CpG, and the

genomic inflation factor λ is computed as the ratio of the median of the observed p-

values to the median of the theoretical distribution. This procedure considers λ > 1

to be evidence of inflation due to confounding factors. If evidence of inflation is

present, then a principal component analysis is performed on the reduced methylation
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matrix (leading to linear combinations of the samples). Subsequently include each

principal component as a covariate in the LMM until the genomic inflation factor

is controlled (λ ≤ 1). A limit to the number of PCs included in the LMM can be

specified to stop the algorithm even if the inflation factor is greater than one, as the

inclusion of too many PCs would saturate the model.

3.6 Deconfounding

The Deconfounding method was published in 2010 by Repsilber et al. [31] as a

means for correcting for differential gene expression in heterogeneous tissue samples.

Its use, however, is easily adaptable to methylation data. This method will use the

methylation matrix Y to form a non-negative matrix factorization [22]:

Definition 3.6.1 For a matrix Ym×n, and a given k < min(m,n), a non-negative

matrix factorization (NMF) finds non-negative matrices Sm×k and Ck×n such that

Y = SC. (3.17)

This decomposition itself can be calculated using the “Least squares non-negative

matrix factorization” lsqnonneg algorithm [23]. Additionally, in order to increase the

interpretability of the final estimates, deconfounding administers another set of con-

straints on the decomposition:

1. S must be normalized.

2. All elements cij of the matrix C must satisfy 0 ≤ cij ≤ 1.

3. Columns of C must sum to one:
∑
i

cij = 1.

So, the algorithm proceeds by finding a set of starting values for S and C and

then applying the above constraints. Then the matrix S is held constant, while the
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lsqnonneg algorithm finds C. The constraints are reapplied for S. Now C is held

constant and S is found using lsqnonneg, and the constraints are reapplied on C.

Finally, calculate the absolute differences between the elements of the matrices Y

and SC, and stop the algorithm if a prespecified threshold has been met. Otherwise,

continue from the step where S is held constant using the current values.

Deconfounding attemps to directly estimate the proportions of cell types found

in the sample. The columns of C form the subject-specific estimates for the pro-

protions of cell types, while the rows of S estimate average cell-specific methylation

levels at the different CpG sites. However, this interpretation is only valid under the

assumption that cell type heterogeneity is the only source of unmeasured confound-

ing in the sample. It should also be noted that the number of cell types present in

the sample is not estimated by the Deconfounding method; the parameter is user-

specified.

3.7 CellCDecon

The method CellCDecon was written very recently by James Wagner in his PhD

thesis [40]. The underlying approach is a bit different than the other methods in that

it doesn’t apply a predefined matrix decomposition, but rather uses numerical least

squares estimation on a specific model. Also, the creation of the latent vectors does

not consider the phenotype of interest or the covariates. It is run instead on the

normalized methylation beta value matrix alone. It could, however, be run on the

residual matrix from a linear model that was not adjusted for cell type composition.

The parameters in the model assume there is an overall mean methylation level

μic for a given CpG site i ∈ 1, . . . ,m and cell type c ∈ 1, . . . , K. Next, suppose
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that sample j ∈ 1, . . . , n contains a proportion pjc of cell type c. Then the partition

of the observed beta matrix due to cell type composition at location i for subject

j is
K∑
c=1

μicpjc. Then the regression model for the methylation beta value βij is

parameterized as:

βij =
K∑
c=1

μicpjc + eij . (3.18)

CellCDecon does not internally provide an estimate for K, the number of cell

types present in the samples, and at this point the parameter is user-specified.

So, given the value of K, the procedure begins by populating the vectors pj (K-

dimensional) for each subject j with random proportions that sum to one. The ini-

tial values for the overal mean methylation parameter are taken to be the observed

mean methylation values at each probe plus some random noise.

The algorithm allows random perturbations to occur within each pj, subject to

the original constraints. The change is accepted if the sum squared residuals from

the model in (3.18) decreases. The same procedure occurs for the vectors μi. These

random perturbations alternate between the cell type composition and mean probe

vectors for 1000 iterations, at which point the current values of the parameters are

considered to be the final estimates. The vectors pj can then be used in a regression

model among the phenotype of interest and other covariates and should now adjust

for cell type composition.
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The method is intended to give a direct estimate of the cell type composition for

each subject. However, if there are other sources of unmeasured confounding in the

data, these estimates are unlikely to be accurate as the model does not take them

into account. Also, it can be difficult to infer the true cell type composition when

the number of cell types was itself specified by the user.

3.8 Other methods

This chapter by no means forms an exhaustive list of all methods available

at this time. It simply covers a number of novel approaches that have appeared

in the last few years in the world of genomics/epigenomics. In fact, there exist a

plethora of other methods under the guise of ‘deconvolution’ providing the same

kind of correction for unmeasured confounding both in other high-throughput data

sources that could be adapted for use on methylation data [45]. It is not our goal

to introduce every single method available on the market; rather, we would like to

choose methods in a way that allows us to touch on a variety of underlying statistical

concepts.

Now that the methods have been more concretely described, it will be necessary

to test how they perform. The next chapter will provide a medium of comparison by

using a real methylation data set and modifying it to produce an association with a

simulated phenotype. This semi-artificial data will be used as input for each of the

methods, and the performance of each will be measured through several metrics.
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CHAPTER 4

Test Data and Simulation Details

Having established an ensemble of cell type adjustment methods in Chapter 3

our focus now shifts to finding an effective means of comparison. Though part of

the proposed solution involves simulation, the simulated effects will be superimposed

on a real set of methylation measurements. Such a simulation allows the freedom

of choosing the true association parameters that will be estimated in addition to

providing a realistic distribution of methylation measurements for the different cell

types. This chapter will first provide details relevant to the cell type separated

methylation data that will be used in the simulation. Next, the simulation details

will be specified. Finally, a few tools will be introduced that will be used later to

compare performance of the different methods.

4.1 Cell Type Separated Methylation Data Set

4.1.1 Description of Data Set

We have available a data set containing methylation measurements on three

separated blood cell types obtained through flow cytometry: Monocytes, CD4T-

Cells, and B-Cells. This data is a unique resource coming from the research of Dr.

Marie Hudson at the Lady Davis Institute in Montréal, Québec. The samples were

taken from patients newly diagnosed with one of four types of autoimmune diseases:

Rheumatoid arthritis (15 patients), Scleroderma (21 patients), Systemic lupus ery-

thematosus (11 patients), and Myositis (4 patients). There were several control
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samples available as well. Purity measures were provided to ensure good quality of

the cell separation process. Some samples failed quality control or insufficient tissue

was available so we do not have all three cell types for all patients. Patients having

only one cell type available for measurement were not included in the simulation or

analysis as they could not be used to form an artificial cell mixture. There were

very few samples of B-cells available, and even fewer samples where all three cell

types were available. Consequently, my simulation only focuses on mixtures from

monocytes and T-cells. In total 46 patients were included in my simulation each

with measurements from monocytes and CD4 T-cells.

4.1.2 Data Quality Issues

Data normalization was performed as in Section 2.4, with functional normaliza-

tion as the method used. Other measures of quality control were performed in order

to identify any bad samples. Also, a number of probes were removed, specifically

those on the sex chromosomes as well as probes close to SNPs. In order to attempt

to remove remaining batch effects, a regression model was run on the remaining

samples which included the following covariates: sample plate (i.e. batch number),

position on plate, and the bisulfate conversion rate for the sample. This procedure

made some improvements, but some batch effect remained.

The main issue with the data set is, in fact, the study design. Samples coming

from patients having the same autoimmune diseases were included in the same batch.

Therefore, effects due to technical factors are impossible to remove without affecting

those coming from differences in the autoimmune diseases.
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4.2 Simulation

The goal of the simulation is to create methylation measurements on an artifical

cell mixture. The simulation uses the separated blood cell data, modifes it and then

combines data across cell types in order to obtain an artificial mixture of cell specific

methylation profiles. The simulation is comprised of three elements: a simulated

case/control phenotype, a change in methylation at certain sites associated with

phenotype, and a change in cell type proportion associated with the phenotype.

There are also precision parameters that can adjust distributional variability at most

stages of the simulation. The details are outlined in the next section.

4.2.1 Simulation Steps

1. Simulation of phenotype: Take random sample from the n patients to be

cases/controls with P (case) = P (control) = 1/2.

2. Simulation of cell distributions: For each individual I assume values of

the proportions of cell types in that individual’s sample. Specifically, I assume

variability around an average proportion separately for cases and controls. The

average proportions for controls will make up the vector α1, and for cases

α2. Then, for subject i ∈ 1, . . . , n we simulate cell type proportions from the

following distribution:
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Dirichlet(ρα1), if subject i is a control (4.1)

Dirichlet(ρα2), if subject i is a case, (4.2)

where ρ > 0 is the so-called ‘precision’ parameter. (i.e. a greater precision

parameter corresponds to less variation in the observed values).

3. Simulation of associated sites: Choose at random S CpG sites from the m

sites in the original matrix of methylation beta values. These will be differen-

tially methylated with the phenotype in the simulation. Draw a cell type spe-

cific effect at each chosen CpG site from N(μk,overall, σ
2
k,overall) for k ∈ 1, . . . , K

where K is the number of cell types in consideration. Set μj,k to be the effect

(i.e. the observed value from the aforementioned distribution) for CpG site j

and cell type k.

4. Simulation of individual effects: If subject i is a case and site j is one of

the S selected sites from the last step, generate a subject specific effect ei,j,k

from N(μj,k, σ
2
j,k) for each cell type k. Let the corresponding methylation value

be βi,j,k then the new (affected) methylation value will be:

β′

i,j,k = logit−1 (logit(βi,j,k) + ei,j,k) . (4.3)

For controls and non-differentially methylated sites, set β′

i,j,k = βi,j,k.

5. Combining measurements: Let pk for k = 1, . . . , K be vectors of length n

containing the simulated cell proportions for each subject of cell type k. Then

40



the final beta value for person i at CpG site j will be:

βf
i,j =

K∑
k=1

pi,kβ
′

i,j,k, (4.4)

where pi,k is the ith entry of pk, i.e. the proportion of cell type k for subject i.

The use of the Dirichlet distribution is advantageous, as it allows us to both

specify the mean for each cell type over all cases or controls, as well as the precision

in the observed values. The support of the distribution is constrained to a vector

with elements in the interval (0,1) such that the elements sum to one. It is therefore

well-suited for simulating a set of proportions for each subject [17].

The simulation exhibits variability at multiple levels. Over all differentially

methylated regions one would expect to see a range of positive and negative asso-

ciations with the phenotype. We also allow these associations to differ between cell

types in order to specify an association between change in methylation and cell type.

After having specified each of the site and cell type specific associations, we add

some between-subject variability to each site (in step 4). In order to stay within the

expected bounds of the beta value, we work on the logistic scale. However, after

simulating the effects, it is necessary to revert back to the original scale as a few

of the cell type adjustment methods cannot be run on values on the logistic scale.

Finally, the sum in the final step simulates how methylation measurements coming

from K different cell types with proportions pi,k, (k ∈ 1, . . . , K) would appear had

they been present simultaneously in a sample.
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The simulation will be run under different values of parameters in order to

capture different scenarios that might occur in real methylation data. The parame-

ters that will be modified between simulation runs are: μk,overall and σ2
k,overall which

change the mean and variance of the overall association with the phenotype among

the chosen CpG sites, and ρ which changes the precision of the patient-level cell type

distributions between cases and controls. We can specify how different the cell type

distributions are relative to each other, and we can change the amount of variation

present among either the CpGs or subjects. The motivation behind altering param-

eters is to see if the performance of the adjustment algorithms differs according to

the underlying biological structure, as well as in the presence of technical noise (e.g.

batch effect).

It is evident that a simulated dataset should be generated in a way that embod-

ies the statistical properties of real data. In order to verify whether our simulated

data are statistically realistic, we extracted the patients’ ages from the cell separated

data and fit a linear model between age and methylation separately for each cell type.

In looking at the top age-related CpG sites (on the logistic scale) for each cell type,

the effect distributions looked approximately normal. In some cases the effect distri-

butions showed bimodality, but there was always either a strong positive or negative

net effect. Therefore, using a normal distribution on logit-transformed methylation

data to simulate a cell type’s effect distribution seems to be an appropriate simplifi-

cation. Admittedly, the parameters in the simulation are set in a way to generate a

large number of associated CpGs with strong effect sizes, perhaps more than would

42



be expected for a real covariate. However, this facilitated a more informative power

and false discovery rate analysis (see Subsection 4.3.3).

It is important that the simulation be run after the normalization step. Batch

effects and other biases would make measurements from different samples inherently

incomparable and therefore difficult to combine. We also only combine cell type

samples for the same subject. Doing so for permutations of different subjects would

certainly be a viable way to increase sample size, but as one would expect larger

variability between subjects, we believe this idea is beyond the scope of the thesis.

We now have a strategy for creating a simulated data set on which the adjust-

ment methods can be tested. The next section will address a few tools that will be

used to compare the perfomance of each method.

4.3 Performance Metrics

The best evaluation measure of a method’s performace is not always obvious.

Though one method may result in a more powerful regression model (identifying

associations between methylation levels and the phenotype), it may invoke a number

of false positives. Additionally, there may be limitations on the type of data on which

it can be used. This section will outline several tools, both graphical and numerical,

that will be used together to obtain a more clear vision as to the performance and

usefulness of each adjustment method. The results of using each of these tools on

the simulated data set are found in Section 5.

4.3.1 QQ-Plot for P-values

Genomic inflation refers to a systematic decrease in p-values across most or all

loci considered in the study, thereby running the risk of false positives. It is one of
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the most common symptoms of confounding due to cell mixtures. In order to check

for genomic inflation, we need see if there exist a set of observed p-values that are

smaller than expected by chance. In other words, even if there were no association

between phenotype and methylation, we would expect to see a fair number of very

small p-values as a result of the large number of tests done (on 480,000 regression

models linking CpG sites to the phenotype). By comparing to a ‘null’ distribution

(i.e. the distribution of the test statistic given no association), we can identify p-

values that are significantly smaller than one would expect by chance. The QQ-Plot

(Quantile-Quantile) is an excellent way to spot this kind of departure from the null

distribution. The idea is to take the quantiles from a theoretical null distribution

and plot them against the quantiles from the observed data. Should the data truly

come from the null distribution, we would expect the points to lie on or near the

diagonal line ‘y = x’.

We did, of course, simulate associations between the phenotype and methylation

at several probes. So in this case, we have the benefit of knowing that certain CpG

sites will indeed be associated with the phenotype. We would therefore expect to

see, after correcting for cell heterogeneity, a large set of p-values closely following

the null distribution, and a select few p-values at the top of the plot after a −log10

transformation.

To illustrate what one would expect to see in a QQ-Plot showing genomic infla-

tion, we refer to a toy data set whose results are shown in Figure 4–1. Imagine a test

statistic whose distribution under the null hypothesis is N(0, 1). Then, if the null hy-

pothesis is true, the p-values calculated from the tails of this null distribution should
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Figure 4–1: Examples of different scenarios for QQ-Plots. On each plot the horizontal
axis represents theoretical quantiles from a Unif(0,1) distribution and the vertical axis
shows observed p-values. Plot (a) contains p-values corresponding to observations
truly coming from the null distribution. Plot (b) contains p-values corresponding to
genomic inflation, i.e. they are smaller than one would expect under the null. Plot
(c) contains p-values from observations not showing genomic inflation, but indeed
exhibiting some true associations. Note that both axes are on the −log10 scale.

45



follow the U(0, 1) distribution. In plot (a) we generated 1000 observations from the

standard normal distribution, and calculated the p-values (based on the N(0, 1) dis-

tribution) to see if they would appear to be uniformly distributed. It can be seen

that, because the observations fall close to the diagonal line that they are indeed

uniformly distributed, and there is no evidence of inflation. In plot (b) observations

were drawn from the distribution N(0, 1) + U(0, 2). After calculating the p-values

(still based on the N(0,1) distribution), all points fall well above the diagonal, show-

ing inflation. Finally, in plot (c) we drew observations from 0.99N(0, 1)+0.01U(0, 5).

Plotting p-values as before shows most fall on the diagonal, with a small number of

points falling above the line. This is what one would expect to see after correcting

for genomic inflation in a data set exhibiting a small number of true associations.

4.3.2 ROC Curves

Receiver operating characteristic (ROC) curves are rather commonplace in to-

day’s literature, but remain an integral part of the analysis of a model’s predictive

power. The main function of the ROC curve is to examine the tradeoff between a

model’s sensitivity (the probability that the null hypothesis is rejected given that it

is false) and false positive rate (the probability that the null hypothesis is rejected

given that it is true), with respect to the adjustment of a discriminatory threshold

[12].

In the simulation study, we have knowledge of which CpG sites are truly as-

sociated with the phenotype of interest. Hence, at a given p-value threshold, cal-

culating sensitivity and specificity is straightforward. The threshold is allowed to

vary between the smallest and largest p-values at some predetermined step size. The
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Figure 4–2: An example of an ROC curve. The horizontal axis corresponds to the
false positive rate (1-specificity), and the vertical axis corresponds to the true positive
rate (sensitivity). The curve shows the tradeoff between sensitivity and specificity
among different levels of a p-value threshold. A method that lies on the diagonal
performs as well as a random guess (i.e. P (reject null) = P (do not reject null) =
1/2). A method performs well if the curve lies well above and to the left of the
diagonal.

sensitivity and false positive rate are calculated at each threshold level and plotted

against each other. Of course, in an EWAS one has to be careful as even a small gain

in sensitivity could be accompanied by a large number of false positives. Therefore,

when viewing the ROC curves for the different adjustment methods, the main region

of interest will be the far left hand side of the curves where the false positive rate is

small. An example of an ROC curve can be seen in Figure 4–2.
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4.3.3 Power After Controlling for False Discovery Rate

A useful tool for evaluating a method’s performance is the calculation of its

statistical power. Power is defined to be the probability that the null hypothesis is

rejected given that the null hypothesis is false. In the context of the EWAS, power

specifically refers to the probability that a methylation locus that is truly associated

with the phenotype is declared as such. Of course, an increase in power is not very

useful if it is accompanied by a large increase in the type I error rate (i.e. the

probability that the null hypothesis is rejected when the null is true). In multiple

testing, it is often necessary to control for the Family-Wise Error Rate (FWER),

which is the probability of making at least one type I error among all the tests [3].

Procedures correcting for the FWER (e.g. Bonferroni correction) are often overly

conservative in the context of genomics given dependence between tests. Therefore,

in these kinds of data, a less stringent criterion is needed.

The False Discovery Rate (FDR) is an important measure in genomics and

epigenomics, and is indeed less stringent a criterion than FWER. FDR is defined

to be the expectation of the proportion of hypotheses that are incorrecly rejected

among all rejections. More precisely, if we let R be the total number of rejections,

and R0 be the number of rejections when the null hypothesis is true, the FDR is

defined to be E(R0/R).

In 1995 Benjamini and Hochberg suggested an algorithm that adjusted p-values

in a way that controlled the FDR [3]:

48



Definition 4.3.1 If T is the total number of tests done, and the ranked p-values are

P(i), then find c to be the largest i such that

P(i) ≤
i

T
q, (4.5)

and reject each null hypothesis corresponding to i ≤ c.

It was shown that among the rejected hypotheses, E(R0/R) ≤ q, thus controlling

the FDR. Alternatively, one could simply report the adjusted p-values, T
i
P(i) for all

i ∈ 1, . . . , T . It was also demonstrated that this procedure generally leads to a

higher power than do FWER adjustment algorithms. Given how mainstream this

kind of procedure is in genomic studies, it seems comparing power under an FDR

adjustment would be a good measure of the performance of each of the cell type

adjustment methods.

4.3.4 Kolmogorov-Smirnov Statistic

The Kolmogorov-Smirnov test allows us to compare whether an observed distri-

bution differs from some reference distribution. It compares the distribution function

of the observed data to the theoretical distribution function for the reference distri-

bution. The calculated statistic considers the maximum absolute difference between

these two functions [7].

Assume iid observations X1, . . . , XT . First, calculate the empirical distribution

function from the T observations: F̂T (x) = 1
T

T∑
�=1

1 (X� ≤ x). Then suppose the

distribution function from the comparison distribution is F (x). Define the (one

sample, two-sided) Kolmogorov-Smirnov statistic to be:
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D = sup
x

|F̂T (x)− F (x)|. (4.6)

So, computing the Kolmogorov-Smirnov statistic over the observed p-values rela-

tive to the U(0, 1) distribution should give a good idea as to whether there is genomic

inflation present. Evidently, the calculated p-values from the EWAS are not inde-

pendent, thus the iid assumption is violated. However, we are only interested in the

raw value of the statistic for each method for the sake of comparison. We will not

calculate the p-values associated with the Kolmogorov-Smirnov test and the statistic

D will serve only as a measure of a method’s genomic inflation relative to the others.

Though the simulation and performance metrics have been described, it remains

to see how the adjustment algorithms will perform relative to each other given the

circumstances we have specified. The next chapter will provide the results of this

comparison.
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CHAPTER 5

Results

Here we present the results of testing the different cell type heterogenity ad-

justment methods. Each method is run on different sets of parameters in the sim-

ulation from Section 4.2.1, and results are compared using the previously defined

performance metrics. We also test the adjustment methods on a real data set (no

simulation involved) and attempt to compare performance without knowing the true

parameters. Finally, computing performance will be measured using a benchmark

data set, and it will be seen how computing time scales according to number of

samples, and other parameters.

It would also be worthwhile to look at how the power and FDR change with

respect to sample size. In any regression model, an increased sample size should

certainly improve power, assuming the increase in samples does not introduce any

new biases. In our case, however, it would be valuable to see if any of the methods

responds more positively to a modest increase in sample size. Unfortunately, since

we only have 46 samples from which to form cell mixtures, we do not believe we can

do a meaningful analysis on power versus sample size; therefore, this is left as future

work.

5.1 Simulation Results

Five different scenarios have been simulated. The first assumes distinct degrees

of association with the phenotype in the two cell types. The second assumes there
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is no such confounding present. The third specifies that the two cell types have,

on average, opposing associations with the phenotype, i.e. one cell type has a net

positive effect, and the other, a net negative effect. The final two scenarios contain

a distinct difference in cell type effect, but simulate high and low precision in cell

type composition among subjects. In every case, the number of CpG sites randomly

chosen to be associated with the phenotype is 500. A summary of the important

parameters the simulations is seen in Table 5–1.

Table 5–1: Summary of parameters in simulations
Parameter Description
α1 and α2 Vectors containing average cell type proportions

for cases and controls, respectively
ρ Precision of simulated cell mixture distributions.

Greater value corresponds to more precision
S Number of CpG sites chosen to be associated

with the phenotype (500 in all scenarios)

μk,overall Average simulated effect over all CpG sites
for cell type k

σ2
k,overall Variance of simulated effects over all CpG sites

for cell type k

5.1.1 Scenario 1: Distinct Associations with Phenotype in Cell Types

The first run of the simulation specified parameters that allowed the distribution

of phenotype-methylation associations to differ greatly between the two cell types.

That is, the realized values of ei,j,k in equation (4.3) will differ greatly between the two

cell types. The values of the parameters in this specific scenario were chosen to induce

significant confounding. Therefore, performing a regression analysis unadjusted for

cell type composition should result in many p-values that are smaller than expected,

or equivalently a greatly inflated p-value QQ-plot.
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More specifically, the parameters (as in section 4.2.1) were set to the following:

• Average cell type proportions for controls (i.e. entries of α1) were 0.43 for T-

cells, and 0.57 for monocytes. For cases the average proportions (entries of α2)

were 0.35 for T-cells, and 0.65 for monocytes. The initial control proportions

were chosen to preserve the same T-cell to monocyte ratio as found in [17].

• The net effect for T-cells was chosen to be positive, with μT,overall = 0.5 and

σ2
T,overall = 0.752. The net effect for monocytes was chosen to be negative, but

with a lesser magnitude than that of T-cells, with μMono,overall = −0.05 and

σ2
Mono,overall = 0.052.

The generated distributions of the simulated associations between methylation

and the phenotype (for 500 differentially methylated positions) can be seen in Fig-

ure 5–1 which shows drastic differences between monocytes and T-cells, both in terms

of net effect, as well as variability.

Similarly, the distribution of the simulated proportions of T-cells over all sub-

jects can be seen in Figure 5–2. On average, cases reduce the proportion of T-cells by

0.08 compared to controls. The precision parameter ρ in the Dirichlet distribution

as seen in Section 4.2.1 was set to 100, specifying a marked difference between cases

and controls. A higher value of ρ corresponds to smaller variation in the simulated

cell type proportions among the samples.

The QQ-plots showing the distributions of p-values for the phenotype-methylation

tests in the different adjustment methods can be found in Figure 5–4. Figure 5–4 (a)

shows the p-values from a regression analysis that has not been adjusted for cell

type heterogeneity. As expected, there is genomic inflation present, as almost all the
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Figure 5–1: Distributions of simulated effect sizes at the 500 chosen CpG sites for
different cell types. Green represents the distribution for T-Cells and exhibits a
positive net effect, but a high amount of variation. Red represents the distribution
for monocytes and exhibits a small negative net effect, but with a less variation.
Dark green represents where the distributions overlap.
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Figure 5–2: Histogram for the simulated distributions of T-cell proportions among
cases and controls. On average, cases were subject to a 0.08 reduction in T-cells.
Dark green represents where the distributions overlap
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points fall above the line ‘y = x’. In plot (b) it can be seen that the reference-based

method does a good job in reducing the inflation, but perhaps does a bit of over-

correction on closer inspection. The reference-free method, however, still appears

to have a little bit of inflation present. The methods SVA, ISVA, CellCDecon, and

Deconf all appear to satisfactorily control for confounding.

The FaST-LMM-EWASher method was originally run with no covariates, how-

ever, the resulting p-value plot appeared to show that the method performed a sig-

nificant overcorrection. This can be seen in Figure 5–3. However, when including the

patients’ autoimmune disease type (from the original clinical data; not simulated) as

an additional covariate, the resulting p-value plot (Figure 5–4 (f)) appears to adjust

as one would expect.

One interesting finding is the fact that, though we only included two cell types

in our simulation, the methods that estimate latent dimensions all estimated a much

higher value. For example, the reference-free method estimated the latent dimension

to be d = 13. SVA and ISVA estimated the number of surrogate variables to be

10 and 12, respectively. In both SVA and ISVA it is assumed that the number of

surrogate variables is less than or equal to the number of true confounders whose

linear space they span. Perhaps there is some unexplained variation present in the

original data (not specified in the simulation) that these methods pick up on. In

fact, fitting linear models on the separated cell types using the patient age as the

phenotype showed that the latent dimension is high even when no cell mixture is

present. For example, Random Matrix Theory (used for dimension estimation in

the reference-free method and ISVA) estimated a latent dimension of 10 for both
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Figure 5–3: QQ-Plot for the distribution of p-values for the method FaST-LMM-
EWASher without including additional covariates in the model.
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T-cells and monocytes. Similarly, SVA estimated the latent dimensions of T-cells

and monocytes to be 7 and 9, respectively.

The CellCDecon and Deconf algorithms were both run multiple times assuming

the number of cell types to be 2 through 8, inclusive. For both methods the worst

result occurred when the assumed number of cell types was 2. This result is anal-

ogous to the high estimates of latent dimension in reference-free, SVA, and ISVA.

Results were almost indistinguishable for the values 3 through 8. Motivated by this

observation and the desire for simplicity, results shown in this thesis for these two

methods assume three cell types.

It is also necessary to examine whether the methods correctly identified the CpG

sites chosen to be associated with the phenotype. First, we examine the ROC curve

in Figure 5–5. The curves for all adjustment methods lie above that of the unad-

justed regression model. The reference-based method is, overall, the best performing

method, however, the most important section of the plot is the leftmost side, as

even a small increase in the false positive rate is unacceptable among such a large

number of statistical tests. It is clear that it will be necessary to examine the other

performance metrics in order to better evaulate how well these methods are picking

out the simulated associations. Additionally, though the curve for EWASher appears

to be on par with the other adjustment methods, it is worth noting that the filtering

step did remove a number of the chosen CpG sites.
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Figure 5–4: QQ-plots showing the distributions of p-values for (a) no cell type ad-
justment, (b) reference-based adjustement, (c) reference-free adjustment, (d) SVA,
(e) ISVA, (f) EWASher, (g) CellCDecon, and (h) Deconf. Note both axes are on the
−log10 scale.
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Table 5–2 outlines the results from the performance metrics. Here, the null

hypothesis for a given CpG site is rejected if the Benjamini-Hochberg corrected p-

value is less than 0.05. The shown values are: the false discovery rate, power, and

the Kolmogorov-Smirnov test statistic.

It must be stressed that the power for these methods will appear to be extremely

low, as some of the CpG associations were simulated to be quite close to zero, and

cannot be identified among the thousands of CpG sites that correlated with the

phenotype by chance alone. However, the values in the table can be compared across

methods to evaluate performance.

The power from the unadjusted analysis is one of the highest for these data,

but its FDR is particularly high, which underscores the need for these correction

methods. The reference-based method results in power almost as high as that for

the unadjusted analysis, but with a satisfactory reduction in the FDR. An odd

result can be seen for the reference-free method: the power is greatly increased,

but is accompanied by a very large increase in FDR. This result is analogous to its

failure to account for genomic inflation as well as the other methods. ISVA slightly

outperforms SVA both in regards to power and FDR. CellCDecon and Deconf both

perform significantly better than the unadjusted model. FaST-LMM-EWASher’s

power is quite low, as some of the associated CpGs were removed in the filtering

step. When considering the top 100 CpG sites chosen by each method, there were

19 sites chosen simultaneously by all the methods (including unadjusted). When

removing the results from EWASher, this number increases to 46.
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All methods showed a reduction in the Kolmogorov-Smirnov (KS) statistic, im-

plying that in most cases (excluding reference-free) confounding was more or less

accounted for. The method that best corrects for inflation is CellCDecon assum-

ing three cell types present. The KS statistic for the reference-based method and

EWASher were both slightly higher than the others. This is a testament to the fact

that both methods have overcorrected a bit: their points actually lie below the line

that corresponds to the null distribution. The KS statistic calculated here is, in fact,

meant to be used for a two-sided test.

Table 5–2: Performance metrics comparison for the distinct associations in cell types
scenario

Method FDR (0.05 Thresh.) Power KS Stat.
Unadjusted 0.179 0.096 0.1679
Ref-based 0.021 0.094 0.0255
Ref-free 0.53 0.206 0.1459
SVA 0.054 0.07 0.0205
ISVA 0 0.078 0.0035
EWASher 0.071 0.026 0.0437
CellCDec 0.021 0.094 0.0084
Deconf 0.037 0.104 0.023

5.1.2 Scenario 2: No Confounding

The next simulated scenario assumes that the distributions for the associations

between the chosen CpG sites and methylation do not differ between the two cell

types. All parameters were chosen to be the same as in Subsection 5.1.1, except the

following μT,overall = μMono,overall = 0.25 and σ2
T,overall = σ2

Mono,overall = 0.52. The

goal here is to understand how the methods perform when there is no confounding

present.
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The resulting distribution of associations (effects) for the two cell types is il-

lustrated in Figure 5–6. The figure clearly shows that the observed distributions of

effects are very similar to one another.

The QQ-plots showing the distributions of p-values for the no confounding sce-

nario can be found in Figure 5–7. The unadjusted model shows no inflation, which

is expected. SVA and reference-free both show signs of a little bit of inflation, and

ISVA shows a fair amount of inflation compared to the unadjusted model, though

looking at the vertical scale shows the smallest p-values are not quite as small as in

the unadjusted model. Looking at the numerical performance metrics should make

things more clear.

The values for the different performance metrics can be found in Table 5–3. In

several cases, the FDR actually ends up being worse after performing an adjustment

method. In some cases, power has actually gone down as well. There has not been

a large departure from the null distribution in any of the methods, except for once

again, the reference-free method. The implication of these results is that in the

event there is no confounding present, running a cell type adjustment method could

actually be deleterious.

5.1.3 Scenario 3: Opposing Effects

Another interesting scenario is monocytes and T-Cells having opposite associ-

ations with the phenotype. One would expect this to make finding differentially

methylated positions difficult as any effects would be cancelled out. Once again,

most of the parameters remain the same as in Subsection 5.1.1, with exception to
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Figure 5–6: Distributions of simulated effect sizes at the 500 chosen CpG sites for
different cell types. Green represents the distribution for T-Cells and red represents
the distribution for monocytes. Dark green represents where the distributions over-
lap. Both sets of effects were generated from the same distribution to have a small
net positive effect.
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Figure 5–7: QQ-plots showing the distributions of p-values under the no confound-
ing scenario for (a) no cell type adjustment, (b) reference-based adjustement, (c)
reference-free adjustment, (d) SVA, (e) ISVA, (f) EWASher, (g) CellCDecon, and
(h) Deconf. Note both axes are on the −log10 scale.
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Table 5–3: Performance metrics comparison for the no confounding scenario
Method FDR (0.05 Thresh.) Power KS Stat.
Unadjusted 0.0246 0.632 0.059
Ref-based 0.0171 0.572 0.0296
Ref-free 0.499 0.702 0.1591
SVA 0.120 0.628 0.0148
ISVA 0.551 0.654 0.0613
EWASher 0 0.122 0.0662
CellCDec 0.0126 0.626 0.0205
Deconf 0.0792 0.628 0.0313

the following parameters: μT,overall = 0.75, μMono,overall = −0.75 and σ2
T,overall =

σ2
Mono,overall = 0.12.

The generated cell effect distributions can be seen in Figure 5–8. T-cells have

been assigned a net positive effect, and monocytes a net negative effect, with the

sign ‘flipped’ between the average for each cell type. The variances were chosen to

be equal.

Next we present in Figure 5–9 the QQ-plots showing the distribution of p-values

for each of the adjustment methods. The unadjusted model does not show signs

of confounding here. The reference-free method appears to have slighly inflated

p-values. The other methods seem to be as one would expect, except for FaST-

LMM-EWASher, which has overcorrected. Once again, it will be necessary to look

at the numerical performance metrics.

The realized values of the performance metrics are seen in Table 5–4. Because

there were not as many effects around zero, the FDR for several of the methods

(including unadjusted) was zero. More specifically, there are likely more large as-

sociations than before, which makes it less likely that non-differentially methylated
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Figure 5–8: Distributions of simulated effect sizes at the 500 chosen CpG sites for
different cell types. Blue represents the distribution for T-Cells and red represents
the distribution for monocytes. The two sets of effects were generated from the
distributions with the same variance, but means with the opposite sign.
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Figure 5–9: QQ-plots showing the distributions of p-values under the opposite ef-
fect scenario for (a) no cell type adjustment, (b) reference-based adjustement, (c)
reference-free adjustment, (d) SVA, (e) ISVA, (f) EWASher, (g) CellCDecon, and
(h) Deconf. Note both axes are on the −log10 scale.

68



positions that happen to correlate with the phenotype are declared signifcant af-

ter performing FDR adjustment. However, despite these large effects, power is still

lower for each method than it was in the no confounding scenario. With the ex-

ception of the reference-free method, all the adjustment methods achieve a higher

power than the unadjusted model. Additionally, the p-values for all methods except

reference-free do not show a large departure from the null distribution.

Table 5–4: Performance metrics comparison for the no confounding scenario
Method FDR (0.05 Thresh.) Power KS Stat.
Unadjusted 0 0.462 0.0408
Ref-based 0 0.484 0.0362
Ref-free 0.259 0.594 0.1529
SVA 0.0582 0.55 0.0034
ISVA 0.0521 0.546 0.0063
EWASher 0 0.108 0.0915
CellCDec 0.0083 0.48 0.0326
Deconf 0 0.492 0.0346

5.1.4 Scenarios 4 and 5: High vs. Low Precision of Cell Type Hetero-

geneity

The final two scenarios that have been simulated change the precision of the

individuals’ cell type distributions between cases and controls. That is, a higher

precision corresponds to a more pronounced divide in cell type distributions between

cases and controls, while a lower precision makes the two more difficult to distin-

guish. In this simulation, both T-cells and monocytes were chosen to have distinct,

positive net association with the phenotype. However, we now adjust the precision

parameter ρ from the Dirichlet distribution that simulates cell type composition.

The low precision situation corresponds to ρ = 10, and the high precision situation
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Figure 5–10: The distributions among subjects of T-cell proportions. The left plot
shows the high precision scenario, and the right plot shows the low precision scenario.
Green represents controls, red represents cases, and dark green represents where the
distributions overlap.

corresponds to ρ = 200. The resulting distributions for T-cells among cases and

controls can be observed in Figure 5–10.

In this section the results will be evaluated through the numerical performance

metrics as the number of p-value plots here would be overwhelming. The results can

be seen in Table 5–5 and Table 5–6.

In the high precision simulation, FDR is generally reduced. Power is improved

in some cases, but reduced in others. Looking at the KS statistic shows all the

methods, except reference-free, correct towards the null distribution.

70



In the low precision simulation, FDR is generally increased. Power is improved

in some cases, and reduced in others. The KS statistic shows that for the methods:

reference-based, reference-free, and Deconfounding, there is not much correction to-

wards the null distribution. It seems the methods have a more difficult time per-

forming the adjustment when the cell type compositions between cases and controls

are not clearly differentiated.

Table 5–5: High precision - performance metrics
Method FDR (0.05 Thresh.) Power KS Stat.
Unadjusted 0.524 0.594 0.1423
Ref-based 0.161 0.406 0.0432
Ref-free 0.564 0.698 0.1363
SVA 0.136 0.494 0.0318
ISVA 0.297 0.482 0.0618
EWASher 0.118 0.06 0.0383
CellCDec 0.0781 0.472 0.0312
Deconf 0.0927 0.47 0.0138

Table 5–6: Low precision - performance metrics
Method FDR (0.05 Thresh.) Power KS Stat.
Unadjusted 0.141 0.586 0.241
Ref-based 0.456 0.636 0.1975
Ref-free 0.686 0.7 0.209
SVA 0.201 0.614 0.0911
ISVA 0.0876 0.396 0.0404
EWASher 0 0.042 0.0299
CellCDec 0.243 0.552 0.0082
Deconf 0.249 0.62 0.2038
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5.2 Using methods on ARCTIC data set

Here we present the results of trying the adjustment methods on the Assessment

of Risk in Colorectal Tumors in Canada (ARCTIC) data. Information on these data

can be found in [46], and key researchers include: TJ Hudson, BW Zanke, M Lemire,

S Gallinger, and M Cotterchio. These data include 450K methylation measurements

from 2203 subjects consisting of 1152 colorectal cancer patients and 1051 controls.

The DNA was obtained mostly from lymphocyte pellets, except for a smaller number

of samples coming from lymphoblastoid cell lines. The subjects included in our anal-

ysis include only those whose DNA was obtained from lymphocyte pellets. However,

many samples were identified as poor quality after the QC step and, consequently,

have not been included in the analysis. The final numbers of cases and controls in

the analysis are 209 and 48, respectively.

The model applied here includes the case/control status as the phenotype of

interest. Additional covariates included in the model are age and smoking status

(binary). The resulting QQ-plots showing the distributions of p-values from the

different adjustment methods can be seen in Figure 5–11. The unadjusted model

shows a great departure from the null distribution, so there certainly could be some

confouding due to cell type heterogeneity occuring.

The results for the other methods are rather interesting, several have not done

much to force the p-values towards the null distribution. The ISVA method has

certainly done some correction, as its smallest p-value is on the order of magnitude

of 10−8 (as opposed to 10−24 in the unadjusted model). FaST-LMM-EWASher has

brought almost all of the p-values towards the null distribution, which is unsurprising
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as the algorithm does not stop until the genomic inflation factor has been sufficiently

reduced.

Also shown are the distributions of the estimated effects (associations) over all

CpG sites considered by each adjustment method (Figure 5–12). The Deconfounding

and reference-based methods do not change effect sizes by much. The methods

CellCDecon, ISVA, reference-based, and SVA all shrink the estimated associations

towards zero. For FaST-LMM-EWASher, the distribution of effects has much heavier

tails than that of the unadjusted model, however, there are fewer CpG sites still in

consideration after the filtering step.

It is also interesting to look at whether the methods flag the same CpG sites

as significant. There are no CpG sites that can be found simultaneously in the top

100 CpG sites selected by each method. In fact, the methods only selected three

CpG sites in common when considering each method’s top 1000 CpG sites. This

number increases to 18 when EWASher is excluded. Next, we see whether the same

CpG sites were being chosen in the unadjusted model and in the results each of the

adjustment methods. Table 5–7 presents the number of CpGs each method has in

common with the unadjusted model from among the top 100 sites for each method.

Table 5–7: Number of CpGs from top 100 in common with unadjusted model
Method CpGs in common
Ref-based 76
Ref-free 16
SVA 52
ISVA 7
EWASher 1
CellCDec 40
Deconf 75
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Figure 5–11: QQ-plots showing the distributions of p-values from the ARCTIC
data analysis for (a) no cell type adjustment, (b) reference-based adjustement, (c)
reference-free adjustment, (d) SVA, (e) ISVA, (f) EWASher, (g) CellCDecon, and
(h) Deconf. Note both axes are on the −log10 scale.
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Figure 5–12: Estimated effect sizes (i.e. associations with phenotype) over all CpG
sites considered by each adjustment method.
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The two methods that appeared to do the most correction (as seen in the QQ-

plots) also do not select the same CpG sites as the unadjusted model as being the

most significant. This is particularly true for the FaST-LMM-EWASher method,

which shares only one CpG site in common with the unadjusted model. EWASher’s

result is rather curious, as the other methods did not even come close to bringing the

distribution of p-values towards the null, yet EWASher did so without issue. This

begs the question: what if there truly were global change in methylation between

cases and controls? The EWASher algorithm would continue until the genomic infla-

tion factor (artificially) is pushed below one. The method would actually be removing

variation that was associated with the phenotype.

5.3 Computing Performance

The completion times of the different algorithms will be compared in this section.

The time complexities of the methods will be compared based on increasing sample

size as well as increasing latent dimension (where applicable). A bit of thought

is required to choose appropriate start/end points as some of the methods calculate

coefficient and p-value estimates internally, while others require the use of an external

function to perform a linear fit. To avoid this issue, the start time is defined to be

when the adjustment method is first called, whereas the end time is when all estimates

and p-values have been obtained.

The ARCTIC data are used as the benchmark data set. For the sake of pre-

serving a large sample size, we include samples that were flagged as poor quality

after the QC step. This should not be problematic as we are not interested in

obtaining parameter estimates. The methylation measurements have, once again,
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undergone Functional Normalization, and the phenotype of interest is chosen to be

the case/control status. We also randomly choose a subset of size 10000 from the

CpG sites to be considered. First, we look at how time to completion scales over

sample size.

5.3.1 Scaling over Sample Size

We randomly sample from the patients in the ARCTIC study in order to obtain

an array of different sample sizes. Ten sample sizes are chosen, and range from 50

to 500 in increments of 50. Figure 5–13 shows the resulting times.

The method that stands out the most is the reference-based method, as it finishes

in significantly less time than the other methods. The method itself does not do

any kind of decomposition or dimension estimation. Because it only performs a

(relatively) simple regression model linking the validation data to the target data,

the reference-based method is not as sensitive to increases in sample size as the

others.

The completion times for the other methods are quite sensitive to increases

in sample size—a fact that is unsurprising given the complexity of each algorithm.

Table 5–8 shows the ratio of the time for the sample size 500 run to the time for

the sample size 50 run; i.e. if time complexity were linear over sample size, one

would expect this value to be about 10. The method whose time increased the most

relative to its start time was ISVA. The method that had the smallest relative increase

(other than reference-based) was Deconfounding, though overall the algorithm takes

significantly longer than the others. EWASher did well overall, but its results are

more difficult to interperet as the number of principal components it includes in the
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Figure 5–13: Computing performance for the different adjustment methods when
considering sample size. Note the vertical axis is on the log10 scale.
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model can greatly affect the computing time. This phenomenon is easily observed

as the curve for EWASher increases less steadily than the rest.

Table 5–8: Ratio of 500 sample size time to 50 sample size time
Ref-based Ref-free SVA ISVA

3.03 41.37 55.35 128.36

Deconf EWASher CellCDec
3.89 10.82 12.39

5.3.2 Scaling over latent dimension

The sample size is fixed at 50 here, and the algorithms are run over different

values of latent dimension (or, in some cases, assumed number of cell types present)

for the methods that allow that parameter to be specified by the user. Each method

was run 9 times, specifying the parameter to be 2 through 10, inclusive. Figure 5–14

shows the results.

The reference-free method and SVA are not very sensitive to increases in the la-

tent dimension. ISVA showed a small increase. Both CellCDecon and Deconfounding

showed great sensitivity to increasing values of latent dimension (or assumed number

of cell types under the nomenclature of these two algorithms).

Table 5–9 shows the ratio of the runtime from latent dimension 10 to that of

latent dimension 2. These figures confirm what was seen graphically: Deconf and

CellCDecon are quite sensitive to increases in latent dimension.

Table 5–9: Ratio of latent dimension 10 time to latent dimension 2 time
Ref-free SVA ISVA Deconf CellCDecon
0.659 0.343 3.325 15.730 13.853
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Figure 5–14: Computing performance for the different adjustment methods when
considering latent dimension. Note the vertical axis is on the log10 scale.
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CHAPTER 6

Discussion and Conclusion

This review has shown that a number of things must be considered when deciding

which adjustment method to use. Though some perform noticeably better than

others, there are some limitations that must be taken into account. Each of the

methods will be summarized below:

6.1 Summary of methods

Reference-based method. The method is very easy to implement, and as

seen in the computing performance section, it runs very quickly, even on larger sample

sizes. It usually achieved good statistical power, and, with one exception, reduced

the FDR from the unadjusted model. It also has the advantage of being able to

directly estimate the cell type composition of each sample. One disadvantage is this

method can only be used on methylation measurements coming from cell mixtures for

which there is an external, cell separated methylation data set available. However, if

such a data set is available, the reference-based method can be a very powerful tool.

Reference-free method. This method is also fairly easy to implement. It

generally resulted in increased power compared to the unadjusted model. However, it

can be seen in the previous chapter that this increase in power was also accompanied

by a significant increase in the FDR. Looking at the KS statistic shows it also did

not adjust for genomic inflation as well as the other methods.
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Surrogate Variable Analysis. SVA generally performed well. Its power was

on par with the other methods, and in the distinct associations in cell types scenario

it drastically reduced the FDR. It was also very easy to implement.

Independent Surrogate Variable Analysis. ISVA was very easy to im-

plement. It generally achieved as high power as the other methods, and in the no

confounding scenario actually improved power (contrary to some of the other meth-

ods), though the FDR was, admittedly, greatly increased. It was also one of the

only methods to account for p-value inflation in the ARCTIC data set. However, its

computing time was quite sensitive to increases in sample size.

FaST-LMM-EWASher. EWASher is, without a doubt, the most interesting

method to review. In every case it seemed to do a very good job in reducing p-

value inflation. However, the fact that it forces the genomic inflation factor towards

one makes one wonder if that is truly the way to go about adjusting for cell type

heterogeneity. If there were, say, global hypermethylation associated with a disease,

adjustment using EWASher would be overly conservative.

Additionally, part of the algorithm involves filtering out loci that are unilaterally

high or low among all subjects. The assumption here is that these loci are, for all

intents and purposes, completely methylated or unmethylated and any associations

between these probes and the phenotype are not interesting. At this time, the

justification behind this assumption is not clear.

The final caveat in the EWASher method is it is quite difficult to implement. All

the above methods can be run inside R, but EWASher requires the user to output

three separate files, which are then used as input to an executable. Any further
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analysis requires the user to take the output from this executable (containing the

final estimates of associations and their respective p-values) to load back into R.

The process becomes further complicated as the portion of the program contained

in R required some editing, as the version provided on the internet returned error

messages.

CellCDecon. The CellCDecon method generally achieved good power, and

managed to reduce the FDR. It exists as a C++ program, and was quite easy to

implement. The run time was longer for this algorithm than the others, and it was

sensitive to increasing the assumed number of cell types. Additionally, it would be

interesting to see how this program would perform if it took the phenotype and other

covariates into account. The need to specify the number of cell types in this method

is another issue, as this is not generally something known beforehand.

Deconfounding. The Deconfounding method was comparable to the other

methods in terms of power and FDR. The biggest issue with the method was the

running time. In all cases, it took longer to run than the other adjustment methods.

It was also sensitive to both increases in sample size and number of cell types. Akin

to CellCDecon, the fact that it does not internally estimate the number of cell types

is an issue.

It seems that, because of its good performance, ease of use, and low computation

time, the reference-based method is the way to go. Of course, this is only true if cell

specific methylation measurements are available for the types of cells present in the

sample. If this is not the case then the next best choice would be ISVA. Overall, ISVA
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did a very good job when considering the numerical performance metrics, and was

one of the only methods that managed to adjust for genomic inflation in the ARCTIC

data set. Though the computational time increases significantly over sample size, it

remained the third fastest method at sample size 500. Being in an easy to use R

package also makes it a desirable method.

One concerning result is that the top CpG sites chosen by each method tend

to differ substantially. In the first scenario of the simulation it was apparent that

EWASher was the “odd one out”, however, in the ARCTIC data, removing EWASher

from consideration resulted in only 18 CpG sites in common among the top 1000 CpG

sites chosen by each method.

6.2 Limitations

One of the biggest challenges in this project was data quality in the methylation

data separated for blood cell types. Even after implementing the steps to address

batch effect (as outlined in Section 4.1.2) there was still some kind of confounding

occurring. In fact, in the study design, disease subtype (the autoimmune diseases)

was confounded by batch and chip, making it impossible to statistically separate

the technical factors from biological effects among these diseases. These other con-

founders could very well be the reason the reference-free method, SVA, and ISVA,

all estimated the latent dimension to be so high. The potential presence of these

confounders makes our results more difficult to interpret. Nevertheless, the fact that

these methods are capable of detecting this confounding is encouraging, as there

could be important confounders in epigenetic data that the investigator did not take

into consideration.
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Another limitation is the fact that only two cell types were used in our simula-

tion. This was the only viable option as there were not enough good quality B-cell

samples to include a third cell type analysis. Of course, in true whole blood samples,

one would expect many more cell types to be present. The results of my simulation

are really only applicable if the total number of cell types in the sample is small (e.g.

sample of lymphocytes).

Finally, the ARCTIC data set contained many samples flagged as poor quality

in the QC step. This was of particular concern as the sample size for controls was

reduced from over one thousand to a mere 48 samples. It is evident that more

investigation is required to decipher why so many controls were not usable. This

makes one question whether there could be additional data quality problems in the

remaining samples.

6.3 Future work

There are a number of potential directions one could go with this work. If

measurements from more kinds of separated cell types were available, it would be

advanageous to measure the methods’ performances for more than two cell types. It

would also be interesting to see if any of the adjustment methods could be modified

for use in more advanced models such as random effects models. In addition, one

could allow the cell type mixtures to vary with factors that have epigenome-wide

effects on methylation, such as age or smoking status. Finally, since some of the

existing methods are not easy to run, software could be improved to better streamline

the process so that a given method is performed via a single function call.
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Appendix A - Singular Value Decomposition

Singular value decomposition (SVD) is a common technique in the literature

in statistical genetics and genomics. It is related to principal component analysis

in that it allows us to uncover underlying structures in data that would otherwise

be difficult to visualize. Several sections in Chapter 3 will reference SVD as it is,

undoubtedly, an indispensable tool. Here is the definition as found in [41]: Let X be

an m× n matrix. Then the singular value decomposition of X is:

X = USV �

where U is an m×n matrix, S is a diagonal n×n matrix, and V is an n×n matrix.

The columns of U are called the “left singular vectors” and the columns of V are

called the “right singular vectors”. The diagonal elements of S are called “singular

values”. Interestingly, in the context of genomics, the individual elements of the

SVD are given unique names—a fact that underlines the importance of SVD in these

kinds of analyses. The right singular vectors are referred to as ‘eigengenes’ and the

left singular vectors, ‘eigenarrays’. Additionally, Alter et al. note that the singular

values characterize the “relative significance of the [corresponding] eigengene and

eigenarray in terms of the fraction of the overall expression that they capture” [1].

Some of the methods presented in this thesis do indeed make use of the singular

values in order to identify significance among an abundance of information.
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Appendix B - Available Software

Table 6–1: Available software
Method Type Source

Ref-based R http://people.oregonstate.edu/~housemae/software/TutorialLondon2014

http://bioconductor.org/packages/release/bioc/html/minfi.html

Ref-free R http://cran.r-project.org/web/packages/RefFreeEWAS/index.html

SVA R http://bioconductor.org/packages/release/bioc/html/sva.html

ISVA R http://cran.r-project.org/web/packages/isva/index.html

EWASher R http://research.microsoft.com/en-us/downloads/472fe637-7cb9-47d4-a0df-37118760ccd1

Deconf R http://web.cbio.uct.ac.za/~renaud/CRAN

CellCDecon C++ https://github.com/jameswagner/CellCDecon
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