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ABSTRACT

Finite element analysis of tunnel excavations has been widely used by geotechnical

engineers for assessing the defonnations and stress conditions. Discontinuities in the rock

mass play a major raie when simulating the behaviour of the rock mass around an

opening. A crucial point in such analyses is the chaice of the constitutive model.

A1though numerical modelling of jointed rock mass has been suggested by severa!

authors in the last three decades and different modelling codes have been developed, the

simulation of discontinuities is still a complex task. After reviewing the various

constitutive models, the author of this thesis presents the simulation of bedded rock mass

based on the concept of an equivalent media proposed by Amadei and Goodman. The

model has been implemented in a two-dimensional finite element code. In addition to the

properties of the bedding planes, the spacing between them is considered. The

performance of the mode1 is shown by a parametric study focusing on the influence

brought by the scale effect. For the latter control, a comparison with the results from the

design of the Piora exploratory tunnel in the Swiss Alps has been carried out.
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RESUME

L'analyse de stabilité des tunnels par la méthode des éléments finis est largement utilisée

par les ingénieurs géotechniques pour la prédiction des défonnations et contraintes autour

le tunnel. n est aussi bien connu que, dans le cadre de telles analyses, les fractures

contenues dans le massif rocheux jouent un rôle important dans la définition du

comportement du massif même. C'est ainsi que l'asPect le plus important de l'analyse

concerne le choix de la loi constitutive du model. Nombreux modèles numériques

simulant un massif rocheux fracturé ont étés proposés par différents auteurs dans les trois

dernières décades sur la base des quelles plusieurs logiciels ont été conçus. Néanmoins, la

simulation des joints demeure un problème complexe. Après une revue des modèles

majeurs proposés, l'auteur de cette thèse présent la simulation d'un massif rocheux

stratifié en se basant sur la théorie du média équivalent, décrite par Amadei et Goodman

(1981). Par la suite, le modèle à été implémenté dans un logiciel d'éléments finis bi­

dimensionnel avec lequel les propriétés des joints ainsi que la distance entre eux sont

considérées. La Perfonnance du modèle est démontrée par une étude paramétrique

donnant l'accent sur l'influence apportée par les fractures relativement à l'échelle du

creusement (scale effect). La validation finale à été conduite par la comparaison des

résultats du modèle numérique avec ceux sortant du projet du tunnel de sondage de la

Piora dans les Alpes suisses.
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Chapter 1

INTRODUCTION

1.1 General

The engineering mechanics problem posed in all structural designs is the prediction of the

perfonnance of the structure under the loads imposed on it during ils prescribed

functional operation. Likewise the rock engineer is concemed with the application of the

principles of engineering mechanics to the design of the rock structures created by

underground excavation such as mines or tunnels, while maintaining their integrity and

safety.

These ideas May seem rather elementary. However, even Iimited application of the

concepts of mechanics in underground structural design is a relatively recent innovation.

The ultimate objective in the structural design of an underground opening is to control

rock displacements around the excavation. Analytical techniques are required to evaluate

each of the possible modes or response of the rock mass, for the given excavation

conditions and proposed geometry. However, as the problems take on greater reality and

the complexity of the design condition increases, the use of analytical methods becomes

limited to the point where other, more realistic methods must he sought.

The complexity of Many practical engineering problems makes it necessary to use

numerical methods. A number of factors have contributed to the relatively recent

emergence of numerical methods in rock engineering. One major cause is the increased

perfonnance of computer hardware technology over the last two decades. As a result, it is

nowadays possible to run sophisticated numerical modelling software to solve large-scale

problems with hundreds, even thousands of unknown variables, using affordable

computers.

1-1
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1.2 Problem definition

The large capital investment of tunnelling projects requires greater assurance of their

satisfactory Performance in the long tenn. Therefore more rigorous techniques are

required in the design process. The increasing physical scale of underground tunnelling

oPerations has also had a direct effect on the need for safe and efficient underground

geotechnical design. The need to rationalise the planning of underground traffic ways has

pushed engineers to deal with unfavourable geological environments. In particular, the

increased depth of excavation in the Alps requires thorough knowledge and application of

rock mechanics sciences.

Research efforts have been successfully made over the last three decades to apply

numerical methods of analysis like finite elements and distinct elements to mining and

civil rock mechanics problems. As a result, a variety of numerical modelling tools have

been developed and have become available to meet the needs of the underground

construction industry.

Rock mechanics science together with numerical modelling attempt to better understand

and predict phenomena that occur in rock masses. In mining and tunnelling problems,

joints and other geological fractures play a major role in evaluating stability. In particular,

engineering design of drifts and tunnels in jointed rock masses must take into

consideration the scale effect; see Figure 1.1 .

1-2
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Intact rock

One joint

-ff]
Two joints

-~
Many joints

Heavily jointed

Figure 1.1 The scale effect

When the spacing between joint sets is relatively small compared to the size of the

excavation, the strength and defonnation proPerties of the rock mass are influenced by

both the properties of the rock material and those of the joints, while on a large scale, the

jointed rock mass may demonstrate the properties of a pseudo-continuum.

These considerations suggest that both the intact rock and the joints should define the

specification of the rock mass in a numerical model. This may not he an easy task,

particularly when the mass has more than one family of joints. Distinct element codes are

oost suited for this type of problems. The problem, however, becomes merely an

academic exercise in the absence of adequate information about the rock block sizes and

the geomechanical behaviour of each joint set.

When the rock mass contains parallel bedding planes, it may he characterised as layers of

intact rock separated by a single set of discontinuities; see Figure 1.2. This situation is

commonly encountered in sedimentary rock formations, e.g. Iimestone and sandstone, in

underground mines as weil as in civil engineering tunnels.

1-3
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Figure 1.2 Excavation in bedded rock

The response of rock excavation in bedded rock will depend primarily on different major

parameters. They are:

1. Excavation span, B

2. In situ stress (or depth below ground surface)

3. Spacing between bedding planes, S

4. Dip angle of bedding, Ji
s. Properties of the bedding planes (shear and normal stiffness)

The first two parameters can be easily treated by a wide variety of numerical modelling

software. However, the treatment of the bedding planes as discrete layers or not will

depend on the layer thickness.

1-4



• The following three scenarios can he postulated:

1. Closely spaced diseontinuities, Figure 1.3a. In this case, the excavation roof can he

treated as a homogeneous, but transversely isotropie material where properties in the

direction parallel to the joints are different from those perpendicular to them;

2. Moderately spaced discontinuities, Figure 1.3b. Here the effect of diseontinuities

between layers must he considered. Both the shear and normal stiffness charaeteristics

of the hedding plane must he considered. The rock layer may he treated as isotropie or

transversely isotropie as in the first case;

3. Widely spaced diseontinuities. In this situation, the presence of diseontinuities may

have little or no influence on the deformation and strength behaviour in the

excavation roof. The rock may he treated as homogeneous isotropie, see Figure 1.3c.

•

] Spaeing S
Homogeneous.

Transversely isotropie rock
mass

(E, v .L joint :1: E, v 1/ joint)

..._~ ."l.... ,_, .l ...~.,.. ....... _ .....

.; . .~).

,. :":
~'. ~

~:""

:~ --~T'----' • ,... ,-... " '_n.~

1" SpanB !
Figure 1.3 Problem definition:

a) Closely spaced discontinuities, BIS »
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c) Widely spaced discontinuities, « BIS
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There are many geomechanical finite element codes that are available today on the

market. Nevertheless y the majority of these software do not take special consideration of

the modelling of bedded rock.

Nevertheless y a stratified rock mass in a mine or in a tunnel is not uncommon in the

underground hard rock environment. The use of numerical modelling in combination with

in situ monitoring cao give good feedback in designing underground openings in bedded

rock.

The objective of this research is to develop a simple numerical model, which will

simulate the behaviour of a bedded rock mass in underground tunnels as demonstrated in

Figure 1.3.

Such model should take into consideration the following:

• Arbitrary excavation geometry

• Presence of in situ stresses

• Mechanical properties of the rock (Ey v)

• Bedding planesy in particular:

o Spacing between joints

o Inclination (dip) of bedding plane (angle P)
o Normal and shear stiffness characteristics of the bedding planes

The numerical model will be based on the Finite Element method. It will perform

deformation and stress analyses.

Following a detailed model parametric study, the new model will be applied to a case

study of the Piora Exploratory Tunnel in the Swiss Alps; see Figure 1.4.

1-7
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Figure 1.4 Case study: 3-D view of the Piora Exploratory Tunnel

1.4 Thesis outline

Chapter one presents an introduction. The importance of a correct design in underground

structures as weil as the role of modelling the rock media taking into account

discontinuities are outlined. The last section of this chapter describes the thesis objectives

and related methodologies.

Chapter two deals with the characterisation and modelling of rock masses. Continuum

and discontinum models are briefly reviewed with particular emphasis on the different

methods used in modelling continuum media.

Chapter three presents the proposed finite element model. The selected constitutive model

for bedded rock mass is described first. The main characteristics of the code along with

the governing equations are presented. The input parameters are identified and the

methods of their determination are given.

1-8
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In Chapter four, the model the model is verified. The case study is about the simulation of

the rock mass behaviour for a critical section of the Exploratory Piora Tunnel in the Swiss

Alps. A brief presentation of this project is given as weil as an explanation of the design

method.

Chapter five summarises the conclusions of the thesis. Recommendations for further

developments of this work are given.

1-9
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

This section presents the engineering properties of rock masses, followed by a description of

discontinuity characterisation. The second part of the Chapter introduces the concept of the equivalent

elastic modulus for a fractured media along with an overview of approaches proposed by different

authors to model the joints as weil as the interaction with the rock matrix.

2.2 Rock mass classification methods

2.2.1 Objective of the classifiœtion

A general rock mass characterisation starts with a general rock mass classification dividing rocks into

two major classes, intact rock and fractured respectively jointed rock. Intact rock is considered a

continuous media while a discontinuous media descrihes jointed rock. The properties used to classify

rocks will vary according to the purpose of the study and may include various criteria: shear strength,

flexural strength, tensile strength, elasticity, creep rate, in situ stress, drillability, formations

characteristics, density, thermal expansion, mineralogy and colour.

In essence, rock mass classifications are not to he taken as a substitute for engineering design. They

should he applied and used in conjunction with observational methods as weil as analytical and

numerical studies to formulate an overall design compatible with the design objectives and site

particularities. The objectives of rock mass characterisation are therefore:

2-1
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identify the Most significant parameters influencing the behavionr of a rock mass,

divide a particular rock mass fonnation ioto groups of similar behaviour, i.e. rock mass classes of

various qualities,

provide a basis for understandiog the characteristics of each rock mass class,

compare the experience of rock condition at one site to the conditions and experience encountered

at other sites,

derive quantitative data and guidelines for the engineering design.

provide a common basis between engineers and geologists.

Basically, it cao he nowadays stated that rock mass classifications are divided into families with regard

to the use and the information the classification should provide. So stated.

the geological family classifies the rock masses by the genesis, the geological history and by the

composition of the media. The main "mechanical" purpose of such a classification is to better

understand the in situ state of stress;

the geotechnical family of classifications systems should provide the engineers with classes of the

rock mass helping for designing underground works with an empirical tool. This goal is achieved

by classifying the media disregarding the geology but dividing it in classes of same mechanical

properties.

the numerical modelling family, which is a personally extension of the geotechnical one with

particular regard, in the intention of the author of this thesis, to the simulation of the media by a

computer code. The principal question is here how to model the fractured media. The rock mass is

simply divided in homogenous (continuous) or fractured (discontinuous) media.

At the beginning of this century, when the study of rock masses was starting, scientists tried to

establish procedures and guidelines in this new science. During the last decades, rock engineering

developed Many tools to create a new image of rock and rock masses. Their effort is now used in rock

mass classification and characterisation. Many classification systems have been developed. Most of

them have become poputar in tunnelling and mining and despite their explicit empirical approach still

2-2



•

•

in use: uRock Load" (Terzaghi, 1946), RQD (Deere et al., 1967) RMR (Bieniawski, 1973 and 1979),

Q-System (Burton, 1974).

When studying the behaviour of a regularly jointed rock mass for mining purposes, the characterisation

of the medium is influenced by the discontinuities. Depending on the spacing within the bedding planes

related to the largest dimension of the opening, the discontinuities characterisation and their oncoming

parameters are very important.

An important issue in rock classifications is the selection of the parameters of greatest significance.

There appears to he no single parameter or index that can fully and quantitatively describe a jointed

rock mass for engineering purposes. Various parameters have different significance, and only if taken

together can they describe a rock mass satisfactorily. Those parameters play a major role in choosing a

model for the numerical simulation of the jointed rock mass.

According to the International Society of Engineering Geology, different guidelines are based on the

following features, which affect the physical and mechanical properties of the rock:

1. the minerai composition

2. the structure and the texture

3. the degree of weathering.

In the categories above, it is assumed that the physical and mechanical properties of a rock, in its

present state, result form different processes, such as: genesis, metamorphism, tectonics and surface

weathering. Thanks to these processes, one can explain not only the Iithological and physical features

of the rock, but also their locations on Earth. A proposed classification distinguishes the following rock

mass units according to the degree of homogeneity:

geotechnical unit

lithologieal unit

lithologieal eomplex.

2-3



• In 1981, the International Society of Rock Mechanics proposed that a basic geotechnical description of

the rock masses should include the following characteristics:

1. rock name with simplified geological description

2. the layer thickness and fractures that intercept the rock mass

3. the unconfined compressive strength of the rock material and the angle of friction of the fractures.

2.2.2 Intact rock properties

The design engineer is confronted with rock as an assemblage of blocks of rock material separated by

various tyPes of discontinuities, faults, bedding planes, etc. This assemblage constitutes a rock mass.

Therefore, the properties of both intact rock and the rock mass must be considered. Figure 2.1 shows

different classes of rock mass.

Intact Faulted Blocky Bedded Jointed Heavily
Jointed

•

Figure 2.1 Rock mass classes

The most commonly required properties of the intact rock mechanics studies include:

unit weight

defonnation properties (e.g. modulus of elasticity)

strengili properties (e.g. uniaxial compressive strength).

It is then possible to estimate the rock mass properties using the intact rock properties and the rock

mass classification system. This is described below.

2-4



• 2.2.3 Rock Quality Designation (RQD)

The first rational method of rock mass classification was introduced by Terzaghi in 1946 and was

fOfOlulated for the evaluation of rock loads for the design of appropriate steel sets. This was an

important development as steel sets have been the most common support type in tunnels excavated in

rock. In this classification, the rock is divided into nine classes ranging from intact hard rock (class 1),

to swelling rock (class 9). Terzaghi's classification was later found to he too general and overestimate

rock 1000. It was later modified by Deere et al. in 1970, by Rose in 1982 and by Deere and Deere in

1988.

The modified rock load classification included a new index known as the RQD or the Rock Quality

Designation. The Rock Quality Designation index, which is a practical parameter, is defined as a core

recovery percentage of sound pieces of rock that are 100 mm or greater in length, see Figure 2.2. The

following are the relationships between the engineering quality fo the rock mass and RQD proposed by

Deere (1968).

<25

25 to 50

50 to 75

75 to 90

90 to 100

Very poor

Poor

Fair

Good

Excellent

•

Table 2.1 Relationship between RQD and rock mass quality

Although the RQD is a simple and inexpensive index, alone it is not sufficient to provide an adequate

description of a rock mass because it disregards joint orientation, tightness and filling material.

Therefore, particular attention to the discontinuities characterisation is gjven by integrating the RQD

2-5



• index by other parameters. In fact, the RQD supplied by six parameters forms a basic element of the

most popular classifications that are the RMR or Rock Mass Rating system (Bieniawski, 1973,

modified 1979) and the rock mass Quality, Q-system (Barton, 1974)

~I 1
1 Core sampls 1 -

....
Il
~

'5
c
~
Qla.
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CI)

~

E
E
8
~

1\1

.:l

•

Figure 2.2 RQD index determination by core sample

2.2.4 Rock Mass Rating (RMR)

The Rock Mass Rating system Was developed by Bieniawski in 1973. It was modified over the years as

more case histories became available to conform with international standards and design procedures.

The classification system depicts the rock mass quantitatively; in fact, the following six parameters are

used to classify a rock mass using the RMR system:
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• 1. uniaxial compressive strength of rock material

2. RQD

3. spacing of discontinuities

4. orientation of discontinuities

5. condition of discontinuities

6. groundwater conditions.

Each of the above parameters is assigned a certain number of rating points. The total number of such

points is the RMR with higher rating indicating a better rock mass condition as shown in the next Table

2.2.

Uniaxial compressive strength

RQD

Spacing of discontinuities

Condition of discontinuities

Groundwater conditions

Orientation of discontinuities

Total (RMR)

1 to 15

3 t020

5 t020

Ot030

oto 15

oto -12 (mines)
o to -60 (slopes)

o to 100

at 240 MPa = 15 points

at 100% = 20 points

at 2'()()() mm =20 points

very rough, not continuous, no separation,
unweathered =30 points

completely dry = 15 points

very favourable =0 points
very unfavourable = -60 points

•

Table 2.2 RMR point ratings associated with each parameter
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• The rock mass quality can then he described according to its RMR value as follows:

<20

21 to 40

41 to 60

61 to 80

81 to 100

v
IV

II

II

1

Verypoor

Poor

Fair

Good

Very good

Table 2.3 Relationship between RMR, rock mass class and rock mass quality

2.2.5 Rock mass quality (Q-system)

The Q-system was proposed in 1974 in Norway by Barton et al. It's based on a numerical assessment

of the properties of the rock mass making use of six parameters as listed helow:

1. RQD

2. Jn Joint frequency number

3. Jr Joint roughness

4. la Joint weathering

5. l w Groundwater reduction factor

6. SRF In situ stress reduction factor.

The computation of the quality assessment of the rock mass follows then by the mean of the equation

including al the six parameters:

Q = ( RQD/Jn ) ( Jila ) ( Iw/SRF ) (2.1)

•
Similar to the RMR classification each of the above pararneters is assigned a rating as shown in the

next Table 2.4 except the RQD parameter, which applies to the formula with its own value.
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•

RQD 10 to 100 0% < RQD < 10%, rating =10

Jn 0.5 to 20.0 highly fractured rock mass, cohesion less =20

Jr 0.5 t04.0
persistent joint, smooth surfaces =0.5

non-persistent joint =4

Ja 0.75 to 20.0 <Pfilling > 35 grad, rating =0.75
<PfiUin2 < 6 grad, rating =20.0

Jw 0.1 to 1.0 completely dry =1.0

SRF 0.5 to 20.0 very favourable =0.5
very unfavourable =20.0

Total (Q-system) 0.001 to 1000

Table 2.4 Q-system rating associated with each parameter

The rock mass quality cao then he descrihed in detail according to its Q value as follows:

0.001 to 0.01 Exceptionally poor

0.01 to 0.1 Extremely poor

0.1 to 1 Very poor

1 t04 Poor

4 to 10 Fair

10 to 40 Good

40 to 100 Very good

100 to 400 Extremely good

100 to 1000 Exceptionally good

Table 2.5 Relationship between Q-index and rock mass quality
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•

2.2.6 Rock mass classification for modeUing purposes

Essentially, the purpose of ail the modern geotechnical classification systems is to gather a mostly wide

range of indications on the rock mass in an index, which is strictly related to the rock support to put in

place. White the early rock mass classifications were based on extremely general assumptions to

provide quantitative information of the properties of rock masses, the latest geotechnical classifications

are based on large site observations of the peculiarity of the rock masSe In particular, to the

characterisation of discontinuities in the media is paid great attention.

Many other classifications, based on engineering criteria referring to specific works or to payment

purposes, are weIl known and used in practice such as the New Austrian Tunnelling Method (NATM)

developed between 1957 and 1964, and the ISRM classification (1981), which is more simplified then

Q and RMR systems.

As already stated at the beginning of this Chapter, ail geotechnical classification systems are the base

for empirical methods in designing underground structures.

Non-empirical methods make use of constitutive modelling of jointed rock masses, which has long

been a subject of interest and numerous models have been developed in attempts to simulate the

mechanical responses of a rock masse The mainly accepted classification divides the currently available

models in two groups:

1. discontinum models

2. continuum models.

In discontinum models, the joints are explicitly modelied while in the continuum models the fractured

rock mass is treated as a continuum with equivalent material properties, which reflect the effect of the

joints.
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Modelling of discontinuities found in rocks is a major issue when defining the approach developing a

numerical method simulating a media. The principal approaches for continuum and discontinum

models for rock masses will he discussed later in this chapter, after the discontinuities characterisation.

The following chart summarizes the classification of medium models along with the solving methods

used in rock mechanics.
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Medium models

MODEUNG TECHNIQUES IN
ROCK MECHANICS

DI.placement eQuatlon. solvers

Discontinuous

(Discontinuities and b10cks
treated separately)

Double
stiffness

Figure 2.3 Definition of continuum and discontinum in rock mechanics

•
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• 2.3 CharacterisatioD of rock discontinuities

The presence of discontinuities in rock fonnations distinguishes rock from rock mass. Any type of rock

fOlTIlation contains discontinuities. The origin of discontinuities cao he attributed to the orogenie and

tectonic movements, weathering processes, ete. Discontinuities are considered as either faults or joints.

An example of discontinuities classification based on descriptive-structural criteria was made by Thiel

(1989), and is shown in Figure 2.4.

Discontinuities

•
Figure 2.4 Classification of discontinuities (Thiel, 1989)
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Discontinuities modify the qualitative aspect of the rock rnass and affect its behaviour. Dealing

separately with the discontinuity characterisation is the only way to reach a point where the interaction

between rock mass and discontinuity cao he analysed. Understanding the behaviour of the rock-joints

ensemble is extremely important when studyjng stresses in this type of medium.

The proPerties of discontinuities that control the behaviour of the rock mass are orientation, spacing or

frequency, intensity, shape, roughness and aperture. Each of these parameters can have a statistical

interpretation because, in nature, their variation is widely spread. There are no particular rules when

considering their influence on the rock behaviour. It's difficult to measure these parameters and to

generalise them when dealing with large-seale studies.

Joint orientation ean be measured from cores or exposures. It is quantified by the joint dip and dip

direction. Methods for discontinuity orientation measurements, presentation and analysis have been

described by many authors such as Priest (1985), Goodman (1976), Einstein and Baecher (1983). In

1981, the Association Francaise des Travaux Souterrains (AFrES) released a classification of the

discontinuity pattern according to the joint spacing and RQD index designation. This classification is

presented in Table 2.6 below.

:ti:~2!t?'~H:: L~':':~::?~:";: ':~'.' }'~':<"~:r~:?r~:,qT~;.~.,,~. :~:'/.:~:":.:';,~:{ ~;~':;tr'mfçb

SI >200 90

S2 60-200 75-90

S3 20-60 50-75

S4 6-20 25-50

S5 <6 <25

Table 2.6 Rock mass classification according to joint spacing and RQD (Thiel, 1989)
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Discontinuity shape refers to the relation hetween the trace length and its orientation. Simplified

discontinuity shapes are usually assumed to he circular, square, elliptical or rectangular. The number of

joint sets and the inter-connection strongly influence the behaviour of the media.

Roughness and aperture of the discontinuity raise the question related to the actual mechanical

properties of the joint. In the literature, Barlon (1973) introduced the Joint Roughness Coefficient

(JRe) as an ernpirical measure. The commission of International Society of Rock Mechanics published

in 1978 a classification of discontinuity roughness based on description of rock joints and their aspect.

There are sorne other studies, which simulate fracture roughness, e.g. Maini (1971), or fracture

aperture, e.g. Amadei et al., (1995).

2.4 Numerical modelling techniques

In this section the different approaches used in modelling rock mass excavations are reviewed. As

previously stated, basically any method to model a jointed rock mass will faH in one of two major

classes. They are:

1. discontinuous models

2. continuous models.

The joint element method, the block theory and the distinct element method fall in the first class of

models. Goodman and Ke (1995) propose to separate the joint element method and the block theory

classifying them into the continuous models with interface element and the statics of rigid blocks

model respectively. The block theory model is not considered a discontinuous rnechanism by these

authors because it does not consider the kinematics of moving blocks.

If the spacing of joints is relatively large compared with the problem domain, the effect of joints can no

longer he simply represented by a continuum model, and the contribution of individual joints has to he
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taken into account. Accordingly, based on the framework of the continuum approach, interface

elements were introduced to simulate the distinct behaviour of joints, starting in the late 196Os.

Goodman (1968) first proposed joint elements to model discontinuities by handling a complex problem

with hundreds of interfaces. This model incorporated the elastic stiffness and strength parameters of

joints, and assumed a zero thickness for each joint element. Zienkiewicz et. al. (1973) introduced

transversally isotropie paralinear elements, with an arbitrary small thickness while Ghaboussi (1973)

developed an element for joints based on the relative displacement scheme and the concept of

plasticity. Desai (1984) proposed a thin-layer element, which is a solid element with a constitutive law

for contact, sliding, separation and rebounding of joints.

The joint element method provides a means to simulate individual joints, which would not otherwise be

modelled realistically. However, this method has major limitations such the relatively small number of

interface elements that can he handled and the small displacements or rotations that can be

accommodated.

Block theory, developed by Goodman and Shi (1985) is an analytical method rather than a numerical

modelling approach. In addition to the assumption of rigid block, it also assumes that ail joint surfaces

are perfectly planar and extend entirely through the volume of interest, and sliding is the only failure

mode.

The distinct element method has become widely used in rock mechanics in the last decade because of

its integration in Many commercial applications. Since Cundall (1971) first introduced it to simulate

progressive movements in blocky rock systems, it has been strenuously developed.

ln 1980, the distinct element method code UDEC was established and marketed. It employs an explicit

central difference time-marching scheme to integrate the equations of motion directly. At the start of

every step, contacts are detected based on the current penetrations between blocks. Given the elastic

contact stiffness, the amount of penetrations at each contact determines the contact forces between two
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blocks, which are regarded as additional extemal forces of the system at the current step of the

calculatioo.

Ch10rite
Schi.st

Figure 2.5 Distinct element model of the stope 804 at the Kristineberg Mine in Sweden (Board et al.

1992)

Two situations a110w a rock mass to he treated as a continuum: the rock mass is relatively free of

discontinuities on the scale of a given problem and discontinuities in the rock mass are so pervasive

relative to the size of the problem domain as to create a statistical continuum with equivalent rock mass

properties, like soils. Within the continuum models three different approaches are used in order to

depict the rock mass behaviour, i.e. the empirical one, the analytical one and the numerical one.
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As treated in a previous section, the most popular empirical approach is related to the RMR

classification system. Bieniawski (1978), Serafim and Pereira (1983) and Mitri (1994) have proposed

equations that empirically relate RMR values to mean values of deformation rnodulus determined from

sets of data that show considerable scatter. Furthermore, Bieniawski (1980) found that rneasured statie

modulus of deformation could he empirically related to the shear wave frequency generated by a

hammer blow and received on the rock surface by a linear equation.

Dealing with analytical methods, sorne authors have worked on the rock mass factor, which is the ratio

between the Young's modulus of the rock mass and the Young's modulus of the intact rock, and

reflects the decrease in the modulus due to the presence of joints in the rock mass, their characteristics

and spacing. Those authors have investigated theoretical models that cao he used to predict rock mass

factor values. Walsh and Brace (1966) derived approximate mathematical expressions for apparent

elastic modulus of a material, which has dilute concentration of spherical cavities and elliptical cracks

and proposed an expression for the rock mass factor. Hobbs (1975) assumed that asperities in the rock

joints could be regarded as miniature circular loaded areas through which stress is transmitted. Based

on his theory, he aIso proposed an equation giving the rock mass factor.

Due to rapid advancements in computers and their uDiversal availability to engineers, numerical

approaches DOW make computational methods perhaps the most promising approach. As mentioned in

the beginning of the section. when joints are too numerous to he modelied individually, one cao attempt

to establish a constitutive law to represent the combined behaviour of rock and the set of joints. A

regularly jointed media would he idealised as linear elastic ao isotropie material.

A few basic definitions regarding the mechanical behaviour of different materials - Le. homogenous 1

heterogeneous, isotropie 1 anisotropie, continuous 1 discontinuous - are given in the next section related

to a short introduction to the elasticity theory. The concept of Iinear elastic is shown in figure 2.6 here

below:
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Figure 2.6 Constitutive laws of different materials (Wittke, 1990)

Linear elastic behaviour with:

a) ideally viscoplastie range h) viseoplastic range with hardening c) ideally viseoelastie range

•

Salomon (1968) regarded layered media as a continuous, transversely isotropie rock. Wittke (1977)

applied an idealised three-dimensional constitutive model to static analyses of underground openings in

jointed rock. Zienkiewicz et al. (1977) introduced the concept of representing a randomly jointed rock

mass by a no-tension material and a multilarninate framework of models to study the time-dependant

behaviour of a regularly jointed medium. Amadei and Goodman (1981) developed a three dimensional

constitutive relation for jointed rock masses.
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• 2.5 Equivalent elasde modulus in fraetured rock

This section is devoted to the presentation of the equivalent elastic media theory. It implies also

explanations about the background that led the author of this thesis to adopt a particular model

simulating bedded rock masses to implement with the finite element method.

Equivalent continuum models for jointed rock masses are based on the assumptions that single or

multiple sets of parallel joints exist in the rock mass, and that the precise location of the joints is

unimportant.

The simplest of these models is linear, ascribing to the equivalent continuum elastic properties through

superposition of the properties of the matrix and the joints - e.g. MorIand (1976), Amadei and

Goodman (1981), Gerrard (1982). These models usually represent specialisation of equivalent

continuum for layered media - Salamon (1968), Gerrard (1982).

Of more relevance are the models in which the non-lînear properties of the joints are considered, i.e.

the ubiquitous models of Zienkiewicz and Pande (1977). In this models the joints "exist everywhere al

the same time".

Before extending the concept of equivalent elastic media a concise review of the elasticity theory must

he given.

A medium possesses the property of elasticity if the defonnations associated with its loading are fully

recovered upon unloading. In tenns of a load defonnation curve there is a one-to-one correspondence

between load and deformation. If stress and strain are linearly related the material is said to be linear

elastic.

•
A particularly attractive property of the linear elastic theory is the principle of superposition of effects.

Furthermore, the applicability of the theory of elasticity is a function of the duration of loarling.

Elasticity assumes an immediate response upon the application or removal of load.
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• A common procedure for deriving the elastic properties of a rock mass is to assume that the rock mass

is Iinearly elastic, isotropic, continuous and homogeneous, e.g. the empirical methods. However, any

rock is to a certain extent anisotropic and/or heterogeneous and/or discontinuous and somewhat

nonlinearly elastic.

In solid mechanics a medium is considered anisotropic if its properties vary with direction, it is

heterogeneous if they vary from point to point and it is discontinuous if there are separations or gaps in

the stress field. These three definitions are in general scale dependent. They depend upon the relative

size of the smallest structural feature of the problem of interest with respect to the largest structural

feature of the medium.

If we assume that the anisotropic rock material can he descrihed as linear, elastic, homogeneous and

continuous, its general constitutive relation relating stress and strain tensors cao he written as follows:

'tij =C ijkt E kt (2.2)

which is known as the Generalised Hooke's Law. In the most general 3D case, the tensor of elastic

constants Cijld has 81 independent components, Lekhnitskii (1993).

However, by utilising the symmetry of 'tij and E icI, and by assuming the existence of a strain-energy

density fonction, the maximum numher of independent elastic modulus reduces to 21, which represents

the maximum possible degree of anisotropy and equation (2.1) cao he rewritten as follows:

•
{e}= [Al {a}
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•
in the arbj~

ary x, y, Z cOOrdinate systen-...., or

{cr}= [Dl {e J

(2.4)

where:

[Ar
l = [Dl and CD .

lis the eJasticity matrj"x.

Figure 2 7G
. eometry of the probl

em, definition of th
e cOordinate

systems (Wittke, 1990)
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•

•

The matrix [A] with 21 independent elastic constants, describes the complete stress-strain relationship

in three dimensions for a general anisotropie material. This number of constants is so large that it has

been impossible to obtain them for any rock.

If the internai composition of the rock material possesses symmetry of any kind, then symmetry can be

also observed in its elastic properties. So, the number of independent elastic constants is less than 21.

In the analysis of rock masses, four cases of elastic symmetry are of particular interest:

1. one plane of elastic symmetry

2. three orthogonal planes of elastic symmetry

3. one axis of elastic symmetry of rotation

4. complete sYmmetry.

A plane of elastic symmetry exists at a point if the elastic constants have the same value for every pair

of coordinate systems that are the reflected image of one another with respect to the plane. The number

of indePendent elastic constants is then reduced to 13.

If we assume that three orthogonal planes of elastic symmetry pass through each point of the rock, it

cao he shown that the number of independent elastic constants is reduced to 9, which are

3 Young's modulus Ex, Ey, Ez,

3 shear moduli Gyz, Gxz, Gxy and

3 Poisson's ratios '\lyx, '\lxz and '\lzy.

A rock mass that possesses this type of elastic symmetry is called orthotropic.

A rock mass that shows one axis of elastic symmetry of rotation is called transversely isotropie. Plane

xOy of figure 2.7 and any plane perpendicular to it are planes of elastic symmetry. The number of

independent elastic constants is reduced to 5. Accordingly, they are
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2 Young's moduli E = Ex =Ey and E~ =Ez,
1 shear modulus G 6 = Gyz = Gxy, and

2 Poisson's ratios 'U ='Uyx ='Uxy and 'U 6 ='Uxz ='Uzy.

Finally, if all planes and axes are one of elastic symmetry the rock mass is isotropie. The number of

indePendent elastic constants is reduced to 2:

1 Young' s modulus E =Ex =Ey =Ez and

1 Poisson's ratio 'U ='Uyx ='Un ='Uzy.

Many rock masses are stratified or bedded and are clearly non-homogeneous. They May he divided ioto

several layers of randomly varying thickness and pr0Perties. Sometimes, only two tYPes of rock are

regularly interlayered. Since it does not seem feasible to take into account the individual proPerties and

geometry of each stratum in any mechanical model of a stratified rock mass, it is more practical to

replace the latter by an equivalent homogeneous continuum.

Salamon (1968), and Wardle and Gerrard (1972) have worked on this subject and their theories, which

are reviewed in detail in the next section, have been used as a base for developing more complex

constitutive laws by other authors.

In the case of anisotropy derived from regular discontinuities, the theory of linear elasticity is invalid.

However, as mentioned in the previous section, numerical techniques such as the Finite Element

Method or the Boundary Element Method cao he used to incorporate the discontinuous character of

rock masses, Le. by joint elements, when modelling their deformability.

Another procedure is to replace the regularly jointed rock mass by a homogeneous, anisotropie and

continuous medium, the behaviour of which is equivalent to the behaviour of the jointed rock mass.

The work done by Singh (1973) on this subject is further discussed in detail. This procedure cao he

regarded as a special case of the one presented previously for stratified rock masses. It can also be used
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when rock anisotropy is derived from regular discontinuities and the intrinsic character of the intact

rock.

The concept of an "equivalent medium" can be also used to describe the non linear hehaviour of a

discontinuous, non-homogeneous and anisotropie body containing up to three orthogonal joint sets, as

done by Amadei and Goodman (1981), and discussed later in this chapter as weil. The intact rock

between two joints is here assumed to behave in a linear elastic manner with up to three orthogonal

planes of elastic symmetry, each on being parallel to one of the joint sets. The joints are modelled in a

non-linear inelastic fashion in compression and decompression and in a linear or non-lïnear elastic

fashion in shear.

The applicability of the concept of an equivalent medium for modelling the defonnability of a stratified

or a regularly jointed rock mass depends uPOn two conditions: a representative sample of the rock mass

on the basis of which the equivalent homogeneous properties are calculated must contain a large

number of layers of joints and, second, that representative sample must he sufficiently small to be

exposed to a homogeneous stress distribution in the equivalent medium. Those two conditions cao only

he satisfied if the size of the problem to be dealt with is considerably larger than the average layer

thickness or the joint set spacing.

2.5.1 Elastic moduli of a stratified rock mass - M.D.G. Salamon (1968)

Salamon's work was concemed with the rock mass surrounding coal seams. 8uch rock mass is usually

strongly stratified and the elastic properties of the layers vary appreciably. While each stratum can be

regarded as a homogeneous and transversely isotropie, the mass itself is clearly non-homogeneous.

Salomon did not favour an approach to solve practical problems by taking into account the individual

properties of ail strata. Instead, he thought it would he more practical to introduce the concept of

equivalent homogeneous continuum, which behaves in a manner similar to that of the stratified rock

masse He postulated that all layers are homogeneous, transversely isotropie and that their thickness and

elastic properties vary randomly with the depth below surface.
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• Salmon's analysis is based on an examination of the behaviour of two cubes both having an edge

dimension L. One of these cubes is eut from the rock mass and the other from the equivalent

homogeneous medium. Assuming that the bedding planes are parallel, the rock cube is so eut that two

of its sides are parallel with these planes. The cube must be sufficiently large to constitute a

representative sample of the rock mass.

A cube so defined will possess certain elastic symmetry. Its behaviour will be invariant with respect to

rotation around an axis perpendicular to the bedding planes and with respect to reflection in one of

these planes. Salamon concluded, therefore, that the cube, and consequently the equivalent medium,

would be transversely isotropie.

In order to establish relationship between the stresses and strains in the two cubes, the relations giving

the average tensor stress and strain from the continuum mechanics theory are employed:

0= IN JodV

e =IN JedV

where V represents the volume of the cube, that is V = L3
•

(2.5)

(2.6)

The stress-strain relations of the equivalent medium are derived from the condition that the strain

energjes stored in the cubes eut from each of the materials should he equal. So:

(2.7)

•

where Ur is the strain energy in the cube eut from the rock mass and Ue is the steain energy in the

equivalent cube.
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• Based on this, Salamon shows that the five elastic constants of the equivalent transverse isotropie

homogeneous continuum can be expressed in terms of the elastic properties and thickness of each

layer:

UI =f(Ulh E 1h hi)

U2 =f(Ulb U2h hi)

El =f(Ulh E 1h hi)

E2 = f(uH, U., U2h U2, EH, Eh E 2i, hi)

G 1 = f(Glh hi)

G2 = f(G2i, hi)

where i = ilh layer, hi =thickness of the ilh layer.

(2.8)

•

2.5.2 The equivalent anisotropie properties of layered rock and soU masses - L. J. Wardle and

C. M. Gerranl (1972)

In their work, Wardle and Gerrard showed that there are restrictions on the ranges of permissible

variation of sorne of the five characteristic elastic constants previously derived by Salamon for the

generaI case.

Furthermore, they gave consideration to the special cases in which:

1. the Poisson's ratios are equal in aIl layers,

2. all layers are incompressible and

3. the shear moduli are equal in alilayers.

As a result, Wardle and Gerrard developed charts that aIlow for rapid assessment of the properties of

the equivalent medium for a range of two material systems, thus facilitating the application of the

elastic solutions for homogeneous, transversely isotropie bodies to layered media.
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• 2.5.3 Continuum characterisatioD of jointed rock mass - B. Singh (1972)

Singh (1972) developed an anisotropie continuum model in whieh the average influence of joints,

bedding planes and similar planar features cao he taken into account. Singh stated that the work done

by Salamon who used anisotropie continuum theory to describe rock mass have brought a limited

progress due to the imposed restrictions of the general solution.

Furthermore, he believes that the reason for the lack of a continuum model applicable for more general

jointed rock mass systems is the inereased mathematical complexity of such problem. So, he used a

different approach by assuming a new model for the joints.

In this model, the joints are considered as a surface of discontinuity in the rock mass along which

displacements are uniquely related to the corresPOnding stresses. In the continuum characterisation, the

joints and the intact rock are considered the two component phases of an elastic system. Thus, Singh

has used the elasticity theory of composite materials as a base upon which to develop the

characterisation.

This theory differs somewhat from the corresponding problem of determining the elastic behaviour of a

rock mass, in that that in the latter the actual behaviour of the joint phase is rather unknown. It states

that the rock mass May he regarded as a composite material involving two main components, i.e.

relatively intact blocks and joints or planes of discontinuity, and makes several assumptions conceming

the interaction between the various phases of the material. The stress strain relations are derived from

the energy equations.

It was shown tbat the energy equation

•

W = f([Bd)
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where [Bj ] is a matrix that relates the average of the stresses in the jlh phases to the overall average

stress. It is termed as stress concentration factor. Singh showed that any problem in composite elasticity

may then he completely and simply solved by determining the matrix [Bj).

As a result Singh derived the constitutive equations to characterise an anisotropic rock containing two

orthogonal sets of joints.

2.5.4 A 3D constitutive relation for fractured rock mass - B. Amadei and R. Goodman (1981)

The purpose of the Amadei and Goldman's work was to introduce a constitutive relation describing the

non linear behaviour of a discontinuous, homogeneous and anisotropic body of rock containing up to

three orthogonal joints sets. Together with 1982's Gerald's works, this work is a milestone in the study

of jointed rock masses.

Here, the intact rock is assumed to behave in a Iinear elastic manner with up to three orthogonal planes

of symmetry parailei to the joint sets. The joint sets are modelied to behave in a non-linear inelastic

fashion in compression and decompression, and in a linear or non-lïnear elastic fashion in shear. For

eaeh joint set, the normal stiffness kn is expressed in terros of the nonnal stress acting on it and

properties such as the seating pressure and maximum closure. The jointed rock mass is described as an

equivalent anisotropie continuum.

For Amadei and Goodman (1981), the basic problem to he addressed in proposing constitutive relations

for jointed rocks is the mechanieal behaviour of a single discontinuity surface. This discontuinity ean

produee a jump in tangential stresses sinee it beeomes an interface between bodies behaving

dissimilarly.

So, their discussion eentres on the stress-deformation relations for jointed rocks and makes use of an

equivalent anisotropie medium concept. It begins with a description of the behaviour of a single joint,

takes up the concept of equivalent anisotropie media, and eonsiders the effeet of water pressure on

defonnations.
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• In order to fully understand Amadei and Goldman's work, their theory on the behaviour of the joint

under changing normal stress with constant shear stress is briefly reviewed.

There are a number of parameters that are fundamental for a pr0Per model of joint behaviour; these

include peak. and residual shear strengths, maximum joint closure, tensile strength, shear and normal

stiffness and dilatancy properties.

The experiments conducted by Goodman in 1976, led to establish a nonnal pressure-deformation curve

describing the behaviour of joints under changing normal stress with constant shear stress. This curve is

hyperbolic as shawn in Figure 2.8

~v

kn =normal stiffness

anO= seating pressure

vme=maximum closure

c/osing

~(Jnt

1

Opening

Gn

GnO 1---------:iIII~~--------+---- ...

Figure 2.8 Idealised normal stress-deformation of a joint (Goodman, 1976)

•
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• and is expressed by:

an = A[v 1(vmc - v)t (2.10)

where v represents the difference in normal displacements across the joint and A, t are constants

defined by curve fitting. The seating pressure ana defines the initial conditions to measure the relative

normal deformation 11v such that:

and

I1v =v-va

(2.11)

(2.12)

Combining the three above-mentioned equations, Amadei and Goodman define the secant normal

stiffness kn as follows:

(2.13)

or as the slope of the normal stress defonnation curve, then:

(2.14)

•

In both cases, kn is a function of the normal stress applied across the joint.

Now let us consider the hehaviour of a joint under changing shear stress with constant normal stress.

Such a defonnation curve cao he characterised by elastic, peak and post-peak regions as depicted in

Figure 2.9:
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't

- -----'t""pëak'--

'tresidual

K. = shear stiffness

u

Figure 2.9 Idealised shear stress-deformation of a joint

Peak and residuaI shear strengths and their relative importance as weil as the shear stiffness are greatly

influenced by the joint type, joint properties, filling material, state of applied stress and testing

procedures. Note that the slope characterising the elastic region is termed the unit shear stiffness ks•

The definitions of the normal and shear stiffness in previous sections are precise when there is no

dilatancy. As a brief recall, dilatancy means volumetric change accompanying defonnation. It can aIso

connote thickening or thinning of a discontinuity undergoing shear defonnation at constant normal

stress; so, the term dilation is used to connote an increase in the separation of the two joint blocks, as

opposed to contraction which connotes a closing of a joint. As a result, Amadei and Goodman propose

a more general constitutive relation for a joint taking into account its dilatancy. This relation is a

function of four stiffness components that cao he determined theoretically and/or experimentally.

Regarding the concept of an equivalent anisotropic continuum for an isotropic body with one joint set,

Amadei and Goodman (1981) assume the intact rock is Iinearly elastic and isotropic with two
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• constants: Young's modulus E and Poisson's ratio v. The deformations within jointed rocks subjected

to both normal and shear stresses result from compressive and shear strains within the rock between the

joints and from interface normal and shear displacements on the joints. They considered a basic unit

consisting of a single thickness of rock and a single joint as follows:

in

51,4 = fOoint)
82,3 =f(intact

(a)

-5>

/
1 (G)
1
i
f
f

(Ks)

-$>
:

i

1/ (G, Ks)

/

(b) (c)

•

Figure 2.10 Concept of the equivalent anisotropie continuum: (a) basic unit, (b) behaviour in shear. (c)

behaviour in nonnal compression

They adopt the axes n. t normal and parallel to the joint and therefore in the principal sYmmetry

directions of the rock mass.
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• The basic concept of the model is to replace the jointed body by an equivalent anisotropic continuum.

As a result, shear and normal deformations of the equivalent continuum are equal to those of the jointed

body. In the plane (n, t), the equivalent medium is described by two moduli: a shear modulus Gnt such

that:

11 Gnt = (lI G) + [11 (ks x S)] (2.15)

where G =E 1 [2 x (1 + v)] is the shear modulus of the intact rock and S the spacing between two joints

- note that the joint thiclmess must he negligible compared with S - and a normal modulus En such

that:

11 En =(lI E) + [lI (kn X S)] (2.16)

As shown by the two latter equations, only four elastic constants are required to describe such a

material: E, v, ks, kn•

The same concept is then introdueed when the rock between the joints is itself anisotropie, for example,

transversely anisotropie within a plane parallel to the joint set. In this case seven constants are needed

to describe the material. This model can he applied to the deformability of layered, schistose rocks.

For the more general case of a body with three orthogonal joint sets, an equivalent orthotropic

continuum, Amadei and Goodman (1981) proposed a solution assuming again that eaeh joint set has a

negligible thiekness and does not ereate any Poisson' s ratio effeet, the constitutive relation of this

equivalent orthotropic continuum is defined as follows:

•

{ E } = [A] x {O'}

where [A] = [A]intaetrock + [A]joints t with the equivalent Young's modulus Eï· defined by:
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• (2.18)

and the equivalent shear modulus Gij· defined by:

(2.19)

where the index • refers to equivalent moduli, the index i and the index j refer to the intact rock and the

joints respectively.1f the orientation of the joint sets with respect to a fixed system of coordinates (x, y,

z) is known, we cao rewrite the relation (2.17):

{E }x.y.z = [D]x.y,z x (a}x.y,z (2.20)

•

Amadei and Goodman's work (1981) reports a1so the closed fonn solutions for uniaxial and triaxial

loading which were derived to demonstrate the applicability of the proposed constitutive relation.

2.5.5 Equivalent elastic moeluli of a rock mass consisting of orthorhombic layers - C. M.

Gerrard (1982)

In his analysis of a system of orthorhombic layers here briefly presented, Gerrard closely followed the

previous analysis of Salamon (1968) for a system of cross-anisotropic layers. Salamon expressed the

elastic properties of the equivalent material in terms of the thickness and elastic properties of the

constituent layers. His analysis was extended by Wardle and Gerrard who considered special cases of

compressibility and shear moduli in the respective layers, as weil as the case of a1temating two layer

systems.

In the present work, equivalent elastic properties are given for a system of parallel layers, each of

which consists of a homogeneous orthorhombic elastic material. This means that the material properties

of each layer have three mutually perpendicular planes of symmetry.
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• The layers are aligned so that each set of three planes is respectively Perpendicular to a single set of

Cartesian coordinates Xl, X2, X3. The X3 direction is chosen to he normal to the layering planes and

hence for each layer one of the planes of elastic symmetry of the material properties is parallel to the

layering planes.

a, b, ... , i = layer

Representative
prism

Normals to the planes 0'
symmetry of the material
properties in each layer are
respectively perpendiculal
ta XI, X2, and X3

•

Figure 2.11 Orthorhombic body, definition of the geometry

This definitioD is the base of the major contributions to the previous work by Salamon, Wardle and

Gerrard. Gerrard derived the equivalent elastic proPerties for the particular case of two altemating

orthorhombic layers. They are expressed by the Dine equivaleDt elastic parameters V12, VB, V23, Eh E2,

l1E3, G12, lIG13, 11023, where the subscripts refer to the x-s axis directions.
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• 2.S.6 Elastie models of rock masses having one, two and tbree sets of joints - C.M. Gerrard

(1982)

Gerrard (1982) extended his previous analysis for the general case for one, two and three sets of

perpendicular joints. Stephansson (1981), Duncan and Goodman (1968) and Amadei and Goodman

(1981) had already discussed theories covering this topic. Stephansson's method (1981), based on

consideration of the load-deformation behaviour while Gerrard used a strain-energy criterion, which

gave similar results for most practical cases.

The works of Duncan and Goodman (1968) and Amadei and Goodman (1981) have the limitation of

imposing a negligible joint thickness with regard to the joint spacing. Gerrard' s analysis firstly covers

the general case where the joint material can have any thickness and can have general properties. He

did use of the orthorhombic layer theory discussed in the previous section. This theory is then applied

in one coordinate direction for the case of a single set of joints, or repeatedly applied in two or three

coordinate directions for the respective cases of two or three sets of orthogonal joints.

As a result, Gerrard (1982) established a table relating the material properties to the equivalent material

properties for one, two and three sets of joints, where the general equation has the following forro:

(2.21)

•

where FI is a functional defined by a relation involving the elastic parameters. The indices i and j refer

to the moduli for intact rock and joints respectively.

Finally, Gerrard extended his work to a particular case simplifying the computations, especially when

the joint thickness is negligible. Such case is represented by a jointed system having thin, soft joints.
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• 2.5.7 Effective elastic properties for a randomly jointed rock mass - A.F. Fossum (198S)

In his technical note, Fossum (1985) derived a constitutive model for a randomly jointed rock mass

behaving elastically based on the study conducted by Amadei and Goodman (1981).

Fossum (1985) has then used a geometric averaging process to determine isotropie effective properties.

He has finished his analysis proposing the effective isotropie properties Eaverage and Vaverage which cao

be determined from the effective bulk and shear moduli, Kaverage, Gaverage. 50:

Eaverage =(9 x Kaverage x Gaverage) 1 [3 x (Kaverage + Gaverage)]

and

Vaverage = (3 x Kaverage - 2 x Gaverage) 12 x [3 x (Kaverage + Gaverage)]

where Kaverage, Gaverage =f (joint spacing, joint stiffness, E, v).

(2.22)

(2.23)

Here again, the joint thiekness is considered negligible compared with the joints spacing. Note that in

the limil as the joint spacing becomes large, Kaverage and Gaverage reduce to the familiar relations between

isotropie properties of an intact body, i.e.:

•

and

Kaverage =E 1 [3 x (1 - 2v)]

Gaverage =El [2 x (1 + v)]
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• 2.5.8 Joint stitTness and the deformation behaviour of discontinuous rock - R. Yoshinaka and

T. Yamabe (1986)

In their work, Yoshinaka and Yamabe (1986) have investigated in depth the behaviour of the single

joint following the concept of joint stiffness proposed by Goodman (1981).

The analysis of compressibility kn stiffness and shear stiffness ks was carried out in great detail as well

as a study of the relation between them. As a result they proposed a relation which is convenient from

the practical point of view for estimating one stiffness from another.

Using the idea of the deformation of joints in a rock mass, Yoshinaka and Yamabe (1986) consider the

deformation of a jointed rock mass as the summation of the deformations of joints and intact rock. An

equivalent deformation modulus Et and shear modulus Gt have been then proposed taking into account

the dip and proPertïes of two sets of joints and intact rock as shown below:

Joint set 1
(Kn1. Ks1)

d

1E;-1<__d__~

Joint set 2
(1<n2. 1<s2)

Rock material
(E. v)

•
Figure 2.12 Mechanical model for jointed rock mass with two sets of joints
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• The limitation of two joint sets is accompanied by the condition that the dip of these joints is parallel to

the axis of minimum principal stress (13-

2.5.9 Estimation of the elastic properties of fractured rock masses - K.X. Hu and Y. Huang

(1993)

The approach used in this work for detennining the effective elastic moduli of a fractured body consists

of considering the joint as a non-persistent crack. Three kinds of in plane crack orientations are studied

by the authors: randomly distributed cracks, parallel distributed cracks and two sets of perpendicular

cracks.

The matrix material (uncracked rock) is considered isotropic while the rock mass shows an orthotropic

behaviour. The resulting expressions of the effective elastic moduli E, G and v are related to the intact

rock moduli and the crack planar density.

These expressions are here below reported for the case of randomly distributed cracks (Hu and Huang,

1983):

•

Eavcr:lge 1 E =(1 - v) 1(1 - v 2e)

v avcrage = v(l - e) 1(l - v2e)

Gavcr:lge =1 - (112 xe)

where e =planar crack density [rn/m2
] and E, v, G are the elastic parameters of the intact rock.
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•

•

Figure 2.13 Schematic diagram of a distribution of random cracks

2.5.10 Elastic moduli for fractured rock mass - T.D. Huang, C.S. Chang and Z.Y. Yang (1995)

The work done by these authors aimed to derive close-fonn expressions of elastic moduli for rock

masses with three sets of non-orthogonal intersecting joints. These expressions are derived explicitly in

tenns of properties of joints and intact rock. Related to such expressions is the proposed stress-strain

model for an assemblage of intact rock blacks separated by joint planes. The model accounts for

spacing and orientation of the joint sets.

Basically, Huang et al. (1995) assume that a rock mass consisting of M sets of joints subjected to a

small increment of stress has a corresponding incremental steain which consists of two components:

one include from the movements of the M sets of joints and the other from intact rock defonnation. The

joints behaviour is assumed to he the same in all directions on the joint plane concerning the

defonnation and neglecting the effect of shear displacement caused he the nonnal stress.

Based on these assumptions, the constitutive constants are derived by the authors for a rock mass with

three intersecting sets ofjoint~ as shown in Figure 2.13:
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•

x

Figure 2.14 Geometry definition

However~ the first two sets of joints are assumed to have the same joint stiffness kn and kn~ which are

different from the joint stiffness kn3 and ks3 of the third joint set. Similarly~ the spacing is the same for

the first two sets.

The resulting elasticity matrix takes ioto account the properties of intact rock namely Young~ s modulus

E~ shear modulus G and Poisson~s ratio v~ as weil as the properties of the joints by joint Young~s

rnodulus Ex, Ey, Ez and joint shear rnodulus Gx~ Gy, Gz•

The expressions of the joint modulus are functions of the stiffness, spacing and orientations of the joint

sets given by the angle. When the angle 9 =90°, the expressions of the elastic parameters reduce to the

expressions proposed by Amadei and Goodman (198 [) and discussed in a previous section.
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Chapter3

FINITE ELEMENT MODEL

3.1 Constitutive model

The discussion in the previous chapter bas clearly shown how strongly the pattern of

fahric of joints cao influence the rock mass behaviour. Otherwise stated, the pattern of

fahric of joints will govem the deformational and strength properties of rock masses.

During the last decade, many authors have based their analysis on these models in the attempt to generalise

them proposing an equivalent media model including a random set of joints. However, no one has

completely succeeded in this task because of the difficulty to gather simple input data with reliable

simulation results. Currently, the most popular models reproducing a constitutive law for the rock mass

which take into account the fabric of joints are those of Amadei and Goodman (1981) presented in section

2.5.4 of the previous chapter. Those models have been appreciated by the scientific community for their

completeness. their practical aspects regarding the determination of the parameters and their relative

simplicity.

Therefore, the author of this thesis has adopted the conceptual model proposed by

Amadei and Goodman for a rock mass characterized by one family of discontinuities. The

model is then formulated for the implementation into a two-dimensional finite element

code.

3.2 Finite element equations

Finite element method has been increasingly applied in solving geotechnical prohlems.

The finite element mesh employs in this case of two-dimensional analysis a 4-node

isoparametric element shown in Figure 3.1 with its local system of coordinates (s, t).

3-1



• z

4

2

x

Figure 3.1 Isoparametric 4-node element in the global and local systems of coordinates

The global coordinates (x, z) of any point in the element are related to the local

coordinates (s, t) through the following equations:

x = [N](X}

z = [N](Z}

(3.1 )

where <N> is an array of interpolating shape functions and (X} as weil as (Z} are the

global x, z coordinates of the element nodes. The shape fonctions are expressed in terms

of local coordinates and have the following form for the 4-node isoparametric element:

NI = tA (1 - s)(1 - t)

N2 = tA (1 + s)(1 - t)

N3 =IA(1 +s)(1 +t)

N4 =lA (1 - s)( 1 + t)

(3.2)

•
In order to fonnulate the finite element equations, it is necessary to adopt a model for the

field variable within the element. In the defonnation and stress analysis, the field variable

is the total deformation (a) and a model has to he adopted for its variation within the
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• element. The code hereby presented considers that the total defonnation within the

element follows the interpolating functions presented above, which means that the

distribution of the defonnations is bilinear. The distribution of the total deformation in the

element is summarized by the following equation:

{SI ={u,v} =[N(S,o]{SC}

where: S = defonnation at any point,

[N] = shape function matrix,

{se} = vector of defonnations at the nodes.

(3.3)

Problems in solid mechanics frequently involve description of the stress distribution in a

body in static equilibrium under the combined action of surface and body forces.

Determination of the stress distribution must take into account the requirement that the

stress field maintains static equilibrium throughout the body. This condition requires

satisfaction of the equations of static equilibrium for ail differential elements of the body.

dl

u z.v ----+--~

~--.. y

x

aUrUyt + -_.. dy
iJy

1 ..... 1
1 ........... 1
y~ ",,",---
JI" iJazy.J.. 1 ~t---- Uzy + - dy

" au
" 1 J

"" .....
"- .....

dy

•
Figure 3.2 Free-body diagram for the development of the differential equations of

equilibrium (Brady and Brown, (992)
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• The stress distribution in the body is described in tenns of a set of stress gradients and cao
he written in a tensor fonn as follows:

(3.4)

where 'tij is the stress tensor and Fi represents the applied body forces.

The static equilibrium equations have been adapted to the needs of a two-dimensional

finite element code giving the analytical fonnulation for the element static equilibrium. In

displacement finite element method, equilibrium is expressed by the conventional

equation:

(3.5)

where: {Pl =globalload vector,

[K] = global stiffness matrix,

{a} =displacements vector

In the finite element fonnulation, the element stiffness [k] is a key parameter. The

procedure used to compute the stiffness is presented below.

The strains are defined by Lekhnitskii (1963) in his theory of elasticity for small

displacements as:

au
Ex=-ax

•
av

Ez=-az
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• ~=(au + av l
i3z i3x)

or, in term of product of a matrix and a vector, as:

o

(3.7)

where the matrix in the above equation is called [L] and is a differential operator.

The shape functions are given in terms of local coordinates s ant t, and must be computed

in terms of the global coordinates. Toward this end and starting from the relationship

between the strains and the displacements presented in (3.6), the strains within the

element are expressed with the aid of (3.7) as function of the nodal point displacements.

The following is obtained:

au
ax
av
azau av

-+­az ax

=

~aNi
~-Ui

i=1 ax
m aNiI,-Vi

i=1 az
maN; aNiL-Ui+-Vi

i=1 oz i3x

(3.8)

•

To set up the right-hand side matrix of equation (3.8), the derivatives of the shape

functions, which are available as functions of the local coordinates s, t, are required with

respect to the global coordinates x, z. These unknown quantities May he advantageously

combined using the chain rule of differentiation as follows:
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• jaN;) jaNi ax + aN; az)
as _ dx ds dz dsaM - aN; ax aN; dz

- --+--at ax dt az dt
(3.9)

The right-hand side of (3.9) may he presented as the product of a matrix and a vector.

Thus:

jdN;) [ax aZ]jaNi)as _ as as axaNi - ax az aNi- - ---at dt at az
(3.10)

where the matrix of (3.10) is the Jacobian matrix [J]. Performing matrix operations, the

derivative of the interpolating function with respect to x and z cao he determined, and the

equation is rewritten as:

jaN,) jaNi)ax =[Jtl asaN; aNi
- -az dt

(3.11 )

As a resu1t of appropriate combination of ail the above vectors, the strain equation can

now he written in matrix fonn as:

[e] =[BH se}

where: [B] = [L][N] =strain-displacement matrix

{e }=strain vector

{ft} =nodal displacements vector (u, v)

(3.12)

•
In the previous paragraphs, it is stated that the strain within the element can he expressed

in terms of the nodal displacements. The computation of the strain-displacement matrix
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• [Bl, which contains the derivatives of the shape functions expressed in local coordinates

Ni(s, t) with resPeCt to the global coordinates, has been also dealt with.

The detennination of the equivalent elastic properties of the rock mass plays a crucial role

in the finite element code since it is the material's variable within the stiffness matrix as

aIso mathematically stated in (3.3).

Stresses and strains in a two-dimensional Cartesian coordinate system (x, z) are related in

the familiar manner according to Hook's law by the constants of elasticity E and v:

E
O"x = 2 [(1-v)& +v~]

I-v-2v

E
OZ I-v _2v2 [V&+(l-v)~]

E
'ru = 2(1 +v) ~

(3.13)

The matrix form is stated in Chapter 2 by (2.4) and relates the stress vector to the elastic

strains:

{a} = [D]{e} (3.14)

The following expression for the stress vector within the element in terms of nodal point

displacements is obtained by combining (3.12) and (3.14):

•
{a} = [D] [B]{ae}
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• Now that a relationship between the stresses and the strains in the element stiffness matrix

and load vector has been established, a displacement based fonnulation procedure using

the Virtual Work Principle will he adopted to derive the element.

The Principle of Virtual Work is an independent fonnulation procedure for finite element

equations based on assuming a displacement fonction, which despite the alternatives

shown in the following Figure 3.3, still heing a much more widely used method. The

presentation to follow in this chapter will thus focus on the formulation of element

stiffness matrix needed in the displacement method.

FE formulative procedures

direct
formulation

stationary
potential
AnArnv

Galerkin
method

weighted
residual

collocationa
1method

variational
method

least
square

Figure 3.3 Formulation procedures for FE analysis

This formulation procedure leads to the conventional principles of stationary potential

energy and complementary energy. Otherwise stated, if a body in equilibrium under the

applied loads is subjected to a kinematically admissible virtual displacement state, then

the change in the total potential energy of the body is zero and:

•
where:

an=ôU+8V=o

6n = change in the potential energy,

au = change in virtuaI strain energy,

ôV = change in potential of applied load,
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• or, if a body in equilibrium under the applied loads is subjected to a kinematically

admissible virtual displacement state, then the totaI virtual work is equal to the total

extemal virtual work. Thus, for the two definitions to he equivalent:

and

where:

aWi=fJWe

W i = intemal virtual work,

We =extemal virtual work.

(3.17)

(3.18)

~n.1

•F'

•

f:!l = nodal forces, q =distributed load inside the element, ~n,2 =nodal displacements

•

Figure 3.4 Definition of the problem

Assume now a displacement field as described in (3.3) and the strain-displacement

relationship of (3.12). The virtuaJ displacements a.1 and the resulting virtuaJ strain

components &= can he expressed in a similar forro. Hence:
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•
œ = [B]{5&}

(3.19)

(3.20)

The total change in the potential of the applied loads (nodal forces and distributed loads)

in consequence of the virtual dispJacements of (3.16) is:

where:

awe =-5V=5Wn +ôWd

cSWd =Jq6Mv = fq[N]{6Âi}dv ={Fd}{6&}
v v

(3.21)

(3.22)

(3.23)

with q representing the load intensity per unit volume and Fn,d are the load vectors due to

nodal and distributed forces respectively. This latter expression is a1so called the

consistent Joad vector. Accordingly we have:

(3.24)

The total internai virtual work (virtual strain energy) done by the action of stresses

through the virtual strains is:

•
where:

6U =f{&}T {a}dv
v
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• {a} = [O]{e} - [D]{Eo} + tao} (3.26)

and Go is the initial stress and e 0 is the initial strain. [D] is the elasticity matrix.

Substitution of (3.19) and (3.20) inta (3.26) leads to:

BU = f {Bâ}T[B]T[D][B]{â}dv - J{Bâ}T [B]T [D]{Eo}d" + J{c5~}T[B]T {uo}d" =
" v " (3.27)

BU = {c5â}T[f[B]T[D][B]{~}d,,- {FEo} + (Faon
Il

According to the principle of virtual displacements expressed in (3.16), from (3.20) and

(3.24), it appears that:

where:

J[B]T[D][B]dll{â} ={Fil} + {FJ} + {FEo} + {Faol

"

(3.28)

{Fn } =load vector due to nodal forces

{Fd } =load vector due to distributed body forces

{FEo } = load vector due to initial strains (boundary tractions) = f [B]T [D][B]{Eo}d"
Il

{Fao } = load vector due to initial stress

"

and can he rewritten as:

•
which is identical to equation (3.5).

[K]{~} ={Pl
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• For the two-dimensional aoalysis, the thickness of the element is considered to he

constant over the entice domaine The finite element equation cao be written as:

tJ[B]T [D][B]dA{Â} = {Pl
A

where t is the thickness of the element.

(3.30)

As already stated, special attention is given to the elasticity matrix [D] following the

model of an equivalent elastic medium for the rock mass, i.e. taking ioto account the

properties of the bedding planes, as proposed by Amadei and Goodman and largely

discussed in chapter 2 of this thesis. The matrix [D] in the two-dimensional fonn is:

1 -y -v
0-

E E E
-v -y

0[Dl= m
E E
-v -v 1

0-
E E E
0 0 0 n (3.31)

where:

1 1
m=-+-

E knS

1 1
n=-+--

2G 2ksS

(3.32)

(3.33)

•
The matrix contains four elastic independent parameters: E, v describing the intact rock

properties and knS, ksS describing the joint properties stiffness as weil as the spacing S

between bedding planes.
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3.3 Model features and limitations

The bedded rock mass model features aoisotropy simulation of the rock mass depending

on the discontinuities mechanical behaviour, see Figure 3.5, as weil as their orientation

and frequency in the domain analysed. The model has been implemented in a existing, 2­

dimensional code called e-z tools (Mitri, (993). The code is developed by the numerical

modelling group at McGill University. e-z tools has the following features:

Up to 5'()()() nodes and 5'000 elements cao he generated

Up to 9 geological materials can he modelled

Up to 3 mining sequences are simulated

Modelling of rock bolts and cable bolts.

On the other hand, e-z tools has the following limitations:

Linear elastic behaviour of the material; no elastoplasticity or viscoplasticity is

accounted for

Static analysis only; no dynamic loading is permitted in the code

Only 2-dimensional, plane stress or plain strain analysis cao he carried out.

Furthennore, the limitations of the model for bedded rock are presently the following:

1. Only one set of parallel discontinuities

2. Simulation of post-peak behaviour (dilatancy) of the discontinuities not permitted

3. Negligible joint thickness; handling of the joint thickness not possible

4. Imposed upper limit for the BIS ratio (span 1joint spacing).
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•

Figure 3.5 Simulation of the discontinuity in a bedded rock mass

3.4 Model input parameters

As stated in the introductory section, this report's aim is the determination of equivalent

elastic properties for a bedded rock mass. The Hooke' s law for isotropic elasticity which

describes the stress-strain relationship is presented in Chapter 2. In the previous section

3.3, the two-dimensional matrix fonn of the equivalent elastic medium has been

presented, where particular attention is given to the four elastic parameters needed to

model the bedded rock mass.
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• Otherwise stated, the jointed rock mass is replaced by an equivalent anisotropie

continuum with equivalent elastic properties which are a fonction of the intact rock (E,v)

and the joint fabric.

The joint fabric is described by kn = f (normal stress, joint opening, cp gauge material) and

ks =f(tangential stress, joint opening, and gauge material».

In the identification of the input parameters it becomes clear that difficulties arise in the

determination of the joint parameters. First, the definition of intact rock parameters cao he

interpreted as suggested in Figure 3.6:

-0.2 -0.1

Er (%)

(Tc
-------~------

0.2

•• (%)

0.3

•
Figure 3.6 Definition of the Young's modulus (Brady and Brown, (992)
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• Corresponding to any value of the tangent Young's modulus Eb average Young's

modulus Eav or secant Young' s modulus Es, a value of Poisson's ratio may he calculated:

(3.34)

•

The compressibility of the joint can be obtained from the difference in deformation

between intact and jointed rock specimens in uniaxial compression or by triaxial cell test

in case of joints filled with material. The next figure shows typical deformation behaviour

of three kinds of joint surfaces used in the experiments by Yoshinaka and Yamabe

(1986).

-l
2-

6~ JOlnl closur. (mm'

Figure 3.7 Joint closure compressive stress curve (Yoshinaka et al., 1986)
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• The curve is defined by the following equation:

kn =dG 1d(AV) (3.35)

y oshinaka and Yamabe (1986) proposed the following relation expressing kn as a

function of the maximum joint closure Vme and material constants t: and m:

(3.36)

while Amadei aod Goodman (1981) proPOsed a better defined secant joint normal

stiffness based on the idealized figure presented by Figure 2.7 in Chapter 2.

The joint shear deformation versus shear stress curve for a test conducted on a joint under

constant normal stress cao he characterized by the idealized Figure 2.8 shown in the

previous Chapter. The slope characterising the elastic region is termed the unit shear

stiffness ks after Goodman (1968). Yoshinaka and Yamabe (1986) have established a

relation between stiffness of the two joints:

(3.38)

•

where C' =f (gauge material constants a, IJ; atmospheric pressure Pa; joint maximum

disclosure Vmd.

The advantage of this complex approach resides in the fact that the value of ksi and kn cao

be measured from the same shear and compression tests under the same nonnal stress.

Furthermore, this approach is convenient from the practical point of view because one cao

estimate one stiffness from another.
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• 3.5 Model sensitivity analysis

The present section focuses on the parametric study of the behaviour of an underground

opening in bedded rock. In fact, the performance of the model cao he shown by the means

of a sensitivity analysis of given parameters, i.e. the joint spacing S, on the overall

behaviour of the bedded rock mass around the opening.

A stratified host rock is not uncommon in tunnelling practice. As already stated in

Chapter 1, an excavation in a sedimentary setting or in presence of planes of weakness in

a metamorphic formation is frequently encountered in tunnelling. In order to evaluate the

influence of bedding planes, the span-to-joint spacing ratio (BIS) is defined; see Figure

3.8.

1--- 7__:] Intact rock 1

=J Joint spacing S

>;.1----------------
0'"----------1

,,, ~~ ..........~ _L7,"'~~

- -
'1> .'
t- .'.
. .-
r L~

.. :~~••• ". 1•• .:, ...... ,... - •• _. "".

SpanB

f;I--......~------------

Bedding planes

•

Figure 3.8 Definition of span-to-joint ratio BIS

Figure 3.8 also shows the rnodel for the parametric study carried out to investigate the

influence of the joint spacing, dip angle and joint stiffness on the roof defonnations at the

centreline of the opening. The results of this analysis should he of sorne value since cases

3-18



• in which the optimisation of the opening shape in a bedded rock mass largely depend on

the BIS ratio. This is particularly tnle as the dimensions of the excavation increase Iike in

the case of utility cavems. In addition, the sensitivity of the elastic parameters of the

intact rock, i.e. Young's modulus and Poisson's ratio are also examined. The finite

element mesh of the problem for the parametric study is presented in Figure 3.9; it

consists of 3'000 isoparametric elements.

8 22.22,
[ml

<> fixed free • x fixed o y fixed

•

Boundary conditions: - overburden H = 800 m (at point 0;0)

In situ stresses: - Gx
0 = KyH and G zo = Ky

Figure 3.9 Finite element mesh of the parametric study model
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Figure 3.10 Opening dimensions of the parametric study model
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• 3.5.1 Numerical results

Table 3.1 reports the simulations carried out for the sensitivity analysis. Next to the

denomination are listed the values of input data of each simulation computed where the

variable is put in evidence by shadowed boxes.

15.000,0 0,2 10.000,0 15.000,0 0,50 10,0 0
30.000,0 0,2 10.000,0 15.000,0 0,50 10,0 0

60.0000 0,2 10.000,0 15.000,0 0,50 10,0 0
40.000,0 0,1 10.000,0 15.000,0 0,50 10,0 0
40.000.0 0,2 10.000,0 15.000,0 0,50 10,0 0
40.000.0 0.4 10.000,0 15.000,0 0,50 10,0 0
40.000.0 0,2 1.000,0 15.000,0 0,50 10,0 0
40.000,0 0,2 5.000,0 15.000,0 0,50 10,0 0
40.000,0 0,2 15.000.0 15.000,0 0,50 10,0 0
40.000,0 0,2 10.000,0 10.000,0 0,50 10,0 0
40.000,0 0,2 10.000,0 20.000,0 0,50 10,0 0
40.000,0 0,2 10.000,0 40.000.0 0,50 10.0 a
40.000,0 0,2 10.000,0 15.000,0 0,05 100,0 a
40.000.0 0,2 10.000,0 15.000,0 0,05 100,0 30
40.000.0 0,2 10.000.0 15.000.0 D,OS 100,0 45
40.000,0 0,2 10.000.0 15.000,0 D,OS 100,0 60
40.000,0 0,2 10.000.0 15.000,0 D,OS 100,0 90
40.000.0 0,2 10.000.0 15.000,0 0,10 50,0 a
40.000,0 0,2 10.000,0 15.000,0 0,10 50,0 30
40.000,0 0,2 10.000,0 15.000,0 0,10 50,0 45
40.000,0 0,2 10.000,0 15.000,0 0,10 50.0 60
40.000,0 0,2 10.000,0 15.000,0 0,10 50,0 90
40.000,0 0,2 10.000,0 15.000,0 0,25 20,0 0
40.000,0 0,2 10.000,0 15.000,0 0,25 20,0 30
40.000,0 0,2 10.000,0 15.000,0 0,25 20,0 45
40.000.0 0.2 10.000,0 15.000,0 0,25 20,0 60
40.000,0 0,2 10.000.0 15.000,0 0,25 20,0 90
40.000.0 0,2 10.000.0 15.000,0 1,00 5.0 a
40.000,0 0,2 10.000.0 15.000,0 1,00 5.0 30
40.000.0 0,2 10.000.0 15.000,0 1,00 5.0 45
40.000.0 0,2 10.000,0 15.000,0 1,00 5.0 60• 40.000.0 0,2 10.000.0 15.000,0 1,00 5.0 90
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•

40.000,0 0,2 10.000,0 15.000,0 5,00 1,0 0
40.000,0 0,2 10.000,0 15.000,0 5,00 1,0 30
40.000,0 0,2 10.000,0 15.000,0 5.00 1,0 45
40.000,0 0,2 10.000,0 15.000,0 5,00 1,0 60
40.000,0 0,2 10.000,0 15.000,0 5,00 1,0 90
40.000,0 0,2 10.000,0 15.000,0 50,00 0,1 0
40.000,0 0,2 10.000,0 15.000,0 50,00 0,1 30
40.000,0 0,2 10.000,0 15.000,0 50,00 0,1 45
40.000,0 0,2 10.000,0 15.000,0 50,00 0,1 60
40.000,0 0,2 10.000,0 15.000,0 50,00 0,1 90
40.000,0 0,2

Table 3.1 SUmtnary of model sensitivity analysis

The defonnation of the tunnel roof is presented in Figure 3.11a for different E and in

Figure 3.11b for different u. Here the other parameters of the rock mass have been held

constants, i.e. normal and shear stiffness kn respectively ks, the dip angle as weil as the

BIS ratio. The result of the investigation indicates that the defonnation of the roof is

practically not affected by the variation of the Poisson's ratio. The deformation of the

roof is, however, only slightly dependent on the magnitude of the Young' s modulus E.

Figure 3.12 shows the sensitivity of kn and ks with constant Young's modulus and

Poisson's ratio of E = 40 GPa, and u = 0.2. As can be seen, the shear stiffness of the

bedding planes plays a more significant role than the Donnai stiffness in controlling the

large defonnatioDs.
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Figure 3.12 Roof settlements as a function of kn and ks

Figure 3.13 presents the roof defonnation as a fonction of the BIS ratio and the dip angle

for a constant Passion's ratio of u = 0.2 and a Young's modulus of E = 40 GPa. It is

primarily to notice from the surface resulting by changing simultaneously the two

parameters that the roof defonnations are not linearly dependent on both the dip angle and

the BIS ratio. Furtherrnore, it may he recognised that they cause only a small influence on

the elastic deforrnations of the roof in the range of low and very low value of BIS.

•

Otherwise stated, for the case depicted in Figure 3.13, which regards an opening with a

span B = 5.0 m, one cao say that for a spacing between discontinuities greater than 0.5 ID

(or BIS =:; 10) the roof settlement is geotechnically insignificant - Le. ôrootIB less than

11500 - and regardless of the strata inclination and spacing. This confirms the Uisotropy"

of the media for small BIS ratios tending to zero. This is simply explained by the scale

effect; in fact, for very large spacing S between the joints, their effect at the work scale

vanishes and ooly the properties of the surrounding intact rock control the behaviour of

the opening.
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Figure 3.13 Roof deformation as a fonction of BIS and strata dip angle

Since a relatively large area of rock mass above the roof is unloaded as a result of

excavation, deformations extend upwards for quite sorne distance. To illustrate this

behaviour, the vertical displacement along the plane of symmetry is plotted as a function

of the distance from the roof (at the tunnel centre) in Figure 3.14. The analysis of the

scale of the unloaded zone becomes interesting for the bedded rock mass with horizontal

strata, which represents the worst-case according to Figure 3.13.
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Figure 3.14 Reduction of vertical displacement with increasing distance from the roof

In addition, increases in stresses arise in the sidewalls of the opening. In the case where

the bedding planes are horizontal, the increase of the vertical stress extends a10ng the X­

axis over a length, which is approximately 4 times the opening span S as depicted in

Figure 3.15:
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Figure 3.15 Extent of vertical stress in the sidewall
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•

It is of interest to notice how the shape of the opening influences the flow of the stress at

the same point. In the case of circular cross section the stress reaches its maximal value al

the centreline of the sidewall (for an ideal isotropie hydrostatic case this is equal to twice

the in situ stress, hence 1.0 on the Y-axis of Figure 3.1) while the highest vertical stress

for a cross section is reached at the corner; thus, the increase of stress at the sidewall is

much less abrupt as demonstrated by the above graphie.

The influence of the discontinuities may also he recognized from the deformation of the

opening wall illustrated in Figure 3.16 for stratas dipping with 45°.
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Figure 3.16 Unsymmetrical tunnel defonnations for a dip angle of 45°

It should he mentioned that Figures 3.13 and 3.14 might, if applied to a specifie case, be

used when making a first approach of design for an opening. In fact, it is possible to

optimise the excavation shape as a function of the discontinuity spacing or to give a rough

interpretation of measured deformations caused by driving. 00 this subject, it is worth

mentioning that even when plastic deformations arise, the elastic defonnations are also

present and must he takeo ioto account during the design and the interpretation of the

defonnatioo measurements. In addition, elastic sensitivity analysis Iike the one presented

here should always fonn the basis, if requested, for further elasto-plastic investigations.

•
Furthennore, the significance of discontinuity properties to the rock mass behaviour

around an opening should he clear from the example presented by this sensitivitY

analysis. ft shows that the spacing and dipping of the bedding planes of a rock mass

exhibit a considerable influence avec the fonn of deformation - and thus on stresses -
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around the opening and the subsequent formation of palstic zones. Additionally, the

influence of elastic constants has been found to he considerable as absolute value but the

contribution to the range in which each constant separately modifies the displacement

pattern around the oPening is smaller than the contribution due to variation of joint

spacing and dipping.

Ali these factors therefore influence stability. It is thus of great importance that the elastic

constants and the geometry of the joints he determined as reliably as possible and that the

influence of scatter he investigated in parametric studies as demonstrated here.
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Chapter4

MODEL APPLICATION TO A CASE STUDY

4.1 Problem detlnition

The Swiss Alps are currently crossed in the North-South axe by the railway line of the St.

Gotthard. This important railway was built at the end of the 19th century just at the

beginning of the railway era in Europe. The railway line starts on the Swiss plateau at 400

m above sea level, reaches elevation 1.200 m by the old St. Gotthard tunnel then goes

downhill in direction of the Italian borders, which lie at an elevation of 250 m. In order to

overcome this abrupt change in elevation within about 100 km, the pioneer engineers

proposed unusual solutions which led to the execution of a challenging project. In fact,

the main features are the main 17 km long tunnel derived through the St. Gotthard

Mountains and a sequence of helicoidal tunnels, which allow the train to gain elevation

on a gentle slope.

Although this section still represents a valid technical solution a century after its

construction, the amount of energy required to take the merchandise and passengers from

one part to the other of the Alps cannot in today's world he met. Furthermore, the average

rail haulage speed of 70 kmIh between Milan and Zurich cannot compete economically

with the opportunities given by highway transportation.

Therefore, the Swiss govemment has decided to start the development of a huge project

in the heginning of the 90's transforming the railway's concept of this primary line.

Among the major tunnel works planned within this section is the Piora tunnel, which is

the subject of the case study presented here. It was mined out as a primary part of the

geotechnical investigations of the Gotthard base tunnel. Subsequently, the 5,5 km long,

5,0 diameter TBM Piora exploratory tunnel was excavated near the town of Faido, in
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• Southern-Switzerland, with a maximum overburden depth of 1.750 m to provide

information for the design of the main tunnel. In fact, in this area the Swiss Alp peaks

exceed elevation 3.000 m and the valleys bottom are situated at 700 m above sea level.

Figure 4.1 presents the location of the Piora exploratory tunnel in relation to the Gotthard

base tunnel, which will have at the completion of the project a total length of 57 km; a 3­

D view of the Piora exploratory tunnel is given a1so in Figure 1.4, Chapter 1.

,
1

EXISTING ---..
GOTTHARD 1
RAIL TUNNEL 1

1
AIT.

PIOIlA·MULDE
EXPLORATORY TUNNEL

o 10_

A
N

AMSTEG SECTION

GOTTHARD BASE
TUNNEL

FAIDO SECTION

80010 SECTION

•
Figure 4.1 Location of the Piora exploratory tunnel
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Along with the main purpose of the exploratory tunnel which was to investigate the

possible presence of a potentially very unfavourable geological formation referred to as

the Piora-Mulde and consisting of sugar-dolomite - also named the "miner's pest"- the

Piora exploratory tunnel has also provided an invaluable gathering of information

regarding previously unknown rock mass behaviour of the stratified gneissic rock

formations under high overburden. In addition, an unusual wide range of geotechnical

investigations were carried out within the exploratory tunnel and included, among others,

instrumentation monitoring as weil as lab tests for the competent evaluation of any

parameter needed in the design stage. Thus, the Piora exploratory tunnel represents a

good example on how the design has been influenced by a rock mass transacted by a

major family of discontinuities.

Therefore, the validation of the numerical mode1 for bedded rock is performed on the

design of the Piora exploratory tunnel. The test of the numerical code is undertaken for

the simulation of the behaviour of the rock mass around the opening at the chainage km

1.619 where a detailed back analysis had been carried out by the engineers in order to

explain overstressing 1 breakouts phenomena. Finite element simulations were conducted

to comprehend such phenomena particularly at chainage km 1,619. The results of such

analyses are compared with those obtained from the numerical code developed in this

thesis, to serve as a basis for model validation.

4.2 Geomechanical data

The tunnel passes throughout hard rock formations, which are typical of the Swiss Alps.

The encountered rocks belong to the Leventina and Lucomagno gneiss families. Within

those rock families the mechanical properties of the different gneiss type are quite

smooth. Figure 4.2 presents a longitudinal profile of the geology along the Piora

exploratory tunnel alignment.
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Figure 4.2 Geological profile of the Piora exploratory tunnel

Essentially, this metamorphic rock is considered to he a favourable medium for tunnelling

because of its elevated self-bearing features. On the other hand, schistose has influenced

its behaviour considerably. Furthermore, due to the small mutual spacing of the joint

planes, the hazard of collapses of the vault is connected with the scale effect. AIl along

this tunnel, the arrangement of those planes is particularly adverse for a bore with the

dimension of the mined section.

Overstressing 1 breakouts phenomena occurred around chainage km 1,619. Despite the

good mechanical qualities of the encountered rocks, the high primary pressures coped

with an inconvenient disposition and filling of the joint planes have reduced the stability

of the tunnel, so that in this area the above-mentioned phenomena were observed just

after the passage of the head of the tunnel-boring machine (TBM).

Deformations of the cross section were also observed in presence of sub-vertical schistose

planes and important overburden, where the resistance of the thin-layered rock sections is

surpassed and a plastic behaviour of the rock has caused quite large deformations of the

fault.
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• As stated, the two-dimensional simulation with e-z tools modelling software for bedded

rock is carried out for the section at chaînage km 1,619. At this location, the Leventina

gneiss is described as a porphiritic biotite rich gneiss with prominent sub-horizontal

porphiritic banding. The discontinuities in this case are due to the tonnented geology

induced by the tectonics of the Alps and mostly run on sub-horizontal planes striking the

tunnel alignment almost perpendicularly. The thickness of the strata is about 0,5 m. The

average elastic moduli of intact rock was detennined by a series of uniaxial compressive

tests which also showed an unusual scatter and its value is finally assumed to he 40 GPa.

For the mechanical properties of the joints, it was possible to assume the Mean value for

the normal stiffness modulus on the basis of the same lab tests whereas the determination

of the joint friction angles for the Leventina gneiss -the result of which is finally the

value of the shear stiffness modulus - was based on direct shear tests. A summary of the

geotechnical data used in the simulation with e-z tools for bedded rock mass is given in

Table 4.1.

Table 4.1 Summary of the geotechnical parameters assumed

•

In situ stresses
o (at point 0;0 of the domain)
1

1

1

1
1
!

, Intact rock

Discontinuities

Vertical stress, Gy = 'rH
Horizontal stress, G x = Kx'rH

where:
H =depth below surface
'r =average unit weight for the rock
mass
K =horizontal to vertical stress ratio

4-5

H=800m
'r =0.026 MN/m3

K x = 1.0
K z = 1.0
E=40GPa

u =0.2

kn=15 GPa

ks =10 GPa
S =0.5 fi

= 10°
«=270°
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4.3 Finite element model

The typical circular cross section at chaînage km 1,619 was chosen for the 2-D analysis;

see Figure 4.3. The diameter of the opening is 5,0 m and lining or rock support is

considered al this stage of the simulation. The rock mass is considered to consist of one

type of material due ta the persistence of the same formation ail over the domaine As a

result of the method employed for tunnelling the Piora exploratory tunnel, which is TBM,

just one stage of excavation is considered in the computation.

PROFILO STANDARD l
77ft c. Ar L ctto~~ tC~T"CJJJ

,_. [Dj
r[

s••u•• t 1 • 2-1""

-. " / J.5.

-
-

Figure 4.3 Typical cross section at chaînage km 1,619
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• The generated mesh for the simulation has 3.120 nodal points and 3.000 isoparametric

elements. The mesh is graded around the opening in order to decrease the size of the

elements in the more crucial area of high stress gradients. The dimensions of the domain

are 100 m by 100 m so that the boundaries are far enough, and will not influence stresses

around the tunnel. Figure 4.4 shows the mesh designed for this analysis. In order to test

the sensitivity of the stress flow around the opening to the more uncertain input

parameters, Le. the mechanical joint properties which are the normal and the shear

stiffness kn respectively ks as well as the K ratio between horizontal and vertical stress

magnitudes, two models have been designed:

Model 1: input parameters as in Table 4.1 with Kx taking values of O.s Il.0 Il.5

Model II: input parameters as in Table 4.1 with K = Elkn ranging from 0.1 to 1.0 and

k.Jks =1.5

The modification of the krJks ratio influences only slightly the behaviour of the rock masse

Figure 4.5 presents graphically this statement. As a result, any further investigation has

been carried out regarding the changing of the ratio between joint stifnesses. Following

cases have been then simulated with e-z tools for bedded rock mass:

Table 4.2 Model input pararneters for different scenarios analysed

10.000,0 15.000,0 0.50 10 10,0 0,5
10.000,0 15.000.0 0.50 10 10,0 1,0
10.000,0 15.000.0 0.50 10 10,0 1,5
3.333.3 5.000,0 0.50 10 10,0 0,5
3.333.3 5.000,0 0.50 10 10,0 1,0
3.333.3 5.000,0 0.50 10 10,0 1,5

26.666,7 40.000.0 0,50 10 10,0 0,5
26.666,7 40.000,0 0,50 10 10,0 1,0
26.666,7 40.000,0 0,50 10 10,0 1,5

isotro ic rock 0,5
isotro ie rock 1,0• isotro ie rock 1,5
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Figure 4.4 Generated mesh for the FE analysis
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Figure 4.5 Joint stiffness ratio mutual influence

4.4 Results

The results of the simulations are presented in terms of plots of stress levels and

displacements around the opening of the Piora exploratory tunnel at chaînage km 1,619;

those plots are presented in Figures 4.6 to 4.10.
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Figure 4.6 Zoom-in view of principal stresses around the tunnel for the model MI-KO-S
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Figure 4.8 Displacements presented as defonned mesh for the model MI-KO-S
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Figure 4.9 Horizontal stress levels for the model MI-Kl-S
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Figure 4.10 Vertical stress levels for the model MI-KI-S

•

For a better understanding of the stress distribution for Model 1- cases MI-KO-S 1MI-K1

1 MI-K1-5 referred to Table 4.2 - the simulations regarding vertical and horizontal

stresses above the crown as weil as at the sidewall are shown in Figure 4.11 to 4.13 for

different K ratios where hx and hy represent the distance from the opening boundary

related to the span B along the X and Y-axes, respectively.
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Figure 4.12 Crown and sidewall stress distributions for K=1.0
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Figure 4.13 Crown and sidewall stress flows for K=I.5

Running the program for Model fi has given the results depicted in Figure 4.14, which

show the distribution of horizontal stresses above the opening crown for different

magnitudes of the mechanical properties of the joints as function of the K ratio whereas

the next Figure 4.15 is a detail of the same plot for the lower K ratio, where the stresses

approach the zero value; thus, the limit between compression and traction in the rock

mass.

•
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ln the latter two figures is also introduced the simulation for an isotropic, homogenous

and linear elastic rock mass carried out with e-z tools code. The purpose is to compare the

behaviour of an ideal isotropic domain giving the lowest K ratio needed to have traction

on the crown with the same value resulting from the analysis for a hedded rock masse

According to the statements of chapter two, where decrease of the mechanical properties

of a rock mass containing discontinuities is described, the magnitude of the K ratio with

tangential stresses approaching a traction state should he in case of hedded rock mass also

higher then the one for isotropie rock as confirmed in Figure 4.15. Consequently, the gap

between those two values could he seen as an index giving the extent of the overall

degrading of the rock masse

4.5 Discussion

The results of the field monitoring carried out by the surveyors for the displacements of

the Piora exploratory tunnel at chaînage km 1,619 is plotted in Figure 4.16.

4-18



•
y

5EZIONE 01 MISURA ALLA PROGA. TM 1619

SPOSTAMENTI DEI PUNTI A+E

BIEEBITI ALLA BASE B-C
(mm)

Visto nel senso dell'avlnzamento

5mm
scala: li ~

o.ronnazJonelW:llale media: 3.5 mm

x

•

Figure 4.16 Field displacement monitoring at chaînage. km 1,619 (Lombardi, 1994)

Figures 4.17, 4.18 and 4.19 present the outcomes from the two-dimensional finite element

back-analysis conducted by Lombardi (1994), which is based on the computation for a

quarter of the cross section made for the chainage km 1,619 of the Piora exploratory

tunnel, for the cases with K = 0.5, 1.0 respectively 1.5, Le. À in the above mentioned

figures. The code used, which is named P0759 (Lombardi, 1992), was developed in order

to simulate a jointed rock mass. The joint properties are introduced in the code as a
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• function of the joint closure v as depicted in Figure 2.8 and the average mutual distance

of the bridging points between the upper and lower neighbouring host rock. The joint

closure v = e =0.4 mm is equivalent to about a joint shear stiffness of kn = 15 MPa,

which is the stifness introduced in the simulation with e-z tools code for bedded rock

mass, see also Table 4.1.
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Figure 4.17 FE simulation of the Piora tunnel for K=O.S (Lombardi, 1994)
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Figure 4.18 FE simulation of the Piora tunnel for K =1.0 (Lombardi, 1994)
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Figure 4.19 FE simulation of the Piora tunnel for K = 1.5 (Lombardi, 1994)
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• The results displayed in Figure 4.17 to 4.19 cao then he directly compared with Figures

4.11 to 4.13.

In the following Figure 4.20 is presented the magnitude of the tangential stress at the

crown of the opening descrihed in Figure 4.17 to 4.19 as a function of the K (Â.) ratio and

different joint closure values v (e).
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Figure 4.20 Tangential stress as a fonction of K for different stiffnesses of the joints

(Lombardi, (994)
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• In addition to the monitored and the computed displacements, a third method to determine

the radial defonnation of the cross section at chainage km 1,619 has been used by

Lombardi (1994) in the attempt to asses the ideal elastic behaviour of the rock mass at

this location by means of the computation of the characteristic curve. Although this

analytical method is suitable only for a homogeneous rock mass and cao he carried out

for circular shapes only - since it is based on close-fonn solutions - it is useful in giving a

first rough approach tool for the understaoding of more complex behaviour of the media

around the opening.

The first half of Table 4.3 compares the results conceming the displacements determined

forro the various approaches. Similarly, in the second half, the stress magnitudes in the

crown and sidewall are compared.

Table 4.3 Comparison of the results

..z lOGIs for bedded rock mass 7,,7 ..0,,7 6,,7 1,,2 5,,2 3,,1

Lombardi (1994) 5,6 -0,4 4,4 1,0 3,1 2,4

Characteristic curves 5,8 5,8

Field survey (reported by Lombardi,
6,3 3,01994)

..z tGOls for bedded rock mass -1 Ils 38 34/37 36

• Lombardi (1994) -10/18 53

4-24

28/39 42

68

65 33



•

•

Based on the review of the results of ail the simulations that were canied out with the

different methods it is fully appreciated that it is difficult to accurately reproduce the in

situ observations of displacements. The results of the simulation with e-z tools for bedded

rock are however quite similar to the field monitoring results regarding the defonnations.

According to the stress computation outputs mentioned in Table 4.3, it can certainly be

stated that the results of bath the finite element methods are very similar in magnitude

and tendency. The slight differences could he explained by the different designing of the

mesh and by the different approaches to obtain the mechanical properties of the joints, in

particular regarding the approach to simulate the shear stiffness used by the code of

Lombardi.

Furthermore, the value of K for which the compression-traction limit is reached has a

magnitude of 0.64 according to Lombardi, see Figure 4.20 and 0.59 according to the

computation with e-z tools for bedded rock mass, see Figure 4.15. It is interesting to note

that the same K ratio takes a value of 0.33 and 0.31 respectively, for the case of ideal

elastic computation of the rock mass, Le. e = 0 respectively KJE -. 00 (isotropie

materiaI).

Finally, ail those differences are to he seen as unimportant at the scale of the problem

confinning thus the validity of both the FEM codes.
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Chapter5

CONCLUSIONS AND RECOMMANDATIONS

S.l Summary and conclusions

Tunnelling has become of more and more interest in geotechnical engineering because of

the steadily increasing demand for underground space. The design and construction of

tunnels requires among other things, knowledge of the characteristics and behaviour of

the rock mass, to enable the assessment of tunnel stability and support requirements. It

has been demonstrated from the review in Chapter 2 that, in view of the rock mass

complex characteristics, it is extremely difficult to develop a model that describes the

behaviour of naturally occurring rock types to a stage adequate for design purposes and

which is simple enough for stability analysis carried out at a reasonable cost. In addition,

it is not possible to obtain closed mathematical solutions using analytical approaches. The

only way to solve such complex problems lies in the application of numerical procedures

of computation. In this context, the finite element method has come very much to the

forefront in recent years.

This thesis deals with the stability analysis of tunnel openings, which are driven in

bedded rock mass, a situation which is not uncommon in real life. A mechanical model of

bedded rock, based on the structural model presented in Chapter 3, and developed on the

basis of Amadei and Goodman work (Amadei and Goodman, 1981) was adopted and

implemented in a FE code, called e-z tools. The code was previously developed al McGill

University (Mitri, 1993).

The bedded rock model is described as an equivalent anisotropic continuum. This

approach allows to study the influence of joints and intact rock properties and state of

stress on the deformability of a bedded rock mass. It is based on the assumption of linear

elastic stress-straÏn behaviour of the rock fabrie and takes into aceount anisotropie
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strength and defonnability of the discontinuities thus enabling consideration to he gjven

to a single family of joints in rock mass without difficulty. e-z tools for bedded rock mass

performs 2-D, static analysis and calculates stresses and displacements in the domain

analyzed.

A detailed mode1 parametric study was conducted where the sensitivity of the input

parameters has been tested. In particu1ar, the study has shown the influence of the

bedding planes orientation coupled with the scale effect by introducing the span-to-joint

spacing ratio (BIS) and the dip angle. A number of interesting conclusions were drawn

from this sensitivity analysis. Il is found that the joint properties, which appear in the

model in terms of sets of products involving joint stiffness and spacing, affect negatively

the displacement and stress distribution only in case of very low normal and shear

stiffnesses. On the other hand, the elastic modulus of the intact rock dominates, as

expected, the overall behaviour of the rock mass as the joint spacing increases. This

statement also concurs with the suggestion for more investigation on this subject by

Amadei and Goodman (1981).

A case study was conducted on a real tunnelling project in the Swiss Alps, the Piora

exploratory tunnel, where another FE model accounting for the fractured rock mass had

been applied to the analysis (Lombardi, 1994). The results obtained validate the present

model for bedded rock mass, showing consistency with displacements and stress

distributions. A1so, comparison with monitoring results and an analytical method used by

the tunnel project engineer showed good agreement.

5.2 Suggestions for further research

In the present model, it was assumed that the joint normal and shear stiffnesses are

constant. However, it is weil known (Goodman, 1976) that those quaotities cao be normal

stress dependent. A numerical procedure cao he constructed to incorporate this

dependency as weil as an eventual dilatancy component.
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e-z tools for bedded rock mass cao he finally improved by adding the capability to handle

the general 3-dimensional states of stress and strain. While the 2-dimensional mode1

developed in this thesis is considered adequate for the study of the tunnel wall and crown

stability, a 3-dimensional model will enable the study for tunnel face stability, e.g. during

the driving of the tunnel.

It may also he desirable to increase the number of joint families in the rock mass

simulation. Accurate characterisation of the rock joints will become quite important, and

it may he more suitable at this point, when more than one joint family are dominant, to

resort to a discontinum numerical method of analysis like the discrete element method.
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