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Abstract 

Thermal conductivity is a powerful tool to probe the phonon and electron exitations 

in a solid, especially in superconductors were one can basically tune the respective 

electronic and phononic contributions by applying a magnetic field below Tc. 

After a short review on the concepts of superconductivity, thermal conductivity 

and amorphous matter, we present a study of the thermal conductivity of an exotic 

material, the amorphous metallic superconductor FeO.5Nio.5Zr2 . The results indicate 

an unexpected dominant electonic contribution to the thermal conductivity across the 

superconducting transition, in accordance with an inhomogeneous sample composed 

of a bulk normal phase with inhomogeneous superconducting phases. 
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Résumé 

La conductivité thermique s'avère être un outil puissant pour déterminer les exitations 

électroniques et phononiques dans un solide, en particulier dans les supraconducteurs 

où les contributions respectives des électrons et phonons peuvent être modifiés par 

l'application d'un champ magnétique en dessous de Tc. 

Après une brève révision des concepts de la supraconductivité, de la conduc­

tivité thermique et de la matière amorphe, nous présentons une étude de la con­

ductivité thermique d'un matériaux exotique, le supraconductor metallique amor­

phe Feo.5Nio.5Zr2 . Ces tests indiquent une inattendue contribution dominante des 

électrons à la conductivité thermique, et ceci à la fois dans la phase normale que 

dans la phase supraconductrice. Cette observation est attribuée à un échantillon in­

homogène composé d'une phase normale dominante et de phases supraconductrices 

inhomogènes. 
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Chapter 1 

Introduction 

The discovery of superconductivity in 1911 by H. Kamerlingh Onnes [IJ was the spark 

that ignited the fascinating field of low temperature physics which is today a major 

field of scientific research. At low temperatures matter behaves quite unexpectedly, as 

the basic blocks of matter: electronic and phononic, charge and spin excitations begin 

to couple, decouple and form exotic quasiparticles. Good examples are the fractional 

quantum hall effect, where it was seen [2J that in a 2 dimensional electron gas (a very 

thin '" 100 A quantum weIl at the junction of two semiconductors) electron charge 

separates into particles of charge e/3, or of course superconductivity, where electrons 

form large bound pairs, overcoming Coulomb repulsion, because of a phonon-electron 

interaction. 

In particular, superconductivity has triggered enormous interest because of its re­

markable macros copie properties: a superconductor, below a critical temperature Te 

and critical magnetic field Be will become a perfect conductor and diamagnet. In this 

thesis, we deal with very exotic types of superconductors: the amorphous FexNh-xZr2 

alloys. Those superconductors are of the second type, that is they lose their perfect 

diamagnetism by allowing the penetration of flux tubes or vortices though the mate­

rial, each carrying a quantum of flux. Now vortices inside a superconductor form a 

unique system: they are driven by an external current, pinned by impurities or inho­

mogeneities, and their density is changed with the applied field. In our high purity 

Fe-Ni-Zr alloys, the mechanisms of flux pinning and vortex motion is quite unique 

1 



2 CHAPTER 1. INTRODUCTION 

because of a very low critical current (the lowest known in the literature) above which 

the vortex core starts to move, and therefore provide an extraodinary testbed for the 

study of vortex dynamics. In addition, these systems exhibit the peak effect: an 

anomalous enhancement of the critical current close to the upper critical field, and 

contributes the richness and diversity of the vortex phases in those systems [3, 4], as 

seen in this thesis for the x = 0.5 alloy. 

Furthermore, the FexNh_xZr2 alloys are amorphous. That is their atomic struc­

ture is specially disordered with no long range order, Le. liquid-like: they are obtained 

via the rapid cooling of the liquid state. Because spacial positioning of the atoms 

is random in amorphous systems, many equilibrium positions are accessible to the 

atoms, and at low temperatures only the two lowest levels are relevant, so that amor­

phous systems unfold into two level systems as demonstrated in 1972 by Anderson 

[5] and Phillips [6]. As a result, amorphous systems have peculiar thermal properties 

at low temperature, where the phonon thermal conductivity follows a T2 relation 

in temperature instead of a T 3 relation. Thermal conductivity is an excellent tool 

to distinguish the contributions of electrons and phonons to thermal conductivity in 

superconductors, and measurements seem to indicate a dominant electronic thermal 

conductivity, even in the superconducting state, and is attributable to the presence 

of a mixed superconducting phases in parallel to a bulk normal phase. 

In this thesis we review in chapter 2 the main theories of superconductivity as well 

as a description of vortex dynamics and the peak effect. In chapter 3 we coyer sorne 

aspects of thermal conductivity in normal solids and superconductors. In chapter 4 

we give a description of the basic properties of amorphous materials as well as their 

low temperature thermal properties. Chapter 5 is a discussion about the experimental 

aspects of this work: the fabrication technique of the samples and their basic physical 

properties as well as the experimental procedures used to perform low temperature 

thermal conductivity measurements. Finally, in chapter 6 we present our results 

on the vortex state of FeO.5Nio.5Zr2 and thermal conductivity of FeO.5Nio.5Zr2 in the 

normal and superconducting state between 0.3 and 1.5 K, before concluding. 



Chapter 2 

Superconductivity 

2.1 Introduction 

In 1913, Dutch physicist Kamerlingh Onnes was awarded the Nobel Prize in Physics 

"for his investigations on the properties of matter at low temperatures which led, 

inter alia, to the production of liquid helium". In his words, from his Nobel Prize 

lecture relating to the low-temperature resistance of mercury, 

the experiment left no doubt that, as far as accuracy of measurement went, 

the resistance disappeared. At the same time, however, something unexpected 

occurred. The disappearance did not take place gradually but abruptly. From 

1/500 the resistance at 4.2 oK drops to a millionth part. At the lowest temper­

ature, 1.5 oK, it could be established that the resistance had become less than 

a thousand-millionth part of that at normal temperature. 

Thus the mercury at 4.2 oK has entered a new state, which, owing to its par­

ticular electrical properties, can be called the state of superconductivity. 

Onnes, through his study of low temperatures, had discovered superconductivity [lJ. 

The consequences of his research, his herit age , are truly immense as ninety years 

later, with discoveries such as ESC theory and high temperature superconductors, 

superconductivity and more generally low temperature physics is a fundamental part 

of research in condensed matter physics. Richard Feynman, from his famous lecture 

3 



4 CHAPTER 2. SUPERCONDUCTIVITY 

about nanotechnology (Plenty of Room at the Bottom, December 1959), said, "1 

imagine experimental physicists must often look with envy at men like Kamerlingh 

Onnes, who discovered a field like low temperature, which seems to be bottomless 

and in which one can go down and down." 1ndeed. And today we can benefit from 

sorne applications of superconductivity, whether it is high field magnets, magnetic 

resonance imaging, high speed levitating trains or loss-less power lines. 

Superconductivity is the vanishing of electrical resistance at a finite temperature 

called the critical temperature, denoted by Tc. There is no doubt we are dealing 

with perfect conductivity in superconductors. Of course even the more sensitive 

measuring device has its uncertainty, but the residual resistivity of superconductors 

is found to be less than 10-270. cm [7], 18 orders of magnitude less than a very good 

conductor such as copper, with a resistivity of 10-90. cm. Another illustration of 

this perfect conductivity is by looking at the decay time of the magnetic field created 

by a persistent current in a superconducting ring. This decay time has been found 

to be more than 105 years, and actually no change in field or current is expected to 

occur in less than 101010 years [8]! 

Twenty years following the discovery of Onnes, in 1933, Meissner and Ochsenfeld 

[9] discovered another fundamental property of superconductors. They found that 

magnetic fields are expelled from superconductors, that they are also perfect diamag­

nets. Perfect conductors do exclude fields because of a zero skin depth, but they would 

tend to trap flux lines in into cooling trough Tc. By cooling a superconductor through 

Tc with an external field H, we find the magnetic induction B=O inside the super­

conductor, i.e. the magnetic permeability J1 = 0 (we consider the relation B=J1H, 

where J1 < 1 for a diamagnet and J1 > 1 for a paramagnet). The existence of this 

Meissner effect implied that superconductivity could now be destroyed by a critical 

magnetic field, He, and is the reason of the spectacular levitation of superconductors 

above magnetic fields. 

So superconductivity is characterized not only by its anomalous electrical prop­

erties as suggested by its inspired denomination, but also by anomalous magnetic 

and thermal properties which we will investigate in the following sections. 1t is a 
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remarkable new state of matter observable at low temperatures. 

2.2 Zero resistance, a microscopie theory 

The phenomenon of superconductivity remained a mystery until a systematic micro­

scopie theory was formulated by Bardeen, Cooper and Schrieffer (BCS1 theory in 

1957). Before that, many brilliant minds such as Einstein, Heisenberg, Landau and 

Bloch, Frenkel, Gorter and Casimir, had tried but failed to find a solution to the 

mystery, and their theories now belong to the history of science [7]. More successful 

were the phenomenological theories of the London brothers in 1935 and of Ginsburg 

and Landau in 1950, which provided a description of the anomalous diamagnetism in 

superconductors in respectively weak and strong fields. 

The BCS theory is rather involved and will not be discussed here. However, 

using the main results of this theory, we can still explain the perfect conductivity of 

superconductors. 

2.2.1 Cooper pairs 

With the discovery of the isotope effect by Maxwell and Reynolds [10, 11] in 1950, 

whieh showed that He and Te were proportion al to M-1/ 2 for isotopes of the same 

element, it became clear that the crystal lattice played a role in superconductivity, 

through sorne interaction with the electrons. In fact, this interaction mediates an 

indirect attraction between electrons. The physical idea is that as it moves through 

the lattice, the electron distorts it, attracting neighboring ions to it by Coulomb 

interaction. The electron thus become surrounded by an excess positive charge, whieh 

can in turn attract another electron, overcoming the Coulomb repulsion. At high 

temperature, this pro cess is less possible, since thermal motion of the ions tend to 

1 John Bardeen, Leon Cooper and Robert Schrieffer were awarded the Physics Nobel Prize in 

1972 for their theory. John Bardeen is the only man to have received two Nobel Prizes in Physics: 

in 1956 he received his first with Schockley and Brattain for the discovery of the transistor and their 

research in semiconductors. 
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"wash out" the cloud of ions around the electrons. We can note also that good 

conductors such as gold, copper and silver are not superconductors, precisely because 

being excellent conductors, the interactions of the electrons with the lattice is very 

weak, such that the attractive electron-electron interaction can never occur. 

This can be seen using quantum mechanics, assuming T = o. A crystal then 

is in zero-point motion because of the uncertainty principle, and this is the ground 

state of the crystal system. An electron moving through the lattice excites it to a 

higher energy state, and upon returning to the ground state, energy is radiated in 

the crystal in the form of a phonon, a quanta of acoustic vibration. The absorption 

of this phonon by another electron, the phonon exchange, is then responsible for the 

attraction between the electrons. In superconductors, this attraction leads to the 

creation of bound pairs, called Cooper pairs after Leon Cooper who showed in 1956 

[12] that a weak attraction between electrons in a Fermi sea would lead systematically 

to a bound state. 

Cooper's theorem has beautiful consequences concerning the dimensionality of the 

phenomenon of superconductivity. Usually in three dimensions, attractive potentials 

will yield bound states only if the strength of the potential exceeds a certain value. 

However in two dimensions, an arbitrary weak attraction potential will in all cases 

give bound states [7]. In superconductors, electron motion in momentum space is 

constrained to the Fermi surface, since transitions to lower energy states inside the 

surface are forbidden because of the Pauli exclusion principle, and because of an 

energy gap (which we will discuss in the next section), transitions into higher energy 

state are difficult, and therefore the motion is essentially two-dimensional. It is also 

interesting to note that in the high-Tc cuprates, electron motion is also confined to 

the layers of copper-oxide planes. 

2.2.2 The energy gap 

Any bound state has a binding energy associated with it, the energy required to break 

the bond or to create it. Thus finite energy is expended in order to create the Cooper 

pairs in a superconductor, and consequently an energy gap ~(T) appears in the energy 
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spectrum of the electrons. Now electrical resistance in solids is a result of collisions 

of electrons with the crystal lattice or impurities, which implies quantum transitions 

of the electron system. But su ch transitions are not always possible because of the 

forbidden region in energy space, and as a result, the electron system will not be 

excited, it will advance without friction, namely the resistance will be zero. 

In superconductors, the electron energy is given by E = Vl;,2 + .6.2 , where 1;, = 

p2 /2m* - EF (p and m* are respectively the electron momentum and renormalized 

mass from Fermi liquid theory) is the electron energy in the normal state, which can 

be zero. Thus the minimal electron energy is .6. (the binding energy of the pair is 2.6.), 

and electrons in a layer.6. around EF will form Cooper pairs. In BCS superconductor, 

the energy gap .6.(r) is isotropic. 

So superconductivity is a direct consequence of an inter-electron interaction. How­

ever an electron will be unequally attracted to the other electrons: according to BCS 

theory, the strongest bond between electrons will occur when the electrons are of 

opposite spin and momentum due an exchange of phonons. Since in a solid the state 

of the electrons changes continuously, the sets of Cooper pairs will also change, and 

we can imagine superconductivity as a peculiar ball of electrons, where the electron 

dance, changing partners frequently. And this ball is gigantic. Taking the simplest 

case, we have EF = p~/2m, so that 5E = PF5p/m ~ .6., the spread in energy of 

the superconducting electrons near the Fermi surface. From the uncert ai nt y relation, 

5p5r ~ fi, so that 5r ~ fi/5p ~ fiPF/.6.m ~ fiVF/.6., where VF is the Fermi velocity. 

So the size -the coherence length 1;,0- of the superconducting electrons, the Cooper 

pair, is of the order of [7] 

which is much longer than typical interatomic distances! 

We can conclude this section with sorne fundamental results from BCS theory, 

which can be used to determine whether a superconductor is of the BCS type. It is 
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found that 

~(O) 

~(T) 

~(O) 

1. 76kB Tc and 

1.74V1 - ~ . 
These results are valid only in the weak-limit coupling, i. e. for weak (<< 1) electron 

phonon interaction, but they are a good approximation in aIl cases. 

2.3 Magnetic properties 

2.3.1 The London Equations 

In 1935, the brothers Fritz and Heinz London suggested a phenomenological theory 

explaining the anomalous diamagnetism of superconductors [13]. It can be understood 

in adapting the well-known quantum mechanical current equation, 

J s = zen [(\l~)*~ - ~*\l~] - ~A~*~ , 
2m me 

where J 8 is the supercurrent, ~ the many-body electron wavefunction and A the 

vector potential of the field. In the general case, ~ is complex and the left-hand term 

(called the paramagnetic term) is non-zero. This is due to the "deformability" of ~ 

versus the field [7], i. e. its implicit dependance on it. They assumed however that 

~ was "rigid", so that it retained its form with or without a field. This way the 

paramagnetic term would vanish [7], leaving the London equation 

(2.1) 

There is another way to see this rigidity [8]. Considering the canonical momentum 

p = mv + eAj e of the electron, and arguing that in the superconducting ground 

state and without field, the net momentum is zero (because Cooper pairs have equal 

and opposite momentum), we obtain the net velocity of the electrons in the super­

conducting state, 
e 

(vs) = --A. 
me 
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This holds assuming again the ground state is rigid. Thus with ns the density of 

superconducting electrons, we obtain 

(2.2) 

which is the same as (2.1) with 1'lj;1 2 = ns. 

Combining (2.2) with the Maxwell equation V x H = 41fJ/c, and taking the curl 

of both equations, we obtain 

and solving this differential equation with a superconductor for z > 0 and vacuum 

for z < 0, we have 

H(z) = H(O)e-Z
/ ÀL , 

where ).1 = 4:~:2' This implies that a magnetic field is screened from a supercon­

ductor, with a characteristic penetration depth ).,L, the Meissner effect. 

2.3.2 Pippard's non-local approach 

The London equation is local. That is the field at each point is determined only by the 

supercurrent at the same point. We don't expect this to hold in superconductors, as 

the field at an electron site will also affect its pair mate a distance ço away. Because 

of the spacial correlation of electrons in superconductors, we need a non-local field­

current relation. 

Pippard [14J proposed such a model in 1953, with a non-local generalization of 

the London equation, done in analogy to Chambers non-local generalization of Ohm's 

law [15J J(r) = O"E(r), obtained assuming that the current at a point r depends on 

E(r') within a volume of radius l: 

where R = r - r'. Pippard, in his work, introduced the coherence length ço as 

a characteristic correlation length in the superconducting state, and obtained in a 
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similar fashion 

_ 3c2 jR[R.A(r')]e-R
/
ço , 

Js(r) - (47r.ÀL)2çO R4 dr . (2.3) 

Pippards equation (2.3) was a real triumph of intuition and general physics, fitting 

experimental data quite weIl, while its form was confirmed with the BeS theory. It 

simplifies to the London equation (2.2) when ço « ÀL, which holds for lead and 

indium. However in the case where the field A varies appreciably on the distance 

ço » ÀL, we expect from (2.3) to have a weakened supercurrent response which 

would compensate the field, thus giving a "real" penetration depth À, much larger 

than ÀL . This holds for materials such as tin, aluminum, mercury, which are caIled 

Pippard type. 

2.3.3 The demagnetization factor 

The Meissner effect imposes strict conditions on the magnetic field B around a su­

perconductor when an external field Ha is applied, namely that B-t MoHa when far 

from the superconducting sample and that B=O at the superconductor boundary. By 

studying those boundary conditions for fields outside the superconductor in vacuum, 

it can be shown that for samples of various shapes, the field at the surface of the 

sample will sometimes exceed the applied field Ha, implying that sorne region of the 

sample will become normal before other regions, when Ha is close to He. See figure 

2.1 for an schematic illustration. The result is that for fields in a range 

Ha 
1-71<-<1 

'1 He ' 

there will be a coexistence of superconducting and normal regions with field penetra­

tion, the so-called intermediate state, For example, the demagnetization factor 7] is 

equal to ~ for a sphere, to ~ for a cylinder in a paraIlel field, to 1 for an infinite slab 

in a perpendicular field, while it is 0 for a slab in parallel field. In this intermediate 

state, there are normal and superconducting domains, which interface has a given 

surface energy " given by [8] 

(2.4) 
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where 8 ~ ç- - À, the approximate thickness of the interface. 

(a) (b) (c) 

Figure 2.1: External field patterns when (a) 'fJ is almost 0 and when (b) it is l for a 

sphere. The curvature in the field lines indicate that the field at the surface is larger than 

the applied field. In (c) 'fJ = 1 and clear distinct superconducting and normal domains are 

present. Adapted froID [8]. 

2.3.4 Type II superconductors 

The Ginzburg-Landau (G-L) theory (covered for example in Tinkham [8]), introduced 

a new parameter /'i, = À(T)/Ç-(T) = aÀL(O)/Ç-O, the ratio of the penetration depth to 

the coherence length (a is a constant, equal to 0.96 (0.715) for pure (dirty) supercon­

ductors [8]). Abrikosov in 1957 [16] proposed a new classification of superconductors: 

superconductors of type l when /'i, < 1/-/2 and of type II when /'i, > 1/-/2. In the 

latter case, G-L theory leads to the result that the surface energy "Y from equation 

(2.4) is negative. Abrikosov2 showed that this negative surface energy causes the 

normal regions (which carry sorne flux) to subdivide until the flux carried by each 

region is equal to the flux quanta <Po = hc/2e. Those flux tubes, or vortices, are 

2 Aleixei A. Abrikosov, Vitaly L. Ginzburg and Anthony J. Leggett were awarded the 2004 Nobel 

prize in physics for "pioneering contributions to the theory of superconductivity and superfluids" 
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of size ç, and are surrounded by a supercurrent screening the external field running 

over a length À. Because of the repulsion between those opposite supercurrents, the 

vortices then arrange in a regular triangular array, the Abrikosov lattice. The flux 

penetration is continuous, from the first critical field Hel the upper critical field He2 

where the transition to the normal state occurs. Unlike the intermediate state of type 

l superconductors as discussed in section 2.3.3, this so-called "mixed state" of type 

II superconductors occurs over a substantial field range (He2 is much greater than 

He), even when the demagnetization factor TJ = O. Abrikosov's discovery brought to 

light a remarkable new state of superconductors, bringing a new type of particles, the 

vortices. We will study until the end of this chapter the physics of vortices. 

2.3.5 Basic vortex dynamics 

Flux flow and pinning 

In the mixed state, the superconductor is of course no longer a perfect di am agnet, 

but also loses its perfect conductivity. Since each vortex carries a flux quanta <Po (it 

is interesting to note that the flux quanta <Po is half the value of the fundamental 

quantum of flux of one electron: it is the flux quanta for a particle of charge 2e, the 

Cooper pair), when a current density J is applied in the superconductor in the mixed 

state, the vortices will move under the action of the Lorentz force: 

f = J x <1>0 . 
c 

This will cause the flux lines to move tranverse to the current with a velo city v, which 

in turn willlead to an electric field E, 

v 
E =.po x - , 

c 

which is parallel to J. See figure 2.2 for an illustration. Therefore there is a potential 

difference across the sample, implying the loss of perfect conductivity. In this "flux 

flow" regime, only a viscous drag limits the velocity of the vortices, and the resistivity 

follows the simple linear Bardeen-Stephen relation, P = (B / Be2 )Pn, where P and Pn 
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are respectively the resistance in the mixed and normal state, and B is the applied 

field [8]. 

J -
t forv .­E 

B 
e 

Figure 2.2: Schematic illustration of the forces acting on a vortex (represented by the black 

dot) when a current is applied in a superconductor 

However, vortices are also under the action of pinning forces in the sample. In­

homogeneities or impurities of typical size ç or À in the superconductor will act as 

pinning cent ers for the vortices. Such spacial defects cause a local variation in ç, 

À or He2 and thus in the free energy of the flux line, thereby favoring equilibrium 

at particular locations of the vortex. Thus in imperfect samples, vortex movement 

is triggered only when the current is sufficient to overcome the pinning forces. For 

currents under this "depinning" current or critical current Je, the sample remains 

superconducting. 

Such heavily pinned type II superconductors are ideal to make high field super­

conducting magnets. One frequently used material is NbTi: by bringing fine NbTi 

filaments in a copper matrix, one creates a fine-grained microstructure which pins 

the vortices, and the material can stay superconducting at current densities sufficient 

to produce fields up to lOT. On the other hand, weakly pinned superconductors like 

our amorphous samples FexNil-xZr2 in which the flux flow regime is attained at low 

current densities are ideal systems for the study of the mechanisms of vortex motion 

and phases. 

AH in aH, vortices in type II superconductors form quite a unique system to the 

fundamental researcher. Vortex matter form a crystal, in which the lattice parameter 
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can be varied by sim ply changing the external field, and in which one can change the 

driving forces on the particles by simply varying the current. Furthermore, since the 

vortex lattice lies within a real atomic crystal of much finer lattice constant, one can 

easily study the effects of disorder and thermal fluctuations which will influence the 

pinning response of the vortex crystal. The resulting phase diagram of disorder versus 

pinning force is quite fascinating, and many anomalies and perplexing phenomena 

come with the study of vortex physics. One of them is the peak effect, which we will 

cover in the next section. 

2.4 The peak effect 

The peak effect is observed as an anomalous enhancement of the critical current Je 

just below the transitions at He2 or Te, in the vortex state of sorne low-T c type II 

superconductors. It was discovered sorne 40 years ago, and while its origins are still 

under debate and under ongoing research, it is now generally accepted that it is the 

result of an order-disorder transition of the vortex lattice. The peak effect is usually 

seen in measurements of Je as a function of temperature or field, but equivalently 

it can be observed as a drop in resistance (due to a vortex pinning phase which 

corresponds to the peak in Je) as a function of magnetic field (or temperature) as it 

is done in this thesis with the FexNh-xZr2 alloys. In sorne cases, this can lead to a 

surprising reentrance of the superconducting phase as the resistance sometimes drops 

to zero! 

2.4.1 The vortex lattice 

Before discussing the different mechanism proposed to be at the origin of the peak 

effect, we will first introduce sorne properties of the vortex lattice (VL). Firstly, the 

VL is not confined to the rigid Abrikosov triangular lattice. It can rather move under 

the action of a force or distort in order to lower its energy, i. e. the VL is elastic. This 

el asti city is essential to explain any pinning of the VL: if the VL were a perfectly 

rigid and periodic object, the random arrangement of pinning sites could never cause 
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any effective global pinning because as many pinning sites would exert a force in the 

direction of the Lorentz force as opposite to it. Therefore it is normal to consider the 

VL as an elastic object, subject to compressional, shear and tilt deformations. 

The phase diagram for driven lattices in the presence of disorder is essential to 

understand the VL and is predicted in reference [17], and shown schematically in figure 

2.3 for disorder as a function of driving force. At low driving force and disorder, one 

finds the Bragg glass phase. The latter has quasi-long range order and no topological 

defects. It is as good as a perfect lattice as far as translational order is concerned [4] 

and shows Bragg peaks in neutron diffraction experiments [18]. 

Amorphous 
Glass 

Bragg 
Glass 

1 
1 

1 
1 

" Plastic ~ _ " ;",/~ 
! ' / Moving Transverse 
: /' Glass 
, 1 
, 1 

: / , 
Moving Bragg 
Glass 

Force 

Figure 2.3: Schematic representation of the phases of the vortex lattice for different 

amounts of disorder, as a function of force on the vortices. Adapted from [17]. 

Upon application of a force greater than sorne critical force Fc, the Bragg glass 

becomes the moving Bragg glass (MBG), characterized by static channels in which 

the vortices flow. These channels are determined by the static disorder and do not 

fluctuate in timej they are the easiest paths the particle can follow without undue 

dissipation and are thus the result of a subtle competition between elastic energy, 

disorder and dissipation [4]. The vortices remain elastically coupled between different 

channels, and although the channels are rough, the MBG retains topological order. 

Still for F > Fc but for larger disorder strength, one finds the moving transverse 
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Glass (MTG). The MTG is still characterized by channels, however the vortices in 

different channels are now decoupled because of defects, and move almost indepen­

dently. Dislocation are present beyond a certain length scale such that the lattice has 

a smectic topological order. Upon increasing the disorder further, one finds a phase 

characterized by a plastic fiow of vortices. This phase contains pinned domains, which 

act as barriers which favors motion transverse to the direction of fiow, such that the 

formation of long straight channels are prevented. Finally, going back to F < Fc, but 

now with larger disorder strength, one finds the amorphous glass phase. Its nature 

remains unclear, although it must contain topological defects and dislocations. 

2.4.2 Proposed origins of the peak effect 

Pippard and Lü propositions 

Sadly, most experimental studies conducted on the peak effect relied on transport 

measurements which, although they yield important information about the mobility 

of vortices and about the dynamics of pinning, are ill-suited for the study of ther­

modynamic phases transitions. Therefore, the interpretation of experimental data 

remains quite controversial and phenomenological. 

A first qualitative explanation of the peak effect, which is the most accepted today, 

was proposed by Pippard [19] in 1969. He suggested that close to H c2 (or Tc), the VL 

would become softer, allowing the VL to become more distorted due to pinning forces. 

This would enforce strongly pinned vortices near HC2, i.e. the vortices would sustain 

a larger force before motion is induced, and thus the critical current would be higher. 

Ten years later, Larkin and üvchinnikov (Lü) [20] proposed a more formaI description 

of this explanation. It was said that the random disorder of the pins competes with 

and destroys the long range order of the VL, resulting in a short-ranged ordered VL. 

This loss of order has been observed in neutron diffraction experiments as the loss 

of Bragg peak intensity upon increase of the temperature through the peak effect 

[18, 21]. The Lü theory introduced the correlation volume Vc = R~Lc, the volume 

of a VL domain within which the VL remains undistorted while between different 
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domains, shear and tilt distortions are favored by pinning. This volume depends on 

both the elasticity of the VL as well as the pinning: 

1/3 2/3 
Caa c66 rI 

Re -
np(f;) 

Le - ReVc44/c66 

(2.5) 

where C44 and C66 are respectively the tilt and shear elastic constants3 of the VL, and 

rI, np and fp are respectively the range, density and elementary force of the pins. 

The pinning force is proportional to the critical current and given by 

n2 f4 
p p 

using equation 2.5. In the LO model, Pp is almost field independent, because of a 

near cancelation of the factors fp l'V !::l2 l'V (He2 - H) and C66 l'V (He2 - H?, where !::l 

is the superconducting gap. LO further states that near He2' as the lattice parameter 

a of the VL decreases, and becomes much sm aller than the range À of inter vortex 

interaction so do es Re and Vc, and this yields nonlocal elasticity effects which induces 

a further softening of the lattice and decrease in C44, and thus a rapid increase in Pp 

or Je. At the peak, Re l'V ap (the lattice constant at the peak), Vc becomes constant 

and the shutdown in Pp (the depinning) is due to the linear field dependence of fp . 

VL melting 

For the sake of completeness we shall briefly present here another explanation of the 

peak effect present in the literature. In high-T e cuprate superconductors, another 

type of peak effect has been observed. Its signature is very different than in the low­

Tc systems: the peak effect is then seen as a sudden increase in the resistance versus 

field or temperature near He2 or Tc. See for example reference [23]. In these systems, 

temperature fluctuations are much more considerable, and therefore the effect has 

been explained by a melting of the lattice into a disordered liquid phase, where 

30ne can describe the Hamiltonian of the VL as H = 21 La.{3 L q ca.{3ua.(q)U{3( -q), where U is 

the displacement of a vortex from equilibrium, and Ca.{3 the elastic constants. Œ, f3 are the spacial 

coordinates, q is the wave vector while n is a dimension al parameter. From [22]. 
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thermal wandering of the vortices between pinning sites prevents pinning effects. A 

detailed description of the lattice melting is stilliacking, but the classical Lindemann 

criterion as been applied to the cases of vortices in those superconductors. The VL 

melting happens when < u2 >= cia2 , that is when the mean square displacement u 

of the vortex from equilibrium is a considerable fraction of the lattice spacing a. CL 

is the Lindemann parameter, which has found to be 0.1",0.2 for the high-Tc systems 

[24]. Similar values for low-Tc superconductors have been found (see for example 

reference [25]), however the value has been found to decrease for more dirty samples, 

an indication that disorder is not negligible. Whether the peak effect in low-Tc 

systems is due to a melting is disputable. As said earlier its signature is radically 

different: in the case of melting the peak effect leads to a decrease of pinning (a 

thermally induced melting transition) and thus to an increase in resistance, while 

in the LO case the pinning (a disorder induced melting transition) is increased and 

leads to a decrease in the observed resistance. ls it nevertheless possible that the 

peak effect in low temperature superconductors is due to the decrease in the LO 

correlation volume and a disordering of the VL triggered by both thermal fluctuation 

and disorder. 

2.4.3 Associated phenomena 

Bulk versus edge currents 

In a rectangular shaped sample, the transverse flow of vortices tends to bring them 

at the edge of the sample. At these locations a greater force, or current, is necessary 

to give the vortices sufficient energy to cross the surface barrier, in order to enter or 

leave the sample and thus there should be an enhancement of the critical current at 

the sample edge. Furthermore, the surface barrier is in general non uniform, so that 

the distribution of vortices along the edges will also be non homogeneous, creating 

local nucleation and distortion in the VL. The current would create a disordered 

metastable phase at the edges, constantly annealed by the more ordered bulk phase. 

This phenomenom was called the "edge contamination mechanism" [26, 27], and must 
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Figure 2.4: The Corbino disk contact geometry. The current flows radially and therefore the 

vortex movement is along a circle, creating a radial voltage. The symmetric configuration 

of the current contacts allows an isotropie current flow necessary to prevent the vortices to 

drift across edges of the sample 

be linked with the peak effect. 

It is possible to eliminate edge vortex contamination by using the Corbino disk contact 

geometry (see figure 2.4). In this geometry, vortices flow in circles and never come 

across the edges. Measurements do ne in reference [27] have shown a much sharper 

peak in critical current, a probable trace of a much sharper transition between the 

ordered and disordered LO phases. 

Frequency of the driving current 

The disordered phase at the onset of the peak effect (as Je increases or as the resistance 

drops) is metastable. As discussed above, this phase is characterized by the edge 

contamination mechanism and is a dynamic coexistence of the disordered edge phase 

with the ordered bulk phase. By using higher frequency AC signal to look at the peak 

effect, it is possible to limit this contamination: the consequent vortex movement is 

of smaller amplitude. Conversely, low frequency or DC driving currents bring vortices 

into higher amplitude movements, allowing more edge effects and bulk contamination. 

The result of using high frequency signaIs is a sharper peak effect, similar to using 

the Corbino contact geometry, although not as drastic. 



Chapter 3 

Thermal Conductivity 

3.1 Definition and general concepts 

In an isotropic solid, heat fiow obeys the relation 

(3.1) 

where h is the heat fiow rate per unit area, T the temperature, and /'Î, the thermal 

conductivity, in Wm-1K-1. The negative sign indicates that the heat fiows from hot 

to cold regions. 

Equation (3.1) is a typical transport equation, which form is valid for electrical 

conductivityl, diffusion, damping of sound, etc ... However in anisotropic materials, 

where heat fiow is not necessarily parallel to the temperature gradient, the equation 

becomes tensorial: 

where the coefficients /'Î,ij now form a matrix. 

In most cases and in this thesis, the method used to measure thermal conductivity 

is the steady state longitudinal fiow, four probe measurement, illustrated schemat­

ically in figure 3.1. In this method, heat is supplied at one end of a sample, and 

fiows longitudinally in a sample of constant cross section A, at a rate H, to the other 

lOhm's law J = aE = -aVV is a similar transport equation. 

20 
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end where is it entirely removed. Thermometers are attached at two locations on 

the sample, separated by a distance L to measure the temperature difference ~ T. 

Replacing H by power P per unit area, we obtain 

H 

P L 
fi, = ~TA' 

T T+dT 

L 

(3.2) 

Figure 3.1: The longitudinal fiow steady-state method used to measure thermal conduc­

tivity 

Generally heat is conducted by conduction electrons and by lattice vibrations, but 

also by any energy excitations, or carriers, would they be vortices, spins, etc ... The 

thermal conductivity is then expressed as the sum of these various contributions: 

fi, = fi,electrons + fi,phonons + ... 

These heat carriers move from the hot region to the cold region in the sample, and are 

scattered by other carriers, impurities or defects in the material. Considering those 

carriers as a gas diffusing through the material, and using the kinetic gas theory, we 

obtain the simple and intuitive relation 

(3.3) 

where Cv is the specific heat per unit volume, v the velocity of the carriers and l their 

mean free path. 
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3.2 Phonons and the Boltzmann equation 

Phonon thermal conduction is present in all solids, and is the preponderant conduction 

mechanism in non-metals and in amorphous systems. A good review of phonon 

thermal conductivity is given in Berman [28], from which most of this section is taken. 

Atoms in solids vibrate at certain modes or wave number q of given frequencies w, 

and obey a dispersion relation w(q), which will vary with atomic mass and crystal 

structure. The energy is propagated at the group velocity Va = dw / dt. In quantum 

mechanics, a mode of frequency w carries energy (n + ~)1ïw, where n is any positive 

integer and 27rn Planck's constant. Zero-point energy is ~nw and the average of n, 

N°, also the number of thermally excited quanta of energy nw , the phonons, is 

(3.4) 

according to Bose-Einstein statistics. 

The heat current due to a mode q is given by the product of the thermal energy 

in that mode with the group velocity, and the total heat current is thus given by 

(3.5) 

where N(q) is the number of phonons at mode q, the phonon distribution number. 

At thermal equilibrium h=O because both N° and w(q) are symmetric in q, and 

consequently va( -q) = -va(q). Now with a temperature gradient, this is no longer 

the case. Suppose phonons travel in the z direction parallel to the gradient, and that 

at time t the number of phonons in sorne region is N ( q). After 6t these phonons have 

moved to the region vb6t away, and their number is now 

N(q) - vb5t a;: , 
so that the rate of change of phonon number is 

( ôN) = -vb ôN = -vê ôN ôT --+ -(va' '\IT)ôN , (3.6) 
ôt drift ÔZ ôT ÔZ ôT 

in three dimensions. 
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In a steady state at a constant temperature gradient, the phonon density in the 

solid must become independent of time. There must therefore be other pro cesses 

which oppose this constant drift. We can identify these as scattering pro cesses , so 

that we obtain the Boltzmann equation 

( 8N) + (8N) = 0 . 
8t drift 8t seatt. 

(3.7) 

Such an equation is quite difficult to solve for N(q). One often makes the relax­

ation time approximation. It is simply assumed that a scattering process will restore 

the phonon distribution towards its equilibrium value exponentially, with a relaxation 

time Tq whieh depends on q: 

(8:) seatt. 
(3.8) 

By assuming that the distribution N is left almost unchanged from its equilibrium 

value in the presence of a temperature gradient, we can replace it by N° in the drift 

term (equation 3.6). Using this in the Boltzmann equation (3.7) and combining it 

with equation (3.8), we obtain 

8N°8T N°-N vz ____ - __ _ 
a 8T 8z - Tq 

(3.9) 

This equation is easily solved for N, and combining equation (3.9) with the heat 

current (equation 3.5), yields (the sum term with N° vanishes) 

'"" z 2 8N° 8T 
h = - ~1ïw(va) Tq 8T 8z ' 

whieh in turn gives the phonon thermal conductivity 

h '"" (Z 2 8NO 
""ph = - 8T/8z = ~1iw va) Tq 8T . 

We can replace the summation by an integral over w and write (Vé)2 = !vb for an 

isotropie material, to obtain 

1 {Wmax 2 8NO 
""ph = 3 Jo 1iwvaTq 8T f(w)dw , (3.10) 

where f( w )dw is the phonon density of states, and Wmax the maximum phonon fre-

quency in the dispersion relation spectrum. 
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The computation of the thermal conductivity from equation (3.10) is still quite 

difficult, as it necessitates the knowledge of the dispersion relation w( q). The latter is 

very complicated to obtain. In general there are three dispersion curves corresponding 

to the three possible polarization directions (two longitudinal and one transverse), and 

the total number of different modes is 3N if there are N atoms in the crystal (one 

for each degree of vibrational freedom). Furthermore, if not aIl the atoms are the 

same, or if the lattice structure has more than one atom per unit ceIl, the modes will 

be split among different frequency bands: the optic band of high frequencies and the 

acoustic band ranging from zero upwards. 

Consequently, it is very convenient to use the simple Debye model, which gives 

good results according to experiment. The Debye theory assumes a simple linear 

dispersion relation w(q) = vq for the phonon spectrum, which is valid for small q in 

crystals, and also that the phonon velocities are the same for the three polarization. 

Having [28] 

we obtain 

3q2 
f(w)dw = 21r2dq , 

3w2 

f(w)dw = -2 2 3 dw . 
1rV 

From equation (3.4), we have 

aND (1ïw/kB T 2
) exp(1ïw/kB T) 

aT [exp(1ïw/kB T) - 1]2 

so that using equations (3.10) and (3.11), with x = 1ïw/kB T, we obtain 

(3.11) 

(3.12) 

where () = 1ïwmax /kB is the Debye temperature. Some insight might be added by 

considering the contribution to the heat capacity from modes in the range w to w + 
dw as the derivative (d/dT)[1ïwNDf(w)dw] so that in terms of x and in the Debye 

approximation, 
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Expressing the relaxation time as the ratio of the mean free path 1 to the velocity v, 

we obtain the logical extension of the kinetic equation (3.3), 

K,ph = ~v J l(x)C(x)dx . (3.13) 

3.3 Electrons and the Wiedemann-Franz law 

A very similar demonstration seen in the previous section can be used to derive the 

electronic thermal conductivity. It is found in Ashcroft and Mermin [29]. We will 

here only outline the results, which are very similar to the Drude theory of a free 

electron gas [28]. We have 

(3.14) 

where VF and Tare respectively the Fermi velocity of electrons and the relaxation 

time. We have a linear T dependance for the heat capacity Cv: 

(3.15) 

where N is the number of electrons and EF the Fermi energy. 

The expression for electrical conductivity can also be obtained in a similar manner 

[28], and is equal to the Drude result 

(3.16) 

where me, e and ne are respectively the electron mass, charge and density. In the 

free-electron model, we have the common expression for the spherical Fermi surface 

[29], 

(3.17) 

Using equations (3.14), (3.15), (3.16) and (3.17), and assuming T is the same for heat 

and electrical conduction scattering processes, we obtain the Wiedemann-Franz (WF) 

law 

(3.18) 
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where Lü = 2.44 X 1O-8W . n/K2 is the Lorentz number. This assumption is however 

not always valid. When an electric field is turned on, there is a net drift of electrons 

in one direction, and we can use the Boltzmann equation 3.7 to find the relaxation 

time of the scattering processes. However when a thermal gradient is applied, the 

drift of electrons is a priori zero. On the hot side there will be more high energy 

electrons and few low energy electrons with respect to the cold side. The result is 

an electron drift from hot to cold and vice versa which cancel out, but will tend 

to change the net thermal equilibrium on each side. Therefore, there has to be 

corresponding scattering pro cesses of sufficient intensity to prevent this. Berman 

[28J suggests that electron-phonon scattering processes will not be able to provide 

the necessary changes in electron energy, and therefore at low temperatures, and in 

systems such as amorphous systems were the dominant scattering of electrons cornes 

from phonons, less heat will be transported to the cold side. This implies that the 

WF law will overestimate the electronic thermal conductivity. However at higher 

temperatures or in dirty samples where defect scattering dominates, electron-phonon 

scattering is less important, the WF law will hold. 

3.4 Scattering pro cesses 

As a transport property, thermal conductivity is highly dependant on the various 

scattering mechanisms. The effects of scattering are to change the temperature de­

pendance of l'î,, and we will give here an overview of these effects. Of particular interest 

are the phonon scattering mechanisms, present in amorphous systems. A good review 

of scattering in solids is found in Berman [28J and in the thesis of Legault [30J. 

3.4.1 Scattering of electrons 

Impurities and defects 

Electron-impurity scattering is considered elastic since the change in energy of the 

impurity is much sm aller than the initial energy of the electron. Consequently, the 
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relaxation time is mostly temperature independent, and therefore fl,e remains linear 

in T. 

Electron-phonon scattering 

Electron-phonon scattering is very difficult to evaluate, and it has been found [28] 

that the scattering rate is given by 

1 - = constant x w , 
Tep 

which upon insertion in equation 3.12 and following integration, yields 

which is the same temperature dependance due to two level systems present is amor­

phous solids, as will be shown in section 4.2.2. 

Electron-electron scattering 

Electron-electron scattering is usually negligible and only present in very pure and 

perfect crystals. From the start, the Rutherford cross section is very small (l'V lü-9m2 

for ordinary met ais) [28], and it is further decreased by the Pauli exclusion principle: 

in order that spin, charge, energy are conserved in a collision between two initial 

and final electron states severely restricts the possible states combinations. The cross 

section is then further reduced by a factor l'V (kBT / EF)2 :::::i 10-4 at room temperature 

[28, 31]. The T 2 term in the scattering cross section brings a T 2 contribution to the 

resistivity Pe and thus a linear temperature in fl,e when using the WF law [28]. 

3.4.2 Scattering of phonons 

Boundary scattering 

At low temperatures, the mean free path of the phonons is very long, because the 

solid, near to its ground state has only low-energy phonons, which therefore have long 

wavelengths. This wavelength is then much larger than the solid's order (structure + 
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defects) and even of the sample size, and phonons act as sound waves traveling through 

air with very few scattering events. The scattering rate can then be approximated as 

1 v 
----
Tboundary lmax ' 

where v is the average phonon velocity and lmax the maximum mean free path. In­

serting this relaxation time into equation 3.12 and integrating, we obtain 

It has been found that lmax depends as expected on the dimension of the sample, in 

the following way: lmax ex Vthickness· width [30, 32]. One needs also to consider 

the roughness of the sample since for very well poli shed sample there will be specular 

refiection of phonons which will increase lmax while conversely a rough sample will add 

dislocations which will induce scattering and short en lmax. However the roughness 

factor is difficult to evaluate. 

Point defects 

Scattering of phonons on defects was first calculated by Klemens in 1955 [33] and 

found in [30]. We outline here the results. As seen in section 3.2, we have BD = 

nwmax/kB , from which we can derive 

(3.19) 

where the minimum possible wavelength Àmin of the phonons is the interatomic dis­

tance, a few nm. From this equation 3.19, we see that when T « BD (in which case 

Àmin « À), only defects of atomic size can be considered as point defects to most 

phonons. Such defects are: a vacancy in a lattice site, a substitution atom, and inter­

stitial atom ... or a combination of these. The resulting distortions in the lattice, or 

the differences in atomic mass or bonding causes additional scattering [28]. Klemens 

found that the scattering rate was proportional to w4
, an analogous result obtained in 

1896 by Raleigh (and known as Raleigh scattering) when he calculated the scattering 
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of sound waves by an obstruction of dimensions small compared with the wavelength. 

Using equation 3.12, point defects give a contribution to the thermal conductivity 

T - 1 
Kpd ex . 

Phonon-phonon scattering 

If the atomic potential energy in perfect solids were to be perfectly harmonie, phonons 

would have an infinite lifetime and would propagate without interacting with one 

another. In the absence of any other scattering, the conductivity would then be 

essentially infinite. However even in the purest and defect-free crystals one expects to 

see a finite conductivity, and therefore phonons will interact, because of anharmonic 

(cubic, quartic or higher powers of the displacement) lattice forces. Phonon-phonon 

interaction involves the annihilation of two phonons of respective wave number and 

frequency (ql' Wl) and (q2' W2) to create a phonon (q3' W3), such that 

and 

ql + q2 - q3 + g , 

(3.20) 

(3.21) 

where g is a reciprocallattice vector or O. The derivation of these equations was done 

by Peierls [34], and found in [30]. Cubic terms in the potential involves 3 phonons 

modes like in the above case, while quartic terms will involve 4 phonon modes, and 

etc .... Pro cesses with g=O are called normal or N processes while those for which 

g =1= 0 are called U (Umklapp - "turn down" in German-) processes. We shalllook the 

effects of these pro cesses on the thermal conductivity. 

Normal pro cesses 

N-processes preserve energy and crystal momentum (equations 3.20 and 3.21) and 

cannot create thermal resistance, because although the phonon distribution changes, 

the net phonon momentum in a certain direction is unchanged. However, N processes 

do have a subtle effect on the thermal conductivity: it changes the frequency distri­

bution of the phonons, when for example two low frequency phonons are replaced by 
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a high frequency one or vice-versa. Since the scattering rates of other pro cesses are 

in general frequency dependent (as seen in this and the previous sections), those will 

be changed, infiuencing the thermal conductivity. 

So N processes do not tend to restore the equilibrium distribution function, and 

the relaxation approximation 3.8 is not applicable. Therefore one cannot use equation 

3.12 with sorne T to calculate the effects of N pro cesses on K,. The most widely used 

treatment in that subject is the one of Callaway developed in 1959 [35] and found 

in [28]. He assumed that N pro cesses restore an arbitrary phonon distribution, with 

relaxation time TN. He assigned a time TR for aIl the remaining scattering processes, 

so that we can write the total scattering rate T-1 = TR
1 + Ti/ using Matthiessen's 

rule. 

The temperature dependence of the TN has not been established clearly. Herring 

[36] suggests that at low temperatures, TN1 ex: wnT 5-n, where n is an integer between 

1 and 4 which depends on the phonon polarization and lattice structure. In any case 

this factor is quite difficult to calculate and to measure. 

U mklapp processes 

U pro cesses occur when the total momentum of a phonon-phonon collision is 

shifted by a lattice vector g. Its effects are noticeable in perfect and imperfect crystals 

as the thermal energy can then be transported in a quite different direction. It has 

been found that at high temperatures, K, ex: liT, while at very low temperatures 

far from OD, only small fraction of phonons (with energy "-' 4kB T) take part in U 

pro cesses , so that K, ex: T€eOD /
bT , where € and b are of the order of unit y [28]. 

These results hold for crystals with a well-defined unit cell. Of more interest for 

our amorphous materials is the result of Kalugin et. al. [37] and found in [30] which 

takes into account U pro cesses in quasicrystals. He has found that the scattering rate 

due to U pro cess is more power law like than exponential at low temperatures: 

yielding a temperature dependence to the thermal conductivity "-' T 5. Quasicrystals 
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have a longer range order than amorphous systems, evident from sharp diffraction 

peaks, but have little translational symmetry because they have a 5-fold pentagonal 

crystalline symmetry, a forbidden 3-D symmetry group. Although they have a struc­

ture similar to a crystal, their electronic and phononic properties are similar to those 

found in amorphous systems. 

Other mechanisms 

They are other mechanisms responsible for phonon scattering. Among them are 

dislocation, stacking faults, large defects etc ... They don't play a priori an important 

role in amorphous materials. 

3.5 Thermal conductivity in superconductors 

3.5.1 Electronic thermal conductivity 

As we have seen in section 2.2, electrons in the superconducting state form Cooper 

pairs. The Cooper pairs cannot scatter any impurities, phonons or normal electrons 

and carry no entropy. Therefore, below Tc, we expect to see the electronic thermal 

conductivity to decrease drastically as the number of cooper pairs increases, or as the 

number of normal electrons (also called quasiparticle excitations form Fermi-liquid 

theory) decreases. 

In the BCS theory, it is found that the specific heat follows an exponential decrease 

in temperature with a characteristic decay rv !:lo/kB . This happens when T <rv OATe 

[28], basically because the decrease in normal electron number is also exponential. 

Therefore on the simple assumption of the kinetic equation 3.14, the behavior of the 

electronic thermal conductivity should be exponential as well at low temperatures. 

Furthermore, since the superconducting transition is a second-order phase transition, 

there is a jump is the heat capacity at Tc (of relative value 1043 in BCS theory [7]), 

which should be reflected in the electronic thermal conductivity by a discontinuity 

at Tc. Although this discontinuity is hardly seen, a detailed analysis carried out by 
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Geilikman in 1958 [38J and seen.in [7J on the basis of the BCS theory leads to the 

following result: 

t\, 6 [ Ll2 jT 00 ( 1)s+1 ] 
_8 = _ 0 +2T~ - e-sÂo/ T +2Lloln(e-Âo / T + 1) , 
11, 1T"2 eÂo / T + 1 ~ 82 

n s=1 

where K,s and t\,n are the electronic thermal conductivity in the superconducting and 

normal state, respectively, Llo the superconducting gap at T=O, and kB is set to unity. 

This theory is in good agreement with experiment [7J. 

3.5.2 Lattice thermal conductivity 

The superconducting transition does not change the state of the lattice and the num­

ber of phonons depends on the temperature as in the normal solid. However the 

lattice thermal conductivity will be changed if electron-phonon scattering was impor­

tant in the normal state. This is usually the case at low temperatures, in disordered 

superconductors where phonon thermal conductivity is dominant. What is seen in 

this scenario is an increase in the thermal conductivity below Tc. The exponential 

decay of the number of quasiparticle excitations results in the corresponding growth 

in the phonon mean free path l -7 le-ph and thus in the phonon thermal conductivity 

. As expected this growth is not endless: as soon as le-ph becomes larger than the 

mean free path related to other processes such as boundary or impurity scattering, 

those pro cesses become dominant and the thermal conductivity decreases. 

3.5.3 Vortex thermal conductivity 

As seen in section 2.3.4, vortices in superconductors correspond to tubes of size ç in the 

normal state which carry the flux quanta <Po = hcj2e, surrounded by a supercurrent 

running over the length À. Within the core of the vortex, the energy gap Ll(r) is 

suppressed, and the quasiparticles (renormalized normal electrons) can be thought of 

obeying Schrodinger equation in a potential Ll(r). In 8-wave superconductors (when 

the gap is isotropic, like in BCS superconductors), the corresponding eigenstates form 

bound states around the vortex core, with spacing Ll2 j EF [39, 40J. As the field is 
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increased, the vortex density increases, enhancing the bound state overlap, resulting 

in the formation of energy bands that allow the intervortex transfer of quasiparticles 

[41, 42, 43, 44]. This is expected to influence experiments on thermal transport or 

heat capacity, which are sensitive to quasiparticle excitations. 

At low fields, the vortices are well separated and the bound states are localized 

around the vortex core, so that the electronic thermal conductivity is not expected 

to vary much from its zero-field value. On the other hand, in increasing field, the 

quasiparticle bound states start to be more and more delocalized, thus capable of 

conducting heat, and we should expect an increase in K,e. That ho Ids whenever 

the gap is isotropie: in anisotropic gaps (d-wave superconductors such as the high­

Tc materials) where the gap is smaller in certain directions, the delocalization can 

happen at much lower fields. Studying the field dependence of K,e thus provides a 

mean to detect the gap structure. Scattering of electrons on vortices has also been 

considered [45], and sadly little information is available about the effect of vortiees 

on the lattice thermal conductivity . 



Chapter 4 

Amorphous Solids 

4.1 Introduction 

The fundamental differences between the crystalline and amorphous solids states lies 

in their microscopie atomic structure. In crystals the atomic positions are arranged 

in a transiationally periodic lattice, which exhibit short and long range order, and 

possesses a well-defined unit cell. In contrast, an amorphous solid exhibits an infinite 

unit ceIl, the atomic structure having only short range order. This is illustrated 

in figure 4.1. As we can see in figure 4.1 (b), the atomic array in an amorphous 

solid is highly disordered, but not random, at least on a short length Bcale of a few 

interatomic distances. Over such a length (typically ,,-,2-5 nm), the amorphous system 

has a considerable degree of local correlation, even though it lacks global periodicity. 

Randomness is more properly associated with gasses as in figure 4.1(c), where the 

atomic positions in space are totally uncorrelated. The presence of chemical bonding 

between the atoms of a soli d, resulting in highly directional covalent bonds, is usually 

responsible for this local order [46]. 

Amorphous solids have a structure very similar to liquids apparent from X-ray 

diffraction patterns. This similarity is evident from the preparation procedure of 

glass es. The term glass is conventionally reserved for an amorphous solid produced 

by quenching of the melt. In such a case, a liquid is cooled sufficiently rapidly past 

the melting temperature Tm, so that the time and energy required for nucleation and 

34 
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growth of crystallites is inadequate and the crystallization is bypassed. Thus, the 

liquid phase persists until a lower temperature is reached. At this glass transition 

temperature Tg, the supercooled liquid is effectively a solid because the time needed 

for configurational relaxation becomes too long on a laboratory time-scale [47, 48, 49]. 

In other words, liquid-like structural disorder is frozen into the glassy solid. The 

supercooled liquid is a metastable phase: if sufficient energy such as heat is applied 

to it, so that its temperature lies between Tg and Tm, it will re-crystallize, first 

macrocospically as micro crystals form into the amorphous matrix [46]. 

• • • • • • • •• • • 
• • • 
• • • • • • • • • • 

(a) (h) (c) 

Figure 4.1: A schematic diagram of atomic arrangements in (a) a crystalline solid, (b) an 

amorphous solid and (c) agas. Adapted from [47]. 

We won't go here in the details of the theory of metallic glass formation, but 

metallic glasses are more difficult to make than their insulating counterparts (like 

silicium-oxide alloys, the common household glass), necessitating cooling rates above 

105 K/s like in the case of our Fe-Ni-Zr alloys. To date, no pure metal has been rapidly 

solidified to give a glass. Metallic glasses were first produced in 1960 by Duwez et. al. 

at Caltech [50, 51] and brought at the time totally novel exotic materials, ones that 

exhibited metallic-like properties (electrical, thermal and mechanical), albeit in a non­

crystalline matrix. They also brought sorne possible interesting applications, as their 

mechanical and chemical properties proved to be better than traditional crystalline 

materials. Large scale applications of amorphous metals, which would have led to a 

replacement of the conventional FeSi transformer magnets, looked promising in the 
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1980s, but to date the conventional systems have won the economic competition. In 

fact, in addition to the difficulty of preparing bulk amorphous metals, one of their 

main shortcomings is the "aging" phenomenon. The ultra-soft magnetic properties 

of the amorphous shielding cou Id only be kept for long periods of time if the system 

was treated very cautiously, both thermally, magnetically and mechanically, as the 

material properties of amorphous metals would otherwise deteriorate significantly 

after cycle times of several months or years [52]. 

Nevertheless, in the 1970s, Zeller and Pohl [53] showed unambiguously that be­

low 1 K, the thermal properties of amorphous materials difIered significantly from 

their crystalline counterparts, thereby triggering large interest in the scientific com­

munity. Among the many theories proposed at the time, this anomalous character 

of amorphous systems is now generally believed to be the cause of two level sys­

tems or tunneling states. We will look in the next section this theory, as well as the 

corresponding low-temperature thermal properties of amorphous solids. 

4.2 Low temperature properties of amorphous solids 

Before 1970, most solid-state physicists would have predicted that the low tempera­

ture heat capacity or thermal conductivity of sorne glass would have been similar than 

its crystalline counterpart, on the grounds that at low temperature, the structural 

irregularities in glasses become progressively less important as the phonon wavelength 

increases. Instead, it was shown by Zeller and Pohl that for oxide glasses, the heat 

capacity and thermal conductivity respectively varied linearly and as T 2
, instead of 

the Debye and much faster T3 prediction as expected from the phonon contribution to 

those quantities. Furthermore, the absolute values of the heat capacity and thermal 

conductivity laid within an order of magnitude for all amorphous solids, suggest­

ing that there was an universal phenomenon responsible for the particular physics 

of amorphous systems. We will discuss in the next sections the theory behind those 

anomalies, on the specifie heat and thermal conductivity. An extensive review of the 

low temperature properties of amorphous systems is given in the book edited by W.A. 



4.2. LOW TEMPERATURE PROPERTIES OF AMORPHOUS SOLIDS 37 
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d 

Figure 4.2: An asymmetric double-weIl potential built up from two harmonie oseillator 

potential (eontinued as dotted lines) for atoms in amorphous systems. The parameters ~ 

(the asymmetry energy), Va (the barrier height) and d (weIl minima separation) are also 

indieated. Adapted from [55]. 

Phillips [54]. 

4.2.1 Two level systems 

More than ten models where suggested following this discovery. Of all the models only 

the tunneling state model proposed independently in 1972 by Anderson, Halperin and 

Valma [5] and by Phillips [6], a generalization of the two-level system (TLS), was able 

to explain the thermal and acoustic data. This model assumes that in a disordered 

solid, as opposed to a crystalline one, certain atoms or group of atoms have available 

two or more accessible potential minima. These atoms move in a potential of the 

form shown in figure 4.2. This scenario is a reflection of the fact that in amorphous 

solids, atoms have many possible equilibrium positions due to the short range order, 

as illustrated in figure 4.3. At low temperature, only the two lowest energy levels 

are significant, with an energy difference determined by the quantum mechanical 
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tunneling through the potential barrier Va and asymmetry~. In fact, the two lowest 

states have energy ±E /2, where 

where the coupling energy ~5 is the energy difference between the lowest states in a 

symmetric double-well, and is related to well energy Va and separation of minima d 

by 

where 

where [2 is equal roughly to Wo, the frequency of oscillation in a simple harmonie single 

well, and m the mass of the particles in the well. The exponential factor represents 

the overlap between the wavefunctions for the two wells [54, 55]. Now the free energy 

of a TLS may be written as [6] as 

F(E) = -kBTln [cosh(E/2kBT)] , 

and since the specific heat is given by -T(fPF/8T2
), the total specific heat is given 

by an integration over all two level systems: 

(4.1) 

where n(E) is the density of TLS per unit volume and energy interval. In the more 

general case of tunneling states, there is a distribution of values of ~o (or À or Va) 

as well as E and therefore in this case we should add an integral over this parame­

ter. However in practice this distribution is unknown and this further averaging is 

neglected. Phillips [6] suggests that in the range of energies of interest (between 0.1 

and 1K, i.e for E between 10-5 and 10-4 eV), the density of states can be taken as 

a constant, no, so that equation 4.1 can be evaluated to give 
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Figure 4.3: Microscopic model for two-Ievel systems in glasses: (a) atom flip, (b) structural 

unit rotation and (c) atom-vacancy exchange in glassy metals. Adapted from [55]. 

So we see that the TLS model accounts naturally for the anomalous linear term in 

the specifie heat when a constant density of tunneling states is assumed. This linear 

term can be confused with the electronic contribution to the heat capacity which has 

the same temperature dependence. However it was shown by Graebner et. al. [56] 

to persist in superconducting glasses, weIl below Tc where the electronic contribution 

to C is essentially zero. 

4.2.2 Thermal conductivity 

The TLS model is also capable of explaining the anomalous T2 temperature depen­

dence of the thermal conductivity observed in glasses at low temperatures. Phonons 

of energy 1iw = E, the TLS splitting, can be scattered by a TLS by a pro cess of exci­

tation from the ground state and subsequent spontaneous decay and emission of an 

incoherent phonon, i. e. resonance scattering [55]. Assuming again a constant density 

of TLS, it can be shown [54] that the scattering rate of phonons scattered in such a 

manner is gi ven by 

1 7rnoM2w h ( 1iw ) 
TTLS = pv2 tan 2kB T ' (4.2) 

where v is the average phonon velocity, M the coupling constant between the phonon 

wave to the TLS and p the mass density of the solid. Substituting equation 4.2 in 

equation 3.12 (or in 3.13 together with the linear heat capacity: l = VT) yields a T 2 
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dependence on K. 

Resonance scattering by itself is not always sufficient to explain thermal conduc­

tivity data in amorphous solids, especially at higher temperatures where plateaus in 

K have been observed. There is an additional scattering mechanism that is exhibited 

by TLS. Just like any two-Ievel systems, like 1/2 spins in a magnetic field, the rate 

at whieh equilibration of the level take place after a change in population is given by 

T1-
1 [54], where 

T1-
1 

= 2~;::5 coth (2::T) , 
which yields a non-resonant scattering rate T1-

1 ex: T 3 [54], and the net scattering 

rate is thus T-1 = Tris + T1-
1. Basically the non resonant term limits the increase in 

mean free path in temperature resulting from resonant scattering (Ires l'V T-1), and 

can give rise to a plateau in the thermal conductivity. 

It should be noted that many amorphous systems don't display a totally linear 

heat capacity nor a totally quadratic thermal conductivity. Experiments rather show 

that C ex: T1+m and that K ex: T 2- m [55]. This can be accommodated by relaxing the 

plausible but simplistic assumption that n(E) is energy independent, and assuming 

instead that it is only weakly dependant on energy such that n( E) ex: E m , where 

m = 0.1- 0.3 [55]. Furthermore, it should be also noted that although the tunneling 

or TLS model is phenomenologically very successful, the microscopie origin of the 

TLS is still unknown. Sorne possible causes are schematieally illustrated in figure 4.3. 



Chapter 5 

Experimental Details 

This chapter will present the details of the experimental methods employed in this 

study. We will present a description of the FexNh-xZr2 alloys preparation along with 

a report of their properties. We will follow with a description of the apparatus used 

for low-temperature measurements and for thermal conductivity measurements. A 

discussion on the source of errors which have to be considered in the analysis will 

conclude the chapter. 

The amorphous Fe-Ni-Zr superconducting alloys used in this study are made from 

the rapid quenching of the melt as briefly described in section 4.1. It has only been 

approximately 20 years since the high cooling rates necessary to properly form glassy 

metals have been achieved and, as we have seen, those materials posses remarkable 

low-temperatures properties. Furthermore, priOf to that time superconductivity was 

a business of mostly crystalline materials. But the long range order of crystalline 

materials favors strong collective pinning, such that crystals typically have a high 

critical current. This forces one to use large currents before any flow of vortices can 

take place, and the linear flux flow regime can difficultly be probed [4]. In general, 

strong pinning willlimit the investigatitions of the pinningjdepinning mechanisms of 

the vortex lattice, a facet of superconductivity which remains obscure. The Fe-Ni-Zr 
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metal superconducting glasses, being amorphous, have a much lower critical current, 

which permits a more interesting study of the vortex lattice dynamics [4]. They have 

a very weak pinning potential and critical current, with Je ~ 0.4 A/cm2 [3] about 100 

to 1000 times smaller than the widely studied crystalline 2H-NbSe2 [57] and others 

[19, 23, 58, 59, 60, 61], and 10 times smaller than other amorphous films samples 

[62, 63, 64, 65], confirming the high purity of the samples. 

5.1.1 Sorne physical properties 

Not much is known about the superconducting state of the Fex Nit_xZr2 alloys. No 

studies have been made so far on the superconducting energy gap to determine 

whether it is of the BCS type or not. However it behaves like a standard super­

conductor and we can assume that it is a BCS type-II superconductor. 

An amorphous superconductor can be considered as a crystalline superconductor 

with many impurities, in the so-called dirty limit. In the dirty limit, the ratio of the 

mean free path l to the coherence lenght ço of the material is small (<< 1), wheras in 

the clean limit it is large (» 1). In both cases, we can consider the effective coherence 

lenght ç-l = Çül + l-l, so that ç = land ç = ço in respectively the dirty and clean 

limit, at T = O. 

Different lenght sc ales characterizing the superconducting samples can be esti­

mated from standard expressions for superconductors in the dirty limit [63]. The 

zero temperature penetration depth À is obtained from 

À = 1.05 X 10-3 [fl , 
where PN is the normal state resistivity. The BCS coherence length ÇBCSis given by 

1.81 X 10-8 

ÇBCS = vr;s , 

where S == _d:,p IT
c

' the slope of Be2 (T) at Te. The Ginzburg-Landau (GL) coherence 

length ÇGL is 
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where ~o = h/2e, the vortex flux quanta. Finally, the GL parameter fi, can be 

obtained from 

fi, = 3.54 X 1Q4J PNB. 

The values of these lenght sc ales for sorne FexNil-xZr2 sample are taken from [4], and 

given in table 5.1 and are found to be typical of strong type-II superconductors. 

1 x Il PN (ftOm) 1 B c2 (T) 1 Tc (K) 1 S (T/K) 1 À (ftm) 1 ÇBCS (nm) 1 ÇGL (nm) 1 fi, 

0 1.3±0.1 4.8±0.1 1.9±0.1** -2.7±0.2* 0.9 8.1 8.3 

0.1 1.4±0.1 5.5±0.1 2.72±0.05 -2.7±0.2* 0.8 6.7 7.7 

0.15 1.5±0.1 4.7±0.1 1. 72±0.08 -2.7±0.2 1.0 8.4 8.4 

0.2 2.1±0.2 3.9±0.1 1.54±0.05 -2.7±0.2* 1.2 8.9 9.2 

0.3 1.6±0.1 4.0±0.1 1.53±0.01 -2.7±0.2 1.1 8.9 9.0 

0.33 1.3±0.1 3.6±0.1 1.60±0.03 -2.7±0.2* 1.0 8.7 9.7 

0.4 2.1±0.1 3.5±0.1 1.43±0.03 -2.7±0.2 1.3 9.2 9.7 

0.5 o .8±0.2 1.81±0.01 1.44±0.01 -2.7±0.2* 0.8 9.2 9.8 

Table 5.1: Superconducting length scales and pamaraters of FexNh-xZr2 for different x. PN 

was measured at room temperature, and the large errors mostly come from measurements 

of the distance between contacts. *Not measured, the values are assumed to be close enough 

to other values found. ** Low Tc value due to a high oxygen content in sample. 

Structural relaxation 

A word should be said about the Tc values found in table 5.1 as they are significantly 

lower than expected for such materials. For example, for NiZr2, Tc > 2.8 K was 

expected [66]. Moreover, since the introduction of iron is known to su press super­

conductivity, Tc should linearly decrease with increasing iron content. Instead Tc for 

FeO.lNio.9Zr2 is higher than for NiZr2. They are two possible explanations for these 

odd findings [4]. One arises from the facts that the as made ribbons have various 

state of structural relaxation. An amourphous metal is structurally relaxed when 

it is heated to a temperature about 50 K below its crystalisation temperature and 
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is analogous to the annealing of crystals. This was not done in this study beacuse 

this process makes the samples more brittle, such that they are more susceptible to 

breakage when soldering of contacts is made, or when it is cooled down. However 

when the samples are not relaxed, there is a non-uniform distribution of voids, and 

they might have different amounts of strain fields wich makes them incomparable. 

Structurally relaxed samples typically show a Tc which is about 10% higher [47], but 

at least they are comparable. 

Another explanation for the lower Tc values found is that the samples could contain 

an important amount of oxygen, which is know to lower Tc [47]. Much effort was done 

during sample preparation to prevent oxydation, as we will see in the next section. 

5.1.2 Sample preparation 

The alloys were prepared by arc-melting the appropriate amounts of high purity Zr 

(99.95% pure), Fe (99.9% pure) and Ni (99.999% pure), under a Ti- and Zr- gettered 

prefurified (99.998%) argon gas to avoid oxygen contamination [47]. The alloys ingots 

were remelted 3-4 times under the same conditions to ensure their homogeneity. 

In order to make the metastable amourphous ribbons, the melt-spinning technique 

was used. The aim of this technique is to supercool the melted alloys, and it necessi­

tates a high cooling rate of about 106 K/s in this case. The pro cess is illustrated in 

figure 5.1. A small ('" 1 g) piece of alloy is dropped in a quartz tube with a narrow 

orifice at one end. The quartz tube is brought into a sealed chamber, ab ove a polished 

copper wheel. The entire chamber is evacuated then backfilled with '" 17 kPa of He 

to avoid oxidation. A RF generator is used to melt the alloy button, and the molten 

material is projected out of the orifice with Ar pressure onto the rim of the spinning 

copper wheel. The latter, driven by a AC motor, has a tangential velocity of ",50 

rn/s, which allow the melt to cool at the desired rate 105-106 K/s [47]. The solid 

ribbon is spun off the wheel and deposited into a collection tube. 

The sample produced are about 1 mm wide and 20 /Lm thick. The amorphous 

nature of the sample was verified by X-ray diffraction, and confirmed by the absence 

of Bragg peaks. 
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Figure 5.1: Schematic representation of the apparat us used to prepare samples by melt­

spinning 

5.2 The Helium-3 cryostat 

The experiments were performed in a 3He system with a base temperature of 300 

mK. A superconducting magnet provided magnetic fields up to 9T. The apparatus 

is shown schematically in figure 5.2. The sample is placed in the main chamber, 

which is sealed from the enviroment with a greased cone seal, and brought to high 

vacuum with a diffusion pump, with a typical base pressure of ",2x 10-7 mbar at low 

temperatures. The design is such that the sample is located exactly in the middle of 

the superconducting coil, and is thus subject to a known and uniform magnetic field. 

The principle of operation of the 3He probe is the following. Refer to figure 5.2 

for the components name. The probe is brought to liquid helium temperature, 4.2 

K, by putting it in a thermally insulated Dewar filled with liquid helium. The 1-K 

pot fills up with 4He by means of the inlet tube, the opening of which is controlled 

by a needle valve. By pumping on the 1-K pot with a rotary pump, vaporization of 

the 4 He is induced, and the latent heat associated with the phase transition cools the 
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probe down to ",1.5 K. Constant cooling power is maintained by a weU calibrated 

needle valve opening, which permits constant resuply of 4He to the l-K pot, at a 

sufficiently low rate to prevent heating the l-K pot to 4.2 K. 

At this point, the system is at 1.5 K, and the 3He, lighter than its 4He isotope 

and with a lower condensation temperature of 3.2 K, has condensed from the 3He 

reservoir to the 3He pot. By now pumping on the 3He pot, the base temperature of 

300 mK can be obtained. This is done in a closed circuit by means of the sorbtion 

pump. The latter is made of a porous coal-based material, which absorbs gas when 

cold, and expulses gas when hot. It is cooled to ",4.5 K with cold helium gas from 

the l-K pot pumping line, and heated with a resistive heater of nominal power 24 

W. At 30 to 70 K, the sorbtion pump expulses aU absorbed gaseous 3He which is 

then condensed in the pot thanks to the cold l-K pot. By cooling the sorbtion pump 

one increases the pumping power until it reaches 7 to 4.5 K, where a good equilibrim 

of pumping versus condensation of 3He is reached, and brings the system to base 

temperature. At intermediate temperatures of the sorb, the pumpingj condensation 

trade-off is less favorable so that the cooling power is diminished, and the temperature 

is increased. The temperature is monitored at the 3He pot level with a Lakeshore 

calibrated Cernox thermometer, and thermalization of the sample and wires is ensured 

with a high purity (99.999%) copper tubing. 

To prevent heat losses, the wires that connect room temperature to the sample 

are thermally anchored at the 3He pot (300 mK), at the l-K pot (1.5 K) and near the 

sorbtion pump at 4.2 K. The wires up to the l-K pot are made of resistive manganin to 

limit heat losses, but from the l-K pot to the sample, wires are in copper to optimize 

thermalization, and also to limit heating when large currents (0.5-3 mA) are send to 

the sample. A high vacuum vacuum in the main chamber is always maintained to 

isolate the system from its surroundings at 4.2 K. 
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Figure 5.2: Helium-3 system diagram with some internai components 

5.3 Thermal conductivity setup 

5.3.1 Description 
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As brefl.y explained in section 3.1, the method used to measure thermal conductivity 

is the longitudinal steady state method. In this method, one end of the sample is 

connected to a thermal ground at a known temperature and then a constant heating 

power is applied at the other end of the sample. The steady state is reached when 

the temperature gradient across the sample is constant, and at this point the thermal 

conductivity is given by 

power 
fi, = x geometricai factor . 

temperature gradient 

The base temperature need not be perfectly constant. One can do sweeps in temper­

ature, as long as the time constant of the temperature change 1 ~ ~~ 1-1 
is much lower 

than the response time of the sample and thermometers with respect to a change in 

temperature. 
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Figure 5.3: Schematic drawing of the thermal conductivity apparatus 

The setup is illustrated schematically in figure 5.3. The thermal ground is a rv 1 

inch diameter copper piece -also the sample holder- clamped to the copper tubing 

of the 3He system. A 80j-lm copper wire is clamped to it and is connected with non­

superconducting solder to a 50j-lm silver wire soldered to the sam pIe. Power is supplied 

by a 10 kn ceramic resistor to the sample by me ans of a 50 j-lm silver wire, soldered 

with non-superconducting solder to a 80j-lm copper wire wound around the resistor 

and fixed with heat conductive GE 7031 varnish. The ceramic resistor has a very low 

temperature dependance: at 4.2 K it suffers a change in resistance of about 5% from 

its 300 K value. It thus supplies a constant power through the temperature range of 

the experiment. The temperature is measured with two Lakeshore Cernox resistors of 

40 n. Those thermometers are made of a patented oxide-nitride thin film with Au-Mo 

contact pads over a 1 x 1.5 mm2 sapphire substrate. Good thermal contact with the 

thermometer is achieved with 50 j-lm silver wires soldered with non-superconducting 

solder on the sapphire substrate. Our thermometers have an exponential temperature 

dependence over the studied temperature range of 0.3 to 3 K and therefore had a 

good temperature sensitivity. See figure 5.4 for a sample graph of the temperature 

calibration of the thermometers. Furthermore, 4-probe resistance measurements were 

possible by using the 2 thermometer connection as the voltage probes, and by using 

the heater and thermal ground connections as the current contacts. 



5.4. EXPERIMENTAL PROCEDURE 49 

100000 , • Rcold 

• Rhol 

" 9: 
a: 10000 

0.2 0.4 0.6 0.6 1.0 1.2 1.4 1.6 

TIl<] 

Figure 5.4: Sample temperature calibration of the Cernox resistances from 0.3 to 1.5K. 

The temperature dependence is close to exponential, and the sensitivity IdR/dTI is 200000 

n/K at 0.3K and 6000n/K at 1.5K. 

For an accurate measurement of the thermal conductivity, all the heat dissipated 

by the heater has to go across the sample to the thermal ground. Thus the setup 

is designed to li mit heat losses trought the wires, heater, thermometers, the residual 

gas in the main chamber or by radiation. Manganin coils (",75 n of 25 J.1m wire) 

were used to isolate thermally the thermometers, the voltage and current probes, and 

heater from the copper sample holder. Of capital importance is the quality of the 

thermal contacts to the sample and various components (thermometers and heater) 

that can cause heat losses. See the next section for an estimation of the sources of 

errors. 

5.4 Experimental procedure 

In our experiments we used a novel technique to aquire the data for the thermal con­

ductivity measurements. We could not use the standard static steady state method 

because the temperature of the thermometers were not stable enough even though 

the temperature of the system remained stable to 0.1%. To counter that effect we 

decided to perform slow sweeps in the temperature, and this way we were able to 
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obtain stable and noise-free voltages across the thermometers. In the static steady 

state method one waits for temperature stabilization, then reads the voltages across 

the thermometers on the sample and of the calibrated thermometer of the system, to 

get an in-situ calibration of the sample thermometers. Then power is applied to the 

heater, which changes the voltage across the sample thermometers. After stabiliza­

tion of the voltages, they are read and changed to temperature with the calibration 

points taken over many temperatures, and iJ.T is obtained. In this dynamic method 

however, measurements are taken continuously, and one does not wait for temper­

ature stabilization since it is changing. Therefore current cannot be applied to the 

heater over long periods of time, and is rather applied alternatively at a frequency 

f f',.J 1/47, where 7 is the time response to a change in temperature of the sample and 

thermometer. What we measure is then the dynamic response of the thermometers 

over the short pulses of heating power. The response of the thermometers being ex­

ponential, a program was designed to fit the resistance curves to a simple exponential 

formula 

Ae-(t-tO)/T + B , 

so that even though the time during which the pulse was applied was not sufficient 

to achieve saturaturation of the thermometer voltages, one could predict it by de­

termination of the coefficient B of the fit, which corresponds to the value of the 

saturation resistance when t ~ 00. Moreover, one could obtain the characteristic 

time response of the setup with the pamameter 7 of the fit. However, although the 

sweep rate 1 ~ ~~ 1-1 ~ 5000 x T s, which is much greater than the response time 7 of 

the thermometers and sample (at most 15s at low temperatures: see figure 5. 6( a) ), 

the temperature dependence of the thermometers was essentially exponential and 

therefore suffered significant change over the time range 1/ f used for the exponen­

tial fit. This had little influence on the value of B but gave inconsistent results on 

the decay time 7. Therefore a linear component in time coresponding to the linear 

change in temperature was subtracted to the curves before fitting, and added after. 

See figure 5.5 for an illustration of the fit. The temperature of the system was mon­

itored in parallel, and the program would do the average and standard deviation of 
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the temperature over each fitting range. The program would then output two curves 

as a function of temperature for each thermometers: 1) Bo, the saturation resistance 

when the heater is turned off and 2) BQ, the saturation resistance when the heater is 

turned on. One would then use Bo as the calibration curve: log Bo was fitted with a 

high degree polynomial with respect to 10gT, and the polynomial fit was subsequently 

used on log BQ to obtain the temperature when the heat gradient was present. It is 

important to do in-situ calibration of the thermometers because one cannot rely on 

a given calibration: the thermometer resistances would change by sorne arnount over 

different ternperature sweeps. The fits would yield Thot and Tcold, the respective tern­

peratures of the "hot" (doser to the heater) therrnorneter and "cold" therrnorneter 

(doser to the thermal ground), and the temperature gradient !::l.T = Thot - Tcold can 

be obtained. Then one obtains the thermal conductivity as a function of the average 

tempetature T = (Thot + Tco1d ) /2 as 

- Ux 1 L 
/'i,(T) = !::l.T x A ' 

where U and 1 are the voltage across and current passing throught the heater, L the 

distance between the thermometer leads and A the cross-section area of the sample. 

It should be noted that it is important that the temperature gradient across the 

sample is not too large. Indeed, by having !::l.T /T too large one is faced with two 

problems. The first one is that the average temperature T becomes a bad estimate of 

the actual temperature of the sample, since the local temperature would vary greatly 

over the lenght of the sample. The second problem is that we might push the system 

into the non-linear transport regime: !::l.T versus the heater power P becomes non 

linear, and the ratio P/ !::l.T, the thermal conductance, would not be constant at a 

given temperature but would depend on P. Therefore!::l.T /T is traditionally kept 

near 10% so that 1) the temperature of the sample is well-defined and 2) the thermal 

conductivity is independent of P over a whole range. Finally, !::l.T /T must be greater 

than 5% to have acceptable noise levels. 
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5.4.1 The equipment 

A few words should be said about the apparatus used in the data aquisition. The 

system temperature was monitored by an AC resistance bridge (a Picowatt AVS-47) 

and controlled with a Picowatt TS-530A PID temperature controller. The sample 

thermometers were put in series and the voltage across them was measured with two 

lock-in ampli fiers (a SR-850 and SR-830 from Stanford Research Systems) coupled 

at the same frequency. A lock-in sends a variable frequency AC voltage, which is 

converted into a current trough a lOMn resistor, and like the resitance bridge (which 

operates at a constant low frequency of 17Hz), only the in-phase voltage at the output 

frequency is read. FinalIy, resistance measurements of the sample were made with 

a 17Hz LR-400 resistance bridge by Linear Research. It provided a continuously 

variable current source from 0 to 10mA. AlI the data was monitored and recorded on 

a computer via a GPIB interface. 

5.5 Sources of error 

5.5.1 Data analysis 

The procedure described in the above section relies on three fits, each one adding 

a systematic error. The first fit is to subtract a curve to the data prior to the 

exponential fitting. This curve was obtained by doing an average over the time 2/ f 

on the data, so that the positive and negative peaks corresponding to the pulses of 

the heater would be smoothed out. This result was the best approximation of the 

temporal behavior of the data and its corresponding error was negligible. The second 

fit was the exponential fit on T and B (to was kept fixed to the time of the start of 

the pulse). The exponential behavior was quite remarkable and led to small errors 

(less than 1%) on the values. For verification, difference between fit and data was 

systematically calculated by the program and gave warnings when bad fits occured. 

Finally, the deviation in the temperature over a fitting range was of typically 1%. 

The most error came from the polynomial fits used for the calibration: a polynomial 
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of degree 9 was necessary to keep the error on the temperature calibration below 2%. 

This was needed especially for the low temperature data points which suffered from 

unwanted fluctuations from a smooth behavior. The calibration fit was the main 

source of error for the thermal conductance: an error of 1 % on Thot and Tco1d leads to 

an error of about 14% in llT and on P/llT, in the regime when llT/T = 10%. 

5.5.2 Sample contacts 

The contacts of the thermometers, heater and thermal ground to the sample need to 

be very good to be certain that thermalization is rapid and lossless. Ideally one can 

use non-superconducting solder (a eutectic alloy of 82.5% Cd and 17.5% Zn in mass 

%, with Tc=1-1.6 K) and solder on a large surface so that the thermal conductance 

of the contact is optimal. 

ln our case non-superconducting solder cou Id not be used on the Fe-Ni-Zr sam­

pIes because it has a too high melting temperature around 400 oC, very close the the 

crystallization temperature of the samples. !ts use led to critical modifications of the 

properties of the samples, observable by a considerable broadening of the supercon­

ducting transition. Instead, 99.99% pure ln solder was used: while being supercon­

ducting below 3.4 K and 28 mT, it has a high thermal conductivity of 2 W /cm·K 

at 0.3 K [67]. Assuming the solder has the minimal size of a 50p,ffi diameter tube 

over 1 mm, its thermal conductance at 0.3 K is 0.4 m W /K, four orders of magnitude 

higher than the thermal conductance of our samples, as seen in the following section. 

Thermalloss through the contacts are thus negligible. 

An important source of error in the thermal conductivity cornes from the mea­

surement of the geometric factor L/A (see equation 3.2). One needs to measure the 

thickness and width of the sample, as well as the distance between the temperature 

leads. The samples being quite thin around 25 /-lm, its measurement lead to a con­

siderable uncertainty of 20%. There is however a larger uncertainty in the distance 

between the leads on the sample. Each contact was at most 0.3mm wide, and being 

around 3.5 mm apart, the uncertainty on L is easily 15%. Thus the combined error on 

the geometric factor induces a systematic error on the thermal conductivity between 
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20 and 30%. Considering the already large systematic error of at least 10% induced 

in the data analysis, we chose not to consider the geometric factor in our results as 

this would have dramatically increased the total error. 

5.5.3 Estimation of heat losses 

The thermal conductivity of the Fe-Ni-Zr glassy metals is rather low, and special care 

must be taken to avoid significant heat losses that would affect the measurements. 

Point 2 and 3 are taken from the book by G.K. White [68], and found in the thesis 

of Lussier [69] and Lambert [70]. 

1. Losses trough the wires. In the steady state (after ",60 s in our experiments), 

the heat coming from the heater has dissipated through the sample and ther­

mometers, but also sorne heat is constantly drained through the measuring 

wires. It is important that this loss is minimal. To estimate it we need the val­

ues of absolute thermal conductance of the manganin wires and of our sample. 

From 1 to 4 K, the thermal conductivity of manganin is given by K, = 0.94T1.2 

mW /(cm·K) [67]. We can extrapolate this relation to 0.3 K where it should be 

.22 mW /(cm·K). At 3 K it is 3.5 mW/(cm·K). The values of the thermal conduc­

tivity of amorphous superconductors (ZrO.7PdO.3, Tc=2.53K [56] and MgO.7ZnO.3, 

Tc=O.l1K [71]) found in the litterature are around 10-4 W/(cm·K) at 0.3 K 

and 10-3 W / (cm· K) at 3 K. Our samples have a cross sectional area of around 

1xO.025 mm2 and are 5 mm long, and therefore should have a thermal con­

ductance of approximately 5x 10-8 W /K at 0.3 K and 5x 10-7 W /K at 3K. In 

contrast our manganin wire has a 25 {lm diameter and is 10 cm long, so that it 

has a thermal conductance of 10-10 W /K at 0.3 K and 2x 10-9 at 3K, 2 orders 

of magnitude lower than that of our samples. 

2. Losses through the surrounding gas. A good vacuum must be maintained in the 

chamber to prevent heat with the residual gas exchange between the components 

of the system that have different temperatures. According to [68], the power 
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10ss by conduction trough the residual gas is given by 

Q - constant (TT' _ T) W/ 2 - vIT x aop .L 2 1 m, 

where p is the pressure of the gas, Tl and T2 the temperatures of the two 

points between which heat is exchanged, and ao, called the accomodation co­

efficient, is always smaller than unity. In air at room temperature, the factor 

constant/vIT ~ 1.2, and can thus be approximated to 12 (38) at 3 K (0.3 K). 

The vacuum being maintained at 2 x 10-7 mbar, the constant heat exchange 

between the system and the liquid helium outside the chamber at 0.3 K is thus 

Q < 3.0 m W /m2. Considering the surface (0.012 m2: 1 inch diameter and 15 

cm long) of the chamber, the power loss is less than 36 J-lW. In comparison, 

since typical heating used to sweep or control temperature was in the 100 J-lW 

range at its lowest, the cooling power of the system is around 100 J-lW. This 

would imply considerable loss, however stable system temperature were easily 

achieved. Also to be considered is the power dissipated from the heater to the 

thermal ground. In our experiments, at 0.3 K, the difference in temperature be­

tween the hot thermometer and the thermal ground was around 0.06 K so that 

the difference between the heater and the thermal ground is estimated around 

0.08 K, which leads to a Q < 61 J-l W /m2. The heater having a surface of 4 x 

2 mm2, the power loss is less than 0.5 n W, 5% of the typical 10 n W used in 

thermal conductivity measurements. This is an upper bound to the loss, but at 

least 1% error is expected to occur due to this phenomenon. 

3. Losses by Radiation. The heat transfert by radiation follows a T 4 law and 

therefore is present only at high temperatures. For two plane parallel surfaces 

of emissivities El and E2 at respective temperatures Tl and T2 , the heat transfert 

by radiation from an area A per unit time is given by [68] 

where as is Stephan's constant, as = 5.67 x 10-8 W/m2/K4. In the worse case 

scenario, we asume both emissivities are equal to unity. The radiation from 
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the outside of the chamber of area 0.012 m2 at 4.2 K to the system leads to a 

Q = 0.2 J.1W at 0.3 K and of Q = 0.1 J.1W at 3 K, in both cases much less than 

the cooling power of about 100 J.1 W at 0.3 K and 100 m W at 3 K of the system. 

Now the power loss due to radiation between the base at Tl = 0.3 K and the 

heater at T2 = 0.3 + 0.08 K is Q = 6 pW!, using A = 6 mm2
• Radiation is not 

a problem at low temperatures. 



Chapter 6 

Results and Discussions 

In this section we describe qualitatively the results obtained for resistance, magne­

toresistance, and thermal conductance of the FeO.5Nio.5Zr2 sample. Resistance mea­

surements were done by Josianne Lefebvre at the base temperature of 300 mK, and 

up to fields of 3 T, where the peak effect is observed. Preliminary results on the 

thermal conductance are shown, on the temperature range of 0.3 to 1.5 K, and under 

a field of 7.5 T. 

6.1 Longitudinal resistance and the peak effect 

6.1.1 Critical temperature 

The critical temperature Tc was measured in controlled slow sweeps in temperature, 

without a magnetic field and with a current l = 100 pA; see figure 6.1. A small 

hysteresis in temperature is observed, and is due to a non-perfect thermalization 

of the sample with the thermal ground (a different setup of the one for thermal 

conductivity was used), and adds to the error of Tc = 1.44 ± 0.01 K. The transition 

is very sharp, with a small width of 30 mK between 90 and 10% of the normal state 

value, and indication of a homogeneous and pure sample. 

58 
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Figure 6.1: Resistance as a function of temperature for the FeO.5Nio.5Zr2 sample. A current 

of 100 /-LA is used and a smaU hysteresis is observed, with the direction of temperature change 

indicated by the arrows. A sharp superconducting transition is found at 1.44 K 

6.1.2 The peak effect 

The magnetoresistance of a Feo.5Nio.5Zr2 sample with a driving current of 0.5 mA is 

shown in figure 6.2(a). It is a magnificent example a strong peak effect, where pinning 

is sufficient to induce an almost reentrant superconducting phase. The different phases 

are depicted in figure 6.2(b) for the B-down sweep and their description follows. 

The first depinning phase 

The first depinning phase st arts at the first critical field Hel when the sample departs 

from the zero resistance superconducting phase. The transition is defined to happen 

when the resistance exceeds 0.5 mn, our experimental resolution (a combination of 

random noise and systematic instrumental error) , at Hel = 0.16 ± 0.04 T. At this 

point vortices are present in the superconductor, and the current acts as a driving 

force which puts them into motion, thereby creating a finite resistance across the 

sample. This phase is generally described as the ordered moving Bragg glass [17, 4J, 

characterized by weakly pinned vortices. It is qualitatively similar to the fiux-fiow 

regime, with a resistance linear in B, although with a proportionality coefficient 

sm aller than the Bardeen-Stephen one of RN / Bc2 . 
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Figure 6.2: (a) Magnetoresistance of the FeO.5Nio.5Zr2 sample showing the peak effect in 

an up and down sweep (at a sweep rate of 0.015 Tjs) at 0.3 K and with a driving current 

of 0.5 mA (b) Illustration of the various vortex phases in the B down sweep. 

The reentrant pinning phase 

The reentrant pinning phase is defined to occur at the field when dR/dB=O, at 1.10 

± 0.08 T in this case, and is characterized by a sudden decrease in the resistance: 

the peak effect. This pinning is quite drastic in the Feo.5Nio.5Zr2 sample, bringing 

the sample to an almost zero resistance superconducting state, with a small residual 

resistance of 2% (11 mn) of the normal state resistance value. This is the first 

observation of such a strong reentrant behavior in a amorphous superconductor, and 

it is also seen in other samples with different concentrations of Fe/Ni [4]. As discussed 

in section 2.4.2, this effect is now attributed to a softening of the vortex lattice (Lü 

theory) due to an order-disorder phase transition which occurs when the distance 

between vortices, tuned by the external field, is of the order of ç, so that inter-vortex 

correlations become strong. 

The second depinning phase 

The second depinning phase occurs when the resistance departs from its minimum 

value, at 1.327 ± 0.007 T in this case, and is characterized by a abrupt increase in 
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Figure 6.3: An anomalous overshoot in the vortex-flow resistance in FeO.3Nio.7Zr2. The 

temperature is 0.8 K and the driving current is 0.6 mA. 

resistance up to Bc2 = 1.805±O.007 T (the point ofhighest negative curvature) where 

the sample becomes normal. The vortex dynamics in this phase are very different 

from the moving Bragg phase found in the depinning 1 phase: it is described by a 

smectic or plastic motion of vortices [17, 4J. 

6.1.3 An inhomogeneous superconducting phase 

We present here some magnetoresistance data taken in the vortex phase of Feo.3Nio.7Zr2. 

In this experiment, the sample was microstructured, i. e. the distance between the 

voltage contacts was kept as small as possible, so that the total area between the con­

tacts was around 50j.lm X 100j.lm. What we observed in su ch a configuration was an 

unexpected and anomalous overshoot of the vortex-flow resistance around the upper 

critical field, of about 3 and 1.5 % higher than normal state resistance. See figure 6.3. 

This effect was observed at different driving currents and temperatures (see figure 

6.4) and also on a similarly microstructured Feo.2Nio.sZr2 sample. It is quite perplex­

ing, as it implies that the resistance is bigger in the superconducting state than in the 

normal state. This effect has to the best of our knowledge never been observed. We 
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Figure 6.4: Anomalous overshoot near Bc2 in FeO.2Nio.sZr2 for (a) various driving currents 

at 0.8 K , and (b) different temperatures at 0.6 mA 

theorize it is due to the inhomogeneity of the superconducting phase: by assuming 

the bulk of the sample is normal while only localized parts of it are superconducting, 

such behavior can be predicted. We can imagine a sample of size Z X L with a normal 

region of size r2 L ·Z, as illustrated schematically in figure 6.5. 

Now we can consider every of the ni ne regions in figure 6.5 separated by dotted 

lines as separate resistors, attributing to the superconducting regions of size a x b the 

Bardeen-Stephen vortex-flow resistance R = RN ~2 ~ and to the normal region the 

resistance RN. We then simply calculate the total resistance of the resistor network. 

The results are given in figure 6.6 for different values of r. We can see that for large 

normal regions (large r), we are able to mimic an overshoot behavior. It would thus 

be plausible to attribute the overshoot phenonemon to inhomogenities in the sample. 

However, it should be noted that this model is very simple, and almost undersophis­

ticated: it must only serve as a guideline. As outlined in the following sections, the 

best way to detect bulk superconductivity is through thermodynamic probing, by 

measuring for example heat capacity or magnetization. The size of the discontinous 

step across the superconducting phase transition is then a direct measure of the size of 

the sample which actually is superconducting: bulk (edge) superconductivity implies 
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Figure 6.5: Simple model of an inhomogeneous sample with sorne normal and supercon­

ducting regions. 

a large (small) jump in heat capacity or magnetization. 

6.2 Thermal conductance 

We present in this section our preliminary results on the thermal conductance of 

Feo.5Nio.5Zr2. We were faced with many problems in trying to make the measurements 

and this is certainly refiected in the quality of the data. Firstly, it was quite difficult 

to take data at temperatures higher than 1.5 K, the temperature of the 1-K pot. 

This is because by heating the system from the helium-3 pot (where the heater is 

located), one would totally evaporate the 3He in reaching say 3 K. But the 3He would 

then recondense, the sorbtion pump being at 25 K (this was needed to reach 1.5 K), 

thus creating a thermallink to the 1-K pot at 1.5 K, which made the system difficult 

to control. The only way to do high temperature sweeps was to heat and keep the 

system near 10 K, and letting the sorbtion pump cool down, thus trapping the 3He 

in the sorbtion pump. This way the system would be slowly cooled with the 1-K 

pot, without the 3He serving as an exchange gas. The downside is that this method 

would bring the system to 1.5 K in an enormously long time, in around 20h, which 

is quite inefficient. Therefore we could not do many high temperature sweeps, and 

this prevented us from having precious calibration of the thermometers above 1.5 K. 
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Figure 6.6: Normalized resistance of a simple resistor network modelizing an inhomogenous 

sample composed of normal and superconducting regions 

This in turn lead to larger errors and large unphysical fluctuations in the thermal 

conductance near 1.5 K as we were missing calibration points for the thermometers. 

Secondly, the Cernox thermometers used in our setup suffered from large variation 

in calibration over small thermal cycles and under a magnetic field, as seen in figure 

6.7. Although one is expected to observe small variation over thermal cycles and 

under a magnetic field, in our case the calibration could vary of 50% over subsequent 

sweeps between 1.5 and 0.3 K. Even though calibration variations are absorbed in 

making in-situ calibrations for each sweeps, nevertheless this poor reproducibility is 

reflected in our results. 

6.2.1 Nonlinear transport 

One challenge in doing thermal conductivity measurements is to determine the power 

P to apply to the sam pIe. By applying too much power one can drive the system 

into the non-linear transport regime, where thermal conductivity depends on P, and 

by applying too litt le power the signal difference between P applied and non-applied 

becomes too small compared to noise levels. AIso, traditionally one chooses P so 
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Figure 6.7: Calibration reproducibility of the cold Cernox thermometer over small thermal 

cycles and under a magnetic field. The variation is higher than 50%. 

that !::l.T /T rv 10%, so that one can use the average temperature of the hot and cold 

thermometers as the sample temperature without unwanted effects. The explanation 

(taken from [28]) follows. Assume that the thermal conductivity is given by '" = O'.T3
, 

and that the temperature difference along the sample is !::l.T. The heat flow is then 

{T+L:!.T {T+L:!.T 1 [ ] JT ",dT = 0'. JT T3dT = "40'. (T + !::l.T)4 - T 4 . (6.1) 

The thermal conductivity is then given by equation 6.1 divided by !::l.T, assuming a 

unit geometric factor. N ow the mean temperature of the sample is given by T +!::l.T /2, 

and at this temperature the true conductivity is O'.(T +!::l.T /2)3. N eglecting high order 

!::l.T terms, the difference between these expressions is !::l.", ~ T(!::l.T)2/4, and we obtain 

so that by having !::l.T /T = 10%, the percent difference between the apparent and 

true conductivities is only 0.25%. One can use the same reasoning when '" ex: T 2 

and it gives a smaller !::l.",/", = 1/12(!::l.T/T)2, while when the relation is linear the 

difference between apparent and true conductivities is zero. 

We used on the Feo.5Nio.5Zr2 sample various heater power values over different 

sweeps to test the linearity of transport. The results for low temperatures are shown 

in figure 6.8( a) and 6.8(b). We can see that even by having !::l.T /T = 45% at 1.4 



66 CHAPTER 6. RESULTS AND DISCUSSIONS 

0.8 0.50 · O.6K 
0 160nW 

0 O.8K 

/ 
0.45 . 40nW 

0.6 • 1K 
0.40 • 10nW 

0 1.2K a 8.4nW • 1.4K 0.36 
0.4 

0.30 

g 0.3 1:: 0.25 

1;; 1-' 
<:1 0.20 

0.2 
0.15 

0.1 
0.10 

0.06 

0.00 
20 40 80 80 100 120 140 180 180 0.2 0.4 0.8 0.8 1.0 1.2 1.4 1.8 1.8 2.0 

Power[nW] TlKJ 

(a) (b) 

Figure 6.8: Linearity of thermal transport in the Feo.5Nio.5Zr2 sample at low temperatures 

(a) ~T versus P curves at different temperatures. (b) ~T jT versus temperature for various 

heater power values. 

K the I::lT( P) curve is very linear. Similarly, having I::lT /T = 25% at 1 K or 0.6 K 

brings no unwanted effects in the thermal transport. We thus can deduce that any 

power between 40 n W and 10 n W is a good candidate for the studied temperature 

range. Using 6.4 n W brings higher noise levels while 160 n W elevates too much the 

temperature of the sample. 

At high temperatures, we can see from figure 6.9(a) and 6.9(b) that using 1 f.-LW 

between 4 and 5 K brings non-linear effects. lndeed, the I::lT(P) curve is non linear, 

even at a relatively small temperature gradient of I::lT /T = 20%. Using 160 n W at 

I::lT /T < 10% is however acceptable. We can clearly see the the power dependance 

of thermal conductance in figure 6.10. 

6.2.2 Three terminal probing 

We can deduce useful information by looking into three terminal probing, i. e by 

using the information from individual thermometers. We can calculate the elevation 

in temperature of the sample when a heat current is applied, at the two location 

of the thermometers leads. We can further deduce the elevation in temperature at 
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Figure 6.9: Linearity of thermal transport in the Feo.5Nio.5Zr2 sample at high temperatures. 

(a) ~T versus P curves at different temperatures. (b) ~T /T versus temperature for various 

heater power values. 
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any location of the sarnple by using the values of conductance of the material. Of 

particular interest is the elevation in temperature at the extreme end of the sample 

where it is connected to the thermal ground of the setup: by calculating it we can 

deduce the thermal conductance of the thermallink between the sample and the 3He 

pot. Indeed, the temperature of the sarnple before power is applied is that of the 

3He pot, denoted by Ts , and equal to the temperature of the hot (cold) thermometer 

when no power is applied, Thot(O) (Tco1d(0)). We have 

Pl P APL 
Thot(Q) - Ta(Q) = -;; A = KA. T = K L ' 

L 

where Thot(Q) and Ta(Q) are respectively the temperatures at the location of the 

hot thermometer and the thermal ground contact in the presence of a heat gradient. 

The value of K is the conductance in the four terminal configuration as measured 

in this work, and L and lare respectively the distances between the hot and cold 

thermometers and between the hot thermometer and thermal ground. The ratio 

l/ L = 1.3 ± 0.2. Therefore we obtain 

We present the results in figure 6.11, using the values of conductances described in 

the next section. We can see that the elevation in temperature on the sample is 

at its highest doser to the heater and decreases over the lenght of the sarnple, as 

expected from the finite thermal conductivity. Now by calculating K' = TG(~-T8' we 

can obtain an estimate of the thermal conductance of the thermallink between the 

sample and the cryostat, which in our case is a silver wire plus a copper wire plus 

a large copper piece. The results are shown in figure 6.12. We can see a large error 

at higher temperature and non-linearity of transport: it is a rather crude estimate 

of the conductance. However at low temperatures the deviation is minimal, and at 

0.4 K we have a conductance of approximately 2.5 x 10-7 W /K. Considering the 

weakest thermal link to the cryostat, that is the 50 {Lm diameter silver wire, with 

a geometric factor G ~ 0.64/(0.002521f) ~ 32000 cm-l, we obtain an estimate of 

the thermal conductivity of silver at 0.4 K of 8 x 10-3 W /Kcm. This is within an 
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acceptable range -20%- considering the crude estimation of the accepted value of 

4 x 10-2 W /K·cm found in [67], and therefore an indication that our setup is weIl 

thermally grounded. 

6.2.3 Phonon and electron contributions 

In solids, electrons and phonons are the main contributors to the thermal conductivity, 

but their individual contributions can in the general case be difficult to distinguish. 

As we have seen in chapter 3 and 4, the electronic contribution to the thermal con­

ductivity is linear in T, while the phonon contribution to the thermal conductivity 

in amorphous solids is quadratic in T. Furthermore, in the superconducting state, 

the population of normal electrons exponentially decreases away from Tc as they are 

replaced by Cooper pairs. Therefore in superconductors, the principal heat carriers 

are phonons and if electrons still contribute to the thermal conductivity , it can only 

be detected a very low temperatures where the phonon contribution also goes to zero. 

In a superconducting amorphous met al , one thus expects to have a dominant 

electronic contribution in the normal state, while in the superconducting state, one 

expects to see the phonons dominate with a characteristic T2 dependence attributable 

to two levels systems. This scenario was readily observed in a superconducting amor­

phous metal (ZrO.7PdO.3, Tc = 2.53 K) by Graebner et. al. [56]. It should be noted 

that they find a thermal conductivity of 9 x 10-4 W /cm·K at 1 K. As se en in figures 

6.13 and 6.15(a), we find a thermal conductance of 2 x 10-7 W /K at 1 K for our sam­

pIe, and considering our geometric factor L/A ~ 0.33/(0.002 x 0.080) = 2000 ± 600 

cm-l, the thermal conductivity of the FeO.5Nio.5Zr2 sample is approximately 4 x 10-4 

W /cm·K at 1 K, within a reasonable range of the expected value. 

A first test is to look for any difference between the low temperature thermal 

conductance of FeO.5Nio.5Zr2 in the normal and superconducting state. This is sim ply 

done by applying a magnetic field higher than Bc2 = 1.8 T. The results are shown in 

figure 6.13. Although there is sorne scatter in the data and 20% error, it is evident 

that the thermal conductance in the normal and superconducting states are very sim­

ilar quantitatively. At first sight it can only be explained in the following way. In this 
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Figure 6.12: Estimated thermal conductance of the thermallink between the sample and 
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disordered material, the phonon contribution to the thermal conductivity is dominant 

above Tc = 1.44 K so that the difference between the superconducting state with no 

electrons and the normal state with electrons and phonons is minimal. However it 

seems this hypothesis is improbable as the material is disordered but metallic, and 

thus should have an important electronic component in thermal transport, linear in 

T, at least ab ove Tc. Such behavior was reported in [56] and is also seen in our 

Feo.5Nio.5Zr2 sam pIe were thermal conductance behaves quasi linearly as To. 98±o.o9 

between 3 and 4 K (see figure 6.14). Therefore, if the main contributors to thermal 

transport above Tc are electrons, and that we observe no difference between the nor­

mal and superconducting state thermal conductance below Tc because of a zero field 

dependence, the electrons are also to be the dominant heat carriers in the supercon­

ducting state. In fact, we observe that fi, ex: T1.14±o.o3 (figure 6.15(a)) and fi, ex: T1.3±o.2 

(figure 6.15(b)). This is in apparent contradiction from the fact that electrons are 

absent in the superconducting phase, that is if the material is superconducting in the 

bulk. However if the sample is inhomogeneous, i.e. the bulk of Feo.5Nio.5Zr2 would 

be normal while only parts of the sample are superconducting, one would expect to 

see a metallic linear thermal conductivity across the superconducting transition as 

observed in this sample. "Evidence for such behavior was suggested in section 6.1.3 
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low temperatures. The dependence is very similar and the difference is small. 

for FeO.3Nio.7Zr2. This theory remains to be proven, however. lndeed, as we can see 

in section 6.l.1, the superconducting transition is very sharp, a reasonable indication 

of the homogeneity of the sample, in other words of bulk superconductivity. But the 

best way to test superconducting homogeneity remains by thermodynamic probing 

such as magnetization Mor heat capacity C, where the size of the jump in M or C 

associated with the second order superconducting phase transition is representative 

of the size of the superconducting phase in the sample. A large jump in C means that 

most of the sample became superconducting, and is reflected in fi, by a discontinuity 

at Tc, the latter being the integral of C. A small jump in C however would imply no 

discontinuity in fi, at Tc, as seen in this FeO.5Nio.5Zr2 sample. 

It is however difficult to draw a definite conclusion of the behavior of thermal 

conductivity or on the homogeneity of the superconducting phase in this sample. 

First of all, the data on the thermal conductance presented in this thesis is on a 

rather limited temperature range, of less than one order of magnitude, and suffers 

from sorne unwanted noise. Measurements need to be taken at higher temperatures in 

order to see the general behavior of the thermal conductivity of Feo.5Nio.5Zr2' so that 
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one can see to what extent the observed linear behavior due to electrons is dominant 

and when the phonons start to come into play. Furthermore, in order to measure 

more quantitatively the composition in the bulk of the samples, one need to use more 

powerful tools, such as heat capacity or magnetization. 



Chapter 7 

Conclusion 

In this study we have made measurements on the thermal conductivity of the amor­

phous metallic superconductor FeO.5Nio.5Zr2 in the temperature range of 0.3 to 1.5 K 

and under a magnetic field of 7.5 T well above Bc2 • 

The tests we have made seem to indicate an unexpected dominant electronic con­

tribution to the thermal conductivity in both the normal and superconducting phases. 

Namely, below Tc we have observed no difference between the thermal conductivity 

in the normal state (with an applied field of 7.5 T> Bc2 ) and in the superconducting 

state, and have observed a quasi-linear temperature dependence K ex: T1.14±o.o3 below 

Tc. A linear term in the thermal conductivity is expected above Tc for a metallic 

glass as reported in the literature, but normally below Tc electrons condense into 

Cooper pairs that do not carry heat. Therefore one usually should observe below Tc 

a characteristic T 2 dependence attributable to phonons in two-level systems found in 

amorphous solids. 

These findings thus suggest that normal electrons are still the principal heat car­

riers below Tc, and could be an indication of a inhomogeneous sample composed of 

a bulk normal metallic glass with localized superconducting parts. However we need 

to test the thermal conductivity in a much larger temperature range to explore the 

behavior of the thermal conductivity well above Tc to understand when the phonons 

start to come in play. Furthermore, a thermodynamic study of FeO.5Nio.5Zr2 would 

provide essential information about the bulk properties of those materials: the size of 

75 



76 CHAPTER 7. CONCLUSION 

the jump observed in magnetization or heat capacity associated to the superconduct­

ing phase transition is representative of the size of the sample which actually becomes 

superconducting. Such studies would shine more light on the mechanism involved. 

All in all, the Fe-Ni-Zr alloys are fantastic a system to study. As we have seen, 

they have a very interesting superconducting properties, especially in a magnetic 

field. They have a very low depinning current, which makes them ideal testbeds for 

the study of vortex dynamics. In addition, these alloys exhibit the peak effect, and 

display very diverse vortex phases. A natural extension of this work would be to study 

the vortex contribution to the thermal conductivity. The vortices being displaced 

faidy easily in those alloys, we would expect that a reasonably small temperature 

gradient would be sufficient to displace them across the length of a sample (thus 

inducing Hall resistance) and contribute to the thermal conductivity to some extent. 

We can speculate to see an effect analogous to the peak effect, observed in longitudinal 

resistance with an electrical current, but in Hall resistance with a heat current. 
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