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Abstract

We present asymptotic results for the maximum likelihood estimator of the dependence

parameter arising naturally in the study of asymptotic efficiency. In particular, we demon-

strate a Berry-Esseen-type estimate through a study of entropy functions. Next, we estab-

lish the large deviation principle under strict convexity assumptions and study the asso-

ciated rate function. The results are shown for independent and identically distributed

random variables, which we then generalize to finite state Markov chains.

Résumé

Nous présentons des résultats asymptotiques de l’estimateur du maximum de vraisem-

blance apparaissant naturellement dans le contexte de l’étude de l’efficacité asympto-

tique. Plus spécifiquement, nous démontrons un estimé de convergence à la Berry-Esseen

à l’aide de la fonction d’entropie. Par la suite, nous établissons le principe de grandes

déviations lorsque les fonctions d’entropie sont strictement convexes et nous étudions

les propriétés de la fonction de taux. Ces résultats sont présentés pour des variables

indépendantes et identiquement distribuées ainsi que pour des chaı̂nes de Markov.
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Chapter One

Introduction

Much of the field of statistical modelling is concerned with finding the probability distri-

bution behind a given data-generating process, which would grant one who knows it the

ability to calculate the probability of any future event that might occur. Although finding

such probability distributions is considered practically impossible for most natural pro-

cesses, one can instead follow the route of estimation theory, in which one considers the

distribution to be dependent upon a set of parameters. To estimate the “true” parameter

value of the process under consideration, one maximizes the likelihood that the model

generated observed events. We call maximum likelihood estimator (MLE) the function

that, given events, yields the argument which maximizes this likelihood. Whilst the MLE

is rather unwieldy, its study is tightly linked to that of a more manageable object called

the entropy function, which is minimized when evaluated at the MLE. Studying the max-

imum likelihood estimator thus amounts to examining the critical points of this entropy

function. In this sense, the entropy function constitutes the protagonist of this work.

In 1922, Fisher published in [FR22] what would become a seminal work on the modern

theory of the maximum likelihood estimation. Notably, he defined the notion of consis-

tent estimators, which are those estimators that converge in probability to the parameter

describing the experiment as the sample size increases to infinity. Under identifiability
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conditions, the consistency of the maximum likelihood estimator can be derived from a

uniform law of large numbers (LLN), which holds readily under moderate dependence

assumptions. In evaluating this consistency, one inevitably comes across the so-called

Fisher entropy (or Fisher information), defined as the variance of the entropy function’s

first derivative. Roughly, it gives a measure of the parameter dependence of a random

variable and is thus central to the study of estimators.

Once the uniform consistency of the MLE is established, one might wonder whether the

MLE also satisfies asymptotic assertions often considered in probability theory. For in-

stance, does the central limit theorem (CLT) hold and can a convergence rate be deter-

mined? Is there a function that characterizes the exponential tail convergence of the MLE?

These interrogations can both be answered positively using entropy functions. Namely, a

specific convergence rate to the normal distribution can be obtained via the Berry-Esseen

theorem, while exponential tail convergence of the MLE can be studied through the lens

of large deviations theory, which allows for a rigorous treatment of questions akin to that

aforementioned. Such a treatment is given herein.

Although our approach is comprehensive, much of what is presented below has been

treated extensively by many authors. As early as 1922, Fisher mentions in [FR22] the

asymptotic normality of maximum likelihood estimators for iid random variables. The

result was later rigorously demonstrated in the influential book [Cra46] of Cramér, who

followed a proof method presented by Dugué in [Dug37]. The latter also shows that the

argument proving asymptotic normality of the MLE extends to Markov chains.

An optimal rate of convergence in distribution for asymptotically normal iid random

variables can be traced back to Berry in [Ber41] and Esseen in [Ess42], who indepen-

dently showed a rate of N−1/2, for N the sample size. Via this result, Pfanzagl showed

in [Pfa71] that asymptotic normality of minimum contrast estimates—a slight generaliza-

tion of MLEs—is reached with rate N−1/2 in the independent setting. This result was later

generalized in [Pra73] to Markov processes satisfying Doeblin’s condition.
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The large deviation principle (LDP) for maximum likelihood estimators also has a rich lit-

erature, of which we by no means give an exhaustive account. Following the publication

of [Bas56] by Basu, Bahadur instigated in [Bah60] the study of large deviations for consis-

tent and asymptotically normal estimators of independent random variables. Moreover,

the role of the relative entropy (or Kullback-Leibler divergence) was rapidly identified to

be central to the study of exponential tail convergence of estimators, such as in [BZG80]

and [Bah83]—the latter of which provides a finite state Markov chains framework. Large

deviations were subsequently examined in more general settings, e.g., [KK86] study the

LDP for the MLE of exponential families over convex parameter spaces. More modern

treatments of the MLE’s large deviations, such as in [She01], have extended the analysis

initiated by Basu and Bahadur to the possibly infinite-dimensional case.

Although our approach is similar to much of the arguments presented in the articles men-

tioned in the preceding paragraphs, the results of this thesis are in a very natural sense

the continuation of the work found in the master’s thesis [Mat23], which itself generalizes

to the Markov case much of the iid results given in [Jak19, Chapter 7] using techniques of

analytic perturbation theory found in [Sch12, Chapter 2].

In Chapter 2, we study asymptotics of the MLE for iid random variables on finite sets by

building on the results established in [Jak19]. After presenting a few preliminary results in

Section 2.1, we show in Section 2.2 that the MLE satisfies a central limit theorem and give

a Berry-Esseen-type estimate for its convergence to the normal distribution. Although the

uniform consistency result we offer through the uniform law of large numbers does not

yield a sharp estimate, we manage to find a rate of N−2/5 by optimizing our approach.

In Section 2.3, we show that the maximum likelihood estimator satisfies a large deviation

principle (LDP) when the entropy functions are assumed to be strictly convex functions

of the parameter. We end our treatment of the iid MLE by studying a few properties of

the LDP’s associated rate function via the implicit function theorem.
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In Chapter 3, we generalize our treatment to finite state Markov chains using various

results proved in [Mat23]. In Section 3.1, we give a precise estimate for the MLE’s consis-

tency, which is again obtained through the uniform law of large numbers. In Section 3.2,

we provide a central limit theorem for the MLE, and we prove a Berry-Esseen-type esti-

mate. Our approach makes use of Mann’s doctoral thesis [Man96, Theorem 1], in which

the CLT with rate N−1/2 is proved for countable state Markov chains via perturbations in

the transition kernel. This time, we obtain an estimate of N−1/4—worse than what we of-

fer for iid measures. This is due to our use of the variance instead of the third moment in

deriving a precise estimate for the uniform LLN. In Section 3.3, we study the logarithm of

the spectral radius of a tilted stochastic matrix, which we refer to as the limiting cumulant-

generating function (CGF). Assuming once more that the entropy functions admit strict

convexity, we show that the limiting CGF is strictly convex. Further, we make use of its

analyticity on the real line to compute its derivatives explicitly. After establishing the LDP

for the Markovian MLE, we finish by studying the associated rate function.

The two chapters are written in a self-contained manner, in that the reader who wishes to

do so can focus exclusively on handling the maximum likelihood estimator subject to the

mild dependence of Markov chains. On the other hand, the reader curious to study the

MLE in the more transparent setting of iid random variables can do so without having to

deal with bivariate random variables and sequences of cumulant-generating functions.
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Chapter Two

IID Measures

We start with independent and identically distributed (iid) random variables. This setting

is the same as in [Jak19] and, as such, we base our analysis on a few results derived there.

While we only use the results we require, we invite the reader to consult the reference for

additional details.

2.1 Preliminaries

Let [a, b] ⊂ R be a fixed interval and let Ω be a finite set. To avoid trivialities, we assume

|Ω| > 1. Subsets of Ω are called events and elements θ ∈ [a, b] are called parameters. For

N ∈ N1, let {PθN}θ∈[a,b] be a family of probability measures on ΩN such that PθN is the

N th product measure of Pθ1 = Pθ. Further, we write EθN(X) for the expectation value of a

random variable X : ΩN → R with respect to PθN . Since we can always restrict the set Ω

to Ω = supp Pθ, we assume without loss of generality that Pθ(ω) > 0 for all θ ∈ [a, b] and

ω ∈ Ω. In addition, we assume throughout this section that θ 7→ Pθ is C3([a, b]) and we set

Ṗa := Ṗa+ and Ṗb := Ṗb− , ensuring that derivatives of functions of Pθ are defined on all of

[a, b]. The second and third derivative are extended analogously.

1With the convention that N = 1, 2, . . .
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We study the probability of events in a repeated probabilistic experiment described by an

unknown parameter θ ∈ [a, b]. Since the goal of parameter estimation is to estimate the

probability measure that governs the experiment, we assume that probability measures

are uniquely determined by the parameter. Explicitly,

θ1 ̸= θ2 =⇒ Pθ1 ̸= Pθ2 .

We refer to the latter as the identifiability property of {PθN}N∈N and assume it hereafter.

Definition 2.1.1. For N ∈ N, we call maximum likelihood estimator (MLE) of order N the

function θ̂N : ΩN → [a, b] defined by

θ̂N(ω) := argmax
θ∈[a,b]

PθN(ω) = argmax
θ∈[a,b]

(
N∏
i=1

Pθ(ωi)

)
.

Observe that the C3 assumption on Pθ guarantees the existence of an argument of the

maximum, whereas the identifiability property ensures that it is unique.

The key observation on which our work stands is that maximizing the map θ 7→ PθN(ω)

is equivalent to minimizing the following function.

Definition 2.1.2. Given ω ∈ Ω, we define the map S•(ω) : [a, b] → R by

Sθ(ω) := − logPθ(ω)

and call it the entropy function. Moreover, we denote SθN = − logPθN for N ∈ N.

The fact that Pθ is faithful for all θ ∈ [a, b] ensures that the entropy function is well-defined.

Throughout, we will use the notation ḟ(θ) = ∂θf(θ) for derivatives of functions f = f(θ).

Incidentally, we remark that the entropy function θ 7→ Sθ(ω) enjoys a C3([a, b]) regularity
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with first and second derivative given by

Ṡθ = − Ṗθ

Pθ

and S̈θ = − P̈θ

Pθ

+
Ṗ 2
θ

P 2
θ

.

Note that the expectation value of the first derivative of Sθ with respect to Pθ has

Eθ(Ṡθ) =
∑
ω∈Ω

−Ṗθ(ω) = −∂θ

(∑
ω∈Ω

Pθ(ω)

)
= −∂θ(1) = 0

Moreover, Eθ([Ṡθ]
2) = Varθ(Ṡθ) = Eθ(S̈θ). In fact, this quantity has its own name and will

play a central role in our analysis.

Definition 2.1.3. We call Fisher entropy the function I : [a, b] → R defined by

I(θ) := Eθ

(
[Ṡθ]

2
)
=
∑
ω∈Ω

[Ṗθ(ω)]
2

Pθ(ω)
.

For an introductory account of the Fisher entropy in this setting, see [Jak19, Chapter 6].

Proceeding, we will assume that I(θ) is nonvanishing for all θ ∈ [a, b]. Before presenting

our first result, we introduce an important function that will make sporadic appearances.

Definition 2.1.4. The relative entropy of Pθ with respect to Pθ′ is defined by

S(Pθ|Pθ′) :=
∑
ω∈Ω

Pθ(ω) log
Pθ(ω)

Pθ′(ω)
.

Lemma 2.1.5. For any θ, θ′ ∈ [a, b], we have Eθ(Sθ′) ≥ Eθ(Sθ) with equality if and only if θ = θ′.

Proof. Notice that Eθ(Sθ′)− Eθ(Sθ) = S(Pθ|Pθ′) and by Jensen’s inequality,

∑
ω∈Ω

Pθ(ω) log
Pθ(ω)

Pθ′(ω)
= −

∑
ω∈Ω

Pθ(ω) log
Pθ′(ω)

Pθ(ω)
≥ − log

(∑
ω∈Ω

Pθ′(ω)

)
= 0

with equality if and only if Pθ = Pθ′ . The result follows by the identifiability property.
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We invite the reader to consult [Jak19, Chapter 4] for additional details on the relative

entropy. We now turn to an adaptation of the parametric law of large numbers discussed

in [Jak19, Proposition 7.6].

Proposition 2.1.6. Let θ ∈ [a, b] and Xθ : Ω → R be random variables such that the maps

[a, b] ∋ θ 7→ Xθ(ω) are continuously differentiable for all ω ∈ Ω. Set

SθN(ω = (ω1, . . . , ωN)) :=
N∑
k=1

Xθ(ωk).

Then there exists a constant K̃ > 0 such that for any ϵ > 0,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ϵ

}
≤ K̃

ϵ4N2

for all N ∈ N.

Proof. Let ϵ > 0 and N ∈ N. Further, let ω ∈ Ω and θ, θ′ ∈ [a, b] be such that θ < θ′. By the

mean-value theorem, there exists η ∈ (θ, θ′) such that

Xθ(ω)−Xθ′(ω) = Ẋη(ω)(θ − θ′).

Since |Ω| < ∞ and [a, b] ∋ θ 7→ Xθ(ω) is C1, we can let K < ∞ be such that

K > sup
θ∈[a,b]
ω∈Ω

|Ẋθ(ω)|

and we set ∆ := ϵ
4K

> 0. Whenever |θ− θ′| < ∆, we thus have |Xθ(ω)−Xθ′(ω)| < ϵ/4 and

sup
λ∈[a,b]

|Eλ(Xθ)− Eλ(Xθ′)| ≤ sup
λ∈[a,b]

∑
ω∈Ω

|Xθ(ω)−Xθ′(ω)|Pλ(ω) <
ϵ

4
,

Now, let a = θ′0 < θ′1 < · · · < θ′n = b be such that θ′k − θ′k−1 < ∆, for n := (b − a)/∆, and

suppose that ω ∈ ΩN satisfies |Sθ′kN
(ω)/N −Eθ(Xθ′k

)| < ϵ/2 for all 0 ≤ k ≤ n. Then for any
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θ′ ∈ [a, b], there exists 0 ≤ k ≤ n such that |θ′ − θ′k| < ∆. Thus, for all θ ∈ [a, b] we have

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≤ ∣∣∣∣Sθ′N(ω)

N
−

Sθ′kN
(ω)

N

∣∣∣∣+ ∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣+ ∣∣Eθ(Xθ′k
)− Eθ(Xθ′)

∣∣
<

1

N

Nϵ

4
+

ϵ

2
+

ϵ

4
= ϵ.

In other words,

n⋂
k=1

{
ω ∈ ΩN :

∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣ < ϵ

2

}
⊂

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ < ϵ

}

and taking complements on both sides,

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ϵ

}
⊂

n⋃
k=1

{
ω ∈ ΩN :

∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣ ≥ ϵ

2

}
.

For any θ ∈ [a, b], we hence have

PθN

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ϵ

}

≤
n∑

k=1

PθN

{
ω ∈ ΩN :

∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣ ≥ ϵ

2

}

=
n∑

k=1

PθN

{
ω ∈ ΩN :

∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣3 ≥ ( ϵ2)3
}

≤
(
2

ϵ

)3 n∑
k=1

EθN

(∣∣∣∣Sθ′kN

N
− Eθ(Xθ′k

)

∣∣∣∣3
)

≤
(
2

ϵ

)3
n

N3
sup

θ,θ′∈[a,b]

∑
ω∈ΩN

(
N∑
j=1

|Xθ′(ωj)− Eθ(Xθ′)|

)3

PθN(ω).

Using the cumulative property of cumulants for independent random variables—which

we demonstrate in Appendix A—we obtain

∑
ω∈ΩN

(
N∑
j=1

|Xθ′(ωj)− Eθ(Xθ′)|

)3

PθN(ω) = N
∑
ω∈Ω

|Xθ′(ω)− Eθ(Xθ′)|3Pθ(ω).
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Finally, let

C := sup
θ,θ′∈[a,b]

Eθ

(
|Xθ′ − Eθ(Xθ′)|3

)
and observe that C < ∞ by continuity of θ 7→ Xθ(ω) and θ 7→ Pθ(ω) for all ω ∈ Ω.

Substituting n = (b− a)/∆ = 4K(b− a)/ϵ yields

PθN

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ϵ

}
≤ 32KC(b− a)

ϵ4N2
.

Taking the supremum over all θ ∈ [a, b] and setting K̃ = 32KC(b− a) gives the result.

Remark 2.1.7. In Proposition 2.1.6, we can reduce the power of ϵ > 0 in the estimate by

one, provided we lose the uniformity condition on the parameter of the random variable.

In particular, for θ′ = θ and Xθ = S̈θ, we have

PθN

{
ω ∈ ΩN :

∣∣∣∣∣ S̈θN(ω)

N
− I(θ)

∣∣∣∣∣ ≥ ϵ

}
= PθN

ω ∈ ΩN :

∣∣∣∣∣ S̈θN(ω)

N
− I(θ)

∣∣∣∣∣
3

≥ ϵ3


≤ 1

ϵ3
EθN

∣∣∣∣∣ S̈θN(ω)

N
− I(θ)

∣∣∣∣∣
3


=
Eθ

(
|S̈θ − I(θ)|3

)
ϵ3N2

.

Taking the supremum over all θ ∈ [a, b], we obtain

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN :

∣∣∣∣∣ S̈θN(ω)

N
− I(θ)

∣∣∣∣∣ ≥ ϵ

}
≤ K̃1

ϵ3N2
(2.1)

for all N ∈ N and K̃1 = Eθ

(
|S̈θ − I(θ)|3

)
.

This inequality will be used in the next section to estimate a rate of convergence for the

uniform central limit theorem of the MLE. Another result which will be important to us is
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the uniform consistency of the sequence of maximum likelihood estimators (θ̂N)N∈N ob-

tained by making use of Proposition 2.1.6. The result is presented in [Jak19, Theorem 7.8]

along with a proof containing a minor error, which we circumvent.

Theorem 2.1.8. There exists a constant K̃2 > 0 such that for any ϵ > 0,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN :

∣∣∣θ̂N(ω)− θ
∣∣∣ ≥ ϵ

}
≤ K̃2

ϵ4N2

for all N ∈ N.

Proof. Let ϵ > 0 and Iϵ := {(θ, θ′) ∈ [a, b]2 : |θ − θ′| ≥ ϵ}. Since Iϵ is compact, we can set

δ1 := min
(u,v)∈Iϵ

(Eu(Sv)− Eu(Su)) .

By Lemma 2.1.5, we have that δ1 > 0. Let (u∗, v∗) ∈ Iϵ be values at which the minimum is

attained. By the mean value theorem, there exists η between u∗ and v∗ such that

δ1 = Eu∗(Sv∗)− Eu∗(Su∗) =
∣∣Eu∗(Ṡη)

∣∣|v∗ − u∗|.

Letting m :=
∣∣Eu∗(Ṡη)

∣∣ > 0, we have that δ1 ≥ mϵ. Now, let

M = sup
θ∈[a,b]
ω∈Ω

|Ṡθ(ω)|

and note that M ≥ m. Choosing ϵ′ := mϵ
2M

we have that 0 < ϵ′ < ϵ/2 and

δ2 := sup
(u,v)∈[a,b]2\Iϵ′

(Eu(Sv)− Eu(Su)) > 0

with δ2 ≤ mϵ/2, by the mean value theorem. Thus, we have that δ2 < δ1. Furthermore,

we let δ := mϵ/4 which satisfies 0 < δ < mϵ/2 ≤ δ1 − δ2. Now, fix θ ∈ [a, b] and denote
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Iϵ(θ) := {θ′ ∈ [a, b] : |θ′ − θ| ≥ ϵ}. Lastly, define the sets

A :=

{
ω ∈ ΩN : sup

θ′∈Iϵ(θ)

∣∣∣∣Sθ′N(ω)

N
− Eθ(Sθ′)

∣∣∣∣ < δ

2

}
,

B :=

{
ω ∈ ΩN : sup

θ′∈[a,b]\Iϵ′ (θ)

∣∣∣∣Sθ′N(ω)

N
− Eθ(Sθ′)

∣∣∣∣ < δ

2

}
.

For ω ∈ A and θ′ ∈ Iϵ(θ), we have

Sθ′N(ω)

N
> Eθ(Sθ′)−

δ

2
≥ Eθ(Sθ) + δ1 −

δ

2
.

Similarly, for ω ∈ B and θ′ ∈ [a, b]\Iϵ′(θ),

Sθ′N(ω)

N
< Eθ(Sθ′) +

δ

2
≤ Eθ(Sθ) + δ2 +

δ

2
.

Recall that δ > 0 was chosen so that 0 < δ < δ1 − δ2, hence δ1 − δ/2 > δ2 + δ/2. Therefore,

for ω ∈ A ∩B with θ′ ∈ Iϵ(θ) and θ′′ ∈ [a, b]\Iϵ′(θ), we have

Sθ′N(ω)

N
> Eθ(Sθ) + δ1 −

δ

2
> Eθ(Sθ) + δ2 +

δ

2
>

Sθ′′N(ω)

N
.

Since θ̂N(ω) minimizes [a, b] ∋ θ 7→ SθN(ω), we obtain that

ω ∈ A ∩ B =⇒
∣∣∣θ̂N(ω)− θ

∣∣∣ < ϵ.

Finally, since δ = mϵ/4, we have

PθN

{
ω ∈ ΩN :

∣∣∣θ̂N(ω)− θ
∣∣∣ ≥ ϵ

}
≤ PθN

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Sθ′)

∣∣∣∣ ≥ mϵ

8

}

and applying Proposition 2.1.6 gives the result.

We close this section by stating a central limit theorem for iid random variables.
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Theorem 2.1.9. Let X : Ω → R be a random variable with expectation value E(X) = µ and

variance 0 < Var(X) = σ2 < ∞. Then for any [A,B] ∈ R,

lim
N→∞

PN

{
ω ∈ ΩN :

1√
Nσ2

N∑
k=1

(X(ωk)− µ) ∈ [A,B]

}
=

∫ B

A

e−x2/2 dx.

In addition, if E(|X − µ|3) < ∞, then there is K ′ > 0 such that for all [C,D] ⊂ R and N ≥ 1,

∣∣∣∣∣PN

{
ω ∈ ΩN :

1√
Nσ2

N∑
k=1

(X(ωk)− µ) ∈ [C,D]

}
− 1√

2π

∫ D

C

e−x2/2 dx

∣∣∣∣∣ ≤ K ′
√
N
.

Both parts of the theorem can be found in [Fel71]. The second statement—which will

be a key ingredient in providing convergence estimates for the maximum likelihood

estimator—is due to [Ber41] and [Ess42] and is thus called the Berry-Esseen theorem.

2.2 Central Limit Theorem

Having laid the theoretical basis, we now turn to the central limit theorem of the MLE.

Theorem 2.2.1. Suppose that θ ∈ (a, b). Then for any [A,B] ⊂ R,

lim
N→∞

PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
=

1√
2π

∫ B

A

e−x2/2 dx.

Proof. Let [A,B] ⊂ R, fix θ ∈ (a, b) and let ϵ > 0 be such that [θ − ϵ, θ + ϵ] ⊂ (a, b). Let

ΩN
ϵ =

{
ω ∈ ΩN : |θ̂N(ω)− θ| < ϵ and

∣∣∣∣∣ S̈θN(ω)

NI(θ)
− 1

∣∣∣∣∣ < ϵ

}
,

which has

lim
N→∞

PθN(Ω
N
ϵ ) = 1 (2.2)
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by Theorem 2.1.8 and (2.1). For ω ∈ ΩN
ϵ , we have θ̂N(ω) ∈ (a, b) and also Ṡθ̂N (ω)(ω) = 0. By

the mean value theorem, there is ξN(ω) between θ̂N(ω) and θ such that

−ṠθN(ω) = (θ̂N(ω)− θ)S̈ξN (ω)N(ω)

and hence

− ṠθN(θ)√
NI(ω)

=
√

NI(θ)(θ̂N(ω)− θ)
S̈ξN (ω)N(ω)

NI(θ)
. (2.3)

Applying the mean value theorem again to θ 7→ S̈θN(ω), we have

S̈ξN (ω)N(ω)− S̈θN(ω)

NI(θ)
=

(θ̂N(ω)− θ)
...
S ζN (ω)N(ω)

NI(θ)

for some ζN(ω) between θ and ξN(ω), thus

∣∣∣∣∣ S̈ξN (ω)N(ω)− S̈θN(ω)

NI(θ)

∣∣∣∣∣ ≤ ϵ

(
sup
θ∈[a,b]

1

I(θ)

)(
sup
θ∈[a,b]

...
S θN(ω)

N

)

= ϵ

(
sup
θ∈[a,b]

1

I(θ)

) sup
θ∈[a,b]
ω∈Ω

∣∣∣∣ d3

dθ3
logPθ(ω)

∣∣∣∣


=: ϵK.

Since ω ∈ ΩN
ϵ , we have 1− ϵ < S̈θN (ω)

NI(θ) < 1 + ϵ and summing it with

−Kϵ ≤
S̈ξN (ω)N(ω)− S̈θN(ω)

NI(θ)
≤ Kϵ

we get

1− ϵ(K + 1) <
S̈ξN (ω)N(ω)

NI(θ)
< 1 + ϵ(K + 1). (2.4)
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Observe that there are three types of intervals [A,B]: either 0 ≤ A < B, A < 0 ≤ B or

A < B < 0. In view of this, take ϵ > 0 so small that

ϵ(K + 1)
(
|A|+ |B|

)
< B − A and 1− ϵ(K + 1) ≥ γ, (2.5)

for some small γ > 0, and set

Aϵ :=


A(1 + ϵ(K + 1)) if 0 ≤ A,

A(1− ϵ(K + 1)) if A < 0,
Bϵ :=


B(1− ϵ(K + 1)) if 0 < B,

B(1 + ϵ(K + 1)) if B ≤ 0.
(2.6)

Notice that the first condition of (2.5) ensures Aϵ < Bϵ and whenever ω ∈ ΩN
ϵ satisfies

Aϵ ≤
√

NI(θ)(θ̂N(ω)− θ)
S̈ξN (ω)N(ω)

NI(θ)
≤ Bϵ,

then A ≤
√

NI(θ)(θ̂N(ω)− θ) ≤ B by (2.4). Making use of (2.3), we obtain

PθN

{
ω ∈ ΩN

ϵ : − ṠθN(ω)√
NI(θ)

∈ [Aϵ, Bϵ]

}
≤ PθN

{
ω ∈ ΩN

ϵ :
√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
.

We can extend the sets to ΩN on both sides to get

PθN

{
ω ∈ ΩN : − ṠθN(ω)√

NI(θ)
∈ [Aϵ, Bϵ]

}
≤ PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
+ PθN(Ω

N\ΩN
ϵ ) (2.7)

and taking the limit inferior, recalling (2.2) and applying Theorem 2.1.9 to the sequence

(−ṠθN)N∈N with expectation Eθ(−Ṡθ) = 0 and variance Varθ(−Ṡθ) = I(θ),

1√
2π

∫ Bϵ

Aϵ

e−x2/2 dx ≤ lim inf
N→∞

PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
.
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Finally, taking ϵ ↓ 0 yields

1√
2π

∫ B

A

e−x2/2 dx ≤ lim inf
N→∞

PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
. (2.8)

We now show the reverse inequality holds with the limit superior. Let

A′
ϵ :=


A(1− ϵ(K + 1)) if 0 ≤ A,

A(1 + ϵ(K + 1)) if A < 0,
B′

ϵ :=


B(1 + ϵ(K + 1)) if 0 < B,

B(1− ϵ(K + 1)) if B ≤ 0.
(2.9)

and note that A′
ϵ ≤ A < B ≤ B′

ϵ. In particular,

{
ω ∈ ΩN

ϵ :
√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
⊂

{
ω ∈ ΩN

ϵ :
√

NI(θ)(θ̂N(ω)− θ)
S̈ξN (ω)N(ω)

NI(θ)
∈ [A′

ϵ, B
′
ϵ]

}

by (2.4). Using (2.3) and extending both sides to ΩN ,

PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
≤ PθN

{
ω ∈ ΩN : − ṠθN(ω)√

NI(θ)
∈ [A′

ϵ, B
′
ϵ]

}
+ PθN(Ω

N\ΩN
ϵ ). (2.10)

Taking the limit superior, recalling (2.2) and applying Theorem 2.1.9 to (−ṠθN)N∈N,

lim sup
N→∞

PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
≤ 1√

2π

∫ B′
ϵ

A′
ϵ

e−x2/2 dx.

Taking ϵ ↓ 0 and combining with (2.8) yields the desired result.

We note that the assumption that θ ∈ (a, b) in the above theorem ensures that cases where

the maximum likelihood estimator θ̂N(ω) takes value a or b but Ṡθ̂N (ω)N(ω) ̸= 0 are ruled

out of our analysis, as required by our argument.
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We now strengthen the above result to a uniform convergence with respect to the param-

eter by utilizing different results that were derived in the preliminaries section.

Theorem 2.2.2. For any subinterval [a′, b′] ⊂ (a, b) and N ∈ N large enough, there is a constant

C > 0 such that

sup
θ∈[a′,b′]
[A,B]⊂R

∣∣∣∣PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx

∣∣∣∣ ≤ C

N2/5
.

Proof. Let [a′, b′] ⊂ (a, b) and let 0 < ϵ < min{a−a′

2
, b

′−b
2
} satisfy (2.5). Furthermore, let

ΩN
ϵ (θ) =

{
ω ∈ ΩN : |θ̂N(ω)− θ| < ϵ and

∣∣∣∣∣ S̈θN(ω)

NI(θ)
− 1

∣∣∣∣∣ < ϵ

}
.

By Theorem 2.1.8 and (2.1), there exist K̃1, K̃2 > 0 such that for all N ∈ N,

sup
θ∈[a,b]

PθN(Ω
N\ΩN

ϵ (θ)) ≤
K̃2

ϵ4N2
+

K̃1

ϵ3N2
(2.11)

By (2.7), we have

PθN

{
ω ∈ ΩN : − ṠθN(ω)√

NI(θ)
∈ [Aϵ, Bϵ]

}
− 1√

2π

∫ B

A

e−x2/2dx

≤ PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2dx+ Pθ(Ω
N\ΩN

ϵ (θ)),

for Aϵ < Bϵ as defined in (2.6). By Theorem 2.1.9, there exists some constant K ′ > 0 such

that for all θ ∈ [a′, b′] and all intervals [C,D] ⊂ R,

∣∣∣∣∣PθN

{
ω ∈ ΩN : − ṠθN(ω)√

NI(θ)
∈ [C,D]

}
− 1√

2π

∫ D

C

e−x2/2dx

∣∣∣∣∣ ≤ K ′
√
N
. (2.12)
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Thus, for all θ ∈ [a′, b′] and [A,B] ⊂ R, we have

− K ′
√
N

− 1√
2π

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx− PθN(Ω
N\ΩN

ϵ (θ))

≤ PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx.

On the other hand, by (2.10) we have

PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx

≤ PθN

{
ω ∈ ΩN : − ṠθN(ω)√

NI(θ)
∈ [A′

ϵ, B
′
ϵ]

}
− 1√

2π

∫ B

A

e−x2/2 dx+ PθN(Ω
N\ΩN

ϵ (θ))

for A′
ϵ < B′

ϵ as defined in (2.9). Combining this with the Berry-Esseen bound of (2.12)

applied to the interval [A′
ϵ, B

′
ϵ], we get

PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx

≤ K ′
√
N

+
1√
2π

∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx+ PθN(Ω
N\ΩN

ϵ (θ))

and hence∣∣∣∣∣PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx
∣∣∣

≤ 1√
2π

max

{∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx,

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx

}
+

K ′
√
N

+ PθN(Ω
N\ΩN

ϵ (θ)).

Taking the supremum over θ ∈ [a′, b′] and all intervals [A,B] ⊂ R and making use of

(2.11), we obtain

sup
θ∈[a′,b′]
[A,B]⊂R

∣∣∣∣∣PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx
∣∣∣

≤ sup
[A,B]⊂R

1√
2π

max

{∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx,

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx

}
+

K ′
√
N

+
K̃2

ϵ4N2
+

K̃1

ϵ3N2
.
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Lastly, we bound the maximum by

sup
[A,B]⊂R

1√
2π

max

{∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx,

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx

}
≤
√

2

eπ

ϵ(K + 1)

(1− ϵ(K + 1))

and refer the reader to Appendix C for a derivation of the estimate. Recall from one of

our restrictions on ϵ > 0 given in (2.5) that 1− ϵ(K + 1) ≥ γ for some γ > 0, hence

sup
θ∈[a′,b′]
[A,B]⊂R

∣∣∣∣∣PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx
∣∣∣

≤ ϵ

√
2

eπ

K + 1

γ
+

K ′
√
N

+
K̃2

ϵ4N2
+

K̃1

ϵ3N2
. (2.13)

Setting ϵ = N−z, it remains to find z > 0 that will yield the optimal rate of convergence.

Since the first term is competing with the third and fourth term, and N2−3z ≥ N2−4z for

z > 0, the optimal exponent will be one giving the same convergence rate to the first and

third term. In other words, we want z = 2 − 4z and hence z = 2/5. Thus, taking N ∈ N

large enough that all of our restrictions on ϵ = N−2/5 hold, we obtain

sup
θ∈[a′,b′]
[A,B]⊂R

∣∣∣∣∣PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx
∣∣∣ ≤ C

N2/5
.

for C =
√

2
eπ

K+1
γ

+K ′ + K̃1 + K̃2.

Remark 2.2.3. In the previous Berry-Esseen-type theorem, the factor preventing us from

having a sharp decay estimate of N−1/2, as in the second part of Theorem 2.1.9, comes

from the third term of (2.13). Indeed, if one had ∼ 1/ϵ3N2 as in the fourth term, taking

ϵ = N−1/2 would give an optimal result. This extra factor of ϵ stems from the consistency

of the MLE of Theorem 2.1.8, whose proof relies on Proposition 2.1.6. Since the latter

involves a uniformity condition on the parameter of the random variable, an extra ϵ factor

is introduced.
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For the same reason that we took θ away from the boundary points in Theorem 2.2.1, the

supremum in the uniform CLT must be taken over subintervals [a′, b′] ⊂ (a, b) instead of

the whole [a, b].

2.3 Large Deviations

In this section, we abandon the central limit theorem and concern ourselves with the

large deviations of the MLE. Recall that a function I : R → R is called a rate function if it

is nonnegative and lower semi-continuous on its domain, that is

lim inf
x→x0

I(x) ≥ I(x0), for all x0 ∈ R.

Let X : Ω → R be a random variable, let C(α) := logE(eαX) denote the corresponding

cumulant-generating function, and observe that C(α) is strictly convex on R. We shall

study the Fenchel-Legendre transform of C(α), defined by

I(s) := sup
α∈R

(αs− C(α)).

For now, we focus our attention on Cramér’s theorem, given in [Jak19, Theorem 7.8].

Theorem 2.3.1. Suppose C(α) = logE(eαX) < ∞ for all α ∈ R. Then the large deviation

principle holds for (SN/N)N∈N with rate function I(s) = supα∈R(αs− C(α)). Explicitly,

lim
N→∞

1

N
logPN

{
ω ∈ ΩN :

SN(ω)

N
∈ [A,B]

}
= − inf

s∈[A,B]
I(s)

for any [A,B] ⊂ R.

Since we will only be dealing with random variables that are defined on a finite space

Ω and that are continuous with respect to the parameter θ ∈ [a, b], the condition on

the cumulant-generating function will readily hold. Proceeding forward, we make the

20



additional assumption that the entropy functions

[a, b] ∋ θ 7→ Sθ(ω) = − logPθ(ω)

are strictly convex for all ω ∈ Ω. Specifically, we will assume that

S̈θ(ω) > 0, for all ω ∈ Ω and θ ∈ [a, b].

In a sense, this assumption is the foundation of the work of this section, as it has many

consequences that are essential in relating the entropy function to the MLE.

The first consequence is that the relative entropy function

[a, b] ∋ λ 7→ S(Pθ|Pλ) =
∑
ω∈Pθ

Pθ(ω) log
Pθ(ω)

Pλ(ω)

is strictly convex. Second, for any λ ∈ [a, b] there is ω ∈ Ω such that Ṗλ(ω) ̸= 0. Indeed,

suppose this is not true for some λ0 ∈ [a, b], i.e., for all ω ∈ Ω we have Ṗλ0(ω) = 0. Then

∂λS(Pθ|Pλ)|λ=λ0 = −
∑
ω∈Pθ

Pθ(ω)
Ṗλ0(ω)

Pλ0(ω)
= 0

for any θ ∈ [a, b]. By strict convexity, the local minima at λ = θ and λ = λ0 are global,

and we obtain a contradiction by uniqueness of the global minimum. In particular, since∑
ω∈Ω Ṗλ(ω) = 0 for all λ ∈ [a, b], then Ṗλ takes both positive and negative values on Ω.

The next consequence of the convexity assumption is that for any λ ∈ [a, b] and all N ∈ N,

{
ω ∈ ΩN : θ̂N(ω) ≥ λ

}
=
{
ω ∈ ΩN : ṠλN(ω) ≤ 0

}
, (2.14){

ω ∈ ΩN : θ̂N(ω) ≤ λ
}
=
{
ω ∈ ΩN : ṠλN(ω) ≥ 0

}
. (2.15)

Let us denote by J
(θ)
λ the rate function for the sequence of random variables (ṠλN/N)N∈N

with respect to (PθN)N∈N. In other words, denoting the cumulant-generating function by
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Cθ,λ(α) := logEθ

(
eαṠλ

)
, we let

J
(θ)
λ (s) := sup

α∈R

(
αs− Cθ,λ(α)

)
.

By Theorem 2.3.1, for any interval [A,B] ⊂ R,

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN :

ṠλN(ω)

N
∈ [A,B]

}
= − inf

s∈[A,B]
J
(θ)
λ (s).

In particular, making use of (2.14) and (2.15), we have

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN : θ̂N(ω) ≥ λ

}
= − inf

s≤0
J
(θ)
λ (s),

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN : θ̂N(ω) ≤ λ

}
= − inf

s≥0
J
(θ)
λ (s).

Remark that since J
(θ)
λ is strictly convex on R with global minimum at s = Eθ(Ṡλ), then

inf
s∈[A,B]

J
(θ)
λ (s) =


0 if Eθ(Ṡλ) ∈ [A,B]

J
(θ)
λ (A) if A > Eθ(Ṡλ)

J
(θ)
λ (B) if B < Eθ(Ṡλ).

As [a, b] ∋ λ 7→ S(Pθ|Pλ) is strictly convex and ∂λS(Pθ|Pλ) = 0 if and only if λ = θ, it

follows that for λ ≥ θ we have Eθ(Ṡλ) = ∂λS(Pθ|Pλ) ≥ 0, and hence

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN : θ̂N(ω) ≥ λ

}
= −J

(θ)
λ (0). (2.16)

Similarly for λ ≤ θ,

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN : θ̂N(ω) ≤ λ

}
= −J

(θ)
λ (0). (2.17)
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Proposition 2.3.2. The function [a, b] ∋ λ 7→ J
(θ)
λ (0) is finite, nonnegative, nonincreasing on

[a, θ], nondecreasing on [θ, b] and vanishing at λ = θ.

Proof. Non-negativity is seen directly from

J
(θ)
λ (0) = sup

α∈R
(−Cθ,λ(α)) ≥ −Cθ,λ(0) = 0.

To prove that J (θ)
λ (0) is finite, recall that Cθ,λ(α) → ∞ as α → ±∞, and that α 7→ Cθ,λ(α)

is real-analytic (in particular continuous) so Cθ,λ(α) = −∞ is impossible. The fact that

λ 7→ J
(θ)
λ (0) is nonincreasing on [a, θ] and nondecreasing on [θ, b] follows from (2.16) and

(2.17), respectively. Lastly, J (θ)
θ (0) = 0 follows from (2.16) and the consistency of the

maximum likelihood estimator.

In fact, stronger results hold: λ 7→ J
(θ)
λ (0) vanishes only at λ = θ, is strictly decreasing on

[a, θ] and strictly increasing on [θ, b]. To see this, fix θ ∈ (a, b) and note that

R ∋ α 7→ Eθ

(
eαṠλ

)
=
∑
ω∈Ω

e−αṖλ(ω)/Pλ(ω)Pθ(ω) (2.18)

is strictly convex. Indeed, its second derivative has

∑
ω∈Ω

(
Ṗλ(ω)

Pλ(ω)

)2

e−αṖλ(ω)/Pλ(ω)Pθ(ω) > 0.

Since Ṗλ takes both positive and negative values on Ω, we have

lim
α→±∞

∂αEθ

(
eαṠλ

)
= lim

α→±∞

∑
ω∈Ω

Ṗλ(ω)

Pλ(ω)
e−αṖλ(ω)/Pλ(ω)Pθ(ω) = ∓∞.

By the intermediate value theorem, there exists αλ ∈ R such that

∂αEθ

(
eαṠλ

)∣∣∣
α=αλ

=
∑
ω∈Ω

Ṗλ(ω)

Pλ(ω)
e−αλṖλ(ω)/Pλ(ω)Pθ(ω) = 0
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and by strict convexity, αλ ∈ R is the unique minimum of (2.18). Therefore,

J
(θ)
λ (0) = − inf

α∈R
Cθ,λ(α) = − log

∑
ω∈Ω

eαλṠλ(ω)Pθ(ω).

Now, consider the function F : [a, b] × R → R given by F (λ, α) := ∂αCθ,λ(α) = C ′
θ,λ(α).

Since θ 7→ Pθ(ω) are C3 on [a, b] by assumption, then F (λ, α) is C2 in λ ∈ [a, b] and is

infinitely differentiable in α ∈ R. It directly has F (λ, αλ) = 0 with ∂αF (λ, α) = C ′′
θ,λ(α) > 0

for any (λ, α) ∈ [a, b] × R, by strict convexity of Cθ,λ. By the implicit function theorem,

there exists an open set on which λ 7→ αλ is C2. Since [a, b] ∋ λ 7→ αλ is unique, then it is

actually C2 on all of [a, b], and so is λ 7→ J
(θ)
λ (0). We can compute the derivatives of J (θ)

λ (0)

by implicit differentiation:

∂λJ
(θ)
λ (0) = −

Eθ

((
α̇λṠλ + αλS̈λ

)
eαλṠλ

)
Eθ

(
eαλṠλ

)
= −αλe

J
(θ)
λ (0)Eθ

(
S̈λe

αλṠλ
)
, (2.19)

and the derivatives of λ 7→ αλ using the formula

α̇λ = −
(
∂F (λ, α)

∂α

)−1(
∂F (λ, α)

∂λ

) ∣∣∣∣
α=αλ

=
αλEθ

(
Ṡλe

αλṠλ
)
Eθ

(
S̈λe

αλṠλ
)
− Eθ

((
1 + αλṠλ

)
S̈λe

αλṠλ
)
Eθ

(
eαλṠλ

)
Eθ

(
Ṡ2
λe

αλṠλ

)
Eθ

(
eαλṠλ

)
− Eθ

(
ṠλeαλṠλ

)2 . (2.20)

From (2.19), we have αλ = 0 ⇐⇒ ∂λJ
(θ)
λ (0) = 0, since S̈λ(ω) > 0 for all ω ∈ Ω, by

assumption. Furthermore, note that

0 = C ′
θ,λ(αλ) and C ′

θ,λ(0) = Eθ(Ṡλ) = −∂λS(Pθ|Pλ).

Therefore, αλ = 0 ⇐⇒ ∂λS(Pθ|Pλ) = 0 ⇐⇒ θ = λ and hence J
(θ)
λ (0) = 0 ⇐⇒ λ = θ.

Moreover, ∂λJ
(θ)
λ (0) = 0 ⇐⇒ λ = θ. In particular, λ 7→ J

(θ)
λ (0) is strictly decreasing on

24



[a, θ] and strictly increasing on [θ, b]. Moreover, by (2.20), we have

α̇θ = −Eθ(S̈θ)

Eθ(Ṡ2
θ )

= −I(θ)
I(θ)

= −1

and the second derivative of λ 7→ J
(θ)
λ (0) yields

∂2
λJ

(θ)
λ (0) = −α̇λe

J
(θ)
λ (0)Eθ

(
S̈λe

αλṠλ
)
+ α2

λe
2J

(θ)
λ (0)

(
Eθ

(
S̈λe

αλṠλ

) )2
− αλe

J
(θ)
λ (0)Eθ

(( ...
S λ + α̇λṠλ + αλS̈λ

)
eαλṠλ

)
.

Thus, we obtain ∂2
λJ

(θ)
λ (0)|λ=θ = I(θ) > 0 and hence the map λ 7→ J

(θ)
λ (0) is strictly convex

around its minimum point λ = θ, by continuity of the second derivative. Incidentally,

we highlight the appearance of the Fisher entropy as the second derivative of the rate

function at its minimum. In any case, extending the rate function to J
(θ)
λ (0) = ∞ when

λ /∈ [a, b] and utilizing (2.16) and (2.17), we derive the large deviation principle for the

maximum likelihood estimator.

Theorem 2.3.3. For any [A,B] ⊂ R and θ ∈ [a, b],

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN : θ̂N(ω) ∈ [A,B]

}
= − inf

λ∈[A,B]
J
(θ)
λ (0).

Proof. Since θ̂N : Ω → [a, b] for all N ∈ N, we assume without loss of generality that

[A,B] ⊂ [a, b]. Let θ ≤ A < B ≤ b. By (2.16), for any ϵ > 0 there is N1 ∈ N such that

PθN{ω ∈ ΩN : θ̂N(ω) > B} ≤ PθN{θ̂N(ω) ≥ B} ≤ e−(J
(θ)
B (0)−ϵ)N

for all N ≥ N1, and N2 ∈ N such that

PθN{ω ∈ ΩN : θ̂N(ω) ≥ A} ≥ e−(J
(θ)
A (0)+ϵ)N
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for all N ≥ N2. Thus for all N ≥ max{N1, N2},

PθN{ω ∈ ΩN : θ̂N(ω) > B}
PθN{ω ∈ ΩN : θ̂N(ω) ≥ A}

≤ e−(J
(θ)
B (0)−J

(θ)
A (0)−2ϵ)N .

Pick 0 < 2ϵ < J
(θ)
B (0)− J

(θ)
A (0) such that the above goes to 0 as N → ∞, and hence

0 = lim
N→∞

1

N
log

[
1− PθN{ω ∈ ΩN : θ̂N(ω) > B}

PθN{ω ∈ ΩN : θ̂N(ω) ≥ A}

]

= lim
N→∞

(
1

N
logPθN{ω ∈ ΩN : θ̂N(ω) ∈ [A,B]} − 1

N
logPθN{ω ∈ ΩN : θ̂N(ω) ≥ A}

)

and the result follows. The case a ≤ A < B ≤ θ is similar. Lastly suppose θ ∈ (A,B). By

Theorem 2.1.8, for any ϵ > 0, we have

lim
N→∞

sup
θ∈[a,b]

PθN{ω ∈ ΩN : |θ̂N(ω)− θ| ≥ ϵ} = 0.

Take ϵ = min{θ − A,B − θ} > 0 such that A ≤ θ − ϵ < θ + ϵ ≤ B, hence

1 ≥ lim
N→∞

PθN

{
ω ∈ ΩN : θ̂N(ω) ∈ [A,B]

}
≥ lim

N→∞
PθN

{
ω ∈ ΩN :

∣∣∣θ̂N(ω)− θ
∣∣∣ < ϵ

}
= 1.

Therefore,

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN : θ̂N(ω) ∈ [A,B]

}
= 0 = −J

(θ)
θ (0) = − inf

λ∈[A,B]
J
(θ)
λ (0).

We now study a special case which illustrates that the MLE rate function need not be con-

vex everywhere, despite its corresponding random variables possessing strict convexity.

Example 2.3.4. Consider the probability measure given by the exponential families

Pθ(ω) = eθH(ω)/Z(θ), where Z(θ) =
∑
ω∈Ω

eθH(ω)
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and H : Ω → R is a non-constant function. The maps

θ 7→ Sθ(ω) = − logPθ(ω) = −θH(ω) + logZ(θ)

are readily seen to be strictly convex:

S̈θ(ω) =
Z̈(θ)Z(θ)− Ż(θ)2

Z(θ)2

=
∑
ω′∈Ω

H(ω′)2eθH(ω′)

Z(θ)
−

(∑
ω′∈Ω

H(ω′)eθH(ω′)

Z(θ)

)2

> 0 (2.21)

for all ω ∈ Ω, by Jensen’s inequality. Given θ ∈ [a, b], let R ∋ λ 7→ J
(θ)
λ (0) be the rate

function from Theorem 2.3.3. Note that

Ṗλ(ω)

Pλ(ω)
=

H(ω)Z(λ)− Ż(λ)

Z(λ)
.

Therefore, if J (θ) is the rate function associated to the sequence (H(ω1) + · · ·+H(ωN))N∈N

with respect to PθN , then

J
(θ)
λ (0) = sup

α∈R

(
− logEθ

(
eαṠλ

))
= sup

α∈R

(
− logEθ

(
eαŻ(λ)/Z(λ)e−αH

))
= sup

α∈R

(
−α

Ż(λ)

Z(λ)
− logEθ

(
e−αH

))
= J (θ)

(
Ż(λ)/Z(λ)

)
. (2.22)

In particular, for any interval [A,B] ⊂ R, we have

lim
N→∞

1

N
PθN

{
ω ∈ ΩN : θ̂N(ω) ∈ [A,B]

}
= − inf

λ∈[A,B]
J
(θ)
λ (0) = − inf

λ∈[A,B]
J (θ)

(
Ż(λ)

Z(λ)

)
.
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We now turn to the rate function J (θ) and study its relation to λ 7→ J
(θ)
λ (0). Let

m = min
ω∈Ω

H(ω), M = max
ω∈Ω

H(ω),

and remark that the argument in (2.22) has

Ż(λ)

Z(λ)
=
∑
ω∈Ω

H(ω)eλH(ω)

Z(λ)
∈ (m,M).

Further, the interval bounds are attained in the asymptotic limit. Indeed,

Ż(λ)

Z(λ)
=

∑
ω∈Ω H(ω)eλH(ω)∑

ω′∈Ω eλH(ω′)

=
∑

H(ω)=M

M∑
ω′∈Ω eλ(H(ω′)−M)

+
∑

H(ω)<M

H(ω)∑
ω′∈Ω eλ(H(ω′)−H(ω))

λ→∞−−−→ M

and

Ż(λ)

Z(λ)
=

∑
ω∈Ω H(ω)eλH(ω)∑

ω′∈Ω eλH(ω′)

=
∑

H(ω)=m

m∑
ω′∈Ω eλ(H(ω′)−m)

+
∑

H(ω)>m

H(ω)∑
ω′∈Ω eλ(H(ω′)−H(ω))

λ→−∞−−−−→ m.

Applying [Jak19, Proposition 2.6], we observe that the function R ∋ λ 7→ J
(θ)
λ is bounded

with horizontal asymptotes given by

lim
λ→∞

J
(θ)
λ (0) = J (θ)(M) = − logPθ{ω ∈ Ω: H(ω) = M},

lim
λ→−∞

J
(θ)
λ (0) = J (θ)(m) = − logPθ{ω ∈ Ω: H(ω) = m}.

In particular, λ 7→ J
(θ)
λ (0) cannot be convex on all of R. Since our analysis shows that it is

strictly convex around λ = θ, the function λ 7→ J
(θ)
λ (0) must have inflection points.
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As a concrete example, consider the two-state system Ω = {±1} with H(±1) = ±1 and

θ = 0. Then P0(±1) = ±1/2 and for any λ, we have

Ż(λ)/Z(λ) = tanhλ and logE0(e
αH) = log coshα.

Therefore, the rate function has

J
(0)
λ (0) = J (0)(tanhλ) = sup

α∈R
(α tanhλ− log coshα)

and the supremum is attained at α = tanh−1 λ. Thus,

J
(0)
λ (0) =

1

2
(1 + tanhλ) log(1 + tanh λ) +

1

2
(1− tanhλ) log(1− tanhλ) (2.23)

with ∂2
λJ

(0)
λ (0) = (1 − 2λ tanhλ) sech2 λ and horizontal asymptote − log{H(±1)} = log 2.

The graph of function is shown in fig. 2.1.
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Figure 2.1: The rate function λ 7→ J
(0)
λ (0) given by (2.23) with horizontal asymptote of

log 2. The function is strictly convex around λ = 0 but has inflection points at λ = ±0.7717.
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Chapter Three

Markov Measures

In this chapter, we adapt the results presented in Chapter 2 to the setting of finite state

Markov measures by making use of results established in [Mat23].

3.1 Preliminaries

We start by introducing objects we shall work with for the rest of our analysis, as well

as certain results that will prove useful to our purposes. Let Ω = {1, . . . , L} be a finite

set with L > 1, and let [a, b] ⊂ R be an interval. We work with a family of irreducible

and aperiodic (right) stochastic matrices T (θ) = [pij(θ)] ∈ RL×L whose entries are thrice-

continuously differentiable maps

[a, b] ∋ θ 7→ pij(θ) ∈ (0, 1),

where (∂θpij)(a) = (∂θpij)(a
+) and (∂θpij)(b) = (∂θpij)(b

−). By the Perron-Frobenius theo-

rem, there is a unique positive and invariant probability vector p(θ) ∈ RL on Ω associated
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to the transition matrix T (θ), in the sense that pi(θ) > 0 for any i ∈ Ω,

∑
i∈Ω

pi(θ) = 1 and
∑
i∈Ω

pi(θ)pij(θ) = pj(θ) for all j ∈ Ω.

Moreover, the regularity of p = p(θ) is the same as that of T = T (θ), that is, given ω ∈ Ω,

the maps θ 7→ pω(θ) are C3([a, b]), see [Mat23, Lemma 1.2.1]. For N ∈ N, we construct the

parameter-dependent Markov probability measure PθN on ΩNas follows. For any N ∈ N1

and any elementary event ω = (ω1, . . . , ωN) ∈ ΩN , we define the Markov measure by

PθN(ω) := pω1(θ)
N∏
k=2

pωk−1,ωk
(θ) = pω1(θ)pω1,ω2(θ) · · · pωN−1,ωN

(θ) (3.1)

with Pθ(ω1) := Pθ1(ω1) = pω1(θ) and write EθN(X) for the expectation value of a random

variable X : ΩN → R with respect to PθN . Hereafter, we make the assumption that

θ1 ̸= θ2 =⇒ Pθ1 ̸= Pθ2 (3.2)

and refer to the latter as the identifiability property of the sequence {PθN}N∈N.

The objective of this assumption is to allow for the obtainment of the “true” parameter

value of the model. Specifically, it allows for a well-defined maximum argument function.

Definition 3.1.1. For N ∈ N with N ≥ 2, we call maximum likelihood estimator (MLE)

the function θ̂N : ΩN → [a, b] defined by

θ̂N(ω) := argmax
θ∈[a,b]

PθN(ω), (3.3)

where PθN(ω) := pω1,ω2(θ) · · · pωN−1,ωN
(θ).

We make the critical observation that maximizing (3.3) is equivalent to minimizing the

following function.

1With the convention that N = 1, 2, . . .
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Definition 3.1.2. Given ω1, ω2 ∈ Ω, we define the function S•(ω1, ω2) : [a, b] → R by

Sθ(ω1, ω2) := − logPθ2(ω1, ω2) = − log pω1,ω2(θ)

and call it the entropy function. Moreover, for ω = (ω1, . . . , ωN) ∈ ΩN with N ≥ 2, we

write

SθN(ω) = − logPθN(ω) = −
N−1∑
k=1

log pωk,ωk+1
(θ).

The entropy functions are well-defined since the transition matrix contains only strictly

positive entries. Using the notation ḟ(θ) = ∂θf(θ) for derivatives of functions that depend

on θ ∈ [a, b], we observe that the entropy functions are C3([a, b]) and have

Ṡθ(ω1, ω2) = −
Ṗθ2(ω1, ω2)

Pθ2(ω1, ω2)
= − ṗω1,ω2(θ)

pω1,ω2(θ)
,

S̈θ(ω1, ω2) = −
P̈θ2(ω1, ω2)

Pθ2(ω1, ω2)
+

[
Ṗθ2(ω1, ω2)

Pθ2(ω1, ω2)

]2
= − ṗω1,ω2(θ)

pω1,ω2(θ)
+

[
ṗω1,ω2(θ)

pω1,ω2(θ)

]2
.

Although our analysis would be identical if we had defined the MLE to yield the value

that, given ω ∈ ΩN , maximized (3.1), it would make the notation more cumbersome.

Definition 3.1.3. We call Fisher entropy of the Markov measure generated by (p(θ), T (θ))

the function I : [a, b] → R given by

I(θ) := Eθ2

(
[Ṡθ]

2
)
=

∑
ω1,ω2∈Ω

pω1(θ)
[ṗω1,ω2(θ)]

2

pω1,ω2(θ)
.

The Fisher entropy is intimately linked to estimation theory, in that, by the Cramér-Rao

bound, it gives a lower bound for the variance of a parameter’s estimator. For a deriva-

tion of this result for uniformly efficient consistent estimators in this setting, see [Mat23,

Proposition 2.2.2]. Moreover, the derivation given in Appendix B highlights the central
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role of I in the study of entropy functions; the special case N = 2 yields

Eθ2([Ṡθ]
2) = Varθ2(Ṡθ) = Eθ2(S̈θ) = I(θ).

We shall assume throughout that I is nonvanishing on [a, b].

Before moving to our first result, we introduce another entropy function that will make

important appearances, albeit infrequent.

Definition 3.1.4. The relative entropy of PθN with respect to Pθ′N is defined by

S(PθN |Pθ′N) :=
∑
ω∈ΩN

PθN(ω) log
PθN(ω)

Pθ′N(ω)
.

Lemma 3.1.5. The relative entropy has S(PθN |Pθ′N) ≥ 0, with equality if and only if θ = θ′.

Proof. By Jensen’s inequality,

S(PθN |Pθ′N) = −
∑
ω∈ΩN

PθN(ω) log
Pθ′N(ω)

PθN(ω)
≥ − log

(∑
ω∈ΩN

Pθ′N(ω)

)
= 0

with equality if and only if PθN = Pθ′N . The result follows by property (3.2).

We infer that for fixed θ ∈ [a, b], the map θ′ 7→ S(PθN |Pθ′N) attains a minimum at θ′ = θ.

We now turn to the uniform parametric law of large numbers given in [Mat23, Proposi-

tion 3.2.1]. Since we require a specific convergence rate different than that provided in the

reference, we proceed a bit differently, starting with a generic law of large numbers.

Proposition 3.1.6. Let X : Ω → R be a random variable and let N ∈ N. Set

SN(ω = (ω1, . . . , ωN)) :=
N∑
k=1

X(ωk).
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Then there exists a constant C > 0 such that for any ϵ > 0,

PN

{
ω ∈ ΩN :

∣∣∣∣SN(ω)

N
− E(X)

∣∣∣∣ ≥ ϵ

}
≤ Var(X) + C

ϵ2N

for all N ∈ N.

This result can be found in the proof of [Mat23, Proposition 3.1.1], where the estimate

appears in the last line of the derivation, before the limit in N ≥ 1 is taken. For random

variables depending on a parameter, a similar uniform result holds.

Proposition 3.1.7. Let θ ∈ [a, b] and Xθ : Ω → R be a random variable such that the maps

[a, b] ∋ θ 7→ Xθ(ω) are continuously differentiable for all ω ∈ Ω. Set

SθN(ω = (ω1, . . . , ωN)) :=
N∑
k=1

Xθ(ωk).

Then there exists a constant K̃ > 0 such that for any ϵ > 0,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ϵ

}
≤ K̃

ϵ3N

for all N ∈ N.

Proof. Let ϵ > 0 and let ω ∈ Ω and θ, θ′ ∈ [a, b] be such that θ < θ′. By the mean-value

theorem, there exists η ∈ (θ, θ′) such that

Xθ(ω)−Xθ′(ω) = Ẋη(ω)(θ − θ′).

Since θ 7→ Xθ is C1 and the state space is finite, we can let K < ∞ be such that

K > sup
θ∈[a,b]
ω1,ω2∈Ω

|Ẋθ(ω)|
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and we set ∆ = ϵ
4K

> 0. Whenever |θ − θ′| < ∆, we have |Xθ(ω)−Xθ′(ω)| < ϵ/4 and

sup
λ∈[a,b]

|Eλ(Xθ)− Eλ(Xθ′)| ≤ sup
λ∈[a,b]

∑
ω∈Ω

|Xθ(ω)−Xθ′(ω)|Pλ(ω) <
ϵ

4
.

Now let a = θ′0 < θ′1 < · · · < θ′n = b be such that θ′k − θ′k−1 < ∆ for n = (b − a)/∆, and

suppose that ω ∈ ΩN satisfies

∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣ < ϵ

2

for all 0 ≤ k ≤ n. For any θ′ ∈ [a, b], there exists 0 ≤ k ≤ n such that |θ′ − θ′k| < ∆ and

hence, for all θ ∈ [a, b],

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≤ ∣∣∣∣Sθ′N(ω)

N
−

Sθ′kN
(ω)

N

∣∣∣∣+ ∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣+ |Eθ(Xθ′k
)− Eθ(Xθ)|

<
1

N

Nϵ

4
+

ϵ

2
+

ϵ

4
= ϵ.

Therefore,

n⋂
k=1

{
ω ∈ ΩN :

∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣ < ϵ

2

}
⊂

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ < ϵ

}

and taking complements,

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ϵ

}
⊂

n⋃
k=1

{
ω ∈ ΩN :

∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣ ≥ ϵ

2

}
.

Lastly, for any θ ∈ [a, b], we apply Proposition 3.1.6 to obtain

PθN

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ϵ

}

≤
n∑

k=1

PθN

{
ω ∈ ΩN :

∣∣∣∣Sθ′kN
(ω)

N
− Eθ(Xθ′k

)

∣∣∣∣ ≥ ϵ

2

}
≤ 4C1n

ϵ2N
,
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where C1 = maxθ,θ′∈[a,b] Varθ(Xθ′k
) + C > 0. Substituting n = (b− a)/∆ = 4K(b− a)/ϵ,

PθN

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ϵ

}
≤ 16C1K(b− a)

ϵ3N
.

Taking the supremum over all θ ∈ [a, b] and setting K̃ := 16C1K(b−a) yields the result.

Remark 3.1.8. As stated, the previous two propositions only hold for univariate random

variables, that is, X : Ω → R. However, they can readily be generalized to bivariate ran-

dom variables X : Ω2 → R by considering an auxiliary Markov chain. To do this, we write

A = Ω2 and denote SN(ω) =
∑N−1

k=1 X(ωk, ωk+1). We then consider the pair (p, T ) where

p = [pa]a∈A and T = [pa,b](a,b)∈A2 have

p(ω1,ω2) = pω1pω1,ω2 and p(ω1,ω2),(ω3,ω4) =


pω3,ω4 if ω2 = ω3,

0 else.

Thus, p > 0 and pT = T with T an irreducible and aperiodic stochastic matrix. Denote

PN the Markov probability measure generated by the pair (p, T ). For a ∈ AN , we identify

the bivariate random variable X : Ω2 → R with the univariate random variable X : A → R

and we write SN(a) =
∑N

k=1 X(ak). Observe that

EN(e
αSN ) = EN+1(e

αSN+1)

for all α ∈ C and N ≥ 1. It is this correspondence that allows the extension to bivari-

ate random variables, and we refer the reader to [Mat23, Section 3.2] for explicit com-

putations. Letting θ ∈ [a, b], we can apply Proposition 3.1.6 to the sequence of second

derivatives (S̈θN)N∈N to obtain

PθN

{
ω ∈ ΩN :

∣∣∣∣∣ S̈θN(ω)

N − 1
− I(θ)

∣∣∣∣∣ ≥ ϵ

}
≤ Varθ2(S̈θ) + C

ϵ2(N − 1)
.
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Since N/(N − 1) ≤ 2, then for all ϵ > 0 and N ≥ 2,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN :

∣∣∣∣∣ S̈θN(ω)

N − 1
− I(θ)

∣∣∣∣∣ ≥ ϵ

}
≤ K̃1

ϵ2N
, (3.4)

where K̃1 := 2 supθ∈[a,b] Varθ2(S̈θ) + C.

Using the previous remark, we extend Proposition 3.1.7 to the bivariate case.

Proposition 3.1.9. Let θ ∈ [a, b] and Xθ : Ω
2 → R be a random variable such that the maps

[a, b] ∋ θ 7→ Xθ(ω1, ω2) are C1 for all ω1, ω2 ∈ Ω. Set

SθN(ω) =
N−1∑
k=1

Xθ(ωk, ωk+1).

Then there exists a constant K̃ > 0 such that for any ϵ > 0,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN : sup

θ′∈[a,b]

∣∣∣∣Sθ′N(ω)

N − 1
− Eθ2(Xθ′)

∣∣∣∣ ≥ ϵ

}
≤ K̃

ϵ3N

for all N ≥ 2.

This allows us to provide a uniform consistency estimate for the Markovian MLE.

Theorem 3.1.10. There exist a constant K̃2 > 0 such that for any ϵ > 0,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN :

∣∣∣θ̂N(ω)− θ
∣∣∣ ≥ ϵ

}
≤ K̃2

ϵ3N
,

This result is an adaptation of [Mat23, Theorem 4.2.1] in that it gives an explicit bound in

terms of ϵ > 0 and N ∈ N. Its proof follows the one given in the reference, except that we

apply Proposition 3.1.9 in the last step to obtain our estimate.

Before moving on to the next section, we state the central limit theorem via a Berry-

Esseen-type estimate for discrete Markov chains.
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Theorem 3.1.11 ([Man96, Theorem 1]). Let XN : Ω2 → R be a Markov chain with N ≥ 1 an

integer. Denote SN =
∑N

k=1 Xk and suppose

σ2 = lim
N→∞

VarN(SN)

N
< ∞.

Then there is a constant K ′ > 0 such that for all [C,D] ⊂ R and N ≥ 1,

∣∣∣∣PN

{
ω ∈ ΩN :

1√
Nσ2

(SN − E(SN)) ∈ [C,D]

}
− 1√

2π

∫ D

C

e−x2/2 dx

∣∣∣∣ ≤ K ′
√
N
.

3.2 Central Limit Theorem

In this section we turn to the central limit theorem of the sequence of maximum likelihood

estimators (θ̂N)N∈N and we recall that

EθN(−ṠθN) = 0 and VarθN(−ṠθN) = (N − 1)I(θ),

for all N ∈ N, as shown in Appendix B.

Theorem 3.2.1. Let θ ∈ (a, b) and let [A,B] ⊂ R, then

lim
N→∞

PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
=

1√
2π

∫ B

A

e−x2/2 dx. (3.5)

Proof. Let [A,B] ⊂ R, fix θ ∈ (a, b) and let ϵ > 0 be such that [θ − ϵ, θ + ϵ] ⊂ (a, b).

Furthermore, let N ≥ 2 be an integer and denote

ΩN
ϵ =

{
ω ∈ ΩN : |θ̂N(ω)− θ| < ϵ and

∣∣∣∣∣ S̈θN(ω)

(N − 1)I(θ)
− 1

∣∣∣∣∣ < ϵ

}
,

which has

lim
N→∞

PθN(Ω
N
ϵ ) = 1 (3.6)
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by Theorem 3.1.10 and (3.4). For ω ∈ ΩN
ϵ , we have θ̂N(ω) ∈ (a, b) and also Ṡθ̂N (ω)(ω) = 0.

By the mean value theorem, there is ξN(ω) between θ̂N(ω) and θ such that

−ṠθN(ω) = (θ̂N(ω)− θ)S̈ξN (ω)N(ω)

and hence

− ṠθN(θ)√
(N − 1)I(ω)

=
√
(N − 1)I(θ)(θ̂N(ω)− θ)

S̈ξN (ω)N(ω)

(N − 1)I(θ)
. (3.7)

Applying the mean value theorem again to θ 7→ S̈θN(ω), we have

S̈ξN (ω)N(ω)− S̈θN(ω)

(N − 1)I(θ)
=

(θ̂N(ω)− θ)
...
S ζN (ω)N(ω)

(N − 1)I(θ)

for some ζN(ω) between θ and ξN(ω), thus

∣∣∣∣∣ S̈ξN (ω)N(ω)− S̈θN(ω)

(N − 1)I(θ)

∣∣∣∣∣ ≤ ϵ

(
sup
θ∈[a,b]

1

I(θ)

)(
sup
θ∈[a,b]

|
...
S θN(ω)|
N − 1

)

= ϵ

(
sup
θ∈[a,b]

1

I(θ)

) sup
θ∈[a,b]
ω1,ω2∈Ω

∣∣∣∣ d3

dθ3
log pω1,ω2(θ)

∣∣∣∣


=: ϵK.

Since ω ∈ ΩN
ϵ , we have 1− ϵ < S̈θN (ω)

(N−1)I(θ) < 1 + ϵ and summing it with

−Kϵ ≤
S̈ξN (ω)N(ω)− S̈θN(ω)

(N − 1)I(θ)
≤ Kϵ

we get

1− ϵ(K + 1) <
S̈ξN (ω)N(ω)

(N − 1)I(θ)
< 1 + ϵ(K + 1). (3.8)
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Observe that there are three types of intervals [A,B]: either 0 ≤ A < B, A < 0 ≤ B or

A < B < 0. In view of this, take ϵ > 0 so small that

ϵ(K + 1)
(
|A|+ |B|

)
< B − A and 1− ϵ(K + 1) ≥ γ, (3.9)

for some small γ > 0, and set

Aϵ :=


A(1 + ϵ(K + 1)) if 0 ≤ A,

A(1− ϵ(K + 1)) if A < 0,
Bϵ :=


B(1− ϵ(K + 1)) if 0 < B,

B(1 + ϵ(K + 1)) if B ≤ 0.
(3.10)

Notice that the first condition of (3.9) ensures Aϵ < Bϵ and whenever ω ∈ ΩN
ϵ satisfies

Aϵ ≤
√

(N − 1)I(θ)(θ̂N(ω)− θ)
S̈ξN (ω)N(ω)

(N − 1)I(θ)
≤ Bϵ,

then A ≤
√

(N − 1)I(θ)(θ̂N(ω)− θ) ≤ B by (3.8). Making use of (3.7), we obtain

PθN

{
ω ∈ ΩN

ϵ : − ṠθN(ω)√
(N − 1)I(θ)

∈ [Aϵ, Bϵ]

}
≤ PθN

{
ω ∈ ΩN

ϵ :
√

(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]
}
.

We can extend the sets to ΩN on both sides to get

PθN

{
ω ∈ ΩN : − ṠθN(ω)√

(N − 1)I(θ)
∈ [Aϵ, Bϵ]

}
≤ PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
+ PθN(Ω

N\ΩN
ϵ ). (3.11)

Taking the limit inferior, recalling (3.6) and applying Theorem 3.1.11 to the sequence

(−ṠθN)N∈N with expectation Eθ2(−Ṡθ) = 0 and variance Varθ2(−Ṡθ) = I(θ),

1√
2π

∫ Bϵ

Aϵ

e−x2/2 dx ≤ lim inf
N→∞

PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
.
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Finally, taking ϵ ↓ 0 yields

1√
2π

∫ B

A

e−x2/2 dx ≤ lim inf
N→∞

PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
. (3.12)

We now show the reverse inequality holds with the limit superior. Let

A′
ϵ :=


A(1− ϵ(K + 1)) if 0 ≤ A,

A(1 + ϵ(K + 1)) if A < 0,
B′

ϵ :=


B(1 + ϵ(K + 1)) if 0 < B,

B(1− ϵ(K + 1)) if B ≤ 0.
(3.13)

and note that A′
ϵ ≤ A < B ≤ B′

ϵ. In particular,

{
ω ∈ ΩN

ϵ :
√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
⊂

{
ω ∈ ΩN

ϵ :
√

(N − 1)I(θ)(θ̂N(ω)− θ)
S̈ξN (ω)N(ω)

(N − 1)I(θ)
∈ [A′

ϵ, B
′
ϵ]

}

by (3.8). Using (3.7) and extending both sides to ΩN ,

PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
≤ PθN

{
ω ∈ ΩN : − ṠθN(ω)√

(N − 1)I(θ)
∈ [A′

ϵ, B
′
ϵ]

}
+ PθN(Ω

N\ΩN
ϵ ). (3.14)

Taking the limit superior, recalling (3.6) and applying Theorem 3.1.11 to (−ṠθN)N∈N,

lim sup
N→∞

PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
≤ 1√

2π

∫ B′
ϵ

A′
ϵ

e−x2/2 dx.

Taking ϵ ↓ 0 and combining with (3.12) yields the desired result.

The assumption that θ ∈ (a, b) in Theorem 3.2.1 ensures that cases where the maximum

likelihood estimator takes value a or b but Ṡθ̂N (ω)N(ω) ̸= 0 are discarded from our analysis,

as required by our argument.
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We now strengthen the above result to a uniform convergence with respect to the param-

eter and we provide a rough estimate for the convergence rate by making use of different

convergence estimates previously established.

Theorem 3.2.2. For any [a′, b′] ⊂ (a, b) and N ∈ N large enough, there is C > 0 such that

sup
θ∈[a′,b′]
[A,B]⊂R

∣∣∣∣PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx

∣∣∣∣ ≤ C

N1/4
.

Proof. Let [a′, b′] ⊂ (a, b) and let 0 < ϵ < min{a−a′

2
, b

′−b
2
} satisfy (3.9). Furthermore, let

ΩN
ϵ (θ) =

{
ω ∈ ΩN : |θ̂N(ω)− θ| < ϵ and

∣∣∣∣∣ S̈θN(ω)

(N − 1)I(θ)
− 1

∣∣∣∣∣ < ϵ

}
.

By Theorem 3.1.10 and (3.4), there exist K̃1, K̃2 > 0 such that for all N ∈ N,

sup
θ∈[a,b]

PθN(Ω
N\ΩN

ϵ (θ)) ≤
K̃2

ϵ3N
+

K̃1

ϵ2N
(3.15)

By (3.11), we have

PθN

{
ω ∈ ΩN : − ṠθN(ω)√

(N − 1)I(θ)
∈ [Aϵ, Bϵ]

}
− 1√

2π

∫ B

A

e−x2/2dx

≤ PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2dx

+ PθN(Ω
N\ΩN

ϵ (θ)),

for Aϵ < Bϵ as defined in (3.10). By Theorem 3.1.11, there exists some constant K ′ > 0

such that for all θ ∈ [a′, b′] and all intervals [C,D] ⊂ R,

∣∣∣∣∣PθN

{
ω ∈ ΩN : − ṠθN(ω)√

(N − 1)I(θ)
∈ [C,D]

}
− 1√

2π

∫ D

C

e−x2/2dx

∣∣∣∣∣ ≤ K ′
√
N
. (3.16)
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Thus, for all θ ∈ [a′, b′] and [A,B] ⊂ R, we have

− K ′
√
N

− 1√
2π

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx− PθN(Ω
N\ΩN

ϵ (θ))

≤ PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx.

On the other hand, by (3.14) we have

PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx

≤ PθN

{
ω ∈ ΩN : − ṠθN(ω)√

(N − 1)I(θ)
∈ [A′

ϵ, B
′
ϵ]

}
− 1√

2π

∫ B

A

e−x2/2 dx+ PθN(Ω
N\ΩN

ϵ (θ))

for A′
ϵ < B′

ϵ as defined in (3.13). Combining this with the Berry-Esseen bound of (3.16)

applied to the interval [A′
ϵ, B

′
ϵ], we get

PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx

≤ K ′
√
N

+
1√
2π

∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx+ PθN(Ω
N\ΩN

ϵ (θ))

and hence∣∣∣∣∣PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx
∣∣∣

≤ 1√
2π

max

{∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx,

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx

}
+

K ′
√
N

+ PθN(Ω
N\ΩN

ϵ (θ)).

Taking the supremum over θ ∈ [a′, b′] and all intervals [A,B] ⊂ R and making use of

(3.15), we obtain

sup
θ∈[a′,b′]
[A,B]⊂R

∣∣∣∣∣PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx
∣∣∣

≤ sup
[A,B]⊂R

1√
2π

max

{∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx,

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx

}
+

K ′
√
N

+
K̃2

ϵ3N
+

K̃1

ϵ2N
.
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Lastly, we bound the maximum by

sup
[A,B]⊂R

1√
2π

max

{∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx,

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx

}
≤
√

2

eπ

ϵ(K + 1)

(1− ϵ(K + 1))

and refer the reader to Appendix C for a derivation of the estimate. Recall from one of

our restrictions on ϵ > 0 given in (3.9) that 1− ϵ(K + 1) ≥ γ for some γ > 0, hence

sup
θ∈[a′,b′]
[A,B]⊂R

∣∣∣∣∣PθN

{
ω ∈ ΩN :

√
(N − 1)I(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx

∣∣∣∣∣
≤ ϵ

√
2

eπ

K + 1

γ
+

K ′
√
N

+
K̃2

ϵ3N
+

K̃1

ϵ2N
.

Setting ϵ = N−z, it remains to find z > 0 that will yield the optimal rate of convergence.

Since the first term is competing with the third and fourth term, and N1−2z ≥ N1−3z for

z > 0, the optimal exponent will be one giving the same convergence rate to the first and

third term. In other words, we want z = 1 − 3z and hence z = 1/4. Thus, taking N ∈ N

large enough that all of our restrictions on ϵ = N−1/4 hold, we obtain

sup
θ∈[a′,b′]
[A,B]⊂R

∣∣∣∣∣PθN

{
ω ∈ ΩN :

√
NI(θ)(θ̂N(ω)− θ) ∈ [A,B]

}
− 1√

2π

∫ B

A

e−x2/2 dx

∣∣∣∣∣ ≤ C

N1/4
.

for C =
√

2
eπ

K+1
γ

+K ′ + K̃1 + K̃2.

Remark 3.2.3. The last convergence estimate is worse than what we offered in the setting

of Theorem 2.2.2 on iid random variables, since the proof of the law of large numbers in

Proposition 2.1.6 made use of the third moment. In contrast, the variance was used in

Proposition 3.1.6. However, we see no reason to believe that utilizing the third moment

there is impossible. Nonetheless, in that case, one would only be able to obtain the same

convergence rate provided in Section 2.2, i.e., N−2/5, still short of the sharp decay estimate

of N−1/2 given in Theorem 3.1.11. Again, this is due to the additional ϵ factor introduced

by the uniformity condition on the random variable’s parameter in Proposition 3.1.7.
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3.3 Large Deviations

Although our analysis so far has been following closely that of Chapter 2, showing the

LDP for the Markovian MLE requires establishing results that held trivially for iid random

variables. This primarily stems from the loss of independence of the entropy functions

SλN(ω) = −
N−1∑
k=1

log pωk,ωk+1
(λ), where ω ∈ ΩN , λ ∈ [a, b].

For θ, λ ∈ [a, b] and α ∈ R, we now have to consider the sequence (Cθ,λ,N(α))N≥2 of

cumulant-generating functions given by

Cθ,λ,N(α) := logEθN

(
eαṠλN

)
and worry about the limit of Cθ,λ,N(α)/N as N → ∞. This limit can be studied through

the spectral radius of the tilted matrix Tθ,λ(α) = [eαṠλ(ω1,ω2)pω1,ω2(θ)]ω1,ω2 . Indeed, we have

lim
N→∞

1

N
Cθ,λ,N(α) = lim

N→∞
log
∥∥Tθ,λ(α)

N
∥∥1/N , (3.17)

where the norm is unspecified as |Ω| < ∞ and all norms are equivalent on finite spaces.

By Gelfand’s formula, we also have that the spectral radius eθ,λ(α) of Tθ,λ(α) has

eθ,λ(α) = lim
N→∞

∥∥Tθ,λ(α)
N
∥∥1/N .

Henceforth, we denote Eθ,λ(α) := log eθ,λ(α) and refer to it as the limiting cumulant-

generating function. We now state a few results concerning the limit of (3.17). The

next proposition follows from [Mat23, Proposition 3.1.2] and an adaption of the proof

of [Mat23, Lemma 3.1.7] to the case where [a, b] ∋ θ 7→ pω1,ω2(θ) are C3 for all ω1, ω2 ∈ Ω.

Proposition 3.3.1. For any θ, λ ∈ [a, b], the function α 7→ Eθ,λ(α) is real-analytic. Moreover,

the function ∂αEθ,λ(α) is C2 in λ ∈ [a, b] and C3 in θ ∈ [a, b].
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The sequence (Cθ,λ,N(α)/N)N≥2 is readily seen to be real-analytic, giving us tremendous

knowledge on the derivatives of the limiting CGF, as implied by the following result.

Theorem 3.3.2 ([Mat23, Lemma 3.1.6]). For any α ∈ R, there exists an open set Uα ⊂ C

with α ∈ Uα on which Cθ,λ,N(α) is analytic for all N ≥ 2 and the following limit is uniform for

θ, λ ∈ [a, b] and α in compact subsets K ⊂ Uα:

lim
N→∞

1

N
Cθ,λ,N(α) = Eθ,λ(α).

Corollary 3.3.3. For any k ∈ N and α ∈ R, there is Uα ⊂ C open with Uα ∋ α such that

lim
N→∞

1

N
C

(k)
θ,λ,N(α) = E

(k)
θ,λ(α)

is uniform for θ, λ ∈ [a, b] and α in compact subsets K ⊂ Uα.

In particular, the first and second derivatives of the limiting CGF read

E′
θ,λ(α) = lim

N→∞

1

N

EθN

(
ṠλNe

αṠλN
)

EθN

(
eαṠλN

) ,

E′′
θ,λ(α) = lim

N→∞

1

N

EθN

(
Ṡ2
λNe

αṠλN
)

EθN

(
eαṠλN

) −

[
EθN

(
ṠλNe

αṠλN
)

EθN

(
eαṠλN

) ]2
We infer that, as the limit of strictly convex functions, Eθ,λ is convex on R for all θ, λ ∈ [a, b].

As in Chapter 2, we make the assumption that for all θ ∈ [a, b], the entropy functions

[a, b] ∋ θ 7→ Sθ(ω1, ω2) = − log pω1,ω2(θ)

have S̈θ(ω1, ω2) > 0, and we refer to it as the strict convexity assumption of the entropy

functions. This has many consequences that will allow us to drive our analysis further,

the first of which is that [a, b] ∋ θ 7→ S
(
pω,•(λ)|pω,•(θ)

)
is strictly convex for each ω ∈ Ω.
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Lemma 3.3.4. Let θ ∈ [a, b]. There exists ω, ω′ ∈ Ω such that ṗω,ω′(θ) ̸= 0. In particular, for any

ω ∈ Ω, there are ω± ∈ Ω such that

ṗω,ω+(θ) > 0 and ṗω,ω−(θ) < 0.

Proof. We start with the first assertion. Suppose by contradiction that for some θ0 ∈ [a, b],

we have ṗω,ω′(θ) = 0 for all ω, ω′ ∈ Ω. Then for any λ ∈ [a, b] and ω ∈ Ω, we have

∂θS
(
pω,•(λ)|pω,•(θ)

)∣∣
θ=θ0

= −
∑
ω′∈Ω

pω,ω′(λ)
ṗω,ω′(θ0)

pω,ω′(θ0)
= 0.

By strict convexity, both θ = λ and θ = θ0 are global minima by Lemma 3.1.5, which

is impossible. The second claim follows from the fact that for any ω ∈ Ω, we have∑
ω′∈Ω ṗω,ω′(θ) = 0, by stochasticity.

Before continuing with the strict convexity consequences, let us make a brief digression.

Using Lemma 3.3.4 and the the following result on analytic functions, we will show that

the limiting cumulant-generating possesses strict convexity.

Lemma 3.3.5 ([KP02, Corrolary 1.2.6]). Let U ⊂ R be an open interval and f and g real-analytic

functions on U . If {z ∈ U : f(z) = g(z)} has an accumulation point, then f ≡ g on U .

Proposition 3.3.6. For any θ, λ ∈ [a, b], the map R ∋ α 7→ Eθ,λ(α) is strictly convex.

Proof. As the pointwise limit of a sequence of strictly convex functions, Eθ,λ must also be

convex. Now fix θ, λ ∈ [a, b] and recall that Ṡθ(ω1, ω2) = −ṗω1,ω2(θ)/pω1,ω2(θ). Set

Q+(θ, λ, α) :=
{
eαṠλ(ω1,ω2)pω1,ω2(θ) : ω1, ω2 ∈ Ω and Ṡλ(ω1, ω2) > 0

}
,

Q−(θ, λ, α) :=
{
eαṠλ(ω1,ω2)pω1,ω2(θ) : ω1, ω2 ∈ Ω and Ṡλ(ω1, ω2) < 0

}
,
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and denote f±(θ, λ, α) := minQ±(θ, λ, α) > 0. It is clear that limα→±∞ f±(θ, λ, α) = ∞. Let

α > 0. Since Tθ,λ(α) has nonnegative entries, taking the sup norm yields

∥∥T (θ, λ, α)N∥∥ = max
i∈Ω

∑
ω1,...,ωN−1,j∈Ω

eαṠλ(i,ω1)pi,ω1(θ) . . . e
αṠλ(ωN−1,j)pωN−1,j(θ) ≥ f+(θ, λ, α)

N ,

by Lemma 3.3.4. Therefore, by (3.17),

Eθ,λ(α) = lim
N→∞

log
∥∥T (θ, λ, α)N∥∥1/N ≥ log f+(θ, λ, α).

Similarly, for any α < 0 we have Eθ,λ(α) ≥ log f−(θ, λ, α) and thus

lim
α→±∞

Eθ,λ(α) = ∞. (3.18)

Now suppose that R ∋ α 7→ Eθ,λ(α) is not strictly convex, in that there exists an interval

I ⊂ R over which E′′
θ,λ(α) = 0. Since R ∋ α 7→ Eθ,λ(α) is real-analytic, it must be linear on

all of R by Lemma 3.3.5, which is impossible by (3.18) and the fact that Eθ,λ(0) = 0.

From the proof, we observe that for each θ, λ ∈ [a, b], there exists a unique αλ ∈ R such

that E′
θ,λ(α0) = 0. Additionally, αλ is a global minimum of the map α 7→ Eθ,λ(α).

The next consequence of our convexity assumption is that for any λ ∈ [a, b] and all N ,

{
ω ∈ ΩN : θ̂N(ω) ≥ λ

}
=
{
ω ∈ ΩN : ṠλN(ω) ≤ 0

}
, (3.19){

ω ∈ ΩN : θ̂N(ω) ≤ λ
}
=
{
ω ∈ ΩN : ṠλN(ω) ≥ 0

}
. (3.20)

Having laid the groundwork, we turn to the LDP of the MLE and the study of its rate

function. It is well-known that the LDP holds for sequences of finite state Markov chains

with irreducible stochastic matrices. Making use of Remark 3.1.8, we state a version of

[DZ10, Theorem 3.1.2] obtained via an application of the Gärtner-Ellis theorem—a gener-

alization of Cramér’s theorem to random variables that are not necessarily iid.
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Theorem 3.3.7. Let X : Ω2 → R be a random variable defining a finite state Markov chain

possessing an irreducible stochastic matrix T = [pij]i,j∈Ω. Consider the sequence

SN(ω)

N
=

1

N

N−1∑
k=1

X(ωk, ωk+1), where ω ∈ ΩN .

Moreover, let e(α) be the spectral radius of tilted the matrix T (α) = [eαX(i,j)pij]i,j∈Ω and set

I(s) = sup
α∈R

(αs− log e(α)), where s ∈ R.

Then the sequence (SN/N)N∈N satisfies the LDP with convex, good rate function I .

We recall that a rate function is called good if its sublevel sets are compact, a fact we shall

not use. Now, let J (θ)
λ (s) := supα∈R(αs− Eθ,λ(α)), the Fenchel-Legendre transform of Eθ,λ.

Applying Theorem 3.3.7 to the sequence (ṠλN/N)N≥2, we obtain that for any set E ⊂ R,

− inf
s∈int(E)

J
(θ)
λ (s) ≤ lim inf

N→∞

1

N
logPθN

{
ω ∈ ΩN :

ṠλN(ω)

N
∈ int(E)

}

≤ lim sup
N→∞

1

N
logPθN

{
ω ∈ ΩN :

ṠλN(ω)

N
∈ cl(E)

}
≤ − inf

s∈cl(E)
J
(θ)
λ (s).

Since J
(θ)
λ (s) = 0 ⇐⇒ s = E′

θ,λ(0) = Eθ2(Ṡλ), then for any interval [A,B] ⊂ R,

inf
s∈[A,B]

J
(θ)
λ (s) =


0 if Eθ2(Ṡλ) ∈ [A,B],

J
(θ)
λ (A) if A > Eθ2(Ṡλ),

J
(θ)
λ (B) if B < Eθ2(Ṡλ).

Therefore, whenever x ≥ Eθ2(Ṡλ) we have

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN :

ṠλN(ω)

N
≥ x

}
= −J

(θ)
λ (x).
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and whenever x ≤ Eθ2(Ṡλ),

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN :

ṠλN(ω)

N
≤ x

}
= −J

(θ)
λ (x).

Extending λ 7→ J
(θ)
λ (0) to J

(θ)
λ (0) = ∞ when λ /∈ [a, b], we derive an LDP for the MLE.

Proposition 3.3.8. For λ ≥ θ,

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN : θ̂N(ω) ≥ λ

}
= −J

(θ)
λ (0). (3.21)

For λ ≤ θ,

lim
N→∞

1

N
logPθN

{
ω ∈ ΩN : θ̂N(ω) ≤ λ

}
= −J

(θ)
λ (0). (3.22)

The following results establishes a few properties of the function λ 7→ J
(θ)
λ (0).

Corollary 3.3.9. The function [a, b] ∋ λ 7→ J
(θ)
λ (0) is finite, nonnegative, nonincreasing on [a, θ],

nondecreasing on [θ, b] and vanishing at λ = θ.

Proof. Nonnegativity is seen directly from

J
(θ)
λ (0) = sup

α∈R
(−Eθ,λ(α)) ≥ −Eθ,λ(0) = 0.

To prove that J (θ)
λ (0) is finite, recall (3.18) and that α 7→ Eθ,λ(α) is real-analytic (in particu-

lar continuous) so Eθ,λ(α) = −∞ is impossible. The fact that λ 7→ J
(θ)
λ (0) is nondecreasing

on [θ, b] and nonincreasing on [a, θ] follows from (3.21) and (3.22) respectively. Lastly,

J
(θ)
θ (0) = 0 follows from (3.21) and the uniform consistency of the maximum likelihood

estimator given in Theorem 3.1.10.
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The function [a, b] ∋ λ 7→ J
(θ)
λ (0) actually enjoys stronger properties, and we shall now

explore them. Fix θ ∈ (a, b) and given λ ∈ [a, b], let αλ ∈ R be the global minimum of

R ∋ α 7→ Eθ,λ(α) = lim
N→∞

1

N
log

∑
ω∈ΩN

eαṠλN (ω)PθN(ω),

hence J
(θ)
λ (0) = −Eθ,λ(αλ). Note that 0 = E′

θ,λ(αλ) and recall that p(θ) > 0. Since

E′
θ,λ(0) = lim

N→∞

EθN(ṠλN)

N
= Eθ2(Ṡλ) =

∑
ω∈Ω

pω(θ)∂λS
(
pω,•(θ)|pω,•(λ)

)
,

then J
(θ)
λ (0) = 0 ⇐⇒ αλ = 0 ⇐⇒ ∂λS

(
pω,•(λ)|pω,•(θ)

)
= 0 for all ω ∈ Ω ⇐⇒ λ = θ.

We now consider the function F : [a, b]× R → R given by

F (λ, α) := ∂αEθ,λ(α) = lim
N→∞

1

N

EθN(ṠλNe
αṠλN )

EθN(eαṠλN )
.

Note that the above map is real-analytic in α and C2 in λ ∈ [a, b] by Proposition 3.3.1, and

observe that F (θ, αθ) = 0 by definition of αθ. Furthermore, at (λ, α) = (θ, αθ), we have

∂αF (θ, α)
∣∣
α=αθ

= lim
N→∞

1

N

EθN(Ṡ
2
θNe

αθṠθN )

EθN(eαθṠθN )
−

[
EθN(ṠθNe

αθṠθN )

EθN(eαθṠθN )

]2
= lim

N→∞

EθN(Ṡ
2
θN)

N
= I(θ). (3.23)

where the second equality follows from αθ = 0 and EθN(ṠθN) = 0 for all N ≥ 2, and the

third equality follows from EθN(Ṡ
2
θN) = (N − 1)I(θ), as derived in Appendix B. Since the

Fisher entropy I is nonvanishing on [a, b] by assumption, then ∂αF (θ, α)
∣∣
α=α0

> 0. By the

implicit function theorem, there exists an open set Uθ ∋ θ such that the map Uθ ∋ λ 7→ αλ

is twice-continuously differentiable and with derivative given by

α̇λ = −
(
∂F (λ, α)

∂α

)−1(
∂F (λ, α)

∂λ

) ∣∣∣∣
α=αλ

.
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Further, we infer that Uθ ∋ λ 7→ J
(θ)
λ (0) = −Eθ,λ(αλ) is C2. Note that, at α = αθ, we have

F (λ, αθ) = lim
N→∞

1

N
EθN(ṠλN) = Eθ2(Ṡλ).

Therefore, ∂λF (λ, αθ)
∣∣
λ=θ

= Eθ2(S̈θ) = I(θ) and combining this with (3.23), we obtain

α̇θ = −1. Now, let N ∈ N and let CθN : [a, b] → R be the function defined by

CθN(λ) := logEθN

(
eαλṠλN

)
, for λ ∈ Uθ.

Note that this function is C2 and has

C ′
θN(λ) =

EθN

(
(αλS̈λN + α̇λṠλN)e

αλṠλN
)

EθN(eαλṠλN )
= αλ

EθN(S̈λNe
αλṠλN )

EθN(eαλṠλN )

by definition of αλ ∈ R. Its second derivative has

C ′′
θN(λ) = α̇λ

EθN(S̈λNe
αλṠλN )

EθN(eαλṠλN )
+ αλ

EθN

(
(

...
S λN + α̇λṠλN S̈λN

+ αλS̈
2
λN)e

αλṠλN
)

EθN(eαλṠλN )

− α2
λ

(
EθN(S̈λNe

αλṠλN )

EθN(eαλṠλN )

)2

.

Since α̇θ = −1 and αθ = 0, then at λ = θ we have −C ′′
θN(θ) = (N − 1)I(θ) for all N ≥ 2.

Thus, for each N ≥ 2, there exists a neighborhood ŨθN ∋ θ on which −C ′′
θN/N is convex.

Proceeding, we make the assumption that there is a shared open set Ũθ ∋ θ on which

−CθN/N is strictly convex for any N ≥ 2. We infer that Ũθ ∋ λ 7→ J
(θ)
λ (0) is convex and

hence that the sequence of derivatives (−C ′
θN/N)N≥2 converges2 to ∂λJ

(θ)
λ (0):

∂λJ
(θ)
λ (0) = −αλ lim

N→∞

1

N

EθN(S̈λNe
αλṠλN )

EθN(eαλṠλN )
.

2A sequence of finite, convex and differentiable functions (fn)n on an open convex set U converging
pointwise to a finite, convex and differentiable function f on U has f ′

n → f ′ uniformly on compact subsets
of U . See [Roc70, Theorem 25.7]

52



Since S̈λ > 0 on Ω2 for all λ ∈ [a, b], then for all λ ∈ Ũθ, ∂λJ
(θ)
λ (0) = 0 ⇐⇒ αλ = 0 and

thus λ = θ ⇐⇒ ∂λJ
(θ)
λ (0). Moreover, we can compute the second derivative to obtain

∂2
λJ

(θ)
λ (0)

∣∣
λ=θ

= −α̇θ lim
N→∞

1

N

EθN(S̈θNe
αθṠθN )

EθN(eαθṠθN )
− αθ

(
∂

∂λ
lim

N→∞

1

N

EθN(S̈λNe
αλṠλN )

EθN(eαλṠλN )

)∣∣∣∣
λ=θ

= lim
N→∞

1

N
EθN(S̈θN) = I(θ) > 0.

As in the case of iid random variables, the Fisher entropy appears as the second derivative

of the MLE’s rate function at its minimum value.

Theorem 3.3.10. For any fixed θ ∈ (a, b), there exists an open set Ũθ ∋ θ with Ũθ ⊂ [a, b] such

that Ũθ ∋ λ 7→ J
(θ)
λ (0) is strictly convex around its minimum point λ = θ.

We now illustrate that, although the rate function can be strictly convex about its mini-

mum point, it can still be bounded on R.

Example 3.3.11. Consider the exponential families

pω1,ω2(θ) = eθH(ω1,ω2)/Z(θ), Z(θ) =
1

|Ω|
∑

ω1,ω2∈Ω

eθH(ω1,ω2)

where H : Ω× Ω → R is a non-constant function such that for all θ ∈ [a, b],

∑
ω2∈Ω

eθH(ω1,ω2) =
1

|Ω|
∑
ω1,ω2

eθH(ω1,ω2) for any ω1 ∈ Ω.

In this case, the entropy functions Sθ(ω1, ω2) = − log pω1,ω2(θ) = −θH(ω1, ω2)+ logZ(θ) are

strictly convex since

∂2
θ (− log pω1,ω2(θ)) =

Z̈(θ)Z(θ)− Ż(θ)2

Z(θ)2

=
∑

ω1,ω2∈Ω

H(ω1, ω2)
2eθH(ω1,ω2)

|Ω|Z(θ)
−

( ∑
ω1,ω2∈Ω

H(ω1, ω2)e
θH(ω1,ω2)

|Ω|Z(θ)

)2

> 0,
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where the last inequality follows by Jensen’s and our assumption on H . We have

Ṡλ(ω1, ω2) = − ṗω1,ω2(λ)

pω1,ω2(λ)
=

−Z(λ)

eλH(ω1,ω2)

(
H(ω1, ω2)Z(λ)e

λH(ω1,ω2) + Ż(λ)eλH(ω1,ω2)

Z(λ)2

)

=
−H(ω1, ω2)Z(λ) + Ż(λ)

Z(λ)
.

Denote by J (θ) the rate function associated to the sequence HN(ω) =
∑N−1

k=1 H(ωk, ωk+1)

for ω ∈ ΩN , and observe that

J
(θ)
λ (0) = sup

α∈R

(
− lim

N→∞

1

N
logEθN(e

αṠλN )

)
= sup

α∈R

(
− lim

N→∞

1

N
logEθN(e

NαŻ(λ)/Z(λ)e−αHN )

)
= sup

α∈R

(
−α

Ż(λ)

Z(λ)
− lim

N→∞

1

N
logEθN(e

−αHN )

)
= J (θ)(Ż(λ)/Z(λ)).

Now let

m = min
ω1,ω2∈Ω

H(ω1, ω2) and M = max
ω1,ω2∈Ω

H(ω1, ω2),

and note that

Ż(λ)

Z(λ)
=

1

|Ω|
∑

ω1,ω2∈Ω

H(ω1, ω2)e
λH(ω1,ω2)

Z(λ)
∈ (m,M)

In particular, the bounds are saturated asymptotically:

Ż(λ)

Z(λ)
=

∑
ω1,ω2∈Ω H(ω1, ω2)e

λH(ω1,ω2)∑
ω′
1,ω

′
2∈Ω

eλH(ω′
1,ω

′
2)

=
∑

H(ω1,ω2)=M

M∑
ω′
1,ω

′
2∈Ω

eλ(H(ω′
1,ω

′
2)−M)

+
∑

H(ω1,ω2)<M

H(ω1, ω2)∑
ω′
1,ω

′
2∈Ω

eλ(H(ω′
1,ω

′
2)−H(ω1,ω2))

λ→∞−−−→ M. (3.24)
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Similarly,

Ż(λ)

Z(λ)
=

∑
ω1,ω2∈Ω H(ω1, ω2)e

λH(ω1,ω2)∑
ω′
1,ω

′
2∈Ω

eλH(ω′
1,ω

′
2)

=
∑

H(ω1,ω2)=m

m∑
ω′
1,ω

′
2∈Ω

eλ(H(ω′
1,ω

′
2)−m)

+
∑

H(ω1,ω2)>m

H(ω1, ω2)∑
ω′
1,ω

′
2∈Ω

eλ(H(ω′
1,ω

′
2)−H(ω1,ω2))

λ→−∞−−−−→ m. (3.25)

Denote by Λθ the limiting CGF of the sequence HN , that is

Λθ(α) := lim
N→∞

1

N
logEθN

(
eαHN

)
.

Its first derivative is given by

Λ′
θ(α) = lim

N→∞

EθN

(
HNe

αHN
)

NEθN

(
eαHN

) ∈ (m,M).

By the intermediate value theorem, for any s ∈ (m,M) there exists αs ∈ R such that

s = Λ′
θ(αs) and αs = (Λ′

θ)
−1(s) satisfies J (θ)(s) = αsΛ

′
θ(αs)− Λθ(αs) with

lim
s↓m

αs = −∞ and lim
s↑M

αs = ∞.

The analysis becomes different than the one given in Example 2.3.4, since

PθN {HN(ω) = M(N − 1)} = (N − 1)Pθ2{H(ω1, ω2) = M} > 0

for any N ≥ 2, and thus,

lim
N→∞

1

N
logPθN {HN(ω) = M(N − 1)} = lim

N→∞

1

N
log(N − 1) = 0.
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Evaluating the limits

lim
λ→∞

J
(θ)
λ (0) = lim

λ→∞
J (θ)(Ż(λ)/Z(λ)) = lim

s↑M
J (θ)(s) = lim

s↑M

(
αsΛ

′
θ(αs)− Λθ(αs)

)
lim

λ→−∞
J
(θ)
λ (0) = lim

λ→−∞
J (θ)(Ż(λ)/Z(λ)) = lim

s↓m
J (θ)(s) = lim

s↓m

(
αsΛ

′
θ(αs)− Λθ(αs)

)
is hence less clear. But considering a concrete example will support our analysis.

Consider the case Ω = {1,−1} with

H =

1 0

0 1

 , Z(θ) =
1

2

∑
ω1,ω2∈Ω

eθH(ω1,ω2) = 1 + eθ.

The associated stochastic matrix and its invariant probability vector are given by

[pω1,ω2(θ)]ω1,ω2 =
1

1 + eθ

eθ 1

1 eθ

 , [pω1(θ)]ω1 =
(

1
2

1
2

)
.

The first derivative of the entropy functions have

[
−ṗω1,ω2(λ)

pω1,ω2(λ)

]
ω1,ω2

=
1

1 + eθ

−1 eθ

eθ −1


and the tilted matrix yields

T (θ, λ, α) = [eαṠλ(ω1,ω2)pω1,ω2(θ)]ω1,ω2 =
1

1 + eθ

e−α/(1+eλ)+θ eαe
λ/(1+eλ)

eαe
λ/(1+eλ) e−α/(1+eλ)+θ

 .

The Perron root of this matrix is

eθ,λ(α) = e−α/(1+eλ)

(
eα + eθ

1 + eθ

)
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and for θ = 0, the function

α 7→ − log eθ,λ(α) =
α

1 + eλ
− log

(
eα + 1

2

)

is maximized at α = −λ. Therefore, the rate function is given by

J
(0)
λ (0) = sup

α∈R
(− log e0,λ(α)) =

−λ

1 + eλ
− log

(
e−λ + 1

2

)
.

Taking the limit in λ gives limλ→±∞ J
(0)
λ (0) = log 2, and the second derivative yields

∂2
λJ

(θ)
λ (0) =

1− λ tanh(λ/2)

2(1 + cosh(λ))
.

The graph of the rate function is shown in fig. 3.1.
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Figure 3.1: The rate function λ 7→ J
(0)
λ (0), which is not convex on R and has inflection

points at λ = ±1.5434. The rate function possesses a horizontal asymptote at log 2.
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Chapter Four

Conclusion

Taking advantage of the elementary relationship that exists between the maximum likeli-

hood estimator and the entropy function, the central limit theorems of the MLE is readily

obtained by making use of a parameter-uniform law of large numbers. Further, we ob-

tain explicit convergence estimates for both iid random variables and finite state Markov

chains. Using our methods, we obtain an estimate of N−2/5 in Chapter 2, short of the

sharp bound of N−1/2 that usually holds for Berry-Esseen-type results. The Markov es-

timate of N−1/4 could likely be improved by utilizing the third moment instead of the

second in proving the uniform LLN in Section 3.1.

The large deviations of the MLE are studied by exploiting a strict convexity assumption

on the entropy functions. We observe that the rate function associated to the sequence

of first derivatives of the entropy functions is tightly linked to an LDP statement for the

MLE. In the iid setting, the MLE rate function is shown to be strictly convex on the entire

parameter domain via the implicit function theorem. Additionally, it possesses one order

of regularity less than that of the probability measures. In particular, in our setting, it is

twice-continuously differentiable and—at its minimum—the second derivative matches

the Fisher entropy. For Markov chains, the limiting cumulant-generating function makes

the analysis more opaque, but its analyticity in neighborhoods of real values grants us
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tremendous capabilities. Specifically, we compute its first and second derivatives and

we show the limiting CGF admits strict convexity everywhere. We then present an LDP

assertion for the Markovian MLE, and use the implicit function theorem to study the as-

sociated rate function about its minimum. Under a shared convexity assumption on the

sequence of cumulant-generating functions, the MLE rate function is shown to be strictly

convex around its minimum and, as in the iid setting, its second derivative matches the

Fisher entropy at the minimum. We end Chapters 2 and 3 by providing an example which

illustrates that the MLE rate function can admit inflection points despite the entropy func-

tions’ strict convexity.

Our study of the large deviations of the maximum likelihood estimator relies crucially

on the strict convexity assumption imposed on the entropy functions. Naturally, one

may wonder what can be said about the exponential tail convergence of the MLE when

this assumption is dropped. Keeping an identifiability condition on the probability mea-

sures, we note that the entropy functions are forced to be monotone, by continuity. How-

ever, they are free to admit inflection points. A study of the LDP for the MLE in this

case would thus require handling the convex and concave parts of the entropy functions

simultaneously—a problem yet to be solved.
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Appendix

A Cumulative Property of Cumulants

Let P be a probability measure on the finite set Ω and let X, Y : Ω → R be independent

random variables. The cumulant-generating function of the sum X + Y has

CX+Y (α) = logE(eα(X+Y )) = log
[
E(eαX)E(eαY )

]
= CX(α) + CY (α),

for α ∈ R. Taking the nth derivative and evaluating at α = 0, we obtain

C
(n)
X+Y (0) = C

(n)
X (0) + C

(n)
Y (0),

showing the cumulative property of cumulants for independent random variables.

Similarly, let X : Ω → R be a random variable. For ω = (ω1, . . . , ωN) ∈ ΩN , let 1 ≤ j ≤ N

be an integer and define Xj(ω) := X(ωj). The latter are readily seen to be an iid family of

random variables. The cumulant-generating function of the sum X1 + · · ·+XN thus has

CX1+···+XN
(α) = NCX(α) =⇒ C

(n)
X1+···+XN

(0) = NC
(n)
X (0).
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B Expectations and Variance

We compute expectation values and the variance of derivatives of the entropy function in

the Markov setting. Let θ ∈ [a, b], with N ≥ 2 and ω ∈ ΩN . Recall that

SθN(ω) = −
N−1∑
k=1

log pωk,ωk+1
(θ),

ṠθN(ω) = −
N−1∑
k=1

ṗωk,ωk+1
(θ)

pωk,ωk+1
(θ)

,

S̈θN(ω) =
N−1∑
k=1

(
−
p̈ωk,ωk+1

(θ)

pωk,ωk+1
(θ)

+

[
ṗωk,ωk+1

(θ)

pωk,ωk+1
(θ)

]2)
.

Then

EθN(ṠθN) = −
∑
ω∈ΩN

N−1∑
k=1

ṗωk,ωk+1(θ)

pωk,ωk+1
(θ)

pω1(θ)pω1,ω2(θ) · · · pωN−1,ωN
(θ)

= −
N−1∑
k=1

∑
ω∈ΩN

ṗωk,ωk+1(θ)pω1(θ)
N−1∏
j=1
j ̸=k

pωj ,ωj+1
(θ)

= −(N − 1)
∑
ω1∈Ω

pω1(θ)
d

dθ

(∑
ω2∈Ω

pω1,ω2(θ)

)

= 0

and the expectation value of the second derivative has

EθN(S̈θN) =
∑
ω∈ΩN

N−1∑
k=1

(
−
p̈ωk,ωk+1

(θ)

pωk,ωk+1
(θ)

+

[
ṗωk,ωk+1

(θ)

pωk,ωk+1
(θ)

]2)
pω1(θ)pω1,ω2(θ) · · · pωN−1,ωN

(θ)

= −(N − 1)
∑
ω1∈Ω

pω1(θ)
d2

dθ2

(∑
ω2∈Ω

pω1,ω2(θ)

)
+ (N − 1)

∑
ω1,ω2∈Ω

pω1(θ)
[ṗω1,ω2(θ)]

2

pω1,ω2(θ)

= (N − 1)I(θ).
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The variance of the first derivative has

VarθN(ṠθN) = EθN(Ṡ
2
θN)− E(ṠθN)

2

=
∑
ω∈ΩN

N−1∑
j,k=1

ṗωj ,ωj+1
(θ)

pωj ,ωj+1
(θ)

ṗωk,ωk+1
(θ)

pωk,ωk+1
(θ)

pω1(θ)pω1,ω2(θ) · · · pωN−1,ωN
(θ)

=
∑
ω∈ΩN

(
N−1∑
k=1

[ṗωk,ωk+1
(θ)]2

pωk,ωk+1
(θ)

pω1(θ)
∏
j ̸=k

pωj ,ωj+1
(θ)

+2
N−1∑
k=2

k−1∑
j=1

ṗωj ,ωj+1
(θ)ṗωk,ωk+1

(θ)pω1(θ)
∏
i ̸=j,k

pωi,ωi+1
(θ)

)

= (N − 1)
∑

ω1,ω2∈Ω

pω1(θ)
[ṗω1,ω2(θ)]

2

pω1,ω2(θ)

+ 2
N−1∑
k=2

k−1∑
j=1

∑
ωj ,...,ωk+1∈Ω

ṗωj ,ωj+1
(θ)ṗωk,ωk+1

(θ)pωj
(θ)pωj+1,ωj+2

(θ) · · · pωk−1,ωk
(θ)

= (N − 1)I(θ).
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C Upper Bound of Gaussian Integrals

We want to find an upper bound in terms of ϵ > 0 for the quantity

sup
[A,B]⊂R

1√
2π

max

{∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx,

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx

}
,

where [A′
ϵ, B

′
ϵ] and [Aϵ, Bϵ] are defined as in (2.6) and (2.9). To this end, we evaluate the

arguments of the maximum individually. Consider the first argument, which has

∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx =

∫ A

A′
ϵ

e−x2/2 dx+

∫ B′
ϵ

B

e−x2/2 dx

≤ max
x∈[A′

ϵ,A]
e−x2/2(A− A′

ϵ) + max
x∈[B,B′

ϵ]
e−x2/2(B′

ϵ − B).

No matter where the interval [A,B] lies with respect to zero, we have

A− A′
ϵ = |A|ϵ(K + 1) and B′

ϵ − B = |B|ϵ(K + 1).

Since e−x2/2 is greater when x2 is closer to zero and ϵ > 0 was chosen such that ϵ(K+1) < 1

for K > 0, then

∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx ≤ e−
A2

2
(1−ϵ(K+1))2 |A|ϵ(K + 1) + e−

B2

2
(1−ϵ(K+1))2 |B|ϵ(K + 1).

Similarly for the second argument of the maximum, we have

Aϵ − A = |A|ϵ(K + 1) and B − Bϵ = |B|ϵ(K + 1),

and hence

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2 dx ≤ e−
A2

2
(1−ϵ(K+1))2 |A|ϵ(K + 1) + e−

B2

2
(1−ϵ(K+1))2 |B|ϵ(K + 1).
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Therefore, we obtain the upper bound

sup
[A,B]⊂R

1√
2π

max

{∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx,

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx

}
≤ 1√

2π
sup

[A,B]⊂R

(
e−

A2

2
(1−ϵ(K+1))2 |A|ϵ(K + 1) + e−

B2

2
(1−ϵ(K+1))2 |B|ϵ(K + 1)

)
≤ ϵ(K + 1)√

2π

(
sup
A∈R

|A|e−
A2

2
(1−ϵ(K+1))2 + sup

B∈R
|B|e−

B2

2
(1−ϵ(K+1))2

)
=

ϵ
√
2(K + 1)√

π
sup
x∈R

(
|x|e−

x2

2
(1−ϵ(K+1))2

)
.

The maximum value of f(x) = |x|e−x2

2
(1−ϵ(K+1))2 is obviously not attained at x = 0, hence

we can set f ′(x) = 0 and solve for x assuming x ̸= 0:

0 = f ′(x) = −x|x|(1− ϵ(K + 1))2e−
x2

2
(1−ϵ(K+1))2 +

x

|x|
e−

x2

2
(1−ϵ(K+1))2

and thus x = ±(1 − ϵ(K + 1))−1 are the two critical points. Since f continuous on R,

twice-differentiable on R\{0}, has f(0) = 0 with f(x) → 0 as x → ±∞ and has

f ′′(x = ±(1− ϵ(K + 1))) = −2(1− ϵ(K + 1))√
e

< 0,

then x = ±(1− ϵ(K + 1))−1 are points where f achieves its global maximum of

f(x = ±(1− ϵ(K + 1))−1) =
1√

e(1− ϵ(K + 1))
.

Therefore, we are left with the estimate

sup
[A,B]⊂R

1√
2π

max

{∫
[A′

ϵ,B
′
ϵ]\[A,B]

e−x2/2 dx,

∫
[A,B]\[Aϵ,Bϵ]

e−x2/2dx

}
≤
√

2

eπ

ϵ(K + 1)

(1− ϵ(K + 1))
.
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