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Abstract

We present asymptotic results for the maximum likelihood estimator of the dependence
parameter arising naturally in the study of asymptotic efficiency. In particular, we demon-
strate a Berry-Esseen-type estimate through a study of entropy functions. Next, we estab-
lish the large deviation principle under strict convexity assumptions and study the asso-
ciated rate function. The results are shown for independent and identically distributed

random variables, which we then generalize to finite state Markov chains.

Résumé

Nous présentons des résultats asymptotiques de 'estimateur du maximum de vraisem-
blance apparaissant naturellement dans le contexte de 1'étude de 1'efficacité asympto-
tique. Plus spécifiquement, nous démontrons un estimé de convergence a la Berry-Esseen
a l’aide de la fonction d’entropie. Par la suite, nous établissons le principe de grandes
déviations lorsque les fonctions d’entropie sont strictement convexes et nous étudions
les propriétés de la fonction de taux. Ces résultats sont présentés pour des variables

indépendantes et identiquement distribuées ainsi que pour des chaines de Markov.
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Chapter One

Introduction

Much of the field of statistical modelling is concerned with finding the probability distri-
bution behind a given data-generating process, which would grant one who knows it the
ability to calculate the probability of any future event that might occur. Although finding
such probability distributions is considered practically impossible for most natural pro-
cesses, one can instead follow the route of estimation theory, in which one considers the
distribution to be dependent upon a set of parameters. To estimate the “true” parameter
value of the process under consideration, one maximizes the likelihood that the model
generated observed events. We call maximum likelihood estimator (MLE) the function
that, given events, yields the argument which maximizes this likelihood. Whilst the MLE
is rather unwieldy, its study is tightly linked to that of a more manageable object called
the entropy function, which is minimized when evaluated at the MLE. Studying the max-
imum likelihood estimator thus amounts to examining the critical points of this entropy

function. In this sense, the entropy function constitutes the protagonist of this work.

In 1922, Fisher published in [FR22] what would become a seminal work on the modern
theory of the maximum likelihood estimation. Notably, he defined the notion of consis-
tent estimators, which are those estimators that converge in probability to the parameter

describing the experiment as the sample size increases to infinity. Under identifiability



conditions, the consistency of the maximum likelihood estimator can be derived from a
uniform law of large numbers (LLN), which holds readily under moderate dependence
assumptions. In evaluating this consistency, one inevitably comes across the so-called
Fisher entropy (or Fisher information), defined as the variance of the entropy function’s
tirst derivative. Roughly, it gives a measure of the parameter dependence of a random

variable and is thus central to the study of estimators.

Once the uniform consistency of the MLE is established, one might wonder whether the
MLE also satisfies asymptotic assertions often considered in probability theory. For in-
stance, does the central limit theorem (CLT) hold and can a convergence rate be deter-
mined? Is there a function that characterizes the exponential tail convergence of the MLE?
These interrogations can both be answered positively using entropy functions. Namely, a
specific convergence rate to the normal distribution can be obtained via the Berry-Esseen
theorem, while exponential tail convergence of the MLE can be studied through the lens
of large deviations theory, which allows for a rigorous treatment of questions akin to that

aforementioned. Such a treatment is given herein.

Although our approach is comprehensive, much of what is presented below has been
treated extensively by many authors. As early as 1922, Fisher mentions in [FR22] the
asymptotic normality of maximum likelihood estimators for iid random variables. The
result was later rigorously demonstrated in the influential book [Cra46] of Cramér, who
followed a proof method presented by Dugué in [Dug37]. The latter also shows that the

argument proving asymptotic normality of the MLE extends to Markov chains.

An optimal rate of convergence in distribution for asymptotically normal iid random
variables can be traced back to Berry in [Ber41l] and Esseen in [Ess42], who indepen-
dently showed a rate of N=/2, for N the sample size. Via this result, Pfanzagl showed
in [Pfa71] that asymptotic normality of minimum contrast estimates—a slight generaliza-
tion of MLEs—is reached with rate N~'/2 in the independent setting. This result was later

generalized in [Pra73] to Markov processes satisfying Doeblin’s condition.



The large deviation principle (LDP) for maximum likelihood estimators also has a rich lit-
erature, of which we by no means give an exhaustive account. Following the publication
of [Bas56] by Basu, Bahadur instigated in [Bah60] the study of large deviations for consis-
tent and asymptotically normal estimators of independent random variables. Moreover,
the role of the relative entropy (or Kullback-Leibler divergence) was rapidly identified to
be central to the study of exponential tail convergence of estimators, such as in [BZG80]
and [Bah83]—the latter of which provides a finite state Markov chains framework. Large
deviations were subsequently examined in more general settings, e.g., [KK86] study the
LDP for the MLE of exponential families over convex parameter spaces. More modern
treatments of the MLE’s large deviations, such as in [She01], have extended the analysis

initiated by Basu and Bahadur to the possibly infinite-dimensional case.

Although our approach is similar to much of the arguments presented in the articles men-
tioned in the preceding paragraphs, the results of this thesis are in a very natural sense
the continuation of the work found in the master’s thesis [Mat23], which itself generalizes
to the Markov case much of the iid results given in [Jak19, Chapter 7] using techniques of

analytic perturbation theory found in [Sch12, Chapter 2].

In Chapter 2, we study asymptotics of the MLE for iid random variables on finite sets by
building on the results established in [Jak19]. After presenting a few preliminary results in
Section 2.1, we show in Section 2.2 that the MLE satisfies a central limit theorem and give
a Berry-Esseen-type estimate for its convergence to the normal distribution. Although the
uniform consistency result we offer through the uniform law of large numbers does not
yield a sharp estimate, we manage to find a rate of N~2/° by optimizing our approach.
In Section 2.3, we show that the maximum likelihood estimator satisfies a large deviation
principle (LDP) when the entropy functions are assumed to be strictly convex functions
of the parameter. We end our treatment of the iid MLE by studying a few properties of

the LDP’s associated rate function via the implicit function theorem.



In Chapter 3, we generalize our treatment to finite state Markov chains using various
results proved in [Mat23]. In Section 3.1, we give a precise estimate for the MLE’s consis-
tency, which is again obtained through the uniform law of large numbers. In Section 3.2,
we provide a central limit theorem for the MLE, and we prove a Berry-Esseen-type esti-
mate. Our approach makes use of Mann’s doctoral thesis [Man96, Theorem 1], in which
the CLT with rate N='/2 is proved for countable state Markov chains via perturbations in

1/4_worse than what we of-

the transition kernel. This time, we obtain an estimate of N~
ter for iid measures. This is due to our use of the variance instead of the third moment in
deriving a precise estimate for the uniform LLN. In Section 3.3, we study the logarithm of
the spectral radius of a tilted stochastic matrix, which we refer to as the limiting cumulant-
generating function (CGF). Assuming once more that the entropy functions admit strict
convexity, we show that the limiting CGF is strictly convex. Further, we make use of its

analyticity on the real line to compute its derivatives explicitly. After establishing the LDP

for the Markovian MLE, we finish by studying the associated rate function.

The two chapters are written in a self-contained manner, in that the reader who wishes to
do so can focus exclusively on handling the maximum likelihood estimator subject to the
mild dependence of Markov chains. On the other hand, the reader curious to study the
MLE in the more transparent setting of iid random variables can do so without having to

deal with bivariate random variables and sequences of cumulant-generating functions.



Chapter Two

IID Measures

We start with independent and identically distributed (iid) random variables. This setting
is the same as in [Jak19] and, as such, we base our analysis on a few results derived there.
While we only use the results we require, we invite the reader to consult the reference for

additional details.

2.1 Preliminaries

Let [a,b] C R be a fixed interval and let €2 be a finite set. To avoid trivialities, we assume
2] > 1. Subsets of () are called events and elements ¢ € [a,b] are called parameters. For
N € N, let {Psn}ocpan be a family of probability measures on O such that P,y is the
Nt product measure of Py; = B. Further, we write Eyy (X) for the expectation value of a
random variable X : QY — R with respect to Pyy. Since we can always restrict the set (2
to Q = supp Py, we assume without loss of generality that Py(w) > 0 for all § € [a, ] and
w € (. In addition, we assume throughout this section that 6 — P, is C*([a, b]) and we set
P, =P and P, = P, ensuring that derivatives of functions of P are defined on all of

la, b]. The second and third derivative are extended analogously.

IWith the convention that N = 1,2, . ..



We study the probability of events in a repeated probabilistic experiment described by an
unknown parameter ¢ € [a,b]. Since the goal of parameter estimation is to estimate the
probability measure that governs the experiment, we assume that probability measures

are uniquely determined by the parameter. Explicitly,
017&02 — P91 %P@T

We refer to the latter as the identifiability property of { Pyn } nen and assume it hereafter.

Definition 2.1.1. For N € N, we call maximum likelihood estimator (MLE) of order N the

function fy: QN — [a, b] defined by

On(w) = arg max Pyy(w) = arg max (H Pg(wi)> :

0cla,b] 0c(a,b] i1

Observe that the C® assumption on P, guarantees the existence of an argument of the

maximum, whereas the identifiability property ensures that it is unique.

The key observation on which our work stands is that maximizing the map 6 — Py (w)

is equivalent to minimizing the following function.

Definition 2.1.2. Given w € (2, we define the map S,(w): [a,b] — R by
Sp(w) = —log Py(w)

and call it the entropy function. Moreover, we denote Sy = —log Pyy for N € N.

The fact that Py is faithful for all § € [a, b] ensures that the entropy function is well-defined.
Throughout, we will use the notation f () = 9 f(6) for derivatives of functions f = f(6).

Incidentally, we remark that the entropy function 6 — Sp(w) enjoys a C*([a, b]) regularity



with first and second derivative given by

Note that the expectation value of the first derivative of Sy with respect to P has

Eq(Sp) = Y —Py(w) = —0p (Z Pe(@) = —0y(1) =

wef weN

Moreover, Eq([Sp]?) = Varg(Sy) = Eg(Sp). In fact, this quantity has its own name and will

play a central role in our analysis.

Definition 2.1.3. We call Fisher entropy the function Z: [a,b] — R defined by

— N2 [P b (w)]?
7(0) == Ey <[59] ) -y o)
weN
For an introductory account of the Fisher entropy in this setting, see [Jak19, Chapter 6].

Proceeding, we will assume that Z(¢) is nonvanishing for all # € [a, b]. Before presenting

our first result, we introduce an important function that will make sporadic appearances.

Definition 2.1.4. The relative entropy of P with respect to Py is defined by

w)

weN

Lemma 2.1.5. Forany 6,6’ € [a, b], we have Eo(Sp) > Eg(Sp) with equality if and only if 0 = 6.

Proof. Notice that Ey(Sy) — Eg(Sp) = S(Fy|Py) and by Jensen’s inequality,

—log (Z Py (w ) =0
wes

with equality if and only if ) = Fy.. The result follows by the identifiability property. [

Zpe( logPQ,(: ZPQ

weN



We invite the reader to consult [Jak19, Chapter 4] for additional details on the relative
entropy. We now turn to an adaptation of the parametric law of large numbers discussed

in [Jak19, Proposition 7.6].

Proposition 2.1.6. Let § € [a,b] and Xy: Q@ — R be random variables such that the maps

la,b] 3 6 — Xy(w) are continuously differentiable for all w € Q. Set

Son(w = (w1, ..., wy)) = ZXg(wk).

Then there exists a constant K > 0 such that for any € > 0,

SQIN(OJ)

sup Py {w e V. sup — Eo(Xo)

o€lab] 0'€lab]

K
>0 <
forall N € N.

Proof. Lete > 0 and N € N. Further, letw € 2 and 6,6’ € [a, b] be such that § < ¢'. By the

mean-value theorem, there exists € (6,6’) such that

Xp(w) — Xg(w) = X,y (w) (0 — 0").
Since || < co and [a,b] 3 0 — Xj(w) is C', we can let K < oo be such that

K > sup |Xp(w)|
0€[a,b]
weN

and we set A := ;%= > 0. Whenever |0 — §'| < A, we thus have | Xy(w) — Xo (w)| < /4 and

€
sup [Ex(Xp) — Ex(Xp)| < sup > [Xp(w) — Xo(w)| Pa(w) < "
A€[a,b] A€Ela,b] e

Now, leta = 0 < 0} < --- < 0/, =bbesuchthatd, — 0, ;, < A, forn = (b—a)/A, and

suppose that w € Q" satisfies | Sy, n(w)/N — Eg(Xy )| < €/2 forall 0 < k < n. Then for any



0’ € |a,b], there exists 0 < k < n such that |¢ — 0| < A. Thus, for all § € [a, b] we have

SQ/N((JJ) SQ/N(W) 89’ N(w) '59’ N(W>
— —Eo(Xy)| < N kN kN — Eo(Xo )| + |Eo(Xg; ) — Eo(Xp)]
- 1 Ne n € n €
N4 "2747°

In other words,

: S / ’
ﬂ {w c V. o () —Eg(Xg; )| < E} ClweQV: sup Sowlw) _ Eo(Xo )| <€
. 2 oeay | NV
and taking complements on both sides,
’ " S ’
we OV sup Sowlw) _ Eo(Xg)| >€p C U {w c V. o () — Eo(Xg )| > E} :
0 €lab] Pt g 2

For any 6 € [a, b], we hence have

Sg/N(w)

— Eo(Xo)| >

Pynwe QV: sup
0’€[a,b]

)

u Sy n(w)
g;PgN{weQN: e Ry(Xey) z%}

- So v (W) T ey
— N . K

9 3 n ‘SG’N 3
< |- E P — Ep( Xy
(3 B -me

3
2\? n

<([Z)] — Xo( — Eo( Xy P, .
<(5) o, 2 (St -mxo ) runcs

Using the cumulative property of cumulants for independent random variables—which

we demonstrate in Appendix A—we obtain

> <Z|X0' wj) — Eg( Xa/)\) Pyn(w) = N Y [ Xpr(w) — By (Xor) [ Po(w).

weN weN



Finally, let

C:= sup Ey(|Xp —Eo(Xp)|")
0,0'€la,b

and observe that C' < oo by continuity of § — Xy(w) and § — Fy(w) for all w € .
Substituting n = (b — a)/A = 4K (b — a) /e yields

ngN(w)

Pyn {w e Q. — EQ(XQ/)

} 32KC(b— a)
e, — =
- - et N2

0’€la,b)
Taking the supremum over all § € [a, b] and setting K = 32K C/(b — a) gives the result. [J

Remark 2.1.7. In Proposition 2.1.6, we can reduce the power of ¢ > 0 in the estimate by
one, provided we lose the uniformity condition on the parameter of the random variable.

In particular, for ' = 6 and X, = Sy, we have

Pon {w e OV

e3N?
Taking the supremum over all § € [a, b], we obtain
S@N@J) f(l
P - —ZI(0)|>ep < 2.1
oo [ a0 of < 2 -

forall N € Nand K, = E, (\59 —I(@)P).

This inequality will be used in the next section to estimate a rate of convergence for the

uniform central limit theorem of the MLE. Another result which will be important to us is

10



the uniform consistency of the sequence of maximum likelihood estimators (A ) yex ob-
tained by making use of Proposition 2.1.6. The result is presented in [Jak19, Theorem 7.8]

along with a proof containing a minor error, which we circumvent.

Theorem 2.1.8. There exists a constant K, > 0 such that forany e > 0,

. K,
j2 { QN;(Q —9(>}<_
e e i ol < 35

forall N € N.

Proof. Lete > 0and I, == {(6,0') € [a,b]?: |§ — 0’| > €}. Since I, is compact, we can set

0 = min (E,(S,) —E.(S.)) .

(u,v)€le
By Lemma 2.1.5, we have that §; > 0. Let (u*,v*) € I, be values at which the minimum is
attained. By the mean value theorem, there exists 7 between u* and v* such that
01 = By (Spr) = Bur (S ) = [Eue () [[0* — w7

Letting m = ‘Eu (Sn)| > (0, we have that §; > me. Now, let

M = sup |Se(w)|
0€la,b]
weN

and note that M > m. Choosing ¢ := 737 we have that 0 < ¢ < /2 and

52 = sup (Eu(sv) - ]Eu(Su)> >0
(u,v)€la,b]?\Is

with d; < me/2, by the mean value theorem. Thus, we have that §, < §;. Furthermore,

we let 6 := me/4 which satisfies 0 < § < me/2 < §; — d3. Now, fix § € [a, b] and denote

11



I.(0) = {0 € [a,b]: |#' — 0] > €}. Lastly, define the sets

A= {w c QY. sup Son(w) _ Ey(Se )| < é} 7
0el.(0) 2
Bi=<{weOV: sup Son(w) _ Eg(Se)| < 0 .
oefaNli0) | N 2
Forw € Aand ¢ € I.(0), we have
Sorn(w J )
“]VV( ) S Ey(Sp) - 5 = Eo(So) + 01— 5.

Similarly, for w € B and ¢’ € [a,b]\ 1. (),

S (w)
N

) )
< Ep(Ser) + 3 < Eg(Sp) + 2 + 5

Recall that § > 0 was chosen so that 0 < 6 < §; — d5, hence 6; — §/2 > 05 + 0/2. Therefore,
forwe AN Bwith ¢ € I.(0) and 0" € [a,b]\I.(6), we have
Sg/]v(w) 0 ) S@//N(w)

N >E9(S@)+51—§>E9(89)+52+§> N

Since 0y (w) minimizes [a,b] 3 0 — Sy (w), we obtain that
weANB = ‘éN(w)—Q‘ < e.

Finally, since § = me/4, we have

SQ/N(CL))
N

— Eo(Sp)

Pyn {w e OV ‘éN(w) - 9‘ > e} < Pyn {w eV sup
0’€la,b]

me
>
3

and applying Proposition 2.1.6 gives the result. O

We close this section by stating a central limit theorem for iid random variables.

12



Theorem 2.1.9. Let X: 2 — R be a random variable with expectation value E(X) = p and
variance 0 < Var(X) = 0% < co. Then for any [A, B] € R,

lim Py {w c V. ! Z(X(wk) —pn) € [A, B}} = /B e /2 da.

In addition, if E(|X — u|*) < oo, then there is K’ > 0 such that for all [C, D] C Rand N > 1,

!

Py {wEQN: ;02 ;(X(Wk)_ﬂ) € [C,D]} B e "2y

1

Both parts of the theorem can be found in [Fel71]. The second statement—which will
be a key ingredient in providing convergence estimates for the maximum likelihood

estimator—is due to [Ber41] and [Ess42] and is thus called the Berry-Esseen theorem.

2.2 Central Limit Theorem

Having laid the theoretical basis, we now turn to the central limit theorem of the MLE.

Theorem 2.2.1. Suppose that 6 € (a,b). Then for any [A, B] C R,

]\}gnooPeN {w € QV: /NZ(0)(On(w) — 0) € [A, B]} = \/%/A e 2 dx,

Proof. Let [A, B] C R, fix 0 € (a,b) and let € > 0 be such that [0 —€,6 + €] C (a,b). Let

<e},

SgN(w)
NZ(0)

Qf:{wEQN:|éN(w)—9|<eand —1

which has

lim Py (QY) =1 (2.2)
N—oo

13



by Theorem 2.1.8 and (2.1). For w € 2, we have On(w) € (a,b) and also SéN

the mean value theorem, there is {y(w) between Oy (w) and 0 such that

—Son(w) = (On(w) — 0)Sey @wyn(w)
and hence

Sen(6) PN I ()
R = VNTO)n ) ~ )5

Applying the mean value theorem again to 6 — Syy(w), we have

Sexwn (W) = Son(w) _ (On(w) = 0) 5y v (W)
NZ(6) NZ(6)

for some ((w) between 6 and ¢y (w), thus

1 Son(w)
<e€e| sup sup
(96(11)] I(@) <0€[a,b] N
1 s
= sup up
oeian) Z(0) | \ ocfa

weN

gsN(w)N(w) - SGN(W)
NZ(0)

3

@IOng(w)

= eK.

Son (w)
NZ(0)

Since w € QY, wehave 1 — € < < 1+ e and summing it with

Sen(w)n (@) — Son (W)

_Ke<
Kes NZ(0)

< Ke

we get

Sex)v (W)

14
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(2.4)



Observe that there are three types of intervals [A, B]: either 0 < A < B, A <0 < Bor

A < B < 0. In view of this, take ¢ > 0 so small that
e(K+1)(JA|+|B|]) < B—A and 1 —¢(K +1) > 7, (2.5)

for some small v > 0, and set

A(l+e(K+1)) if0< A, B(1—¢(K +1)) if0< B,
A= B, = (2.6)
A(l—€e(K+1)) if A<DO, B(l+e¢(K+1)) it B<O.

Notice that the first condition of (2.5) ensures A, < B, and whenever w € QY satisfies

A SﬁN(w)N(Q‘)
< — Q)T <
A NZ(9)(On(w) —0) NZ(®) B,
then A < \/NZ(0)(Oy(w) —0) < B by (2.4). Making use of (2.3), we obtain

S@N(w) c [

P we Q. —
w { ‘ NZ(0)

A, Be]} < Py {w e QN /NZ(0)(Oy(w) — 0) € [A,B]} .

We can extend the sets to Q" on both sides to get

Pon {w < - M € [AEaBE]}
NZ(0)

< Py {w e QV: /NZO)(0x(w) — 0) € [A, B]} Py ON\QY) 27)

and taking the limit inferior, recalling (2.2) and applying Theorem 2.1.9 to the sequence

(—5‘9 ~N)nen With expectation Eg(—Sg) = 0 and variance VaI'g(—Sg) =17(0),

Be A
—\/lz—ﬂ/ ey < hNH’i}anQN {w c OV \/NIZ(0)(On(w) — 0) € [A, B]}
Ae 0o

15



Finally, taking € | 0 yields

B
—\/127/ 2 dr < li]\r[n inf Pyy {w e OV: /NZ(0)(0y(w) — 0) € [A, B]} , (2.8)
A —00

We now show the reverse inequality holds with the limit superior. Let

A(l—e(K+1)) if0< A, B(1+¢K +1)) if0< B,
Al = B! = (2.9)
Al +e(K+1)) if A <o, B(1—e(K +1)) ifB<0.

and note that A, < A < B < B!. In particular,
{w e QN /NZ(0)(Oy(w) — 0) € [A, B]}
clwe: /NI0)(0y(w) — H)M € [A., B]
¢ NZ(6) e e

by (2.4). Using (2.3) and extending both sides to QY

Pyn {w e OV /NZ(O)(Ox(w) — 0) € [A, B]}

Son(w)

< P@N {(A) c QNi — NI(@) [A/ B ]} + P@N(QN\QN) (210)

Taking the limit superior, recalling (2.2) and applying Theorem 2.1.9 to (—Syn) nen,

. N . N . 712/2
i sup Poy {ws € 0¥ VNZ@)(0nl) — 6) € [4, < / /
Taking € | 0 and combining with (2.8) yields the desired result. O

We note that the assumption that 6 € (a, b) in the above theorem ensures that cases where

the maximum likelihood estimator 6y (w) takes value a or b but S, n(w) # 0 are ruled

On(w)N

out of our analysis, as required by our argument.

16



We now strengthen the above result to a uniform convergence with respect to the param-

eter by utilizing different results that were derived in the preliminaries section.

Theorem 2.2.2. For any subinterval [a',b'] C (a,b) and N € N large enough, there is a constant

C' > 0 such that

R R C
sup [Py qw € QV: /NZ(0)(On(w) —0) € [A, B]p — — e /2 dz| < .
ocla’ b'] GN{ (O)6nw) )<l ]} V271 Ja N2/5
[A,B]CR

/

Proof. Let [a/,b'] C (a,b) and let 0 < € < min{45% ,%} satisfy (2.5). Furthermore, let

2
<€}.

By Theorem 2.1.8 and (2.1), there exist K1, Ky > O such that for all N € N,

Son(w)

NZ(6) !

QN (6) = {w e OV: |fy(w) — 0] < eand

K K
Pyn(QN\QN () < =2 ! .
eil[ﬁ] on(QN\Q(0) < o + S (2.11)
By (2.7), we have
Pyn{we QY —ME[A B L ’ e~ dg
' NZ(6) o V2r Ja
R |
<P e OV \/NZ(6)(0 —0)e[AB]} — — e 2dx + Py (QN\QN(0)),
< Py {w @)ox) -0 € 14,8} - — | z+ By(@\0 (0))

for A. < B, as defined in (2.6). By Theorem 2.1.9, there exists some constant K’ > 0 such

that for all 6 € [¢/, V'] and all intervals [C, D] C R,

!/

K
< = (2.12)

SgN(w) 1 b 2
PnlweQV: - 2% ciop)y - —— /24
GN{ NT(E) < ]} VarJe &
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Thus, for all § € [¢/, V'] and [A, B] C R, we have

K1 )
- e " 2dr — Py (QN\QN (6
\/N \/ﬂ [A,B]\[Ac,Bc] on (A (0)
~ 1 B )
< Py {w € 9V NI(0)(0n(w) - 0) € [4, B]} - = [ e
A
On the other hand, by (2.10) we have
N ) 1 —x2/2
Pon {w e (0)(On(w) —0) € [A B]} — E i e do
S@N(w) 1 B 2
< F GQN =~ AI,B/ _— C'3/2(5]‘ _|_P QN QN9
eN{w NZ(0) ABl = ), © @+ Pon (Q7\Q(0))

for AL < B! as defined in (2.9). Combining this with the Berry-Esseen bound of (2.12)

applied to the interval [A., B/], we get

Pyn {w e QV: /NZO)(0x(w) — 0) € [A, B]} LT eng,

< K' 1
B \/N Vaor [AZ,BL\[A,B]

e /2 dz + Pyy (QN\QN(6))
and hence

PQN{w c OV /NTZO)(x(w) — 0) € [A, B e=o"/2 d:c

\/ 27 /
2 2 K
—x2/2 —x2/2
< —— max e dx,/ e dx} +
\/ {/ ALBI\[A,B [4,B)\[Ac,B] VN

Taking the supremum over 6 € [d/,b'] and all intervals [A, B] C R and making use of

(QN\Q(9)).

(2.11), we obtain

sup | Pyviw € OV /NZ(0)(On(w) — 0) € [A, B]} — — e’xz/de‘
s o O)(0n(w) —0) € [4. B} — —— )
[A,B]CR

K’ K, K,
< sup —max {/ o7/ dx,/ e_xQ/Qd:E} + + + :
[A.BICR V2 ALBI\[A,B) [A.B\[Ac, Bl VN  €N? eN?
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Lastly, we bound the maximum by

1 2 K+1
sup ——— max {/ e /2 d:v,/ e_$2/2dx} <A\ —= «(k+1)
[A,B]CR V2T [A7,B/]\[A,B] [4,B)\[Ac,B.] er (1 —e(K +1))

and refer the reader to Appendix C for a derivation of the estimate. Recall from one of

our restrictions on € > 0 given in (2.5) that 1 — (K + 1) > ~ for some v > 0, hence

A 1 B
sup PgN{w c OV \/NIZ(0)(On(w) — 0) € [A, B]} _ o722 dx‘
[i 51w var Ja

2K+1 K K, K
< - ) 2.13
=€ er v +\/N+€4N2+63N2 ( )

Setting ¢ = N7, it remains to find z > 0 that will yield the optimal rate of convergence.
Since the first term is competing with the third and fourth term, and N?7%* > N?~% for
z > 0, the optimal exponent will be one giving the same convergence rate to the first and
third term. In other words, we want z = 2 — 4z and hence z = 2/5. Thus, taking N € N

large enough that all of our restrictions on e = N~%° hold, we obtain

R Y C
sup |P, {wGQN: NZ(6)( w—QGA,B}—— e_”"/gdx‘g .
0€a’ b'] " ( )( N( ) ) [ ] \/ﬂ A N2/5
[A,B]CR
for C' = lﬁ‘i‘K""Kl—l-Kg ]

emr vy

Remark 2.2.3. In the previous Berry-Esseen-type theorem, the factor preventing us from

having a sharp decay estimate of N~1/2

, as in the second part of Theorem 2.1.9, comes
from the third term of (2.13). Indeed, if one had ~ 1/e2N? as in the fourth term, taking
e = N~/2 would give an optimal result. This extra factor of ¢ stems from the consistency
of the MLE of Theorem 2.1.8, whose proof relies on Proposition 2.1.6. Since the latter

involves a uniformity condition on the parameter of the random variable, an extra e factor

is introduced.
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For the same reason that we took ¢ away from the boundary points in Theorem 2.2.1, the
supremum in the uniform CLT must be taken over subintervals [¢’, V'] C (a,b) instead of

the whole [a, b].

2.3 Large Deviations

In this section, we abandon the central limit theorem and concern ourselves with the
large deviations of the MLE. Recall that a function /: R — R is called a rate function if it
is nonnegative and lower semi-continuous on its domain, that is

liminf I(z) > I(zg), forallzy € R.

T—T0

Let X: QO — R be a random variable, let C'(a) = log E(e*X) denote the corresponding
cumulant-generating function, and observe that C(«) is strictly convex on R. We shall

study the Fenchel-Legendre transform of C'(«a), defined by

I(s) == sup(as — C(a)).

a€R

For now, we focus our attention on Cramér’s theorem, given in [Jak19, Theorem 7.8].
Theorem 2.3.1. Suppose C(a) = logE(e*X) < oo for all « € R. Then the large deviation

principle holds for (Sy/N)nen with rate function 1(s) = sup,cg(as — C(«)). Explicitly,

) 1 Sy (w .
lim Nlog Py {w c QN % €[4, B]} = — 561[{14?8][(3)

N—oo

forany [A, B] C R.

Since we will only be dealing with random variables that are defined on a finite space
(2 and that are continuous with respect to the parameter § € [a,b], the condition on

the cumulant-generating function will readily hold. Proceeding forward, we make the
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additional assumption that the entropy functions

[a,b] 3 0 +— Sy(w) = —log Py(w)

are strictly convex for all w € 2. Specifically, we will assume that

Sp(w) >0, forallw € Qand b € [a,b).

In a sense, this assumption is the foundation of the work of this section, as it has many

consequences that are essential in relating the entropy function to the MLE.

The first consequence is that the relative entropy function

[a,0] 3 A S(P|P) = Y Py(w) 8

wePy

is strictly convex. Second, for any A € [a, b] there is w € Q such that P,(w) # 0. Indeed,

suppose this is not true for some ), € [a, D], i.e., for all w € Q we have Py,(w) = 0. Then

P w
VS (Py|Py)|aere = Z Py(w AO )

wePy

for any 6 € [a,b]. By strict convexity, the local minima at A = § and A\ = ), are global,
and we obtain a contradiction by uniqueness of the global minimum. In particular, since
S eq Pr(w) = 0 for all A € [a,b], then P, takes both positive and negative values on €.

The next consequence of the convexity assumption is that for any A € [¢,b] and all N € N,

{w e OV dy(w) > )\} - {w e OV: Syy(w) < o} , (2.14)

{w e OV hy(w) < /\} - {w e OV Sin(w) > o} . (2.15)

Let us denote by J ie) the rate function for the sequence of random variables (S AW /N ) Nen

with respect to (Pyn)nen. In other words, denoting the cumulant-generating function by
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Coa(a) = logEy (eO‘SA), we let

J/(\G)(s) = sup (as — Cpr(a)).

a€eR

By Theorem 2.3.1, for any interval [4, B] C R,

' )
lim NlongN {w e QN S’\]]VV(W) € [A, B]} = — inf J/(\e)(s).

N—oo s€[A,B]

In particular, making use of (2.14) and (2.15), we have

1 A~
lim — log Poy {w e OV fy(w) > A} — —inf JO(s),

N—oo s<0
. 1 A . 0
e e 3} -0

Remark that since J §9) is strictly convex on R with global minimum at s = E,(S,), then

0 if E¢(Sy) € [A, B]

. (6) o . .
nE () = Q) A > Eo(S))

JO(B) if B <Eg(Sy).

As [a,b] 5 X — S(Fp|P,) is strictly convex and 0,S(F|P\) = 0 if and only if A = 6, it
follows that for A > # we have Ey(S)) = 9\S(Py|Py) > 0, and hence

1 .
Jlim - log Py {w e OV by(w) > A} = —J90). (2.16)
Similarly for A <6,

1 .
lim —log Py {w e OV by(w) < A} = —J9(0). (2.17)

N—oo
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Proposition 2.3.2. The function [a,b] > \ — Jf))(o) is finite, nonnegative, nonincreasing on

la, 0], nondecreasing on [0, b] and vanishing at X\ = 6.

Proof. Non-negativity is seen directly from

7 (0) = sup(=Cpa(@)) = =Cp(0) = 0.
aec
To prove that Jig) (0) is finite, recall that Cy »(ar) — o0 as @ — %00, and that a — Cp ()
is real-analytic (in particular continuous) so Cy (o) = —oo is impossible. The fact that
A= J /(\9)(0) is nonincreasing on [a, 0] and nondecreasing on [6, b] follows from (2.16) and
(2.17), respectively. Lastly, Je(e)(O) = 0 follows from (2.16) and the consistency of the

maximum likelihood estimator. O]

In fact, stronger results hold: A — J ig) (0) vanishes only at A = 6, is strictly decreasing on

[a, 0] and strictly increasing on [¢, b]. To see this, fix 6 € (a,b) and note that

R 3 o — Ey(e*) Ze—aPA W)/PAW) Py (w) (2.18)

weN

is strictly convex. Indeed, its second derivative has

3 (225;) e~ PG/PE) P () > 0.

wel
Since P, takes both positive and negative values on 2, we have

: P W) _aPy\(w w
hm 3) Eg( O‘SA) = lim Z%e Pr(w)/PA( )Pg(w) = Foo0.

a—+oo a—=+o00
wef)

By the intermediate value theorem, there exists a, € R such that

o Ee OéSA _ Z (w) *OO\PA )/PA(UJ)PQ(W) =0

a=a) w
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and by strict convexity, a) € R is the unique minimum of (2.18). Therefore,

J@(O) =— Olérellf& Coxla) = — 1ogZeMSA(”)Pg(a}).
weN

Now, consider the function F': [a,b] x R — R given by F(A,a) == 9,Cy(a) = Cy ().
Since § — Py(w) are C? on [a, b] by assumption, then F(\, ) is C* in A € [a,b] and is
infinitely differentiable in a € R. It directly has F'(\, ) = 0 with 9, F(\, ) = Cy\ (o) > 0
for any (A, ) € [a,b] x R, by strict convexity of Cy . By the implicit function theorem,
there exists an open set on which A — «, is C?. Since [a,b] 2 A — «, is unique, then it is
actually C? on all of [a, b], and so is A — J §9) (0). We can compute the derivatives of J ig) (0)

by implicit differentiation:

Eg <(dASA + ozAS,\> eO‘ASA)
Ey (eaxsx)

RI(0) = -

= —aye’y OR,(§em ), (2.19)

and the derivatives of A — «, using the formula

B (S B ~ Ea((1 £ )G B
EQ (S’EGO‘ASA)EQ (e“ASA) — Eg (SAea*S*)Q ' .

From (2.19), we have oy, = 0 <= 0,J”(0) = 0, since S)(w) > 0 for all w € ©, by

assumption. Furthermore, note that
0=Cja(an) and C,(0) = Ey(Sy) = —O\S(Py|P)).

Therefore, ay = 0 <= 0\S(Fy|P\) =0 <= 6 = X and hence Jie)(()) =0 <= A=0.

Moreover, 0y.J\”(0) = 0 < X = 6. In particular, A — J{”(0) is strictly decreasing on
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la, 0] and strictly increasing on [0, b]. Moreover, by (2.20), we have

. Ee(S)  Z(6) _q
Qg = = =

Eo(S3) Z(0)

and the second derivative of A\ — .J )(\9) (0) yields

(6)

8§J)(\9)(0) = —le)\eJA (O)Ea (S’)\eOé/\SA) + aiew;@)(o) <E6 (S)\eO‘ASA> )2

— Oé)\eAG)(O)]EQ ((S,\ + O'é)\S)\ -+ CY)\S)\> eaASA) .

Thus, we obtain 93.J @(0) |x=0 = Z(#) > 0 and hence the map A — J ie) (0) is strictly convex
around its minimum point A = ¢, by continuity of the second derivative. Incidentally,
we highlight the appearance of the Fisher entropy as the second derivative of the rate
function at its minimum. In any case, extending the rate function to .J @(O) = 0o when
A ¢ [a,b] and utilizing (2.16) and (2.17), we derive the large deviation principle for the

maximum likelihood estimator.

Theorem 2.3.3. Forany [A, B] C Rand 0 € [a,b],
. N.§ _ (6)
lim —log Py {w OV y(w) € [A,B]} = — it J?(0).

N—oo AE[A,B]

Proof. Since fy: Q — [a,0] for all N € N, we assume without loss of generality that

[A, B] C [a,b]. Let§ < A < B <b. By (2.16), for any € > 0 there is N; € N such that
PQN{W € QNi éN(w) > B} S PgN{éN(w) Z B} S e_(JJ(5‘0>(0)_E)N
for all N > N;, and N, € N such that

Pyn{w e OV: Oy (w) > A} > o~ UL O +aN
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forall N > N,. Thus for all N > max{Ny, N>},

Pyy{w € QV: QAN(W) > B} < o= UF ©=1P©0)-20N
PQN{W S QN QN((JJ) Z A} a

Pick 0 < 2e < Jgg)(()) - Jf) (0) such that the above goes to 0 as N — oo, and hence

B P@N{W € QNZ éN(W) > B}

1 ~
PQN{(JJ S QN QN((U) Z A}

0= li 11
T NDa N 8

= lim (%log Pyn{w € QV: Oy (w) € [A, B]} — %log Pyn{w € QV: Oy (w) > A})

N—o0

and the result follows. The case a < A < B < § is similar. Lastly suppose 6 € (4, B). By

Theorem 2.1.8, for any € > 0, we have

lim sup Pyv{w e QV: |y (w) — 0] > €} = 0.
N—=00 gca,b]

Take ¢ = min{f# — A, B — 0} > Osuchthat A <6 —e < 0+ ¢ < B, hence

1> A}i_r}r;OPgN {w e OV éN(w) € [A, B]} > J\P_I&PON {w e OV ‘éN(w) —0‘ < e} =1.

Therefore,
lim — log Py {w e OV Oy(w) e [A B]} —0=-JP0)=- inf JP0). O
Nooo N ’ o re[a,B) A

We now study a special case which illustrates that the MLE rate function need not be con-

vex everywhere, despite its corresponding random variables possessing strict convexity.
y Y-

Example 2.3.4. Consider the probability measure given by the exponential families

Py(w) =)/ 7(6), where Z(f) = ")

weN
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and H: Q) — R is a non-constant function. The maps

0 — Sp(w) = —log Py(w) = —0H (w) + log Z(6)

are readily seen to be strictly convex:

I () 2ePH ) H(wetHE \
:Z%—(Z%) >0 (2.21)

w'eN w’'eN

for all w € Q, by Jensen’s inequality. Given § € [a,b], let R 3 X — J\”(0) be the rate

function from Theorem 2.3.3. Note that

P(w)  HwW)Z(\) —Z()\)
Py (w) Z(A) '

Therefore, if 7 is the rate function associated to the sequence (H(wi) + - - - + H(wn)) yey

with respect to Py, then

= sup —azg—i\; — logEg(e aH))
-7 (Z()\)/Z(A)) (2.22)

In particular, for any interval [4, B] C R, we have

lim <Py {w e 0V dy(w) € (A B} =~ int JO0)=— inf T <_ZW).

N—oo AE[A,B] A€E[A,B] Z(N)
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We now turn to the rate function 7 and study its relation to A + J, (©) (0). Let

m =min H(w), M =maxH(w),

we weN

and remark that the argument in (2.22) has

M H(w) Aoc
- Z NH@) =) T Z NHW)—H (W) M
H(w)=M > e ® H(wo)< M D ©

and

Z(/\) _ Zweﬂ H(w)eAH(w)

m H(w) A——o00
Z Z o O HE)- T Z Z o O HE)HE) s m

Applying [Jak19, Proposition 2.6], we observe that the function R > A — J §9) is bounded
with horizontal asymptotes given by

lim J7(0) = 7O(M) = —log Py{w € Q: H(w) = M},

A—00

lim J(e)(()) T (m) = —log Pp{w € Q: H(w) = m)}.

A——00

In particular, A — J /(\6) (0) cannot be convex on all of R. Since our analysis shows that it is

strictly convex around A = 6, the function A — J ie) (0) must have inflection points.
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As a concrete example, consider the two-state system © = {£1} with H(+1) = +1 and
¢ = 0. Then Py(+1) = +1/2 and for any )\, we have

Z(A\)/Z(\) =tanh XA and logEq(e*?) = log cosh a.
Therefore, the rate function has

j)(\o) (0) = 7@ (tanh \) = sup (a tanh X — log cosh a)

acR

and the supremum is attained at o = tanh ™" \. Thus,
1 1
J90) = 5(1+ tanh A)log(1 + tanh A) + 5 (1 — tanh ) log(1 — tanh \) (2.23)

with 0§J§0)(0) = (1 — 2\ tanh \) sech® A and horizontal asymptote —log{ H(+1)} = log?2.

The graph of function is shown in fig. 2.1.

0.7F
0.6;
0.5?—
0.4;

03F

-4 -2 ] 2 4

Figure 2.1: The rate function A — Jﬁo)(O) given by (2.23) with horizontal asymptote of

log 2. The function is strictly convex around A = 0 but has inflection points at A\ = +0.7717.
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Chapter Three

Markov Measures

In this chapter, we adapt the results presented in Chapter 2 to the setting of finite state

Markov measures by making use of results established in [Mat23].

3.1 Preliminaries

We start by introducing objects we shall work with for the rest of our analysis, as well
as certain results that will prove useful to our purposes. Let 2 = {1,...,L} be a finite
set with L > 1, and let [a,b] C R be an interval. We work with a family of irreducible
and aperiodic (right) stochastic matrices T'(6) = [p;;(0)] € RY*F whose entries are thrice-

continuously differentiable maps

where (Ogp;;)(a) = (Ogpi;)(a™) and (9ppi;)(b) = (Oppi;)(b~). By the Perron-Frobenius theo-

rem, there is a unique positive and invariant probability vector p(f) € R* on ) associated
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to the transition matrix 7'(¢), in the sense that p;(6) > 0 for any ¢ € (2,
> pi0)=1 and > pi(0)p;(0) =p;(0) forallje Q.
i€Q i€Q

Moreover, the regularity of p = p() is the same as that of 7" = 7'(), that is, given w € €,
the maps 6 — p,,(0) are C*([a, b]), see [Mat23, Lemma 1.2.1]. For N € N, we construct the

parameter-dependent Markov probability measure Py on QVas follows. For any N € N!

and any elementary eventw = (wy, ..., wy) € 2V, we define the Markov measure by
N
P9N<w) = Pun (9) prk—l»wk (6) = Pun (e)pwl,u& (9) ©Pon 1 wn (6) 3.1)
k=2

with Py(wy) = Py (w1) = pu, (0) and write Egn (X) for the expectation value of a random

variable X : O — R with respect to Pyy. Hereafter, we make the assumption that
01 # 6y = Py, # Py, (3.2)

and refer to the latter as the identifiability property of the sequence { Pyn } yen-

The objective of this assumption is to allow for the obtainment of the “true” parameter

value of the model. Specifically, it allows for a well-defined maximum argument function.

Definition 3.1.1. For N € N with N > 2, we call maximum likelihood estimator (MLE)

the function Ay : O — [a, 0] defined by

~

On(w) = argmax Pyn(w), (3.3)
0€(a,b]

where @(W) = P w2 (0)-- "Pwn_1wn (0).

We make the critical observation that maximizing (3.3) is equivalent to minimizing the

following function.

!With the convention that N = 1,2, . ..
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Definition 3.1.2. Given wy, w, € 2, we define the function S.(w;,w2): [a,b] — R by

S@(WhWQ) = 10g@(w1,w2) = - logpm,wz(‘g)

and call it the entropy function. Moreover, for w = (wy,...,wy) € ON with N > 2, we

write

N-1
Son(w) = —log Pyn(w) = — Z 10g Py, o1 (0)-
k=1

The entropy functions are well-defined since the transition matrix contains only strictly
positive entries. Using the notation f(6) = dyf(6) for derivatives of functions that depend

on 6 € [a, b], we observe that the entropy functions are C*([a, b]) and have

o @(wl’ w2) pwu@ (9>
Se(wl,wz)——&(wl’w) —pmmw),
. 2
R < CITC g G ) N ) B {pm,ww)r
P T T By(wr,ws) | Baa(wr, wa) Dorn(®) " [ Ponan(0)]

Although our analysis would be identical if we had defined the MLE to yield the value

that, given w € O, maximized (3.1), it would make the notation more cumbersome.

Definition 3.1.3. We call Fisher entropy of the Markov measure generated by (p(#),7'(¢))
the function Z: [a, b] — R given by

[Pn s (0)]
Peon o (0) .

Z(6) =Eu (I5°) = Y. pa(®)

w1,w2EQ

The Fisher entropy is intimately linked to estimation theory, in that, by the Cramér-Rao
bound, it gives a lower bound for the variance of a parameter’s estimator. For a deriva-
tion of this result for uniformly efficient consistent estimators in this setting, see [Mat23,

Proposition 2.2.2]. Moreover, the derivation given in Appendix B highlights the central
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role of 7 in the study of entropy functions; the special case N = 2 yields

Fg2([Se]?) = Vargs(Sy) = Ega(Sy) = Z(6).

We shall assume throughout that Z is nonvanishing on [a, b].

Before moving to our first result, we introduce another entropy function that will make

important appearances, albeit infrequent.

Definition 3.1.4. The relative entropy of Py with respect to Py y is defined by

P N(w)
S(Pyn|Pyn) = Pyn(w
w%l:N Pe/N(w)

Lemma 3.1.5. The relative entropy has S(Pyn|Pyn) > 0, with equality if and only if § = ¢'.

Proof. By Jensen’s inequality,

P/ w
(P9N|P9/N Z PgN log Pe;]]\\[[((w —log < Z PG/N ) =0

weQN weQN
with equality if and only if Pyy = Py . The result follows by property (3.2). O
We infer that for fixed 6 € [a, b], the map ¢ — S(Pyn|FPpn) attains a minimum at 6’ = 6.
We now turn to the uniform parametric law of large numbers given in [Mat23, Proposi-

tion 3.2.1]. Since we require a specific convergence rate different than that provided in the

reference, we proceed a bit differently, starting with a generic law of large numbers.

Proposition 3.1.6. Let X : 2 — R be a random variable and let N € N. Set

Sy(w=(wy,...,wn)) = ZX(wk).

k=1
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Then there exists a constant C' > 0 such that for any e > 0,

PN{wGQN:

Sy (w) Var(X) + C
_ >l 1T
E(X)’ > e} < N
forall N € N.

This result can be found in the proof of [Mat23, Proposition 3.1.1], where the estimate
appears in the last line of the derivation, before the limit in NV > 1 is taken. For random

variables depending on a parameter, a similar uniform result holds.

Proposition 3.1.7. Let 6 € [a,b] and Xy: @ — R be a random variable such that the maps
[a,b] 5 0 — Xy(w) are continuously differentiable for all w € Q. Set

Son(w = (w1, ...,wN)) = Xo(wg).

1M

Then there exists a constant K > 0 such that for any ¢ > 0,

Sy
sup Pyn {w e OV sup %(w) — Ep(Xy)

0€a,b] 0'€la,b]

K
>y < —
- }_63N

forall N € N.

Proof. Lete > 0 and letw € Q and 0,6 € [a,b] be such that § < #'. By the mean-value
theorem, there exists n € (0, ¢') such that

Xp(w) = Xgr(w) = X, (w) (0 —0").
Since § — Xy is C' and the state space is finite, we can let K < oo be such that

K > sup \Xg(w)|
0€la,b]
w1,w2EQ
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and we set A = ;% > 0. Whenever |0 — 0’| < A, we have | Xy(w) — Xy (w)| < ¢/4and

sup [Ex(Xp) — Ex(Xp)| < sup > [Xp(w) — Xo(w)| Pr(w) <
A€[a,b] A€E|a,b] e

|

Now leta =6 < 0; < --- < 6, =bbesuchthatf, — 0, , < Aforn = (b—a)/A, and

suppose that w € Q" satisfies

S%N (w)

- — Eg(Xy)

<

N

forall 0 < k < n. For any ¢’ € [a,b], there exists 0 < k < n such that |#' — 0| < A and

hence, for all 0 € [a, V],

Sorv(w Son(w)  Sonw)|  |Sen(w)
97\; ) _ Ee(;@/)‘ < ezjvv( ) _ v L~ Eo(Xey) | + [Ba(Xg) — Ea(Xo)
< l& + : + e
N4 2 4
Therefore,
e S’ W ’
ﬂ {w e QN: o () —Ep(Xg)| < —} ClweY: sup S () —Eo(Xg)| <€
k1 N 0’€la,b] N
and taking complements,
’ " S’ w
we Y sup S (w) —Eo(Xg)| >€p C U{wEQN: o () — Eo( Xy ) ZE}.
0'€[a,b] P} N k 2
Lastly, for any 6 € [a, b], we apply Proposition 3.1.6 to obtain
Pondwe QV: sup M —Eg(Xo)| > €
0’€la,b) N
" Sp n(w) € 4Cyn
< N k — N >=8 <
_ZPQN{WEQ N Eo(X) _2}_ T
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where C; = maxg grcjap Varg(Xg, ) + C > 0. Substituting n = (b — a)/A = 4K (b —a)/e,

SQ/N((JJ)

—EQ(XQI) = <~ €3N

16C1 K (b —
Piniwe QV: sup > € <M.
0’€la,b]

Taking the supremum over all § € [a, b] and setting K := 160, K (b—a) yields the result. [

Remark 3.1.8. As stated, the previous two propositions only hold for univariate random
variables, that is, X : 2 — R. However, they can readily be generalized to bivariate ran-
dom variables X : % — R by considering an auxiliary Markov chain. To do this, we write

A = Q? and denote Sy (w) = i\f:—ll X (wg, wr1). We then consider the pair (p,7") where

ﬁ = [ a]aEA and T = [pa,b] (a,b)e.A? have

Pws wy if Wy = W3,
P(w1,w2) = PwiPwi,wa and P(wi,w2),(ws,wa) =
0 else.

Thus, p > 0 and pT = T with T an irreducible and aperiodic stochastic matrix. Denote
Py the Markov probability measure generated by the pair (p, T). For a € A", we identify
the bivariate random variable X : Q2 — R with the univariate random variable X : 4 — R

and we write Sy (a) = Y1 | X (az). Observe that

En(e5) = Eaa(e™5)

forall « € Cand N > 1. It is this correspondence that allows the extension to bivari-
ate random variables, and we refer the reader to [Mat23, Section 3.2] for explicit com-
putations. Letting 6 € [a,b], we can apply Proposition 3.1.6 to the sequence of second

derivatives (59 ~N)nen to obtain

S@N(w)
N-—-1

— ()

P, Qv
o {w © (N —1)

Z (—j} < V&I'QQ(SQ) -+ C
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Since N/(N — 1) < 2,thenforalle > 0and N > 2,

sup Ppy{w e QY Son () —Z(0)
oelab] N -1

> e} < ﬁ (3.4)

where K, = 2 SUDgelq,4] Vargs(Sy) + C.
Using the previous remark, we extend Proposition 3.1.7 to the bivariate case.

Proposition 3.1.9. Let § € [a,b] and Xy: Q* — R be a random variable such that the maps

[a,b] 3 0 — Xp(wy,ws) are C* for all wy,wq € Q. Set
N-1
S@N(w) = Z Xg(wk,wk+1).

k=1

Then there exists a constant K > 0 such that for any € > 0,

SQIN(W)
N—1

sup Pyn {w e V. sup — Ego(Xyr)

oclab] 0'€lab]

> < f(
6 —_—
- — N

forall N > 2.
This allows us to provide a uniform consistency estimate for the Markovian MLE.

Theorem 3.1.10. There exist a constant K, > 0 such that for any ¢ > 0,

sup Pyn {w e OV ‘éN(w) — «9‘ > 6} < —=
0€(a,b]

This result is an adaptation of [Mat23, Theorem 4.2.1] in that it gives an explicit bound in
terms of € > 0 and NV € N. Its proof follows the one given in the reference, except that we

apply Proposition 3.1.9 in the last step to obtain our estimate.

Before moving on to the next section, we state the central limit theorem via a Berry-

Esseen-type estimate for discrete Markov chains.
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Theorem 3.1.11 ([Man96, Theorem 1]). Let Xy : 92 — R be a Markov chain with N > 1 an

integer. Denote Sy = ij:l X, and suppose

N—o00 N

Then there is a constant K’ > 0 such that for all [C, D] C Rand N > 1,

K/
VN

1
a V21 Jo

e 2 4y

<

Py {w e QN (Sv —E(Sw)) € [C, D]}

1
v No?

3.2 Central Limit Theorem

In this section we turn to the central limit theorem of the sequence of maximum likelihood

estimators (é ~)nen and we recall that
]E@N<—SQN> =0 and VaI'QN(—SgN) = (N — 1)1(9),

for all N € N, as shown in Appendix B.

Theorem 3.2.1. Let 6 € (a,b) and let [A, B] C R, then

~ B 2
lim Py {w e OV /(N — 1)Z(0)(0x(w) — 0) € [A, B]} - J%/A e 2dr.  (3.5)

Proof. Let [A,B] C R, fix # € (a,b) and let ¢ > 0 be such that [# —€,0 + ¢] C (a,b).

<6},

Furthermore, let N > 2 be an integer and denote

5’91\7(&))

N -0z

QY = {w e OV: |fy(w) — 0] < eand

which has
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by Theorem 3.1.10 and (3.4). For w € QF, we have On(w) € (a,b) and also SéN(w) (w) = 0.

By the mean value theorem, there is £ (w) between 6y (w) and 6 such that
—Son(w) = (On(w) = 0)Sey v (@)

and hence

@ ] .
NOE (N = 1DZ(0)(On (w) 9)—<N_1)I(9)-

(3.7)

Applying the mean value theorem again to 6 — Syy(w), we have

Sep@n (@) = Son(w)  (On(w) = 0) S ey v (@)

(N —=1)Z(0) (N —=1)Z(0)

for some ((w) between 6 and ¢y (w), thus

1 | Son(w)]
<e€| sup sup —————
(96[%1)} I(@)) (96[a,b] N -1

1 d3
=e| sup —= sup
oclab) Z(0) 0c(a b

Sen(w)n (@) — Son (W)
(N —=1)Z(9)

@ log Py wo (0) '
w1,w2EQN

= eK.

Son (w)

Since w € O, wehave 1 — ¢ < NoDZ()

< 1+ e and summing it with

Ser(w)n (W) — Son (W)
—HKes (N-1Z00) = Ke

we get

Sex(n (@)

l—€eK+1)< N — VZ(0)

<1+ €K +1). (3.8)
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Observe that there are three types of intervals [A, B]: either 0 < A < B, A <0 < Bor

A < B < 0. In view of this, take ¢ > 0 so small that
e(K+1)(JA|+|B|]) < B—A and 1 —¢(K +1) > 7, (3.9)

for some small v > 0, and set

A(l+e(K+1)) if0 <A, B(1—¢(K +1)) if0< B,
A= B, = (3.10)
Al —e(K +1)) if A<0, B(l+e(K+1)) if B<O.

Notice that the first condition of (3.9) ensures A, < B, and whenever w € QY satisfies
Ac < V(N =1DZ(0)(On(w) - 0)

then A < /(N —1)Z(6)(dn(w) — 6) < B by (3.8). Making use of (3.7), we obtain

(N —1)Z(6)

< Py {w e OV /(N —1)Z(0)(fy(w) — 0) € |A, B]} .

We can extend the sets to Q" on both sides to get

S@N(U))
(N —1)Z(0)

Py {wEQN: — € [AG,BG]}

~

< Py {w e OV /(N — DZ(0)(fy(w) — ) € A, B]} + By (QMN\QY). (3.11)

Taking the limit inferior, recalling (3.6) and applying Theorem 3.1.11 to the sequence

(—Sg ~N)nen With expectation IE@Q(—SQ) = 0 and variance Vargg(—Sg) =17(9),

B. .
\/%/ e "2 dx < li]\rfninf Pyn {w c OV /(N - 1DIZ(0)(Oy(w) —0) € [A,B]} :
T Ae —00
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Finally, taking € | 0 yields

1 —z2/2 . . N . ~
E/A e P2 dx < IINHLIOICl)fPGN {w e Q" (N-1Z(0)(On(w)—0) € [A)B]}' (3.12)

We now show the reverse inequality holds with the limit superior. Let

A(l—€e(K+1)) if0< A, B(1+eK+1)) if0< B,
Al = B! = (3.13)
A(l+e(K+1)) if A<O, B(l—¢(K+1)) if B<O.

and note that A, < A < B < B!. In particular,

~

{w e OV /(N - DZ(0)(Oy(w) — 0) € [A, B]}

cwe Vs IV =DZ0)(n(w) — )@@ o4 pn
—1)Z(0)
by (3.8). Using (3.7) and extending both sides to 2,

Pon {w c OV /(N —1)Z(0)(fy(w) — 0) € |A, B]}

< Pyy {w cON: — G € [A, Bg]} + Py (QN\QY).  (3.14)

Taking the limit superior, recalling (3.6) and applying Theorem 3.1.11 to (—Spn ) ven,

i sup Py {w € 0: /(N =TT} () — ) € [4. B} < / /2 dz,
Taking € | 0 and combining with (3.12) yields the desired result. O

The assumption that § € (a,b) in Theorem 3.2.1 ensures that cases where the maximum
likelihood estimator takes value a or b but SéN(w) ~(w) # 0 are discarded from our analysis,

as required by our argument.
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We now strengthen the above result to a uniform convergence with respect to the param-
eter and we provide a rough estimate for the convergence rate by making use of different

convergence estimates previously established.

Theorem 3.2.2. For any [a',0] C (a,b) and N € N large enough, there is C > 0 such that

. R C
P ON: V(N —1)Z(0)(0 —0) €[A B} — — 2 x| < .
s |Poy {w € @ VIV =DZO) Onl) =) € (A BI} = = | e o) <
[A,B]CR
Proof. Let [a/,b'] C (a,b) and let 0 < € < min{ “’2‘1', %} satisfy (3.9). Furthermore, let
5 Son (w)
QN g) = OV |Gy (w) — 6 d | g .
() {we |On(w) — 0] < ean N - 1Z(0) <€
By Theorem 3.1.10 and (3.4), there exist K1, Ky > 0 such that for all N € N,
K. K
Pyn(QN\QN(0)) < =2 + = 3.15
esel[tl?b] on(QNQ(0) < 55+ 5y (3.15)

By (3.11), we have

LeaV. _ Son (w) R /2

peN{ e - I e [Ae,Be]} \/%/A d

< Py {w e OV /(N — 1)Z(0)(0x(w) — 0) € [A, B]} - V%_w AB S
+ Pyn (QM\QY(9)),

for A, < B, as defined in (3.10). By Theorem 3.1.11, there exists some constant K’ > 0
such that for all # € [¢/, ] and all intervals [C, D] C R,

/

1
B V21 Jo

S(,)N(w)
(N = 1)Z(6)

e 24y

<

(3.16)

PgN{wEQN: — E[C,D]}
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Thus, for all § € [¢/, V'] and [A, B] C R, we have

K’ 1
VN  2r [A,B)\[Ac,Be]

e~ 2dz — Pyn (QN\QN(6))

On the other hand, by (3.14) we have

P {w e @V IN - DZO)(On(w) ~ 0) € (4.8} - \/% [
w N. SeN(W) e L b 0=2%/2 4y N\ ON
< Pyn { e 0 (N = 1)1(9) S [AG,BJ} \/%/A dx + PQN(Q \Qe ((9))

for A, < B! as defined in (3.13). Combining this with the Berry-Esseen bound of (3.16)
applied to the interval [A., B/], we get

Pyn {w e OV /(N — 1)Z(0)(Oy(w) — 0) € |A, B]} L g,

J K
VN Vor Jiasas

e /2 dz + Pyy (QN\QN(6))
and hence

PQN{w e QY. /(N — DZ(0)(Oy(w) — 0) € [A, B o7/ dx

\/ 2w /
2 2 K
< —max / e /2 dx,/ e ” /Zdaz} +
V2m { ALBI\[A,B] [4,B)\[Ac,B] VN

Taking the supremum over 6 € [d/,b'] and all intervals [A, B] C R and making use of

(3.15), we obtain

(QN\Q(9)).

X I
sup |Piviw € QY /(N — 1DZ(0)(On(w) —0) € [A, B ——/ e " 2 dx
s |Pov (V= DZE) () ) € (4B} - —— | |
[A,B]CR

1 2 2 K/ f(Q ffl
< sup ——— max {/ e /2 d:c,/ e " /2dﬂv} + + + :
[A.BICR /2T (A7 BI\[A.B] [A,B\[A,Be] VN &N &N
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Lastly, we bound the maximum by

1 2 K+1
sup ——— max {/ e /2 d:v,/ e_$2/2dx} <A\ —= «(k+1)
[A,B]CR V2T [A7,B/]\[A,B] [4,B)\[Ac,B.] er (1 —e(K +1))

and refer the reader to Appendix C for a derivation of the estimate. Recall from one of

our restrictions on € > 0 given in (3.9) that 1 — ¢(K + 1) > ~ for some v > 0, hence

1
B V21 Ja

sup | Pox{w € s /(N = T)Z(0)(0x () — 0) €[4, B]} o2 4y
ocla’ ]

[A,B]CR

_ 2K+1+K’+f(2+f(1
e\ — :
- er v vN €N N

Setting ¢ = N7, it remains to find z > 0 that will yield the optimal rate of convergence.
Since the first term is competing with the third and fourth term, and N'=%* > N'=% for
z > 0, the optimal exponent will be one giving the same convergence rate to the first and
third term. In other words, we want z = 1 — 3z and hence z = 1/4. Thus, taking N € N

large enough that all of our restrictions on e = N~/ hold, we obtain

) I
sup |P, {wGQN: NZ(6)( w—QGA,B}—— e /2 dx| < .
s [P @onw) -0l B}-— [ <
[A,B]CR
fOI'C: lﬂ‘i‘K/—Fkl—i—Kg ]

emr vy

Remark 3.2.3. The last convergence estimate is worse than what we offered in the setting
of Theorem 2.2.2 on iid random variables, since the proof of the law of large numbers in
Proposition 2.1.6 made use of the third moment. In contrast, the variance was used in
Proposition 3.1.6. However, we see no reason to believe that utilizing the third moment
there is impossible. Nonetheless, in that case, one would only be able to obtain the same

convergence rate provided in Section 2.2, i.e., N~2/°

, still short of the sharp decay estimate
of N=1/2 given in Theorem 3.1.11. Again, this is due to the additional ¢ factor introduced

by the uniformity condition on the random variable’s parameter in Proposition 3.1.7.
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3.3 Large Deviations

Although our analysis so far has been following closely that of Chapter 2, showing the
LDP for the Markovian MLE requires establishing results that held trivially for iid random

variables. This primarily stems from the loss of independence of the entropy functions

=

-1
Siv(w) ==Y 108 Puywpss (A),  wherew € QY X € [a,b)].
1

=
Il

For ,\ € [a,b] and o« € R, we now have to consider the sequence (Cy n(a))n>2 Of
cumulant-generating functions given by

Coan(a) =logEyy (eaSW)
and worry about the limit of Cy y y(a)/N as N — oo. This limit can be studied through
the spectral radius of the tilted matrix 7y \ (o) = [eask(‘*“"”?) Doy s (8) ]y wo- Indeed, we have

1 :
lim —Con(@) = lim log | Tya()"|"™, (3.17)

N—o0

where the norm is unspecified as 2| < oo and all norms are equivalent on finite spaces.
By Gelfand’s formula, we also have that the spectral radius ey \(«) of Tj »(a) has
. N
eg(a) = lim ||T97A(Q)NH1/ )
N—o00
Henceforth, we denote &, (o) = logeg(a) and refer to it as the limiting cumulant-
generating function. We now state a few results concerning the limit of (3.17). The

next proposition follows from [Mat23, Proposition 3.1.2] and an adaption of the proof

of [Mat23, Lemma 3.1.7] to the case where [a, b] 3 0 — p,, ., (0) are C? for all w;, w, € Q.

Proposition 3.3.1. For any 6, \ € [a,b], the function o — &y () is real-analytic. Moreover,

the function 0,y () is C* in X € [a,b] and C? in 0 € [a, b).
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The sequence (Cyp\ n(a)/N)n>2 is readily seen to be real-analytic, giving us tremendous

knowledge on the derivatives of the limiting CGF, as implied by the following result.

Theorem 3.3.2 ([Mat23, Lemma 3.1.6]). For any a € R, there exists an open set U, C C
with o € U, on which Cy  y(«) is analytic for all N > 2 and the following limit is uniform for

0, \ € [a,b] and o in compact subsets K C U,:

) 1
lim NCG’)\’N(OC) = Qfg,,\(Oé).

N—o00
Corollary 3.3.3. Forany k € Nand « € R, thereis U, C C open with U, > « such that

N 7 k
lim ~Cy8 v () = €3 (@)

N—oo

is uniform for 6, X € [a, b] and « in compact subsets K C U,.

In particular, the first and second derivatives of the limiting CGF read

, . 1 Egn (S,\NGO‘SAN)
e,A(a) = ]\}1_{{1)0 N Egn (easw)

Eon (SANGQS*N) i

E@N (eaSAN )

b1 [ By (S3yetv)
G,A(a> - ]\}gréo N Eon (eaSAN) B

We infer that, as the limit of strictly convex functions, &  is convex on R for all 6, A € [a, b].

As in Chapter 2, we make the assumption that for all § € [a, b], the entropy functions
[CL, b} 50— S@<W17 W2) == logpwl,wz (6)

have S (w1,w2) > 0, and we refer to it as the strict convexity assumption of the entropy
functions. This has many consequences that will allow us to drive our analysis further,

the first of which is that [a,b] 3 0 — S (pu.e(A) [P« (0)) is strictly convex for each w € Q.
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Lemma 3.3.4. Let 6 € [a,b]. There exists w,w’ € § such that p,, ., (0) # 0. In particular, for any

w € Q, there are wy € ) such that
Pow. (0) >0 and p,, (0) <O.

Proof. We start with the first assertion. Suppose by contradiction that for some 6, € [a, b],

we have p,, ./(0) = 0 for all w,w’ € Q. Then for any A € [a,b] and w € 2, we have

ww 6
aes(pw,-<)‘)|pwo ’9 90 prw ]]j (6 ; = 0
w'eN w,w!

By strict convexity, both ¢ = X and 0 = 0, are global minima by Lemma 3.1.5, which
is impossible. The second claim follows from the fact that for any w € , we have

> req Puw (0) = 0, by stochasticity. O

Before continuing with the strict convexity consequences, let us make a brief digression.
Using Lemma 3.3.4 and the the following result on analytic functions, we will show that

the limiting cumulant-generating possesses strict convexity.

Lemma 3.3.5 ([KP02, Corrolary 1.2.6]). Let U C R be an open interval and f and g real-analytic
functionson U. If {z € U: f(z) = g(z)} has an accumulation point, then f = gon U.

Proposition 3.3.6. For any 6, \ € [a,b], the map R 5 o — &g () is strictly convex.

Proof. As the pointwise limit of a sequence of strictly convex functions, &, , must also be

convex. Now fix 6, A € [a,b] and recall that Sp(wy, ws) = — Py o (8) /Duoy.ss (0)- Set

Qi(0, )\ a) = {eo‘s*(wl’w)pwlm(@): wi,wy € Qand Sy (wy,wy) > O} :

Q,(@, )\, Oé) {GQSA(MI’MQ)]?WLWQ (6) w1, wWs € ) and S)\<W1,U.J2) < O} s
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and denote fi(0, A\, ) = min Q+(0, A, «) > 0. It is clear that lim, 1+, f+ (6, \,a) = co. Let

a > 0. Since Tp ,(«) has nonnegative entries, taking the sup norm yields

7O A )N =max 7 e By (0) NI, (0) > f(0,A, @),

by Lemma 3.3.4. Therefore, by (3.17),
. NI1/N
Cga(a) = lim log |76, a)[|" > log [+ (6, X, a).
Similarly, for any a < 0 we have & () > log f_(0, A, @) and thus

lim & ,(a) = co. (3.18)

a—+oo

Now suppose that R 3 a — &g ,(«a) is not strictly convex, in that there exists an interval
I C R over which &, (a) = 0. Since R > a +— €& x(«) is real-analytic, it must be linear on

all of R by Lemma 3.3.5, which is impossible by (3.18) and the fact that &, ,(0) = 0. O
From the proof, we observe that for each 6, A € [a, b], there exists a unique o, € R such
that & , (ag) = 0. Additionally, a is a global minimum of the map a +— & x().

The next consequence of our convexity assumption is that for any A € [a,b] and all N,

{w e OV hy(w) > /\} - {w e OV Sin(w) < o} , (3.19)

{w e OV hy(w) < /\} _ {w e OV Sin(w) > o} . (3.20)

Having laid the groundwork, we turn to the LDP of the MLE and the study of its rate
function. It is well-known that the LDP holds for sequences of finite state Markov chains
with irreducible stochastic matrices. Making use of Remark 3.1.8, we state a version of
[DZ10, Theorem 3.1.2] obtained via an application of the Gértner-Ellis theorem—a gener-

alization of Cramér’s theorem to random variables that are not necessarily iid.
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Theorem 3.3.7. Let X: Q* — R be a random variable defining a finite state Markov chain
possessing an irreducible stochastic matrix T = [p;;]; jeq. Consider the sequence
N-1

X (wp,wit1), wherew € QV.
k=1

Sn(w) 1
N N

Moreover, let e(«) be the spectral radius of tilted the matrix T () = [e®X@D)p,;]; icq and set

I(s) = sup(as —loge(a)), wheres € R.
acR

Then the sequence (Sy /N ) nen satisfies the LDP with convex, good rate function 1.

We recall that a rate function is called good if its sublevel sets are compact, a fact we shall
not use. Now, let J /(\9) (s) = sup,er(as — €p(a)), the Fenchel-Legendre transform of & ,.

Applying Theorem 3.3.7 to the sequence (S \W/N)n>2, we obtain that for any set £ C R,

. Oy < T inf - v Sww) .
sEiIIIé{E) Jy(s) < hNHLIOICIJf N log Pyn {w e Q' N € int(E)

. :
< limsup - log Py {w cQV: S”]VV(“) S cl(E)} < - inf JO(s).
Since J/(\e)(s) =0 <= s=¢&,(0)= Egs(Sy), then for any interval [4, B] C R,

0 if Ego(Sy) € [A, B,

. 6) o 9 . >
SelafB] I (s) =S JOA) if A> Eg(S)),

JO(B) if B < Eg(Sy).

Therefore, whenever z > E92(S \) we have

.1 SAN<W) 0
A}l_f}I(l)oﬁlongN {w e OV — >q = —J/(\ )(x)
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and whenever z < E@Q(S)\),

N—oo N

] .

Extending A — J ig) (0) to J ;9) (0) = co when A ¢ [a, b], we derive an LDP for the MLE.

Proposition 3.3.8. For A\ > 0,

.1 A 0
§E;ngaw{weﬁm9N@)2A}:—A>wy (3.21)
For A <9,
lim — log P, {w e OV hy(w) < )\} = —J90) (3.22)
Novoo N N N = AN '

The following results establishes a few properties of the function A — J §9) (0).

Corollary 3.3.9. The function [a,b] > X — J@(O) is finite, nonnegative, nonincreasing on [a, 6],

nondecreasing on [0, b] and vanishing at A = 0.

Proof. Nonnegativity is seen directly from

A%m:aﬁpewm»z—axm:o

ac

To prove that J ie) (0) is finite, recall (3.18) and that o — &g ,(«) is real-analytic (in particu-
lar continuous) so & (c) = —oo is impossible. The fact that A — J\”(0) is nondecreasing
on [¢,b] and nonincreasing on [a, f] follows from (3.21) and (3.22) respectively. Lastly,
Jég) (0) = 0 follows from (3.21) and the uniform consistency of the maximum likelihood

estimator given in Theorem 3.1.10. [
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The function [a,b] > A — J @(0) actually enjoys stronger properties, and we shall now

explore them. Fix 6 € (a,b) and given X € [a, b], let a, € R be the global minimum of

1 .
R3am €)= lim <log > e IPy(w),

wenhN

hence Jf\a)(O) = —€p (). Note that 0 = & , (avx) and recall that p(¢) > 0. Since

. Eon(Siw)
, —_—
ox(0) = Jim ==

=Ep2(50) = D Pu(0)01S (Dua (0)[pe(N)).

we

then JV(0) =0 <= oy =0 < NS (Pue(N)|pue(8)) =0forallw € Q < X=0.

We now consider the function F': [a,b] x R — R given by

. OéSAN
F()\,Oz) = (%697)\(04) — ]\}im %EGIJEY(SE\NZ ) )
—00 ON eOSAN

Note that the above map is real-analytic in « and C? in \ € [a, b] by Proposition 3.3.1, and

observe that F'(6, ay) = 0 by definition of . Furthermore, at (X, o) = (6, ay), we have

. . ) . 5
2 ~0gSon agSon
uF(0a)] = tim ~ | BenlSone ) Eon(Sonc™ )
a=aog N—o0 N EGN(QOZQS@N) EGN(ea@SQN)
; EGN(SgN) _
= g —— - =1(0). (3.23)

where the second equality follows from ay = 0 and E, N(Sg ~y) = 0forall N > 2, and the
third equality follows from Egy(SZy) = (N — 1)Z(6), as derived in Appendix B. Since the
Fisher entropy 7 is nonvanishing on [a, b] by assumption, then 0, F(0, «) ‘a:ao > 0. By the
implicit function theorem, there exists an open set Uy > 6 such that the map Uy > A — a),

is twice-continuously differentiable and with derivative given by
W (9FO o) L (OF(\ )
o da O
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Further, we infer that Uy > \ — J/@(O) = —€,(ay) is C% Note that, at « = ay, we have

1 ) )
F(\ o) = ]\}1_13;0 NEON(S)\N> = Eg2(5)).
Therefore, 0\ F (A, 049)|A:9 = E@Q(S@) = Z(#) and combining this with (3.23), we obtain

dyg = —1. Now, let N € N and let Cyy: [a, b] — R be the function defined by
Con(A) = logEgn (e"‘*SAN), for A € Uj.

Note that this function is C? and has

_ Egv((aaSiv + Gy Sy e 5w) Eon (Sane™ )

Cyn(N) = . =« :
QN( ) EON(QCV)\SAN) A EGN(QOO\S)\N)

by definition of a) € R. Its second derivative has

1)y e ) | By (S s, + o)
oN EGN(QOO\SAN) EeN(eaAS,\N)
. . 2
2 [ Bon(Swe™™)
A Eon (ea,\S,\N)

Since &y = —1 and o = 0, then at A = § we have —Cy(0) = (N — 1)Z(0) for all N > 2.
Thus, for each N > 2, there exists a neighborhood Uyn > 0 on which —Cyy /N is convex.
Proceeding, we make the assumption that there is a shared open set U > 6 on which
—Cyn/N is strictly convex for any N > 2. We infer that Up>\— J @(0) is convex and

hence that the sequence of derivatives (—Cj, /N)y>2 converges? to 9yJ ie) (0):
1 EQN (SANeO‘*S*N )

Oy — o i
A0) = = lim = B ()

2A sequence of finite, convex and differentiable functions (f,,), on an open convex set U converging
pointwise to a finite, convex and differentiable function f on U has f;, — f’ uniformly on compact subsets
of U. See [Roc70, Theorem 25.7]
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Since S\, > 0 on Q2 for all A € [a, b], then for all \ € Us, 8AJ§9)(O) =0 < «a),=0and

thus A =0 <= 0\J ia) (0). Moreover, we can compute the second derivative to obtain

1E S 0‘9391\7 a 1E S CY)\S)\N
8§J§0)(0)} = —dy lim — on ( N )—ae 9 ohm = on ( ANC )
A=0 N—oo N EaN(eCVQSeN) a)\ N—oco N EGN(ea)‘S)‘N) \—p
. 1 ..
= Jlim Bon(Sow) =Z(0) >0

As in the case of iid random variables, the Fisher entropy appears as the second derivative

of the MLE’s rate function at its minimum value.

Theorem 3.3.10. For any fixed 6 € (a,b), there exists an open set Uy > 6 with Uy C |[a, b] such

that Uy > X J@(O) is strictly convex around its minimum point \ = 6.

We now illustrate that, although the rate function can be strictly convex about its mini-

mum point, it can still be bounded on R.

Example 3.3.11. Consider the exponential families

1
Poria(0) = 7D [2(0), 2(0) =g DD s

w1,w2EQ

where H: 2 x 2 — R is a non-constant function such that for all 6 € [a, ],

1
Z pfH (wiw2) @ Z efH (Wiw2)  for any w € Q.

w2EQN w1,w2

In this case, the entropy functions Sp(wy, ws) = —10g Py w, (0) = —0H (w1, wo) +1og Z(6) are
strictly convex since

Z(0)Z(0) — Z(6)?
Z()?

2
Z H(W1, w2)269H(UJ1,UJ2) B Z H(Wl, w2>eeH(w1,w2) - O
€2/ 2(6) 1Q/Z(6) ’

w1,w2EQ w1,w2EQ

83 <_ log Puwywo (9)) =
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where the last inequality follows by Jensen’s and our assumption on /. We have

: PoranN)  —ZN) [ H(wi,wy)Z(N)eMenen) 1 7(\)er (@iws)
SA(Wl,U}Q) = - - NH 2
pw1,¢d2()‘) e (w1w2) Z(N)
—H(wi,w2)Z(\) + Z(\)
a Z(N) '
Denote by J ®) the rate function associated to the sequence Hy(w) = kN;ll H(wg, Wit1)

for w € QF, and observe that

1
— lim Nlog]EgN( SAN))

N—oo

(eNaZ'(/\)/Z(/\)efaHN >>

N

1
= (- W B
( )

1
70y A,y losFanfe ”‘HN>>

Now let

m= min H(w;,ws) and M = max H(w;,ws),
w1,w2 €N w1,w2EN

and note that

Z()\) 1 Z H(wl, WQ)GAH(WI’UQ)
- = T € (m, M)
Zn 0, 20
In particular, the bounds are saturated asymptotically:
Z(/\) B tha&eﬂ H(w1’w2)e>\H(w1,w2)
Z0) " Topogen
M H(w,w
= Z Tt e L)) DY > wen ( 1w1,5;)>H<m @2))
UJ1 UJQ wl w2€Q H(OJ1 OJQ <M wl WQEQ
27 AL (3.24)
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Similarly,

Z()\) ZwngeQ H(wl’w2>e)‘H(w1’w2)

Z(\) >t e €
_ Z m I Z H(wl, Wz)
o A(H (wh,wh)—m) (w! ,wh)—H (w1,w2))
H(w1,w2) Z‘”i"’-’éeg ¢ v H(w1,w2) Zwl wh €N et 2 12
= m, (3.25)

Denote by Ay the limiting CGF of the sequence Hy, that is

Ag(Oé) lim %IOgEgN( HN).

N—oo

Its first derivative is given by

aHy
Ay(a) = lim Egn (Hye™)

N—oo N]EQN(GO‘HN) S (m7M)

By the intermediate value theorem, for any s € (m, M) there exists oy € R such that

s = Aj(a,) and a, = (A})~!(s) satisfies 7@ (s) = a,Aj(a,) — Ag(a,) with
lima, = —oc0 and lim oy = .
sim sTM
The analysis becomes different than the one given in Example 2.3.4, since
PQN{HN(CU) = M(N— 1)} = (N— 1)P92{H(W17CU2) = M} >0

forany N > 2, and thus,

1 .1
A}linooﬁlog Pyy{Hy(w)=M(N —-1)} = ]\}grlooﬁlog(]\f —1)=0.
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Evaluating the limits

lim 37(0) = Jim T(Z(\)/Z(N)) = lim T (s) = lim (a.Aj(cxs) = Ao(c1,))

A—00 A—00
lim J@(O):Alim j((’)(Z(A)/Z()\)):limj(e)(s)zliim (s hy(ary) — Ag(ay))

is hence less clear. But considering a concrete example will support our analysis.

Consider the case 2 = {1, —1} with

H= L 20 =5 Y e =1
2
O 1 w1,w2EN

The associated stochastic matrix and its invariant probability vector are given by

1 e’ 1
Por o Oor s = Tz @ = (2

The first derivative of the entropy functions have

|:_pw1,uJ2 (A)} _ 1 -1 e9
pw17w2 (A) w1,w3 1 + ee 4 —1

and the tilted matrix yields

. 1 efa/(lJreA)Jr@ eae)‘/(lJre)‘)
T0,A a) = [e A(whw)il)w1,w (O)worwo =

Lef | gacd/(te))  g—a/(14ed)to

The Perron root of this matrix is

«a 0
_ —oz/(1+e>‘) e’ +e
69,)\(OZ> € ( 1 + e@
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and for 8 = 0, the function

*“+1
a— —logepy(a) = a —1og<e +)

1+e? 2
is maximized at @ = —\. Therefore, the rate function is given by
(0) —A e_)\ +1
J5 7 (0) = ilelg(— log ep () = T o log 5 )

Taking the limit in A gives limy_, 1, J §0) (0) = log 2, and the second derivative yields

I (0) = 12[1 :t:ilh%/)?‘

The graph of the rate function is shown in fig. 3.1.
0.7F
oaf
02

-10 -5 r 5 10

Figure 3.1: The rate function A — J io)(O), which is not convex on R and has inflection

points at A = £1.5434. The rate function possesses a horizontal asymptote at log 2.
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Chapter Four

Conclusion

Taking advantage of the elementary relationship that exists between the maximum likeli-
hood estimator and the entropy function, the central limit theorems of the MLE is readily
obtained by making use of a parameter-uniform law of large numbers. Further, we ob-
tain explicit convergence estimates for both iid random variables and finite state Markov
chains. Using our methods, we obtain an estimate of N —2/5 in Chapter 2, short of the
sharp bound of N~/ that usually holds for Berry-Esseen-type results. The Markov es-

1/4

timate of N~/% could likely be improved by utilizing the third moment instead of the

second in proving the uniform LLN in Section 3.1.

The large deviations of the MLE are studied by exploiting a strict convexity assumption
on the entropy functions. We observe that the rate function associated to the sequence
of first derivatives of the entropy functions is tightly linked to an LDP statement for the
MLE. In the iid setting, the MLE rate function is shown to be strictly convex on the entire
parameter domain via the implicit function theorem. Additionally, it possesses one order
of regularity less than that of the probability measures. In particular, in our setting, it is
twice-continuously differentiable and—at its minimum—the second derivative matches
the Fisher entropy. For Markov chains, the limiting cumulant-generating function makes

the analysis more opaque, but its analyticity in neighborhoods of real values grants us
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tremendous capabilities. Specifically, we compute its first and second derivatives and
we show the limiting CGF admits strict convexity everywhere. We then present an LDP
assertion for the Markovian MLE, and use the implicit function theorem to study the as-
sociated rate function about its minimum. Under a shared convexity assumption on the
sequence of cumulant-generating functions, the MLE rate function is shown to be strictly
convex around its minimum and, as in the iid setting, its second derivative matches the
Fisher entropy at the minimum. We end Chapters 2 and 3 by providing an example which
illustrates that the MLE rate function can admit inflection points despite the entropy func-

tions’ strict convexity.

Our study of the large deviations of the maximum likelihood estimator relies crucially
on the strict convexity assumption imposed on the entropy functions. Naturally, one
may wonder what can be said about the exponential tail convergence of the MLE when
this assumption is dropped. Keeping an identifiability condition on the probability mea-
sures, we note that the entropy functions are forced to be monotone, by continuity. How-
ever, they are free to admit inflection points. A study of the LDP for the MLE in this
case would thus require handling the convex and concave parts of the entropy functions

simultaneously—a problem yet to be solved.
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Appendix

A Cumulative Property of Cumulants

Let P be a probability measure on the finite set 2 and let X, Y : 2 — R be independent

random variables. The cumulant-generating function of the sum X + Y has
Cxiy(a) = log E(e*™ ™)) = log [E(e*)E(e™”)] = Cx(a) + Cy(a),
for a € R. Taking the n' derivative and evaluating at o = 0, we obtain
Cy(0) = C(0) + ¢ (0),

showing the cumulative property of cumulants for independent random variables.

Similarly, let X: QO — R be a random variable. For w = (wy,...,wy) € OV, let1 <j < N
be an integer and define X;(w) := X (w;). The latter are readily seen to be an iid family of

random variables. The cumulant-generating function of the sum X; + - - - + Xy thus has

Cxytaxy (@) = NCx(a) = ng)‘i’""i’XN (0) = NC)(?)@)'
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B Expectations and Variance

We compute expectation values and the variance of derivatives of the entropy function in

the Markov setting. Let 0 € [a, )], with N > 2 and w € Q. Recall that

N—

SGN(W) = - Z logpwkvwk—o—l (9)7

1
N-1

—_

B
Il

: pwk W41 (0)
Sg (w) = — C kRN L ,
" ; Deoy,, Wk+1 (6‘)
N-1 .. . 9
pwkvwk’ 1 (9) [pwk7wk 1 (0) :|
Son (W) = — + + + .
GN( ) k=1 ( Pupwier1 <9) Doy wiga (6)

Then

- pw ,w 1
EGN(SGN) = - Z Z Mpwl (e)pwl,MQ (9) ot Pon_i,wn (9)
k=

weQN
N-—1
= - pwk w1 ( G)pwl H pwJ wJ+1
k=1 weQN
ot
d
= _(N - 1) Z Py a0 Z Py wo
w1 €N wa R

and the expectation value of the second derivative has

E@N S@N Z Z < pb% et '9) + [pwmw}ﬁl (0):| )pwl (9>pw1,W2 (0) o .prflva(e)

weQN k=1 Pugwi1 (0) Puy w41 (0)
- = - _ [pWhWQ (9)]2
= W=D 2 a5 (me@) SV 2 gl
w1 €9 w22 w1,w2EN )
= (N —1)Z(0)
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The variance of the first derivative has

VaI‘QN(SgN) = EQN(S@QN) — E(S@N)2
N—-1 .

pwj,wj 1 6 pw w 1 9

DD <9)pwl<e>pw1,w2<9>---pr_l,wNw)
2 2 e D 0

(

= oo (O)]
N Z (kz:: pqu,warl(e) pwl Hp% UJJH

weQN 1 J#k
N-1 k-1
SN () (I CON | [ )
k=2 j=1 i#£j,k
[Py o2 (0)]
=(N-1) Pun (0) ===
wl,wzgeﬁ ' Pion o (0)
N-1 k-1

+2 Z Z Z pw.jvw.j+1 (e)pwkawk+1 (Q)pw]. (9)pw‘j+1,w]—+2 (0) e
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C Upper Bound of Gaussian Integrals

We want to find an upper bound in terms of € > 0 for the quantity

—x2/2 —x2/2
sup —max / e dx,/ e dx},
[A,B]JCR V2T { A’ B!\[A,B] [A,B\[Ac,B]

where [A!, B!/] and [A., B,] are defined as in (2.6) and (2.9). To this end, we evaluate the

arguments of the maximum individually. Consider the first argument, which has

2 A 2 Bé 2
/ e_””/de:/ e_x/de+/ e 2 Ay
[AZ,BI\[A,B] ! B

< max ¢ “(A—-A)+ max ¢ /*(B —B).
z€[AL,A] z€[B,B.]
No matter where the interval [A, B] lies with respect to zero, we have

A— A =|Ale(K +1) and B — B=|Ble(K +1).

Since e~*"/2 is greater when 2 is closer to zero and ¢ > 0 was chosen such that e(K +1) < 1

for K > 0, then
2 2 2
/ 2 dp < o= B OO 4K £ 1) + o= 5 -0 DR | Bl¢(K 4 1).
[AL,BI\[A,B]
Similarly for the second argument of the maximum, we have
Ac—A=|Ale(K+1) and B — B.=|Ble(K +1),
and hence

2
/ /2 dg < o= -0 | Ale(K 4 1) + e F 1-<E+D?| Ble(K + 1),
[A,B]\[Ae,B¢]
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Therefore, we obtain the upper bound

—xz2/2 —x2/2
sup —— max / e dzx, / e dx}
[A,B]CR V2T { AL B!\[A,B] [4,B)\[Ac,B.]

2 2
< (e—AT(l—e(K+1))2|A|6(K 1) 4 e T A0 | Ble(K 4 1))
V2 AB]CR
< M (Sup|A|e—A22(1—e(K+1)) + sup |Ble™ 5 (1—e(K+1))? )
V2r A€eR BeR

_ Msup (|9[;|e o (1—e(K+1))? )
ﬁ zeR

The maximum value of f(z) = |z|e™ 2 5 (-e(K41)? g obviously not attained at = = 0, hence

we can set f'(z) = 0 and solve for z assuming z # 0:
0= f(x) = —alz|(1 _E(K+1))2€—§(1—6(K+1))2 4 T a1

and thus 2 = +(1 — ¢(K + 1))~! are the two critical points. Since f continuous on R,

twice-differentiable on R\ {0}, has f(0) = 0 with f(z) — 0 as * — +oc and has

2(1 — e(K + 1))
NG

ffle=4+1—¢eK+1)))=— <0,

then z = +(1 — ¢(K + 1)) ! are points where f achieves its global maximum of

)_ 1
T Vel— K+ 1)

flr=%(1—¢K+1))"

Therefore, we are left with the estimate

2 2 2 K+1
sup —max{/ e ” /zdx,/ e ” ”dx}gu— (K+1) .
[A,B]cR V2T AL,B!\[A,B] [A,B]\[Ac,Bc] er (1 —e(K +1))
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