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Abstract

Existing state-of-the-art recognition models achieve impressive performance but re-

quire a complete scene which may not always be available. For example, sensing a com-

plete scene at once is infeasible in applications such as aerial imaging. Further, in ap-

plications such as disaster recovery, imaging devices should be light, inexpensive, and

energy-efficient; thus, they are often built using small field-of-view cameras that capture

only a part of a scene at a time. In the above cases, the imaging devices must scan

the area sequentially. Moreover, they must also prioritize the scanning of informative

subregions for timely recognition.

Many developed attention models that recognize a scene by observing it through

small informative subregions called glimpses. However, most models locate informative

glimpses by glancing at a low-resolution gist of a complete scene, which is unavailable in

practice. In this thesis, we develop sequential recognition models that locate and attend to

informative glimpses without assessing a complete scene. Our sequential attention models

predict the location of the next glimpse based solely on past glimpses. Our models achieve

effective attention policies under partial observability by selecting subsequent glimpses

that, combined with past glimpses, help the most in reasoning about the complete scene.
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We present three attention models, two for spatial and one for spatiotemporal recog-

nition. The first is a Probabilistic Attention Model (PAM). PAM uses Bayesian Optimal

Experiment Design to attend to a glimpse with maximum expected information gain

(EIG). It synthesizes features of the complete scene from past glimpses to estimate the

EIG for yet unobserved regions. The second is a Sequential Transformers Attention Model

(STAM), which employs the one-step actor-critic algorithm to attend to a sequence of

glimpses that produce class distribution consistent with the one produced using a com-

plete scene. The third is a Glimpse Transformer (GliTr). GliTr learns an effective at-

tention mechanism for online action recognition by selecting glimpses with features and

class distribution consistent with the corresponding complete video frames.

Throughout the thesis, we evaluate our models on multiple datasets and compare

them with existing models. Our two key findings are as follows. First, reasoning about

the complete scene from partial observations helps in learning an effective attention policy

under partial observability. Second, while reducing the amount of sensing required for

recognition, our glimpse-based models achieve comparable or higher performance than

the existing models that require complete scenes. The key takeaway is that one can

attain good performance even using low-cost sensing devices and non-ideal imaging by

automating the sensing process and compelling the recognition model to fill in the missing

information.
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Abrégé

L’état de l’art sur les modèles de reconnaissance a atteint une performance impression-

nante. Ces modèles ont besoin d’une vue complète de la scène pour qu’ils puissent bien

fonctionner, ce qui n’est pas toujours disponible. Par exemple, la détection et l’acquisition

d’une scène complète est impossible dans les applications telles que l’imagerie aérienne.

De plus, dans des applications telles que la reprise après sinistre, les dispositifs d’imagerie

doivent être légers, peu coûteux et économes en énergie. C’est pour ces raisons que ces

matériels sont souvent construits avec des caméras à petit champ de vision, qui ne cap-

turent qu’une partie de la scène, à la fois et d’une manière séquentielle. En outre, ces

dispositifs doivent donner la priorité à la numérisation et capture des sous-régions plus

informatives pour une reconnaissance efficace et plus rapide.

Plusieurs méthodes d’attention ont été développées qui reconnaissent une scène tout

en observant des petites sous-régions informatives appelées aperçus (glimpses en anglais).

Cependant, la plupart de ces modèles localisent des aperçus informatifs en regardant

à l’essentiel à basse résolution d’une scène complète, qui n’est pas disponible dans la

pratique. Dans cette thèse, nous développons des modèles de reconnaissance séquentielle

qui localisent et assistent à des aperçus informatifs sans évaluer une scène complète.
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Nos modèles d’attention séquentielle prédisent l’emplacement du prochain aperçu en se

basant uniquement sur les aperçus passés. Nos modèles réalisent des politiques d’attention

efficaces sous observabilité partielle en sélectionnant des aperçus ultérieurs qui, combinés

à des aperçus passés, aident le plus à raisonner sur la scène complète.

Nous présentons trois modèles d’attention: deux pour la reconnaissance spatiale et

un pour la reconnaissance spatio-temporelle. Le premier est le modèle d’attention prob-

abiliste (Probabilistic Attention Model PAM, en Anglais). PAM utilise la conception

d’expérience optimale bayésienne pour assister à un aperçu avec un gain d’information

maximal attendu (Expected Information Gain, EIG, en anglais). Ceci synthétise les car-

actéristiques de la scène complète à partir d’aperçus passés pour pouvoir estimer l’EIG

pour les régions encore non observées. Le second est le modèle d’attention des transfor-

mateurs séquentiels (Sequential Transformers Attention Model, STAM, en anglais), qui

utilise l’algorithme acteur-critique en une étape pour assister à une séquence d’aperçus

qui produisent une distribution de classe cohérente avec celle produite à l’aide d’une

scène complète. Le troisième est appelé Glimpse Transformer (GliTr). GliTr apprend un

mécanisme d’attention efficace pour la reconnaissance d’action en ligne en sélectionnant

des aperçus avec des caractéristiques et une distribution de classe cohérentes avec les

images vidéo complètes correspondantes.

Tout au long de la thèse, nous évaluons nos modèles sur plusieurs jeux de données

et nous les comparons avec des modèles existants. Nos conclusions principales sont les

suivantes: Premièrement, le raisonnement sur la scène complète à partir d’observations

partielles aide à apprendre une politique d’attention efficace sous observabilité partielle.

Deuxièmement, tout en réduisant la quantité de détection requise pour la reconnais-

sance, nos modèles basés sur l’aperçu atteignent des performances comparables ou même

supérieures à celles des modèles existants qui nécessitent des scènes complètes. Enfin,
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on peut atteindre de bonnes performances même en utilisant des dispositifs de détection

à faible coût et non-optimisés pour l’imagerie grâce à l’automatisation du processus de

détection et la capacité du modèle à remplir les informations manquantes.
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We divide an image (X) into equally-sized non-overlapping glimpses. STAM

sequentially observes informative glimpses (gt) from an image. While never

observing an image entirely, STAM predicts the class-label of an image (y)

based on glimpses. At each t, our agent encodes past glimpses and their

locations (g0:t, l0:t) into a Markov state st. It uses state st to predict class

distribution p(yt|st) and attention policy π(lt+1|st). We sample the next

glimpse location lt+1 from π(lt+1|st). © [2022] IEEE. Reprinted, with per-

mission, from [141]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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5.2 An overview of our Sequential Transformers Attention Model (STAM).

The STAM consists of a core T , classifiers G and D, an actor A, and a

critic C (only used during training). We discuss the working principles of

these modules in Section 5.1, except for the critic C, which we discuss in

Section 5.2. We update model parameters T times per batch using the

objectives shown on the right and discussed in Section 5.2. Each training

iteration consists of three steps: Step 1 (green path): Given a complete

image X, the teacher model predicts a soft pseudo-label q(y|X). Step 2

(blue path): Given glimpses g0:t, the core T predicts features f g
t and fd

t .

The classifiers G and D predict class distributions pg(yt|f g
t ) and pd(yt|fd

t )

from features f g
t and fd

t , respectively. Given a state st = [f g
t ; fd

t ], the

critic C predicts value V (st) and the actor A predicts attention policy

π(lt+1|st). The actor predicts logits π′((i, j)|st) for all unobserved glimpse

locations (i, j) in a conditionally independent manner and applies softmax

to the logits resulting in π(lt+1|st). Step 3 (orange path): A glimpse

gt+1 at lt+1 ∼ π(lt+1|st) is sensed. Using the glimpses g0:t+1, the ensemble

class distribution p(yt+1|st+1) and value V (st+1) are computed following

the same path as Step 2. The model parameters are updated using the

gradients from Step 2. In practice, Step 1 is performed once per batch at

t = 0, whereas, Steps 2-3 are performed T times per batch. © [2022] IEEE.

Reprinted, with permission, from [141]. . . . . . . . . . . . . . . . . . . 74
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5.3 Baseline comparison of various attention policies. (a) ImageNet; (b) fMoW.

The Random selects glimpses in random order. The Plus and the Spiral

select glimpses in the order shown in (c). Starting from a random glimpse

location, our STAM uses an RL agent to predict next glimpse location. Re-

sults for the Random and STAM are presented as mean±5×std computed

from ten independent runs. © [2022] IEEE. Reprinted, with permission,

from [141]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Gain in the accuracy of STAM due to the consistency loss. We display gain

in accuracy of our STAM when trained using consistency loss (with soft vs

hard pseudo-labels) over the STAM trained without consistency loss. (a)

ImageNet; (b) fMoW. Results are presented as mean ± std computed using

ten different runs. © [2022] IEEE. Reprinted, with permission, from [141]. 84

5.5 Comparison of gain in accuracy of baseline agents due to the consistency

loss. We display gain in accuracy of a specific baseline when trained using

consistency loss over the same baseline trained without consistency loss.

(a) ImageNet; (b) fMoW. Results for the Random and STAM are presented

as mean ± std computed across ten independent runs. © [2022] IEEE.

Reprinted, with permission, from [141]. . . . . . . . . . . . . . . . . . . . 85

5.6 Effect of glimpse size on accuracy. We display accuracy of STAM with

different glimpse sizes presented as a function of %area observed in an

image (a) ImageNet; (b) fMoW. The results are presented as mean±5×std

computed across ten independent runs. © [2022] IEEE. Reprinted, with

permission, from [141]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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5.7 Accuracy of STAM with core of different capacity. We compare DeiTD-

Tiny, DeiTD-Small, DeiTD-Base architectures for the core module. The

results are presented as mean±5×std computed across ten independent

runs. © [2022] IEEE. Reprinted, with permission, from [141]. . . . . . . . 87

5.8 Glimpse Visualization for STAM. We visualize of glimpses selected by

STAM on example images from t = 0 to 15. (a) ImageNet; (b) fMoW.

Complete images are shown for reference only. STAM does not observe a

complete image. © [2022] IEEE. Reprinted, with permission, from [141]. 88

5.9 Histograms of glimpse locations sensed by STAM. (a) ImageNet and (b)

fMoW. The first, second, and third rows of each panel display histograms

for t = 0 to 6, 7 to 13, and 14 to 20. At t = 0, STAM observes a glimpse

at a random location. At t > 0, STAM senses glimpses at the locations

predicted by an RL agent. © [2022] IEEE. Reprinted, with permission,

from [141]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.10 Accuracy due to early termination. We display an average number of

glimpses observed per image vs the accuracy achieved by STAM on (a) Im-

ageNet and (b) fMoW datasets with an early termination scheme. STAM

suspends sensing once the probability of the predicted class is higher than

threshold γ. © [2022] IEEE. Reprinted, with permission, from [141]. . . . 92
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6.1 Schematics of Glimpse Transformers (GliTr). Our GliTr is an online action

prediction model that only attends to the most informative glimpses (gt) in

the frames (xt). While never observing frames completely, GliTr predicts

label ŷt (i.e. an estimate of ongoing action at time t) and the next glimpse

location l̂t+1 based solely on the glimpses observed up to t. © [2023] IEEE.

Reprinted, with permission, from [140]. . . . . . . . . . . . . . . . . . . . 96

6.2 An overview of our GliTr. GliTr consists of a frame-level spatial trans-

former Tf and causal temporal transformers Tc and Tl. One training iter-

ation requires T forward passes through our model. Above, we show two

consecutive forward passes at time t ≤ T − 1 and t + 1 ≤ T . Forward

pass t (blue path): Given a new glimpse gt, Tf extracts glimpse-features

f̂t. We append f̂t to f̂1:t−1, i.e.features extracted from g1:t−1 during previ-

ous passes. Next, Tc predicts label ŷt from f̂1:t. Simultaneously, Tl predicts

next glimpse location l̂t+1 from f̂1:t. Forward pass t+1 (orange path):

Given a predicted location l̂t+1, we extract a glimpse gt+1 at l̂t+1 from a

frame xt+1. Then, we follow the same steps as the blue path. After T

forward passes, we compute the losses shown in the right. To find tar-

gets ỹ1:T and f̃1:T for spatial and temporal consistency, we use a separate

pre-trained and fixed teacher model (shown on the left and explained in

Figure 6.3) that observes complete frames x1:T . To maintain stability, we

stop gradients from Tl to Tf . © [2023] IEEE. Reprinted, with permission,

from [140]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
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6.3 An overview of our teacher model. Our teacher model consists of a spatial

transformer Tf and causal temporal transformers Tc and Tl. Each training

iteration of the teacher model consists of two steps. Step 1 (blue path):

Given complete video frames x1:T , Tf extracts frame features f̃1:T . Next,

Tc and Tl predict class labels ỹ1:T and glimpse locations l̃2:T+1 from f̃1:T ,

respectively. We discard l̃T+1. Step 2 (orange path): Given l̃1 (learnable

parameter) and l2:T (predicted in step 1), we extract glimpses g1:T from

x1:T . Then, we create non-learnable copies of Tf and Tc denoted as T ′
f

and T ′
c . T ′

f extracts glimpse-features f̂1:T from g1:T and T ′
c predicts labels

ŷ1:T from f̂1:T . We compute losses shown on the right and update model

parameters. To achieve stability during training, we stop gradients from

Tl to Tf . © [2023] IEEE. Reprinted, with permission, from [140]. . . . . . 103

6.4 Comparison of online action prediction accuracy using different glimpse

mechanisms. (a) SSv2 and (b) Jester. The Uniform and the Gaussian

strategies sample locations from the respective distributions. We dis-

play mean±5×std computed using five independent runs. The Center

and the Bottom Left strategies always observe glimpses at the constant

locations. The Teacher (an approximate upper bound) and our GliTr lo-

cate informative glimpses based on past frames and glimpses, respectively.

© [2023] IEEE. Reprinted, with permission, from [140]. . . . . . . . . . . 107

6.5 Histograms of the glimpse regions selected by GliTr. We display histograms

with increasing time (raster scan order) on (a) SSv2 and (b) Jester. Recall

that GliTr observes the first glimpse at a predetermined location followed

by active selection. © [2023] IEEE. Reprinted, with permission, from [140]. 108

xxiv



6.6 Glimpses selected by GliTr. (a) SSv2 and (b) Jester. The complete frames

are shown for reference only. GliTr does not observe full frames. It only

observes glimpses. © [2023] IEEE. Reprinted, with permission, from [140]. 109

6.7 Comparison with early action prediction models. (a) SSv2 and (b) Jester.

While Swin-B [119], TemPr [163] and TRN [208] predict action early

based on complete frames, GliTr predicts action based on early glimpses.

© [2023] IEEE. Reprinted, with permission, from [140]. . . . . . . . . . . 111

6.8 Ablation study on the spatiotemporal consistency objective on SSv2 dataset.

(a) accuracy of GliTr when trained using different combinations of the

training objectives (b) accuracy of the teacher with the glimpses selected by

the above variants. (c) accuracy of the above variants of GliTr when tested

with the Uniform random strategy. We display mean±5×std from five

independent runs. © [2023] IEEE. Reprinted, with permission, from [140]. 113

6.9 Ablation on Teacher model (a) Ablation on L̃dist objective for the teacher

trained on SSv2 dataset. (b) Ablation on initialization scheme for the

teacher trained on Jester dataset. © [2023] IEEE. Reprinted, with permis-

sion, from [140]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.10 GliTr with early exit. We display accuracy vs an average number of

glimpses seen by GliTr per video to predict a class with probability > γ. (a)

SSv2 and (b) Jester. © [2023] IEEE. Reprinted, with permission, from [140].115
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7.1 Summary of our attention models. We develop attention models for image

classification and online action recognition. Our attention models never

observe the entire scene. To improve performance and learn effective at-

tention policy under partial observability, we compel our attention models

to reason about the complete scene from glimpses. To do so, we design

variational and consistency learning objectives. . . . . . . . . . . . . . . . 119
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1
Introduction

Have you seen a blowfly escape a predator approaching it from behind? Many times.

Right? Blowflies have immobile eyes with a nearly 360◦ field of view (FOV), allowing

them to see predators approaching them from almost any direction and plan an escape

covertly. Processing such a large amount of visual stimuli also comes with a high cost.

Vision consumes nearly 8% of the blowfly’s total resting metabolism [109, 129]. High

energy costs led many insects and animals to develop eyes with acute vision in a small

region. To compensate for the limited field of view, these organisms use eye movements
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and head movements to orient their gaze in a specific direction [179, 66]. Eye and head

movements consume less energy than moving the entire body [106]. Further, the low

FOV eyes are also lightweight. While blowfly’s eyes weigh nearly 6% of their total mass

[108], human eyes consume only ∼ 0.2% of the body mass [11].

Synthetic cameras follow the same principle as biological eyes. The small FOV cam-

eras with low-resolution image sensors are lightweight, energy efficient, and require fewer

computations [84]. However, the small FOV and low resolution become limiting factors

in many applications. In this thesis, we explore the approach used in nature and design

models that emulate eye movements to scan the scene by deploying these cameras serially.

1.1 Problem Statement

In applications such as monitoring at-risk animals and performing rescue operations, we

often need mobile devices to explore remote and obscure locations. Building these devices

using small FOV cameras keeps them light and energy efficient. The low cost of these

cameras is an additional advantage since there is a significant risk of losing a mobile

device in such operations. Moreover, when these devices communicate with the control

unit on the ground, small and low-resolution images reduce the amount of information

that needs to be transmitted. While we purposefully invite a limited field of view in

the above situation, in some applications, mobile devices naturally have access to only a

narrow view due to the vastness and physical constraints or occlusion. Examples include

aerial imaging for disaster recovery and indoor robotics for human assistance.

The above mobile devices compensate for the limited or partial view by shifting their

attention to various regions according to some strategy. One such strategy would be to

observe neighboring areas in raster scan order. While this strategy is simple and easy

to implement, it is lengthy and thus unsuitable for time-sensitive applications. Also, not
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all views are equally crucial for the task. It is rather prudent to follow a strategy that

prioritizes the most informative regions. To implement this strategy, we need to sequen-

tially predict the location of the next most informative area based on past observations.

Further, we must learn to perform a task from incomplete or partially observed scenes.

Existing image recognition models such as EfficientNet [166], ResNet [71], and Vision

Transformers (ViT) [49] assume that we will have access to the complete scene when

deployed in the real world. Even the state of the art video action recognition models

such as TSM [116], Swin-B [119], or VideoMAE [171] assume we have a complete video

at the test time. The performance of these models degrades significantly when presented

with spatially or temporally incomplete information. For example, the performance of

Swin-B drops by ∼30% on the Something-Something-v2 (SSv2) dataset [62] when only

the first 70% frames are observed [163]. Similarly, the accuracy of DeiT-S[172] drops by

around 10% on ImageNet [149] when 50% of the image regions are unavailable at random.

Now, suppose we pass the top 50% useful patches to DeiT-S. In that case, the accuracy

is hardly affected [127]. The experiment suggests that the model could perform well even

with partial scenes if we observe the scenes tactfully. But how can we come up with an

appropriate observation strategy? The above models cannot autonomously predict the

locations of the useful patches and cannot provide a good strategy.

Many researchers developed agents that autonomously acquire a series of narrow but

most informative subregions from a scene [125, 12, 51, 135, 17, 75, 122, 186, 188]. They

call these narrow subregions ‘glimpses’. Most existing scalable approaches initially glance

at an entire scene to locate useful glimpses (see Figure 1.1(a)). While these models process

the complete scene at low resolution or using a lightweight model, they still require a

global view. As mentioned earlier, a global view may not be available or comes at a high

cost in certain applications. Further, in the case of videos, many glimpse-based attention
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(a) (b)

Figure 1.1: Glimpse-based sequential attention models. At time t, models observe a new
(i.e., previously unseen) glimpse-location pair (gt, lt) and use the observation history to
predict label yt and next glimpse location lt+1. (a) Previous attention models also observe
complete global view x to locate informative glimpses. (b) Our attention models never
observe complete scenes; they rely exclusively on local views from past glimpses to make
the above predictions. Unlike previous models, our models assess the informativeness of
a glimpse before observing them.

models are offline. They wait until all video frames are available and assess the complete

video to locate informative glimpses after the action has concluded. Thus, the existing

models are unhelpful for applications requiring online decision-making based on partial

information.

In this thesis, we develop autonomous agents that predict informative glimpse loca-

tions without observing the entire scene, therefore obviating the need for high-resolution,

large FOV cameras. Starting from a glimpse at a given location, the autonomous agents

decide which location to attend to next solely based on the previously observed glimpses.

Consequently, our models predict labels using only local information. They never observe

the complete global view (see Figure 1.1(b)). Further, the models predict labels online;

they start predicting labels based on one glimpse and update their predictions as new

glimpses become available. Due to their online nature, our models are capable of early

exit; they can stop sensing further glimpses when they are sufficiently confident in their

predictions.
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Figure 1.2: Examples illustrating Law of Prägnanz. We inherently connect salient frag-
ments (left) and perceive them as complete shapes (right).

1.2 Approach

The key difference between our problem and previous works is partial observability. In

this section, we discuss our approach to overcome the lack of visual evidence in decision-

making.

Humans observe a fragmented scene as a whole. In Gestalt psychology, this phe-

nomenon is known as the Law of Prägnanz [97] (see Figure 1.2). Further, we assume

a simplest explanation when we perceive a scene as a whole, and often the simplest ex-

planation is the most plausible one. In probability theory, Occam’s razor also favors a

simple explanation over a complex one. But what is considered ‘simple’? In this context,

uniform or perfectly articulated patterns are considered simple. These are the patterns

we encounter routinely and are most familiar to us.

Motivated by this phenomenon, we develop methods that compel our attention models

to observe glimpses and reason about the complete scene. Since we train our models on

natural image datasets, they implicitly gain the ability to incorporate well-articulated

and frequent patterns in the reasoning process. However, note that our end goal is to

perform a given task and not the scene completion. Thus it is not necessary to reason

about every detail of the scene. In fact, we let our models figure out only the task-specific

information from the complete scene.
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To further explain our motivation for task-specific reasoning, let us discuss an interest-

ing eye-tracking study by Alfred L. Yarbus [197]. Yarbus presented human subjects with

an image of ‘An Unexpected Visitor’ and asked them to assess the material circumstances

of a family. In response, the subjects mainly examined clothing and furniture. When the

same subjects were asked to predict the ages of people in the picture, they focused on

people’s faces and hardly looked at their clothing or furniture. The study suggests that

the importance of various regions changes with the task and depends on the amount of

task-relevant information they carry.

Therefore, we mainly focus on task-relevant details when compelling our models to

reason about a complete scene. We ask our models to reproduce a task-specific latent

representation of the scene given the glimpses. We consider a latent representation of

the complete scene predicted by deep layers of a pre-trained neural network as the target

for the above task. Note, while shallow layers of a network extract task-agnostic features

such as color and texture, deep layers identify high-level concepts such as dog, wheel,

etc [201]. This improved reasoning allows our models to understand the relationship

between the seen and the unseen objects in the context of a given task and not distress

over the exact appearances of these objects. To understand this further, let us consider

an example task of identifying indoor vs. outdoor scenes. When our models observe a

glimpse from the grass area, it is sufficient for them to acknowledge the co-occurrence of

clouds in the complete scene. We do not require the models to generate pixels depicting

the exact color, shape, and texture of the clouds.

Reasoning about the complete scene from glimpses is helpful for our models in two

ways. First, it enables our models to recognize the scene better under partial observ-

ability. Second, it encourages our models to observe glimpses that are most informative

of the complete scene, thus learning an effective attention policy. The intuition is that
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our models implicitly learn to relate the observed but ambiguous regions with the unob-

served yet unambiguous regions, and they incorporate the learned semantic and spatial

relationship in decision-making and attention, respectively.

1.3 Thesis Overview

Our goal is to learn attention patterns akin to biological eye movements. Thus, we con-

sider a stationary camera with limited pan and tilt motion. To simplify the task further

and use existing open-source vision datasets, we mimic the limited camera movement by

shifting the glimpse location in a two-dimensional plane within the bounds of images and

video frames. This approach also models cases where an agent with an immobile camera

moves in two dimensions to explore the scene. One example is an aerial device flying at

a specific height and capturing a series of narrow top views to recognize a landmark.

The objective of this thesis is to develop attention models for scenes that are observed

sequentially, either due to hardware or physical constraints. This is a lofty goal. Attention

depends on the task; recall findings from Yarbus’s experiments. Investigating attention

for numerous vision tasks is beyond the scope of this thesis. Rather, we focus on studying

attention for the visual recognition tasks.

We develop separate attention models for static and dynamic scenes. We focus on

image classification for the static case and online action prediction for the dynamic case.

Attention behaves differently in the two cases. When a scene is static (i.e., a single

image), an agent uses attention to explore objects and entities in the scene and to assess

their relationships (see Figure 1.3(a)). On the other hand, when the scene consists of

moving objects or dynamic entities (i.e., a video), an agent uses attention to locate a

moving object and then maintain a steady gaze as it moves (see Figure 1.3(b)).

We develop three attention models, two for image recognition and one for online action
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(a)

(b)

Figure 1.3: Attention for static and dynamic scenes. We show glimpses observed by
our models. Our models do not observe complete scenes; complete scenes are shown for
reference only. (a) Our STAM operates on a static scene. STAM explores the scene to
assess various objects and their relationships. Time increases in raster scan order. (b) Our
GliTr operates on a dynamic scene. GliTr explores the scene to locate an object of interest
(first four glimpses), then maintains a steady gaze on the moving object (remaining
glimpses). Time increases from left to right.

recognition. The two models for image recognition are the Probabilistic Attention Model

(PAM) and the Sequential Transformers Attention Model (STAM). The model for online

action recognition is Glimpse Transformers (GliTr). PAM and STAM observe multiple

glimpses from a single image sequentially. GliTr observes one glimpse per frame from

a live-streaming video. PAM is designed using Convolution Neural Networks (CNN)

and Recurrent Neural Networks (RNN), whereas STAM and GliTr are designed using

transformers.

The above attention models use different techniques to explain the complete scene

from glimpses. Given a set of past glimpses, PAM and STAM reproduce features (a 2D

map) and class distribution of a complete scene, respectively. GliTr observes glimpses

from a live video and reconstructs frame features (1D vectors) and class distribution of a
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spatially complete preliminary video. Since learning a generative model to produce large

2D feature maps requires massive computing and intensive training, we train PAM on

datasets with small images of size 32×32 or 64×64. On the other hand, STAM and GliTr

generate low dimensional quantities (i.e., class distributions and feature vectors); hence,

they scale to datasets with a standard image size of 224×224.

We train all models using gradient backpropagation for optimizing training objectives

related to i) explaining the complete scene and ii) classification. Moreover, since PAM

and STAM select glimpses using non-differentiable cropping, they also use separate mech-

anisms to learn attention policies. PAM decides on an attention policy for a given scene

by performing Bayesian Optimal Experiment Design (BOED) on the generated feature

maps; it selects glimpses with maximum expected information gain. STAM uses rein-

forcement learning to attend to the glimpses that help the most in reproducing the class

distribution of the complete scene. Different from the others, GliTr uses a Spatial Trans-

former Network (STN) to crop glimpses in a differentiable manner and learns attention

through backpropagation. It learns to attend to glimpses that are most informative of

the current state of the scene during an ongoing action.

1.4 Contributions

This thesis looks at a unique problem of developing attention for partially and sequentially

observable scenes. The work presented in this thesis has undergone peer review and

has been published at prominent venues. We list the publications related to the three

attention models and their respective contributions below.
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[142] A Probabilistic Hard Attention Model for Sequentially Observed Scenes.
Samrudhdhi B Rangrej and James J Clark.
British Machine Vision Conference, 2021.

(The author of this thesis led the conceptualization, implementation, and evaluation of

the method under the guidance of James J Clark. The author has open-sourced the cor-

responding codebase. The author also created the illustrations and played a major role

in writing the paper.)

Contributions:

• We develop an attention model called PAM to classify images using a series of

partial observations. Unlike previous approaches, PAM never observes a complete

scene. At each time step, it estimates the EIG of the yet unobserved locations and

attends to a location with maximum EIG.

• To estimate the EIG of unobserved regions, PAM synthesizes their content from

the observed regions. We improve the efficiency of our PAM by synthesizing the

content in the feature space. Further, we use normalizing flows to capture the

multi-modality in inferring complete scenes from partial observations.

• When tested on five public datasets, PAM achieves 2-10% higher accuracy than the

baseline methods when both have seen only a couple of glimpses. While a CNN

achieves ∼90% accuracy on CIFAR-10 with complete images, our PAM achieves

∼80% accuracy after observing only <50% of the total image area.
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[141] Consistency driven sequential transformers attention model for partially
observable scenes.
Samrudhdhi B Rangrej, Chetan L Srinidhi, and James J Clark.
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

(Under the supervision of James J Clark, the author of this thesis conceptualized the

method jointly with Chetan L Srinidhi. The author implemented and evaluated the

method under the guidance of Chetan L Srinidhi and James J Clark. The author has

open-sourced the project’s codebase. The author also played a significant role in creating

the illustrations and writing the paper.)

Contributions:

• We develop a transformers-based RL agent called STAM, which actively senses

glimpses from a scene and predicts class-label based on partial observations. In-

stead of locating informative glimpses by observing an entire image, our STAM

sequentially predicts the next most informative glimpse location based on past

glimpses.

• We propose a consistency-based training objective where STAM must predict a class

distribution consistent with the complete image using only partial observations.

With only 4% of the total image area observed, our proposed objective yields ∼3%

and ∼8% gain in accuracy on ImageNet and fMoW, respectively.

• Our STAM that never observes a complete image outperforms previous methods

that initially glance at an entire image to locate informative glimpses. It starts

exceeding the previous state-of-the-art while sensing 27% and 42% fewer pixels in

glimpses on ImageNet and fMoW, respectively.
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[140] GliTr: Glimpse Transformers with Spatiotemporal Consistency for Online
Action Prediction.
Samrudhdhi B Rangrej, Kevin J Liang, Tal Hassner and James J Clark.
IEEE/CVF Winter Conference on Applications of Computer Vision, 2023.

(The author of this thesis led the conceptualization, implementation, and evaluation of

the method under the guidance of Kevin J Liang, Tal Hassner, and James J Clark. The

author open-sourced the corresponding codebase. The author also created the illustra-

tions and played a key role in writing the paper.)

Contributions:

• We develop GliTr, an online action prediction model that observes only glimpses

and predicts ongoing action based on partial spatiotemporal observations. While

previous work locates glimpses by first observing full frames, GliTr predicts the

next informative glimpse location solely based on the past glimpses.

• We propose a novel spatiotemporal consistency objective to train GliTr without the

ground truth for glimpse location. Under this objective, GliTr must select glimpses

that summarize features and class distribution predicted from the entire frames.

Our proposed consistency yields ∼10% gain in accuracy on SSv2 compared to the

baseline cross-entropy objective.

• Our GliTr that never observes complete frames and recognizes action solely based on

local information gathered through glimpses achieves nearly 53% and 94% accuracy

on the SSv2 and Jester datasets, respectively, while reducing the total area observed

per frame by nearly 67%.
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Contributions of the Author: We present the details of the above contributions in

Chapters 4, 5, and 6. The material presented in the remaining chapters, including the

tables and the figures, is prepared by the thesis author under the guidance of Prof. James

J Clark.

1.5 Materials from Published Works

While this is not a manuscript-based thesis, it contains considerable material from the

following papers. Note that the author of this thesis is the first author of these works.

[142] A Probabilistic Hard Attention Model for Sequentially Observed Scenes.
Samrudhdhi B Rangrej and James J Clark.
British Machine Vision Conference, 2021.

[141] Consistency driven sequential transformers attention model for partially
observable scenes.
Samrudhdhi B Rangrej, Chetan L Srinidhi, and James J Clark.
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[140] GliTr: Glimpse Transformers with Spatiotemporal Consistency for Online
Action Prediction.
Samrudhdhi B Rangrej, Kevin J Liang, Tal Hassner and James J Clark.
IEEE/CVF Winter Conference on Applications of Computer Vision, 2023.

Permissions

BMVA (for [142]): The authors hold the copyright in BMVC papers in every in-

stance [169]. While BMVA (the publisher of the proceedings) holds copyright over the

collection, the authors may use the papers they have authored.

IEEE (for [141] and [140]): The IEEE does not require individuals working on a thesis

to obtain a formal reuse license [57]. However, it requires that the thesis author follows

these requirements:

• The author must give full credit to the source with proper referencing.
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• The author must include the IEEE copyright notice for all figures and tables.

We respect the above requirements and cite the source articles in the thesis at the

beginning of the specific chapters. We also include the copyright notice in all figures and

tables.

1.6 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we provide a brief overview

of a few techniques used in this thesis. In Chapter 3, we review the existing literature.

Chapters 4, 5 and 6 present our attention models, which cover the original contribution

of the thesis. We divide these chapters into two parts. Part I consists of spatial atten-

tion models: our Probabilistic Attention Model (PAM) (Chapter 4) and our Sequential

Transformers Attention Model (STAM) (Chapter 5). Part II focuses on a spatiotemporal

attention model: our Glimpse Transformers (GliTr) (Chapter 6). We conclude with a

discussion of our results and directions for future work in Chapter 7.
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2
Background

Let us discuss several architectures and algorithms employed in developing our attention

models. With the aim of reviving the theoretical understanding of these frameworks,

here we study them without going into much detail about their application in attention

models. During the discussion, we only briefly mention how we use the introduced models

and techniques in the rest of the thesis. We will extend them in the context of attention

in Chapters 4, 5, and 6. When discussing our attention models later in the thesis, we

shall utilize the concepts covered in this background chapter. We provide a list of topics
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Topic Section Model Our usecase

Variational Autoencdoer
(VAE)

2.1 PAM (Chapter 4) generates feature map
of complete scene given
glimpses

Normalizing Flows (NF) 2.2 PAM (Chapter 4) captures multi-modal
posterior in VAE

Bayesian Optimal Exper-
iment Design (BOED)

2.3 PAM (Chapter 4) decides the location of
the next glimpse

One-step Actor-Critic 2.4 STAM (Chapter 5) learns attention policy
Student-Teacher training
paradigm

2.5 STAM (Chapter 5)
GliTr (Chapter 6)

compels models to pro-
duce features and class
distributions of complete
scenes from glimpses

Spatial Transformer Net-
works (STN)

2.6 GliTr (Chapter 6) extracts glimpses and
corresponding position
embeddings in a differ-
entiable manner

Transformers 2.7 STAM (Chapter 5)
GliTr (Chapter 6)

forms the base archi-
tecture of our attention
models

Table 2.1: Topics covered in Chapter 2. We discuss the above-listed topics in this chapter.
We mention their usecase in our attention models.

covered in this chapter in Table 2.1.

2.1 Variational Autoencoder

A Variational Autoencoder (VAE) [93] is a generative latent-variable model. It operates

under the premise that data x is generated from a random process involving an unobserved

random variable z. Specifically, x is generated from a conditional distribution p(x|z)

where z follows a prior p(z). Often, p(z) is assumed to have a known parametric form

such as that of a Gaussian or Uniform distribution. The goal of a VAE is to learn a data

distribution p(x) =
∫
p(x|z)p(z)dz, which poses two challenges. First, we cannot directly
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learn the likelihood p(x|z) as the ground-truth distribution representing an association

between x and z is unknown. Second, the integration with respect to z is intractable.

In response to the first challenge, VAE estimates the likelihood p(x|z) using a decoder

(also known as a recognition network). To learn p(x|z), we infer z ∼ p(z|x) and use the

pair (x, z) to train the decoder. Let’s see how we can compute the posterior p(z|x) using

Bayes’ rule.

p(z|x) =
p(x|z)p(z)

p(x)
=

p(x|z)p(z)∫
p(x|z)p(z)dz

. (2.1)

Unfortunately, the integration in the denominator is intractable; thus, we cannot compute

p(z|x) analytically. Instead, we introduce an encoder (also called an inference network) to

approximate the posterior p(z|x) using a q(z|x). Further, we assume q(z|x) has a known

parametric form and let the encoder emit parameters of this distribution.

Yet, we cannot optimize p(x) =
∫
p(x|z)p(z)dz due to intractable integration i.e., the

second challenge. Instead, we maximize the evidence lower bound (ELBO) on log p(x) to

learn the parameters of the encoder and the decoder. Let us derive the ELBO.

log p(x) = log

∫
p(x, z)q(z|x)

q(z|x)
dz (2.2)

= logEq(z|x)
p(x, z)

q(z|x)
(2.3)

≥ Eq(z|x) log
p(x, z)

q(z|x)
(∵ Jensen’s inequality) (2.4)

= Eq(z|x) log p(x|z) + Eq(z|x) log
p(z)

q(z|x)
(2.5)

= Eq(z|x) log p(x|z) −DKL(q(z|x)||p(z)) (2.6)

The right-hand side of the above equation represents the ELBO. We estimate the ex-
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Figure 2.1: Variational Autoencoder framework. An encoder observes data x and gener-
ates µ and Σ of a multivariate Gaussian posterior. A decoder observes a sample z from
the above posterior and reconstructs x.

pectation of the likelihood (i.e., the first term in equation 2.6) using Monte-Carlo sam-

pling: we draw multiple zs from q(z|x) and compute an average log p(x|z). In practice,

due to mini-batch gradient descent, it is sufficient to draw as low as one z per x for

each parameter update. To backpropagate gradients through the sampling process, we

use a reparameterization trick. Let’s assume that the posterior q(z|x) is a multivariate

Gaussian distribution, and an encoder emits mean (µ = [µ1, . . . , µn]) and co-variance

(Σ = diag(σ2
1, . . . , σ

2
n)) of the Gaussian. Now we draw z in a differentiable manner as

follows.

∀i : zi = µi + σi ⊙ ϵ ; where ϵ ∼ N (0, 1).

Here N (0, 1) is a univariate Gaussian distribution with zero mean and unit variance. We

illustrates the elements of a VAE framework in Figure 2.1.

In Chapter 4, we use a VAE to generate feature maps of complete scenes from glimpses.

Note this is a multimodal problem; we may find multiple plausible complete scenes con-

gruous with the given glimpses. For instance, given that the model observed the sky

region, complete scenes with and without clouds are equally valid. While we assume a

unimodal Gaussian form for the posterior q(z|·) in the above discussion, our scene gener-
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Figure 2.2: Variational Autoencoder with Normalizing Flows. Normalizing flows trans-
form unimodal posterior N (µ,Σ) into a complex posterior of unknown form. We achieve
sample zN from this unknown posterior by transforming a sample z0 ∼ N (µ,Σ) to zN
using normalizing flows.

ation task follows a complex multi-modal posterior of unknown form. To learn complex

q(z|·), we use normalizing flows [95] as described next.

2.2 Normalizing Flows

Normalizing flows map a simple distribution, such as Gaussian, to a complex multi-modal

distribution. Thus, one can achieve a sample from the complex distribution by drawing

a sample from the Gaussian distribution and transforming it using normalizing flows.

In the case of VAEs, normalizing flows map the predicted unimodal Gaussian posterior

q(z0|x) to a complex multimodal posterior q(zN |x) (see Figure 2.2). Normalizing flows

map z0 to zN using a series of differentiable bijections, {f1, f2, . . . , fN}.

zN = fN ◦ · · · ◦ f2 ◦ f1(z0); where z0 ∼ q(z0|x). (2.7)

Examples of neural architectures for normalizing flows are IAF [95], MAF [136], NICE

[46], Real NVP [47], Glow [94], NAF [74], BNAF [42], RAD [48], NSF [50], etc. Figure

2.3 illustrates transformations through Glow when q(zN |·) is a mixture of Gaussian. Let

21



(z0) (z20) (z40)

(z60) (z80) (z100)

Figure 2.3: Invertible transformations through normalizing flows. Normalizing flows
(here, the Glow model [94] with N = 100) transform samples from a Gaussian distri-
bution to samples from a mixture of Gaussians distribution.

us use a change of variable formula to establish a relationship between q(z0|·) and q(zN |·).

q(zN |·) = q(z0|·)
N∏

n=1

|det(Jfn)|−1, (2.8)

where Jfn is a Jacobian of fn. An important property of the normalizing flows is that we

can use the law of the unconscious statistician (LOTUS) to compute expectations of any

quantity g(zN) with respect to q(zN |·) without knowing its explicit formula.

Eq(zN |·)[g(zN)] = Eq(z0|·)[g(fN ◦ · · · ◦ f1(z0))] = Eq(z0|·)[g(f1:N(z0))]. (2.9)

Let us rewrite the ELBO using LOTUS. Below we incorporate equation 2.8 in equa-

22



tion 2.5.

ELBO = Eq(zN |x)

{
log p(x|zN) + log p(zN) − log q(zN |x)} (2.10)

= Eq(z0|x)

{
log p(x|f1:N(z0)) + log p(f1:N(z0)) − log q(z0|x) +

N∑

n=1

log |det(Jfn)|
}

(2.11)

Recall, the prior p(zN) = p(f1:N(z0)) = N (0, I). The encoder and the decoder of a VAE

predict q(z0|x) = N (µ,Σ) and p(x|zN), respectively.

2.3 Bayesian Optimal Experiment Design

In Chapter 4, we use Bayesian Optimal Experiment Design (BOED) to decide which

glimpse location should be attended to next. Let us review the general framework of

BOED in this section. We will discuss BOED in the context of attention in Chapter 4.

BOED helps us decide which experiment should we conduct to collect the most in-

formative data. Specifically, given a set of experiments ∆, BOED finds an optimal ex-

periment δ∗ ∈ ∆ with maximum utility U [31]. A utility function U(δ, α, o) defines

the gain from choosing to perform experiment δ resulting in observation o with the in-

terest parameter value α. Thus, optimizing U with respect to δ requires knowledge of

p(α, o|δ) = p(α|o, δ)p(o|δ).

δ∗ = argmax
δ∈∆

Eα,o{U(δ, α, o)} (2.12)

= argmax
δ∈∆

∫

o

∫

α

U(δ, α, o)p(α, o|δ) do dα (2.13)

= argmax
δ∈∆

∫

o

{∫

α

U(δ, α, o)p(α|o, δ)dα
}
p(o|δ)do (2.14)
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Figure 2.4: Information Gain as a utility function for Bayesian Optimal Experiment
Design (BOED). We compare two experiments δ1 and δ2 by assessing their respective
information gain (i.e. divergence between posterior p(αo, δ) and prior p(α). We favor δ2
over δ1 due to higher information gain.

The expected utility function can be defined in various ways depending on the task.

A few examples of expected utility functions are feature variance [76], uncertainty in the

prediction [124], and expected Shannon information [117]. In Chapter 4, we will use

expected information gain (EIG) as our utility function.

2.3.1 Expected Information Gain

We measure the informativeness of an experiment δ resulting in observation o using

information gain,

IG(o, δ) = DKL[p(α|o, δ)||p(α)]. (2.15)

To understand how information gain works as a utility function, let’s consider two

experiments δ1 and δ2 resulting in observations o1 and o2. As shown in Figure 2.4, we

compute posterior p(α|o, δ) for both experiments and assess their respective information

gain. Since δ2 achieves higher information gain than δ1, we consider δ2 to be a more
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useful experiment than δ1
1.

Note that IG (equation 2.15) requires knowledge of observation o, which is not avail-

able prior to an experiment. Thus, we compute the expectation of IG over all possible

observations that experiment δ can yield. This gives us the Expected Information Gain,

EIG(δ) = Ep(o|δ)DKL[p(α|o, δ)||p(α)]. (2.16)

We can also reach EIG as the expected utility function by using U(δ, α, o) = [log p(α|o, δ)−

log p(α)] in equation 2.14.

δ∗ = argmax
δ∈∆

Ep(o|δ)

{∫

α

U(δ, α, o)p(α|o, δ)dα
}

(2.17)

= argmax
δ∈∆

Ep(o|δ)

{∫

α

[log p(α|o, δ) − log p(α)]p(α|o, δ)dα
}

(2.18)

= argmax
δ∈∆

Ep(o|δ)DKL[p(α|o, δ)||p(α)] (2.19)

= argmax
δ∈∆

EIG(δ) (2.20)

The above equation 2.20 presents the formula for BOED with EIG as the expected utility

function. In practice, we use a neural network fθ to model p(α|o, δ). Moreover, we

learn a generative model gϕ, such as a VAE, to model p(o|δ). Finally, we compute the

expectation in equation 2.16 by probing p(α|o, δ) = fθ(o, δ) at Monte Carlo samples

o ∼ p(o|δ) = gϕ(δ).

1An example based on [83].
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2.4 One-step Actor-Critic

In Chapter 5, we consider glimpse-based attention to be a Partially Observable Markov

Decision Process (POMDP). In POMDP, an autonomous agent perceives a world via a

series of partial observations collected through task-aware interactions. At time t, the

sequential agent summarizes its perception of the world in a Markov state st. At t + 1,

the agent uses st to decide and take an action at+1 yielding observation ot+1. It uses

(at+1, ot+1) to update the state to st+1.

We teach the agent to interact with the world using reinforcement learning. Specifi-

cally, we use a module called an ‘actor’ to learn a parameterized policy πθ(at+1|st), repre-

senting a probability distribution over actions at+1. During training, when an agent takes

an action at+1 ∼ πθ(at+1|st), we award it a reward Rt+1 indicating the utility of action

at+1. Let us define return Gt to be the sum of the future rewards, i.e., Gt =
∑T

t′=t+1Rt′ .

We can learn parameters θ by following gradients for a criterion maximizing Gt. However,

it updates the parameters only once at the end of the episode since the calculation of Gt

requires rewards from t′ > t. To improve efficiency in the learning process, we use the

One-step Actor-Critic Method [164].

One-step Actor-Critic provides the actor immediate feedback using a separate module

called a ‘critic’. A critic learns a parameterized value function vω(s) estimating the

expected return Gt given the current state st. Since we require

vω(st) ≈ Eπ[Gt] = Eπ[Rt+1 + Gt+1] ≈ Eπ[Rt+1 + vω(st+1)], (2.21)

we learn ω by minimizing difference between Eπ[Rt+1 + vω(st+1)] and vω(st). For mini-
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batch training, this results in the following update rule.

δ = (Rt+1 + vω(st+1)) − vω(st), (2.22)

ω = ω + αωδ∇vω(st); (2.23)

where αω is the learning rate for ω. Note that vω(st+1) is only used to compute targets

for vω(st); we do not compute gradients with respect to vω(st+1).

An actor must learn a policy that achieves maximum return. Thus, when at+1 achieves

lower return than Eπ[Gt] ≈ vω(st), we penalize πθ(at+1|st). We estimate the deficit in

return as (Rt+1 + Eπ[Gt+1]) − Eπ[Gt+1] ≈ (Rt+1 + vω(st+1)) − vω(st). Recall we already

defined this quantity as δ in equation 2.22. From this point of view, δ is also known as

(lost) advantage. Penalizing policy by δ gives us an update rule,

θ = θ + αθδ∇ log πθ(at+1|st); (2.24)

where αθ is a learning rate for θ. Note that δ is only used as a penalty; we do not update

ω through δ. We outline the process of training through the one-step actor-critic method

in Algorithm 1.

2.5 Student-Teacher Training Paradigm

The student-teacher training paradigm is a prevalent technique in machine learning. The

idea is to let a Teacher model predict the class distribution p(y|·) (or features) for a given

image x and use the predicted distribution (or features) as a ‘soft’ target for the Student

model. The student model replicates p(y|·) (or features) from the same or the augmented

image x′.
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Algorithm 1 One-step Actor-Critic Algorithm

1: Initialize parameters θ and ω;
2: Define learning rates αθ and αω;
3: repeat
4: Initialize s0;
5: for t ∈ {0, . . . , T − 1} do
6: at+1 ∼ πθ(at+1|st);
7: Take action at+1, observe ot+1 and Rt+1, predict state st+1;
8: δ = (Rt+1 + vω(st+1)) − vω(st); (vω(st+1) = 0 if t = T − 1)
9: ω = ω + αωδ∇vω(st);
10: θ = θ + αθδ∇ log πθ(at+1|st);
11: end for
12: until Convergence

Let us refer to the prediction from the student model as q(y|·). We train the student

model by minimizing the forward or the reverse KL divergence between p(y|·) and q(y|·),

Lforward = DKL[p(y|x)||q(y|x′)], (2.25)

Lreverse = DKL[q(y|x′)||p(y|x)]. (2.26)

The forward KL divergence favors mean-seeking behavior, whereas the reverse KL diver-

gence favors mode-seeking behavior. (We use mean squared error for the image features

predicted using the student and the teacher.)

The success of this training paradigm relies upon the fact that the soft targets are

often more informative than their hard counterparts. Unlike hard targets (i.e., one-hot

labels), soft targets (i.e., distributions) carry information regarding incorrect but more

likely categories for the given image. However, achieving soft annotation is an extremely

challenging and error-prone process. Therefore, we use a teacher model to learn the soft

labels from the hard labels. Consider an example from Figure 2.5. While the hard ground

truth label (y) only communicates that the semantic category of the given image (x) is

‘Dog’, a soft target from the teacher (p(y|x)) informs the student that the image of a dog
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Figure 2.5: Student-Teacher Training Paradigm. A teacher model predicts class distri-
bution p(y|x) for a given image x. We use p(y|x) as soft targets for the student model.
The student model reproduces the soft targets from an augmentation of x.

is semantically more similar to an image of a cat than an image of a car.

Since its inception [72], the student-teacher training paradigm has been widely used

in different but related methods. Let us discuss a few of these methods below.

Knowledge Distillation [72]. While optimizing for hard labels, we penalize a model

uniformly for incorrect prediction. Thus a model has no incentive to move away from

an incorrect and less likely prediction to an incorrect yet more likely prediction. This

phenomenon hurts a small model more than a large model. While large models are more

accurate, they require more memory and computations. Instead, we consider a large

model as a teacher model and distill its knowledge into a compact student network. A

student model learns better representations through soft targets and achieves improved

performance, often on par with a large teacher model.

Unsupervised representation learning. So far we discussed supervised training with

labeled data. However, the student-teacher training paradigm is also used for unsuper-

vised learning. Among many, one unsupervised representation learning objective is to

bring the latent representations of two augmented versions of the same image closer to

each other. Usually, this entails creating a teacher model by copying either the latest or

the moving average weights of a student model. Then we input random augmentations
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of the same image, say x′ and x′′, to the teacher (fT ) and the student (fS) and minimize

the distance between fS(x′) and fT (x′′). Once trained, we discard the teacher model.

Examples of this method are BYOL[64], SimSiam[33], and DINO[29].

Consistency Learning. Sometimes we have only limited labeled data but abundant

unlabeled data. In consistency learning, we train a model on these two datasets simulta-

neously. We use labeled data to train a model in supervised fashion. For the unlabeled

data, we create a copy of the model and consider it as a teacher model. We input a weakly

augmented unlabeled image (x′) to a teacher model and compute p(y|x′). Next, we input

a heavy augmentation of the same image (x′′) to the original (student) model and produce

q(y|x′′). Finally, we minimize the distance between the predicted q(y|x′′) and soft targets

p(y|x′) using equation 2.25 or equation 2.26. Once again, we discard the teacher model

at the end. Examples of this approach are FixMatch [159] and RemixMatch [19].

We use the above ideas in Chapters 4 and 6 to explain the complete scene from the

partial observations. We consider partial observations as a type of image augmentation.

Then, we input the complete image to a pretrained teacher model to predict soft targets:

latent representations and class distributions. Different from above, we use a separate

pretrained teacher model to achieve stable targets. Our attention models act as students

and reproduce the above targets from partial observations. Further, in Chapter 6, we

improve performance of our model using knowledge distillation.

2.6 Spatial Transformers Network

A Spatial Transformers Network (STN) [85] computes an affine transformation of an

input in a differentiable manner. Consider an image (or a feature map) P ∈ RH×W×C

with pixels sampled at regular sampling grid Gp = {(xp
i , y

p
i )|i ∈ {1, . . . , HW}}. STN

predicts a 2D affine transformation matrix Aθ and transforms Gp to Gq by applying
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Figure 2.6: Spatial Transformers Network (STN). STN transforms the sampling grid Gp

to Gq using the affine transformation matrix Aθ and resamples pixels on the transformed
grid in a differentiable manner.

element-wise transformation on each coordinate (xp
i , y

p
i ) as follows.



xq
i

yqi


 = Aθ




xp
i

ypi

1




=



θ11 θ12 θ13

θ21 θ22 θ23







xp
i

ypi

1



. (2.27)

Then, it resamples P on grid Gq = {(xq
i , y

q
i )|i ∈ {1, . . . , H ′W ′}} using a differentiable

sampling kernel k to achieve spatial transformation Q ∈ RH′×W ′×C .

Qc
i =

H∑

n

W∑

m

P c
nmk(xq

i −m)k(yqi − n); ∀i ∈ {1, . . . , H ′W ′}; ∀c ∈ {1, . . . , C}.

(2.28)

A popular choice for k is the bilinear sampling kernel. We illustrate affine transformation

(equation 2.27) and resampling (equation 2.28) in Figure 2.6. In Chapter 6, we use spatial

transformer networks (STN) to extract square glimpses from a square video frame. Our
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affine transformation matrix is

Aθ =



s 0 tx

0 s ty


 , (2.29)

which allows cropping, scaling, and translation of the glimpse region. We set s to a

predetermined value based on our model’s field of view.

2.7 Vision Transformers

In its simplest form, a Vision Transformer (ViT) [49] predicts class label y for an image x.

ViT is a stack of transformer encoder layers [178], and therefore, a sequence-to-sequence

model. It views an image x as a sequence of non-overlapping patches. We append a class

token to this sequence and let ViT process it to pool information from image patches to

the class token. A linear classifier uses the resultant class token to predict label y. Below,

we provide more details on the transformer encoder layers and the input formation.

Transformer Encoder Layers. We show the architecture of a transformer encoder

layer in Figure 2.7 (right). Each encoder layer processes a sequence of vectors ν =

[νT
1 ; νT

2 ; . . . ; νT
N ] ∈ RN×D. The functional representation of an encoder layer is as follows.

ν = ν + MHA(LN(ν)), (2.30)

ν = ν + MLP (LN(ν)); (2.31)

where LN is a LayerNorm [14], MLP is a multi-layer perceptron and MHA is a multi-

head self-attention layer[178]. MHA is a collection of multiple parallel single-head self-

attention (SHA) layers, MHA(·) = [SHA1(·), SHA2(·), . . . ]. A single self-attention head
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Figure 2.7: Vision Transformers (ViT). (Left) ViT processes a sequence of image patches
to predict label y. Given the linear projection of the image patches, class token and op-
tional distillation token, ViT predicts pg(y|x) and optionally pd(y|x). Following Touvron
et al. [172], we refer to a ViT with distillation as DeiTD. (Right) ViT consists of trans-
former encoder layers. Each encoder layer is a stack of two residual blocks, one with a
multi-head attention and one with a multi-layer perceptron.

computes the following functions.

Q,K, V = fQ(ν), fK(ν), fV (ν), (2.32)

Attn(Q,K, V ) = softmax
(QKT

√
dK

)
V ; (2.33)

where fQ, fK and fV are linear projection layers. Recall that ν is a series of vectors. As

a result, the above operations yield a series of vectors where each vector is a weighted

average of all vectors in ν. Note that self-attention is ‘soft’ attention, fundamentally

different from the ‘hard’ attention we seek to pursue in this thesis. While hard attention

only attends to a limited region of a scene, soft attention attends to all regions but with

varying emphasis [125, 195]. We further discuss soft and hard attention in Section 3.1.2.

Input and Output Formulation. To let a ViT process an image of size H × W ,
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STN

Figure 2.8: Patches and position embeddings (in yellow) for a glimpse-based ViT. A
glimpse-based ViT processes patches from the observed glimpses only. (left) We extract
non-operating glimpses from an image. We select position embeddings for the image
patches covered by the glimpses and discard the rest. (right) We extract a glimpse on
real coordinates within the bounds of a video frame. We pass a frame and the matrix
of position embeddings to an STN. The STN returns a glimpse and a set of interpolated
position embeddings associated with the glimpse-patches.

we first divide an image into N patches of size P × P (i.e., N = HW/P 2). We input

flattened patches to a learnable Linear Projection layer and compute patch tokens, each

of size D. Next, we concatenate a classification token, an optional distillation token (for

DeiTD [172]), and the above patch tokens to form a sequence. Note that the classifica-

tion and the distillation tokens are learnable vectors of size D. Since the transformer

encoder is invariant to input permutations, we inject knowledge about spatial order by

adding learnable positional embeddings to the above sequence of tokens. We process the

resultant sequence (ν) using transformer encoder layers, as discussed above. We separate

output corresponding to the classification and distillation tokens and pass them to two

independent linear classifiers to predict pg(y|x) and pd(y|x), respectively. We evaluate su-

pervised and distillation criteria on pg(y|x) and pd(y|x), respectively. We show a complete

overview of Vision Transformers (ViT) in Figure 2.7 (left).

In Chapters 5 and 6, we use a ViT for glimpse-based attention. To process glimpses,

we form an input sequence using patches from the glimpse regions only. Therefore, we

need to extract position embeddings corresponding to the glimpse patches. We discuss
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the process of glimpse and position embedding extraction below. The class and the

distillation tokens and their position embeddings are the same as discussed above.

Recall, the position embeddings for the image patches are of size HW/P 2×D, where

each D-length embedding learns a representation of the corresponding patch location.

Let us reshape the embeddings into a matrix of size H
P
× W

P
×D and keep them aside. In

Chapter 5, we extract non-overlapping glimpses from an image. Further, the glimpses are

of size mP ×mP . To process glimpses using a ViT, we only input the patches from the

glimpse region to the linear projection layer. We identify the location of these patches

in the image and extract corresponding position embeddings from the embedding matrix

that we previously kept aside (see Figure 2.8 (left)). Further, in Chapter 6, we extract

an nP × nP glimpse centered at location l ∈ R2 in the given video frame. We extract

a glimpse and the corresponding position embeddings by passing a frame and the above

matrix of embeddings to the STN (described in Section 2.6). The STN outputs a glimpse

of size nP × nP and a matrix of n× n interpolated position embeddings. We extract n2

glimpse patches of size P × P and their corresponding n2 position embeddings from the

above output. We illustrate this process in Figure 2.8 (right).
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3
Literature Review

This chapter reviews literature related to attention, recognition, and reasoning from par-

tial observations. We aim to provide a reader with a starting point and to assist in

developing a basic understanding of the field. We also shed light on the aspects where

our research builds on previous works versus when we make an original contribution. We

do not rely on a deep understanding of the presented material in the remaining chapters.

If essential, we review a few works again in Chapters 4, 5, and 6 and compare and contrast

them with our attention models at greater length.
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3.1 Attention

Vision scientists have been studying attention for more than half a century. In this

section, we provide an overview of seminal works in the area of discrete glimpse-based

attention. We start with early models and move on to more recent work. We group

recent works into several categories and signal the categories that apply to our models.

3.1.1 Early Work

Early traces of visual attention can be found in multi-scale edge detection algorithms.

Kelly [91] proposes locating edge regions on a coarser scale and attending to them on a

finer scale. Fukushima [58] proposes neural networks that attend to and recognize pat-

terns in an image sequentially. At a time, the network facilitates signals from the most

active pattern and inhibits remaining signals. The process continues for the following

most active pattern until all patterns are attended. Koch and Ullman [96] propose a

winner-take-all algorithm to select the most conspicuous regions sequentially. They in-

hibit previously attended areas to shift attention to the next most salient region. Later,

Itti et al.[82, 81] extend the winner-take-all method by employing image saliency as a

conspicuous map. They proposed to fuse elementary features such as colors, intensity,

and orientation to model image sliency. Clark and Ferrier [35] develop a control system

for a binocular image acquisition device based on the above methods. Ahmad [2] pro-

poses a SWIFT strategy to search for an object of interest among many distractors. Since

the feature channels corresponding to numerous distractors should be highly active, their

idea is to prioritize searching an object in the feature channel with minimal activity. On

the other hand, Olshausen et al.[131] develop a biologically plausible attention model to

form position and scale-invariant object representations based on the dynamic routing
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of information. Swain and Ballard [165] develop a histogram-based method to attend to

the instances of known objects. They detect the presence of a known object in the scene

using histogram intersection and locate the object using the histogram back-projection

method. For spatiotemporal attention, Burt [22] proposes to generate pyramids and to

fixate on those locations on a finer scale where an event is detected on a coarser scale.

For the tracking problem, they compute motion vectors from coarser scales of two frames

and update them after attending to finer scales.

3.1.2 Recent Work

Graphical Models for Attention

Several researchers use graphical models to describe visual attention. Rimey and Brown

[147, 148] model context-independent eye movements using the Hidden Markov Model

(HMM). To adapt eye movements for the given scene, they incorporate visual feedback

in an HMM and call it the Augmented Hidden Markov Model (AHMM). Larochelle and

Hinton [107] introduce Fixation Restricted Boltzmann Machine (Fixation RBM) with

third-order connections to learn a relationship between the context, the location of fix-

ations, and the internal representation of a scene. The Fixation Neural Autoregressive

Distribution Estimator (Fixation NADE) [207] is an extension of above method. Unlike

Fixation RBMs, Fixation NADE learns better representation due to exact gradients and

achieves higher performance. Denil et al.[44] develop an attention model for simultane-

ous object detection and tracking. Their model consists of two interacting pathways -

identity and control - implemented using RBM and particle filters, respectively. Tang et

al.[168] develop an attention-based generative model. They proposed to learn a genera-

tive Gaussian Deep Belief Network (GDBN) for human faces by attending to the faces in

natural images using dynamic routing [131].
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Reinforcement Learning for Attention

Many use reinforcement learning to train attention models. Paletta et al.[132] model

attention-based object recognition as a Markov Decision Process (MDP). They use Q-

learning with the reward that measures information gain in the posterior of the object

hypothesis. Butko and Movellan [23] model eye movements as Information-gathering

Partially Observable Markov decision process (I-POMDP) and use a policy gradient algo-

rithm with the infomax reward function to learn attention policy. Later, they extend the

I-POMDP method to locate multiple targets in a large image [24]. They replace classical

raster-scan windowing in the Viola-Jones face detector with attention-based windowing

and report improved runtime.

Deep Reinforcement Learning for Attention

Recurrent Attention Model (RAM) [125] is the first glimpse-based deep attention model.

RAM sequentially observes glimpses from images and videos. At each time step, it

predicts task-specific labels and the location of the next glimpse. RAM learns attention

policy using REINFORCE algorithm, with the reward being the accuracy of a model.

Later, Xu et al. [195] use the above method for the caption generation task. They also

present another attention method where a model observes all regions of a scene, not

just glimpses, but with varying degrees of importance; they refer to this method as ‘soft

attention’. Recall Vision Transformers (ViT) from Section 2.7 use soft attention. To

differentiate the discrete glimpse-based attention from soft attention, Xu et al. call the

former ‘hard attention’. Figure 3.1 characterizes the difference between soft and hard

attention. Since its inception, hard attention has been employed for many vision tasks

such as image captioning [195], multiple object recognition [189, 12], localization and

recognition [118], active object localization [27], 3D scene classification and 3D object
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Figure 3.1: Soft and Hard Attention. Soft attention observes all regions of a scene with
varying weights. Hard attention observes only discrete regions.

recognition [87], playing Atari games [161], autonomous driving [152], unsupervised scene

exploration [86], etc. We discuss hard attention for recognition tasks at length in Section

3.3.

Other Approaches

A few recent works propose alternate approaches to attention. Ranzato [143] considers

the location of the next glimpse as a latent variable and optimizes the model using an

EM-like algorithm. Ba et al. [13] introduce weighted Wake-Sleep algorithm to RAM [125]

and develop techniques to improve convergence rate. Alexe et al.[3] propose a voting-

based nearest neighbor region selection. A few works [63, 52] use Spatial Transformer

Networks [85] (described in Section 2.6) to make glimpse-based attention differentiable.

Another line of works [156, 155] suggest sampling attention-worthy regions from self-

attention or certainty maps.

The models presented in this thesis follow different techniques for attention. Our

PAM (Chapter 4) uses Bayesian Optimal Experiment Design (BOED) to plan attention.

Our STAM (Chapter 5) uses reinforcement learning. Our GliTr (Chapter 6), on the other
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hand, uses differentiable STN and learns attention through task-specific objectives.

3.2 Active perception

Attention is closely related to the problem of ‘learning where to look’, also known as

‘view-planning, ‘active selection’ or ‘active vision’ [192, 43, 45, 154]. The problems of

active vision and visual attention are different in the following ways. In active vision, an

agent has more degrees of freedom, and it continuously relocates to evaluate a scene from

multiple viewpoints. In visual attention, the agent is temporarily static and only makes

eye movements to sense small parts of a given view sequentially. A large body of work

focuses on actively perceiving a 3D environment for scene recognition and localization

[27], manipulating a 3D object for recognition [4], active vision-based view-planning [192],

navigation and localization [41], etc. Moreover, a few works focus on fast and timely active

agents that start recognizing objects, though imperfectly, from the very first viewpoint

and update the decision as time progresses [88, 8, 9].

3.3 Recognition with Partial Observations

This thesis presents attention models for image and action recognition. In this section, we

review these two problems. Note that scene recognition has the most extended presence

in the history of computer vision. Our goal is not to provide an in-depth literature review

of these problems. Here, we only provide an overview of some milestone works related

to the methods used in the thesis. Specifically, we focus on works related to glimpse-

based attention. We contrast these works with our models and highlight our original

contributions.
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3.3.1 Image Recognition

Mnih et al. [125] apply RAM to the MNIST image classification task. Ba et al. [12] extend

RAM for multiple object localization and recognition. Since they also increase the depth

of RAM, they call their model Deep RAM or DRAM. They apply DRAM to the task

of recognizing sequences of numbers. Later, Sermanet et al. [157] evaluate DRAM on

ImageNet – a natural image dataset. With the sole purpose of improving the efficiency

of recent state-of-the-art image recognition models, Glance and Focus Net (GFNet) [187]

adapts ideas from RAM and DRAM in recent models and devises a confidence-based

early exit strategy. Recently, a few ideas from classic attention models are reintroduced

in hard attention models. First, to improve the interpretability of image recognition,

‘what’ and ‘where’ attention pathways are reintroduced in a hard attention model called

Saccader [51]. Second, a hard-attention model called Traversal Network (TNet) [135]

visits informative glimpses from a multiscale image pyramid in a top-down fashion.

Most previous hard attention models initially glance at a complete image to locate

the most informative glimpses. For instance, Saccader [51] analyses the complete image

at its original resolution; whereas DRAM [13], TNet [135], and GFNet [187] observe the

complete image at low resolution. Furthermore, TNet [135], and GFNet [187] use the

low-resolution gist of an image to predict the class label. In contrast, our models do not

look at the entire image at low resolution or otherwise. We predict the attention-worthy

glimpse locations and the class of the complete image solely based on partial observations.

From this perspective, RAM [125], which also operates under partial observability, is

the closest related approach. While RAM is trained using REINFORCE, we train our

PAM model using differentiable objectives. While RAM and our PAM perform well

on small datasets, our ViT-based STAM model scales to large-scale real-world datasets
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(e.g., ImageNet). Note, due to the transformers architecture, STAM uniquely uses soft

attention for the glimpses selected using hard attention.

We note that the hard attention models differ from another related set of approaches

that observe an entire image to select all informative image patches simultaneously. Ex-

amples of these approaches are region proposal networks [146], top-K patch selection [5,

37], multiple-instance learning [78], attention sampling [89] and PatchDrop [175]. The

above approaches observe an entire image and find all attention-worthy patches simulta-

neously. Unlike these approaches, our hard attention models do not observe the entire

image and predict the location of informative sub-regions sequentially.

Further, in the space of Vision Transformers, methods such as PS-ViT [199], Dynamic-

ViT [144], and IA-RED2 [133] start with observing a complete image and progressively

(re-)sample most discriminative patches in each successive transformer block. Unlike the

above approaches, our STAM samples and inputs only informative patches to the ViT.

Moreover, as mentioned earlier, our STAM is sequential in nature; it senses only one

additional glimpse at each step.

3.3.2 Action Recognition

Many state-of-the-art methods perform offline action recognition once the entire video is

available [53, 55, 30, 90, 173, 174, 181, 183]. Recently, hard attention has been applied to

offline video action recognition. Wang et al.[180] propose a DRAM-style action recogni-

tion model. However, they locate multiple glimpses in the feature space. Huang et al.[75]

extend their image-based Glance and Focus Net (GFNet) for videos. They locate useful

glimpses by processing complete videos using a global model, then process these glimpses

using a local model to recognize the action. Baradel et al.[17] present Glimpse Cloud, an

attention model for human activity recognition. Glimpse Cloud tracks an unstructured
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cloud of glimpses over time using multiple trackers, soft assigned using memory. Mac et

al.[122] propose a spatiotemporal sampling scheme where they observe a complete video

at low resolution using transformers and sample useful locations from the attention maps.

They observe the sampled regions at high resolution and use them to perform recogni-

tion. Note the above models locate and observe multiple informative glimpses per frame.

On the other hand, Chen et al.[32] develop a 3D Attention (A3D) model to sequentially

locate the most informative spatiotemporal glimpses from the 3D features extracted from

a complete video. Another line of approaches leverages pose information and focuses

only on the relevant body parts [16, 40]. Note these works access full frames to locate

informative regions. In contrast, our GliTr model never observes complete frames; it only

observes a narrow glimpse from each frame. Further, our GliTr does not assume access

to a temporally complete video.

The offline models discussed above are not optimized for the case where the entire

video is yet to be available, and the models have to predict the action based on a pre-

liminary, incomplete video. Performing an online or early action recognition based on

a temporally incomplete video is a challenging task. A partially observed video may

associate with multiple possible actions, leading to inherent uncertainty in the predic-

tion task. Several methods focus on predicting actions from partial videos. Zhao and

Wildes [204], Wu et al. [191], and Pang et al. [134] anticipate future actions based on the

motion and object relations in the past frames. Many analyze micro-motions in the avail-

able early frames [163, 105, 100, 98]. Other approaches such as dynamic bag-of-words

[150], global-local saliency [103], memorizing hard-to-predict samples [99], soft regres-

sion with multiple soft labels [73], and probabilistic modeling [112, 28] are also used.

There exist only a few glimpse-based online action prediction models. Recent Adafocus

and Adafocusv2 models [186, 188] include spatial glimpse-based attention to online ac-
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tion recognition. Similar to DRAM [12] for image recognition, these models observe the

recent frame completely to locate the most informative glimpse. Although, Adafocus,

Adafocusv2, and other previous models only consider partial observability in the tempo-

ral dimension. They assume that the recent frames are spatially complete. In contrast,

our GliTr operates with spatially and temporally incomplete information. Further, the

glimpse-based Adafocus and Adafocusv2 operate in offline mode for the datasets with

long actions covering a wide temporal horizon. On the other hand, our GliTr operates in

online mode for these datasets well.

3.4 Explaining a Scene from Partial Observations

Our attention models perform recognition from incomplete information. To overcome par-

tial observability, we force our models to reason about the complete scene from glimpses,

which achieves two goals. First, it compels our models to observe glimpses that are most

descriptive of the complete scene. Second, it improves recognition by forcing the model

to view glimpses as part of a holistic scene.

In this section, we review the literature in two categories. First, we review the litera-

ture for scene completion from partial observation. Recall we require our PAM model to

generate a feature map of a complete scene from glimpses. Second, we discuss consistency

learning and related methods. Recollect, we ask our STAM and GliTr to produce features

and class distribution consistent with the complete scene but using glimpses.

3.4.1 Image Completion

Image completion methods aim at synthesizing unobserved or missing image pixels condi-

tioned on the observed pixels [198, 137, 77, 182, 196, 185]. Often, depending on whether

the number of observed pixels is greater than or less than the number of unobserved
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pixels, the image completion task is known as ‘inpainting’ or ‘outpaining’. In this thesis,

we are interested in outpainting. Image outpainting is an ill-posed problem with mul-

tiple possible solutions for the missing image regions. Zhang et al. [202] use generative

adversarial networks (GAN) with a feature pyramid discriminator to generate multiple

high-quality images given only a small observed region. Cai and Wei [25] develop PI-

IGAN, which combines different image styles with the observed regions for pluralistic

image completion. Zhao et al. [205] propose UCTGAN, where they learn probabilistic

manifold mapping between partial and complete images and use the map to translate the

former to the latter. Zheng et al. [206] propose a model with reconstructive and genera-

tive branches. The latter infers the posterior of the former to generate images based on

partial observations.

While the above approaches use either GAN or a combination of GAN and VAE

for multiple predictions, few researchers propose purely probabilistic methods. Sohn et

al. [160] develop the seminal Conditional Variational Autoencoder or CVAE for a condi-

tional generation. Garnelo et al. [60, 59] develop neural processes, a neural counterpart

of Gaussian processes, and utilize them for a conditional generation. In our PAM model,

we use Partial VAE (PVAE) [121] to predict the content of the complete image given

only a few glimpses. PVAE posits that the seen and unseen regions are conditionally

independent, given that they share a common latent space. Thus, we infer a latent code

from seen regions and use them to generate unseen regions. However, unlike the original

PVAE that infers image content in the pixel space, we predict content in the feature

space.
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3.4.2 Consistency Learning

Consistency learning, an idea initially proposed by Sajjadi et al.[151], has become an

essential component in many recent semi-supervised learning (SSL) algorithms [159, 193,

19, 104]. Consistency learning acts as a regularizer that enforces the model output to be

invariant to different augmentations of the same input [159, 193, 19, 114], or variations in

the internal representations [15, 151], or the model parameters at different training epochs

[104]. Consistency is achieved by using the predictions made from one perturbation as

pseudo-targets for the predictions made from another perturbation. Refer to Section 2.5

for more details.

Another closely related idea in SSL is that of pseudo-labeling [110, 7, 138], where

a trained model, known as ‘teacher model’, generates soft (continuous distributions) or

hard (one-hot distributions) pseudo-labels for the unlabeled data under no perturba-

tions. These pseudo-labels are later used as targets while training a student model with

unlabeled examples under some perturbations [194, 20]. This approach is similar to

Knowledge Distillation [72], where the student is trained to reconstruct the output or

internal representation [1] of the teacher, but for labeled data.

Image consistency

In Chapter 5, we develop consistency training objectives based on the above concepts. We

train our models to be invariant to specific type of input perturbations, i.e., the partial

and the complete observations. Furthermore, we use a teacher model to produce soft

pseudo-labels from an entire image and use them as targets while training our student

models using partial observations.
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Video consistency

Many early action recognition models learn to predict the class distribution consistent

with the complete video using only a subset of early frames [26, 56, 101, 139, 184]. Others

have also leveraged spatiotemporal consistency for complete frames [171, 54]. Unlike

previous work, in Chapter 6, we use a teacher model that predicts class distribution in an

online fashion, i.e., using complete frames from a preliminary video. Our student model

reproduces the above class distribution in an online manner but using only glimpses from

the corresponding frames. Since this objective forces our student model to be consistent

in the temporal dimension, we call it temporal consistency.

Moreover, our teacher model also provides per-frame features from spatially complete

frames. We let our student model reproduce these features from glimpses extracted from

the corresponding frames. Since this objective makes our student model consistent in the

spatial dimension, we refer to it as spatial consistency. Note our spatial consistency is sim-

ilar to the unsupervised SSL methods such as BYOL [64], SimSiam [33], and DINO [29].

Like these methods, we enforce consistency between features of two augmentations of

the same frames. However, unlike these SSL methods, we predict features of the two

augmentations using two different models. Since we aim to learn a model that performs

recognition from glimpses, we never show our student model complete frames. Instead,

we use a separate teacher model to predict targets from complete frames.
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Part I

Spatial Attention Models
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4
Probabilistic Attention Model

Note: Significant parts of this chapter are adapted, with permission, from:

[142] A Probabilistic Hard Attention Model for Sequentially Observed Scenes.
Samrudhdhi B Rangrej and James J Clark.
British Machine Vision Conference, 2021.

The authors hold the copyright in BMVC papers they have authored. While BMVA (the

publisher of the proceedings) holds copyright over the collection, the authors may use the

papers they have authored [169].
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In this chapter, we present our Probabilistic Attention Model (PAM) for glimpse-

based image classification. We emphasize that PAM never observes an image entirely and

classifies it solely based on glimpses. We formulate the problem of finding informative

glimpse locations under partial observability as Bayesian Optimal Experiment Design

(BOED). Starting from a random location, our sequential PAM uses BOED to determine

the following optimal location. PAM estimates the expected information gain (EIG)

obtained from yet-to-be-observed glimpses and selects a location with maximum EIG.

As the computation of EIG requires the content of unseen regions, PAM synthesizes the

unknown content conditioned on the observed glimpses.

Our PAM consists of three modules, a recurrent feature aggregator, a linear classifier,

and a Partial VAE [121]. Partial VAE synthesizes the content of various glimpses in

the scene based on partial observations. We predict the content in the feature space

instead of the pixel space to improve efficiency. Since there are multiple possibilities

for the content of the unobserved regions, we use normalizing flows in Partial VAE to

capture the multi-modality in the posterior. We train the model using a combination of

discriminative and generative objectives. When tested on five datasets, our PAM gains

2-10% higher accuracy than the baseline models when both have seen only a couple of

glimpses.

4.1 Model

Our PAM sequentially captures glimpses from an image x and predicts label y. It main-

tains a hidden state ht that summarizes glimpses observed up to time t. At time t, PAM

predicts coordinates lt based on the hidden state ht−1 and captures a square glimpse gt

centered at lt in an image x, i.e. gt = g(x, lt). Based on gt and lt, it updates the hidden

state to ht and predicts label y from the updated ht.
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Figure 4.1: Architecture of our PAM. Our PAM consists of a recurrent feature aggregator
(F and R), a linear classifier (C), and a Partial VAE (S and D). At the time t, PAM
actively observes a glimpse gt and its coordinates lt. Given gt and lt, the feed-forward
module F extracts features ft, and the recurrent module R updates a hidden state to ht.
Using an updated hidden state ht, the linear classifier C predicts the class distribution
p(y|ht). Simultaneously, the normalizing flow-based encoder S predicts the approximate
posterior q(z|ht). The decoder D uses a sample z ∼ q(z|ht) to synthesize a feature map
f̃ containing features of all glimpses. We use f̃ in BOED (section 4.1.2) to decide the
next glimpse location.

4.1.1 Building Blocks

As shown in Figure 4.1, our proposed PAM is comprised of three building blocks. A

recurrent feature aggregator (F and R) maintains a hidden state ht. A classifier (C)

predicts the class probabilities p(y|ht). A normalizing flow-based variational autoencoder

(S and D) synthesizes a feature map of a complete image from ht. We may view a feature

map of a complete image as a map containing features of all glimpses. The BOED, as

discussed in section 4.1.2, uses the synthesized feature map to find an optimal location to

attend at the next time step. To distinguish the synthesized feature map from an actual

one, let us call the former f̃ and the latter f . Henceforth, we crown any quantity derived

from the synthesized feature map with a (˜). Next, we provide details about the three

building blocks of the model, followed by a discussion of the BOED in the context of hard

attention.

Recurrent Feature Aggregator. Given a glimpse gt at location lt, a feed-forward
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= + =

(a) (b)

Figure 4.2: Conditional independence in PVAE. (a) seen and unseen regions (ot and ut)
are conditionally independent given they share a common latent space. (b) We create a
binary mask mt based on the regions observed so far and multiply it with the features (f
and f̃) to compute likelihood in PVAE.

module extracts features ft = F (gt, lt), and a recurrent network updates a hidden state

to ht = R(ht−1, ft). We define F (g, l) = Fg(g)+Fl(l) and R(h, f) = LeakyReLU(Fh(h)+

Ff (f)). Fg is a small CNN with receptive-field equal to size of g. Fl,Fh,Ff are shallow

networks with one linear layer.

Classifier. At each time step t, a linear classifier predicts the distribution p(y|ht) =

C(ht) from a hidden state ht. As the goal is to predict label y for an image x, we

learn a distribution p(y|ht) by minimizing DKL[p(y|x)||p(y|ht)]. Optimization of this KL

divergence is equivalent to minimizing the following cross-entropy loss,

LCE(t) = −p(y|x) log(p(y|ht)). (4.1)

Partial Variational Autoencoder. We adapt a variational autoencoder (VAE)

to synthesize the feature map of a complete image from the hidden state ht. A VAE

learns a joint distribution between the feature map f and the latent variable z given

ht, p(f, z|ht) = p(f |z)p(z|ht). An encoder approximates the posterior q(z|f, ht), and a

decoder infers the likelihood p(f |z). Refer to Section 2.1 for a brief introduction to VAE.

The optimization of VAE requires calculation of DKL[q(z|f, ht)||p(z|ht)] [93]. As the

hard attention model does not observe the complete image, it cannot estimate q(z|f, ht).
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Hence, we cannot incorporate the standard VAE directly into a hard attention framework

and instead use the following approach.

At the time t, let us separate an image x into two parts, ot — the set of regions

observed up to t, and ut — the set of regions as yet unobserved (see Figure 4.2(a)). Ma

et al. [121] observed that in a VAE, ot and ut are conditionally independent given z, i.e.

p(x|z) = p(ut|z)p(ot|z). They synthesize ut independently from the sample z ∼ q(z|ot),

while learning the posterior q(z|ot) by optimizing ELBO on log(p(ot)). They refer to the

resultant VAE as a Partial VAE.

The BOED, as discussed in section 4.1.2, requires features of ot and ut. Hence, without

loss of generality, we consider ot and ut in the feature space. Synthesizing ot and ut in the

feature space serves two purposes. First, the model does not have to extract features of

ot and ut for the BOED as they are readily available. Second, Partial VAE does not have

to produce unnecessary details, such as the exact pixel color, that the feature extractor

may disregard later. Recall that the features f1:t and the hidden state ht calculated by

our attention model correspond to the glimpses observed up to t, which is equivalent to

ot, the set of observed regions. Hence, we write q(z|ot) as q(z|ht) and p(ot|z) as p(f1:t|z)

in the ELBO of Partial VAE, giving us

LPVAE(t) = −ELBO = −
{
Eq(z|ot) log(p(ot|z)) −DKL[q(z|ot)||p(z)]

}
(4.2)

= −
{
Eq(z|ht) log(p(f1:t|z)) −DKL[q(z|ht)||p(z)]

}
. (4.3)

In equation 4.3, the prior p(z) is a Gaussian distribution with zero mean and unit vari-

ance. To obtain expressive posterior q(z|ht), we use normalizing flows in Partial VAE [95].

We explain how normalizing flows capture more complex and expressive posterior in Sec-

tion 2.2. Here, we specifically use auto-regressive Neural Spline Flows (NSF) [50]. Be-
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tween the two flow layers, we flip the input [47] and normalize it using ActNorm [94]. In

Figure 4.1, the flow-based encoder S infers the posterior q(z|ht) = S(ht).

In a Partial VAE, p(f |z) = p(f1:t|z)p(f c
1:t|z); where f c

1:t are the features of the glimpses

other than the ones observed up to t and f = f1:t ∪ f c
1:t. We implement a decoder D

that synthesizes a feature map containing features of all glimpses in an image given the

sample z ∼ q(z|ht), i.e., f̃ = D(z). Let mt be a binary mask with value 1 for the

glimpses observed by the model up to t and 0 otherwise; hence, f1:t = mt ⊙ f , where ⊙

is an element-wise multiplication (see Figure 4.2(b)). We assume a Gaussian likelihood

and evaluate the log-likelihood in equation 4.3 using the mask mt as follows.

− log(p(f1:t|z)) ∝ 1

2

∑ |mt ⊙ f̃ −mt ⊙ f |2
σ2

+ log(σ2), (4.4)

where σ is a model parameter. The BOED uses f̃ to find an optimal location to attend.

4.1.2 Bayesian Optimal Experiment Design (BOED)

The BOED evaluates the optimality of a set of experiments by measuring information

gain in the interest parameter due to the experimental outcome [31]. In hard attention,

an experiment is to attend a location l and observe a corresponding glimpse g = g(x, l).

An experiment of attending to a location l is optimal if it gains maximum information

about the class label y. We can evaluate the optimality of attending to a specific location

by measuring several metrics such as feature variance [76], uncertainty in the prediction

[124], expected Shannon information [117]. For a sequential model, information gain

DKL[p(y|g, l, ht−1)||p(y|ht−1)] is an ideal metric. It measures the change in the entropy of

the class distribution from one time step to the next due to the observation of a glimpse

g at location l [18, 121]. Since PAM has to find an optimal location to attend at time
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Figure 4.3: Overview of our PAM. At time t, PAM actively observes a glimpse-location
pair (gt, lt), updates hidden state ht, and predicts the class distribution p(y|ht). At
time t + 1, PAM assesses various candidate locations l before attending an optimal
one. It predicts p(y|g, l, ht) ahead of time and selects the candidate l that maximizes
DKL[p(y|g, l, ht)||p(y|ht)]. PAM synthesizes features of g using a Partial VAE to approxi-
mate p(y|g, l, ht) without attending to the glimpse g. The normalizing flow-based encoder
S predicts the approximate posterior q(z|ht). The decoder D uses a sample z ∼ q(z|ht) to
synthesize a feature map f̃ containing features of all glimpses. PAM uses f̃(l) as features
of a glimpse at location l and evaluates p(y|g, l, ht) ≈ p(y|f̃(l), ht). Dashed arrows show
a path to compute the ‘lookahead’ class distribution p(y|f̃(l), ht).

t before observing the corresponding glimpse, we consider an expected information gain

(EIG) over the generating distribution of g. Note, EIG is also a measure of Bayesian

surprise [80, 153]. We briefly introduced BOED and EIG in Section 2.3.

The EIG over p(g|·) is given by

EIG(l) = Ep(g|l,ht−1)DKL

[
p(y|g, l, ht−1)||p(y|ht−1)

]
(4.5)

= Ep(f(l)|ht−1)DKL

[
p(y|f(l), ht−1)||p(y|ht−1)

]
, (4.6)

where f(l) are features of a glimpse located at l, i.e. f(l) = F (g, l). Inspired by [67], we
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define p(f(l)|ht−1) as follows.

p(f(l)|ht−1) = Eq(z|ht−1)p(f(l)|z) (4.7)

= Eq(z|ht−1)δ(D(z)(l)) (4.8)

= Eq(z|ht−1)δ(f̃(l)), (4.9)

where δ(·) is a delta distribution. As discussed in the section 4.1.1, flow-based encoder S

predicts the posterior q(z|ht−1) and the decoder D predicts the feature map containing

features of all glimpses in an image, f̃ = D(z). Combining equation 4.6 and equation 4.9

yields,

EIG(l) = Eq(z|ht−1)DKL

[
p(y|f̃(l), ht−1)||p(y|ht−1)

]
. (4.10)

To find an optimal location to attend at time t, the model compares various candidates

for lt. It predicts EIG(l) for each candidate l and selects an optimal candidate as lt,

i.e. lt = argmaxl EIG(l). When the model is considering a candidate l, it uses f̃(l)

to calculate h̃t = R(ht−1, f̃(l)) and p(y|h̃t) = C(h̃t). It uses the distribution p(y|h̃t) =

p(y|f̃(l), ht−1) to calculate EIG in equation 4.10. We refer to p(y|h̃t) as the lookahead

class distribution computed by anticipating the content at the location l ahead of time.

The dashed arrows in Figure 4.3 show a ‘lookahead’ step. Furthermore, to compute EIG

for all locations simultaneously, we implement all modules of our model with convolution

layers. The model calculates EIG for all locations as a single activation map in a single

forward pass. An optimal location is equal to the pixel coordinates with maximum value

in the EIG map.
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4.2 Experiment Setup

4.2.1 Datasets

We evaluate our PAM on SVHN [128], CINIC-10 [39], CIFAR-10 [102], CIFAR-100 [102],

and TinyImageNet [111] datasets. These datasets consist of real-world images categorized

into 10, 10, 10, 100, and 200 classes, respectively. Images in TinyImageNet are of size

64 × 64, and images in the remaining dataset are of size 32 × 32.

Glimpses. PAM runs for T = 7 time steps. It senses glimpses of size 16×16 overlapping

with stride n = 8 for TinyImageNet and glimpses of size 8 × 8 overlapping with stride

n = 4 for the remaining datasets. The Partial VAE predicts f̃ and EIG for a set of

glimpses separated with stride equal to n. We do not allow our model to revisit glimpses

attended in the past.

4.2.2 Implementation

Table 4.1 shows the architecture of various components of our model. Note that all

modules use a small number of layers. Fg uses the least possible layers to achieve the

effective receptive field equal to the area of a single glimpse. The decoder D uses the

smallest number of ConvTranspose and Conv layers to generate the feature maps of

required spatial dimensions and refine them based on the global context. The encoder S

uses flow layers according to the complexity of the dataset. All other modules use a single

linear layer. We implement linear layers using 1 × 1 convolution layers. Table 4.2 lists

the dimensionality of features f , hidden state h, and latent representation z for various

datasets.
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Building
Block

Module Architecture

Recurrent
feature
aggregator

Fl Convk=1(·)
Fg ng × {BN(LeakyReLU(Convk=3(·))}

Convk=2(·)
F (g, l) Fg(g) + Fl(l)
Fh Convk=1(·)
Ff Convk=1(BN(LeakyReLU(·)))

R(h, f) LN(LeakyReLU(Fh(h) + Ff (f)))
Classifier C Softmax(Convk=1(Dropoutp=0.5(·)))

Partial VAE
S ns × (ActNorm(Flip(NSF (·))))
D 3 × {LN(LeakyReLU(ConvTransposek=3(·)}

5 × {LN(LeakyReLU(Convp=1
k=3(·)}

Convp=1
k=3(·)

Table 4.1: Architecture of our PAM. k = kernel size, p = padding. ng is set to 3 for
SVHN, CINIC-10, CIFAR-10 and CIFAR-100, and set to 7 for TinyImageNet. ns is set
to 4 for SVHN, CINIC-10 and CIFAR-10, and set to 6 for CIFAR-100 and TinyImageNet.
BN = Batch Normalization [79]. LN = Layer Normalization [14]. NSF = Neural Spline
Flows [50]. ActNorm layer is presented in [94]. Reprinted, with permission, from [142].

4.2.3 Optimization

We train our PAM in three stages.

• Stage I. We pre-train modules F , R, and C with a random sequence of T glimpses

using
∑T−1

t=0 LCE(t) as a training objective.

• Stage II. We introduce S and D. We pre-train S and D while keeping F , R, C

frozen. Again, we use a random sequence of T glimpses and train S and D using
∑T−1

t=0 LPVAE(t) training criterion. To produce the target f used in equation 4.4,

we feed a complete image and a grid of all locations to the pretrained F , which

computes features of all glimpses as a single feature map. Pre-training (F,R,C)

and (S,D) separately ensures that the Partial VAE receives a stable target feature
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f h z

SVHN 128 512 256
CINIC-10 128 512 256
CIFAR-10 128 512 256
CIFAR-100 512 2048 1024
TinyImageNet 512 2048 1024

Table 4.2: Dimensionality of features f , hidden state h and latent representation z.
Reprinted, with permission, from [142].

map f in equation 4.4.

• Stage III. We fine-tune all modules end-to-end using the training objective L =
∑T−1

t=0 αLPVAE(t) + βLCE(t), where α and β are hyperparameters. We choose the

hyperparameters α and β such that the two loss terms contribute equally. We

set α to the inverse of dimensionality of the latent representation z. Further, we

set β to 32, 16, 16, 8, and 8 for SVHN, CINIC-10, CIFAR-10, CIFAR-100, and

TinyImageNet, respectively. In the finetuning stage, we sample an optimal sequence

of glimpses using the BOED framework.

We trained our models on a single Tesla P100 GPU with 12GB of memory or a single

Tesla V100 GPU with 16GB of memory. Next, we describe our training setup. We use

the same setting for all three stages unless stated otherwise.

Data Preparation. For all datasets, we augment training images using random crop,

scale, horizontal flip, and color jitter transformations and map pixel values in the range

[−1, 1]. We use a batch size of 64.

Optimizer. We use Adam optimizer [92] with the default setting of (β1, β2) = (0.9, 0.999).

We use a learning rate of 0.001 for all datasets in the first training stage. In the second

and third training stages, we use a learning rate of 0.001 for SVHN, CIFAR-10, and

CINIC-10 and a learning rate of 0.0001 for CIFAR-100 and TinyImageNet. We divide
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Algorithm 2 Inference using PAM

1: Randomly sample l0; Capture g0 at l0, compute f0, h0 and p(y|h0)
2: for t ∈ {1, . . . , T − 1} do ▷ T is the time budget
3: Sample zi ∼ q(z|ht−1) and predict f̃ i; i ∈ {0, . . . , P − 1}▷ P is the sample budget
4: Compute h̃i

t, p(y|h̃i
t) and EIG = 1

P

∑
i DKL[p(y|h̃i

t)||p(y|ht−1)] ▷ (4.10)
5: lt = argmax{EIG}
6: Capture gt at lt; Compute ft, ht and p(y|ht)
7: end for

the learning rate by 0.5 at a plateau.

EIG estimation. We use only one sample z ∼ q(z|ht) to estimate the EIG map during

the training, which leads to exploration. In the test phase, we achieve exploitation by

using P = 20 samples of z to estimate the EIG accurately.

The test procedure is shown in Algorithm 2.

4.3 Results

4.3.1 Baseline Comparison

We compare our PAM with four baselines in Figure 4.4. RAM is a state-of-the-art hard

attention model that observes images partially and sequentially to predict the class labels

[125]. We implement RAM using the same structure as our model. Instead of the Partial

VAE, RAM has a controller that learns a Gaussian attention policy. Mnih et al.[125]

minimize LCE at the end of T steps. Following Li et al. [113], we improve RAM by

minimizing LCE at all T steps. We refer to this baseline as RAM+. We also consider a

baseline model that attends to glimpses at random locations. The Random baseline does

not have a controller or a Partial VAE. Our PAM and the three baselines described so far

observe the image only partially through glimpses. Additionally, we train a feed-forward

CNN that observes the entire image to predict the class label.

For the SVHN dataset, the Random baseline outperforms RAM for initial time steps.
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However, with time, RAM outperforms the Random baseline by attending to more useful

glimpses. RAM+ outperforms RAM and the Random baselines at all time steps. We

observe a different trend for non-digit datasets. RAM+ consistently outperforms RAM

on non-digit datasets; however, RAM+ falls behind the Random baseline. In RAM

and RAM+, the classifier shares latent space ht with the controller, while the Random

baseline dedicates an entire latent space to the classifier. We speculate that the dedicated

latent space in the Random baseline is one of the reasons for its superior performance on

complex datasets.

Our PAM consistently outperforms all attention baselines on all datasets. As one

can expect, the performance gap between the highest-performing baseline and our PAM

reduces with many glimpses. Predicting an optimal glimpse location is difficult for early

time steps as the models have access to minimal information about the scene so far.

Compared to the highest performing baseline at t = 1, our PAM achieves around 10%

higher accuracy on SVHN, around 5-6% higher accuracy on CIFAR-10 and CINIC-10,

and around 2-3% higher accuracy on CIFAR-100 and TinyImageNet. Note that CIFAR-

100 and TinyImageNet are more challenging datasets compared to SVHN, CINIC-10,

and CIFAR-10. Similar to RAM and RAM+, the classifier and the Partial VAE share

a common latent space in our model. Hence, our model achieves a lower gain over the

Random baseline for complex datasets. We attribute the small but definite improvement

in the accuracy of our model to a better selection of glimpses.

CNN has the highest accuracy as it observes a complete image. The accuracy of

the CNN serves as the upper bound for the hard attention methods. Unlike CNN, the

hard attention methods observe less than half of the image through small glimpses, each

uncovering only 6.25% area of an image. On the CIFAR-10 dataset, the CNN predicts

correct class labels for approximately 9 out of 10 images after observing each image
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completely. Remarkably, our model predicts correct class labels for 8 out of 10 images

after observing less than half of the total area in each image.

Comparison of Attention Policies using a common CNN

Above, we compared the attention policies of various methods using their respective

classifiers. However, each model attains different discriminative power due to different

training objectives. While RAM, RAM+, and our PAM are trained jointly for two dif-

ferent tasks, i.e., classification and glimpse-location prediction or feature synthesis, the

Random baseline is trained for only one task, i.e., classification. Consequently, the Ran-

dom baseline attains higher discriminative power than others and achieves high accuracy

despite using a sub-optimal attention policy. To make a fair comparison of the attention

policies irrespective of the discriminative power of the models, we perform the following

experiment.

We mask all image regions except those observed by the attention model so far and let

the baseline CNN predict a class label from this masked image (see Figure 4.5). RAM+

consistently outperforms RAM, suggesting that the former has learned a better attention

policy than the latter. As RAM+ is trained using LCE at all time steps, it achieves higher

accuracy and, ultimately, higher reward during training with REINFORCE [125]. RAM

and RAM+ outperform the Random baseline for the SVHN dataset. However, they fall

short on natural image datasets. In contrast, our PAM outperforms all baselines with a

significant margin on all datasets, suggesting that the glimpses selected by our PAM are

more informative about the image class than the ones chosen by the baselines.

RAM and RAM+ struggle on images with many objects and repeated structure [157],

as is often the case with natural image datasets. For example, TinyImageNet includes

many images with multiple entities (e.g., beer bottle), repeated patterns (e.g., spider
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Figure 4.6: Normalizing flows improve accuracy on TinyImageNet. We evaluate our PAM
with and without normalizing flows. Without normalizing flows, the encoder predicts
unimodal Gaussian posterior. The normalizing flows-based encoder predicts multimodal
posterior and achieves higher performance. Reprinted, with permission, from [142].

web), and dispersed items (e.g., altar). Note that a random policy can perform com-

petitively in such scenarios, especially when the location of various objects in an image

is unknown due to partial observability. Yet, our method learns policies superior to the

Random baseline.

4.3.2 Ablation study on Normalizing Flows

Synthesizing a feature map of a complete image using only partial observations is an

ill-posed problem with many solutions. We use normalizing flows in the encoder S to

capture a complex multimodal posterior q(z|ht) that helps the decoder predict multiple

plausible feature maps for a complete image. Here we inspect the need for such a flexible

posterior q(z|ht) and, therefore, the necessity of normalizing flows in the encoder S. To

this end, we model the posterior with a unimodal Gaussian distribution and let S output

the mean and diagonal covariance of a Gaussian. We do not use flow layers in this case.

Figure 4.6 shows the result for the TinyImageNet dataset. We observe that modeling a
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complex posterior using normalizing flows improves accuracy. Ideally, the Partial VAE

should predict all possibilities of f̃ consistent with the observed region ot. When the

model observes a small region, a complex posterior helps determine multiple plausible

feature maps. In Figure 4.7, we present TSNE [176] projections of q(z|ht) estimated with

and without the use of normalizing flows. We observe that the normalizing flows capture

a complex multimodal posterior. A unimodal posterior fails to cover all possibilities.

Since normalizing flows capture multiple modes, they facilitate accurate estimation of

EIG and, consequently, higher performance.

4.3.3 Visualization

We visualize a few interesting examples of sequential recognition from the CIFAR-10

dataset in Figure 4.8. In Figure 4.8(a), activity in the EIG map reduces as the model

settles on a class ‘Bird’. In Figure 4.8(b), PAM requires a few glimpses to decide the

true class of the image. Though incorrect, it predicts classes that are types of vehicles.

After discovering parts like the headlight and rear-view mirror, it predicts the true class

‘Automobile’ at t = 6. Figure 4.8(c) shows a difficult example. PAM decides the true

class ‘Bird’ after covering parts of the bird at t = 5. Notice a high amount of activity in

the EIG maps up to t = 5 and reduced activity at t = 6. Figure 4.8(d) shows a failure

case with enduring activity in EIG maps. Finally, observe that the EIG maps are often

multimodal.

4.4 Conclusions

We presented a Probabilistic Attention Model (PAM). PAM is a hard attention model

and uses BOED to find the optimal locations to attend to when the image is observed

only partially. To find an optimal location without observing the corresponding glimpse,
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t=0 t=1 t=2 t=3 t=4 t=5 t=6

Airplane Bird Bird Bird Bird Bird Bird
(a)

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Truck Truck Airplane Airplane Truck Truck Automobile
(b)

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Automobile Truck Truck AutomobileAutomobile Bird Bird
(c)

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Cat Cat Cat Frog Cat Cat Cat
(d)

Figure 4.8: Visualization of the EIG maps and the glimpses observed by our PAM on
CIFAR-10 images. The top rows in each plot show the entire image and the EIG maps
for t = 1 to 6. The bottom rows in each plot show glimpses attended by our PAM. PAM
observes the first glimpse at a random location. It observes a glimpse of size 8 × 8. The
glimpses overlap with the stride of 4, resulting in a 7 × 7 grid of glimpses. The EIG
maps are of size 7× 7 and are upsampled for the display. We display the entire image for
reference; our PAM never observes the whole image. (a-c) success cases (d) failure case.
Reprinted, with permission, from [142].
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PAM uses Partial VAE to synthesize the content of the glimpse in the feature space. Syn-

thesizing features of unobserved regions is an ill-posed problem with multiple solutions.

We use normalizing flows in Partial VAE to capture a complex distribution of unobserved

glimpse features, which leads to improved performance. The synthesized features enable

our PAM to evaluate and compare the expected information gain (EIG) of various can-

didate locations, from which it selects a candidate with optimal EIG. The predicted EIG

maps are often multimodal. Consequentially, the attention policy used by our PAM is

multimodal. Our PAM achieves superior performance compared to the baseline methods

that use unimodal attention policy, proving the effectiveness of multimodal policies in

hard attention. When all models have seen only a couple of glimpses, our PAM achieves

2-10% higher accuracy than the baselines.
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5
Sequential Transformers Attention

Model

Note: Significant parts of this chapter are adapted, with permission, from:

[141] Consistency driven sequential transformers attention model for partially
observable scenes.
Samrudhdhi B Rangrej, Chetan L Srinidhi, and James J Clark.
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

The IEEE does not require individuals working on a thesis to obtain a formal reuse
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license. However, it requires that the thesis author cite the source and include the IEEE

copyright notice for all figures and tables [57].

In this chapter, we discuss our Sequential Transformers Attention Model (STAM)

for glimpse-based image classification. Similar to PAM, our STAM never observes a

complete image. It classifies an image solely based on glimpses. Unlike PAM, STAM is

constructed using transformers and scales to handle large datasets. Specifically, we design

our STAM agent using DeiT-distilled[172]. Transformers [178, 49] efficiently model long-

range dependencies and are ideal for aggregating information from distant glimpses.

Starting from observing a glimpse at a random location, our STAM predicts an op-

timal location for the next glimpse and class-label of an image based on the glimpses

collected so far. As glimpse acquisition is a discrete and non-differentiable process, we

train our STAM using reinforcement learning (RL). Further, we propose an additional

training objective where STAM is required to predict a class distribution from a set of

glimpses consistent with the class distribution predicted from a complete image. To do

so, we employ a teacher transformers model to predict the class distribution from a com-

plete image and our STAM (a student model) tries to reproduce this distribution using

partial observations. We perform experiments on two large-scale real-world datasets,

namely, ImageNet [149] and fMoW [34]. With only 4% of the total image area observed,

our proposed consistency objective yields ∼3% and ∼8% gain in accuracy on ImageNet

and fMoW, respectively. Further, our STAM outperforms the previous state-of-the-art

on ImageNet and fMoW by observing nearly 27% and 42% fewer pixels in glimpses,

respectively.
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Figure 5.1: Schematic diagram of Sequential Transformers Attention Model (STAM). We
divide an image (X) into equally-sized non-overlapping glimpses. STAM sequentially ob-
serves informative glimpses (gt) from an image. While never observing an image entirely,
STAM predicts the class-label of an image (y) based on glimpses. At each t, our agent
encodes past glimpses and their locations (g0:t, l0:t) into a Markov state st. It uses state
st to predict class distribution p(yt|st) and attention policy π(lt+1|st). We sample the
next glimpse location lt+1 from π(lt+1|st). © [2022] IEEE. Reprinted, with permission,
from [141].

5.1 Model

Given an unobserved scene X, STAM actively captures a series of non-overlapping glimpses

and, while never observing X completely, it predicts the class-label y of X based on

glimpses. A schematic diagram of our agent is shown in Figure 5.1. At time t, the agent

senses a glimpse gt at location lt from an image X. Using the glimpses observed up to

time t, our agent predicts: i) yt, an approximation of label y, and ii) lt+1, the location of

the next glimpse.

We model the sequential attention mechanism of our agent as a Partially Observable

Markov Decision Process (POMDP). In the POMDP, our agent encodes a history of

partial observations, {(gt′ , lt′)| t′ ∈ {0, . . . , t}}, in a Markov state st and maps it to: i)

a class distribution p(yt|st) and ii) an attention policy π(lt+1|st) – a distribution over

candidate glimpse locations for t + 1.

We build our agent using DeiT-distilled[172], referred to as DeiTD in the rest of the
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chapter. Briefly, DeiTD is a type of ViT trained using knowledge distillation. The trans-

formers in DeiTD transform an input sequence of a class token, a distillation token, and

patch tokens (linear projections of the image patches added to the positional embeddings)

to an output sequence; with the outputs corresponding to the class and the distillation

tokens, the two classifiers predict the ground truth and the teacher’s prediction, respec-

tively. In our approach, we adapt the DeiTD to predict labels from glimpses and use

the distillation token to impose consistency. We discuss Vision Transformers, including

DeiTD, at greater length in Section 2.7.

Figure 5.2 shows the model of our agent. Our agent is composed of the following

components.

Sensor. We consider a sensor that captures non-overlapping glimpses from a scene. To

model this sensor, we divide the image X into N × N equally sized non-overlapping

blocks, X = {X(i, j)| i, j ∈ {1, . . . , N}}. Given a location lt = (i, j), a sensor senses a

glimpse gt = X(i, j), as shown in Figure 5.1.

Core (T ). At time t, we extract M × M patches from each glimpse observed up to t,

forming a set of t×M ×M patches. We feed these patches, the positional embeddings,

the class token, and the distillation token to the DeiTD model. The positional embedding

represents the position of a patch in an image. We derive the position of a patch from

the location of a parent glimpse in an image (see Section 2.7 and Figure 2.8). Among

the outputs of the final transformer block, let us define the ones corresponding to the

class token as f g
t and the distillation token as fd

t . We then form a Markov state st by

concatenating f g
t and fd

t , which an actor module will later use to predict an attention

policy.

Classifiers (G and D). As in DeiTD, we use two linear classifiers to predict two class

distributions pg(yt|f g
t ) and pd(yt|fd

t ) from f g
t and fd

t , respectively. We treat the predicted
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Algorithm 3 Inference using STAM
1: Initialize l0 randomly;
2: for t ∈ {0, . . . , T − 1} do
3: Sample gt at lt from an image ▷ Sensor
4: fg

t , f
d
t = T (g0:t, l0:t); st = [fg

t ; f
d
t ] ▷ Core

5: pg(yt|·) = G(fg
t ); pd(yt|·) = D(fd

t ) ▷ Classifiers
6: π′(l′|·) = A(st, l

′), ∀l′ ∈ {{1, .., N}2 − l0:t} ▷ Actor
7: yt = argmax(pg(yt|·) + pd(yt|·))
8: lt+1 = argmax(π′(l′|·))
9: end for

distributions independently during training and average them to form an ensemble dis-

tribution during inference [172]:

p(yt|st) =
1

2
(pg(yt|f g

t ) + pd(yt|fd
t )). (5.1)

Actor (A). An actor MLP predicts attention policy π(lt+1|st). The distribution π(lt+1|st)

is computed by applying softmax over logits {π′((i, j)|st)}, where the (i, j)s are unob-

served glimpse locations. An actor predicts π′((i, j)|·) for each (i, j) in a conditionally

independent manner [167, 6]. For any (i, j), the actor accepts a concatenation of glimpse

location embeddings e(i, j) and a Markov state st, and outputs π′((i, j)|st). Here, the

e(i, j)s are learnable embeddings initialized by interpolating positional embeddings of a

pretrained DeiTD. We use lt+1 ∼ π(lt+1|st) during training and lt+1 = argmax(π(lt+1|st))

during inference.

We provide the inference steps in Algorithm 3.

5.2 Training Objectives

We train the parameters of the core (θT ), the classifiers (θG and θD) and the actor (θA)

using the training objectives discussed next. Figure 5.2 illustrates the training steps of

our model.
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5.2.1 Learning Classification

Our agent predicts two class distributions based on input glimpses, namely, pg and pd,

where pg is an estimation of the ground truth class distribution associated with a complete

image and pd is an approximation of the class distribution predicted by a teacher model

from a complete image. We learn pg and pd using the following two objectives:

Supervised Loss. As our goal is to predict y from partial observations, we learn the

parameters {θT , θG} by minimizing a cross-entropy between pg(yt|st) and δ(y|X) as given

by

Lsup = −
∑

δ(y|X) log(pg(yt|st)), (5.2)

where δ(y|X) is a delta distribution indicating the ground truth label of a complete image.

Consistency Loss. To improve the performance of our agent, we enforce that the

predictions made from the glimpses are consistent with the predictions made from a

complete image. Furthermore, the above predictions should also be the same irrespective

of the number and location of the glimpses observed so far. Ideally, for each t, we require

our agent to produce pd(yt|st) that minimize DKL[pd(yt|st)||p(y|X)]; where p(y|X) is the

agent’s prediction after observing all glimpses from an image.

The direct optimization of the above KL divergence is difficult as the target p(y|X)

keeps shifting during training. To circumvent this issue, we rely on a separate teacher

model to provide a stable target. Our teacher model predicts the class distribution q(y|X)

from a complete image; where q(y|X) is commonly referred to as soft pseudo-label for X

in the literature [194, 72]. The resultant consistency objective to train {θT , θD} is given
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by

Lconsist = DKL[pd(yt|st)||q(y|X)]. (5.3)

For more details on the student-teacher training paradigm, refer to Section 2.5.

5.2.2 Learning Attention Policy

We consider attention to be modeled by a POMDP. After observing a glimpse at location

lt+1 ∼ π(lt+1|st), we award our agent a reward Rt+1 indicating the utility of the observed

glimpse. Our training objective is to learn π(lt+1|st) that maximizes the sum of future

rewards, also known as return, Gt =
∑T

t′=t+1(R
′
t). A majority of the existing works [125,

12, 51, 135] use the REINFORCE algorithm [190] to learn an attention policy. These

methods run an agent for t = 0 to T − 1 steps to achieve R1 to RT and compute G0

to GT−1. At the end, the parameters of the agent are updated once to maximize the

returns. Due to the quadratic complexity of the transformers, running our agent for T

steps and updating the parameters just once at the end is expensive. Instead, we adopt

the one-step actor-critic algorithm [164] to update the parameters at each time step. We

briefly introduce one-step actor-critic in Section 2.4. Below we discuss the key elements

of the algorithm in the context of hard attention.

Critic loss. To train our agent using the one-step actor-critic algorithm, we introduce a

critic MLP (C) with parameters υ. A critic learns a value function V (st) that estimates

the expected return given the current state of the agent, i.e., Eπ[Gt]. As Eπ[Gt] =

Eπ[Rt+1+Gt+1], V (st) should be equal to Eπ[Rt+1+V (st+1)]. Hence, the critic parameters

υ are learned by minimizing the difference between the two quantities. In practice, we
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estimate the expectation with respect to π using a single Monte-Carlo sample, yielding

Lcritic = ||V (st) − (Rt+1 + V (st+1))||. (5.4)

We run our agent for one additional time step to compute V (st+1). Note that the quantity

(Rt+1 + V (st+1)) acts as a target and does not contribute to the parameter update. We

use the critic MLP only during training and discard it once the training is over.

Actor loss. The goal of an agent is to learn a policy that achieves the maximum return.

When the agent achieves lower than the expected return by sensing a glimpse at location

lt+1, π(lt+1|st) must reduce proportional to the deficit. In other words, π(lt+1|st) must

reduce by the factor of (V (st) − (Rt+1 + V (st+1)); where V (st) is an estimation of the

expected return for st, and (Rt+1 + V (st+1)) is the estimation of the expected return

following glimpse at lt+1. We optimize the parameters {θT , θA} by minimizing

Lactor = log(π(lt+1|st))(V (st) − (Rt+1 + V (st+1))). (5.5)

Note that (V (st) − (Rt+1 + V (st+1))) acts as a scaling factor and does not contribute to

the parameter update.

Reward. We use a reward that incentivizes the agent to predict yt that is consistent

with the label predicted by the teacher model based on a complete image. Our reward is

Rt = −DKL[p(yt|st)||q(y|X)], (5.6)

where p(yt|st) is computed using Equation 5.1. We expect the accuracy of the predictions

made from a complete image to provide an upper bound for the accuracy of the predictions

made from partial observations. The above reward encourages the agent to reach for the
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upper bound.

Our overall final training objective is as follows.

L =
1

2
(Lsup + Lconsist) + (Lactor + Lcritic) (5.7)

5.3 Experiment Setup

5.3.1 Datasets

We experiment with two large-scale real-world datasets, namely, ImageNet [149] and

fMoW [34]. ImageNet consists of natural images from 1000 categories. It includes ∼1.3M

training images and 50K validation images. We resize the images to size 224 × 224. The

fMoW contains satellite images from 62 categories. It holds ∼0.36M, ∼53K, and ∼64K

images for training, validation, and test, respectively. We crop the images based on the

bounding boxes provided with the dataset and resize the cropped images to 224 × 224.

Unless stated otherwise, we implement and optimize STAM with the same default setting

on both datasets.

5.3.2 Implementation

We divide the images into non-overlapping glimpses of size 32×32, yielding a 7×7 grid of

glimpses. As required by DeiTD, we further divide each glimpse into four non-overlapping

patches of size 16 × 16.

We use DeiTD-Small architecture for our agent unless stated otherwise. The actor

and the critic MLPs are of the form {3×{FC-BN-ReLU}-FC} with hidden dimensions of

2048 and 512, respectively. We initialize the core and the classifiers using a pretrained
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DeiTD1 and initialize the actor and the critic at random. We normalize the logits π′(·)

with l2 norm for training stability and multiply them with τ before applying a softmax.

We stop the gradients from the critic to our agent. We normalize the rewards to have

zero mean and unit variance in each training iteration. The magnitude of the value V (·)

varies from one time-step to the next, as it approximates the expected sum of future

rewards. To learn V (·) of varying magnitude, we apply PopArt-style normalization [68]

to the predicted values.

We use DeiTDand DeiT as teacher models for ImageNet and fMoW, respectively. For

the ImageNet teacher model, we use publicly available weights. The teacher model for

fMoW is first initialized with the DeiT model pretrained on ImageNet, followed by fine-

tuning on the fMoW dataset for 100 epochs using the default hyperparameter setting

with an additional vertical flip augmentation.

5.3.3 Optimization

Our agent runs for T = 21 time-steps per image, capturing one glimpse at a time. We

update the model parameters T times per batch, once after each time step. To account

for T updates per batch, we allow the agent to see only 1/T th of the data during one

epoch. We train our agents with the batch size (B) of 4096 for 200 epochs on ImageNet

and B of 600 for 400 epochs on fMoW. The hyperparameter τ is increased linearly from

1 to 4 for the first 100 epochs and fixed to 4 for the remaining training.

We augment the training images using the Rand-Augment scheme [38] and follow

the same setting as Touvron et al.[172]. Additionally, for fMoW, we also use random

vertical flip augmentation. We train our agents using an AdamW optimizer [120] with a

weight decay of 0.05. We adapt a cosine learning schedule with an initial learning rate of

1https://github.com/facebookresearch/deit
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lrbase×B/512 and a minimum learning rate of 1e-6. The base learning rate lrbase is set to

1e-3 for the critic module. For the remaining modules, lrbase is set to 1e-6 for ImageNet

and 1e-5 for fMoW. We train our agents on four V100 GPUs in less than a day, using

32GB memory per GPU for ImageNet and 16GB for fMoW.

5.4 Results

5.4.1 Comparison with Baseline Attention Policies

We compare the policy learned by our agent with three baseline policies, namely, the

Random, the Plus, and the Spiral. The Random agent selects the next glimpse randomly

from a set of unobserved glimpses. In contrast, the Plus and the Spiral agents account

for the object-centric nature of vision datasets and select glimpses in the order shown

in Figure 5.3 (c). For a fair comparison, all baseline agents begin with the first glimpse

at a random location. The model architecture of the baseline agents is similar to our

proposed agent, except that the baseline agents do not have an actor module. We train

the baseline agents following the same procedure as our agent using the losses from

equation 5.2 and 5.3.

Results are shown in Figure 5.3. Among the three baselines, the Spiral and the Plus

agents outperform the Random agent. For t ≥ 8, the Plus achieves higher accuracy

than the Spiral on ImageNet, whereas, on fMoW, the Spiral outperforms the Plus. This

inconsistent behavior is mainly due to the different orientations of objects in the two

datasets. While the objects are mainly aligned vertically or horizontally in ImageNet,

the landmarks in fMoW have no specific orientation. Finally, our agent outperforms all

baseline agents across the two datasets both at initial (t < 8) and later (t ≥ 8) time-steps.

At t = 8, it achieves 1.8% higher accuracy on ImageNet and 2.3% higher accuracy on
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Figure 5.3: Baseline comparison of various attention policies. (a) ImageNet; (b) fMoW.
The Random selects glimpses in random order. The Plus and the Spiral select glimpses in
the order shown in (c). Starting from a random glimpse location, our STAM uses an RL
agent to predict next glimpse location. Results for the Random and STAM are presented
as mean±5×std computed from ten independent runs. © [2022] IEEE. Reprinted, with
permission, from [141].

fMoW than the top-performing baselines for the respective datasets.

5.4.2 Analysis of Consistency Loss

To quantify the gain achieved with a consistency loss from equation 5.3, we compare our

agents trained with and without this loss. For a fair comparison, when training our agent

without the consistency loss, we evaluate the cross-entropy loss between the ensemble

distribution p(yt|st) from equation 5.1 and the ground truth. The remaining training

setup is the same for both agents.

In Figure 5.4 (blue curve), we display the difference in the accuracy of STAM when

trained by including and excluding the consistency loss in the training objectives (equa-

tion 5.7). With only two glimpses (i.e., one random and one selected by the agent at
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Figure 5.4: Gain in the accuracy of STAM due to the consistency loss. We display gain
in accuracy of our STAM when trained using consistency loss (with soft vs hard pseudo-
labels) over the STAM trained without consistency loss. (a) ImageNet; (b) fMoW. Results
are presented as mean ± std computed using ten different runs. © [2022] IEEE. Reprinted,
with permission, from [141].

t = 1), the proposed consistency loss results in significant improvement in accuracy with

a gain of ∼ 3% on ImageNet and ∼ 8% on fMoW datasets.

To benchmark the improvement offered by our proposed consistency loss based on

soft pseudo-labels, we study the effect of an alternate consistency loss using hard pseudo-

labels: Lconsist = −∑
δ(ŷ|X) log(pd(yt|st)) where ŷ are the hard pseudo-labels predicted

by the teacher model from a complete image, i.e., ŷ = argmax(q(y|X)), and δ(ŷ|X) is a

delta distribution. The results are shown in Figure 5.4 (purple curve). An agent trained

using a consistency loss with hard pseudo-labels achieves a gain of ∼ 1.5% on ImageNet

and ∼ 3.5% on fMoW for the first two glimpses. Overall, the consistency loss improves

the performance of STAM. The gain in accuracy with consistency loss evaluated using

soft pseudo-labels is greater than that with hard pseudo-labels.
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Figure 5.5: Comparison of gain in accuracy of baseline agents due to the consistency loss.
We display gain in accuracy of a specific baseline when trained using consistency loss over
the same baseline trained without consistency loss. (a) ImageNet; (b) fMoW. Results for
the Random and STAM are presented as mean ± std computed across ten independent
runs. © [2022] IEEE. Reprinted, with permission, from [141].

Next, we analyze the performance gain in the baseline agents (i.e., the Random, the

Plus, and the Spiral) vs STAM due to the proposed consistency loss. We train baseline

agents with and without the proposed consistency objective and plot the difference in

their accuracy in Figure 5.5. We observe that the consistency training objective yields a

positive gain in the accuracy for all baseline agents.

Furthermore, the gain achieved with learned policy (i.e., STAM) is higher than the

heuristics-based baseline policies. The gain in accuracy is highest for STAM as it learns

to attend to the most discriminative glimpses early in time. These results align with

the recent findings showing that minimizing the distance between the predictions made

from two views of the same image improves model performance the most when the views

optimally share the task-specific information [170].
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Figure 5.6: Effect of glimpse size on accuracy. We display accuracy of STAM with dif-
ferent glimpse sizes presented as a function of %area observed in an image (a) ImageNet;
(b) fMoW. The results are presented as mean±5×std computed across ten independent
runs. © [2022] IEEE. Reprinted, with permission, from [141].

5.4.3 Effect of Glimpse Size

We compare the performance of our STAM agents with glimpses of sizes 32×32, 48×48,

and 64 × 64. To extract the non-overlapping glimpses, we resize the image to 224 × 224,

240 × 240, and 256 × 256 for the three glimpse sizes stated above, respectively. For the

image-size 224 × 224, we use the teacher models as discussed in Section 5.3. To train

teacher models for images of sizes 240 × 240 and 256 × 256, we finetune the pretrained

DeiT on images of respective sizes, following the procedure suggested by Touvron et

al.[172]. The agents for image sizes 240 × 240 and 256 × 256 observe a maximum of 16

and 7 glimpses per image.

As the glimpse and the image sizes are different, we compare the accuracy of the

three agents as a function of the area observed in the image (see Figure 5.6). Initially,

when an area observed in an image is less than 20%, the agent with smaller glimpses

86



0 2 4 6 8 10 12 14 16 18 20
Time t

20

40

60

80

A
cc

ur
ac

y
(%

)
Tiny

Small (default)

Base

Figure 5.7: Accuracy of STAM with core of different capacity. We compare DeiTD-Tiny,
DeiTD-Small, DeiTD-Base architectures for the core module. The results are presented
as mean±5×std computed across ten independent runs. © [2022] IEEE. Reprinted, with
permission, from [141].

achieves higher accuracy than the agent with larger glimpses. The reason is that the

agent explores more regions using smaller glimpses than the larger ones while sensing

the same amount of area. Once the agents have observed sufficient informative regions

(nearly 20% of the total image area), their performance converges. We use glimpse size

32 × 32 with image size 224 × 224 as our default setting.

5.4.4 Effect of Model Capacity

To study the effect of model capacity on the performance, we compare DeiTD-Tiny,

DeiTD-Small, and DeiTD-Base architectures as the core of our STAM agent. We use

pretrained DeiTDof respective capacity as the teacher model. Results for ImageNet are

presented in Figure 5.7. We observe increasing accuracy with increasing model capacity.

However, training an agent with DeiTD-Base is computationally expensive. To achieve

a good trade-off between efficiency and accuracy, we use DeiTD-Small as a default archi-

tecture for our agent.
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5.4.5 Glimpse Visualization

In Figure 5.8, we display the glimpses selected by STAM and the predicted labels on

example images from ImageNet and fMoW. In the ImageNet example, STAM locates and

identifies the umbrella at t = 14. In the fMoW example, STAM locates the transmission

line and identifies the powerplant at t = 8. Note that, while not observing a complete

image, STAM predicts the location of informative glimpses solely based on past glimpses.

In Figure 5.9, we display the histograms of glimpse locations selected by our agent with

increasing t. At t = 0, the agent observes a glimpse at a random location, and at t = 1, the

agent learns to observe mainly a glimpse centered on an image, perhaps due to the object-

centric nature of the dataset. For the subsequent glimpses, the agent prefers to attend

vertically and horizontally centered glimpses in ImageNet. While for fMoW, it attends

to glimpses with minimum distance from the center. Note in ImageNet the object of

interest frequently appears at the center and is aligned vertically or horizontally; whereas

in fMoW, the object of interest appears at the center but with no specific orientation.

With time, the agent attends to different locations away from the center based on the

content observed through previous glimpses as shown in Figure 5.8.

5.4.6 State-of-the-Art Comparison

A fair comparison between our method and the previous works is challenging due to

the following reasons. Most previous works observe an entire image, occasionally at low

resolution, to locate the most informative glimpses [187, 12, 51, 135, 175]. Furthermore,

if they observe an entire image at low resolution, they optionally use the image along with

the glimpses to predict the class-label [187, 175, 135]. In contrast, our agent operates only

under partial observability. We present a comparison against state-of-the-art methods in
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(a) (b)

Figure 5.9: Histograms of glimpse locations sensed by STAM. (a) ImageNet and (b)
fMoW. The first, second, and third rows of each panel display histograms for t = 0 to
6, 7 to 13, and 14 to 20. At t = 0, STAM observes a glimpse at a random location. At
t > 0, STAM senses glimpses at the locations predicted by an RL agent. © [2022] IEEE.
Reprinted, with permission, from [141].

Table 5.1 and indicate which method uses an entire image and for what reasons. As

different methods use different glimpse sizes, we compare them based on the number of

pixels sensed per image for classification. If the method senses a complete image but does

not use it for classification [12, 51], we do not include the pixels of the complete image

in the above count.

Among the previous methods PatchDrop [175] is the best performing method. To

achieve the same level of accuracy as PatchDrop, our default agent observes 7.4K fewer

pixels per image from ImageNet and 8.1K fewer pixels per image from fMoW. Moreover,

while observing a similar number of pixels as PatchDrop, our default agent achieves

2.25% higher accuracy on ImageNet and 3.2% higher accuracy on fMoW. We also train

our agent with DeiTD-Base as the core module on ImageNet. This agent requires 13.6K

fewer pixels per image to achieve the same accuracy as PatchDrop, and achieves 4.78%

higher accuracy than PatchDrop while sensing the same number of pixels per image.

We emphasize that our agent does not observe a complete image to locate informative

glimpses or to perform classification, whereas PatchDrop does.
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Figure 5.10: Accuracy due to early termination. We display an average number of
glimpses observed per image vs the accuracy achieved by STAM on (a) ImageNet and
(b) fMoW datasets with an early termination scheme. STAM suspends sensing once the
probability of the predicted class is higher than threshold γ. © [2022] IEEE. Reprinted,
with permission, from [141].

5.4.7 Early Termination

In practice, we can save time and resources by terminating sensing when the agent con-

fidently concludes a class for the image. To this end, we devise a simple mechanism to

decide when to stop sensing. Let us define a scoring function based on the probability

of the predicted class, St = max(p(yt|st)). The agent stops sensing more glimpses if St

is greater than threshold γ. In Figure 5.10, we show the average number of glimpses

observed per image vs. the accuracy of our agent for γ varying from 0 to 1. Remark-

ably, with γ = 0.5, STAM suspends sensing on ImageNet after observing on an average

7.5 glimpses per image and achieves 66.47% accuracy. Similarly, on fMoW with γ = 0.5,

STAM suspends sensing after observing on an average 8.7 glimpses per image and achieves

65.71% accuracy.
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5.5 Conclusions

In this chapter, we introduced a novel Sequential Transformers Attention Model (STAM)

that progressively observes a scene only partially using glimpses to predict its label. It

predicts future informative glimpse locations solely based on past glimpses. We trained

STAM using a one-step actor-critic algorithm; and proposed a novel consistency training

objective which further improves its accuracy by 3% on ImageNet and 8% on fMoW with

only two glimpses.

While never sensing a complete image, our agent outperforms the previous state-

of-the-art [175] that observes an entire image by sensing nearly 27% and 42% fewer

pixels in glimpses per image on ImageNet and fMoW, respectively. Finally, to save the

inference time and resources, we devise a simple scheme to terminate sensing when STAM

has predicted a label with sufficient confidence. With a confidence score > 0.5, STAM

correctly classifies nearly 65% images on both datasets by observing on an average < 9

glimpses per image (i.e., < 18% of the total image area). However, STAM is limited

by its quadratic computational cost. One way to overcome this limitation is to replace

DeiTDwith sparse transformers [133, 144].
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Part II

Spatiotemporal Attention Model

94



6
Glimpse Transformers

Note: Significant parts of this chapter are adapted, with permission, from:

[140] GliTr: Glimpse Transformers with Spatiotemporal Consistency for Online
Action Prediction.
Samrudhdhi B Rangrej, Kevin J Liang, Tal Hassner and James J Clark.
IEEE/CVF Winter Conference on Applications of Computer Vision, 2023.

The IEEE does not require individuals working on a thesis to obtain a formal reuse

license. However, it requires that the thesis author cite the source and include IEEE

copyright notice for all figures and tables [57].
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Figure 6.1: Schematics of Glimpse Transformers (GliTr). Our GliTr is an online action
prediction model that only attends to the most informative glimpses (gt) in the frames
(xt). While never observing frames completely, GliTr predicts label ŷt (i.e. an estimate of
ongoing action at time t) and the next glimpse location l̂t+1 based solely on the glimpses
observed up to t. © [2023] IEEE. Reprinted, with permission, from [140].

In this chapter, we discuss our Glimpse Transformers (GliTr) for glimpse-based online

action prediction. Our GliTr observes only a narrow glimpse from each video frame.

Starting from a glimpse at a given location, our model decides which location to attend

to in the subsequent frames solely based on previously observed glimpses. Note that

GliTr never observes complete video frames. Consequently, it predicts an ongoing action

using partial spatiotemporal information. We display schematics of GliTr in Figure 6.1.

As transformers [178] can efficiently encode the relations between spatially and tem-

porally distant glimpses, we choose them to learn a glimpse-based attention mechanism

and action prediction. Following a factorized encoder architecture [10], we use a) a spatial

encoder that solely models relations between the patches from a single glimpse to predict

spatial features, and b) two temporal encoders that model interactions between various

glimpse features across time to predict the class label and the next glimpse location,

respectively.

Since the ground truth for optimal glimpse locations is unavailable, we propose a novel

spatiotemporal teacher-student consistency objective to incentivize GliTr to learn glimpse

location in a weakly supervised manner. With only glimpses, GliTr (as the student model)
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is trained to reproduce the spatial features and class distribution of a teacher model

ingesting the complete frames of the video. As the teacher learns to produce predictive

features and logits for the downstream task of online action recognition from the full

frames, enforcing this consistency loss on the student model implicitly requires focusing

attention on the most informative regions, leading to learning a glimpse mechanism.

We demonstrate GliTr’s effectiveness on Something-Something-v2 [62] and Jester [123]

datasets. Our proposed consistency yields ∼ 10% gain in accuracy on SSv2 compared

to the baseline cross-entropy objective. While observing only 32% of the total area per

frame, our GliTr achieves nearly 53% and 94% accuracy on SSv2 and Jester dataset,

respectively.

6.1 Models

We use a teacher model to i) initialize our GliTr - a student model and ii) compute

targets for the spatiotemporal consistency objective used for training GliTr. We discuss

our teacher model in Section 6.1.1 followed by GliTr in Section 6.1.2. We crown the

quantities computed by our models using complete frames and glimpses with ( ˜ ) and

(ˆ), respectively.

6.1.1 Teacher

Given spatially complete frames x1:t from a preliminary video at time t ≤ T , our online

teacher model predicts ỹt, an early estimate of true action yGT . We adapt the factorized

transformers encoder architecture [10] for our teacher model, and aggregate spatial and

temporal information sequentially. It includes the following components.

Feature Extraction (Tf). We use a spatial transformer Tf to extract features f̃t from

each individual frame xt for all t. We use the ViT architecture [178, 172] without the
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final classification head, and collect features from the output corresponding to the input

class token. Refer to Section 2.7 for a brief introduction to ViT.

Early Action Prediction (Tc). We use a temporal transformer Tc to aggregate features

f̃1:t and predict label ỹt. Since transformers are permutation invariant, we enforce order

in the input sequence using temporal position embeddings. Moreover, we do not use a

separate class token and pass the output corresponding to f̃t to the linear classifier to

predict ỹt. Further, to reduce training time, we use causal attention masking [61, 36].

Hence, during training, Tc observes f̃1:T and produces ỹ1:T in a single forward pass while

aggregating features in an online progressive manner, referencing only f̃1:t to produce

output ỹt at index t.

Glimpse Location Prediction (Tl). We include temporal transformer Tl to predict

glimpse location l̃t+1 from f̃1:t. Tl has the same architecture as Tc, except the final linear

classifier is replaced by a linear regression head to predict coordinates l̃t+1. Though

not required for online action prediction from full frames, we train Tl to initialize the

corresponding module in our student model. Once the student model is initialized, we

discard Tl from the teacher model.

We illustrate a teacher with Tf and Tc in Figure 6.2 (left).

6.1.2 Glimpse Transformer (GliTr) — Student

Our Glimpse Transformer (GliTr) is derived and initialized from the teacher model dis-

cussed in Section 6.1.1. It is an iterative model that actively locates and attends to

narrow glimpses in a scene and predicts an ongoing action early based on spatially and

temporally incomplete observations. At time t, GliTr senses a new glimpse gt at location

l̂t from frame xt. Using glimpses g1:t, it predicts i) ŷt, an early approximation of label yGT

and ii) l̂t+1, location of the next glimpse. We illustrate GliTr’s operation in Algorithm 4
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Algorithm 4 Inference using GliTr

1: l̂1 is predefined.
2: for t ∈ {1, . . . , T} do
3: Sample gt at l̂t from xt. ▷ Glimpse Extraction
4: f̂t = Tf (gt, l̂t) ▷ Feature Extraction

5: ŷt = Tc(f̂1:t) ▷ Early Action Prediction
6: l̂t+1 = Tl(f̂1:t) ▷ Glimpse Location Prediction
7: Save f̂t.
8: end for

and Figure 6.2. It consists of the following components.

Glimpse Extraction. Given a location l̂t = (i, j), we crop a glimpse gt centered at

location l̂t in frame xt. To maintain differentiability through the cropping operation, we

use a spatial transformer network (STN) [85]1. Refer to Chapter 2, Section 2.6 for an

introduction to STN.

Feature Extraction (Tf). Similar to the teacher model, we use Tf to extract features f̂t

from glimpse gt. We derive position embeddings for patches in gt using STN (See Section

2.7 and Figure 2.8).

Early Action Prediction (Tc). We input glimpse features f̂1:t to Tc which in turn

predicts class label ŷt.

Glimpse Location Prediction (Tl). Similarly, we pass the features f̂1:t to Tl which

predicts the next glimpse location l̂t+1.

6.2 Training Objectives

We discuss training objectives for GliTr in Section 6.2.1. Considering GliTr as the down-

stream model, we design training objectives suitable for our teacher model in Section

6.2.2. We crown training objectives of GliTr and the teacher model with ( ̂ ) and ( ˜ ),

respectively.

1Not to be confused with (spatial) Vision Transformers (ViT) [49].
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6.2.1 Glimpse Transformer (GliTr) — Student

Classification Loss. Since our goal is to predict action label yGT early using the spatially

and temporally incomplete video, we minimize the cross-entropy loss given by

L̂cls = CCE(ŷ1:T , yGT )/T. (6.1)

Spatial Consistency Loss. We require GliTr to attend to the glimpses that produce

features as predictive of the action as the ones predicted using complete frames by our

teacher model. Hence, we minimize the mean squared error (MSE) between the glimpse

features f̂t predicted by GliTr and the frame features f̃t predicted by our teacher model,

which is

L̂spatial = MSE(f̂1:T , f̃1:T )/T. (6.2)

Temporal Consistency Loss. While the teacher model has all instantaneous spatial

information available in a complete frame, GliTr must rely on past glimpses to reason

about the unobserved yet informative regions in the current frame. To incentivize GliTr to

aggregate spatial information from the past to mitigate partial observability, we minimize

the KL-divergence between the class logits predicted by GliTr using glimpses (ŷt) and

the teacher using complete frames (ỹt), yielding

L̂temporal = KLD(ŷ1:T , ỹ1:T )/T. (6.3)
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Our final training objective for GliTr is the following:

L̂ = L̂cls + L̂spatial + L̂temporal (6.4)

For more details on the student-teacher training paradigm, refer to Section 2.5.

6.2.2 Teacher

Classification loss. For all t, we minimize cross-entropy loss between the prediction ỹt

and the ground-truth label yGT of the action,

L̃cls = CCE(ỹ1:T , yGT )/T. (6.5)

Distillation loss. When available, we also use a more powerful offline action recognition

model such as VideoMAE [171] to predict action yofflineT from a complete video, i.e.x1:T .

Then, we minimize the KL-divergence between the final prediction ỹT and the above

yofflineT given by

L̃dist = KLD(ỹT , y
offline
T ). (6.6)

For more details on distillation, refer to Section 2.5.

Spatiotemporal Consistency losses. Note that the above two losses train only Tf

and Tc. We use the following strategy to train Tl. First, we use the locations l̃1 (learnable

parameter) and l̃2:T predicted by Tl, to extract glimpses g1:T from frames x1:T . Next, we

create copies of Tf and Tc denoted as T ′
f and T ′

c . We input g1:T and the corresponding

position embeddings to T ′
f and predict glimpse features f̂1:T . Given f̂1:T , T ′

c predicts
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actions ŷ1:T in an online fashion. Then we minimize,

L̃spatial = MSE(f̂1:T , f̃1:T )/T, (6.7)

L̃temporal = KLD(ŷ1:T , ỹ1:T )/T. (6.8)

We use the above two losses to update parameters of Tl only. We design these consistency

objectives based on the spatiotemporal consistency objectives of GliTr (equations 6.2 and

6.3). As discussed in Section 6.2.1, they encourage Tl to locate glimpses covering the most

useful task-relevant regions in the frames, but based on complete frames observed in the

past. We demonstrate the training procedure in Figure 6.3.

The final objective for our teacher model is as follows.

L̃ = L̃cls + L̃dist + L̃spatial + L̃temporal (6.9)

6.3 Experiment Setup

6.3.1 Datasets

We experiment with two publicly available large-scale real-world datasets, namely, Something-

Something-v2 (SSv2) [62] and Jester [123]. We adopt the official training-validation splits.

SSv2 dataset contains videos recording 174 human actions using everyday objects. There

are ∼170K videos for training and ∼25K for validation. Jester dataset is a collection

of videos capturing 27 basic hand gestures, consisting of ∼120K videos for training and

∼15K videos for validation.
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6.3.2 Implementation

We sample a sequence of 16 and 8 frames per video from SSv2 and Jester, respectively.

We resize each frame to size 224 × 224 and use glimpses of size 96 × 96, unless stated

otherwise. We use ViT-Small [172] architecture for Tf . For Tc and Tl, we use a custom

transformers architecture with 768 embedding dimensions, 6 heads, and a depth of 4.

6.3.3 Optimization

First, we discuss the common setting followed by a model-specific setting. For all models

and datasets, we use the same data augmentation scheme as the one used for VideoMAE

[171]. Similar to Wang et al.[188], we stop gradients from Tl to Tf to maintain stability

during training. We use the AdamW optimizer [120] with weight decay of 5e-2 and cosine

learning rate schedule with no warmup unless stated otherwise. We run experiments for

SSv2 and Jester on 4 A100 GPUs with 40 GB of memory and 4 V100-SXM2 GPUs with

32 GB of memory, respectively.

To train a teacher model on SSv2 dataset, we initialize Tf using an open-source ViT-S

model [209] pretrained on the ImageNet dataset [149], and initialize Tc and Tl randomly.

We form a mini-batch using b = 60 videos and use an initial learning rate of αb
128

, with

base learning rate α being 1e-5, 1e-4 and 1e-4 for Tf , Tc and Tl, respectively. We train the

teacher model for 40 epochs with a warmup of 15 epochs for Tl. For the Jester dataset,

we initialize the teacher model with the teacher model trained on the SSv2 dataset. We

do not use distillation loss L̃dist for the Jester dataset. We use a batch size b of 100 and

α of 1e-5 for all modules. The model is trained for 50 epochs.

Each student model (GliTr) is initialized from a teacher model trained on the corre-

sponding dataset. We use a base learning rate α = 1e-5 for all modules and train them
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for 100 and 150 epochs with a batch-size b of 360 and 800 videos from SSv2 and Jester,

respectively.

6.4 Results

6.4.1 Empirical Comparisons

Glimpse Mechanisms Under Partial Observability

We compare the glimpse attention strategy learned by GliTr with four baselines and an

approximate upper bound:

• Uniform random: Glimpse locations are independently drawn from a uniform dis-

tribution for each t.

• Gaussian random: Similar to uniform random but instead, the glimpse locations

are sampled from a Gaussian distribution with zero mean and unit variance and

passed through a tanh() function to constrain locations to remain within the bounds

of the frame.

• Center: The model observes glimpses from a constant location at the center of each

frame.

• Bottom Left: The model attends to the glimpses in the bottom left corner of the

frames.

• Teacher (an upper bound): Glimpse locations are chosen as predicted by the teacher

model which looks at the full frames. In the absence of ground truth glimpse

locations, this provides an approximate upper bound.
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Figure 6.4: Comparison of online action prediction accuracy using different glimpse mech-
anisms. (a) SSv2 and (b) Jester. The Uniform and the Gaussian strategies sample lo-
cations from the respective distributions. We display mean±5×std computed using five
independent runs. The Center and the Bottom Left strategies always observe glimpses at
the constant locations. The Teacher (an approximate upper bound) and our GliTr locate
informative glimpses based on past frames and glimpses, respectively. © [2023] IEEE.
Reprinted, with permission, from [140].

To isolate the glimpse strategy’s effect on performance, we evaluate the glimpses selected

by various strategies using the same model i.e.GliTr. While assessing the baselines and

the upper bound, we ignore predictions from Tl and instead use locations given by the

specific strategies described above. We show results in Figure 6.4, plotting online action

prediction accuracy after each t. As expected, the prediction accuracy for all strategies

increases as the model observes more glimpses. The Center and the Bottom Left strategies

outperform other baselines on SSv2 and Jester datasets, respectively. We suspect this

is because the object of interest frequently appears in the center in SSv2; while in most

examples from Jester, hand movements begin and end in the region near the bottom left
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(a) (b)

Figure 6.5: Histograms of the glimpse regions selected by GliTr. We display histograms
with increasing time (raster scan order) on (a) SSv2 and (b) Jester. Recall that GliTr
observes the first glimpse at a predetermined location followed by active selection.
© [2023] IEEE. Reprinted, with permission, from [140].

corner of the frames. On the other hand, GliTr outperforms all baselines and achieves

performance closest to the upper bound (i.e.the Teacher strategy). We plot a histogram

of glimpse regions selected by GliTr in Figure 6.5. We observe that not only does GliTr

successfully capture different biases (center vs. bottom left) in the two datasets, but

it also ignores the bias if necessary. Notice the spread in the histograms for t > 1,

suggesting GliTr observes various regions in different videos. Consequently, GliTr achieves

better accuracy faster than the baselines, and at time T , outperforms the best performing

baselines with the respective margins of nearly 5% and 11% on SSv2 and Jester. We

visualize glimpses selected by GliTr on example videos from SSv2 and Jester in Figure 6.6.

Models with Complete Spatial Observability

Glimpse-based offline models. We compare our GliTr with previous glimpse-based

offline action recognition models in Table 6.1. We note that a direct comparison between

these approaches is unfair since previous models also observe complete frames. Further,

unlike offline approaches that initially observe a complete video and select an informative

glimpse at t based on the current, past, and future frames, our GliTr - an online model

- relies only on the past information to locate glimpses in the current frame. More-

over, previous methods use global information gathered from complete frames to locate
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(a)

(b)

Figure 6.6: Glimpses selected by GliTr. (a) SSv2 and (b) Jester. The complete frames are
shown for reference only. GliTr does not observe full frames. It only observes glimpses.
© [2023] IEEE. Reprinted, with permission, from [140].

glimpses and predict actions; however, GliTr only uses local information. Nevertheless,

we include this analysis to highlight the savings achieved by GliTr in terms of the amount

of area observed for recognition while still achieving competitive performance with partial

observations.

We calculate and compare the number of pixels sensed by various methods to perform

action recognition. AdaFocus [186] and AdaFocusV2 [188] uniformly sample 8 frames

from a complete video to predict glimpse locations, followed by uniform sampling of

another 12 frames to extract glimpses. In total, they require sensing 20 complete frames

(20×(224×224)≈1M pixels) in advance due to their offline nature. GFNet [75], on the
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Figure 6.7: Comparison with early action prediction models. (a) SSv2 and (b) Jester.
While Swin-B [119], TemPr [163] and TRN [208] predict action early based on complete
frames, GliTr predicts action based on early glimpses. © [2023] IEEE. Reprinted, with
permission, from [140].

other hand, locates and extracts glimpses from the same set of complete frames. When

compared to AdaFocusV2 with glimpses of size 128× 128, our GliTr reduces the amount

of sensing by nearly 74% and 87% while compromising only around 6% and 3% accuracy

on SSv2 and Jester, respectively. Further, while GFNet outperforms GliTr by nearly

14.4% and 4.7% with glimpses of size 96×96 on SSv2 and Jester, GliTr (with 16 and 8

glimpses, respectively) reduces the amount of sensing by nearly 82% and 88% compared

to GFNet (with 16 and 12 frames, respectively) on these datasets. We emphasize that

GFNet observes full frames and two glimpses per frame in an offline manner, while GliTr

observes only one glimpse per frame in an online fashion.

Early action prediction models. We additionally compare GliTr with early action

prediction models in Figure 6.7. We emphasize that these approaches observe entire

frames (i.e.global information) from a preliminary video; whereas, GliTr observes frames

111



only partially through glimpses (i.e.local information). For SSv2 dataset, we consider

Swin-B [119] and TemPr [163]. We cite Swin-B results from [163], who evaluate Swin-B

for early action prediction before (i.e.direct inference with pretrained model) and after

finetuning on preliminary videos. Notice that, with glimpses of size 96 × 96 and higher,

GliTr outperforms Swin-B finetuned for early action prediction. Further, GliTr also

outperforms TemPr with the glimpses of size 128×128 when both have observed early 70%

video. For the Jester dataset, GliTr outperforms TRN [208] for early action prediction

with glimpses of size 96 × 96 and higher. The results demonstrate the efficiency of GliTr

for early action prediction using only local information.

6.4.2 Ablation on Spatiotemporal Consistency for GliTr

To demonstrate the value of the proposed spatiotemporal training objectives, we perform

an ablation study for each on the SSv2 dataset. We train four variants of GliTr using the

following combinations of the training objectives: i) GliTrbaseline using L̂cls, ii) GliTrspatial

using L̂cls + L̂spatial, iii) GliTrtemporal using L̂cls + L̂temporal, and iv) our default variant

GliTrspatiotemporal using L̂cls + L̂spatial + L̂temporal. Note that the above variants have the

same architecture and operation; only their training objectives are different. Figure 6.8(a)

shows results. We observe that including only spatial or only temporal consistency in the

training objectives boosts GliTr’s accuracy by nearly 6% at t=16. Moreover, including

both spatial and temporal consistency provides the highest improvement of around 10%.

To understand the sources of improvements provided by the two consistency losses,

we perform two more experiments. First, we evaluate glimpse selection strategies learnt

by the above versions of GliTr using an impartial teacher model in Figure 6.8(b). We

observe better performance for GliTr when spatial consistency is included in the training

objectives, indicating that spatial consistency helps GliTr learn better glimpse selection
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Figure 6.8: Ablation study on the spatiotemporal consistency objective on SSv2 dataset.
(a) accuracy of GliTr when trained using different combinations of the training objectives
(b) accuracy of the teacher with the glimpses selected by the above variants. (c) accuracy
of the above variants of GliTr when tested with the Uniform random strategy. We display
mean±5×std from five independent runs. © [2023] IEEE. Reprinted, with permission,
from [140].

strategy and in turn improves its performance. Second, we evaluate above four versions

of GliTr using an impartial Uniform random strategy in Figure 6.8(c). We observe that

GliTr provides the highest performance for the Uniform random strategy when we in-

clude temporal consistency in the training objective, suggesting that temporal consistency

improves GliTr’s performance by learning a better classifier under partial observability.

6.4.3 Ablation on Teacher model

Ablation on L̃dist. We distill VideoMAE [171] (a transformers-based offline action

recognition model) to our teacher model on SSv2 dataset. To do so, we minimize L̃dist
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Figure 6.9: Ablation on Teacher model (a) Ablation on L̃dist objective for the teacher
trained on SSv2 dataset. (b) Ablation on initialization scheme for the teacher trained on
Jester dataset. © [2023] IEEE. Reprinted, with permission, from [140].

i.e. KL-divergence between the class distributions predicted by our teacher model and

VideoMAE based on complete video (equation 6.6). To assess importance of this ob-

jective, we train our teacher model with and without L̃dist and display results in Figure

6.9(a). We observe improvement of approximately 6% in accuracy at t = 16 when L̃dist

is included in the training objectives. Note, since a pretrained VideoMAE [171] in un-

available for Jester, we do not use L̃dist for training the teacher model on this dataset.

Ablation on Initialization Scheme. To improve the performance of the teacher model

on the Jester dataset, we initialize its parameters using the parameters of the teacher

model pretrained on SSv2 with a complete set of training objectives (equation 6.9), in-

cluding L̃dist. We compare the performance of the above model with the performance of

the teacher initialized using default scheme i.e.Tf initialized using an open-source ViT-S

model [209] pretrained on the ImageNet, and Tc and Tl initialized randomly. The re-
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Figure 6.10: GliTr with early exit. We display accuracy vs an average number of glimpses
seen by GliTr per video to predict a class with probability > γ. (a) SSv2 and (b) Jester.
© [2023] IEEE. Reprinted, with permission, from [140].

sult shown in Figure 6.9(b) indicates that once finetuned on Jester dataset, the teacher

pretrained on SSv2 achieves higher performance than the teacher initialized with default

scheme, especially for t > 4. Finally, at t = 8, the teacher with pretrained weights

achieves nearly 1.5% higher accuracy.

6.4.4 Early Exit

We extend GliTr for applications that require timely decision-making. We terminate sens-

ing and conclude a class when GliTr makes a sufficiently confident prediction. We evaluate

confidence using the maximum value in the predicted class logits, Ct = max(p(ŷt)) and

exit when GliTr achieves confidence Ct > γ. We show the performance of GliTr for vary-

ing γ in Figure 6.10. We observe a trade-off between the glimpse size and the average

number of glimpses required for confident prediction. GliTr achieves higher confidence

early with larger glimpse sizes and thus requires fewer glimpses to achieve certain perfor-

mance. While continued sensing improves GliTr’s performance on SSv2, the performance
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saturates on Jester after the initial 50% of the glimpses, rendering further sensing unnec-

essary.

6.5 Conclusions

In this chapter, we have described a novel online action prediction model called Glimpse

Transformer (GliTr) that observes video frames only partially through glimpses and pre-

dicts an ongoing action solely based on spatially and temporally incomplete observations.

It predicts an informative glimpse location for a current frame based on the glimpses ob-

served in the past. Without any ground truth for the glimpse locations, we train GliTr

using a novel spatiotemporal consistency objective. On the Something-Something-v2

(SSv2) dataset, the proposed consistency objective yields around 10% higher accuracy

than the cross-entropy-based baseline objective. Further, we establish that spatial con-

sistency helps GliTr learn a better glimpse selection strategy, whereas temporal con-

sistency improves classification performance under partial observability. While never

observing frames completely, GliTr achieves 53.02% and 93.91% accuracy on SSv2 and

Jester datasets and reduces the sensing area per frame by ∼ 67%. Finally, we also show-

case a trade-off between the glimpse size and the number of glimpses required for early

action prediction. GliTr is useful for lightweight, low-cost devices with small field-of-view

cameras.
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Summary & Future Directions
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7
Summary & Future Directions

7.1 Summary

In this thesis, we presented attention models for image and video recognition tasks. We

learn attention mechanisms that are akin to biological eye movements. We consider agents

equipped with limited field of view cameras. Our agents observe only a small glimpse

– spatially narrow window – from a scene at a time. We develop attention models that

allow these agents to explore the scene intelligently by focusing their cameras on the
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CNN and RNN Transformers

Task

Attention
Model

Reasoning
about

complete
scene

Architecture

Figure 7.1: Summary of our attention models. We develop attention models for image
classification and online action recognition. Our attention models never observe the
entire scene. To improve performance and learn effective attention policy under partial
observability, we compel our attention models to reason about the complete scene from
glimpses. To do so, we design variational and consistency learning objectives.

most informative regions. Our sequential agents start performing recognition from the

first glimpse and update their predictions as more glimpses become available. As a result,

agents perform recognition using spatially and temporally incomplete information. To

overcome partial observability, we compel the models to reason about the complete scene

based on glimpses. We achieve this goal using variational (Chapter 4) and consistency

(Chapter 5 and 6) objectives. These objectives encourage our models to observe the most

informative glimpses in a scene, thus learning an effective glimpse mechanism. Further,

they compel our attention models to consider glimpses as part of a holistic scene, thus

improving recognition. We experimentally show that while never observing complete

scenes, our attention models achieve better or comparable performance with state-of-the-

art methods that require entire scenes. We summarize the attention models in Figure 7.1.
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7.2 Future Directions

The methods presented in this thesis mainly cover three research problems: i) learning

to look, ii) learning from incomplete data iii) learning from weak supervision. Below

we discuss why these problems are essential in achieving artificial intelligence. Further,

we connect our research with some open research questions and discuss future research

directions in the respective areas.

Learning to look

After achieving tremendous success in solving passive tasks, researchers are now tend-

ing to embodied vision problems where an active agent engages with an environment to

observe, interpret and interact with the world. Eye-movement-like attention can improve

the efficiency of these agents tremendously. It paves the way for multi-tasking by allow-

ing agents to continue observing the world while performing embodied tasks that do not

require visual senses. For example, consider an agent making a lemonade. While waiting

for the container to be filled with water, an agent can look around and spot lemons,

sugar, cup, etc. Further, it allows agents to observe the world from various viewpoints

without moving the whole body, thus improving energy efficiency.

Further, embodied agents only have access to an ego-centric, thus partial, view of the

world. For most tasks, agents have to move around to interact with the world. Therefore

the agents need to learn which surrounding areas are attention-worthy and prioritize ex-

ploring them. The approach of reasoning about the complete scene from glimpses can be

applied in this situation. Consider an example where an agent facing a couch is asked to

switch on the television. Though yet to be seen, the television should most likely be in

front of the couch. Thus the agent should explore the area opposite the couch first.
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Learning from incomplete data

In this thesis, we looked at recognizing a scene based on incomplete or partial obser-

vations. Current high-performing vision solutions assume we have captured data with the

entire object of interest visible. The object may be occluded, but it is contained within

the bounds of the image or video frames. Often, the scene is sensed such that an object of

interest lies in the center. Note that capturing the scene in such a manner already requires

intelligence. Current vision systems rely on human intelligence for this task. However,

in the future, with the increasing application of embodied agents, the agents will have to

capture the scene on their own without human guidance. In the process, the agent will

commonly encounter a situation where the object of interest is out of the visible field of

the agent, and the agent has to perform a given task anyways. Thus, learning to perform

tasks from incomplete data is crucial for the embodied agents. The above issue calls for

innovations on two fronts. First, we develop architectures that handle incomplete data

naturally. For instance, architectures such as BagNet [21], and Transformers [49] can

handle missing data well due to patch-based processing. Second, we develop methods

that make the model robust to missing data. One such method is consistency learning,

as leverage in the thesis. Recent Transformers-based Masked Autoencoders (MAE) [69,

171] are patch-based models that are robust to missing data.

Learning from weak supervision

A less obvious yet interesting future direction of our work is learning from weak

supervision. In this thesis, we learn attention policy without explicit annotations using a

surrogate learning signal from the recognition task. Rich annotations have enabled us to

train large-scale models. However, it is notoriously challenging and expensive to attain
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quality labels. In case of limited and potentially noisy labels, we use methods such as

transfer learning[200], self-supervised learning [70, 177], and few-shot learning [158, 115].

However, gaining even a few annotations is exceptionally challenging for many tasks, such

as attention. The issue encourages us to think about the following two questions.

First, how can we solve vision tasks with weak or surrogate labels? Many researchers

are now focusing on answering this question. Some examples include distilling classifiers

into object detectors [65], procedure planning using instructional videos [203], learning

affordance maps from action labels [126], etc. Note, these approaches learn a task directly

using surrogate labels, which is different from another interesting technique of pretraining

a model on surrogate pretext tasks such as learning to solve jigsaw puzzles for object

detection, recognition, and image retrieval tasks [130].

Second, which tasks can we learn using annotations from a different task? or which

tasks can provide a surrogate learning signal for the given task? To answer these ques-

tions, we need to understand inter-task relationships. While some tasks agree with each

other, some tasks are in direct competition. For instance, one can quickly learn edge de-

tection from instance segmentation. However, detecting key points using the same labels

would take much work. Researchers are studying inter-task relationships in the context

of transfer learning [200] and multi-task learning [162]. Such understanding will help us

streamline the annotation process. We can focus our labeling efforts on the tasks that

are easy to annotate and provide us with learning signals for many other tasks.

The methods discussed in this thesis bring us one step closer to achieving human-level

cognition in artificial agents. Further, this chapter discusses a few future directions to

achieve truly intelligent and autonomous agents.
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[18] José M Bernardo. “Expected information as expected utility”. In: the Annals of

Statistics (1979), pp. 686–690.

[19] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn,

Han Zhang, and Colin Raffel. “ReMixMatch: Semi-Supervised Learning with Dis-

tribution Matching and Augmentation Anchoring”. In: International Conference

on Learning Representations. 2019.
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Bojanowski, and Armand Joulin. “Emerging Properties in Self-Supervised Vision

Transformers”. In: Proceedings of the International Conference on Computer Vi-

sion (ICCV). 2021.

[30] Joao Carreira and Andrew Zisserman. “Quo vadis, action recognition? a new model

and the kinetics dataset”. In: proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2017, pp. 6299–6308.

[31] Kathryn Chaloner and Isabella Verdinelli. “Bayesian experimental design: A re-

view”. In: Statistical Science (1995), pp. 273–304.

[32] Guangyi Chen, Jiwen Lu, Ming Yang, and Jie Zhou. “Learning recurrent 3D at-

tention for video-based person re-identification”. In: IEEE Transactions on Image

Processing 29 (2020), pp. 6963–6976.

[33] Xinlei Chen and Kaiming He. “Exploring simple siamese representation learning”.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition. 2021, pp. 15750–15758.

[34] Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. “Functional

map of the world”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018, pp. 6172–6180.

[35] James J Clark and Nicola J Ferrier. “Modal Control Of An Attentive Vision Sys-

tem.” In: ICCV. 1988, pp. 514–523.

[36] Alexis Conneau and Guillaume Lample. “Cross-lingual language model pretrain-

ing”. In: Advances in neural information processing systems 32 (2019).

127



[37] Jean-Baptiste Cordonnier, Aravindh Mahendran, Alexey Dosovitskiy, Dirk Weis-

senborn, Jakob Uszkoreit, and Thomas Unterthiner. “Differentiable Patch Selec-

tion for Image Recognition”. In: arXiv preprint arXiv:2104.03059 (2021).

[38] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. “Randaugment:

Practical automated data augmentation with a reduced search space”. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops. 2020, pp. 702–703.

[39] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. “CINIC-

10 is not ImageNet or CIFAR-10”. In: arXiv preprint arXiv:1810.03505 (2018).

[40] Srijan Das, Arpit Chaudhary, Francois Bremond, and Monique Thonnat. “Where

to focus on for human action recognition?” In: 2019 IEEE Winter Conference on

Applications of Computer Vision (WACV). IEEE. 2019, pp. 71–80.

[41] Andrew J Davison and David W. Murray. “Simultaneous localization and map-

building using active vision”. In: IEEE transactions on pattern analysis and ma-

chine intelligence 24.7 (2002), pp. 865–880.

[42] Nicola De Cao, Ivan Titov, and Wilker Aziz. “Block neural autoregressive flow”.

In: arXiv preprint arXiv:1904.04676 (2019).

[43] Frank Deinzer, Joachim Denzler, and Heinrich Niemann. “Viewpoint selection–

planning optimal sequences of views for object recognition”. In: International

Conference on Computer Analysis of Images and Patterns. Springer. 2003, pp. 65–

73.

128



[44] Misha Denil, Loris Bazzani, Hugo Larochelle, and Nando de Freitas. “Learning

where to attend with deep architectures for image tracking”. In: Neural computa-

tion 24.8 (2012), pp. 2151–2184.

[45] Joachim Denzler and Christopher M Brown. “Information theoretic sensor data se-

lection for active object recognition and state estimation”. In: IEEE Transactions

on pattern analysis and machine intelligence 24.2 (2002), pp. 145–157.

[46] Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear independent

components estimation”. In: arXiv preprint arXiv:1410.8516 (2014).

[47] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using

real nvp”. In: arXiv preprint arXiv:1605.08803 (2016).

[48] Laurent Dinh, Jascha Sohl-Dickstein, Hugo Larochelle, and Razvan Pascanu. “A

RAD approach to deep mixture models”. In: arXiv preprint arXiv:1903.07714

(2019).

[49] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. “An Image is Worth

16x16 Words: Transformers for Image Recognition at Scale”. In: International

Conference on Learning Representations. 2020.

[50] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. “Neu-

ral spline flows”. In: Advances in Neural Information Processing Systems. 2019,

pp. 7511–7522.

129



[51] Gamaleldin Elsayed, Simon Kornblith, and Quoc V Le. “Saccader: improving ac-

curacy of hard attention models for vision”. In: Advances in Neural Information

Processing Systems. 2019, pp. 702–714.

[52] SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari,

Koray Kavukcuoglu, and Geoffrey E Hinton. “Attend, infer, repeat: Fast scene

understanding with generative models”. In: Advances in Neural Information Pro-

cessing Systems. 2016, pp. 3225–3233.

[53] Christoph Feichtenhofer. “X3d: Expanding architectures for efficient video recog-

nition”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2020, pp. 203–213.

[54] Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaiming He. “Masked Au-

toencoders As Spatiotemporal Learners”. In: arXiv preprint arXiv:2205.09113

(2022).

[55] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. “Slowfast

networks for video recognition”. In: Proceedings of the IEEE/CVF international

conference on computer vision. 2019, pp. 6202–6211.

[56] Basura Fernando and Samitha Herath. “Anticipating human actions by corre-

lating past with the future with jaccard similarity measures”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,

pp. 13224–13233.

[57] “Frequently Asked Questions Regarding IEEE Permissions”. In: ieee.com (2013).

Accessed on 29/03/2023. url: https://www.ieee.org/content/dam/ieee-

org/ieee/web/org/pubs/permissions_faq.pdf.

130

https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions_faq.pdf
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions_faq.pdf


[58] Kunihiko Fukushima. “A neural network model for selective attention in visual

pattern recognition”. In: Biological Cybernetics 55.1 (1986), pp. 5–15.

[59] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David

Saxton, Murray Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami.

“Conditional Neural Processes”. In: International Conference on Machine Learn-

ing. 2018, pp. 1704–1713.

[60] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende,

SM Eslami, and Yee Whye Teh. “Neural processes”. In: arXiv preprint arXiv:1807.01622

(2018).

[61] Rohit Girdhar and Kristen Grauman. “Anticipative video transformer”. In: Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision. 2021,

pp. 13505–13515.

[62] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska,

Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos,

Moritz Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax, and Roland

Memisevic. “The “something something” video database for learning and evalu-

ating visual common sense”. In: Proceedings of the IEEE international conference

on computer vision. 2017, pp. 5842–5850.

[63] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan

Wierstra. “DRAW: A Recurrent Neural Network For Image Generation”. In: ICML.

2015.

[64] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond,

Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo,

Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and
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