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ABSTRACT

This thesis takes an in-depth focus at a specific class of nonparametric
two-sample procedures for right censored failure time data—standardized
weighted log-rank (SWL) statistics. This family of tests comprises the very
famous Gehan, Efron, and log-rank procedures. The first two of these
reducee to the Wilcoxon test with censoring absent, while the third one is
a censored data generalization of the Savage test. Two particular topics of
interest to us are (1) the generation of SWL statistics as score tests within
the context of some popular regression models, and (2) asymptotic and

stall sample behavior.




RESUME

Le présent mémoire explore de fagon détaillée une catégorie spécitique
de procédures pour deux échantillons censurés a droite de temps jusqu'’a
défaillance, nommément les procédures mmpliquant les statistiques pondércées
et normées de logarithmes de rangs (statistiques SWL). Cette famille de
tests comprend les célebres tests de Gehan, Efron et de logarithmes de
rangs. Les deux premiéres procédures se réduisent au test de Wilcoxon en
P’absence de censure, alors que la troisicme est une geénéralisation aux obser-
vations censurées du test de Savage. Deux sujets plus spécialement appro-
fondis ici sont (1) la production de statistiques SWL dans le but. d’effectuer
des tests de cote au scin de certains modeles de régression courants, ot (2)
les propriétés de ces statistiques dans les cas d’échantillons de petite ot de

grande taille.
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NOTATIGN, SYMBOLS, AND CONVENTIONS

a

aTl

Pr(A)

Pr(AlX = x,
B,,....B)

Fx(x)

fxy(xjly)

bold symbols. such as a, denote colummn or row vectors
the transpose of a

probability of the event A

conditional probability of the event A, given X = x and
given the events By, ..., B have occurred. Sometimes,
we shall simply write Pr(A4]|X). Unless otherwise indicated,
x shall be considered as being random.

joint density or probability function of X. If cach element
of X is a discrete variate, the notation “Pr(X = x)”

shall as well be employed. Unless otherwise indicated, x
shall be considered as being random.

conditional density or probability function of X given

Y =y. If cach clement of X is a discrete variate, the
notation “Pr(X = x|Y =y)” shall as well be employed.
Unless otherwise indicated, both x and y shall be consid

ered as being random.

In the last three cases, the dummy variables “x” and “y” may be replaced

by any other dummy variables.

iid.

d.f.

independently and identically distributed
distribution function. We shall always assume a d.f. to be

nonrandom.
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I(A)

Asvar(X)
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#A

A°

¢
AcCD

asymptotic relative efficiency

indicator of an event A. It is a 0,1 random variable which
is unity when the event A has occurred and zero otherwise.
asymptotic variance ot X. For the purposes of this treatise,
we shall always assume that Asvar(-) exists.

the normal distribution with mear r and variance a?
convergence in probability

convergence in distribution

is much greater than

mumber of clements in the set A

the complement of the set A

the empty sct

A is a proper subscet of B

Let X(t) be either a random or nonrandom function of time. Then

“X(¢+7)" shall denote “limp_o- X (¢ + R),” while “X(11)” shall denote

“l'llllh_‘.()ﬁ\— JY(# + hl).”

Throughout, we use the convention 0/0 = 0.
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CHAPTER 1
INTRODUCTION

Failure time data refer typically to a sct of independent. continuous,
positive-valued randons variables (cach variable corresponding to a different
item) which represent times to occurrence of some undesired point event.
Prime examples of such an event include death, onset of disease, or cessation
of function of an electrical component. It is quite permissible, however, for
the eveut of interest to be of a nonfailurelike nature (for example, the
learning of a new skill or the changing of residence).  In addition, the
random variables need neither be a measure of time nor be continuous. For
instance, cach variable may represent the number of attempts required to
stccessfully perform a certain task. More formally then, failure time data
is defined as a collection of independent positive random variables, cach
one of which is associated with a unique item and indicates, in some sense,
the immediacy of oceurrence of some point event.

For the purposes of this thesis, when considering failure time data in
a peneralized setting, the event of interest shall be denoted by the word
“failure™ with the terms “failure time,” “event time,” and “lifetime” being
usced interchangeably. Moreover, from hereon, we shall restrict ourselves to
the case of absolutely continuous failure times,

We now introduce the concept of rght censorship. Right censorship
refers to the process by which a lifetime is not observed exactly but is

known only to exceed a certain value. This particular value is referred to




as a 1ght censored lifetime, and the item and lifetime variate in question
are said to have been mght cencored. If a failure 1s observed, we deseribe
the corresponding lifetime valuc as being an uncensored lifetime, and we
say that the lifetime variate of interest was uncensored. By convention,
an item cannot simulta: »usly fail and be right censored. To deseribe in
mathematical terms the failure or censoring process associated with a piven
item, let Y be the variable which denotes either the uncensored or right
censored event time (hereafter referred to as the survival time variable),
and let T be the event time variate. If failu»e is observed, then Y =T, if
T is right censored, then ¥ < T. For convenience, from hercon, the term
“censoring” shall be used 1n place of the term “right censoring.”

Survival analysis is the branch of statistics that encompasses a variety
of techniques for analyzing failurc time data regardless of whether or not
censoring is present. A major arca of interest among rescarchers in sur-
vival analysis is the following two-sample scenario: Based on two sets of
lifetimes subject to right censorship the lifetimes of cach sanple heing
identically distributed - test the null hypothesis that the two respective
failure time distribution functions are identical. This statistical problem
can present itself in a variety of ways. For example, consider a clinical trial
in which two different treatments for a fatal liscase are being compared
and patients enter consecutively. The variable of interest here is time to
death from initiation of treatment. A patient yiclds a censored lifetime if
he withdraws from the study due to intolerable side effects, or moves away
and is thus lost to follow-up, or dies of some other cause, or is still alive on
the predetermined termination date of the trial.

The iwo-sample situation, described at the beginning of the previous
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paragraph, also arises in those carcinogenesis experiments which compare
the potency of two types of carcinogenic chemicals. In such experiments,
once varicty of carcinogen is applied repeatedly to one group of animals,
while another varicty is applied repeatedly to a second group—the two
groups being put on test at the same time. In this scenario, the random
variable of interest is the time from starting the applications to finding a
tumour. An cvent time becomes censored if an animal dies without de-
veloping a tumour, or if an animal is alive without a tumour when the
experiment is terminated.

Our two-sample scenario can as well be seen in an industrial reliability
study which attempts to compare the lifetimes of two types of electrical
components. As in the previous case, all items are placed on test simulta-
ncously, with a decision made to end the study after a time L has elapsed.
The statistic of concern here is time from commencement of operation of
the components until failure. A censored lifetime is observed only if failure
has not occurred prior to the conclusion of the study.

In the comparison of two samples with uncensored data, rank tests have
often been proposed as alternatives to parametric methods. Although the
rank tests themselves are derived with certain alternative hypotheses in
mind for which optimum parametric procedures exist, the former gener-
ally possess greater robustness than the latter against misspecification of
the parametric form of the two distribution functions and are generally less
sensitive to outliers. In addition, rank tests usually are asymptotically fully
cfficient when the distribution functions are correctly described paramet-
rically. In small-sample situations, rank procedures generally experience

only a small loss in efliciency compared to their parametric analogues when
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the latter are appropriate.

During the past thirty years, several tests based on the generalized rank
vector have been developed for tackling the two-sample problem with cen-
soring. Without restricting oursclves to the two-sample problem, the gen-
eralized rank vector for n survival times Yj,...,Y, can be represented as

follows:

R¢e = ((N(Yl), Al)s ERY (N(}'n), An)) ’

where N(t) =Y 7 (Y, <t,A; =1), and
{ 1 if item i fails,
A, =

0 if item ¢ is censored,
For the two-sample scenario with sample sizes n| and ny, we assume that
items 1,...,n; comprise sample 1, while the remainder form sample 2.
Remark that when censoring is absent, R¢; reduces to the so called “rank
vector.”

Among the oldest of the two-sample generalized rank tests arve the log-
rank (Mantel, 1966; Peto and Peto, 1972; Cox, 1972), Gehan (Gehan, 1965),
and Efron (Efron, 1967) test statistics. More recently developed significant,
procedures include Prentice’s test (Prentice, 1978), the Tarone-Ware class
of statistics (Tarone and Ware, 1977), and the Harrington-Fleming family
of statistics (Harrington and Fleming, 1982). It should be noted thaw the
log-rank test is a censored data gencralization of the Savage test (Savage,
1956), while Gehan’s, Prentice’s, and Efron’s procedure each shmplify to
Wilcoxon’s test (Wilcoxon, 1945) with no censoring present.

Each of the tests mentioned in the last paragraph, in addition to being
a generalized rank procedure, is a standardized weighted log-rank (SWL)

statistic. It is our intention to fully examine the characteristics of the family




of such statistics. To describe explicitly the form of this class of two-sample
procedures, let TP < -++ < Th denote the ordered uncensored failure times
for the combined sample of size n. Fori = 1,..., K, let Dy; = 1 if the
failure at 77° is from sample 1, and let D;, = 0 if otherwise. Let R;; and
R,, be, respectively, the number of sample 1 and sample 2 subjects with
lifctimes known to he greater than or equal to T?, and set R; = Ry; + Ra;.

Then the statistics of interest have the form

U, = n—l/Z 5::‘:1 Wi(Dll—Rlz/Rz).
n \/_‘7

Here, W; is a “weight” associated with T7 and dependent on

Dy, Ry, Ry, Dy3, Ryyy Ryay ...y Dyjioy, Riji—y, R, Riiy Rai,

while V' is cither the exact variance of the numerator under Hy or the
product of 1! and an ecstimator of the null hypothesis variance of the
summation term. The exact variance can only be utilized if it is free of the
common failure time d.f. (assumed to be unknown) and of all unspecified
d.f’s linked to the censoring mechanism. If V' is a random variable, it
usually but not necessarily-is a function of only the generalized rank vector.
Note that, unless V is the asymptotic variance of the numerator, n~1/2
cancels out.

When W, = 1, for i = 1,..., I{, the numerator of U, (with or without
n=1/2) is the log-rank statistic, hence the name “standardized weighted
log-rank statistic.” The name given to U, depends solely on our choice for
the W,'s and is unaffected by the choice of V'; moreover, —U,, and +U,
have the same name. The actual weights implemented are chosen so as to

maximize the power of U, against the particular alternative hypothesis in
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mind. For ease of clarity, a particular U,,, with or without 1" specitied, shall
be referenced interchangeably with the words “test,” “test statistic,” and
“procedure,” while a particular weighted log-rank statistic (with or without
n~1/2) shall be referenced via the term “statistic.” Hence, the “log-rank
test” i1s U, with W, =1, ¢ = 1,..., K. Morc generally. the standardized
version of any given statistic shall be denoted interchangeably by the words

> while the unstandardized version

“test,” “test statistic,” and “procedure,’
shall be denoted by the term “statistic.”

Before outlining the actual contents of this thesis, we make some remarks
concerning all censoring mechanisins considered in this treatise. Suppose
that associated with item 7 (¢ = 1,...,n) of a lifc-testing experiment (not

necessarily concerned with the two-sample problem) is the possibly time-

dependent, possibly random regressor variable Z,(t). Let
X.(t)={Zi(u): O<u<t}.

(If in fact Z,(t) does not vary with timne, then Z,(t) = X, (t) = Z;, for
some Z;.) Then, for the purposes of this treatise we make the assumption
that, conditional on X, (), the censoring and failure mechanisis act inde-
pendently of one another. Such a censoring scheme is described as heing
“independent” or “arbitrary,” and yiclds the following two conscequences:
Firstly, if item j is at risk! at time £~ then, conditional on X ,(¢), the
failure time hazard function? of j is unaffected by the fact that ; was un-

censored in (0,¢). Secondly, if an item with regressor variable path X (4) is

ITf an item is at risk at time { (¢7), this means that it has neither failed nor bheen
censored in (0,¢] ((0,t)).
2The hazard function corresponding to, say, the random variable T'is defined as
. Pr(T'<t+nT2>1)
lim =,
h—ot h
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withdrawn from risk at time ¢, this is in no way an indicator of its prognosis
relative to other items at risk at ¢ with path X (¢).

We now give examples of independent censoring processes employing the
notation that T, Y, are, respectively, the lifetime and survival time variates
associated withitem ¢ (i = 1,...,n).

Example 1: Simple type I censorship
In this case, all study subjects are placed on test at the same time with
the decision made to terminate the experiment after a time L has elapsed.
The potential censoring time? for all subjects is thus L.

Example 2: Progressive type I censorship (or fixed censorship)

Here, as in example 1, the study is terminated at some prespecified time,
say L. In fixed censorship, however, the subjects enter the study at random
in the interval [0,a], where a < L. Letting E, denote the entry time variate
corresponding to item ¢, the potential censoring time variable for item ¢
is thus L — F,. The E}’s are assumed to be independently distributed cf
cach other and of the event times. For the purposes of this thesis, we
shall assume as well that the E,’s are identically distributed. Note that the
number of items which enter the study, n, is random. While it is customary
to condition on n and cn the entry times, we shall, in this treatise, condition

on only n. (For the two-sample problem, we shall condition on the size of

For the purposes of this thesis, we shall treat any given hazard function as a nonrandom
quantity.

By “potential censoring time,” we mean the time at which the item in question is
destined to be censored should failure not occur; hence, if in fact an item is censored,
its censored lifetime coincides with its potential censoring time. On the other hand, if
an item fails, its potential censoring time is either exactly observable or right censored
at some value which is greater than or equal to its lifetime value. From hereon, we
shall restrict our use of the term “potential censoring time” to the censoring models of
examples (1), (2). and (3).
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each sample.)

Example 3: Random ceusorship
If associated with cach T, is the potential censoring time variate C, such that
the C;’s are independent of one another and of the T3's, then we are in the
random censorship situation. The (s need not be absolutely continuous

random variables. Remark that Y, = min(7T,,C,), 1 =1,...,n.

Examples 1 and 2 belong to the subclass of random censorship models
where the potential censoring time for cach item is obscrvable. A random
censorship model where potential censoring times corresponding to uncen-
sored event times cannot be observed is seen in a one-sample clinical trial
where one cause of censoring is withdrawal from the study due to severe

side effects of the treatment.

Example 4: Simple type II censorship
In this situation, all subjects are placed on test at the same time, and
observation ceases after a predetermined number of failures » < n. Thus,
if TP < -+ < T? are the order statistics of the T}’s, then Y, = min(7?,T,),

i=1,...,n.

Example 5: Progressive type II censorship
This censoring model is a gencralization of that of example 4. Suppose n
individuals enter the study simultancously. The observation plan now is
as follows: At the time of the first observed failure, we remove from the
experiment a simple random sample of m; subjects from the still unfailed
n—1. Then at the next observed failure time, a further my individuals are
selected at random from those still on test and removed. This procedure is

carried on until a total of s failures have been observed, with my subjects
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being withdrawn at the &Y stage, k= 1,...,s;

Z (mi +1) =n.
k=1

We comment here that my, ..., m, and s are fixed in advance.

We now list in brief form the actual contents of this thesis: In chapter
2, we present elementary concepts of our class of two-sample tests in a
somewhat heuristic and informal fashion. In chapters 3 and 4, we generate
SWL statistics from, respectively, the proportional hazards model and the
accelerated failure time model. Finally, in chapter 5, we examine the large

and small-sample behavior of our family of tests.
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CHAPTER 2
GENERAL OVERVIEW OF CLASS OF TESTS

2.1 introduction.

The purpose of this chapter is to present, with little theoretical detail,
fundamental concepts of SWL statistics. In section 2.2, we derive heuristi-
cally this class of two-sample tests and describe the most common variance
estimators. In section 2.3, we express a weighted log-rank statistic {or a
WL statistic) as a sum of scores, as a gencralized Mann-Whitney statis-
tic, and as a member of Gill’s class K (Gill, 1980). Scction 2.4 considers
the construction of censored data cxtensions of linear rank statistics. The

chapter then concludes with a discussion of the most well known tests.

2.2 Informal Development of SWL Statistics.

Our approach to generating SWL statistics is in the spirit of Mantel
(1966).

Let {Xj1,....Xjn, } and {T}y,...,T}n, } be, respectively, the set of sur-
vival time and failure time variates for group j; morcover, let A, ,..., A,

be the censoring indicators for sample 7 defined by

{ 1 if X;, =Ty,
Ajz -~ . '
0 if XJ, < Tj,’

(i =1,...,n;; 7 =1,2; n;+ny =n). The data, therefore, is of the form

(X115 A11)se ey (Xingy Ain, )y (X21,A21)5 ooy (X 20y D2n,)-

10




Now, let F,(t) whichis unknown be thed.f. corresponding to Tji, ... Tjn,.

We wish to test the null hypothesis
Hy: Fi(t) = Fy(t)= F(t) Vvt >0,
where F(t) is unspecified, cither against the one-sided alternative
Hy: Fi(t) = Fy(t) Vt=0,
with strict inequality for at least one £, or against the two-sided alternative

Hy: Fy(t) # Fa(t),

for at least one t.  Since we are assuming lifetime to be an absolutely
continuous random variable, no two uncensored lifetimes can coincide with
one another. Hence, let TP < --- < Tg denote the ordered uncensored
event times for the sample formed by pooling the two groups of data, and
set Dy, = 1 or 0 depending on whether the failure at 77 is from sample
1 or 2. In accordance with convention, an item which fails at T;” does so
without simultancously being censored. Finally, suppose R, study subjects
are at risk at 77 and that R,, is the corresponding number in sample j
(j = 1,2). By their very nature, the variables Dy, Ry,, Ro,, R; utilize the
information that an /' smallest uncensored failure time exists, yet they
ignore the value of T7.

Because independent censoring is in effect, we would expect that little
information about differences between Fy(t) and Fy(t) would be obtained
from the ordering of censorings between successive failures. Bearing in
mind both this point and the fact that we wish to develop a nonparametric
procedure for testing Hy, it follows that we need only concern ourselves with
that portion of the data displayed in the following sequence of contingency

tables, the i'" of which is associated with T7:

11
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number of number

failures at._risk
Group I D,; Ry,
Group II 1-— Dl,‘ Rz,
Total 1 R,

¢t = 1,..., K. Conditional on Ry;, Ry,, and on independent censoring be-
ing in effect (the regressor variable being group membership), Dy; has a
Bernoulli distribution under Hy with mean R.,Rf' and variance V; =

RliRgiRi'2. Now, fori=1,..., K, let X; = (R,, Rv,), and assume

Pr(D;, = dy;|H,) =Pr(Dy; = d,,|X,),

where
Hi = H(T?),
:H:(t) = (Rl(t)’RZ(t)aN(t_)’ {Rlu R'ZuDlz ) S ]V(f,_)}) ’
Ri(t) =) I(Xji > 1),
=1
and )
Nt =) ) I(X; <t,A4 =1).
j=1 =1

Setting L; = W;(Dy; — R“R"l), we thus have

Ey,(L;|H;) =0

and

Var”,, (L,If}f,) = W;ZV,,

12
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where W, = W(T?), and where W (t) is either a random weight function
completely determined by 3(t) or a nonrandom quantity independent of

time. Now, for i < j and under Hy,
Cov(L,,L,) = E[L,E(L,|H,)] — E[E(L,|3;)] E[E(L;|3;)] = 0.

Henee, letting Ly, = Z:;, L, and treating I{ as a fixed quantity if it is in

fact random, we have under Hy that E(Ly,,) = 0 and

K K
Var(Lin) = ) _ Var(L,) = ) _ E [Var(Li|%;)]

=1 =1

N
+ Z: Var [E(L,l:}cz)] = E(ch)’

=1

where V), = le‘:n (V,W?). Thus, V., is unbiascd for Vary,(L,,). If Kis a
random variable and is treated as such, the above expressions for Ey (L)
and Vary,(L;,) can be obtained using martingale theory.

For simple and progressive type II censorship, there is only one dJf. to
be concerned with under Hy, that being F'(¢), which is of course unspec-
ificd. Evaluation of Vary,(L,,) in both of these instances, however, does
not require knowledge of F(t), regardless of the choice for W(t). The ran-
dom censorship model, on the other hand, incorporates under Hyg, F(t),
as well as censoring df.’s! which are assumed to be distinct from F(t). If
the censoring duf.’s are discrete and specified (for example, simple type 1
censorship), then Vary, (Ly,,) is free of F(¢) and thus calculable, regardless
of the weight function employed. For the case, though, where the censoring

d.f.’s be they diserete or continuous-are unspecified, this variance will be

1From hereon, the term “censoring d.£."° shall mean the d.f. corresponding to the
§ potential censoring tinie variate in question.

13
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distribution-free only for a specific type of weight function (more on the
above points in subsection 5.3.1). Whatever the censoring, scheme, though,
it can be shown that, under Hy, n~'1%, is consistent for Vary, (n="/*L,,)
if, as n — oo,

(1) K LA (or ' — o0)

and

(2) min{ny.ny} — oo;

thus, the use of V, rather than Vary, (L, ) is appropriate if K, ny, and
ny are reasonably large. Latta (1981) referred to V., as the conditional
permutation variance estimator. For brevity, we, as well, shall use the term
conditional permutation varance.

Before presenting another frequently-used variance estimator, we intro-
duce the concept of equal censoring patterns. By definition, two samples

have equal censoring patterns if
P11(t) = p12(t) = -+ = p1, (1) = pai(t) = pao(t) =+ = puy, (1) VI,

where

pji(t) =Pr(X,, € [t,t +dt), A, =0T, >1t)

(Lagakos, 1979). Examples of censoring scenarios, where the above con-
dition holds, include: simple type I censorship, fixed censorship, random
censorship with potential censoring times identically distributed, and sim-
ple and progressive type II censorship with Hy true. In the following two
paragraphs, all expectations, variances, and stateinents concerning consis-
tency are under the assumption that Hy is true and equal censoring patterns

are present.
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As will be shown in subsection 2.3.1, L, can be written as

.
Y (DnQu+ MLQ}),

1=1
where

Q=W.-) W,/R,
=1

is a score associated with TP, where

1

Q==Y W,/R

Jj=1
is a score corresponding to all censored lifetimes in [T?,TY, ), and where

M, is the number of group 1 censorings in this interval. By convention,

we set Qf =0, Ty =0, and T, | = +00. Now, let S be the collection

(()5“"w(J;;A’()ﬁ(\?ls(zT]a- --s(}T}\lls"'s(}l\”Q;\’la'~'7Q=;\']Wk-)a

where A, (for1 = 0,..., ) is the total number of censored failure times in
. o * * ’ * . M

(T, T ). and where Q7 ..., Q). have the value Q7 yet are considered as

distinct elements. (We comment here that S provides no direct information

concerning whether a given score corresponds to a censored or uncensored

failure time.) In addition, let P = (I, S). Therefore,
H\(a) = Pr(L,, < a|P)
ny
=Pr (Z C, < a) Va € (—o0, +00),

i=1

where Cy,...,C,, is a sample of size n, obtained by withdrawal without
replacement from P. H(a) is often referred to as the “permutation d.f. of

Ly,." Using results on sampling from finite populations, we thus have that

ny K N .
E(Llan) =F Zcz — ny Zz:l(cf; - Mle)
1=1

=0,

15
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while

V, = Var(L;,|P)

v (3

i=1
K

= mna(n(n - 1)) Y (Q'f + A/LQ;*?) .

1=1
The conditional variance V,, is referred to as cither the permutation var-
ance estimator or the permutation variance. In the evaluation of the above

conditional expectation and variance, we used the result

K
Y (Qi+ MQY) = 0.
=1

This equality follows directly from the fact that the scores satisfy the equa-

tions

W, =Q.—Q; =Ri(Q;_, —QF), 1=1,...,Kk.
One further result which is obtainable from this sct of cquations is
K K
S @+ M =S w1 -R)
i=1 =1

(Cox and Oakes, 1984, p. 141). Hence, the perinutation variance can bhe
expressed in two distinct forms.

Now,
Var(Ly,) = E [Var(L,|P)] + Var [E(L,,|P)] = E(V,),
and so V}, is unbiased for Var(L,,). V,,/n, morcover, consistently estimates

Var(n '/2L,,)

16
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under conditions (1) and (2) of p. 14 and thus can adequately replace it
when K, ny,ny are large. V), is the exact variance if the scores, the M;’s,
and K are nonrandom (for example, simple type II censorship with log-rank
scores).

Note that V., and V), are functions of strictly the generalized rank vector

Rg=((N(X1),An)s s (N(Xin,), Alny),
(N(X21)7 A21)7 ceey (N(X2n2)’ A2n2))'

In chapter 4, we present another variance estimator which is a function of
only R¢;, whilc in chapter 5 we put forth variance estimators which are not
solely dependent on this vector. The suitability under Hy and H, of all
proposed estimators of Vary,(Ly,), for small n, is an issue to be dealt with
in chapter 5.

The general class of procedures we propose, therefore, for testing Hy is
given by
n~1/2L1n _ n—1/2 E:‘zl W,'(Dli - RliRi_l)

W v ’

where V is Vary,(n~'/2L,,,) or an unbiased estimator thereof under Hy,

U, =

or where V' i1s

Asvar g, (n"*/2Ly,)

or a consistent estimator thereof under Hg. With respect to H;, one would
reject Hy if U, 1s sufficiently large, while, for Hs, one would reject Hg if
|U,.| is sufficiently large. Note that the numerator of U, is solely dependent
upon (H(T}.), Dy k), which in turn is determined by R only. As with

/ any statistic based strictly on R, then, L), discards the exact failure

17
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and censoring times as well as the ordering of censored lifetinies between
adjacent failures.

If the L;’s were independently and identically distributed under Hg, then

n‘l/le,,/\/Asvar",,(n‘“‘/L’Ll w)

would be asymptotically a standard normal random variable by the central
limit theorem. Of course, the L,’s are highly dependent and are not. identi-
cally distributed; nevertheless, asymptotic normality still holds as we shall
demonstrate in chapter 5.

For the random censorship model, the small-sample null distribution
of Ly, is dependent on all the d.f.’s in question, cven if Vary, (L),) is
distribution-free. On the other hand, with simple or progressive type 1I
censorship in effect, the small-sample null distribution of L,, is free of

F(t).
2.3 Representations of a WL Statistic.

2.8.1 The Sum of Scores Form.
Another popular family of statistics for testing Hy, based on the gener-
alized rank vector R as defined in section 2.2, is of the form

K
Lon =Y _(D1iQ, + M1,Q}),

i=1
where (); is a score corresponding to T?, Q7 is a score associated with all
censored lifetimes in [T7, o)y and Dy, My, are as previously defined.
Q; and Q¥ are such that Q, = Q(T?), QF = Q*(T?) with both Q(t) and
Q;(t) dependent on JH(t); moreover, we set Qf = 0, T = O and T, | =

+00. An obvious question which arises is, under what conditions can Ly,

18




be expressed as a WL statistic? Prentice and Marek (1979) provided the
answer to this. Firstly, set W; = R(QF_, — Q7), i =1,..., K. (Remark
that W; is determined by 3,.) Then

K
Ly, = Z(DliQi + My;Q7)
i=1
K i i T
= ZDH(Q:"Q:)‘Z (D1 +M1i)ZWij1
i=1 i=1 i=1 |
K k| K 1
=3 DiQi- QN =Y [WRT' Y (D1 +Mij)
=1 i=1 i j=t )

K K
=Y Di(Qi- QF - Wi) +)_ Wi(D — RuR)
i=1 =1
K
= ZWz(Dli - Rlle—l)7 (21)
=]

if
W:=Q:—Qf=R(Q;_, - Q7), i=1,....K. (2.2)

On the other hand, statistics of the form (2.1) can always be expressed in

terms of a sum of scores by letting
W ~W;
Q=W-y 25 Q=-) F, i=lL..k
=1 7 j=1 7
Thiese scores are obtained by first setting
W:=R(Q:_,—-Q7), i=1...,K
(thus yiclding the Q}’s as defined above), and then by setting

HfiIQi—— X 2'=1,...,I\'

1
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(hence yielding the Q;’s as given above).
The classical linear rank statistic for testing Hy with censoring absent.

has the form

L3, =) _ DiQY,

i=1
where Q} = Q*(T?) is a nonrandom score associated with T2, and where
Q%(t) either is a random function determined by N(¢7) or is a nonran-

dom, time-independent quantity. Upon substituting QY, Q%,..., Q% for

Q1,Q2,...,Qy, in (2.2), we obtain
1 Q3. Q7Y

where

Z;zl Qy/(i—n) ifi<n,

0 ifi=mn,

Q=) = {
and where

0™ (t) = SNEOHQUUN()+1-n) ift<TS,,
0 if ¢ > T2

n—|"*

Hence, L3, can be written as

Y WDy — RiR7"),

i=1

where W = W(T?) = Q} — Q7*, and where
We(t) = Q*(t) — Q™" (1).

L., therefore, belongs to the class of WL statistics.

2.8.2 Generalized Mann- Whitney Statistic Form.

20
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The following discussion is due to Gu, Lai, and Lan (1991). For any pair

L (X1, X2j), define
1 —W(ij)/R(ij), if Agj =1 and ng < Xii,
U(X“,ng) = U’,‘j = W(Xli)/R(X]i), if Al., =1 and Xli S ij,
0, in all other cases,
where R(u) = Ry (u) + Rz(u). Then
K
Z Wi(Dyi — RiRTY)
1=1
can he written as
ny n3
Z Z Ui;. (2.3)
i=1 j=1
To prove this, note that if Dy; = 1, then T = X, (uncensored) for
some r, and so
W(T?)(Dy; — RyR') = [W(TY)/R.) (R: - Ryi)
= [W(X1)/R(X1r)] x [#{X2j + X2 > Xir}]
= Y (W(X1,)/R(X1,))-
Xz_,: ArlrSX',)J
Likewise, if Dy; = 0, then T? = X5, (uncensored) for some ¢t and
W(T?) (Dy, — RyifRi) = — [W(Xa)/R(Xzy)] x [#{X1i: X1i > Xat}]
=— Y [W(X2)/R(Xa1)].
X1 X102 X2
The desired result follows accordingly.
If no censoring is present and W (t) = R(t), then (2.3) is in fact the Mann-
Whitney statistic, thus justifying the name “generalized Mann-Whitney
{ statistic.”
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2.8.8 Expression as a Statistic Belonging to Gill’s Class K.
For j = 1,2, let

Ni(t) =) I(X; <t,A;=1).

i=1
Then a WL statistic can be writtenr as

~ _ &)
/0 W(t){le(t) B lN(t)}. (2.4)

Remark, however, that for R,(t)Ry(t) > 0,

dN, (1) — dN(t) II{Z‘((:)) = Ba(t)dN, (t}z;t;’Nz(t)Rn(t)
_ Ri(®)Ro(t) [dN1 ()  dN,(t)

TR [Rl(t) Rz(t)]'

Hence, (2.4) is equal to

e [4NL) _ dNa®] _ (™ e fR - i ;
/0 I((t)[Rl(t) - Rz(t)]_/o I(t)l{A,(t) Az(t)}, (2.5)

where
i Bi(t)Ro(8)W (1)
K(t) = R
and
. L dN,(s)
A;(t) = , 1=1,2.
=) R
Of course,

t
Ko £ A = [ Mtw)du
0
as n — 0o, where A;(u) is the hazard function for sample .
Gill (1980) investigated the properties of two-sample tests based on sta-
tistics of the form (2.5), in which K(t) is a possibly random function de-

termined by
{Nj(s"),Rj(s) :8<t j= 1,2}

and required to be zero whenever R;(t)R,(t) = 0.
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2.4 Generation of Censored Data Counterparts of a Linear Rank

Statistic.

One particular subset of the family of classical linear rank statistics for

uncensored data comprises statistics of the form
n
Sn = E Dlzqs(z/n),
i=1

where ¢(i/n) is a nonrandom score attached to 77, and where ¢ is a non-

random function defined on [0, 1] and assumed to satisfy

!
/ é(u) du = 0.
Jo
Now, under Hy,
i/n 5 F(19)
as n — oo, where t? is the realized value of T?. For censored samples,
therefore, it seems only natural to prescore an uncensored failure time 77
as Fie mi(t]), where

A —_1 = (1 _ p—1
Feani(t) =1 H (1 Rj )
j. FSN(-)+1

is the Kaplan-Meier (1958) estimator of F(t) under Hy based on the data

from both samples. We then apply the function ¢ to obtain the score
Qi = d(Frmi(t?)) = 6(Fran (T7))

(c.f. Gu, Lai, and Lan 1991; Prentice and Marek 1979). Once we have
generated @y, ..., Qp, we can calculate QF, ..., Q3 via equation (2.2),
thus producing a statistic of the form of Ls,,, which in turn is expressible

as a WL statistic. Here,

. 1 t ~R; Qk
@i Z 1-R; | 1-Ry |’

k=1 J=k+1

23




with

Jj=if1

set equal to one. If Rk = 1, we set Q) = 0.
In actual practice, the Kaplan-Meicr estimator is written as

Frmx®) =1~ [ @-&7": (2.6)

J JSN()
however, the above censored data statistic, with Fi a2(t) taking the place
of Fc m1(t), has a weight function which is dependent on N(t) and so does
not belong to the class of WL statistics. Fx ary (t), though, is asymptotically
equivalent to Fio(2). Therefore, from now throughout the remainder of
this thesis, whenever a weight function of a WL statistic depends on the
Kaplan-Meier estimator of F(t) based on the combined sample of size n,
we shall employ definition (2.6). More generally, whenever we make any
sort of reference to this estimator of F(t), we shall assume definition (2.6)
is in effect. (A similar convention will be invoked for the Kaplan-Meier
estimator of Fj;(t) based on the data from sample ¢,s = 1,2.) Variants of

(2.6), which can be used for prescoring purposes, arc the Peto-Peto (1972)

estimator
. 1¢- _ . N
Fpp(t) = 3 {FKMz(t ) + Fruma(t )}, (2.7)
Prentice’s (1978) moment estimator defined by
. R
Fey=1- ] [ J ] (2.8)
joign LI+

and Altshuler’s (1970) estimator

Fut)=1-exp |- Z L (2.9)

i i<ny
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We comment here that of the above four estimators of F(t), only (2.6)
prescores T2 as i/n with censoring absent; hence, of the four censored data
counterparts, only the one implementing F km2(t) reduces to S, with no
censoring present.

Another way in which we can extend S, to accommodate censoring is
via the methodology of Gu, Lai, and Lan (1991): To T'°, we once again
assign the score Q, = ¢(Fg Mm2(t2)). To obtain scores corresponding to the
censored failure times in [T7,T7, ), first let Ty, 1, ..., T(, m,) be, in some
arbitrary order, the censored lifetimes falling in this interval. Since, for

uncensored data,

#(ifn) L S(F(t2))

under Hy, the score assigned to T{; ), denoted by Q) ;, is such that under

H()

i,J

) 1
Q1 L BGFO)T 2 1:5) = / ) duf(1 = Flti ),
tig)

where T is a random variable having d.f. F(t), and where t(i,j) is the

realized value of T(; ;). Hence, we should define Q7; as

1
Q= / o(u)du/(1 = Frara(ti ) = ®(Frema(ti ),

JFrm2(t()
where

1
®(u) = / d(s)ds/(1 — u).

Note that ®(u) is in fact the mean value of ¢(s) over [u, 1]. The resulting
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censored data generalization of S, is

- K 4",
S =E Did(Fra2(t)) + Z Dy y®(Frar2(t. )
=1 j=1
Mo )
+ E Dy (0,)®(Fr m2(to, )
i=1
K -~ -~
=Y [Drit(Frema(TE) + My@(Frpna(T)]
=1

where D, (; 5 is 1 or 0 according to whether the item censored at T, ;) is
from sample 1 or 2. Now S, in genceral, cannot be written as a WL statis-
tic; however, as will be demonstrated in chapter 4, S}, is asymptotically

equivalent to

K

> [#(Fxna(T2)) = B(Ficma T (Dri = BB,
assuming rﬁ':slatisﬁes certain conditions. Morcover, this asymptotic equiv-
alence remains valid if F m2(t) is replaced by any one of (2.7), (2.8), or
(2.9).
2.5 Examples of Some Classical Tests.

2.5.1 The Log-Rank Test.

The log-rank test has weights W; = 1, and scores

Qi =1-) (1/R;),

i=1

Q: = _Z(I/RJ)’
j=1

i =1, ..., K. Mantel (1966) and Cox (1972) developed this SWL statistic

in the form

Zf—_,(Du— RuR™)

. (2.10)
’ VEE (R Ry)
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Mantel did so using the contingency table approach, while Cox derived

(2.10) as a score test within the context of the proportional hazards model.
Peto and Peto (1972) generated the log-rank statistic in the sum of scores

representation using maximum likelihood techniques. Prentice (1978) yielded

the log-rank procedure in the form

K (D1Q. + M,QY)
\/Zﬁl(RliR,_2R2i)

as a score test arising from the accelerated lifetime model.

In the absence of censoring, the log-rank procedure reduces to the Savage

(or exponential scores) test (Savage, 1956).

2.5.2 The Generalized Wilcozon Tests.

The first known censored data counterpart of the Wilcoxon procedure
was constructed by Gehan (1965). The Gehan test has weights W; = R;
and scores Q, = (R, —i)/n, QF = —i/n (i = 1,...,K). Actually, Gehan
wrote the numerator of his test in the form (2.3) with W(t) = R(t)/n.
Mantel (1967) then expressed Gehan’s representation as a sum of scores;
afterwards, Tarone and Ware (1977) wrote Mantel’s form as a WL statistic.

Gchan made the assumption that both samples have equal censoring
patterns and proposed, as a variance estimator, a complicated version of
1} different from ecither of its two given forms in section 2.2. Mantel then

wrote Gehan's form of V), as

=

nin . .
71(711——21 ; (Qf + MiQiz) )

Breslow (1970) suggested, under a random censorship model, a variance

estimator that is valid even when the censoring patterns are unequal and
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which, for large samples. is approximately equal to 17,. Finally, Tarone
and Ware (1977) suggested a variance estimator which has the exact form
of V, .

The second generalized Wilcoxon procedure to be generated was the

Efron (1967) test. In this case,

Wi = n"'nineI(RiiR2: > 0) (1 ~F KM(ff_))

X (1 - sz\'M(t?—)) R;R'R;),
(2.11)

where Fjl{M (t) is the Kaplan-Meier estimator of F,(t) based on
(le’ Ajl )’ v (X_]n_, ’ Ajn_, )3 Jj=12.

In terms of the sum of scores format,

Qu=Wi-n""nny Z[{l - ﬁ'nl\'M(t;")} {1 - Fu\'m(t}'”)}

=1

x Ry R I(R Ry, > o)J
and
Q; = —n—*nmzz[{ L= Fycnltg) {1 - Paxm(7)} )

i=1

x Ry (R Ryj > 0)].

In actual fact, the two-sample test proposed by Efron was not based on a

WL statistic but rather on

ni T2

2) 2 Vi1,

i=1 j=1
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where V,, = 1, 0 whenever Uy = 1, —1 for Gehan’s statistic, and where

V,; is an cstimator of
PI'[T“ < T2j|(X2n AQ,), (X2]’ AQJ)]

whenever U, = 0 for Gehan's statistic. (Efron assumed here that o random

censorship model is in cffect.) With V,, defined as such,

" ny

v-3-$,

=1 j=I

= Lw (1 = F‘zKM(t_)) I(Ry(t) > 0) d((1 = Fixpu(t))I(Ri(tT) > 0))
(Mill(\r‘, 1981, p. 106). Under the condition that
sup{t : Pr(R,(t) > 0)} = sup{t : F,(t) <1}, ¢ =12,
V can thus be considered as an estimator of Pr(Ty < Tz), where Ty and T3

arc independent random variables with d.f.’s Fy(¢) and Fy(f) respectively.

So, under Hy, V should approximately equal 1 /2. Although
n~'nyng(2V —1)

cannot generally be written as a WL statistic, it is asymptotically equivalent

to

K

Y Wi(Dyi— RuR)

=1
with W, defined as in (2.11), under the condition that there are no ties
between the X);’s (Gill, 1980).

Because of its dependence on R (t) and R(t), the weight function of
Gehan's and Efron's statistic is inexorably linked to the intensity of cen-
soring in both samples. This property is highly undesirable since censor-
ing intensity provides little information-due to independent censoring be-

ing in offect about differences or lack thereof between Fy(#) and Fy(t). A
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Wilcoxon analogue, which is less affected in this regard, has the scores
Qi =1-2Fpp(t)), Q7 = —Fpp(t))

(Peto and Peto 1972). The resulting linear generalized rank statistic, how-
ever, cannot generally be expressed as a WL statistic. Such is not the case,

though, with the statistic comprising scores
Q=1-2Fp(t}), Qi =—Fp(t;)

(Prentice 1978). The corresponding WL statistic has weight

N : R
Wi-—_l—Fp(t;-’)zl-I(R j—l)
J

J=1

Remark that the random variable F p(t2) is weakly influenced by the rate at
which censoring events occur in each sample. Prentice originally developed

his SWL statistic in the form

K (QiDy + QM)
\/Ezlil {Wi(l — A;)B.— (A; - W)BiW:Bi + 21, WJBJ)}

as a score test arising from a log-lincar regression model with the error

variable having a logistic distribution. Here,

> (R; +1
A, = iT2), B,=2D,+ M.
IJ,(RJH) A

For future reference, the weight W, = 1— F pra( t?) shall be known as the
Peto-Peto weight, even though the actual statistic Peto and Peto developed

is not expressible as a WL statistic.
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2.5.8 The Tarone-Ware Class of Tests.

Tarone and Ware (1977) proposed a class of procedures that include,
besides the log-rank and Gehan’s test, SWL statistics which offer a com-
promise between the two. The weight function associated with this class
is W(t) = g(R(t)/n), where ¢ is a nonrandom function defined on [0,1].
Tarone and Ware conjectured that if g(u) takes on intermediate values be-
tween w and 1 for all u € [0,1], the resulting test will maintain good power
across a wider range of alternatives than the other two procedures.

The variance estimator cmployed in the development of this class of
procedures was Ve,.

2.5.4 The Harrington-Fleming Class of Tests.

Harrington and Fleming (1982) suggested a family of tests with weight

functions defined as

W(t) = [1 — e’ (2.12)

where p > 0 and nonrandom. Note that (2.12) generalizes the log-rank and
Pecto-Peto weight functions. The originators of this class of SWL statistics

utilized V., as the variance cstimator.

31




“§

A

CHAPTER 3
THE PROPORTIONAL HAZARDS
MODEL AND SWL STATISTICS

3.1 Introduction.
Consider n items (not necessarily involved in a two-sample scenario)
to have been placed on test in a survival study at time 0, and suppose

associated with the ¢*! item is a column vector of p fixed covariates®
— . ~ \T -
Z; = (214y.005,2p) s T=10..,n

Let T; be the failure time variate corresponding to itemn ¢, and let hy(t) be
an unspecified hazard function for the standard set of conditions z; = 0.
The proportional hazards model, as proposcd by Cox (1972), defines the
conditional hazard function for item i, given z;, as

. Pr(T; < t+h|T, >t,2;)
lim =

0+ h h,(tIZi) = CXI)(ﬂZi)’l()(t), (31)

where 8 = (B1,...,0,) is a row vector of p regression parameters. The
nonrandom conditional density function and conditional survival function®

of 7%, given z;, are thus respectively

fi(t)z:) = exp(Bz:)ho(t)[So(t)]o*PF)

5For the remainder of this thesis, the term “fixed,” when describing a covariate, shall
mean “independent of time and nonrandom.” Moreover, the word “coviriate” shall from
hereon be used interchangeably with the terms “explanatory variable” and “regressor

variable.”
6By “survival function”, we mean the complement of the d.f. in question.
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and

Si(tlz:) = [So(1)]*PF=),

where

So(t) = exp|— /0 ho(u) du.

Thus, the survival function for an item with covariate, z, is obtained by
raising the bascline survival function Sy (t) to a power. The family of models
produced by this process is sometimes referred to as the family of Lehmann
alternatives (Lehmann, 1953).

The proportional hazards model adapts readily to the inclusion of ran-
dom, time dependent covariates. There are several types of such regressor
variables; the one of concern to us-introduced by Oakes (1981)-is the evo-
lutionary covariate. Let H(t) denote the history of failures, censorings, and
of all other random features of the study up to but not including time ¢.
Then we shall call Z(t) an evolutionary covariate if it is a function of H(t)
only. Thus Z(t) could be the number of items at risk at ¢~, the number of
failures before ¢, or, in a comparison of two groups, the number of failures
in one group before time ¢. The proportional hazards model, with a single

evolutionary explanatory variable Z,(t), becomes therefore

DT, €[tt+ BT > 1, Vi(t))
lim

h—o+ h

= h;(t|Vi(t)) = ho(t) exp(8Z:(t)), i =1,...,n, (3.2)
where Vi(t) = {Zi(s) : s < t}, and where “h;(t|V,(¢))” is read as “the
conditional hazard function of item z, given V,(t).”

The proportional hazards model, with either fixed or evolutionary covari-

ates, can be applied to the two-sample problem in the following manner.
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Let n,,ny be the sizes of samples 1 and 2 respectively. Let the items of
sample 1 be denoted by labels 1, 2, ..., n;. and let those of sample 2 be
denoted by labels ny + 1, ny + 2, ..., n, where n = n; + n». Denote the
hazard functions corresponding to samples 1 and 2 by, respectively, hi(f)
and h3(t). Let h3(t) = ho(t), where ho(t) is completely unspecified, and let
hi(t) = hy(t)e?, where § is some unknown paramcter. If we assign to item

¢ the fixed regressor variable z; defined by

(3.3)

P

_ { 1 if ¢ € sample 1,
0 if ¢ € sample 2,

then the conditional hazard of T,, given z;, can be directly obtained from
the model
hi(t|z) = eﬁz‘hg(t). (3.4)

Consider, now, the above two-sample setting with the following modifi-
cation. Let W (t) be an evolutionary covariate, and let b} (#|U(1)) denote
the conditional hazard function for sample i, given U(t), where U(t) =

{W(s) : s < t}. Suppose

R} (E|U (t)) = ho(t)e”V (Y,
and suppose

hy(t|U () = hs(t) = ho(t),

where ho(t) is free of U(t) and unspecified. If we associate with itemn 4 the
stochastic explanatory variable Z;(t) defined as

Z.(t) = { W(t) ifi€ sample 1,

e (3.9)
0 if 2 € sample 2,

then the conditional hazard of T;, given V;(t), is described by model (3.2)
(Lustbader, 1980; Oakes, 1981).
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In the former and latter two-sample scenarios, the null hypothesis
Ho: (1) = i (HU() = hi(t) = ho(t)
can thus be equivalently formulated as
Hy: =0
in, respectively, (3.4) and (3.2).

The aim of this chapter, therefore, is to demonstrate how SWL statistics
can be derived within the context of a proportional hazards model that
incorporates cither a fixed or an evolutionary covariate. Towards this goal,
we will always first construct a likelihood function—not restricting ourselves
to the two-sample problem —from which valid inference about 8 can be made.
After obtaining an appropriate likelihood, we will appeal to either (3.3) or
(3.5) and then gencrate a test of Hy via the first and second derivatives of

the log likelihood.
3.2 Case of Fixed Covariates.
3.2.1 Likelihood Considerations.

3.2.1.1 Partial Likelihood.

We first present the method of partial likelihood-due to Cox (1975)—in
a generalized setting and so do nouv limit ourselves to failure time data.
Suppose the data, denoted simply as Y, have joint density or probability
function fy(y;0,0-), where 6, is the vector of parameters of interest and
0. is the vector of nuisance parameters. One or more of the components
of 8, may cven be nuisance functions. Suppose that Y can be transformed

into the sequence of pairs of variables
”{ (JYhSl,X29S23'--9Xm’ Sm) (3'6)
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h in a one-to-one manner, where the number of pairs of terms m may in some

cases be random. The full likelihood of (3.6) can be written as

m
H fXj XG-1)8G-1) (:L‘jlxu_l),su_”;ﬂl, 62)
j=1

m
X H fs_, |XJ ,S(-'_l)(s.lIx(J)vs(J—.);al 902)1
iy (3.7)

where X = (X;,...,X;), 8¢ = (S5y,...,85,), and X9 S = ¢,

If the second product of (3.7) is a function of ) only, it is called the
partial likelthood of @, based on 8 = (54,...,5,) in the sequence {X;, S}
In certain applications, one can arguc that any information on 8 in the
first product is inextricably linked with information on @, and so for sim-
plification we take for inference the partial likelihood which involves only
0:. There will typically be some loss of information involved in using a
partial likelihood; in many situations, howcver, heuristic arguments can be
put forth which suggest little is lost in ignoring the first term of (3.7).

Consider now a survival study in which n items arc put on test and the
data for the i* item, with lifctime variate T}, are (Y;, 4A,, z,). Here, Y, is the
survival time variate, A; is a censoring indicator variable (A; = 0ifY, < T};
A; =11 Y; =T,), and z; is afixed scalar covariate. Morcover, suppose the

conditional hazard function of T, given z;, is determined by model (3.4).

As far as unknown parameters are concerned, the full likelihood of
{(Yi,A;,z;): i=1,...,n}

is dependent on /3, hy(t), and possibly one or more nuisance functions asso-
ciated with the censoring mechanism. The problem at hand then is to make

useful inference about /3 in the presence of the other unknown quantitics,
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Suppose in the above study that K items, with labels Sy, ..., Sk, give
risc to ordered uncensored failure times TP < T < - < T§ (set Ty = 0
and T}, | = +oc). Supposc further that M; items, labeled S;,...,5; m,,
arc censored in [T7,T7, ) at times T, < TYy < -+ < Tiy,. For @ =

0,...,K, therefore, take

Xiq1 = {z,, wir LipTi =1 .,M,-;l:l,...,'n}.

Finally, sct Si4; = n+1. The complete data, as described in the previous

paragraph, can be rewritten as
(X] ’ SlsX‘Z’ 52, ey XK, SK’XK+1, SK+1)7

the likclihood of which is

K+1
Lik = JT fx.xo-vsu-n (@ixt1,s60 HPr(S = (4)[X®, 86Dy,
i=1 =1

Note that Pr(Sk4, = n+1| XK+, S(K)) = 1.Now, let H; = (X, S(""l)),
and let H (t) record the history of the study up to but not including ¢ as
well as all covariate values; hence H; = (H(T7?),T?), and so Lik can be

written as

N+1
II fxomes s ilhioy, (= 1)‘HPI = (4)|H;)
= K+1
H Fxopm sy (@ilhioy, (= 1))IIPr(s = ({)|H(T?), T?),

(3.8)

where Hy = 0.
We now make two assumptions which will enable us to evaluate the

second product of (3.8):
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Assumption 1: Any item which is at risk at #~ cannot be censored in
the interval [¢,¢ + dt). Censoring can only occur at ¢ + dt.

Assumption 2: If item ¢ is at risk at {—, then

f’l'. lH(t)(tlh(f)) = hl(tlzl)s

where “fr, g (1) (t|R())” means the conditional density function of T;, given
H(t) = h(t), evaluated at specifically ¢. In words, this assumption means

that the conditional hazard function of T,, given z,, is unaffected by

(1) the fate of the other items in (0,t),
(2) the value of the other covariates, and

(3) the fact that item 7 was not censored in (0, #).

The last of these three is a direct consequence of independent censoring
being in effect.
Now let R(t) denote the risk set at time ¢, which is the sct of items at

risk at t~. Then from assumptions 1 and 2,

Pe(T? € [t,t +dt)|[H()] = Y PrTielt,t+dt), [ (Ti<T;)|H(1)]

1ER(L) JER(L)—1
t+dt
= Z / frmcyy (Gilh(t)) H [Pr(T; > ti|H(t))]dt
leR(t)”? JER(t)--1
= D Uninwhr@) I [Pu(T; > HE))
IER(L) JER(t)—1
= ) hi(t|z)dt. (3.9)

LSO

We thus have rom assumptions 1 and 2, and from (3.9)

1]

Pr(S; = (i) H(T?), TP =1°) = Pr(Ty;) = 2| H(TY), T? =12)
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_ fH(T(u)),T(u)(h(t?)’t?)

" fuereyTe (h(82),12)

_ Pr(Ty,) € [87, 87 + di7)|H (7))
 Pe(T7 € [t7,t2 + dt)|H(t?))
_ hy(82]z))dt?

B ZlefR(t;’) hi(t7|21)dt;
_exp(Bz)

- Zleﬂz(tf) exp(Bz1)

Thercfore, the second product of (3.8) is
K

_ exp(B2(;y) 1
Ll (ﬁ) - E Z[Ef}g(t?) exp(,le), (3- O)

which is the famous “partial likelihood function” of Cox (1972) with fixed,

scalar covariates.

The total likelihood, Lik, can be determined using product integrals:
o0
Lik = Pr[H(0) = h(0)] f(])’ Pr[H(t + dt) = h(t + dt)|H(?)],
where the second term is

m
Jim T Pr(H (rioy + An) = h(riy + AT)|H(7:21)),
AT, —0 i

-~

where the 7;’s are nonrandom, and where 7 = 0 < 71y <+ < 7, < 00,

AT1; =1, — T;_1, and 7,,, — 00 as m — oco. But

Pr[H(t + dt) = h(t + dt)|H(t)] = Pr[D; = dy, Cy = ¢;| H(t)]

= Pr[D; = di|H ()] Pr[C} = c¢t|H (t), Dy),
(3.11)

where Dy, Cy are the sets of labels associated with individuals that, respec-

tively, fail and are censored in [t, ¢ +dt). It then follows that

Pe[Dy = deH() = [[ hi(tlzdt [ 11 - hu(tlz)dt], (3.12)
led; lER(t)~d,
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where assumptions 1 and 2 have been utilized. Using (3.11) and (3.12), and

setting Pr[H (0) = h(0)] = 1, we have

Lik =P I mtizndt I [0 = hi(tiz) df PPr(C, = |H(2), D).
led, leR(t)—d;

The first product integral, apart from differential elements, reduces to

K e}
II hs) (tglz(j)) €xp | — / Z hi(u|zr) du
j=1 0

IER(u)

_ exp(02(;))
i 2ter(te) €XP(Bz1)

K 00
x Hho(t;?) Z exp(Bz)| exp ——/ ho(u) Z exp(Bz) du

i=1 1ER(t°) 0 IER(u)

(Kalbfleisch and Prentice, 1980, p. 121). Hence,

K41

I 51— sie0 (milhica, (6= 1)
i=1

=H ho(t?) Z exp(Bz1) | exp —/Oooho(u) Z exp(3z) du

i=1 1ER(2?) 1€R(n)

xﬁmm=qmmm¢ (3.13)

which is the portion of the full likelihood being ignored when using strictly
L1(/3) to make inference about £.

Intuitively, it would appear that if hg(#) consists of many unknown pa-
rameters, the first and second factors of (3.13) contain relatively little in-
formation about 3. Moreover, if the third factor of (3.13) is free of /4 (i.c.; if
the cersoring mechanism is noninformative), no information about this pa-

rameter can be extracted from this term. Realistic examples of informative,
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but independent censoring schemes are difficult to construct. An artificial
example is a random censorship model where the potential censoring time
for cach individual is determined by the failure time of another individ-
ual, with the same covariate, who is not included in the actual life-testing
experiment and whose conditional hazard function is described by (3.4).
Kalbfleisch and Prentice (1980, p. 109-110) compared the Fisher infor-
mation in L;(A) to that in Lik, assuming noninformative censoring, for the

model

ho(t) = exp [g1(t)n1 + -+ + Gm(t)¥m] do(2), (3.14)

where Ag(t) as well as g;(t) (¢ = 2,...,m) ave completely known, where
a1(t) = 1, and where (v1,..., %) is a vector of unknown parameters. They
found that L, will be asymptotically fully efficient with respect to Lik for
the estimation of 3 if, for some @ and Vt € sup{t : Pr(#R(¢) > 0) > 0},

iy E(} . ex =i exp(2:8))
n—o00 E(EiefR(t) CXP(Ziﬂ))

=0(gl(t),-'° sgm(t))T’ (3'15)

where 8 = (6y,...,80,,) is free of t. Note that if 3 = 0 and the censor-
ing mechanism operates in the same manner for all n items, this ratio of
expectations is free of ¢ and (3.15) is satisfied; hence, under these circum-
stances, the score statistic L (0) will have full Pitman efficiency relative to

the likelihood-ratio statistic (Kalbfleisch and Prentice, 1980, p. 106).

3.2.1.2 Marginal Likelihood Approach of Kalbfleisch and Prentice.

Another manner in which L; can be derived is by modification of the
marginal distribution of the ranks with censoring absent. Suppose for the
moment, then, that all n items of the above survival study are observed to

fail. Let Ty, ..., T, be the unordered lifetimes, and let z;, ..., 2z, be the
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corresponding covariates. Denote by O the order statistic (77, ..., Ty), and
denote by R the “rank statistic” (J,,...,J,), where J, is the label attached
to T?. More correctly, R is the vector of anti-rar . For convenience,
though, we will continue to refer to R by the former term or by the term
“rank vector.”

Define U, = g~ Y(T3) (i = 1,...,n), where g € G, the group of strictly
increasing differentiable transformations of (0,00) onto (0,00). Then the

conditional hazard of U,, given z,, is
Ao(u) exp(zif],
where Ag(u) = ho[g(u)]g'(u). Thus, if the data were presented in the form
(Uis21)s -5 (Uny 2a)s

the inference problem about 3 would remain unchanged provided hy(t) were
completely unknown. In effect, the estimation problem for /3 is invariant,
under the group G of transformations on the T;’s. We also note that when
a member of G operates on T,...,T,, it acts transitively on the order
statistic O while leaving R invariant. Finally, the homomorphic group
H, acting on the parameter space, is transitive on hy(-) and leaves the
regression parameter f invariant. Thercfore, by the definition of Barnard
(1963), the rank statistic R is marginally sufficient for the estimation of 3,
that is ‘sufficient for 8 in the absence of knowledge of hy(t).” For inference
about [, the probability function of R is available and is given by

o0 o0 o0 oo N
PrR=(Wostll= [ [ [ e [ T Aolec eyt
1o Jug 1

n-11=]

ol VO] (3.16)
H?:l [Z;’l:z exp(ﬂz(]))]
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By the terminology of Fraser (1968), and Kalbfleisch and Sprott (1970),
(3.16) is called the marginal likelihood of f.

If censoring is present, some modification of the above argument is re-
quircd. When a censored sample is obtained, the rank vector of the under-
lying T,’s is only partially observed. For example, suppose that items 1, 2,
3, 4 yicld survival times 40, 10, 20*, 30*, respectively, where the asterisk
indicates a censored lifetime. The rank statistic, on the basis of this data,

is known to be one of the following;:
(2,1,3,4);(2,1,4,3);(2,3,1,4); (2,3,4,1); (2,4, 1, 3); (2,4, 3,1).

In order to make an inference about 3, we calculate the probability that the
underlying rank vector is any one of these (Kalbfleisch and Prentice, 1973).
This probability is the sum of six terms of the type (3.16). Remark that
this approach ignores the ordering of censored lifetimes between successive
failures; however, the fact that independent censoring is in effect suggests
that little information is lost in this restriction (see pp. 11-12).

Suppose then that K items, with labels (1),..., (K), give rise to ordered
uncensored event times TP < T3 < --- < T}, and suppose further that M;

itews, labeled (j,1), ..., (j, M,) in some arbitrary order, are censored in
[Tjo, j"“) (7 =0,...,K),

where Tg = 0 and T§: | = oo. The rank vector generalized to censored

data, as defined by Prentice (1978), is

Ri = ((se. o, (K): {G1)s -, Gy M)} 5 = 0,..., K),

which is in fact an equivalent form of the generalized rank vector as de-

fined in the introduction. The marginal likelihood of 3 is computed as the
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probability of obtaining all possible underlying rank vectors in the uncen-
sored experiment which are consistent with R. This probability (defining

T(o) = 0) is

PI‘{T(l) < T(g) < e < T(K);(T(i) < T(i'j)),l' =0,....K;)=1,. ..,I\IJR(,'}
M,

fole]
= / / / f(j)(vjlz(J))H‘S(jvl)(l)jlz(J.l)) (ll’l\'...(]ln
0 " VK —1 j= l

=/0°°/°°/ :

K M, v,
H e?*Oho(v;) exp |- { P70 + Z P / ho(w)du| | dog---doy
. 0

i=1

_ K exp(Bz(y)
Zlem(Tg) exp(Ba) |’

which is Cox’s partial likelihood function. Here, f,(¢|z;) and S;(t]=,) are,
respectively, the nonrandom conditional density function and conditional
survival function of T;, given z,.

Recall from subsection 3.2.1.1 that the likelihood of
{(Y;,A,,2): i=1,...,n}

—regardless of the conditional d.f. of T, (: =1,...,n), given z; is

Lik = QH[h (Y;]2;)]® exp / Y hu(ulz) du

1ER(u)

= QT (LAHesn® ISucvif= =)
i=1

where () is the contribution to the likelihood provided by times of censorings

and labels of items censored. For type II and progressive type II eensoring,
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, _.] . ”
Qis Land [T, (37") " respectively, where R; = Z?:i(MJ' -+ 1). Recall
that, for progressive type II censoring, M; and R, are predetermined; thus,
for these two censoring schemes,

Lik o [T [[£.(%z0)1% [S:(Yilz:)]) 2]

=1

K M,
=1 § 7T 1z) T S (T N2iy)
Jj=1 =1

Hence, for the above two censoring mechanisms, the probability function

of Ry, is given by

frotra)= [ - [Likdrg..-az,
TO<.-<T

whicl, for the special case of model (3.4) equals C'L(S), for some constant
C.

3.2.2 The Log-rank Test.

Consider now the two-sample scenario described in section 3.1 as related
to model (3.4). Invoking covariate definition (3.3), log(L;(8)) becomes

o ( cxp(8Ds) K
L(3) = log [H (m) = Z [8D1, — log(Ry.e” + Ry)| ,

i=1

=1
where Dy, = 1 or 0 according as the failure at T? occurs in the first or
second group, where R, is the risk set size of group j at time T?, and
where R, = R, + Ry,. The score statistic for Hg : 8 = 0 is therefore
, - Ry
U=L0) =; (Du— 7{:),
which is the log-rank statistic. The expectation and variance of U, under

Hy., were evaluated in chapter 2 using 2 x 2 contingency tables (set W (¢) of
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chapter 2 equal to 1). We now evaluate thesc two cmploying the properties
of a score statistic.

Applying the notation of subsection 3.2.1.1,
K

L(B) = ) (B,
=1

where [;(8) = log (Pr(S; = (i)|H;)) = log [exp(8D1;)/(Ri:c? + R2,)] . Now,
Pr(S; = (¢)|H;) is a conditional probability function over R(T?), and it de-
pends on the parameter 3. It follows then just as for any probability or

density function that

EHo [l:(O)IHz] =0

and
Var”o [l:(O)IHll = —E”o [l:I(O)'HI]’

for 1 =1,..., K. Hence, unconditionally under Hy,
EHO (l;(O)) =0
and

Var(l;(0)) = E (Var(l;(0)|H;)) + Var (E(lj(0)|H,))
= —E(E(L;(0)|H,)).

The properties of iterated expectations yicld one further result. Since H,

and §; are included in H; if i < j, we have under Hy,
E [1(0)I}(0)] = E[E(L(0)(0)|H,)]
= E[I,(0)E(L(0)|H;)]
= (.
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Hence,

COVHO (l:(()), l;(O)) = 0.

Treating K as a fixed quantity if it is in fact a random variable, we have,

under Hy, from the above results

K
E(U) = Z E(10)) =0
=1

and ) )
Var(U) = Var [Z 12(0)} = 2 Var(Z(0))
i=1 i=
- {EE [(3) ()]s}
= E[-L"(0)],
where

K
Ri; Ry,
_Lll(o) == Z R2 .

=1
—L"(0) is, of course, the conditional permutation variance estimator for the
log-rank statistic. For large ny, ny, and K, Varg,(U) can be adequately

replaced by —L"(0); thus, the SWL statistic we have generated for testing

Hy:3=0is
Dlz Rlz/R )

VerD —\[z ) (2)

which is the log-rank test.

3.3 Case of Evolutionary Covariates.

9.8.1 Likelahood Considerations.




#

>

Since the covariates of concern now are time dependent. the propor-
tional hazards model no longer is invariant under the group of differen-
tiable, strictly increasing transformations; thus, the marginal-likelihood-of-
the-ranks approach is inappropriate here. The method of partial likelihood,
however, is once again applicable.

As in subsection 3.2.1.1, consider n items to have been placed on test at
time 0, and let Y;,T;, A, be the survival time variate, failure time variate,
and censoring indicator variable corresponding to item i. Morcover, suppose
that the evolutionary covariate Z,(t) is associated with item . Let V(1)

denote the covariate path up to and including time ¢,
{Z,(u): 0 <u<t}.

Then the data for the ith individual are (¥;, A;, Vi(Y2)), i = 1,...,n. The

conditional hazard function of T}, given V,(t), is denoted by
hi(t|Vi(t)) = Jim Pr(T; € [t,t+ h)|V,(t), T; > t)/h,
and as a special case of interest we supposc
hi(t|Vi(t)) = cxp(BZi(t))ho(t). (3.17)

As in subsection 3.2.1.1, we consider K items labeled Sy, ..., Sk to give
rise to ordered uncensored lifetimes T7 < T < «+- < Tf.. The remaining

n — K lifetimes are right censored. For:=0,..., K, lct

Xip1 = {S,,j,TO Zi(u), TP j=1,...,M;;l € R(u); T <u < Tz’fH},

1,j?

where S; ;, T7;, and M; have the same definition as in 3.2.1.1. In addition,

set Sk +1 = n + 1. The data in its original form,

(YI’ Alal/l(yl))a' L) (Yn’ Ana Vn(}/n))s
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is thus equivalent to

A X]’Sl"'°aXK+1,SK+l7
the likelihood of which is
K+1 K
Lik = H fxtlllz—l ,Sim1 (xilh‘i—-l,(l*l)) HPI’(S; = (i)lH(Tio)’Tio7L(Tzo+))'
1= =1

Here, H; is as previously defined, H(t) is the collection of all censorings,
failures, and covariate values in (0,t), while £(¢) describes the path of all
covariates up to but not including time ¢.

The second product of Lik, under assumptions similar to those of p. 38,

is

[ by (TP IV (T?))
L =
2(8) =[] | Yiexcre) M(TFIVI(TY))

zﬁ’ exp(8Z:)(T7))
_Elem(Ty)eXP(ﬁZI(Tf)) ’

which is a partial likelihood.
The derivation of the full likelihood, Lik, proceeds as in subsection

3.2.1.1, but the factorization (3.11) of
Pr[H(t + dt) = h(t + dt)|H(t)]
is replaced with
Pr{L(t + dt) = €(t + dt)|H(t)| Pr[D, = dy|H(t), Lt + dt)]
x Pr[Cy = ¢ |H(t), L(t + dt), Dy). (3.18)

The product integral of the first term of (3.18) equals 1, while that of the

second term yields

[ oo
[T lexp(3Z( (T2 o (T?)] exp [— /0 Y (exp(BZu(t)))ho(t) dt

1=1 leR(t)

{ (3.19)
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under assumptions similar to those stated on p. 38 (Kalbfleisch and Pren-
tice, 1980, p. 127). If censoring is noninformative, the only portion of Lik
that is of concern to us is (3.19).

Kalbfleisch and Prentice {1980, p. 141) compared the asymptotic ofli-

ciency of Lo(f3) relative to (3.19) for the paramectric model
m
ho(t) = Ao(t) exp (Z(g;(t)%)) :
=1
where g;(t) = 1, and where Ay(¢) as well as the remaining g;(f) are com-

pletely specified. They showed that Ly(3) is fully cfficient if

E {Tienn ZitH) exp(pZ.0) }
m
n—00 E{ZzEfR(') exp(/fZ,(t))}

can be expressed as an exact linear combination of the g;(t)’s.

3.3.2 Generation of SWL Statistics Excluding the Log-Rank Test.

Suppose that the life-testing experiment of subscction 3.3.1 is, more
specifically, a two-sample scenario with the covariates defined as in (3.5).
We therefore have

K
L(B) =log(Ly(B3)) = Z {D1:BW(T?) — log [Ry, exp(BW(T))) + Ry} .

=1

A test for Hy : 8 = 0 can be based on

p
L'(0) =) Wi(Dy, - Rii/R,),
i=1

where W; = W(T?). Using arguments similar to those presented in subsee-

tion 3.2.2, we can show that, under Hj,

E(L'(0)) = 0
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and

Var(L'(0)) = E(-L"(0)),
where ~L"(0) = Z:‘zl E“—’;{fzf- Since, under Hyg, Asvar g, (n=1/2L'(0))
can be consistently estimated by —L"(0)/n (Andersen and Gill, 1982), an
appropriate test for 3 = 0 under asymptotic conditions is

') & WiDy, - RiR)

T /oL0) \/Zfil () (%) w2

U,

If we restrict W(t) to being a function of only
({Dlu Rlia Ry; : ¢ < N(t_)} 7R1(t)9R2(t)’N(t—))
C H(t), U, is anu SWL statistic. Here,

Rj{t) = I(Y: 2 i € group j),

=1

for j = 1,2, while

N =Y I < A=),

i=1
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CHAPTER 4
THE ACCELERATED FAILURE TIME
MODEL AND SWL STATISTICS

4.1 Introduction.
Consider a life-testing experiment (not necessarily dealing with the com-

th

parison of two samples) in which the failure time variate for the +'" item,

T;, i1s modelled as
W;=logT; =8z, +E;, i=1,...,n (4.1)

Here, 2z; is a column vector of p fixed covariates associated with item ¢, 8
is a row vector of regression coefficients, and E; is an error variable with
nonrandom density f and absolutcly continuous, strictly increasing .. F.
We reter to (4.1) as the accelerated failure tamne model. The data for the
i'h item are (Y;, A, z;), where Y; is the log survival time and A, is the
censoring indicator variable (A, =1 ifY, = W,, A, =0if Y, < W,). The
principle objective here, of course, is to make inference about g from the
available data.

Consider, now, a two-sample scenario such that the items of sample 1
are denoted by labels 1,2,...,n;, while those of sample 2 are denoted by
labels ny +1,n, +2,...,n; + ny = n, and such that the log cvent time for
item z,¢=1,...,n, is defined by (4.1) with

{ 1 ifi€groupl,
Z, =z, =
' ' 0 ifi €group 2,
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and with 8 = . The null hypothesis is, therefore, Hyp : # = 0. For the
remainder of this chapter, we shall concern ourselves with model (4.1) as it
applies to the two-sample problem.

The numcrator of the optimal parametric test for 3 = 0 is derived, under
an assumed f, as follows. Let WP < .- < W}, represent the ordered uncen-
sored W;’s in the combined sample of size n. In some arbitrary order, let
we,... . W, denote the censored W;'s in We, 2, fori=0,1,..., K,
with W@ = —o0o and W§., | = +o00. Also, let (¢) and (2, j) represent item
labels corresponding to W2 and W, respectively. The log likelihood, under

a noninformative, independent censoring scheme, is

l\' Ml
L(B) =Y | log fW? — Bz)) + D logll — F(W?; — Bz, )]
1=0 i=1

(sce p. 44). By convention, log f(—o00) = 0 and any summation @, +---+a,,

has value zero if 1 = 0. A test for Hy : 8 = 0 utilizes the score statistic

K M,
10) =) (@i + Y 2:,5) Q1) (4.2)
i=0 j=1

where z(0)Qo = 0, where
Q.= —f(W)/f(W?)
is a score corresponding to W2, i =1,..., K, and where
Q; ;= fF(WE)/[1 - F(WE5)]

is a score corresponding to Weii=0,1,....K; j=1,...,M;.
A usual uncertainty concerning the choice of f, and the possibility that a

few outlying W?'s and/or W¢;’s may have a dominating effect on (4.2) are
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important reasons for seeking alternatives to tests based on (4.2). With un-
censored data, rank procedures generally possess greater robustness against
a wrong choice of f and greater outlier resistance than do their parametric

analogues
Z:l:.-l :(1)(21 ]
V21 & En ([ff (W) f(WL)])

In section 4.2, we review the construction and propertics of these rank
procedures since the development of their censored data counterparts is
essentially the same. In section 4.3, we generate censored data test statistics
by means of the generalized rank vector. Ultimately, we shall demonstrate

that these generalized rank procedures can be expressed as SWL statistics,

4.2 Rank Tests with Uncensored Data.

Suppose, in the above notation, that there is no possibility of censoring,
so that all M; = 0, and the total sample size is n = K. We denote the rank

vector by

R= [319--'a:]1¢]y

where J; is the label attached to W?. Thus, letting r = [(1),...,(n)], we
have
Pr(R=r) = // [T 5W¢ = Bz)) awy. (4.3)

we<- <wg =l

A locally most powerful rank test of 3 = 0 can be based on the score

statistic from (4.3). Straighiforward calculations give

n

=) 4y Qi (4.4)

=0 =1

V* = dlogPr(R =r)
n — dﬁ
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where Q; is a nonrandom score attached to W and equal to

o [ | (492 Ftwnany

Wo< <W0 =1

—_—n'/ / HdU,

U< <Upn

= E{$(U;)}. (4.5)

Here, U; = F(W?) is the i*? order statistic in a uniform (0,1) sample of

1

size n, and @(u), for 0 < u < 1, is given by
¢(u) = d(u, f) = = f{F~ (w)}/H{F (w)}.
Note that
Z"; Q.= E:Ello(—f'(Wi")/f(W{’)) = i;Elio(’_f’(Wi)/f(Wi)) = 0.
Hence,
Eny(V2) = () gcz, =o0.

The fact that U; has expectation i(n + 1)~} for : = 1,...,n, leads to an

asymptotically equivalent system of scores
= p{i(n+1)"'}. (4.6)

Some interesting special cases of (4.5) and (4.6) are as follows. A logistic
density, f(t) = ¢'(1 + ¢')~2, gives Wilcoxon (1945) scores for both (4.5)
and (4.6), Q, = 2i(n +1)~! — 1. A standard normal density gives normal
scores for (4.5), Q, = Ey,(W?) (Fisher and Yates, 1963), and van der
Waerden (1953) scores for (4.6), Q, = G~ '{i(n + 1)~!'}, where G is the
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standard normal distribution function. Similarly, an extreme value density,

f(t) = exp(t — e'), yields for (4.5) the exponential scores
Qi=n'+(n—-1D""4+- -+ (n-i+1)""' =1

of Savage (1956), while the doublc cxponential density, f(t) = e~ 111/2,
gives for (4.6) sign (median) scores ), = sign{2i — (n+ 1)}, with Q, = 0
ifi=(n+1)/2

The exact null distribution of V) can be determined without knowledge
of f since each of the n! possible realizations of R are equally likely under
Hy. Except in the simplest of problems, though, the computation of this
distribution is very laborious. An alternative test procedure results from
the fact that V;/ \/\_/z_l,m is asymptotically a standard normal variate
under 3 = 0 and under mild restrictions on the explanatory variables (Hajek

and Sidak, 1967, p. 159). Here,

o[ mne
Vary, (V, Z Q; [n(n ] .

Results with contiguous alternatives (Hajck and Sidak, 1967, p.268) show

that the Pitman asymptotic efficiency of

n~1/2y* /\/Asvar"u (n='/2V%)

(based on the assumed score generating density f) relative to the optimum
parametric test (based on the actual density f;) will quite generally be

given by
2
{.]0l é(u, f)¢(", fo) du}

f()l ¢2(u’ f) du _Io] ¢2(", f()) du .

(4.7)
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It is presumed that the Fisher information terms in the denominator are
finitc. Expression (4.7) reveals that the Pitman ARE is one if f and f;
agree up to location and scaling. Under f # fy, (4.7) typically indicates
substantial improvement over the parametric analogue. For example, the
normal scores test, under mild conditions on fo (Puri and Sen, 1971, p.118),
has cfficiency equal or greater than that of the least squares test. Under
Cauchy sampling, for instance, the latter procedure has efficiency zero,
while its rank counterpart has efficiency 0.43. Rank tests themselves differ
somewhat in efficiency properties. For example, under Cauchy sampling,
the Wilcoxon procedure has efficiency 0.61, while the sign test has an even
higher cfficiency of 0.81. It is thus important to consider the class of plau-

sible sampling density functions in selecting a rank test.
4.3 Censored Data Analogues of Rank Tests.

4.9.1 Construction of Test Statistics.

To begin with, assume that if a failure and one or more censorings occur
at the same instant, the failure is iinmediately followed by the censorings.
Now, recall that ¥, is the log survival time corresponding to item ¢ (i=1,
o.un); thus, let Y2 < - +- < Y2 be the ordered distinct Y;’s, let D; be the
item which fails at Y,?, and let €; be the set of items which are censored
at Y,°. D,(€,) =0 if there is (are) no failure (censorings) at Y,°. The most
comprchensive extension of the rank vector to right censored data considers
the set

L= [fD],Cl.....,iDr, Cr]

(Peto, 1972). This statistic is the maximal invariant statistic under mono-

tone increasing transformations on the Y)’s, but its sampling distribution
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depends on functions linked to the censoring mechanism (Crowley, 1974).
As a consequence, if the censoring mechanism cannot be precisely identi-
fied, L cannot be utilized for generating tests of Hy. Morcover, even if the
censoring scheme can be exactly defined, L will usually not yield an easily
derivable swo-sample procedure. An alternative approach, as discussed in
subsection 3.2.1.2, views the rank vector of the underlying ¥7,%s, which is
only partially observed owing to the censoring, to be of primary interest.
The “rank vector probability,” in this scenario, is taken to be the proba-
bility of obtaining all possible rank vectors in the uncensored experiment

which are consistent with
R =((1),...,(K); {(,1) i M)}i=0,..., K],

where (3), (i, ), and M, have the same definition as in scction 4.1. Ry, is,

of course, the generalized rank vector. The above probability is given by

M,
p(B) = / / H (vi = Bziy) [T [1 = Fou = B2 )] dovp . (4.8)
=1

n<- <ok =L

Note that at 8 = 0, (4.8) can be integrated dircctly without specifying f

and F'. The value obtained in this case is

K
[I&)
i=]

where R; = ZK (M; +1).

As in (4.4). a score statistic for testing 4 = 0 may be obtained from (4.8)

giving
K
= Z(z(t)Qi + M11(2:)7 (49)
£=0 =1

_ d(logp
. Vo = dj
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where My, = 2z,1) + -+ + 2., m,)» Q. is a score corresponding to W7, and
Q7 is a score corresponding to cach of W2 ,... ., W2, . (We set Q5 = 0.)
Assuming sufficient regularity that differentiation and integration may be

interchanged, the uncensored and censored data scores are respectively

0, = // {_M};ﬁ]{R](I—F(v]))MJf(vj)dvj}

d’U,’
< <y
' dlog(1 - F(v:)) ] 1
@< [ [{-"G LR = Fl ™ o i)
n< <ok -

The statistic (4.9) is of the same form as its parametric counterpart (4.2),
though unlike (4.2), the same score is assigned to W2,, ..., W2, . Johnson
and Mchrotra (1972) derived (4.9) for the special case of simple type II
censoring.

Asin (4.5), theses scores can be expressed in terms of functions on (0,1).

Set. u, = F(v;), 1 =1,..., K, and define for 0 <u <1

u ———————-——fl(F_l(u)) )= (1—u)"! -1
B) =~y AW = 1-wTHE @),

(Remark that @(u) = | ‘1 @(s)ds/(1 —u).}) The scoring system can now be

written

.
Q.= [ [ ot [T IR (1 - u,)™ dus),
« Jj=1

< <{ug
X
Qr = /---/@(u,)H[Rj(l—uJ-)M’ duj). (4.10)
< <up J=1

In order to list some specific scoring schemes, let

.
T(g(u,)) = / /g(":)H[RJ(l—"j)M’ duj)

< ~<1.u\ J=1




=

for an arbitrary function g. A simple calculation gives

m_ T R; _
J((1 = u,) )_Jl;[l<-————RJ+m>. (m=12...). (4.11)

Letting

Fpw) =1- H (RR_:_1> .
J

JWe<w
which is Prentice’s moment estimator of F'(w), under 3 = 0, hased on the
data from both samples, we note that F p(W?) = J(u,). Now return to
the scores (4.10). A logistic scorc generating density gives ¢p(u) = 2u - 1,

®(u) = u so that from (4.11),
Q: = -1+ 2Ep(WY?), Q7 = Fp(W7). (1.12)

These are Prentice’s scores (Prentice, 1978).
An extreme value density yields ¢(u) = — log(1—u)—1, ®(u) = — log(l—

). Direct integration gives

J{log(l —u)} = —ZR;',
J=1

so that

i

Qi = ZR;')—L Q:zi:ﬁ;' (4.13)
=1

=1 /
which are log-rank scores.

Note that —V,, corresponds to the score statistic arising from the model

W* =MT,)=-pz +F,

14

(utilizing the density function and d.f. corresponding to cither T, or Wi =

1,...,n), where h is a nonrandom, absolutely continuous, nondecreasing
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function from [0,a) onto (—oc, +00), and where a € (0,400) or a = +00.
However, since V,, and =V, have identical efficiency properties for a given
alternative, cither of the two can be utilized for testing 3 = 0 in the above
model. Now, let hy(t) be au unspecified, nonrandom, nonnegative function
defined on [0, 40c) such that

lim Hg(u) = 400,

u—a-

where

H()('u)=/ ho(t) dt,
0

and where a € (0,400) or a = +oc. Then, if h(u) = log(Hp(u)) and if
E, has an extreme value d.f., the conditional hazard function of T, given
z, (1 =1,...,n), with h(T,) defined as above, is described by model (3.4);
hence, scores (4.13) (with or without “~" in front of ecach) should be used
for testing Hy @ 3 = 0in (3.4). As shall be demonstrated in subsection

4.3.3. =V}, with scores (4.13) can be written as

K

Z(;’(z) — RuRY), (4.14)

1=

where Ry, = ZJK:I(AI 1, + 2(,))- Recall that in subsection 3.2.2 we derived
(4.14) as a score statistic within the context of model (3.4). The results,
therefore, of the previous paragraph are consistent with those of subsection
3.2.2.

In subsection 4.3.3. we shall show that the scores (4.10) satisfy condition

(2.2); consequently, (4.9) can be expressed as a WL statistic, and so

E"n(‘fn) = 0.
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Suppose, for the moment, that the censoring mechanism is identical for
all n items. Then, to determine a variance estimator for 1V, under Hy, we
may employ a permutation model where the n scores are held fixed (each
of which is treated as distinct), but where cach of the ! possible labellings

of the n scores is equally likely. Such a model yields a variance of

K
nyny

x@=(n—n-'§:uﬁ+ALQ?)(—rJ,

1=1

which is of course the permutation variance estimator. Note that V), is the

exact variance of V,, under Hy, for simple and progressive type II censoring,

since the scores, the M,’s, and A" are nonrandom in both of these situations.
In contrast to V), the Fisher information based on p(/3),

d? log p(/3)

Vo = - ,
’ dp? #=0

(4.15)

provides a variance estimator that is generally appropriate. We now demon-
strate that, under Hy, Vg is unbiased for Vary, (V,,) both with and without.
censoring.

Cousider first th~ uncensored rank probability Pr(R = r) of (4.3). For

this case, we have

0=FEy,

[ /d2PrR =) .
( df3? (Pr(R=r)) )’/1:0

2
_ | d*Pr(R =r)
Ey, [n! v

(4.16)

=0

Moreover, with censoring absent, V;, reduces to V" of (4.4), while Vy reduces

to

2
w _d°Pr(R=r)
v, n! T

(4.17)

=0
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Hence, from (4.16), (4.17), and from the fact that Ey, (V') = 0, we have
En, (Vo) = Eq,(V,}?) = Varp, (V;}).

Now return to the censored data generalized rank probability p(3) of
(4.8). Expression (4.15) can be rewritten

d?p(p)

Vo= V.2 = (B\Ry--- Rg) a3°

B=0

Since Eyy,(V2) = Vary,(Vy), it is only nccessary to show that the expec-

]

tation of the sccond termn, under Hy, is zero. For this, note that

d’p(3)
U—R]---RI\ dﬂ2 ﬁzO
d?Pr(R =r;)
=R, Ry :
r%':b‘ dp* B=0
dz Pr! R:r,
Sresn! i p=0

(n!/Ry--- Rg) ’

where {r|,ry,...,r,} is the set of all possible underlying uncensored rank
vectors, and where S is the set of underlying rank vectors consistent with
the generalized rank vector. There are n!/(R; - -+ Rg) vectors in S; hence,

U7 is in fact the average of

over all of these vectors. Prentice (1978) uses this result and an inductive

argument to demonstrate that, for simple or progressive type I censoring,

En,(U|Bi)=0
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for i = 1,2. The condition B, mecans that the underlying uncensored rank
vector is in D,, where Dy = {(d,,....d,)|all d; > w*}, v = Dy, w* =
min(wji,...,w}), and w] is the realized potential censoring time for item ¢
(:=1,...,n). It follows that Fp, (U) =0 as desired.

Of course, further work must be done to demonstrate that Ey (U) =0
for independent censoring mechanisms in general.  Morcover, further re-
search 1is required to establish, for independent. censoring mechanisins, the
consistency of n~'Vq for Asvary,(n='/?V,)) when 3 = 0. Prentice (1978),
though, declares this to be so for simple and progressive type Il censoring,

Consider now the calculation of V. After straightforward differentiation

of p(3), Vy can be written as
K
Z [2?,)J{'¢1(U,‘)} + Mli*’{‘f’z(lt,)}] _ {I(Bz) _ V;f} ,
1=1

where

i(u) = [—dlog f(7)/dr*] _poi,) o

¢2(u) = [—d2 IOg(l - F(T))/de] r=l"=1(u)’

and

K
B = Z {z(1)¢(u,~) + M.,‘P(u,)} .
i=1

Vo can be calculated explicitly in the aforementioned special cases. A lo-

gistic density f gives the variance estimator
K K
YA - ANDXy — (A — A)Xey A Xy +2 D) (4 X)) | ¢

=1 J=i+1
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where

: R, : R;+1

= Y= ’ i=2 1 Mi’
I-I.(R,H)’ & ,I-IJ(RJ-H H =20+ M
i= =

i=1,..., K. The extreme value distribution gives a variance estimator of

K
Y A{r'Ri ~RPRY,} = Z R7’R,,Rx), (4.18)
=1

i=1

where Ry, = R, — Ry,. Remark that the extreme value distribution, once
again, yiclds (4.18) as a variance estimator if “~3” is replaced with “+3”
in p(/3). The integral (4.8), though, with “~3 " replaced by “+8 ” and
with f(r) = exp(r — ¢*), is tractable and leads to

-1
K

H P Z el ,

=1 LER(W?)

which is Cox’s partial likelihood function. Here
ROVE) = {()2Giok) : G2 isk=1,...,M;}.

Recall that, in subsection 3.2.2, we generated (4.18) as a Fisher information
based on Cox’s partial likelihood.

Assuming that Vo /n is consistent for Asvar(n='/2V,,) under Hy, the hy-
pothesized asymptotic null normality of the proposed test statistic V,, /v/Vo
cannot be proven with V,, in the given form. It can be shown, however,
that 17, is expressible as a WL statistic. With V,, written as such, we can

confirm its predicted asymptotic null distribution.

4.9.2 An. Asymptotically Equivalent Test Statistic.
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The formulae (4.10) are inconvenient for many score generating densities,
[, so that approximate scores of the type (4.6) may be preferred. A first-

order approximation to ¢(u,) about U,, = F p(177) gives
J($(w)) = (Uso) + J (s = Uso)¢' (Uso) = (Us0).
A similar approximation to ®(u,) suggests the scoring scheme
Q: =(Fp(W), QI = (Fp(W,)). (4.19)

We now show, via the methodology of Cuzick (1985), that V, //V, and

S./\/Vo, where S, = Z:‘zl [z(,)(b(U,',,) + M.,@(Uw)], arc asymptotically

equivalent test statistics. We list, however, only highlights of the proof.
Firstly, assume that the score function ¢ is twice continuously differen-

tiable on (0, 1) and that
lu='@'(u)| + |¢" (u)| < Lu™" (4.20)

for some 0 < a < 5/2 and 0 < L < oo. Now, expand ¢(u,) around U,, to

see that for any i < K

R 2
16(Uio) — T {$(us)}] = l-’{(—(]l—o'{ﬂ“(ﬁ"mu, F(- A’”‘“’H

12
<J {@2_2__’51_)_ 6" (Au, + (1 — A)Uw)l} )
(4.21)

where 0 < A < 1. It follows from (4.20) that

[¢"(Au; + (1 = A)U,,)| < L(Au, + (1 — A)U,,) ™"
< L(Awui)™"
S LA——(}/(ui—!r +U—!r)

10
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for some 0 < L < oc and some 0 < a < 5/2. Thus, (4.21) is bounded by a

constant, tlines
U;)"J{(U,'o—-u,)2}+J{ui_"(Uw—u,-)2}. (4.22)

Cuzick then shows that both terms in (4.22) are less than a constant times
R '(1-U,,)*~, with the first term being so for R, > 1 and with the second
one being so for R; > 6. It is casily checked that @ also satisfies (4.20),

and so a similar argument can be used to bound the difference between

J(®(u,)) and ®(U,,). Thus, letting
Riw) =) I(Yi 2 w),
1=1
we have

172 Z {3(i)¢(Uw) + M],Q(Uw)] - Z [z(,)J(d)(u,)) + MliJ(‘I’(ui))]

1 [, 26 i R>6

= n_'/2 Z Z(4) [(/)(Um) - J(¢(Ui))] + M,; [‘I’(Uio) - J(‘I’(u,))]

1, >6 vR,26

< n~"2(constant) Z [R:] (1-U,)* (1 + M,)]
R, >6

(1 — Fp(w))*=*

R T d(R(w)/n) (4.23)

< —n~"?(constant) /

w ()26

Livasn — ocifa < 2. If o > 2, then, because 1 — Fp(w) > R(w)/n,

(4.23) is bounded by a constant tinies
i/ R\ '™
Y / (—in—)) d(R(w)/n) 20
u: lf(.u')Z(i
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as n — oo. For both o < 2 and a > 2, the finite number of terms when
: R(w) < 6 are easily seen to be negligible. Assuming that Vy/n is bounded

away from zero in probability as n — oo, it follows that

n V2V, — s,,)/\/n—'v(,l 0.

as required.

In that same paper, Cuzick (1985) shows that asymptotic equivalence of
the two tests remains so if either the Kaplan-Meier estimator, or Altshuler’s
estimator, or the Peto-Peto estimator is used in place of U,,.

Consider now the following examples of the scoring system (4.19). An

extreme value density for f yields scores
Qi= —log(l — Fp(W2)) -1, QF = —log(1 — Fp(W))).
A logistic density gives scores
Qi = -1+2Fp(W?), QF = Fp(W)),

which are identical to the exact scores (4.12). A standard normal density
gives

P, OF = WG FRV)
Qi=GTH FpWY)), Qi == E ]

where g(t) is the standard normal density and G(t) is the corresponding

d.f.. A double exponential density yields
i:‘[)( W)

0. { -1 FW) <12, | hary AW <172,
1 if FP(WIO) > 1/2, t 1 if FI’(WIH) > 1/2.

Here we have defined f'(0) = 1/2, for f’(0), in actual fact, does not exist.

Finally, the family of densities

. o) = {

e® exp(—e”) if p=0,
(1 4 pe®)~0+0 ez if p >0,

68




)

gives
~log(1~ Fp(W?)) -1 if p =0,
4 = { (1/p) - ( ) (1 -F,,(Wv)) it p>0;

[ = log(1 = FpWY)) if p =0,

@ = { (1/0) [1 = (1= EpW2))?] it p>0,

which are scores corresponding to the class of tests proposed by Harrington

and Fleming (1982) (note that lim,_o+ fo(z) = fo(z)).

4.3.3 Representation as an SWL Statistic.

From the results of subsection 2.3.1, the score statistic (4.9) can be

written as

K
S UQ. - @)z — R1B), (4.24)
i=1

if the scores satisfy

Qz—Q: =R1(Q;__] '—Q:), i = 1,...,.[(. (425)

These equations indeed hold as Mehrotra, Michalek, and Mihalko (1982)

demonstrated.
First, note that upon direct integration on wiy1,uit2,...,Ux, Q; and

Q7 may be written

/ /d) w,)Ri(1 — u,) )it H {R (1- u,)MJ duJ} du;,(4.26)

< <uy i=1
i—1
/ / (u,)R,(1 — u,) )R H 1——uJ)MJ duJ} du;,
< <uy J=1 (4.27)

where the product term in both of these equations is unity if ¢ = 1. If

R, > 1. then the integral on u, in (4.27),

/ &(u;)Ri(1 — u,) =1 du,

Uy—1
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where uy = 0, can be integrated by parts using U = f(F~'(u,)) and dV” =
R;(1 — u,)®~2 du;. This integration yiclds

R;
R;—1

H(uio) = ( ) FOF ()M (1 = yg) !

1
~(7mm) [ P st

hence,

Q; = // H(wi)Riz (1= wy_ )Mo

U< <Uz—)
-2
X H {R;(1 — uj)™ du;} du,_,
j=1
R . Qi
_ R @

R,—1°" R -1

as required. If R; = 1, then « = K and My = 0. Integration on uy in

(4.26) with these values shows that
1
[ otuk)dun = Bt = un)
UK -1

|
= / (I’(ul\'—-l)d“l\';

Jug -
hence, Qx = Q% _,, which is the special case of (4.25) for R, = L. There-
fore, since @), and @)} are solely dependent on Ry, Ry, ..., I}, we conclude
that V, /\/Vy is expressible as an SWL statistic.
Note from the above results that the rank statistic for uncensored data,
K K

V= Z 2) E(0(Uy,y)) = Z [2)E(¢(U(y))) + My, E(®(U(,)))]

=1 =1

can thus be written as

K
Z [E(¢(U(l)) - ‘I)(U(t))) (Z(z) - Rlz/Rz)] ’
=1
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where My, = 0, and where U(;y is the 1*" order statistic in a uniform (0, 1)
sample of size n,

Under the conditions of (4.20), the statistic (4.24), via a methodology
similar to that of subsection 4.3.2, can be shown to be asymptotically equiv-
alent to

.
Sr =Y [#(Uio) = ®(Uio)l (25 — Ru: R

(Cuzick, 1985); consequently, under these conditions and under the as-
sumption that Vo /n is bounded away from zero in probability as n — oo,

S /V/Vy is asymptotically equivalent to

SK [z dUio) + Myu®(U.)]
vVVo '

Morcover, asymptotic equivalence between these two tests holds for any

pair of score functions ¢(u«), ®(u) such that ¢ satisfies both (4.20) and the

condition

1
[ dtwdu=o,
JO

and such that ®(u) is defined as

1
D(u) =/ d(s)ds/(1 — u).
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CHAPTER 5
LARGE AND SMALL-SAMPLE
BEHAVIOR OF SWL STATISTICS

5.1 Introduction.

In this chapter, we shall be concerned with asymptotic and small-sample
properties of SWL statistics. Qur examination of asymptotic characteris-
tics (section 5.2) assumes that a random censorship model is in effect with
the potential censoring times of cach sample identically distributed. For a
discussion of large-sample behavior as pertaining to the whole class of inde-
pendent censoring mechanisms, sec Gill (1980) and Anderson ot al. (1982).
In subsections 5.2.1 and 5.2.2, we show that the limiting distribution of a
WL statistic, under respectively the null hypothesis and a sequence of con-
tiguous alternatives, is a normal distribution. The variances in these two
cases are identical, while the means are different. We, as well, shall derive
consistent estimators of the variance.

In subsection 5.2.3, we first genecrate an optimal limiting weight function
for a special class of contiguous sequences of alternatives. Subsequently,
for a particular member of this class, we suggest that an SWL statistic
can be asymptotically fully efficient if and only if the censoring distribu-
tion of sample 1 is identical to that of sample 2. We then conclude 5.2.3
by constructing a test which should he especially powerful against a para-
metric alternative that can be reduced to a location family after a suitable

transformation.
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In subsection 5.2.4, we present WL statistics whose asymptotic null-
hypothesis variance is free of both the failure time and censoring distribu-
tions. Subsection 5.2.5 is concerned with aspects related to consistency of
the tests. We conclude our examination of asymptotic properties in sub-
section 5.2.6 with a comparison of the efficacy of censored data extensions
of the Wilcoxon and Savage statistics against specified alternatives.

In scction 5.3, we are concerned with small-sample behavior of SWL
statistics. Subsection 5.3.1 deals with the estimation of null distribution of
specific members of this class of procedures, while subsection 5.3.2 examines

powcer properties of sclected tests.
5.2 Asymptotic Properties.

5.2.1 Lumting Null Distribution of a WL Statistic.

The following derivation is based on the methodology of Tsiatis (1982),
who considers the asymptotic joint distribution of sequentially compated
WL statistics.

Supposc n items are put on test in a two-sample scenario, with n;
(/ = 1,2) being the number of items comprising sample . Without loss
of generality, assume sample 1 consists of item labels 1....,n;, and that
sample 2 consists of the remaining labels.

The censoring mechanism to be implemented here and throughout sec-
tion 5.2 1s the random censorship model with the potential censoring times
of cach sample identically distributed. Thus, let the nonnegative random
variables T, C, denote respectively the failure time and potential censoring
time corresponding to item ¢, and let Fj(t), G,(t) be respectively the failure

time and censoring d.f. associated with sample j. The null hypothesis of
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interest is Hy: Fi(t) = Fo(t) = F(t). It is assumed now and throughout
5.2 that

(1) if G;(t) (z = 1,2) is not absolutely continuous, it is left continnous,
and

(2) Fi(t) <1 for every t € [0.00) (i = 1,2).

Let Y; and A; be, respectively, the survival time variable and censoring
indicator variable corresponding to item / (\, = 1if T, < (.. \, = 0 if
otherwise). Then the complete data for the study is represented hy the

n independently distributed random vectors (Y;,A,), ¢ = 1,...,n Note,

however, that the sets

{(Ylﬂ 1)’ .. nlsAnl)}’ {(}’1:|+|9An|+l)s . )IHAH)}

each consists of identically distributed random vectors.

For testing Hy, we v-~ the WL statistic

_ 1 (i) s Ri(Y7)
Sn ZQ() 1 R(Y)}+ Z(J(L)A,{—Rm)},

r=n+!

where
=Y I(Y,>1)
i=l

and

ny

=Y I(Y; >1).
J=1

The weight function Q(#) is assumed under Hy to converge in probability

to a function Q(t) uniformly on [0,0c). Q(t) is dependent on ¢ through
F(t), G1(t), and G(t), where F(t) =1 — F(t), G,(t) = 1 = G,(t) (i =1,2).
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The key to deriving the asymptotic null distribution of S, is to approxi-
mate it by a sum of independently distributed random variables. A routine
application of the Lindberg-Feller version of the central limit theorem will
then be used to obtain the asymptotic results.

We first note that S, can be written as

L/ Q(f){ —%’%’} dN,(t) + Z / Q(t) {_—Z(_)} dN;i(t),

1= | = +l
(5.1)
where N,(t) = 1(Y, <t,A, =1). By adding and subtracting terms, we can

rewrite (5.1) as

=5 [Ton{i-Tigh o 3 [T {5y

(5.2)

where J,(t) = N,(t) — ]0' Ms)I(Y, > s)ds, and where A(t) is the hazard
function associated with F(1).

All subscquent results are now under the null hypothesis. By using the

law of large numbers, we can establish that as n — oo,
’)
Ri(t)/ny — m:(t)

and

R(t)/n L p1m(t) + pama(t),

where

ni(t) = F(G. (1) = Pr(Y; 2 1),

for j € sample i (i = 1,2). Here, we have assumed that

0 < lim (n,/n)=p; <1,

n-—oo

-1
<




s

a condition which shall be maintained throughout section 5.2. Hence,

Ry(t) P () = pim(t)
R(t) / (1) + pama(t)

Now, the statistic S,, given in (5.2) can be written as S, + F,,. where

ni

n—Z/ Q)1 — pn(t)}dJ, (1) + Z / Q) {—p()) d.J (

=y 41"

and

=-3 | emmn e - uny ann

n

+Z/ (QU) - Q1 = i} a1

+ Z 1@ — QUK =k} A1)

1=ng+1 0

- /0 {Q(t) = QEOH(R ()] R(2)) — ju(t)} d (1)
=1

Since R,(t)/R(t) i () and Q(t) = Q(I) we can show, via the results
of Tsiatis (1981b, Lema 3.1) and Breslow and Crowley (1974, Theorem
4), that n=1/2E, is a sccond-order term that is asymptotically negligible.
Hence, the asymptotic distribution of the statistic n='/28,, is the same as
that of n=1/23,,.

The approximate statistic S, can be written as

Yy

AQY){L —uY)) — | Q{1 ~ u(t)}/\(t)dt}

J0)
n
>

1:211.1«}-1

ny

5=

i=1

Y,
A; QY ){—nY; }—/ Q(t){—u(t)}/\(t)(lt]-(

0

5.4)

76




-

"‘*a\

Although (5.4) is complex, it is nonetheless a sum of independently dis-
tributed random variables, and so its asymptotic distribution can be ob-
tained by application of the Lindberg-Feller form of the central limit theo-

rent. As will be demonstrated below, E(n~!/ 25',1) =0 and

lim Var(n~'/25,) =0% = / Q2(t)®(t)A(t) dt,
0

[{Ramde V]

where

_ pipemi(t)m2(2)
) = pimi () + pama(t)

— “ = I) ¢
Thus, n~'/%S,, = N(0,0?%) as n — oo.
We now confirm the above-mentioned expectation and asymptotic vari-

ance of n='7285,,. To do this, we nust first cvaluate the first and second

moments of
[AzQ(Y.){l - n(Y,)} - /0 , Q{1 - u(t)}/\(t)dt.‘ (5.5)

and

[A,Q(}l){—/t(ﬁ)} —/0 lQ(t){—u(t)}/\(t)dt] - (5.6)

Let Q(t) = Q(1){1 — je(1)}. Then the expectation of (5.5) is

/ oo(:)(t)/\(t)m (t)dt (5.7A)

JO

0 t
+'A {/0 Q(u)/\(u)du} dmq (t). (5.7B)

Integtaing (5.7B) by parts, we note that this equals the negative value of
(5.7A). Hencee, the expectation of (5.5) equals zero. In a similar manner,
we can show that the expectation of (5.6) equals zero. The first moment of

—1/92 O .
n=1728, . therefore, is zero.




The second moment of (5.5) can be expressed as
E{Q*v)a.} (5.8A)
Y,
—2F {Q(Y,)A, / Q(u)/\(u)du} (5.8B)
Jo

Y, 2
+ E [{ Q(u)/\(u)du} ] . (5.8C")
0

For simplicity of notation, we shall denote
t ~

/ Q(u)A(u) du

JO
by ¢(t). Expression (5.8A) is cqual to

A= / (.)2(11,)/\(:1)7r|(u) du.

0

Expression (5.8B) is equal to
B=-2 / Q(u)p(u)A(n) 7, (1) due.
Jo

Expression (5.8C) is calculated in two regions, namely when {A, = 1} and
{A, = 0}. In the region where {A, = 1}, (5.8C) is equal to
oo
C= 2 (w)A(w)m () du.
0
In the region where {A, = 0}, (5.8C) is equal to

D=-— ./000 2 (u) F(u) dG (u).

After integrating D by parts, we note that B + C + D = (. Henee, the

second moment of (5.5) is equal to
A =0} =/ Q*(){1 — pu(t)}2 A(t)m () dt.
0
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Sitiilarly, the second moment of (5.6) is

si= [ QW dt.

0

Therefore,

o = Asvar(n”'/%5,)

= lim Var(n~'/%S,)

n-——0o00

= lim jjo? + pyof
n-—o0Q0

2 2

= P10y +])2(7'2

Oo(Jz(t)A(f)(I’(t)dt (5.9)

J0)
= [T R0, 0, Catn G

_ ) dt.
Jo P1Gi(t) + p2Ga(t) fe)dt

where p, = ny/n (i = 1,2), where f(t) = F(t)A\(t), and where J(uy, ua,u3)

is a nonrandom function such that
J: [0,1] x [0,1] x [0,1] = (=00, +00)

and such that Q(t) = J(F(t). G, (t), Ga(t)).

If F(t). Gy (t), and Gy(t) are unspecified, then 02 is nonevaluable unless
its integrand is free of Gy (#). Ga(t), and unless sup{t : G1(t)Ga(t) > 0}
is known (sce subsection 5.2.4). On the other hand, if F(t) is unknown
but G (1), Gu(t) are discrete and specified (for example, simple type I
censorship), then

przp;i
e =§: J (F(t),p, P% (1) dt

m

Pl Pzz
- J? (u, P} po; ) 1P — 22— du,
Z / 1 T2 Y + papl;
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where 0 = ¢j < ¢} < --- < ¢}, are the ordered distinct values of the set
of points of discontinuity arising from cither G (#) or G-(t) or both, and
where p}; = G;(c?) (= 1,2) and u’ = F(c*). Under the given censoring,
conditions, therefore, o2 is calculable.

Using methods similar to Tsiatis (1981A), a consistent estimator of o,
denoted by aﬁp, can be obtained by replacing the quantities in (5.9) by their
appropriate estimators. Therefore,

5% = /oo (;):2(1;)1311327?[({)7%2(!) dA)
o P17y (t) + Paia(t)

Q*( ARI(}) 2(13)
—Z nR?*(Y,) ’

(5.10)

=1

where Ry(t) = R(t) — R, (t) and where

ol
=3280
2

as m — 00. 4;, is, of course, the conditional permutation variance estimator

for n=1/2S,,. We thus have that
_'/25,,/ a2 ——»N 0,1) as n - oc.

cp

The permutation variance estimator for n='/2S,, is

52 = P1P2 ZA Q (R(Yz) 1)

7r = (n —1) T R(Y,)
P1D2 2(
(n—l/ QR — 1) k(1)

——}:az =p11’2/ Q*(t) (prmy (1) + pamy(t)) A(t) dt.
0
If, in fact, G (t) = G»(t) for all £, then

m(t) = myo(t) = =(t) Vte€[0, ),




— _—

4 "“‘«‘

and so

=at= [ Q*OnprN dt

Thus, when G (t) = G(t) for all ¢, r}z consistently estimates o2 and

n1/25,/\/62 2 N(0,1).

Jennrich (1983) shows that if
(i) m(t) < my(t), for all ¢, and p; < pe, or
(11) m(t) > my(t), for all ¢, and p; > pe,
with cquality holding only when 7, (t) = m2(t) for all ¢.

then 02 < o

7"

Therefore, under condition (i) or (ii) and under Hy,

—1/2 -
n-/ Sn/ \/ag
is asymptotically conservative compared to n=1/25, / \/ 62,

5.2.% Lumting Distribution of a WL Statistic Under a Sequence of Con-
hguous Alternatives.

Suppose we are given a sequence (for n = 1,2,...) of two-sample set-
ups, the n'™ one having the form described in subsection 5.2.1 with a total

of n = ny + ny observations:
n n rn n rn n n n
(}l ’Al)""*(}m’Am) (yn1+l’ n1+1)""’(Yn ’An)'

Here, ni/n — p, as n — oo, where 0 < p, < 1 (i = 1,2). Letting G} (¢)
denote the censoring d.f. for sample ¢ of the n'! set-up, we assume that
G} (t) = G,(t) for every n and t. Let F[' be the failure time d.f. cor-
responding to sample 7 of the n't set-up, and suppose for every n and t
that

FY'(t) > Fj(b),
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with, for each n, strict inequality at some t € {f : G| (t)G2(t) > 0}. Suppose

further that for each :
F!'(t) — F(t) uniformly in t € [0, oc) (5.11)

as n — oo for some d.f. F(t). We refer to the sequence {F)', F3'} as a
sequence of contiguous alternatives. The null hypothesis sequence is of the
form {F}', F}'}, with F|* = FJ' = F for every n and t, and we assume that
large positive values of the SWL statistic in question lead to the rejection
of Hy. Finally, we assume that the convergence (5.11) is such that for some

real-valued functions v, (i = 1,2),

Vrpipe (/\/\n((tf)) 1) T(t) asn — (5.12)

uniformly on cach closed subinterval of [0, +00), where A (#), A(1) are the

hazard functions associated with F*(¢) and F(t) respectively, and we define
v =71 — 72 (Gill, 1980).
Now, consider the WL statistic S,, of subscction 5.2.1 with representation

(5.1). Letting

K(t) = Q)R () Ro()(R(1) ™",

i !
Z [ / AV ()Y, > 'll,)(lu] ,

and
n {
My(t) = Z [N,(t) —-/ Ay(w)I(Y, > u)(lu] , (5.13)
i=n;+1 0

(5.1) can be rewritten as

oo I((t) o I&'(t) ' oo ( n( ) ) ’
o B YT L R dMZ(t”/o AT At)dt
> A3 (t)
—/0 K(t) (-:\Tt—)— - 1) At) dt.
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Gill (1980) shows by martingale methods that, under the given sequence of

p alternatives,
. [ dM,(t) sz(t)] D
—1/2 K 1 _ — N(0, C
n (2 o as n 00,
[ x0T~ T | 2 V0o
where 02 is defined as in (5.9). Thus, from the latter result, (5.12), and the
fact that, under {F*, F3'}, R,(t)/n, and Q(t) converge uniformly on [0, 00)
in probability to m,(t) and Q(t) respectively, we have under {FJ*, F3'} that
n~1/2g, L, N(p,o0?)
where
* _iy2 —1/2
p= [ o Qe A dt (5.14)
. 0

Under the alternative hypothesis, & (when m(t) = mo(t)) and &fp are
consistent for a2,

5.2.9 Asymptotic Relatwe Efficiencies.

Consider the sequence of alternatives dealt with in subsection 5.2.2, and
let. V7 be o2 or a consistent estimator thereof under Hy. Then the Pitman
cfticacy of n=1/25,, /\/V (or of n='/28,,) for this sequence of alternatives,
assuming (5.12) holds, is given by

. 2
_ 12 _ e Q@A) dt) (5.15)
o pipa [y QUHB(H)A(H) dt
which, in view of Schwartz’s inequality, is maximized by letting Q(t) = v(¢).
With such a choice of Q(¢),
®
; A / P PR (B(BA) dt.
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As an application of the above results, suppose the weight function Q(#)

is defined as
Q(t) = Qrw(t) = go(R(t)/n).

where gy is some nonrandom function with domain [0,1]. Recall that
Q1w (t) belongs to the Tarone-Ware class of weight functions. Then the
efficacy of n=1/25,,, with Q(t) = Qpw(t), (denoted by epy) is given by
(5.15) with

Q(t) = Qrw(t) = golpimi(t) + pama(1)].

If, on the other hand,
Q) = Quum(t) = goF(1)),

where F (t) is the Kaplan-Meier estimator of F(t) based on the pooled
sample of size n, then the cfficacy of n='/25, (denoted by epar) is given by

(5.15) with Q(t) = go(F(t)). Now, supposc specifically that gy is defined as

go(u) = ¥(F~"(u)),

where we have assumed that F(t) is strictly decreasing on [0, 00). (Note
here that go(u) does not depend on any function related to the censoring
mechanism.) Then the optimal weight function for S, is Qp ar(2), and, by
Schwartz’s inequality, epw < exm = €pax unless Qpw (t) /(1) is constant,

which is the case when there is no censoring. If, however, gy is given by
—1
go(u) = (57" (u)),

where S(t) = py7m(t) + pams(t), and where m,(t) and/or wy(t) are strictly
decreasing, then erw = e€max. Remark though that, in this case; g (u)

depends on the censoring d.f.’s (Gu, Lai, and Lan 1991).
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Suppose now that {Fy : 6 € 0} is some family of distribution functions
on [0, 00) indexed by a parameter 6 taking values in a real interval ©. De-
note by, Ag(t), the hazard function associated with Fp(t). Suppose further

that F(t) and F(t) of subsection 5.2.2 are such that

Fln(t)=F0:L(t), 1'=1,2;n=1,2,...

F(t) = F,(t) (5.16)

for some §y and 07 € ©. Thercfore, defining 67, for some constant ¢ # 0,

by
o7 = 6y + (1) *1e [ B, i, (5.17)

np;

and assuming Ag(t) is differentiable with respect to @ at § = 6, we have

ARt
T.(t) = lnn V1P P2 ( ):((tf)) — 1)

n—

A n t -——,\ t no__
= lim {\/n[_)l]—);< i () 60 (?) (07 — %)
Ag, (1) (0% —6)

= lim { (=1)""'ev/nppo d/\o(t)
n—oo )\90 df |y—p,
1log Ap(2)
= (-1)! -—-——-——-——-—-( .
(=D pve —5 -
Hencee,
dlogAg(t)

7(t) = 7l(t) - 72(t) —¢ do =0, .

This suggests we should try to find an SWL statistic whose weight function

converges under Hy to

dlog Ag(t)

Q) 7] (5.18)

=10,
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whatever the value of 6y and the definition of G((t) and Gy(#): such a test
should have efficacy

. dlog/\g t)
e=emax=62/ 1)1’1)2‘(———(—
0

4

B 1C
dé )‘I‘('Wu(f)«lf (5.19)

0:0()

and be optimal in the class of SWL statistics for the family {Fy(f) : 6 € O}.

We comment here that testing
Hy: FY'(t) = F3'(t) = Fy,(t) forall n and ¢

against the given sequence of altcruatives is cquivalent to testing

against

in the model

61 =6 + (~1)"+1e | 7’:7 i i=12, (5.20)

where ¢* € I is an unknown paramecter, and where the interval I is such

that, for all ¢* € I,
For(t) > Fop(t) for all t and n,

with, for each n, strict incquality at some t € {t: G, (£)G,(t) > 0}.
Gill (1980) shows, under H,, that the likelihood-ratio test is asymptoti-

cally normally distributed with mean \/c?03 and variance 1, where

2
0 {log Ay (t
o = / (pr7a(t) + pamy (1)) [ 1820 Mg (1) dt.
0 (16 0:00
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Hence, as far as H; is concerned, the Pitman ARE of the optimal test in

the class of SWL statistics with respect to the most powerful test is

2
I ( cogld ) B(t)Aa, (1) dt
=94,
3 <L
pip2 [y (pima(t) + pamy(t)) ((ﬂﬁ%ﬁll()_g ) Ag, (1) dt

with equality holding if and only if G (t) = G (t) for all 1.
It still remains to show, however, that an SWL statistic can be con-
structed for which (5.18) holds and hence (5.19) does too. We shall only

do this in the special situation in which
Fo(t) =¥(g(t) +6), te]o,00), 8 €O =(~00,+m), (5.21)

where g is a nonrandom, absolutcly continuous, nondecreasing function
from [0, 00) onto (—o00,0), and where ¥ is an absolutely continwous (.1
with nonrandom, positive density ¥ on (—oo, 00) such that ', the deriva-
tive of ¥, exists and is continuous at all but finitely many points. We define

B(t) = ¥()/(1 — ¥(t)) and I(t) = log B(t), and note that
I'(t) = (¥'(6)/¢(t) + BA(2)

exists where ¢’(t) does. We suppose that, except possibly on arbitrarily
small neighbourhoods of at most finitely many points of (—o0, 00), I'(t) is
of bounded variation on (—o0, o). Finally, according to some convention,
l'(t) is assigned finite values at the points oo and at the points where ¢’ (1)
does not exist.

The family defined by (5.21) is termed a “time transformed location
family.” For this particular case, the paramecter ¢* in (5.20) is an clement

of [0,400), and so ¢ > 0.
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Now, Fy(t) has density g'(2)¥(g(t)+8), and so it has hazard rate Ag(t) =
Alg(t)+0)g'(t). Since

dloglg(t)

02 = Ug(t) +6) = U(¥ T (Fo(t)),

we define our optimal weight function by
Qopt(t) = ll(ql—l(Fﬂo(t)))v

where Fy, (#) is the Kaplan-Meier estimator of Fy, (t) based on the pooled
sample of size n. Of course, Fgo(t) can be replaced by either Altshuler’s
estimator or Prentice’s estimator or the Peto-Peto estimator. Remark that
neither 8y nor any of g(t), G, (t), and Gy(t) enters into the specification of
Q,,,,,(t) as we required,

Suppose for the moment that for all n and t,
Fi'(t)= Fi(t) = ©(g(t) + 6o + ), F3(t) = Fa(t) = ¥(g(t) + 6o — a),

where v is a paramecter known to be greater than or equal to zero. Note
here that, although F(t) and Fy(t) do not vary with n, they have the same

basic parametric formn as
Fi'\(t) =0(g(t) +67), F3(t) =¥ (g(t) +63) (5.22)

respectively, where 67 is defined as in (5.20), and where ¢* € [0,00). The
pair of parametric failure time models in (5.22), as a unit, is equivalent to
the regression model

gT)=E;,—az; —6y; 1=1,...,n,
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where T; is the failure timne variate associated with item ¢, E, is an crror
variable with d.f. ¥, and
1 if i € sample 1

= { —1 if 7€ sample 2.
The null hypothesis here is Hy : o = 0. Now, it can be shown that the
score statistic generated from thic regression model, using the generatized
rank vector, is precisely —2V,,, where V), is as in subsection 4.3.1 with the
exception that the scores employ “¥.” “” in place of “F,” " respectively.
This score statistic, in turn, can be written as a WL statistic and is asymp-
totically zyuivalent to 25,, with Q(t) = (}(,,,,(t) (sce subsection 4.3.3). The
results of subsection 5.2.3 reveal, thercfore, that —2V,, (or —V),) is the op-
timal WL statistic, under asymptotic conditions, against the alternative
specified by (5.22).

To conclude this subsection, consider the alternative hypothesis Hy, not,
necessarily restricting ourselves to the paramctric family (5.21). A classical

family of rank statistics for uncensored data has the form
ni
* = R, \t)
= Fo (t - —— 2 dN;(t
> [ otFa) {1- g f amio

+ 3 [Ttk {20} av),

i=ny+1

where ¢ is a nonrandom function defined on [0,1] such that

1
/ d(u)du =1,
0

and where
R(t
Fay(t) = 22)
n
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is an estimator of Fy, () = 1 — Fy, (t) based on the combined sample. Since,

under Hy,
i’gu(t) i Fy, (t) asn — oo,
n~1/2L, is asymptotically fully cffcient against H; if and only if

#(Fy (1)) = LBRO)] (5.29

=00
Now, we note that F 0, (t7) = 1 — Fy, () reduces to F 9, (t) with censoring
absent, and that

ﬁ’on(t_) L Fy,(t) as n — oo.
Therefore, assuming condition (5.23) holds and that G4 (t) = G2 (¢) for all ¢,
a WL statistic which is asymptotically fully eflicient against H; and which

reduces to n~ /2L, in the absence of censoring has weight function

Q) = Qu(t) = ¢(Fo, (t7)).

As far as parametric family (5.21) is concerned, under the assumption that

Hlu) = U1 (1 — u)],
Qu(t) = '[T71 (1 = Foy (7)),

5.2.4 Asymptotically Distribution-Free WL Statistics.

Assume in this subscction that the alternative hypothesis is fixed (the
alternative does not vary with n), so that the null hypothesisis Hy : Fi(t) =
F,(t) = F(¢t).

Recall from subsection 5.2.1 that
o= Asvar(n_l/zs,,)

B /o TXE(#). G (1), G2()p1p _Gl (t)G2(2)

2p1G1(t) + p2Goa(t)

f(t)at,
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where the nonrandom function J was there defined. A suilicient condition

for o2 to be free of F(t), G((t), Go(t), and f(¢#) is that

Q(t) = J(F(t).G(1),Ga(1))

= J(FINI(G i ()Ga(t) > 0)\/ = ,

r1 (G2 (1) (5.24)
where J* is some nonrandom function defined on [0, 1], and where J*(F(1))
is the null hypothesis limit of Q(f) with censoring absent (Leurgans 1984).

For such a Q(t),

1
o’ =0y = / J*(u)pp2 du,
Ju

*

where u* = F(t*) and t* = sup{t : G, (t)Gs(t) > 0}. A weight function for

which equation (5.24) is satisficd is given by

R(1) + Ry (t) n Ny
nﬁ'l(t‘) 7zﬁ’2(t‘) R (t) Ra(1)

O(6) = Opr(t) = c?m\/

IR Rolt) > )\ B\ (1) Palt)

- Fo(t™) ﬁl(t_)
= Vuh ROl \/R-z(,) m O

where IA?’,( t) is the Kaplan-Mcicr estimator of Fy(t) = 1 — F,(t) based on

sample i (i = 1, 2), where Q(¢) is a random weight function determined by
({RuUT?), Ro(T7),dNJ(TY) : i S N(t7)}, Ry(2), Ro(t), N(17))
such that, under Ho, O(t) - J*(F(t)), and where
NI =S TV S48, = 1)

=1
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B Y

and TP < Ty < +-+ < T} arc the ordered uncensored failure times in

the pooled sample of size a. Of course, one obvious possibility for Q(t)
is J‘(ﬁ(t)), where F(t) is the Kaplan-Meicr estimator of F(t) based on
the combined sample. The asymptotic null distribution of a WL statistic
with weight function Qpp(1) will be iree of F(t), Gi(t), and Ga(t) (that

is, distribution-free”). In particular, with Q(t) defined as in (5.25)
—1/2 D 9 o
n='7%S,, — N(0,07,p) asn — oo.

Now, suppose for the moment that censoring is absent, and consider
the rank statistic L, of subsection 5.2.3 with “F 0,(t)” there replaced by
the notation “F (t).” Remark that L, remains unchanged with d)(I:—" (1))
substituted with qﬁ(ﬁ’(f))l(]?l(t)l?g(t) > 0). In addition, we note that, with
censoring absent, the square-root terms on the right-hand side of equation
(5.25) vanish. Hence, recalling the points made in 5.2.3 concerning the
relationship hetween Fy, (1), F g, (t), and F 9.(t7), a censored data extension
of n='2L,, which is asymptotically distribution-free under Hy is a WL

statistic whose weight function is given by (5.25), with Q(t) = qﬁ(ﬁ‘ (t™)).

5.2.5 Consistency of SWL Statistics.

Let H 4 be some fixed alternative hypothesis, and let V' be o2 or a con-
sistent. estimator thereof under Hy. If V is a random variable, assume,
under H 4, that 17 is bounded away from both zero and +oc0o in probability
as n — oo. Then a one-sided SWL statistic, n=1/2S, /V/V, which rejects

Hy whenever n~ Y25, /VV > z)_, is consistent against H 4 if, under H 4,

n~'/2s, L 4o as n— oo. (5.26)

“trom hereon, any statistic whose distribution is free of all underlying d.f.’s shall be
referred to as being disirebution-free.
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Now, under H,4 for i = 1.2,
Ri(t)/n, = F(GL(1) = (1)
and
Q) 5 Q (1),
where Q*(t) is dependent on t via the functions Fy (). Fy(t), Gy (1), and

éz(t). Therefore, letting

n

Ns(t)= ) I(Y, <A, =1),

i=ni+1
we have under H 4,

n~!S, =n"" /-oo Q) Ry () R (2) ((IN;'(f) dN-I(t))
JO

R(1) Ri(t)  Rull)

2, /oo E*(#)(\ (1) = Ao(t)) dt,
0

where
Q™ ()pip27i(t)ms (t)
pimi(t) + pamy(t)

and where A;(t) is the hazard function associated with sample 7 (1 = 1, 2).

K*(t) =

Hence, a sufficient condition for (5.26) to hold is
/ E*(8) (A (t) — Aq(t))dt > 0. (5.27)
0

Note that S,,-in addition to n=!/25, /\/V - is consistent. against. H 4 if (5.27)
is satisfied.
We now establish consistency of particular subsets of the class of WL

statistics against two types of alternative hypotheses,

(1) The alternative Hy : A\ (t) > Aq(t) for all ¢, and F(t) # Fy(t) for
some t, is called the ordered hazards alternative.
(2) The alternative Hy : Fy(t) > Fy(t) for every t, and Fy(t) # Fy(t)

for some t, is called the alternative of stochastic ordering.
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It is clear that H| implies Hy. For both H, and Hy, wc assume that there
exists 2ty > 0 such that for i = 1,2, Fy(tg) > Fy(ty) and G;(ty) > 0.
With respect to Hy, (5.27) will hold if Q*(#) > 0, Vt € I = (0,t*), where
t* = sup{t : G ()G (t) > 0}. Hence, a WL statistic which is consistent
against Hy has Q) > 0, ¥t € (0,T), where T = sup{t : R, (t)Ry(t) > 0}.
Examples of such WL statistics include those of the Tarone-Ware class with
g(u) of subsection 2.5.3 such that g(u) >0, Yu € (0,1), as well as all other

WL statistics discussed in section 2.5. Q*(t) is
pi7y(t) + pamy(t)

for the Gehan statistic,

I(G,()G4(t) > 0)F () Fo(t) (p17} (t) + pa73(t))
(w5 (t)

for the Efron statistic, and 1 for the log-rank statistic.

With respeet to Ha, a sufficient condition for inequality (5.27) to hold is:
Q*(t) > 0, Yt € I, and Q*(t) is decreasing on I (Fleming and Harrington,
1991, p. 267). To prove this, remark that inequality (5.27) is, by integration

by parts, equivalent to

- / (A1 (t) — A (£)) dE* (1) > O, (5.28)
Jo
where
t
A (1) =/ Ai(u)du, 1=1,2.
0
Now,

dRK*(t) = pip2mi ()3 (1) dQ*(t) + Q™ (t)p1p2

mim(t) + pams(2)
piai(t)da3(t) + pamy2(t)dni(t)
x * * (4112
[Pl R (t) + P27f2(t)]
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Since F|(t) is continuous on [0.0c) and since there exists a ty € [ such
that Fy(ty) < Fy(tg). there must exist a closed interval I* C 1 such that
Fi(t) < Fy(t), Yt € I'*, with F{(t). and hence a}(t), strictly deereasing on
I'*. Thus, assuming Q*(t) > 0, Vt € I. and that Q*(#) s decreasing on [,
we have, denoting the first and second summands of K *(#) by K] (1) and

dI3 (t) respectively, that

- [T @i = aan anin 2o
0

— | (Ar{t) = Aa(t)) dR (1) > 0.
JI*

and

- / (A1 () — Ao(t)) dR3(t) > 0.
JI1*<nj0,00)

Hence, inequality (5.28) follows accordingly. Examples of weight functions
with Q*(t) characterized as above are those of the log-rank, Gehan, Pren-
tice, and Harrington-Fleming statistics.  The Tarone-Ware class of WL
statistics will be cousistent against Hy if g(u) > 0, for every u € (0, 1), and
if g(u) is increasing on (0,1). With regards to Efron’s statistic,

K*(t) = K5(t) = puFY () B (NG ()G (1) > 0),

which is decreasing on I and strictly decreasing on I'*. Henee, (5.28) is

satisfied with K*(t) = K7.(t), and so Efron’s statistic is consistent against
H,.

Assume for the moment that censoring is absent, and consider the statis-
tic L,, of subsection 5.2.4 as well as the alternative hypothesis H 4 mentioned

at the beginning of subsection 5.2.5. Under H 4,
I e
n"] Ln — / I(;(t) ((IA| (f) - (lAz(t)) )
0
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where

K1) = I)I_])2Fl(f)F2_(t)
U pEi() 4 peFult)

Now, suppose censoring is present, and suppose

o(p1 Fi (1) + pa Fa(t)).

"
/ K (t) (dAy (t) — dAg(t)) > 0.
Jo

Then a given WL statistic will be consistent against H 4 if, Vt € T,

K*(t) = K:(t)
(mmy(2) +1’27"5(t))_¢(171 Ijil(t) '*:Pzp'z(t))
(P F) (1) + paFa (1)) G4 (1) Galt) .

Therefore, a censored data extension of L, which is consistent against H 4

= Q' (1) = I(G(1)G(t) > 0)

is a WL statistic with weight function

Q) = Qe(1)
= I(Ry(t)R:(t) > 0)
wpipads (i1 F1 (1) + 52 Fa(t7)) ROF1(87) Falt)
Ri(OBa(t) (B F1(8) + o Fa(t)) '
5.2.6 Comparson of the Efficacy of Three Classes of WL Statistics.

X

The discussions of subsections 5.2.3, 5.2.4, and 5.2.5 lead us to infer that,
given a rank statistic of the form L, there exists at least threc possible
extensions to accommodate censoring, assuming Gi(t) = Go(t) = G(t):
asymptotically efficient (with respect to the alternative hypothesis H; of
subscction 5.2.3). asymptotically distribution-free, and consistent WL sta-
tistics. Leurgans (1983) investigated the extent to which losses in efficiency
occur when a nonoptimal extension is utilized. Specifically, her study in-
volved censored data generalizations of the Savage and Wilcoxon statis-
tic. Before deseribing details regarding design and results of the study, we

present the various censored data counterparts of these two statistics.
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Savage's test, with exact variance, is well known to be the Tocally most
powerful rank test for the exponential scale family, and, with asymptotic
variance or consistent estimator thercof, is asymptotically fully cflicient
against Hy. For this particular SWL statistic. ¢(u) = 1. Vu € [0.1]. Henee,

the asymptotically cfficient extension of Savage’s statistic has

Qu(t) =

which is the weight function corresponding to the log-rank statistic.
A Savage statistic extension with a distribution-free asymptotic varianee

has weight function

A Fi(t-)  Fut)
Ql)l Npl])zl f)>())\/ Rl(i) + R( .

while a consistent censored data analogue has

) IR () Ro(t) > OVF, (1) Eo (17 ) R(1)
(t-

Qc(t) = npp2—— :
(13;F]( +])2F2 )I)R|(f)]?2(f)

The Wilcoxon procedure is the locally most powerful rank test against
time-transformed location alternatives for the logistic distribution, and is
asymptotically fully cfficient. For this particular test, ¢(u) = u; thus, the

efficient censored data counterpart of Wilcoxon’s statistic has
Qr(t) = Fy,(17),

which is the Peto-Peto weight function. The consistent extension has

. Fy(t=)Fy(t7 ) R(1
Qc(t) = npi1p2I (R (t) Ry(t) > 0) ,(’I?I)U)z](?z(")) ()’
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which is the weight function corresponding to Efron’s test. The distribution-

free extension has yet to be studied and uses

) — - i‘—’ - ﬁ" i
Qnp(t)= \/’Tﬁi]32[(f\’1(f)1?2(t) > O)F(t_)\/ I;J(Et)) + ];.,((t.)_)—'

Gehan's statistic, which has Q(t) = R(t)/n, is not a member of any of the
three classes of WL statistics presented in this subsection.

The parametric families of lifetime d.f.’s considered in Leurgan’s study
comprised, in fact, two special cases of (5.21): (1) the exponential scale
family

Fio(t)=®(gi(t) +6) = 1 - exp(—e’t),

where Wi () =1 — exp(—e”) and g (t) = log(t). and (2) the family
Fyp(t) = Ua{ga(t) + 6} = (¢ =1)/(c™" =1+ €'),

where Wy(r) = (1 4+ 7)™ and go(t) = log(e! — 1). The alternative hy-
pothesis for cach family was specified by Hy of subsection 5.2.3 with 8y = 0
and ¢ = 1. Note that Fy o(t) = Fyo(t) = 1 -e!, which is the standard
exponential distribution. Hence, sinee for all censored data generalizations
the variance, o2, depends on the null hypothesis failure time distribution
as well as G(t), a2 is the same for both parametric families, given a WL
statistic and G(t).

Two types of censoring distributions were utilized: truncated exponen-
tial censoring and uniform censoring. The truncated exponential censoring

distributions were

1—e¢7Y t< T,
G(f):{ ¢ <7

1, t>rT.

08




for v =0,1,2 and 7 = 2,0c. The uniform censoring densities were I{a <
t < b)/(b— a), for the choices (a,b) = (0.2) and (1.2).

Leurgans calculated the efficacy (cquation (5.15) with

Y(t) = d{log Ag(t))/dbp=p,)

of all scven WL statistics against the two alternatives for cach type of
censoring distribution. These calculations revealed the following:

(1) The consistent extensions (especially that of the Savage statistic)
are more sensitive to heavy censoring than the other censored data
counterparts.

(2) The distribution-free analogue has high efficiency relative to the op-
timal statistic when censoring is mild. Only when censoring, events
occur at twice the intensity of observed failures does the etficacy of
the distribution-free statistic hecome substantially lower than that
of the optimal extension.

(3) As the intensity of censoring cvents increasces, the Pitman ARE of
Gehan’s statistic with respect to the Peto-Peto statistic against the
logistic location alternative decreases.

(4) Gehan'’s statistic is less cfficacious than the log-rank and Peto-Peto

statistic against both alternatives for all types of consoring,
5.3 Small-Sample Properties.

5.8.1 Small-Sample Null Distribution of SWL Statistics.
From now throughout the remainder of this chapter, we employ the iwo-
sample set-up that was described in subsection 5.2.1 as well as the notation

of subsections 5.2.1, 5.2.4, and 5.2.5; however, unless otherwise specified,
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we do not restrict our censoring schemes to the censoring model of section
5.2.

In this and the following two paragraphs, we assume that the censoring
mechanism operates in the same manner for all n items, that is, that the
censoring patterns of the two samples are equal. Consider the WL statistic

9, of subsection 5.2.1. This siatistic can be written as

n

Y A (5.29)
=1

where

nA A, Y, A
Ai=[€2(m— ‘QﬂdN(t)} [— g@_)dN(t)J
0

Jo R(t) R(t)
is the score corresponding to item ¢ (¢ = 1,...,n), where TP < +-- < T}
are the ordered uncensored failure times of the pooled sample of size n, and

where

N(t) = fjlm <t A, =1).

1=zl

Of course, (5.29) depends on the vector of pairs of random variables
Py = ((N(Y1),A1),..., (N(Ys),A4)).,

which is the generalized rank vector. Now, let P be the vector Py without
item labels attached. Treating all identical elements of P} as distinct enti-
tics, we note that, under Hp and conditional on P3, all (:1) subsets of size
ny from Py have the saime chance of belonging to sample 1. Hence, letting
S equal the set of all (':'1) such subsets, an exact test of Hy in very small

samples can be based on the nonrandom conditional probability function

hy(a) = Pry, (S, =GIPI) = le(a)/(n)’

n;
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where Nj,(a) is the number of elements in S such that S,, = a. Remark
that hy(a) is independent of F(t) as well as all d.f.’s related to the cen-
soring mechanism. Hence, the associated expectation and variance are
distribution-free. In particular,
EHO(SnIP ) - EO Z U—V(I,_f;ﬂ
1€(—~00,4+00) ‘™

and

. ENL(D)
Varu, (Sl = 3 —(—)‘— B
le{—o00,400) ny

Now, let
P, = (K,A,,...,A,),

and treat all identical A;’s as distinct entities. Then another distribution-

free, nonrandom conditional probability function for S,, is
!

ho(a) = Pry, (S, = a|P3) N-z_‘,(a)/(”) ,
Ty

where PJ is the vector Py without itcm labels attached to the A;’s, and
where No,(a) has an analogous definition as N, ,(a). Recall from section
2.2 that hy(a) is in fact the probability function corresponding to the per-

mutation distribution of S,;, while

N nn
Var, (S, |P}) = nl—21 ZA‘

7=
is the associated permutation variance. In the next paragraph, we give
conditions under which hi(a) = hy(a), Ya € (—o0,+0oc). Thus, if these
conditions hold and if the censoring mechanism renders P} nonrandom (for
example, simple and progressive type II censoring), then obviously hy(a) is

the exact probability function of S, under Hy,.
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In addition to A,, A, is a function of

{Ry(T}), Ra(T5),dNY(T7) : §SN(YTT), § SN},

where Y = sup{Ty : T) <Y;5=1,...,K }. Suppose, though, that A;

depends only on
Bi= (A {R(T]): SN}
Then PJ is a function of strictly
(K, R(TY), ..., R(Tk)),

which is an cquivalent form of P}. Hence, if we suppose further that

fpsp,(Pi[P3) is degencrate, then, Va € (—o0, +00),

Pry, (S, = a|P}) = Pry, (S, = a|P71,P3)
= Pry,(Sn = a|P3)

= hl(a) = hg(a). (5.30)

Examples of scores for which (5.30) holds include those of the log-rank test,
Gehan’s test, and Prentice’s test. On the other hand, A; of Efron’s test is

a function of
{dN(T), R(T}): § S N(Y]7), i S N}

as well as B;, and so, in this case, equation (5.30) does not necessarily hold.
If the censoring mechanism is not identical for all n items, a test of Hy via
cither h(a) or hy(a) is not valid. Furthermore, even if the two groups have

cqual censoring patterns, calcuiation of hyie) or ho(a) for moderate size
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samples is extremely laborious. An alternative approach for testing Hy in
small samples, independent of sample size and equality status of censoring,
patterns, relies on approximating the unconditional null distribution of a
standardized version of S,,. We address this matter in subsections 5.3.1.1

and 5.3.1.7%.
5.3.1.1 Goodness of Fit of Normal Distributicon.

(a) Results of Monte Carlo Simnulations,

If there is a sufficiently large number of failures in cach sample, the
null distribution of the SWL statistic S, / VvV is well approximated by the
standard normal distribution. Here, V is Vary,(S,.) (if computable) or a

suitable estimator thereof under Hy. The adequacy of this approximation in

relww to much controversy.
Throughout the last fifteen years, several Monte Carlo studies have heen
performed to assess the goodness of fit of the normal distribution as a
function of variance estimator, censoring mechanism, censoring, intensity,
size of combined sample, cquality status of sample sizes (that is, equality
versus inequality of sample sizes), and equality status of censoring patterns
of the two samples. In this subscction, we present the results of three
significant studies: Latta (1981), Breslow ot al. (1984), and Groggel et al.
(1988). Rather than examine cach Monte Carlo investigation individually,
we describe the design and major outcomes of the three studies as 2 whole.

The WL statistics studied had Q(t) = 1, R(t)/n, and F,(t), where
F »(t) is Prentice’s estimator of F'(¢) based on the pooled sample of size .
With respect to the first two of these WL statistics, the variance estimators

considered were the conditional permutation variance and the permutation
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variance. As far as Prentice’s statistic is concerned, the variance estimators

utilized were the two aforementioned ones as well as 'V of chapter 4. The

lifetime variates generated were either exponential (A = 1.0), or Weibull

(shape

parameter v = 4.0 and scale parameter A = 1.0), or log-normal

(jt = 0, 0% = 1), or uniform (0, 1) random variables. The censoring schemes

considered were as follows:

(a)
(b)

simple type I censorship;

fixed censorship, with entry times uniformly distributed on [0, a]
and termination time of study at ¢ = a;

a variation of fixed censorship such that, for one sample, the entry
times are uniformly distributed on [0, a] with termination time ¢ =
a, while, for the other sample, censoring is absent;

random censorship model of section 5.2 with G (t) = Go(t) = e
for some 3> 0;

random censorship model of section 5.2 with G; () = e, for some
>0, and with Gy (t) =1 (i #4');

cases {a) and (d) present together;

cases (a) and (¢) present together;

two-stage progressive type Il censorship with n; = ns = 50 and
87 items censored at the first failure time (this case simulates early

heavy censoring).

For cach combination of lifetime distribution, sample sizes, and censoring

scheme, the data

(Y, A1),.., (Yo, A)

were generated independently a predetermined number of times (say N),
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thus yielding N values of all SWL statistics in question (two studies used
1000 repetitions, while the other used 5000). Afterwards, obscrved tail
probabilities corresponding to several predetermined critical values were
recorded. The nominal tail probabilitics, therefore, are type T errors ob-
tained via the standard normal distribution. We now summarize the major
results of the studies:

(1) The null distribution of an SWL statistic, regardless of variance ¢s-
timator, appears tc be approximately normal as long as the sample sizes
are equal, the censoring patterns are equal, and the censoring percentage
is less than 50%.

(2) For censoring schemes (a), (b), (d), and (f), all SWL statistics give
very conservative observed error levels (relative to the nominal levels) for
90% censoring in both samples with n; = n, = 10.

(3) For censoring situation (h), Gehan's test, with cither the permu-
tation variance or conditional permutation variance, provides type I error
levels which are extremely conservative. Tests based on the other two WL
statistirs, though, have observed type I errors which agree well with the
nominal ones.

(4) Discrepancies between observed and nominal error levels are generally
greater for censoring situations (b) and (d) than for case (a).

(5) When the two samples differ significantly in terms of their expected
number of uncensored failure times, all tests with conditional permutation
variance have a skewed distribution, with greater tail probability for the
critical region where we infer that the failure times of the sample with more
uncensored observations are longer. In other words, the sample which was

more likely to yield the greater number of uncensored lifetimes was much
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more likely than the other sample to be declared as having the longer
Jifetimes. This bias is attributable to the fact that when the failure times
of the sample with expectedly more uncensored observations appear to be
longer than those of the other sample, the conditional permutation variance
tends to be smaller, and hence the absolute value of the SWL statistic is
larger, than when the opposite occurs. Breslow ct al. (1984) provide, for the
log-rank test, a scattergram plot of numerator versus denominator which

lustrates the correlation between the two.

(6) With respect to censoring schemes (c) and (e), if n; < ny and sample
2 is uncensored, or if ny > ny and sample 1 is uncensored, then an SWL
statistic with permutation variance generally yields conservative error lev-
cls. This observation is consistent with Jennrich’s (1983) asymptotic results

(see subsection $.2.1).

(7) I the samples experience equal censoring patterns but the sample
sizes differ, a test with a permutation variance generally outperforms one
with the same WL statistic and a conditional permutation variance. For
a high pereentage of censoring, however, (about 90%) this discrepancy is
very small. This difference in small-sample null distribution between the
two SWL statistics can be plausibly explained as follows: As indicated in
the discussion of result (5), an SWL statistic with conditional permutation
variance for any particular weight function and not merely for those in
question has, under inequality of expected number of uncensored failure
times in cach sample, a skewed distribution due to the correlation between
numerator and denominator. As far as the three weight functions of interest

are concerned, this corrclation is ultimately attributable to the fact that
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the conditional permutation variance uses all the information provided by
0 oy, -
{R(T7). Ro(T75): J S K}

(Recall that S,, is dependent on {R(T°), Ro(T?).dN(T?): i < K}.) On
the other hand, the permutation variance for cach of the §,,'s considered is
a function of
{R(T}): j < K)

only, and so should be less strongly associated with the numerator under
inequality of expected number of uncensored failure times. From the above
arguments, therefore, we conclude that, under equal censoring patterns
but unequal sample sizes, the observed type I error of an S V1L statistic
with permutation variance should be closer to the nominal value than the
observed error level of a test with the same S,,, but with a conditional
permutation variance.

(8) Whenever the sample sizes and/or censoring patterus are unequal,
Prentice’s test, with variance estimator V, of chapter 4, provides error
levels which are generally closer to the nominal values than those of the
other SWL statistics.

(9) Finally, lifetime distribution does not have much effeet on the per-

formance of a given test, keeping all other parameters fixed.

(b) Alternative Variance Estimators.

In this subsection, we assume that the censoring model of section 5.2 is
in effect. Furthermore, we maintain the same conventions concerning F'(1),
G;(t) (i =1,2) as were stated in subsection 5.2.1.

To eliminate the skewness in small-sample distribution induced by the

conditional permutation variance when the expected number of uncensored
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observations in one sample differs from that of the other, one could instead

se

7= [ Eu, [@OROROR0A@O] V0.
Jo
Here, O( t) is assumed to be a function of
B(t) = (R(t), N(¢t7),{R(T}): i< N(t7)})

only, while A(t) consists of B(t) as well as other necessary information from
the study with the proviso that, under Hy, dN (t) and A () are conditionally

independent given R(t). We thus have

Ey, [dN(t)|A(t)] = Ep, [dN(t)|A(t), R(t)] \
= Ep, [dN(t)|R(t)]

= R()A(t) dt

(Brown, 1984), and so

iy [ g, | QORI
En( )——‘ ) Eu, “ R0 ] At) dt
) © A2 )
- / En, | ¥ ‘”ﬁ;gim(t)Eng [dN(t)IRl(t),Rg(t),B(t)]]
0
= E"() (V('p)

= Vary,(Sn),

where 15, is the conditional permutation variance of S,,, and where the

cquality
En, [dN(t)|R\(t), R2(1), B(t)] = En, [dN(8)[R(2)]

has been used (Brown, 1984).
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Now, suppose Gi(t) = Gy(t), Vt € [0.00). with ny # ns. Then, letting
A(t) = B(t) and noting that the conditional distribution of R,(f), given
R(t), is hypergeometric, we have

Ey, [Ri(O)R2()|A()] = En, [Ri () Ro(1)|R(1)]

_ R((R(t) -~ nyny
- n{n-—1) '

Hence,

52 = /°° Q2 () (R(t) — 1) IN(1),
0

n(n — 1)R(t)
which is in fact the permutation variance of S,,.
If G1(t) and G»(t) arc not identical, then a2, with A(f) = B(#), depends
on (Gy(¢),G2(t), F(t)) in a complex way. Specifically,

b= )(,02)
Ep, {Ry(t) Ry (8)|R(2) = 7.} = { Z (A
0 if otherwise,

(5.31)

ift € A,

where the sums are over |l = a, ..., 3, and where

A={t: G (t)Gat) >0},
a = max(0,r, —ny),

A = min(ry,n,;),

o(t) = L = F(Gs ()
T G.(0{1- F(t)G\ (1)}

Remark, however, that if G| (t) = Go(t) Vt € A, then conditional expecti-

tion (5.31) is
ri(ry — 1)nyny

I(G,()G3(t) > 0),

n(n-—1)
and so )
o [ min2Q*(t)(R(t) = 1) -
G° = /A Yy dN(t). (5.32)
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An example of a censoring model where the variance estimator (5.32) is
appropriate is once in which all items are put on test at the same instant,
yet termination of the study-the only cause of censoring—occurs at time

T} for group 1 and T3 for group 2 (T} # T3). If, on the other hand,
G\ (t) # Gy(t) for at least one t € A, (5.33)

then a2, with A(t) = B(t), cannot be implemented since it depends on
F(t), which is assumed unknown, as well as on G (t) and Go(t), which are
most probably unknown. Under condition (5.33), therefore, rather than try
to estimate 4%, we opt for the approach of incorporating other elements into
A(t) to render 62 distribution-frec. The elements chosen are in accordance
with the suggestions of Brown (1984).

Case 1: Case where all potential censoring time variates are observable

Suppose all potential censoring times, including those corresponding to
uncensored lifetimes, are observable (for example, censoring scheme (c)).
Decfine L,(t), for j = 1,2, to be the random variable which indicates the
number of group j items with potential censoring time >> ¢, and let L(t) =
L\ (t)+ Lu(t). There are ("“)) possible risk sets of size E(t) at time t, each

R(1)
of which is equally likely under Hy to be observed. Thus, letting

A(t) = (B(t), L (1), La(2)).

we have ) »
t t
—_ (7‘11(3))(1{(”2—(1‘1“))
Pry, (Ri(t) = ri(t)|A(t) = . ,
(R(t))

which is the probability function corresponding to the hypergeometric dis-

tribution. Remark that, in agreement with our original definition of A(t),
En, (N (1)|A()) = Ey, (dN(8)|R(1)).
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It easily follows that

Li(f) Ly () R(t)(R(t) — 1)

En, [Ri(t) Ra(t)|A(2)] = LIOL(H) - 1)

Therefore,

so _ [T QOL(OL()(RH) —1)
7= [ o om0

Now,

Li(t)/n; = Gj(1)
as n — oo (j = 1,2). Moreover,
L) /n 5 p Git) + paGat).
Hence, under Hy,

n162 D | Q2@ )A) dt
0

= Asvary,(n~'/2%8S,).

Case 2: Case where not all potential censoring time variate

able

(5.34)

s are obsoerv-

Suppose, now, that the potential censoring times corresponding to un-

censored lifetimes arc unobservable and that both Gy (t), Gy(t) are com-

pletely unspecified. (Such a censoring mechanisin wonld, for example, be

present in a clinical trial where one cause of censoring for both samples

is withdrawal from the study due to severe side effects of the

treatment.);

hence, L,(t) (i = 1,2) cannot be observed exactly ¥Vt € (T,,,+~ ), where

T;s is the smallest uncensored failure time in sample 2. We know, however,

that

Li(t)=Ri(t)+ Y _I(C; 2 t,N,(t7) = 1),

=1
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where N, (1) = I(Y, < t,A, =1) (j =1,....n). Now, although the second

i summand of (5.35) cannot be observed exactly V¢ € (T, +00), it can be

approximated 1 this interval by

{2‘:1(6’ >t N;(t7) =1 ){T;, (i), Coy 2 T7 gN(t”)}}
g=1
-

=E| > (Pr(Cyy = tIC = TP, (), T;’)dN{"(T;’))J
| 7 'I'J"<I

[ 117 G(t)
/o (_"l(“)

where (¢) is the item label corresponding to T?. Expectation (5.36) can be

=F

dN,"(u)j' , (5.36)

estimated by
t G[(t)
JO G]( )

where G (#) is the Kaplan-Meier estimator of Gy (t). Therefore, L (t) can

dN{ (u),

be approximated by

5
?l(t) *(U).

Li(t)=Ri(t) +

Similarly, Ly(t) is defined. Substituting Li(t), Ly(t), L(t) = ﬁl(t) + Lo(1)
for Li(t). La(t), and L(t) in equation (5.34), we obtain

_ / Q1) Ly (1) Lo (1)(R(t) ~ 1) N (D)
0 L(t)(L(t) - 1)R(¢) ’

which is an approximation to 6% defined by (5.34).

[

o

N
—

Now., under Hy. as n — 00
-
t)/n, -i-nrj(t) + G;(t) / f(u)du
Jo
=m,(t) + G, () F(t)
{ =G'j(t). 1=1,2
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and

L(ty/n = piGi(t) + p2Ga(1),
where f(u) = A(u)F (u). Therefore, under Hy,
n"l&% i Asvar”l,(n“‘/zS,,).

Note that 63, like 62 of casc 1, is not exclusively a function of the general-
ized rank vector.

We conclude subsection 5.3.1.1 {(b) by commenting, that

/.oo Q2(t) R (t)Ra(t) dN(t)
0

VarHo(Sn) = EHO Rz(f)

- /°° g, | QOB RA)
0 Hq R(f)

A(t) dt, (5.37)

even if Q(t) is unrestricted and is allowed to be determined by
({R1(T?), Ro(T7),dN(T?): ¢ < N(@t7)}, Ry (2), Ro(t), N(t7)).

If the expectation in the integrand of (5.37) is dependent upon G (), Gy(t),
F(t), and if these d.f.’s are unspecificd, then this integral is nonevaluable,
On the other hand, if this cxpectation is determined by F(1) only, then
(5.37) is free of F(t) and hence calculable (asswning sup{t : G, ()G (1) >
0} is specified), regardless of whether or not the above d.f.’s are known.
Finally, suppose that F(t) is unknown but that G (t), G,(t) arc discrete
and specified. Then, if the expectation in question is dependent on these
d.f.’s, we can show that Vary (S,) is free of F(t) using a methodology

similar to that discussed on pp. 79-80.
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5.9.1.2 Goodness of Fit of Bootstrap Distribution.

This subscction evaluates, via Monte Carlo simulations, the level of
accuracy relative to the standard normal distribution-to which the boot-
strap distribution of an SWL statistic approximates the true null distribu-
tion. At the time of writing this thesis, no other researcher had previously
considered this problem. Before presenting the design and results of our

study, we briefly review the bootstrap method as devised by Efron (1979).

Cousider the sample

X = (X1,....Xn),

where the X, are ii.d. according to some unknown d.f. H, and where the
X; may be of more than one dimension. Let x = (z4,...,2,) denote the
realized values of X. The problem we wish to solve then is the following:
Given a specified random variable R(X), estimate the sampling distribution

of I} on the basis of the observed data x.

The bootstrap method consists of first constructing the sample proba-
bility distribution H, putting mass 1/n at each point zy,..., z,. We then
draw the sample X* = (X7,..., X?) from H, where each X* independently
takes value vj with probability 1/n, j = 1,...,n. In other words, the values
of X* are selected with replacement from the set {«, xs,...,x,}. Finally,
we approximate the sampling distribution of R(X) by the distribution of
R* = R(X*). We refer to the latter distribution as the bootstrap distribution

of R and to X* as the bootstrap sample.
As far as our particular investigation is concerned, we wished to assess
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the adequacy of the bootstrap distribution (for p = 0, 1,1) of

’2'}

J52 [Ermtn)]” (v - i IN(t))
oo | i 2 1 2

\[fo [Frew(0)] " i an ()

where X = ((Y7,4A1), ..., (Ya, Ay)), where the (Y;, A,) are i.d.d., and where

UniX) =

Frm () is the Kaplan-Meier estimator of F'(t). U,, is, of course, the Har-
rington-Fleming class of tests with conditional permutation variance. The
failure time d.f. considered was F(t) =1 — e, while the censoring mech-

anism utilized was the random censorship model of section 5.2 with
Pr(C, <t)=Gi(t) = Go(t) =1 -~ OGN, [ =1,2,...,n

Hence, Pr(A; = 1) = Pr(T; < C;) = 0.7. The sample size configurations
for p = 0.0, 0.5 were

(1) ny =12, ny = §;

(2) ny =ng =105

(3) ny =20, ny = 10;

(4) ny =ng =15;

(5) ny =30, ny = 10.

For p = 1.0, we used just configuration (5).

We first generated the simple random samples, (T, ...,T,,) and (C'y,...,C,.),

following which we obtained
((Yl s A] ), sess (}/na An))a

where Y, = min(T;,C,) (i = 1,...,n). We then generated independent

realizations of the bootstrap sample

X* = (Y7, A7), (Y, A7),

n:*
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x*!, x*2, ..., x*N, with N = 1000/ (The first n; elements of X* constituted
~

sample 1, while the remaining elements formed sample 2.) The histogram

of the corresponding values Uy, (x*),...,Un(x*") was then taken as an

approximation to the actual distribution of U, (X*). Specifically, we deter-

mined the sequence
Py o, Pas, Pso, Pro.os Poo.os Poso, Pors, and Pogo,

where P, denotes the ¥t percentile point. We refer to these values as
“bootstrap percentile points” and to the histogram constructing process
as a “trial.” For cach case of SWL statistic with particular sample size
configuration, ten trials were performed using ten independently generated
Xs, following which we calculated the mean and st2ndard deviation of each
bootstrap percentile point over the ten trials.

For cach sample size configuration, we as well generated 10,000 indepen-

dent realizatiens of

X = {(Yl, Al), tecy (Ym An)},

1 2

x!,x?%,...,x'9000  This process in turn yielded, for each p, a sequence of

corresponding values
Up(x'),Upn(x?),..., Upn(x°:000),

the bistogram of which provided an excellent approximation to the exact
null distribution of U,. The sequence of percentile points which we deter-
mined in this case coincides with that of the previous paragraph, and the

actual values obtained are referred to as the “true percentile points”.
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Table: Assessment of goodness of fit of bootstrap distribution of U, relative to the standard

normal distribution.

Sample|Statistic

Percentile

Sizes

1.0

25

5.0

100

90.0

95 0

97.%

o9 0

n1=12

-2.47793
0 18983
-2 51330

-2 04401
0 08561
-2.12918

-1.65663
0 07001
-1.76050

-126169
0.03697
-1.33724

1 21699
0 03337
1 30154

[ 56943
0.05835H
1 67252

I 88405
0 09013
1 972061

2721083
0 10437
2 31863

-2 47185
0.16002
-2.47967

-2 02304
0.09909
-2.07685

-T.67399
0 07669
-1 74841

T 27995
0 04621
-131105

T 26081
0 02960
1 28799

T 60107
005763
1 62786

T 8RTIH
0 06196
1 92752

T20T70
007787
225491

n1210

-2.35952
010178
-2.50293

-1.93063
0.06129
-2.02146

-1 60147
0.04563
-1 69927

-122997
004812
-1 31498

1.2698h
0 05699
133515

I 61550
0 04981
1 71636

I 92377
0 (7599
2 05604

220039
0 15160
2 44271

ny = 10

-2 34285
) 09564
-2.41630

-1.94598
0.06987
-1.99161

-1 62956
0.04308
-1 68366

-1 26059
0 04075
-1 30461

1.29717
0 03584
1 30346

1.6475H4
0 04767
1 67091

1 92090
) (5543
2.00238

2 26443
{12452
2 37309

-2 50277
0 13065
-2 65027

-2.03118
0.11485
-2.15996

-1 66367
0 06017
-1 78500

-129707
0 08527
-1 38977

1.19701
0 03916
1.25210

153264
(005415
1 60488

1.79890
0 07858
1 901056

2 14562
0 08839
2 21067

ni =20

ny = 10

-2.42070
011358
-2 56650

-2.03980
0.10287
-2 11259

-1 70723
0 06896
-1 74648

-1 29879
0.05151
-1 35019

1 24071
004117
1 26425

1 B6704
0 06465
1 53698

1 84361
0 06367
1 862064

-2 30042
010601
-2.35126

-191322
0.10698
-2.00278

-1'53374
0 08482
-1.69636

-12438
0.06911
-1.31090

1.25262
(003704
1 33568

160324
0 05249
1 69243

1 91269
0.070890
2 (02264

2 16896
0 11992
2 17378
27220177
0 09878
2 41922

ny =15

n2=15

-2.31254
0.08968
-2.30402

-1 93551
0.08424
-1 97767

-1.61692
0.06244
-1.67813

-125181
006139
-1 29308

1.25431
0 04570
1 33128

1 63236
0 05464
1 66777

1 93407
0 05296
I 99776

2 25738
0 0RG6
2 10626

Standard

-2 94331
0.09702
-2 71383

-2.10301
0 06240
-2 26302

-1.76T100
0.04888
-1 86713

-1 36167
0 04430
-1 43879

I T5087
0 04699
1 25242

47056
(.06001
1 60142

174159
0 08824
1 88517

2 048R6
0 07082
2 18916

ny =30

-2 49579
0.07561
-2.70015

-2 10012
0 07121
-2.20357

-1 75397
0.05283
-1.82237

-1 34979
0.03929
-1 39988

1 19769
0 04431
1 24553

1.51860
0 03970
1 59625

I 78180
0 06579
1 86554

206157
0 08775
214901

-2.53811
0.11376
-2 64248

-2.09399
0.06085
-2 20581

-1.72872
0 05789
-1.80499

-1.33871
0.05322
-1 37793

1 21590
003670
1 25907

1 53126
0 03627

1.59535

1 77164
N 05498
1 84635

2 03430
0.07H87
2 10863

Normal

Variate

-2 3263

-1 9600

-1 6449

-1 2816

12816

I 6449

1 9600

2 3264
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The results of our study are presented in the table on page 117. Each
box consists of three items. The first and second items are, respectively, the
mean and standard deviation of the bootstrap percentile point in question
over the ten trials, while the third item is the corresponding true percentile
point.

The results of our study indicate that, in summary, over the ten trials,

\t,ho hootstrap distribution of all three SWL statistics closely approximated

their true null distributions. However, for all three tests, as the percentile
increased from 90.0 to 99.0 or decreased from 10.0 to 1.0, the standard
deviation of the associated bootstrap value tended to increase. Thus, while
both ultra-extreme and moderately extreme bootstrap percentile points
appear to be approximately unbiased for the corresponding truc percentile
points, the former estimators are less reliable than the latter ones.

Our investigation also revealed tha@vhen the sample sizes were equal,
the normal and bootstrap distribution did equally well in approximating
the true null distribution. When the samples were of unequal size, the
bootstrap and normal upper-tail percentiles were similar with the exception
of the log-rank test, where we observed the normal distribution to perform
slightly better. On the other hand, for the case of unequal sample sizes with
lower-tail percentiles, the bootstrap distribution almost always performed
better than the normal distribution, regardless of the test involved.

This particular Monte Carlo study did not take into account such fac-
tors as intensity of censoring, equality status of censoring d.f.’s, and type
of censoring mechanism present. It would be well worthwhile for some re-
scarcher to assess the goodness-of-fit of the bootstrap distribution, taking

into consideration these parameters along with those of our study.
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5.3.2 Small-Sample Power.

In this subsection, we present the results of several significant Monte
Carlo studies which examined small-sample power properties of SWL sta-
tistics. The researchers behind thesc investigations include the references
listed on p. 103 as well as Lec et al. (19753.@ leming et al. (1980), Flem-
ing and Harrington (1981), Fleming ct al. (1987), and Pepe and Fleming,

(1989). Two major objectives of these studics were:

(1) determine the effect of cach of the paramcters listed on p. 103
singularly as well as in combination-on power;

(2) compare the power of three specific tests against six important. al-
ternatives, under specific censoring conditions and sample size con-

figurations.

As in the subsection concerned with goodness-of-fit of the standard normal
distribution, we describe the design and major outcomes of the above in-
vestigations from a general perspective rather than analyzing each study
separately.

For objectives (1) and (2), the WL statistics utilized were the same as
those involved in the simulations of 5.3.1.1 (a). The variance estimators
considered for objective (1) were identical to those utibzed in the afore-
mentioned simulations, while the variance cstimator emy.loyed for objective
(2) was the conditional permutation variance. The alternatives employed
belong to the class of stochastic ordering alternatives (Fy < Fy) and are as

follows:

I. large early difference in survival curves (functions) with no crossing of

hazard functions.
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I large carly difference in survival curves with crossing of hazard func-
tions.

III. a contiguous proportional hazards alternative.

IV. large middle difference in survival curves with croseing of hazard
functions.

V. large late difference in survival functions with no crossing of hazards.

VI. a contiguous time-transformed location alternative for the logistic
distribution.

With respect. to objective (1), the censoring mechanisms considered were
censoring schemes (a)- (g) of subsection 5.3.1.1 (a). For objective (2), cen-
soring schemes (a), (b), (d), and (f) were separately utilized in combination
with various configurations of equal sample sizes.

For objectives (1) and (2), each configuration of censoring mechanism,
sample sizes, and alternative hypothesis was replicated a fixed number of
times, say N, thus generating NV ii.d values of the SWL statistic in ques-
tion. Power was thus approximated by the proportion of replications where
the alternative hypothesis in question was declared to be true. For a given
significance level (any one of 0.01, 0.02, ..., 0.1), the associated critical
value was obtained from the standard normal distribution. Note that since
all six alternatives are such that Fy(t) < Fy(t), and since all weight func-
tions in question are nonnegative, we reject Hy for large positive values of
the test statistic.

We now discuss the results of these Monte Carlo simulations and begin
with the outcomes related to objective (1).

The results indicate that if the sample sizes are equal and the censoring

mechanisms of the two samples are identical, all variance estimators for a
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given WL statistic yield similar powers against the alternative in question.
Suppose, though, that the two censoring mechanisms are identical (censor-
ing schemes (a), (b), (d), and (f)) but that the sample sizes are unequal,
Then the results reveal that, when the larger sample has the longer life-
times, an SWL statistic with conditional permutation variance generally
has greater power than an SWL statistic with the same numerator but a
permutation variance. On the other hand, when the larger sample has the
shorter lifetimes, the converse is true. Suppose now that ny = ny, but
that one sample experiences censoring while the other does not (censoring
schemes (c) and (e)). Then, we sce the same power relationship between an
SWL statistic with a conditional permutation variance and one with a per-
mutation variance (both of which have the same numerator) as discussed

above, treating the uncensored sampie as the larger sample.

When the censoring patterns of the two samples are cqual and n, #
ne, or when n; = ny and one sample is censored while the other is not,
Prentice’s test, with variance estimator Vg, is generally more powerful than
Prentice’s test, with either of the two other variance estimators, if the larger
or uncensored sample has the shorter lifetimes. On the other hand, if the
larger or uncensored sample has the longer lifetimes, Prentice’s test with
variance estimator V, generally yiclds the sccond best power amongst the
three.

Consider now a scenario where the censoring mechanisins of the two saun-
ples are identical and where the censoring scheme, sample sizes, and censor-
ing intensities are allowed to vary. Then, firstly, the power of any particular
SWL statistic with specified variance cstimator gencrally tends to be lower

with censoring schemes (b), (d), and (f} than with (a), controlling of course

121




o

for all other parameters. Secondly, if the size of both samples decreases

and/or the censoring intensities increase, power decreases—controlling once
again for all extrancous parameters. In cases where the censoring intensity
is 90% and n, = ny = 10, the power is sometimes less than the desired

error level and rarely above 20%.

We now present the outcomes relevant to objective (2). The log-rank
and Prentice’s test, with a consistent estimator of the null hypothesis as-
ymptotic variance, are the asymptotically optimal SWL statistics against,
respectively, alternatives III and VI (see pp. 60, 89). The Monte Carlo
simulations reveal that, within the context of the three SWL statistics in
question, such as well is the case in small samples for censoring schemes (b),
(d), and (f). For alternative III under censoring scheme (a), however, the
three tests perform equally well. No comparison of the tests was conducted

for alternative VI under censoring scheme (a).

With respect to departure III under censoring scheme (b) or (d) or (f),
the simulations indicate that Prentice’s test is generally more powerful than
Gehan’s test, an observation which agrees with Leurgan’s (1983) efficiency
calculations. A comparison though between the log-rank and Gehan’s test
for alternative VI, under cach of the above censoring schemes, was not

considered.

Prior to discussing the results for alternatives I, II, IV, and V, we make
some comments which will enable us to account for the observed outcomes.
Consider some alternative hypothesis (not necessarily a stochastic ordering

alternative) in which Ay (2) > Ay(t) Vt in some interval I = [tg,t,], and
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suppose dN(t;) = 1 for some t; € I. Let A denote the collection of events
{dN(t)) = 1, Ry (1) = ri  Ra(t)) = 1} .
let B=dN}(t)) — Ri(t;)R™(t,)dN(t,), and let
C= [ QaN; o) - R (1N,

Now,

P ifa=1,
PrlidN*(t,) = alA] =
r[dN} (1) = a|4] {1_1; if a =0,

where p = (r1A((£1) + r2A2(t2)) "' A1 (21)ry. Thus, conditional on A (as-
suming ro is not excessively greater than ), B is much more likely to be
positive than it is negative. Now, recall that the class of WL statistics has
the form

R\ (1)

S, = /0 0 [(IN{‘(t)—-I—?m—(lN(t) .

Thus, to render S, sensitive to the given difference in hazard functions on
I, Q(t) should be much greater than zero on I. (We assume that Hy is
rejected for large positive values of the test statistic.) With Q1) defined as
such, and under the assumption that R(ty), Ry(ty) are sufficiently large
and that Ry(¢y) is not excessively greater than R, (t,), C' will tend to he
much larger than zero. Similarly, if A, (t) & Ay(1) YVt € I, Q(t) should be
much less than zero on I.

Suppose, now, that H, is such that A (2) = Ay(¢) Vi € I, and that

dN(ty) =1 for some t; € I. Then, assuming R;(t,) > 0 and Ry(t,) >0,
PI'[B > OIA] = T‘](T'z + 7'1)_l

is dependent strictly on the values of r; and r4, and not on the magnitude

nor on the sign of Fy(#;) — F2(¢;). To enhance the power of S, against H 4,

123




.4-3‘;3\

therefore, S, should be rendered comnpletely insensitive to failures occurring

in I; henee, Q(t) should equal zero Vi € 1.

Finally, suppose Aj(t) 1s moderately larger than Ay(¢) Vt in I, and that
dN(t;) = 1 for some t; € I. Then, conditional on A (assuming Rj(t;) is
not excessively greater than Ry (2,)), B is slightly more likely to be positive
than it is negative. It follows, therefore, that S,, should be mildly sensitive
to failures occurring in I and, hence, that Q( t) should be moderately greater
than zero on I. Analogously, if Aj(#) is moderately smaller than Ay(t) Vi
in I, then Q(t) should be moderately less than zero on I.

We now describe the outcomes of the Monte Carlo simulations for al-
ternatives 1, I, TV, and V. For thesc particular alternatives, a comparison
was made strictly between the log-rank and Prentice’s test under censoring
scheme (b).

Departure 1 is, more specifically, given by the alternative:

{ A(E) 2> Aa(t) i 0 <t < to,
Ar(t) = Ao(t)  if £ > o,

for some ¢y € (0,00). For this particular alternative, both procedures have
very good seusitivity. The Prentice test, however, does have somewhat
better power. We can explain this observation as follows: The log-rank test
places a large weight on failures occurring both before and after ¢3. Hence,
since a majority of the failures after ¢, will tend to originate from sample

2, the large positive value of

to

A= [ Q@N{(t) - Ri()R™'(t)dN(1)]
Jo
will be nearly completely offset by the moderately large negative value of

p= [  QUIAN; () Ri(R™(8) AN (1)].
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The Prentice test, on the other hand, is very sensitive to failures which
occur in (0, ] yet is weakly sensitive to failures occurring in (¢,. +o0), and
s0, in this case, A is slightly offset by B.

Departure 11 is, more specifically, given by:

AL(t) > A2(t) if 0<t < ty,
Az > A (t) if to <t < ty,
Ag(t)ZAl(t) ift>t1,

for some tgy,t; such that tg < t; and such that

¢ ¢
/ Ar(u) du > / Ao(u) du Yt € [ty, t,].
Ja 0

In this scenario, Prentice’s test performs better than the log-rank test;
however, the power of both procedurcs here is reduced in comparison to
the case of departure 1. This reduction in power is due to the fact that, for
both tests, the positive value of

to
A= | QMEN;(®) - Ri()R"(t)dN(t)]

0
is somewhat offset by the negative value of
3]
B= [ Q(O[ANT(t) = Ri(H)R™'(t) AN (1))
tO
The Prentice procedure, however, outperforms the log-rank test since A
is more offset by B for the latter SWL statistic than for the former, and
since the latter test places greater weight than the former one on failures
occurring in (t;,+00).
Departure IV is, more specifically, given by:
A(t)=2(8) 0Lt <L,
AL(t) > Aa(t) iftg <t <ty

Az () > A (t) if t) <t <ty,
M(E)=d(t) it >y,
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for some 1y, t;,t; such that to < t; < t3 and such that

t t
/ /\) (U,) du > / A'z (U) du Vte [tl,tgl.
J0 0

The two tests show the same relative sensitivities here to what they dis-
played for alternative II The explanation for this outcome is analogous to
the discussion of the previous paragraph.
Finally, departure V can be cquivalently written as:
{ Ai(t) = A(t) O <t <ty
A(t) > () ifte <t
for some ty € (0,4+00). Here, the log-rank procedure has very good power,
while Prentice’s test has unacceptably low sensitivity. This observation is

not unexpected since

/0 " QUIANT(t) - Ri(R™ (1) dN (2)],

for hoth tests, is likely to be close to zero (even though the log-rank test

places greater weight than Prentice’s procedure on failures occurring in

(0, f()]), )’(‘t
A= / O(t)[dN; (t) — Ry(t) R\ (1) N (1)),

for the log-rank procedure, is likely to be much greater than zero, while A
for Prentice’s procedure is likely to be only slightly greater than zero.

For many years, tests based on the log-rank and Prentice’s statistic have
been amongst the most frequently used censored data, nonparametric, two-
sample procedures. Because of their method of formulation, however, these

two tests are more sensitive to alternatives of ordered hazard functions than
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to alternatives of crossing hazards (both stochastic ordering and crossing,
of failure time d.f.’s). Consequently, there has been mch research recently
concerned with developing versatile nonparametric procedures that are sen-
sitive to both the ordered hazards and crossings hazards departures. See,
for example, Fleming et al. (1980), Fleming and Harrington (1981), Schu-
macher (1984), Breslow et al. (1984), Fleming ct al. (1987), and Pepe and
Fleming (1989). Indeed, these investigators show, via small-sample Monte
Carlo simulations, that their suggested tests can outperform the two afore-
mentioned two-sample tests under crossing hazards alternatives. Further-
more, these newly proposed tests compare favorably with the log-rank and

Prentice’s procedure under, respectively, departures III and VL
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