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ABSTRACT 

This thc'sis tak('s au ill-dcpth focus at a specifie class of llollparametrÏc 

f,wo-1-.amplc' proccchu'('s fol' right cellsored failure tiIne data-standardized 

w('ight.pd log-rallk (SWL) st.atist.ics. This famUy of tests comprises the very 

famons G('han, Efrou, awl log-rank procedures. The first two of these 

['(,du("(' t.o tJH' WikoxOll t.est wit.h censoring abs('nt, while the third one is 

a. ("('lIson'c1 data !!.<'Ilenùi:;;at.ioll of the Savagc test. Two particular topies of 

iJlf,('r('st. to us arc' (1) t.he g<'Ilpratioll of SWL statisties as score tests within 

th(' cout.ext of SOlll<' popular regression models, and (2) asymptotic and 

slJlaIJ samp]p })('havior. 
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RÉSUMÉ 

Le présent mémoire explore de façon dN,élÏlli'(' lUit' cat.t'!!,ol'ip sp('citiqlll' 

de procédures pour deux échantillons c('mntr<'s il dl'oi t (' (k km ps jusqu'il 

défaillance, nommémpnt les procédures tlllplhluant.l<'s st.atistiqll('s IHIUd{'I'(;('S 

et normées de logarithmC's de rangs (stat.isti(IIH'S SWL). Cdt,(' fillllilk (I.­

te~ts comprend les célehrcs tests dl' G('hall, Efroll et. <1(' lo~a.rit hIlH'S d" 

rangs. Les deux vremièrps procédur('s se réduiseut ail t,c'st, cie \Vi!coxou c'" 

l'absence de censure, alors qUf' la t.roisi('llH' ('st. UIlC' g('llh'a.lis<lt.ioll aH,{ obs('r­

vations censurées du test de Savag<'. Deux sujets pins sp{'('ia.l<-uH'1l1. appro­

fondis ici sont (1) la production dt' statistiqll('s SWL tians 1<, hut. d'pfr""t,W'J' 

des tests de cote au sein de certains lllodN(,s d~ r{'!!,rcssioll courant.s, d, (2) 

les propriétés de ces statistiquC's dans les cas d'édHtut.il)olls dl' l'd,it.c' d, de' 

grande taille . 
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PREFACE 

NOIlP of tJ)(' (,()llt(,llt~ of this work arc original, with the exception of 

Mont(. Carlo siUlulat.ion~ which a~~css the goodness of fit of the bootstrap 

dist.rihut.ion of SOlIlC SWL ~t,at.isti('s in small and moderate size samples. 

J would lik(' to tak(' this opportunity ta express my decpcst appreciation 

t.o Prof('ssor M.G. Gu, Illy t.hesis supcrvisor, for bis iuvaluable assistance 

1ll t.1H' prqmrat.ioll of this tr('at~se both in :,he writtcll and Monte Carlo 

siul1Ilnt.iolls portiumi. MOI'('ov('r, 1 am gratC'ful tu Professor Gu for Icnding 

1lU' s('vpral of his t,('xtbooks, aud for giving me a copy of his 1991 paper. 

Fillally, l wish t,o thank Mr. Alain Vandal for translat.ing the abstract 

illt.O French. 
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NOTATIGN, SYMBOLS, AND CONVENTIONS 

a 

Pr(A) 

Pr(AIX = x, 

BI, .... Bk) 

fx(x) 

bold syulbols. surh as a, dC'IlOt.(' ('OhUllll or ro", vI,ct,ors 

the transpos(' of a 

probabilit.y of t,he' ('Vput. A 

cOlldit.iollal probabilit.y of t.h(· t'V<'llt. A, giV('ll X = X and 

givrn the ('vent.s BI, ... ,Bk havi' OeCllIT(·11. SOIlH't,illl(,S, 

we shaH simply writ.P Pr(AIX). Ulllpss ot.lwl'wi:-w ilJ(lical.l'd, 

x shan he ronsidercd as heing, l'itudolll. 

joint dellsit.y or prohahilit.y fUllct.ioll of X. If ('(leh d(·IlH'1l1. 

of X is a discrd(' variatp, the' uot.at.ion "PI'(X =.: x)" 

shaH as weIl be clllploy<,d. Ullkss ot.}wrwiM' iwliral,l'd, x 

shaH he consid('l'('d élf, IH'illg ralldoIll. 

conditional dPllsity or prohahility fUIlCt.ioll of X /!,iv\'11 

y = y. If <'é1eh clenH'ut of X is il discrd(' varial,f" t.Iw 

notation "Pr{X = xlY = y)" shaH ;tf, wl'll 1)(' <'JUpIOyf·fl. 

Unless oth('rwise indicat(·d, hoth x aud y shaH ,)(' C'olJsid 

ercd as heing randoIIl. 

In the last three cases, the dummy variahles "x" and "y" Ulay 1)(' l'f'plan'd 

by any other dummy variables. 

i.i.d. independently and identically distril Hl t(·<l 

d.f. distribution function. w(~ shaH alwa.ys aSSllIJH' adJ. t,o he· 

nonrandom. 
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ARE 

1(A) 

Asvar(X) 

l' 
~ 

IJ 
--t 

» 
#A 

'" AC il 

a~YIUpt,otic r(\lative ('ffkiency 

indinttor of an event A. It il, a 0,1 random variable which 

is unit y wheu the <,vent A hah occurrcd and zero otherwise. 

asymptotic w!riance ot X. For the purposes of this treatise, 

w(' shaH ~lways assunle t.hat Asvar(·) cxists. 

tlH' normal diht.rihut.ioll wit.h mcap l'and variance a
2 

('onv('rg<'llcP in prohabilit.y 

cOllv('rgencc in distrihution 

is Illuch gI'(\at('r t.han 

Illlluher of plpJlwnt.s in the set A. 

Ul(' eompkmcnt of the set A 

th!' Plllpty set 

A ir, a l'l'oper subsct of B 

Lpt. X (t) 1)(' piUH'r a random or nonrandom function of time. Then 

"X(t-)" shaH dellOt.<' "lilll h _ O- )[(t + h)," while "X(t+)" sha11 denote 

"lillll&_l1+ X(t + 11,)." 

Throughout., w(' lise thp coUVPUt.iOIl % = O. 
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CHAPTER 1 

INTRODUCTION 

Faihm' t iulI' data f(>f('r t.ypical1y t.o a set. of indepC'ndent. continuous, 

pn:-.i t i V('- vahlC'd rilllcloItl variahlPs (('ach variahle' cor1'('spollding to a diffc1'ent 

il ('Ill) which 1'1'1"'(':-'('111 t.illH'S t,o ()CC'lll'l'('IH'(' of S011H' ulllicsired point. cvent. 

PrillH' l'xitlllph's of sl1ch ;lJl ('VI'nt indtl(k (kat h, OllS<'t of diseas{" or cessat.ion 

of flll/l't iou of ail d('f't,ric'al COlll}HJl}Pllt.. It is /luitc' p('rlllis~ibic. how('vrr, for 

t lu· ('VI'ut of illtl'n'st t,o 1)(' of a llollfailllrdik<, nature' (for pxall1plc, t.he 

h'ilrllillj.!, of il. IH'W ~kill or the' challgillg of l'{'i'lidpllcc), In addition, the 

randolll variahll':-' 11<,(,11 ll('it 1.,,,1' 1)(' a IlH'(ti'lUr(' of tiUH' 1101' h(' continuons. For 

ill!-.t,(lWT, ('ilch variabk lUay 1'(,]>1'(':-'('11t t.he IlUlulwr of attclllpts 1'C(luired t.o 

~Il("("( '~sflllly 1 )l'l'fonn il ('('rt aill t ask. More fOl'mally t l!Pll, fai1urp timc data 

i~ ddill('d as il collectioll of illdqH'll<lcllt. pmiÏtive nUHlolll variable:;;, cach 

Oll(' of which is a~:-'<)('iat<'d with a uniqlH' it(,lll and indicat.ps, in SOlne sense, 

t IH' illlllH'( liacy of ()('cnrrellC(' of SOl11<' point {'vC'ut.. 

For tlw 1 Hl 1'\ )( )~(':-' of t his tlH'sis, w IH'll cOllsioprillg failllrp time dat.a in 

il !!,C'Il('l'ali/.('d sdtillg. the ('V('Ilt of illf,<'l'Cst shaH he' dC'lwt('d by the' word 

"fdillln:' with tlU' U'rlll~ "failll}'(' tilll<'," ""('vC'ut tiuH'," and "lifctime" being 

Ils('d illkl'challg('(lbl~', 1\{01'('o\,('1'. from hereon, wp shaH r('strict ourselves to 

Iht' caSt' of ah~()lllt.dy coUti1l11011S failnre tîmes, 

'YI' 1I0W illtrodlH'(\ the concppt of 1'1.ght cen,<w7'slup. Right censorship 

)'t-rt'r~ to t IH' IH'O(,C:-'S h~' which a lifptilllp is Ilot obi'l('1'ved exactly but is 

kllOWII olll~' to ('x('('cd a certain valut'. This particular l'alm\ is referred to 
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as a '1"Lght censo1'cd lifetùne, and t.he item and lifct.illl(, yari(lte in qw'stioll 

are said to have beell nght cen,:01'cd, If a failnr(' is ohscl'vpd, w(' d('scrilw 

the correspolldillg lifc6lH' vaInc as being an 11.'I/.('("I/,,<:0'/'('/l 11.11'11'11/.1', .md "'t' 
say that the lifrt.iIllc variéttc of illtCl'('st was tll}('('Il'iOI,(,(1. Dy COllvclltlOll. 

an item canllot simulta-,t lUt'ily fail and he right. l'('llSOl'('(l. 1'0 (h'scrilH' in 

mathematical t.crms t.he failur(' or (,(,uHorillp; })1'()('('SS assocÏakd wit.h a giv(,lt 

item, let Y be the variabk which d(,]lOt/'S ('it.hel' t.he tl1l('('lls()J'('d or right. 

censored evellt. time (hereaftcr refel'l'cd to as t.he s11l'vival t.illll' val'iahl<'), 

and let T be the event timc variat.(l. If failu"(' is ohs(,l'v('d, t,h('Il }" = T; if 

T is right censored, t,hen Y < T. For cOllv('uieIH'(', frolll 1 H'r('Oll , t,Ill' t,('l'lll 

"censoring" sha11 be llscd in plan' of t.he t.prm ·'l'ight. ('('lIsoring," 

Survival analysis is the' brandi of stat.ist.ics that ('IH'Ompass('s il vill'il'l,y 

of techniques for analyzing failurc tiuH' data. rq;a.rdkss of whet.)l<'r or ilOt. 

censoring is present. A major an'a of int,('I'('st. aIllOllg ]'('S('éll'dwl'S ill Slll'­

vival analysis is t.he following two-sélmplc M'('IlaI'io: Dascrl ou t.wo :·wl,s of 

lifetimes subject to right. cCllsorship Ul<' lifetiuH's of ('<LeI. sa.lllplc' Iwill/!, 

ident.ically distribut<,d test the Hull hypotlH'sis t.hat. Hw t.wo l'('I->Iwd,ivc' 

failure time distrihution fund.ions arC' idcllt.ical. Thil-> ~t.at.ist.Ï<'al prob)C'11l 

can present itself in a variety of ways. For PX<llllple, cOllsid<'l' il clillical t.rial 

in which two diffcrcnt. trcatmcnt.s for a fatal Jis('(ts(' are "dug COlup;u'('d 

and patients cnter cOllsecutivdy, Th(, variahl(' of illt.l'l'<'St. lu'l'(' is t.il/H' t.o 

death from init.iation of treatment. A patic'Ilt. yÏ<'ld~ a. ('('IlSOl'Prl lifd.illH' if 

he withdraws from the study due to int.okrabl(' ~~i(~{' (,m,ets, or movC'!-o away 

and is thus 10st to follow-up, or dies of some ot.h('f c:au"ie, or is st.il! alive on 

the predetermined terrninatioll date of Hl<' trial. 

The two-sample sit.uation, d(!1>crihcd at the' heginning of tlH' IH'(!VJ()l1~ 
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1 ... 
paragraph l also arises in thosc cardnogenesis experiments which compare 

tlH' potency of two types of cardnogenic chemicals. In such experiments, 

on(' variety of carcinogell is applied repeatedly to one group of animais, 

whik allother varicty is applicd repeatedly to a second group-the two 

groups J)('ing put on test :tt the same time. In this scenario, the random 

variahk of int<'rest is the time front st.arting t!le applications to fin ding a 

tUll101Il'. Au ('vent t.ime hecomcs ccnsored if an animal dies without de-

vdopillg a t.ulllour, or if an animal is alive without a tumour when the 

cXI)('rilIH'llt is t.(·l'lnillateu. 

0111' two-sampk sccnario can a~ weIl he seen in an industrial reliahility 

study which attempts to compare the lifetimes of two types of electrical 

COlllpOllcnts. As in th<.> previous case, aIl items are placed on test simulta-

lleous)y, wit.h a decision made to end the study after a tirne L has elapsed. 

TIl<' st.at.ist.ic of con cern herc is timc from commencement of operation of 

the COlllpOll<,uts uutil failure. A ccnsored lifetime is observed only if failure 

has Bot o('curr('d prior t.o t.he conclusion of the study. 

In t,he ('oIllparisoll of t.wo samples with uncensored dat.a, rank tests have 

oft.(,11 hC(,Il proposed as alternat.ives t.o parametric methods. Although the 

rallk t.Pst.s th(\lllselves are derived with certain alternative hypotheses in 

milHl for which optimum paramctric procedures exist, the former gener-

;llly posscss gJ'mt,er robustuC'ss than t.he latter against misspecification of 

t.he parmud.ric forlll of t.h(' two distribution functions and are generally less 

S(\llsit,iw to ontliprs. ln addition, rank tests usually are asymptotically fully 

pttki<,ut. \\,11<'11 t.1H' dist.ribution funct.ions are correctly described paramet­

rically. In slllall-salllple situations, rank procedures generally experience 

ollly él small 10ss in dfkicllcy compal'ed to their parametric analogues when 

3 
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the latter are appropriate. 

During the past thirty years, several test.s based ou t.he g('n('rali~('d rank 

vector have been developed for tacklillg t.he t.wo-saIuple pruille'lll wit.h ("('11-

soring. Without restrictillg oursdvcs to t.he hvo-sélluplc prohh'lll, tIlt' g(')}-

eralized rank vector for n survival t.imes YI, ... , }~I cau 1)(' r('pn's('ut,('cl as 

follows: 

Ra = «(N(Y1 ), Â 1), ••• , (N(}~,), Â,,)) , 

where N(t) ::: Ej=:l I(}~ < t, 6.j = 1), and 

Ll, = { ~ if iteIll i fails, 

if itclll i is cellsol'ed. 

For the two-sample scenario with samplc si~es "1 and 7I'}" w(' aSSllJlH' t.hat, 

items 1, ... , nI comprise sélmple 1, while t.he rcmaindpr fonu sitlllpk 2. 

Remark that whcn censorillg is absent, Ru re<l11(,('S t,o t.ll(' so eal1('d '''rallk 

vector." 

Among the oldest of the two-sample gC'Jl('ralil',('d rank t('st.s (l1'(' 1.)1(' Jog­

rank (Mant.el, 1966; Peto aud Peto, 1972; Cox, 1972), Gehau (Gchau, 19G5), 

and Efron (Efron, 1967) test. statistÏrs. More l'en'HUy d('v(,lo(wd sigllificitllt. 

procedures include Prentice's t<.>st (Prcnticp, 1978), th(' Taro)w-W;u'(' class 

of statistics (Tarone and Ware, 1977), and t.he Harring,toll-FlcIIlillg falllily 

of statistics (Harrington and Fleming, 1982). It. should Iw lIot(~d t.ha., t.hl' 

log-rank test is a ccnsored data gcncraJi~ation of thp Savag(' t(·st. (Savaw', 

1956), while Gehan's, Prcntice's, and Efron's I>roc('<111r(' meh silIlp1ify t,1) 

Wilcoxon's test (Wilcoxon, 1945) with no œnsoring pr('~(·Ilt. 

Each of the tests mentioned in t.he last paragraph, in addition 1.0 l)f'ing 

a generalized rank procedure, is a stalldardized wl'ight(·d log-l'<tnk (SWL) 

statistic. It is our intention to fully examine the charact(~rist.ics of t,lll' family 

4 
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of snch statistics. To dcscribc cxplicitly the form of this class of two-sample 

proC('duf(~s, let T[J < ... < TI< denote the ordered uncensored failure times 

for the cornhined sample of size n. For i = 1, ... , [(, let Dl i = 1 if the 

faihl1'<' at T,o is from sarnple 1, and let Dh = 0 if otherwise. Let Ru and 

R"21 1)(', respectivdy, the numhcr of sarnple 1 and sample 2 subjects with 

lifet,illl('s kllOWll to he grC'atcr than or equai to Tto, and set Ri = Rli + R2i. 

TIlI'1l du' st.atistics of interest. have the form 

HpI'C, Wi is a "wcight" associated with Tt and dependent on 

white V is cit.her t.he exact variance of the numerator under Ho or the 

product. of 7:. -1 and an est.imator of the null hypothesis variance of the 

Sllllllnat.ioll t.enn. The exact variance cau only be utilized if it is free of the 

COUllUOU faihJr<' t.imc d.f. (assulned to be unknown) and of aU unspecified 

d.f. 's lillked t.o th<' ccnsoring nlCchanism. If V is a random variable, it 

llsually hut. Ilot. llpcessarily-is a fUllctioll of only the generalized rank vector. 

Nok t.hat., 11nl(,88 V is tlH' asymptotic variance of the numerator, n,-I/2 

Cél.ucl'Is out., 

\Vh('11 ~V, = 1, for i = 1, ... ,!(, the numerat.or of Un (with or without 

.,,-1/2) is t.1H' log-rank stat.istic, hCllce the llarne "standardized weighted 

log-rallk st.at.ist.ic:' Th(' IlaIlle givell to Un depends solely on our choice for 

t.h(' 1F,'s and is llIlaffect.ed by the choice of V; moreover, -Un and +Un 

have t.he SélUH' IléUll(', The act.llal weight.s implemented are chosen so as to 

maximiz(> t.hl' power of U" agaillst the particular alternative hypothesis in 

5 



milld. For ease of clarit.y, a part.icular Un, wit.h or wit.hout. l' sp('cifi('d, shaH 

he referenced interchangeahly wit.h t.he' wOl'ds "t.('st.," "t,<,st. st.at.istic," and 

"procedure," while a particular wdght.rd log-rallk st.atist.ic (wit.h or wit.hout. 

n-1/ 2 ) shaH be referellccd via the terlll "st.at.ist.ic." Hell<'(" th(' "]og-raHk 

test" is Un with W~ = 1, i = 1, ... ,I\". More g('w·l'ally. t.he st awlanlized 

version of any given statistic shaH 1)(' dCllOt.(·d illt.<·)'chau!?,eahly hy t.lw words 

"test," "test statistic," and "procedure," whilr t.hp l111st.a.udanliz('( l Vl'rsioll 

shaH be denoted by the term "statistk:' 

Before outlining t.he actual cont.ents of t.his th('sis, w(' mak(' SOIllP ('('marks 

cOllcerning aU censol'ing luechanisllls consid<'red in this tn'at.is('. SUPPOSI' 

that associat.ed with it.em i (i = 1, ... , 11,) of ct life-t,est.ing ('xI)('riuH'llt, (Hot, 

necessarily concerned with the two-samplc prohlelll) is t.hl' possihly t.iHU·­

dependent, possibly random regrcssor variahlp Zt(t). Ld, 

(H in fact Zl(t) does not vary wit.h tillle, t.hCIl Z,(t) = X1(t) = Zi, fol' 

sorne Zi.) Then, for the pm'poses of this trcatise wc make t1lP aSS1llIlpt.ÎOJl 

that, conditional on X~(t), the censoring and failun' IIH'challislIls aet, illd(·­

pendently of one another. Snch a censoring SdH'IW' is d('I'If'l'il)('d as IwiJlg 

"independent" or "arhitrary," and yiclds thp followillg t,wo (,0l1~(·<I1H'Jl(·(·S: 

Firstly, if item j is at risk 1 at time t-, theu, cOlHlit.iollal 011 .t\') t), tll<' 

failure time hazard function2 of j is unaffcdcd hy t.he fad, tha.t j was 1111-

censored in (0, t). Secondly, if an item with regressor varial,k pat.h X (t) is 

llf an item is at risk at time t (t-), this rncanH tlmt it haH rlf'itlu'r hli/l'd lIor "('1'11 

censored in (0, Il «O,t», 
2The hazard function corrcsponding to, sa.y, th" randorn variah),. 'J' il> defÏlw.! aH 

\
' Pr(7'<t+hIT>t) 
un , 

h ..... O+ h 
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withcll'awn from risk at time t, this is in no way an indicator of its prognosis 

l'dative to oÜt(!r it('ms at risk at t with path X(t). 

W(· llOW give exarnples of independcnt censoring pro cesses employing the 

notat.ion that Ti, Yz an', respectivcly, thc lifctime and survival time variates 

élssociat('d with item i (i == 1, ... , n). 

Exampk 1: Simple type 1 censorship 

In t.his CilS(', aU study subjects arc placed on test at the same time with 

Hw <kdsion made to tcrminatc the cxpcriment after a tirne L has elapsed. 

TIlC' potC'utial ccnsoring tiIne:i for ail subjects is thus L. 

Exampl<' 2: Progressive type 1 censorship (or fixed censorship) 

Hef(" as in <,xamplc 1, the stlldy is terminated at some prespecified time, 

say L. In fixpd c('nsorship, however, the subjects enter the study at random 

in t.h(' int,('rvaJ [0, a], whf'l'c a ::; L. Letting Ez denote the entry time variate 

corresponding tu item i, the potential censoring timc variable for item i 

is t,}ms L - El' The Ei 's m'c assumed to be independently distributed cf 

(·(teh ot,her and of the ('vent tirnes. For the purposes of this thesis, we 

shaH é\SStlnH' as weil that the E, 's are identically distributed. Note that the 

lltllulwl' of items which cnter the study, n, is ral1dom. While it is customary 

t,o condition on n and GU the cutry times, we shaH, in this treatise, condition 

on only Il. (For t.he two-salnplc problem, we shaH condition on the size of 

For t.ht' pUl1l0Sl'S of t hi:-; tlu'sis, W(' shall t.rcat ally given hazard function as a nonrandom 
(IUant.it.y. 

,l By "pot.('lIt,ial ('t'IIM>rillg t imc," Wc mcan the time at whirh the item in question is 
dt'ht illl'd 1.0 1)(' ('('IIf,or('d shollid faihl f{l not occur; ht>llce, if in fact an item is censored, 
ils rcnsofed lifet.ill\{, ('oinrides with its potential censoring time. On the other hand, if 
ail il.PIII f,lils, ils Jlol.(,llt.ial (,(,Ilsorillg t.ime is eit.her cxactly observable or right ccnsored 
al SOli\(' valut' whi('h is f!;rl'att'r t.han or c<lual to its Jjfetime value. From hereon, we 
shall n'strict our 118<' of t.11l' I<,rlll "pot.cntial ccnsoring tirne" to the censoring models of 
('>.<1 III pl('s (1), (2). and (:1). 
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each sample.) 

Example 3: Ralldol11 censorship 

li associated with each Tl in the potputialc(,llsorillg tilll(\ varia t (' C, s\1ch t.ha t 

the Ci 's are indep{'ndent of one another and of t.I)(\ T, ·s. t.hcll w(' ar(\ in du' 

random cer:soTshzp situation. The Cl's lH'('<I IlOt. tH' ahsolut.dy cOllt.iJltIOUS 

random variables. RCl11ark that }~ == mill(Tn CI). i == 1, ... , II. 

Examples 1 and 2 belong to the subdass of ralldolll ("(,llsorship lllo<l<'ls 

where the potential censoring timc for (\êl.ch itelll is ohs<'1'vahle. A ramlolll 

censorship model where potent.ial cCllsorillg t.iUl<\f- COl"l'<\spowlillg t.o tlllC<'ll­

sored event times cannot be obsprvcd is S('('11 in a. OIH\-saJllpl(\ clinÎcn.l I.l'i'll 

where one cause of censoring is withdrawal from th<\ st.udy dll(, t.o S('V('1'(' 

side effects of the treatmcnt. 

Example 4: Simple type II ccn&orship 

In this situation, alI flubjects are placed on t<\st at t.h(\ sauH' t.illH', and 

observation ceases after a predctermined lllllul)('r of faihln's .,' ~ '11.. Thus, 

if Tl < ... < T~ are the order statistic~ of the Ti's, t}H'U }~ ::.:: lIlill(T:!, T~), 

i = l, ... ,n. 

Example 5: Progressive type II ccnsorship 

This censoring mode! is a gencrali",atioll of that. of cxamp)(' 4. Suppmw 1l 

individuals enter the stlldy simultancously. TIl(' ohsPl'vat.ioll pl au llOW is 

as follows: At the time of the first observ('d failtln~, WP r('lI1Ov(' from Hw 

experiment a simple random samplc of ml suhjpd,s froIll HU' still 1lIlfailf'c1 

n - 1. Then at the next observed failure tiIIlf', a fllrUH'l' Tn'l illdivi(lllais ,U'(' 

selected at random from those still on test and r(·movpd. This )H'(H:('dur(' is 

carried on until a total of s failures have heen ohserv(\d, with Tflk subj('(,tr-. 



lH'ill~ withdrawn at the kth stage, k = 1, ... , s; 

H 

L(Tnk+ 1)=n. 
k=1 

W(· ('omrnPllt IH're that ml, ... ,ms and sare fixed in advance. 

Wl' llOW Iist in hri<'f form the actl1al contents of this thesis: In chapter 

2, W(' I)I'('sent pknwutary concepts of our clasH of two-sample tests in a 

sOllu'what h<'uristic and informaI fashion. In chapters 3 and 4, we generate 

SWL statist.ÏC's from, r0sp<'ctivcly, the proportional hazards mode} and the 

a('c('j('l'at.<'d failur<, timc model. Finally, in chapter 5, we examine the large 

and small-sampl<' hehavior of our family of tests. 
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CHAPTER.2 

GENERAL OVERVIEW OF CLASS OF TESTS 

2.1 Introduction. 

The purpose of this chapter is t.o present. wit.h litt.Ip t.lH'ord.Ïcal dd.ail. 

fundamental concepts of SWL stat.ist.ics. In S('ctioll 2.2. w(' d('riv(' lH'urist.i-

cally this class of two-sample tests and ({('scribe t.he IllOSt. COllllllOll va.l'ÏauCl· 

estimators. In section 2.3, wc express a w('ight('d log-rauk st.at.ist.Ïr (01" il 

WL statistic) as a sum of scores, as a g('lH'ralill,('d Mau 11-Whi t.w·y st.a.t is-

tic, and as a member of Gill's class K (Gill, 1980). S(,ct.ioll 2.4 cOllsi(krs 

the construction of censored data (;xtcnsions of liw'ar rallk st.a.t.ist.ics. l'II(' 

chapter then conclucles with a discussion of t.he lllost wpU kllOWll t.('st.s. 

2.2 InformaI Development of SWL Statistics. 

Our approach to gcnerating SWL stat.ist.ics is in tlH' spirit. of Ma.nt.(·) 

(1966). 

Let {Xjb'" • Xjrl
J

} and {T] 1, ••• , T]rl
J 

} J)(', rps})(·f'tivdy, Hu' sd, of Sl1l'­

vival time and failure time variates for group j; lllor'!OV(!l", Id, Ô J 1,',', Ô JlIJ 

be the censoring inclicators for sample j defined hy 

(i = 1, ... , nj; j = 1,2; nI + n2 = n). The data, tlu'refol'(', is of Uw form 

10 
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Now, kt FJ (t) whieh is unkuown he the d.f. corresponding to Tjl' .•• ,Tjn). 

Wp wish to t(~st the Ilull hypothesis 

Ho: FI (t) = F2 (t) = F(t) 'Vt > 0, 

wlH'r(' F( t) is uuspcdficd, eithcr against the onc-sided alternative 

wit.h st.rict ill('(l'mlity for at least one t, or against the two-sided alternative 

for at btst. OlU' t. Siu('(' w(~ are assuming lifetime to be an absolutely 

contiuuous ralldOlIl variahle, 110 two ullcensored lifetimes can coincide with 

OIU' <l.uot.lH'r. H('llCe, l<t Tl' < ... < TK denote the ordered uncensored 

('V('ut. tiUH'S for t.he salllple formed by pooling the two groups of data, and 

sd, D Il = 1 or 0 d(\pl'udillg on whet.lH'r the failure at Tt is from sample 

1 or 2. lu <l.('('ordml<·(, with conv('ution, an item which fails at Tt does 80 

wit,hout, simultauPollsly b('ing ('ensored. Finally, suppose Rz study subjects 

al'<' at. risk at. T;J- and t.hat. RJI is the corresponding number in sample j 

Ci = 1,2). Dy t,heir very nature', the variables DIl' Rl!, R2z , Ri utilize the 

informat.ion t.hat. an il h slllal1(\st. un('('llsored failure time exists, yet they 

ip,llOn' HH' value of Tz(}. 

Dccans(' illdqH'udC'ut (,(,llsoring is in eff('ct, wc would expect that little 

informat.ion ahout. diff('r(,lll'(\~ l)('t.wecll FI (t) and F2(t) would be obtained 

CrolH thl' orckrill~ of (,(\Ilsorillgs betw(\(>n successive failures. Bearing in 

Illilld hot.h t.his point. and t.he fart. that wc wish ta dcvclop a nonparametric 

Jl'1'O('t'(hl1't~ for t,('stillg Ho, H, follows that wc lleed only COllcern ourselves with 

that portion of t.he dat a displaycd in the following sequeIlce of contingency 

tahles. tll<' i t " of which is associated with Tt: 

Il 



T 

,* 
lltllubel' of lllU llh el' 

faihups nt. l'isk 

Group 1 Du RII 

Group II 1- Dli Ro}.1 

Total 1 R, 

i = 1, ... , )(. Conditional on Rli' R'2l' and on Îtl<lPp('lldeut, n'IlS0ril1~ Iw·· 

ing in effect (the regressor variable bcing group uH'llll)('rship), DI i has a. 

Bernoulli distribution ullder Ho with lll('an R Il R-; 1 a.nd variance l'i = 
RliR2iR;2. Now, for i = 1, ... , K, let Xi = (R lll R2~), aud aSslllll(' 

where 

1{i = 1f(Tt), 

1C(t) = (RI (t), R2 (t), N(t-), {Rh' R2H D h : i:5 N(t -}}) , 
nJ 

Rj(t) = L [(Xji > t), 
i=l 

and 
2 nJ 

N(t) = L L I(Xji < t, ~.i& = 1). 
j=1 &=1 

and 

12 
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wlu'f(' W1 = W(T;J), and where W(t) is either a random weight function 

C'ompl(·tdy ddf'rmined hy 1!(t) or a nonralldom quantity independe~t of 

HIll('. Now, for i < j and umkr Ho, 

lkun', l('U.ing Lin = L~J L1 and tr<'ating J( as a fixpd quantity if it is in 

rad randolU, w(' ha.ve undpr Ho that E(L ln ) = 0 and 

K K 

Var(LITd = 2: Var(Ll} = 2: E [Var(Lil1fi)] 

K 

+ L Val' [E(L11:K1 )] = E(Vq )), 

1=1 

wll<'re Fr1) = L~I (~H!12). Thus, l1qJ is unbiased fol' VarIJo(Lln)' If J( is a 

ralldom variahle and is t.l'(\at.ed as such, t.he above expressions for ElIo{Lln} 

and Va.r 1/[1 (L 1 fi) cau hp obtained llsing martingale t.heory. 

For simple and progressive t.ype II censorship, there is only one dJ. to 

1)(' cOll<"prnl'd with undpr Ho, that being F(t), which is of course unspec­

ified. Eva.luation of Var Il 0 (Lin) in bot.h of t.hese instances, however, does 

uot. }"(\qllir<\ kllowledg(\ of F(t), regardless of the choicc for W(t). The ran-

dom (,pllsorship modd, on the ot.her hand, illcorporates under Ho, F(t), 

as wpll as c(,llsoring d.f.'s 1 whkh arc assumed to be distinct from F(t). li 

t.he C('llsorillg d.f.'s arp discretp and specified (for example, simple type 1 

('('llsorship), tlH'll Var 110 (L 1 n) is free of F( t) and thus calculable, regardless 

of t.he weight. funct.ion Plllploy(·d. For the case, though, where the censoring 

<l.f. 's he t.lH'Y discrd.(' or cont.inuons-are unspecified, this variance will be 

"From h<,n'oll, t II(' tl'fll\ "cC'lIsorÎng d.f." !.ltall l1IE:'an the d.f. corresponding ta the 
pO\('111 ial ('pnsoring tinl(' varirlle in question. 

13 
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• 
distributioll-free only for a specifie typt' of w<'Îght funet,ion (more on tilt' 

ab ove points in subsection 5.3.1). 'Vhat.('v('r t.h(' ("('llsorin!-!. Sd\(,llH'. thouf.',h. 

it can he shown that, ullder Ho. Il- 1 \ ~lJ is cOllsist.Pllt fol' Var 1/" ( " -- Il:! L ( " ) 

if, as n ~ 00, 

p 
(1) I{ -+ 00 (or I{ ~ 00) 

and 

(2) min {n 1. 1/:d -+ 00; 

thus, the use of Vcp ratlwr than Var 110 (L 1 u) is appropriat,<' if !\", ,,(, alld 

n2 are reasonably large. Latta (1981) referred t.o \':'/1 as t.lu' ('o'f/(ht'/,oua.l 

permutation vanance cst?,mator. For hrevity, W<', as wdl, shallllsl' HI(' t,{'1'JI1 

cond'ttional permutation VlL1'1.ance. 

Before presentillg another frequclltly-us('d variaw'(' ('stimat,ol', W(' ill/'l'O-

duce the concept of cqual œnsoring 1)(1.tte1'T/..';. Dy cl('fillitioll, t.WO SiLllIp)('S 

have equal censoring patterns if 

where 

(Lagakos, 1979). Examples of censoriug sCPltarios, wlH'I'<' tlU' a},oV(' ('()J1-

dition holds, include: simple' type' 1 Cf'Ilsorship, fix(~cl (,(,Il~oJ':-.hip, rawlolll 

censorship with potcntial ccnsoring tiul<'s i(l<'utically distrilmt('(l, and silJl-

pIe and progressive type II ccIlsorship with Ho tnH', III tlH' followillg t,wo 

paragraphs, aIl expectations, variancPs 1 ,lIl(l stat<'lllpnts (·OIl(·('rtling cousis-

tenc)' are un der the assumption that Ho is tru<' and ('(lU al ('('IlsOI'il1g pat.t('l'Il~ 

are present. 

1-1 
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A~ will IH' ~hown in !->ubs(·C'tioll 2.3.1, Lin can be writtcn as 

K 

L (D 1zQl + M\zQ;) , 
1=\ 

W}WI"(' 

(Jt = W 1 - 2: Wj/R) 
)=1 

Q: = - L.: TV)/ Rj 
)=1 

is il S("OJ"(\ COI'l'!\spolldillg t.o aIl c('Ilsorccl lifet.iuws in [TzO, T,+l), and where 

AIl! is t.1H' 11111111 )(\1" of group 1 c(,llsorings in this interval. By convention, 

w(\ sd, (J(~ = 0, Tc;) = 0, and Tf{ + 1 = +00. Now, let. S be thE' collection 

(Q~I"'" Q~Afl)' QI, Qrl" .. , Q;MI "'" (J K, Q;{I' ... , QK MK)' 

wl)('J'(\ Afl (for 1 = 0, ... , 1\) is the total number of censored failure times in 

[Tto, T/~_I ), and wh('f(\ Q;., ... , Q:M, have the value Q;, yet are considered as 

dist,iuct. ('l<'lll('ut.s. (W(\ C0Il111wnt. hpre that S provides no direct information 

COJl('('rllillg wlu\thpr a givell score corresponds to a censored or uncensored 

faihm' tiUH'.) III addit.ion, kt P = (K, S). Therefore, 

H. (a) = Pr(L\lI < alP) 

= Pr (~c, ~ a) Va E (-00, +00), 

w 11('1'(' C \ .... ,CIII is a salllpip of size Tl 1 obtained by withdrawal without 

replaC(,llH'ut from P. Hl (11) is often referred to as the "permutation clJ. of 

L 1/1'" U Ring n'sults 011 samplillg from finite populations, wc thus have that 

E(L,,,IP) = E (t GI) = '" I:~,(~;~-M.Qn = 0, 
1=1 

15 
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while 

Vp = Var(L1nIP) 

= Val' (t c;) 
z:::: 1 

J\ 

= n}n2(n(n _1))-1 L (q; + fl!IzQ;2) . 
l=l 

The conditional variance Vp is rf'felTed to as either t.h(\ 1J/'7"/I/.'/J.tatwn '/J(/,'I"I.­

ance estimator or the permutation variance. In t.lH\ l'valuat.ion of the a.hov(' 

conditional expectation and variance, wc us cd t.lH' n'suIt. 

J\ 

:E(Qi + MzQ;) = O. 
t=l 

This equality follows directly from the fact that tll(' seOl"('S sat,isfy tIt(\ (\(llm-

tions 

One further result which is obtainable from this set. of e<juat.i01\S is 

K K 

I)Q; + M zQ;2) = EW;(1- n;') 
i=l t=l 

(Cox and Oakes, 1984, p. 141). Henee, Hw p<,rmut,a.tioll variaI1(,(\ (,iLll })(' 

expressed in two distinct forms. 

Now, 

Var(Lln) = E [Var(L1nIP)] + Var [E(L1nIP)] = E(Vp ), 

;:I.lld so Vp is unbiased for Var(L 1n). v,)/n, moreoV('[', cOllsist(\ntly (\st.imal.('!'> 

Il'), Var(n - ~Jn) 

16 
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ll11(ler (:onditions (1) and (2) of p. 14 and thus can adequately replace it 

Wh(,Il f(, 11,), Tt2 arc large. Vp is the exact variance if the scores, the Mi 's, 

and f( ar<~ lloll1'andorn (for examplc, simple type II censorship with log-rank 

sc:or(·s). 

N ott' that VC[) and "V;) are funetions of strictly the generalized rank vector 

In chapter 4, wc present another variance estimator which is a function of 

only Ru, whilc in chapter 5 wc put forth variance estimators which are not 

solply depclldent on this vector. The suitability under Ho and Hl of aIl 

propos('d pstimators of VarJ/o(L1n), for smaU n, is an Îssue to be dealt with 

in chapter 5. 

Th(, gcueral class of procedures we propose, therefore, for testing Ho is 

givcll by 

-1/2L -1/2 "K W (D R R-1) 
CT Tl 1 n _ n L."i= 1 i 1 i - 1 i i 

n= 
v'v v'v 

wIH'l'(' li is Var 11 0 (Tl -1 /2 LIn) or an unbiased estimator thereof under Ho, 

01' wlH'l'(' V is 

or a COllsist<'ut. estimat.or thereof un der Ho. With respect to Hl, one would 

r<'jed. Ho if Un is sufliciently large, while, for H2' one would reject Ho if 

lUu 1 is sllffkipntJy large. Not.e that the numerator of Un is solely dependent 

npOll (:K(Th-)' D1 l\), which in turu is determiued by RG only. As with 

(Illy st.atistic based strict.ly on RG, then, LIn discards the exact failure 

li 
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and censoring times as weIl as t.he ordering of ('('nsort'd lifd,iuu's hd,w('('fl 

adjacent. failures. 

li the Li 's were independently and ident.ically dist.rilmt.('d Hutier Ho. (hm 

n- 1
/ 2Lln/ Asvarllo(11-1/2Lln) 

would be asymptotically a standard normal ralldolll variahle' hy UH' ('('llt.ra.l 

limit theorem. Of course, t.he L/s are highly dqwlld('ut. and are Ilot, id(')lt,i-

cally distributedj nevertheless, asymptotic llol'mality st,ill holds as W(' shan 

demonstrate in chapter 5. 

For the random censorship modcl, the small-smupl(' mIlI dist,rihut,ioll 

of LI n is dependent on aIl the d.L '8 in question, ('V('U if Vat' 11
11 
(L III) is 

distribution-free. On the other hand. with simple' or IH'O!!,l'('ssivc' ty»(' II 

censorship in effect, the small-samplc mIlI dist.rihu tion of Lill is [n'l' of 

F(t). 

2.3 Representations of a WL Statistic. 

2.3.1 The Sum of Scores FOT'm. 

Another popular family of statistics fol' testing Ho, h;uwd 011 t.he v,eu<'r­

alized rank vector RG as defined in section 2.2, is of tlw forrn 

K 

L2n == L)DIi(J, + MtzQ:), 
i=l 

where (Ji is a score corresponding to T[\ q: is a score assoc:iat.('(1 wit.h ail 

censored lifetimes in [Tt, T~~)), and Dio Mit are a.s pJ'(~vi()usl'y ddüH'd. 

Qi and Qi are sueh that, QI = (}(T:J), Qi = Q*(T?) wit.h },ot.h (J(t) and 

(}i(t) dependent on !K(t); morcover, wc set (Jô = 0,1;7 = 0 and 1'K+
1 
= 

+00. An obvious question which arises is, under what conditio1Js (:an L'ln 

18 



h( expr«~ssed as a WL statistic? Prentice and Marek (1979) provided the 

allSW('r to thi~. Firstly, set Wi = Ri(Qi-l - Q;), i = 1, ... , K. (Remark 

that Wi is (lPterrnined by :HI.) Then 

K 

L211 = L(D1i(]i + MuQi) 
i=1 

K 

= L W,(D l i - RbR;l), (2.1) 
1=1 

if 

Ou the otlwr band, statistics of the forrn (2.1) can always be expressed in 

tel'lUS of a S1l1U of seores by lt:tting 

Q~ = _ ~ Wj . 1 T." 
t i..J R.' 1, = , ... ,L\. 

j=l 3 

Th('sc SCOl'('S are obtaiucd by first setting 

Wi = Ri(Q;-1 - Qi), i = 1, ... , Ii 

(t.lms yiddillg t.he Qi's as defined above), and then by setting 

TlT. - Q. Q* .-z- 1- i' i=l, ... ,K 

19 
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(hence yie1ding t.he Q/s as given abovc). 

The classical linear rank st.at.ist.ic for tcSt.illg Ho wit il C<'llsorillp; abs('ut, 

has the form 
n 

L;n = L D1lJi', 
j=l 

where QiJ = QU(Tt) is a nOllrandolll SCOl'r assodat,ed wit.h T:\ and wht,l'(, 

QU (t) either is a l'un dom functioll det(,l'llliu<:,d by N (t -) or is a IlOlll'aU­

dom, time-independent qualltity. Vpon substit,llt.illg qi', (Ji, ... , CJ;: fol' 

QI, Q2, ... , Qn in (2.2), we obtain 

where 

Qi. = Q*U(T;') = { ~j=1 (J'J f(; - n) 

and where 

Hence, Lin can be written as 

n 

L Wt(Dli - RliR-;I), 
i=l 

where WJJ = W(T9) = Q~t - Q'!'u and wherc 
1 Z 1 Z' 

Lin' therefore, belongs to the class of WL statistics. 

2.9.2 Generalized Mann- Whitney Statistzc Form. 

20 
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The following discussion is due to Gu, Lai, and Lan (1991). For any pair 

(XII' X:.U ), define 

{ 

-W(X2j)/R(X2j), if ~2j = 1 and X2j :5 Xli, 

U(Xh , X 2j) = Uij = W(Xld/ R(X1i), if ~h = 1 and Xli :5 X 2j, 
0, i!l aU other cases, 

wherc R(u) = RI (u) + R2 (u). Then 

K 

L Wi(Dli - RliR;l) 
z=l 

cau he writtcn as 
n1 n2 

LLUij , (2.3) 
i=l j=l 

To l'l'ove this, note that if Dli = 1, then Tt = X1r (uncensored) for 

some r, and so 

W(Tt)(D u - RliR;l) = [W(Tn/R z] (Ri - R1i) 

= [W(XIr )/R(X1r)] X [#{X2j : X 2j ~ XIr}] 

L (W(X17.)/R(X1r». 
X ZJ : X 1r :::;XzJ 

Likewise, if Dli = 0, then Tt = X 2t (uncensored) for sorne t and 

W(Tn (D lt - Rld Rd = - [W(X2d/ R(X2t )] x [# {Xli: ,Xli ~ X 2t }] 

L [W(X2d/ R(X2t )] • 

XII' X1a~X2t 

The <ksil'cd result follows accol'dingly. 

If no c(>nsoring is present and W(t) = R(t), then (2.3) is in fact the Mann­

Whihl(\y statistic. tlms jusr,ifying the name "generalized Mann-Whitney 

statistic. " 
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2.9.3 Expression as a Statistic Belonging to G1.ll's Cla.s.o; /\. 

For j = 1,2, let 
nJ 

Nj(t) = L [(Xjf < t,.1. ji = 1). 
i=1 

Then a WL statistic can be written as 

[' W(t) {dN, (t) - ~(~i dN(t)} 

Remark, however, that for RI(t)R'}.(t) > 0, 

dN (t) _ dN(t) RI (t) = R'}.(t)dN1 (t) - dN'}.(t)R I (t) 
1 R(t) ]let) 

= R}(t)R2 (t) [dN} (t) _ dN2(t)] . 
R(t) RI (t) R 2 (t) 

Henee, (2.4) is equal to 

where 
T.~( ) = Rdt)R'}.(t)W(t) 
.t\. t R( t) 

and 

Of course, 
~ p r 
Ai(t) --. Ai(t) = Jo -Xj(u) du, 

as n -+ 00, where Ài (u) is the hazard function for saIllplc' i. 

(2A) 

(2.5) 

Gill (1980) investigated t.he propcrties of two-sample tests based ou sta­

tistics of the form (2.5), in which K(t) is a possihly randol1l funct.ioll clc'­

termined by 

and required to be zero whenever RI (t)Rz(t) = O. 
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2.4 Generation of Censored Data Counterparts of a Linear Rank 

Statistic. 

One particular sllbset of the family of classical linear rank statistics for 

lluœnsored data comprises statistics of the form 
n 

Sn = E D h 4J(i/n), 
i=l 

where 4J(i/n} is a llonrandom score attached to Tt, and where 4J is a non­

random function defincd on [0,1] and assumed to satisfy 

r' ljJ(u) du = o . 
./0 

Now, lllHler Ho, 

i/n .!:... F(ti) 

as Tt -t 00, whcre ti is the realized value of Tt. For censored samples, 

t.her<'fore, it seems only nat.ural to pres core an uncensored failure time Tt 

as FI\ MI Wt), where 

FKMl(t)=I- II {l-Rjl) 
j. j~N(t-)+l 

is t.}w I\aplatl-M('i('r (1958) estimator of F(t) under Ho based on the data 

from hoUl samples. Wc t.hen apply the function 4J t.o obtain the score 

(cJ. Gu, Lai. and Lau 1991; Prenticc and Marek 1979). Once we have 

g<'lH'rat<'d q \ .... , q K, w(' cau calculate Qr, ... , Qi via equation (2.2), 

t.lms producÏng a st.atist.ic of the form of L2n , which in turn is expressible 

as a \VL st.at.ist.ic. Here, 

i [( i ) ] Q": = '" fI -Rj Qk 
1 L..... 1 - R· 1 - Rk ' 

k=l }=k+l ] 
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with 

rI ( -Rj ) 
j=i+t 1-RJ 

set equal to one. If RK = l, we set qj\ = O. 

In actual practice, the Kaplan-~I('i('r ('st.ill1ator is writ,kll as 

FKM2(t) = 1- II (1 - Rjt); 
J j~N(t) 

(2.G) 

however, the ab ove cellsored data statistie, with FI\ A-I2(t) t,a.kill~ t hl' »1(1('(' 

of FKMl(t), has a weight. funct.ion which is dCpéUdt'ut. ou N(t) mul so (lo('s 

Ilot belong to the class ofWL statistics. FA' MI (t), t,hough, is aSYlllpt.of,ically 

equivalent to PK M2( t). Therefore, froIU now throughollt. t.h<' r<'llmill<l('l' of 

this thesis, whenever a weight functioll of a WL stat,ist,ic <!('l)('uds Oll 1.11<' 

Kaplan-Meier estimator of F(t) based 011 th" combilled sa.lllpk of shw n, 

we shaH employ definition (2.6). More generally, wh('u('v<'r w(' ma.k(' ally 

sort of reference to this estimator of F(t), we shan aSSllIJH' cldiuitioll (2.G) 

is in effect. (A similar convention will be invoked for t.he I(aplall-Mcipr 

estimator of Fi(t) based on the data from sample i,i :::: 1,2.) Va.riant.s of 

(2.6), which can be used for prescoring pm'poses, arc tlH' Pdo-Pc·to (1972) 

estimator 

Fpp(t) = ~ {FK M2(C) + FKM2(t+)} , 

Prentice's (1978) moment estimator dcfincd hy 

- II [ Rj ] Fp(t) = 1- il, 1 ' 
j: j~N(t) J + 

and AItshuler's (1970) estimator 

FA(t) = l-exp (- L ~.). 
j: j'5:N(t) 3 
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We COmIll('nt her(~ that of the! ahove four cstimators of F(t), only (2.6) 

prc'r-.C:Of(!S T:J as i/n with ccnsoring absent; hence, of the four eensored data 

count('f}mrts,only the one implcmenting FKM2 (t) reduces to Sn with no 

('('nsol'ing pl'('s(~nt. 

Auother way in which w(' can extcnd Sn to accommodate censoring is 

via. the lllpthodology of Gu, Lai, and Lan (1991): To Tto, we once again 

as~igll t.he SCOl'(' (J l = </J( fi' K M2 (t~) ). To obtain scores corresponding to the 

("('USOl'p<l fai lt Il'(' timcs in [T:\ T,+d. first let T("l)"'" T(z,M,) he, in sorne 

arhitrary ordcr, the censorcd lifetimcs falling in this interval. Since, for 

111lC(lJlsored data, 

cjJ(i/n) ~ cjJ(F(ti) 

Ululer Ho, the score assigned to 1(i,i)' denoted by Qi", is such that under 

Ho 

wll<'r<' T is il. rail dom variable having d.f. F(t), and where t(i,j) is the 

l"<'ali>t,('d value of T(i,i)' Hence, we should define Qi, as 

wlwl'(, 

<1>( u} = .f q,(s} ds/(l- u}. 

Not.<- that. t)(u) is in fart the mean value of cjJ(s) over ru, 11. The resulting 
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+ L DI,(o,j)~(È'I\ M2(t(O,)))) 
i=l 

= L [D1i4>(FKM2(Tt)) + A;fli~(È'J\ M2(T,O»] , 
i=l 

where D 1,(i,j) is 1 or 0 according to wlu:,t.h('l' t.h(' it.(m ("<'l1so1'<'(1 at. ~"j) is 

from sample 1 or 2. Now S~, in gCllcral, ('êtllllOt. b(' wl'it.t,pu as a. WL st,at,is­

tic; however, as will be demonstl'atcd in dmpt,(\l' 4, S~ is aSYlllpt,ot.ically 

equivalent to 
K 

L [c/>(È'KM2(Tt)) - c)(È'KM2(T;J))] (D Ii - RliR-;I), 
i=l 

assuming i/J satisfies certain conditions. MOl'cov('r, this asympt,ot,Î<' pCJuiv-

alence remains valid if FKM2(t) is rcplaœd by ltllY OllC' of (2.7), (2.8), OJ' 

(2.9). 

2.5 Examples of Some Classical Tests. 

2.5.1 The Log-Rank Test. 

The log-rank test has weights Wi = 1, and scores 

, 
Qi = 1- L(I/Rj ), 

i=l 
1 

Qi = - I)I/R j ), 

j=1 

i = 1, ... , 1(. Mantel (1966) and Cox (1972) devdoped this SWL st.at.ist.ic: 

in the form 

(2.10) 
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Mallt.d did so using t.he cont.ingency table approach, while Cox derived 

(2.10) as a. score test within the context of the proportional hazards model. 

Peto and Peto (1972) generated the log-rank statistic in the sum of scores 

repref·wnt.ation using maximum likclihood techniques. Prentice (1978) yielded 

t.lH' log-rank procedure in the form 

a.s ft seore test arising from the accelerated lifetime model. 

In the ahsencc of censoring, the log-rank procedure reduces to the Savage 

(or cxponent.ial scores) test (Savage, 1956). 

2.5.2 Tlw G(memlizcd Wilcoxon Tests. 

The first knowll censored data counterpart of the Wilcoxon procedure 

was construct.pd by Gehan (1965). The Gehan test has weights Wi = Ri 

a.nd 8('or('S (Jz = (R l - il/n, Qi = -i/n (i = 1, ... , K). Actually, Gehan 

wrot.c tb~ numerator of his test in the form (2.3) with W(t) = R(t)/n. 

Mantd (1967) thC11 expressed Gehan's representation as a sum of scores; 

aft,erwards, Tarone and Ware (1977) wrote Mantel's form as a WL statistic. 

GdHm made the assllmption that both samples have equal censoring 

paU.('rllS and proposcd. as a variance estimator, a complicated version of 

l~) diffel'('nt. from cithcr of its two given forms in section 2.2. Mantel then 

wrot,<' Gdmll's fonu of ~/~ as 

K 

~~ "" (n2 M.Q~2) 
( 1) ~ ~l + l l • 

11,11,-
1=1 

Breslow (1970) suggest.cd, under a random censorship mode}, a variance 

('stilllator tbat is valid t'ven when the censoring patterns are unequal and 
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which, for large samples. is approxÎmatdy ('quaI t.o 1:.". Fillally. Tarolu' 

and Ware (197ï) suggest.ed a variance' estimat.or which has t.1lt' exact. forlU 

of Vc,.. 

The second gcneralized \VilcoxOll procpdUl'{, t.o he g<'Jl<'rat,('tl Wil1't t.he 

Efron (1967) test. In this case, 

Wi = n-1nln2I(RliR2i > 0) (1- È'II\M(t~-)) 

x (1- F2 !\!II(tj-)) RiRJil R:l,I, 

where FjKM(t) is the Kaplan-Meier cstimat.or of FJ(t) hasp<l OH 

In terms of the sum of scores format, 

and 

Q. = W, - n-'n, n, i; [( 1 - FII<M(t;-)} { 1- F'K M(tn } 

x Rt/ R:;/ !(RIjR2.1 > 0)] 

Q; = -n-'n,n2 t[ {1- FI KM {In } {1- F2I'M(t~-)} R'J' 

x Ri.;' I(R"R'j > Ol]. 

(2.11 ) 

In actual fact, the two-sample test proposed by Efron was Ilot has('cl OH il 

WL statistic but rather on 

nI Tl2 

2L LVii -1, 
i=l j=l 
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1, -1 for Gehan's statistic, and where 

~j is an cstimator of 

W}WIWV('!" U
I
,) = 0 for Gl>han's statistic. (Efron assumed here that û, l'lUldom 

C{'usorship lllodd is in cffed.) With Vz) defincd as such, 

1= 1 j::;:;1 

= [00 (1 _ F2I\ M(t-)) I(R2 (t) > 0) d«1 - F1KM(t) )I(R1 (t+) > 0» 
./0 

(Millr\l', 1981, p. 106). Und cr the condition that 

Sllp{t: Pr(Rt(t) > O)} = sup{t : FI(t) < 1}, i = 1,2, 

V' CélU thus lH' cousidprcd as an estimator of Pr(TI < T2 ), where Tl and T 2 

ar<' ind(\}>(\llCl('nt raudoru variables with d.f.'s FI(t) and F2 (t) re3pectively. 

So, UlHl('l' Ho, V should approximately equall/2. Although 

("mulOt, gPIH\rally he writtcn as a WL statistic, it is asymptotically equivalent 

t.u 
f{ 

L:Wi(DIi - RhRi 1
) 

wit.h fV, defiu('d as in (2.11), nnder the condition that there are no ties 

}wtw('('u tlH' XJi 's (Gill, 1980). 

D('CélUS(' of its depeudpI1ce on R1(t) and R2 (t), the weight function of 

G('han 's alld Efrou 's st,atistir is inexorably linked to the intensity of cen-

sorillg in hath salllples. This property is highly nndesirable since censor-

ill~ illt('llSit.y 1,1'Ovid(\s Htt.k information-due to independent censoring be-

ill~ in pff<'ct. ahout. diffpr('Ilccs or lack thereof between Fdt) and F2(t). A 
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Wilcoxon analogue, which is less affect.E'd in t.his f('ganl, has t.he scon's 

(Peto and Peto 1972). The resultillg lint'al' gCIH'ralil',('d rallk st.at,ist.ic, ho\\'-

ever, cannot gellerally be expressed as a WL st.at.ist.ic. Such is Ilot, Hu' cas(" 

though, with the statistic comprisillg scores 

(Prentice 1978). The corrcsponding WL statist.ic has weight. 

Remark that the random variable Fp(t7) is weakly illffU<'ll('('d hy Hw rat.e at. 

which censoring events occur in each samplr. Prent.ie(' origillaJly ch'vdop<'d 

his SWL statistic in the form 

as a score test arising from a log-lincar regression mode! with t.lH' <'1'1'01' 

variable having a logis tic distribution. Hcre, 

For future reference, the weight Wz = 1-F K M2 (tn shalll)(' kUOWJl as tb' 

Peto-Peto weight, even though the actual statistic Pdo amI p(~t() df'vclo}J(·d 

is not expressible as a WL statistic. 

30 



i 

i 
'-

2.5 .. '1 The TanJTw- Ware Glass of Tests. 

Tal'()f1(\ and Warc (1977) proposed a class of procedures that include, 

l)('sid(\s the log-rank and Gehan 's test, SWL statistics which offer a com­

promisp betwe(~n the two. The weight function associated with this class 

is W(t) = .'J(R(t)/n), where g is a nonrandom function defined on [0,1]. 

TarOlw and Warc conjcetured that if g( u) takes on intermediate values be­

tW('('IJ li and 1 for aIl u E [O,IJ, the resulting test will maintain good power 

rU'l'OSS a wid(\r range of alternatives than the other two procedures. 

TIl(' variall(,(~ estimator cmployed in the development of this class of 

2.5.4 T/w Har'rzngton-Flernzng Glass of Tests. 

Harrillgtoll a.nd Fleming (1982) suggested a family of tests with weight 

fuud.iollS dcfim'd as 

(2.12) 

wher(' {J > 0 and nonrandom. Note that (2.12) generalizes the log-rank and 

Peto-Pet.o wcight functions. The originators of this class of SWL statistics 

ut.ililf,('d Tt:'1} as Ut(' variauce cstimator. 
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CHAPTER 3 

THE PROPORTIONAL HAZARDS 

MODEL AND SWL STATISTICS 

3.1 Introduction. 

Consider n items (not necessarily illvolvcd in a t,wo-salllph' sCPllario) 

to have been placed on test in a survival study at tilllP 0, ami suppos(' 

associat,ed with the i th item is a colUllln vector of [> fixed eovat'Ïat('sf' 

Let Ti be the failure time variate corrcsponding to ikm i, and let ho(t) he 

an unspecified hazard function for the standard s('t of condit.ions Zi = O. 

The proportional hazards model, as pl'opos('d hy Cox (1972), d('fin<'s t.1H' 

conditional hazard function fol' itcm i, givcn Zi, as 

(3.1 ) 

where fJ = ((Jb ... , (Jp) is a row vector of p rcgressioll pa.l'élIupt('rs. Til<' 

nonrandom conditional density function and eonditional sl1J'vival fUl1ctioll(i 

of Ti, given Zi, are thus respectively 

5 For the remainder of this thesis, the term "fixcd," whcn dcsuibing a <:ovariate, bila Il 
mean "independent of time and nonrandom." Morcov(~r, the word "covarjat(~" sllal! frolrl 
hereon be used interchangeably with the terms "cXI,lanatory varia hl(~" and "rl'gl'!'H~OI 

variable." 
6By "survival function", we mean the complcrn<>nt of the <J.f. in (4'U·SI.;(HI. 



and 

where 

So(t) = exp[- 1.' ho(u) du]. 

Thus, the survival fUllction for an item with covariate, z, is obtained by 

raisiug the bascline survival function Bo (t) to a power. The family of models 

prodllccd hy this proccss is sometimcs referred to as the family of Lehmann 

alf.<>rllatives (Lehmann, 1953). 

TIl<' proportionai hazards model adapts readily to the inclusion of ran-

dom, t.imc dcpendent. covariates. There are several types of such regressor 

va.riables; the om' of concern to us-introduced by Oakes (1981 )-is the evo­

lutionary covariate. Let H (t) den ote the history of failures, censorings, and 

of aIl otlH'r random featurcs of the study up to but not including time t. 

TheIl W(' shall caU Z(t) an evolutionary covariate if it is a function of H(t) 

unIy. Tllus Z ( t) cOllld be the number of items at risk at t-, the number of 

fa.ilures lwforp t. or, in a comparison of two groups, the number of failures 

in oue group heforc t.ime t. The proportional hazards model, with a single 

(lvolutiollary explallatory variable Zz (t), becomes therefore 

1
. Pr(Tl E [t, t + h}lTi > t, ~(t» 
un 

h-O+ h 

= hi(tIVi(t» = ho(t) exp(j3Zi(t», i = 1, ... ,n, (3.2) 

where Vi(t) = {Zi(S) : S < t}, and where "hi(tl~(t»" IS read as "the 

<'ollditional hazard fuuction of item i, given ~(t)." 

The proport.iollal haz~trds nlOdel, with eit,her fixed or evolutiollary covari­

at.es. cau l)(' applied to t.he two-sample problem in the following 1l1anner. 
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Let nI, n2 be the sizes of samples 1 and 2 r~sp(,ct.ivdy. L('t. t.ht' it,('llls of 

sample 1 be denoted by labels 1, 2, ... , 71,. and let. t.hOSl· of sampl(' 2 1)(' 

denoted by labels nI + 1, n., + 2, ... , 71, whcr(' " = III + "'2. Dt'llOt,(' Hl<' 

hazard fUllctions correspullding to samples 1 and 2 hy, l'('sped.iV<'ly, "HI) 
and h2(t). Let h;(t) = ho(t), where ho(t) is compl('t.ely 11llSl><'cifkcl, and Id. 

hi(t) = ho(t)ef3, where (:J is some unkllowll panunt't,(·r. If W(' assigll t,o it,('1ll 

i the fixed regressor variable Zi defined by 

{ 
1 if i E samplc 1, 

Zi = 0 if i E sample 2, 
(3.3) 

then the conditional hazard of Tl! givell Zi, ca.u he dircrUy obt,aÏll<'d {rom 

the model 

(3.4) 

Consider, now, the ab ove two-sanlple sett.ing with th<' followillg modifi­

cation. Let W (t) be an evolutiollary covariat.e, aud l('t, h; (t lU (t)) <!('Ilof,p 

the condition al hazard fllnction for sample i, giVPll U(t), wlH'l'(' U(t) = 

(W(s) : s ~ t}. Suppose 

and suppose 

where ho(t) is free of U(t) and unspecified. If wc' assodate wit/h it.c~1l1 i t.lu· 

stochastic explallatory variable Zi(t) defined as 

Z,(t) = { :(t) 
if i E sample 1, 

if i E: samplc 2, 
(3.5) 

then the conditiollal hazard of Ti, givcn Vi(t), is described hy 1II0c1<·1 (3.2) 

(Lu.'itbader, 1980; Oakes, 1981). 
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In the former and latter two-sample scenarios, the null hypothesis 

ean thus be eqllivalently formulated as 

Ho: (3 = 0 

in, respcctivcly, (3.4) and (3.2). 

The airn of t.his chapter, therefore, is to demonstrate how SWL statistics 

ean lw dcrived within the context of a proportional hazards model that 

incol'porat(~s cither a fixed or an evolutionary covariate. Towards this goal, 

wc will al ways first cunstruct a likelihood function-not restricting ourselves 

t.o t.h(' t,wo-samplc prohlcm -from which valid inference about (3 can be made. 

Artel' oht.ainillg an appropriate likelihood, we will appeal to either (3.3) or 

(3.5) aud t.hCll gcncrate a test of Ho via the first and second df',rivatives of 

Hw log likelihood. 

3.2 Case of Fixed Covariates . 

.9.2.1 L1.kdihood Considerations. 

:l.2.1.1 Partzal Likelihood. 

W(, first. present t.he mcthod of partiallikelihood-due to Cox (1975)-in 

a g('uC'rali",C'd sl'tting and 80 do nOL limit. ourselves t.o failllre time data. 

Suppose t,lu' data, dCllot<.>d simply as Y, have joint density or probability 

fuudioll Iy (y; 8 L, ( 2), wh<.>re 81 is the vector of parameters of interest and 

82 is t.he v('('t.ol' of nuisance paramct.el's. One or more of the components 

of 82 lllél)' ('vell 1)(' nuisance functions. Suppose that Y can be transformed 

iut.o t.he seqU('Il('<.> of pairs of variables 

(3.6) 
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in a one-to-one manner, where t.he number of pairs of tenus III may in SOIll(' 

cases be random. The fulllikelihood of (3.6) cau h(' writ.t.(,ll as 

m 

II f ( , 1 (j-l) (J-I)'(J 9) XjIX(;-l),S(J-l) Xj X ,s , [, 2 

j==l 
fn 

X n fs) IXJ ,S(J- \) (sJ IxUl , s(j-l); 8,.82), 

j=l (3.7) 

where X(j) = (X}, ... ,Xj), SU) = (S}, ... ,S)), and X(O),S(O) = 0. 

li the second product of (3.7) is a function of 8, only, it, is (·a.11('(1 t.ll(, 

partiallikelzhood of 81 based on S = (S h ••• , Sm) in the S<,q\1<'I1<'(' {X j, S j }. 

In certain applications, one can argue that ally informat.ioll ou 8, in t.lH' 

first product is inextricably linked with information ou 9'2, aud so fol' Silll-

plification we take for inference the partial likclihood whi('h illVolVl's only 

9 1 , There will typically be sorne 108s of infofmatioll illvolvpd in llsing a 

partiallikelihood; in many situations, howcv('r, h('uristic al'g,ullH'ut.S cau 1)(' 

put forth which suggest little is lost. in ignoring the first tc'nu of (3. 7). 

Consider now a survival study in which TI, items are put ou tpst and tlu" 

data for the i th item, with lifctime variate T" are (fi, ~Il Zl)' H(ln', Y; is Ut(' 

survival time variate, Âi is a œnsoring indieator variahle (Âi = () if}~ < 1~; 

~i = 1 if Yi = Tl), and Zi is a fixed scalar ('ovariat('. Moreov(II', SUPlJOSP t.ll<' 

conditional hazard function of Ti, givcu zi, is detC'l'llliw'cl by lIlodd (3.4). 

As far as unknown parameters are conecrned, the full likdihood of 

is dependent on (3, ho(t), and possibly one or more nuisance fuudions asso~ 

ciated with the censoring mechanism. The problem at haud then is tu mak(1 

useful inference about fJ in the presence of th(> other unknowll qllantjtj(~s. 
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Suppose in the ahovc study that J( items, with labels Sb ... , SK, give 

l'Ïse tu order(~d l111censored failllre tirncs Tl < T!j < ... < TK (set T8 = 0 

and TK+1 = +00). Suppose further that Mi items, labeled Si,!, ... ,Si,M., 

are c('nsored in [T,O, Tt"+I) at times Tt~l < Ti~2 < ... < Ti,M •. For i = 
0, ... , J(, thcrcfore, takc 

FinaJly, set S J( + 1 = n + 1. The complete data, as described in the previous 

paragraph, can he rewritten as 

(X l , SI, X 2, 82, ••• , X K , S K, X K + l, S K + 1 ), 

t.he likelihood of which is 

K+l K 

Lik = II IX.IX(.-I),S('-l) (Xdx(i-l) ,s(i-l») II Pr(Si = (i)IX(i), S(i-l». 
i=1 i=1 

Not.e t.hat Pr(SK+ 1 = n+lIX(K+l), S(K» = 1. Now, let Hi = (X(i), S(i-l», 

and Id. H(t) record the history of the study up to but not including t as 

weIl as all covariat.e values; hence Hi = (H(Tt), Ti), and so Lik can be 

writ.tcn as 

K+I K 

TI lx. 11/.- 1 ,S._t (:l'dhi-J' (i - 1») II Pr(Si = (i)IHi) 
i=1 i=1 

K+I K 

II fX.jJJ.- 1 ,S.-1 (xilhi-b (i - 1» II Pr(Si = (i)IH(Tt), Tt), 
i=1 i=1 (3.8) 

wl1('l'(' Ho = 0. 

Wc IlOW make t.WO assumptions which will enable us to evaluate the 

second produd of (3.8): 
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Assumption 1: Any itenl which is at. risk at. t- caUllOt. 1)(' C('IlSOrl'd in 

the interval [t, t + dt). Cellsorillg can ollly occur a.t. t + dt. 

Assumption 2: li item i is at risk at t-, dU'1l 

where "fTalH(t)(tlh(t»" means th<> conditiollal (kllsity fuuet,ion of T,. giVl'll 

H(t) = h(t), evaluated at specifically t. In words, this assumpt,ioll lll('anS 

that the conditional hazard function of T" giVl'll Z" is ullaff('ct,l'd by 

(1) the fate of the othcr items in (0, t), 

(2) the value of the other covariates, and 

(3) the fact that item i was not cellsorcd in (0, t). 

The last of these three is a direct consequence' of indl'!><'IlC!Put (,(\llso('iug 

being in effect. 

Now let !R(t) denote the risk set at Ume t, which is the set of it.ems at. 

risk at t-. Then from assumptions land 2, 

Pr[Tt E [t, t + dt)lH(t)] = L Pr[T, E [t, t + dt), n (T, < Tj)IH(t)] 
IE:R(t) JE:R(I,)-l 

l
t+dt 

= L fTdI1(t) (tdh(t» II [Pr(Tj > tdH(t»]dt, 
IE~(t) t iE:R(t)--1 

= L UTdH(t)(tlh(t» II [Pr(Tj > tIH(t»] dt] 
IE~(t) iE:R(t)-1 

= L hl(tlzJ) dt. (3.9) 
lE:" ~ t) 

We thus have irom assumptions 1 and 2, and from (3.9) 
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_ fH(TC.»,T(.) (h(tn, tn 
- fH(T,o),T.o (h(tn, ti) 

_ Pr(T(i) E [ti,ti + dti)IH(ti)) 
- Pr(Tt E [t~, ti + dt~)lH(ti» 

h(i)(ti IZ(i)dti 
-=---'-"---:--7'--:--:-""",,,-, 

E'E:R(t~) h,(t~lz,)dti 

_ exp(,8Z(i» 

- E'E:R(t~) exp (;3Z1 ) • 

Therefore, th(~ second product of (3.8) is 

Ll (,8) = ft exp(,8Z(i» , 
i=l LIE~(t~) exp(,8zl) 

(3.10) 

whieh is the famons "partiallikelihood function" of Cox (1972) with fixed, 

scalar covariates. 

The total likelihood, Lik, can be determined using product integrals: 

ex:> 

Lik = Pr[H(O) = h(O)] P Pr[H(t + dt) = h(t + dt)IH(t)], 
o 

where the second term is 
m 

lim IIpr(H(Ti-l + dTi) = h(Ti_1 + ÂTi)lH(Ti-d), 
»1-+00 
~T.-+O i=1 

wher<' the Ti 's are llonrandùm, and where TO = 0 < TI < ... < Tm < 00, 

~Ti = Ta - Ti-l, and Tm -+ 00 as rn -+ 00. But 

Pr[H(t + dt) = h(t + dt)IH(t)] = Pr[Dt = dh Ct = CtIH(t)] 

= Pr[Dt = dtlH(t)]Pr(Ct = CtIH(t),Dt], 
(3.11) 

wl1('r<' D" Ct arc th<' sets of labels associated with individuals that, respec-

t.ivdy, fëùl and are censored in [t, t + dt). It then follows that 

Pr[Dt = dtIH(t)] = II h,(tlz,)dt II [1- h, (t Iz,)dt) , (3.12) 
IEcl, lE'R(t)-dt 
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1. 
where assumptions 1 and 2 have beell ut.i1izerl. Using (3.11) and (3.12), and 

setting Pr[H(O) = h(O)] = 1, we have 

The first product integral, apart from diffcn'utial clmH'ut.s, 1'<'duces t,n 

(Kalbfleisch and Prentice, 1980, p. 121). Hen<:<" 

K+l 

II fX./II'-1 ,8i-l (xilhi-h (i -1) 
i=1 

= ft [ho(tn 2: eXP({3Z1)] exp [-100 

ho(u) L exp(fJ;;d d'Il] 
,=1 IE:R(t~) 0 lE~(u) 

00 

X P Pr[et = ctlH(t), D,], 
o 

(3.13) 

whi.ch is the portion of the fulllikelihood being ignored when llSillg stl'ktly 

LI «(3) to make inference about (3. 

Intuitively, it would appear that if ho (t) consists of many uuknowll pa­

rameters, the first and second factors of (3.13) contai Il rdativdy lit.t.Ip iu­

formation about f3. Moreover, if the third factor of (3.13) is fn'(' of (j (i.(!.; if 

the cer,soring mechanism is noninformative), no information about titis Pit­

rameter can be extracted from this term. Uealistic cxamples of informative, 

40 

• 



( 

( 

but inclcpendcnt cen::,oring schemes are difficult to construct. An artificial 

('xample is a random ccnsorship model where the potential censoring time 

for ('aeh individual is dctermined by the failure time of another individ­

ual, with the same covariate, who is not included in the actuallife-testing 

pxperiment and whosc conditional hazard function is described by (3.4). 

KaJhfteisch and Prcnticc (1980, p. 109-110) compared the Fisher infor-

nmtion in Ld(-J) to that in Lik, assuming non informative censoring, for the 

lllodcl 

ho(t) = exp [g] (th1 + ... + gm(th'm] Ào(t), (3.14) 

wherc Ào (t) as weIl as ai (t) (i = 2, ... , m) m:e completely known, where 

rh (t) = 1, and whcre (rI, ... , Tm) is a vèctm' of unknown parameters. They 

found that L J will he asymptotically fully efficient with respect to Lik for 

t.he ('~tiIllation of (3 if, for sorne 8 and 'Vt E sup{t: Pr(#j?,(t) > 0) > O}, 

(3.15) 

whprp 8 = (HI, .. " Hm) is free of t. Note that if (3 = 0 and the censor-

illg luedtallism operates in the same manner for aIl n items, this ratio of 

('Xl><'ct.a.t.ions is frpc of t and (3.15) is satisfied; hence, under these cÏrcum­

st.au(·(\s. t.he score statistic L~ (0) will have full Pitman efficiency relative to 

t.h<' likdihood-rat.io st.atistic (Kalbfleisch and Prentice, 1980, p. 106) . 

.'1.2.1.2 Mm'gznal Lût,eZihood Approach of Kalbflezsch and Prentice. 

Allother mallller in whi("h L 1 cau be derived is by modification of the 

marginal distribut.ion of t.he ranks with ccnsoring absent. Suppose for the 

lllOIlH'Ut.. t.hell, that. aIl 'ri it.ems of the above survival study are observed to 

fail. Ld Tl. . .. , Tn Il(' the ullordered lifetimes, and let Zl, ••• , Zn be the 
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corresponding covariates. Denote by 0 the ord('r stat.ist.ic (Ti' • ... , Tf(:), milt 

denote by R the "rank statistic" (:JI, ... ,Jn ), wlwl'e :J, is t.hc lahel aU,adH'd 

to Tt. More correctly, R is the vcctor of allti-l'm '. For cOllvcui('IH'(" 

though, we will continue to rcfer to R by t.ht> fol'llH'l' t,l'l'Ill or by t.lH' t.('l'Ill 

"rank vector." 

Define Ut = g-I(Ti) (i = 1, ... ,71.), wlH'rc!J E G. Hi{' group of st.rict.ly 

increasing differentiable transformations of (0,00) out.o (0,00). Theu t.llP 

conditional hazard of U" given z" is 

ÀO(U) exp [Zi,8] , 

where Ào (u) = ho [g( u) ]g' (u). Thus, if the data were prcs('uted ill Hl<' fOl'lll 

the inference problem about (3 would remaill unclmug('d provid('d ho (t) W('1'(' 

completely unknown. In effect, the estimation prohh'lll for /"3 is illVal'iallt. 

under the group G of transformations on the Ti 's. W{' also uotp t.ha.t. wlu'l1 

a member of G operates on T., ... , Tn , it ads transitiv<'ly 011 t.lH' orelc'" 

statistic 0 while leaving R invariant. Finally, Hl<' homomorphie ~l'Otlp 

H, acting on the parameter space, is transitive 011 ho (.) a.nd 1,';l,V('s t.IlC' 

regression parameter ,8 invariant. Thercforc, by the ddinitioll of Damard 

(1963), the rank statistic Ris marginally sllfficicnt for t.he ('stilllat.ioll of ("1, 

that is 'sufficient for (3 in the absence of knowledge of ho (t ).' For in fm'ell{,(, 

about (3, the probability function of R is availahlc and is giveu },y 

(3.16) 
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Dy the terminology of Fraser (1968), and Kalbfleisch and Sprott (1970), 

(3.16) is calkd the marginal likelihood of f3. 

If c:ensoring is present, sorne modification of the ab ove argument is re-

quired. Whcn ft censored sample is obtained, the rallk vector of the under­

lying Tz 's is only partially observed. For example, suppose that items 1, 2, 

3, 4 yidcl sllrvival tiIIH'S 40, 10, 20*, 30*, respectively, where the asterisk 

Îmlicatps a cellsoreù lifet.ime. The rallk statistic, on the basis of this data, 

is knOWll to he on(' of the following: 

(2,1,3,4); (2, 1, 4, 3); (2,3,1,4); (2,3,4,1); (2,4,1,3); (2,4,3,1). 

In or<1f'l' to rnakc au illfercncc about (3, we calculate the probability that the 

llnclcrlyillg rank veetor is ally one of these (Kalbfleisch and Prentice, 1973). 

This prohahility is the sum of six terms of the type (3.16). Remark that 

this approitch ignores the orderillg of censored lifetimes between successive 

faillll'ps; however, the fad that independent censol'ing is in effect suggests 

that little informat.ion is lost in this restriction (see pp. 11-12). 

SllppOSP HIen that !( iteIlls, with labels (1), ... , (I(), give rise to ordered 

1111('('llSOred ('vent. times Tï < T!j < ... < T'k, and suppose further that Mj 

itellls, lahd<'ù (j, 1), ... , (j, MJ) in sorne arbitrary order, are censored in 

[Tf, TJ+l) (j = 0, ... , J(), 

whcre To' = 0 and TÏ\. + 1 = 00. The rank vector generalized to censored 

data., as ddiucd hy Prentice (1978), is 

Ru = «1), ... , (K); {(j, 1), ... , (j, MJ)} ,j = 0, ... , !(), 

which is in fad. an equivalcut form of the generalized rank vector as de­

fiJl('d iu the introduction. The marginal likelihood of /3 Îs cornputed as the 
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probability of obtaining all possible underlyillg mllk vect.ors in t.h<, 1ll11'('U­

sored experiment which are consistent with Ra. This probabilit.y (ddilling 

T(Q) = 0) is 

which is Cox's partial likelihood fUllction. Hcre, f7(tlzd aud Si(tIZt) a]'l', 

respectively, the nonrandom conditiollal densit.y fuuct.ioll and cOlldil.ioual 

survival function of Ti, given Zt. 

Recall from subsection 3.2.1.1 that. t.he likelihood of 

-regardless of the conditional d.f. of Tt (i = 1, ... ,11,), givell Zi Iii 

n 

= Q II ([J,(YzlzdJÂI [Si(Yilzï)]I-Â') , 
i=l 

where Q is the contribution to the likelihood provided hy tinws of ('('Il},orings 

and labels of items censored. For type II and prugressivp type II c(,Ilsoring, 
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q is 1 and n:~, (UM~I)-I rcspectivcly, where Ri = Ef=i(Mj + 1). Recall 

that, fol' progressive type Il œnsoring, Mi and R, are predetermined; thus, 

fol' tlH'se two ccnsol'ing schemes, 

ri 

Heucp, fol' tlu' ab ove two censoring mechanisms, the probability function 

of Rn is givcll by 

IRa (rG) = f .. ·.r Lik dT/( .. · dTf, 

1'f<· .. <TJ( 

which, for the special case of model (3.4) equals C LI ((3), for sorne constant 

C. 

:/.2.2 Tlw Log-mnk Test. 

Consid('l' llOW th<' two-sample scenario described in section 3.1 as related 

t,o lllodd (3.4). Invoking covariate definition (3.3), log(LI (,8)) becomes 

wh<'l'<' D Il = 1 or 0 accol'ding as the failure at Tt occurs in the first or 

secoud group, wher<' RJz is t.he l'isk set size of group j at time T,a, and 

w l1<'re Il t = RIt + R '21' The score stati s tic for Ho : !3 = 0 is therefore 

I{ 

U = L'(O) = L (Dl; - i/) , 
,=1 

whidl is t.hp log-rank st.atistic. The f'xpectation and variance of U, under 

Ho. \Vel'(' ('Valllat,('d in chaptel' 2 usillg 2 x 2 contingellcy tables (set W (t) of 
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chapter 2 equal to 1). We now evaluat.r thes<, f,\\'O <'lllployillg dl<' prol)(\l't.Îc·s 

of a score stat.ist.ic. 

Applying the notation of subsectioll 3.2.1.1, 

h" 

L(f3) = L li (;3), 
t=l 

wherel;(,B) = log (Pr(Si = (i)IHi) = log [('xp(jJDIi)/(Rllc# + Rz.)]. Now. 

Pr(Sj = (i)IHj) is a conditional probability funct.ioll ov('r ~(Tn, ilud it, ({('­

pends on the parameter ,B. It follows thell just as for étuy »l'Ohahility 01' 

density function that 

and 

for i = 1, ... , K. Hence, unconditionally undcl' Ho, 

and 

EHo (1~(O) = 0 

Var(I~(O)) = E (Var(I~(O)IHd) + Var (E(l~(O)IH1)) 

= -E(E(I~'(0)IH1»' 

The properties of iterated expectatiolls yicld one further {'('suIt. Sinn' H t 

and Si are included in Hj if i < J, wc have under Ho, 

E [l~(O)l;(O)J = E [E(I~(O)lj(O)IHJ)] 

= E [1~(O)E(l;(O)IHj)J 

=0. 
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Henc:e, 

Cov Ho (li(O), Ij(O)) = O. 

TrNtting [( as a fixcd quantity if it is in fact a random variable, we have, 

uwkr Ho, from the above rcsults 

K 

E(U) == E E(I~(O» = 0 
i=l 

aud 

[ 

K ] K 
Val'(U) == Var ~1~(O) == ~Var(l~(O» 

=E{tE[(i') (~J Hi]) 
== E [-L" (0)] , 

wher<' 

- L" (0) is, of course, the conditional permutation variance estimator for the 

log-rallk st.atistic. For large nI, rt2, and Ii, VarHo(U) can be adequately 

r<'placed by -L"(O); thus, the SWL statistic we have generated for testing 

Ho : rJ = 0 is 

which is t.he log-rank test. 

3.3 Case nf Evolutionary Covariates. 

:1. S.l Lzkdzhood Considerations. 
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Since the covariates of concern now af(-' t.imr depelld(,llt.. Ul<' }>ropor­

tional hazards model no longer is invarimlt ulldr)' the group of ditf(,l'('I1-

tiable, strict.ly increasing transformatiolls; t.lms, Ul<' margillal-lik<'lihoo<l-of­

the-ranks approach is inappropriate hf'rp. The Illcthod of part.iilllikdihood, 

however, is once again applicable. 

As in subsection 3.2.1.1, consider n items t.o hav(' 1)('('11 plact'cl 011 t,t'St. al. 

time 0, and let Yi, Ti, Â, be the survival t.illU' variat.e, faihll'(' t.illl(' val'iat.(', 

and censoring indicator variable correspollding to it.elll i. MOl"('oV<'r, SllPpOS(' 

that the evolutionary covariate Zz{t) is associatcd with ikm i. Lpt. l/~(t) 

denote the covariat.e path up to and induding tiul<\ t, 

Then the data for the ith individual are (Yi, Âj, Vi{~», i = 1. ... , u. TIJ(' 

conditional hazard function of Til giV(,ll Vz(t), is d(,llOt('d hy 

hi(t/Vi(t» = lim Pr(Ti E [t, t + h)I~(t), Ti ~ t)/h, 
h--.O+ 

and as a special case of intercst wc suppose 

(3.17) 

As in subsection 3.2.1.1, we cOllsider J( itcIUS lal>('l('d SI, ... , 51\ t.o giv(' 

rise to ordered uncensorcd lifetimes Tt < T2 < ... < Ti{. Tlt(' fC'rUitiuiug 

n -!( lifetimes are right censorcd. For i = 0, ... , J(, Id, 

where Si,;' Ti~j, and Mi have the same definitioll a.s in 3.2.1.1. lu additioJl, 

set SK+l = n + 1. The dat.a in its original forIll, 
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i!-> thus eqllivalent to 

the likdihood of which is 
K+I K 

Lik = II f X.I/I._I ,8.- 1 (Xilhi-l,('-l) II Pr(Si = (i)IH(Tt), Tt, ,c(T1o+». 
i=l 

H('re, Hi is as prcviously dcfined, H(t) is the collection of an censorings, 

faihlr('S, a.nd eova.riate values in (0, t), while ,c(t) describes the path of all 

c:ovariates up to hut not inclllding time t. 

Th<' second product of Lik, under assumptions similar to those of p. 38, 

IS 

rr
K 

[ hU)(TJIV(j)(TJ» ] 
L 2(f3) = ° ° 

j=l E'E~(TJO) h,(Tj IVi(Tj » 

rr exp (,BZ(i) (Tt» 
K [ ] = i=l E'E~(Tn exp(f3Z,(T,O» , 

which is a partial likelihood. 

The dcrivatioll of the full likelihood, Lik, proceeds as in subsection 

3.2.1.1, hut the factorizatioll (3.11) of 

Pr[H{t + dt) = h{t + dt)/H(t)] 

is l'<,p)a.c('d with 

Pl'[.c(t + dt) = f(t + dt)IH(t)] Pr[Dt = dtIH(t), L(t + dt)] 

X Pr[et = Ct /H(t), L{t + dt), Dt]. (3.18) 

The product. iutegra) of the first term of (3.18) equals 1, while that of the 

SPCOIHI tprm yidds 

ft [exp(;iZ(t) (Tt)ho (T,O)] exp [-lce 

L (eXP(!3Z1(t»)ho(t)dt] 
.= 1 0 lE~(t) 

(3.19) 
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under assumptions similar to those stat.ed on p. 38 (Kalhfleisl"h and Prl'll­

tice, 1980, p. 127). li censorillg is llollinforméttive. t.he ollly port.ion of Lik 

that is of concern to us is (3.19). 

Kalhfleisch and Prelltice (1980, p. 141) compared t.lH' asymp' ot.ic ('ffi­

ciency of L 2 (j3) relative to (3.19) for the paramet.ric 1ll(}(l<-1 

where Yl(t) = 1, and where ,xo(t) as weIl as t.he reumiuillg !Ii(f) arl' COlll­

pletely specified. They showed that L2(/3) is fully efficieut if 

can he expressed as an exact linear combinat.ioll of t.h(' !Ji (t) 's. 

3.3.2 Generation of SWL Statistic.<; ExcludinfJ tJw LOfl-Rank 1(!,<;1. 

Suppose that the life-testillg expcrilllcllt of suhs(,ct.ioll 3.3.1 is, Illur(' 

specifically, a two-sample scenario with the eovariat('s <kfilH'cl as in (3.a). 

We therefore have 

K 

L(j3) = log(L2(f3)) = L {D1if3W(Tt) -log[RIt ('xp(fjW(I~})) + H~i}}. 
1=1 

A test for Ho : 13 = 0 can be based on 

K 

L'(O) = L W,(D h - Rli/ R,), 
i=1 

where Wi = lt'(Tt). Using arguments similar to those PI'f'sf'Iltf>d iu sllhs('('­

tion 3.2.2, we can show that, und cr Ho, 

E(L'(O)) = 0 
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and 
{ Var(L'(O» = E( -L" (0)), 

K Il R. W 2 
• / where -L"(O) = Ei=l 11 Il~' '. Smce, under Ho, AsvarHo(n-

l 
2L'(0» 

1 

cau he consistently estimated by -L"(O)jn (Andersen and Gill, 1982), an 

appropriate test for f3 = 0 under asymptotic conditions Îs 

If wc' n'strict W(t) to being a function of only 

C H(t), Un is an SWL statistic. Here, 

n 

Rj(t) = L l(Yi ~ t, i E group j), 
i=1 

for j = 1, 2, while 
n 

N(t) = E l(Yi ~ i,.!li = 1). 
i=1 

( 
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CHAPTER 4 

THE ACCELERATED FAILURE TIME 

MODEL AND SWL STATISTICS 

4.1 Introduction. 

Consider a life-testing experimcut (not lweessarily <kalillg wit,h Ul<' (,Olll­

paris on of two samples) in which t.he failnre tinu' variat.{' for HU' i' Il iklll. 

Ti, is modelled as 

Wi = log Ti = pz, + Ei' i = 1, ... ,71, (4.1 ) 

Here, zi is a column vector of p fixed covariatcs assoC"Ïat,ed wit.h it.('1ll i, Il 

is a row vector of regression coefficient.s, and Ei is au ('l'l'or variahlp wit.h 

nonrandom density f and absolutcly continuons, strict.ly iIHT{'itsiug .J.f, F. 

We refer to (4.1) as the accelerated fail1L7'e t't1ne 'ffI,odet, TIl<' dat.a for t.1U' 

i th item are (Yi, Âll Zi), where Yi is t.he log s1ll'vival t.iUH' and ~l is t.lH' 

censoring indicator variable (~, = 1 if Y, = Wll Ât = 0 if }~ < W,). TIH' 

principle objective here, of course, is to make inf<'l'pJl('e about. fJ frolll tlH' 

available data. 

Consider, now, a two-sample scenario sncb t,hat. UH' it,('IIlS of sallll']<' 1 

are denoted by labels 1,2, ... , nI whilp those of sa.Iupl(· 2 are (I('llote,cl ),y 

labels nI + 1, nt + 2, ... , ni + n2 = n, and such that tlw log {~v('Ut, t.iUH' fol' 

item i, i = 1, .. . ,n, is defined by (4.1) with 

if i E group 1, 

if i E group 2, 
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and with fJ = {'J. The null hypothesis is, therefore, Ho : (3 = O. For the 

n~rnainder of this chapter, wc shall con cern ourselves with model (4.1) as it 

applies tu dU! two-sample problem. 

The numeratur of the optimal pararnetric test for (3 = 0 is derived, under 

an assulJlPd J, as follows. Let W1° < ... < WI{ represent the ordered uncen­

son'c1 Wj's in the combillcd sample of size n. In some arbitrary order, let 

W::" .. .. W:: M • dcnotc thc ccnsored W/s in [Wt, Wi+1), for i = 0,1, ... ,!(, 

with W~ = -00 and WK+ 1 = +00. AIso, let. (i) and (i,j) represent item 

la.hels corr(\SI)OlHling to W[' and Wi~j respectively. The log likelihood, under 

ét Ilouillforuutt,ive, indcpendcnt censoring seheme, is 

(s('(' p. 44). Dy convention, log f( -00) = 0 and any summation al + .. ·+am 

ha.s value i',(,l'O if 711, = O. A test for Ho : f3 = 0 utilizes the score statistic 

K M. 

1'(0) = L(Z(i)Qi + L Z(i,j) Qt), (4.2) 
i=O j=l 

wlH'l'(\ z(O)qo = 0, where 

Qt = - J'(wt)/ J(Wt) 

is a SCOl"t' COI'1'Psponding to W,D, i = 1, ... ,1(, and where 

Q~ . = j(ll'f-'. )/[1 - F(W~ .)] 
l,) I,) l,) 

is a SCOfP corrf'spondillg to HTtj' i = 0, 1, ... , J(; j = 1, ... , Mi' 

A m'lml Ulic('rtainty cOllccrning the choice of f, and the possibility that a 

f('w outlyillg lr:)'s éUid/or lVi~j '8 may have a donlinating effect on (4.2) are 
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important reasons for seeking alternat.ives t.o t.ests basl'd on (4.2). \Yit.h 1111-

censored data, rank procedures generally POSS{'SS gn'at.l'r rob11st.Ul'SS agaillst, 

a wrong choice of f and greater ollt.li('r resist.anc<' t.hall do Hu'il" para.nH't.l'k 

analogues 

In section 4.2, we review t.he const.ruction and pl'op('rt.i<'s of t.ll<'s<' rank 

procedures since the development. of their ("('l1sor('<1 dat.a count<'l'part.s is 

essentially the same. In section 4.3, we g{'Jl('ratp ccusor('<! dat.a t.est. st.a.t.ist.ics 

by means of the generalized rank vector. Ult.iIllélt.dy, w{' sha.H d<'lllollst.rat.(' 

that these generalized rank procedun's cau be cxpressed as S\VL st.nJ.Ïst,ics. 

4.2 Rank Tests with Uncensored Data. 

Suppose, in the above notation, that therc is 110 }>ossihilit.y of (,('l1S01'ill~, 

so that aIl Mi = 0, and the total sample size is 11, = K. W<, clellot.(· Hw l'itllk 

vector by 

where :Ji is the label attached to Wr Thus, lcttin~ r = [(1), ... , (11.)], W(, 

have 

(4.3) 

A locally most powerful rank test of (J = 0 can b{' basecl on Ul!' s('o('(' 

statistic from (4.3). StraighUorwal'd calculations giw! 

V* = dlog Pr(R = r) 
n d(3 

1)1 

n 

= LZ(t)(Jt, 
(1=0 t=1 

( 4.4) 
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wher(! Qi is a nonrandom score attached to W,O and equal to 

= n! f··· J <p(Ui) ft dU; 
. ;-1 

If) <. '<U n -

= E {tP(Ud}. (4.5) 

Hel'(\, Ui = F(W;J) is the i th order statistic in a uniform (0,1) sample of 

Hi~(\ n, and tP(u), fol' 0 < li, < 1, is given by 

Not.(\ that. 

"" n LQt = LEl/o(-I'(wt)/f(Wt» = LEHo(-f'(Wi)/f(Wi» = O. 
i=1 ,=1 i=1 

Hplll'C, 
n 

Ello (V:) = (:1) ~ Q, = O. 
&=1 

TIl<' fa.d. t.hat. Ui has cxpectat.ion i(n + 1)-1, for i = 1, ... ,n, leads to an 

as)"mpt.ot.ically pquÎvalcllt system of scores 

(4.6) 

S01ll(' Înt.("l'(\st.Îllg special cas('s of (4.5) and (4.6) are as follows. A logistic 

d(,llSit.y. l(t) = ('t (1 + c')-2, gives Wilcoxon (1945) scores for both (4.5) 

and (4.6). Q, = 2i(n + 1)-1 -1. A st.andard normal density gives normal 

scores for (..f.5). Q, = Ello (lFt) (Fisher and Yat.es, 1963), and van der 

\V(1(,I'<I('11 (1953) scorps fol' (4.6). Qz = G- 1{i{n + 1)-1}, where G is the 
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st.andard normal dist.ribut.ion fUllctioll. Simihu'ly, rul ('xt.relll(, valut' d('llSit.y, 

f(t) = exp(t - et), yields for (4.5) UI(' rxpoll('ut.ial 8('or('s 

Qi = n-1 + (n _1)-1 + ... + (11 - i + 1}-1 - 1 

of Savage (1956), while the double CXpoIlf'utial deusity, l(t) = (>-111/2, 

gives for (4.6) sign (median) scores (JI = 8igll {2i - (II + l)}, wit.h Q, = 0 

ifi=(n+1}/2. 

The exact null distribution of v,: can bf' det('rmin('d Wit.llOut, klloWl<'(l)!,(' 

of f sinee each of the n! possible realizat.ions of R ar(' ('qually likdy Hwl('l' 

Ho. Exeept in the simplest of probkms, though, the C'om}>ut,atioll of this 

distribution is very laborious. An alternative t.('st pro('('dul'<' n'suIts from 

the fact that V; / JVaruo (V;) is asymptotically a. st.a.ll<léml uormal variat.(' 

under (3 = 0 and under mild restrictions 011 t.he ('xplanat.ory variahh's (1-l1i.j('k 

and Sldéik, 1967, p. 159). Here, 

Results with contiguous alternatives (Héijck and Sidâk, 1967, p.2(8) show 

that the Pitman asymptotic efficiency of 

(based on the assumed score generating densit.y f) relat.iv(~ to UH' 0I,t.irullIll 

parametric test (based on the adual density fo) will (luit" W'IH'rally J,(. 

given by 
2 

{J~l </J(u, !)</J(u, fo) du} 
(4.7) 

fit; 

• 
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It. is pre~umed that the Fisher information terrns in the denominator are 

finit.e. ExpI'f's:;,ion (4.7) rcveals that the Pitman ARE is one if 1 and la 

agrœ 111' to location and scaling. Under 1 f:. 10, (4.7) typically indicates 

suhstantial improvemcnt over the pararnetric analogue. For example, the 

normal scor(~s tpst, umIer rnild conditions on Jo (Puri and Sen, 1971, p.118), 

has dficiency eqllal or g,reater than that of the least squares test. Under 

Cauchy sampling, for instance, the latter procedure has efficiency zero, 

whik its rank count<,rpart has efficiency 0.43. Rank tests themselves differ 

sOlllpwhat. in effidcncy properties. For example, under Cauchy sampling, 

tlH' Wikoxon proœdure has f'fficiellcy 0.61, while the Sigll test has an even 

higher effki('ucy of 0.81. It. is thus important to consider the class of plau­

sihle samplillg; density flluetions in select.ing a rank test. 

4.3 Censored Data Analogues of Rank Tests. 

4 . .'1.1 Const1'1lctum 01 Test Statistics. 

To begill with, aSSUlue that if a failure and one or more censorings oceur 

at. the saille instant, the failure is imnwdiately followed by the cellsorings. 

Now, r(lcall that }~ is t.he log survival time correspondillg to item i (i=l, 

... ,u); thus, let l'to < ... < yro be the ordered distinct }i's, let 1)i be the 

it.(llll which fails at. 1:°, and Id, ei be t.he set of items which are censored 

at. }:o. 1)1(e1) = 0 if t.hel'e is (are) no failure (censorings) at ~o. The most 

(,Ol1lprdH'Ilsiv<, (l}.t.(,llsioll of the rank vector to right censored data considers 

(Pet,o. 1972). This st.atist.ic is th(' maximal invariant stat.istic under mono-

tOll(, iUl'l'<'asillg t.ransformations 011 the li 's, but its sampling distribution 
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depends on functions linked to t.he' cPllsorillg nH.'dléUlisIll (Crowley, 19ï·!). 

As a consequence, if the cPllsorillg lllcché1.11islll Cé1.UllOt. he pr<,cisl'ly id('llti-

fied, L cannot be utilized for generat.illg t('8t.S of Ho. Mor('uv< '1" ('\'('11 if t.lH' 

censoring scheme can be exactly dcfiu('d, L willusually uot. yidd au ('llsily 

derivable ~wo-sample procedure. An alt.('ruatiV<' <tpproarh, as disCllSS('d ill 

subsectioll 3.2.1.2, views t.he rank v('et.or of t.h(' llnderlyiuf!, Bit 's, which is 

only part.ially observed owing to t.he cCllsorillg, to 1)(' of prillmry illt,('r('st,. 

The "rank vector probability," in this scenario, is t.ak('ll t.o 1)(' Ule J>roha-

bility of obtaining aIl possible rank vectors in the Ull<'('llSOl'<'(1 ('xp<,riJlH'ut, 

which are consistent with 

RG = [(I), ... ,(K); {(i,l), ... ,(i,Ald},i = O, ... ,/{], 

where (i), (i,j), and Mt have the saIlle dcfinitioll as in s('d,ion 4.1. Re; is, 

of course, the generalized rank vector. The ahove prohahilit.y is {!;iV('1l hy 

(4.8) 

Note that at j3 = 0, (4.8) cau be integrated dircctly without, SIH'cifyillJ!; f 

and F. The value obtained iu this case is 

where Ri = EJ~i(Mj + 1). 

As in (4.4). a score statistic for tcsting f'J = 0 may be obtailH'cl fWIIl (4.8) 
.. 

glvmg 

d(logp(;3) ) 
Vn = df3 

K 

= I)Z(I)Qi + MhCJ:), 
(3=0 7=1 

(4.9) 
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whct'(~ Mit = Z(i,l) + ... + z(z,Md' Q1 is a score corresponding to Wt, and 

Qi is a score C"orresponding to each of Wt~l"'" Wt~M" (We set Qô = O.) 

Assuming suffkient rcgularity that diffcrentiation and integration may be 

il1t(·('(:hal1w~d, the ullccnsorcd and ("cnsored data scores are respectively 

The st.at.ist.ie (4.9) is of the same {orm as its parametric counterpart (4.2), 

t.hough llulik(' (4.2), the saUle score is assigned to Wt~l' ... , Wi~M.' Johnson 

and MPllrot.ra (1972) d('rived (4.9) for the special case of simple type II 

C(,llSOl'lUg. 

As in (4.5), t.heses scores can be expl'essed in t.enns offunctions on (0,1). 

Spt, Il! = F(Vi), i = 1, ... ,1\, and define for 0 < u < 1 

J'(F-l (u» 
«p(u) = - f(F-I(u» ' «I»('Il) = (l-u)-lf(F-l(u)). 

(R <'IlHtl'k t.hat. p( Il) = fui cjJ( s) ds / (1 - 'Il).) The scoring system can now be 

writ,t,eu 

fi 

(Jz =.1 ... J cP(U z»)J1[Rj (l-u)MJ d'/1.j], 
111<' <lIh 

fi 

Q; = .1 ... / «I»(u,) IIrRj(l- Uj)MJ dUj]. 
)=1 

(4.10) 

In ol'd('l' to list. SOlll(' spC'cific scoring schcmcs. let 

fi 

.lCl/(u,» = /· ... r g(u,) II[Rj(l- Uj)lIIJ dUj] 

111< '<1111. )=1 
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for an arbitrary funct.ion g. A simple calculatioll giw's 

J«l - uz)m) = IIi ( Rj ). (Ill = L 2, ... ). 
. R)+m 

)=1 

(-1.11) 

Letting 

which is Prentice's moment est.ima.t.or of F(w), ulldel" rI = O. has('(l Oll tlH' 

data from both sanlples, we note t.hat. FJ>(lrn = .1(11,). Now rdul"lI t.o 

the scores (4.10). A logistic SCOf(' geuerat,ing d('llsit.y givps (M /1) = 2/1 - L 

<)(u) = u so that from (4.11), 

(.l.J 2) 

These are Prentice's scores (Prclltiee, 1978). 

An extreme value density yields (1)( Il) = - log( 1-"ft) -1, ("1- ( 1/) = - lo~~( 1 -

u). Direct. integration gives 

J{log(l- 'II.)} = - L R;', 
)=, 

so that 

Q: = L[(;I 
J=I 

which are log-rank scorc[,. 

Note that - Vn corresponds to t he s("(Jr(~ ~tat.h,t.ic ari~illg frotll tlH' IIIIH!f·1 

(utilizing the density fUllctioll and dJ. c:orrcspolHliul4 1.0 dt 11('1' 1~ or W;"; l = 

1, ... ,n), where h is a nonrandolll, ahM)lutdy ('olltillllOIJ~, lwwk('}'('asillg 

(iO 
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fUl1ctioll from [0, (J) Ol1to (-00, +00), and wherc a E (O, +00) or a = +00. 

How('v('r, sin("(~ v,t and -v" have identical efficicncy properties for a given 

alt(·l'nat.ive, <'itlH'r (Jf th(' two can he utilized fol' testing f3 = 0 in the above 

lIlo(ld. Now, Id ho (t) })(' au unspecified, nonrandom, nonnegative function 

ddiw'd on [0, +(0) snch t.hat 

Hm HoC u) = +00, 
tL-(l-

Ho(u) = 1." ho(t) dt, 

and wlu'J'(' a E (0,+00) or li ::= +00. Then, if h(u) = 10g(Ho{u» and if 

E, has an (·XtI·('lllf' valul' d.f., t.he conditional hazard function of Tt given 

:':t (i = l, ... ,11), with " (Tt ) d('fillCd as above, is described by model (3.4); 

}u'w'(" I;(·Ol'('S (4.13) (wit,h or WitJlOut "-" in front of each) should be used 

for t.est.illg Ho : jj = () in (3.4). As shaH be dPlUonstrated in subsection 

4.3.3. -\~, wit.h scores (4.13) can be writtcn as 

1\ 

L::(:.:(Z) - RliR-;l), (4.14) 
1=1 

\\,h(,1"(' RII = E~~IU\/lJ + Z(J)' R('call t.hat in subsection 3.2.2 wc derived 

(·1.1-1) as il scor(' st.iltist.ic wit.hill th(' cont,ext of mode! (3.4). The result.s, 

t,lH'n>fol"{\ of t IH' pn>viol1s paragraph are consist.ent. with t.hose of subsection 

3.2.2. 

ln suh1-('ct.ioll 4.3.3. wr shaH show that. thp scores (4.10) satisfy condition 

(2.2); COllS('lllH'utly, (-1.9) Céln b(' {'xprrssed as a \VL statistic, and so 
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Suppose, for the moment, t.lmt t.he {'<'llsorill~ lll('challislll is id{'utÏral for 

all n items. TheIl, t.o d('h'rmill(, a variallc(' {'stimator for l:. UUdl'l' Ho. Wl' 

may employa perulUt.ation lllodcl wh<'l'{' the" s('or('s art' hdd fix('d (('ilch 

of which is treat('d as distind), but wh<'n' ('(leI! of t lu' Il! p01'>sihh' l;lhdlillg~ 

of the n scores is eql1ally likdy. Snch a lll()(lt'I yi{'lds ft variatH'(' of 

which is of course the perullltat.ioll variance ('st.illlat,or. Not.t, t.ha" V,I is Hl<' 

exact variance of v~, u11d('r Ho, for simph' and progr<'ssiv(' t.Yi>(' II ('('lls()rin~ 

since the scores, the Mt's, and l\ ar(' llOlll'alldolll in hot.h of tlI('s(' sit.uat.ions. 

In contrast to Vp , the Fisher informatioll l)(ts('cl OH p(;-J). 

v __ d 2 Iogp(f-J) 
o - d(j2 (4.15) 

provides a variance cstimator that. is g('lH'l'ally appropriat,l'. W<, IIOW d('JIloll-

strate that, un der Ho, Vo is l111hias('d for Var Un (l/:l ) hoUl wit.h alld wit.hout. 

censormg. 

Consider first th" ullccIlsored rallk prohahilit.y PI'(R = r) of (4.:1). Fo,' 

this case, wc have 

(4.W) 

Moreover, with ccnsoring ahsent, v,. redll('e~ tu v,; of (4.4), whih' Vo f'('du("('s 

to 
2 ( 

V
*2 ,fi Pr R = r) 

n - n. d(j2 (4.17) 
(1=0 
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Hf'UC'!', from (4.16), (4.17), and from the fact that Ello(l1;) = 0, we have 

Now l'f'tllrn to the c('Ilsored data gcneralized rank probability p(j3) of 

(4.8). Expn'ssion (4.15) c:allbercwrittcn 

Siucc' ElIfI(l~n = Val' 110 (Vn ), it is only nccessary to show that the expec-

t.at.ioJl of t.l}(' second tenn, muler Ho, is zero. For this, note that 

wlu'l'(' {ri, 1'2, ••• ,rn ,} is t.hp set. of aU possible underlying uncensored rank 

v('ct.ors, and wh<'re S is t.h(\ set of lluderlying rank vectors consistent with 

t.he g('IH'raliz('ll rallk v('d.or. Ther!' arc n!j(R1 • ··RK ) vectors in Si hence, 

l r is in faet, t.he average of 

n!d2 Pr(R = r) 
d;J2 13=.0 

0\'('1' aH of t.lu's(' v(·('t.ors. Prpnt.ice (19ï8) u~es this result. and an inductive 

argulllPnt. to dpIllollst.rat<' that, for siulple or progressive type 1 censoring, 
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for i = 1,2. The condition BI Ill('anS that the' llllderlyillg, tllH'('llsOrt'd rallk 

vector is in Dt, where DI = {(dl'''' .du)lëùl d; > li'·}, D'J. = DI' Il'· = 

min( wr, ... , w:), and wi is t.he r('alized potputial ('('llsorill~ t,illH' fOl' it,('1ll 1 

(i = 1, .. . ,n). It follows t.hat. Ello(U) = 0 as d('sirt'd. 

Of course, furt.her work must. 1)(' dou(' t.o (lelllollst.rat.(' t hat El/
II 
(U) = () 

for independellt c('nsoring mcchanisllls in g,('ll<'ral. l\fort'OV('l" fmt.1u'l' rt'-

search is rcquired to cst.ablish, for indq)('lHkllt. c('usorillg, lll('dtallisIllS, t,Ill' 

consistency of n-IVo for Asvarllo(n-I/2l~,) whell ri = o. Pn'Ilt.ic(· (19ï8), 

though, declares t.his t.o be so for simple and progn'ssiv(' type' II C(·llsol'illg,. 

Consider now th(' calc1l1atioll of Vo. Aft('r stra.i~ht.forwar(1 diff(·I'('I1t.ia.t.ioll 

of p(f3), Vo can be writtt~n as 

where 

[ 2 2] tPt(U) = -ri logf(T)jdT r=F-I(It)' 

"p2(U) = [-d2 Iog(1- F(r))jdT2
]r=F_I(tL) , 

and 

K 

B = L {Z(t)cjJ(ud + Mit «I»(Il,) } • 
i=1 

Vo can be calculated explicitly in the aforellH~lltiolled sJH'cial ca,'ws. A 10-

gis tic density f gives the variance cstimator 
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A*=II
Î 

(Ri+
1

) 
z R. +2 ' 

J=) J 

i = 1, ... ,1\. TIl(' extrclIle value distribution gives a variance estimator of 

K K 

L {R;I Riz - R;2 Ria} = L (R;2 RhR2i) , (4.18) 
t= 1 

wlH'rp R'2z = RI - Rh' RCluark t.hat the extreme value distribution, once 

again, yidds (4.18) as a variancp pstimator if "-(3" is replaced with "+,8" 

ill p((J). TIl<' int,('gral (4.8), t.hough, with '"-(3 " replaced by "+(3 " and 

wit.h f(J') = (·xlJ(.r - er ), is tractable and leads t.o 

whidl is Cox's part.iallikelihood function. Here 

H('call t,hat., in suhsect.ion 3.2.2, we generated (4.18) as a Fisher information 

haSl·d OB Cox's part.ial Ekdihood. 

ASStllllillg that Vo l'" is consist.ent for Asvar( 11, -1/2 V,,) under Ho, the hy­

pot.)u'si;/,ed asymptot.ic null Ilormality of t.he proposed test statistic Vnh/vo 
caUllOt. ))(' provell with Vu in the given fOrIll. It. can be shown, however~ 

t.hat. l ~1 is ('xl>l'('ssihk as a WL statist.ic. With v" written as such, we can 

coufirm its prcdictpd élsympt.otÏc null dist.ribution. 

4 . .Y.2 An A.'ll/mptotu'al/y Eq1lZ11alent Test Statzstic. 
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The formulae (4.10) are inconvenieut. for Illauy Sl'ort' g<'llpratill!!. d(,llsit.it's. 

f, so that approximate scores of t.he t.ypP (4.6) lllay 1)(' pl'<'f<'l'1'('(l. A nl'st.­

order approximation to <ï?( Il,) about U,o = Fp( lr,o) gives 

A similar approximat.ion to 4l( Ua) sugg<'sts tll<' seorin!!. Scll('lll(' 

( 4.19) 

We DOW show, via the methodology of Cuûck (1985), that. l~JVV;; a.ud 
K • 

Sn/~, where Sn = L'=l [Z(,)..p(Uio) + Mhc])(U,o)], art' asymptot.}cally 

equivalent test. statistics. We list, how<'vpl', only highlight.s of I.h(' l'roof. 

Firstly, assume that the score fuudion ~ is t,wi('(' cOIlt.iUtlOllsly diH"PI'('II-

tiable on (0,1) and that 

(4.20 ) 

for sorne 0 < ct < 5/2 and 0 < L < 00. Now, <'xpand q)( Il,) al'ouml llw t.u 

see that for any i < J( 

1q,(Uio) - J {q,(u;) JI = J {(UiO ; ",)2 ,p"(du, + (1- d)(J ... ) } 

{ 
2 } (U,o - u,) l " ( 1 < J 2 q) (~u, + 1 - ~)Uw) , 

(4,21 ) 

where 0 < ~ < 1. It follows from (4.20) that 

< L~ -(X( -:-(}f + U-(}f) _ u, If} 
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for sorne 0 ~ L < 00 and sorne 0 ~ (} < 5/2. Thus, (4.21) is bounded by a 

cOllstant tim(!s 

(4.22) 

Cmdck then shows that both tenus in (4.22) are less than a constant times 

R;'(l-Uio)'l-n" with thefirst. termbeingsofor RI ~ 1 and with the second 

otH' h('iJl~ so for Ri ~ 6. H is pasily checked that Cl) also satisfies (4.20), 

and so ft silllilar argument. can be uscd to bound the difference between 

" 
R(lI}) = L 1(Y; ~ w), 

1=1 

W(' hav(' 

1 U,2:G 

,. Ii, 2: fi ,. N, 2:6 

< ,,-' l 'l(constant.) L [R;! (1 - Uw )2-0(1 + Md] 
I.U.:;::Û 

< -,,-'l'!.(collstallt.) .f 
(1 - Fp(w»2-Q 

(R(w)/n) d(R(w)/n) (4.23) 

w U( 1/1) 2:(i 

l' --. 0 Hl\ " -+ 00 if n < 2. If (\' > 2, t.hCIl, because 1 - Fp(w) > R(w)/n, 

(-4.23) is hOllud('d hy a cOllst.ant t.imcs 

f ( R( Il' ) ) 1 -(l' P 
-II -I/:!. -1l- d(R(w)/n) --+ 0 

II': U( Il') 2:(; 
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as 11. --+ 00. For bot.h (\' ~ 2 and (\ > 2, t.he nllit.(, lllllUlwl' of t('l'ms wl1('11 

R(w) < 6 are easily seell t.o be llegligihlp. Ass1lluillg that VO/Il is hO\llld"d 

away from zero in probabilit.y as 11 --. 00, it follows t.hat 

as required. 

ln that sruue paper, Cuzirk (1985) shows that. asympt,ot,ic ('«l1ivah'IH'(' of 

the two tests remains so if eit.hcr the Kaplélu-Mpi('1' ('st.iul<tt,oJ', or Alt,shul"J"s 

estimator, or the Peto-Pct.o C'stimat.or is nspd in pla.ce of Uw 

Consider now t.he following examples of thp SCOrÎllg sYSt.('lll ( .... L 9). A Il 

extreme value density for f yiclùs SC01'<'S 

A logis tic density gives SCOf<'S 

which are identical to the ('xad scor('s (4.12). A st.aw lard norlllai cl( 'lIsit,y 

gives 

(r = l/(G-J(!p(W1(J»)), 
1 1 - Fp(W:)) 

where g( t) is the standard normal dcnsity and G( t) is tIl!' COIT('sl'owlillV; 

d.f.. A double exponcntial density yiclds 

{ 
-1 

Qi= 1 
if Fp(WiO) ~ 1/2, 

if Fp(WzO) > 1/2, 

if FIl ( W:)) ~ 1/2, 

if FII(W10) > 1/2. 

Here we have defined 1'(0) = 1/2, forl'(O), in (lct.ual fact., (lo('s ilOt. ('xist. 

Finally, the family of dcnsitics 

if fJ = 0, 
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if p = 0, 

if p > 0; 

if p = 0, 

if p > 0, 

which are scores corresponding to the class of tests proposed by Harrington 

a.nd Fleming (1982) (note t.hat limp_o+ fp(x) = fo{x)). 

4 .. Y . .'I R(~lJ1·e.';entlLtion a.'; (m SWL Statistic. 

From th(' r('su!ts of suhsedion 2.3.1, the score statistic (4.9) can be 

writ.t.eu as 
K 

L[((Jz - Q;)(Z(z) - Rh R -;1 )), (4.24) 

i= 1 

if t.ll<' SCOf('S satisfy 

(4.25) 

Th('s(' equat.iolls illd('(,d hold as Mehrotra, Michalek, and Mihalko (1982) 

<I<'llloustratpd. 

First, Ilot.e t.lmt. 11pon direct int.egrat.ion on Ui+l, Ui+2,' •. ,U K, (Ji and 

(1* may bl' Wl"it.tPll ~ t • 

i-l 

(J, = ./" .. / <I{u z)Rj(1 - tl,)R.-I :n {RJ {1 - Uj)MJ du]} dUi,( 4.26) 

"1 < <tt, J=1 

i-l 

(Ji = ./" .. / ~(lIt )R,(1 - t/z)Il·-1 II {R] (1 - Uj )MJ duJ } dUi, 
tll<"<U. )=1 (4.27) 

wl1<\I'(\ t.he produd. tl'rm in both of t.hpse equations is unit y if i = 1. If 

Ra > 1. t.lH'll t.hp illt.cgral on 11, in (4.2ï), 

f 1 ~(udRi(1 - Il,)R. -1 d'llj, 

• U._I 
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where Uo = O. cau be integrated by parts usillg U = f(F- ' (II,)) ami (n' = 
Ri(l - u,)R.-2 dUi. This iutegration yi('lds 

hence, 

i-2 

X II {Rj(l - llj)MJ d'llj} dltl_1 

j=1 

Ri Q* Qi 
Ri - 1 z-1 - RI - l ' 

as required. H Ri = 1, then i = ft and 1v[/\ = o. Int,<'grat.ioll 011 1/./\ III 

(4.26) with these values shows that 

1.1 4>(u/\)dul( = <I»('llK-d(l- 'lt/\-d 

UK-l 

hence, QK = Q'K-1' which is the specia.l case of (4.25) for RI = 1. '1'11('1'('-

fore, sinee Qz and Q: are solely d<'pendcut, on RI, R'}., ... , R" W(' COIH"lud(' 

that Vn / v"Vo is expf{lssible as au SWL statist.ic. 

Note from the ab ove resllits that du' rallk st.atistic for 1l1l("(·llSOl"l·d dat.a, 

K 1( 

v,; = L Z(z)E(</J(U(I»)) = E [Z(z)E(<jJ(U(I»)) + MIzE(ffJ(U(z»))) , 
i=1 

can thus be written as 

K 

L [E(4)(U(i)) - ~(U(l»)) (Z(z) - Riz/RI)] , 
1= 1 
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wIH'I'C' Mit = 0, and whcre U(i) is the i th ol'der statistic in a uniform (0,1) 

samp](' of size n. 

Uud(·I' t.h(l conditions of (4.20), the statistic (4.24), via a methodology 

similar to t.hat of subsection 4.3.2, can be shown to he asymptotically equiv-

aient. to 
K 

S~ = L [rP(Uio ) - <I»(Uio)J(Z(i) - RliR-;l) 
i=1 

(Cm'.Ïck, 1985); conspqucntly, under these conditions and under the as­

sllmption that Vo/n is hounded away from zero in prohahility as n -+ 00, 

ST:/ .;v;; is asymptotically cquivalent to 

MOf{'OVPl', aSYlllptotic cquivalcnce between these two tests holds for any 

pair of SCOI'<' fUllet.iollS rP(u), <J)(u) such that cP satisfies both (4.20) and the 

rondi t.ion 

1.1 c/J(u) du = 0, 
• 0 

aud SUdl Umt <J-( Il) is dcfilled as 

<Ji(u) = ,{ 1>( •• ) ds/(! - u). 
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CHAPTER 5 

LARGE AND SMALL-SAMPLE 

BEHAVIOR OF SWL STATISTICS 

5.1 Introduction. 

In this chapter, we shaH be concerlled with asympt.ot.ic and slllall-sampl<­

properties of S\VL statistics. Our examinatioll of asympt.ot,ic char(lct,(,l'is­

tics (section 5.2) assumes that a ra.n<lOlll ("{,llsorship lllocld is in df<'d, wit.h 

the potential censoring times of each salllple id('ut.Ï<'ally di~tribllktl. Fol' il. 

discussion of large-sample behavior as pertaillillg t.u t.he wholc class of iudl'­

pendent censoring mechanisms, sec Gill (1980) a.nd Andersoll et, al. (1982). 

In subsections 5.2.1 and 5.2.2, we show that th(' limit.inl!, disf.rilmt.ioll of il 

WL statistic, under respectivcly the null hypotlH'sis awl a S('llW'W'I' of ('011-

tiguous alternatives, is a normal distribution. TIl<' variauc('s in t.lH'sc' t,WO 

cases are identical, while the means a.re diffcl'('nt. Wc~, as wl'll, slmll cl('J'ÏVI' 

consistent estima tors of the variancc. 

In subsection 5.2.3, we first gencrate an optimailimit.illl!, wC'ighl. fUIlct.ioll 

for a special class of contiguous sequenccs of alt.el'llat.ivl's. Sllbsc''lW'llt.Jy, 

for a particular membcr of this claSH, wc HUgg<'st that il)} SWL st.at.ist,k 

can be asymptotically fully efficient if and only if thC' ('c'llsoring (li~t.ril)\J­

tion of sample 1 is identical to that of sample 2. Wc' tlH'Il ('ondl1dc· 5.2.3 

by constructing a test which should he especially powerfnl agaimt. a pal'il,­

metric alternative that can be reduccd to a loc:at.iou falllily aftc-r ft ~uït.a"l(· 

transformation. 
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lu suhs(·ction 5.2.4, we pres('nt, '\TL statistics whosc asynlptotic null­

hypotlll'sis variarH'(' is fl'('(' of both the failurc time and censoring distribu­

tioJ1~. Sllhsprt,ioIl 5.2.5 i~ COIlcCl'llcd with aspects l'elated to consistency of 

tiH' t('~b. W(' ('ondwk our ('xamination of asymptotic properties in suh­

:-,(·(·t.iOJl 5.2.G with a C'omparisoll of the cfficacy of censored data extensions 

of tlH' Wikoxon and Savage statistics against spccified alternatives. 

III ~(·('ti()1l 5.3, W(' éU'(' couccrl1('d \Vith small-sample hehavior of SWL 

:-,tat.ist.ic~. Sllh~('ctioll 5.3.1 dmls with the estimation of null distribution of 

:-'Iwcifk llu'lIllH'rs of this class of procpdures, whilc subsection 5.3.2 examines 

POW('l' prop(,l't.i(·s of sd('ct,('d t('stH. 

5.2 ASYlnptotic Properties. 

5.1i.l L1:ff/.1,tzuf} Null Dzstr-ibutwn of a WL Statzstic. 

TIl<' followillg, d('rivation is hascd on the methodology of Tsiatis (1982), 

who t'ousid('l's the aSylllpt,otic joint distribution of sequentially computed 

\VL st.atistics. 

Stlppo~e " it('lllS an' put 011 test 111 a two-sample scenano, with ni 

(i = 1, 2) IwÎng, t.lH' llllluber of itPllls comprising samplc i. Without 108S 

of g,<'llt'ralit.y, aSSllnH' sampI<' 1 cOllsists of it.C'm labels L ... , nI, and that 

salllpI(· 2 (,()llsist.s of t.llP l'<'lllaillillg Iahds. 

TIH' (,(,ll~()l'illg lll<'challislll t.o be implf'lll('llted hpl'(' and throughout sec­

t iOIl 5.2 is th(' randolll C<'llsorship lllodd with thc potcntial censoring tinles 

of ('a ch sampI<' id('utically distrihutC'd. Thus, let the nOIlIlcgative randoll1 

"ariahl<'s T" (', dCIlotc l'esl)('ctively the failure time and potential censoring 

tilllt' l'OlTl'SIHllHlillg to it,('lll i, and let Fj(t), GJ{t} be respectively the failure 

t.iUH' and (,Pllsorillg, <i.f. associaf,ed with sample j. The 11ull hypothesis of 

ï3 
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interest. is Ho: FI (t) = F2 (t) = F(t). It is assUlw'd now and thro\l~ho\lt 

5.2 that. 

(1) if Gi(t) (i = 1,2) is not absoIllf,dy cOllt,iullOllS, if, is Idt cout inuolls, 

and 

(2) Fi(t) < 1 for evpry t E [0.00) (i = 1,2). 

Let Yi and ai be, respt,ctivdy, t.h(' survivai t.illl(' varia hie and ("(,lIS0rill~ 

indicator variable correspolldillg t.o it,('lll i (~l = 1 if Tl < C,. ~, = () if 

otherwise). Thcn the complet.<' data for tlH' l't.lldy il' n'pl'('s('ut,('d hy t.IH' 

n independent.ly dist.ributcd randOlll v('ct,Ol'1'> (}'z, ~l)' i = 1, ... , II N()t.(·, 

however, that t.he sets 

each consists of idelltically distribut.ed ralldolll vpct,OI'S. 

For testing Ho, wc l'n" t.he WL st.at.istic 

where 
11 

R(t) = 2: [(}~ ~ t) 
j=l 

and 
111 

RI (t) = L [(Yj ~ t). 
j=1 

The weight functioll (J(t) is assurned under Ho to (,ol1v('rw~ in prolJahiiity 

to a functioll Q( t) ulliformly on [0, (X). Q( t) is dqH'udc'nt 011 t t.hrollg,h 

F(t), 0 1 (t), and 02(t), where F(t) = 1- F(t), GlU) = 1 - GI(t) (i = 1,2). 
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TIH' kpy to df'riving t}l(' a~ymptotic mlll distribution of Sn is to approxi­

mai,(. it by a SIlIIl of iIHl<'pendently distributed random variables. A routine 

applicat.ion of tlH' Lindberg-Fdler version of the centrallimit theorem will 

t.lwu JH' wwd t,1) ohtain Hl(' asyrnptotic results. 

W(· fin.,t, IlOt.!· t.hat S'I can })(' writtcll a~ 

wlH'I'(' N
1
(t) = l(}~ < t,~, = 1). Dy adding and subtracting tenus, we can 

)Twriu· (5.1) as 

"1 [DO" {Rdt )} n [=" { RI(t)} 
S" = ~ ./0 (J(t) 1 - R(t) dJl(t)+l=~+1 Jo Q(t) - R(t) dJi(t), 

(5.2) 

wlwl'(' .1
1
(1) = N1(t) - .I~: .À(.,,)l(}~ > s)ds, and where '\(t) is the hazard 

ftlllCt.ioll as!'.ocÏat,ed with F(t). 

AlI sllhs(·(lll(·Ut. resllits a.re llOW uutIer the null hypothesis. By using the 

law of lar1!,(' lllllll)wrs, wC' can cstahlish that as n ~ 00, 

and 

",h('r(' 

for j E sa.1llpl<- i (i = 1,2). Here, we have assumed that 
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1 
a condition which shaH be maillt.aiu('d throllghont. section 5.2. lIt'llet" 

RI (t) P () PI 71"( (1) 
-- --+ l' f = -----'---
R(t) p(7rdt)+p:!7I"~(t) 

([,.3 ) 

Now, the statist.ic Sn giv<,u in (5.2) cau 1)(' writt,t'll as 5" + E". ",h('1'(' 

S" = 1: 100 

Q(t){l -,.(I)} d.l,(I) + t l.~ q(ll{ -1.(1) 1 d.J,(I) 
t= 1 0 1 = U 1 + ( . () 

and 

En = - t 100 

q(t){(Rt(t)jR(t)) -I,{t)} d.J,(t) 
i=l 0 

+ 1: 100 

{ô(t) - (J(t) li 1 - I.(t)} dJ, (1) 
i= l 0 

+ t 1~ {Q(t) - Q(t)}{ -,.(!)} M,(I) 
z=n1+1 0 

n (oo -E Jo {Q(t) - q(t)}{(R J (t)jR(t)) -l'(!)} d./I(I). 
i=l 0 

p '/' 
Since Rt(t)/R(t) ---+ 11,(t) and Q(t) ---4 q{t), w(' cau show, via tlH' J'('sult.:-. 

of Tsiatis (1981b, LCIllwa 3.1) and Drrslow aud Crowl('y (197·1, Tlwol'('JI) 

4), that n- 1/ 2 En is a secolld-ordpr t('rIll t.hat. is aSYlllpt,ot.ically J«'f.!,lil!,ibl<'. 

Rence, the asymptotic distribution of the> t-.tatist.jc n --1 /'2 SIl is t.JH' SillJl(' as 

The approximate statistic Sn cau h(' writtell as 

nI [ [y, ] Sn = t; diQ(l'i){l-I.l(Yz)} - Jo Q(t){l-Il(t}};\(t)dt 

+ t [L'1iQ(liH -,,(lm -1 Y, q( tJ{ -,,(t)} A(t) dt]. 
i==nd-l 0 (5.4) 
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Although (5.4) is ('ompl('x, it is nonetheless a sum of independently dis­

tl'ilmu'd raudom variahlps, and so its asymptotic distribution can be oh­

taiw'd hy applic:atioll of t.he Lindh(lrg-Fell('l' form of the centrallimit thco­

J'{'IIl. As wiIll)(' d('Jll(m~trat('d h('low, E(n- I
/

2 Sn) = 0 and 

wlH'J'{' 

T -1/'2S- f) N( '2 1111S, '11 u --+ 0, fT ) as 11, -+ 00. 

Wc' lloW ('ollfirlll thC' ahove-llleutioned <,xpectatioll and asymptotic vari­

alll'(' of ,,-1/2 Su' To do this, w(' nust first evaluate the first and second 

1ll0IlU'Ut.S of 

and 

[~.q(l;){ -I,(l;}} - f.Y. Q(tH -p(tllÀ(t) dt] . (5.6) 

LI't. ()(t) = (J(f){l -JI(t)}. Tll<'ll t.he <-"xpect.atioll of (5.5) is 

{CO (J( t)A( t )7f] (t) dt 
./0 

+ f.= LI.' Q(U)À(U) du } d1rl (t). 

(5.7A) 

(5.7B) 

Illt.{'gl.".illg (5.7D) hy part.s, wc Ilot.e that this equals the negative value of 

(5.7A). H(llH'(l, t.hp pxpect.atioll of (5.5) equals zero. In a silllilar manner, 

W(' cau sho\\' t.hat. t.he cxp<,ct.atioll of (5.6) equals zero. The first moment of 

1/-1/'2 Sil' t.1l<'l'efol'e, is zcro. 
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The second nlOlUellt. of (5.5) can b(' t'xpr(\sspd as 

E { Q2(l~)~,} 

- 2E {(jO;):',.C (1(11)'\(11) <III} 

+ E [{ f Q(II)>.(II) tllI rJ . 
For simplicity of notation, wc shall (knot(\ 

t Q(ll}'\(u)dll 
./0 

by ~(t). Expression (5.8A) is equal t.o 

Expression (5.8B) is ('quaI t.u 

il = -2 [00 (j(Il)(jJ(1l)).(II)7r,(Il)dll . 
./0 

(5.8A) 

(5.80) 

(5.8(') 

Expression (5.8C) is calculated in two regiolls, IlillllPly wlwll {~I = l} alld 

{da = D}. In the region wheI'l' {d, = I}, (5.8C) is {\qua] t,o 

In the rcgion whcre {Â, = D}, (5.8C) is eqllal to 

After integrating D by parts, we notp that B + C + D = O. Ikw'{', t.JH' 

second moment of (5.5) is cqual tu 
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Siruilarly, t.he second IllOlIu'nt of (5.6) is 

2 1 /2 ~ 
(1 = Asvm(n- Sn) 

= lilll Var ( Tt -1/2 Sn} 
U~OO 

') 2 = PI ai + ])2(72 

{OO (l(t)>.(t)()(t)rlt (5.9) 
./0 

l OO 2 - -, -, 01(t)02(t)) 
.J (F(t),G t (t),G2(t))PI]J2 G ( ) G- ( ) f(t dt, 

, () PlI t + P2 2 t 

wl\(')'(' Pl = IIt/U (i = 1,2), whel'e f(t) = F(t)A(t), and where J(Uh U2, U3) 

is il uOlll'allclolll fUIlCt.ioll such that 

.J: [0,1] x [0,1] x [0,1] ~ (-00,+00) 

illld sl1ch t.hat. (J(t) = .J(F(t). CI (t), G 2 (t)}. 

If P (t ), G 1 (t), and C2 (t) al'(\ ullspecifird, thrIl (12 is nonevaluable unless 

ifs ÎIlt,('!!,l'alld is fl'(\(\ of CI (t). G2 (t), and unless sup{ t: Cl (t)G2 (t) > a} 

is kllOWll (s('(\ suhs(\('t.ioll 5,2.4), On the other hand, if F(t) is unknown 

hut. G dt), G:z(t) m'(\ dif,('ret.(\ and sp<,cified (for example, simple type 1 

(,(,wWl'ship), thcu 
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where 0 = c~ < cr < ... < C;II art' t.ht' ord('r('d dist.inct vélhu's of t hl' sd 

of points of discontilluity arising from eit.lH'1' GI(t) or G:.df) 01' hoth. allll 

where P;i = Gj(C:) (j = 1,2) and Il: = F(c:). Vnder t.1H' giV('1l ('('I\sorill~ 

conditions, therefore, (12 is cakulahl<'. 

Using mcthods similar to Tsiatis (1981A), il cOllsist,Pllt ('st,illlatol' of (T:!, 

denoted by â;p, can he' obt.aiued hy replacing t.lu' (IUélntit.i('!. in (5.9) by Hu'ir 

appropriate est.imat.ol's. Tlu'l'pfor(', 

(5.10) 

where R2(t) = R(t) - RI (t) and wlH'l'(, 

Â(t} = t t dN,(It) ~ [' À(u)dlt 
t= 1./0 R(u) ./0 

as n ~ 00. â~p is, of course, t.ht' condit.iouall)('l'lllut.at.iou variaw'(' ('st,illla.t.or 

for n -) /2 Sn. We thus have t.hat. 

The permutation varianc(' ('st.imator for TI, -1/2 Su is 

A2 = Pdj 2 ~ ~'(J2(y)(R(r~) -1) 
a p (n - 1) ~ 1 1 R(Yz) 

= (PIP2) (CO Q2(t)(R(t) _ l)dÂ(t) n -1 Jo 
1:, u; = PIP2 100 

(J'(t) (p'''' (t) + ')2"2(t)) ,I,(t)rlt. 

If, in fact, G\ (t) = G2 (t) for aIl t, thcn 

7r) (t) = 7r2(t) = 7I"(t) 'Vt E [0, 'Xi), 

80 



F 

:r 
). 

and :-'0 

(1~ = (12 = 1.00 

Q2(t)PIP27r(t)>.(t) dt. 

Thus, when G 1 (t) = G2 (t) for aIl i, â; consistcntly estimates (72 and 

J('UUl'ich (1983) shows that if 

(i) 11"1 (t) < 1I"2(t), for ail t, and Pl < P2, or 

(ii) 11"1 (t) > 7r2(t), for aIl t, and PI > P2, 

t.lU'1l fT2 ::; a;, wit.h cquality holding only when 11"1 (t) 

TIH'l'efol'(" ulldpl' condition (i) or (ii) and uuder Ho, 

is asyulpt.ot.kally (,Ollservat.Ïve comparcd to n-1/ 2Sn/ jiii;. 

7r2(t) for aIl t. 

5.2.4 L1.1n1.tzU!} D1.st1'ilmtiou of lL WL Stat'tst'tc Under a Sequence of Con-

Suppose' wc' are giVCIl a scqueucc (for fi. = 1,2, ... ) of two-sample set­

ups, t.he lI!.h OIl{' havillg t.he forIll dcscribed in subsection 5.2.1 with a total 

of 11 = III + 11'2 ohserva.tions: 

(l 'Il Ali) (l"fI A 11 ) ('l/,"n An) (yn An) 
l 'UI , ... , III'U7II , Lnl+l,oUt.nJ+l , ... , n'Un' 

H{'l'p, IIdll ~ }JI as Il ~ 00, WhCl'C 0 < Pt < 1 (i = 1,2). Letting Gi(t) 

<knot(' t.hp (,(,llsoring dJ. for sample i of the n th set-up, we assume that 

G:I(f) = G,(f} for ('vpry 11 and t. Let Fr be the failure time d.f. cor­

l'('spolldillg t.o séUuplc i of t.he n t
.h set-up, and suppose for every n and t 

t.hat. 

Ft(t) > F~I(t), 
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with, for each n, strict. illequality at 80111(' tE {t : CI (1)6'2(t) > O}. SuppO!w 

further that for each i 

Fr (t) -. F( t) uuifol'lllly in t E [0, cc) (5.11 ) 

as n -+ 00 for S0ll1P d.f. F(t). \\t.C' l'l'fer tu tll(' S('<}\l('m'(' {F;', F:';'} as il 

sequence of contzg1l01lB alteTnatwC.'l. Th(, 11ull hypotlH'sis SPtl'H'IlCI' is of t.I1P 

form {Fi, F2'}' with Fr = F2 = F for ('very " and t. and w<' aSSllIlH' t.hat, 

large posit.ive values of t.he SWL st.at.ist.ic in <ltH'st.iou I<'ad t.u OH' }'<'j"ct.ioll 

of Ho. Finally, wc aSSUllW t.hat t.he converg('Ile(' (5.11) is snch Umt. for SO!ll(' 

real-valued fllnct.iollS Tl (i = 1,2), 

_ / A A (À~I (i) ) ( ) 
V nplP2 À(t) - 1 --+ Il t ilS /1 -+ ex) (5.12) 

ulliforrnly on ('ach clos('d suhillt.<·rval of [0, +00), wh(,l"<' A:'(I), A(I) .1.1'(' j,llf' 

hazard functiolls associatcd wit.h Fz" (t) and F(f) 1'<'sJH'divdy, awl W(' «((·(jIW 

r = Tl -,2 (Gill, 1980). 

Now, cOllsidel' t.he WL st.atist.ic Sn of suhscdioll 5.2.1 wit.h rI'IH'PS(·utat.Îoll 

(5.1). Letting 

]((t) = (î(t)R , (t)fl.At)(R(t))-', 

Mlft) = t, [N,(t) -[ .\;'(IllI(Y, ~ IllIIll] , 
and 

(5.1) can be rewritten as 

l
CXl K(t) 100 1((t) rx. (NL (t) ) o Rdt) dM1(t) - 0 R

2
(t) dM2 (t) + Jo K(t) ~(t) -1 >t(t) dt 

_ 1.00 
K(t) (Àl(~~) -1) À(t) dt. 
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Gill (1980) shows by martingalc methods that, under the given sequence of 

alkrnati v(~s, 

-1/2 lOO l"( ) [dM I (t) _ dM2(t)] il.. N(O 2) 
TI, .i\. t R ( ) R ( ) ,a 

• 0 ,1 t 2 t 
as n -+ 00, 

where (J'I. is defilled as in (5.9). Thus, from thc latter result, (5.12), and the 

fad that, und Pl' {Fr,F2't}, Rz(t)/Tlz and Q(t) convergeuniformly on [0,00) 

in probahility to 11"1 (t) and Q( t) respcctivcly, wc have under {Fï, F21} that 

w]}(\l'(\ 

(5.14) 

Vnder dU' a.Jt.<'rnativf' hypothcsis, â~ (when 1I"dt) = '1r2(t)) and â~p are 

consist,ent, for (J2. 

5.2.,'1 ASllmplotic RclfLtive Efficiencies. 

Consid<\1' t.h(\ S<'quCllC(, of alternatives dealt with in subsection 5.2.2, and 

kt, r r he 17 2 or a consistent estimator thereof under Ho. Then the Pitman 

dfic(tcy of u- I / 2Sn /v'V (or of 11- 1/ 2 51/) for this sequence of alternatives, 

assulllillg (5.12) holds, is given by 

112 {J~oo Q(t)r(t)4-(t)"\(t) dt} 2 
c- -- - ~~-==-----------~ 

- a2 - PIP2 foOO Q2(t)<)(t)"\(t) dt 
(5.15) 

which, in vipw of Schwartz's illCqUality, is maximized by letting Q(t) = ,(t). 

\Vit.h such a choÏc<' of Q(t), 
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As an application of thE:' above rC'sult.s, Suppost' Hl<' \\·('ight. fund ion ()( f) 

is defined as 

Q(t) = 01'\\1(t) = fJo(R(t)/"). 

where go is some nonralldolll fuudion with domain [O. 1]. H('call t,hat 

QTW(t) belongs to the Tarollc-'Var(' cla.ss of w<,ight. ftllldiolls. Th('1l t.Ju· 

efficacy of n- 1/ 2 5'n, with Q(t) = ()nr(t), (clellot,(·d hy ('nr) is ~iv('11 hy 

(5.15) with 

If, on the other hand, 

where F(t) is the Kaplan-Meier estimator of F(t) has('d on t.lu· poolC'd 

sample of size n, then the cfikacy of 1/.-1/2 Sn (d(\llOt.<-d by ('/\ M) is f.!.iV(·ll hy 

(5.15) with Q(t) = go(F(t)). Now, supposP specifically t.hat !Jo is ddirH'd as 

go(u) = 'Y(F-1(1t)), 

where we have assurncd that F(t) is strict.ly d('('r('a.sill~ ou [0, (X»). (Nol,l' 

here that go (u) do es Ilot depcnd on any fUIlCt.ioll l'('lat('d to titi' ('('lIsori lIf.!. 

mechanism.) Then the optimal weight. fundioll for S'I is (h; At,( t), illld, by 

Schwartz's inequality, el'W < eKM = CIIlIlX unless (h'W{t)/,y(t) is ("(mst.iLllt., 

which is the case when there is no ccnsoring. If, how('v('I', ,qo Îs giv('l1 by 

where S(t) = Pl7r'l (t) + P27r'2(t), and where 7f1 (t) and/or 7f2(t) a.n- strictly 

decreasing, then eTW = cmax • Rcmal'k thouf.!.h that, in t.his nl~f', lIo(u) 

depends on the censoring d.f.'s (Gu, Lai, and Lan 1991). 



i 

SUPPOS(~ now that {F(J: (J E f)} is sorne farnily of distribution functions 

OH [0,00) indexed hy a pararneter (J takillg values in a real interval e. De-

1l0f,f! hy, Ào (t), the ha",ard function associat.ed with Fo (t). Suppose further 

t.hat F['(t) and F(t) of sllhsection 5.2.2 arf' such that 

F; (t) = Fo1t(t), i = 1,2; n = 1,2, ... 
• 

F(t) = Foo(t) (5.16) 

fol' SOIlH' (Jo and (J~ E 0. Thercfore, defining 0i, for sorne constant c -:j:. 0, 

hy 

(5.17) 

(tJH 1 asstllIling ..\0 (t) is diffprelltiable with respect to (J at (J = (Jo, we have 

lIcuc<" 

This suggest.s w(' should t.ry to find an SWL stat.istic whose weight function 

COllv{'rges und('l' Ho t.o 

Q() 
li log Ào(t) 

t U dB (5.18) 
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whatever the value of (Jo and t.he definitioll of Gl(t) and G2 (t); snch a t.('st. 

should have efficacy 

') 

2 (OO -1 -1 (dlog À9(1) )~ 
e = emax = C Jo ]Jt P2 dB _ <Jl(t)À/i1l (1) df 

o 9-0 0 

(5.19) 

and be optimal in the claSH of SWJ.J statistÏcs for t.he family {Ffi ( f) : fi E (-)}. 

We comment here that. testing 

against the given sequence of alt.cruat.iv('s is equivalPllt. t.o kst.illg 

Ho: ("* = 0 

against 

* c = (: 

in the model 

• -J.'" 1 2 'l Î 1; 'l = , , (5.20) 

where c* Elis an unknown paramct('r, and wh('l'<' tlH' illt,('rval 1 is s,wh 

that, for aH c* E l, 

F9r(t) > F9~(t) for aIl t awl n, 

with, for each n, strict inequality at, some t E {t : G 1 (t )G·A t) > ()}. 

Gill (1980) shows, undcr H h that the likclihoocl-ratio t('st is asymptot,i­

cally normally distributed with mean pal and variance' 1, Whf'l'(' 
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Hence, as far as Hl is concerned, t.he Pitmall AIlE of t.ht' opt.illlai test in 

tht class of ~'NL st.atistics with respect t.o the IllOSt. powerfnl t.est. is 

with equality holding if and only if G 1 (t) = G2 (t) for aIl t. 

It still l'emains to show, howcvcr, that, a.n SWL stat.ist.ic ('an ))(' COJl-

structed for which (5.18) holds and hencc (5.19) do('s t.oo. W<, shaH ouly 

do this in the special situation in which 

Fo(t) = \lI(g(t) + (J), t E [0,00), {} E B = (-0Cl, +00), (5.21 ) 

where g is a nonrandom, absolutcly cont.inuons, Ilon<!<'('l'('ilsiu/!, f'uudioll 

from [0,00) onto (-00,00), and where 'l1 is an ahsollltcly coutilluotls dJ. 

with nonrandom, positive density ',p on (-00,00) s11ch t.lmt 4", HI!' clC'riva­

tive of 'l};, exists and is continuous at aIl hut. finitdy mitlly point.s. Wc' fkfilW 

f3(t) = ~(t)/(l - 'l1(t)) and l(t) = log f3(t), and llot.e that. 

l'(t) = (1/J'(t)/~(t)) + (J(t) 

exists where ~' (t) does. We suppose that, except possibly ou arhi t.rarily 

small neighbourhoods of at most finitely many points of (-00,00), ['U) is 

of bounded variation on (-00,00). Finally, accOl'ding to SOIllP ('onvput.ioll, 

l'(t) is assigned finite values at the points ±oo and at tlH' point.s w})('['(' 'l//(t) 

does Dot exist. 

The family defined by (5.21) is tcrrned a "time transforuH'd lo('atioll 

family." For this parti culaI' case, the pararneter r;* in (5.20) is an df'rw'IlI. 

of [0, +00), and so c > o. 
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Now, F(J(t) has di'llsity f/(t)'IjJ(g(t) +9), and so it has hazard rate '\o(t) = 

(j(g(t) + O)g'(t). SiIl{"(~ 

W<' cldüH' our {)ptimal w('ight functioll by 

wh('r<~ Foo (t) is the Kaplan-Meier estimator of Feo (t) based on the pooled 

sétlupl(, of silf,e 1/.. Of course, Feo (t) cau be replaccd by either AItshuler's 

('st.iJUat,or or Prclltic<,'s pstimator or the Peto-Pcto estimator. Ren1ark that 

ll('itlH'r 00 nor auy of g(t), CI (t), and (;2(t) enters into the specification of 

(J opl (t) as wc requin'd. 

SllPpOS(' for t.he moment that for an 11, and t, 

F;' (1.) = FI (t) = W(g(t) + (Jo + 0:), F;(t) = F2 (t) = W(g(t) + (Jo - ct), 

whpn' (\' is a paralll<'t('r known to be greater than or equal to zero. Note 

IH'l"e that., althollgh FI (t) and F2(t) do Ilot vary with n, t.hey have the same 

hasic para.tll<,tric fonll as 

(5.22) 

r('sp<'d.iV<'ly. wlwr(' 0:/ is d(>fined as in (5.20), and where c* E [0, oc». The 

pair of parall1('t.rÏc failure tÎme models in (5.22), as .) unit, is equivalent to 

t.he r('gressioll Illo(l<>l 
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where Ti is the failure time variate assoriated with it('lll i. E, il' ëUl ('1'l'O}, 

variable with d.f. 'li, and 

." -
{ 

1 
"'Z - -1 

if i E sampI<' 1. 

if i E sampll' 2. 

The null hypothesis here is Ho: C\ = O. Now, it cau 11(' showll t hat. t)1(' 

score statistic generated froP1 thic rq~rcssion lUodd, u!.iul!, Uu' ~('IH\l'aliz('(1 

rank vector, is precisely -2l!;1' whcl'<' l~, is as in sllhs('ct.ÏOll .... 3.1 \Vit.h t.lH' 

exception that the scores employ "\}J ," "'Ii'" in p!aC(' of "F," "f" l'('sl)('div('ly. 

This score statistic, in turn, can he writtcn as a WL st.at.istic alld is asymp­

totically 8lJ.uivalent to 2Sn with (}(t) = Q(lPt(t) (s('(' suhspct.ioll 4.3.3). TIH' 

r(~sults of subsection 5.2.3 rcveal, thel'eforc, that. - 2V;, (or -V,,) is t.lH' op-

timal WL statistic, und cr asymptotic conditions, ag,aillst tlw alt,(·l'llat.ivp 

specified hy (5.22). 

To conclu de this suhsection, consider t.he alt,prllatiV<' hypot.lH'sis /lI, ilOt. 

necessarily restricting ourselves to thc paranKtrÏc fmllily (5.21). A classical 

family of rank statistics for uncensored data has the fol'lU 

where cP is a nonrandorn function defincd on [0, 1] s11ch t.hat. 

l' t/Jru)dll= 1, 

and where 

F(J (t) = R(t) 
o n 
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is a.n estimator of PèrJ ( t) ::-:: 1 - }90 (t) bascd on the combined sample. Since, 

lluder Ho, 

n --1 /"l. Ln is asympt.otically fully efFcicnt against Hl if and only if 

A(t. ())= d(10gÀ9(t)) 
'''' 90 t dB (5.23) 

ahs('nt, and that 

TIH'rpfor(', assuming condition (5.23) holdq and that G I (t) = G2 (t) for aIl t, 

a WL st.at.ist.ic which is asyrnptotically fully efficient against Hl and which 

n,duces t.o fi, - i /2 Ln in the absence of ccnsoring has weight function 

As far as parmllct.ric farnily (5.21) is concerned, under the assumption that 

5.2·4 A sym]Jtotically Distribution-Free W L Stat't.st't.cs. 

ASSlUlH' iI~ this subs('ction that. the alternative hypothesis is fixed (the 

alt<'l'uat.iv<' do('~ .. Hot, vary wit.h n), 80 that the 11ull hypothesis is Ho: FI (t) = 

F'2(t) = F(t). 

R('call from subs(,ction 5.2.1 that 
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• 
where the nonraudom functioll J was thel"{' (ktiucd. A sllitiricut conditio\l 

2 .- - -~ . 
for a to be free of F(t), Gl(t), (T2(1), and 1(/) IS t.hat. 

Q(t) = J(F(t), Cl (i), C~(t)) 

= J*(F(t))I(Gdt )G2(t) > 0) PIGd/) + P2G2(f) 
C, (1)(;'2(1) (5.2·1 ) 

where J* is sorne nonrandom fuudion dpfilH'd ou [0, IL ml< 1 wlH'l'!' .1. (ft (t)) 

is the null hypothesis limit of O(t) wit.h (,(-,llsoriug "hs<'ut. (L<'lll'galls 198·J). 

For such a Q(t), 

where u* = F(t*) and t· = Sllp{t: C, (t)G2 (t) > O}. A w('ight. fil Il et. ion for 

which equation (5.24) is satisfkd is givPll hy 

~ ~ - Ri (t) R2(t) ni '/1.2 

Q(t) = QDF(t):.= Q(t) n1'1(t-) + n1'
2
(t-) n,(t) Rif) 

x l ( R 1 (t) R2 ( t) > 0) J l' d t - ) l' '2 (t.- ) 

= VnPtP2Q(t) 

~ 

where Fi(t} is the Kaplan-Meier estimator of Pl(t) = 1 - FIU) IJit~.j('d 011 

sample i (i = l, '2), where (J(t) is a randoIIl weigltt fuudion (1d.(lrtllill<'d b.v 

- p -
such that, under Ho, Q(t) ---+ ./*(F(t)), and where 

nI 

N;(t) = LI(~ :-::; t'~J = 1) 
1=' 



.. 
and 7T < T~ < ... < T'k arc the ordcred llnccnsored failure times in 

t.lH' pook(l ~amJ>k of si~(' /1,. Of cour!'lC, Olle obvions possibility for Q(t) 

is J*(F(t», wlH'J"(' F(t) is the Kaplan-Meier f'stimator of F(t) bascd on 

tlH' ("(Hnhilll'rl hatupk. The asymptotic nnU distribution of a WL statistic 

wit.h w('ight fuud.ioll Q !}F(t) will be rrcc of F{t), Cl (t), and G 2(t) (that 

il'>, disl.rilmt.ioll-fr(·(·7). lu part.ieular, with Q(t) dcfined as in (5.25) 

1/2 V 2 n- Sn ----+ N(O, (J IJF) as n --+ 00. 

Now, SUPPOh(' for tll{' lllOIlH'ut that. censoring is absent, and consider 

t.11(' rauk s tatist.ic Ln of suh~!('ctioll 5.2.3 with (1 P (Jo (t)" there replaced by 

the nota.tion "F(t)." R('lllark that. Ln rcmains unchanged with <jJ(F(t)) 

suhst.it.ut.ed with c/J(F(t))I(R I (t)R2 (t) > 0). In addition, we note that, with 

C('llsoriug ahsC'llt" the square-root terms 011 the right-hand r.ide of cquation 

(5.25) vanish. HCIlC<', l'<'calliug, tl1P points made in 5.2.3 concerning the 

rdat,iollship het.w('pu Foo(t), F(Jo(t), and F(Jo(C), a censored data extension 

of .,,-t/2L1l which is aSYlnpt.oticully distrihntion-free under Ho is a WL 

st.atist.ic whos(' wcigltt. f\ludion is givcll by (5.25), with Q(t) = 4>(F(t-)). 

5.2.5 Con,lH,strncy of SWL Stntù;ücs. 

Lpt, HA 1)(, S0111<' fixcd alt(,l1la.tive hypothesis, and let V be a 2 or a con-

sist,('ut l'st,imator t,hel'cof 1111(1<'r Ho. If V is a random variable, assume, 

Huder If, \, t.hat. l' is bouuded away from both z('ro and +00 in probability 

as II ~ 00. TIH'11 a OIH'-sidcd SWL statistic, n- I / 2Sn/.Jfï, which rejects 

Ho WIH'lH'vpr 1I- t / 2 S u /v'V > Z)-o is consistent. against HA if, under HA, 

1/') P 
7/- -Sn ----+ +00 as n ~ 00. (5.26) 

ï From IWf('on, any stat.ist.ic whase distribution is free of all underlying d.f.'s shaH be 
\'{'f('rn'd 10 as lwing d'U~:rtbutwrl-f7'cc, 
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.. 

Now, ullder HA for i = L 2, 

and 

O(t) ~ (J*(t), 

where Q*(t) if, depclldcllt. 011 f via t.he fnuct.iolls Fdf), F'l U). G\(I), alld 

02(t). Thcrefore, leU.ing 
Il 

N;(t)= L I(l~ ~t'~l =1), 
i=uI+1 

we have under HA. 

n-1Sn =n-- t (:JO Q(t)RJ(t)R2 (t) (dN:~ _ dN~(f») 
./0 R(t) RI (t) fl.Af) 

~ 100 

I{*(t)(},I(t) - },2(t)df, 

where 

T.~*( ) _ Q*(t)}J1]>27ri(t)7r~(t) 
A t - , 

PI7rf(t) + 1)271-~(t) 
and where .Àj(t) is the hazard fUllct.l0lt as~ociat.('d wit.h S<llJlp!f· i. (i = J, 2). 

Hence, a suflicient condition for (5.26) to lwld is 

1.00 

1\* (t)(Â) (t) - Â2 (t)) dt > O. (().27) 

Note that Sn-in addition to n- I
/

2 Sn/JV- is (:ollsist.{')}t. agaiust. JI A if (5.27) 

is satisfied. 

We now establish consistency of partÏcular sn bsd,s of tlll' da..'iS of W L 

statistics against two types of altC'rnative hypotlH'!..('s. 

sorne t, is ~a lled the ()1'deT(~d hfLZfL1'(1.~ alt(~rI1ativ('. 

(2) The alternative H 2 : F2 (t) ~ F'tCt) for ('v('ry t, and F1(t) f:; }~(t) 

for some t, is called the alternative of .'ltoCh(Mtu; (J1'(1r~nn!l . 



It. is d('ar that HI impli('s H'2' For both HI and H2' wc assume that there 

('xists il 10 > 0 !->llC'h that for i = 1,2, Fz(to) > FI (to) and Gi(to) > O. 

Wit.h f'(·I-t}wct, t.o HI, (5.27) will hold ifq*(f) > 0, Vt El = (O,t*), where 

t* = l-Iup{1 : Gdt)G'2(t) > O}. Renee, a \VL l-Itat.istic which is consist.ent 

agaiu!->t HI hal-l (J(t) > 0, \;ft E (0, T), wher(\ T = supt t : RI (t)R2 (t) > O}. 

Exalllpl(·1-t (lf I-tUdl WL l-Itat.istics iucludc thofo,c of the Tarollc-Ware class with 

.'1 ( 1/) of sllbs(\ct,ioll 2.5.3 sllch t hat. g( 1l) > 0, Vu E (0, 1) , as weIl as aIl other 

\VL st.at.ist.ics dis(,llsspd in section 2.5. Q*(I) is 

fol' ~ he Gphan st.at.ist.ic, 

[(GI (t)G2(t) > O)FI (t)F2(t) (Pl 7r ;(t) + P2 7r2(t» 
1rr(t)1r~(t) 

fol' t.h" Efron stat,istic, and 1 for the log-rank st.atist.ic. 

Wit.h l'('S})('ct. t.o H2' a suffici('ut. condition for iuequalit.y (5.27) to hold is: 

(J*(t) > 0, 'Vt E !, and q*(t) is decreasillg on [ (Fleming and Rarrington, 

19!H, p. 2(7). To provp t.his, rcmark that. inequalit.y (5.27) is, by Integration 

l)y parts, (\(luivalC'ut. t.o 

WIH'J'(\ 

Nt)w. 

Ad/)= f'Ài(ll)du, i=1,2. Jo 

dA"*(t) = PI:27r;(t)7r2~t) dQ*(t) + q*(t)PIP2 
p,7r, (t) + P27r2 (t) 

Pl1r;2(t)d7r;(t) + P2 7r;2(t)d7r;(t) 
x [Pl 7r;(t) + P21r~(t)]2 . 
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.. 
Since FI (t) is continuons on [O. oc) and sin('(' th('l'(' ('xi~ts a lu E 1 sllch 

that Fdto) < F2 (to). th('f(' must ('xist. il r1l/sed int<'l'\'al rel surit that 

F1(t) < F'2(t), \ft E [*. with Pl(t). and h('}H'(' :r7(t). strictl~' d(,<T('a~illg 011 

[*. Thus, assumillg Q'+-(t} > 0, Vt E I. :Hul that (r(t) is d(,<Tt'èlsing 011 J. 

we have, denoting the first and ~;('('ond stUlllllatl<ls (If d [\'''' (1) hy d K t (1) ;l1Id 

dK; (t) respect.ively, t.hat 

-100 

(Al (t) - A'2(t)) dI\~(t) ~ O. 

- /, (Al (t) - A'2(t)) dI{;(t) > O • 
• /* 

and 

- { (AI (t) - A'2(t)) dK;,f) > o . 
.IIH n[D,oo) 

Hence, inequa.lity (5.28) follows a,('(·ordillgly. EXilmpks Ill' wl'ight. fUllCt.iolls 

with Q*(t) charactcrizcd as ahove af(' t.hos(' of t.lH' I01!;-rallk, G(·!taJ1, Pn'II­

tiec, and Harringt.on-Flcmiug statist.ics. TIl<' Tal'OJ1('- Will'(' clash of WL 

statistics will he consist('nt. agaillst. H'2 if g( 1/) > n, for l'V<'l'y 1/ E (0, 1 ), alld 

if g(u) is inereasing on (0,1). Wit.h T('gards t.o Efroll'f.; st,at.ist.i<'. 

whieh is decreasing 011 ] and strictly d('cl'(·a.sillg 011 ]*. H('))C'(', (5.28) i!-. 

satisfied with [(*(t) = l\~iAt), and so Efron's st.at.ist.i(' is (,OJlhist.('lIt. ap;aill!-.t. 

Assume for the moment thllt eensoring is ab1'lpJlt, mut ('ollhi(lc'r t.1)(' ht.ati:..· 

tic Ln of subscction 5.2.4 a<; well as the altcrnativ(' hy(Jotlwhi1'l Il A trH'Ut.iOIH'd 

at the beginuing of suhsection 5.2.5. UIld(~r HA, 
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,. 
f l\~(t) (dA I (t) - dA2 (t)) > O • 

./0 
TII<'11 il ~iV<'1I WL ~t.atistic will lw ('on~ist('nt agaillst HA if, Vt E 1, 

!\' * (t) = /\ ,: ( t ) 
<==:} Q*(t) = I(ë:df)G',l(f) > 0) (PI7rT(t) ~ P2 7r;(t))r/J(PI F1(t) + P2 F2(t». 

(PI FI (1) + P2 F2(t) )Cl (t )G2(t) 

Th"r('fOl'I', il (,PllSOl'(·(t (tata (·xt.(,ll~ion of LII whieh is ronsistC'ut agail1st HA 

is il '\TL si al.istic wit.h w(·ight. fUIlcl.ioIl 

- , 

Q(I) = (Je(t) 

= I(R I (t)R'2(t) > 0) 

1I1)I}J2cP (PI FI (1-) + P2F2(t-)) R(t)F l (t-)F2(t-) 
x 

RI (t)R2 (t) (PIFd t-) +132 F2(t-») 
{i, 2. (J Couq)(J.7'1.,'i07/. of the E.fjù;acll of Tlm~e ClfL.';8CS of WL Statistzcs, 

T1H' discussions of SUhM'Ct.iolls 5.2.3, 5.2.4, and 5.2.5 lcad us t.o iufer that, 

gi V('U a l'étllk st.:ü.ist.ic of t.ll<' fonu L,n tlWl'<' C'xist.s at l<"ast. thl'ec possible 

('XI<'IlSiOllS to aC('OllllllOclak (,(,llsorillg, assumillg CI (t) = C2 (t) = G(t): 

aS)'lllpt ot ically l'fficic·llt. (wi t.h n'sI)(·ct. t.u t.h(· alt.C'ruat.ive hypot.hesis Hl of 

su hs('d ion 5.2.3). asymptotica.lly di!.tl'ihutioll-fr(·(', and consistC'nt 'V'L sta-

t ist it'!.. L(,llrgans (1983) illvestigat('d the ('xt.cnt. t.o which los ses in efficiency 

0(,('\11' WlH'1l a llonoptimal pxtpllsiou is ut.ilizfd. Sppcifically, her stmly in-

volv('d ("('ll~(Il'('d data v,<'IH'ralizat.iolls of t hf' Savagc and 'V'ilcoxOll statis­

tic. Dt·fore tkscrihing dct ails l'<'gardillg dpsign a.nd rcsult.s of the study, we 

pn'M'llt t he varions (,(,ll~or('d data <,oulltcrpa.rts of t.l1('se t.wo statistics. 
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Savagc's test. \Vith exact variallc('. is \\'('11 kUOWIl to 1)(' tl\(' IOl'illly 1ll0~t 

powerful rallk test fol' the ('Xpoucutial SC(l!t- falllily. aut!o with aSylllplot ir 

variance or (,ollsist<'ut ('~tilllat or t lu'l'cor. is a~~>lllpt 01 il'ally fully dfielt'Ilt 

against HI> For this particlliar S\\>L 1'>tati1'>tic. (,"(11) = 1. VII E In.l]. 11('11('(\ 

the asymptotically dficil'ut ('xtcll~iull of SaYa!.?,c'·~ st at h,t ic lias 

which is the' w<,ight. fllnct.ioll cOrrpS}HHl<lillg t,o t 11<' I01!,-l'itnk st al ist il'. 

A Savag<' statist.ic ('xt.('llsion wit.h ft <list.rihlltiou-fl'<'(' <l1-oy III pt "t,je \'iII'ialll'(' 

has wright. fuuct.ioll 

- . 
PI (f --) + F'',! (1 - ) 

Rd'} n'lU) , 

whil<:' a ('ousist.('nt ccnsor('(l data ftllftlogtH' has 

The Wilcoxon pro('('dur<' is the' locally IllUSt. powprful rallk t.<'sl il1!,;IÏII~1 

tÏlne-transforlllcd loeatioll alternatives for HU' logi1-ot.ic c1i:-.t.ribut.ioll, 1l1lc1 b 

<1symptotically fully dfici<'nt. For this part.icular f,(':-.t" (/J( Il) = li; t hH:-', t.lw 

efficient censorcd data count('rpart. of WilcoxOll ':-. l'It.al isl.i(' bal'l 

which is the Peto-Peto weight function. Th!' con:-.istf'llt. (,xu'usioll has 



wlJÏ<'h i.., t Il(' wl'ight fUllction ('orrC'sponding to Efron 's te:;t. The distribution-

frc'c' ('xt('IJ~ioJl hal-> yet to 1)(' studicd and use:; 

GC'hall's statistic, which has (J(t) = R(t)/n, is not a In('mher of any of the 

t.hn·(· da!-.s(·s of WL st.at.il->tics !>r<'sPllt.ed in this suhs('ction. 

Thl' paraulI'trÏc fa.lllili('~ of lifptimc <lJ. 's considered in Lcurgall's study 

('()JIlpris('d, ill fad, t.WO !-.lJC'cial CaS('fi of (5.21): (1) the cxpollential sc ale 

family 

wlH'I'(' 'III (.r) = 1 - C'xp( _('J) and !JI (t) = log(t). and (2) the family 

wIt('rl' tJ/~(.,.) = (1 + (.-.1')-1 alld .lJ'2(t) = log(e' - 1), The alternative hy-

potlwsis fol' (,étch family was sjH'cificd by Hl of sulJscct.ion 5.2.3 with (Jo = 0 

and (' = 1. Not.(, t.hat. FI.o(t) = F2 •0 (t) == 1 - e- t , which is the standard 

C'XpOlU'llt ial dist.ribution, H<'IlC<" siw:c for all censorcd data generalizations 

t II<' VariaIIC('. (7":!. ({('pends 011 t.he Hull hypot.lH'sis failure time distribution 

a:-- ",dl a:-. 0(1). (7"2 b t.!l<' sam(' for bot.h paraIlH:'t.ric familif's, given a WL 

:-.tatistic and (i(l). 

Two tnH's of ('('llsol'illg dist.ributiolls Wf'rc utiIL·;cd: truncated exp onen-

t ial n'llsorillg and llllifol'lll (,Pllsoring. The trullcated exponential censoring 

di:-.trihlltioll~ w('n' 

(i(t) == ' { 

1 _ ('-vi 

1, 

t ~ T. 

t> T. 



1 
for v = 0,1, 2 and T = 2.00. The ulliform Ct'llSOrill!!, d(,llsiti,,:- \\,('r(' /(/1 < 

t < b)/(b - a), for tlH' choÏc('s ((l.b) = (0.2) and (1. 2). 

Lem'gans cakniatcli t.lH' (,{ficaey ('quatioll {5.15) ",it h 

of aIl seven WL statistics agaillst th(' tWtI alU'ruatiVl's for ('(\('h t.YIlI' of 

censoring distribution. ThesC' calculatiolls l"<'v('a]pd t hl' followillg: 

(1) TIl(' cOllsistent extC'IlsiollS (espf'cially t,Jmt, of t.h(' Savag(' ht,alist,ie) 

are more sensitivl' tu lwavy cCllsoriug t.han th(' ot,IH'l' ('('lls0J'('d dat iL 

counterparts. 

(2) The distrihution-fl'ce analoglH' has high ('Hici('llcy rdat.iv(· t,1) !.lI<' op­

timal statistic whcn c(,llsol'iug, i~ mild. Only WIH'1l ('(·l\Smillf!. ('V('Ilt.s 

occur at twicl' the intpllsity of OJ)fiCl'V('<l faihn'('s do('s t.h(' ('Hicacy of 

the distribution-free st.at,istic bCC'Olll(, suhst,fl,nt.ially lowC'1' t.hall t,!Jat. 

of the opt.imal ext.ension. 

(3) As the intensity of ccusol'iug event.s ilH'l'('a,s('s, t.Jw Pit.JIlil.n AH E of 

Gehan's statistic with f('spect t.o tht, Pd,o-Pet,n st.a,t,isti(' agaillst. t,lH' 

logis tic location alternative de('l'('ases. 

(4) Gehan's statistic is less dficacious than tlH' log-l'êtllk awl Pdo-Pl'I.o 

statistic against both alteruatives for aIl t.fI)(·s of c( ·Il~())'illg. 

5.3 Small-Sample Properties. 

5.3.1 Small-Samplc Null Distnb71twn of SWL Stati:;lu;.r;. 

From now throughout the remainder of this ('haptc'r, w(~ employ tJH' t.wo­

sample set-up that was described in ~ubs(,ction 5.2.1 as w('lI as UH' I1otat.ioJl 

of subsections 5.2.1, 5.2.4, and 5.2.5; however, Ilnk~s ot.h('rwi~(' s!)(·cifil'c1, 



W(' do Ilot rf'strict our ccllsoring r,chcmes to the censoring model of section 

5.2. 

In this and Hl(' following two paragraphs, we assurne that the censoring 

lll<'chanism oIH>ratŒ in the same mannel' for aIl n items, that is, that the 

n'llsoriug pattcrm of the two samples (:l,l'e equal. Consider the WL statistic 

5" of ~llhse('tion 5.2.1. This sL: .. tistic can be writt,en as 

(5.29) 

whcl'C 

[ 
~ f l', Q(t) ] Â, [ fY' Q(t) ] }-Â, 

Ai = Q(Y.) -./0 R(t) dN(t) - Jo R(t) dN(t) 

is t.ht> score correspolldillg to item i (i = 1, ... ,n), whel'e Tl < ... < T(k 

art' the ord(>:'ed 1lllC('usored failure times of the pooled sample of size n, and 

wh('l'<' 
n 

N(t) = ~ [(Yi < t, ~t = 1). 
t=1 

Of COlll'S<', (5.29) d<'pcnds on the vector of pairs of l'andom variables 

which is t.he gpu('ralizcd rallk vector. Now, let Pi be the vector PI without 

itelll labds at.tached. Tl'<'atillg aIl idcntical elements of Pi as dist.inct enti­

t.ics, w<, Ilot.e t.hat., Huder Ho and COllditional on Pj, aIl (nn) subsets of size 

fil froIU PI have tll(' same chauce of belonging to sample 1. Henee, letting 

5 (·(tual t.ll<' sPt. of aIl (,:11) such subFets, an exact test of Ho in very small 

sa1l1ph's Célll b{' bas<,d on t.ht' nOllrandom conditional probability function 
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where NIs(a) is t.he number of elclllent.s in S sueb t.hat, Su = a. R('lllark 

that hl (a) is independent of F(t) as wdl as aIl d.f:s l'('latt-d t.u t,h(' ('('11-

soring mechanism. Heuce, the associat.cd exp('ctat.ioll and val'iau('(' ar(' 

distribution-free. In particular, 

S 1 
*) ~ lNts(l) 

E Il 0 ( n Pl = Eo = L.J ( n ) 

lE(-oo,+oo) nI 

and 

Now, let 

and treat aIl identical Ai's as distinct clltities. Tlu'll auot!l<'I' <list,rilmt.Ïoll-

free, nonrandom conditional probability fllUctioIl for S1/ is 

where P; is the vector Pz without item labels at.taeh('d to t.1H' Ai 's, and 

where NzAa) has an analogous definition as NJ.~(fl). Ile calI from s(·d.ioll 

2.2 that h2 (a) is in fact the probability function eorrCHpOlldil1~ t,o t.lH' pel'­

mutation distribution of Sn, while 

is the associated permutation variancp. In the llext paragraph, W(' 1!;IV(' 

conditions under which ht(a) = h2 (a), "ta E (-00,+00). Tllus, if fJH'S(' 

conditions hold and if the censoring mechanisIIl rend(~rs PT UOllriUH)OrH (for 

example, simple and progressive type II censol'Ïng), thpn obviously 11.2 (fl) is 

the exact probability function of Sn undcr Ho. 
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In addition to Âz, Al is a function of 

when~ ~* = sup{TJo: TJo < Yi; j = 1, ... ,K}. Suppose, though, that Ai 

d{~p('nds only on 

Theil p~ is a flluction of strictly 

(1(, R(Tf), ... , R(TÏ< )), 

which is au (\quivaIcnt form of Pi. Henee, if we suppose further that 

fp! IP:! (pi Ip;) is dcgell<,ratc, then, Va E (-00, +(0), 

= PrHo(Sn = aIP;) 

=> hl{a) = h2(a). (5.30) 

EXalllplc\s of SCOl'f'S for which (5.30) holds include those of the log-rank test, 

G('han 's test., and Prentice's test. On the other hand, Ai of Efron's test is 

a fllUct.ioll of 

as weIl as '.Bi. and so, in t.his case, equation (5.30) does not neeessarily hold. 

If t.he c('llsorillg llH'challisnl is Ilot identical for aIl n items, a test of Ho via 

eit.her hl ((l) or 11 2 (a) is llot valid. Furthcfmore. evel1 if the two groups have 

('quaI c(\llsorillg patterns, calculatioll of hl; c) Of h2 (a) for moderate size 
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1 samples is extremely laborious. An alt.('rnélt,iw approach for t.<'St.ill!!, Ho in 

smaU samples, indepcndent of sampl(' ~iz(' and ('qualit.y st.at.us of ('('IlS0rill1-?, 

patterns, relies on approximat.ing t.he tlllcollCtit.iollai null distrihut.ion of a 

standardized version of Sn. Wc address t.his matt('r in suhs(,rtiollS 5.3.1.1 

and 5.3.1.~. 

5.3.1.1 Goodness of Fit of Normal Dist7'1.b?Ltion. 

(a) Re/mlts of Monte Ca1'lo Simu,latwn8. 

li there is a sufficiently large Ilumber of failllres in ('a,ch sampI(" t.]H' 

null distribution of the SWL statistk Sn/ J'V is w('U approxilllated hy t.lH' 

standard nonral distribution. Hcre, V is Varuo(SII) (lf cOlllput.a.hk) or a. 

suit able estimator t.hereof under Ho. The a<l('(!uacy of this approxilllat.ioll iu 

relatively smaU samplcs, howl'ver, is an issue subj('d to llluch cout.)'oV<'rsy. 
~ -.... ------~---_. 

Throughout the last fiftefn ycars, spvrral Mont.t' Cario st.udi('s have' tH'('1l 

performed to assess the goodness of fit of tlH' normal dist.l'ilmtioll a.s a. 

function of variance cstimator, cellsol'ing mechallism, ("('llsorill~ iut.msit.y, 

size of combined sample, equality status of samplf' siz('s (that. is, ('quality 

versus inequality of sample sizes), and eqllality st,atlls of ("(,llsorill~ pat.t.e·ms 

of the two samples. In this subsection, w(' pre·s(·ut. t.he l'e·slIlt.s of t.ltre·(· 

significant studies: Latta (1981), Breslow et al. (1984), alHi Gro~~d d, al. 

(1988). Rather than examine caeh Monte Carlo invpsti14a.tion illClividllally, 

we describe the design and major outcomes of the t.hl'C'e stlldic's as :! wholc'. 

The WL statistics st.udicd had Q(t) = 1, R(t)/n, and F11(t), wlu'l'!! 

Fp(t) is Prentice's estimator of F(t) based on the poole·fI sèlmplC' of siz(' Tl. 

With respect to the first two of these WL statistic:s, tlU! variaw'c' c·stirnal.or:-. 

considered were the eonditional permutation val'iauC'{! and dl{! permut.at.ion 
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variance. As far as Prcntice's stat!stic is concerned, the variance estimators 

utili",('d W('l'P the two afof(~mentioned ones as weIl as Vo of chapt el' 4. The 

lifdime variatps genf'ratcd wcre cither cxponential (À = 1.0), or WeibuIl 

(shapf' parauu'ter 1 = 4.0 and srale parameter À = 1.0), or log-normal 

(,l = 0, (7'2 = 1), or uniform (0,1) random variables. The censoring schernes 

(,oIlsid('f(~d werc as follows: 

(a) simple typf' 1 ccnsorship; 

(b) fix('d cpnsorship, with entry tirnes uniformly distributed on [0, al 
and terminatioll time of st11dy d.t t = a; 

((') a variation of fixpd censorship such that, for one sample, the entr~r 

tiUl('S an' llniformly distributed on [0, a] with termination time t = 

(1" while, for the other sample, censoring is absent; 

(<1) ralldolll censorshjp model of section 5.2 with al (t) = a2 (t) = e-{3t 

for SOl11(' j-J > 0; 

(P) ralldolIl c(,llsorship mode} of section 5.2 with Ci (t) = e-{3t, for sorne 

/3 > 0, and with Ci' (t) = 1 (i i= i'); 
(f) ca,S('S (a) and (cl) present togetherj 

(g) CéUWS (a) and (e) present together; 

(h) t.wo-st,age progressive type II censol'ship with nI = n2 = 50 and 

87 itellls (,(,11sored at the first failure time (this case simulates early 

h<,itvy cCIlsoriug). 

For ('(\.('h ('ombillat.ioll of lifetime distribut.ion, sample sizes, and censoring 

sch(,lIlp, t.h(' dat.a. 

W('l'(' ~(,ll('rat.('d illd<'pelldf'ut.ly a predett::rmined number of times (say N), 
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thus yielding N values of aIl S\VL st.at.ist.Ïrs in <lm ~~t.iOll (t.wo stlldi('s ll~('d 

1000 repetitions. while the other uscd 50(0). Aftcl'wards, oll1wl'Vt'd t ail 

probabilities corresponding to ~ev('ral pr('dd.erllliupd crit.ical \'ahu's W('rt' 

recorded. The nominal tail probahilitics, thel'('forp, ar(' type 1 <'1'1'Ors oh­

tained via the standard normal distribution. W(, now Stl111lllélI'i~(' t.ht' majol' 

results of the studies: 

(1) The null distribution of an SWL stat.istic, rcgardl<'ss of VarialH'(' ('1'­

timator, appears to be approximately normal as long as th(' séUuph' siz('s 

are equal, the censoring patterns are equal, and th<, c('llsorillg ]>('rn·ut.app 

is less than 50%. 

(2) For censoring schemes (a), (b), (cl), amI (f), aIl S\VL st,at.ist,Ïcs giv(' 

very conservative observed error levcls (relativp to th!' nominal l('vpIs) f:n' 

90% censoring in both samples with ni = n2 = 10. 

(3) For censoring situation (h), Gphan's test., with ('it.h<'r Hl<' 1>('1'11111-

tation variance or conditional permut.ation varimH'(', pl'ovidps t.yP(· 1 <'IT01' 

levels which are extremcly conservative. Tests bat-H'd ou t.1u· oth('r t,wo WL 

statistirs, though, have observed type 1 ('l'l'ors which agr('(' wt'11 wit,t. t.JH' 

nominal ones. 

(4) Discrepancies between observed and nominal ('l'roI' kvC'\s (ll'(' g<'IH'rally 

greater for censoring situations (b) and (d) than for case (a). 

(5) When the two samples differ signlficantly in t('l'ms of tlH'ir ('XI)(Tt,('(1 

number of uncensored failure times, aIl tests wit.h couditiolla) jHTllIllt.at.ioll 

variance have a skcwcd distribution, with grNtter tail probabilit,y for tlH' 

critical region where we infer that th(' failure t.imes of tlH' t-?flmpk with Illon' 

uncensored observations are longer. In oth('r words, the sarnpl(~ wllich was 

more likely to yield the greater number of ll11ceuhored lifpt,iuH's WiLh Hlucl! 
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more likdy than the other sam pie to be declared as having the longer 

Jif('tinws. This hias is at trihlltahle to the fact that wh en the failure times 

of th(l sam pIc with expectedIy more uncensored ObSCl vations appear to be 

long(ll' titan thosp of the other sample, the conditional permutation variance 

t(l11(ls to tH' smallpr, awl h('[1 (: (' the absolute value of the SWL statistic is 

la.rger, thall WIU'Il tlH' opposite occurs. Dreslow et al. (1984) provide, for the 

log-rallk tpst, a scattergram plot of numerator versus denominator which 

illllstrat(ls aH' correlation hctwe<,n the two. 

(G) With rpsIH'ct to censoring schcmes (c) and (e), ifnl ~ n2 and sample 

2 is tlll<'(lnsol'(ld, or if nI > rt2 and sample 1 is uncensored, then an SWL 

stat.istic: with l)(lrmutation variance generally ylelds conservative error lev­

els. This ohsprvation is consistent with Jennrich's (1983) asymptotic results 

(s('e sllhsect.ioll 5.2.1). 

(7) If th(' sampl<>s expericnee equ;tl censoring patterns but the sample 

siJ',('s differ, ct t.pst. wit,h a p(-'rmu tation variance generally outperforms one 

with t.h(' sa.Ille WL st.a.tÏstic and a conditiona.l permutation variance, For 

a high perc<,nt.age of cPllsoring, however, (about. 90%) t.his discrepancy is 

very samU. This differenc(' in small-smnple nu11 dist.ribution between the 

t.wo SWL st,at.istics cau he plallsibly cxplaillcd as follows: As indicated in 

t.he discussion of r{'sllit. (5), an SWL statistic with condition al permutation 

Varléll}('(' for auy part.icular weight. fUllction and flot merely for those in 

1l1H'st.ion has. llll<kr iucqualit.y of expected Humber of uncensored failure 

t.iUH'S in eélch sillllple, il skpwed distribut.ion due to the correlation between 

llllllH'rator and dellomillator. As far as the three weight functions of interest 

an' conn'rnet!, t.hil' ('orr('lat.ioll is llltimately attribut able to the fact that 
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the cOl1ditiol1al permutation varianc<' llSPS ,111 the inforlllat.ion pl'o\'i<l('d hy 

(Recall that. Sn is dependent. on {RI(T,O),R2(Tj'),dN~(T,"): i < K}.) On 

the other hand, the permut.at.ioll variance for ('aeh of the SIl 's ("ollsid('rt'd i:-. 

a fnnction of 

{R(TJ) : j ~ K} 

only, and so should he less strongly assocÏaf,ed wit.h dH' Iltllll('rat.or tmd('l' 

inequality of expected numbcr of 11l1C('llSOl,/,d faihll'p tilllPS. From t})(' ahoV<' 

arguments, therefore, we concludC' t.hat., tlnd('r ('quaI ('('IlSOrill~ pa t,t,('I'lIS 

but unequal sample sizcs, the observcd t.YP(· 1 ('l'l'or of ail ~ ,vL st.atisl.ÏI' 

with permutation variance ShOllld be dos('r t.o t.he Jlollliual va.hl(' t.ha.n t.Il1' 

observed error level of a tC'st with tlH' salllP S1l' hut \Vit.h il ('ollditiollal 

permutation variance. 

(8) Whenever the sample sizes and/or cell~orillf!, paU('rus ar(' Ulu>qual, 

Prent'lce's test, with variancc cstimator Vo of chapt.('I' 4, pl'Ovid('s ('ITOI' 

levels which are generally doser to th(' nominal values t.hall I.hos(· of 1.Jl/' 

other SWL statistics. 

(9) Finally, lifetimc distribution does IlOt. havI' Tlluch (>ffi>(t 011 thc> 1)('1'­

formance of a givcn test, kccpillg all other parauH't('rs fix('(1. 

(b) Altenwtive VartfLnce Esümato1".<;. 

ln this subsection, wc assume that the c('n~oriIlg Ulockl of s('diol1 5.2 is 

in effcct. Furthermore, wc maintain the salUe cOIlVC'utioI1!-. ('ow'('l'lliu)!; PU), 

Gi(t) (i = 1,2) as were stated in ~ubs('ction 5.2.1. 

To eliminate the skewncss in small-sarnplc distributioJl iuduc('c! by tJII' 

conditional permutation variance when the cxpect(·d IlIJIllb(!r of 1l11('(>n~OJ'('(1 
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ohsc-rvat.ions in one sample differs From that of the other, one could instead 

;;'2 = (X) Ello [Q2(t)R 1 (t)R2(t)R-2 (t)IA(t)] dN(t) . 
./0 

Hf'J'(', (J( t) is asr,umed to he a function of 

ollly, whik A(t) consists ofB(t) as weIl as other necessary information from 

t.lH' st.udy with the proviso t.hat, under Ho, dN(t) and A(t) are conditionally 

illd{'])(\wlcllt givcn R( t). We thus have 

EI/o [dN(t)lA(t)] = Ello [dN(t)IA(t), R(t)] 

= Ello [dN(t)IR(t)] 

= R(t)A(t) dt 

(Brown, 1984), and so 

= Var 1/0 (S,,), 

Wh(,l'{' l :." is t.h<, cOllditional permutation variance of S'll and where the 

eqllalit.y 

Ello [dN(t)lR 1 (t), R2(t), B(t)] = EHo [dN(t)IR(t)] 

lias lW{\ll \1S('O (Brown. 1984). 
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1 Now, suppose Gdt) = G2(t), 'Vi E [0.(0). with 111 =f. "'2' Th<'ll. Idt.ill~ 

A(t) = B(t) and Ilotillg t.hat. the conditioual dist.rihution of RI (1). p,iWll 

R(t), is hypergeonwtric. Wt:' have 

Renee, 

EHo [RI (t)R2 (t)IA(t)] = El/li [RI (t)R2 (f)IR(t)] 

ll(t)(R(t) - l)n 1"'2 

11(11 -1) 

~2 [.00 n} n2(J
2(t)(R(t} - 1} IN ) 

(J== ((f, 
• 0 n(n - l)R(t) 

which is in fact the permutation varianc(' of S/I' 

li G1 (t) and G2(t) are not idpllt.iral, t.h(\Il fT2, wit.h A(t) = B(t), <I(\))(,l1Ils 

on (G1(t),G2 (t),F(t)) in a cornplex way. Sp<'cifkally, 

whcre the sums are over 1 = Œ, ••• , (J, and wll<'l'(\ 

Q == max(O,l't - n:d, 

f3 = min(7't, nI), 

c(t) = GI (t){l- F(t)G2 (t)}. 
G2 (t){l- F(t)G I (t)} 

if t E Jl, 

if ot.lu\J'wisC', 
(5.31 ) 

Remark, howevel', that if CI (t) = G2 (t) Vt E A, t.1H'1l ('onditiollal ('xIH'da-

tion (5.31) is 

and so 

(5.32) 
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Au f'xalJlplc! of a ('('Jlsoring modd whcre the variance estimator (5.32) is 

appl'opriat(· i~ one in which aIl itcms arc put on test at the same instant, 

yd tl'nninatioll of t}}(' stlldy- the only cause of censoring--occurs at time 

Tt fol' group 1 and T; for group 2 (Tr =1= T;). If, on the other hand, 

CI (t) =1= G'2(t) fer at least one t E A, ( 5.33) 

tlH'll ir'l., with A(t) = B(t), cannot be implement.ed since it depends on 

F(t), whieh is assullH'd uuknown, as well as on G I (t) and G2 (t), which are 

1Il0St. prohahly u11knowll. Dlldcr condition (5.33), thcrefore, rather than try 

to (·st.imaf.(\ jj-'.l, w(' opt. for the approach of incorporating other elements into 

A( f) t.o rcuder (72 distrihlltian-free. The eleIlH>nts chosen are in accardallce 

with t.h<' Sllg1!pstiollS of Brown (1984). 

Ca:-i(' 1: Case whel'e aIl potclltial censorillg time variates are observable 

Suppose' aIl pof,(\Ilt.ial cCllsoring t.imcs, inclllding thase correspondîng to 

UlH'(\llSorp<l lif(\t.illl(,S, arc' ohs('rvable (for example, cellsoring scheme (c)). 

DdiIH\ L)(t), for j = 1,2, t.o he the random variable which illdicat.es the 

11111U})(']" of group j it.eIlls wit.h potential ccllsoring time > t, and let L(t) = 
L. (t) + L 2 (t). Thel"(' are Ui~~P possible risk sets of size R(t) at time t, each 

of whirlt i1-> ('qually likdy umler Ho t.a be ohserved. Thus, letting 

A ( t) = (B ( t), L dt), L2 ( t ) ). 

wc have 
( Ll(t}) ( L2(t) ) 

P (R (t) = . (t)IA(t)) _ l'd t ) R(t)-rl(t) 
rllo 1 11' - (L(t») , 

R(t) 

whil'h is t.he probability fUllctioll corresponding to the hypcrgeometric dis-

t.ribut.ioll. R{'lllark that, in agreement wit.h our original definition of A(t), 

Ello (dN(t)lA(t)) = EHo (dN(t)IR(t)). 
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It easHy follows t.hat. 

E [R ( )R. ( )IA( )] = LI (t)L 2 (f)R(f)(R(t) - 1) 
Ho 1 t 2 t t L(t)(L(I) _ 1) , 

Therefore, 

jj2 = fCXJ Q2(t)L. (t)L2 (t)(R(t) - 1) dN(t), 
./0 L(t)(L(t) -l)R(t) 

Now, 

as n -+ 00 (j = 1,2), MOl'eov('l', 

Henee, under Ho, 

n- 1jj2.!.: {CO Q2(t)~(t)À(t)dt 
Jo 
= Asvar /1" (1/-1/2 S,,), 

Case 2: Case where not. aIl pot.ent.ial C'cnsorillg t,ÎllH' variat.(·s ;n'c' "hSNV-

able 

Suppose, now, that the potential c{'JlSOrillg tiJlH's ('()rr(,sJ)()J)(liH~ 1.0 1111-

censored lifetimes are unobsel'vahle and that. bot.h Gdt), G'}.(t) ,U'(' ("Olll-

pletely unspecified, (Snch a. ccnsol'ing lIH'chanislIl wOllld, for ('XiUllplC', tH' 

present in a clinical trial wherc orw ('ause of C('usoriug for J)()t.h ~aJllpll'~ 

is withdrawal from the study dU(, to sevPl'(' ~id(' dfl·C'l.s of t.IlC' t.l'c·at.IIH"J1t ,); 

hence, Lz(t) (i = 1,2) canIlOt. he ohservC'cl exac:t.ly 'it E (7:H'+'X,), w}J('J'(' 

Tis is t.he smallest unccnsorcd failul'(' time in sélmph· i, W .. kIlOW, I!OWC'VI"" 

that 
~L) 

Ll(t) = R1(t) + L1(Cj ~ t,NJ{C) = 1), 
J=1 
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wlH'I'(' NJ(t) = I(YJ < 1, L.\J = 1) (j = 1, .... n). Now, although the second 

~l1JI1I1lat)(l of (5.35) C'annot b(· observed cxactly Vt E (T1s , +(0), it can be 

appl'oxillla.t,(·d in thi~ inkrval hy 

(5.36) 

wl)('l'(' (i) is Ul<' it('lll la.hel correspollding to Tzo. Expectation (5.36) can be 

,- ::.. 

( ?I(t) dN;(u), 
./0 Gdu) 

wlu·J'p G,U) is t.h(' Kaplan-Meier C'stimator of Gdt). Therefore, Ll{t) cau 

1)(' approxilllat,('d hy 

t- "-

L, (t) = RI (t) + 1 ?l (t) dN;(u). 
o Gdu) 

Similarly, L'l (t) il' ddilled. Suhl't.itut.illg LI (t), L 2 (t), L(t) = LI (t) + L2 (t) 

for LI (f), L'lU), ami L(t) in equat.ion (5.34), wc obtain 

0-7\ = {OO (J2(t}LI (~)L2(t)(R(t) -1) dN(t), 
./0 L(t)(L(t) - l)R(t) 

which il'< an approximat.ion t.o (j'}. defÎlwd by (5.34). 

N ow. uuder Ho. as 1/ ~ 00 

t-

L)(t)/I1J ~71)(t) + Gj(t) ( feu) du 
./0 

= 1r)(t) + G)(t)F(t) 

= Gj(t), j = 1,2; 
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.. 

and 

where f('U) = À('U).F(u). Thercfon', ulldrr Ho, 

-1 - 2 P A ( -1/'2 S ) n a A ~ svar lin ri " • 

Note that a~, like à 2 of case 1, is Ilot C'xdl1sivdy a. fUllCt.ioll of t.ll<' f!,('IH'ral-

ized rank vector. 

We conclude sllbsection 5.3.1.1 (b) by COIlllll<'ut.iuf!, t.hat. 

(5.37) 

even if Q(t) is unrestricted and is allowcd to he' dctcrmiu('d hy 

li the expectation in the integrand of (5.37) is depClldent IIpOI1 CI (1), O'!.(t), 

F(t), and if these d.f.'s are unspecifietl, tlH'll this inte~ral is IlolH'vallla"k. 

On the other hand, if this cxpectatioll is dckrmiIH'd hy F( l) ouly, t.)WII 

(5.37) is free of F(t) and hence calculahle (assmning sup{t: Gdt)G2 (t) > 

a} is specified), regardlcss of whether or Ilot the abov(' (I.f. \ élI'(' klloWJI. 

Finally, suppose that F(t) is unknown hut that G, (t), Q.;.(t) iU'(' disC'J'd,(' 

and specified. Then, if the expectation in question is dq)('wkllt 011 tlH'S(' 

dJ.'s, we can show that Var 110 (Sn) is fre(' of F(t) using a. Wd.1lOdology 

similar to that discussed on pp. 79-80. 
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5 . .'i.1.2 Goodne8,'J oJ Fit of Boot.r;t1'ap Distr'ibution. 

Thi~ sllh~ecti()Il evalllates, via Monte Carlo simulations, the level of 

élCCtll'ac:y l'dative to the standard normal distribution-to which the boot­

strap dist.ribution of an SWL statistic approximates the true nulI distribu­

tion. At tlu: time of writillg this thesis, no other researcher had previously 

(,ollsidered this problem. Before presenting the design and results of our 

st,lldy, w<' hriefty revicw the bootstrap method as devised by Efron (1979). 

COllsider the sample 

where the X t are Li.d. according to sorne unknown d.f. H, and where t.he 

Xi may he of more thall one dimension. Let x = (XI, ... , x n ) denote the 

realized vahl<'s of X. The problem we wish to solve then is the following: 

Givcu a specificd ralldom variable R(X), estimate the sampling distribution 

of R on tlH' basis of the ohscrved data x. 

The boot.stl'ap lllpthod consists of first constructing the sample pro ba­

hilit.y distribut.ion H. putting mass lin at each point X}, ••• , Xn. We th en 

draw t.he sélmplc X* = (X;, ... , X~) from H, where each Xi independently 

t.ak(\s value .rj wit.h probahilit.y lin, j = 1, ... ,n. In other words, the values 

of X* are sd('ct.cd with replacement, from the set {l'I, X2," • ,xn}. Finally, 

w(\ appruximat,(' t.he samplillg distribution of R(X) by t.he distribution of 

R* = R(X*). \V<, n{('r tu t.he latter distribution as the bootstTap distribution 

of Rand t,o X· aH t.he boofslT'ap sample. 

As far as our particulal' investigation is concerned, we wished to assess 
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1 the adequacy of the bootstrap distribut.ion (for p = 0, t, 1) of 

Jooo 
[FKM(t)]P (dNt(t) - ':/N)) dN(f)) 

Un{X) = . 
'}p 

r OO [F. (t)] ~ iiI (t)U2(t) IN(f) 
Jo Idl IF{I) ( 

where X = «Yl, 6 1 ), ••. , (1'~1,.611 )), wlH'l't, t.}w (l"I' ~t) are i.i.d., and wh('J'(' 
A 

F K M ( t) is the Kaplan-Meier estimator of P ( t). Un is, of COlll'S(', HlC' IIar-

rington-Fleming class of tests with conditionall)('rmutat.ioll variatH'('. Th(' 

failure time d.f. considered was F(t) = 1- e- f
, whik the ('('llsoring llH'l'h­

anism utilized was the randolll censorship lllodd of s(,ct,ioll 5.2 with 

Hence, Pr(6 i = 1) = Pr(Ti < Ci) = 0,7. The sampI<' si",e nmfigurat.iolls 

for p = 0.0, 0.5 were 

(1) nI = 12, n2 = 8; 

(2) nt = n2 = 10; 

(3) nI = 20, n2 = 10; 

(4) nI = n2 = 15; 

(5) nI = 30, n2 = 10. 

For p = 1.0, we used just configuration (5). 

We first generated the simple random samples, (TI, ... ,Tu) and (C J , ••• , Cu), 

following which we obtained 

«Y1 ,.6]), .. . , (Y,,, .6n )), 

where ~ = min(Ti , Ct) (i = 1, ... , n). We thcn gerH'rated iu<lq>eudput 

realizations of the bootstrap sample 
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x", X·2 , ... ,X' N, WitÉ~ (The first n 1 clements of X' constituted 

smnple 1, while the remamlllg elements formed sample 2.) The 2!stogram 

of the corl'esponding values Un (x*l), ... ,Un (x·.i\) was then taken as an 

approximation to the actual distribution of Un(X*). Specifically, we deter-

uliupd the sequencc 

wh"re Pl dCllotes the i th pcrcentile point. We refer to these values as 

"bootstrap perccntile points" and to the histogram constructing pro cess 

m~ a "trial." For each case of SWL statistic with particular sample size 

configuration, tell trials were performed using ten independently generated 

X's, following which wc calculflted the mean and st.'wdard deviation of each 

boot.st.l'ap percentilc point over the ten trials. 

For each sam pIe size configuration, we as weIl generated 10,000 indepen-

d<:'ut l'('alizations of 

Xl, x2 , ••• , x l 0,000. This pro cess 111 turn yielded, for each p, a sequence of 

correspollding values 

t.he hist.ogram of which provided an excellent. approximation to the exact 

nul! di"t.rihlltioll of Un. The sequence of percentile points which we deter­

miu('d in t.his case coincides with that. of the previous paragraph, and the 

act,ual values obt.aiucd are refel'l'ed to as the "true percentile points". 
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Table: Assessment of goodness of fit of bootstrnp distrihution of l 'n l'('lntiVt' t.u tilt' stlllulnrtl 

normaJ. distribution. 

Sample 1 Statistic 1 PrrCI'1I t i k J 
Sizes 1.0 25 5.0 100 90.0 !l50 m.f) !l!1 0 

p= 0.0 -~.47793 -2 U4401 -1.65(j(j:S -1 ~(j}69 1 ~16!1!) l ,,(i!l4:1 1 SIHOfi 2 2\OR~ 
018983 008561 007001 0.03()H7 o o:J:I:n O.05H:Jf) o OnOl:J o IlJ.l:n 

nl = 12 -251330 -2.12918 -1.76050 -l.a:H24 1 :Hll5t1 1 G72f)2 1 H7"W\ :2 :\l~ti:t 

p=0.5 -t:'l/HSa -t: U~;iU'l -!.tH ;jlJa -1 d~JlJa 1 :!()l!~ 1 1 ()lJ Il! 1 1lffi1;1:) - ~{)" 1 
n2 = 8 0.16002 0.09909 007669 o O!()'-!] o 02H60 o Ofi 7!i:J o Olil!Jti o 077~7 

-2.47967 -2.07685 -1 74841 -1 al105 1 2879B l H278H l !)27[)2 2 2f,t\1l1 

p=O.O -:!.a5~5:! l-l.!Jauoa -1 00147 -1 :!:!!J!II 1.:!Ii!J~5 1 li 1!)5(i 1 !I2:171 2 -Wrr:m-
010178 0.06129 0.04563 004812 o 05!)!)!l o lH!lH \ Il 07fi!I!1 o 1 fi Hill 

nl = 10 -2.50293 1-2.02146 -1 69927 -1 a1498 1 33515 1 716;W 2 ()f)(j04 2 ·1127\ 

p= 0.5 -2342851-1.94598 -1 62956 -1 26059 1.2!)717 1.61751 1 !l2I1\'J) ~ 2(;~~:1 
n2 = 10 o 09564 0.06987 0.04308 001075 00:\584 o 017()7 II Oflf)4:\ Il '24;)2 

-2.41630 -1.99161 -1 68366 -1 a0461 1 30:H6 1 ()70!) 1 2.002:\8 2 :I7:1f)!1 

p= 0.0 -25U:.'.n -:!.O3118 -1 (j(j;j(j( -1 ':!l:HUI 1.1 !JïO) J "a261 1. "'H!i([ 1 T-IlW'T 
013065 0.11485 006017 008527 o O:J9IG 0054\;) o 078;)8 0 OH8:W 

nl = 20 -265027 -2.15996 -1 78500 -1 38H7'l 1.25210 1 60488 \ !)() lOf) 2 2101i7 

p= 0.5 
-2.42070 -2.03980 -1 70723 -1 2987H 1 21H)71 1 !)67()" 1 H4:\f)! ~ 1 tiS!lli 

n2 = 10 011358 0.10287 006896 0.05151 004117 o Ofi41i5 Il 01i:W7 o Il !l!):l 
-256650 -211259 -1 74648 -135019 1 2f>425 1 5tHi!JS 1 Sfi2G4 2 17:l7S 

p=O.O 
-:! JU(J4:l -1 IHJ:!:! -1··':I'lUf""' 1.:l5:!1i:! 1 1 (j(J;~:!rJ nIT2i1!1 fl2!"fir.l-
010601 0.10698 o 08482 0.OG911 o O:J7041 0 0524!) O.07O!IO Il ()!I8ï8 

nl = 15 -2.35126 -2.00278 -1.69636 -1.31090 1 :J:J5!i8 1 6!124;\ '1, 02:l(i4 24\\J22 

p= 0.5 
-2.31254 -193551 -1.61692 -1 25181 1.254:U 1 1 (i:J2:W 1 !I:14fi7 2 2:)7:\11 

n2 = 15 0.08968 0.08424 0.OG244 0061:19 004570 o 054fi4 o O:,:l!)fi o OHfifil 
-2.30402 -197767 -l.(i7813 -1 29308 1 a:J 12:1 1 (;5777 1 !J!1776 2 41)(j:l1i 

p= 0.0 
-:! 543:n -2.WaOl -1.76150 -1 :UH67 1 1,)087 1 t17()!;fi -\ 71 \'i!l -~1)ïfHRll-

0.09702 006240 0.04888 004430 () U4fiml 0.06001 o OSH24 o 070H:l 

nl = 30 -271383 -226302 -1 8671:J -1 4~879 1 25242 1 I)() 1 12 1 HHfi\7 '2 IH!llIi 

p=0.5 
-249579 -2100121-175:l97 -1 34979 1 197fi!J 1.:,1 HfjO 1 781110 2 Ofi 1!'i7 
0.07561 o 07121 0.05283 0.0392!) 004431 o oamo o (J(jfi7!J () OH77!i 

n2 = 10 -2.70015 -2.20:~57 -1.82237 -1 3!)988 1 2455:1 1 5Hti'25 1 Hfi!ifJ4 2 I4!J04 ----
P = 1.0 

-2.53811 -2.09399 -1.72872 -1.33871 1 21590 1 fi:! l'lI; 177IM 
2 '':l''MU 0.11376 0.06085 005789 0.05322 o O:l(i70 () O:Hi27 1) (j!i4!)8 O.07!i87 

-264248 -220581 -1.80499 -137ï93 1 25!)O7 1.5U5:15 1 81n:15 '2 IOHO:\ 

Standard -23263 -19600 -1 6449 -1 2816 1 28 Hi 1 (i44!) 1 !)f;"~I_ ' :1"';:1 J Normal 
Variate 
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The f(~sults of our study are presented in the table on page 117. Each 

hox consists of thrce items. Thc first and second items are, respectively, the 

mean aud standard deviation of the hootstrap pcrœntile point in question 

ov(!r the ten triab, while the thircl item is the corresponding true percentile 

point. 

Q The resllits of our study indicate that, in summary, over the ten trials, 

th(' hootstrap distrihution of aIl three SWL statistics closely approximated 

their t.ru(' mIlI distributions. Howevcr, for aU three tests, as the percentile 

iW'l'('asC'd from 90.0 t.o 99.0 or decreased from 10.0 to 1.0, the standard 

d('viat.ion of tlw associatcd bootstrap value tended to increase. Thus, while 

1>oth ultra-ext.rC'Ill(' and moderately extreme bootstrap percentile points 

ap}>c>a,r to b<> approximately unbiased for the corresponding true percentile 

point.s, the formcr estimators are less reliable than the latter ones. 

Our invest.igation also revealed thé\~hen the sample sizes were equal, 

the' normal and hoot.strap distribution did equally weIl in approximating 

t.ll(' t.l'l1<' null distribution. "Vhen the samples were of unequal size, the 

boot.st.rap and 1l0rmallPper-tail percentiles were similar with the exception 

of dl(' log-rallk tpst, whcre we observed the normal distribution to perform 

slighdy}wU('r. On the other hand, for the case of ullequal sample sizes with 

~·-t.n.il perc('util('s, t.he bootstrap distribution almost always performed 

het.t.el' thau t.he' normal distribution, regardless of the test involved. 

This part.icular Monte Carlo study did not take into account such fac­

tors as intpllsit.y of ('('llsorillg, equalit.y status of cellsoring dJ. 's, and type 

of cellsoring llwchanislll present. It would he weIl worthwhile for some re­

sparcher to ass('ss the goodllcss-of-fit of the hootstrap distribution, taking 

into considerat.ion th('se paramcters alollg with those of our study. 
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5.3.2 Small-Sample POWC7'. 

ln this subsection. we present. t.he J"('sult.s of sev('ral signifkallt, lHont.(· 

Carlo studies which examincd small-sample POW('l" prop<,rt,i('s of S"VL st,a-

tistics. The researchers behind t.hese invest.igations illcl1ld(' t.he l'(·f(,I"<'I1<·(,S t.t\.~ 

listed on p. 103 as well as Lel' et al. (1975)fî(,Ulill; pt, al. (1980). Fklll-

ing and Harrington (1981), Fleming ct. a.l. (1987), a.nd Pep(\ amI Fl<-mill!!, 

(1989). Two major objectives of t.hesc st,udies w('re; 

(1) determine the effect of cach of the paralllet('l"S list,('(l ou p. 103 

singularly as weIl as in combination--oll power; 

(2) compare the power of threc specifie t(lsts agaillst six import.ant. a\-

ternatives, un der specifie censoring conditions and saIuplp si,f,(' COll-

figurations. 

As in the subsection conecrned with goodllcss-of-fit. of t.he st,alldm'(l 1l0l"JWI,\ 

distribution, we describe the design and major olltcollles of HH' ahov(' ill­

vestigations from a general perspective rathcr thall éLllalyûng ,'adJ stncly 

separately. 

For objectives (1) and (2), the WL statistics utili:œd WPl"P t.IH' SiLlIH' as 

those involved in the simulations of 5.3.1.1 (a). The variau('(' ('stimat,o)'s 

considered for objective (1) were identÏea] to those lüil;/'('(I in t.}H' afol'('-

mentioned simulations, while the variance cstimator t'mI"loy('cl fol' obje·(·t.iv(· 

(2) was the conditional permutation variance. The altC'rnativ(\s C'Illployc'd 

belong to the class of stochastic ordering alternatives (FI :::; F.,t) and ;U'(' as 

follows: 

1. large early difference in survival CUfves (functions) with no crossing of 

hazard functions. 
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II. largc~ carly diffcrence in survival curves with crossing of hazard func­

tiuns. 

III. a contiguous proportional hazards alternative. 

IV. large middle differcnce in survival curves with crosdng of hazard 

funetions. 

V. larg(~ late diffcrcnce in survival functions with no crossing of hazards. 

VI. a cOlltiguous time-transformed location alternative for the logistic 

distribution. 

With respect, to objective (1), the ccnsoring mechanisms considered were 

ccnsoring schemes (a)- (g) of suhsection 5.3.1.1 (a). For objective (2), cen­

sorillg schemes (a), (b), (d), and (f) were separately utilized in combination 

with varions configurations of equal sample sizes. 

For ohjcctivps (1) and (2), each configuration of censoring mechanism, 

sample sizes, and alternative hypothesis was replicated a fixed number of 

t.illl(\S, say N, t.hus gencrating N i.Ld values of the SWL statistic in ques­

t.ion. Power was thus approximated by the proportion of replications where 

tht' alt,eruat.iV(' hypothesis in question was declared to be true. For a given 

signifiraucf' l(\vpl (any oue of 0.01, 0.02, ... , 0.1), the associated critical 

valtJ(\ was oht.ailH'd from the standard normal distribution. Note that sinee 

aB six a1t.<'rllat.ives ar(' sneh that FH t) < F2 ( t), and sinee a11 weight func­

tiOllS iu qlH\stioll arC' llollllegative, we reject Ho for large positive values of 

t.h(' t.pst. stat.ist.ic. 

\V(\ llOW diseuss the re~m1t.s of these Monte Carlo simulations and begin 

wit.h t.he' Ollt.eOIll('S rdat.ed (.0 objective (1). 

The rcslllts indicat.c t.hat if the sample sizes are equal and the censoring 

lll<'challisllls of t.he t.wo samplt'8 are identical. an va1'Îance estimators for a 
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given WL statistic yield similar pow('rs against t.!l(' alt(,l'llat.Îv(' in qll('st.ioll, 

Suppose, though, that the t.wo cCllsorillg 1ll('('hc\uis1lls an' idl'l1tical (l'l'IUhlr­

ing SCheIl1eS (a), (b), (cl), and (f)) but that. the salllple silt,('s are Illl('(llléll. 

Then the results reveal that, W1H'1l the lar~('l' salllpl(' has t.he 100W'l' lifc­

times, an SWL statistic with conditiolla.l pcrmut.at.ioll vi\l'iaIu'(' j!,('lI(,l'ally 

has greater power thall an S"VL st.atist.ic with t.he Sa.IIH' lllllJlCrat,or hut. a 

permutation variance. On thp otller ha,lld, WlU'll t.h(' Ia,rg('r sampI(' has t.he 

shorter lifetimes, the converse is tmc, Suppost.' IlOW t.ha.t. ni = ,,'!., hut, 

that one sample experiences cellsoring while t.he oUlcr does Hot. (('('llsoriug 

schemes (c) and (e)), Then, we sce t.he same pOWPl' r('lat.iouship lWt,W('('ll au 

SWL statistic with a conclitional permutatio1l va.riauce and 011<' wit.h ct pcr­

mutation variance (both of which have tll(' same Ht1Jl1('rat.or) as dis('\lss('d 

ahove, treating the uncensored sample as the la.rger sampl('. 

When the censoring patterns of the two sétmples an' eqllal alld JI. 1 :f. 

U2, or when nI = n2 and one sample is cPusof('d whil(' t.llP otlH'1' is ilOt., 

Prentice's test, with variance estimator Va, is g('llerally moJ'(' pow(·rfnl t.hall 

Prentice's test, with either of the two oUlcr variance ('stimators, if t.lll' largc'!' 

or uncensored sample has the short cr lifctimcs. On du' otl}(')' halld, if tlU' 

larger or uncensored sample has th(' longer lifetiuH's, PI'('utÎ<'("s t.(·st. wit.h 

variance estimator Va gel1erally yiclds the second hest POW('l' tlmollgst. t.h(· 

three. 

Consiùer now a scenario whcre the ccIlsoring IIlpchanisrns of tlH' two saw­

pIes are identiral and where the censoring seheme, séLmplp. siz('s, and ('('USOI'­

ing intensities are allawed to vary. Then, fir~tly, the pow(~r of t111y p81't.Î<'lllar 

SWL stat.istic with specified variance cstimator g(~nerally tends to tH' )OWl'!' 

with censoring schemes (h), (d), and (f) than with (a), controlling of ('ol1rs(~ 
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for a.H other paramdc'rs. Secondly, if the size of both samples decreases 

and/ or t}H' cellsoring intcnsi tics increase, power decreases-controlling once 

again for all extralleOllS parameters. In cases where the censoring intensity 

is 90WJ and Tt 1 = Tt2 = ] 0, the power is sometimes less than the desired 

('l'l'or l<'vd and nU'ely ahove 20%. 

We 1l0W prC'sent the outcomes relevant to objective (2). The log-rank 

awl Pn'llti('("s test, with a consistent estimator of the null hypothesis as-

ylllptotic varianc(', are the asymptotically optimal S'NL statistics against, 

l'<,spectiV<'ly, alternatives III and VI (see pp. 60, 89). The Monte Carlo 

simulations r('veal that, within the context of the three SWL statistics in 

Clupstion, such as weIl is the case in small samples for censorillg schemes (b), 

(<1), and (f). For alternative III under censoring scherne (a), however, the 

UU'C'(' tests perform equally weIl. No comparison of the tests was conducted 

for alternative' VI ulldpr ccllsoring scheme (a). 

With l'<'SP('ct. to departure III under censoring scheme (b) or (d) or (f), 

the' simulations indicat.e that Prentice's test is generally more powerful than 

G<'lHlU 's t<'st., an observation which agrees with Leurgan's (1983) efficiency 

calcula.t.ions. A comparison though between the log-rank and Gehan's test 

for a.lt.el'nativ(' VI, uuder ea('h of the ab ove censorillg schemes, was not 

('ollsid(,1'('d. 

Prior to dis{,llssing the results for alternatives l, II, IV, and V, we make 

SOlllt' C'OlllIllt'Ut.S which will en able us to account for the observed outcomes. 

COllsider SOUle' alt('rnative hypothesis (not llecessarily a stochastic ordering 

a1t.('l'llativt') in whirh "'1 (t) ~ "'2(t) 'rit in sorne interval l = [ta, t2], and 
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.,. 

suppose dN(td = 1 for SOIlle fi E J. L('t. A dmot.P th<' clll1{'l't.ioll of ('V('llts 

let B = dN:(td - Rt{tdR-l(t.) dN(td, and Id. 

e = /, Q(t)(dN; (t) - Rdt)R- 1 
(/) dN(f)). 

• 1 

Now, 

* { 11 if a = 1, Pr[dNdtd = alA] = . 
1 - P If (f. == 0, 

where p = (rI À1(td + r2"\2(t2})-IÀt(td1·t. Thus, ('olldit.iollal on A (as-

suming r2 is not excessively grcatcr t.ltan l') ), 13 is llmrh IllOl"(' likdy t,u hl' 

positive tha.n it is negative. Now, rccall that, the cl<u.,s of WL statist,Îcs has 

the forrn 

('XJ A [* Rdi) 1 Sr> = Jo Q(t) liN) (t) - -R(t) dN(t) . 

Thus, to render Sn sensitive to the givcn diffel'C'lH'(' in hazard fnu('t.iollS 011 

J, Q(t) should be much greater than ;"('1'0 ou 1. (W(· aSSlUlH' t.lmt. Hu Îs 

rejected for large positive values of the t('st st.at.istic.) With Q(t) (1(·tilH'cl as 

such, and under the assumption that RI (io), nAin) an' sllffici(·nt.ly lal'J.!,(· 

and that R2(tO) is not excessively greater tItan RI (to), C will t,(')HI 1.0 lu' 

much larger than zero. Similarly, if Àt(t) « ..\2(t) VI E l, Q(t) shoulcl 1)(' 

much less than zero on J. 

Suppose, now, that HA is such that ÀI (1) = À2 (t) Vt E l, amI t.hal. 

dN(td = 1 for sorne t l E J. Then, assuming R1(t.) > 0 and R2(td > 0, 

is dependent strictly on the values of rI and 1'2, and not on tiH' llHLgUÎt.lId(, 

nor on the sign of FI (t l ) - F2 (tl)' To cnhancc the power of STl against. liA, 
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theI'('fof(~, Sn shonld he rcndercd completely inscnsitive to failures occurring 

in 1; heuce, (J( t) should equal 7,ero 'Vt El. 

Finally, suppose ÀI (t) is moderatcly larger than À2 (t) 'Vt in l, and that 

dN(td = 1 for some tl E J. Then, condit.ional on A (assuming R2(td is 

ilOt. ('xccssi vdy gr('ater than RI (t 1 », B is slightly more likely to be positive 

t.lmn it is lH'gative. It follows, therefore, that Sn should be mildly sensitive 

t.o failllI'(,s o('('urrillg in J and, hence, that Q( t) should he nl0deI'ately greater 

thau 7,('J'O 011 J. Allalogollsly, if À 1 (t) is moderately sumller than À2 (t) 'Vt 

in J, t.lH'U (J( t) should he modcrately less than zero on 1. 

Wf' IlOW descrihe th<, outcomes of the Monte Carlo simulations for al-

t,(,I'uatives 1, II, IV, and V. For these particular alternatives, a comparison 

was mad(' st.rict.ly h{'t.wccn the log-rank and Prentice's test under censoring 

SclH'Ill(' (h). 

Depart.llre 1 is, more specifically, given by t.he alternative: 

{ 

ÀI (t) » À2 (t) 

Àl (t) = À2 (t) 

if 0 ::; t < to, 

if t > to, 

for SOllH' to E (0, 00 ). For this particular alternative, both procedures have 

vpry good sPIlsitivity. The Prentice test, however, does have somewhat 

heU.('r power. Wp can explain this observation as follows: The log-rank test 

places a large wcight. on failurcs occurring both before and after to. Hence, 

sinc(' a majorit.y of t.he failures after to will tend t.o originate from sample 

2, the large posit.ivp value of 

['0 
A = Jo Q(t)[dN:(t) - RI (t)R-1(t) dN(t)J 

will 1)(' Il('arly complpt.dy offset. by the moderately large negative value of 
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1 
The Prentice test. 011 thp otIler haml. is very s('llsit.iv(' t.u failllr('s which 

occur in (0, tol yet is weakly sCllsit.îv(' t.o fail\1l'<'H ()C<'\llTill~ in (t O. +N). and 

so, in this case, A is slightly offset by B. 

Departure JI is, more sprcifically, given by: 

{

Al (t) »>'2(t) if 0 ~ t :5 to, 

A2 »>'I(t) if to < t < fI, 
A 2 ( t) = >. dt) if t > t 1 , 

for sorne to, tl such that to < t l and sneh t.hat. 

In this scenario, Prentice's test performs bett.er t.hall t.ll<' log-rallk t.C'st.; 

however, the power of both procedures here is r('du(,l'd in cOlllpitl'isou t,o 

the case of departure I. This reduct.ion in power is dm' t.o t.h(' fad t.hat., for 

both tests, the positive value of 

1.
to 

A = 0 Q(t)[dNt(t) - RI (t)R-I(t)dN(t)] 

is somewhat offset by the negative value of 

The Prentice procedure, however, outperfol'ms the lo~-réLllk tpst, sill(,(' A 

is more offset by B for the latter SWL statifitie tita.n for t.lu' fol'lJH'I', a.nd 

since the latter test places greater weight than the fornu'r OII(' on faillll'('s 

occurring in (tb +00). 

Departul'e IV is, more specifically, given by: 

>'dt) = >'2(t) if 0 ~ t < t(), 
>'l(t»> >'2(t) if to < t < t), 
>'2(t) » >'1 (t) if t l < t < t2, 

,xl(t) = >.?(ti if t > t2, 
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TIl(' two t,e!sts show the sarne relative sensitivities here to what they dis-

playe·cl for alteruativc~ II. Th(~ explanation for this outcome is analogous to 

t.llC' (liscussioll of tlw previous paragraph. 

Fiually, cleparture V can be equivalently written as: 

if 0 < t::; ta, 
if ta < t, 

for SOJlH' to E (0, +00). Here, the log-rank procedure has very good power, 

whilc' Pr('ntÎcp 's test has unacccptably Iow sensitivity. This observation is 

Ilot UlH'Xp<,ct,<,d sinee 

for hoth t<'sts, is likcly to be dose to zero (even though the log-rank test 

pla('('s great<'I' w<,ight than Prentice's procedure on failures occurring in 

(0, to)), yet, 

for t.hp log-rallk procedure, is likely to be much greater than zero, while A 

for PI'<'ut.Ï<'("S pro('('dur<, is likely to be only slightly greater than zero. 

For lllauy ypars. tpsts ba.sed on the log-rank and Prentice's statistic have 

1)('('11 aIllollgSt. t.h~' most. frequentJy used censored data, nonparametric, two-

sampl<' pro('('(hln's. Bpcaus(' of th('ir lll<,thod of formulation, however, these 

twu tests ar(' mort' s('llsit.ive t.o alternatives of ordered hazard functions than 
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1 
to alternatives of crossillg hazal'ds (bot.h st.ochast.ic ord('ring alld crossill~ 

of failure time dJ. 's). COllsequcllt.ly, tlH're has bt'l'll 111l1ch researrh l'l'ce)lt ly 

concerned with developillg versat.ile llollparmuctrÏc procedur('s t,ha t, arc sell­

sitive to both the ordered hazards and Crossillgs hazartls (l('partnrcs. SI'('. 

for example, Fleming et al. (1980), Fl(,llling éUlt! Harrillgt.oll (1981), Sdl\l­

macher (1984), Bl'eslow et al. (1984), Fleming ct, al. (19S7), and PqH' Hwl 

Fleming (1989). Indced, these iuvestigators show, via small-salllpl(' MOllt.(, 

Carlo simulations, that their suggested t('st.s cau 01lt,p('rform UH' t.wo aJo1'<'­

mentioned two-sample tests under crossing lmJl;itrds alternat.ives. Furt.h('r­

more, these newly proposed tests compare favorably wit.h t.h(' log-rallk aud 

Prentice's procedure under, respectiveiy, departures III aud VI. 
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