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Abstract

In this thesis, two novel bivariate Poisson models are introduced: one encompassing positive de-
pendence and the other for negative dependence. In the case of positively correlated margins, the
proposed bivariate Poisson model formulation relies on the notion of comonotonic shocks. The pro-
posed construction yields a bivariate Poisson model for positive associations with a fully flexible
dependence structure; it is parametrized in terms of the marginal means and a dependence param-
eter which takes on values in the unit interval. The dependence parameter regulates the strength of
the association between the margins and can accommodate any possible correlation ranging from
zero (independence) to an upper bound representing the strongest possible correlation between
arbitrary Poisson margins.

The model formulation in the case of negative dependence is analogous to that for positively
correlated margins. The proposed bivariate Poisson model for negative dependence relies on the
notion of counter-monotonic shocks and yields a fully flexible model for negatively correlated
Poisson margins. Similar to the case of positive dependence, the strength of the dependence in
the proposed counter-monotonic shock model is regulated by the dependence parameter, with cor-
relation ranging from a lower bound, which represents the smallest possible correlation between
arbitrary Poisson margins, to zero.

In addition to the two bivariate models, a multivariate extension of the comonotonic shock
Poisson model is defined. Although the formulation of the proposed multivariate Poisson model
implies certain restrictions on the covariance structure in dimensions greater than 2, the proposed
formulation is nonetheless useful for modeling positively correlated count data.

For all three proposed models, several distributional properties are established and various es-
timation techniques are described in detail. These techniques are validated through several simula-
tions studies. Furthermore, data illustrations are used to highlight the utility of each of the proposed
multivariate Poisson models. Altogether, the proposed classes of multivariate Poisson distributions
are each based on stochastic representations that are interpretable and intuitive. Moreover, in the
bivariate setting the model constructions yield a fully flexible dependence structure.



Résumé

Dans cette thèse, deux nouveaux modèles de Poisson bivariés sont proposés : le premier induit une
dépendance positive et l’autre une dépendance négative entre les variables. Dans le cas de marges
corrélées positivement, la formulation du modèle de Poisson bivarié proposée repose sur la notion
de choc comonotone. Cette construction conduit à un modèle de Poisson bivarié pour les asso-
ciations positives avec une structure de dépendance entièrement flexible ; elle est paramétrée en
termes des moyennes marginales et d’un paramètre de dépendance à valeurs dans l’intervalle unité.
Le paramètre de dépendance contrôle le degré d’association entre les marges et peut prendre en
compte toute corrélation possible entre zéro (indépendance) et une borne supérieure qui représente
la corrélation la plus forte possible entre des marges de lois de Poisson.

La formulation du modèle en cas de dépendance négative est analogue à celle où les marges
sont corrélées positivement. Le modèle de Poisson bivarié proposé pour la dépendance négative
repose sur la notion de choc anti-monotone et s’avère totalement flexible pour les marges de Pois-
son corrélées négativement. Comme dans le cas de la dépendance positive, le degré de dépendance
dans le modèle à choc anti-monotone est régulé par le paramètre de dépendance dont la corréla-
tion varie entre la borne minimale et zéro, où la première de ces valeurs représente la plus petite
corrélation possible entre des variables de lois de Poisson.

En plus des deux modèles bivariés, une généralisation multivariée du modèle de choc comono-
tone de Poisson est proposée. Bien que la formulation de ce modèle de Poisson multivarié limite
en partie la structure de covariance en dimension supérieure à 2, elle n’en est pas moins utile pour
modéliser des données de dénombrement corrélées positivement.

Pour les trois modèles proposés, plusieurs propriétés stochastiques sont établies et diverses
techniques d’estimation sont décrites en détail. Ces techniques sont validées au moyen de diverses
études de simulation. Des illustrations concrètes permettent en outre de mettre en évidence l’utilité
de chacun des modèles de Poisson multivariés proposés. En somme, ces nouvelles classes de lois
de Poisson multivariées reposent sur des représentations stochastiques interprétables et intuitives.
De plus, dans le cas bivarié, la structure de dépendance des modèles est totalement flexible.
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Contributions to original knowledge

Chapter 3:

Chapter 3 consists primarily of an extensive review of the theoretical implications of comono-
tonicity. Section 3.5 contains original work in that, to our knowledge, expressing the distribution
of comonotonic Poisson pairs in terms of paired-ordered statistics is novel.

Chapter 4:

Chapter 4 consists entirely of original scholarship. In this chapter, the proposed comonotonic shock
bivariate Poisson model is defined, distributional properties are derived and estimation techniques
are described. In addition, extensive simulations are performed along with a novel application to
rainfall data.

Chapter 5:

Chapter 5 consists entirely of original scholarship. This chapter is devoted to describing the pro-
posed bivariate Poisson model for negative dependence, including its distributional properties as
well as various approaches for estimation. Several simulations and a data application are also in-
cluded in this chapter.

Chapter 6:

Chapter 6 consists entirely of original scholarship. This chapter proposes a multivariate extension
to the bivariate Poisson model for positive dependence described in Chapter 4. Similarly to the
aforementioned chapter, distributional properties and estimation techniques are described for the
proposed multivariate Poisson model. In addition, several simulations are performed and a data
application is included.
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I was responsible for the entirety of Chapter 3. The original portion of this chapter is predominantly
contained in Section 3.5. In this section, I derived an alternative formulation for the joint distri-
bution of comonotonic Poisson random pairs. This allowed to write the log-likelihood in terms of
pair-ordered statistics and establish the maximum likelihood estimators in the case of comonotonic
Poisson pairs. The latter was shown to differ from the marginal maximum likelihood estimators.

Chapter 4

In Chapter 4, the proposed bivariate Poisson model for positive dependence is defined. This is
joint work done with Professors Christian Genest and Mhamed Mesfioui. We developed the model
formulation together. I then derived several of the distributional properties. The proof of the PQD
ordering given in Lemma 4.1 was derived jointly with Professor Genest, as was the work for the
method of moments estimation approach. I described both likelihood-based estimation techniques
(maximum likelihood and inference functions for margins estimation). I also performed both the
simulations and data illustration.

Chapter 5

Chapter 5 introduces the bivariate Poisson model for negative dependence. Again, this is joint work
done with Professors Genest and Mesfioui. The division of the work is similar to that for Chapter 4,
as much of the properties and techniques are analogous to the model for positive dependence.

Chapter 6

In Chapter 6 a multivariate extension to the bivariate Poisson model for positive dependence is
proposed. I did this work in its entirety.
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1
Introduction

In statistics there are a myriad of well established univariate distributions. However, with a few
exceptions, there are in general no uniquely defined multivariate analogues to these univariate
families. In modern practical applications, there is a considerable demand for multivariate families
of distributions that can accurately model correlated data. To this end, many advances in the field
of multivariate statistics have attempted to fill this need.

Certainly, there are several techniques that can be used to define multivariate models. In par-
ticular, the concept of copulas greatly revolutionized the field of multivariate statistics in that it
provides a flexible framework for building multivariate models with arbitrary margins. Although
copula models remain valid constructions for count data, many difficulties arise when they are
applied to discrete margins. Mixture models also prove to be another useful tool for defining mul-
tivariate models, although such constructions often lead to very complex models.

In the case of the Poisson distribution, there have been many proposals for defining its multi-
variate version, an overview of which will be given in Chapter 2. Focusing on the bivariate setting,
the most popular definition of a bivariate Poisson model is derived from the notion of a common
shock and relies on the property of infinite divisibility inherent in the univariate Poisson distribu-
tion. This construction allows to model correlated Poisson random variables but greatly restricts
the strength of the dependence. As will be detailed in Chapter 2, this classical bivariate Poisson
model only allows for positive dependence and, moreover, does not accommodate the full spectrum
of possible positive correlation that an arbitrary pair of Poisson random variables can exhibit.

In this thesis, a novel bivariate Poisson model is introduced. The model construction relies
on the notion of comonotonicity and provides a fully flexible model framework for positively
correlated Poisson random variables. The proposed family stems from an interpretable and intuitive
stochastic representation. Moreover, the proposed bivariate Poisson model extends naturally to
higher dimensions. Using an analogous construction based on the concept of counter-monotonicity,
the proposed framework can also be adapted to define a bivariate Poisson model for negatively
dependent margins.



Introduction

This thesis is organized as follows. Chapter 2 provides a review of several proposals found
in the statistical literature for defining a multivariate Poisson distribution. The classical bivariate
Poisson model, in particular, is discussed in great detail.

In Chapter 3, the notions of comonotonicity and counter-monotonicity are described. The dif-
ferences between the Fréchet–Hoeffding bounds in the case of continuous margins and discrete
margins are discussed, along with the difficulties that arise in estimation. Finally, the particular
case of the upper Fréchet–Hoeffding boundary distribution with Poisson margins is examined in
detail.

The proposed bivariate Poisson model for positive dependence is presented in Chapter 4. Sev-
eral distributional properties are explored as well as various estimation techniques. The proposed
bivariate model is validated through various simulation studies and further applied to environmen-
tal data.

The model is then adapted to define a bivariate Poisson model for negative dependence in Chap-
ter 5. The outline of this chapter is similar to the previous: distributional properties are described
in detail and several estimation approaches are discussed. The model is then tested through various
simulations and an application to sports data is provided.

Finally, Chapter 6 extends the model for positive dependence to higher dimensions. Distri-
butional properties and estimation techniques are explored in detailed and the model is tested in
various simulations. Furthermore, a data application in the trivariate setting is provided. To end,
concluding remarks are found in Chapter 7.
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2
Literature Review

This chapter provides an extensive summary of the classical bivariate Poisson model, including
its distributional properties and estimation techniques. The natural multivariate extension to the
classical bivariate Poisson model is subsequently discussed in detail. A survey of variants to the
common shock method for constructing a multivariate Poisson model is also presented, followed
by a brief overview of some alternative models for correlated count data that have been proposed
in the literature.

2.1 The classical bivariate Poisson model

2.1.1 Introduction and motivation

A random pair �X1, X2� is said to arise from a bivariate Poisson distribution if both X1 and X2 are
marginally univariate Poisson random variables. Although there is no unique way to characterize
the joint distribution of such a pair �X1, X2�, the most commonly used specification results from
the so-called trivariate reduction technique, generally attributed to Campbell (1934). This construc-
tion makes use of the fact that the univariate Poisson distribution is infinitely divisible and thereby
generates a pair of dependent Poisson random variables by convoluting a set of independent Pois-
son variables with a common shock variable. Following the parametrization considered by Holgate
(1964), let Y1, Y2 and Z be mutually independent Poisson random variables with means λ1 � ξ,
λ2 � ξ and ξ, respectively, where �λ1, λ2� � �0,��2 and ξ � �0,min�λ1, λ2��. A pair �X1, X2� of
correlated Poisson random variables is then generated by setting

X1 � Y1 	 Z, X2 � Y2 	 Z. (2.1)

This model will be referred to as the classical bivariate Poisson model, or equivalently, the common
shock model. Note that in the literature, however, it is commonly referred to simply as the bivari-
ate Poisson model. The formulation outlined in (2.1) is intuitive and interpretable, which surely



2.1 The classical bivariate Poisson model

contributed to its popularity.
Several other authors have considered different approaches to derive the classical bivariate

Poisson distribution. For example, Kawamura (1973) and Marshall and Olkin (1985) consider the
classical bivariate Poisson model as the limiting distribution of a bivariate Binomial distribution,
while Papageorgiou (1983) and AlMuhayfith et al. (2016) work with conditional distributions.

It is clear from the construction given in (2.1) that the source of dependence in the model is
attributed to the common shock variable Z. As is often pointed out in the literature, the main
drawback of the classical model is that it only allows for positive dependence. Indeed, since
cov�X1, X2� � var�Z�, the correlation implied by the classical model is given by

corr�X1, X2� � ξ�
λ1λ2

, (2.2)

which is non-negative and, for fixed marginal rates λ1 and λ2, is increasing in ξ. As shown, e.g.,
by Griffiths et al. (1979), it is, however, possible for a pair �X1, X2� of Poisson random variables
to exhibit negative dependence.

By convention, let a Poisson distribution with rate zero, denoted P�0�, be a point mass at 0.
Clearly X1 and X2 are independent when ξ � 0, i.e., when Z � 0, and exhibit the highest de-
gree of association (permissible in this model specification) when ξ attains its maximum, namely
min�λ1, λ2�. Thus, in model (2.1), the maximum correlation is

min�λ1, λ2��
λ1, λ2

. (2.3)

However, Griffiths et al. (1979) show that for an arbitrary pair of Poisson random variables with
fixed marginal parameters λ1 and λ2, the maximum correlation is given by

ρmax�λ1, λ2� � 1�
λ1λ2

�
�λ1λ2 �

�
i�N

�
j�N

min�Ḡλ1�i�, Ḡλ2�j�	
�
, (2.4)

where N � �0, 1, . . .	 and Gλ and Ḡλ respectively denote the cumulative distribution function
and corresponding survival function of a Poisson random variable with mean λ. Similarly, the
minimum possible correlation is

ρmin�λ1, λ2� � 1�
λ1λ2

�
�λ1λ2 �

�
i�N

�
j�N

min�0, Gλ1�i� �Gλ2�j� � 1	
�
. (2.5)

Thus, for an arbitrary pair of Poisson random variables with marginal means λ1 and λ2, the classical
bivariate Poisson model constricts the correlation to lie in the interval 
0,min�λ1, λ2�

�
λ1, λ2��

while the full range of permissible correlations is in fact the widened interval given by 
ρmin, ρmax�.

4



2.1 The classical bivariate Poisson model

Note that in the trivial case where the marginal parameters coincide, the range of permissible
correlation values implied by the classical bivariate Poisson model agrees with that given by Grif-
fiths et al. (1979). Indeed, setting λ1 � λ2 � λ implies that X1 �d X2, i.e., X1 and X2 have the
same distribution, and the maximum possible correlation reduces to 1, which is equal to ρmax�λ, λ�.

Several alternative definitions of both bivariate and multivariate Poisson distributions have been
proposed in the literature, an overview of which will be given in subsequent sections. Some of
these specifications allow for a more flexible dependence structure, wherein negative dependence
can be accommodated. In this thesis, yet another bivariate Poisson model is proposed, along with a
multivariate extension. The proposed model construction relies on the convolution of independent
Poisson random variables with a comonotonic shock. Unlike the classical model wherein a single
shock variable induces the dependence, the proposed bivariate Poisson formulation uses a pair of
perfectly positive dependent (comonotonic) Poisson random variables. This extension allows for
the components to exhibit the full range of possible positive dependence, from 0 to ρmax. An anal-
ogous representation of a bivariate Poisson model exhibiting negative dependence is also possible
using this method by considering a counter-monotonic shock rather than a comonotonic one.

In building up towards the specification of a more flexible bivariate Poisson model, the re-
mainder of this section is dedicated to outlining the main distributional properties of the classical
common shock model as well as various estimation approaches that have been suggested in the
literature.

2.1.2 Model properties

The joint probability mass function, which will be denoted as hΛ,ξ for Λ � �λ1, λ2�, can be derived
by conditioning on the underlying shock variable. For any x1, x2 � N, it follows that

hΛ,ξ�x1, x2� � Pr�X1 � x1, X2 � x2�

�

min�x1,x2��

z�0

Pr�X1 � x1, X2 � x2 � Z � z�Pr�Z � z�

�

min�x1,x2��

z�0

Pr�Y1 � x1 � z�Pr�Y2 � x2 � z�Pr�Z � z�

�

min�x1,x2��

z�0

gλ1�ξ�x1 � z�gλ2�ξ�x2 � z�gξ�z�

�

min�x1,x2��

z�0

e��λ1�ξ��λ1 � ξ�x1�ze��λ2�ξ��λ2 � ξ�x2�ze�ξξz

�x1 � z�!�x2 � z�!z!

� e��λ1�λ2�ξ�

min�x1,x2��

z�0

�λ1 � ξ�x1�z�λ2 � ξ�x2�zξz

�x1 � z�!�x2 � z�!z!
,

5



2.1 The classical bivariate Poisson model

where gλ denotes the probability mass function of a Poisson random variable with mean λ. The
corresponding cumulative distribution function (CDF), denoted HΛ,ξ, is established in a similar
way, or by directly working with the probability mass function, viz.

HΛ,ξ�x1, x2� � Pr�X1 � x1, X2 � x2�

�

min�x1,x2��

z�0

Pr�X1 � x1, X2 � x2 � Z � z�Pr�Z � z�

�

min�x1,x2��

z�0

Pr�Y1 � x1 � z�Pr�Y2 � x2 � z�Pr�Z � z�

�

min�x1,x2��

z�0

Gλ1�ξ�x1 � z�Gλ2�ξ�x2 � z�gξ�z�.

It is well known that the univariate Poisson distribution has the simple recurrence relation:

gλ�x� �
λ

x
gλ�x� 1�, x � �1, 2, . . .	.

Since the common shock bivariate Poisson model formulation is based on the sum of independent
Poisson random variables, this recurrence relation remains relevant. As shown, e.g., by Holgate
(1964) and Kawamura (1985), for the classical bivariate Poisson distribution the following recur-
rence relations hold:

x1hΛ,ξ�x1, x2� � �λ1 � ξ�hΛ,ξ�x1 � 1, x2� 
 ξhΛ,ξ�x1 � 1, x2 � 1�

x2hΛ,ξ�x1, x2� � �λ2 � ξ�hΛ,ξ�x1, x2 � 1� 
 ξhΛ,ξ�x1 � 1, x2 � 1�.
(2.6)

The probability generating function and moment generating function of the classical bivariate
Poisson model are easy to derive since both components X1 and X2 are the sums of independent
Poisson random variables. The probability generating function is found to be

E�sX1
1 sX2

2 � � E�sY1�Z
1 sY2�Z

2 � � E�sY1
1 �E�sY2

2 �E��s1s2�
Z	

� exp��λ1 � ξ��s1 � 1� 
 �λ2 � ξ��s2 � 1� 
 ξ�s1s2 � 1�	

and the moment generating function is

MX1,X2�t1, t2� � E�et1X1�t2X2� � E�et1Y1�t2Y2��t1�t2�Z	

� E�et1Y1�E�et2Y2�E�e�t1�t2�Z	

� exp��λ1 � ξ��et1 � 1� 
 �λ2 � ξ��et2 � 1� 
 ξ�et1�t2 � 1�	.

Working with the moment generating function, it can easily be seen that the classical bivariate

6



2.1 The classical bivariate Poisson model

Poisson model is closed under convolution. Suppose that �X11, X12� � HΛ�,ξ� is independent of
�X21, X22� � HΛ�,ξ� . It then follows that �X11�X21, X12�X22� has moment generating function
given by

exp��λ�1 � ξ� � λ�1 � ξ���et1 � 1� � �λ�2 � ξ� � λ�2 � ξ���et2 � 1� � �ξ� � ξ���et1�t2 � 1��.

Thus, the pair �X11 � X21, X12 � X22� has distribution HΛ,ξ where λs � λ�s � λ�s , for s 	 �1, 2�
and ξ � ξ� � ξ�.

The construction in (2.1) relies on a trivariate set of mutually independent random variables,
wherein the source of dependence between the margins X1 and X2 is induced by the common
shock variable Z. Surely, as the marginal mean of the common shock variable, ξ, increases, the
degree of dependence increases accordingly. This statement will be made formal in the follow-
ing lemma, which establishes the Positive Quadrant Dependence (PQD) ordering of the classical
common shock model and will be denoted in terms of the inequality �PQD. This property of the
classical bivariate Poisson model is also shown in a similar manner by Bouezmarni et al. (2009).

Lemma 2.1 Suppose �X1, X2� � HΛ,ξ and �X �
1, X

�
2� � HΛ,ξ� . Then ξ 
 ξ� � �X1, X2� �

PQD

�X �
1, X

�
2�.

Proof. The proof follows from the fact that for any fixed �x1, x2� 	 N
2 the CDF HΛ,ξ�x1, x2� is an

increasing function of the dependence parameter ξ. Differentiating HΛ,ξ�x1, x2� with respect to ξ

yields the following:

�

�ξ
HΛ,ξ�x1, x2� �

�

�ξ

min�x1,x2��

z�0

Gλ1�ξ�x1 � z�Gλ�ξ�x2 � z�gξ�z�

�

min�x1,x2��

z�0

��
�

�ξ
Gλ1�ξ�x1 � z�

�
Gλ�ξ�x2 � z�gξ�z�

�Gλ1�ξ�x1 � z�

�
�

�ξ
Gλ�ξ�x2 � z�

�
gξ�z�

� Gλ1�ξ�x1 � z�Gλ�ξ�x2 � z�

�
�

�ξ
gξ�z�

��
.

For a fixed n 	 N, it is straightforward to show that

�

�ξ
Gλs�ξ�n� � Gλs�ξ�n� �Gλs�ξ�n� 1�,

for s 	 �1, 2�, and
�

�ξ
gξ�n� � �gξ�n� � gξ�n� 1�.

7



2.1 The classical bivariate Poisson model

Putting everything together, one obtains

�

�ξ
HΛ,ξ�x1, x2� �

min�x1,x2��

z�0

�Gλ1�ξ�x1 � z�Gλ�ξ�x2 � z�gξ�z�

�Gλ1�ξ�x1 � 1� z�Gλ�ξ�x2 � z�gξ�z�

�Gλ1�ξ�x1 � z�Gλ�ξ�x2 � 1� z�gξ�z�

� Gλ1�ξ�x1 � z�Gλ�ξ�x2 � z�gξ�z � 1��

� HΛ,ξ�x1, x2� �

min�x1�1,x2��

z�0

Gλ1�ξ�x1 � 1� z�Gλ�ξ�x2 � z�gξ�z�

�

min�x1,x2�1��

z�0

Gλ1�ξ�x1 � z�Gλ�ξ�x2 � 1� z�gξ�z�

�

min�x1�1,x2�1��

z��0

Gλ1�ξ�x1 � 1� z��Gλ�ξ�x2 � 1� z��gξ�z
��

� HΛ,ξ�x1, x2� �HΛ,ξ�x1 � 1, x2� �HΛ,ξ�x1, x2 � 1� �HΛ,ξ�x1 � 1, x2 � 1�

� hΛ,ξ�x1, x2� 	 0.

Thus, HΛ,ξ is an increasing function of ξ and so for ξ 
 ξ� one has that

HΛ,ξ�i, j� � HΛ,ξ��i, j�, ��i, j� 
 N
2,

which is the desired result. �

2.1.3 Estimation

Let �X11, X12�, . . . , �Xn1, Xn2� be a random sample of size n from the classical bivariate Poisson
distribution. It is then of interest to obtain estimates of the marginal parameters Λ � �λ1, λ2�

as well as the dependence parameter ξ. There are various estimation techniques that have been
suggested, three of which will be detailed in what follows.

Estimation based on the method of moments

The method of moments estimation approach yields parameter estimates by solving the system of
equations that sets the theoretical moments equal to the sample moments. For the common shock
model, this reduces to the following:

E�X1� � λ1 � X̄1 �
1

n

n�

i�1

Xi1, E�X2� � λ2 � X̄2 �
1

n

n�

i�1

Xi2,

8



2.1 The classical bivariate Poisson model

and

cov�X1, X2� � ξ � S12 � 1

n� 1

n�

i�1

�Xi1 � X̄1��Xi2 � X̄2�,

subject to the constraint ξ � �0,min�λ1, λ2��.
Estimating the marginal Poisson rates by their respective sample means coincides with maxi-

mum likelihood estimation in the case of independence, i.e., when ξ � 0. Marginally, for s � �1, 2	,
Xs1, . . . , Xsn is a random sample from a univariate Poisson distribution. Standard maximum like-
lihood theory then implies that X̄s is a consistent estimator for λs and



n �X̄s � λs�� N �0, I�1�

where� denotes convergence in distribution and I�1 � λs is the inverse of the Fisher Infor-
mation, which can be consistently estimated by X̄s. Note that the asymptotic Normality of the
estimator X̄s also follows directly from the Central Limit Theorem.

As shown in, e.g., Theorem 8 on p. 52 of Ferguson (1996), the sample covariance S12 is a
consistent estimator of the theoretical covariance. Asymptotically, one has



n �S12 � ξ�� N �0, σ2�ξ, λ1, λ2�	,

where σ2�ξ, λ1, λ2� � var��X1 � λ1��X2 � λ2�	. Applying these results to the classical bivariate
Poisson model, one then has that the method of moments estimate S12 for ξ is consistent and
asymptotically Gaussian as long as S12 � �0,min�X̄1, X̄2��. Moreover, it can easily be shown that
the asymptotic variance σ2�ξ, λ1, λ2� simplifies to

λ1λ2 � ξ�ξ � 1�.

Indeed, for �X1, X2� � HΛ,ξ, write �X1 � λ1��X2 � λ2� � �Y̊1 � Z̊��Y̊2 � Z̊�, where Y̊1, Y̊2 and
Z̊ denote the centred counterparts of Y1, Y2 and Z, respectively. Specifically, Y̊s � Ys � �λs � ξ�,
for s � �1, 2	, and Z̊ � Z � ξ. Clearly, Y̊1, Y̊2 and Z̊ are mutually independent and each have
expectation zero. One then has

var��X1 � λ1��X2 � λ2�	 � var��Y̊1 � Z̊��Y̊2 � Z̊�	
� var�Y̊1Y̊2 � Y̊1Z̊ � Y̊2Z̊ � Z̊2	
� E�Y̊ 2

1 �E�Y̊ 2
2 � � E�Y̊ 2

1 �E�Z̊2� � E�Y̊ 2
2 �E�Z̊2� � E�Z̊4� � �E�Z̊2�	2.

For s � �1, 2	, E�Y̊ 2
s � � var�Ys� � λs � ξ. Additionally, E�Z̊2� � var�Z� � ξ and E�Z̊4� �

ξ�3ξ � 1�. Then, upon simplification, one obtains the desired result, viz.

var��X1 � λ1��X2 � λ2�	 � λ1λ2 � ξ�ξ � 1�.

9



2.1 The classical bivariate Poisson model

Note that when S12 is significantly smaller than 0, it may be wiser to consider a different model
altogether because the classical shock model cannot accommodate negative dependence.

Maximum likelihood estimation

Recall that the classical bivariate Poisson probability mass function has the form

hΛ,ξ�x1, x2� �

min�x1,x2��

z�0

gλ1�ξ�x1 � z�gλ2�ξ�x2 � z�gξ�z�.

As was previously shown, for any n � N, one has

�

�ξ
gξ�n� � �gξ�n� � gξ�n� 1�.

In a similar way, it can be shown that for s � �1, 2	,

�

�ξ
gλs�ξ�n� � gλ�ξ�n� � gλ�ξ�n� 1�

�

�λs

gλs�ξ�n� � �gλ�ξ�n� � gλ�ξ�n� 1�.

Accordingly, differentiating the probability mass function with respect to λ1 yields the following:

�

�λ1

hΛ,ξ�x1, x2� �

min�x1,x2��

z�0

�
�

�λ1

gλ1�ξ�x1 � z�

�
gλ2�ξ�x2 � z�gξ�z�

�

min�x1,x2��
z�0

gλ1�ξ�x1 � 1� z�gλ2�ξ�x2 � z�gξ�z�

�

min�x1,x2��
z�0

gλ1�ξ�x1 � z�gλ2�ξ�x2 � z�gξ�z�,

and hence

�

�λ1

hΛ,ξ�x1, x2� �

min�x1�1,x2��
z�0

gλ1�ξ�x1 � 1� z�gλ2�ξ�x2 � z�gξ�z�

�

min�x1,x2��
z�0

gλ1�ξ�x1 � z�gλ2�ξ�x2 � z�gξ�z�

� hΛ,ξ�x1 � 1, x2� � hΛ,ξ�x1, x2�.

In the same way, the derivative with respect to λ2 yields

�

�λ2

hΛ,ξ�x1, x2� � hΛ,ξ�x1, x2 � 1� � hΛ,ξ�x1, x2�.
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2.1 The classical bivariate Poisson model

The partial derivative of hΛ,ξ�x1, x2� with respect to the dependence parameter gives

�

�ξ
hΛ,ξ�x1, x2� �

min�x1,x2��

z�0

��
�

�ξ
gλ1�ξ�x1 � z�

�
gλ2�ξ�x2 � z�gξ�z�

� gλ1�ξ�x1 � z�

�
�

�ξ
gλ2�ξ�x2 � z�

�
gξ�z�

�gλ1�ξ�x1 � z�gλ2�ξ�x2 � z�

�
�

�ξ
gξ�z�

��
,

which can be rewritten as

�

�ξ
hΛ,ξ�x1, x2� �

min�x1,x2��
z�0

��gλ1�ξ�x1 � z� � gλ1�ξ�x1 � 1� z�	 gλ2�ξ�x2 � z�gξ�z�

� gλ1�ξ�x1 � z� �gλ2�ξ�x2 � z� � gλ2�ξ�x2 � 1� z�	 gξ�z�

�gλ1�ξ�x1 � z�gλ2�ξ�x2 � z� �gξ�z � 1� � gξ�z�	


� hΛ,ξ�x1, x2� � hΛ,ξ�x1 � 1, x2� � hΛ,ξ�x1, x2� � hΛ,ξ�x1, x2 � 1�

� hΛ,ξ�x1, x2� � hΛ,ξ�x1 � 1, x2 � 1�

� hΛ,ξ�x1, x2� � hΛ,ξ�x1 � 1, x2� � hΛ,ξ�x1, x2 � 1� � hΛ,ξ�x1 � 1, x2 � 1�.

An alternative formulation for the above partial derivatives can be derived using the recurrence
relations given in (2.6). In particular, one has

�

�λ1

hΛ,ξ�x1, x2� � hΛ,ξ�x1 � 1, x2� � hΛ,ξ�x1, x2�

�

�
x1hΛ,ξ�x1, x2� � ξhΛ,ξ�x1 � 1, x2 � 1�

�λ1 � ξ�

�
� hΛ,ξ�x1, x2�,

�

�λ2

hΛ,ξ�x1, x2� � hΛ,ξ�x1, x2 � 1� � hΛ,ξ�x1, x2�

�

�
x2hΛ,ξ�x1, x2� � ξhΛ,ξ�x1 � 1, x2 � 1�

�λ2 � ξ�

�
� hΛ,ξ�x1, x2�,

�

�ξ
hΛ,ξ�x1, x2� � hΛ,ξ�x1, x2� � hΛ,ξ�x1 � 1, x2� � hΛ,ξ�x1, x2 � 1� � hΛ,ξ�x1 � 1, x2 � 1�

� hΛ,ξ�x1, x2� � �x1��λ1 � ξ�	hΛ,ξ�x1, x2� � �ξ��λ1 � ξ�	hΛ,ξ�x1 � 1, x2 � 1�

� �x2��λ2 � ξ�	hΛ,ξ�x1, x2� � �ξ��λ2 � ξ�	hΛ,ξ�x1 � 1, x2 � 1�

� hΛ,ξ�x1 � 1, x2 � 1�,

11



2.1 The classical bivariate Poisson model

so that

�

�ξ
hΛ,ξ�x1, x2� �

�
1�

x1

�λ1 � ξ�
�

x2

�λ2 � ξ�

�
hΛ,ξ�x1, x2�

�

�
1�

ξ

�λ1 � ξ�
�

ξ

�λ2 � ξ�

�
hΛ,ξ�x1 � 1, x2 � 1�

For a random sample �X11, X12� . . . , �Xn1, Xn2� from the classical bivariate Poisson distribu-
tion, the log-likelihood has the form

��λ1, λ2, ξ� �
n�

i�1

lnhΛ,ξ�xi1, xi2�.

Using the partial derivatives derived above, one obtains the following score equations:

�

�λ1

��λ1, λ2, ξ� �
n�

i�1

1

hΛ,ξ�xi1, xi2�

�
xi1hΛ,ξ�xi1, xi2� � ξhΛ,ξ�xi1 � 1, xi2 � 1�

�λ1 � ξ�
� hΛ,ξ�xi1, xi2�

�

�

�
nx̄1

λ1 � ξ

�
� n�

�
ξ

λ1 � ξ

� n�
i�1

hΛ,ξ�xi1 � 1, xi2 � 1�

hΛ,ξ�xi1, xi2�
,

�

�λ2

��λ1, λ2, ξ� �
n�

i�1

1

hΛ,ξ�xi1, xi2�

�
x2hΛ,ξ�xi1, xi2� � ξhΛ,ξ�xi1 � 1, xi2 � 1�

�λ2 � ξ�
� hΛ,ξ�xi1, xi2�

�

�

�
nx̄2

λ2 � ξ

�
� n�

�
ξ

λ2 � ξ

� n�
i�1

hΛ,ξ�xi1 � 1, xi2 � 1�

hΛ,ξ�xi1, xi2�
,

and

�

�ξ
��λ1, λ2, ξ� �

n�
i�1

1

hΛ,ξ�xi1, xi2�

��
1�

xi1

�λ1 � ξ�
�

xi2

�λ2 � ξ�

�
hΛ,ξ�xi1, xi2�

�

�
1�

ξ

�λ1 � ξ�
�

ξ

�λ2 � ξ�

�
hΛ,ξ�xi1 � 1, xi2 � 1�

�

� n�

�
nx̄1

λ1 � ξ

�
�

�
nx̄2

λ2 � ξ

�

�

�
ξ

λ1 � ξ
�

ξ

λ2 � ξ
� 1

� n�
i�1

hΛ,ξ�xi1 � 1, xi2 � 1�

hΛ,ξ�xi1, xi2�
.

Introduce

R̄ �
1

n

n�
i�1

hΛ,ξ�xi1 � 1, xi2 � 1�

hΛ,ξ�xi1, xi2�
.

12



2.1 The classical bivariate Poisson model

Then, the score equations for the common shock bivariate Poisson model reduce to

�

�λ1

��λ1, λ2, ξ� � n

��
x̄1

λ1 � ξ

�
� 1�

�
ξ

λ1 � ξ

�
R̄

�
� 0, (2.7)

�

�λ2

��λ1, λ2, ξ� � n

��
x̄2

λ2 � ξ

�
� 1�

�
ξ

λ2 � ξ

�
R̄

�
� 0, (2.8)

�

�ξ
��λ1, λ2, ξ� � n

�
1�

�
x̄1

λ1 � ξ

�
�

�
x̄2

λ2 � ξ

�
�

�
ξ

λ1 � ξ
�

ξ

λ2 � ξ
� 1

�
R̄

�
� 0. (2.9)

Equations (2.7) and (2.8) imply that
�

ξ

λ1 � ξ

�
R̄ �

�
x̄1

λ1 � ξ

�
� 1,

�
ξ

λ2 � ξ

�
R̄ �

�
x̄2

λ1 � ξ

�
� 1.

Using this, (2.9) simplifies to R̄ � 1. Then, setting R̄ � 1 in equations (2.7) and (2.8) yields
maximum likelihood estimates

λ̂1 � x̄1, λ̂2 � x̄2.

The maximum likelihood estimate (MLE) for the dependence parameter is then found by solving
for the value of ξ such that R̄ � 1, subject to the constraints that ξ � �0,min�x̄1, x̄2�	. This can be
solve iteratively, using some numerical procedure.

Holgate (1964) shows that the covariance matrix for the maximum likelihood estimators λ̂1,
λ̂2, ξ̂ is given by

1

n

�
��
λ1 ξ ξ

ξ λ2 ξ

ξ ξ ξ2�λ1�λ2�2ξ��ξ2��λ1�2ξ��λ2�2ξ�
�λ1λ2�ξ2��Q�1���λ1�λ2�2ξ�

�
	


where

Q �
��

x1�0

��
x2�0

h2
Λ,ξ�x1 � 1, x2 � 1�

hΛ,ξ�x1, x2�
.

EM Algorithm

The stochastic representation of the classical bivariate Poisson model, given in (2.1), relies on
the convolution of unobserved random variables. This construction makes the EM algorithm an
appealing approach for determining the maximum likelihood estimates. This method was explored
in the case of the bivariate Poisson model by Adamidis and Loukas (1994) and a multivariate
common shock Poisson model by Karlis (2003). Here, we consider the simple case where iid
pairs �X11, X12�, . . . , �Xn1, Xn2� are observed and the latent variables are taken to be the common
shocks Z1, . . . , Zn. Note that Adamidis and Loukas (1994) outline the EM algorithm procedure in
the more general setting where missing values could also occur in the pairs �Xi1, Xi2� for certain
i � 
1, . . . , n�.
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2.1 The classical bivariate Poisson model

Let the complete data consist of the set of iid trivariate vectors �Xi1, Xi2, Zi�, while the ob-
served data consists of the pairs �X11, X12�, . . . , �Xn1, Xn2�. For any i � �1, . . . , n�, one has

Pr�X1 � xi1, X2 � xi2, Z � zi� � Pr�X1 � xi1, X2 � xi2 � Z � zi�Pr�Z � zi�

� gλ1�ξ�xi1 � zi�gλ2�ξ�xi2 � z�gξ�zi�.

It follows that the complete data log-likelihood is given by

�C�λ1, λ2, ξ� �
n�

i�1

	��λ1 � ξ� 
 �xi1 � zi� ln�λ1 � ξ� � ln��xi1 � zi�!�

� �λ2 � ξ� 
 �xi2 � zi� ln�λ2 � ξ� � ln��xi2 � zi�!�

� ξ 
 zi ln�ξ� � ln�zi!� �

� �n�λ1 
 λ2 � ξ� 
 n�x̄1 � z̄� ln�λ1 � ξ� 
 n�x̄2 � z̄� ln�λ2 � ξ�


 z̄ ln�ξ� �
n�

i�1

ln��xi1 � zi�!�xi2 � zi�!zi!�.

Denote the parameter vector �λ1, λ2, ξ� by Ψ and let Ψ�k� denote its estimated value at the kth
iteration of the algorithm. Taking the conditional expectation of the complete data log-likelihood,
given the observed data X � ��X11, X12�, . . . , �Xn1, Xn2�� and Ψ�k�, the E-step yields

Q�Ψ;Ψ�k�� � E
�
�C�λ1, λ2, ξ� � X,Ψ�k�

�
� �n�λ1 
 λ2 � ξ� 
 n

�
x̄1 � q̄�Ψ�k��

�
ln�λ1 � ξ�


 n
�
x̄2 � q̄�Ψ�k��

�
ln�λ2 � ξ� 
 q̄�Ψ�k�� ln�ξ� � R�X,Ψ�k��,

where

q̄�Ψ�k�� �
1

n

n�
i�1

E�Zi � xi1, xi2,Ψ
�k��

and

R�X,Ψ�k�� �
n�

i�1

E
�
ln��xi1 � zi�!�xi2 � zi�!zi!� � xi1, xi2,Ψ

�k�
�

is the remaining term, which does not depend on the unknown parameters λ1, λ2, ξ. The maxi-
mization step then leads to the following system of equations

�

�λ1

Q�Ψ;Ψ�k�� � n

�
�x̄1 � q̄�Ψ�k���

�λ1 � ξ�
� 1

�
� 0 (2.10)

�

�λ2

Q�Ψ;Ψ�k�� � n

�
�x̄2 � q̄�Ψ�k���

�λ2 � ξ�
� 1

�
� 0, (2.11)
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2.1 The classical bivariate Poisson model

and

�

�ξ
Q�Ψ;Ψ�k�� � n

�
1�

�x̄1 � q̄�Ψ�k���

�λ1 � ξ�
�

�x̄2 � q̄�Ψ�k���

�λ2 � ξ�
�

q̄�Ψ�k��

ξ

�
� 0. (2.12)

The solution to (2.10) through (2.12) yields the following parameter updates:

ξ�k�1� � q̄�Ψ�k��, λ
�k�1�
1 � x̄1, λ

�k�1�
2 � x̄2.

Thus, throughout the EM updates, the parameter estimates for the marginal parameters are held
fixed at their respective MLEs, x̄1 and x̄2, while the estimate for the dependence parameter is
updated according to q̄�Ψ�k�� until convergence. That is, the EM algorithm will continue to update
the dependence parameter ξ until

ξ �
1

n

n�
i�1

E�Zi 	 xi1, xi2,Ψ�,

wherein �λ1, λ2� is held fixed at the MLEs �x̄1, x̄2�.
Observe that the form of the EM updates ensure that at each iteration the estimate ξ�k� falls

within the appropriate interval, namely 
0,min�λ1, λ2��. Indeed, since for each i � �1, . . . , n�,
one has 0 
 Zi 
 min�Xi1, Xi2�, it follows that the expectation E�Zi 	 xi1, xi2,Ψ� will also
fall between 0 and min�Xi1, Xi2�. Accordingly, the average q̄�Ψ�k�� will also be positive and less
than or equal to min�X̄1, X̄2�. Thus, the form of the EM updates inherently reflects the parameter
constraints on ξ.

Remark 2.1 It is interesting to note that for the classical bivariate Poisson model, the maximum
likelihood estimates for λ1 and λ2 are the same in the case of independence. In fact, estimation of
the two marginal means is unaffected by the strength of the dependence. Additionally, the maxi-
mum likelihood estimation approach results in the same estimates for λ1 and λ2 as those obtained
via the method of moments.

Other approaches

There are several other approaches for parameter estimation in the classical bivariate Poisson
model that have been suggested in the literature. A few of these techniques will be detailed in
what follows.

Holgate (1964) explores the double zero proportion method wherein the dependence parameter
is estimated using the observed proportion of �0, 0� in a random sample. Let the latter quantity be
denoted by φ. Following this approach, one has that the theoretical value of φ is equal to exp��λ1�

λ2� ξ�. Thus, if the marginal parameter estimates are set equal to their respective marginal sample
means, one obtains an estimate for ξ equal to x̄1 � x̄2 � lnφ.
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2.2 Multivariate extension

Loukas et al. (1986) consider the even points estimation method, which is based on the relation
that results from evaluating the probability generating function at the points �1, 1� and ��1,�1�.
The sum of the latter two expressions yields 1�exp��2�λ1�λ2�2ξ��, which can be equated to its
empirical counterpart. Letting a�n denote the proportion of sample points of the form �2x1, 2x2�

and �2x1 � 1, 2x2 � 1�, the even points method sets 1 � exp��2�λ1 � λ2 � 2ξ�� � 2a�n. Then,
holding the marginal parameters fixed at their respective MLEs, an estimator for ξ is derived as
�X̄1 � X̄2��2� ln�2�a�n� � 1��4.

As an alternative to the traditional method of moments approach, Papageorgiou and Kemp
(1988) consider using conditional moments to estimate the dependence parameter. For the classical
bivariate Poisson model, one has E�X1 	 X2 � 0� � λ1�ξ and similarly E�X2 	 X1 � 0� � λ2�ξ.
Setting λ1 and λ2 equal to X̄1 and X̄2, respectively, matching the theoretical conditional moments
to those observed in the sample, two possible estimators of ξ are given by

x̄1 �
n�

i�1

xi11�xi2 � 0�, x̄2 �
n�

i�1

xi21�xi1 � 0�,

where 1�
� represents the indicator function. One could also consider taking the average of the two
so that ξ is estimated by

1

2

�
x̄1 � x̄2 �

n�
i�1

xi11�xi2 � 0� �
n�

i�1

xi21�xi1 � 0�

�
.

2.1.4 Shortcomings of the model

As previously discussed, the main drawback of the classical bivariate Poisson model is its restricted
range of permissible correlation. Notably, with the exception of the trivial case where the marginal
means are equal, the common shock model will not reach the upper bound for the correlation
determined by Griffiths et al. (1979) and thus cannot represent strong degrees of dependence.
Moreover, the classical model cannot allow for negative association. Nonetheless, the classical
bivariate Poisson model is intuitive and interpretable and certainly a useful model for correlated
count data which exhibit a modest range of positive association.

2.2 Multivariate extension

The stochastic representation of the classical bivariate Poisson model given in (2.1) allows for a
natural extension to higher dimensions via a multivariate reduction technique. In a similar way
to what was done in two dimensions, a d-variate Poisson model can be constructed whereby de-
pendence is introduced via a common shock variable. Consider a set of d mutually independent
Poisson random variables Y1, . . . , Yd with respective means λ1�ξ, . . . , λd�ξ. Let Z � P�ξ� denote
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2.2 Multivariate extension

the common shock variable, which is taken to be independent of the random vector �Y1, . . . , Yd�.
As before, one obtains the d-variate classical Poisson model by adding the common shock variable
to each component of �Y1, . . . , Yd�, viz.

X1 � Y1 � Z, . . . , Xd � Yd � Z. (2.13)

Similarly to the bivariate model, the dependence parameter is constrained to fall in the interval
�0,min�λ1, . . . , λd��.

This formulation of a multivariate Poisson model is discussed by several authors. For example,
Loukas and Papageorgiou (1991) and Loukas (1993) discuss the common shock approach in the
trivariate Poisson distribution while Tsionas (1999) and Karlis (2003) consider the model in higher
dimensions. As shown by the aforementioned authors, many of the distributional properties of the
bivariate Poisson model extend easily to higher dimensions and so will only be briefly discussed
here.

The probability mass function takes on a very similar form as the bivariate model. For a d-
dimensional random vector �X1, . . . , Xd� arising from the common shock multivariate Poisson
distribution, the joint probability mass function is given by

hΛ,ξ�x1, . . . , xd� � exp

�
�

d�
j�1

λj � �d� 1�ξ

�
min�x1,...,xd��

z�0

d�
j�1

�λj � ξ�xj�z

�xj � z�!

ξz

z!

with corresponding cumulative distribution function given by

HΛ,ξ�x1, . . . , xd� �

min�x1,...,xd��
z�0

d�
j�1

Gλj�ξ�xj � z�gξ�z�.

Similarly to the bivariate setting, in the above Λ denotes the vector �λ1, . . . , λd� of marginal pa-
rameters and ξ represents the mean of the unobserved common shock variable.

Focusing on the case where d � 3, Loukas and Papageorgiou (1991) establish recurrence
relations, which are shown to be

�x1 � 1�hΛ,ξ�x1 � 1, x2, x3� � �λ1 � ξ�hΛ,ξ�x1, x2, x3� � ξhΛ,ξ�x1, x2 � 1, x3 � 1�,

�x2 � 1�hΛ,ξ�x1, x2 � 1, x3� � �λ2 � ξ�hΛ,ξ�x1, x2, x3� � ξhΛ,ξ�x1 � 1, x2, x3 � 1�,

�x3 � 1�hΛ,ξ�x1, x2, x3 � 1� � �λ3 � ξ�hΛ,ξ�x1, x2, x3� � ξhΛ,ξ�x1 � 1, x2 � 1, x3�.

Note that recurrence relations in higher dimensions are also provided by Kano and Kawamura
(1991) and Karlis (2003).

These recurrence relations allow for simplifications in the score equations for maximum like-
lihood estimation, similarly to what was found in (2.7) through (2.9). The MLEs for the marginal
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2.2 Multivariate extension

parameters are found to be their respective marginal sample means while the dependence parameter
estimator is found to be value of ξ such that R̄ � 1, where

R̄ �
1

n

n�

i�1

hΛ,ξ�xi1 � 1, xi2 � 1, xi3 � 1�

hΛ,ξ�xi1, xi2, xi3�

subject to the constraint ξ � �0,min�λ1, λ2, λ3��. An expression for the asymptotic variance of
the maximum likelihood estimators can also be derived; see Loukas and Papageorgiou (1991) for
details.

Continuing with the trivariate model, a moment based estimation procedure is outlined in
Loukas (1993). Once again, the marginal means are estimated by their respective sample means.
Mixed moments are required for estimation of the dependence parameter. In particular, Loukas
(1993) suggests matching the theoretical moment

E ��X1 � λ1��X2 � λ2��X3 � λ3�� 	 ξ

to its sample moment given by

1

n

n�

i�1

�xi1 � x̄1��xi2 � x̄2��xi3 � x̄3�,

subject to the constraint that ξ � �0,min�λ1, λ2, λ3��. The resulting covariance matrix for the
moment-based estimators is detailed in Loukas (1993).

Loukas (1993) also outlines alternative estimation techniques, in particular, the method of zero
frequency and the method of even points. The former is similar to the double zero proportion
method used by Holgate (1964) wherein the theoretical probability of observing �0, 0, 0� is matched
to its empirical analogue to obtain an estimate of ξ, while holding �λ1, λ2, λ3� fixed at �x̄1, x̄2, x̄3�.
The latter approach is the multivariate extension of the even points method discussed for the bi-
variate model and consists of working with the relation that ensues by evaluating the probability
generating function at �1, 1, 1� and ��1,�1,�1�.

Obviously, as the dimension increases, estimation in the multivariate Poisson model becomes
increasingly complex. Seemingly, the approaches outlined by Loukas and Papageorgiou (1991) and
Loukas (1993) will become numerically infeasible in higher dimensions. As yet another alternative,
Tsionas (1999) considers a Bayesian approach for estimation in the common shock multivariate
Poisson model and provides a detailed numerical illustration using Gibbs sampling. Karlis (2003)
suggests using the EM algorithm to obtain maximum likelihood estimates, which is a natural ex-
tension to the bivariate case previously discussed. Note that Karlis (2003) works with a different
parametrization of the model and allows for an offset term. He also points out that a recursive
relation occurs in the conditional distribution in the E-step, thus simplifying the computations.
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2.2 Multivariate extension

In addition to inheriting the same drawbacks discussed in the bivariate model, the multivariate
common shock construction leads to a restrictive covariance structure wherein all pairwise co-
variances must coincide. Indeed, for any i � j, the pair �Xi, Xj� � �X1, . . . , Xd� � HΛ,ξ has
covariance cov�Xi, Xj� � ξ.

A more flexible definition of a multivariate Poisson model can be achieved by convoluting
a d-dimensional vector comprised of independent Poisson components with a set of 2d � d � 1

independent shock variables. This produces a 2d � 1 parameter multivariate Poisson distribution
which allows for a less restrictive covariance structure. This construction is examined by several
authors. For example, Mahamunulu (1967) and Kawamura (1976) consider the trivariate case,
while higher dimensions are examined by Karlis and Meligkotsidou (2005), to name a few.

Following the general notation of Karlis and Meligkotsidou (2005), let X � �X1, . . . , Xd�

be a random vector with Poisson margins. Then X is said to follow a multiple common shock
multivariate Poisson distribution if one can write X � AY, where Y � �Y1, . . . , Yk� is a vector of
independent Poisson random variables such that Yr � P�νr� for each r � 	1, . . . , k
, and A is a
d�k matrix, where all elements are either 0 or 1 and no columns are repeated. Let ν � �ν1, . . . , νk�

denote the parameter vector. Then, this extended definition of a multivariate Poisson model results
in the following mean and covariance structure:

E�X� � Aν, cov�X� � AΣA�,

where Σ � diag�ν1, . . . , νk�.
Consider, for example, the trivariate case. Letting Y � �Y1, Y2, Y3, Y12, Y13, Y23, Y123�, the ex-

tended construction leads to the following stochastic representation:

X1 � Y1 � Y12 � Y13 � Y123,

X2 � Y2 � Y12 � Y23 � Y123,

X3 � Y3 � Y13 � Y23 � Y123.

A similar interpretation to what was discussed in the bivariate model follows in this more complex
setting. The random vector �Y1, Y2, Y3� consists of the independent base while �Y12, Y13, Y23, Y123�

may be viewed as a set of common shock variables. If Y has mean vector �ν1, ν2, ν3, ν12, ν13, ν23,
ν123�, it follows that

cov�X1, X2� � cov�Y1 � Y12 � Y13 � Y123, Y2 � Y12 � Y23 � Y123�

� var�Y12� � var�Y123�

� ν12 � ν123.
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2.3 Alternative multivariate Poisson models

Similarly, one has that

cov�X1, X3� � ν13 � ν123, cov�X2, X3� � ν23 � ν123.

Thus, when ν12 � ν13 � ν23 � 0 the extended trivariate model simplifies to the single common
shock representation in (2.13). Moreover, it is easily seen that this representation allows for the
pairwise covariances to differ.

Clearly, for an arbitrary dimension d, the extended multivariate Poisson construction allows
for varying pairwise covariances as the common shock variables affect each margin differently.
Despite the added flexibility, this extended model still restricts the range of permissible pairwise
correlations and falls short of the upper bound ρmax except in trivial cases. This follows from the
fact that the univariate Poisson distribution is infinitely divisible, and thus any two components of
X can be rewritten in the form of the bivariate Poisson construction given in (2.1).

For example, consider once again the case where d � 3. Focusing on the first two components,
one has

X1 � Y1 � Y12 � Y13 � Y123 � Y �

1 � Z�,

X2 � Y2 � Y12 � Y23 � Y123 � Y �

2 � Z�,

where
Y �

1 � Y1 � Y13, Y �

2 � Y2 � Y23, Z� � Y12 � Y123.

Since the Poisson distribution is closed under convolution, Y �

1 � P�ν1 � ν13�, Y �

2 � P�ν2 � ν23�

and Z� � P�ν12 � ν123�. Moreover, Y �

1 , Y �

2 and Z� are independent as they are each sums of non-
overlapping independent random variables. Thus, the pair �X1, X2� follows the classical bivariate
Poisson distribution and accordingly its covariance is restricted to �0,min�λ1, λ2��, where λ1 �

ν1 � ν12 � ν13 � ν123 and λ2 � ν2 � ν12 � ν23 � ν123.

2.3 Alternative multivariate Poisson models

Thus far, only the common shock, or multivariate reduction, technique for building a multivariate
Poisson model has been discussed. Certainly, there are alternative ways to generate a multivariate
Poisson distribution. This section will give a brief overview of alternative methods proposed in
the literature, including copula models, conditional models, mixture models as well as some more
general models that include the Poisson as a special case.

2.3.1 Copula models

Copula models provide a flexible framework for building multivariate models with arbitrary mar-
gins. Consider the bivariate case: suppose X1 and X2 are Poisson random variables with respective
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2.3 Alternative multivariate Poisson models

marginal distribution functions Gλ1 and Gλ2 . Given a class �Cφ� of copulas indexed by a depen-
dence parameter φ, a joint distribution of �X1, X2� can then be constructed by setting, for all
x1, x2 � N,

Pr�X1 � x1, X2 � x2� � Cφ �Gλ1�x1�, Gλ2�x2�� .

The choice of copula dictates the nature of the dependence in the model while the dependence
parameter φ will regulate the strength of the dependence. Indeed, for a suitable choice of copula
model, this approach can allow for both positive and negative associations between the margins.
Moreover, in the case of the upper and lower Fréchet–Hoeffding boundary copulas, this construc-
tion will imply a correlation reaching ρmax and ρmin, respectively.

This general approach towards constructing correlated Poisson random variables is discussed
by several authors, notably Van Ophem (1999), Nikoloulopoulos and Karlis (2009), Smith and
Khaled (2012), Pfeifer and Nešlehová (2004) and Panagiotelis et al. (2012), to name a few. Al-
though the copula construction for generating correlated discrete random variables is valid, several
issues arise as a result of the discontinuities in the marginal distribution functions. In particular,
there is no unique copula representation, inference becomes more difficult, and many of the nice
properties that follow for continuous margins no longer hold true. An in-depth examination of
copula models for discrete data is given in Genest and Nešlehová (2007).

Along the same lines as copula models, Lakshminarayana et al. (1999) derive a bivariate Pois-
son model wherein the joint probability mass function is written as the product of the marginal
probability mass functions (PMFs) and a multiplicative factor that induces dependence. The pro-
posed construction allows for greater flexibility than the classical bivariate Poisson model as both
positive and negative correlation are possible. The authors consider a particular form for the multi-
plicative factor and derive some properties of the resulting bivariate Poisson distribution, including
the range of possible correlation values. In this specific case, the proposed bivariate model falls
short of the extremal values of correlation given by Griffiths et al. (1979).

In a similar manner, Nelsen (1987) proposes deriving bivariate models with discrete margins
by writing the joint probability mass function as a convex linear combination of the upper and
lower Fréchet–Hoeffding boundary distributions along with the product of the marginal PMFs
(i.e., the joint distribution under independence). This general construction allows for both positive
and negative correlation. Moreover, when the model parameters are chosen such that the bivariate
distribution is at the boundaries (i.e., either the upper or lower Fréchet–Hoeffding bound), the
implied correlation will reach ρmax and ρmin, respectively. Griffiths et al. (1979) also provide a few
specific examples of bivariate Poisson distributions exhibiting negative correlation.
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2.3 Alternative multivariate Poisson models

2.3.2 Mixture models

Another way to construct a multivariate Poisson model is through mixture models. Karlis and
Xekalaki (2005) provide an overview of various Poisson mixture models in both the univariate
and multivariate setting. Focusing on the bivariate case, the authors provide several definitions of a
mixed bivariate Poisson distribution. For example, one may consider the classical common shock
model wherein each parameter is proportional to some mixing random variable denoted by a.
Following this definition, conditional on a the pair �X1, X2� follows the classical bivariate Poisson
distribution with parameters �aλ1, aλ2, aξ�. The choice of distribution for a will then dictate the
unconditional distribution of the pair �X1, X2� and regulate the dependence between the margins.
A more general bivariate Poisson mixture model results when the parameters λ1, λ2, ξ follow some
multivariate distribution.

There are numerous papers which explore specific mixture models. For example, Sarabia and
Gómez-Déniz (2011) consider a multivariate Poisson-Beta distribution, Gómez-Déniz et al. (2012)
define a multivariate Poisson-Lindley distribution and Sellers et al. (2016) propose a bivariate
Conway–Maxwell-Poisson distribution. Karlis and Meligkotsidou (2007) consider a finite mixture
of multivariate Poisson distributions which results as the special case where the mixing distribution
is multinomial. In the latter paper, parameter estimation is carried out using the EM algorithm.

Mixture models allow for greater flexibility in the covariance structure through the mixing vari-
able. For example, in the univariate case, a mixture Poisson model can allow for over-dispersion.
In addition, for suitable choices of mixing distributions, one may construct a multivariate Poisson
model with negative dependence.

2.3.3 General multivariate reduction technique

In conjunction with the common shock method and mixture models, Lai (1995) discusses con-
structing bivariate distributions using a generalized trivariate reduction technique. In particular, the
author develops a modified structured mixture model in terms of three mutually independent ran-
dom variables Y1, Y2, Y3 and a pair �I1, I2� of correlated Bernoulli variables, where by design each
component of �Y1, Y2, Y3� is independent of the random pair �I1, I2�. A dependent random vector
is then generated by setting

X1 � Y1 � I1Y3, X2 � Y2 � I2Y3.

The classical bivariate Poisson model is then the special case where Y1, Y2, Y3 each follow a
Poisson distribution and the Bernoulli random pair is such that Pr�I1 � 1, I2 � 1� � 1.

This approach towards generating correlated pairs allows for greater flexibility than the clas-
sical common shock construction as it allows for two sources of dependence: the common shock
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2.3 Alternative multivariate Poisson models

variable Y3 and the dependence induced by the correlated indicator variables �I1, I2�. Lai (1995)
derives the implied correlation between X1 and X2 as well as the minimum and maximum corre-
lation permissible in the model. Note that while the structured mixture model method allows for
both positive and negative association between the margins, the implied bounds for the correlation
do not reach those given by Griffiths et al. (1979) except in trivial cases.

In a similar manner, Cuenin et al. (2016) use a multivariate reduction technique to construct
a multivariate Tweedie distribution. Since the univariate Tweedie distribution is closed under con-
volution, the authors suggest building a multivariate Tweedie model wherein the margins can be
written as linear combinations of a set of independent univariate Tweedie random variables. The
classic multivariate Poisson model is a special case of the proposed multivariate Tweedie model,
where the parameter p � 1.

Cuenin et al. (2016) also extend the model to the case of negative dependence by work-
ing with sums of independent components along with both comonotonic and counter-monotonic
Tweedie random variables. In the bivariate Poisson case (i.e., p � 1), this construction reduces
to setting X1 � Y11 � Y12 and X2 � Y22 � Y21, where �Y11, Y22� are independent Poisson ran-
dom variables, with respective means λ1 � λ12 and λ2 � λ12, which are also independent of
�Y12, Y21�. The latter random pair consists of counter-monotonic Poisson random variables with
�Y12, Y21� � �G�1λ12

�U�, G�1λ12
�1 � U��. Indeed, in this proposed bivariate Poisson model, setting

λ12 � λ1 � λ2 � λ yields corr�X1, X2� � ρmin. In Chapter 5, we propose a bivariate Poisson
model with negative dependence that resembles the model formulation considered by Cuenin et al.
(2016) in that the construction relies on the use of counter-monotonic Poisson random variables.
In particular, our proposed model coincides with that of Cuenin et al. (2016) in the special case
where λ1 � λ2.

Note that in higher dimensions, the notion of negative dependence becomes more complex.
This results from the fact that the concept of counter-monotonicity does not readily extend to
dimensions greater than 2. Consider the trivariate Poisson model resulting from the construction
of Cuenin et al. (2016). In terms of independent U�0, 1� random variables U1, U2, U3, U , one has

X1 � Y11 � Y12 � Y13 � G�1λ1�λ12�λ13
�U1� �G�1λ12

�U� �G�1λ13
�U�,

X2 � Y22 � Y21 � Y23 � G�1λ2�λ12�λ23
�U2� �G�1λ12

�1� U� �G�1λ23
�U�,

X3 � Y33 � Y31 � Y32 � G�1λ3�λ13�λ23
�U3� �G�1λ13

�1� U� �G�1λ23
�1� U�.

If we consider the pair �X1, X3�, it is clear that the correlation will be negative since

cov�X1, X3� � cov�Y12, Y31� � cov�Y12, Y32� � cov�Y13, Y31� � cov�Y13, Y32�,

where each of the sets of pairs �Y12, Y13�, �Y12, Y32�, �Y13, Y31�, �Y13, Y32� are counter-monotonic
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2.3 Alternative multivariate Poisson models

by construction. However, if we consider �X1, X2�, the covariance is driven by both comonotonic
and counter-monotonic pairs. In this case, the pairs �Y12, Y21�, �Y13, Y21� are counter-monotonic
while the remaining pairs �Y12, Y23� and �Y13, Y23� are comonotonic. Thus, the overall covariance
may be either positive or negative depending on the magnitude of the parameters λ12, λ13, λ23.

Moreover, in the multivariate Poisson case the proposed formulation does not yield margins
that are univariate Poisson. In the trivariate setting, consider the first component: X1 is the sum
of an independent Poisson random variable, Y11, along with two perfectly dependent Poisson ran-
dom variables, �Y12, Y13�, as the latter pair are functions of a common underlying uniform random
variable U . It then follows that

var�X1� � var�Y11� � var�Y12� � var�Y13� � 2cov�Y12, Y13� � λ1

while
E�X1� � E�Y11� � E�Y12� � E�Y13� � λ1.

Clearly, X1 does not follow a P�λ1� distribution.
Note that a slight modification to the proposed construction rectifies this issue. Continuing with

the trivariate case, consider the following stochastic representation in terms of mutually indepen-
dent U�0, 1� random variables U1, U2, U3, U12, U13, U23:

X1 � Y11 � Y12 � Y13 � G�1λ11�λ12�λ13
�U1� �G�1λ12

�U12� �G�1λ13
�U13�,

X2 � Y22 � Y21 � Y23 � G�1λ22�λ12�λ23
�U2� �G�1λ12

�1� U12� �G�1λ23
�U23�,

X3 � Y33 � Y31 � Y32 � G�1λ33�λ13�λ23
�U3� �G�1λ13

�1� U13� �G�1λ23
�1� U23�.

Clearly any two components can be rewritten in terms of the bivariate model representation in that
the pairwise margins are comprised of both an independent and counter-monotonic element. Thus,
all pairwise covariances will be negative. Furthermore, each margin is the sum of independent
Poisson random variables so that Xi � P�λi� for all i � 	1, 2, 3
. This model is revisited in
Chapter 7.

2.3.4 Other approaches

Dependence between Poisson margins can also be generated via random effects models, as shown
by Chib and Winkelmann (2001), among others. In allowing for an unrestricted covariance matrix
for the random effects, the authors define a multivariate Poisson model with a flexible dependence
structure, accommodating both positive and negative correlation.

A bivariate Poisson model can also be defined in terms of conditional distributions, as done in
Papageorgiou (1983) and Berkhout and Plug (2004), for example. In particular, Berkhout and Plug
(2004) construct a bivariate Poisson model by writing the conditional mean of one margin as a
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2.4 Other multivariate count models

function of the other. Specifically, let �X1, X2� denote a random pair of Poisson random variables
with respective means λ1 and λ2. Then, for a given choice of permutation π (where there are two
possibilities for the bivariate case) and conditional on X2 � x2, write

λ2 � λ20 exp�αx2�.

This approach allows for both positive and negative correlation, depending on the sign of α. Note
that the authors allow the marginal and conditional means to depend on a set of covariates through
the exponential link function.

There are numerous papers that explore multivariate Poisson regression models, in which the
effects of covariates are incorporated into the model. For example, Kocherlakota and Kocherlakota
(2001) write the marginal means in the classical bivariate Poisson model in terms of a GLM using
a log link function. As an extension to this, Tsionas (2001) consider a set of marginal GLMs, again
using the log link functions, for each marginal mean in the classical multivariate Poisson model.
Karlis and Meligkotsidou (2005) allow for covariate effects via GLMs on the marginal means
in the more complex version of a multivariate Poisson model while Nikoloulopoulos and Karlis
(2010) incorporate marginal GLMs in a copula model framework. Bermúdez and Karlis (2012)
propose a finite mixture of bivariate Poisson regression models and apply it to car insurance data.
As yet another alternative, several authors define a multivariate Poisson distribution as the limiting
case of a multivariate Binomial distribution; see, e.g., Krishnamoorthy (1951), Kawamura (1976),
Kawamura (1979).

2.4 Other multivariate count models

There are numerous other models for correlated count data wherein the marginal distributions are
not Poisson. Some examples include the Generalized Poisson, Zero-Inflated Poisson and Negative
Binomial distributions. Famoye (2012) and Famoye (2015) provide detailed comparisons of some
of these models in the bivariate and multivariate setting.

A bivariate Generalized Poisson distribution is developed in Famoye and Consul (1995), where
the model construction uses the trivariate reduction method in an analogous manner to the classical
bivariate Poisson model. As was the case in the Poisson model, this approach implies a positive
correlation. Famoye (2010a) later considered an alternative derivation of a bivariate Generalized
Poisson model with flexible correlation by working with the formulation proposed by Lakshmi-
narayana et al. (1999). In the same way, Famoye (2010b) uses the method of Lakshminarayana
et al. (1999) to define a bivariate Negative Binomial model, which also incorporates covariate ef-
fects. The bivariate Generalized Poisson model is then extended to higher dimensions in Famoye
(2015). The latter model allows for a flexible covariance structure as well as both over and under
dispersion, while incorporating covariate effects. Zamani et al. (2016) also consider a regression
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model in the context of the bivariate Generalized Poisson model. The authors explore various forms
of the aforementioned model that have been proposed in the literature and apply these models to
health care data.

Multivariate extensions to the Zero-Inflated Poisson model are discussed in various papers.
Li et al. (1999) propose a multivariate Zero-Inflated Poisson distribution which involves a mass
at 0 along with univariate and multivariate Poisson distributions. Walhin (2001) consider different
techniques for constructing bivariate Zero-Inflated Poisson models via mixture models as well as
a trivariate reduction approach. Gurmu and Elder (2008) also consider a mixture model wherein
dependence is introduced via a pair of correlated latent variables acting on both marginal means
while allowing for a flexible correlation structure. Bivariate Zero-Inflated Generalized Poisson
models are considered by Zhang et al. (2015) and Faroughi and Ismail (2017). In particular, Zhang
et al. (2015) define two models, one with a common inflation for both margins and a second with
two separate inflation factors.

There are of course several other examples of multivariate models for count data. For example,
Gurmu and Elder (2000) propose a bivariate Generalized Negative Binomial regression model and
consider an application to health care data. Akpoue and Angers (2017) develop a multivariate
Poisson-Skellam distribution and illustrate its use by modelling soccer data. Lindskog and McNeil
(2003) discuss a general Poisson shock model applied to insurance data. In particular, the authors
consider dependence in both the claim frequencies and severities for different types of losses.
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3
Comonotonic Discrete Random Pairs

3.1 Introduction

As a building block towards defining an extension to the classical bivariate Poisson model, we
begin by considering a special case: comonotonic discrete random variables. While the focus here
is on the two-dimensional case, most of what is discussed can be extended to higher dimensions.

A pair of random variables �Z1, Z2� is said to be comonotonic if and only if it can be written
as a non-decreasing function of a common underlying random variable; see, e.g., Dhaene et al.
(2006). In particular, for U � U�0, 1�, the comonotonic random pair can be written as

�Z1, Z2� �d �F
�1
1 �U�, F�12 �U��, (3.1)

where F1 and F2 denote the marginal cumulative distribution functions of Z1 and Z2, respectively,
and the (generalized) inverse cumulative distribution function, or quantile function, is defined, for
all u � �0, 1� and x � R̄ � ��	,	�, by

F�1X �u� � inf
x � R : FX�x� � u�. (3.2)

An extensive review of the quantile function and its properties is given in Embrechts and Hofert
(2013).

The joint distribution of a comonotonic pair �Z1, Z2� is given, for all z1, z2 � R, by

Pr�Z1 
 z1, Z1 
 z2� � Pr
F�11 �U� 
 z1, F
�1
2 �U� 
 z2�

� Pr 
U 
 F1�z1�, U 
 F2�z2��

� Pr �U 
 min
F1�z1�, F2�z2���

� min
F1�z1�, F2�z2��. (3.3)



3.2 Continuous vs. discrete margins

The above follows from the fact that for any x � R and u � �0, 1�,

FX�x� � u � x � F�1X �u�

accordingly to the definition of F�1X and the fact that any CDF is right continuous.
The joint distribution function given in (3.3) is known as the Fréchet–Hoeffding upper bound

and represents perfect positive dependence. It can be shown that any bivariate distribution function
H with given margins F1 and F2 satisfies

max�0, F1�x1� 	 F2�x2� 
 1� � H�x1, x2� � min�F1�x1�, F2�x2��, (3.4)

for all �x1, x2� � R
2; see e.g., Eq. (2.5.1) on p. 30 of Nelsen (2006). In the above equation,

max�0, F1�x1� 	 F2�x2� 
 1� is referred to as the lower Fréchet–Hoeffding bound and is the joint
distribution function of a counter-monotonic random pair �X1, X2� defined as

�X1, X2� 
d �F
�1
1 �U�, F�12 �1
 U��.

Analogously to the concept of comonotonicity, counter-monotonicity represents perfect negative
dependence. In this thesis, M�F1, F2� and W�F1, F2� will denote the upper and lower Fréchet–
Hoeffding boundary distributions, respectively, with margins F1 and F2.

Note that the Fréchet–Hoeffding bounds for bivariate distribution functions given in (3.4) ex-
tend to higher dimensions, as shown in, e.g., Theorem 3.1 of Joe (1997). Suppose the d-dimensional
random vector �X1, . . . , Xd� has marginal distribution functions given by F1, . . . , Fd. Then for any
�x1, . . . , xd� � R

d, the joint distribution H of �X1, . . . , Xd� is bounded by

max�0, F1�x1� 	 � � � 	 Fd�xd� 
 �d
 1�� � H�x1, . . . , xd� � min�F1�x1�, . . . , Fd�xd��.

While the upper Fréchet–Hoeffding bound min�F1�x1�, . . . , Fd�xd�� is a valid distribution function
for arbitrary dimension d, in general this will not hold for the lower bound max�0, F1�x1� 	 � � � 	

Fd�xd� 
 �d 
 1��. Theorem 3.7 of Joe (1997) details the case where the lower bound is a proper
CDF.

3.2 Continuous vs. discrete margins

Recall the definition of the quantile function given in Eq. (3.2). Since any cumulative distribution
function is by definition non-decreasing and right continuous, F�1 itself is a non-decreasing and
left continuous function with F�1 : �0, 1� �� R̄. Moreover, it can be shown that

�x�R F�1�F �x�� � x and �u��0,1� F �F�1�u�� � u.
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3.2 Continuous vs. discrete margins

In the special case where the CDF F is strictly increasing, one has that F�1�F �x�� � x; while
when F is continuous, one has that F �F�1�u�� � u.

For a continuous distribution function, the corresponding quantile function is a one-to-one
mapping so that every x in the support of F can only be generated from a unique u � �0, 1�, viz.
X � F�1�U�. However, when the cumulative distribution function F has jumps, the resulting F�1

will be a many-to-one mapping. To see this, suppose that F has a jump at x0 so that F �x�0 � 	
F �x0�. Then any u in the jump interval

�
F �x�0 �, F �x0�

�
will be mapped to x0 since F�1�u� �

inf �x : F �x� 
 u�. For example, consider a Poisson random variable with mean λ and distribution
function Gλ; the corresponding quantile function G�1λ can then be defined, for all u � �0, 1�, by

G�1λ �u� �
�

k�N

k � 1 �Gλ�k � 1� 	 u 
 Gλ�k�� , (3.5)

where N � �0, 1, 2, . . .� and 1 represents the indicator function.
Note that plateaus in the cumulative distribution function imply jumps in the corresponding

inverse CDF. Suppose a distribution function F is flat for x � �a1, a2� so that F �x� � F �a1�

for all x � �a1, a2�, i.e., Pr�a1 	 X 	 a2� � 0. Accordingly, the quantile function will set
F�1�F �a1�� � a1 while F�1�F �a1� � ε� � a2 for any ε � 0 such that ε 
 1 � F �a1�. Thus, no
u � �0, 1� will be mapped to an x � �a1, a2�.

Recall the stochastic representation for comonotonic pairs, namely, for U � U�0, 1�, the pair
can be expressed as �Z1, Z2� �d �F

�1
1 �U�, F�1

2 �U��. When the marginal distribution functions F1

and F2 are continuous, comonotonicity implies a functional dependence between the margins. In
this case, every observed pair �z1, z2� � R

2 arises from a unique u � �0, 1� as the marginal quantile
functions generating the pair are one-to-one. Accordingly, every observed pair �z1, z2� must be
such that F1�z1� � F2�z2� � u. This translates into a deterministic relationship between the two
random variables in terms of their marginal cumulative distribution functions, viz.

Z2 �d F
�1
2 �U� � F�1

2 �F1�Z1��,

or, equivalently,
Z1 �d F

�1
1 �U� � F�1

1 �F2�Z2��.

Thus, for continuous random variables, comonotonicity reduces the dimensionality of the prob-
lem from the bivariate to the univariate setting since one margin is deterministically ascertained
from the other. In other words, conditional on say Z1 � z1, Z2 is a degenerate random variable
which places all its mass at the point F�1

2 �F1�z1��. To illustrate this, the following example con-
siders the case of Exponential margins.
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3.2 Continuous vs. discrete margins

Example 3.1 Comonotonic Exponential random variables
Consider the case where the margins are Exponential. In particular, suppose that for s � �1, 2�,

Zs � E�βs� with Fs�x� � 1� exp��x	βs� for all x 
 0 and corresponding inverse CDF given by

F�1s �u� � �βs ln�1� u� for all u � �0, 1�. Then if �Z1, Z2� are comonotonic, it follows that

1� exp��Z1	β1� � 1� exp��Z2	β2� � Z1	β1 � Z2	β2 � Z1 � β1Z2	β2

almost surely. Thus, in the case of Exponential random variables, comonotonicity implies a linear

relation between the margins, and conditional on Z1 � z1, Z2 � β2z1	β1 with probability 1.

In fact, any comonotonic pair with strictly increasing marginal distribution functions belonging
to a common location-scale family will exhibit a linear relation. To see this, suppose that Z1 and
Z2 are members of the same location-scale family with baseline distribution function F , i.e., there
exist μ1, μ2 � R and σ1, σ2 � 0 such that, for all z1, z2 � R,

F1�z1� � F

�
z1 � μ1

σ1

�
, F2�z2� � F

�
z2 � μ2

σ2

�
.

Suppose that the underlying standard location-scale distribution F is strictly increasing so that
F�1�F �x�� � x. Then, it follows that for each s � �1, 2�,

Zs � F�1s �U� � U � Fs�Zs� � F

�
Zs � μs

σs

�

� F�1�U� � �Zs � μs�	σs

� Zs � μs 
 σsF
�1�U�.

Comonotonicity then implies that

Z2 � μ2 
 σ2F
�1�U� � μ2 
 σ2

�
Z1 � μ1

σ1

�
� μ2 � μ1

�
σ2

σ1

�



�
σ2

σ1

�
Z1

almost surely. Thus, Z2 is a linear function of Z1. Some examples of distributions belonging to the
location-scale family include the Exponential, Normal and Uniform distributions, to name a few.

For discrete random variables, in contrast, the relation between the margins in the case of
comonotonicity is no longer straightforward. For a discrete random variable, the cumulative dis-
tribution function has jump discontinuities at every x � R for which the probability mass function
is non-zero. This in turn causes the inverse CDF to also be a jump function, as shown in Eq. (3.5)
for the case of a Poisson random variable. For a comonotonic pair with discrete margins, the joint
distribution only places mass at values �z1, z2� such that the jump intervals overlap, i.e., such that

�F1�z
�

1 �, F1�z1�� � �F2�z
�

2 �, F2�z2�� � �.
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3.2 Continuous vs. discrete margins

This follows since comonotonicity implies that both margins are generated by the same underlying
uniform random variable U such that Z1 � F�11 �u� � z1 � u � �F1�z

�

1 �, F1�z1�� and Z2 �

F�12 �u� � z2 � u � �F2�z
�

2 �, F2�z2��, and so jointly

�Z1, Z2� � �z1, z2� � u � �F1�z
�

1 �, F1�z1�� � �F2�z
�

2 �, F2�z2��.

Thus, for comonotonic random variables with discontinuous marginal distribution functions, the
joint probability mass function (PMF) can be derived as

Pr�Z1 � z1, Z2 � z2� � Pr�U � �F1�z
�

1 �, F1�z1�� � �F2�z
�

2 �, F2�z2��	

� Pr
max�F1�z
�

1 �, F2�z
�

2 �	 � U � min�F1�z1�, F2�z2�	�

� 
min�F1�z1�, F2�z2�	 
max�F1�z
�

1 �, F2�z
�

2 �	�� (3.6)

where 
x�� � x1�x � 0�. It is clear from the above formulation that the probability of observing
�z1, z2� depends on how the two intervals, �F1�z

�

1 �, F1�z1�� and �F2�z
�

2 �, F2�z2�� overlap. Clearly,
F1�z

�

1 � � F1�z1� and F2�z
�

2 � � F2�z2�. Intersecting the two intervals could result in six possible
orderings, namely

(i) F2�z
�

2 � � F1�z
�

1 � � F2�z2� � F1�z1�;

(ii) F1�z
�

1 � � F2�z
�

2 � � F2�z2� � F1�z1�;

(iii) F1�z
�

1 � � F2�z
�

2 � � F1�z1� � F2�z2�;

(iv) F2�z
�

2 � � F1�z
�

1 � � F1�z1� � F2�z2�;

(v) F1�z
�

1 � � F1�z1� � F2�z
�

2 � � F2�z2�;

(vi) F2�z
�

2 � � F2�z2� � F1�z
�

1 � � F1�z1�.

Each of the above ordering correspond to a different joint probability, specifically,

Pr�Z1 � z1, Z2 � z2� �

��������������
�������������

F2�z2� 
 F1�z
�

1 �, in case (i),

F2�z2� 
 F2�z
�

2 � � Pr�Z2 � z2� in case (ii),

F1�z1� 
 F2�z
�

2 � in case (iii),

F1�z1� 
 F1�z
�

1 � � Pr�Z1 � z1� in case (iv),

0, in case (v),

0, in case (vi).

(3.7)

Accordingly, conditional on Z1, the distribution of Z2 is no longer necessarily degenerate. Indeed,
one has

Pr�Z2 � z2 � Z1 � z1� �
1

Pr�Z1 � z1�
� 
min�F1�z1�, F2�z2�	 
max�F1�z

�

1 �, F2�z
�

2 �	��,
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3.2 Continuous vs. discrete margins

which is equal to 1 only when the ordering is as in case (iv), i.e., when �F1�z
�

1 �, F1�z1�� �

�F2�z
�

2 �, F2�z2��. Thus, in general, knowledge of one margin does not allow to identify its comono-
tonic counterpart in the case of discrete random variables, except in specific situations.

Example 3.2 Comonotonic Bernoulli random variables
Suppose that Z1 � Bernoulli�p�, Z2 � Bernoulli�q�, and Pr�Z1 � 0� � p and Pr�Z2 � 0� � q. If

0 � p � q � 1, then the joint probability mass function takes the following form:

Pr�0, 0� � �min�p, q� 	max�0, 0��
�
� p,

Pr�1, 0� � �min�1, q� 	max�p, 0��
�
� q 	 p,

Pr�1, 1� � �min�1, 1� 	max�p, q��
�
� 1	 q,

Pr�0, 1� � �min�p, 1� 	max�0, q��
�
� 0.

The conditional probability mass function can then be derived as follows:

Pr�Z2 � z2 
 Z1 � z1� �

��������
�������

1 if �z1, z2� � �0, 0�,

�q 	 p���1	 p� if �z1, z2� � �1, 0�,

�1	 q���1	 p� if �z1, z2� � �1, 1�,

0 if �z1, z2� � �0, 1�.

If instead 0 � q � p, the joint mass function becomes

Pr�0, 0� � �min�p, q� 	max�0, 0��
�
� q,

Pr�1, 0� � �min�1, q� 	max�p, 0��
�
� 0,

Pr�1, 1� � �min�1, 1� 	max�p, q��
�
� 1	 p,

Pr�0, 1� � �min�p, 1� 	max�0, q��
�
� p	 q,

and the corresponding conditional probability mass function is

Pr�Z2 � z2
Z1 � z1� �

��������
�������

q�p if �z1, z2� � �0, 0�,

0 if �z1, z2� � �1, 0�,

1 if �z1, z2� � �1, 1�,

�p	 q��p if �z1, z2� � �0, 1�.

Clearly, the conditional probability mass function of Z2 given Z1 is only degenerate specific cases:

(i) when 0 � p � q, conditional on Z1 � 0, Z2 � 0 with probability 1;

(ii) when 0 � q � p, conditional on Z1 � 1, Z2 � 1 with probability 1.
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3.3 Comonotonic pairs: Data generation and visualization

Notice from the above example that for comonotonic pairs with Bernoulli margins, when p � q

(or equivalently when E�Z1� � �1�p� � E�Z2� � �1�q�) one has that Z1 � Z2 while when p � q

(or equivalently when E�Z1� � �1� p� � E�Z2� � �1� q�) the relation is reversed and Z1 � Z2.
This ordering holds in general, i.e., perfect positive dependence implies an ordering to the random
variables. In particular, depending on the magnitude of the marginal parameters, either Z1 � Z2

or Z2 � Z1, almost surely. This follows from the fact that the quantile function is non-decreasing
and that both Z1 and Z2 are generated from the same uniform random variable U . The following
example outlines this result for the case of Poisson margins.

Example 3.3 Comonotonic Poisson random variables
Suppose that �Z1, Z2� 	 M
P�λ1�,P�λ2��, where P�λ� denotes the Poisson distribution with

mean λ. The Poisson distribution function Gλ is a decreasing function of λ because for all k � N,


Gλ�k��
λ � �e�λλk�k! � �gλ�k�.

Suppose that λ2 � λ1. Then, for any z2 � z1, we also have that z2 � z1 � 1 since �z1, z2� � N
2,

and the ordering Gλ2�z2 � 1� � Gλ2�z2� � Gλ1�z2� � Gλ1�z1 � 1� � Gλ1�z1� ensues. It then

follows that

Pr�Z1 � Z2� � 1� Pr�Z2 � Z1� � 1� Pr�Z2 � Z1 � 1�

� 1�
��

z1�0

Pr�Z2 � Z1 � 1, Z1 � z1� � 1�
��

z1�0

z1�1�

z2�0

Pr�Z1 � z1, Z2 � z2�

which can be rewritten as

1�
��

z1�0

z1�1�

z2�0

�
min 
Gλ1�z1�, Gλ2�z2�� �max 
Gλ1�z1 � 1�, Gλ2�z2 � 1��

�
�

� 1�
��

z1�0

z1�1�
z2�0

�Gλ2�z2� �Gλ1�z1 � 1��
�
.

However, the right-hand side is 1� 0 � 1, because Gλ2�z2� � Gλ1�z1 � 1� for z2 � z1 � 1. Thus,

for �Z1, Z2� 	 M 
P�λ1�,P�λ2��, we have λ1 � λ2 � Z1 � Z2.

3.3 Comonotonic pairs: Data generation and visualization

It is clear from the stochastic representation, as given in Eq. (3.1), that a sample of comonotonic
pairs �Z11, Z12�, . . . , �Zn1, Zn2� can easily be generated from a random sample of standard uniform
variables. In particular, generate independent U1, . . . , Un 	 U�0, 1� and for each i � 
1, . . . , n�,
set �Zi1, Zi2� � �F�11 �Ui�, F

�1
2 �Ui��.
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3.3 Comonotonic pairs: Data generation and visualization
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Figure 3.1: Comonotonic pairs for Exponential margins (top left), Gamma margins (top right),
Beta margins (bottom left) and Normal margins (bottom right).

As already mentioned, when dealing with continuous random variables, this data generation
procedure leads to a functional relation between the margins. Indeed, plotting the observations zi1
against zi2 for all i � �1, . . . , n� will exhibit a perfect relation that is induced by the form of the
marginal quantile functions, namely F�11 and F�12 . The graphs shown in Figure 3.1 depict these
relations for various choices of continuous marginal distributions. In contrast, plotting the ranks
of the observations leads to a perfect linear relation as F1�Z1� � F2�Z2� for comonotonic random
variables with continuous margins.

When it comes to discrete random variables, comonotonicity does not necessarily imply a func-
tional relationship between the margins, as was previously explored. This is caused by the form
of the marginal cumulative distribution functions, which are step functions with jump disconti-
nuities at each x � R where the marginal probability mass function is non-zero. As a result, the
inverse CDF is a many-to-one mapping and rather than having the relationship F1�zi1� � F2�zi2�

for all i � �1, . . . , n�, one has a relationship with regards to the marginal jumps where, for each
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3.4 Parameter estimation for comonotonic random pairs

i � �1, . . . , n�,
�F1�z

�

i1�, F1�zi1�� � �F2�z
�

i2�, F2�zi2�� � 	.

Thus, for each comonotonic observation �zi1, zi2�, rather than knowing the value of the underlying
uniform random variable u that generated the pair, one can only identify an interval in which u is
contained, namely u � �F1�z

�

i1�, F1�zi1����F2�z
�

i2�, F2�zi2��. In other words, comonotonic discrete
random pairs imply a type of interval censoring on the underlying uniform random variable.

This interval relationship can be visualized as a type of “staircase” along the main diagonal:
Suppose the unit square is partitioned into all possible rectangles of the form

Rij 
 �F1�i
��, F1�i�� � �F2�j

��, F2�j��.

Then, the x-axis grid lines represent the marginal cumulative distribution function jumps F1�x� for
all possible x � R such that F1�x� � F1�x

�� 
 0, and likewise for the y-axis in terms of F2. Then
any rectangle Rij that touches the main diagonal line corresponds to a value �i, j� that the comono-
tonic pair �Z1, Z2� can take on with non-zero probability, i.e., such that Pr�Z1 
 i, Z2 
 j� 
 0.
This follows since the diagonal line y 
 x represents the underlying uniform random variable
u generating both Z1 and Z2 and so only rectangles that intersect with this diagonal line have
the property that �F1�z

�

i1�, F1�zi1�� � �F2�z
�

i2�, F2�zi2�� � 	. Figure 3.2 depict this relation for
Bernoulli margins while Figure 3.3 shows the relation for Poisson margins. Graphing the obser-
vations �zi1, zi2� for all i � �1, . . . , n� will also show a staircase pattern, reflecting the “interval
dependence” between the margins, as shown in Figure 3.4 for various choices of discrete marginal
distributions.

3.4 Parameter estimation for comonotonic random pairs

For comonotonic random pairs, the joint distribution function is the upper Fréchet–Hoeffding
bound, i.e., for all z1, z2 � R, we have

Pr�Z1 � z1, Z2 � z2� 
 min�F1�z1�, F2�z2��. (3.8)

It is clear from the above form that the joint CDF of �Z1, Z2� is parametrized only by the marginal
parameters, say θ1 and θ2 for F1 and F2, respectively, where both θ1 and θ2 may be vectors. There
is thus no notion of a “dependence parameter” and there are only marginal parameters to estimate.
Accordingly, one could consider carrying out parameter estimation separately for both margins and
certainly appropriate estimation techniques, e.g., the method of moments or maximum likelihood
estimation, will lead to consistent estimates. As shown in, e.g. Result 2.1 of Wakefield (2013),
as long as an estimator is based on an unbiased estimating equation, consistency of the resulting
estimate ensues. More specifically, suppose that for observations Y 
 �Y1, . . . , Yn�, the estimator
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Figure 3.2: Comonotonic pairs cumulative distribution function gridlines for Bernoulli margins.

�Ψ results from a general estimating equation of the form

Gn�Ψ� �
1

n

n�
i�1

G�Yi,Ψ� � 0,

so that Gn��Ψ� � 0. Then it can be shown that �Ψ p
� Ψ.

The question then arises as to whether there is a loss in efficiency when estimation is done
separately for θ1 and θ2 rather than considering a joint analysis. Note that separate analyses of
marginal parameters via their respective marginal likelihoods is a common approach used for esti-
mation in copula models. See, e.g., Section 10.1 of Joe (1997), who refers to this approach as the
method of inference functions for margins (IFM). This estimation technique is usually preferable
to a full maximum likelihood approach due to the complex form of the joint density, which renders
optimization difficult. Certainly, in higher dimensions, the utility of this approach is even greater.

Focusing on the bivariate case, suppose that a copula Cφ characterizes the dependence between
two random variables �X1, X2� with marginal distributions F1 and F2, respectively. According to
Sklar’s theorem, as stated in Theorem 2.3.3 of Nelsen (2006), there always exists a copula Cφ such
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Figure 3.3: Comonotonic pairs cumulative distribution function gridlines for Poisson margins.

that the joint CDF of �X1, X2� has the form

H�x1, x2� � Cφ�F1�x1�, F2�x2��,

for all �x1, x2� � R̄
2. In the case of continuous margins, the copula is unique and the joint density,

when it exists, is obtained by differentiating H�x1, x2� to obtain

h�x1, x2� � f1�x1�f2�x2�cφ�F1�x1�, F2�x2��,

where f1 and f2 are the densities associated with F1 and F2, respectively, and for all u1, u2 � �0, 1�,

cφ�u1, u2� �
�2

�u1�u2

Cφ�u1, u2�.

Note that for discrete margins, a similar form for the joint probability function of �X1, X2� can
be obtained by differencing the joint cumulative distribution function, although the underlying
copula is unique only on supp�F1�� supp�F2�. Given a set of n mutually independent observations
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Figure 3.4: Comonotonic pairs for Poisson margins (top left), Binomial margins (top right), Nega-
tive Binomial margins (bottom left) and Hypergeometric margins (bottom right).

�x11, x12�, . . . , �xn1, xn2� from H , the corresponding log-likelihood has the form

��θ1, θ2, φ� �
n�

i�1

�ln f1�xi1� � ln f2�xi2� � ln cφ �F1�xi1�, F2�xi2���

� �1�θ1� � �2�θ2� � �D�θ1, θ2, φ�,

where �s�θs� denotes the marginal log-likelihood for component s 	 �1, 2� and �D�θ1, θ2, φ� is the
remaining term encompassing the dependence.

For certain choices of copula, direct maximization of the full log-likelihood may be feasible
but often, this is not the case. The IFM approach, as discussed in Joe (1997, 2005, 2015), sug-
gests that estimation for the marginal parameters be carried out using their respective marginal
log-likelihoods to obtain estimates θ̌1 and θ̌2. We will refer to the latter as the marginal maxi-
mum likelihood estimates or the IFM estimates. Estimation for the dependence parameter φ can
then be accomplished by maximizing the portion of the log-likelihood embodying the dependence,
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3.4 Parameter estimation for comonotonic random pairs

while holding the marginal parameters fixed at their respective marginal maximum likelihood es-
timates, i.e.,

φ̌ � argmax
φ

�D�θ̌1, θ̌2, φ�.

Note that, as pointed out by Joe (2005), this two-step procedure towards estimation is simply
the computational implementation of the IFM approach. For theoretical purposes, under suitable
regularity conditions, the IFM estimates are such that

� �
�θ1 �1�θ1�,

�
�θ2 �2�θ2�,

�
�φ ��θ1, θ2, φ�

�
� 0. (3.9)

This approach is obviously not as computationally intensive as simultaneously estimating all pa-
rameters �θ1, θ2, φ� using the full log-likelihood and its benefits are likely to increase with the
dimensionality of the problem. A full joint likelihood approach yields maximum likelihood esti-
mates, denoted by �θ̂1, θ̂2, φ̂�. Under regularity conditions, the MLEs are found as the solution to
the set of score equations given by

� �
�θ1 ��θ1, θ2, φ�,

�
�θ2 ��θ1, θ2, φ�,

�
�φ ��θ1, θ2, φ�

�
� 0. (3.10)

It will be assumed that the usual regularity conditions in the context of maximum likelihood
theory hold for the joint model as well as all marginal specifications. Lending from the theory of
estimating equations, one can derive the asymptotic variance of the IFM estimators. In particular,
the IFM approach is simply a special case where the set of estimating equations takes on a certain
form. Let g denote the general form of estimating equations, viz.

n�
i�1

g�Xi1, Xi2,Ψ� � 0,

where Ψ denotes the parameter vector �θ1, θ2, φ�. Then, the IFM method is such that g is defined
as in Eq. (3.9). That is, in the bivariate setting,

g� � �g�1 ,g�2 ,g�3 � �
� �
�θ1 �1�θ1�,

�
�θ2 �2�θ2�,

�
�φ ��θ1, θ2, φ�

�
.

As detailed in Joe (1997, 2005), it can be shown that the IFM estimators, denoted by Ψ̌ �
�θ̌1, θ̌2, φ̌�, are asymptotically Gaussian, viz.

�
n �Ψ̌�Ψ�� N �0, V �, (3.11)

where� denotes weak convergence, also called convergence in distribution. Following the nota-
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3.4 Parameter estimation for comonotonic random pairs

tion of Joe (2005), the asymptotic variance is given by

V � ��D�1
g �Mg��D�1

g ��,

for Mg � cov�g�X; Ψ�� and Dg � E��g�X; Ψ���Ψ��, where X is used to denote the bivari-
ate data �X11, X12�, . . . , �Xn1, Xn2�. Upon simplification, Joe (2005) shows that the asymptotic
variance V is such that, for j, k 	 �1, 2�,

cov�θ̌j, θ̌k� � J �1
jj JjkJ �1

kk , cov�θ̌j, φ̌� � J �1
jj

2�

k�1

Jjka
�

k ,

and

cov�φ̌, φ̌� � I�133 

2�

j�1

2�

k�1

ajJjka
�

k .

In the above, Jjj denotes the information matrix from the jth univariate margin while I denotes
the joint model information matrix so that I33 � �E��2���φ�φ��. Finally, aj � �I�133 I3jJ �1

jj for
j 	 �1, 2�. Note that these results readily extend to higher dimensions as outlined in Joe (1997,
2005). A detailed derivation of the resulting asymptotic variance of IFM estimators is given in Joe
(1997) as well as Joe (2005).

From the above derivations, it is possible to quantify the loss in efficiency from using the IFM
approach to estimate the marginal parameters rather than using the full likelihood. In particular,
for j 	 �1, 2�,

Ijj � �E

�
�2

�θ2j
��θ1, θ2, φ�

�
� �E

�
�2

�θ2j
�j�θj�

�
� E

�
�2

�θ2j
�D�θ1, θ2, φ�

�
.

Letting ζjj � �E��2�D�θ1, θ2, φ���θ
2
j �, it follows that Ijj � Jjj 
 ζjj . Accordingly, the loss in

efficiency from using the IFM approach will be regulated by ζjj , which essentially quantifies the
amount of information pertaining the marginal parameter θj that is contained in the dependence
portion of the log-likelihood �D. Joe (2005) provides results from numerous simulation studies
examining the asymptotic relative efficiency of IFM estimates in comparison to full maximum
likelihood estimates.

The upper Fréchet–Hoeffding boundary distribution, which itself is a copula, can be regarded as
a limiting case where there is no longer a dependence parameter, or when φ reaches the boundary
of the parameter space for certain choices of copula Cφ. Joe (2005) considers several examples
comparing a full maximum likelihood estimation approach to the IFM method in the case of the
upper and lower Fréchet–Hoeffding boundary distributions and finds that for certain choices of
marginally distributions, the two approaches coincide.
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3.4 Parameter estimation for comonotonic random pairs

In the case where the marginal cumulative distribution functions are strictly increasing func-
tions, there is a functional relationship between the margins induced by comonotonicity. Writing,
say, Z2 in terms of Z1, i.e.,

Z2 � F�12 �F1�Z1��,

one then has that the joint density of a comonotonic pair of continuous random variables �Z1, Z2�

has the form
f�z1, z2� � f1�z1�f2�1�z2�z1� � f1�z1�1�z2 � F�1

2 �F1�z1���.

For observations �z11, z12�, . . . , �zn1, zn2� forming a random sample from M�F1, F2�, the corre-
sponding log-likelihood is then

��θ1, θ2� �
n�

i�1

ln
�
f1�zi1�1�zi2 � F�1

2 �F1�zi1���
�

� �1�θ1� 	
n�

i�1

ln1�zi2 � F�1
2 �F1�zi1���. (3.12)

The first term of the above equation consists of the marginal log-likelihood corresponding to the
first component Z1. Clearly, �1�θ1� is maximized at the marginal MLE, i.e., the IFM estimate θ̌1.

The second term of (3.12) encompasses the dependence in the model. Since this quantity in-
volves taking the log of indicator functions, it will either be equal to 
� or 0. The maximum value
of 0 occurs when all observed values of zi2 follow the deterministic relation implied by comono-
tonicity, i.e., when zi2 � F�1

2 �F1�zi1�� for all i � �1, . . . , n�. Surely, there are several values of
�θ1, θ2� that could yield

n�
i�1

ln1�zi2 � F�1
2 �F1�zi1��� � 0.

To illustrate this, recall Example 3.1 which considers a comonotonic pair of Exponential random
variables. Suppose that the true marginal parameter values are β10 and β20. Then, any value of β1

and β2 such that their ratio is equal to β10
β20 would cause the second term in the log-likelihood
to be equal to 0.

Accordingly, the form of the comonotonic log-likelihood in (3.12) results in maximum likeli-
hood estimates �θ̂1, θ̂2� where θ̂1 � θ̌1 and θ̂2 is deterministically ascertained as the value such that
zi2 � F�1

2 �F1�zi1�� for all i � �1, . . . , n�. Thus, in the case of strictly increasing marginal dis-
tribution functions, IFM estimation will coincide with maximum likelihood estimation only when
the form of the marginal estimates θ̌1, θ̌2 reflect the functional relationship between the margins
determined by Z2 � F�1

2 �F1�Z1��.
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3.4 Parameter estimation for comonotonic random pairs

Example 3.4 Maximum likelihood estimation for comonotonic pairs in the location-scale family
Suppose that Z1 and Z2 have strictly increasing cumulative distribution functions F1 and F2

respectively, that are members of the same location-scale family so that, for s � �1, 2�,

Fs�zs� � F

�
zs � μs

σs

�
� Zs � μs 	 σsF

�1�U�,

where F is the standard distribution for the particular location-scale family in question. For con-

tinuous margins, the densities are then given, for s � �1, 2�, by

fs�z1� � f

�
zs � μs

σs

�



�
1

σs

�
,

where f�x� � �F �x���x. Suppose that a random sample �z11, z12�, . . . , �zn1, zn2� is observed,

where �Z1, Z2� 
 M�F1, F2�. If a separate analysis of the marginal likelihoods is considered,

then for each s � �1, 2�, one obtains a log-likelihood function of the form

�s�μs, σs� �
n�

i�1

ln f

�
zs � μs

σs

�
� n ln σs.

Differentiating the log-likelihood with respect to the parameters θs � �μs, σs� yields the following

score equations:

�

�μs

�s�μs, σs� �
n�

i�1

�
1

σs

��
�
f �
�

zs�μs

σs

�

f
�

zs�μs

σs

�
	

� � 0

�
n�

i�1

��
�
f �
�

zs�μs

σs

�

f
�

zs�μs

σs

�
	

� � 0,

�

�σs

�s�μs, σs� �
n�

i�1

�

�

�
zis � μs

σ2
s

���
�
f �
�

zs�μs

σs

�

f
�

zs�μs

σs

�
	

��

1

σs

�
� � 0

�
n�

i�1

�


�
zis � μs

σs

���
�
f �
�

zs�μs

σs

�

f
�

zs�μs

σs

�
	

�
�
�	 n � 0,

where f ��x� � �f�x���x. For each s � �1, 2�, the IFM estimates μ̌s, σ̌s are then determined as

the roots to the above score equations. A full maximum likelihood approach would use the above

score equations for one set of marginal parameters, say μ1, σ1, and then the remaining parameters

μ2, σ2 would be computed according to the functional relation

Z2 � σ2Z1�σ1 	 μ2 � σ2μ1�σ2.
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3.4 Parameter estimation for comonotonic random pairs

However, the form of the score equations derived above are in fact identical for both margins (and

hence redundant) since comonotonicity implies the deterministic relation

�Z1 � μ1��σ1 � �Z2 � μ2��σ2.

Thus, in the case of comonotonic pairs with strictly increasing distribution functions that are mem-

bers of a common location-scale family, the IFM and ML estimation approaches will coincide.

This result will thus hold, for example, in the case of Normal margins and Exponential margins.

For further examples and comparisons, please refer to Joe (2005).
When dealing with discrete margins, the problem becomes more difficult as perfect positive

dependence does not necessarily imply a functional relationship between the margins. It is then
no longer clear how the IFM approach will compare with full maximum likelihood estimation and
rather the problem must be treated case by case. The following two examples illustrate both when
the IFM and MLE agree and when the two methods do not coincide.

Example 3.5 Maximum likelihood estimation for comonotonic Bernoulli random variables
Suppose that Z1 � Bernoulli�p� and Z2 � Bernoulli�q� such that Pr�Z1 � 0� � p and

Pr�Z2 � 0� � q. It was previously shown in Example 3.2 that if 0 � p � q � 1, then Z1 � Z2

almost surely and the upper Fréchet–Hoeffding boundary joint probability mass function is given

by:

Pr�0, 0� � 	min�p, q� �max�0, 0�

�
� p,

Pr�1, 0� � 	min�1, q� �max�p, 0�

�
� q � p,

Pr�1, 1� � 	min�1, 1� �max�p, q�

�
� 1� q,

Pr�0, 1� � 	min�p, 1� �max�0, q�

�
� 0.

Suppose a random sample �z11, z12�, . . . , �zn1, zn2� is obtained from the above joint distribution

and that the observations are tabulated in a contingency table of the form

m00 m01

m10 m11

where mij denotes the number of observations such that �zi1, zi2� � �i, j�. Note that since Z1 � Z2

almost surely, the count m01 � 0. The joint likelihood can be written as

L�p, q� � pm00�q � p�m10�1� q�m11

with corresponding log-likelihood given by

��p, q� � m00 ln p�m10 ln�q � p� �m11 ln�1� q�.
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3.4 Parameter estimation for comonotonic random pairs

The score equations are then

�

�p
��p, q� �

m00

p
�

m10

q � p
� 0 � p �

m00q

m00 �m10

, (3.13)

�

�q
��p, q� �

m10

q � p
�

m11

1� q
� 0 � q �

m10 �m11p

m10 �m11

. (3.14)

Substituting (3.13) into (3.14), one obtains

q �
m10�m10 �m00� �m11m00q

�m10 �m11��m10 �m00�
.

Simplifying the above yields the following:

q�m10 �m11��m10 �m00� � m10�m10 �m00� �m11m00 q

� q�m2
10 �m10m00 �m11m10 �m11m00 �m11m00� � m10�m10 �m00�

� qm10�m10 �m00 �m11� � m10�m10 �m00�

� q �
m10 �m00

m10 �m00 �m11

and thus

p �
m00q

m10 �m00

�
m00

m10 �m00 �m11

.

Notice that in this example, the marginal parameter estimators are linearly dependent.

Since m01 � 0, the total number of observations is the sum n � m00 �m10 �m11. Let m�0

denote the number of observations such that Z2 � 0, i.e., m�0 � m00 � m10. Similarly, let m0�

denote the number of observations with Z1 � 0, so that m0� � m00. Then, the maximum likelihood

estimates are

p̂ � m0��n, q̂ � m�0�n.

The above estimates p̂ and q̂ agree with the marginal maximum likelihood estimates, i.e., p̌ � p̂

and q̌ � q̂. Indeed, the marginal likelihood for the two components are given by

L1�p� � pm0��1� p�n�m0� , L2�q� � qm�0�1� q�n�m�0 ,

with corresponding log-likelihoods

�1�p� � m0� ln

�
p

1� p

�
� n ln�1� p�, �2�q� � m�0 ln

�
q

1� q

�
� n ln�1� q�.

44



3.4 Parameter estimation for comonotonic random pairs

This yields the following set of marginal score equations:

�
�p�1�p� �

1

1� p

�
m0�

p
� n

�
,

�
�q �2�q� �

1

1� q

�
m�0

q
� n

�
.

Setting the score equations to zero yields the marginal maximum likelihood, or IFM, estimates, viz.

p̌ � m0��n, q̌ � m�0�n.

Thus, the estimates obtained from the IFM method and those from a full maximum likelihood

approach coincide in the case of comonotonic Bernoulli random pairs. Seemingly, the manner in

which the dependence is reflected in the data (in this specific example, by setting m01 � 0) adjusts

the marginal log-likelihoods appropriately.

Standard maximum likelihood theory ensures that as n � �, one has that marginally

	
n �p̂� p�� N 
0, p�1� p��, 	

n �q̂ � q�� N 
0, q�1� q��.

Working with the full likelihood, one can obtain an expression for the expected Fisher Information

matrix In. For Ψ � �p, q��, it can be shown that

In � �E
� �2
�Ψ�Ψ� ��p, q�

�
� n

�q � p�

�
q�p �1
�1 �1� p���1� q�

�
.

The joint asymptotic distribution of the MLEs Ψ̂ � �p̂, q̂�� is then given by

	
n �Ψ̂�Ψ�� N �0, V �,

where

V � p�1� q�
�
�1� p���1� q� 1

1 q�p

�
.

It is clear from this example that although the IFM approach will yield asymptotically efficient

estimates for the marginal parameters, this method systematically ignores the correlation between

p̂ and q̂.

Example 3.6 Maximum likelihood estimation for comonotonic Poisson random variables
Suppose that Z1 and Z2 are comonotonic Poisson random variables with marginal means λ1 and

λ2, respectively. It is possible to find an example where the IFM and maximum likelihood estimates

do not concur, as will be done using R. Specifying the seed as 1234, a random sample of size

n � 10 comonotonic Poisson random pairs �zi1, zi2� may be generated from a common sample

of uniform observations u1, . . . , un. Precisely, for λ1 � 5 and λ2 � 2, one obtains the following

sample:
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3.5 Comonotonic Poisson random pairs

Z1 2 6 5 6 7 6 1 3 6 5

Z2 0 2 2 2 4 2 0 1 2 2

The marginal maximum likelihood estimates are simply the marginal sample means, and hence one

obtains λ̌1 � z̄1 � 4.7 and λ̌2 � z̄2 � 1.7. However, if �Z1, Z2� are comonotonic, one has that

Pr�Z1 � i, Z2 � j� �
�
min�F1�i�, F2�j�� �max�F1�i� 1�, F2�j � 1��

�
�
.

Setting λ1 � λ̌1 yields the interval �F1�6�, F1�7�� � �0.8046051, 0.8960312� while for λ2 � λ̌2

one obtains �F2�3�, F2�4�� � �0.9068106, 0.9703852�. Since the two intervals do not overlap, it

follows that setting �λ1, λ2� � �λ̌1, λ̌2� results in Pr�Z1 � 7, Z2 � 4� � 0. Thus, in this example,

the IFM estimates cannot possibly coincide with the estimates obtained from optimizing the full

likelihood as the marginal sample means yield an observed likelihood of zero!

Note that although marginal maximum likelihood estimates may deviate from those obtained
by optimizing the full likelihood, as long as the marginal specifications are correct, both meth-
ods will provide consistent estimates for the marginal parameters �θ1, θ2�. It then follows that the
difference between IFM and ML estimates should tend to zero as the sample size increases. It is
also interesting to remark that the IFM method is equivalent to maximum likelihood estimation
in the case of independence. This implies that in situations where the IFM and maximum likeli-
hood methods coincide, estimation of the marginal parameters are not affected by the dependence
structure.

3.5 Comonotonic Poisson random pairs

Comonotonic Poisson random pairs present an interesting example. As illustrated in Example 3.6,
estimating the marginal parameters via their respective marginal likelihoods could lead to inap-
propriate estimates. This in turn implies that method of moments estimation is not suitable as this
approach also estimates the marginal parameters by their marginal sample means �z̄1, z̄2�. Seem-
ingly, a full maximum likelihood approach is preferable in this case.

As previously discussed, for �Z1, Z2� � M�P�λ1�,P�λ2��, the joint probability mass function
has the form

Pr�Z1 � z1, Z2 � z2� �
�
min�Gλ1�i�, Gλ2�j�� �max�Gλ1�i� 1�, Gλ2�j � 1��

�
�
,

where Gλ is used to denote the cumulative distribution function of a Poisson random variable with
mean λ. Then, for a random sample �z11, z12�, . . . , �zn1, zn2�, the log-likelihood is given by

��λ1, λ2� �
n�

i�1

ln
��

min�Gλ1�i�, Gλ2�j�� �max�Gλ1�i� 1�, Gλ2�j � 1��
�
�

�
.
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3.5 Comonotonic Poisson random pairs

Maximum likelihood estimates �λ̂1, λ̂2� are then determined as

�λ̂1, λ̂2� � argmax
λ1,λ2

��λ1, λ2�.

Certainly, numerical optimization techniques may be used to solve the above problem. In this case,
the marginal MLEs or method of moments estimates could be used as starting values.

In the case of Poisson comonotonic pairs, the log-likelihood can be reformulated in terms of
pairwise order statistics. Suppose that it is observed that zi1 � zi2 for each i � �1, . . . , n�. As was
previously shown, this ordering suggests that λ1 � λ2. In this situation, it is convenient to consider
conditioning on the observed values of Z1 to reformulate the joint probability mass function. Let N1

denote the number of unique observed values of Z1 and for k � �1, . . . , N1�, define the following:

z1�k�: the corresponding order statistics for Z1;

nk: the number of unique values of Z2 for which Z1 � z1�k�;

z
�k�
2�j�: the corresponding order statistics for Z2 conditional on Z1 � z1�k�;

mkj: the number of observations such that �Z1, Z2� � �z1�k�, z
�k�
2�j��;

mk0: the number of observations in the special case where nk � 1.

In terms of a contingency table, this formulation sets the ordered values of Z1 as the rows while
the Z2 values appear in the columns. This set-up characterizes the values of Z2 row-by-row, i.e.,
conditionally on the value of Z1. One could equivalently consider reversing the row and column
specifications. Note that in the case where λ1 � λ2, defining the contingency table in this way
populates the cells in a convenient manner. In particular, when λ1 � λ2, one has that Z1 � Z2 and
thus there will be fewer unique values of Z1 observed as compared to Z2. In this case, setting Z1

as the rows leads to a staircase like pattern of non-zero cells diagonally down the table. Reversing
the columns and rows would simply imply steeper steps. This set-up is convenient, as will be made
more obvious in defining the probabilities in terms of the paired order statistics.

For example, the following contingency table summarizes a random sample of n � 100

comonotonic pairs with margins Z1 	 P�1� and Z2 	 P�2�. The unique values of Z1 are given
in the rows while the columns display the unique values of Z2. Since λ1 � λ2, it is observed that
zi1 � zi2 for each i � �1, . . . , 100�. Notice that the non-zero cells in the contingency fall along the
diagonal forming a staircase like pattern.

0 1 2 3 4 5

0 11 27 0 0 0 0
1 0 10 23 5 0 0
2 0 0 0 14 4 0
3 0 0 0 0 2 4
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3.5 Comonotonic Poisson random pairs

In what follows, it will be assumed that for each row, i.e., each observed value z1�k�, there are
no sparsity issues so that all cells corresponding to a non-zero probability in the contingency table
accordingly have non-zero observations. Of course, in practical applications this is unrealistic,
especially for very large values of λ1 and λ2, in which case the marginal Poisson distributions
will become approximately Normal. By working with the order statistics of one component of the
comonotonic pair, here Z1, along with the conditional order statistics of the remaining component,
i.e., Z2 � Z1, the joint probability mass function can be simplified case by case. Correspondingly,
the log-likelihood can be rewritten in terms of the order and contidional order statistics of an
observed set of comonotonic Poisson pairs.

Consider the kth row of the contingency table where Z1 � z1�k� and the corresponding Z2

values, ordered by z
�k�
2�1� � � � � � z

�k�
2�nk�

. Comonotonicity implies a particular arrangement of the
intersection of the marginal quantile intervals

�Gλ1�z1�k� � 1�, Gλ1�z1�k���, �Gλ2�z
�k�
2�1� � 1�, Gλ2�z

�k�
2�1���, . . . , �Gλ2�z

�k�
2�nk�

� 1�, Gλ2�z
�k�
2�nk�

��.

First consider the special case where nk � 1 so that there is only one possible value that Z2

can take on when Z1 � z1�k�, say z
�k�
2�0�. In this case, the conditional probability mass function

of Z2 given that Z1 � z1�k� must be a point mass at z�k�
2�0�. It follows that the intersection of the

corresponding quantile intervals must be given by

Gλ2�z
�k�
2�0� � 1� 	 Gλ1�z1�k� � 1� � Gλ1�z1�k�� 	 Gλ2�z

�k�
2�0��.

This then yields

Pr
�
Z1 � z1�k�, Z2 � z

�k�
2�0�

�
� Gλ1�z1�k�� �Gλ1�z1�k� � 1� � gλ1�z1�k��,

and thus
Pr

�
Z2 � z

�k�
2�0� � Z1 � z1�k�

�
� 1.

Now consider the case where nk 
 1. The minimum value of Z2 along the kth row, i.e., z�k�
2�1�,

is such that the intersection of the corresponding marginal quantile intervals is given by

Gλ2�z
�k�
2�1� � 1� 	 Gλ1�z1�k� � 1� 	 Gλ2�z

�k�
2�1�� 	 Gλ1�z1�k��. (3.15)

This ordering must hold, for reasons given below.

(a) If either Gλ2�z
�k�
2�1�� � Gλ1�z1�k� � 1� or Gλ1�z1�k�� � Gλ2�z

�k�
2�1� � 1�, then the intervals

�Gλ1�z1�k�� 1�, Gλ1�z1�k��� and �Gλ2�z
�k�
2�1�� 1�, Gλ2�z

�k�
2�1��� would not overlap and the prob-

ability of observing the pair �z1�k�, z
�k�
2�1�� would be zero.

(b) If Gλ1�z1�k� � 1� � Gλ2�z
�k�
2�1� � 1� then one could either have the ordering Gλ2�z

�k�
2�1� � 2� �
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Gλ1�z1�k� � 1� � Gλ2�z
�k�
2�1� � 1� or Gλ2�z

�k�
2�1� � m � 1� � Gλ1�z1�k� � 1� � Gλ2�z

�k�
2�1� �

m� � Gλ2�z
�k�
2�1� � 1� for some m � �2, 3, . . .�. In either case, this would imply that the

minimum possible value of Z2 observable with Z1 � z1�k� would not be equal to z
�k�
2�1�, which

contradicts the definition of z�k�2�1� in the first place.

(c) If Gλ2�z
�k�
2�1� � 1� 	 Gλ1�z1�k� � 1� 	 Gλ1�z1�k�� 	 Gλ2�z

�k�
2�1��, then one would have nk � 1.

The ordering given in (3.15) implies that the cell corresponding to �z1�k�, z
�k�
2�1�� has probability

Pr
�
Z1 � z1�k�, Z2 � z

�k�
2�1�

�
� Gλ2�z

�k�
2�1�� �Gλ1�z1�k� � 1�.

Using similar arguments, it can be shown that for the maximum value of Z2 conditional on Z1 �

z1�k�, intersecting the appropriate quantile intervals leads to the ordering

Gλ1�z1�k� � 1� 	 Gλ2�z
�k�
2�nk�

� 1� 	 Gλ1�z1�k�� 	 Gλ2�z
�k�
2�nk�

�. (3.16)

This implies that

Pr
�
Z1 � z1�k�, Z2 � z

�k�
2�nk�

�
� Gλ1�z1�k�� �Gλ2�z

�k�
2�nk�

� 1�.

Finally, because distribution functions are non-decreasing, for all other values of Z2 observable
with Z1 � z1�k�, the following ordering must hold:

Gλ1�z1�k� � 1� 	 Gλ2�z
�k�
2�j� � 1� 	 Gλ2�z

�k�
2�j�� 	 Gλ1�z1�k��

for all j � �2, . . . , nk � 1�. Therefore,

Pr
�
Z1 � z1�k�, Z2 � z

�k�
2�j�

�
� gλ2�z2�j��.

Putting everything together, it follows that for each row corresponding to Z1 � z1�k� with nk 
 1,
the intersection of the quantile intervals is given by

Gλ2�z
�k�
2�1� � 1� 	 Gλ1�z1�k� � 1� 	 Gλ2�z

�k�
2�1�� � � � � Gλ2�z

�k�
2�j� � 1� �

Gλ2�z
�k�
2�j�� � � � � � Gλ2�z

�k�
2�nk�

� 1� 	 Gλ1�z1�k�� 	 Gλ2�z
�k�
2�nk�

�. (3.17)

Notice that since the cumulative distribution function is non-decreasing, in the setting where the
contingency table has non-zero counts wherever the corresponding probability is non-zero, one
must also have that

z
�k�
2�nk�

� z
�k�1�
2�1�

for all k � �1, . . . , N1 � 1� and z1�k� � 1 � z1�k�1�.
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Working with the reformulated joint probabilities involving the order statistics �z1�k�, z
�k�
2�j��, one

can then write the likelihood function as

L�λ1, λ2� �
N1�
k�1

nk�
j�1

�
Pr
�
Z1 � z1�k�, Z2 � z

�k�
2�j�

��mkj

�
N1�
k�1

��
gλ1�z1�k��

�mk0 �
�
Gλ2�z

�k�
2�1�� �Gλ1�z1�k� � 1�

�mk1

�
nk�1�
j�2

�
gλ2�z

�k�
2�j��

�mkj �
�
Gλ1�z1�k�� �Gλ2�z

�k�
2�nk�

� 1�
�mknk

�
.

The log-likelihood is then obtained as

��λ1, λ2� �
N1�
k�1

�
mk0

�
�λ1 � z1�k� ln�λ1� � ln�z1�k�!�

�

�mk1 ln
�
Gλ2�z

�k�
2�1�� �Gλ1�z1�k� � 1�

�

�
nk�1�
j�2

mkj

�
� λ2 � z

�k�
2�j� ln�λ2� � ln�z

�k�
2�j�!�

�

�mknk
ln
�
Gλ1�z1�k�� �Gλ2�z

�k�
2�nk�

� 1�
��

. (3.18)

Note that in order for (3.18) to be correct, it is only necessary for z�k�2�1� and z
�k�
2�nk�

to respectively
represent the minimum and maximum value that Z2 can take on with non-zero probability given
that Z1 � z1�k�. This follows since the conditional minimum and maximum values of Z2 condi-
tional on Z1 dictate the cut-off points where the joint probability mass function switches amongst
the plausible cases given in (3.7).

It is straightforward to show that the Poisson cumulative distribution function Gλ is decreasing
in λ. Thus, in assigning Z1 to the rows of the contingency table, where λ1 � λ2, one ensures that
there are less incidences where nk � 1. All cases where nk � 1 leads to mk0 � 0 and accordingly
mk1 � 	 	 	 � mknk

� 0 so that only one component is contributing to the likelihood. Thus, when
conditioning on the rows in the bivariate Poisson contingency table, it is more convenient to place
the component with the smaller mean as the rows of the table.

The form of the log-likelihood in (3.18) allows to establish a set of score equations. In terms of
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the first parameter λ1, the score equation is given by:

�

�λ1

��λ1, λ2� �
N1�

k�1

�
mk0

�
z1�k�
λ1

� 1

�
�mk1

�
gλ1�z1�k� � 1�

Gλ2�z
�k�
2�1�� �Gλ1�z1�k� � 1�

�

�mknk

�
�gλ1�z1�k��

Gλ1�z1�k�� �Gλ2�z
�k�
2�nk�

� 1�

��
. (3.19)

For λ2, one obtains

�

�λ2

��λ1, λ2� �
N1�
k�1

�
nk�1�
j�2

mkj

�
z
�k�
2�j�

λ2

� 1

�
�mk1

�
�gλ2�z

�k�
2�1��

Gλ2�z
�k�
2�1�� �Gλ1�z1�k� � 1�

�

�mknk

�
gλ2�z

�k�
2�nk�

� 1�

Gλ1�z1�k�� �Gλ2�z
�k�
2�nk�

� 1�

��
. (3.20)

Using the recurrence relation gλ�k�1� � k�λgλ�k�, Eqs. (3.19)–(3.20) can be rewritten as follows:

�

�λ1

��λ1, λ2� �
N1�
k�1

�
z1�k�
λ1

�
mk0 �mk1

�
gλ1�z1�k��

Gλ2�z
�k�
2�1�� �Gλ1�z1�k� � 1�

��

�mk0 �mknk

�
gλ1�z1�k��

Gλ1�z1�k�� �Gλ2�z
�k�
2�nk�

� 1�

��
,

�

�λ2

��λ1, λ2� �
N1�
k�1

�
1

λ2

�
nk�1�
j�2

mkjz
�k�
2�j� �mknk

z
�k�
2�nk�

�
gλ2�z

�k�
2�nk�

�

Gλ1�z1�k�� �Gλ2�z
�k�
2�nk�

� 1�

��

�
nk�1�
j�2

mkj �mk1

�
gλ2�z

�k�
2�1��

Gλ2�z
�k�
2�1�� �Gλ1�z1�k� � 1�

��
.

The above score equations can be further simplified by reformulating the counts in terms of the
conditional probabilities. To this end, define the following modified counts:

ωk0 � mk0

�
Pr�Z2 � z

�k�
2�0� � Z1 � z1�k��

	�1

� mk0 	 1,

ωk1 � mk1

�
Pr�Z2 � z

�k�
2�1� � Z1 � z1�k��

	�1

� mk1

�
gλ1�z1�k��

Gλ2�z
�k�
2�1�� �Gλ1�z1�k� � 1�

�
,

ωknk
� mknk

�
Pr�Z2 � z

�k�
2�nk�

� Z1 � z1�k��
	�1

� mknk

�
gλ1�z1�k��

Gλ1�z1�k�� �Gλ2�z
�k�
2�nk�

� 1�

�
,

51



3.5 Comonotonic Poisson random pairs

υk1 � mk1

�
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�k�
2�1��

��1

� mk1

�
gλ2�z

�k�
2�1��

Gλ2�z
�k�
2�1�� �Gλ1�z1�k� � 1�

�
,

υkj � mkj

�
Pr�Z1 � z1�k� � Z2 � z

�k�
2�j��

��1

� mkj � 1,

υknk
� mknk

�
Pr�Z1 � z1�k� � Z2 � z

�k�
2�nk�

�
��1

� mknk

�
gλ2�z

�k�
2�nk�

�

Gλ1�z1�k�� �Gλ2�z
�k�
2�nk�

� 1�

�
.

In terms of these modified counts, the score equations can be simplified to yield the following
maximum likelihood estimators:

λ̂1 �

�N1

k�1�ωk0 � ωk1� z1�k��N1

k�1�ωk0 � ωknk
�

, (3.21)

λ̂2 �

�N1

k�1

�nk

j�2 υkj z
�k�
2�j��N1

k�1

�nk�1
j�1 υkj

. (3.22)

Note that the modified counts are functions of the unknown parameters λ1 and λ2 and thus the
maximum likelihood estimates are fount by simultaneously solving Eqs. (3.21)–(3.22).

Remark 3.1 In the trivial case where the marginal Poisson rates are identical, i.e., λ1 � λ2, it
follows that Z1 � Z2 almost surely. Following the construction given in (3.18), the joint log-
likelihood would reduce to the marginal log-likelihood for Z1 as it would be observed that mk0 �

0 for each k 	 
1, . . . , N1�. That is, the joint log-likelihood ��λ1, λ2� reduces to �1�λ1�, where
the latter denotes the marginal log-likelihood in the univariate Poisson setting. Thus, one obtains
λ̂1 � z̄1 while there is no estimate for λ2. In that sense, the set-up involving pairwise order statistics
recognizes that the problem is really univariate in that �Z1, Z2� � �Z1, Z1�.

The Hessian matrix of the log-likelihood is established by differentiating the score equations
(3.19) and (3.20). With some work, the elements of the Hessian matrix can be shown to have the
following form:
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and
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Maximum likelihood theory ensures that the MLE Λ̂ � �λ̂1, λ̂2�� is consistent and asymptoti-
cally efficient. Specifically, as n � �,

	
n �Λ̂
 Λ�� N �0, I�1�,

where I denotes the Fisher information given by

I � 
E
� �2
�Λ�Λ�

ln Pr�Z1, Z2�
�
.

For practical purposes, this can be estimated by the observed Information matrix, viz.


 1

n

� �2
�Λ�Λ�

��λ1, λ2�
�
.

There are several variants in the statement of the usual regularity conditions under which such
statements hold. For example, Serfling (1980) lists on p. 144 the regularity conditions as follows.
Let Θ be an open interval in R and let f�x; θ� denote either a probability density or probability
mass function with distribution function Fθ belonging to the family F � �Fθ : θ � Θ
. The
following regularity conditions on F ensure consistency, asymptotic Normality and efficiency of
maximum likelihood estimators.

(1) For each θ � Θ, the following derivatives exist for all x � R:

�
�θ ln f�x; θ�, �2

�θ2 ln f�x; θ�, �3
�θ3 ln f�x; θ�.

(2) For each θ0 � Θ, there exist functions g�x�, h�x� and H�x� (posibly depending on θ0) such
that for θ in a neighbourhood of N�θ0� the following relations hold, for all x � R



 ��θ f�x; θ�





 � g�x�,




 �2�θ2 f�x; θ�





 � h�x�,




 �3�θ3 f�x; θ�





 � H�x�,
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and �
g�x�dx � �,

�
h�x�dx � �, Eθ �H�X�� � �.

(3) For each θ � Θ,

0 � Eθ

��
�

�θ
ln f�X; θ�

�2
�
� �.

Casella and Berger (2002) specify the regularity conditions in a slightly different manner (see
p. 516):

(1) We observe X1, . . . , Xn, where Xi 	 f�x; θ� are iid.

(2) The parameter is identifiable; i.e., if θ 
 θ�, then f�x; θ� 
 f�x; θ��.

(3) The densities f�x; θ� have common support and f�x; θ� is differentiable in θ.

(4) The parameter space Ω contains an open set ω of which the true parameter value θ0 is an
interior point.

(5) For every x � X , f�x; θ� is three time differentiable with respect to θ, the third derivative is
continuous in θ, and

�
f�x; θ�dx can be differentiated three times under the integral sign.

(6) For any θ0 � Ω, there exists a positive number c and a function M�x� (both of which may
depend on θ0) such that for all x � X and θ0 � c � θ � θ0 � c,���� �3�θ3 ln f�x; θ�

���� 
 M�x�,

with Eθ0 �M�X�� � �.

Note that the while the above statements are made in the univariate setting, the multivariate exten-
sion follows directly.

The log-likelihood of the comonotonic Poisson pair �Z1, Z2� involves evaluations of the uni-
variate Poisson probability mass function and cumulative distribution function. Accordingly, the
usual regularity conditions necessary for maximum likelihood theory will hold.

3.5.1 Simulation results

A set of simulations was carried out in order to further examine the effects of comonotonicity
in estimating the marginal parameters in the case of Poisson distributed observations. Specifi-
cally, for varying values of the marginal parameters �λ1, λ2� and sample size n, maximum like-
lihood estimation was implemented both marginally and jointly. As previously mentioned, the
marginal maximum likelihood, or IFM, estimates in this setting are simply the marginal sample
means �Z̄1, Z̄2�. The joint maximum likelihood estimates �λ̂1, λ̂2� were obtained using the optim

function in R. In particular, the Nelder–Mead method was used, with starting values set equal
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to the true parameter values for simplicity. In order to avoid difficulties in the numerical estima-
tion, a reparametrization of the log-likelihood was considered by optimizing over the parameters
�α1, α2� � �ln�λ1�, ln�λ2��.

In the simulation study, the value of λ1 was varied in �1, 2, 5, 10� while λ2 was held fixed at 5
throughout. This was done as the problem is symmetric in the marginal parameters and so varying
both marginal rates is redundant. The sample size n was varied from 5, 10, 100 to 1000. For each
possible combination of λ1 and n, 500 replications were performed. The results for estimating λ1

are summarized in Figure 3.5. In each plot, the light blue boxplot depicts the marginal estimate Z̄1

while the pink boxplot represents the full maximum likelihood estimate λ̂1. The boxplots for the
two analyses are shown side by side for each distinct value of n. The solid red line denotes the true
value of λ1. The figures suggest that both estimators behave similarly, as might be expected since
both Z̄1 and λ̂1 are consistent estimators of λ1.

As was illustrated in Example 3.6, there were several cases where evaluating the log-likelihood
at the marginal parameter estimates �Z̄1, Z̄2� returned a value of ��. Specifically, in the 16 distinct
scenarios that arose by considering λ1 � �1, 2, 5, 10� and n � �1, 5, 100, 1000�, this particular
phenomenon occurred in as few as 0% and at most 6.8% of the 500 replications. Note that the
only instance where this did not occur in the simulation study was when the marginal parameters
coincided so that Z1 � Z2 almost surely.

3.6 Counter-monotonic random pairs

The concept of counter-monotonicity parallels that of comonotonicity. As was previously dis-
cussed, a random pair �X1, X2� with marginal distribution functions F1 and F2, respectively, is
said to be counter-monotonic if the following relation holds:

�X1, X2� �d �F
�1
1 �U�, F�12 �1� U��,

where U is a U�0, 1� random variable.
For continuous margins with strictly increasing cumulative distribution functions, counter-

monotonicity then implies a perfect negative dependence wherein X1 is a decreasing function of
X2. This follows immediately from the fact that while X1 is a monotone increasing function of U ,
X2 is a monotone increasing function of 1�U . Consider the case where both margins are members
of the same location-scale family with standard distribution function F . In particular, let X1 have
location and scale parameters μ1 and σ1, respectively, and let X2 be analogously parametrized by
μ2 and σ2. Then, one has that for any �x1, x2� � R

2,

F1�x1� � F

�
x1 � μ1

σ1

�
, F2�x2� � F

�
x2 � μ2

σ2

�
.
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Figure 3.5: Simulation study results: The top left plot shows the results for λ1 � 1, the top right
for λ1 � 2, bottom left for λ1 � 5 and bottom right for λ1 � 10. The x-axis shows the sample size
n, which took on values 5, 10, 100 and 1000.

From this it follows that

X1 � F�11 �U� � X1 � μ1 � σ1F
�1�U�

and
X2 � F�12 �1� U� � X2 � μ2 � σ2F

�1�1� U�.

For F strictly increasing, F�1 will also be strictly increasing so that X1 is a decreasing func-
tion of X2. The form of the cumulative distribution function will then dictate the structure of the
functional dependence implied by counter-monotonicity in the case of continuous margins. Con-
sider the case where X1 and X2 are both marginally Exponential with respective means β1 and β2.
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Counter-monotonicity then yields the following:

X1 � F�11 �U� � �β1 ln�1� U� � U � 1� exp ��X1�β1� ,

X2 � F�12 �1� U� � �β2 ln�U� � U � exp ��X2�β2� .

Thus, the dependence between X1 and X2 has the functional form

X1 � �β1 ln �1� exp ��X2�β2�� .

The treatment of counter-monotonic random pairs will be left brief as many of the properties
and issues are analogous to that of comonotonic pairs. For more details on the concept of counter-
monotonicity in the bivariate Poisson setting, see Pfeifer and Nešlehová (2004).
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4
Proposed Bivariate Poisson Model

4.1 Introduction

As detailed in Chapter 2, the classical bivariate Poisson model introduces dependence via a com-
mon shock variable. By construction, this model can only characterize dependence in the restrictive
range �0,min�λ1, λ2��

�
λ1λ2�, where λ1 and λ2 denote the marginal means. However, as men-

tioned by Griffiths et al. (1979), an arbitrary pair of Poisson random variables X1 � P�λ1� and
X2 � P�λ2� can have correlation falling anywhere in the interval �ρmin�λ1, λ2�, ρmax�λ1, λ2��. In
particular, the authors show that these minimum and maximum correlation values, ρmin�λ1, λ2� and
ρmax�λ1, λ2�, result respectively from the upper and lower Fréchet–Hoeffding boundary distribu-
tions and are given by

ρmin�λ1, λ2� � 1�
λ1λ2

�
	λ1λ2 	

�
i�N

�
j�N

min
0, Gλ1�i� �Gλ2�j� 	 1�
�
, (4.1)

ρmax�λ1, λ2� � 1�
λ1λ2

�
	λ1λ2 �

�
i�N

�
j�N

min
Ḡλ1�i�, Ḡλ2�j��
�
. (4.2)

Recall that the classical bivariate Poisson model is constructed via the trivariate reduction tech-
nique wherein

X1 � Y1 � Z, X2 � Y2 � Z (4.3)

for independent random variables Y1 � P�λ1 	 ξ�, Y2 � P�λ2 	 ξ� and Z � P�ξ�. For a
random pair �X1, X2� generated in this manner, it follows that corr�X1, X2� � ξ��λ1λ2. As was
previously pointed out, only in the trivial case where λ1 � λ2 will the classical bivariate Poisson
model span the full range of possible correlation. Indeed when λ1 � λ2, the correlation will range
from 0 to 1. Figure 4.1 depicts the difference between the maximum possible correlation in the
classical bivariate Poisson model and the upper bound derived by Griffiths et al. (1979), i.e., the
difference ρmax�λ1, λ2� 	 min�λ1, λ2��

�
λ1λ2. The graph suggests that the difference tends to be
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Figure 4.1: Difference between the maximum possible correlation implied by the classical bivariate
Poisson model and the upper bound ρmax.

greatest when one of the marginal means is small while the other is large, i.e., when either λ1 � λ2

or λ1 � λ2. In contrast, the difference decreases when the difference between λ1 and λ2 is small.
In order to address the shortcomings of the classical model, an alternative bivariate Poisson

model is proposed wherein dependence is induced through a comonotonic shock. The proposed
model allows for greater flexibility in the implied correlation structure and spans the full range
of possible positive correlation in �0, ρmax�λ1, λ2��. The remainder of this chapter is dedicated to
exploring the proposed model. The model construction will be introduced followed by its distri-
butional properties. Various approaches to parameter estimation will also be examined along with
simulations and a data illustration.

4.2 The proposed model

The random pair �X1, X2� is said to follow a comonotonic shock bivariate Poisson model if the
margins can be written as

X1 � Y1 � Z1, X2 � Y2 � Z2 (4.4)

for
Y1 	 P
�1� θ�λ1�, Y2 	 P
�1� θ�λ2�, �Z1, Z2� 	 M
P�θλ1�,P�θλ2��,

where Y1 and Y2 are mutually independent random variables which are also independent of the
comonotonic pair �Z1, Z2�. The formulation in (4.4) generates a pair of correlated Poisson random
variables with marginal rates Λ � �λ1, λ2� 
 �0,��2 and dependence parameter θ 
 �0, 1�. The
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4.2 The proposed model

notation �X1, X2� � BP�Λ, θ� will be used to denote the proposed model. In terms of mutually
independent standard uniform random variables V1, V2 and U , a pair �X1, X2� � BP�Λ, θ� can be
generated from

Y1 � G�1�1�θ�λ1
�V1�, Y2 � G�1

�1�θ�λ2
�V2�, Z1 � G�1

θλ1
�U�, Z2 � G�1

θλ2
�U�

and setting �X1, X2� � �Y1 � Z1, Y2 � Z2�.
The comonotonic shock �Z1, Z2� induces the dependence while the strength of the association

is regulated by θ. In fact, it will be shown that as θ increases, the strength of dependence increases
accordingly. As such, the proposed comonotonic shock model spans the full range of possible de-
pendence for a pair of positively associated Poisson random variables, i.e., �0, ρmax�. In particular,
when θ � 0 it follows that �Z1, Z2� � �0, 0� and thus the proposed model reduces to a pair of
independent Poisson random variables with correlation ρ � 0. On the other hand, the limiting case
θ � 1 yields a comonotonic pair such that ρ � ρmax. This property will be formally presented in
Lemma 4.1.

Note that in the case where λ1 � λ2 � λ, the BP�Λ, θ� model coincides with the classical
common shock model with θ � ξ	λ. In this setting, the upper bound ρmax is reached when θ � 1 or
equivalently when ξ � λ so that X1 � X2 almost surely. However, when the marginal rates differ,
the proposed model provides a more flexible framework for characterizing positively correlated
Poisson random variables as the implied correlation can extend beyond �0,min�λ1, λ2�	



λ1λ2�.

Let fΛ,θ and FΛ,θ denote the corresponding probability mass function and cumulative distribu-
tion function in the proposed BP�Λ, θ� family. Further write the probability mass function for the
comonotonic pair �Z1, Z2� � M �P�θλ1�,P�θλ1�� as

cΛ,θ�z1, z2� � Pr�Z1 � z1, Z2 � z2�
� �min�Gθλ1�z1�, Gθλ2�z2�� 
max�Gθλ1�z1 
 1�, Gθλ2�z2 
 1���� ,

where �x�� � x1�x � 0�. Then for �x1, x2� � N
2 it is straightforward to show that

fΛ,θ�x1, x2� �
x1�

z1�0

x2�

z2�0

g�1�θ�λ1�x1 
 z1�g�1�θ�λ2�x2 
 z2�cΛ,θ�z1, z2�

and

FΛ,θ�x1, x2� �
x1�

z1�0

x2�

z2�0

g�1�θ�λ1�x1 
 z1�g�1�θ�λ2�x2 
 z2�min �Gθλ1�z1�, Gθλ2�z2��

�
x1�

z1�0

x2�

z2�0

G�1�θ�λ1�x1 
 z1�G�1�θ�λ2�x2 
 z2�cΛ,θ�z1, z2�.
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4.2.1 PQD ordering

The proposed BP�Λ, θ� family of distributions is ordered in the Positive Quadrant Dependent
(PQD) ordering, as regulated by the dependence parameter θ. Following Lehmann (1966), the
notion of positive quadrant dependence in the two-dimensional case is defined as follows:

Definition 4.1 Positive quadrant dependence
Suppose a random vector �X1, X2� has distribution function F , where X1 and X2 have respective

marginal distributions given by F1 and F2. Then the random pair �X1, X2� is said to be PQD if

and only if, for all x1 and x2,

F �x1, x2� � F1�x1�F2�x2�.

Note that in the above equation, the right-hand side is the joint distribution under independence.
Thus, PQD implies that the probability of the event �X1 � x1, X2 � x2� is always greater under
the joint distribution F as compared to the independence distribution. The notion of PQD ordering
extends this definition to allow for comparisons between distribution functions with the same fixed
margins. The following definition introduces the concept of PQD ordering; see, e.g., Eq. (9.A.3)
in Shaked and Shanthikumar (2007).

Definition 4.2 PQD ordering
Suppose the random pair �X1, X2� has distribution function F and corresponding survival function

F̄ , where F̄ �x1, x2� � Pr�X1 � x1, X2 � x2� for all x1, x2 	 R. Further suppose �Y1, Y2� has

distribution function G and survival function Ḡ, where both F and G have common marginal

distributions given by F1 and F2. (That is, both X1 and Y1 have distribution function F1 while both

X2 and Y2 have distribution function F2). If for all x1 and x2

F �x1, x2� � G�x1, x2�, (4.5)

then �X1, X2� is said to be smaller than �Y1, Y2� in the PQD order. This will be denoted as

�X1, X2� �PQD �Y1, Y2�, or analogously in terms of the distribution functions as F �PQD G.

Note that in the bivariate setting, Eq. (4.5) is equivalent to F̄ �x1, x2� � Ḡ�x1, x2�. This can be
shown as follows:

F �x1, x2� � G�x1, x2� 
 1� F �x1, x2� � 1�G�x1, x2�


 1� F �x1, x2� � F̄1�x1� � F̄2�x2� � 1�G�x1, x2� � F̄1�x1� � F̄2�x2�


 �F̄ �x1, x2� � �Ḡ�x1, x2�


 F̄ �x1, x2� � Ḡ�x1, x2�,
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since

1� F �x1, x2� � F̄1�x1� � F̄2�x2� � Pr�X1 � x1 �X2 � x2� � Pr�X1 � x1� � Pr�X2 � x2�

� �Pr�X1 � x1 �X2 � x2�

� �F̄ �x1, x2�.

The notion of PQD ordering is also related to that of orthant orders. Following the definitions
given in Section 6.G.1 of Shaked and Shanthikumar (2007), suppose �X1, X2� has distribution
function F with corresponding survival function F̄ . Further suppose �Y1, Y2� has distribution func-
tion G and survival function Ḡ. If for all �x1, x2� the inequality F̄ �x1, x2� � Ḡ�x1, x2� holds,
then �X1, X2� is said to be smaller than �Y1, Y2� in the upper orthant order, which will be denoted
as �X1, X2� �UO �Y1, Y2�. Analogously, if F �x1, x2� � G�x1, x2� for all �x1, x2�, then �X1, X2�

is said to be smaller than �Y1, Y2� in the lower orthant order, denote as �X1, X2� �LO �Y1, Y2�.
Clearly, for two distribution functions F and G with the same marginal distributions F1 and F2,
the following equivalences ensue:

�X1, X2� �PQD �Y1, Y2� 	 �X1, X2� �UO �Y1, Y2�,

�X1, X2� �PQD �Y1, Y2� 	 �X1, X2� �LO �Y1, Y2�.

Note that while the concept of PQD ordering requires the distribution functions F and G to have
the same fixed marginals, the notions of UO and LO do not have this restriction.

The concept of PQD ordering has several convenient properties. For example, it follows imme-
diately from Definition 4.2 that any bivariate distribution function F satisfies

FL �PQD F �PQD FU (4.6)

where FL and FU denote the Fréchet–Hoeffding boundary distributions, defined for all x1, x2 
 R,
by

FL�x1, x2� � max�0, F1�x1� � F2�x2� � 1
, FU�x1, x2� � min�F1�x1�, F2�x2�
.

See Eq. (9.A.6) of Shaked and Shanthikumar (2007). In addition, the notion of PQD order is
closed under convolutions and monotone increasing transformations. This property is detailed in
Theorem (9.A.1) of Shaked and Shanthikumar (2007) and will be provided (without proof) in the
following theorem for completeness.
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Theorem 4.1 Suppose that the random pairs �X1, X2�, �Y1, Y2�, �U1, U2� and �V1, V2� satisfy

�X1, X2� �PQD �Y1, Y2�, �U1, U2� �PQD �V1, V2�.

Further suppose that �X1, X2� and �U1, U2� are independent and that �Y1, Y2� and �V1, V2� are

also independent. Then for all increasing functions φ and ψ, the following holds

�φ�X1, U1�, ψ�X2, U2�� �PQD �φ�Y1, V1�, ψ�Y2, V2�� .

In the case where φ and ψ are taken to be sums, Theorem 4.1 implies that

�X1 � U1, X2 � U2� �PQD �Y1 � V1, Y2 � V2�. (4.7)

There are several other closure properties that hold for PQD ordering; see Theorem (9.A.2) of
Shaked and Shanthikumar (2007) for more details.

In terms of the comonotonic shock bivariate Poisson model, θ dictates the strength of the de-
pendence as reflected by the PQD ordering. In particular, holding the marginal parameters λ1 and
λ2 fixed, it can be shown that for any x1, x2 � N, if θ � θ� then FΛ,θ�x1, x2� � FΛ,θ��x1, x2�. This
will be formally stated in the following lemma.

Lemma 4.1 PQD ordering in the BP�Λ, θ� family
Let �X1, X2� 	 BP�Λ, θ� and �X �

1, X
�

2� 	 BP�Λ, θ��. Then θ � θ� 
 �X1, X2� �PQD �X �

1, X
�

2�.

Proof. Fix λ1, λ2 and θ � θ�. By definition of the proposed BP family, �X1, X2� can be expressed
as

X1 � Y1 � Z1, X2 � Y2 � Z2,

for Y1 	 P��1�θ�λ1� independent of Y2 	 P��1�θ�λ2� and �Y1, Y2� independent of the comono-
tonic pair �Z1, Z2� 	M�P�θλ1�,P�θλ2��. In the same way, �X �

1, X
�

2� has the representation

X �

1 � Y �

1 � Z �

1, X �

2 � Y �

2 � Z �

2

for Y �

1 	 P��1�θ��λ1� independent of Y �

2 	 P��1�θ��λ2� and �Y �

1 , Y
�

2� independent of �Z �

1, Z
�

2� 	

M�P�θ�λ1�,P�θ�λ2��. Since the univariate Poisson distribution is infinitely divisible, the indepen-
dent components �Y1, Y2� can be rewritten as

Y1 � T1 � S1, Y2 � T2 � S2,

where T1 	 P��1 � θ��λ1�, T2 	 P��1 � θ��λ2�, S1 	 P��θ� � θ�λ1�, S2 	 P��θ� � θ�λ2� are
mutually independent. It is clear that �T1, T2� �PQD �Y �

1 , Y
�

2� as both are independent pairs with
the same marginal distributions. Both the pairs �S1 � Z1, S2 � Z2� and �Z �

1, Z
�

2� have marginal

64
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distributions that are P�θ�λ1� and P�θ�λ2� for the first and second components, respectively. The
pair �Z �

1, Z
�

2� is comonotonic and thus by (4.6) it follows that

�S1 � Z1, S2 � Z2� �PQD �Z �

1, Z
�

2�.

Finally, note that the random vectors �T1 � S1 � Z1, T2 � S2 � Z2� and �Y �

1 � Z �

1, Y
�

2 � Z �

2� have
the same margins, specifically P�λ1� and P�λ2�. Then, by (4.7), it follows that

�T1 � S1 � Z1, T2 � S2 � Z2� �PQD �Y �

1 � Z �

1, Y
�

2 � Z �

2�,

which is the desired result since by construction �T1 � S1 � Z1, T2 � S2 � Z2� � BP�Λ, θ� and
�Y �

1 � Z �

1, Y
�

2 � Z �

2� � BP�Λ, θ��. �

4.2.2 Moments and measures of dependence

As shown in Shaked and Shanthikumar (2007), the PQD ordering correspondingly implies an
ordering in measures of dependence. In particular, if �X1, X2� �PQD �Y1, Y2�, then both the co-
variance and correlation inherit this ordering:

cov�X1, X2� � cov�Y1, Y2�, corr�X1, X2� � corr�Y1, Y2�.

More generally, if �X1, X2� �PQD �Y1, Y2�, then ρ�X1, X2� � ρ�Y1, Y2� for any concordance
measure ρ in the sense of Scarsini (1984). As noted in Shaked and Shanthikumar (2007), this
includes Spearman’s rho and Kendall’s tau.

Applying these concepts to the proposed model, it follows that for �X1, X2� � BP�Λ, θ�, the
implied correlation ρθ � corr�X1, X2� will be an increasing function of θ. Since the independence
model results when θ � 0, it follows that ρθ � 0. As will be shown subsequently, as θ increases
to 1, the model reaches the upper Fréchet–Hoeffding bound and the resulting correlation coincides
with the upper bound given in (4.2). As a first step towards establishing this result, the probability
generating function for the BP family will be derived.

Proposition 4.2 Suppose �X1, X2� � BP�Λ, θ�. Then the pair �X1, X2� has probability generat-

ing function given by

E�sX1
1 sX2

2 � � exp ��1	 θ�λ1�s1 	 1� � �1	 θ�λ2�s2 	 1�
 �Λ,θ�s1, s2�,
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where

�Λ,θ�s1, s2� � 1� �s1 � 1�
��

i�0

si1Ḡθλ1�i� � �s2 � 1�
��

j�0

sj2Ḡθλ2�j�

� �s1 � 1��s2 � 1�
��

i�0

��

j�0

si1s
j
2 min�Ḡθλ1�i�, Ḡθλ2�j��.

Proof. The stochastic representation for �X1, X2� given in (4.4) allows to break down the proba-
bility generating function into three components stemming from the mutually independent random
variables Y1, Y2 and the comonotonic pair �Z1, Z2�, viz.

E�sX1
1 sX2

2 � � E�sY1
1 �E�s

Y2
2 �E�s

Z1
1 sZ2

2 �.

Since Y1 and Y2 are univariate Poisson random variables with respective means �1 � θ�λ1 and
�1� θ�λ2, it follows that

E�sY1
1 � � exp��1� θ�λ1s1�, E�sY2

2 � � exp��1� θ�λ2s2�.

Thus, it only remains to establish the probability generating function for the comonotonic pair
�Z1, Z2� � M�P�θλ1�,P�θλ2��. This function is denoted by �Λ,θ. An alternative representation
of the probability mass function for the comonotonic pair �Z1, Z2� can be derived in terms of the
comonotonic survival function. In particular, for any i, j 	 N,

Pr�Z1 � i, Z2 � j� � Pr�Z1 
 i, Z2 
 j� � Pr�Z1 
 i� 1, Z2 
 j � 1�

� Pr�Z1 
 i� 1, Z2 
 j� � Pr�Z1 
 i, Z2 
 j � 1�.

Since comonotonicity implies that �Z1, Z2� �
�
G�1θλ1

�U�, G�1θλ2
�U�

�
for a standard uniform random

variable U � U�0, 1�, it follows that

Pr�Z1 
 i, Z2 
 j� � Pr �U � Gθλ1�i� 1�, U � Gθλ2�j � 1��

� 1�max �Gθλ1�i� 1�, Gθλ2�j � 1��

� min�Ḡθλ1�i� 1�, Ḡθλ2�j � 1��.

Accordingly, for any i, j 	 N one has

Pr�Z1 � i, Z2 � j� � min�Ḡθλ1�i� 1�, Ḡθλ2�j � 1�� �min�Ḡθλ1�i�, Ḡθλ2�j��

�min�Ḡθλ1�i�, Ḡθλ2�j � 1�� �min�Ḡθλ1�i� 1�, Ḡθλ2�j��.
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It then follows that

�Λ,θ�s1, s2� � E�sZ1
1 sZ2

2 �

�
��

i�0

��

j�0

si1s
j
2

�
min�Ḡθλ1�i� 1�, Ḡθλ2�j � 1�� �min�Ḡθλ1�i�, Ḡθλ2�j � 1��

�min�Ḡθλ1�i� 1�, Ḡθλ2�j�� �min�Ḡθλ1�i�, Ḡθλ2�j��
�

� 1�
��

j�0

sj2Ḡθλ2�j � 1� �
��

i�1

si1Ḡθλ1�i� 1�

�
��

i�1

��

j�1

si1s
j
2 min�Ḡθλ1�i� 1�, Ḡθλ2�j � 1��

�
��

i�0

si1Ḡθλ1�i� �
��

i�0

��

j�1

si1s
j
2 min�Ḡθλ1�i�, Ḡθλ2�j � 1��

�
��

j�0

sj2Ḡθλ2�j� �
��

i�1

��

j�0

si1s
j
2 min�Ḡθλ1�i� 1�, Ḡθλ2�j��

�
��

i�0

��

j�0

si1s
j
2 min�Ḡθλ1�i�, Ḡθλ2�j��

� 1�
��

i�0

�si�11 � si1�Ḡθλ1�i� �
��

j�0

�sj�12 � sj2�Ḡθλ2�j�

�
��

i�0

��

j�0

�si1s
j
2 � si�11 sj2 � si1s

j�1
2 � s1

j � 1sj�12 �min�Ḡθλ1�i�, Ḡθλ2�j��

� 1� �s1 � 1�
��

i�0

si1Ḡθλ1�i� � �s2 � 1�
��

j�0

sj2Ḡθλ2�j�

� �s1 � 1��s2 � 1�
��

i�0

��

j�0

si1s
j
2 min�Ḡθλ1�i�, Ḡθλ2�j��.

This completes the proof. �

The probability generating function can then be used to derive the moments of �X1, X2�. The
intrinsic dependence structure of the stochastic representation in (4.4) implies that

cov�X1, X2� � cov�Z1, Z2�.

Working with �Λ,θ, it is straightforward to verify that

E�Z1Z2� �
�2

�s1�s2
�Λ,θ�s1, s2�

���
s1�s2�1

�
��

i�0

��

j�0

min�Ḡθλ1�i�, Ḡθλ2�j��.

67



4.2 The proposed model

Thus, the random pair �X1, X2� � BP�Λ, θ� has correlation

ρθ � corr�X1, X2� � 1�
λ1λ2

�
�θ2λ1λ2 �

��
i�0

��
j�0

min�Ḡθλ1�i�, Ḡθλ2�j�	
�
. (4.8)

It is clear that setting θ � 0 yields ρθ � 0. At the other end of the spectrum, θ � 1 results in
ρθ � ρmax so that the implied correlation in the BP�Λ, θ� model reaches the upper bound given
in (4.2). Moreover, Lemma 4.1 ensures that for fixed margins �λ1, λ2�, the correlation ρθ is an
increasing function of θ. Accordingly, the BP�Λ, θ� family can accommodate the full range of
possible positive dependence, with correlation varying from 0 to ρmax. Therefore, the proposed
comonotonic shock bivariate Poisson model provides a fully flexible stochastic representation for
positively correlated Poisson random variables.

4.2.3 Recurrence relations

In the classical bivariate Poisson model, the construction is based on a single common shock vari-
able. Accordingly, establishing a set of recurrence relations is simplified by the conditional inde-
pendence that ensues when conditioning on the common shock Z. In the proposed comonotonic
shock model, however, the dependence structure is more complex and thus renders the computation
of recurrence relations less straightforward.

Recall that the univariate Poisson distribution has the simple recurrence relation:

gλ�x� � λ

x
gλ�x� 1�, x 
 �1, 2, . . .	.

Since the classical common shock bivariate Poisson model formulation relies on convolutions of
independent Poisson random variables, this recurrence relation remains relevant. As shown in, e.g.,
Holgate (1964) and Kawamura (1985) and reviewed in Chapter 2, for the classic bivariate Poisson
distribution with probability mass function given, for all x1, x2 
 N, by

hΛ,ξ�x1, x2� � e��λ1�λ2�ξ�

min�x1,x2��
z�0

�λ1 � ξ�x1�z�λ2 � ξ�x2�zξz

�x1 � z�!�x2 � z�!z!

the following recurrence relations hold: for all x1, x2 
 �1, 2, . . .	

x1hΛ,ξ�x1, x2� � �λ1 � ξ�hΛ,ξ�x1 � 1, x2� � ξhΛ,ξ�x1 � 1, x2 � 1�,
x2hΛ,ξ�x1, x2� � �λ2 � ξ�hΛ,ξ�x1, x2 � 1� � ξhΛ,ξ�x1 � 1, x2 � 1�.

68



4.2 The proposed model

Recall that in the proposed BP�Λ, θ� model, the joint probability mass function has the form

fΛ,θ�x1, x2� �
x1�

z1�0

x2�

z2�0

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�cΛ,θ�z1, z2�

for all x1, x2 � N. Working with the recurrence relations for the univariate Poisson PMF, the
following relations hold:

fΛ,θ�x1 � 1, x2� �
x1�1�

z1�0

x2�

z2�0

g�1�θ�λ1�x1 � 1� z1�g�1�θ�λ2�x2 � z2�cΛ,θ�z1, z2�

�
x1�1�

z1�0

x2�

z2�0

x1 � z1
�1� θ�λ1

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�cΛ,θ�z1, z2�

� ��1� θ�λ1�
�1

x1�1�

z1�0

x2�

z2�0

�x1 � z1�g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�cΛ,θ�z1, z2�

� ��1� θ�λ1�
�1

x1�

z1�0

x2�

z2�0

�x1 � z1�g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�cΛ,θ�z1, z2�

� ��1� θ�λ1�
�1 fΛ,θ�x1, x2�

x1�

z1�0

x2�

z2�0

�x1 � z1�pΛ,θ�z1, z1, x1, x1��fΛ,θ�x1, x2�

� ��1� θ�λ1�
�1 fΛ,θ�x1, x2�

x1�

z1�0

x2�

z2�0

�x1 � z1�pΛ,θ�z1, z1 	 x1, x1�

� ��1� θ�λ1�
�1 fΛ,θ�x1, x2�E�X1 � Z1 	 x1, x2�

� ��1� θ�λ1�
�1 �x1 � E�Z1 	 x1, x2�� fΛ,θ�x1, x2�.

In the above equations, pΛ,θ�z1, z2, x1, x2� is used to denote the joint probability

Pr�Z1 � z1, Z2 � z2, X1 � x1, X2 � x2�

and pΛ,θ�z1, z2 	 x1, x2� denotes the conditional probability

Pr�Z1 � z1, Z2 � z2 	 X1 � x1, X2 � x2�.

In the same way, it follows that

fΛ,θ�x1, x2 � 1� � ��1� θ�λ2�
�1 �x2 � E�Z2 	 x1, x2��fΛ,θ�x1, x2�.
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Similarly, the following recursion can be derived:

fΛ,θ�x1 � 1, x2 � 1� �
x1�1�

z1�0

x2�1�

z2�0

g�1�θ�λ1�x1 � 1� z1�g�1�θ�λ2�x2 � 1� z2�cΛ,θ�z1, z2�

� ��1� θ�2λ1, λ2�
�1

x1�

z1�0

x2�

z2�0

�x1 � z1��x2 � z2�

g�1�θ�λ1�x1 � z1�g�1�θ�λ2��x2 � z2�cΛ,θ�z1, z2�

� ��1� θ�2λ1, λ2�
�1fΛ,θ�x1, x2�

x1�

z1�0

x2�

z2�0

�x1 � z1��x2 � z2�pΛ,θ�z1, z2, x1, x1��fΛ,θ�x1, x2�

and hence

fΛ,θ�x1 � 1, x2 � 1� � ��1� θ�2λ1, λ2�
�1fΛ,θ�x1, x2�

x1�

z1�0

x2�

z2�0

�x1 � z1��x2 � z2�pΛ,θ�z1, z2 � x1, x1�

� ��1� θ�2λ1, λ2�
�1fΛ,θ�x1, x2�E��X1 � Z1��X2 � Z2� � x1, x2�

� ��1� θ�2λ1, λ2�
�1fΛ,θ�x1, x2�	�

x1x2 � x2E�Z1 � x1, x2� � x1E�Z2 � x1, x2� 
 E�Z1Z2 � x1, x2�
�

�
�
�1� θ�2λ1, λ2

��1
�
x2 �x1 � E�Z1 � x1, x2��


x1 �x2 � E�Z2 � x1, x2�� � �x1x2 � E�Z1Z2 � x1, x2��
�
fΛ,θ�x1, x2�.

To recap, the following three recurrence relations hold in the proposed BP�Λ, θ� family

fΛ,θ�x1 � 1, x2� � fΛ,θ�x1, x2���1� θ�λ1�
�1 �x1 � E�Z1 � x1, x2�� , (4.9)

fΛ,θ�x1, x2 � 1� � fΛ,θ�x1, x2���1� θ�λ2�
�1 �x2 � E�Z2 � x1, x2�� , (4.10)

fΛ,θ�x1 � 1, x2 � 1� � fΛ,θ�x1, x2���1� θ�2λ1, λ2�
�1

�
x2 �x1 � E�Z1 � x1, x2��


 x1 �x2 � E�Z2 � x1, x2�� � �x1x2 � E�Z1Z2 � x1, x2��
�
. (4.11)

Note that these recursions also lead to several other relations. For example,

fΛ,θ�x1 � 1, x2� 	 fΛ,θ�x1, x2 � 1�

� ��1� θ�2λ1, λ2�
�1

�
x1x2 � x2E�Z1 � x1, x2� � x1E�Z2 � x1, x2�


 E�Z1 � x1, x2�E�Z2 � x1, x2�
�
�fΛ,θ�x1, x2��

2 ,
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so

fΛ,θ�x1 � 1, x2� � fΛ,θ�x1, x2 � 1�

� ��1� θ�2λ1, λ2�
�1 �fΛ,θ�x1, x2��

2
�
x1x2 � x2E�Z1 � x1, x2�

� x1E�Z2 � x1, x2� 	 E�Z1Z2 � x1, x2� � cov�Z1, Z2 � x1, x2�
�
,

whence

fΛ,θ�x1 � 1, x2� � fΛ,θ�x1, x2 � 1�

� fΛ,θ�x1, x2�
�
fΛ,θ�x1 � 1, x2 � 1� � ��1� θ�2λ1, λ2�

�1fΛ,θ�x1, x2�cov�Z1, Z2 � x1, x2�
�

and also

fΛ,θ�x1 � 1, x2 � 1� � x1 ��1� θ�λ1�
�1 fΛ,θ�x1, x2 � 1� 	 x2 ��1� θ�λ2�

�1 fΛ,θ�x1 � 1, x2�

� �x1x2 � E�Z1, Z2 � x1, x2�� fΛ,θ�x1, x2�.

4.2.4 Convolutions in the BP family

In the proposed bivariate Poisson model, the dependence structure is dictated by the comonotonic
shock. As will be shown, comonotonicity is not retained under convolutions and thus the BP�Λ, θ�
family is not closed under convolution.

Suppose that �X11, X12� and �X21, X22� are independent random vectors from the proposed BP
model with respective marginal rates given by Λ1 � �λ11, λ12� and Λ2 � �λ21, λ22� and a common
dependence parameter θ. In terms of independent U�0, 1� random variables V11, V12, U1, V21, V22, U2,
these pairs can be expressed as

X11 � Y11 	 Z11 � G�1�1�θ�λ11
�V11� 	G�1

θλ11
�U1�,

X12 � Y12 	 Z12 � G�1
�1�θ�λ12

�V12� 	G�1
θλ12

�U1�,

X21 � Y21 	 Z21 � G�1
�1�θ�λ21

�V21� 	G�1
θλ21

�U2�,

X22 � Y22 	 Z22 � G�1
�1�θ�λ22

�V22� 	G�1
θλ22

�U2�.

Define the random sum �X1, X2� by

�X1, X2� � �X11 	X21, X12 	X22�.

It is then of interest whether the distribution of �X1, X2� falls within the BP family, i.e., whether
the proposed bivariate Poisson distribution is closed under convolution.
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Clearly, both X1 and X2 have marginal univariate Poisson distributions with respective means
λ1 � λ11�λ21 and λ2 � λ12�λ22 as both components are the sum of independent Poisson random
variables. Setting Y1 � Y11 � Y21 and Y2 � Y12 � Y22, it is also clear that Y1 � P��1 � θ�λ1� is
independent of Y2 � P��1 � θ�λ2�. Let �Z1, Z2� denote the the sum �Z11 � Z21, Z12 � Z22� so
that marginally both Z1 and Z2 have Poisson distribution with rates θλ1 and θλ2, respectively.
By design, Y1 and Y2 are independent of �Z1, Z2�. Then, if �Z1, Z2� are comonotonic the sum
�X1, X2� � BP�Λ, θ�, where Λ � �λ1, λ2�. Thus, the proposed class of distributions BP�Λ, θ� is
closed under convolution if comonotonic Poisson random variables are closed under convolution.

Recall that �Z1, Z2� are comonotonic if and only if the random pair can be written in terms
of a common underlying uniform random variable. In this set-up, comonotonicity then implies
that �Z1, Z2� � �G�1θλ1

�U�, G�1θλ2
�U�� for some U � U�0, 1�. Consider a specific example: set

Λ1 � �1, 2�, Λ2 � �3, 8�, θ � 0.5. In this scenario Z1 � P�2� and Z2 � P�5�. Take two
independent realizations from a standard uniform distributions as u1 � 0.5, u2 � 0.8. It then
follows that

z11 � G�1θλ11
�u1� � G�10.5�0.5� � 0, z12 � G�1θλ12

�u1� � G�11 �0.5� � 1,

z21 � G�1θλ21
�u2� � G�11.5�0.8� � 2, z22 � G�1θλ22

�u2� � G�14 �0.8� � 6,

and so �z1, z2� � �0, 1� � �2, 6� � �2, 7�. A value z1 � G�12 �u� � 2 will result for any underlying
value of u 	 �G2�1�, G2�2�
 � �0.41, 0.68
. However, z2 � G�15 �u� � 7 is generated by any
u 	 �G5�6�, G5�7�
 � �0.76, 0.87
. Since these two intervals do not overlap, there is no underlying
U � U�0, 1� which can generate a pair of comonotonic Poisson random variable equal to �2, 7�

when the marginal means are respectively given by 2 and 5. Consequently, �X1, X2� cannot be
expressed in terms of the BP model and the family is thus not closed under convolution.

Note that even sums of independent and identically distributed comonotonic pairs do not retain
the property of comonotonicity. Consider the case where both �Z11, Z21� and �Z12, Z22� are i.i.d.
M�P�1�,P�2��. Suppose u1 � 0.7 and u2 � 0.2, thus generating

Z11 � G�11 �0.7� � 1, Z21 � G�12 �0.7� � 3,

Z12 � G�11 �0.2� � 0, Z22 � G�12 �0.2� � 1.

Marginally, Z1 � Z11 � Z12 � P�2� and Z2 � Z21 � Z22 � P�4�. The values of u1 and u2 yield
Z1 � 1 and Z2 � 4. Writing Z1 � G�12 �U� implies that an observation of 1 can be generated
from an underlying uniform variable in the interval �G2�0�, G2�1�
 � �0.14, 0.41
. In the same
way, for Z2 � G�14 �U�, observing a value of 4 corresponds to a Uniform variable in the interval
�G4�3�, G4�4�
 � �0.43, 0.63
. Again, these intervals do not overlap and thus the pair �Z1, Z2� are
not comonotonic.
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4.3 Estimation

Let �X11, X12�, . . . , �Xn1, Xn2� denote a random sample from the proposed BP�Λ, θ� model. It
is then of interest to obtain estimates of the marginal parameters Λ � �λ1, λ2� � �0,��2 and the
dependence parameter θ � �0, 1�. This section will give an overview of various estimation methods,
namely the method of moments (MM), maximum likelihood (ML) and inference functions for
margins (IFM).

4.3.1 Method of moments

The method of moments approach to estimation relies on matching the theoretical moments im-
plied by the assumed model to the empirical moments observed in the sample. In the case of
the BP�Λ, θ� family, method of moments estimation involves matching three moments as there
are three parameters to estimate. Since the marginal parameters are in fact equal to the marginal
means, the method of moments estimates for λ1 and λ2, denoted by λ̃1 and λ̃2 respectively, are
given by

λ̃1 � X̄1, λ̃2 � X̄2,

forX̄k � �X1k � 	 	 	 � Xnk�
n for each k � �1, 2�. Note that these estimates coincide with max-
imum likelihood estimation when θ � 0, i.e., in the case where the components X1 and X2 are
independent. The Central Limit Theorem then ensures that, as n 
 �,

�
n �λ̃1 � λ1�� N �0, λ1�,

�
n �λ̃2 � λ2�� N �0, λ2�,

where� denotes convergence in law. Again, these asymptotic results are equivalent to those from
maximum likelihood theory in the case of independence.

Estimation of the dependence parameter requires mixed moments. In particular, an estimate of
θ can be obtained by matching the model covariance to the sample covariance. Let S12 denote the
sample covariance given by

S12 � 1

n� 1

n�

��1

�X�1 � X̄1��X�2 � X̄2�.

As shown in Section 4.2.2, the covariance of �X1, X2� � BP�Λ, θ� is given by

cov�X1, X2� �
��

i�0

��

j�0

min�Ḡθλ1�i�, Ḡθλ2�j�� � θ2λ1λ2. (4.12)

Let mλ1,λ2�θ� denote the above covariance. The PQD ordering of the BP�Λ, θ� family ensures
that for fixed Λ, the covariance mλ1,λ2�θ� is an increasing function of θ. Thus, there will be a
unique value of θ, say θ̃, for which mλ1,λ2�θ� � S12, provided that S12 � �0,mλ1,λ2�1��. Note that

73



4.3 Estimation

the latter condition ensures that the sample covariance falls within the range of permissible values
for mλ1,λ2�θ� in the BP�Λ, θ� family. Indeed, θ � 0 implies independence and thus mλ1,λ2�0� � 0

while θ � 1 results in perfect positive dependence such that mλ1,λ2�1� � ρmax�λ1, λ2�
�
λ1λ2.

The MM estimator θ̃ is then the unique value of θ such that

mX̄1,X̄2
�θ� � S12,

for S12 � �0, ρmax�X̄1, X̄2�
�
X̄1X̄2�. By convention, if S12 � ρmax�X̄1, X̄2�

�
X̄1X̄2, set θ̃ � 1.

However if it is observed that S12 	 0, a model for negative dependence should be used instead;
see Chapter 5.

The sample covariance S12 is a consistent estimator of mλ1,λ2�θ�. Moreover, as shown in, e.g.,
Theorem 8 of Ferguson (1996), as n
 �,

�
n �S12 
mλ1,λ2�θ��� N �0, σ2�θ, λ1, λ2��,

where
σ2�θ, λ1, λ2� � var ��X1 
 λ1��X2 
 λ2�� .

A straightforward application of the Delta Method then ensures that the MM estimator θ̃ is also
asymptotically Gaussian, as is shown in the following proposition.

Proposition 4.3 Asymptotic normality of the method of moments estimator
Let �X11, X12�, . . . , �Xn1, Xn2� denote a random sample from the BP�Λ, θ� family and let S12

denote the sample covariance given by
��n

��1�X�1 
 X̄1��X�2 
 X̄2�
� ��n 
 1�. The method of

moments estimator is the unique solution of the equation

mX̄1,X̄2
�θ� � S12.

Moreover, for S12 � �0, ρmax�X̄1, X̄2�
�
X̄1X̄2�, as n
 �,

�
n �θ̃ 
 θ�� N �0, �γ��σ12��2 σ2�θ, λ1, λ2��,

where σ12 is used to denote the covariance mλ1,λ2�θ� and γ denotes the inverse of the function

mλ1,λ2�θ�, i.e., γ : θ �
 m�1
λ1,λ2

�θ�, with corresponding derivative γ�.

In general, computation of the asymptotic variance is tedious, although some simplifications
can be made. First note that by definition,

var��X1 
 λ1��X2 
 λ2�� � E��X1 
 λ1�2�X2 
 λ2�2� 
 �mλ1,λ2�θ��2 .

By construction of the BP�Λ, θ� model, for k � �1, 2�, Xk � Yk � Zk, where Yk � P��1
 θ�λk�
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is independent of Zk � P�θλk�. Then for k � �1, 2�, write

Xk � λk � Y̊k 	 Z̊k,

where Y̊k and Z̊k represent the centred random variables, i.e.,

Y̊k � Yk � �1� θ�λk, Z̊k � Zk � θλk.

It can then be shown that

E��X1 � λ1�
2�X2 � λ2�

2� � E�Y̊ 2
1 Y̊

2
2 	 2Y̊ 2

1 Y̊2Z̊2 	 Y̊ 2
1 Z̊

2
2 	 2Y̊1Z̊1Y̊

2
2

	 4Y̊1Z̊1Y̊2Z̊2 	 2Y̊1Z̊1Z̊
2
2 	 Z̊2

1 Y̊
2
2 	 2Z̊2

1 Y̊2Z̊2 	 Z̊2
1 Z̊

2
2�.

Since the pairs �Y̊1, Y̊2� and �Z̊1, Z̊2� are independent, the right-hand side reduces to

E�Y̊ 2
1 �E�Y̊

2
2 � 	 2E�Y̊ 2

1 �E�Y̊2�E�Z̊2� 	 E�Y̊ 2
1 �E�Z̊

2
2� 	 2E�Y̊1�E�Z̊1�E�Y̊

2
2 �

	 4E�Y̊1�E�Y̊2�E�Z̊1Z̊2� 	 2E�Y̊1�E�Z̊1Z̊
2
2� 	 E�Z̊2

1�E�Y̊
2
2 � 	 2E�Y̊2�E�Z̊

2
1 Z̊2� 	 E�Z̊2

1 Z̊
2
2�.

Now by construction, the components of �Y̊1, Y̊2� are themselves independent and E�Y̊k� � E�Z̊k� �

0 for k � �1, 2�. The above expression thus becomes

E�Y̊ 2
1 �E�Y̊

2
2 � 	 E�Y̊ 2

1 �E�Z̊
2
2� 	 E�Z̊2

1�E�Y̊
2
2 � 	 E�Z̊2

1 Z̊
2
2�

� var�Y1�var�Y2� 	 var�Y1�var�Z2� 	 var�Z1�var�Y2� 	 E��Z1 � θλ1�
2�Z2 � θλ2�

2�

in terms of the original variables Y1, Y2, Z1, Z2. Moreover, the last summand satisfies

E
�
�Z1 � θλ1�

2�Z2 � θλ2�
2
�
� var ��Z1 � θλ1��Z2 � θλ2�� 	 
E ��Z1 � θλ1��Z2 � θλ2��

2�

� var ��Z1 � θλ1��Z2 � θλ2�� 	 �mλ1,λ2�θ��
2 .

Putting this all together, it follows that

var��X1 � λ1��X2 � λ2�� � var�Y1�var�Y2� 	 var�Y1�var�Z2� 	 var�Z1�var�Y2�

	 var ��Z1 � θλ1��Z2 � θλ2�� ,

which, upon substitution, further reduces to

var��X1�λ1��X2�λ2�� � �1�θ�2λ1λ2	2�1�θ�θλ1λ2	var ��Z1 � θλ1��Z2 � θλ2�� . (4.13)

When θ � 0, X1 and X2 are independent and σ2�0, λ1, λ2� reduces to λ1λ2. In the special case
where λ1 � λ2 � λ, the comonotonic shock reduces to a common shock variable, i.e., Z1 � Z2
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almost surely. Letting Z denote this common variable, one has that

var��Z1 � θλ1��Z2 � θλ2�� � var��Z � θλ�2� � θλ�1� 3θλ� � θ2λ2 � θλ�1� 2θλ�.

It then follows from (4.13) that

var��X1 � λ1��X2 � λ2�� � �1� θ�2λ2 � 2�1� θ�θλ2 � θλ�1� 2θλ� � λ�λ� θ � θ2λ�.

Moreover, in this case mλ,λ�θ� � θλ and hence γ��σ12� � 1�λ. The asymptotic variance of the
moment-based estimator θ̃ thus reduces to λ�λ� θ � θ2λ��λ2 � �λ� θ � θ2λ��λ.

4.3.2 Maximum likelihood estimation

Recall that the joint probability mass function in the proposed BP�Λ, θ� family is given, for any
�x1, x2� 	 N

2, by

fΛ,θ�x1, x2� �
x1�

z1�0

x2�

z2�0

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�cΛ,θ�z1, z2�.

It then follows that for observations x � ��x11, x12�, . . . , �xn1, xn2��, the likelihood is given by

L�Λ, θ;x� �
n�

i�1

fΛ,θ�xi1, xi2�

with corresponding log-likelihood

��Λ, θ;x� �
n�

i�1

ln fΛ,θ�xi1, xi2�

�
n�

i�1

ln

�
x1�

z1�0

x2�
z2�0

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�cΛ,θ�z1, z2�

�
, (4.14)

where, as previously defined,

cΛ,θ�z1, z2� � 
min �Gθλ1�z1�, Gθλ2�z2�� �max �Gθλ1�z1 � 1�, Gθλ2�z2 � 1���� .

Maximum likelihood estimates (MLEs) are then determined as

argmax
λ1,λ2,θ

��Λ, θ;x�,
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subject to the constraints Λ � �0,��2 and θ � �0, 1�. If they exist, the MLEs are found by setting
the score equations equal to zero, i.e., solving for the values �λ1, λ2, θ� such that

�
�

�λ1

��Λ, θ�,
�

�λ2

��Λ, θ�,
�

�θ
��Λ, θ�

�
� 0�.

The score equations in the BP model are obtained by differentiating the log-likelihood as given
in (4.14) with respect to Ψ � �λ1, λ2, θ�. As a first step, it is straightforward to obtain the following
derivatives involving the univariate Poisson probability mass functions:

�

�λ1

g�1�θ�λ1�x1 	 z1�g�1�θ�λ2�x2 	 z2� � 	�1	 θ�g�1�θ�λ2�x2 	 z2�


 �g�1�θ�λ1�x1 	 z1� 	 g�1�θ�λ1�x1 	 1	 z1��,

�

�λ2

g�1�θ�λ1�x1 	 z1�g�1�θ�λ2�x2 	 z2� � 	�1	 θ�g�1�θ�λ1�x1 	 z1�


 �g�1�θ�λ2�x2 	 z2� 	 g�1�θ�λ2�x2 	 1	 z2��,

�

�θ
g�1�θ�λ1�x1 	 z1�g�1�θ�λ2�x2 	 z2� � �λ1 
 λ2�g�1�θ�λ1�x1 	 z1�g�1�θ�λ2�x2 	 z2�

	 λ1g�1�θ�λ1�x1 	 1	 z1�g�1�θ�λ2�x2 	 z2�,

	 λ2g�1�θ�λ1�x1 	 z1�g�1�θ�λ2�x2 	 1	 z2�.

From the above equations, one can proceed to differentiate the log-likelihood. Beginning with
the marginal parameter λ1, one finds that ���Λ, θ��λ1 equals

n�
i�1

�fΛ,θ�xi1, xi2��
�1

xi1�
z1�0

xi2�
z2�0

��
�

�λ1

g�1�θ�λ1�xi1 	 z1�

�
g�1�θ�λ2�xi2 	 z2�cΛ,θ�z1, z2�


 g�1�θ�λ1�xi1 	 z1�g�1�θ�λ2�xi2 	 z2�

�
�

�λ1

cΛ,θ�z1, z2�

��

�
n�

i�1

�fΛ,θ�xi1, xi2��
�1

xi1�
z1�0

xi2�
z2�0

�
	 �1	 θ�g�1�θ�λ1�xi1 	 z1�g�1�θ�λ2�xi2 	 z2�cΛ,θ�z1, z2�


 �1	 θ�g�1�θ�λ1�xi1 	 1	 z1�g�1�θ�λ2�xi2 	 z2�cΛ,θ�z1, z2�


 g�1�θ�λ1�xi1 	 z1�g�1�θ�λ2�xi2 	 z2�cΛ,θ�z1, z2�

�
�

�λ1

ln cΛ,θ�z1, z2�

�	
.
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and hence ���Λ, θ��λ1 equals

n�

i�1

�fΛ,θ�xi1, xi2��
�1 ���1� θ�fΛ,θ�xi1, xi2� � �1� θ�fΛ,θ�xi1 � 1, xi2�	

�
n�

i�1

xi1�

z1�0

xi2�

z2�0

�
�

�λ1

ln cΛ,θ�z1, z2�

�
pΛ,θ�z1, z2, xi1, xi2�
fΛ,θ�xi1, xi2�

� �n�1� θ� �
1

λ1

n�
i�1

�xi1 � E�Z1 � xi1, xi2�� �
n�

i�1

E

�
�

�λ1

ln cΛ,θ�Z1, Z1�
���xi1, xi2

�
,

where the last step follows from the recurrence relations, given in Eqs. (4.9)–(4.11), since

fΛ,θ�x1 � 1, x2�
fΛ,θ�x1, x2� � ��1� θ�λ1�
�1�x1 � E�Z1 � x1, x2��.

With further manipulations, the score equation can be expressed as

�

�λ1

��Λ, θ� �
n

λ1

�x̄1�λ1��
n

λ1

�q̄1�Λ, θ� � θλ1��
n�

i�1

E

�
�

�λ1

ln cΛ,θ�Z1, Z1�
���xi1, xi2

�
, (4.15)

where

q̄1�Λ, θ� �
1

n

n�
i�1

qi1�Λ, θ� �
1

n

n�
i�1

E�Z1 � xi1, xi2�.

Analogously, let q̄2�Λ, θ� �
�n

i�1 E�Z2 � xi1, xi2�
n. In the same way it can be shown that

�

�λ2

��Λ, θ� �
n

λ2

�x̄2�λ2��
n

λ2

�q̄2�Λ, θ� � θλ2��
n�

i�1

E

�
�

�λ2

ln cΛ,θ�Z1, Z1�
���xi1, xi2

�
. (4.16)

The score equation involving the dependence parameter θ can be derived as follows. First, we
see that ���Λ, θ��θ equals

n�
i�1

�fΛ,θ�xi1, xi2��
�1

xi1�
z1�0

xi2�
z2�0

��
�

�θ
g�1�θ�λ1�xi1 � z1�g�1�θ�λ2�xi2 � z2�

�
cΛ,θ�z1, z2�

� g�1�θ�λ1�xi1 � z1�g�1�θ�λ2�xi2 � z2�

�
�

�θ
cΛ,θ�z1, z2�

��

�
n�

i�1

�fΛ,θ�xi1, xi2��
�1

xi1�
z1�0

xi2�
z2�0

�
�λ1 � λ2�g�1�θ�λ1�xi1 � z1�g�1�θ�λ2�xi2 � z2�cΛ,θ�z1, z2�

� λ1g�1�θ�λ1�xi1 � 1� z1�g�1�θ�λ2�xi2 � z2�cΛ,θ�z1, z2�

� λ2g�1�θ�λ1�xi1 � z1�g�1�θ�λ2�xi2 � 1� z2�cΛ,θ�z1, z2�

� g�1�θ�λ1�xi1 � z1�g�1�θ�λ2�xi2 � z2�cΛ,θ�z1, z2�

�
�

�θ
ln cΛ,θ�z1, z2�

�	
,
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which reduces to

n�λ1 � λ2� �
n�

i�1

�fΛ,θ�xi1, xi2��
�1 ��λ1fΛ,θ�xi1 � 1, xi2� � λ2fΛ,θ�xi1, xi2 � 1��

�
n�

i�1

xi1�

z1�0

xi2�

z2�0

�
	

	θ
ln cΛ,θ�z1, z2�

�
pΛ,θ�z1, z2, xi1, xi2�
fΛ,θ�xi1, xi2�,

where, again, the recurrence relations in Eqs. (4.9) through (4.11) were used to establish

fΛ,θ�x1 � 1, x2�
fΛ,θ�x1, x2� � ��1� θ�λ1�
�1 �x1 � E�Z1 � x1, x2�� ,

fΛ,θ�x1, x2 � 1�
fΛ,θ�x1, x2� � ��1� θ�λ2�
�1 �x1 � E�Z2 � x1, x2�� .

Further simplifications then yield

	

	θ
��Λ, θ� � n�λ1 � λ2� �

n

�1� θ�
�x̄1 � x̄2 � q̄1�Λ, θ� � q̄2�Λ, θ��

�
n�

i�1

E

�
	

	θ
ln cΛ,θ�z1, z2�

���xi1, xi2

�
. (4.17)

Equivalently, (4.17) can be written as

	

	θ
��Λ, θ� � �

n

�1� θ�
�x̄1 � λ1� �

n

�1� θ�
�x̄2 � λ2� �

n

�1� θ�
�q̄1�Λ, θ� � θλ1�

�
n

�1� θ�
�q̄2�Λ, θ� � θλ2� �

n�
i�1

E

�
	

	θ
ln cΛ,θ�z1, z2�

���xi1, xi2

�
. (4.18)

Standard results ensure that

E

�
	

	λ1

��Λ, θ�

�
� E

�
	

	λ2

��Λ, θ�

�
� E

�
	

	θ
��Λ, θ�

�
� 0.

Moreover, both X̄1 � λ1 and X̄2 � λ2 have expectation equal to zero and for k 
 �1, 2�

E �q̄k�Λ, θ� � θλk� � E

�
1

n

n�
i�1

E�Zk � Xi1, Xi2�

�
� θλk �

1

n

n�
i�1

E �E�Zk � Xi1, Xi2�� � θλk

�
1

n

n�
i�1

E�Zk� � θλk � θλk � θλk � 0.
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From Eqs. (4.15), (4.16) and (4.18), it follows that

E

�
n�

i�1

E

� �
�λ1

ln cΛ,θ�Z1, Z2�
���Xi1, Xi2

��
� 0,

E

�
n�

i�1

E

� �
�λ2

ln cΛ,θ�Z1, Z2�
���Xi1, Xi2

��
� 0,

E

�
n�

i�1

E

� �
�θ ln cΛ,θ�Z1, Z2�

���Xi1, Xi2

��
� 0.

It is clear from the expressions for the score equations given in Eqs. (4.15) through (4.17) that
there is no explicit expression for the MLEs �λ̂1, λ̂2, θ̂� and that numerical techniques must be
used. In such procedures, the method of moments estimates �λ̃1, λ̃2, θ̃� could be used as starting
values. In order to avoid difficulties in the optimization, one could consider a reparametrization
that removes parameter constraints. In particular, let

ζ1 � ln�λ1�, ζ2 � ln�λ2�, η � ln�θ��1� θ��.

so that �ζ1, ζ2, η� 	 R
3. The invariance property of maximum likelihood estimates then ensures that

the MLEs λ̂1, λ̂2, and θ̂ are equal to exp�ζ̂1�, exp�ζ̂2�, exp�η̂���1
 exp�η̂��, respectively.
If θ 	 �0, 1�, simple but tedious calculations show that the usual regularity conditions are

satisfied, and hence the MLEs are consistent and asymptotically Gaussian. In particular, let Ψ
denote the parameter vector and accordingly Ψ̂ � �λ̂1, λ̂2, θ̂� denote the MLE. Then, as n � �,



n �Ψ̂�Ψ�� N �0, I�1�

where I denotes the Fisher information. As computation of the latter quantity is difficult, in prac-
tical implementations the asymptotic variance could be estimated using the bootstrap method.

Remark 4.1 There could be issues in optimizing the log-likelihood due to the form of the contri-
bution of the comonotonic shock. In particular, as was demonstrated in Chapter 3 the method of
moments estimates may yield non-finite values for the log-likelihood, in which case it becomes
difficult to find reasonable starting values. However, this issue did not arise in our simulations.

The EM algorithm

As reviewed in Chapter 2, the EM algorithm is a useful tool for finding the MLEs in the classical
bivariate Poisson model. Similarly to the classical set-up, the construction in the proposed bivariate
Poisson model relies on latent variables, specifically the independent components �Y1, Y2� and the
comonotonic shock �Z1, Z2�. Conceivably, the EM algorithm could prove to be helpful in the
BP�Λ, θ� family as well.
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The EM algorithm is an iterative procedure for determining maximum likelihood estimates in
missing data problems. The procedure involves two main steps, namely the expectation step, or
E-step, and the maximization step, called the M-step. To start, the data must be augmented so that
an expression for the complete data log-likelihood can be written in terms of the observed and
unobserved data. The E-step entails taking the conditional expectation of the complete data log-
likelihood, given the observed data and current parameter estimates. The M-step then maximizes
the resulting expectation from the E-step to yield the next iteration of parameter estimates, say
Ψ�k�1� for k � �0, 1, . . .�. The algorithm then continues iteratively between the E- and M-step until
convergence, where the convergence criterion can be in terms of the difference L�Ψ�k�1�;x� �

L�Ψ�k�;x� or Ψ�k�1� �Ψ�k�.
It can be shown that at each iteration, the EM algorithm will yield updated parameter estimates

Ψ�k� that increase the likelihood. Accordingly, if the underlying observed likelihood is bounded,
the sequence Ψ�0�,Ψ�1�, . . . of EM estimates will converge to either a local or global maximum of
the likelihood. There are other conditions which ensure convergence of the EM algorithm to the
MLEs; see, e.g., McLachlan and Krishnan (2008) for more details.

In the context of the BP�Λ, θ� family, one could consider using the comonotonic shock �Z1, Z2�

as the missing data. In this case, the complete data consist of �X,Z�, where

X � ��X11, X12�, . . . , �Xn1, Xn2��, Z � ��Z11, Z12�, . . . , �Zn1, Zn2��.

Accordingly, the complete data log-likelihood is given by

�C�Λ, θ;x, z� �
n�

i�1

ln pΛ,θ�zi1, zi2, zi1, zi2�

which expands as follows:

n�

i�1

ln�g�1�θ�λ1�xi1 � zi1�g�1�θ�λ2�xi2 � zi2�cΛ,θ�zi1, zi2��

�
n�

i�1

���1� θ�λ1 	 �xi1 � zi1� ln ��1� θ�λ1� � ln ��xi1 � zi1�!�

� �1� θ�λ2 	 �xi2 � zi2� ln ��1� θ�λ2� � ln ��xi2 � zi2�!� 	 ln cΛ,θ�zi1, zi2�


� �n�1� θ��λ1 	 λ2� 	 n ln�1� θ��x̄1 	 x̄2 � z̄1 � z̄2� 	 n ln�λ1��x̄1 � z̄1�

	 n ln�λ2��x̄2 � z̄2� 	
n�

i�1

ln cΛ,θ�zi1, zi2� �
n�

i�1

ln��xi1 � zi1�!�xi2 � zi2�!�.
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Let Ψ�k�
� �λ

�k�
1 , λ

�k�
2 , θ�k�� denote the parameter estimates at stage k � �0, 1, . . .� and let

Q�Ψ � Ψ�k�� � E��C�Λ, θ;X,Z� � x,Ψ�k��

represent the conditional expectation of the complete data log-likelihood, given the observed data
x and current parameter estimates Ψ�k� � �λ

�k�
1 , λ

�k�
2 , θ�k��. Following the notation previously in-

troduced, let

q̄1�Λ
�k�, θ�k�� �

1

n

n�

i�1

E�Z1 � xi1, xi2,Ψ
�k��, q̄2�Λ

�k�, θ�k�� �
1

n

n�

i�1

E�Z2 � xi1, xi2,Ψ
�k��.

It is then straightforward to obtain

Q�Ψ � Ψ�k�� � �n�1� θ��λ1 	 λ2� 	 n ln�1� θ��x̄1 	 x̄2 � q̄1�Λ
�k�, θ�k�� � q̄2�Λ

�k�, θ�k���

	 n ln�λ1��x̄1 � q̄1�Λ
�k�, θ�k��� 	 n ln�λ2��x̄2 � q̄2�Λ

�k�, θ�k���

	
n�

i�1

E�ln cΛ,θ�Zi1, Zi2� � x,Ψ
�k�� � R�x,Ψ�k��,

where

R�x,Ψ�k�� �
n�

i�1

E 
ln��xi1 � zi1�!�xi2 � zi2�!��

can be regarded as a remainder term that depends only on the observed data and current parameter
estimates. In the maximization step, the parameter estimates are updated according to

Ψ�k�1� � argmax
Ψ

Q�Ψ � Ψ�k��.

The updates are then found by solving
�

�

�λ1

Q�Ψ � Ψ�k��,
�

�λ2

Q�Ψ � Ψ�k��,
�

�θ
Q�Ψ � Ψ�k��

�
� 0�.

Since the left-hand side involves the terms

E

�
�

�λ1

ln cΛ,θ�Z1, Z2�
���x
�
, E

�
�

�λ2

ln cΛ,θ�Z1, Z2�
���x
�
, E

�
�

�θ
ln cΛ,θ�Z1, Z2�

���x
�
,

this optimization is just as difficult as directly optimizing the observed data log-likelihood to begin
with. Seemingly, the EM algorithm is unhelpful when the comonotonic shock is used to augment
the data.

As an alternative, one could consider using the underlying uniform random variables generating
the comonotonic shock as the missing data. That is, the complete data consist of ��X11, X12, U1�,
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. . ., �Xn1, Xn2, Un��, where for each i � �1, . . . , n� the comonotonic pair is expressed as

�Zi1, Zi2� �
�
G�1θλ1

�Ui�, G
�1
θλ2

�Ui�
�
.

Let pΛ,θ�x1, x2, u� denote the joint probability of �X1, X2, U�. It is straightforward to show that

pΛ,θ�x1, x2, u� � g�1�θ�λ1�x1 �G�1
θλ1

�u��g�1�θ�λ2�x2 �G�1
θλ2

�u��.

It then follows that the complete data log-likelihood has the form

�C�Λ, θ;x,u� �
n�

i�1

ln pΛ,θ�ui, xi1, xi2�

�
n�

i�1

ln
�
g�1�θ�λ1�xi1 �G�1

θλ1
�ui��g�1�θ�λ2�xi2 �G�1

θλ2
�ui��

�

�
n�

i�1

�
� �1� θ��λ1 � λ2� � ln�1� θ��xi1 � xi2 �G�1

θλ1
�ui� �G�1

θλ2
�ui��

� ln�λ1��xi1 �G�1
θλ1

�ui�� � ln�λ2��xi2 �G�1
θλ2

�ui��

� ln
�
�xi1 �G�1

θλ1
�ui��!�xi2 �G�1

θλ2
�ui��!

� �
. (4.19)

The E-step involves the expectations E�G�1
θλ1

�Ui� 	 x,Ψ
�k�� and E�G�1

θλ2
�Ui� 	 x,Ψ

�k��. Using the
same notation previously introduced, these values simplify as follows:

E�G�1
θλ1

�Ui� 	 x,Ψ
�k�� � E�Z1 	 xi1, xi2,Ψ

�k�� � qi1�Λ
�k�, θ�k��,

E�G�1
θλ2

�Ui� 	 x,Ψ
�k�� � E�Z2 	 xi1, xi2,Ψ

�k�� � qi2�Λ
�k�, θ�k��.

Thus, the E-step Q�Ψ 	 Ψ�k�� � E��C�Λ, θ;x,U� 	 x,Ψ�k�� yields

Q�Ψ 	 Ψ�k�� � �n�1� θ��λ1 � λ2� � n ln�1� θ��x̄1 � x̄2 � q̄1�Λ
�k�, θ�k�� � q̄2�Λ

�k�, θ�k��

� n ln�λ1��x̄1 � q̄1�Λ
�k�, θ�k��� � n ln�λ2��x̄2 � q̄2�Λ

�k�, θ�k��� � R�x,Ψ�k��

In the above, R�x,Ψ�k�� denotes the remainder term

n�
i�1

E
�
ln
��
xi1 �G�1

θλ1
�ui�

	
!
�
xi2 �G�1

θλ2
�ui�

	
!
�
	 x,Ψ�k�

�
,

which depends only on the observed data and parameter estimates Ψ�k�. Rearranging the terms in
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the E-step, Q�Ψ � Ψ�k�� can be expressed as

Q�Ψ � Ψ�k�� � �n�1�θ��λ1�λ2��n
�
x̄1 � x̄2 � q̄1�Λ

�k�, θ�k�� � q̄2�Λ
�k�, θ�k�

�
ln ��1� θ��λ1 � λ2��

� n
�
x̄1 � q̄1�Λ

�k�, θ�k��
�
ln

�
λ1

λ1 � λ2

�

� n
�
x̄2 � q̄2�Λ

�k�, θ�k��
�
ln

�
λ2

λ1 � λ2

�
� R�x,Ψ�k��. (4.20)

Upon further inspection of the form of Q�Ψ � Ψ�k�� given in (4.20), it is apparent that there are
identifiability issues. Letting α � λ1	�λ1� λ2� and β � �1� θ��λ1� λ2�, the expression in (4.20)
can be rewritten as

Q�Ψ � Ψ�k�� � �nβ � n�x̄1 � x̄2 � q̄1�Λ
�k�, θ�k�� � q̄2�Λ

�k�, θ�k��� ln�β�

� n�x̄1 � q̄1�Λ
�k�, θ�k��� ln�α� � n�x̄2 � q̄2�Λ

�k�, θ�k��� ln�1� α�

� R�x,Ψ�k��. (4.21)

In the above, both x and Ψ�k� � �Λ�k�, θ�k�� are fixed. Thus, any set of values �λ1, λ2, θ� that
yield the same �α, β� will accordingly result in identical values for Q�Ψ � Ψ�k��. For example, set-
ting �λ1, λ2, θ� � �4, 6, 0.5� versus setting �λ1, λ2, θ� � �40, 60, 0.05� both give �α, β� � �0.4, 5�

and will therefore both result in the same value of Q�Ψ � Ψ�k��. Clearly, identifiability issues en-
sue if the EM algorithm is built using the underlying uniform random variable U generating the
comonotonic shock as the latent variable. Conceivably, non-identifiability in the E-step is due to
the singularity induced by the comonotonic shock since the underlying Uniform random variable
is treated as the latent variable.

Note that this issue is not inherent in the underlying observed likelihood. For example, consider
the two cases given by (i) �λ1, λ2, θ� � �4, 6, 0.5� and (ii) �λ1, λ2, θ� � �40, 60, 0.05�. Suppose a
pair �X1, X2� � �0, 0� is observed. In the proposed BP family, the probability of observing �0, 0�

is calculated according to

fΛ,θ�0, 0� � g�1�θ�λ1�0�g�1�θ�λ2�0�min�Gθλ1�0�, Gθ,λ2�0��

In case (i), this reduces to

0.1353353
 0.04978707
min�0.1353353, 0.04978707� � 0.0003354627

whereas case (ii) yields

3.139133
 10�17 
 1.758792
 10�25 
min�0.1353353, 0.04978707� � 2.748785
 10�43.
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4.3.3 Inference functions for margins estimation

The joint probability mass function fΛ,θ can be rewritten in a slightly different manner, thus leading
to an alternative formulation for the log-likelihood. Starting from pΛ,θ�z1, z2, x1, x2�, consider the
following manipulations. First,

pΛ,θ�z1, z2, x1, x2� � Pr�X1 � x1, X2 � x2 � Z1 � z1, Z2 � z2�cΛ,θ�z1, z2�

� Pr�Y1 � x1 � z1�Pr�Y2 � x2 � z2�cΛ,θ�z1, z2�

� Pr�X1 � x1 � Z1 � z1�Pr�X2 � x1 � Z2 � z2�cΛ,θ�z1, z2�.

Now the right-hand side can be rewritten as

Pr�X1 � x1, Z1 � z1�Pr�X2 � x1, Z2 � z2� � cΛ,θ�z1, z2�� �Pr�Z1 � z1�Pr�Z2 � z2�	 .

This can be further decomposed as

Pr�X1 � x1�Pr�X2 � x2� � �Pr�X1 � x1, Z1 � z1��Pr�X1 � x1�	

� �Pr�X2 � x1, Z2 � z2��Pr�X2 � x2�	 �
�
cΛ,θ�z1, z2�� �Pr�Z1 � z1�Pr�Z2 � z2�	

�
,

which is equivalent to

gλ1�x1�gλ2�x2� � �Pr�Z1 � z1 � X1 � x1�Pr�Z2 � z2 � X2 � x2�	

� 
cΛ,θ�z1, z2�� �gθλ1�z1�gθλ2�z2�	�.

Therefore,

pΛ,θ�z1, z2, x1, x2� � gλ1�x1�gλ2�x2�bx1,θ�z1�bx2,θ�z2�cΛ,θ�z1, z2�� �gθλ1�z1�gθλ2�z2�	 ,

where bxk,θ�zk� denotes the probability mass function of a Binomial random variable with size
xk and probability θ. The above derivation follows from properties of the Poisson distribution,
namely, if W1 � P�μ1� is independent of W2 � P�μ2�, then W1 � W1 
 W2 � w follows a
Binomial distribution with size w and probability μ1��μ1 
 μ2�. Let

ωΛ,θ�z1, z2; x1, x2� �
bx1,θ�z1�bx2,θ�z2�

gθλ1�z1�gθλ2�z2�
,

which can be regarded as a weighting term. Then, fΛ,θ�x1, x2� can be rewritten as

fΛ,θ�x1, x2� � gλ1�x1�gλ2�x2� �

�
x1�

z1�0

x2�
z2�0

ωΛ,θ�z1, z2; x1, x2�cΛ,θ�z1, z2�

�
, (4.22)

85



4.3 Estimation

which is simply the product of the marginal probability mass functions of X1 and X2 times a
multiplicative factor accounting for the dependence induced by the comonotonic shocks �Z1, Z2�.
Note that this form resembles the approach considered in Lakshminarayana et al. (1999).

Working with the form (4.22), the likelihood becomes

L�Λ, θ;x1,x2� �
n�

i�1

fΛ,θ�xi1, xi2�

�
n�

i�1

�
gλ1�xi1�gλ2�xi2� �

xi1�
z1�0

xi2�
z2�0

ωΛ,θ�z1, z2; x1, x2�cΛ,θ�z1, z2�

�

�

�
n�

i�1

gλ1�xi1�

�
�

�
n�

i�1

gλ2�xi2�

�

�
n�

i�1

�
xi1�
z1�0

xi2�
z2�0

ωΛ,θ�z1, z2; x1, x2�cΛ,θ�z1, z2�

�

� L1�λ1;x1� � L2�λ2;x2� � LD�Λ, θ;x1,x2�

where for k � �1, 2�, Lk�λk;xk� denotes the marginal likelihood for component k with observa-
tions xk, and LD�Λ, θ;x1,x2� encompasses the dependence. In the same way, the log-likelihood
can be broken down into two marginal components and a dependence term, viz.

��Λ, θ;x1,x2� � �1�λ1;x1� � �2�λ2;x2� � �D�Λ, θ;x1,x2�. (4.23)

The decomposition of the log-likelihood given in (4.23) has a similar form as that in copula
models, as shown in Chapter 3. As such, the inference function for margins (IFM) framework pro-
vides yet another approach for estimation in the proposed BP family. As was outlined in Chapter 3,
under suitable regularity conditions, the IFM estimates, denoted by �λ̌1, λ̌2, θ̌�, are the solutions to
the system �

	

	λ1

�1�λ1�,
	

	λ2

�2�λ2�,
	

	θ
��λ1, λ2, θ�

�
� 0�.

In the BP�Λ, θ� family, the margins are univariate Poisson and thus, for j � �1, 2�, the marginal
log-likelihoods have the form

�j�λj� � 
nλj � nx̄j ln�λj� 

n�

i�1

ln�xij!�.

IFM estimation then yields the marginal parameter estimates λ̌1 � x̄1 and λ̌2 � x̄2. Note that the
latter two estimates coincide with those obtained via the method of moments. The IFM estimate

86



4.3 Estimation

for the dependence parameter is determined by

θ̌ � argmax
θ

��Λ̌, θ�,

which can be found by solving ���Λ̌, θ���θ � 0. Based on the representation from (4.22), the
dependence component of the log-likelihood is given by

�D�Λ, θ� �
n�

i�1

ln

�
xi1�
z1�0

xi2�
z2�0

ωΛ,θ�z1, z2; x1, x2�cΛ,θ�z1, z2�

�
.

In particular, since ���Λ, θ���θ � ��D�Λ, θ���θ, the estimating equation involving θ in the IFM
approach is similar to that given in (4.17), namely

�

�θ
�D�Λ, θ� � n�λ1 � λ2� �

n

�1� θ�
�x̄1 � x̄2 � q̄1�Λ, θ� � q̄2�Λ, θ�	

�
n�

i�1

E

�
�

�θ
ln cΛ,θ�z1, z2�

���xi1, xi2

�
. (4.24)

In the IFM setting, however, the marginal parameters are held fixed at Λ̌ � �x̄1, x̄2�.
As was the case for maximum likelihood estimation, numerical procedures can be used to

obtain the IFM estimate θ̌. As an alternative, the EM algorithm can be applied to the pseudo
likelihood L�Λ̌, θ�, i.e., the observed likelihood wherein the marginal parameters are held fixed at
their respective marginal MLEs, to obtain the IFM estimate θ̌. In this setting, each EM iteration
will update the dependence parameter only to yield a sequence θ�0�, θ�1�, . . .

Suppose that the underlying uniform random variables generating the comonotonic shocks are
used as the missing data in the EM set-up. Then, the complete data pseudo log-likelihood is similar
to that given in (4.20), only with �λ1, λ2� � �x̄1, x̄2� so that

�C�Λ̌, θ;x,u� �
n�

i�1

�
� �1� θ��x̄1 � x̄2� � ln�1� θ��xi1 � xi2 �G�1

θx̄1
�ui� �G�1

θx̄2
�ui�	

� ln�x̄1��xi1 �G�1
θx̄1

�ui�	 � ln�x̄2��xi2 �G�1
θx̄2

�ui�	

� ln
�
�xi1 �G�1

θx̄1
�ui�	!�xi2 �G�1

θx̄2
�ui�	!

	 

. (4.25)

The E-step involves the expectations

E�G�1
θx̄1

�Ui� 
 xi1, xi2, θ
�k�	 � E�Z1 
 xi1, xi2, θ

�k�	 � qi1�Λ̌, θ
�k��,

E�G�1
θx̄2

�Ui� 
 xi1, xi2, θ
�k�	 � E�Z2 
 xi1, xi2, θ

�k�	 � qi2�Λ̌, θ
�k��.
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Using similar notation as was previously introduced, let

q̄1�Λ̌, θ
�k�� �

1

n

n�

i�1

qi1�Λ̌, θ
�k��, q̄2�Λ̌, θ

�k�� �
1

n

n�

i�1

qi2�Λ̌, θ
�k��,

with Λ̌ � �x̄1, x̄2�. The E-step then yields

Q�θ � θ�k�� � �n�1� θ��x̄1 � x̄2� � n ln�1� θ��x̄1 � x̄2 � q̄1�Λ̌, θ
�k�� � q̄2�Λ̌, θ

�k���

� n ln�x̄1��x̄1 � q̄1�Λ̌, θ
�k��� � n ln�x̄2��x̄2 � q̄2�Λ̌, θ

�k��� � R�x, θ�k��, (4.26)

where the remainder term

R�x, θ�k�� �
n�

i�1

E
�
ln	�xi1 �G�1

θx̄1
�ui��!�xi2 �G�1

θx̄2
�ui��!
 � x, θ

�k�
�

is a function of the observed data x and parameter estimate θ�k� only. This leads to the M-step, viz.

�

�θ
Q�θ � θ�k�� � n�x̄1 � x̄2� �

n

�1� θ�
�x̄1 � x̄2 � q̄1�Λ̌, θ

�k�� � q̄2�Λ̌, θ
�k��� � 0

� θ � 1�

�
x̄1 � x̄2 � q̄1�Λ̌, θ

�k�� � q̄2�Λ̌, θ
�k��

x̄1 � x̄2

�
.

Thus, the sequence of EM updates are given by

θ�k�1� �
q̄1�Λ̌, θ

�k�� � q̄2�Λ̌, θ
�k��

x̄1 � x̄2

. (4.27)

The form of the EM update given in (4.27) is intuitive and can be interpreted as the proportion
of the overall total average of X1 and X2 due to the comonotonic shock �Z1, Z2�. The pooling of
the information in terms of the summation is also intuitive in that θ is common to both components
in �Z1, Z2�. Moreover, the form of the updates ensures that the iterates θ�k� will always fall within
the parameter boundaries 	0, 1
. Indeed, by construction 0 
 Z1 
 X1 and 0 
 Z2 
 X2, and
thus for an observed pair �xi1, xi2� it follows that 0 
 q̄1�Λ̌, θ

�k�� 
 x̄1 and 0 
 q̄2�Λ̌, θ
�k�� 
 x̄2.

Consequently, at each iteration k � �1, 2, . . .�, the EM update θ�k� � 	0, 1
.
Under certain conditions, the EM sequence θ�k� will converge to the MLE corresponding to

the pseudo likelihood L�Λ̌, θ�, i.e., the IFM estimate. In particular, as stated in Theorem 7.5.2
of Casella and Berger (2002) and Theorem 3.2 of McLachlan and Krishnan (2008), if the E-step
Q�Ψ � Ψ�� is continuous in both Ψ and Ψ�, then all limit points of the sequence θ�k� of EM updates
are stationary points of the likelihood L�Λ̌, θ� and L�Λ̌, θ�k�� converges monotonically to L�Λ̌, θ��

for some stationary point θ�. As the form of Q�θ � θ�� given in (4.26) meets this regularity criterion,
the sequence θ�k� of EM updates will converge to a stationary point of L�Λ̌, θ�.
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It is important to emphasize that in this context the EM algorithm yields the IFM estimate θ̌

and not the MLE θ̂ as the EM algorithm is being applied to the pseudo log-likelihood ��Λ̌, θ� and
not the true model log-likelihood ��Λ, θ�.

In addition to the continuity condition previously described, other assumptions necessary for
the convergence an EM sequence are outlined in Section 3.4.2 of McLachlan and Krishnan (2008).
These assumptions include

(i) The parameter space Ω is a subset of the d-dimensional Euclidean space R
d,

(ii) ΩΨ0 � �Ψ � Ω : L�Ψ� � L�Ψ0�� is compact for any L�Ψ0� � 	

(iii) L�Ψ� is continuous in Ω and differentiable in the interior of Ω.

All these conditions are satisfied here.
As detailed in Chapter 3, the asymptotic variance of the IFM estimates can be expressed in

terms of the Fisher information matrix as well as the univariate marginal Fisher information matri-
ces. Let Ψ̌ � �λ̌1, λ̌2, θ̌� denote the IFM estimators and Ψ denote the true parameter values. Then,
as n� 
, the limiting distribution is Gaussian, viz.

�
n�Ψ̌	Ψ�� N �0, V �.

Let š denote the set of estimating equations used to derive the IFM estimates, namely

š � �
� 


λ1

�1�λ1�, 


λ2

�2�λ2�, 

θ ��λ1, λ2, θ�
�
.

Then, as shown in Chapter 3, the asymptotic variance V is defined by

V � �	D�1
š �Mš�	D�1

š ��,

where
Mš � cov �š�X; Ψ�� , Dš � E

�
š�X; Ψ�

Ψ�

�
.

Using similar notation as introduced in Chapter 3, let Jjj denote the information matrix associ-
ated with the jth margin and set Jjk � cov�šj, šk�, for j, k � �1, 2�. In the BP model, this reduces
to

Jjj � 	E
� 
2

λ2

j

�j�λj�
�
� 	E

� 
2

λ2

j

ln gλj
�Xj�

�
� 1

λj

,

Jjk � cov
� 


λj

�j�λj�, 


λk

�k�λk�
�
� cov

� 


λj

ln gλj
�Xj�, 



λk

ln gλk
�Xk�

�

� cov
�
	1� Xj

λj

,	1� Xk

λk

�
� 1

λjλk

mλj ,λk
�θ�,
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where mλj ,λk
�θ� � cov�Xj, Xk� for �Xj, Xk� � BP�Λ, θ�. Use I to denote the Fisher Information

matrix, i.e.,

I � �E

�
�2

�Ψ�Ψ�
��Λ, θ�

�
� �E

�
�2

�Ψ�Ψ�
ln fΛ,θ�X1, X2�

�
,

with Ψ � �λ1, λ2, θ�. Further, define aj to be equal to �I33I3jJ �1
jj for j � �1, 2	, where Ijk

represents the �j, k� element of the Fisher Information matrix. Note that in the BP model, each of
the quantities Jjk, Ijk, aj is a scalar, for j, k � �1, 2, 3	.

Following the simplifications for V derived in Joe (2005), the asymptotic variance of the IFM
estimator Ψ̌ � �λ̌1, λ̌2, θ̌� in the BP model, for each �j, k� element denoted Vjk, is given by

V11 � J �1
11 � λ1,

V12 � J �1
11 J12J �1

22 � λ1

�
1

λ1λ2

mλ1,λ2�θ�

�
λ2 � mλ1,λ2�θ�,

V13 � J �1
11

2�
k�1

J1ka
�

k � λ1

�
1

λ1

��I�133 I31�λ1 

1

λ1λ2

mλ1,λ2�θ���I�133 I32�λ2

�

� �I�133 �λ1I31 
mλ1,λ2�θ�I32	 ,

V22 � J �1
22 � λ2,

V23 � J �1
22

2�
k�1

J2ka
�

k � λ2

�
1

λ1λ2

mλ1,λ2�θ���I�133 I31�λ1 

1

λ2

��I�133 I32�λ2

�

� �I�133 �mλ1,λ2�θ�I31 
 λ2I32	 ,

V33 � I�133 

2�

j�1

2�
k�1

ajJjka
�

k � I�133 
 ��I�133 I31λ1�

�
1

λ1

�
��I�133 I31λ1�


 ��I�133 I31λ1�

�
1

λ1λ2

mλ1,λ2�θ�

�
��I�133 I32λ2�


 ��I�133 I32λ2�

�
1

λ1λ2

mλ1,λ2�θ�

�
��I�133 I31λ1�


 ��I�133 I32λ2�

�
1

λ2

�
��I�133 I32λ2�

� I�133 
 �I�133 �
2
�
λ1I2

31 
 2mλ1,λ2�θ�I31I32 
 λ2I2
32

�
.

Maximum likelihood estimators are asymptotically efficient, i.e., the asymptotic variance at-
tains the Cramér–Rao lower bound; see, e.g., Theorem 10.1.12 of Casella and Berger (2002). As
was discussed in Chapter 3, there is a loss in efficiency when IFM estimation is used rather than a
full likelihood estimation procedure. For the marginal parameters, this loss in precision is due to
the fact that estimation is based only on the marginal components �1�λ1� and �2�λ2�, and systemat-
ically ignores the information in the dependence component �D�Λ, θ�. The form of V33 allows for
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a straightforward assessment of the loss in efficiency that ensues when θ̌, rather than θ̂, is used to
estimate the dependence parameter θ. Indeed, the maximum likelihood estimator has asymptotic
variance I�133 while that for the IFM estimator is V33 and the difference between the two is given
by

V33 � I�133 � �I�133 �
2
�
λ1I2

31 � 2mλ1,λ2�θ�I31I32 � λ2I2
32

�
.

As was previously noted, despite the differences in the various estimation procedures discussed
throughout this section, namely the method of moments, maximum likelihood and inference func-
tions for margins, all three result in consistent estimates. Consequently, as the sample size increases
the differences between the three estimates �λ̃1, λ̃2, θ̃�, �λ̂1, λ̂2, θ̂� and �λ̌1, λ̌2, θ̌� will be small. This
leads to the next section, in which the results from various simulation studies are summarized.

4.4 Simulations

A set of simulations was carried out to assess the performance of the estimation techniques outlined
in Section 4.3 for varying values of λ1 � �1, 2, 4, 10�, θ � �0.10, 0.25, 0.50, 0.75, 0.90�, and varying
sample size n � �10, 50, 100, 1000�. Note that the value of λ2 was held fixed at 5 throughout
as the effect of the marginal parameter will be symmetric in the two components, thus testing
the effects of λ2 becomes redundant if λ1 is allowed to vary. In each scenario resulting from a
particular combination �λ1, λ2, θ, n�, a random sample from the BP�Λ, θ� model was generated.
In particular, for i � �1, . . . , n�, three mutually independent U�0, 1� distributed random variables,
denoted Vi1,Vi2 and Ui, were generated and the observations were set equal to

Xi1 � G�1�1�θ�λ1
�Vi1� �G�1

θλ1
�Ui�, Xi2 � G�1

�1�θ�λ2
�Vi2� �G�1

θλ2
�Ui�.

Each of the 80 unique scenarios was replicated 500 times resulting in a total of 40,000 iterations.
At every iteration, three sets of estimates were produced according to the method of moments
(MM), denoted �λ̃1, λ̃2, θ̃�, the maximum likelihood (ML) approach, denoted �λ̂1, λ̂2, θ̂�, and the
inference function for margins (IFM) approach, denoted �λ̌1, λ̌2, θ̌�. Recall that it was shown that
the EM algorithm could be used to determine the IFM estimate θ̌. In the practical implementation
of the latter, however, it was found that the sequence θ�0�, θ�1�, . . . of EM estimates tended to be
slower to converge than directly optimizing the pseudo log-likelihood ��Λ̌, θ�. As a result, when
applying the IFM method in the simulations detailed here, θ̌ was established by directly optimizing
the log-likelihood with marginal parameters fixed at their respective marginal MLEs, i.e.,

θ̌ � argmax
θ

��Λ̌, θ� � argmax
θ

�D�Λ̌, θ�.

This was done numerically using the optim function in R. Similarly, the maximum likelihood es-
timates were computed using the optim function. In both cases, the method of moments estimates
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were used as starting values. In order to avoid issues at the boundary of the parameter space, if
θ̃ � 0 then a starting value of 0.01 was used while when θ̃ � 1 a starting value of 0.99 was used.
Additionally, in cases where the sample covariance was negative, the corresponding MM estimate
was set to NA and a starting value of 0.01 was used in the IFM and ML estimation procedures.

Out of the 40,000 iterations, there were 2473 instances where S12 � 0 and accordingly the MM
estimate was set to NA. This tended to occur for smaller sample sizes and for lower dependence
levels, i.e., smaller values of θ, as one would expect. At the other extreme, there were 2670 itera-
tions that yielded θ̃ � 1. Not surprisingly, this happened more often in smaller sample sizes and
for higher values of θ.

There were a small number of iterations where the optimization procedure reached the maxi-
mum number of iterations of parameter updates without converging, which is set to 100 by default
in R. For the maximum likelihood approach, this maximum was reached in 10 of the 40,000 iter-
ations while for the IFM method this occurred 187 times. This tended to occur when the sample
size was small: Specifically all 10 occurrences for the ML method where in scenarios with n � 10,
while for IFM estimation 173 occurred when n � 10, 12 when n � 50 and 2 times when n � 100.
In the summaries provided hereafter, these cases of non-convergence are excluded as well as the
instances where the method of moments estimate was set to NA, as previously described.

Figures 4.3 through 4.12 summarize the estimation results for the dependence parameter θ in
the 80 distinct scenarios. As expected from asymptotic theory, the variability in the estimation of θ
decreases as the sample size n increases; this holds for all estimation methods. It is also apparent
from the boxplots that the true underlying value of the marginal parameter, λ1, seemingly has no
effect on the estimation of the dependence parameter. Note that the seemingly poor performance
across all estimation techniques in smaller sample sizes and lower levels of θ is, in part, due to the
issues previously discussed. Notably, several iterations were disregarded when S12 � 0 or either
the optimization algorithms failed to converge.

As expected based on the theoretical results established in Section 4.3, the method of moments
estimator tended to exhibit greater variability than both likelihood-based estimators. Additionally,
the IFM method tended to produce slightly more variability in the estimate for the dependence
parameter than the full maximum likelihood estimator, although both likelihood-based methods
produced very similar results.

The figures further reveal that the method of moments approach seems to work better when the
dependence is weaker. That is, the variability in the MM estimates θ̃ is comparatively smaller when
the true value of θ is smaller. In particular, in the scenarios when θ is smaller, e.g., θ � 0.1, the
spread in the boxplot for the MM estimates closely resembles that resulting from both the IFM and
ML methods. Recall from Proposition 4.3 that the asymptotic variance of the method of moments
estimator is given by �γ��σ12��

2 σ2�θ, λ1, λ2�. It is not obvious from its general form whether the
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latter expression is an increasing function of θ. However, when λ1 � λ2 � λ, it was shown that the
asymptotic variance of θ̃ reduces to �λ�θ�θ2λ��λ, which is obviously an increasing function in θ.
The simulations suggest that for any �λ1, λ2�, the asymptotic variance for the method of moments
estimator tends to be larger for larger values of θ.

By the same token, the plots indicate that the variability of the likelihood-based estimators
(i.e., θ̌ and θ̂) shrinks as the value of θ increases. This phenomena is intuitive if the independent
components �Y1, Y2� in Eq. (4.4) are regarded as random Poisson error terms to the comonotonic
shock �Z1, Z2�. Indeed, as θ increases the random error terms decrease so that �X1, X2� are pre-
dominantly generated by the comonotonic shock �Z1, Z2�, which are themselves generated from
a single standard Uniform random variable. Thus, as θ increases, the variability should decrease
accordingly in the likelihood-based estimation approaches.

The estimates θ̌ obtained from the IFM method tended to closely resemble those resulting from
maximum likelihood estimation, regardless of the sample size. Recall that the implementation of
the IFM estimation is a two-step procedure wherein the marginal parameter estimates, Λ̌, are set
to their respective marginal maximum likelihood estimates while the dependence parameter is
estimated according to

θ̌ � argmax
θ

��Λ̌, θ� � argmax
θ

�D�Λ̌, θ�.

In contrast, ML estimation simultaneously determines the parameter estimates Ψ̂ � �λ̂1, λ̂2, θ̂� as

Ψ̂ � argmax
Λ,θ

��Λ, θ�.

The simulation results suggest that holding the marginal parameters fixed at Λ̌ has little effect on
the estimation of θ. Further, this seems to indicate that there is very little information regarding the
marginal parameters in the dependence portion of the log-likelihood �D�Λ, θ�. Figures 4.13 to 4.22
depict the estimation results for the marginal parameter λ1. The plots provide further evidence of
this and show very little difference between using the marginal log-likelihood �1�λ1� for estimation
of λ1 as compared to using the full likelihood ��Λ, θ�.

The plots in Figure 4.3 to 4.12 also reveal that there are some cases where the IFM and MLE
methods resulted in outlier values for the estimate of θ. For example, this phenomena occurred
when �λ1, θ, n� � �4, 0.9, 1000�, as well as several other scenarios. Based on the figures, outliers
seemed to be produced more often when θ is large and tended to occur more often for the IFM
estimation approach. As was previously mentioned, the method of moments estimates were used
as starting values for the optimization procedures for both the IFM and MLE methods. In these
extremal cases where the true value of θ was larger (e.g., 0.75 and 0.90), the MM estimate θ̃ was
larger than its true value. The results suggest that using θ̃ as a starting value for the dependence
parameter in the IFM and MLE optimization procedures could be inappropriate in some instances.
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This led to a second, smaller simulation study in which the effects of the starting values were
investigated. Focusing on the scenario where �λ1, θ, n� � �4, 0.9, 1000�, with λ2 � 5, both IFM
and MLE estimates for θ were produced using the following starting values: (1) the MM estimate θ̃,
(2) 0.10, (3) 0.90 (the true value) and (4) 0.99. This was repeated 500 times. As shown in Figure 4.2,
these outlier estimates for θ seem to be produced when the starting value is high. In particular, for
the IFM estimation approach, the extreme values for θ̌ are produced when either the MM estimate
is used as a starting value, or the value 0.99 is used to initiate the optimization algorithm. For the
MLE, this was only seen when θ̃ was used as a starting value. In both approaches, when the MM
starting value led to outliers, the value of θ̃ was quite large (e.g., 0.997 for the IFM approach and
0.998 in the ML estimation). Seemingly, starting too close to the boundary of the parameter space
can yield poor results, which is not surprising.

Overall, the implementation of the MM method tended to run the fastest, on average, followed
by the IFM approach and last the full maximum likelihood estimation approach. Although this is
somewhat inconsequential in the bivariate case as all three methods had relatively similar running
times, in higher dimensions this will likely have a much greater impact. This will be discussed in
Chapter 6.

Finally, Figure 4.23 provides 2-D plots of the log-likleihood for a random sample of size n �

1000 for varying values of θ and �λ1, λ2� fixed at �4, 5�. In addition, a 3-D plot of the log-likelihood
is shown for the case where θ � 0.5 and again �λ1, λ2� � �4, 5�.
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Figure 4.2: Estimation results for θ using different starting values: (1) the method of moments
estimate (2) 0.01 (3) 0.99 (4) 0.90 (the true value). The inference for margins results are shown on
the left and maximum likelihood estimate on the right.
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Figure 4.3: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.4: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.5: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.6: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.7: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.8: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.9: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.10: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.11: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.12: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.13: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.14: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.15: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.16: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.17: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.18: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.19: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.20: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.21: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.22: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 4.23: Log-likelihood plots for varying values of θ, with �λ1, λ2� � �4, 5� and n � 1000.
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4.5 Data illustration

4.5 Data illustration

In order to further explore the merits of the proposed bivariate Poisson family, the BP model
was applied to environmental data pertaining to two US weather stations, namely La Guardia
Airport in New York and Newark Liberty International Airport in New Jersey. The raw data are
publicly available from the US National Centers for Environmental Information and consist of
daily precipitation recorded at the aforementioned weather stations. The bivariate counts are then
established as the number of days per year where the total rainfall recorded at the weather station
exceeded a pre-specified threshold. For the La Guardia station, the threshold was taken to be the
95th percentile, specifically 18.54 mm. At the Newark station, the threshold was set as the 99th
percentile given by 41.40 mm. The yearly number of exceedances at La Guardia is defined as the
variable X1 while that at Newark is defined as X2. The data included observations from the year
1940 to 2017, for a total of 78 paired observations denoted �xi1, xi2� for i � �1, . . . , 78�.

In the proposed BP model, both margins are assumed to follow a univariate Poisson distri-
bution. This assumption can easily be checked using standard statistical tests. In particular, a chi-
square goodness-of-fit test yields p-values of 0.31 for the first component (La Guardia) and 0.88 for
the second component (Newark). This was done in R using the gofstat function. The QQ-plots
for both the data at La Guardia and Newark, shown in Figure 4.24, provide additional evidence
of Poisson margins. Further theoretical justification for the marginal Poisson assumption stems
from extreme-value theory. As detailed in e.g., Corollary 4.19 of Resnick (2008), the number of
exceedances above a high threshold can be shown to be approximately Poisson distributed.
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Figure 4.24: QQ-plots assessing the marginal Poisson assumption for variables X1 (left) and X2

(right) in the data illustration. Theoretical and empirical quantiles are on the x- and y-axis, respec-
tively.
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The counts �X1, X2� are derived from rainfall data recorded at two nearby weather stations. As
a result of their spatial disposition, it is likely that X1 and X2 exhibit a strong association. Indeed,
the sample covariance is S12 � 4.22, whereas the mean number of exceedances at the La Guardia
station is X̄1 � 17.99 and that at the Newark station is X̄2 � 3.64. Using the sample means,
X̄1 and X̄2, as the marginal parameter estimates, the implied sample correlation is then given by
R12 � S12�

�
X̄1X̄2 � 0.52.

In the classical bivariate Poisson model, the covariance ξ must fall between 0 and min�λ1, λ2�.
As was outlined in Chapter 2, both the method of moments and maximum likelihood estima-
tion procedures result in marginal parameter estimates equal to their respective sample means.
Provided that S12 � 0, the method of moments estimator for the covariance parameter is ξ̃ �

min�S12,min�X̄1, X̄2��. For the data considered here, this results in ξ̃ � min�X̄1, X̄2� � 3.64

implying a correlation of R̃ � ξ̃�
�
X̄1X̄2 � 0.45. Maximum likelihood estimation requires the

use of numerical techniques. In particular, using the optim function in R, the MLE ξ̂ is obtained
by maximizing the log-likelihood in the classical bivariate Poisson model subject to the constraint
that ξ � 	0,min�λ1, λ2�
, with �λ1, λ2� fixed at �X̄1, X̄2�, as the latter represent the MLEs of the
marginal parameters. Using the method of moments estimate as a starting value (with slight adjust-
ments when necessary so as to avoid issues at the boundary of the parameter space), this resulted
in ξ̂ � 2.64 thus implying a correlation of R̂ � ξ̂�

�
X̄1X̄2 � 0.33.

Based on 1000 bootstrap replications, 95% confidence intervals for ξ resulting from the method
of moments and maximum likelihood approaches were found to be �1.44, 4.09� and �1.23, 3.73�,
respectively. The method of moments approach yielded a 95% bootstrap confidence interval for
the implied correlation of �0.18, 0.47�, while in the case of maximum likelihood estimation this
interval was given by �0.16, 0.45�. Note that in both estimation approaches, neither the observed
sample covariance nor the corresponding correlation is contained in their respective confidence
interval.

The construction of the proposed bivariate Poisson model allows for greater flexibility in the
dependence structure between positively correlated count data. For the rainfall data considered
here, all three estimation approaches discussed in Section 4.3 were applied, the results from which
are summarized in Table 4.1.

The numerical techniques used in the optimization for both the ML and IFM methods used the
method of moments estimates as starting values. In order to avoid issues at the boundary of the
parameter space, if the method of moments resulted in θ̃ � 0, the starting value was set to 0.01

while if θ̃ � 1 a starting value of 0.99 was used. For this particular data, the bootstrap replications
never resulted in θ̃ � 0. Note that there were a total of six replications where the MM estimate
was found to be 1. In each of these 6 occurrences, the sample covariance attained the upper bound
S12 � mX̄1,X̄2

�1�, thus appropriately yielding θ̃ � 1. All of the computations were done in R; the
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MM estimation used the uniroot function while both IFM and ML results were obtained using
optim. Note that the IFM estimation results presented in Table 4.1 were established by optimizing
the log-likelihood in the proposed BP model, holding �λ1, λ2� fixed at their respective marginal
MLEs, namely �X̄1, X̄2�. The EM algorithm was not used to find θ̌ as it tended to be quite slow to
converge. Nonetheless, applying the IFM method with the EM algorithm yields a similar estimate
for the dependence parameter, specifically, θ̌ � 0.36.

The results shown in Table 4.1 suggest that both likelihood-based methods (IFM and MLE)
yield a much smaller estimate for θ and consequently imply weaker dependence. This is also the
case in the classical bivariate Poisson model, where the maximum likelihood estimate for θ cor-
responded to a much lower correlation than that resulting from the method of moments approach.
The method of moments estimator leads to a substantially wider confidence interval for both θ and
the implied correlation as compared to the likelihood-based methods. This is perhaps an indicator
of the poor performance of the moment-based estimator for the given sample.

Notice, however, that only the bootstrap confidence interval for ρ derived from the method of
moments estimates contains the observed sample correlation R12 � S12�

�
X̄1X̄2 � 0.52. For this

particular data, despite both the theoretical and empirical justification for Poisson margins, there
is slight evidence of overdispersion. Indeed, the sample variance for X1 and X2 are S2

1 � 25.23

and S2
2 � 4.60, respectively, both of which are larger than the corresponding marginal sample

means X̄1 � 17.99 and X̄2 � 3.64. Defining the sample correlation as R�

12 � S12�
�
S2
1S

2
2 yields

an observed value of 0.39. This version of the sample correlation is contained in the bootstrap
confidence intervals for ρ implied by both the IFM and MLE methods.

It may be that the proposed bivariate Poisson model is not entirely appropriate for the rain-
fall data under question. However, these issues could be due to the small sample size as the data
under question consist of only 78 pairs. Despite the issues with the estimation of the dependence
parameter, the results for the marginal parameters were less problematic. As expected based on
the simulation results, there is very little difference in the marginal parameter estimates from the
various estimation approaches.

Note that different starting values for θ were tested for the IFM and MLE methods in the

Table 4.1: Estimation results for the proposed bivariate Poisson model. Estimates are given with
95% bootstrap confidence intervals in parentheses.

λ1 λ2 θ ρ
MM 17.99 �16.81, 19.15� 3.64 �3.19, 4.14� 0.54 �0.20, 0.90� 0.52 �0.18, 0.89�
IFM 17.99 �16.81, 19.15� 3.64 �3.19, 4.14� 0.35 �0.00, 0.50� 0.33 �0.00, 0.48�
MLE 17.98 �16.81, 19.15� 3.62 �3.19, 4.14� 0.35 �0.16, 0.52� 0.33 �0.14, 0.50�
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Table 4.2: Estimation results using different starting values for θ.

Starting Value IFM MLE
0.10 0.35 0.35
0.25 0.35 0.35
0.50 0.35 0.35
0.75 0.00 0.35
0.90 0.00 0.35

BP�Λ, θ� model, the results for which are summarized in Table 4.2. Ignoring the poor results for
the starting values of 0.75 and 0.90 in the IFM approach, the likelihood-based methods seem to
be more or less unaffected by the starting value for θ in the optimization procedure. This was also
observed in the simulation studies.

Recall that the main motivation in defining the proposed bivariate Poisson model was to address
the shortcomings of the classical common shock model. Specifically, the classical model cannot
accurately account for strong degrees of dependence. The proposed bivariate Poisson model, in
contrast, can span the full spectrum of possible correlation, ranging from 0 to ρmax. In this partic-
ular data illustration, the margins exhibit a moderate degree of dependence, with the likelihood-
based methods estimating θ at 0.35 and the MM approach yielding 0.54. In comparing the implied
correlations in the proposed and classical models, it is clear that there are only slight differences be-
tween the two. Nonetheless, the two models do have different implications in terms of the resulting
probability distribution.

In the context of these data, one may be interested in estimating the probability of certain
extremal events. For example, consider the event �X1 � 30, X2 � 30�, i.e., the event that the
total daily rainfall amounts at both the La Guardia and Newark stations exceed their respective
thresholds (18.54 mm and 41.40 mm) for more than 30 days in the year, i.e., roughly one month.
Under the classical bivariate Poisson model, the probability associated with this event is estimated
at roughly 0.330% while in the proposed model the probability is approximately 0.328%. Note
that both computations were done using the MLEs obtained in the respective models. Seemingly,
the classical model overestimates the probability of this extremal event, although the difference is
quite small.

As another example, consider the event �X1 � 30, X2 � 7�. Under the classical model, the
probability associated with this event is 3.52%, whereas in the proposed model this probability
becomes 3.43% (where both computations are based on the MLEs.) Again, the classical model
overestimates the probability of this event. Note that based on the sample, the empirical probability
of both of the aforementioned events is 0.
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5
Inducing Negative Dependence in the

Proposed Bivariate Poisson Model

5.1 Introduction

By construction, the proposed BP model is only appropriate for positively correlated Poisson
random variables since, as was previously shown, for �X1, X2� � BP�Λ, θ�, corr�X1, X2� �

�0, ρmax�λ1, λ2��. Nonetheless, the stochastic representation as given in (4.4) allows for a natu-
ral extension to the case of negative dependence. Consider a similar set-up wherein the margins
�X1, X2� are decomposed into an independent pair �Y1, Y2�. However, now let �Z1, Z2� denote
a counter-monotonic shock. More specifically, suppose that Y1 and Y2 are mutually independent
Poisson random variables with rates �1 � θ�λ1 and �1 � θ�λ2, respectively. Further assume that
�Y1, Y2� is independent of the counter-monotonic pair �Z1, Z2�, which can be written as

�Z1, Z2� � �G�1θλ1
�U�, G�1θλ2

�1� U�� (5.1)

for U � U�0, 1�. Then
�X1, X2� � �Y1 	 Z1, Y2 	 Z2� (5.2)

follows a bivariate Poisson counter-monotonic shock model, which will be denoted as �X1, X2� �

BP��Λ, θ�. Similarly to the model for positive dependence, the parameter constraints in the pro-
posed BP��Λ, θ� model are λ1, λ2 � �0,
� and θ � �0, 1�. Note that this proposed bivariate Pois-
son model for negatively correlated margins is similar to that proposed by Cuenin et al. (2016); see
Chapter 2 for more details.

Many of the properties in the BP� family parallel those in the proposed bivariate Poisson
model for positive dependence. Similarly to what was shown in the BP model, θ can be regarded
as a dependence parameter in that it regulates the strength of the association between the margins.
In particular, setting θ � 0 yields independence while θ � 1 results in perfect negative dependence.



5.2 The proposed model for negative dependence

In the latter case, �X1, X2� represent a counter-monotonic pair with correlation equal to the lower
bound ρmin�λ1, λ2� given in (4.1). In this sense, the proposed BP��Λ, θ� model provides a fully
flexible bivariate Poisson model for negative dependence. The rest of this chapter is dedicated to
exploring the distributional properties as well as estimation techniques for the proposed BP��Λ, θ�
model. As a result of the similarity in the stochastic representations in (4.4) and (5.2), much of what
will be presented in this chapter directly parallels that of Chapter 4. As such, the present chapter
will be kept relatively brief in comparison to the previous.

5.2 The proposed model for negative dependence

The construction of the proposed model for negative dependence, as given in (5.2), allows to ex-
press both the probability mass function and distribution function in an analogous manner to that
of the BP model. Let c�Λ,θ denote the probability mass function of the counter-monotonic pair
�Z1, Z2� � W �P�θλ1�,P�θλ2��. By (5.1), it follows that for all z1, z2 � N,

c�Λ,θ�z1, z2� � Pr�G�1θλ1
�U� � z1, G

�1
θλ2
�1� U� � z2�

� Pr
�
Gθλ1�z1 � 1� 	 U 
 G�1θλ1

�z1�, G
�1
θλ2
�z2 � 1� 	 1� U 
 Gθλ2�z2�

�

� Pr�Gθλ1�z1 � 1� 	 U 
 G�1θλ1
�z1�, Ḡθλ2�z2� 
 U 	 Ḡθλ2�z2 � 1��

� Pr
�
max�Gθλ1�z1 � 1�, Ḡθλ2�z2�

�

 U 
 min

�
Gθλ1�z1�, Ḡθλ2�z2 � 1��

�

�
�
min�Gθλ1�z1�, Ḡθλ2�z2 � 1�� �max�Gθλ1�z1 � 1�, Ḡθλ2�z2��

�
�

where again �x�� � x1�x 
 0�. As was shown in Chapter 3, counter-monotonicity implies that
the pair �Z1, Z2� has distribution function given by the lower Fréchet–Hoeffding bound, i.e.,

Pr�Z1 
 z1, Z2 
 z2� � max �0, Gθλ1�z1� �Gθλ2�z2� � 1� .

Accordingly, the probability mass function in the proposed negative dependence model, denoted
as f�Λ,θ, can be written as

f�Λ,θ�x1, x2� �
x1�

z1�0

x2�

z2�0

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�c
�
Λ,θ�z1, z2�,

for x1, x2 � N. This leads to the following equivalent forms for the distribution function F�
Λ,θ:

F�
Λ,θ�x1, x2� �

x1�

z1�0

x2�

z2�0

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�max �0, Gθλ1�z1� �Gθλ2�z2� � 1�

�
x1�

z1�0

x2�

z2�0

G�1�θ�λ1�x1 � z1�G�1�θ�λ2�x2 � z2�c
�
Λ,θ�z1, z2�.
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5.2.1 PQD ordering

The concept of positive quadrant dependence (PQD) ordering was introduced in Chapter 4 as a
means of quantifying the nature of the dependence. Recall that for an arbitrary joint distribution
function F the notion of PQD ordering ensures that

FL �PQD F �PQD FU , (5.3)

where FL and FU represent the lower and upper Fréchet–Hoeffding boundary distributions, re-
spectively, and F , FL and FU all have the same marginal distributions. As was the case in the
proposed bivariate Poisson model with positively correlated margins, the strength of the depen-
dence in the BP��Λ, θ� family is regulated by θ in terms of PQD ordering. This is formally stated
in the following lemma, analogous to Lemma 4.1.

Lemma 5.1 PQD ordering in the BP��Λ, θ� family
Let �X1, X2� � BP��Λ, θ� and �X �

1, X
�

2� � BP��Λ, θ��. Then θ � θ� � �X �

1, X
�

2� �PQD

�X1, X2�.

Proof. The proof is analogous to that of Lemma 4.1. Fix λ1, λ2 and θ � θ�. By definition of the
BP��Λ, θ� family, �X1, X2� can be written as

X1 � Y1 � Z1, X2 � Y2 � Z2,

with Y1 � P��1 	 θ�λ1
 independent of Y2 � P��1 	 θ�λ2
 and �Y1, Y2� independent of the
counter-monotonic pair �Z1, Z2� �W �P�θλ1�,P�θλ2�
. Similarly, write

X �

1 � Y �

1 � Z �

1, X �

2 � Y �

2 � Z �

2,

with Y �

1 � P��1 	 θ��λ1
 independent of Y �

2 � P��1 	 θ��λ2
 and �Y �

1 , Y
�

2� independent of
�Z �

1, Z
�

2� �W �P�θ�λ1�,P�θ�λ2�
. The pair �Y1, Y2� can be expressed as

Y1 � T1 � S1, Y2 � T2 � S2,

where T1 � P��1 	 θ��λ1
, T2 � P��1 	 θ��λ2
, S1 � P��θ� 	 θ�λ1
, S2 � P��θ� 	 θ�λ2


are mutually independent. Since �T1, T2� and �Y �

1 , Y
�

2� consist of independent pairs with identical
marginal distributions, it follows that �Y �

1 , Y
�

2� �PQD �T1, T2�. The pairs �S1 � Z1, S2 � Z2� and
�Z �

1, Z
�

2� have identical marginal distributions, respectively given by P�θ�λ1� and P�θ�λ2� for the
first and second components. By definition, �Z �

1, Z
�

2� is counter-monotonic and thus (5.3) ensures
that �Z �

1, Z
�

2� �PQD �S1 � Z1, S2 � Z2�. By the closure properties of the PQD ordering, as given
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in Theorem 4.1, it follows that

�Y �

1 � Z �

1, Y
�

2 � Z �

2� �PQD �T1 � S1 � Z1, T2 � S2 � Z2�.

By construction, the above is equivalent to the desired result, i.e., �X �

1, X
�

2� �PQD �X1, X2�. This
concludes the argument. �

5.2.2 Moments and measures of dependence

As was explored in Chapter 4, the PQD ordering implies an ordering in certain measures of de-
pendence. Accordingly, Lemma 5.1 ensures that for fixed marginal parameters λ1 and λ2, both the
covariance and the correlation in the proposed BP��Λ, θ� model are decreasing functions of θ.

By construction, θ � 0 corresponds to independence. As θ increases to 1, the resulting distri-
bution F�Λ,θ reaches the Fréchet–Hoeffding lower bound FL, in which case the implied correlation
coincides with ρmin, where the latter denotes the correlation lower bound given in (4.1). This will
be shown explicitly using the probability generating function in the BP��Λ, θ� model, which is
derived in the following proposition.

Proposition 5.1 The pair �X1, X2� � BP��Λ, θ� has probability generating function given by

E�sX1
1 sX2

2 � � exp ��1� θ�λ1�s1 � 1� � �1� θ�λ2�s2 � 1�� ��Λ,θ�s1, s2�,

where

��Λ,θ�s1, s2� � 1� �s1 � 1�
��

i�0

si1Ḡθλ1�i� � �s2 � 1�
��

j�0

sj2Ḡθλ2�j�

� �s1 � 1��s2 � 1�
��

i�0

��

j�0

si1s
j
2 max�0, Ḡθλ1�i� � Ḡθλ2�j� � 1�.

Proof. The construction given in (5.2) allows to breakdown the probability generating fucntion as

E�sX1
1 sX2

2 � � E�sY1
1 �E�s

Y2
2 �E�s

Z1
1 sZ2

2 �.

Letting ��Λ,θ�s1, s2� denote the probability generating function of the counter-monotonic pair �Z1, Z2�,
the above further simplifies to

E�sX1
1 sX2

2 � � exp ��1� θ�λ1�s1 � 1� � �1� θ�λ2�s2 � 1�� ��Λ,θ�s1, s2�.
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For �Z1, Z2� �W �P�θλ1�,P�θλ2��, it follows that

Pr�Z1 � z1, Z2 � z2� � Pr�G�1θλ1
�U� � z1, G

�1
θλ2
�1� U� � z2�

� Pr�U 	 Gθλ1�z1 � 1�, 1� U 	 Gθλ2�z2 � 1��

� Pr�Gθλ1�z1 � 1� 
 U 
 Ḡθλ2�z2 � 1��

� max�0, Ḡθλ2�z2 � 1� �Gθλ1�z1 � 1��

� max�0, Ḡθλ1�z1 � 1� � Ḡθλ2�z2 � 1� � 1�.

Writing the probability Pr�Z1 � z1, Z2 � z2� as the difference

Pr�Z1 � z1, Z2 � z2� � Pr�Z1 � z1 � 1, Z2 � z2�

� Pr�Z1 � z1, Z2 � z2 � 1� � Pr�Z1 � z1 � 1, Z2 � z2 � 1�

allows for an alternative formulation of the probability mass function of �Z1, Z2� given by

max�0, Ḡθλ1�z1 � 1� � Ḡθλ2�z2 � 1� � 1� �max�0, Ḡθλ1�z1� � Ḡθλ2�z2 � 1� � 1�

�max�0, Ḡθλ1�z1 � 1� � Ḡθλ2�z2� � 1� �max�0, Ḡθλ1�z1� � Ḡθλ2�z2� � 1�.

Working with the above form, the probability generating function ��Λ,θ�s1, s2� can be expressed as

��

i�0

��

j�0

si1s
j
2

�
max�0, Ḡθλ1�i� 1� � Ḡθλ2�j � 1� � 1� �max�0, Ḡθλ1�i� � Ḡθλ2�j � 1� � 1�

�max�0, Ḡθλ1�i� 1� � Ḡθλ2�j� � 1� �max�0, Ḡθλ1�i� � Ḡθλ2�j� � 1�
�
.

Noting that Ḡλ��1� � 1, the above can be rewritten as

1�
��

i�1

si1Ḡθλ1�i� 1� �
��

j�1

sj2Ḡθλ2�j � 1� �
��

i�1

��

j�1

si1s
j
2 max�0, Ḡθλ1�i� 1� � Ḡθλ2�j � 1� � 1�

�
��

i�0

si1Ḡθλ1�i� �
��

i�0

��

j�1

si1s
j
2 max�0, Ḡθλ1�i� � Ḡθλ2�j � 1� � 1�

�
��

j�0

sj2Ḡθλ2�j� �
��

i�1

��

j�0

si1s
j
2 max�0, Ḡθλ1�i� 1� � Ḡθλ2�j� � 1�

�
��

i�0

��

j�0

si1s
j
2 max�0, Ḡθλ1�i� � Ḡθλ2�j� � 1�.
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5.2 The proposed model for negative dependence

Manipulating the indices then yields

1�
��

i�0

si�11 Ḡθλ1�i� �
��

j�0

sj�12 Ḡθλ2�j� �
��

i�0

��

j�0

si�11 sj�12 max�0, Ḡθλ1�i� � Ḡθλ2�j� � 1�

�
��

i�0

si1Ḡθλ1�i� �
��

i�0

��

j�0

si1s
j�1
2 max�0, Ḡθλ1�i� � Ḡθλ2�j� � 1�

�
��

j�0

sj2Ḡθλ2�j� �
��

i�0

��

j�0

si�11 sj2 max�0, Ḡθλ1�i� � Ḡθλ2�j� � 1�

�
��

i�0

��

j�0

si1s
j
2 max�0, Ḡθλ1�i� � Ḡθλ2�j� � 1�.

Upon further simplifications, the following is obtained:

1�
��

i�0

�si�11 � si1�Ḡθλ1�i� �
��

j�0

�sj�12 � sj2�Ḡθλ2�j�

�
��

i�0

��

j�0

�si�11 sj�12 � si1s
j�1
2 � si�11 sj2 � si1s

j
2�max�0, Ḡθλ1�i� � Ḡθλ2�j� � 1�,

which factors to the desired result. �

It is simple to obtain an expression for the covariance in the proposed counter-monotonic shock
model from the probability generating function. Let wλ1,λ2�θ� denote the covariance for a pair
�X1, X2� � BP��Λ, θ�. Since cov�X1, X2� � cov�Z1, Z2�, it follows that

wλ1,λ2�θ� � E�Z1Z2� � θ2λ1λ2.

Working with the probability generating function of the counter-monotonic pair �Z1, Z2�, it can be
shown that

E�Z1Z2� �
	2

	s1	s2
��Λ,θ�s1, s2�

���
s1�s2�1

�
��

i�0

��

j�0

max�0, Ḡθλ1�i� � Ḡθλ2�j� � 1�.

For any a 
 R, it is easy to verify that max�0, a� � �min�0,�a�. Thus, the mixed moment above
can be rewritten as

E�Z1Z2� � �
��

i�0

��

j�0

min�0, Gθλ1�i� �Gθλ2�j� � 1�.
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5.2 The proposed model for negative dependence

From this expression it follows that the covariance in the proposed BP��Λ, θ� family is given by

wλ1,λ2�θ� � �
��

i�0

��

j�0

min�0, Gθλ1�i� �Gθλ2�j� � 1� � θ2λ1λ2

with corresponding correlation

ρ�θ � 1�
λ1λ2

�
�θ2λ1λ2 �

��
i�0

��
j�0

min �0, Gθλ1�i� �Gθλ2�j� � 1�
�
.

It is clear from the above form that θ � 0 yield ρ�θ � 0 while when θ � 1 the correlation coin-
cides with ρmin. By Lemma 5.1, ρ�θ decreases as θ increases. Consequently, the proposed counter-
monotonic shock bivariate Poisson model provides a fully flexible model for negative dependence
in the sense that it spans the full spectrum of negative correlation in the interval 	ρmin, 0
.

5.2.3 Recurrence relations

As shown in Chapter 4, the derivation of recurrence relations in the BP�Λ, θ� model relies on the
univariate Poisson distribution recursive relation, namely for k � �1, 2, . . .�,

gλ�k� � λ

k
gλ�k � 1�.

Note that the contribution towards fΛ,θ due to the comonotonic shock, i.e., cΛ,θ, has no direct
effect on the simplifications and rather only influences the form of the conditional expectations
E�Z1�x1, x2� and E�Z2�x1, x2�. As such, it is straightforward to see that the same set of recurrence
relations will hold in the BP��Λ, θ� model, the only difference being the form of the conditional
expectations. Thus, the following three recurrence relations hold in the counter-monotonic shock
model:

f�Λ,θ�x1 � 1, x2� � f�Λ,θ�x1, x2� ��1� θ�λ1��1 �x1 � E�Z1�x1, x2�� ,
f�Λ,θ�x1, x2 � 1� � f�Λ,θ�x1, x2� ��1� θ�λ2��1 �x2 � E�Z2�x1, x2�� ,

f�Λ,θ�x1 � 1, x2 � 1� � f�Λ,θ�x1, x2�
��1� θ�2λ1, λ2

��1
�
x2 �x1 � E�Z1�x1, x2��

� x1 �x2 � E�Z2�x1, x2�� � �x1x2 � E�Z1Z2�x1, x2��
�
,

where the conditional expectations E�Z1�x1, x2� and E�Z2�x1, x2� are computed according to the
conditional probability mass function

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�c�Λ,θ�z1, z2�
x1�

z1�0

x2�
z2�0

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�c�Λ,θ�z1, z2�
.
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5.2.4 Convolutions in the BP� family

As was the case in the comonotonic shock model, the BP��Λ, θ� family is not closed under con-
volutions. Analogously to what was shown in Section 4.2.4, this is due to the fact that sums of
counter-monotonic random variables do not retain the property of counter-monotonicity.

Consider a similar set up as in Section 4.2.4. Namely, let �Z11, Z21� and �Z12, Z22� denote
independent pairs with distribution W �P�1�,P�2��. Suppose two independent uniform random
variables are observed, specifically u1 � 0.1 and u2 � 0.6. This leads to

Z11 � G�11 �0.1� � 0, Z21 � G�12 �0.1� � 0,

Z12 � G�11 �0.6� � 1, Z22 � G�22 �0.6� � 2.

Then setting �Z1, Z2� � �Z11 � Z12, Z21 � Z22� yields an observed pair �z1, z2� � �1, 2�. Writ-
ing Z1 � G�12 �U� implies that a value of 1 corresponds to U in the interval �G2�0�, G2�1�� �
�0.135, 0.406�. Similarly, for Z2 � G�14 �1 � U�, observing a value of 2 implies 1 � U falls in
the interval �G4�1�, G4�2�� � �0.092, 0.238� so that U falls in the interval �0.762, 0.908�. Since
�0.135, 0.406� 	 �0.762, 0.908� � 
, it follows that �Z1, Z2� are not counter-monotonic. Accord-
ingly, the BP��Λ, θ� family is not closed under convolutions.

5.3 Estimation

Let �X11, X12�, . . . , �Xn1, Xn2� iid� BP��Λ, θ�. As was the case in the comonotonic shock model,
there are several methods that can be used for estimating the parameters �λ1, λ2, θ�. In particular,
the method of moments (MM), maximum likelihood (ML) and inference functions for margins
(IFM) will be discussed in this section. Naturally, many of the results established in Section 4.3
readily extend to the counter-monotonic shock model, as will be shown in what follows.

5.3.1 Method of moments

Method of moments estimation in the proposed BP��Λ, θ� model is essentially identical to that
in the comonotonic shock model for positive dependence. Analogously to what was done in the
BP�Λ, θ� model, the method of moments estimates are established by matching theoretical mo-
ments to sample moments. In particular, the marginal parameters are consistently estimated by
their respective sample means, i.e., λ̃1 � X̄1 and λ̃2 � X̄2. As previously detailed, the Central
Limit Theorem ensures that, as n� 
,

�
n �λ̃1 � λ1�� N �0, λ1�,

�
n �λ̃2 � λ2�� N �0, λ2�.

Estimation of the dependence parameter is based on the sample covariance S12. The results
in Section 5.2.1 ensure that for fixed λ1 and λ2, the covariance of a pair �X1, X2� � BP��Λ, θ�
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5.3 Estimation

is a decreasing function of θ. In particular, the covariance will always be negative with minimum
possible value give by wλ1,λ2�1� � ρmin�λ1, λ2�

�
λ1λ2. Accordingly, provided that S12 falls within

the appropriate interval, there will be a unique value of θ that will yield wλ1,λ2�θ� � S12. The MM
estimator θ̃ is then established by solving

wX̄1,X̄2
�θ� � S12,

for S12 � �ρmin�λ1, λ2�
�
X̄1X̄2, 0�.

Recall from Chapter 4 that the sample covariance is consistent and asymptotically Gaussian.
Specifically, as n � 	,

�
n 
S12 � wλ1,λ2�θ��� N �0, σ2�θ, λ1, λ2��,

where σ2�θ, λ1, λ2� � var 
�X1 � λ1��X2 � λ2��.
As was established in Proposition 4.3, a straightforward application of the Delta Method then

ensures that the method of moments estimator θ̃ is consistent and asymptotically Gaussian. This is
formally stated in the following proposition, analogous to that in Chapter 4.

Proposition 5.2 Asymptotic normality of the method of moments estimator
Let �X11, X12�, . . . , �Xn1, Xn2� denote a random sample from the BP��Λ, θ� family and let S12

denote the sample covariance given by

1

n� 1

�
n�

��1

�X�1 � X̄1��X�2 � X̄2�
�
.

The method of moments estimator is the unique solution of the equation

wX̄1,X̄2
�θ� � S12.

Moreover, for S12 � �ρmin�X̄1, X̄2�
�
X̄1X̄2, 0�, as n � 	,

�
n �θ̃ � θ�� N

�
0, 
δ��σ12��2 σ2�θ, λ1, λ2�

�
where σ12 denotes the covariance wλ1,λ2�θ� and δ denotes the inverse of the function wλ1,λ2�θ�, i.e.,

δ : θ 
� w�1
λ1,λ2

�θ�, with corresponding derivative δ�.

As was shown in Section 4.3.1, the asymptotic variance of the MM estimator θ̃ may be simpli-
fied. In particular, it was established in Eq. (4.13) that

σ2�θ, λ1, λ2� � �1� θ�2λ1λ2 � 2�1� θ�θλ1λ2 � var 
�Z1 � θλ1��Z2 � θλ2�� . (5.4)
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As was the case for the BP�Λ, θ� family, when θ � 0 the independence model ensues yielding
σ2�0, λ1, λ2� � λ1λ2. Note, however, that it is not straightforward to further simplify the expres-
sion in (5.4) in the special case where λ1 � λ2 � λ. In the BP�Λ, θ� model, when the marginal
parameters coincide the comonotonic shock is equivalent to a common shock since Z1 � Z2 almost
surely. As a result, Eq. (4.13) further simplifies to yield a simple expression for the asymptotic vari-
ance of the MM estimator in the BP�λ, λ, θ� model. This is not the case in the counter-monotonic
shock model. Recall that counter-monotonicity implies that Z1 is generated from an underlying
uniform random variable U whereas Z2 is generated from 1�U and thus Z1 and Z2 are not identi-
cal shock variables when λ1 � λ2. Consequently, computing the term var ��Z1 � θλ1��Z2 � θλ2��

is more involved and requires evaluating higher mixed moments. As such, no simple expression
results for the asymptotic variance of θ̃ when λ1 � λ2.

In practice, the implementation of the method of moments estimation may lead to issues, par-
ticularly when the sample covariance does not fall within the appropriate range. Similarly to what
was done in Section 4.3.1, if S12 � wX̄1,X̄2

�1� the convention will be to set θ̃ � 1 while if S12 � 0

the model in Chapter 4 should be used instead.

5.3.2 Maximum likelihood estimation

Let X denote a random sample �X11, X12�, . . . , �Xn1, Xn2� from the proposed BP��Λ, θ� model.
For X � x, the log-likelihood is given by

���Λ, θ;x� �
n�

i�1

ln f�Λ,θ�xi1, xi2�

�
n�

i�1

ln

�
xi1�
z1�0

xi2�
z2�0

g�1�θ�λ1�xi1 � z1�g�1�θ�λ2�xi2 � z2�c
�
Λ,θ�z1, z2�

�
,

with

c�Λ,θ�z1, z2� �
�
min�Gθλ1�z1�, Ḡθλ2�z2 � 1�� �max�Gθλ1�z1 � 1�, Ḡθλ2�z2��

�
�
.

By definition, the maximum likelihood estimates, Ψ̂ � �λ̂1, λ̂2, θ̂�, are given by

Ψ̂ � argmax
Ψ

���Λ, θ;x�

with the constraints λ1, λ2 	 �0,
�, θ 	 �0, 1�. This amounts to solving the set of score equations:�




λ1

���Λ, θ�,




λ2

���Λ, θ�,




θ
���Λ, θ�

�
� 0�.

In Section 4.3.2, the score equations were further simplified by differentiating the univari-
ate Poisson probability mass function contributions in the log-likelihood. These contributions are

129



5.3 Estimation

due to the independent components �Y1, Y2� and are identical in the counter-monotonic shock
model. Note that throughout the computations in Section 4.3.2, the partial derivatives involving
the comonotonic shock mass function, cΛ,θ�z1, z2�, were not further simplified due to their in-
convenient form. As such, the derivations established in Section 4.3.2 are easily adapted for the
BP��Λ, θ� model to yield the following set of score equations:

�

�λ1

��Λ, θ� �
n

λ1

�x̄1 � λ1� �
n

λ1

�q̄1�Λ, θ� � θλ1� �
n�

i�1

E

�
�

�λ1

ln c�Λ,θ�Z1, Z1�
���xi1, xi2

�
,

�

�λ2

��Λ, θ� �
n

λ2

�x̄2 � λ2� �
n

λ2

�q̄2�Λ, θ� � θλ2� �
n�

i�1

E

�
�

�λ2

ln c�Λ,θ�Z1, Z1�
���xi1, xi2

�
,

�

�θ
��Λ, θ� � n�λ1 � λ2� �

n

�1� θ�
�x̄1 � x̄2 � q̄1�Λ, θ� � q̄2�Λ, θ��

�
n�

i�1

E

�
�

�θ
ln c�Λ,θ�Z1, Z2�

���xi1, xi2

�
,

where

q̄1�Λ, θ� �
1

n

n�
i�1

E�Z1	xi1, xi2�, q̄2�Λ, θ� �
1

n

n�
i�1

E�Z2	xi1, xi2�.

Note that although the same notation for q̄1�Λ, θ� and q̄2�Λ, θ� is used for both the BP and BP�

models, the actual calculation of these two expressions is according to the appropriate conditional
probability mass function. In the present case, this corresponds to

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�c
�
Λ,θ�z1, z2�

x1�
z1�0

x2�
z2�0

g�1�θ�λ1�x1 � z1�g�1�θ�λ2�x2 � z2�c
�
Λ,θ�z1, z2�

.

In the actual implementation of the maximum likelihood estimation, the log-likelihood function
���Λ, θ� can be directly optimized using numerical procedures. As was mentioned in Chapter 4,
a reparameterization of the log-likelihood can be used wherein the parameter constraints are re-
moved. This is achieved by setting

ζ1 � ln�λ1�, ζ2 � ln�λ2�, η � ln

�
θ

1� θ

�
.

By the invariance property of MLEs it follows that

�λ̂1, λ̂2, θ̂� � �eζ̂1 , eζ̂2 , eη̂
�1� eη̂��.
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As was outlined in Chapter 4, standard maximum likelihood theory ensures that the MLE Ψ̂ is
consistent and asymptotically Gaussian. Specifically

�
n �Ψ̂�Ψ�� N �0, I�1�,

where I denotes the Fisher Information. The asymptotic variance is thus given by

I�1 �
�
E

�� �
�Ψ ln f�Λ,θ�X1, X2�

�2
��

�1

�
�
�E

� �2
�Ψ�Ψ�

ln f�Λ,θ�X1, X2�
���1

.

The EM algorithm

In the comonotonic shock model, it was shown that using the EM algorithm to determine the
MLEs lead to non-identifiability. This problem is also inherent in the proposed BP� model. By
definition, the counter-monotonic shock �Z1, Z2� can be expressed as

�
G�1

θλ1
�U�, G�1

θλ2
�1� U��.

Treating the underlying uniform variable U as the missing data yields the same E-step as produced
in the comonotonic shock model, viz.

Q�Ψ�Ψ�k�� � n
	
x̄1 � x̄2 � q̄1�Λ�k�, θ�k�� � q̄2�Λ�k�, θ�k�



ln 	�1� θ��λ1 � λ2�


� n�1� θ��λ1 � λ2� � n
	
x̄1 � q̄1�Λ�k�, θ�k��
 ln� λ1

λ1 � λ2

�

� n
	
x̄2 � q̄2�Λ�k�, θ�k��
 ln� λ2

λ1 � λ2

�
� R�x,Ψ�k��.

Setting α � λ1��λ1 � λ2� and β � �1� θ��λ1 � λ2�, the above can be rewritten as

Q�Ψ�Ψ�k�� � �nβ � n
	
x̄1 � x̄2 � q̄1�Λ�k�, θ�k�� � q̄2�Λ�k�, θ�k��
 ln�β�

� n
	
x̄1 � q̄1�Λ�k�, θ�k��
 ln�α� � n

	
x̄2 � q̄2�Λ�k�, θ�k��
 ln�1� α�

� R�x,Ψ�k��.

Note again that in the above expression the terms q̄1�Λ, θ� and q̄2�Λ, θ� are computed under the
BP��Λ, θ� model.

Reiterating what was already established in Chapter 4, the form of Q�Ψ�Ψ�k�� only allows to
identify �α, β�. Hence, any set of values �λ1, λ2, θ� that yield the same �α, β� are indistinguishable
and thus the EM algorithm will be unable to update the parameter estimates.

5.3.3 Inference functions for margins

Let p�Λ,θ denote the probability mass function of the quadruple �Z1, Z2, X1, X2�, with components
as defined in (5.1) and (5.2). Analogously to what was established in Section 4.3.3, it can be shown
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that

p�Λ,θ�z1, z2, x1, x2� � gλ1�x1�gλ2�x2�bx1,θ�z1�bx2,θ�z2�c
�

Λ,θ�z1, z2�� �gθλ1�z1�gθλ2�z2�� ,

where
bxk,θ�zk� �

�
xk

zk

�
θzk�1� θ�xk�zk .

Further define weights ωΛ,θ�z1, z2; x1, x2� as

ωΛ,θ�z1, z2; x1, x2� �
bx1,θ�z1�bx2,θ�z2�

gθλ1�z1�gθλ2�z2�
.

Following the same steps as in Section 4.3.3, it can be shown that the probability mass function in
the BP��Λ, θ� model can be rewritten as

f�Λ,θ�x1, x2� � gλ1�x1�gλ2�x2� �

�
x1�

z1�0

x2�
z2�0

ωΛ,θ�z1, z2; x1, x2�c
�

Λ,θ�z1, z2�

�
. (5.5)

As was the case for fΛ,θ, this formulation of f�Λ,θ resembles the construction considered in Lakshmi-
narayana et al. (1999) wherein the bivariate probability mass function is comprised of the product
of the marginal Poisson mass functions along with a multiplicative factor which encompasses the
dependence structure.

Based on the form in (5.5), the log-likelihood in the BP��Λ, θ� model can be expressed as

���Λ, θ;x� � �1�λ1;x1� 	 �2�λ2;x2� 	 ��D�Λ, θ;x1,x2�,

where xj � �x1j, . . . , xnj� for j 
 �1, 2�. The marginal contributions to the log-likelihood simplify,
for j 
 �1, 2�, as follows

�j�λj;xj� �
n�

i�1

ln gλj
�xij� � �nλj 	 nx̄j ln�λj� �

n�
i�1

ln�xij!�.

The remaining portion of the log-likelihood, namely the dependence term, consists of

��D�Λ, θ;x� �
n�

i�1

ln

�
xi1�
z1�0

xi2�
z2�0

ωΛ,θ�z1, z2; xi1, xi2�c
�

Λ,θ�z1, z2�

�
.

The application of the IFM estimation approach in the BP��Λ, θ� model parallels that in the
comonotonic shock model. Indeed, the IFM estimates, denoted as �λ̌1, λ̌2, θ̌�, are found according
to �

�

�λ1

�1�λ1�,
�

�λ2

�2�λ2�,
�

�θ
��D�λ1, λ2, θ�

�
� 0�.
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As discussed in Chapter 3, implementation of the above consists of a two-stage procedure. As a
first step, the marginal parameters are estimated according to their marginal MLEs. Subsequently,
the dependence parameter is estimated using the pseudo log-likelihood ���Λ̌, θ�, i.e., the log-
likelihood with the marginal parameters held fixed at their respective marginal MLEs. As was the
case in the BP model, the marginal parameters are estimated by their respective sample means:
λ̌1 � X̄1, λ̌2 � X̄2. The dependence parameter is then determined as

θ̌ � argmax
θ

���Λ̌, θ� � argmax
θ

��D�Λ̌, θ�.

As was outlined in Chapter 3, the IFM estimates Ψ̌ � �λ̌1, λ̌2, θ̌� have a joint limiting Gaussian
distribution, specifically, as n� �,

�
n �Ψ̌�Ψ�� N �0, V �.

Following the definition of V given in Section 4.3.3, it can be shown that the elements of the
asymptotic variance simplify to

V11 � λ1, V12 � wλ1,λ2�θ�, V13 � �I�133 �λ1I31 	 wλ1,λ2�θ�I32
 ,
V22 � λ2, V23 � �I�133 �wλ1,λ2�θ�I31 	 λ2I32
 ,
V33 � I�133 	 �I�133 �2

�
λ1I2

31 	 2wλ1,λ2�θ�I31I32 	 λ2I2
32

�
,

where wλ1,λ2�θ� � cov�X1, X2� in the BP��Λ, θ� model. As was the case in the comonotonic
shock model, the IFM approach yields estimators that are less efficient than the MLEs. In a similar
manner, this loss in efficiency associated with the dependence parameter θ is quantified as

V33 � I�133 � �I�133 �2
�
λ1I2

31 	 2wλ1,λ2�θ�I31I32 	 λ2I2
32

�
.

This will be further studied in the simulations in the next section.
As was pointed out in Section 4.3.3, the EM algorithm can be used as an iterative procedure for

finding θ̌. Using the underlying uniform variables as the missing data, the complete data pseudo
log-likelihood has a similar form as (4.25), viz.

��C�Λ̌, θ;x,u� �
n�

i�1

�
� �1� θ��x̄1 	 x̄2� 	 ln�1� θ� �xi1 	 xi2 �G�1θx̄1

�ui� �G�1θx̄2
�1� ui�

�

	 ln�x̄1�
�
xi1 �G�1θx̄1

�ui�
�	 ln�x̄2�

�
xi2 �G�1θx̄2

�1� ui�
�

� ln
��
xi1 �G�1θx̄1

�ui�
�
!
�
xi2 �G�1θx̄2

�1� ui�
�
!
� �

.

133



5.4 Simulations

As before, let

qi1�Λ̌, θ
�k�� � E

�
G�1

θx̄1
�Ui��xi1, xi2, θ

�k�
�
� E

�
Z1�xi1, xi2, θ

�k�
�
,

qi2�Λ̌, θ
�k�� � E

�
G�1

θx̄2
�1� Ui��xi1, xi2, θ

�k�
�
� E

�
Z2�xi1, xi2, θ

�k�
�
,

and correspondingly define

q̄1�Λ̌, θ
�k�� �

1

n

n�

i�1

qi1�Λ̌, θ
�k��, q̄2�Λ̌, θ

�k�� �
1

n

n�

i�1

qi2�Λ̌, θ
�k��,

where the conditional expectations are under the BP��Λ̌, θ� model. The E-step is then identical to
that derived in Chapter 4, viz.

Q�θ�θ�k�� � �n�1� θ��x̄1 � x̄2� � n ln�1� θ�
�
x̄1 � x̄2 � q̄1�Λ̌, θ

�k�� � q̄2�Λ̌, θ
�k��
�

� n ln�x̄1�
�
x̄1 � q̄1�Λ̌, θ

�k��
�
� n ln�x̄2�

�
x̄2 � q̄2�Λ̌, θ

�k��
�
� R�x, θ�k��.

Accordingly, this leads to the same updates as obtained in Chapter 4, viz.

θ�k�1� �
q̄1�Λ̌, θ

�k�� � q̄2�Λ̌, θ
�k��

x̄1 � x̄2

.

5.4 Simulations

In order to evaluate the estimation procedures outlined in Section 5.3, a series of simulations were
carried out. The three estimation methods were compared for varying values of λ1 � �1, 2, 4, 10	,
θ � �0.10, 0.25, 0.50, 0.75, 0.90	 and n � �10, 50, 100, 1000	, while holding λ2 � 5 fixed through-
out. As explained in Chapter 4, λ2 was held fixed as it is redundant to test the effects of both
marginal parameters on the estimation procedures.

The simulations were set-up in a similar manner to those detailed in Section 4.4. For each
scenario defined by a unique set �λ1, λ2, θ, n�, a set of n mutually independent copies of U�0, 1�
random variables �Ui, Vi1, Vi2� was generated and for each i � �1, . . . , n	, observations from the
proposed BP��Λ, θ� model were generated according to

Xi1 � G�1
�1�θ�λ1

�Vi1� �G�1
θλ1

�Ui�, Xi2 � G�1
�1�θ�λ2

�Vi1� �G�1
θλ2

�1� Ui�.

Each of the 80 unique scenarios was repeated for 500 replications, thus running a total of 40,000
iterations.

Initial tests revealed that both the IFM and MLE optimization procedures were relatively sen-
sitive to the choice of starting values. Thus, rather than using the method of moments estimates as
the initial values, the true parameter values were used. As was the case in the BP model, the EM
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algorithm within the IFM framework tended to be slow to converge in comparison to directly op-
timizing the pseudo log-likelihood ���Λ̌, θ�. As such, the simulations did not include the EM-IFM
estimation procedure. Both the IFM and MLE estimates were produced using the optim function
in R with the BFGS method, while the MM estimates were obtained from the uniroot function.

Out of the 40,000 iterations, there were 3861 occurrences where the method of moments esti-
mation procedure failed due to a positive observed sample covariance. As detailed in Section 5.3.1,
the MM estimator θ̃ is determined as the unique solution of wX̄1,X̄2

�θ� � S12. By design, a ran-
dom pair �X1, X2� � BP��Λ, θ� has covariance in the interval �wλ1,λ2�1�, 0�. Thus, if S12 � 0,
the estimation procedure will fail and set θ̃ � NA. Not surprisingly, this issue arose more fre-
quently for smaller values of θ and smaller sample sizes. The IFM method produced substantially
fewer errors, with only 436 of the 40,000 iterations failing. Most often, this was due to inappro-
priate starting values, where ��Λ̌, θ0� � �	. There were nine instances where the error message
indicated “non-finite finite-difference value”, apparently due to issues that arise when trying to
calculate the gradient. The latter issue tended to occur for higher values of θ, when the BP� model
approaches the lower Fréchet–Hoeffding boundary distribution. Maximum likelihood estimation
worked best, with only six iterations producing errors. In all six of these instances, the errors were
due to “non-finite finite-difference value”. Again, this error only occurred for larger values of θ,
specifically when θ � 0.90. As will be seen later, these issues are likely due to the behavior of the
log-likelihood for larger values of θ; see Figures 5.22 through 5.26. Naturally, the MM and IFM
estimators for the marginal parameters never posed any issues as both methods estimate λ1 and λ2

by X̄1 and X̄2, respectively. Of course, the maximum likelihood estimation failed for λ1 and λ2 in
the instances previously described in terms of θ.

In addition to these errors, there were several instances where the optimization procedure for
both the IFM and MLE methods reached the maximum number of iterations, which is 100 by
default. This occurred in 76 iterations for maximum likelihood estimation and 64 iterations for the
IFM method. While for maximum likelihood estimation this only occurred when the sample size
was 10, the IFM estimation reached the maximum number of iterations for sample sizes of 100 and
under. Seemingly, this issue is a small-sample problem.

Figures 5.1 through 5.10 display the estimation results for the dependence parameter θ from
the three methods. Note that iterations that resulted in issues, as previously discussed, were omitted
from the boxplots. Similar patterns as observed in the comonotonic shock model in Chapter 4 are
also apparent in these graphs. In particular, the method of moments seems to perform compara-
tively better for weaker levels of dependence, i.e., for smaller values of θ. Moreover, the variability
in the likelihood-based estimates seems to decrease as θ increases. Both likelihood-based meth-
ods, namely the IFM and MLE approaches, produce similar results. This suggests that there is
little information concerning the marginal parameters Λ in the dependence portion of the log-
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likelihood ��D�Λ, θ�. Recall that the implementation of the IFM approach yields θ̌ as the maximizer
of the pseudo log-likelihood ��D�Λ̌, θ�. Maximum likelihood estimation, in contrast, simultaneously
solves for �λ̂1, λ̂2, θ̂� that maximizes the full log-likelihood ���Λ, θ�. Additionally, the magnitude
of the marginal parameter seems to have no effect on the estimation of the dependence parameter.
The figures also depict a decrease in variability of the estimators as the sample size increases.

In the simulations for the BP� model, it was found that the method of moments estimation
procedure tended to run the fastest, followed by the IFM and finally MLE methods. The differences
between the MM and IFM methods was very small, and even the MLE approach completed in only
slightly longer running times.

Figures 5.11 through 5.20 show the estimation results for λ1. Both approaches yielded similar
results, for all degrees of dependence and sample size. This provides further evidence that there is
little information concerning λ1 in the dependence portion of the log-likelihood ��D�Λ, θ�.

A second set of simulations was implemented in which the effects of the starting values were
tested, similarly to what was done in Chapter 4. Holding the parameters fixed at �λ1, λ2, θ� �

�4, 5, 0.9� and the sample size at n � 1000, four different starting values were considered for the
IFM and MLE estimation methods:

(1) θ
�0�
1 � θ̃ , i.e., the MM estimate

(2) θ
�0�
2 � 0.10

(3) θ
�0�
3 � θ0, i.e., the true value 0.90

(4) θ
�0�
4 � 0.99.

A total of 500 replications were considered, each of which generating four sets of estimates, θ̌ and
θ̂, obtained from initializing the IFM and MLE estimation procedures at each of θ�0�

1 , θ�0�
2 , θ�0�

3 and
θ
�0�
4 . Note that for the MLE approach, the initial values for the marginal parameters were taken to

be the marginal sample means, i.e., �λ�0�
1 , λ

�0�
2 � � �X̄1, X̄2�, throughout.

For the particular scenario of �λ1, λ2, θ, n� considered in this second simulation study, the
method of moments estimation procedure worked without error for each of the 500 replications.
Overall, there were 809 instances out of the total of 2000 iterations where the IFM estimation
failed and 890 error occurrences in the ML estimation. In the iterations where the estimation pro-
cedures did not yield errors, there were no instances where the optimization algorithm reached the
maximum number of iterations before converging for both the IFM and MLE methods.
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Figure 5.1: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.2: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.3: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.4: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.5: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.6: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.7: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.8: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.9: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.10: Estimation results for θ from the method of moments (left), inference function for
margins (middle), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.11: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.12: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.13: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.14: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.15: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.16: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.17: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.18: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.19: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Table 5.1 shows the error rates (i.e., the percentage of iterations that resulted in errors) for
each of the four possible starting values. These results are not surprising based on the behavior of
the log-likelihood revealed in Figures 5.22 through 5.26. Indeed, if θ is initialized too far from its
true value an error will ensue since the log-likelihood will yield ��. This explains why using θ

�0�
4

always resulted in an error for both likelihood-based methods. Note that in this simulation study
errors occur even when using the true value θ

�0�
3 � 0.90. This is due to the fact that rather than

using the true values of Λ to initialize the optimization for the maximum likelihood approach, the
IFM estimates �X̄1, X̄2� were used as starting values for the marginal parameters.

Similarly to the first set of simulations, the majority of the errors occurred due to the starting
value itself in which ���Λ̌, θ�0�� � ��. There were also a few instances where the error was due to
“non-finite finite difference value”. As was previously discussed, this error likely occurs when the
parameter update approaches the boundary of the parameter space and gradient evaluations become
infinite. Table 5.2 details the error occurrences by type for both the IFM and MLE approaches.
Clearly, in the BP� model, the estimation is relatively sensitive to the choice of starting value,
which is not surprising given the shape of the log-likelihood. Figure 5.21 depicts the estimation
results for the IFM and MLE methods, i.e., θ̌ and θ̂, respectively, for the various starting values. The
boxplots reveal that when the optimization procedures run without error, the estimates produced
are indeed reasonable.

Table 5.1: Error rates by starting value.

Method θ
�0�
1 θ

�0�
2 θ

�0�
3 θ

�0�
4

IFM 45.6% 0.6% 15.6% 100.0%
MLE 49.6% 8.8% 19.6% 100.0%

Table 5.2: Error occurrences by start value and type.

IFM θ
�0�
1 θ

�0�
2 θ

�0�
3 θ

�0�
4

Error: initial value not finite 227 0 76 500
Error: non-finite finite difference value 1 3 2 0

MLE θ
�0�
1 θ

�0�
2 θ

�0�
3 θ

�0�
4

Error: initial value not finite 227 0 76 500
Error: non-finite finite difference value 21 44 22 0
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Figure 5.20: Estimation results for λ1 from the method of moments / inference function for margins
(left), and maximum likelihood estimation (right) in indicated scenario.
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Figure 5.21: Estimation results for θ using different starting values. The IFM results are shown on
the left and MLE on the right.

All of the simulations described thus far used the BFGS method in the optimization proce-
dures for the IFM and MLE methods. Note that other optimization algorithms could be used, e.g.,
Nelder–Mead, Conjugate Gradient, etc. However, given that the majority of errors occurred due to
inappropriate starting values, changing the algorithm would not decrease the incidences of errors
drastically. Nonetheless, the second simulation study was rerun using the Nelder-Mead method
for both the IFM and MLE optimization procedures. The Nelder–Mead method is derivative free
and as such eliminated the error of “non-finite finite-difference value” that was previously ob-
served when using the BFGS method. Accordingly, in this rerun of the second simulation study,
the MLE method resulted in errors for 803 of the 2000 iterations, effectively rectifying the previ-
ously reported 87 errors due to the aforementioned issue. Obviously, all 803 errors in this setting
were due to inappropriate starting values wherein ���Λ̃, θ�0�� � ��. When implementing the
Nelder–Mead method for the IFM approach, however, each iteration resulted in a warning stating
“one-dimensional optimization by Nelder–Mead is unreliable”.

The log-likelihood plots for the proposed BP� family revealed an interesting pattern. Similarly
to the first set of simulations, the true underlying parameter values were varied; specifically θ �

�0.10, 0.25, 0.50, 0.75, 0.90� and λ1 � �1, 2, 4, 10�, while holding λ2 and n fixed at 5 and 1000,
respectively. For each unique scenario �θ, λ1, λ2, n�, a random sample was generated from the
counter-monotonic shock model and the log-likelihood was evaluated over a grid of θ and λ1

values in order to produce the plots shown in Figures 5.22 through 5.26. Specifically, the grid for
θ consisted of the interval �0.01, 0.99� with increments of 0.01 while that for λ1 considered values
from 0.1 to 15.0 by increments of 0.1.

Note that for each unique scenario, there were several instances where evaluating the log-
likelihood yielded ��. In order to produce reasonable plots, the infinite values were replaced by
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the minimum finite value of ���Λ, θ� produced for that particular scenario. Across all combinations
of θ and λ1 values, the log-likelihood plots (shown in two dimensions as the three-dimensional
versions were difficult to discern), there is a prominent cut-off were the log-likelihood rapidly
tends to ��, implying implausible values of �θ, λ1�. Even more strikingly, this cut-off begins
very close to the true underlying parameter values. Certainly, the particular behavior of the log-
likelihood function for the BP� model is what rendered the simulations previously considered
rather challenging. Nonetheless, as shown in Table 5.3, the values of �θ, λ1� yielding the maximum
log-likelihood value (shown in the third column) are relatively close to the true values �θ0, λ10�.
Moreover, evaluating the log-likelihood at the true parameter values always yielded a finite value.

The particular pattern exhibited by the log-likelihood plots reflects the stringent behavior of
counter-monotonic Poisson pairs. The plots show that as θ increases, a substantial region of the pa-
rameter space in terms of �θ, λ1� is blotted out and rendered implausible as a result of the form that
counter-monotonicity imposes. This region where the log-likelihood becomes negatively infinite
diminishes as λ1 increases and the Poisson-distributed margin begins to approach the Gaussian dis-
tribution. This phenomena was not observed in the comonotonic bivariate Poisson model. Seem-
ingly, the dependence structure implied by comonotonicity is less restrictive than that resulting
from counter-monotonicity.

Note that for �Z1, Z2� � M �P�θλ1�,P�θλ2��, the probability of observing �z1, z2� � �0, 0�

is always non-zero. This follows since

cλ,θ�0, 0� � min �Gθλ1�0�, Gθλ2�0�� � exp ��θmax�λ1, λ2�� 	 0.

Thus, even when θ is large, the fact that there is a non-zero probability that the pair �X1, X2� is
generated entirely from the independent components �Y1, Y2� causes the extremal values of θ to
still be plausible. In other words, any observed pair �x1, x2� has probability

fΛ,θ�x1, x2� 
 g�1�θ�λ1�x1�g�1�θ�λ2�x2�

so that the rate at which the log-likelihood tends to �� is regulated in a sense by the probability
g�1�θ�λ1�x1�g�1�θ�λ2�x2�. That is why the log-likelihood plots for the BP model never exhibited
��Λ, θ� � �� over the grid of �θ, λ1� values.

In the case of counter-monotonicity, the above reasoning is no longer valid. For �Z1, Z2� �

W �P�θλ1�,P�θλ2��, the probability of observing �z1, z2� � �0, 0� is given by

c�Λ,θ�0, 0� � �exp��θλ1� � exp��θλ2� � 1
�

which can indeed be zero for certain parameter values. As a result, when θ is large, the form of the
log-likelihood is dominated by the behavior of the counter-monotonic components �Z1, Z2�. The
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5.4 Simulations

stringent form that c�Λ,θ imposes on the log-likelihood abruptly voids a pronounced region of the
parameter space outlining the values of �θ, λ1� that yield a probability of zero.

Table 5.3: Log-likelihood values evaluated over a grid of θ and λ1 values for each of the 20 unique
scenarios.

Scenario True Values �θ0, λ10� ML Values �θ̂, λ̂1� ���λ10, λ20, θ0� ���λ̂1, λ20, θ̂�
1 �0.10, 1� �0.18, 1� �3466.202 �3464.772
2 �0.10, 2� �0.08, 2� �3923.468 �3923.385
3 �0.10, 4� �0.07, 4� �4234.624 �4234.397
4 �0.10, 10� �0.13, 10.1� �4729.466 �4728.594
5 �0.25, 1� �0.24, 1� �3511.272 �3511.224
6 �0.25, 2� �0.21, 2� �3932.784 �3932.366
7 �0.25, 4� �0.26, 3.9� �4246.989 �4246.727
8 �0.25, 10� �0.25, 10.2� �4725.729 �4723.912
9 �0.50, 1� �0.54, 1� �3409.696 �3408.501
10 �0.50, 2� �0.49, 2� �3805.287 �3805.263
11 �0.50, 4� �0.50, 3.9� �4188.063 �4187.654
12 �0.50, 10� �0.51, 9.9� �4642.339 �4641.032
13 �0.75, 1� �0.72, 1� �3250.518 �3248.494
14 �0.75, 2� �0.75, 2� �3516.678 �3516.678
15 �0.75, 4� �0.74, 4.1� �3898.940 �3898.134
16 �0.75, 10� �0.75, 9.9� �4350.046 �4348.816
17 �0.90, 1� �0.90, 1� �2956.340 �2956.340
18 �0.90, 2� �0.91, 2� �3153.144 �3151.248
19 �0.90, 4� �0.90, 4� �3468.668 �3468.668
20 �0.90, 10� �0.90, 10.1� �3965.380 �3964.658
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Figure 5.22: Log-likelihood plots for varying values of θ and λ1, with λ2 � 5 and n � 1000.
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Figure 5.23: Log-likelihood plots for varying values of θ and λ1, with λ2 � 5 and n � 1000.
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Figure 5.24: Log-likelihood plots for varying values of θ and λ1, with λ2 � 5 and n � 1000.
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Figure 5.25: Log-likelihood plots for varying values of θ and λ1, with λ2 � 5 and n � 1000.
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5.5 Data illustration

As an illustration of the proposed BP��Λ, θ� class, the counter-monotonic shock model was ap-
plied to NHL data freely available online (http://www.nhl.com/stats/). The NHL pro-
vides several measures from each hockey game. In this particular application, the bivariate Poisson
pairs �X1, X2� consist of the goals against and goals for the Canadiens de Montréal at each game
for the years 2010 to 2017, for a total of 566 observations.

Innately, the number of goals scored for or against a hockey team could follow a Poisson dis-
tribution as such variables take on values in N. The assumption of Poisson margins can be readily
checked using various statistical tests. In particular, a Chi-squared goodness of fit test yields p-
values of 0.11 and 0.61 for the goals against and for, respectively, both indicating evidence of
Poisson margins. For both components, the sample mean and variance roughly coincide; specifi-
cally X̄1 � 2.55, S2

1 � 2.59, X̄2 � 2.63, S2
2 � 2.64. This is in line with the property of the Poisson

distribution wherein the mean and variance are both equal to λ. QQ plots, shown in Figure 5.27,
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Figure 5.26: Log-likelihood plots for varying values of θ and λ1, with λ2 � 5 and n � 1000.
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provide further evidence of Poisson margins.
As previously mentioned, the Canadiens de Montréal scored on average X̄2 � 2.63 goals

per game, while an average of X̄1 � 2.55 goals were scored against the team. Conceivably, the
variables X1 and X2 should exhibit a negative association: When the team is playing poorly the
goals against will tend to be large and the goals for will be lower while the reverse will hold if
the team is having a good game. Indeed, this phenomenon is observed in the data: the sample co-
variance is found to be S12 � �0.39. If the sample means are used as estimates of the marginal
Poisson rates, the implied correlation is given by R12 � S12�

�
X̄1X̄2 � �0.15. Given the sam-

ple variance measures, R12 is essentially equivalent to the sample correlation measure given by
S12�
�
S2
1S

2
2 � �0.15.

Obviously, the fact that the pair �X1, X2� exhibits a negative association renders the classical
bivariate Poisson model inappropriate. Of course, the BP� model can accommodate the nega-
tive dependence. The various estimation frameworks outlined in Section 5.3 were applied to the
NHL data; the three sets of estimates are summarized in Table 5.4 and provide the estimate along
with 95% bootstrap confidence intervals. The results for the IFM and MLE approaches used the
MM estimates as starting values. Note that the IFM values given in Table 5.4 are those result-
ing from directly optimizing ���Λ̌, θ�. Applying the EM algorithm to the pseudo log-likelihood
���Λ̌, θ� yielded a similar estimate of θ̌ � 0.26 with an applied correlation of ρ � �0.17. All
three estimation procedures yield very similar results. Moreover, the observed sample correlation
R12 � �0.15 is contained in each of the 95% bootstrap confidence intervals obtained for the three
estimation methods.
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Figure 5.27: QQ-plots assessing the marginal Poisson assumption for variables X1 (left) and X2

(right) in the data illustration. Theoretical and empirical quantiles are on the x- and y-axis, respec-
tively.
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5.5 Data illustration

Note that out of a total of 1000 bootstrap replications, there were 125 instances where the
optimization procedures produced errors for both the IFM and MLE approaches. There was also
one case where the MM estimate θ̃ � NA since the bootstrap sample covariance was found to
be positive. The bootstrap confidence intervals provided in Table 5.4 omit these 126 problematic
replications.

Note that in the instances where the likelihood-based methods failed, the method of moments
estimate for the dependence parameter tended to be larger than average, ranging from 0.26 to 0.36.
This subset of the MM estimates θ̃ represent roughly those exceeding the 75th percentile. In light of
the difficulties in optimizing the log-likelihood exhibited in the simulations in Section 5.4, it is not
surprising that starting the IFM and MLE estimation procedures at θ̃ in these instances produced
errors. Of these 125 problematic replications, most (124) of the errors occurred due to inappropriate
starting values while once the error ensued due to “non-finite finite-difference value”. The latter
error occurred when θ̃ � 0.28.

The effects of the starting value for θ was also tested. The results are shown in Table 5.5. For
lower values of θ�0� � θ̃, both the IFM and MLE procedures yielded similar results and seemed
to be unaffected by the choice of starting value. However, when the starting value becomes much
larger than θ̃, both likelihood-based estimation methods fail. This is not surprising based on the
results from the simulation studies detailed in Section 5.4.

Table 5.4: Estimation results for the counter-monotonic model. Estimates are given with 95% boot-
strap confidence intervals in parenthesis.

λ1 λ2 θ ρ
MM 2.55 �2.42, 2.67� 2.63 �2.50, 2.76� 0.24 �0.16, 0.33� �0.15 ��0.22,�0.06�
IFM 2.55 �2.42, 2.67� 2.63 �2.50, 2.76� 0.25 �0.19, 0.33� �0.16 ��0.22,�0.10�
MLE 2.55 �2.42, 2.67� 2.63 �2.50, 2.75� 0.25 �0.19, 0.33� �0.16 ��0.22,�0.10�

Table 5.5: Estimation results using different starting values for θ.

Starting Value IFM MLE
0.10 0.25 0.25
0.25 0.25 0.25
0.50 NA NA
0.75 NA NA
0.90 NA NA
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6
Extension to Higher Dimensions

6.1 Introduction

The formulation of the proposed bivariate Poisson model for positive dependence introduced in
Chapter 4 is based on the notion of a comonotonic shock. This construction extends readily to
higher dimensions, leading to a multivariate comonotonic shock model. This proposed multivariate
Poisson model is similar to the bivariate model in many regards. Notably, the pairwise correlations
implied by the multivariate comonotonic shock model span the full spectrum of dependence from
0 in the case of independence to ρmax when the model attains the upper Fréchet–Hoeffding bound.
In this sense, the proposed multivariate Poisson model allows for greater flexibility in the implied
correlation structure than the classical model described in, e.g., Karlis (2003). The distributional
properties and estimation methods in the proposed multivariate Poisson model extend directly from
the bivariate setting. Accordingly, much of the content developed here is somewhat repetitive of
Chapter 4 and will thus be kept relatively brief.

6.2 The proposed model construction

Let �X1, . . . , Xd� be a random vector with Poisson margins where each component can be written
as a sum of Poisson random variables viz.

X1 � Y1 � Z1, . . . , Xd � Yd � Zd. (6.1)

In this formulation, Y1, . . . , Yd are mutually independent Poisson random variables with respec-
tive rates �1 � θ�λ1, . . . , �1 � θ�λd, which are also independent of the comonotonic shock vector
�Z1, . . . , Zd� � M �P�θλ1�, . . . ,P�θλd��. This comonotonic shock multivariate Poisson model
will be denoted as

�X1, . . . , Xd� � MPd�Λ, θ�,



6.2 The proposed model construction

where Λ � �λ1, . . . , λd� � �0,��
d and θ � �0, 1�. As before, the limiting cases θ � 0 and θ � 1

can also be encompassed in the definition with the convention that W � P�0� � W � 0. It then
follows that the components, X1, . . . , Xd are mutually independent when θ � 0 and comonotonic,
i.e., perfectly positively dependent, when θ � 1. In terms of independent standard uniform random
variables V1, . . . , Vd, U , the formulation in (6.1) is equivalent to

X1 � G�1�1�θ�λ1
�V1� 	G�1

θλ1
�U�,

...

Xd � G�1
�1�θ�λd

�Vd� 	G�1
θλd
�U�.

As mentioned above, if θ � 0, the random vector �X1, . . . , Xd� will have independent compo-
nents so that

Pr�X1 
 x1, . . . , Xd 
 xd� �
d�

i�1

Gλi
�xi�.

In contrast, when θ � 1, the distribution of �X1, . . . , Xd� is the upper Fréchet–Hoeffding bound,
i.e., for all x1, . . . , xd � N,

Pr�X1 
 x1, . . . , Xd 
 xd� � min �Gλ1�x1�, . . . , Gλd
�xd�� .

For any θ � �0, 1�, the joint probability distribution of the random vector �X1, . . . , Xd� � MPd�Λ, θ�,
denoted by FΛ,θ, is given by

FΛ,θ�x1, . . . , xd� � Pr�X1 
 x1, . . . , Xd 
 xd�

�
x1�

z1�0

. . .
xd�

zd�0

Pr�X1 
 x1, . . . , Xd 
 xd 
 Y1 � x1 � z1, . . . , Yd � xd � zd�

� Pr�Y1 � x1 � z1, . . . , Yd � xd � zd�

�
x1�

z1�0

� � �
xd�

zd�0

�
Pr�Z1 
 z1, . . . , Zd 
 zd�

d�
j�1

Pr�Yj � xj � zj�

�
.

The above then further simplifies to

FΛ,θ�x1, . . . , xd� �
x1�

z1�0

� � �
xd�

zd�0

�
min �Gθλ1�z1�, . . . , Gθλd

�zd��
d�

j�1

g�1�θ�λj
�xj � zj�

�
(6.2)

Note that the joint probability distribution can also be derived by conditioning on the underlying
uniform random variable U that generates the comonotonic shock random vector. This approach
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leads to the following expression:

FΛ,θ�x1, . . . , xd� �

� 1

0

Pr�X1 � x1, . . . , Xd � xd � U � u� � fU�u�du

�

� 1

0

Pr�Y1 � x1 �G�1θλ1
�u�, . . . , Yd � xd �G�1θλd

�u�	du.

Thus, an equivalent representation of (6.2) is given by

Pr�X1 � x1, . . . , Xd � xd� �

� 1

0

d�
j�1

G�1�θ�λj
�xj �G�1

θλj
�u�	du.

The joint probability mass function for �X1, . . . , Xd� 
 MPd�Λ, θ�, denoted as fΛ,θ, can be
derived by differencing the cumulative distribution function as

fΛ,θ�x1, . . . , xd� � Pr�X1 � x1, . . . , Xd � xd� �
�

��1�v�c�FΛ,θ�c1, . . . , cd�,

where the sum is taken over all cj � �xj � 1, xj	, with xj � N, j � �1, . . . , d	, and v�c� � #�j :

cj � xj � 1	. An equivalent expression for fΛ,θ can be obtained by conditioning:

fΛ,θ�x1, . . . , xd� �
x1�

z1�0

� � �
xd�

zd�0

Pr�X1 � x1, . . . , Xd � xd � Z1 � z1, . . . , Zd � zd�

� Pr�Z1 � z1, . . . , Zd � zd�

�
x1�

z1�0

� � �
xd�

zd�0

Pr�Y1 � x1 � z1, . . . , Yd � xd � zd�Pr�Z1 � z1, . . . , Zd � zd�

�
x1�

z1�0

� � �
xd�

zd�0

�
d�

j�1

g�1�θ�λj
�xj � zj�

�
Pr�Z1 � z1, . . . , Zd � zd�.

By definition, the comonotonic random vector �Z1, . . . , Zd� has joint probability mass function
given by

Pr�Z1 � z1, . . . , Zd � zd� � Pr�G�1
θλ1

�U� � z1, . . . , G
�1
θλd

�U� � zd	

� Pr�Gθλ1�z1 � 1� 
 U � Gθλ1�z1�, . . . , Gθλd
�zd � 1� 
 U � Gθλd

�zd�	

� Pr �max�Gθλ1�z1 � 1�, . . . , Gθλd
�zd � 1�	 
 U � min�Gθλ1�z1�, . . . , Gθλd

�zd�	� .

Using cΛ,θ to denote the probability mass function of the comonotonic random vector �Z1, . . . , Zd�,
we can write the above as

cΛ,θ�z1, . . . , zd� �

�
min

j��1,...,d�
Gθλj

�zj� � max
j��1,...,d�

Gθλj
�zj � 1�

�
�

(6.3)
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where, as introduced in Chapter 4, �x�� � x1�x � 0� and 1 is the indicator function. Then, putting
everything together gives the following joint probability mass function for the MPd�Λ, θ� family

fΛ,θ�x1, . . . , xd� �
x1�

z1�0

� � �
xd�

zd�0

�
d�

j�1

g�1�θ�λj
�xj � zj�

�
	 cΛ,θ�z1, . . . , zd�, (6.4)

Again, an equivalent expression for the joint probability mass function can be obtained by
conditioning on the underlying uniform random variable generating the comonotonic shock, viz.

� 1

0

d�
j�1

g�1�θ�λj

�
xj �G�1

θλj
�u�
�
du.

6.2.1 PQD ordering

As discussed in Chapter 3, any d-variate distribution function F is bounded by the Fréchet–
Hoeffding bounds. Specifically, for a joint distribution function F with fixed margins F1, . . . , Fd,
it can be shown that

FL�x1, . . . , xd� 
 F �x1, . . . , xd� 
 FU�x1, . . . , xd�, (6.5)

for all �x1, . . . , xd� � R
d, where

FU�x1, . . . , xd� � min�F1�x1�, . . . , Fd�xd�


and

FL�x1, . . . , xd� � max

�
0,

d�
j�1

Fj�xj� � �d� 1�

�
.

In the above, FU and FL respectively denote the upper and lower Fréchet–Hoeffding bounds.
As noted in Chapter 3, the Fréchet–Hoeffding lower bound is a proper CDF when d � 2. In this
case, the latter represents the distribution function of a counter-monotonic pair such that

�W1,W2� �d �F
�1
1 �U�, F�1

2 �1� U��

for U � U�0, 1�.
In general, for dimensions d � 2, the lower bound FL is not a proper CDF, although The-

orem 3.7 of Joe (1997) specifies criteria under which FL is a proper CDF. On the other hand,
the upper Fréchet–Hoeffding bound FU is always a proper CDF and represents the distribution
function of a comonotonic random vector

�W1, . . . ,Wd� �d

�
F�1
1 �U�, . . . , F�1

d �U�
	
,
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where U is again a standard uniform random variable on the interval �0, 1�.
Analogously, Theorem 3.5 of Joe (1997) provides bounds for a multivariate survival function

F̄ �x1, . . . , xd� � Pr�X1 � x1, . . . , Xd � xd� with given marginal survival functions F̄1, . . . , F̄d.
Specifically, the theorem asserts that

max

�
0,

d�
j�1

F̄j�xj� � �d� 1�

�
� F̄ �x1, . . . , xd� � min

j��1,...,d�
F̄j�xj�. (6.6)

The upper bound on the multivariate survival function is the corresponding survival function of FU .
In dimension 2, when FL represents a proper CDF, the lower bound in (6.6) is the corresponding
survival function of FL.

In the multivariate case, the definition of positive quandrant dependence entails an ordering
involving both the distribution function as well as the survival function. As outlined in Shaked
and Shanthikumar (2007), the following definition extends the concept of PQD ordering to the
multivariate setting.

Definition 6.1 Suppose the random vector X � �X1, . . . , Xd� has distribution function F with

corresponding survival function F̄ and that X� � �X �
1, . . . , X

�
d� has distribution function F � with

survival function F̄ �. Further suppose that both X and X� have the same marginal distributions.

If, for all x � �x1, . . . , xd� � R
d,

F �x� � F ��x� and F̄ �x� � F̄ ��x�

then the random vector X is smaller than X� in the PQD order. This will be denoted as X �PQD

X�.

Note that in the bivariate setting, the above definition can be slightly simplified as F �x1, x2� �

F ��x1, x2� is equivalent to F̄ �x1, x2� � F̄ ��x1, x2� when both F and F � have the same margins.
See Chapter 4 for details.

Remark 6.1 From (6.5) and (6.6), it follows that for any random vector X � �X1, . . . , Xd�

with fixed marginal distributions F1, . . . , Fd, its comonotonic counterpart Z � �Z1, . . . , Zd� �d

�F�1
1 �U�, . . . , F�1

d �U��, U � U�0, 1�, is always greater in the sense of the PQD ordering, i.e.,
X �PQD Z.

As was the case for the bivariate model, the proposed MPd�Λ, θ� family is ordered in the
PQD ordering as regulated by the dependence parameter θ. For the proposed multivariate Poisson
model, the PQD ordering in terms of θ then implies that for all x1, . . . , xd � R, θ, θ� � 	0, 1
 and
fixed Λ � �0,��d, if θ � θ� then FΛ,θ�x1, . . . , xd� � FΛ,θ��x1, . . . , xd� and F̄Λ,θ�x1, . . . , xd� �

F̄Λ,θ��x1, . . . , xd�. This will be formalized in Lemma 6.1. Establishing the PQD ordering in the
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6.2 The proposed model construction

MP family relies on Theorem 9.A.4 given in Shaked and Shanthikumar (2007), which is detailed
in the following theorem.

Theorem 6.1 Suppose that the four random vectors X � �X1, . . . , Xd�, Y � �Y1, . . . , Yd�, U �

�U1, . . . , Ud� and V � �V1, . . . , Vd� satisfy

X �PQD Y and U �PQD V,

and suppose that X and U are independent, and also that Y and V are independent. Then

�φ1�X1, U1�, . . . , φd�Xd, Ud�� �PQD �φ1�Y1, V1�, . . . , φd�Yd, Vd�� ,

for all increasing functions φ1, . . . , φd.

In the multivariate setting, the notion of positive quadrant dependence also has the useful prop-
erty of being closed under conjunctions and marginalization, as listed in parts (a) and (b) of Theo-
rem 9.A.5 of Shaked and Shanthikumar (2007) and stated in the following theorem for complete-
ness.

Theorem 6.2 (a) Let X1, . . . ,Xm be a set of independent random vectors such that for each

i � �1, . . . ,m�, the random vector Xi has dimension di. Let Y1, . . . ,Ym denote another set

of independent random vectors where for each i � �1, . . . ,m�, the random vector Yi has

dimension di. If Xi �PQD Yi for all i � �1, . . . ,m�, then

�X1, . . . ,Xm� �PQD �Y1, . . . ,Ym�.

(b) Let X � �X1, . . . , Xd� and Y � �Y1, . . . , Yd� be random vectors of dimension d. If

X �PQD Y, then XI �PQD YI for any subset I � �1, . . . , d�.

Establishing the PQD ordering for the proposed MPd�Λ, θ� family follows from Theorem 6.1.
This is made formal in the following lemma.

Lemma 6.1 PQD ordering in the MPd�Λ, θ� family.
Let X � �X1, . . . , Xd� � MPd�Λ, θ� and X� � �X �

1, . . . , X
�

d� � MPd�Λ, θ
��. Then θ 	 θ� 


X �PQD X�.

Proof. Fix the marginal parameters Λ � �λ1, . . . , λd� � �0,��
d and fix θ 	 θ�, with both θ and θ�

in the interval �0, 1
. By definition (6.1), for X � MPd�Λ, θ� the components can be written as

X � Y � Z
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for random vectors Y � �Y1, . . . , Yd� and Z � �Z1, . . . , Zd�, where Y has mutually independent
components Y1 � P��1 � θ�λ1�, . . . , Yd � P��1 � θ�λd� and is independent of the comonotonic
shock Z � M �P�θλ1�, . . . ,P�θλd��. Analogously, X� � MPd�Λ, θ

�� can be expressed as

X� � Y� � Z�,

where again Y� has independent components Y �

1 � P��1 � θ��λ1�, . . . , Y
�

d � P��1 � θ��λd� and
is independent of the comonotonic shock Z� � �Z �

1, . . . , Z
�

d� � M �P�θ�λ1�, . . . ,P�θ�λd��. Since
the univariate Poisson distribution is infinitely divisible, the random vector Y can be rewritten as

Y � T� S,

where T is comprised of independent components T1 � P��1 � θ��λ1�, . . . , Td � P��1 � θ��λd�

and is independent of S with components S1 � P��θ� � θ�λ1�, . . . , Sd � P��θ� � θ�λd�, where
S1, . . . , Sd are also mutually independent. Then, both T and Y� have the same marginal distri-
butions and it follows trivially that T �PQD Y�. Moreover, the random vectors S � Z and Z�

both have marginal distributions P�θ�λ1�, . . . ,P�θ�λd�. By definition, Z� is comonotonic and thus
S� Z �PQD Z� as noted in Remark 6.1. Then, by Theorem 6.1, it follows that

T� S� Z �PQD Y� � Z�.

In the above equation, T � S � Z � X and the right-hand side is equivalent to X�. Hence, the
desired result has been established. �

Remark 6.2 Lemma 6.1 together with Theorem 6.2 imply that for any θ, θ� 	 
0, 1� such that θ �
θ�, if X � MPd�Λ, θ� and X� � MPd�Λ, θ

�� then for any j 
 k 	 �1, . . . , d�, �Xj, Xk� �PQD

�X �

j, X
�

k� and consequently

cov�Xj, Xk� � cov�X �

j, X
�

k�, corr�Xj, Xk� � corr�X �

j, X
�

k�,

where the latter inequality holds since the marginal parameters are fixed at Λ � �λ1, . . . , λd�.
Accordingly, the pairwise covariance (and correlation) between any two components of X �

MPd�Λ, θ� are monotone increasing functions of the dependence parameter θ.

6.2.2 Covariance structure

The construction of the proposed multivariate Poisson family outlined in (6.1) is such that each
component of the random vector X � �X1, . . . , Xd� � MPd�Λ, θ� follows a Poisson distribution,
with Xj � P�λj� for all j 	 �1, . . . , d�. As such, the vector of parameters Λ � �λ1, . . . , λd� can be
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6.2 The proposed model construction

regarded as a mean vector representing the marginal Poisson rates, i.e.,

E�X�� � �λ1, . . . , λd�
�. (6.7)

In the proposed MPd�Λ, θ� formulation, there is a single dependence parameter θ that will
regulate the strength of the dependence in the model. This implies a specific correlation structure.
Indeed, for each pair �Xj, Xk�, j � k � �1, . . . , d�, one has

cov�Xj, Xk� � cov�Zj, Zk� � mλj ,λk
�θ�

where, recall from Chapter 4,

mλj ,λk
�θ� �

��

m�0

��

n�0

min�Ḡθλj
�m�, Ḡθλk

�n�� � θ2λjλk.

As detailed in Chapter 4, mλj ,λk
�θ� represents the largest possible covariance between two Poisson

random variables Zj , Zk, with respective marginal rates θλj and θλk. As noted in Remark 6.2, for
fixed Λ � �0,	�d, the pairwise correlations given, for all j � k � �1, . . . , d�, by

ρθ�λj, λk� �
mλj ,λk

�θ��
λjλk

are each an increasing function of θ. In particular, when the margins are independent, i.e., θ � 0,
the resulting correlation is 0 while the correlation attains the upper bound ρmax when θ � 1, i.e.,
the case of comonotonicity. Recall that the upper bound for the correlation is given by

ρmax�λj, λk� �
1�
λjλk

�
�λjλk 


�
m�N

�
n�N

min�Ḡλj
�m�, Ḡλk

�n��

�
.

Thus, in the proposed MPd�Λ, θ� model the pairwise correlations can attain all values within the
interval �0, ρmax�, which represents the full range of possible correlation for an arbitrary pair of
positively dependent Poisson random variables. Moreover, it is clear that any pair �Xj, Xk� 


�X1, . . . , Xd� � MPd�Λ, θ� follows the proposed bivariate Poisson model introduced in Chap-
ter 4, i.e., �Xj, Xk� � BP�λj, λk, θ�.

Marginally, each component of X is the sum of independent Poisson random variables. Specif-
ically, for j � �1, . . . , d�, the jth component can be written as Xj � Yj
Zj for Yj � P��1�θ�λj�

independent of Zj � P�θλj�. In this sense, the parameter θ can be regarded as a weighting factor
that dictates what portion of the marginal mean is due to an independent component Yj and the
comonotonic shock Zj .

The proposed MP�Λ, θ� model, as given in 6.1, certainly provides a more flexible definition
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of a multivariate Poisson distribution than that obtained in the classical setting detailed in Chap-
ter 2. The latter model is derived from a single common shock variable whereby each component
is the convolution of an independent Poisson random variable with the same common shock. In
dimension d, the classical common shock model has the form

X1 � Y1 � Z, . . . , Xd � Yd � Z, (6.8)

for independent Poisson random variables Y1 � P�λ1 � ξ�, . . . , Yd � P�λd � ξ�, Z � P�ξ�,
subject to the constraint 0 � ξ � min�λ1, . . . , λd�.

In the classical multivariate Poisson model, the common shock, Z, leads to cov�Xj, Xk� �

ξ for all j � k 	 
1, . . . , d� so that the correlation between �Xj, Xk� is given by ξ�
�
λjλk.

Accordingly, the classical multivariate model is characterized by a heterogeneous exchangeable
correlation structure, with covariance matrix given by

Σ �

�
�����

λ1 ξ . . . ξ

ξ λ2 . . . ξ
...

... . . . ...
ξ ξ . . . λd

�
�����
.

Similarly to what was noted in the bivariate case, the pairwise correlations are restricted to fall
in the interval 
0,min�λj, λk��

�
λjλk�, which, unless λj � λk � λ, will fall short of the full

range 
0, ρmax�. Note that when the marginal parameters coincide, i.e., λ1 � � � � � λd � λ, both
the classical common shock model and the proposed MPd�Λ, θ� model will coincide and the
resulting correlation will fall in the interval 
0, 1�.

Clearly, although the proposed MPd�Λ, θ� model is defined in terms of a single dependence
parameter, this does not impose the constraint that all pairs exhibit a common covariance. In the
proposed multivariate Poisson model, the covariance is a function of both the marginal parame-
ters and the dependence parameter so that the pairwise covariances are not restricted to coincide.
Thus, the MPd�Λ, θ� model can be regarded as having a “marginally-regulated” heterogeneous
exchangeable correlation structure. In the proposed model, the covariance matrix is given by

Σ �

�
�����

λ1 σ12 . . . σ1d

σ21 λ2 . . . σ2d

...
... . . . ...

σd1 σd2 . . . λd

�
�����
,

where σjk � mλj ,λk
�θ� � mλk,λj

�θ� � σkj for any j � k 	 
1, . . . , d�. Accordingly, the depen-
dence parameter θ dictates the strength of the dependence, but the magnitude of this strength is
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6.2 The proposed model construction

regulated by the size of the marginal rates.
Nonetheless, the formulation of the proposed multivariate Poisson model in terms of a single

dependence parameter does impose certain limitations in the covariance structure. This follows
since θ simultaneously governs the dependence between all components. To see this, let X �

MPd�Λ, θ�. For any j � k � �1, . . . , d�, if the pair �Xj, Xk� is comonotonic, i.e., ρθ � ρmax, then
θ � 1 and X itself must also be comonotonic. On the other hand, if ρθ � 0, i.e., the pair �Xj, Xk�

consists of independent components, then θ � 0 and all components of X are independent. This
drawback of the proposed multivariate comonotonic shock model will be revisited in Chapter 7.

6.2.3 Recurrence relations

The recurrence relations in the proposed multivariate Poisson model are obtained as a straight-
forward extension of the approach used in the bivariate setting. Recall from Section 4.2.3, the
recurrence results followed from the univariate Poisson relation, viz.

gλ�x� �
λ

x
gλ�x	 1�,

valid for all x � �1, 2, . . .�. Working with (6.4), it then follows that

fΛ,θ�x1 	 1, x2, . . . , xd� �

x1�1�

z1�0

x2�

z2�0


 
 

xd�

zd�0

g�1�θ�λ1�x1 	 1	 z1�g�1�θ�λ2�x2 	 z2� 
 
 
 g�1�θ�λd
�xd 	 zd�cΛ,θ�z1, . . . , zd�.

Through various algebraic manipulations, the right-hand side can be successively written as

��1	 θ�λ1�
�1

x1�1�

z1�0

x2�

z2�0


 
 

xd�

zd�0

�x1 	 z1�g�1�θ�λ1�x1 	 z1�

� g�1�θ�λ2�x2 	 z2� 
 
 
 g�1�θ�λd
�xd 	 zd�cΛ,θ�z1, . . . , zd�,

as

��1	 θ�λ1�
�1fΛ,θ�x1, . . . , xd�

x1�

z1�0


 
 

xd�

zd�0

�x1 	 z1�
d�

j�1

g�1�θ�λj
�xj 	 zj�

� cΛ,θ�z1, . . . , zd��fΛ,θ�x1, . . . , xd�,

and as

��1	 θ�λ1�
�1fΛ,θ�x1, . . . , xd�

x1�

z1�0


 
 

xd�

zd�0

�x1 	 z1�pΛ,θ�z1, . . . , zd
x1, . . . , xd�.
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Therefore,

fΛ,θ�x1 � 1, x2, . . . , xd� � ��1� θ�λ1�
�1fΛ,θ�x1, . . . , xd� �x1 � E�Z1�x1, . . . , xd�� .

In the above, pΛ,θ�z1, . . . , zd�x1, . . . , xd� is used to denote the conditional probability mass function
of z � �z1, . . . , zd� given x � �x1, . . . , xd�, specifically given by

pΛ,θ�z�x� �
pΛ,θ�z,x�

fΛ,θ�x�
�

�d
j�1 g�1�θ�λj

�xj � zj�cΛ,θ�z1, . . . , zd�

fΛ,θ�x1, . . . , xd�
.

Analogously, for any j � �1, . . . , d�, the following recurrence relation holds:

fΛ,θ�x1, . . . , xj�1, xj � 1, xj�1, . . . , xd� � ��1� θ�λj�
�1 �xj � E�Zj�x1, . . . , xd��

	 fΛ,θ�x1, . . . , xj�1, xj, xj�1, . . . , xd�. (6.9)

6.2.4 Convolutions in the MPd family

The proposed bivariate Poisson family discussed in Chapter 4 is a special case of the MP model
where d � 2. In Section 4.2.4, it was shown that the BP�Λ, θ� distribution is not closed under
convolutions. This then translates immediately to the multivariate model, so that the MPd family
is also not closed under convolutions.

6.3 Estimation

Let X1, . . . ,Xn denote a random sample of size n from the proposed MPd�Λ, θ� model and for
each i � �1, . . . , n�, write Xi � ��Xi1, . . . , Xid��. It is then of interest to estimate the marginal
parameters Λ � �0,
�d as well as the dependence parameter θ � �0, 1�. To this end, there are
several approaches that will yield consistent estimates for Ψ � �Λ, θ�. Similarly to what was
explored in Chapter 4, three methods will be detailed in this section, specifically, moment-based
estimation, maximum likelihood estimation and the two-stage inference function for the margins
approach.

6.3.1 Method of moments

Similarly to what was done in the case where d � 2, the method of moments approach can be
adapted to estimate the parameters Ψ � �Λ, θ� in the MPd�Λ, θ� model. Since the parameter vec-
tor Λ � �λ1, . . . , λd� is comprised of the marginal Poisson rates, consistent estimates are obtained
by setting, for each j � �1, . . . , d�,

λ̃j �
1

n

n�

i�1

Xij � X̄j. (6.10)
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As noted in Chapter 4, for univariate observations arising from a Poisson distribution, the method
of moments estimator coincides with the marginal maximum likelihood estimators. Standard max-
imum likelihood theory then implies that, for each j � �1, . . . , d�,

�
n �λ̃j � λj�� N �0, I�1j �,

where Ij represents the Fisher Information associated with the jth margin. Recall that in the case
of univariate P�λj� observations, Ij is given by λ�1j so that the asymptotic variance of λ̃j can be
consistently estimated by X̄j for each j � �1, . . . , d�.

Estimation of the dependence parameter requires mixed moments. As previously mentioned,
for any bivariate subset of X � MPd�Λ, θ�, say �Xj, Xk�, j 	 k � �1, . . . , d�, the covariance
takes the form

mλj ,λk
�θ� 


��

m�0

��

n�0

min�Ḡθλj
�m�, Ḡθλk

�n�� � θ2λjλk.

Let the sample covariance between the components Xj and Xk be denoted by Sjk, where

Sjk 
 1

n� 1

n�

i�1

�Xij � X̄j��Xik � X̄k�.

Then, holding the marginal parameters λj and λk fixed at their respective MM estimates, an esti-
mate for θ is obtained by solving

mλ̃j ,λ̃k
�θ� 
 Sjk.

As previously noted, for fixed �λj, λk�, the covariance mλj ,λk
�θ� is an increasing function of θ.

Thus, the above equation will have a unique solution, say θ̃jk, provided that Sjk falls in the interval
of permissible covariance values given by

�0, ρmax�X̄j, X̄k�
�
X̄j, X̄k�,

where ρmax�X̄j, X̄k�
�
X̄j, X̄k 
 mX̄j ,X̄k

�1�. Similarly to what was discussed in the bivariate case
in Chapter 4, in small samples it could happen that Sjk falls outside the range of possible co-
variance values implied by the MPd�Λ, θ� family. In the case that Sjk is less than 0, a model
accommodating negative dependence should be used in lieu of the MPd�Λ, θ� model. When Sjk

falls above the upper bound, ρmax�X̄j, X̄k�
�
X̄j, X̄k, the convention will be to set θ̃jk 
 1.

It can be shown, as in, e.g., Theorem 8 of Ferguson (1996), that as n 
 �,

�
n �Sjk �mλj ,λk

�θ��� N �0, σ2�θ, λj, λk��,

with σ2�θ, λj, λk� 
 var��Xj � λj��Xk � λk��. Using the notation introduced in Chapter 4, define
the function γjk to be the inverse of covariance function (for fixed Λ), i.e., the mapping γjk : x �
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m�1
λj ,λk

�x�, so that θ̃jk � γjk�Sjk�. The Delta Method then implies that, as n � �,

�
n �θ̃jk � θ�� N �0, 	γ�jk�σjk�
2σ2�θ, λj, λk��,

where γ�jk denotes the derivative of γjk.
It then follows that in the multivariate setting, one can define several consistent and asymptot-

ically Gaussian estimators for the dependence parameter θ using the aforementioned procedure.
Specifically, there are

�
d
2

�
distinct estimators of the form θ̃jk derived from the pairwise covariance

obtained for all possible pairs �Xj, Xk� � �X1, . . . , Xd�, j 
 k � 	1, . . . , d
. Slutsky’s theorem
then implies that θ̃ defined by

θ̃ �
�
d

2

��1 �
j�k��1,...,d�

θ̃jk

is a consistent estimator for the dependence parameter θ. This moment-based estimator is also
asymptotically Normal, as will be established in Theorem 6.6. The proof of this theorem relies on
several standard statistical results, which will be stated here for completeness.

Remark 6.3 Note that we could consider all d�d � 1� possible pairs �Xj, Xk� with j � k �
	1, . . . , d
 to obtain a set of estimators θ̃jk, but this is redundant since Sjk � Skj and also mλj ,λk

�θ� �
mλk,λj

�θ� so that θ̃jk � θ̃kj . Furthermore, if one considers the pair �Xj, Xj�, j � 	1, 2, . . . , d
,
mλj ,λj

�θ� reduces to var�Xj� � λj so that any θ � �0, 1� will yield mλj ,λj
� S2

j , where

Sjj � S2
j �

1

n� 1

n�
i�1

�Xij � X̄j�2.

Thus, it is also unnecessary to consider all d2 pairs �Xj, Xk�, j, k � 	1, . . . , d
.

The following theorem, which is Corollary 1.2.18 of Muirhead (1982), establishes the asymp-
totic distribution of the sample covariance matrix S, where the results are stated in terms of a
vectorization of S. Following the notation of Muirhead (1982), the vectorization of a p� q matrix
T , denoted vec�T �, is the pq� 1 vector formed by stacking the q columns of the matrix T . That is,
writing T in terms of its columns such that T � �t1 � � � tq�, vec�T � is the vector given by

vec�T � �

�
���
t1
...
tq

	


� .

Theorem 6.3 Let X1, . . . ,Xn be a sequence of iid m-variate random vectors with finite fourth

moments such that E�Xi� � μ and cov�Xi� � Σ for each i � 	1, . . . , n
. Define the sample mean
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as X̄ � �X1 � � � � �Xn��n and let S denote the sample covariance matrix given by

1

n� 1

n�

i�1

�Xi � X̄��Xi � X̄��.

Then the vectorized sample covariance matrix is asymptotically Gaussian. Specifically, as n� �,

	
n 
vec�S� Σ��� Nm2�0, V �,

where the asymptotic variance V is given by

V � cov
�
vec
�Xi � μ��Xi � μ���� .

Note that, as mentioned in Muirhead (1982), the asymptotic m2-variate Gaussian distribution
of the vectorized sample covariance matrix is singular. This follows since the sample covariance
S is symmetric so that its vectorized counterpart has repeat entries as Sjk � Skj for each j, k 


1, . . . ,m�.

The Cramér–Wold Theorem, stated next, is a necessary tool for establishing the asymptotic
normality of the moment-based estimator θ̃. For completeness, this is detailed in Theorem 6.4, as
taken from Billingsley (1995).

Theorem 6.4 For random vectors Xn � �Xn1, . . . , Xnk� and Y � �Y1, . . . , Yk�, a necessary and

sufficient condition for Xn� Y is that, for each �t1, . . . , tk� 
 R
k, one has, as n� �,

k�

u�1

tuXnu�

k�

u�1

tuYu.

Recall that in the bivariate Poisson model (i.e., when d � 2�, proving the asymptotic normality
of the MM estimator relies on the Delta Method. Accordingly, in higher dimensions the multi-
variate analogue of the Delta Method is necessary. The latter is formally stated in the following
Theorem, as given on p. 674 of Wakefield (2013) .

Theorem 6.5 Suppose
	
n �Yn � μ�� Z and suppose that g : Rp � R

k has a derivative g� at

μ, where g� is a k � p matrix of derivatives. Then, as n� �,

	
n 
g�Y� � g�μ��� g��μ�Z.

If Z � Np�0,Σ�, then, as n� �,

	
n 
g�Y� � g�μ��� Nk�0, 
g��μ��Σ
g��μ����.

The asymptotic normality of the proposed method of moments estimator θ̃ can now be estab-
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lished. This is formally stated in the following theorem.

Theorem 6.6 Asymptotic normality of the method of moments estimator
Suppose X1, . . . ,Xn are independent random vectors, with Xi �MPd�Λ, θ� for all i � �1, . . . , n�.
For each j � k � �1, . . . , d�, let θ̃jk denote the (unique) solution to the equation

mX̄j ,X̄k
�θ� � Sjk,

where the function mλj ,λk
�θ� denotes the theoretical covariance for the pair �Xj, Xk� 	 X �

MPd�Λ, θ� and Sjk denotes the sample covariance given by

Sjk � 1

n
 1

n�

i�1

�Xij 
 X̄j��Xik 
 X̄k�.

Define θ̃ to be the average of the set of estimators θ̃jk, j � k � �1, . . . , d�, i.e.,

θ̃ �
��

d

2

���1 �
j�k��1,...,d�

θ̃jk.

Then θ̃ is a consistent estimator of θ and, as n� �,



n �θ̃ 
 θ�� N �0, Ṽ �,

where the asymptotic variance is given by

Ṽ � 1

�d��2 �Γ
��Σ���V ��Γ��Σ����

� 1

�d��2
�

j�k��1,...,d�

�
r�s��1,...,d�

�γ�jk�σjk���γ�rs�σrs��

� cov ��Xij 
 λj��Xik 
 λk�, �Xir 
 λr��Xis 
 λs��

Proof. According to Theorem 6.3, the vectorized sample covariance matrix,

vec�S� � �S2
1 , S12, . . . , S1d, S12, S

2
2 , . . . , S2d, . . . , S12, S2d, . . . , S

2
d��,

is asymptotically normally distributed with asymptotic variance given by

V � cov
�
vec��Xi 
 μ��Xi 
 μ���� .

By the Cramér–Wold theorem, the dimensionality of vec�S� can be reduced from d2 to d� � �
d
2

	
,

thereby removing duplicate terms as well as the sample variance terms. That is, the Cramér–Wold
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theorem ensures that the vector vec�S�� with components Sjk, j � k � �1, . . . , d�, i.e.

vec�S�� � �S12, S13, . . . , S1d, S23, . . . , S2d, . . . , Sd�1d�,

is also asymptotically Gaussian with mean given by

vec�Σ�� � �σ12, σ13, . . . , σ1d, σ23, . . . , σd�1d�,

where σjk � cov�Xj, Xk� � mλj ,λk
�θ�. Properties of the Gaussian distribution imply that the

asymptotic variance of vec�S�� is

V � � cov
�
vec��X�

i � μ���X�

i � μ����� ,

where vec��X�

i � μ���X�

i � μ���� is the vector given by

�
������������������

�Xi1 � λ1��Xi2 � λ2�
�Xi1 � λ1��Xi3 � λ3�

...
�Xi1 � λ1��Xid � λd�
�Xi2 � λ2��Xi3 � λ3�

...
�Xi2 � λ2��Xid � λd�

...
�Xid�1 � λd�1��Xid � λd�

�
������������������

.

As previously introduced, let the function γjk be the inverse of the covariance function such that
γjk�Sjk� � m�1

λj ,λk
�Sjk� � θ̃jk for j � k � �1, . . . , d�. Now define the function Γ : Rd� 	
 �0, 1�d�

such that

Γ�S�� � ��γ12�S12�, γ13�S13�, . . . , γ1d�S1d�, γ23�S23�, . . . , γd�1d�Sd�1d��
� �θ̃12, θ̃13, . . . , θ̃1d, θ̃23, . . . , θ̃d�1d�.

Applying the multivariate Delta Method, one has that



n vec�Γ�S�� � Γ�Σ���� Nd��0, �Γ��Σ���V ��Γ��Σ�����.

Note that in the above, Γ�Σ�� yields a vector of length d� wherein each component is identically
θ. By the Cramér–Wold theorem, it follows that any linear combination of the components Γ�S��
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is also asymptotically normally distributed. Thus, the linear combination θ̃ given by

θ̃ �

��
d

2

��
�1 �

j�k��1,...,d�

θ̃jk

is asymptotically Gaussian. Properties of the Gaussian distribution then yield the desired result,
i.e., �

n �θ̃ � θ�� N �0, Ṽ �,
with

Ṽ � 1

�d��2
�

j�k��1,...,d�

�
r�s��1,...,d�

�γ�jk�σjk���γ�rs�σrs��

� cov ��Xij � λj��Xik � λk�, �Xir � λr��Xis � λs�� .

Thus we can conclude. �

As was the case in the bivariate setting, some simplifications ensue when the marginal param-
eters coincide, i.e., when λ1 � 	 	 	 � λd � λ. In this case, the comonotonic shock reduces to a
common shock, i.e., �Z1, . . . , Zd� �d �Z, . . . , Z� where Z 
 P�θλ�.

Similarly to the notation introduced in Chapter 4, for � � �1, . . . , d�, write

X� � λ� � Y̊� � Z̊�,

where Y̊� and Z̊� represent the centred random variables given by

Y̊� � Y� � �1� θ�λ�, Z̊� � Z� � θλ�.

It then follows that

cov��Xj � λj��Xk � λk�,�Xr � λr��Xs � λs��
� cov��Y̊j � Z̊j��Y̊k � Z̊k�, �Y̊r � Z̊r��Y̊s � Z̊s��
� cov�Y̊jY̊k � Y̊jZ̊k � Y̊kZ̊j � Z̊jZ̊k, Y̊rY̊s � Y̊rZ̊s � Y̊sZ̊r � Z̊rZ̊s�.

Simplifications of the above covariance expression depend on the overlap of the indices j, k, r, s.
For example, for j 
 k and r 
 s with j � k � r � s � �1, . . . , d�, the random variables Y̊j ,
Y̊k, Y̊r and Y̊s are mutually independent with mean zero. Moreover, Y̊� is independent of Z̊t for
each �, t � j, k, r, s. Thus, in this particular setting the covariance simplifies to cov�Z̊jZ̊k, Z̊rZ̊s�.
In the special case where the marginal parameters coincide, i.e., λ1 � 	 	 	 � λd � λ, this further
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simplifies:

cov�Z̊jZ̊k, Z̊rZ̊s� � var�Z̊2� � θλ�1� 3θλ� � θ2λ2 � θλ�1� 2θλ�.

As another example, when j � k � r � s, the covariance expression reduces to

cov�Z̊jY̊k, Y̊kZ̊s� � cov�Z̊jZ̊k, Z̊kZ̊s� � E�Y̊ 2
k �E�Z̊jZ̊s� � E�Z̊jZ̊

2
kZ̊s� � E�Z̊jZ̊k�E�Z̊kZ̊s�.

Then, when λ1 � � � � � λd � λ, the above further simplifies to

var�Yk�var�Z� � E��Z � θλ�4	 � var�Z�2 � �1� θ�θλ2 � θλ�1� 3θλ� � θ2λ2

� θλ�1� λ� θλ�.

In general, simplifying the asymptotic variance V is tedious even when λ1 � � � � � λd since,
as already mentioned, simplifications of the covariance term

cov ��Xij � λj��Xik � λk�, �Xir � λr��Xis � λs�	

depends on the overlap of the indices j, k, r, s. When d � 2, it is clear that the asymptotic results
coincide with those detailed for the BP model in Chapter 4.

6.3.2 Maximum likelihood estimation

Likelihood-based estimation is also feasible in the proposed MPd�Λ, θ� model. Under the usual
regularity conditions, which are here satisfied, maximum likelihood estimation yields consistent
and efficient estimates, say �λ̂1, . . . , λ̂d, θ̂�. Working with the formulation of the probability mass
function given in (6.4), the likelihood function is given by

L�Λ, θ� �
n�

i�1

�
xi1�
z1�0

� � �
xid�
zd�0

�
d�

j�1

g�1�θ�λj
�xij � zj�

�
cΛ,θ�z1, . . . , zd�

�
,

with corresponding log-likelihood

��Λ, θ� �
n�

i�1

ln

�
xi1�
z1�0

� � �
xid�
zd�0

d�
j�1

g�1�θ�λj
�xij � zj�cΛ,θ�z1, . . . , zd�

�
. (6.11)

The maximum likelihood estimates, Ψ̂ � �λ̂1, . . . , λ̂d, θ̂�, are then established as

Ψ̂ � argmax
λ1,...,λd,θ

��Λ, θ�,
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subject to the constraints that λ1, . . . , λd � �0,�� and θ � �0, 1�. This is equivalent to solving
�

�

�λ1

��Λ, θ�, . . . ,
�

�λd

��Λ, θ�,
�

�θ
��Λ, θ�

�
� 0�.

Similarly to what was shown in Section 4.3.2, it is straightforward to show that for any k �

	1, . . . , d
,

�

�λk

d�
j�1

g�1�θ�λj
�xj � zj�

� ��1� θ�
�
g�1�θ�λk

�xk � zk� � g�1�θ�λk
�xk � 1� zk�

� d�
j�1,j�k

g�1�θ�λj
�xj � zj�.

Additionally, it can be shown that

�

�θ

d�
j�1

g�1�θ�λj
�xj � zj� � �λ1 � 
 
 
 � λd�

d�
j�1

g�1�θ�λj
�xj � zj�

� λ1g�1�θ�λ1�x1 � 1� z1�
d�

j�2

g�1�θ�λj
�xj � zj� � 
 
 


� λkg�1�θ�λk
�xk � 1� zk�

d�
j�1,j�k

g�1�θ�λj
�xj � zj� � 
 
 


� λdg�1�θ�λd
�xd � 1� zd�

d�1�
j�1

g�1�θ�λj
�xj � zj�.

It then follows that, for any k � 	1, . . . , d
,

�

�λk

fΛ,θ�x1, . . . , xd� �
�

�λk

x1�
z1�0


 
 

xd�

zd�0

d�
j�1

g�1�θ�λj
�xj � zj�cΛ,θ�z1, . . . , zd�
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with the right-hand side reducing to

x1�

z1�0

� � �
xd�

zd�0

�
� �1� θ�

d�
j�1,j�k

g�1�θ�λj
�xj � zj�

�
�
g�1�θ�λk

�xk � zk� � g�1�θ�λk
�xk � 1� zk�

�
cΛ,θ�z1, . . . , zd�

�
d�

j�1

g�1�θ�λj
�xj � zj�

�
�

�λk

cΛ,θ�z1, . . . , zd�

��

� ��1� θ� 	fΛ,θ�x1, . . . , xd� � fΛ,θ�x1, . . . , xk�1, xk � 1, xk�1, . . . , xd�


� fΛ,θ�x1, . . . , xd�
x1�

z1�0

� � �
xd�

zd�0

�� �

�λk

ln cΛ,θ�z1, . . . , zd�

�

�
d�

j�1

g�1�θ�λj
�xj � zj�cΛ,θ�z1, . . . , zd��fΛ,θ�x1, . . . , xd�

�
.

Using the recurrence relation (6.9), this further simplifies as

�

�λk

fΛ,θ�x1, . . . , xd� � fΛ,θ�x1, . . . , xd�
�
� �1� θ� �

1

λk

	xk � E�Zk�x1, . . . , xd�


� E

�
�

�λk

ln cΛ,θ�Z1, . . . , Zd��x1, . . . , xd�

��
.

In a similar manner, it can be shown that

�

�θ
fΛ,θ�x1, . . . , xd� � fΛ,θ�x1, . . . , xd�

	
d�

j�1

λj �



1

1� θ

� d�
j�1

	xj � E�Zj�x1, . . . , xd�


� E

�
�

�θ
ln cΛ,θ�Z1, . . . , Zd��x1, . . . , xd�

��
.

It is then straightforward to derive the score equations in the MPd�Λ, θ� model. In particular,

�

�λk

��Λ, θ� �
�

�λk

n�
i�1

ln fΛ,θ�xi1, . . . , xid�

� �n�1� θ� �
n

λk

	x̄k � q̄k�Λ, θ�
 �
n�

i�1

E

�
�

�λk

ln cΛ,θ�Z1, . . . , Zd��xi1, . . . , xid

�
,

where, following the same notation introduced in Chapter 4,

q̄k�Λ, θ� �
1

n

n�
i�1

qik�Λ, θ� �
1

n

n�
i�1

E�Zk�xi1, . . . , xid�.
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Note that the score equation for λk can also be rewritten as

�
�λk

��Λ, θ� � n

λk

�x̄k � λk� � n

λk

�q̄k�Λ, θ� � θλk�

�
n�

i�1

E

� �
�λk

ln cΛ,θ�Z1, . . . , Zd�	xi1, . . . , xid

�
. (6.12)

Notice the similarity between (6.12) and (4.15). In addition, it can be shown that

�
�θ ��Λ, θ� � n

d�
j�1

λj � n

�1� θ�
d�

j�1

�x̄j � q̄j�Λ, θ��

�
n�

i�1

E

� �
�θ ln cΛ,θ�Z1, . . . , Zd�	xi1, . . . , xid

�
,

which can be equivalently expressed as

�
�θ ��Λ, θ� � � n

�1� θ�
d�

j�1

�x̄j � λj� � n

�1� θ�
d�

j�1

�q̄j�Λ, θ� � θλj�

�
n�

i�1

E

� �
�θ ln cΛ,θ�Z1, . . . , Zd�	xi1, . . . , xid

�
. (6.13)

Again, note the similarity between (6.13) and (4.18).
As was the case in the bivariate model, the form of the log-likelihood and corresponding score

equations does not allow for an analytical maximization of the log-likelihood. Rather, numerical
optimization procedures are necessary to find the maximum likelihood estimates Λ̂, θ̂. In order to
simplify the optimization, a reparametrization of ��Λ, θ� should be considered so as to remove the
parameter constraints. In the case of the MPd�Λ, θ� model, this is accomplished by setting, for all
j 
 �1, . . . , d�,

ζj � ln�λj� � λj � exp�ζj�, η � ln

�
θ

1� θ

�
� θ � exp�η���1� exp�η��.

The optimization can then be carried out on ��ζ1, . . . , ζd, η� to yield maximum likelihood esti-
mates ζ̂1, . . . , ζ̂d, η̂. By the invariance properties of MLEs, one then has λ̂j � exp�ζ̂j� for all
j 
 �1, . . . , d� and θ̂ � exp�η̂���1� exp�η̂��.

Maximum likelihood theory ensures that, under certain regularity conditions, the MLEs Ψ̂ �
�λ̂1, . . . , λ̂d, θ̂� are asymptotically Gaussian, with mean zero and asymptotic variance given by the
inverse of the Fisher information matrix, i.e., as n
 �,

�
n �Ψ̂�Ψ�� N �0, I�1�
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In the practical implementation of ML estimation, an estimate of the asymptotic variance can
be calculated as the sample variance of a set of ML estimates resulting from a large number of
bootstrap replications.

Remark 6.4 Note that in the case where all marginal parameters are equal, the components of the
random vector �X1, . . . , Xd� are in fact identically distributed. Setting λ1 � � � � � λd � λ, one has
that Xj � Yj � Z for all j � �1, . . . , d�, where Z is a common shock variable. Specifically, Z 	

P�θλ� and the components �Y1, . . . , Yd� are independent and identically distributed P��1 
 θ�λ�

random variables. In this setting, the MPd�Λ, θ� model corresponds to the classical common shock
multivariate Poisson model with λ1 � � � � � λd. The latter was discussed in detail in Chapter 2.

The EM algorithm

Analogously to the bivariate model, the construction of the proposed MPd�Λ, θ� model, as in (6.1),
is based on the convolution of unobserved random vectors Y and Z. As was noted in Chapter 4,
this formulation lends itself naturally to the use of the Expectation-Maximization (EM) algorithm
for finding the maximum likelihood estimates Ψ̂ � �λ̂1, . . . , λ̂d, θ̂�.

In the classical multivariate Poisson model, the construction is based on a single common
shock variable. In this setting, the application of the EM algorithm is straightforward and leads
to an easily-implemented algorithm, as shown in Chapter 2. For the proposed MPd�Λ, θ� family,
however, this is not the case, similarly to what was seen in the bivariate model in Chapter 4.
Naturally, the implementation of the EM algorithm in the MP family leads to an analogous form
for the E-step, Q�Ψ�Ψ�k�� as was obtained for the bivariate model. Nonetheless, for completeness,
the steps are outlined in what follows.

Consider a random sample X1, . . . ,Xn 	 MPd�Λ, θ�. Let the missing or latent variables
consist of the underlying uniform random variables U1, . . . , Un generating the comonotonic shock
vectors, viz.

�Zi1, . . . , Zid� �
�
G�1

θλ1
�Ui�, . . . , G

�1
θλd

�Ui�
�

for all i � �1, . . . , n�. The joint distribution of the observed data x and the missing data u is given
by

pΛ,θ�x1, . . . , xd, u� � pΛ,θ�x1, . . . , xd�u�fU�u� �
d�

j�1

g�1�θ�λj

�
xj 
G�1

θλj
�u�
�
.

Analogously to what was shown in Chapter 4, the complete data log-likelihood is then

�C�Λ, θ� �
n�

i�1

d�
j�1

�

�1
 θ�λj � �xij 
G�1

θλj
�ui�� ln ��1
 θ�λj� 
 ln

�
�xij 
G�1

θλj
�ui��!

� �
.
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With some manipulations, the above can be rewritten as

�C�Λ, θ� � �n�1� θ�
d�

j�1

λj � ln

�
�1� θ�

d�
j�1

λj

�
n�

i�1

d�
j�1

�xij �G�1
θλj

�ui��

�
n�

i�1

d�
j�1

ln

�
λj�d

k�1 λk

�
�xij �G�1

θλj
�ui�� �

n�
i�1

d�
j�1

ln
�
�xij �G�1

θλj
�ui��!

�
.

Taking the conditional expectation of �C�Λ, θ�, given the observed data x and current parameter
estimates Ψ�k� � �Λ�k�, θ�k��, one gets

Q�Ψ�Ψ�k�� � �n�1� θ�
d�

j�1

λj � n ln

�
�1� θ�

d�
j�1

λj

�
d�

j�1

	
x̄j � q̄j�Λ

�k�, θ�k��



� n
d�

j�1

ln

�
λj�d

k�1 λk

�	
x̄j � q̄j�Λ

�k�, θ�k��


� R�X,Ψ�k��,

where R�X,Ψ�k�� is the remainder term, which depends only on the observed data and current
parameter estimates, is equal to

n�
i�1

d�
j�1

E
�
ln	�xij �G�1

θλj
�ui��!
�x,Ψ

�k�
�
.

As was done in Chapter 4, consider a reparametrization of the above where αj � λj��λ1�� � ��λd�

for all j 
 �1, . . . , d� and β � �1 � θ��λ1 � � � � � λd�. Note that α1 � � � � � αd � 1. In terms of
α1, . . . , αd, β, the E-step can be rewritten as

Q�Ψ�Ψ�k�� � �nβ � n ln�β�
d�

j�1

	
x̄j � q̄j�Λ

�k�, θ�k��



� n
d�

j�1

ln�αj�
d�

j�1

	
x̄j � q̄j�Λ

�k�, θ�k��


� R�x,Ψ�k��.

As was shown in the BP model, this leads to identifiability issues as only �α1, . . . , αd�1, β� can
be identified from the above. Thus, the E-step does not allow to identify the parameter updates
�Λ�k�1�, θ�k�1��.
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6.3.3 Inference for margins

Let pΛ,θ�z,x� denote the joint probability mass function of the comonotonic shock Z � �Z1, . . . , Zd�

and the observed data X � �X1, . . . , Xd�, where

pλ,θ�z,x� �
d�

j�1

g�1�θ�λj
�xj � zj�cΛ,θ�z1, . . . , zd�.

The first part of the above equations consists of the marginal contributions due to each independent
univariate Poisson component Y1, . . . , Yd. Suppressing the subscript j, it is straightforward to show
that

g�1�θ�λ�x� z� � gλ�x��gθλ�z��
�1bx,θ�z�

where, as introduced in Chapter 4, bx,θ�z� represents a Binomial probability mass function with
size x and probability θ, evaluated at z. Using this formulation, the joint probability mass function
in (6.4) can be rewritten as

fΛ,θ�x� �
x1�

z1�0

� � �
xd�

zd�0

�
d�

j�1

gλj
�xj�bxj ,θ�zj��gθλj

�zj�

�
cΛ,θ�z1, . . . , zd�

�

�
d�

j�1

gλj
�xj�

�
x1�

z1�0

� � �
xd�

zd�0

d�
j�1

bxj ,θ�zj�cΛ,θ�z1, . . . , zd��gθλj
�zj�.

Following the same notation as in Chapter 4, let ωΛ,θ denote weights given by

ωΛ,θ�z;x� �
d�

j�1

�
bxj ,θ�zj��gθλj

�zj�
�
.

Then, an alternative expression for the joint probability mass function in the MPd�Λ, θ� family is

fΛ,θ�x1, . . . , xd� �

�
d�

j�1

gλj
�xj�

�
x1�

z1�0

� � �
xd�

zd�0

ωΛ,θ�z;x�cΛ,θ�z1, . . . , zd�. (6.14)

The above is the multivariate extension of (4.22).
Let X1, . . . ,Xn denote a random sample from the proposed MPd�Λ, θ� distribution. Using the

expression for the probability mass function given in (6.14), the resulting log-likelihood has the
form

��Λ, θ� �
n�

i�1

�
d�

j�1

ln�gλj
�xij�� 	 ln

�
xi1�
z1�0

� � �
xid�
zd�0

ωΛ,θ�z;xi�cΛ,θ�z1, . . . , zd�

��
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For each j � �1, . . . , d�, let

�j�λj� �
n�

i�1

ln�gλj
�xij��

denote the marginal log-likelihoods and define �D�Λ, θ� as

�D�Λ, θ� � ln

�
xi1�
z1�0

� � �
xid�
zd�0

ωΛ,θ�z;xi�cΛ,θ�z1, . . . , zd�

�
. (6.15)

Then the log-likelihood can be expressed as

��Λ, θ� �
d�

j�1

�j�λj� � �D�Λ, θ�, (6.16)

yielding an analogous multivariate version of the log-likelihood obtained in the BP model; see
(4.23). The first part of (6.16) consists of the marginal contributions to the log-likelihood of each
component X1, . . . , Xd and is equivalent to the full log-likelihood in the case of independence,
i.e., when θ � 0. The remaining term, �D�Λ, θ�, thus encompasses the dependence inherent in the
multivariate model.

Based on the form of the log-likelihood given in (6.16), the maximum likelihood estimators
Ψ̂ � �Λ̂, θ̂� are the solutions to the set of score equations

	

	λ1

��Λ, θ� �
	

	λ1

�1�λ1� �
	

	λ1

�D�Λ, θ� � 0,

...
	

	λd

��Λ, θ� �
	

	λd

�d�λd� �
	

	λd

�D�Λ, θ� � 0,

	

	θ
��Λ, θ� �

	

	θ
�D�Λ, θ� � 0.

As previously discussed, the MLEs do not have a closed form expression, except in trivial
cases. Moreover, as pointed out in Joe (2005), maximum likelihood estimation can be compu-
tationally difficult, or even infeasible, as d increases. As discussed in Chapter 4, the inference
function for margins (IFM) method provides an alternative approach which reduces the compu-
tationally complexity by using a two-stage estimation method. Recall that in the IFM approach,
the marginal parameters are first estimated via their respective univariate log-likelihoods and then
an estimate for the dependence parameter is computed using the full log-likelihood, holding the
marginal parameters fixed at their respective marginal MLEs.

The application of the IFM approach in the proposed multivariate Poisson model is analogous
to what was shown in the BP model in Section 4.3.3. Specifically, the IFM estimates �λ̌1, . . . , λ̌d, θ̌�
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are obtained as the solution to�
�

�λ1

�1�λ1�, . . . ,
�

�λd

�d�λd�,
�

�θ
��Λ̌, θ�

�
� 0�.

The implementation of this approach results in a two-stage estimation procedure. At the first step,
the marginal likelihoods of each component is maximized separately to obtain λ̌1, . . . , λ̌d. The sec-
ond stage entails maximizing the full likelihood with respect to θ, holding the marginal parameters
fixed at Λ̌ � �λ̌1, . . . , λ̌d�.

In the MP�Λ, θ� model, Xj � P�λj� for all j � �1, . . . , d� so that the marginal log-likelihoods
have the form

�j�λj� � 	nλj 
 nx̄j ln�λj� 	
n�

i�1

ln�xij!�,

with corresponding score equation given by

�

�λj

�j�λj� � 	n

�
1	

x̄j

λj

�
� 0

thus yielding λ̌j � X̄j . The IFM estimate of the dependence parameter, θ̌, is then determined as

θ̌ � argmax
θ

��Λ̌, θ� � argmax
θ

�D�Λ̌, θ�.

The above amounts to solving ���Λ̌, θ���θ � ��D�Λ̌, θ���θ � 0. Using the score equation derived
in (6.13), the IFM estimating equation for the dependence parameter then simplifies to

�

�θ
��Λ̌, θ� �

�

�θ
�D�Λ̌, θ� �

n

�1	 θ�

d�
j�1

�
q̄j�Λ̌, θ� 	 θλ̌j

�



n�

i�1

E

�
�

�θ
ln cΛ̌,θ�Z1, . . . , Zd��xi1, . . . , xid

�
.

To reiterate, this is analogous to what was shown for the BP model in Chapter 4.

EM algorithm

Similarly to the two-dimensional setting, in the proposed multivariate Poisson model the EM al-
gorithm can be applied within the IFM framework to determine the estimate for the dependence
parameter θ̌. In particular, this is accomplished by applying the EM algorithm to the pseudo like-
lihood L�Λ̌, θ�. In a similar manner to the bivariate case, the latent variables will be taken as the
underlying U�0, 1� random variables generating the comotononic shock viz.

�Z1, . . . , Zd� � �G�1θλ1
�U�, . . . , G�1θλd

�U��.
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Analogously to (4.25), the complete data pseudo log-likelihood within the IFM framework is given
by

�C�Λ̌, θ;x,u� � �n�1� θ�
d�

j�1

λ̌j �
n�

i�1

d�

j�1

ln
��1� θ�λ̌j

� �xij �G�1
θλ̌j

�ui��

�
n�

i�1

d�
j�1

ln
�
�xij �G�1

θλ̌j
�ui��!

�
.

This leads to the E-step

Q�θ�θ�k�� � �n�1� θ�
d�

j�1

λ̌j � n ln�1� θ�
d�

j�1

�
xij � q̄j�Λ̌, θ�k��

�

� n
d�

j�1

ln�λ̌j�
�
xij � q̄j�Λ̌, θ�k��

�� R�x, θ�k��,

where R�x, θ�k�� consists of a remainder term which does not depend of the unknown parameter
θ, specifically

R�x, θ�k�� �
n�

i�1

d�
j�1

E
�
ln	�xij �G�1

θλ̌j
�ui��!
�x, θ�k�

�
.

Analogously to what was found in the bivariate setting, the parameter update is given by

θ�k�1� � argmax
θ

Q�θ�θ�k�� �
�d

j�1 q̄j�Λ̌, θ��d
j�1 λ̌j

�
�d

j�1 q̄j�Λ̌, θ��d
j�1 x̄j

.

The form of the parameter update θ�k�1� is intuitive as it represents the proportion of the overall
average, �x̄1�� � �� x̄d��d, that is due to the comonotonic shock. In addition, each iterate �θ�k�, k �
1, 2, . . .� will always fall within the interval 	0, 1
 since by definition 0 
 q̄j�Λ̌, θ� 
 x̄j . Under
certain conditions (see Chapter 4), the sequence of EM updates �θ�k�, k � 1, 2, . . .� will converge
to the IFM estimate θ̌.

IFM theory, as outlined in Chapter 3, ensures that, as n � �,

�
n �Ψ̌�Ψ�� N �0, V �.

The elements of the asymptotic variance V can be derived in a similar manner to what was done
for the BP model in Section 4.3.3. In particular, let p denote the dimension of the parameter vector
Ψ � �λ1, . . . , λd, θ�, so that p � d� 1 and let Vjk denote the �j, k�th element of V . Then, for each
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j, k � �1, . . . , d�, it can be shown that

Vjj � λj, Vjk � mλj ,λk
�θ�, Vjp � �I�1pp

d�

k�1

mλj ,λk
�θ�Ipk

Vpp � I�1
pp �

�I�1
pp

�2 d�
j�1

d�
k�1

IpjIpkmλj ,λk
�θ�,

where, recall from Section 4.3.3,

I � �E

�
	2

	Ψ	Ψ�
ln fΛ,θ�X1, . . . , Xd�

�
,

and Ijk denotes the �j, k�th element of the Fisher Information matrix I.
As was noted in Chapter 4, there is a loss in efficiency when the IFM approach is taken rather

than basing the estimation on the full likelihood. This will be further investigated in the various
simulations summarized in the following section.

6.4 Simulations

A set of simulations were carried out to assess the performance of the three estimation tech-
niques outlined in Section 6.3. In total, 30 scenarios were tested, each of which resulted from
the unique combination of values for the dimension d � �2, 3, 4�, the dependence parameter
θ � �0.10, 0.25, 0.50, 0.75, 0.90� and sample size n � �50, 500�. The marginal parameters were
fixed throughout, specifically with Λ � �1, . . . , d�, and the focus was placed on the estimation of
the dependence parameter.

For every scenario resulting from specific values of �d, θ, n�, a random sample of size n was
generated by setting, for each i � �1, . . . , n�,

Xi1 � G�1
�1�θ�λ1

�Vi1� �G�1
θλ1

�Ui�, . . . , Xid � G�1
�1�θ�λd

�Vid� �G�1
θλd

�Ui�,

where Vi1, . . . , Vid, Ui denote independent U�0, 1� random variables. The method of moments, in-
ference functions for the margins and maximum likelihood estimation approaches were then each
applied to the specific sample to obtain a set of three estimates respectively denoted as θ̃, θ̌ and θ̂.
Each of the 30 unique scenarios was replicated 500 times, yielding a total of 15,000 iterations.

At each iteration, estimation was first performed using the method of moments. As was previ-
ously detailed, the latter is obtained by averaging the unique estimates θ̃jk, j 
 k � �1, . . . , d�, that
result from solving the equation that matches the sample covariance to the theoretical covariance,
viz.

Sjk � mX̄j ,X̄k
�θ�.
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The solution to the above was obtained using the uniroot function in R. Similarly to what
was noted in the bivariate setting in Chapter 4, it sometimes occurred that the pairwise sample
covariances were found to be negative. Any instances where Sjk � 0, thus resulting in θ̃jk � NA,
were excluded from the average θ̃. In the majority (13,621) of the 15,000 iterations, there were
no occurrences where θ̃jk � NA. Moreover, overall there were only 228 instances where each
pairwise sample covariance was negative leading to the MM estimate θ̃ being set to NA. Not
surprisingly, this tended to occur more frequently for the smaller sample size, lower levels of
dependence and lower dimension d.

For both likelihood-based estimation methods, the optimization procedures were initialized us-
ing the MM estimates �Λ̃, θ̃�. As was done for the estimation in the BP model, if the MM estimate
was found to either be NA or 0, a starting value of θ�0� � 0.01 was used instead while when θ̃ � 1

the starting value was taken to be 0.99. This was done so as to avoid issues at the boundary of the
parameter space for θ. In the simulations, there were no errors with the implementation of both the
IFM and MLE methods. There were however 36 iterations where the IFM optimization algorithm
did not converge within the maximum number of iterations, which are set to 100 by default in R.
This error only occurred in small sample sizes.

As was alluded to in Chapter 4, the run times of the three estimation methods becomes in-
creasingly disparate as the dimension increased. Figure 6.1 graphs the running times for the three
estimation approaches in dimensions 2, 3 and 4. It is clear from the plots that for all dimensions,
the MM method tends to run the fastest, followed by the IFM approach and then the MLE method.
More striking, however, is the drastic increase in the running time for the full maximum likelihood
approach as the dimension increases in comparison to both the MM and IFM approaches. Notably,
in dimension 4, the average run time of the MLE method is more than 6 times longer than the
average IFM run time and almost 17 times longer than the average run time for the method of
moments. Conceivably, a full maximum likelihood approach would eventually become infeasible
for higher dimensions. Clearly, the IFM method is an appealing alternative for likelihood-based
estimation in high dimensional problems.

The estimation results for the dependence parameter are summarized in Figures 6.2 through 6.6.
The patterns are similar to what was observed in the BP model in Chapter 4. The estimation results
improve as the sample size increases, as one would expect. The MM performs comparatively better
for weaker levels of dependence for all dimensions and sample sizes. Both the IFM and MLE
produce similar results. Moreover, the variability in the two likelihood-based methods decreases as
θ increases. This pattern was seen in all dimensions and sample sizes. As explained in Chapter 4,
this is intuitive since when θ increases, the random vector �X1, . . . , Xd� is predominately generated
by the comonotonic shock �Z1, . . . , Zd� which induces less uncertainty as the components of the
comonotonic shock vector are generated from a common underlying U�0, 1� random variable.
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Figure 6.1: Run times for MM (left), IFM (middle) and MLE (right) estimation methods in dimen-
sions 2 (top left plot), 3 (top right plot) and 4 (bottom plot).

As was observed in the bivariate setting in Chapter 4, there were some instances where seem-
ingly outlier estimates were obtained for the likelihood-based methods. For example, this is seen
in the graphs for the scenario where �θ, d, n� � �0.75, 2, 50�. As was investigated in the BP model,
this tended to happen when the starting value θ̃ was much larger than the true parameter value. In
the particular scenario where �θ, d, n� � �0.75, 2, 50�, the outlier estimates occurred when θ̃ � 1 so
that the optimization procedures for the IFM and MLE approaches were initialized at θ�0� � 0.99.
As commented in Chapter 4, it seems that starting the algorithm close to the boundary can some-
times lead to poor estimates in the likelihood-based methods.

Figures 6.7 through 6.11 show the estimation results for Λ in the case of the trivariate model.
Similarly to what was observed in the bivariate setting, the MM/IFM estimates for the marginal
parameters are very similar to the full maximum likelihood estimates. This held true for all levels
of dependence θ. Again, this suggests that there is very little information concerning the marginal
parameters Λ in the dependence portion of the log-likelihood �D�Λ, θ�.
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Figure 6.2: Estimation results for θ from the method of moments (left), inference function for
margins (middle) and maximum likelihood estimation (right) in indicated scenario.

6.5 Data illustration

As an application of the proposed MP class, the trivariate model was applied to data from BIXI,
Montréal’s bike sharing system. BIXI provides open data pertaining to bike usage on their website
(https://montreal.bixi.com/en/open-data). The data used in this illustration con-
sist of bike usage information from the 2017 season, spanning from April 15, 2017 to November
15, 2017, inclusively. The raw data details each bike rental occurrence, specifying the exact date
and time of departure, the departure station, the arrival station, the arrival date and time, the total
time the bike was in use and a binary variable indicating whether the passenger was a BIXI mem-
ber. For this particular application, only weekday rentals were considered for BIXI members at
three specific departure stations located on Montréal’s south shore town of Longueuil. The stations
are located at the intersection of St-Charles / Charlotte street (Station 1), the intersection of St-
Charles / St-Sylvestre street (Station 2) and at Collège Édouard-Montpetit (Station 3). The random
vector �X1, X2, X3� then consists of the total number of daily bike rentals taken from Stations 1, 2
and 3, respectively. This resulted in a total of 153 observations.
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Figure 6.3: Estimation results for θ from the method of moments (left), inference function for
margins (middle) and maximum likelihood estimation (right) in indicated scenario.

The three stations exhibit moderate dependence. In particular, defining the sample correlation
as

Rjk � Sjk�
�
X̄jX̄k,

for j, k � �1, 2, 3�, the sample statistics are found to be R12 � 0.26, R13 � 0.25 and R23 � 0.34.
The data provides evidence of Poisson margins. Indeed, the marginal Poisson assumption can be
readily checked using a chi-squared goodness of fit test. Using the gofstat built in function in
R, the latter tests yields a p-value of 0.91 for X1, 0.40 for X2 and 0.34 for X3. The QQ-plots for
the three margins also further support the assumption of Poisson-distributed margins, as shown in
Figure 6.12.

The estimation techniques outlined in Section 6.3 were implemented for the BIXI data. The
results are summarized in Table 6.1; the estimates are provided along with 95% bootstrap confi-
dence intervals. For comparison, the classical trivariate Poisson model based on a single common
shock was also implemented. The estimation results in the latter model are provided in Table 6.2.
Note that the confidence intervals are based on 1000 bootstrap replications, although one iteration
was omitted due to the IFM method not reaching convergence within the maximum number of
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Figure 6.4: Estimation results for θ from the method of moments (left), inference function for
margins (middle) and maximum likelihood estimation (right) in indicated scenario.

iterations. As such, the bootstrap confidence intervals presented are based on 999 iterations. Sim-
ilarly to what was done in Chapter 4, the MM estimate θ̃ was used as the starting value for the
dependence parameter in the implementation of the likelihood-based methods. Additionally, the
MM estimates, �X̄1, X̄2, X̄3�, were used as the starting values for the marginal parameters for the
maximum likelihood estimation in the proposed MP model.

The estimation results for the proposed trivariate Poisson model are summarized in Table 6.1.
The results reveal that the moment-based estimation implies a stronger dependence structure in
comparison to the two likelihood-based methods. Indeed, the pairwise correlations resulting from
the MM estimates are all higher than the corresponding correlations computed using the IFM and
ML estimates. This was also observed in the data application for the bivariate model in Chapter 4.
Note that the similarities between the implied correlations ρ13 and ρ23 are due to the fact that the
marginal parameter estimates of λ1 and λ2 are relatively similar across all methods. The imple-
mentation of the classical trivariate Poisson model revealed similar patterns, as shown in Table 6.2.

Recall that the observed sample correlations were found to be R12 � 0.26, R13 � 0.25 and
R23 � 0.34. Based on the results from the proposed MP model summarized in Table 6.1, it can
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Figure 6.5: Estimation results for θ from the method of moments (left), inference function for
margins (middle) and maximum likelihood estimation (right) in indicated scenario.

be seen that the sample correlations are contained in each of their respective bootstrap confidence
intervals under the MM. However, the bootstrap confidence intervals produced by both likelihood-
based methods do not encompass R23. Note that R23 does not even fall within the 99% bootstrap
confidence intervals for ρ23 based on the IFM and ML estimates, which are both approximately
�0.08, 0.33�. The same phenomena is observed with the results from the classical trivariate model.
However, in the proposed model R23 is closer to the upper bound of the confidence intervals re-
sulting from both likelihood-based methods as compared to that in the classical model.

It is not surprising that both models present some difficulties in quantifying the dependence
between X2 and X3. The data suggest that λ1 and λ2 are of similar magnitude with X̄1 � 1.45

and X̄2 � 1.61. As a result, both the classical and proposed trivariate Poisson models imply that
ρ13 and ρ23 should be relatively similar. However, the data suggest that X2 and X3 have a stronger
association in comparison to that exhibited by X1 and X3. Seemingly, both models are unable to
capture this distinct correlation structure. Nonetheless, the method of moments is able to better
quantify the dependence structure since this estimation approach is based on the observed pairwise
sample covariances.
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Figure 6.6: Estimation results for θ from the method of moments (left), inference function for
margins (middle) and maximum likelihood estimation (right) in indicated scenario.

Note that if the sample correlation is calculated as R�

jk � Sjk�
�
S2
jS

2
k , where S2

j denotes the
sample variance given by

S2
j �

1

n� 1

n�
i�1

�Xij � X̄j�
2,

slightly different values are obtained. In particular, using this formulation it is found that R�

12 �

0.22, R�

13 � 0.25 and R�

23 � 0.29. Each of these sample correlations are contained within their re-
spective bootstrap confidence intervals under the proposed MP model; this holds for the intervals
obtained from all estimation methods. This is not the case in the classical model.

Arguably, both the classical and the proposed trivariate Poisson models are not entirely sat-
isfactory in capturing the particular correlation structure inherent in the data. As was alluded to
earlier in this chapter, the proposed MP model construction relies on a single dependence pa-
rameter θ and consequently restricts the implied correlation structure to a certain extent. This is
a shortcoming of both the classical and proposed model formulations. Certainly, it is possible to
define a multivariate Poisson model with a more flexible dependence structure while retaining the
comonotonic shock construction. To this end, a more flexible trivariate model is briefly introduced
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6.5 Data illustration
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Figure 6.7: Estimation results for Λ � �λ1, λ2, λ3� from the method of moments/inference function
for margins (left) and maximum likelihood estimation (right) in indicated scenario.

in Chapter 7.

Table 6.1: Estimation results for the proposed trivariate Poisson model applied to the BIXI data.
Estimates are given with 95% bootstrap confidence intervals in parentheses.

λ1 λ2 λ3 θ
MM 1.45 �1.26, 1.65� 1.61 �1.39, 1.86� 3.14 �2.89, 3.41� 0.31 �0.19, 0.43�
IFM 1.45 �1.26, 1.65� 1.61 �1.39, 1.86� 3.14 �2.89, 3.41� 0.24 �0.14, 0.35�
MLE 1.44 �1.26, 1.65� 1.63 �1.39, 1.87� 3.15 �2.89, 3.42� 0.24 �0.14, 0.35�

ρ12 ρ13 ρ23
MM 0.30 �0.18, 0.41� 0.27 �0.15, 0.39� 0.27 �0.15, 0.39�
IFM 0.23 �0.13, 0.33� 0.20 �0.11, 0.31� 0.20 �0.11, 0.31�
MLE 0.23 �0.13, 0.33� 0.20 �0.11, 0.31� 0.20 �0.11, 0.31�
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Figure 6.8: Estimation results for Λ � �λ1, λ2, λ3� from the method of moments/inference function
for margins (left) and maximum likelihood estimation (right) in indicated scenario.

Table 6.2: Estimation results for the classical trivariate Poisson model applied to the BIXI data.
Estimates are given with 95% bootstrap confidence intervals in parentheses.

λ1 λ2 λ3 ξ
MM 1.45 �1.26, 1.65� 1.61 �1.39, 1.86� 3.14 �2.89, 3.41� 0.56 �0.33, 0.78�
MLE 1.45 �1.26, 1.65� 1.61 �1.39, 1.86� 3.14 �2.89, 3.41� 0.37 �0.20, 0.55�

ρ12 ρ13 ρ23
MM 0.37 �0.22, 0.52� 0.26 �0.16, 0.37� 0.25 �0.15, 0.35�
MLE 0.24 �0.13, 0.36� 0.17 �0.09, 0.26� 0.16 �0.09, 0.25�
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Figure 6.9: Estimation results for Λ � �λ1, λ2, λ3� from the method of moments/inference function
for margins (left) and maximum likelihood estimation (right) in indicated scenario.
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Figure 6.10: Estimation results for Λ � �λ1, λ2, λ3� from the method of moments/inference func-
tion for margins (left) and maximum likelihood estimation (right) in indicated scenario.
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Figure 6.11: Estimation results for Λ � �λ1, λ2, λ3� from the method of moments/inference func-
tion for margins (left) and maximum likelihood estimation (right) in indicated scenario.
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Figure 6.12: QQ plots assessing the marginal Poisson assumption for variables X1 (top left), X2

(top right) and X3 (bottom). Theoretical and empirical quantiles are on the x- and y-axis, respec-
tively.
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7
Final Conclusion and Future Work

In this thesis, a novel construction for a fully flexible bivariate Poisson model with positive de-
pendence was presented. The proposed BP family spans the full spectrum of possible positive
dependence, with correlation ranging from 0 to ρmax�λ1, λ2�. It was shown that as the dependence
parameter θ increases, the strength of the dependence increases accordingly in the sense of the
PQD ordering. Several distributional properties were developed for the BP family and various
estimation techniques were described in detail. Simulation studies as well as a data illustration
validated the utility of the BP model. The proposed comonotonic shock model provides an ap-
pealing alternative to the classical bivariate Poisson model as its added flexibility accommodates
strong degrees of (positive) dependence while retaining an intuitive and interpretable stochastic
construction.

The proposed BP model stems from the notion of comonotonic shocks and as such extends
naturally to higher dimensions. This allowed to define a multivariate Poisson model for positive
dependence. It was shown that many of the distributional properties in the bivariate setting remain
valid in arbitrary dimension d � 2. Estimation techniques were adapted for higher dimensions and
tested through various simulations. To illustrate the usefulness of the proposed multivariate model,
the MP3 model was applied to data provided by BIXI, Montréal’s bike sharing network. As was
the case in dimension 2, the proposed MP family provides a more flexible multivariate Poisson
model than the classical version.

Analogously to the comonotonic shock model, the notion of counter-monotonicity allowed to
define a bivariate Poisson model for negative dependence. Many of the properties in the proposed
BP� family parallel those in the comonotonic shock model. In particular, the dependence param-
eter regulates the strength of the dependence, with θ � 0 corresponding to independence and
θ � 1 yielding perfect negative dependence. Estimation proved to be somewhat more challenging
in the case of the BP� model, as was highlighted through various simulation studies. Nonetheless,
the proposed counter-monotonic shock model accommodates any degree of negative dependence
while retaining an interpretable stochastic representation. This is a considerable advantage of the



7.1 Future work

proposed model as an alternative to other constructions, such as copulas or mixture models.

7.1 Future work

Of course there is still room for improvements and further extensions in the proposed multivariate
Poisson model framework. Certainly, there are numerous projects that stem naturally from the
work done in this thesis. The following subsections outline some of these potential future research
subjects.

7.1.1 A more flexible multivariate Poisson model

Although the proposed multivariate Poisson model discussed in Chapter 6 provides a more flexible
definition than the classical common shock representation (see Chapter 2), the MPd�Λ, θ� family
is somewhat restrictive in that there is a single dependence parameter and, for d � 2, is in fact
not fully flexible. For example, according to the construction outlined in (6.1), if any pair �Xi, Xj�,
i � j, exhibits perfect positive dependence such that ρθ�Xi, Xj� � ρmax, the dependence parameter
θ must necessarily be equal to 1 so that X � MPd�Λ, θ� represents a comonotonic random vector
where all pairwise correlations attain the upper bound ρmax. Similarly, when θ � 0, the random
vector X � MPd�Λ, θ� consists of independent components so that all pairwise correlations
are 0. This follows from Lemma 6.1, which ensures that the pairwise correlations ρθ�Xi, Xj� are
increasing functions θ. Clearly, a model based on a single dependence parameter imposes certain
restrictions on the covariance structure.

In order to address this shortcoming, the construction in (6.1) can be adapted to define a more
complex model. In particular, the added flexibility should allow for each pairwise correlation
corr�Xi, Xj�, i � j, to take on any value in �0, ρmax� without implying restrictions on the re-
maining pairs �Xr, Xs�, r � s � i � j 	 
1, . . . , d�. In dimension d � 3, a more flexible model
could be achieved via the following construction:

X1 � Y1 � Z12 � Z13 � Z1,

X2 � Y2 � Z21 � Z23 � Z2,

X3 � Y3 � Z31 � Z32 � Z3.

(7.1)

In this representation, Y1, Y2, Y3 consist of independent Poisson random variables with respective
rates �1
 α
 β 
 θ�λ1, �1
 α
 γ 
 θ�λ2 and �1
 β 
 γ 
 θ�λ3, which are also independent of
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each

�Z12, Z21� � M �P�αλ1�,P�αλ2�� ,

�Z13, Z31� � M �P�βλ1�,P�βλ3�� ,

�Z23, Z32� � M �P�γλ2�,P�γλ3�� ,

�Z1, Z2, Z3� � M �P�θλ1�,P�θλ2�,P�θλ3�� .

In terms of independent U�0, 1� random variables V1, V2, V3, U12, U13, U23, U , the formulation in
(7.1) can be written as

X1 � G�1�1�α�β�θ�λ1
�V1� �G�1

αλ1
�U12� �G�1

βλ1
�U13� �G�1

θλ1
�U�,

X2 � G�1
�1�α�γ�θ�λ2

�V2� �G�1
αλ2

�U12� �G�1
γλ2

�U23� �G�1
θλ2

�U�,

X3 � G�1
�1�β�γ�θ�λ3

�V3� �G�1
βλ3

�U13� �G�1
γλ3

�U23� �G�1
θλ3

�U�,

subject to the constraints

0 � α � β � θ � 1, 0 � α � γ � θ � 1, 0 � β � γ � θ � 1,

where α, β, γ, θ 	 
0, 1� and λs � 0 for s 	 �1, 2, 3�.
The above construction thus consists of convoluting a vector of independent Poisson ran-

dom variables �Y1, Y2, Y3� with all pairwise comonotonic Poisson shocks �Z12, Z21�, �Z13, Z31�,
�Z23, Z32� as well as a global comonotonic Poisson shock �Z1, Z2, Z3�. In this trivariate model,
there are four dependence parameters α, β, γ, and θ in addition to the three marginal parameters
�λ1, λ2, λ3�. When θ � 1, it follows that �X1, X2, X3� � M �P�λ1�,P�λ2�,P�λ3��, i.e., the upper
Fréchet–Hoeffding bound is attained. In contrast if, say, α � 1, then �X1, X2� are comonotonic
and independent of the third component X3. Conceivably, the benefit of the added flexibility in this
more complex model could be outweighed by difficulties in estimation. A thorough examination
of this more complex model is left for future research.

7.1.2 Regression models

The data illustrations considered in this thesis were rather simplistic applications of the proposed
multivariate Poisson shock models. In more practical settings, data usually consists of not only
the response variables of interest but also several covariates. Although not explicitly detailed in
this thesis, it is possible to extend each of the proposed models to allow for covariate effects. As
outlined in Section 10.2 of Joe (1997), under certain regularity conditions, the IFM estimation ap-
proach can accommodate the inclusion of covariates. Moreover, maximum likelihood estimation
could also readily allow for covariate effects by rewriting the parameters �Λ, θ� in terms of regres-
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sion parameters in the log-likelihood. Of course, in doing so the estimation procedure will become
more complex and potentially numerically infeasible.

As pointed in Joe (1997), although it is typically straightforward to incorporate covariate ef-
fects into marginal parameters (e.g., via marginal generalized linear models), it is not always clear
whether the dependence parameter should be a function of the covariates and moreover what form
that function should assume. Regression models in the proposed classes of multivariate Poisson
shock models is also deferred to future work.

7.1.3 A multivariate model for negative dependence

Extending the bivariate counter-monotonic Poisson shock model to higher dimensions is not imme-
diately obvious. This follows from the difficulty in defining the notion of perfect negative depen-
dence in dimensions d � 2. As was discussed in Chapter 3, the concept of counter-monotonicity
does not extend to higher dimensions as the Fréchet-Hoeffding lower boundary distribution FL is,
in general, not a proper cumulative distribution function for d � 2.

Nonetheless, it is possible to define a multivariate Poisson model exhibiting negative depen-
dence in dimensions d � 2. In particular, consider the following trivariate Poisson model:

X1 � Y1 � Z12 � Z13

� G�1�1�α12�α13�λ1
�V1� �G�1

α12λ1
�U12� �G�1

α13λ1
�U13�,

X2 � Y2 � Z21 � Z23

� G�1
�1�α12�α23�λ2

�V2� �G�1
α12λ2

�1� U12� �G�1
α23λ2

�U23�,

X3 � Y3 � Z31 � Z32

� G�1
�1�α13�α23�λ3

�V3� �G�1
α13λ3

�1� U13� �G�1
α23λ3

�1� U23�,

(7.2)

subject to the constraints

α12, α13, α23 � �0, 1	, 0 
 α12 � α13 
 1, 0 
 α12 � α23 
 1, 0 
 α13 � α23 
 1.

The above construction consists of convoluting a trivariate vector of independent Poisson random
variables �Y1, Y2, Y3� with all possible pairs of counter-monotonic shocks, �Z12, Z21�, �Z13, Z31�,
�Z23, Z32�. In this framework, each pair exhibits negative correlation. Indeed, it is straightfoward to
see that each pair �Xi, Xj� � BP� with marginal parameters �λi, λj� and dependence parameter
αij for i � j � 
1, 2, 3�.

Note that in this representation, only one pair can exhibit perfect negative dependence since
only one of the dependence parameters α12, α13, α23 can be equal to 1. If say, α12 � 1, then
necessarily α13 � α23 � 0 and thus �X1, X2� � W 
P�λ1�,P�λ2�� and �X1, X2��X3. Of course,
this construction can be further extended to higher dimensions.
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As a side note, an alternative trivariate Poisson model formulation consists of the following:

X1 � Y1 � Z12 � Z13 � Z1

� G�1�1�α12�α13�θ�λ1
�V1� �G�1

α12λ1
�U12� �G�1

α13λ1
�U13� �G�1

θλ1
�U�,

X2 � Y2 � Z21 � Z23 � Z2

� G�1
�1�α12�α23�θ�λ2

�V2� �G�1
α12λ2

�1� U12� �G�1
α23λ2

�U23� �G�1
θλ2

�U�,

X3 � Y3 � Z31 � Z32 � Z3

� G�1
�1�α13�α23�θ�λ3

�V3� �G�1
α13λ3

�1� U13� �G�1
α23λ3

�1� U23� �G�1
θλ3

�U�,

subject to the constraints

α12, α13, α23, θ � �0, 1�, 0 	 α12�α13�θ 	 1, 0 	 α12�α23�θ 	 1, 0 	 α13�α23�θ 	 1.

In this setting, when θ � 0 the above construction coincides with that given in (7.2). In contrast,
when θ � 1 the model reduces to the proposed MP3�Λ, θ� model discussed in Chapter 6. Clearly,
there are many ways to construct flexible multivariate Poisson models based on the notion of
comonotonic and counter-monotonic shocks. However, the greater the flexibility in the induced
dependence structure, the more complex the model becomes.
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Acronyms and Notation

MM Method of Moments

IFM Inference Functions for the Margins

MLE Maximum Likelihood Estimation

PMF / CDF Probability mass function / Cumulative distribution function

P�λ� Univariate Poisson distribution with mean λ

U�0, 1� Univariate (standard) Uniform distribution on the interval �0, 1�

N �μ, σ2� Univariate Normal distribution with mean μ and variance σ2

M�F1, . . . , Fd� Upper Fréchet-Hoeffding boundary distribution
with marginal distributions F1, . . . , Fd

W�F1, . . . , Fd� Lower Fréchet-Hoeffding boundary distribution
with marginal distributions F1, . . . , Fd

BP�Λ, θ� Proposed bivariate Poisson distribution for positive dependence
(Λ: marginal parameters, θ: dependence parameter)

BP��Λ, θ� Proposed bivariate Poisson distribution for negative dependence
(Λ: marginal parameters, θ: dependence parameter)

MPd�Λ, θ� Proposed multivariate Poisson distribution for positive dependence
(d: dimension, Λ: marginal parameters, θ: dependence parameter)

gλ�x� Univariate Poisson PMF, i.e. gλ�x� � e�λλx�x!

Gλ�x� Univariate Poisson CDF, i.e. Gλ�x� �
�x

m�0 e
�λλm�m!

Ḡλ�x� Univariate Poisson survival function, i.e. Ḡλ�x� � 1�Gλ�x�

bn,p�x� Binomial PMF, i.e. bn,p�x� �
�
n
x

�
px�1� p�n�x

fΛ,θ, FΛ,θ PMF and CDF in MPd�Λ, θ� family �d � 2, 3, . . .�

f�Λ,θ, F
�

Λ,θ PMF and CDF in BP��Λ, θ� family

cΛ,θ PMF associated with M �P�θλ1�, . . . ,P�θλd��

c�Λ,θ PMF associated with W �P�θλ1�, . . . ,P�θλd��

1��� Indicator function

	x
� Function 	x
� � x1�x � 0�

�d Equal in distribution

� Convergence in distribution

N Positive integers 0, 1, 2, . . .
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