
IMAGE: An Open-Source, Extensible Framework for
Deploying Accessible Audio and Haptic Renderings of Web
Graphics

JULIETTE REGIMBAL, JEFFREYR. BLUM,CYANKUO, and JEREMYR. COOPERSTOCK,McGill
University, Canada

For accessibility practitioners, creating and deploying novel multimedia interactions for people with disabilities
is a nontrivial task. As a result, many projects aiming to support such accessibility needs come and go, or
never make it to a public release. To reduce the overhead involved in deploying and maintaining a system
that transforms web content into multimodal renderings, we created an open-source, modular microservices
architecture as part of the IMAGE project. This project aims to design richer means of interacting with
web graphics than is afforded by a screen reader and text descriptions alone. To benefit the community
of accessibility software developers, we discuss this architecture and explain how it provides support for
several multimodal processing pipelines. Beyond illustrating the initial use case that motivated this effort,
we further describe two use cases outside the scope of our project in order to explain how a team could use
the architecture to develop and deploy accessible solutions for their own work. We then discuss our team’s
experience working with the IMAGE architecture, informed by discussions with six project members, and
provide recommendations to other practitioners considering applying the framework to their own accessibility
projects.
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1 INTRODUCTION
Numerous research efforts have focused on automatically generating representations of visual
media for blind and low vision (BLV) individuals. These were in part motivated by widespread
accessibility issues, including the absence of image descriptions on much of the web, and the poor
quality of descriptions written by social media users who often do not knowwhy or how they should
describe their own content [4, 13, 24, 28]. Due to the variety of purposes served by graphics and the
differences across BLV groups, e.g., between early- and late-blind people [26], effective accessible
representations can vary widely between people, and therefore must be tailored appropriately.
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While previous work has emphasized improving the quality of image descriptions [16, 24, 30, 31],
other approaches leverage non-textual and non-visual modalities [14, 15, 18, 19, 29, 32].
New challenges emerge in cases when the goals of a project include deployment to the public.

Since users of these technologies will ultimately need multiple methods of representing graphics—
one would expect a different experience for a map than for a photograph of friends—small single-
feature projects may frustrate users if each one needs to be installed and managed separately. For
the researchers, designers, and developers, projects developed from the ground-up would need to
reimplement common functionality rather than reuse the same modules. This would also increase
the difficulty of integrating improvements made in related fields, such as those in computer vision
and large language models.
Unfortunately, since such accessibility projects are typically developed as independent, self-

contained systems, the aforementioned challenges may be difficult to avoid, resulting in increased
technical effort required for practitioners to deploy their work to the public or even to build upon
the efforts of their peers. Even assuming that any given projects are not reduced in scope as a
result of these costs, resources that could be dedicated to improving the experience of BLV users
must be spent ensuring that the underlying technical infrastructure functions correctly. Some
research groups may not pursue deployment if these added costs are considered likely to stretch
personnel too thin to meet project deadlines on time. Instead, using a common software framework
across projects to have components interact in a predictable and modular manner would allow for
practitioners to work more efficiently by avoiding redesign and reimplementation efforts [21]. For
some accessibility practitioners, enabling such reuse of infrastructure could make deployment a
feasible goal.
We describe here the microservices-based architecture of our Internet Multimodal Access to

Graphical Exploration (IMAGE) project, which produces accessible audio and haptic representations
of web graphics. Since IMAGE focuses on several types of graphics, we faced these issues of reuse
early in our project. Finding no framework focused on creating accessible representations of web
graphics, we designed our own software architecture to be extensible so that other accessibility
practitioners can build upon it, and have made it freely available to the wider community.
This article is an expanded version of our original communication in the 19th International

Web for All Conference, which introduced the IMAGE architecture and provided an early look at
its development [27]. Since then, the architecture has been refined through our own deployment
experience. We evaluate whether it meets the base criteria to serve as a framework that promotes
flexibility and deployability in accessibility projects such as IMAGE. First, we present a technical
overview of the architecture to establish a basic understanding of how it functions in its current form.
Second, influenced by evaluation methods of toolkits in HCI research [22], we describe scenarios
encountered during the IMAGE project and hypothetical uses of the architecture in other contexts
in order to demonstrate how it meets these requirements for a framework. Finally, we describe
the results of interviews conducted with members of the IMAGE team who worked as developers,
designers, and researchers, but were not directly involved in the design of the architecture. These
interviews are intended to identify problems that may emerge over long term use and to understand
how the framework may be adopted by practitioners in real, evolving projects. The factors found
through these conversations are likely to be relevant to other groups using the architecture or
developing their own equivalent. The main contribution of this paper is the updated description of
the software framework and the illustrative scenarios and team member evaluations, which are
intended to facilitate use of the framework.
Our intent is that the modularity of this framework, when adopted by other accessibility re-

searchers, will support them in focusing more on the actual tasks that improve quality of rep-
resentations of graphics, and less on the underlying effort of integrating features together. This
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benefit should also be experienced as projects change in focus and scope, reducing the amount of
reimplementation necessary. We hope that these features will enable practitioners to pursue goals
that would otherwise be left to future work, in particular the goal of deploying their projects to
members of the public for use in their daily lives.

2 BACKGROUND
2.1 Graphic Accessibility
Past projects have been concerned with the problem of producing accessible representations of
digital graphics. Several from recent years are summarized here as an overview for the reader,
starting first with those focused on the web. Wu et al. modified the Facebook application for iOS to
produce automatic alt text for the Facebook News Feed. This system uses a machine learning model
to assign tags to a photo, focusing on the most frequently used tags used by human annotators.
Certain concepts were filtered out either due to the difficulty of implementation, such as landmark
recognition, or due to a strong dependence on context, such as gender recognition and adjective
assignment. The remaining tags were then used to construct complete sentences beginning with
“Image may contain:” to provide a better user experience and emphasize the uncertainty in the
system’s outputs [31].

Similarly, Low et al. designed the browser extension Twitter A11y to generate alt text for Twitter.
As a user scrolls through the site, the URLs of images in tweets are sent to Twitter A11y’s server. If
the image is part of a link preview, the linked page is searched for alt text corresponding to the
preview image. If it is not part of a preview and contains text, optical character recognition (OCR)
is used. For all remaining images where URL following and OCR approaches are inapplicable or
fail to produce a result, a remote worker hired through Amazon Mechanical Turk writes an image
description. The alt text is then inserted into the user’s web page using the browser extension [24].

Caption Crawler is a system that consists of a browser extension and backend server. Images in
a web page and associated accessibility metadata are sent from the client to the server. For images
without an associated caption, the server first checks whether a captioned version of the same
image had been encountered in previous requests and stored. If not, the server then queries for
web pages that also display the image and stores the associated caption, if one is present. The
server responds with the captions it has that are related to the images in the request. The browser
extension dynamically inserts the captions into the page [16].
The Susurrus web application produces sonifications of bar chart, line chart, and scatter plot

data loaded from CSV files. Natural sounds, such as from animals or weather, are used to represent
data and were found to work best in communicating categorical data. While currently a standalone
prototype, Hoque et al. suggest that it could be modified to function as a browser extension that
retrieves chart data embedded in a web page [19].

While not implemented, Winters et al. proposed a system for creating auditory representations
of social media posts with graphical content. Unlike the approaches mentioned previously, this
one translates aspects of a post beyond an embedded photo, including the username, text, image
content, and engagement metrics. These features are presented using a mix of speech, auditory
icons, sonification, soundscapes, and music. High-level information not explicitly encoded in a post,
such as gender, emotion, and text sentiment, are proposed to be extracted using various artificial
intelligence services offered by Microsoft. The auditory components would be combined in a
specific order with some parts overlapping. For example, speech conveying the text of a post would
be accompanied by a soundscape representing the environment shown in an attached image [30].
The Picture Smart service, available as part of the JAWS screen reader, allows users to obtain

a description of a submitted image. Images on a web page, in an email, or saved locally can be
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selected within the service. Images are then sent to various other services, including Microsoft
Azure and Google Cloud Platform, to perform computer vision tasks such as object recognition
and OCR. The results of these services are combined and read using JAWS [1].

Apple’s VoiceOver on iOS includes an Image Explorer feature to supplement image descriptions.
Information on objects, text, and tables can be accessed within an image either by following a
preset ordering or by swiping one’s finger on the screen. When the finger is above an element with
more information available, that information will be spoken by VoiceOver [3].

Outside of the web, but using similar methods to make visual media accessible, are projects such
as VizWiz and Seeing AI. VizWiz was created to answer various “visual search problems”, such as
reading labels and finding a button with a certain function. A blind person could take a picture of a
scene using a smartphone, record a question related to the scene, and send the photo and associated
question to remote workers on Amazon Mechanical Turk. These workers then answer the question
or explain why an answer cannot be provided [11]. A related app, VizWiz::LocateIt, helps blind
users find a nearby object. A picture of a scene and query specifying the desired object are sent
to a remote worker who then outlines where the object is. An automated system in the app then
provides sonification to help the user move towards the object and correctly identify it [12].
Seeing AI is an iOS application created by Microsoft that uses the phone’s camera and several

computer vision processes to perform a large set of tasks. Supported functions include OCR, gender,
age, and emotion recognition for people, scene description, and currency recognition. Spoken
guidance is also provided to help users properly frame photos before a description is generated [7].

None of these projects, or any others to the authors’ knowledge, were developed in what could be
a widely used framework for increasing web graphic accessibility, let alone web media accessibility
more broadly. Many of those mentioned were not made available to the public, and those that
were are proprietary systems not able to be extended by another group. This is not due to an
inherent inability for accessibility software to be open source, of course. To illustrate the benefits
of open-source accessibility projects, we discuss examples outside the narrow scope of web graphic
accessibility.

2.2 Open-Source and Extensible Accessibility Software
There are several important open-source screen readers that serve as extensible platforms to varying
degrees. The most popular is NVDA, a screen reader for the Windows operating system developed
by NV Access and a community of contributors. It also supports add-ons, both open-source and
proprietary, that provide new or different functionality to users of the screen reader [5]. With mobile
devices, the TalkBack screen reader for Android is available under an open-source license, although
it lacks the add-on functionality and community contribution of NVDA. While these reflect the
most popular open-source options—NVDA is commonly used by 58.8% of screen reader users on
desktops and laptops, and TalkBack by 29.1% on mobile devices [2]— less popular open-source
projects are also available, such as Orca [6] and WebAnywhere [10]. Outside of screen readers,
and relevant to the focus of IMAGE, there have been accessibility-related software frameworks
developed to tackle various problems. For example, the ITHACA framework was developed to
aid in creating personalized Augmentative and Alternative Communications products [25]. The
ACCESS framework was designed to support accessibility developers in using operating system-
level accessibility features by providing a simpler interface [17].

The projects and frameworks described here have experienced success to varying degrees through
positive evaluations in research contexts or adoption by members of the public. The frameworks
and the add-on system for NVDA focus on providing a base on which to develop that is intended
to be easy to learn and use. While elements of them could be applied to aspects of the projects
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discussed in Section 2.1, important components and functions would still need to be created from
scratch. A different framework is necessary for this kind of work.

2.3 Requirements for Web Media Accessibility Frameworks
A software framework for the IMAGE project or web media accessibility more broadly must support
the reuse of components through problem-appropriate interfaces. The IMAGE project and those
discussed in Section 2.1 all represent visual information using other senses, usually hearing, which
is similar to the approach taken in sensory substitution research. Lenay et al. described sensory
substitution systems as consisting of three components: a sensor for the input stimuli, a stimulator
for the output stimuli, and a coupling system that links them [23]. This paradigm can be extended
more broadly to encompass all the projects discussed above. Each project has a means of acquiring
the data necessary to accomplish its task. For example, VizWiz and Seeing AI use cameras to
capture input stimuli as is often done in sensory substitution. Other cases, such as Caption Crawler
and Twitter A11y, collect data from the web rather than from a direct sensor of the environment.
Each project displays the collected information through various “stimulators”, for example speech,
sonification, and modifications to the elements of an existing web page. The coupling system
between these input and output stimuli are defined by algorithms appropriate to each project.
These include machine learning methods to extract semantic information from the input (Facebook
News Feed, Twitter A11y, Winters et al.’s system, Seeing AI, Picture Smart, and VoiceOver), queries
to relevant web resources (Twitter A11y, Caption Crawler, and Hoque et al.’s proposed extension),
and providing a task to a “human in the loop” (VizWiz and Twitter A11y). These steps of data
collection, data processing, and output synthesis appear to be consistently present in this class of
assistive technologies, and thus are set as requirements for the IMAGE architecture.

Many of these systems are not fully self-contained and rely on a server running separately from
the software with which the user interacts, such as smartphones and web browsers [3, 7, 11, 16, 24].
These platforms that typically have less computing power or resources available than native
applications on a personal computer, constraints that become especially relevant when large
machine learning models are used. Additionally, systems such as Caption Crawler build upon
requests from multiple users and require a means of making this information available to everyone
using the product [16]. This observation motivates support for computation off of user devices as
an important additional desideratum for our reusable software framework.
Along with these technical requirements, it is also necessary to consider how a system is used

by teams as part of their own design process. Such accessibility tool teams must typically consider:
• design tasks, focused on creating new methods of interacting with web media for accessibility
purposes;

• research tasks, focused on understanding the needs of prospective users and meaningfully
evaluating elements of the system; and

• development tasks, focused on quickly implementing functionality required for the previous
two types of tasks, and integrating improvements made in other fields, such as computer
vision.

Depending on team organization, these tasks may be allocated to the same or different individuals.
The background of each accessibility practitioner will influence how they prefer to work and
the technologies with which they are proficient. Differing backgrounds must be supported in the
design of a web graphic framework. Microservices are small, independent modules that operate
as a system through lightweight protocols, such as HTTP [20]. For the sort of projects discussed
here, a microservices-based approach offers productivity advantages that support the development
challenges and diversity of tasks on which individual team members may need to work. Specifically,
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microservices allow flexibility in choice of programming language, libraries, and other aspects of
the implementation strategy [8] and reduce the technical skills required by each practitioner to
contribute to the overall system.

3 THE IMAGE ARCHITECTURE
The IMAGE architecture benefited from adoption of such a strategy, which allows designers and
developers to make significant changes to the system’s behaviour, without needing to modify
the system as a whole. As a concrete example, our development team regularly updated code to
leverage advances in machine learning (ML) tools to produce improved audio-haptic representations.
Because our architecture was based on microservices, the meaning-extraction elements could be
updated independently, thereby allowing us to take advantage of such ML tools without needing to
touch a line of code responsible for generating the end-user experiences. In the remainder of this
section, we describe the design and arrangement of these components, and the customization of
renderings they support, as appropriate to individual circumstances.

To facilitate an understanding of the IMAGE architecture, we first provide a basic description of
the end-user experience that the system presently enables. Use of the IMAGE functionality merely
requires installation of a free browser extension, which can be activated for photographs, embedded
Google maps, and Highcharts1 charts, either by alt-click or selecting buttons inserted into the
HTML.2 Examples of the UI elements in the extension are shown in Figure 1. During this process,
users continue to be able to access any existing assistive technologies or accessible representations
of the graphical content, e.g., alt text via a screen reader. This is critical, since IMAGE does not
seek to replace any existing accessibility tools on which the user might already rely. Conversely,
the browser extension is designed to work with popular screen readers with which users are likely
to be familiar.

3.1 Overview
We designed and implemented the IMAGE architecture to follow the three-step pipeline and re-
quirements specified in Section 2.3. Collection of graphical data is performed by a client, which
is in our implementation the aforementioned Google Chrome browser extension. The processing
(implemented by preprocessor microservices) and synthesis (implemented by handlers) steps occur
on a server across numerous microservices running as Docker3 containers. These microservices
were containerized so they can be more easily reused by other teams while avoiding the added
computational overhead that full virtualization would incur [9]. While several containerization
technologies are available, Docker was chosen due to its extensive documentation and widespread
use in the developer community. These factors increase the likelihood that accessibility practition-
ers would have a degree of familiarity with Docker and could otherwise learn to use it quickly.
Additionally, an orchestrator microservice exists to detect available preprocessors and handlers,
manage communications between the client and server, and manage the flow of requests within the
server. Various helper services may also exist to perform functions common to multiple handlers, for
example speech synthesis or sound spatialization. An overview of how these different components
are organized is shown in Figure 2.
Expanding on the pie chart example in Figure 1, the rendering described there is generated in

the following steps:

1https://www.highcharts.com/
2Readers are encouraged to try the extension themselves, available from https://image.a11y.mcgill.ca.
3https://www.docker.com/
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(a) An IMAGE-compatible pie chart of COVID-19 case
information present on a Quebec government web-
site. As the chart uses Highcharts data, a button to
interpret the data using IMAGE is inserted below it.

(b) A renderings window generated by the browser
extension. For this pie chart, only one interpretation
was returned. When this interpretation is navigated
to and expanded, the user can play an audio file con-
taining a sonification of the chart.

Fig. 1. Screenshots of the IMAGE browser extension being used to produce an audio representation of a pie
chart.

(1) The user triggers the creation of a request, structured as a JSON object, that contains the
chart data itself as well as information about the graphic’s context in the web page, user
preferences, and a list of features the browser extension supports.

(2) The orchestrator receives this request and sorts microservices running on the same virtual
network into preprocessors and handlers based on labels identifying the containers as such.

(3) The orchestrator sends the request in parallel to all preprocessors in a priority group, starting
with the group with the lowest number and moving to the one with the highest. It waits to
receive a response from all preprocessors in a group and appends the data in these responses
to the original request. For the pie chart, this is limited to commonly used statistics, but for
other graphics would involve machine learning models building upon the outputs of one
another.

(4) The orchestrator sends the request, including all preprocessor data, to the handlers in parallel
and waits for them to respond with a list of renderings that represent the graphic. For the pie
chart, one handler might create a spatialized audio experience of the wedges, and another
handler might create a haptic experience to be displayed on a connected refreshable pin
array.

(5) Handlers may use a helper service, not automatically detected by the orchestrator, to perform
certain common tasks. In the COVID-19 chart example, helper services are used to synthesize
speech and generate the actual spatialized audio sonifications of the pie chart data for use in
the overall rendering being created by the handler.

(6) All of the renderings from the handlers are concatenated by the orchestrator and sent back
to the extension as a response to the original request. These results are then displayed to
the user, who can choose between them to listen to the audio representation of the chart or
touch the tactile representation.
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Fig. 2. Connections between major components in the IMAGE architecture. The browser extension com-
municates solely with the orchestrator running on the server. The orchestrator then communicates with
preprocessors, each belonging to a priority group, and handlers. Data produced by a preprocessor are available
to those that run in later groups since they are appended to the request by the orchestrator (step 3). Handlers
may send requests directly to helper services to accomplish tasks common to multiple handlers. Number
annotations are added corresponding to the steps to produce renderings of a graphic.

Each time data are exchanged in these steps, they are validated against a JSON schema4 that
specifies the structure and content required. Although this necessitated a significant amount of
additional effort, we found that the rigour enforced by the schema helped in subsequent debugging
efforts when problems with renderings were detected. Consider what may happen otherwise: a
preprocessor could produce a value out of the expected range. A handler that attempts to use these
data would then either experience a runtime error or create an erroneous rendering. In both cases,
the issue is harder to detect and would require work to determine the source of the problem in
the preprocesor, either working backwards from the handler or from the extension. Since data are
validated before being sent by the preprocessor, the error occurs within the preprocessor itself and
debugging can begin there. Since these schema files are human readable and contain descriptions
only useful to those working with the framework, they also function as documentation for the
data structures in use. Although such methods are commonly used in software engineering in
general, by baking them into the framework, best practices are more likely to be followed, raising
the reliability of the system as a whole for all contributors.
The pie chart example is only one possible path through the IMAGE framework. However,

IMAGE is flexible enough to be used for a wide variety of accessibility scenarios using different
graphics, means of representing content, and user preferences. We describe how the architecture
supports this flexibility, and then demonstrate how these features could be used with use cases
outside the scope of the IMAGE project.

3.2 Different Graphics, Renderers, and Capabilities
The IMAGE architecture includes functionality to work with multiple types of graphics and generate
different experiences for different users. Accordingly, a single server can support multiple use cases.
This is possible because preprocessors and handlers are configured to ignore data with which they
cannot work.

4https://json-schema.org/

ACM Trans. Access. Comput., Vol. 1, No. 1, Article . Publication date: May 2024.

https://json-schema.org/


IMAGE: A Framework for Deploying Accessible Renderings of Web Graphics 9

For example, in a system supporting bothmap and photograph inputs, preprocessors and handlers
that can only meaningfully work with photographs will receive data on maps from the orchestrator,
but will immediately respond that they can provide nothing, allowing the orchestrator to proceed.
Ultimately, the client, and by extension the user, only receives a response with data from the
appropriate microservices for the graphic included in the request. Support for different types of
graphics is configured internal to each microservice, reducing the overhead on those responsible
for managing the server instance.
Although there are not universal standards for embedded elements such as charts and maps, it

is possible to include new formats in the IMAGE architecture. If a desired format is similar to a
supported one, the client can be configured to convert it to the supported type so that existing
server components can be used unchanged. In other cases, a practitioner can extend the IMAGE
request schema to accept the new format, and add or modify components as necessary to produce
renderings with the data.5

Multiple means of displaying the renderings produced by handlers will be necessary to support
different experiences, client software, and user preferences. This information needs to be communi-
cated in some way to a server and to the handlers running on it. To accomplish this, each request
sent by a client contains two fields with complementary roles: renderers and capabilities.

Renderers define both a data structure that can be used by a rendering and an implicit interaction
flow to display the rendering to a user. For example, an annotated sonification of the COVID-19
pie chart in Figure 1a would be internally structured to include an audio file of the sonification,
the timestamps marking when each chart element is sonified, and text labels for these features.
Any client that receives this rendering and recognizes this format would be expected to display the
audio file to the user with suitable controls for navigating between the labelled content within it
and playing the corresponding audio. Clients are expected to have a built-in list of renderers or
to dynamically generate such a list based on the resources available on the client platform. For
example, a client that cannot access a refreshable pin array must not advertise a renderer that
requires such a device.

The capabilities field includes a list of preferences that impact content within or across various
renderers, as relevant to tailoring the output to individual differences and requirements across the
user community. For example, if a user only wishes to receive mono audio, this would be specified
as a capability since it would impact many renderers. The combined effect of these fields is that
the server is able to produce renderings that are most relevant and personalized to the user. At a
basic level, this also ensures that renderings are able to be properly displayed by the client and
its connected hardware. Capability selection should be determined automatically when related
to available hardware, but options should be available to allow users to adjust or disable aspects
of the experience according to their preferences. For example, a user who only has hearing in
one ear would likely prefer to avoid renderings that heavily rely on spatialized audio. Renderers
and capabilities are configured in such a way that other practitioners and groups can add new
functionalities to the IMAGE architecture without the need to worry about causing a conflict with
features we or other groups have made.

3.3 Applying the Architecture Outside the IMAGE Project
The extensibility of the IMAGE architecture is, we believe, its primary benefit to other accessi-
bility researchers and developers. We describe two hypothetical examples to illustrate how this

5An example of this is outlined in Section 3.3.1.
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architecture would reduce the resources that need to be allocated to such software infrastructure
development.6

3.3.1 Interactive Radar Maps for Weather Systems. Although much of weather forecast information
is included as text and is thus fully accessible to people using screen readers, visualizations of
these systems changing over time is a notable exception. For the sake of discussing a path to
implementation, we use Environment and Climate Change Canada (ECCC) radar maps as an
example. The open data available via the Meterological Service of Canada GeoMet platform7 is
used to produce weather systems visualizations, but could instead equally be used to produce
sonifications.

Deploying such a data processing pipeline within the IMAGE system would involve:

(1) Creating a new input type in the request data structure that specifies the geographic location
from which to retrieve radar data and the desired time range.

(2) Implementing a feature within the existing IMAGE browser extension to obtain these data
from an ECCC forecast radar map on a web page.

(3) Writing a new schema file to describe the structure of the data that will be obtained from
the GeoMet platform. This could be identical to the format used in the platform itself or
something more generic so that it would apply to other weather data services in the future.

(4) Implementing a new preprocessor that sends a query to GeoMet and returns the data in the
format specified in the previous step.

(5) Selecting an existing audio renderer.8
(6) Implementing a new handler that generates the sonifications in the renderer format specified

in the previous step and implementing a new renderer in the client if necessary.

The team working on this project would only need to be concerned with the implementation
of new functionality. The infrastructure to connect components is already present, and benefits
increase as other components can be reused. A new client or renderer can be implemented if
a practitioner determines that one is necessary. Creating a new project-specific client does not
require modifications in other components since the interfaces between them are unchanged. A
new renderer, however, does require support to be present in handlers and clients that produce
or consume data in the format used by the renderer. Changes or extensions to valid requests will
require the schema consumed by the orchestrator to be updated, which can be done at runtime
without modifying the underlying Docker image by mounting schema files into the container.

3.3.2 Automatic Captioning System. To further illustrate the disparate scenarios that the IMAGE
architecture can support, we consider an automatic captioning system for audio that includes rich
descriptions of non-speech elements. Such a project would likely require evaluating a variety of
components for different tasks (e.g., speech recognition, speaker identification) and potentially
different implementations of each component. Deploying a pipeline to accomplish this captioning
task would entail the same set of tasks as described for the radar maps project. The client would
be modified to work with audio files and new data types would centre on producing caption
data. Creating an end-to-end experience could involve detecting embedded audio elements in a
browser extension, adding a button to generate a request for these elements, implementing new

6Further details for developers is available on our GitHub project’s Wiki https://github.com/Shared-Reality-Lab/IMAGE-
server/wiki/3.-Creating,-testing,-and-deploying-preprocessors-and-handlers
7https://eccc-msc.github.io/open-data/msc-geomet/readme_en
8For example, https://github.com/Shared-Reality-Lab/IMAGE-server/blob/schemas/renderers/segmentaudio.schema.json
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Team Member Primary Responsibilities
M1 Audio design and user research
M2 Browser extension development and preprocessor code review
M3 Haptic design and implementation
M4 Machine learning and preprocessor implementation
M5 User interface design and user research
M6 Haptic design and implementation

Table 1. Brief profiles of the interviewees.

preprocessors and handlers that label sounds and speech, and writing a new renderer that displays
the results of these components as WebVTT captions.9
While new components are necessary in these hypothetical scenarios, these additions are to

provide use case specific functionality. A client and renderers would already be available in both
cases to use or modify to meet the needs of the projects, and modules can be replaced as the project
develops as improvements are made available. For example, if a more efficient sound classification
model is released while the automatic captioning system project is under development, a new
preprocessor could be written using it that could act as a drop-in replacement for one developed
around another model.
Not included here are the processes of testing and refinement that are necessary to ensure the

new data structures, new microservices, and modifications to the client come together to produce
the best possible experience for users. Supporting practitioners in this design process is a challenge
for any complex project. Naturally, we have faced this challenge within the IMAGE project and
have assessed our response to it, developing practices and identifying important areas that we
believe will be of use to groups that choose to use our architecture for their own work. In the
following section, we describe some of these practices and lessons learned from our experiences as
developers.

4 PROJECT MEMBER INTERVIEWS
While practitioners outside the IMAGE project have used components developed for the IMAGE
architecture, we are not yet aware of any who have developed end-to-end experiences using it. In
order to understand the ways in which the framework can be used throughout a project and to
identify real problems relevant to others working with it, we sought to understand the experience
of our team members. The outcomes of these interviews may be useful in the planning of other
web graphic accessibility or similar projects, especially those that may develop or use components
developed in our framework.

4.1 Overview
Six members of our team who worked on aspects such as user experience and testing, haptic design,
audio design, machine learning, and software development agreed to participate in semi-structured
retrospective interviews conducted by the first author. Over the course of an hour, interviewed
team members were asked to discuss their work experiences and challenges from the time they
joined the project through the time of the interview in the context of phases of brainstorming and
exploration, prototyping and testing, and deployment and maintenance. Brief profiles for each
team member are shown in Table 1. Note that none of the interviewees were directly involved in
the design or implementation of the IMAGE architecture, which occurred in parallel with other
9https://www.w3.org/TR/webvtt1/
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tasks from the start of the project. Topics of discussion were not limited to strictly architectural or
technical concerns. Instead, a goal was to form a more complete understanding of the interactions
between the challenges that people experienced, and to identify areas missed by the architecture, if
applicable. Each interview session was transcribed by the first author and analyzed by the first and
third authors to determine commonalities relevant to the use of the architecture and to the project
as a whole.

4.2 Challenges Identified and Improvements
Several recurring issues were identified in the team member interviews. First, multiple participants
reported experiencing difficulties learning how to use the framework or the technologies it uses, or
having observed others face these problems. The initial documentation prepared and collected for
the IMAGE architecture focused on its operation at a high level, rather than responding to specific
problems that people using it would face. To address this challenge, we produced new resources
tuned to common tasks performed by members of the IMAGE project, such as developing, testing,
and deploying a new preprocessor.
Second, the internal state of an IMAGE server instance or a preprocessor within one were

difficult to determine, leading to confusion among users of the system. For example, M3 reported a
case where he was unable to determine which version of a handler was in use. M1, M4, and M6
shared experiences where they struggled to understand what computer vision preprocessors were
determining about particular inputs and how their outputs contributed to the rendering. We wrote
a server-side script to display the preprocessors and handlers detected by an orchestrator, and
the order in which these preprocessors would respond to a request to address the issue of overall
server state. Continuous integration processes were also developed to ensure that production and
staging components are built in a consistent manner. For within-preprocessor visibility, we added
debugging-specific handlers to visualize data that are difficult to understand in JSON outputs, e.g.,
the locations of detected objects in a photograph (Figure 3). These handlers are inactive unless a
debugging flag is sent in the request.

Third, there was a lack of understanding by some team members of what enables components to
be meaningfully reusable. Several components developed early in the project, especially adding
initial haptic functionality, were properly written for the IMAGE architecture, but were so narrowly
tailored to a particular use case that were unlikely to be practical to reuse. We later determined that
this was due to team members not understanding this distinction and attempting to implement
complex functionality in a single feature. Additional instruction on, and hands-on experience
with, reusing IMAGE components were beneficial, even for people with a background in software
development.

4.3 Support for Practitioners
A key goal of the interviews was to determine the experience of practitioners using the architecture
in the development, design, and research tasks described in Section 2.3. Since the work of the
participants in these interviews touches on all these aspects of accessibility projects, their relevant
comments are synthesized here. Perhaps unsurprisingly, development tasks were the most clearly
supported by the architecture. M2, M3, and M4 all reported that this framework was helpful in
tasks where communication across components developed by different people was required. M6
also shared that the structure afforded by the architecture helped him focus more on the tasks on
which he worked.

Research and evaluation were supported as well, albeit to a lesser extent than development. While
concerns about the consistency of renderings prevented the full end-to-end system from being used
in studies, components could still be used outside of the architecture. For example, handlers were
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used to quickly produce representations for evaluation by manually modifying requests to meet
the specifications of the researcher. These renderings could then be used to drive different user
interface prototypes to demonstrate functionality that could easily be added to the complete system
if it provided a benefit to users. Outputs of preprocessors could also be used directly without a
handler producing IMAGE renderings. The ability to adapt components in this manner was viewed
positively during the interviews and has been used by at least one external research group.
The design of new experiences is an aspect where the impact of the architecture was more

mixed, and participants shared cases where they experienced problems. In one case, team members
implemented an end-to-end design concept using the framework without sufficient brainstorming
or refinement. The architecture increased the difficulty of making major changes to the design
in response to later user feedback since modifications needed to be coordinated across several
components. In another case, a team member was brainstorming sonifications for a type of graphic,
and reported experiencing high cognitive load due to a perceived need to make these ideas fit
into different architectural components, e.g., preprocessors and handlers. Interviewees indicated
that attempting to fit possible experiences into the structure of the IMAGE architecture yielded
lower quality results early in the design process. However, factors unrelated to the architecture,
such as the COVID-19 pandemic, were noted by the team members as being far more significant.
Further, the effect of the framework was reversed when team members worked on more clearly
defined issues or more mature prototypes. In these cases, the support provided by the architecture
was appreciated. Issues primarily arose when issues of development within the framework were
considered too early for the scope of the task, and served to constrain how practitioners approach
a problem rather than provide paths to resolving it. We have adjusted our own internal practices to
encourage more effort spent “outside the architecture”, and have had observed fewer instances of
these problems occurring.

The response from those who worked with the architecture on the IMAGE project was generally
positive, and all of the participants expressed that the architecture benefited their work and the
project as a whole. Specifically, the broad roles of components, data validation by schemas, and
ease in replacing or deploying microservices facilitated the adoption of new use cases, software
development and maintenance, and the progression of designs from prototypes to production. With
the improvements made in response to the key issues identified in Section 4.2, the framework
as it has been developed thus far appears to meet the requirements identified for web graphic
accessibility projects. Further refinements are planned based on the needs of the IMAGE project
and in response to future use by other research groups.

5 LIMITATIONS AND FUTUREWORK
While other researchers have used components developed in the architecture as part of their own
work, development and deployment with the full framework has, to our knowledge, only been
performed by the IMAGE team itself. As a result, our evaluation has focused on our team’s usage
since it is the most extensive. However, other challenges could be faced by teams using the IMAGE
architecture in contexts we have not anticipated and considered in our design or evaluation.
The most significant technical limitation is that inputs and outputs must be encapsulated in

one HTTP request and response, preventing support for large requests or use cases that require
ongoing communication between client and server. We plan to address this limitation in future
improvements to the framework, for example, by adding support for user sessions that persist
beyond a single request.
The architecture has not yet received sufficient load testing under real-world conditions to

ensure it will not encounter unforeseen bottlenecks. We expect that scaling the microservices
of an instance could be accomplished in a straightforward manner using tools such as Docker
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Fig. 3. A screenshot of visual debugging output as shown in the interpretations list within the browser
extension. Note that the mouse is outlined in red in the original photograph, where the object detection
preprocessor found it. Other types of objects can be selected from the dropdown menu.

Swarm10 or Kubernetes,11 although we have not tested them. A federated model in which separate
instances communicate with one another to combine their offered services could also address these
same concerns while reducing the resource requirements in deploying an IMAGE server, either
for production purposes or for integration testing of a component. Similarly, we expect that the
framework could be modified to run on another containerization platform with only moderate
changes to the orchestrator.

We are also extending IMAGE to new platforms, such as mobile devices, as well as incorporating
new haptic devices. Although we expect that the current server architecture will be sufficiently
flexible to support these use cases, the browser extension may be unusable on such platforms,
requiring us to create custom client applications instead. Some of these devices may also require
more dynamic interactions on the end-user device, necessitating local rendering of audio and haptic
content. Extensions to the architecture to allow some assets to be created on the server and others
locally on the client are currently being designed.
Finally, an authoring tool would help support designers in testing ideas and integrating them

into the architecture. While difficulties were faced by interviewees when working within the
architecture in early design phases, working fully outside of it, however, leads to greater technical
and design difficulties when later implementing and evaluating a selected idea. An environment
that uses the same technical base for displaying renderings as in the architecture, but targets quick
examples over production-ready experiences, provides a compromise between these two extremes.
We envision an authoring tool that allows for designers to quickly mock up and modify audio-haptic
renderings in an interface that requires less technical expertise than is needed now, a useful feature
since few designers are equally comfortable working with audio as they are with haptics, or vice
versa.

10https://docs.docker.com/engine/swarm
11https://kubernetes.io/
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6 CONCLUSION
We have presented the IMAGE architecture, a platform for converting online content between
modalities. From this description, we expect that practitioners will be able to decide whether IMAGE
is an appropriate framework on which to base their own work, especially for generating novel
multimodal experiences for accessibility purposes. In addition, we have conveyed the results of
an internal team review of using our architecture, highlighting pitfalls and practical advice useful
both for those building on top of it, or those contemplating building their own framework similar
to IMAGE.
We designed IMAGE as a platform to encourage accessible, multimodal transformations of

graphical content to be deployed to end users, and look forward to others adopting it for their own
purposes. We welcome feedback and ideas that can help guide IMAGE’s direction so that the it will
be even more flexible to support new use cases. Our hope is, by publishing our platform details, we
will encourage practitioners to extend it so that we can identify its strengths and weaknesses and
continue making improvements.
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