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Abstract

A computational model is considered to predict the ambient gas temperature at which fine iron par-

ticles can undergo thermal runaway and ignite. The model accounts for Knudsen transition trans-

port effects, which become significant when the particle size becomes comparable to the mean free

path of the gas molecules. The model considers the transient iron oxide layer growth at the surface

of the iron particle in the kinetic formulation for iron oxidation. Values of the thermal accommo-

dation coefficient for heat transport are computed using a calibrated semi-empirical correlation,

while values of the sticking coefficient for mass transport are assumed. The ignition tempera-

ture as a function of particle size and initial oxide layer thickness is resolved using the transient

computational model. In the free-molecular limit (small particles), the thermal insulating effect

of the transition transport is shown to lead to a decrease in ignition temperature with decreasing

particle size for a constant proportion of initial oxide layer thickness to total particle size (oxide

layer thickness ratio). In the continuum limit (large particles), the ignition temperature is shown

to be independent of particle size and is only a function of the oxide layer thickness ratio. The

inhibiting effect of large initial oxide layers on the reaction kinetics is shown to lead to an asymp-

totic behavior of the ignition temperature as this ratio tends to 1, both in the free-molecular and

continuum limits. Continuum transport modeling is shown to accurately predict ignition tempera-

tures to within 5% error for particles exceeding 5 µm initial diameter, and to within 1% error for

particles exceeding 40 µm. These results correspond to errors of 10-50 K on ignition temperatures

neighboring ≈ 1000 K which are negligible. Continuum transport modeling is shown to be largely

sufficient to model transport processes for particles in the tens or hundreds of microns.
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Abrégé

Une formulation mathématique est élaborée pour prédire la température ambiante à laquelle une

fine particule de fer peut s’enflammer. Le modèle tient compte de l’impact du régime de tran-

sition Knudsen sur le transfert de chaleur et de masse. Ces effets s’avèrent significatifs lorsque

la taille des particules est comparable à la distance moyenne libre parcourue par les molécules

de gas. Le modèle tient compte de la croissance d’une couche d’oxyde de fer à la surface de la

particule. Le coefficient d’accommodation thermique est déduit d’une corrélation semi-empirique

et le coefficient d’adsorption est assumé. La température d’inflammation en fonction de la taille

des particules et de l’épaisseur initiale de la couche d’oxyde est résolue. Dans la limite où le

transport moléculaire libre domine (petites particules), le transfert de chaleur réduit mène à une

diminution de la température minimale d’inflammation avec une diminution de la taille des par-

ticules, pour un ratio constant entre l’épaisseur initiale de la couche d’oxyde et la taille de la

particule. Dans la limite où les lois de transports macroscopiques dominent (larges particules), la

température d’inflammation s’avère indépendante de la taille des particules et est uniquement une

fonction du ratio de la couche d’oxyde. L’effet inhibiteur de larges couches d’oxyde sur la cinétique

de l’oxydation du fer mène à un comportement asymptotique de la température d’inflammation

lorsque ce ratio tend vers 1. Également, utiliser uniquement les lois macroscopiques mène à

une erreur de moins de 5% pour des particules dépassant 5 µm, et à moins de 1% lorsqu’elles

dépassent 40 µm. Ces erreurs correspondent à des différences de 10-50 K sur des températures

d’inflammation d’environ 1000 K et sont négligeables. La modélisation par les lois macroscopiques

est largement suffisante pour des particules de plusieurs dizaines ou centaines de micromètres.
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Chapter 1

Introduction

Fossil fuels have dominated the energy industry over the past centuries due to their abundance, reli-

ability, high energy density and specific energy, and ease of handling and storage. These character-

istics position them as excellent energy-trading commodities and transportation fuels [4]. However,

a pressing need to transition to zero-carbon, clean energy sources in our societies has arisen over

the past decades. Indeed, human-driven combustion of fossil fuels is a prime contributor to ac-

celerated climate change, which has negative impacts on human agricultural food production, the

survival of terrestrial and marine ecosystems, the frequency and magnitude of natural disasters, the

rising of sea levels, and several other aspects [5, 6]. Renewable energy sources such as hydroelec-

tric, solar, and wind power constitute alternatives to fossil fuels for power generation. Although

the cost of these sources has greatly decreased over the past decades, they present the disadvantage

of being intermittent, and they cannot be stored directly. Furthermore, their relevance is strongly

weather- and location- dependent. Consequently, alternative energy carriers which can substitute

fossil fuels must be developed.

Over the past decades, several alternatives to fossil fuels were proposed, such as biofuels, batteries,

hydrogen fuel cells, and advanced nuclear energy. In the recent years, metal fuels in the form of

powders have increasingly received attention, due to their potential for creating a closed-loop, net

zero-carbon energy commodity cycle [1]. Indeed, combustion of metal powders results in the
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Figure 1.1: Closed-loop low-carbon metal fuel cycle. Taken from [1].

formation of metal oxides, harmless products that can be captured, reduced to their metallic form,

and re-used as fuels, as illustrated in Figure 1.1. Amongst metals, iron has an excellent potential

for global energy carriage and stationary power generation, due to its high energy density, its

abundance, and the widely-developed iron mining, production, and recycling industries which

currently exist [1].

A key technological barrier to the use of metals as energy carriers is the current lack of metal

burners capable of producing usable power at scales relevant to the industrial sector. To optimize

such systems, a challenge which persists is the development of a fundamental understanding of

the key physics underlying metal combustion in the scientific community. Indeed, the mechanisms

governing heterogeneous combustion between a solid fuel and a gaseous oxidizer were not as

widely studied and developed as homogeneous, purely gaseous flames in the past decades, in the

context of the rise of fossil fuels as global energy commodities. However, an understanding of

these physics is essential in predicting and optimizing the performance of practical metal burners.

A concept arising in heterogeneous combustion is the ignition phenomenon of solid fuel parti-

cles [2,7]. When ignited, particles transition to a burning regime exhibiting rapid reaction kinetics

and high energy release rates. Metal burners with ignited particles therefore present the potential

for practical, high-power energy applications, which motivates the need to accurately predict the

ignition behavior of such particles. Amongst condensed-phase fuels, metals are typically set apart
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Figure 1.2: Knudsen number and transport regimes as a function of particle size for a 21%-79%

O2-N2 gas mixture, at 1 atm pressure and different gas temperatures Tg. For Tg = 1500 K, the

transition and free-molecular regimes respectively onset for particles below ≈ 47 µm and 47 nm.

by the formation of an oxide layer at their surface, which shields them from the oxidizer gas and

hinders the particle ignition process [8,9]. Literature on the oxidation and ignition behavior of met-

als was developed in the past decades [8–12], and a computational model for iron-specific ignition

considering the growth of the oxide scale at its surface was recently proposed [3]. Conventionally,

the continuum assumption has been adopted to describe heat and mass transport in metal com-

bustion problems. However, this assumption fails to accurately predict transport processes when

the solid particles are of comparable size or smaller than the mean free path of the gas molecules.

This is quantified by the Knudsen number, which is the ratio of the molecular mean free path to

the particle radius. It is generally accepted that at Knudsen numbers less than 0.01, continuum

treatment accurately describes the transport processes, while at Knudsen numbers larger than 10,

free-molecular transport governs [13–16]. At intermediate Knudsen numbers, transport processes

are described by the transition regime. These concepts are illustrated in Figure 1.2.
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In applications pertaining to heterogeneous reactions, authors typically reported transition effects

must imperatively be considered for relatively small particles. In aerosol particle reaction prob-

lems, Gopalakrishnan et al. [13] reported transition effects must be considered for submicrometer

and nanoparticles at atmospheric pressures. Shpara et al. [16] considered the combustion of boron

particles with air and established the onset of transition effects between 1.23 µm and 46.3 µm for

pressures ranging from 0.10 to 4.0 MPa, with adiabatic flame temperatures around 2900 K. Mohan

et al. [17] considered the heating and ignition delay time of metallic particles placed in a hot gas

and established the onset of transition effects at 18 µm and 2 µm for pressures of 1 bar and 10 bars,

respectively. Controversially, Senyurt & Dreizin [18] recently studied the ignition of aluminum,

boron, and magnesium particles at atmospheric pressure, and stated that transition effects must

be considered for particles of up to 200 µm. This controversy motivates further investigation of

this problem; as well, Knudsen transition effects were not previously considered in iron-specific

combustion problems.

The current work aims to advance the knowledge of the physics underlying metal combustion,

specifically by conducting a quantitative computational study of the ignition behavior of fine iron

particles across the Knudsen transition regime. The model proposed considers iron-specific oxi-

dation kinetics, with transient solid iron oxide layer growth. Transition transport phenomena are

incorporated through a flux-matching boundary sphere approach. This study attempts to answer

the following scientific questions:

• What is the impact of transition transport on the ignition behavior of isolated iron particles?

• At what minimum particle size can continuum transport be considered to accurately model

and predict the ignition behavior of such particles at atmospheric pressure?

To approach these questions, a brief theoretical background of the key physics underlying het-

erogeneous combustion mechanisms, solid-phase iron oxidation, and heat and mass transport is

provided in Chapters 2 and 3. A computational model incorporating these physics is then detailed

in Chapter 4, and key results, discussions, and conclusions are presented in Chapter 5.
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Chapter 2

Combustion of an Isolated Particle

The foundational theory on heterogeneous reactions was developed by Frank-Kamenetskii [7]

based on the method of the uniformly accessible surface. In his work, Frank-Kamenetskii extended

the established theory of homogeneous gas-phase reactions to describe combustion mechanisms of

a solid fuel with a gaseous oxidizer. Based on this theory, Soo et al. [2] developped a detailed

analysis of the ignition characteristics of metallic particles, suspensions of particles, and agglom-

erates. Mi et al. [3] specialized this analysis to describe the ignition behavior of fine iron particles.

The development of these different theories is summarized in the current chapter, in the context of

reaction mechanisms of an isolated particle.

2.1 Heterogeneous Combustion Mechanisms

The method of the uniformly accessible surface developed by Frank-Kamenetskii [7] postulates a

quasi-steady state or quasi-stationary assumption on heterogeneous reactions: the concentration of

oxidizer at the particle surface and in the diffusion boundary layer instantaneously adjusts to the

consumption rate of oxidizer by the particle, as shown in Figure 2.1. This led to the development

of an effective reaction rate, which incorporates the interplay between the kinetic consumption rate

and the diffusion transport rate of the oxidizer. The current section details these concepts.
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Figure 2.1: Oxidizer concentration profile around a reacting particle in an oxidizing gas.

2.1.1 The k − β Effective Reaction Rate

Assuming the continuum regime describes transport processes, the diffusion rate of oxidizer from

the bulk gas to the particle surface is formulated as:

j = β(Cg − Cp) (2.1)

where j is the diffusive flux, β is the diffusive velocity, Cg is the concentration of oxidizer in the

bulk gas, and Cp is the concentration at the particle surface. For a spherical particle, the theory of

similitude permits the development of the following expression for the diffusive velocity [7]:

β =
NuD
2rp

(2.2)

where Nu is the Nusselt number, D is the diffusion coefficient of the oxidizer in the gas mixture,

and rp is the particle radius. Over the past decades, experimental data allowed to develop semi-

empirical Nusselt number correlations for different flow conditions and geometric configurations;

6



those are readily available in the litterature [19,20]. For a spherical particle in a stationary gas, the

well-known result Nu = 2 can be obtained from theoretical considerations only [19].

Frank-Kamenetskii formulates the regression rate of the fuel particle as a function of the oxidizer

concentration at the particle surface, ω̇ = f(Cp) [7]. Assuming the simplest case, where the surface

reaction is governed by first-order kinetics, the formulation

ω̇ = kCp (2.3)

is obtained, where k = k0 exp (−Ta/Tp) is the kinetic rate expressed in an Arrhenius form, with

k0 the Arrhenius constant, Ta the activation temperature, and Tp the particle temperature [2, 7]. By

the quasi-stationary postulate, the diffusive flux towards the particle surface can be equated to the

consumption rate of oxidizer at the particle surface, β(Cg − Cp) = kCp. Solving for the oxidizer

concentration at the particle surface:

Cp =
βCg

k + β
(2.4)

and substituting in Equation 2.3:

ω̇ =
kβ

k + β
Cg ≡ keffCg (2.5)

where keff is an effective reaction rate. The effective reaction rate incorporates the interaction

between the kinetic surface consumption rate of oxidizer and the diffusive rate of oxidizer from

the bulk gas to the particle. This interaction can be referred to as the generic k− β formulation for

first-order heterogeneous reactions.

2.1.2 Particle Ignition and Thermal Regimes of Reaction

The theory of thermal ignition developed by Semenov for homogeneous reactions can be extended

to heterogeneous reactions to describe the thermal regimes of burning particles [2, 7]. In this anal-

ysis, it is assumed that the oxidizing gas mixture is in sufficient quantity such that the combustion

of an isolated particle does not influence the properties of the bulk gas. Following Soo [2], the heat

7



generated by a reacting particle can be formulated as Q̇R = qνApkeffCg, where q is the gravimetric

heating value of the fuel, ν is the stoichiometric coefficient relating the mass of fuel consumed per

mass of oxidizer, andAp is the particle surface area. The conductive heat loss rate from the particle

to the gas in the continuum regime is described by Q̇L = 4πrpkg(Tp− Tg) ≡ hAp(Tp− Tg), where

h = kg/rp is the convective heat transfer coefficient. Thermal explosion of the particle occurs

when the heat generation rate exceeds the heat loss rate, qνApkeffCg > hAp(Tp − Tg). Expanding

this criterion yields:

qν

(
kβ

k + β

)
Cg >

kg

rp
(Tp − Tg). (2.6)

Substituting the diffusive velocity in the numerator by Equation 2.2 and using Nu = 2 for a spher-

ical particle in a stationary gas results in:

(
k

k + β

)
qνDCg > kg(Tp − Tg). (2.7)

If the diffusive rate of oxidizer is much faster than the kinetic consumption rate at the particle

surface, then β >> k and the particle is said to burn in the kinetic-limited regime. Taking the limit

β >> k of Equation 2.7 yields 0 > kg(Tp − Tg), which obviously is an impossible result. Hence

in the kinetic-limited regime, the particle cannot ignite, and its burning temperature will remain

close to the bulk gas temperature, hence Tp → Tg. Conversely, if the diffusive rate of oxidizer

is much slower than the kinetic consumption rate at the particle surface, then k >> β and the

particle is said to burn in the diffusive-limited regime. Taking the limit k >> β in Equation 2.7

yields qνDCg > kg(Tp − Tg), which constitutes the ignition criterion. The particle temperature

will then tend towards:

Tp → Tg +
qνDCg

kg
. (2.8)

Using the thermal diffusivity α = kg/(ρcp), where ρ is the gas density and cp is its heat capacity,

Equation 2.8 can be re-written as:

Tp → Tg +
D

α

qνCg

ρcp
. (2.9)
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Figure 2.2: Qualitative behavior of the bulk gas temperature Tg = Tig leading to particle ignition

as a function of initial particle radius rp,0. Below a critical particle size rcr, the particle cannot

ignite. Taken from [2].

In the case of a unity Lewis number, Le = α/D ≡ 1, this results in:

Tp → Tg +
qνCg

ρcp
= Tstoich (2.10)

where Tstoich is the maximum possible particle burning temperature. It is equal to the flame temper-

ature of a particle-gas mixture, assuming the reaction products negligibly contribute to the overall

heat capacity of the mixture [2, 7]. Heterogeneous reactions are therefore characterized by the

ability of particles to ignite and burn above the gas temperature, close to the stoichiometric flame

temperature. This ignition phenomenon occurs in the diffusive-limited combustion regime, and

it is naturally captured by the interplay between the kinetic and diffusive consumption rates of

oxidizer as formulated by the k − β effective reaction rate.

Vulis [21] showed analytically that the ignition temperature of a particle can be obtained by satis-

fying the Semenov criteria, wherein Q̇R = Q̇L and dQ̇R/dTp = dQ̇L/dTp. If continuum transport

predominates across the range of particle sizes considered, the ignition criteria degenerate as the

particle size is being decreased, and the apparition of a minimum critical size for particle ignition

is observed, as shown in Figure 2.2 [2]. Below this critical particle size, the ratio of the surface

area exposed to continuum conductive heat loss relative to the volumetric heat generation rate of
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the particle becomes sufficiently large such that the Semenov ignition criteria cannot be satisfied

for any real gas temperature.

2.2 Solid-Phase Iron Oxidation

The generic k − β formulation captures the interplay between diffusive- and kinetic- limited com-

bustion for heterogeneous reactions governed by fist-order kinetics. This formulation only con-

siders the oxidizer concentration at the particle surface and the particle temperature, as described

by Equation 2.3. In reality, a majority of metals accumulate metal oxides at their surface as they

oxidize, and the oxygen must diffuse through these oxide layers to react with the metal fuel. If

the diffusion rate of the ions through the oxide layers is much slower than the reaction rate of the

ions at the interfaces to produce metal oxides, then the accumulated oxide layers at the particle

surface inhibit the global reaction kinetics of the particle. This was experimentally demonstrated

to be the case for iron oxidation in the temperature interval 973 K to 1523 K by Paı̈dassi [22].

Based on Paı̈dassi’s experimental results, Mi et al. [3] proposed a kinetic model for iron oxidation

considering the growth of oxide layers on the particle. The current section summarizes the key

concepts underlying this formulation.

2.2.1 Underlying Physics

Paı̈dassi [22] conducted experiments in the 1950s to characterize the solid-phase oxidation behav-

ior of iron films. He demonstrated that isothermal solid-phase iron oxidation in the temperature

range 973 K to 1523 K always results in the formation of three compact iron oxide layers on

the iron surface. From the outermost layer to the innermost layer, the oxides formed are Fe2O3

(hematite), Fe3O4 (magnetite), and FeO (wüstite). The proportion of each oxide layer thickness

to the total thickness of the oxide scale was reported to be 95% FeO, 4% Fe3O4, and 1% Fe2O3.

These proportions remained constant for all isothermal oxidation curves. The multi-layered oxida-

tion process of iron is illustrated in Figure 2.3 and can be summarized as follows [3]:

1. Diffusion of O2 from the bulk gas to the gas-oxide interface.
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Figure 2.3: Schematic of the key processes underlying solid-phase iron oxidation. Taken

from [3].

2. Incorporation of anions O2- into the oxide scale.

3. Absorption of cations Fe2+ into the oxide scale.

4. Diffusion of ions and electrons through the oxide scale.

5. Reaction at FeO-Fe3O4, Fe3O4-Fe2O3, and Fe2O3-O2 interfaces.

In his work, Paı̈dassi obtained experimental curves for the growth rate of the different iron oxide

layers at isothermal conditions. He revealed that the thickness of the oxide layersXi increases with

the square root of time
√
t at a constant rate ki, following a parabolic rate law. This is formulated

as Xi = ki
√
t + Xi,0, where Xi,0 is the initial oxide layer thickness. The kinetic constant ki is a

function of temperature. The parabolic growth rate of the oxide layers implies that the oxidation

process is controlled by the diffusion rate of ions inside the oxide films [22]. In fact, the reaction

rates of the ions at the interfaces significantly exceed the diffusion rates of ions, resulting in the

latter process controlling the overall internal reaction kinetics.

11



Another key feature of iron oxidation demonstrated by Goursat & Smeltzer [23] is the indepen-

dence of iron oxides growth rates on the surrounding oxidizer concentration at least in the interval

1073 K to 1273 K for a resulting partial pressure of oxygen exceeding 4 x 10-4 atm. This behav-

ior originates from the external Fe2O3 layer at the particle surface, which adapts to the ambient

oxidizer concentration and permits an independence of the internal kinetics of the particles at the

inter-facial reactions [3].

2.2.2 Parabolic Kinetic Model

Based on Paı̈dassi’s experimental results, Mi et al. [3] formulated a kinetic model for solid-phase

oxidation of a spherical iron particle consisting of a core of Fe, an inner layer of FeO, and an

outer layer of Fe3O4. The thickness of Fe2O3 being only 1% of the total thickness of oxides, it

contributes negligibly to heat release in the particle and is therefore not considered in the analysis.

The kinetic growth rates of iron oxides reported by Paı̈dassi [22] were converted to rate constants

kp,i using: kp,i =
k2i
2

, which allowed to write first order Arrhenius kinetics of the form:

kp,i = k0,i exp

(
−Ta,i

Tp

)
. (2.11)

Mi et al. [3] calibrated the rate constants based on Paı̈dassi’s experimental data [22]; results are

provided in Section 4.5. The growth rate of the oxide layers can then be formulated as [3]:

dXi

dt
=
k0,i
Xi

exp

(
−Ta,i

Tp

)
. (2.12)

It is of importance to note that the kinetic rates are independent of the oxidizer concentration at

the particle surface. Nevertheless, the particle still possesses the ability to ignite and burn in the

diffusive-limited combustion regime, as described in Section 2.1.2. The interplay between the ki-

netic and diffusive rates as captured by the k−β formulation is specialized to iron by implementing

a switch-type model for the consumption rate of oxidizer by the particle. Assuming the transport

processes occur in the continuum regime, the maximum possible diffusion flux of oxidizer O2 from
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the bulk gas to the particle surface is obtained by setting Cp = 0 in Equation 2.1:

j = βCg ≡
(
DO2

rp

)
Cg (2.13)

where DO2 is the diffusion coefficient of O2 in the gas mixture. Multiplying by the surface area of

the particle, the maximum possible consumption rate of oxidizer by the particle is:

ṁO2 = 4πrpDO2Cg. (2.14)

The interplay between kinetic- and diffusive- limited combustion can be captured by comparing

the rate of oxidizer consumption predicted by the maximum possible diffusion rate of oxidizer, to

the rate of oxidizer consumption resulting from the parabolic kinetic reaction rate of the particle.

The lowest value determines the combustion regime of the particle.
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Chapter 3

Gas-Particle Heat and Mass Transfer

In applications related to heat and mass transfer between a gas and a particle such as solid-phase

oxidation, the classical macroscopic laws of heat conduction and mass diffusion - Fourier’s law and

Fick’s law - can fail to accurately predict these transport mechanisms. This failure is encountered

when the mean free path of the gas molecules becomes comparable or much larger than the particle

size. Instead, the appropriate approach arises from molecular gas kinetics theory, which considers

the individual motion of gas molecules, the inter-molecular collision rate, and the molecule-particle

collision rate. The non-dimensional Knudsen number allows to predict in which regime the molec-

ular transport occurs: free-molecular, continuum, or transition regime. It is defined as the ratio of

the mean free path of the gas molecules to the particle radius. The kinetic theory of gases provides

solutions to heat and mass transport across the entire range of Knudsen number. This chapter pro-

vides an overview of these solutions. Analytical expressions and numerical methods are presented

to model transport processes in the different regimes. This chapter only pertains to conductive heat

transfer: radiation is not considered.
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3.1 Molecular Mean Free Path

The molecular mean free path is essential in quantifying transport processes in gases. It constitutes

the average distance traveled by gas molecules between inter-molecular collisions. The exact math-

ematical formulation of the mean free path depends on the molecular model used. In a Maxwellian

gas, or a gas which has a velocity field described by the Maxwell-Boltzmann velocity distribution

function at steady-state, the Maxwell mean free path for the hard elastic spheres molecular model

is formulated as [24–26]:

λMFP =
1√

2πnσ2
(3.1)

where n is the number density of gas molecules and σ is the molecular diameter. Equation 3.1

presents a difficulty as it requires knowledge of the molecular diameter σ which may be difficult to

estimate. Alternatively, the mean free path can be formulated from the gas viscosity µ, its density

ρ, and its average thermal molecular speed c̄ [24, 25] :

λMFP =
2µ

ρc̄
. (3.2)

Following Eucken, an accurate approximation for the hard spheres model is to relate the thermal

conductivity kg, heat capacity at constant volume cv, and viscosity µ by the Eucken factor f =

1
4
(9γ − 5), where γ is the heat capacity ratio. Then, kg = fµcv [24, 25]. Using cp = cv +

Rg, where cp is the heat capacity at constant pressure and Rg is the individual gas constant; the

Maxwellian mean molecular velocity c̄ =
√

8kBT/(πm), where kB is the Boltzmann constant, T

is gas temperature, and m is the individual molecular mass [25]; and the ideal gas law, Equation

3.2 can be re-written as:

λMFP =
kg(γ − 1)

fp

√
πmT

2kB
. (3.3)

This formulation of the Maxwell mean free path is applicable to monoatomic and polyatomic gases

under the hard elastic spheres molecular model [15].
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3.2 Knudsen Number and Transport Regimes

Heat and mass transport in gases can be classified by different transport regimes as a function of

the non dimensional Knudsen number Kn. It is defined as the ratio of the mean free path of the gas

molecules to the characteristic length of the system Lc [14, 15]:

Kn =
λMFP

Lc
. (3.4)

For transport phenomena between a spherical particle and a gas, the length scale can arbitrarily be

defined as the particle diameter or radius. In the current work, the particle radius rp is used. Three

ranges of transport regimes can be identified, as schematically illustrated in Figure 3.1.

Figure 3.1: Schematic of the different transport regimes. Continuum: high inter-molecular and

molecule-particle collision rates. Free-molecular: low collision rates. Transition: intermediate.

3.2.1 Free-Molecular Regime

For sufficiently large Knudsen number (Kn > 10), transport processes occur purely in the free-

molecular regime [13–16]. Equivalently, this regime is referred to as rarefied gas or low-pressure
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regime. Equation 3.3 shows that λMFP is inversely proportional to gas pressure, giving rise to these

appellations. Free-molecular transport is characterized by a large average traveling distance of the

molecules between inter-molecular collisions, which are ballistic. As well, the small particle radius

with respect to the mean free path implies a low molecule-particle collision rate. These concepts

are illustrated in Figure 3.1. This low collision rate constitutes the limiting step for heat transfer,

and it controls mass transfer in diffusive-limited heterogeneous combustion (Section 2.1.2).

When oxidizing gas molecules collide with a reactive particle surface, they are either reflected

to the bulk gas or stick to the surface [14]. The fraction of impinging particles αM that stick to

it is equivalently referred to as trapping coefficient, sticking coefficient, or mass accommodation

coefficient. The trapped oxidizer molecules can then be adsorbed and react with the fuel. In the

diffusive-limited combustion regime, the collision rate multiplied by the sticking coefficient deter-

mines the reaction rate of the particle [14]. The sticking coefficient is typically a strong function

of temperature and oxidizer coverage at the particle surface, until the surface of the particle is

saturated, at which point αM remains approximately constant [14, 27–31].

In the free-molecular regime, the mass flux of molecules crossing a unit surface area in one direc-

tion is [25]: Γm = 1
4
ρc̄, where ρ is the gas density. In a non-uniform gas, the net mass flux per unit

surface area from location 1 to location 2 is therefore:

jFM =
1

4
(ρ1c̄1 − ρ2c̄2). (3.5)

Considering location 1 to be the bulk gas and location 2 to be the surface of the particle, and fac-

toring in the surface area of the particle and the sticking probability of the colliding gas molecules,

the mass consumption rate of oxidizer ṁFM in the free-molecular regime is then described by:

ṁFM = αMπr
2
p(ρgc̄g − ρpc̄p) (3.6)

where ρ is oxidizing gas density and the subscripts p and g respectively denote at the particle

surface and in the bulk gas.
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Analogous to mass transport, heat transfer in the free-molecular regime is governed by the molecule-

particle collision rate. When gas molecules collide with the particle surface, a fraction of them slip

without energy exchange. The proportion of collisions αT resulting in effective heat transfer is re-

ferred to as the thermal accommodation coefficient or energy accommodation coefficient [25, 32].

The formal definition of the thermal accommodation coefficient is attributed to Knudsen and

yields [25]:

αT =
(Eo − Ei)

(Eo − Ei)max
(3.7)

where Ei and Eo are respectively the energy of the incident and scattered molecules. The energy

expressions in Equation 3.7 can equivalently be replaced by temperatures. The thermal accommo-

dation coefficient is an extremely strong function of surface conditions. A dominant parameter is

the solid surface composition, namely the adsorbed gas layers covering the solid, which contribute

to energy exchange [25, 32–35]. The adsorbed layers can be related to the surface temperature

for a specific solid-gas combination. A weaker dependency with gas pressure can also be estab-

lished. Another key variable is the surface roughness, which impacts the number of collisions at

each encounter between the gas molecules and the surface [25, 32, 33, 35]. Several classical theo-

ries for estimating accommodation coefficients were developed in the literature, yet there remains

high uncertainty in the exact quantification of this parameter for specific surface conditions and

solid-gas combinations. An important contribution was presented by Song & Yovanovich [33],

who proposed a generic semi-empirical correlation for any solid-gas combination to be used in

conjunction with experimental data.

Assuming the translational, rotational, and vibrational energy modes have equal accommodation

coefficients, heat conduction between a gas and a spherical particle can be described by [15]:

Q̇FM = αTπr
2
p
pc̄

2

(
γ + 1

γ − 1

)(
Tp

Tg
− 1

)
. (3.8)
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3.2.2 Continuum Regime

For sufficiently small Knudsen number (Kn < 0.01), heat and mass transfer occur in the con-

tinuum regime [13–16], equivalently referred to as the high pressure regime. It is characterized

by high inter-molecular and molecule-particle collision rates, as illustrated in Figure 3.1. In this

regime, the limiting step for heat transfer is the inability of the molecules colliding with the particle

surface to effectively carry the energy away from the particle to the bulk gas before experiencing

several collisions [15]. As well, a concentration gradient is established towards the particle sur-

face, as shown in Figure 2.1, and mass transport occurs through the diffusion of oxidizer towards

the particle surface.

In the continuum regime, Fick’s law of diffusion describes the mass flux rate. For a reactive

spherical particle exchanging mass with the surrounding gas, the oxidizer consumption rate is [36]:

ṁC = 4πrpD(Cg − Cp) (3.9)

where D is the oxidizer mass diffusivity in the gas mixture. Rigorous theory of transport phe-

nomena allows to theoretically formulate the diffusion coefficient D from gas kinetics theory

[24, 25, 37, 38]. Conjointly, several semi-empirical correlations were developed over the past

decades to predict diffusion coefficients and provide good estimates under different circumstances.

A number of them are reported by Green & Perry [39].

Analogous to mass transport, Fourier’s law of heat conduction describes the heat transfer rate from

a particle to a gas in the continuum regime [15]:

Q̇C = 4πrpkg(Tp − Tg). (3.10)

Correlations of species thermal conductivity are readily available in the literature [40].
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3.2.3 Transition Regime

For intermediate Knudsen number (0.01 ≤ Kn ≤ 10), heat and mass transfer occur in the transi-

tion regime [13–16], where the gas molecular mean free path is comparable to the particle radius,

and the transport mechanisms possess characteristics of both the continuum and the free-molecular

limits. Conceptually speaking, the transition regime can be understood by delimiting two distinct

regions around the particle surface where the transport rates are governed by different mechanisms.

In the vicinity of the particle, there exists a collision-less region called the Knudsen layer or the

Langmuir layer. Its thickness is in the order of the molecular mean free path, and transport mech-

anisms are governed by free-molecular gas kinetics in this region. Beyond the Knudsen layer,

the transport mechanisms occur in continuum, where the macroscopic heat conduction and mass

diffusion laws apply [14, 15].

The existence of the Knudsen boundary layer arising from molecular transport at the interface be-

tween two dissimilar phases gives rise to a jump in the temperature and oxidizer concentration of

the bulk gas in the vicinity of the particle, causing a deviation from the profiles predicted by contin-

uum [15, 25, 36, 38, 41], as shown in Figure 3.2. These temperature and concentration jumps were

perhaps first observed experimentally by Smoluchowski [25, 42] and Bradley et al. [43], respec-

tively. The jumps begin at the surface of the Knudsen layer, where the gradients of temperature

and oxidizer concentration respectively rise and decrease sharply.

The Knudsen layer also exists in the continuum and the free-molecular limits. However, its small

size relative to the particle in the former limit leads to a negligible impact of the gas kinetics

transport effects at the particle surface, permitting solutions described purely by the macroscopic

transport equations. Conversely, its large size relative to the particle in the latter limit implies that

continuum transport beyond the Knudsen layer need not be considered.
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Figure 3.2: Temperature and concentration jump in the Knudsen layer. The profiles differ from

the continuum solutions from the particle surface to the Knudsen layer boundary.

3.3 Modeling the Transition Regime

The transition regime presents an additional difficulty as there exists no analytical closed-form

solution to describe the transport mechanisms in this range of Knudsen number. The heat and

mass transfer are governed by the full Boltzmann equation, an integral-differential equation with

initial and boundary conditions [14, 15]. Consequently, multiple modeling approaches to describe

the transition regime were developed over the past decades. An elaborate review of transition

heat conduction modeling employed in the laser-induced incandescence literature is presented by

Liu et al. [15], whereas several methods for heat and mass transport prediction in droplet evap-

oration problems are reported by Wagner [38]. A number of these methods rely on applying a

corrective transitional factor to the continuum transport rates based on the value of the Knudsen

number. Other methods introduce a boundary sphere of thickness θ delimiting free-molecular and

continuum transport regions, while the fluxes are matched in quasi-equilibrium. The following

subsections report a specific method pertaining to these approaches.
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3.3.1 Implicit Solution - Boundary Sphere Method

The perhaps most sophisticated approach to transition transport modeling and that which best

approximates the physics involved is the boundary sphere flux-matching method. The earliest re-

searchers to apply this method were Langmuir in problems considering conduction heat transfer

from a wire [44], and Fuchs in droplet evaporation problems [36]. In the boundary sphere ap-

proach, a Knudsen layer of thickness θ closely related to the mean free path of the gas molecules

is introduced in the vicinity of the particle. Transport mechanisms are assumed to occur in the

free-molecular regime inside the Knudsen layer, and in the continuum regime beyond, as shown in

Figure 3.3. The sphere delimited by radius rθ = rp + θ is called the limiting sphere. The surface of

the limiting sphere is assumed to be at temperature and species concentration Tθ and Cθ, respec-

tively. Immediately at the particle surface, the temperature and concentration are Tp and Cp, and in

the bulk gas, they are Tg and Cg. The gradients between the particle surface and the limiting sphere

give rise to heat and mass transport described by free-molecular laws, and the gradients beyond

the limiting sphere result in heat and mass transport described by continuum laws. The Knudsen

layer is assumed to be in quasi-steady equilibrium, hence energy and mass conservation provide

necessary conditions for flux matching at the two interfaces: ṁFM = ṁC and Q̇FM = Q̇C. Using

Equations 3.6, 3.8, 3.9, and 3.10, this resolves to:

αMπr
2
p(Cθc̄θ − Cpc̄p) = 4π(rp + θ)D(Cg − Cθ) (3.11)

αTπr
2
p
pθc̄θ

2

(
γ + 1

γ − 1

)(
Tp

Tθ
− 1

)
= 4π(rp + θ)kg(Tp − Tθ) (3.12)

where the density ρ in Equation 3.6 was equivalently replaced by the concentration C, and the

subscripts g, θ, p respectively denote in the bulk gas, at the limiting sphere surface, and at the

particle surface. The boundary sphere method seeks the thickness of the Knudsen layer θ, as well

as the temperature and species concentration Tθ and Cθ at the jump distance which allow to satisfy

the conservation laws. In the case of combustion of a particle, two additional equations allowing

to solve for Tp and Cp are introduced: one for the heat generation rate from the particle, and one

for the consumption rate of oxidizer. The flux matching condition of the boundary sphere method

22



Figure 3.3: Boundary sphere method heat and mass transport. A Knudsen layer of thickness θ

proportional to the mean free path is introduced. Subscript θ denotes oxidizer concentration and

temperature at the edge of the layer. FM denotes free-molecular, and C denotes continuum.

involves solving a system of coupled nonlinear equations to resolve the properties at the limiting

sphere interface and at the particle surface.

The boundary sphere method is most sophisticated in that it imposes no restrictions on the tem-

perature and concentration differences between the particle and the bulk gas, while several other

methods for example implicitly assume small temperature difference [15]. This feature allows

application of this method to a wide variety of problems such as laser-induced incandescence con-

duction, particle combustion in the kinetic- of diffusive- limited regime, and droplet evaporation

problems. As well, the boundary sphere formulation allows to take into account the variation of

thermal and mass transport properties kg and D through the transport regions. This method also

yields the correct solutions in the free-molecular and the continuum limits.

The primary difficulty of the boundary sphere method resides in determining the appropriate Knud-

sen layer thickness θ for the flux matching conditions. The perhaps most widely applied formu-

lation was provided by Wright [41] in a derivation based on the Knudsen cosine law, which takes

into account particle curvature effects to calculate the effective collision-less region governed by

free-molecular transport. However, the exact formulation of θ is shown to yield only marginal
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variations of the flux rates and final problem solution, provided that it is a factor close to unity of

the mean free path [15, 36].

The boundary sphere method is implicit in that it requires solving a coupled system of nonlinear

equations to extract the transition effects on the heat and mass fluxes. Under certain assumptions,

the heat transport rate can be expressed in an explicit form by applying a transitional correctional

factor to the continuum transport rate. Liu et al. [15] derived such a formulation based on the

Springer & Tsai [45] model:

Q̇

Q̇C
=

(
1

1 + Kn
+

(9γ − 5)Kn
αT(γ + 1)

)−1

. (3.13)

where Q̇ is the actual heat transfer rate and Q̇C = 4πrpkg(Tp − Tg) is the continuum solution. The

Knudsen number is based on the mean free path of the bulk gas. As well, Equation 3.13 assumes

small temperature difference Tp ≈ Tg, and formulates the Knudsen layer thickness as equal to the

mean free path of the bulk gas θ = λMFP,g.

3.3.2 Explicit Solution - Transitional Correction Factors

Multiple authors attempt a solution of the rigorous Boltzmann transport equation to describe the

heat and mass transport rates in the transitional regime using transitional corrections factor. These

solutions typically imply a linearization of the collision term of the Boltzmann equation proposed

by Bhatnagar et al. [46] (BGK model). A solution achieved by Smirnov with a modification pro-

posed by Fuchs is reported by Wagner [38], where the mass and thermal transport transitional

correction factors βM and βT are:

βM =
ṁ

ṁC
=

1 + Kn
1 + ( 4

3αM
+ 0.377)Kn + 4

3αM
Kn2 (3.14)

βT =
Q̇

Q̇C
=

1 + Kn
1 + ( 4

3αT
+ 0.377)Kn + 4

3αT
Kn2 . (3.15)
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The actual mass and heat transport rates are ṁ and Q̇, and the continuum rates ṁC and Q̇C are

those described by Equations 3.9 and 3.10. The above expressions are valid for arbitrary Knudsen

number.

Wagner [38] reports that different Knudsen numbers are used for the thermal and mass transport

transitional correction factors in evaporation problems. For the thermal transport, the Knudsen

number is based on the mean free path of the bulk gas, and for the mass transport, it is based on

the mean free path of the droplet vapor. In the intended combustion problem of the current work,

thermal and mass transport occur from the bulk gas towards the particle surface. As such, the mean

free path of the bulk gas is used in both cases.
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Chapter 4

Model Formulation - Isolated Iron Particle

Given tools to describe the kinetics of iron oxidation and transport processes across the entire range

of Knudsen number, a model which implements the effect of the Knudsen layer on the transport

rates is formulated to evaluate the ignition behavior of fine iron particles across the Knudsen tran-

sition regime. The current analysis implements a thermophysical model for single iron particle

ignition based on: the mass and energy balance equations; the empirically calibrated parabolic ki-

netic model of iron oxidation [3]; a switch-type transition model between the kinetic- and diffusive-

limited combustion regimes; and a two-layer boundary sphere approach to account for transition

transport effects on heat and mass transfer. The current chapter details the model formulation and

lists the major assumptions used in the analysis.

4.1 Model Description

The model considers a spherical particle consisting of an iron core of radius rFe, an inner FeO layer

of thickness XFeO, an outer Fe3O4 layer of thickness XFe3O4 , and a Knudsen layer of thickness θ,

as illustrated in Figure 4.1. The particle is placed in a binary gas mixture consisting of oxygen

and an inert gas. The particle exchanges heat and mass to the surrounding Knudsen layer through

free-molecular transport, and continuum transport describes heat and mass transport beyond the
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Knudsen layer surface. Heat transfer is considered to occur only through conduction - radiative

heat transfer is neglected, as it is shown to have a negligible impact on particle ignition temperature

[3]. Other major assumptions used in this formulation include:

1. The thermal expansion of Fe, FeO, and Fe3O4 is neglected, and the solids maintain a constant

density throughout the burn ρFe, ρFeO, and ρFe3O4 , respectively.

2. The particle is assumed to be at a uniform temperature Tp.

3. The bulk gas is in sufficient quantity such that its properties, including temperature and

oxidizer concentration, are not affected by the burning particle.

4. The flow velocity of the ambient gas is negligible.

5. The Stefan flow induced by the consumption of oxidizer at the particle surface is neglected.

6. The second-order heat and mass transport mechanisms, the Dufour effect and the Soret ef-

fect, are neglected.

7. The Knudsen layer is quasi-steady.

The state vector x =
[
MFe MFeO MFe3O4 Hp

]T
tracks the particle mass content in Fe, mass

content in FeO, mass content in Fe3O4, and the total particle internal energy (or enthalpy), respec-

tively. The internal energy of the particle is:

Hp =
Ns∑
i

Mihi(Tp) (4.1)

where i is the index of the solid-phase species,Ns is the number of solid-phase species, and hi is the

particle gravimetric enthalpy. The latter is computed as a function of particle temperature Tp and

molar weight of the speciesWi, using the Shomate equation based on the NIST Standard Reference

Database [47]. The formulations of the Shomate polynomials are provided in Appendix A. While

tracking the particle enthalpy, an iterative root-finding procedure can be used to determine the
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Figure 4.1: Particle reaction model. Symbols T and CO2 denote temperature and oxidizer

concentration. Subscripts p, θ, and g denote particle surface, limiting sphere surface, and bulk

gas. Heat and mass transport Q̇, ṁO2 are respectively governed by free-molecular and continuum

laws inside and beyond the Knudsen layer of thickness θ.

particle temperature Tp. The formation of the oxides are described by the stoichiometric reactions:

1 Fe + 1/2 O2 → 1 FeO

3 Fe + 2 O2 → 1 Fe3O4

4.2 Conservation Laws in the Quasi-Steady Knudsen Layer

4.2.1 Heat Balance

The heat balance in the quasi-steady Knudsen layer is described by Q̇p = Q̇θ, where Q̇p repre-

sents the free-molecular conductive heat loss rate from the particle to the Knudsen layer, and Q̇θ

represents the continuum conductive heat loss rate from the Knudsen layer to the bulk gas. In the
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free-molecular regime, the heat loss rate is described by [15]:

Q̇p = αTπr
2
p
pc̄θ
2

(
γ + 1

γ − 1

)∗(
Tp

Tθ
− 1

)
(4.2)

where αT is the thermal accommodation coefficient; rp is particle radius; p, c̄θ, and Tθ are respec-

tively pressure, mean molecular speed, and gas temperature at the Knudsen layer surface; and γ is

the gas specific heat ratio. As the particle reacts in an open stream, the pressure p is spatially and

temporally uniform.

The thermal accommodation coefficient is a function of multiple surface parameters, such as ad-

sorbed gas layers on the particle and surface roughness [25, 32–35]. In the current analysis, the

surface is assumed to be smooth, and the Song & Yovanovich [33] semi-empirical correlation is

used to calculate αT:

αT = A

(
W ∗

g

6.80 +W ∗
g

)
+ (1− A)

(
2.40B

(1 +B)2

)
(4.3)

W ∗
g = 1.40NAmθ (4.4)

A = exp

[
− 0.57

(
Tp − 273

273

)]
(4.5)

B =
NAmθ

WFe2O3

(4.6)

where mθ = (
∑Ng

i Ci,θmi)/(
∑Ng

i Ci,θ) is the average individual molecular mass at the Knudsen

layer surface, with Ci,θ the concentration of the ith species at the Knudsen layer surface, mi its

individual molecular mass, and Ng the total number of gaseous species; WFe2O3 is the molar weight

of Fe2O3; and NA is Avogadro’s number. Although Fe2O3 is not considered in the thermophysical

analysis, it is used to compute αT, which is a surface property. The thermal accommodation coef-

ficient semi-empirical correlation is compared to experimental data for different Fe-gas systems in

Appendix B. There is high scatter in the literature-reported values of αT. However as demonstrated

in Appendix B, although the exact quantitative values of the ignition temperatures are affected by

αT, the overall conclusions attained in the current work remain unchanged for values within the

confidence interval 0.08-0.90 of the literature data.
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The pressure at the Knudsen layer surface p is the sum of the partial pressures of the gas species:

p = kBTθ

Ng∑
i

Ci,θ
mi

(4.7)

where kB is the Boltzmann constant. As the pressure is spatially and temporally constant, the inert

gas concentration at the Knudsen layer surface can be computed from Equation 4.7, given CO2,θ

and Tθ. The average molecular speed c̄θ arises from Boltzmann gas kinetics theory [25]:

c̄θ =

√
8kBTθ
πmθ

. (4.8)

The exact formulation for
(
γ+1
γ−1

)∗
considers the varying thermophysical properties of the gas arising

from the concentration and temperature gradients in the Knudsen layer:

(
γ + 1

γ − 1

)∗

=

(
1

Tp − Tθ

)(
1

CO2,p − CO2,θ

)∫ Tp

Tθ

∫ CO2 ,p

CO2,θ

(
γ(CO2 , T ) + 1

γ(CO2 , T )− 1

)
dCO2 dT. (4.9)

In the current analysis, the specific heat ratio γ∗p (C∗
O2,p, T

∗
p ) is instead computed using a two-thirds

law: the oxidizer concentration and the gas temperature are taken to be a weighted average of

two thirds the values at the particle surface, and one third the values at the Knudsen layer surface.

These are denoted by the notation C∗
O2,p and T ∗

p . The specific heat ratio γ∗p is then calculated at

these two-thirds weighted values for the gas mixture, and Equation 4.9 reduces to:

(
γ + 1

γ − 1

)∗

=
γ∗p + 1

γ∗p − 1
. (4.10)

The two-thirds law approach significantly reduces numerical implementation complexity, while

maintaining a high accuracy of the results for heterogeneous reaction mechanisms [48]. As dis-

cussed in Section 3.2.3, the gradients of T and C change rapidly while approaching the wall due

to the jump conditions induced by the Knudsen layer, hence the thermal properties should be taken

closer to the wall temperature and oxidizer concentration, justifying the two-thirds law. In Equation

30



4.10, the heat capacity ratio is approximated as:

γ∗p =
c∗p,p

c∗p,p − Ru
NAm∗

p

(4.11)

where c∗p,p is the gravimetric specific heat capacity of the gas mixture computed at C∗
O2,p and T ∗

p ;

Ru is the universal gas constant; and m∗
p is the average gas individual molecular mass computed

at C∗
O2,p. The specific heat capacity of a gas mixture is the weighted average of the specific heat

capacity of each species, c∗p,p =
[∑Ng

i C∗
i,pcp,i(T

∗
p )
]
/
[∑Ng

i C∗
i,p

]
. The species’ specific heat ca-

pacities are obtained using the 7-coefficient NASA-polynomials [40], evaluated at temperature T ∗
p .

Coefficients and formulations are provided in Appendix A.

In the continuum regime, the heat transfer rate from the Knudsen layer to the bulk gas is described

by [15]:

Q̇θ = 4π(rp + θ)k∗g,θ(Tθ − Tg) (4.12)

where k∗g,θ is the thermal conductivity averaged between the bulk gas and the Knudsen layer sur-

face. The exact formulation of the Knudsen layer thickness derived by Wright [41] is:

θ =
r3p

λ2MFP,θ

(
1

5
Λ5

1 −
1

3
Λ3

1Λ2 +
2

15
Λ

5/2
2

)
− rp (4.13)

Λ1 = 1 +
λMFP,θ

rp
(4.14)

Λ2 = 1 +

(
λMFP,θ

rp

)2

(4.15)

where λMFP,θ is the mean free path at the Knudsen layer surface. However, as mentioned in Section

3.3.1, the exact formulation of θ only mildly affects the transport rates. The current analysis

therefore employs θ = λMFP,g as an approximation, taking advantage of the constant properties of

the bulk gas throughout the burn. The molecular mean free path is formulated as [15]:

λMFP,g =
kg,g

fg p
(γg − 1)

√
πmgTθ

2kB
(4.16)
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where kg,g is the mixture-averaged thermal conductivity in the bulk gas, and fg =
(9γg−5)

4
is the

Eucken factor. The following approximation is used to compute the mixture-averaged thermal

conductivity, based on the species thermal conductivity ki and their mole fractions µi:

kg =
1

2

( Ng∑
i

µiki +
1∑Ng

i
µi/ki

)
. (4.17)

The species’ thermal conductivity are evaluated using the NASA 5-coefficients polynomials as a

function of temperature [40], as detailed in Appendix A. In Equation 4.12, the exact formulation

for the averaged thermal conductivity between the bulk gas and the Knudsen layer surface is:

k∗g,θ =

(
1

Tθ − Tg

)(
1

CO2,θ − CO2,g

)∫ Tθ

Tg

∫ CO2,θ

CO2 ,g

kg(CO2 , T )dCO2 dT. (4.18)

To simplify numerical implementation, a two-thirds law is instead used to compute k∗g,θ: the tem-

perature and oxidizer concentration are taken as two thirds the values at the Knudsen layer surface

and one third the values in the bulk gas, denoted T ∗
θ and C∗

O2,θ
. The species’ thermal conductivity

is then computed with the NASA polynomials, and Equation 4.17 is used to obtain the mixture-

averaged thermal conductivity.

4.2.2 Mass Balance

The mass balance in the quasi-steady Knudsen layer is ṁO2,p = ṁO2,θ The mass consumption of

oxidizer at the particle surface in the free-molecular regime is described by (Section 3.2.1):

ṁO2,p = αMπr
2
p(CO2,θ c̄θ − CO2,p c̄p) (4.19)

where αM is the mass accommodation coefficient, which is in practice a transient function of

temperature and oxidizer coverage at the particle surface [14,27–31]. In the current analysis, αM is

set constant at a value of 0.10, which is in the correct order of magnitude for iron-oxygen systems

reported in the above-mentioned sources. In Appendix B, a parametric study of the impact of αM
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on the ignition temperature is performed. Reasonable values of αM are found to yield no impact

on the ignition temperature.

At the limiting sphere surface, diffusion in the continuum regime is described by Fick’s law:

ṁO2,θ = 4π(rp + θ)D∗
θ(CO2,g − CO2,θ). (4.20)

The mass diffusion coefficient D∗
θ is computed as the average binary diffusivity of oxidizer in the

inert gas across the limiting sphere. The Fuller-Schettler-Giddins semi-empirical correlation is

used to approximate the binary diffusion coefficient [49]:

D =
10−7T 1.75

[
Winert+WO2

WinertWO2

]1/2
p

101325

[(∑
v
)1/3

O2
+
(∑

v
)1/3

inert

]2 . (4.21)

The terms (
∑
v)i are semi-empirical parameters used for the correlation and are provided in Ap-

pendix A. Equation 4.21 was modified from [49] for the result to be obtained in m2s-1, and assum-

ing the units of p are Pa instead of atm. To take into account the temperature gradient from the

bulk gas to the Knudsen layer, the exact formulation forD∗
θ would require averaging by integration

Equation 4.21 across temperature. Instead T is replaced by T ∗
θ , implementing the two-thirds law.

4.3 Oxidizer Consumption Rate

The interplay between kinetic- and diffusion- limited combustion of the iron particle is imple-

mented by comparing the instantaneous maximum possible oxygen diffusion rate (assumingCO2,p =

0), to the maximum instantaneous kinetic consumption rate of oxidizer (from parabolic kinetic

laws). The lowest of these two values is assumed to be the instantaneous oxidizer consumption

rate, and resulting reaction rates for Fe, FeO, and Fe3O4 are computed.
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4.3.1 Kinetic-Limited Regime

In the kinetic-limited regime, the parabolic kinetic model [3] governs the rate of production of FeO

(ṁFeO,kin) and Fe3O4 (ṁFe3O4,kin), and the rate of consumption of Fe (ṁFe,kin):

ṁFe,kin = −νFe/FeOṁFeO,kin − νFe/Fe3O4
ṁFe3O4,kin (4.22)

ṁFeO,kin = ρFeOAFeO
dXFeO

dt
(4.23)

ṁFe3O4,kin = ρFe3O4AFe3O4

dXFe3O4

dt
(4.24)

where νFe/FeO and νFe/Fe3O4
are stoichiometric mass ratios; AFeO = 4π(rFe +XFeO)2 is the area of

formation of FeO; and AFe3O4 ≡ Ap = 4πr2p is the area of formation of Fe3O4. The kinetic growth

rates of the iron oxide layers thicknesses are:

dXi

dt
=
k0,i
Xi

exp

(
−Ta,i

Tp

)
. (4.25)

Kinetic parameters k0,i and Ta,i are provided in Section 4.5. The resulting kinetic consumption rate

of oxidizer by the particle is computed from the stoichiometric mass ratios:

ṁO2,kin = νO2/FeOṁFeO,kin + νO2/Fe3O4
ṁFe3O4,kin. (4.26)

4.3.2 Diffusive-Limited Regime

In the diffusive-limited regime, the consumption rate of oxidizer is equal to its maximum possible

transport rate through the Knudsen layer:

ṁO2,diff = αMπr
2
p(CO2,θc̄θ). (4.27)
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The O2 is partitioned in FeO and Fe3O4 based on the instantaneous kinetic rates from Equations

4.23, 4.24, and 4.26:

RFeO = νO2/FeO

ṁFeO,kin

ṁO2,kin
(4.28)

RFe3O4 = 1−RFeO (4.29)

where RFeO is the fraction of O2 consumed to produce FeO, and RFe3O4 is the fraction consumed to

produce Fe3O4. The rates in the diffusive-limited regime are then:

ṁFeO,diff = RFeOṁO2,diff

(
1

νO2/FeO

)
(4.30)

ṁFe3O4,diff = RFe3O4ṁO2,diff

(
1

νO2/Fe3O4

)
(4.31)

ṁFe,diff = −νFe/FeOṁFeO,diff − νFe/Fe3O4
ṁFe3O4,diff. (4.32)

4.4 Governing Equations

The governing equations for the rate of change of the state variables are:

dMFe

dt
= ṁFe (4.33)

dMFeO

dt
= ṁFeO (4.34)

dMFe3O4

dt
= ṁFe3O4 (4.35)

dHp

dt
= qFeO

dMFeO

dt
+ qFe3O4

dMFe3O4

dt
+ hO2,θṁO2 − Q̇p. (4.36)

Equations 4.33 to 4.35, as well as ṁO2 in Equation 4.36 are computed either in the kinetic- or

diffusive- limited regime, depending on which mechanism instantaneously limits the reaction rates.

In Equation 4.36, the first two terms on the right-hand side are the energy release rates due to the

formation of FeO and Fe3O4 respectively, where qFeO and qFe3O4 are the specific heating values of

the oxides. The third term relates to the enthalpy increase of the particle due to the incorporation
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of O2, where hO2,θ is the gravimetric enthalpy of oxygen evaluated at Tθ. The last term is the heat

loss rate from the particle to the Knudsen layer, as described by Equation 4.2.

4.5 Numerical Implementation

The single particle model is numerically implemented in MATLAB. The problem is initialized by

providing the following parameters:

• Tg, bulk gas temperature;

• p, bulk gas pressure (1 atm);

• rp,0, initial particle radius;

• δ0, initial oxide layer thickness ratio.

To represent air, the bulk gas mixture is set to be 21% O2 and 79% N2 on a molar basis. The initial

particle temperature Tp,0 is initialized to be equal to the gas temperature: Tp,0 = Tg. The initial

oxide layer thickness ratio δ0, and the ratio between the Fe3O4 layer thickness to the total oxide

layer thickness δ0,Fe3O4 are defined as:

δ0 =
X0

rp,0
≡ XFeO,0 +XFe3O4,0

rp,0
(4.37)

δ0,Fe3O4 =
XFe3O4,0

X0

(4.38)

The variable δ0 can be related to moxides/mtotal, the ratio of the mass of iron oxides to the total

mass of solid species, which are experimentally measurable quantities. In the current analysis, a

constant value of δ0,Fe3O4 = 0.05 is used, as inferred from experimental measurements [22]. From

the initial particle dimensions and temperature, the initial state vector x0 can be computed.

36



From the detailed description of the heat and mass balance in the quasi-steady Knudsen layer

provided in Section 4.2, the following system of three equations, three unknowns can be written:

αTπr
2
p
pc̄θ
2

(
γ∗p + 1

γ∗p − 1

)(
Tp

Tθ
− 1

)
= 4π(rp + θ)k∗g,θ(Tθ − Tg) (4.39)

ṁO2 = αMπr
2
p(CO2,θ c̄θ − CO2,p c̄p) (4.40)

ṁO2 = 4π(rp + θ)D∗
θ(CO2,g − CO2,θ). (4.41)

The three unknowns of the system depend on whether the particle burns in the kinetic- or the

diffusive- limited regime. In the kinetic-limited regime, the consumption rate of oxygen ṁO2 =

ṁO2,kin is known from Equation 4.26 and associated relations, which only require knowledge of

the instantaneous state vector x. In this case, the unknowns are {Tθ, CO2,θ, CO2,p }. In the case of

diffusive-limited combustion, the oxidizer concentration at the particle surface CO2,p = 0 is known,

and the three unknowns are {Tθ, CO2,θ, ṁO2}. The reader can refer to Appendix C for the detailed

derivation of the numerical solution to the system.

The state vector is advanced in time using the governing equations described by Equations 4.33

to 4.35. At each time step, the consumption and production rates are determined by comparing

ṁO2,kin to ṁO2,diff. The actual consumption rate of oxygen ṁO2 is chosen to be the lowest of the two.

Then, ṁFe, ṁFeO, and ṁFe3O4 are computed either in the kinetic- or diffusive- limited regime with

appropriate relations. Once the system described by Equations 4.39 to 4.41 is solved, instantaneous

parameters Tθ and CO2,θ are known, allowing to obtain Q̇p from either side of Equation 4.39. This

allows to compute the result of Equation 4.36 and advance x in time. The governing equations are

solved for a determined duration of time, until MFe/MFe,0 ≤ 1/100, or until the melting point of

FeO is reached (1650 K), in which case the particle undergoes thermal runaway. The MATLAB

solver ode15s is used to solve the system of first-order ordinary differential equations. Table 4.1

provides properties and parameters used in the current analysis.
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Table 4.1: Properties and kinetic parameters of Fe, FeO, and Fe3O4.

Description Symbol Value Units

Density
ρFe 7874
ρFeO 5745 kg/m3

ρFe3O4 5170

Specific heating value
qFeO 3.787

MJ/kg
qFe3O4 4.841

Kinetic rate constant
k0,FeO 2.670 x 10-4

m2/s
k0,Fe3O4 1.027 x 10-6

Activation temperature
Ta,FeO 20319

K
Ta,Fe3O4 21310

4.6 Alternative Solution Methods

The numerical implementation of the fully implicit, complete formulation of the boundary sphere

method requires solving a nonlinear system of three equations, three unknowns. This comes with

a computational cost, as well as possible errors in the mathematical derivation of the solution. To

verify the robustness of the numerical implementation, alternative solution methods are proposed.

These methods are compared to the implicit boundary sphere approach in Section 5.1.2.

4.6.1 Transitional Correction Factors

Smirnov’s solution to the transport rates in the transition regime is [38]:

βM =
ṁ

ṁC
=

1 + Kn
1 + ( 4

3αM
+ 0.377)Kn + 4

3αM
Kn2 (4.42)

βT =
Q̇

Q̇C
=

1 + Kn
1 + ( 4

3αT
+ 0.377)Kn + 4

3αT
Kn2 . (4.43)
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where Kn = λMFP,g/rp is the instantaneous Knudsen number based on the bulk gas mean free path

(see Section 3.3.2). The continuum transport rates are computed as:

Q̇C = 4πrpk
∗
g(Tp − Tg) (4.44)

ṁC = 4πrpD
∗(CO2,g − CO2,p) (4.45)

where k∗g and D∗ are computed using the two-thirds law between the particle and the bulk gas

temperatures and oxidizer concentrations. The thermal accommodation coefficient is computed

using Equations 4.3 to 4.6, with mθ replaced by the average molecular mass of the bulk gas mg.

In the diffusive-limited regime, CO2,p = 0 is known, while in the kinetic-limited regime, ṁC is

known. In both cases, the system is fully explicit.

4.6.2 Explicit Boundary Sphere Method

Under the assumption of small temperature difference and using θ = λMFP,g, Liu et al. [15] formu-

late an explicit solution to the heat transfer rate in the boundary sphere method:

βT =
Q̇

Q̇C
=

(
1

1 + Kn
+

(9γ − 5)Kn
αT(γ + 1)

)−1

. (4.46)

where Kn is based on the mean free path of the bulk gas. The transitional correction factor for the

mass transport is taken from Smirnov’s formulation (Equation 4.42) in this alternative approach.
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Chapter 5

Results and Discussion

The boundary sphere solid-phase transient iron oxidation model with oxide layer growth is solved

to quantitatively predict the ignition temperature of fine iron particles while accounting for transi-

tion transport effects. The impact of initial particle size dp,0 on the ignition temperature is assessed.

As well, the impact of the initial oxide layer thickness X0 and oxide layer thickness ratio δ0 is in-

vestigated. The results are compared to the results predicted by the continuum transport rates

approach, as formulated by Mi et al. [3], and an accuracy threshold for the continuum modeling

approach is established. The results are also compared to an existing model formulated by Senyurt

& Dreizin [18] which implements a steady-state formulation of the boundary sphere method for

aluminum, boron, and magnesium particles ignition.

5.1 Sample Results

5.1.1 Transient Behavior and Particle Ignition

Figure 5.1 shows the temperature and oxidizer concentration at the particle surface for a burning

particle at different bulk gas temperatures. As the bulk gas temperature is increased, the particle’s

peak burning temperature increasingly separates from the bulk gas. As the particle heats above

the gas temperature, the increasing temperature has en effect of accelerating the particle kinetics.
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Figure 5.1: Transient behavior of particle for an initial diameter of 20 µm and an initial oxide

layer of 10 nm at different gas temperatures. The particle ignites at Tg = 1064 K.

However, the increasing oxide layer thickness on the particle surface has the opposite effect, while

also leading to additional thermal mass to be heated by the energy release of the particle. As

well, the conductive heat loss rate from the particle increases with the temperature separation.

For temperatures below the ignition point, the net result is that the particle’s temperature returns

close to the bulk gas temperature after reaching a peak and burns in the kinetic-limited regime.

This is further confirmed by observing the oxidizer concentration at the particle surface, which

stagnates near the bulk gas concentration. At the critical gas temperature for ignition (1069 K), the

exponential dependence of the kinetics on temperature exceeds the adverse effect of the oxide layer

growth and heat loss rate. The particle transitions to the diffusive-limited regime and ignites, as

shown by the oxidizer concentration at the particle surface which reaches 0. The slopes of Tp and

CO2,p at the ignition point are extremely abrupt, demonstrating the near-instantaneous character of

the ignition phenomenon.

5.1.2 Comparison of Solution Methods

Figure 5.2 shows the ignition temperature as a function of particle size for a constant oxide layer

thickness as resolved by the three different solutions methods outlined in Sections 4.5 and 4.6. The
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Figure 5.2: Ignition temperature as a function of particle size with an initial oxide layer thickness

of 1 nm with the different numerical solution methods.

three methods are in excellent agreement across the entire range of particle sizes considered, which

map an initial Knudsen number between 1.57 x 10-3 and 1.37 at the ignition temperature. If the

fully implicit boundary method is considered to be the exact solution, the Springer and Smirnov

formulations predict ignition temperatures in agreement to within ≈ 0.3% and 5%, respectively,

or within 3 K to 50 K. Since the Springer formulation is the boundary sphere method with an

assumption of small temperature difference between the bulk gas and the particle, its results are

practically identical to the implicit formulation, which verifies this assumption for the ignition

problem. Unless otherwise stated, the remainder of the results presented in the current chapter are

based on the Springer formulation, as it requires a third of the computational cost of the implicit

formulation.
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(b) Boundary sphere method.

Figure 5.3: Ignition temperature as a function of initial particle size for different initial oxide

layer thicknesses.

5.2 Ignition Behavior

5.2.1 Effect of Particle Size and Oxide Layer Thickness

Figure 5.3 shows the ignition temperature as a function of particle size for different initial total

oxide layer thicknesses, for the continuum (Figure 5.3a) and boundary sphere (Figure 5.3b) solu-

tions. Figure 5.3a is in perfect agreement with the results obtained by Mi et al. [3], which were

based on a continuum analysis. Figure 5.3b shows that at large particle sizes, the Knudsen transi-

tion effects become negligible, and the boundary sphere method recovers the continuum solution:

an independence of the ignition temperature from the particle size, as shown by the plateauing

curves. However, opposite trends of the ignition temperatures for X0 = 1 nm and X0 = 10 nm are

predicted by the two different methods. The continuum approximation shows an increase of the

ignition temperature with decreasing particle size, whereas the boundary sphere method predicts

the opposite trend. For the X0 = 100 nm curve, the boundary sphere method predicts an increase

of the ignition temperature with decreasing particle size, but the asymptotic behavior of the curve

is observed at a lower particle size than with the continuum approximation.

43



The trends observed in Figure 5.3b can be explained by considering the theory behind transition

and free-molecular transport and solid-phase iron oxidation. As the particle size is being decreased

to a size comparable to the mean free path of the gas molecules, the molecule-particle collision

rate decreases. Since the iron reaction is independent on the delivery rate of oxidizer to the particle

surface in the kinetic-limited regime (i.e. for the majority of the period before thermal runaway

occurs), the internal reaction rates are not affected by the decaying molecule-particle collision rate.

However, the heat loss rate from the particle decreases, as the collisions from the gas molecules

that can carry heat away from it are reduced. This results in a net thermal insulating effect on the

particle, which leads to an easier ability to ignite for smaller particles, as observed for the X0 = 1

nm and X0 = 10 nm curves. As well, the curve X0 = 10 nm leads to higher ignition temperatures

than the curve X0 = 1 nm: thickening the oxide layer on the particle surface has the effect of

decelerating the reaction kinetics, as the iron and oxygen ions must diffuse through a larger lattice

before they can react at the interfaces. As well, the thicker oxide layer means more thermal mass

must be heated by the particle reaction before thermal runaway and ignition can occur. In the case

X0 = 100 nm, these adverse effects of the oxide layer on the ignition of the particle are further

pronounced. Additionally, as the particle size is being decreased while maintaining a constant

initial oxide layer thickness, the proportion of available Fe content to react and release heat is

reduced. For sufficiently thick oxide layers (e.g. X0 = 100 nm), this effect outweighs the thermal

insulating effect of the transition transport regime, and the net result is an increase in ignition

temperature with decreasing particle size. The asymptotic behavior is nevertheless observed at a

much lower particle size than with the continuum solution, as can be seen from Figure 5.3.

To further assess the ignition behavior as a function of particle size at different oxide layer thick-

nesses, Figure 5.4 shows the results on a semi-logarithmic plot. Although at first glance Figure

5.3b seems to predict that the ignition temperature decays continuously as the particle size is being

decreased for the X0 = 1 nm and X0 = 10 nm curves, Figure 5.4 shows the curves go through an

inflexion point and tend towards a plateau in the small particle limit. Sufficiently decreasing the Fe

content (i.e., further reducing the particle size) would then eventually lead to asymptotic behavior

of the ignition temperature, as observed with the X0 = 100 nm curve.
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Figure 5.4: Ignition temperature as a function of initial particle size with the boundary sphere

method on a semi-logarithmic plot.
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Figure 5.5: Ignition temperature as a function of initial oxide thickness ratio for different particle

sizes. Continuum curve: independence of the ignition temperature on particle size. Boundary

sphere method: dependence on both the particle size and the initial oxide thickness ratio.
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An additional assessment of the effect of the oxide layer thickness can be obtained by considering

the ratio of initial oxide layer thickness to the total particle size δ0, as defined by Equation 4.37.

Figure 5.5 shows the ignition temperature as a function of δ0 for different particle sizes as resolved

by the boundary sphere method, and once for the continuum result. The ignition temperature is

independent on particle size at constant δ0 in the continuum limit, hence a single curve is displayed.

The qualitative trends of the curves are identical independent of particle size: at low δ0, a plateau

is observed. As the ratio of initial oxide layer thickness to particle size tends to 0, the decelerating

kinetics and increased inert thermal mass to heat from the oxide layer become negligible, and the

ignition temperature is solely governed by the particle initial size, which governs the heat loss rate.

As δ0 increases, the ignition temperature increases, as a result of the decelerating kinetics from

the oxide lattice diffusion and the inert thermal mass. As δ0 tends to 1, the ignition temperature

tends to infinity: the lattice diffusion largely inhibits the reaction rate of the particles, and the inert

thermal mass becomes too large relative to the size of the particle. There is insufficient Fe content

to initiate ignition.

5.2.2 Ignition Criterion

To understand how the ignition temperature changes with particle size, a simple steady-state Se-

menov analysis can be performed, neglecting the oxide scale growth on the particle surface as well

as the enthalpy increase of the particle related to incorporation of O2. Ignition occurs when the

heat generation rate exceeds the heat loss rate, hence when Q̇R > Q̇p. The heat generation rate is

given by [3]:

Q̇R =

[
q̄ exp

(
−Ta

Tp

)]∣∣∣∣
FeO

(1− δδFe3O4)
2rp

δ − δδFe3O4

+

[
q̄ exp

(
−Ta

Tp

)]∣∣∣∣
Fe3O4

rp

δδFe3O4

(5.1)

where q̄i = ρiqik0,i, with ρi the density of the ith oxide, qi its heating value, and k0,i its pre-

exponential Arrhenius constant. At constant δ, the heat release rate scales with rp. Using Equation

4.46, and substituting the Knudsen number by its definition Kn = λMFP,g/rp ≡ θ/rp, the heat loss
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rate can be written as:

Q̇p = 8πr2pkg(Tp − Tg)

(
rp + θ

2r2p +Gθrp +Gθ2

)
(5.2)

where G = 2(9γ−5)
αT(γ+1)

. Note this formulation incorporates the assumption of small temperature

difference, as well as the approximation θ = λMFP,g. It is valid for the entire range of Knudsen

number.

In the continuum limit, rp >> θ, in which case rp + θ → rp, and 2r2p + Gθrp + Gθ2 → 2r2p .

Equation 5.2 then yields Q̇p → 4πkg(Tp − Tg)rp, which is identical to the heat loss rate in the

continuum regime. Then the ignition criterion becomes:

[
q̄ exp

(
−Ta

Tp

)]∣∣∣∣
FeO

(1− δδFe3O4)
2rp

δ − δδFe3O4

+

[
q̄ exp

(
−Ta

Tp

)]∣∣∣∣
Fe3O4

rp

δδFe3O4

> 4πkg(Tp − Tg)rp. (5.3)

At constant δ, both sides of Equation 5.3 scale with rp. This leads to the independence of the

ignition temperature on particle size in the continuum limit, i.e. at large particle size, as observed

by the plateau in Figure 5.6a.

In the free-molecular limit, θ >> rp, and rp +θ → θ. As well, 2r2p +Gθrp +Gθ2 → Gθ2. Equation

5.2 then yields Q̇p → 8πr2pkg(Tp − Tg)/(Gθ). Then the ignition criterion becomes:

[
q̄ exp

(
−Ta

Tp

)]∣∣∣∣
FeO

(1− δδFe3O4)
2rp

δ − δδFe3O4

+

[
q̄ exp

(
−Ta

Tp

)]∣∣∣∣
Fe3O4

rp

δδFe3O4

>
8πr2pkg

Gθ
(Tp − Tg) (5.4)

which shows the heat loss rate scales with r2p , whereas the heat generation rate scales with rp.

Hence in the free-molecular limit, at constant δ, if the particle size increases, the ignition temper-

ature increases, since the heat loss rate increases faster than the heat generation rate. This explains

the decaying trend of the ignition temperature at constant δ0, as shown in Figure 5.6b.

It should be noted that the current model predicts a continuous decay of the ignition temperature

with decreasing particle size. However, the iron particle kinetics are well-defined only in the

temperature range 973 K to 1573 K, as stated in Section 2.2.1, while the lowest ignition temperature
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Figure 5.6: Ignition temperature as a function of initial particle size for different initial oxide

layer thickness ratios δ0.

predicted by Figure 5.6 is around 870 K. Hence, the iron kinetics are extended around 100 K below

their confidence interval in the current analysis. To provide an accurate qualitative and quantitative

description of the ignition behavior at smaller particle sizes, a different kinetic formulation for iron

oxidation is required. It is hypothesized that the different oxidation kinetics would eventually lead

to a plateau in ignition temperature for smaller particles.

5.3 Continuum Approximation Limit

Figure 5.7 shows the ratio of the ignition temperature predicted by the boundary sphere method

to the ignition temperature predicted by the continuum approximation as a function of particle

size, as well as the difference between these two quantities. As expected, Tign/Tign,co → 1 as

the particle size is being increased, which validates the use of continuum modeling to describe

transport processes at large particle sizes. At δ0 = 0.10, the continuum approximation is accurate

to within 90% for initial particle diameters exceeding ≈ 1µm, and to within 95% for particles

exceeding ≈ 5µm, which corresponds to temperature differences in the vicinity of 50 K - 100

K. In practice, such small temperature differences on ignition temperatures neighbouring 1000 K
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cannot be resolved by experimental measurements. At ≈ 40 µm, the continuum results are above

99% accurate or within 10 K. In reality, practical iron burner applications would use powders

composed of particles of several tens or hundreds of microns. Continuum transport is therefore

largely sufficient to eventually model such systems.

5.4 Comparison with Literature

Senyurt & Dreizin [18] conducted an analysis of the effect of the Knudsen transition regime on the

ignition behavior of aluminum, magnesium, and boron particles. They proposed kinetic formula-

tions for the different metals which do not consider oxide layer growth on the particle surface and

derived ignition temperatures using a steady state analysis with the boundary sphere method. The

authors concluded that the Knudsen transition regime effects must be accounted for particles as

large as 200 µm in modeling efforts. As well, they predicted that the ignition temperature always

increases with decreasing particle size. These conclusions are analyzed in the current section.

The proposed formulation by Senyurt & Dreizin [18] for the heat release rate from the particles

considers simple kinetics:

Q̇R = qApCO2,pω̇ (5.5)

where q is the gravimetric heat of oxidation, Ap = 4πr2p is the particle surface area, CO2,p is the

oxidizer concentration at the particle surface, and ω̇ = K exp(−Ta/Tp) is the regression rate of

the fuel particle surface, with K a pre-exponential rate constant, Ta an activation temperature, and

Tp the particle temperature. Multiple different formulations for K are proposed depending on the
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Figure 5.7: Comparison of the ignition temperatures computed by the boundary sphere result Tign

and those computed by the continuum result Tign,co.
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kinetic model of the specific metal:

K =
K1

CO2,p
(5.6)

K =
K2

XoxideCO2,p

ρoxide

νoxide
(5.7)

K =
K3

CO2,p
pO2,p (5.8)

K =
K4

νCO2,p

mpp

App
. (5.9)

The parameters defined are: Ki a rate constant; Xoxide an initial oxide layer thickness; ρoxide the

oxide layer mass density; νoxide the stoichiometric mass ratio relating the oxide layer mass to the

fuel mass; pO2,p the partial pressure of oxygen;mp,p the agglomerated mass of particles; andApp the

agglomeration surface area. In Equation 5.7, it is very important to note that Xoxide is formulated

as an initial oxide layer thickness, but the model implementation by Senyurt & Dreizin does not

consider the transient oxide layer growth. Instead, Xoxide is assumed to be a constant, and so it

simply constitutes a parameter like any other, and the kinetic model does not have the features of

the parabolic kinetic model formulated in the current work.

In general, Equations 5.6 to 5.9 take the following form:

K =
Ki(y)

CO2,p
(5.10)

where Ki(y) is a constant defined from multiple parameters y that vary from one kinetic formula-

tion to another. Using Equation 5.5, the heat release rate from the particle is then:

Q̇R = 4πr2pqKi(y) exp

(
−Ta

Tp

)
. (5.11)

Using Equation 5.2 and considering the continuum limit (large rp) the ignition criterion can then

be written as:

4πr2pqKi(y) exp

(
−Ta

Tp

)
> 4πrpkg(Tp − Tg). (5.12)
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The heat release rate scales with r2p , whereas the heat loss rate scales with rp. Hence towards

the continuum limit, the ignition temperature decreases as the particle size increases, since the

heat release rate increases faster than the heat loss rate. This is indeed the results obtained by the

authors, who always predicted a decrease of the ignition temperature with increasing particle size.

This is also in agreement with the first-order kinetics considered by Soo et al. [2], a first-order

kinetics continuum model. Conversely, in the free-molecular limit, the ignition criterion becomes:

4πr2pqKi(y) exp

(
−Ta

Tp

)
>

8πr2pkg

Gθ
(Tp − Tg). (5.13)

In this limit, both sides of Equation 5.13 scale with r2p , and so the ignition criterion becomes inde-

pendent of particle size, but is only a function of the kinetic and transport parameters postulated in

the model. Senyurt & Dreizin performed a parametric study of the impact of the thermal accom-

modation coefficient αT on the ignition temperature in their work. It is shown that at small αT, i.e.

when transition transport effects become increasingly important, the ignition temperature plateaus

for all the kinetic formulations towards the small particle limit. This is in agreement with Equa-

tion 5.13, which postulates that the ignition temperature is independent of particle size towards the

free-molecular limit.

In the current work, the left-hand-side of Equation 5.4 only scales with rp at constant δ in the

parabolic kinetic formulation in the free-molecular limit. This is what leads to the opposite pre-

dicted trend, by which the ignition temperature always decreases with decreasing particle size as

shown in Figure 5.6b, whereas Senyurt & Dreizin predicted the ignition temperature always in-

creases with decreasing particle size. The analysis presented in this section therefore reconcile the

results obtained from the current work with those obtained by Senyurt & Dreizin.

Additionally, the authors claimed that transition modeling must be accounted for particle sizes up

to 200 µm. The authors performed parametric studies on the metals with αT ranging from 0.01

to 1. It should be noted that at 200 µm particle size, the difference between the continuum and

boundary sphere results presented by the author as predicted with αT = 0.01 is within ≈ 50 K, on

ignition temperatures ranging from the high hundreds to the thousands of Kelvins. In experimen-
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tal applications, the accuracy of measurement techniques can hardly resolve such a precision. As

well, this constitutes a negligible error, considering the relative simplicity of continuum modeling

when compared to transition transport modeling. These strong claims by the authors for establish-

ing the importance of transition effects for particles up to 200 µm are therefore unfounded. The

current work confirms that, as reported by a majority of previous authors [13, 16, 17], transition

transport effects become important for particles in the low tens of microns and for nanoparticles at

atmospheric pressure.

5.5 Concluding Remarks

The current study aimed to quantitatively assess Knudsen transition transport effects on the ignition

behavior of fine iron particles. The analysis also aimed to characterize a threshold of particle

size above which transition transport effects could be neglected for iron ignition problems. A

computational program combining a parabolic kinetic formulation for iron oxidation with oxide

layer growth, and a boundary sphere transition transport model was implemented. The thermal

insulating effect of the transition transport was shown to lead to a decrease in ignition temperature

with decreasing particle size at constant initial oxide layer thickness ratio in the free-molecular

limit. In the continuum limit, the ignition temperature was shown to be independent of particle

size and only a function of the initial oxide layer thickness ratio. The inhibiting effect of large

oxide layers was shown to lead to an asymptotic behavior of the ignition temperature as the oxide

layer thickness ratio tended to 1. Continuum transport modeling was shown to accurately predict

ignition temperatures to within 5% error for particles exceeding 5 µm initial diameter, and to

within 1% error for particles exceeding 40 µm, or within 10-50 K. These errors are negligible

for ignition temperatures neighbouring 1000 K. The current work confirmed that, as reported by

the majority of previous authors considering heterogeneous reaction problems, transition transport

effects become important for particles sizes in the low tens of microns and for nanoparticles. The

controversial claim by Senyurt & Dreizin [18] of these effects being important at sizes up to 200

µm was shown to be unfounded. As practical iron burner applications would eventually rely on
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particles in the tens of microns or several hundreds of microns in diameter, continuum transport

modeling is largely sufficient to predict the ignition behavior of such large particles.

In future modeling efforts, a better quantitative assessment of the ignition temperature of iron par-

ticles below ≈ 50 nm should be anchored in a kinetic iron oxidation formulation experimentally

validated for temperature ranges below 973 K. As well, the thermal accommodation coefficient

should be better characterized to reduce the width of the confidence interval 0.08-0.90. Addition-

ally, transition transport effects could be investigated on the ignition behavior of suspensions of

iron microparticles, as an extension to the isolated iron particle ignition problem.
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Appendix A

Thermophysical and Transport Properties

A.1 Shomate Polynomials

The Shomate polynomials for thermophysical properties of condensed-phase species are formu-

lated as follows [47]:

t = T/1000

cp [J/(mol.K)] = A+Bt+ Ct2 +Dt3 +
E

t2

h [kJ/mol] = At+
Bt2

2
+
Ct3

3
+
Dt4

4
− E

t
+ F −H

where T is the temperature in Kelvins, cp is the molar heat capacity at constant pressure, and h is

the molar enthalpy. They are converted to gravimetric values using the molar weight of the species.

In their study, Mi et al. [3] adjusted the H constants of Fe to remove small discontinuities of the

Shomate polynomials at bounds between temperature intervals. The H constants used for Fe in

the current work are those provided by Mi et al. The constants for the different species and the

temperature ranges are shown in Tables A.1 to A.3 for temperatures below the melting point of the

species.
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Table A.1: Shomate constants for iron (Fe) in the α phase.

Range [K] 298-700 700-1042 1042-1100 1100-1809

A 18.42868 -57767.65 -325.8859 -776.7387
B 24.64301 137919.7 28.92876 919.4005
C -8.913720 -122773.2 0 -383.7184
D 9.664706 38682.42 0 57.08148
E -0.012643 3993.08 411.9629 242.1369
F -6.573022 24078.67 745.8231 697.6234
H 0 141E-03 -71E-03 -436E-03

Table A.2: Shomate constants for wüstite (FeO).

Range [K] 298-1650

A 45.75120
B 18.78553
C -5.952201
D 0.852779
E -0.081265
F -286.7429
H -272.0441

Table A.3: Shomate constants for magnetite (Fe3O4).

Range [K] 298-900 900-1811

A 104.2096 200.8320
B 178.5108 1.586435E-07
C 10.6151 -6.661682E-08
D 1.132534 -9.452452E-09
E -0.994202 3.18602E-08
F -1163.336 -1174.135
H -1120.894 -1120.894
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A.2 NASA Polynomials

The NASA 7-coefficient polynomials for thermophysical properties of gas-phase species are for-

mulated as follows [40]:

cp [J/(kg.K)] = Rg(A1 + A2T + A3T
2 + A4T

3 + A5T
4)

h [J/kg] = RgT

(
A1 +

A2T

2
+
A3T

2

3
+
A4T

3

4
+
A5T

4

5
+
A6

T

)

where T is the temperature in K, cp is the gravimetric heat capacity at constant pressure, h is the

gravimetric enthalpy, and Rg is the individual gas constant. The constants for the different species

and the temperature ranges are shown in Tables A.4 to A.5 for the low and high temperature ranges.

Table A.4: NASA 7-coefficients polynomials for oxygen (O2).

Range [K] 200-1000 1000-3500

A1 3.78245636 3.28253784
A2 -2.99673416E-03 1.48308754E-03
A3 9.84730201E-06 -7.57966669E-07
A4 -9.68129509E-09 2.09470555E-10
A5 3.24372837E-12 -2.16717794E-14
A6 -1.063943560E03 -1.08845772E03
A7 3.65767573 5.45323129

Table A.5: NASA 7-coefficients polynomials for nitrogen (N2).

Range [K] 300-1000 1000-5000

A1 3.29868 2.92664
A2 1.40824E-02 1.48798E-02
A3 -3.96322E-06 -5.68476E-07
A4 5.64152E-09 1.0097E-10
A5 -2.44485E-12 -6.75335E-15
A6 -1020.9 -922.798
A7 3.95037 5.98053
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Table A.6: NASA 4-coefficients polynomials for oxygen (O2).

Range [K] 300-1000 1000-5000

A1 0.77238828 0.90875998
A2 6.9293259 289.86028
A3 -5900.8518 -79180.433
A4 1.2202965 0.068622859

Table A.7: NASA 4-coefficients polynomials for nitrogen (N2).

Range [K] 300-1000 1000-5000

A1 0.85372829 0.88506520
A2 105.18665 134.69656
A3 -12299.753 -11386.420
A4 0.48299104 0.2361008

The NASA 4-coefficients correlation for transport properties of gas-phase species is formulated as

follows:

k [W/(m.K)] = 1 x 10-04
[

exp

(
A1 lnT +

A2

T
+
A3

T 2
+ A4

)]
where T is the temperature in K, and k is the thermal conductivity. The constants for the different

species and the temperature ranges are shown in Tables A.6 to A.7 for the low and high temperature

ranges.

A.3 Diffusion Coefficient Empirical Parameters

The Fuller-Schettler-Giddins semi-empirical correlation is used to approximate the binary diffu-

sion coefficient [49]:

D [m2/s] =
10−7T 1.75

[
Winert+WO2

WinertWO2

]1/2
p

101325

[(∑
v
)1/3

O2
+
(∑

v
)1/3

inert

]2 . (A.1)
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Table A.8: Empirical parameters (
∑
v)i for the Fuller-Schettler-Giddins diffusion transport

semi-empirical correlation.

Species (
∑
v)

O2 16.6
N2 17.9

where T is temperature in Kelvins, Winert and WO2 are molar weights of the inert gas and oxygen

respectively in kg/kmol, p is pressure in Pa, and (
∑
v)i are empirical parameters for the species

provided in Table A.8.
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Appendix B

Accommodation Coefficients

B.1 Thermal Accommodation Coefficient

The thermal accommodation coefficient αT is a key parameter which governs the quantitative value

of the ignition temperature of iron particles in the transition and free-molecular regimes. As stated

in section 3.2.1, it has a strong dependence on the surface properties of the solid. There is large

uncertainty in the data reported for the thermal accommodation coefficient of iron surfaces. Mohan

et al. [17] report the thermal accommodation of metal surfaces should be within the range 0.50 to

0.90. Literature for different iron-gas pairs reports αT scattered between 0.03 and 0.64 [50–53].

This high uncertainty makes difficult selecting a value of the thermal accommodation coefficient

for computational studies.

Song & Yovanovich [33] proposed a semi-empirical correlation to characterize the thermal accom-

modation coefficient as a function of surface temperature and molar weight of the gas and surface.

The parameters selected for the correlation rely on classical thermal accommodation theory and

accounts for real surface effects such as gas adsorption on the solid surface. The proposed correla-

tion agreed with available experimental data at the time to within 25%, which coincided with the

scatter of the data. As the correlation permits a straightforward estimation of the energy accommo-

dation coefficient for any solid-gas pair, it is retained in the current work. Table B.1 compares the
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Table B.1: Comparison of thermal accommodation coefficients predicted by the Song &

Yovanovich correlation to molecular dynamics and experimental results from different references.

Gas-surface pair Surface Temperature [K] Correlation Comparison

Fe-He 2500 0.15 0.11 [50]
Fe-Ar 2500 0.59 0.23 [50]
Fe-N2 800-1650 0.55-0.64 0.08 [52]
Fe-Ar 800-1650 0.60-0.67 0.19 [52]
Fe-N2 800-1650 0.55-0.64 0.08 [51]
Fe-Ar 800-1650 0.60-0.67 0.155 [51]
Fe-He 2500 0.15 0.08 [53]
Fe-Ne 2500 0.47 0.14 [53]
Fe-Ar 2500 0.59 0.17 [53]
Fe-He 750 0.23 0.095 [54]

800 1000 1200 1400 1600

0.35

0.4

0.45

0.5

0.55

Figure B.1: Thermal accommmodation coefficient as a function of temperature for a

Fe2O3-(O2-N2) system as predicted by the Song & Yovanovich semi-empirical correlation for

different molar fractions of O2 in the gas.

correlation to reported results in the literature for iron-gas systems. The estimations from the Song

& Yovanovich [33] formula generally agree with the literature to within one order of magnitude.

As well, αT is plotted as a function of temperature in Figure B.1 for a Fe2O3-air system, at different

oxidizer molar fractions. The values are approximately contained within the interval 0.35-0.51.
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Figure B.2: Comparison of the ignition temperature obtained with different formulations for αT

to the continuum value for a constant δ0 = 0.1.

The lowest literature value of αT reported in Table B.1 for a Fe-N2 system is 0.08, while Mohan

et al. [17] reported αT could reach 0.90 for metals. A parametric study of the impact of αT on the

ignition temperature in this range is shown in Figure B.2. Decreasing αT increases the minimum

particle size at which transition transport effects become non-negligible. The results are computed

with δ0 = 0.10, as it leads to the highest threshold, as shown in Figure 5.7. For the lowest value

of αT = 0.08, the 95% accuracy threshold is increased from ≈ 5 µm to 25 µm when compared to

the Song & Yovanovich correlation results, while the 99% threshold is displaced from 40 µm to ≈

200 µm. Recall the 95% threshold corresponds to a temperature differential of ≈ 50 K on ignition

temperatures neighboring 1000 K, which cannot be resolved experimentally. The 95% threshold

can therefore be considered as the continuum approximation limit. This threshold is still attained in

the low tens of microns, while practical iron burner applications would use particles in the several

tens or hundreds of microns. Hence, although there remains high uncertainty in quantifying αT,

the confidence interval of 0.08-0.90 overall does not impact the conclusion that transition transport

effects can be neglected for large, practical size iron particles.
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B.2 Mass Accommodation Coefficient
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Figure B.3: Ignition temperature as a function of initial particle size with δ0 = 0.01 for different

values of the sticking coefficient.

The impact on the ignition temperature of varying the mass accommodation coefficient αM over

three orders of magnitude is shown in Figure B.3. The curves for αM = 0.10 and αM = 1 collapse

into identical results. For αM = 0.01, the ignition temperature initially decreases as the particle

size is being decreased with a constant value of δ0 = 0.01, as expected. It follows the same curves

as αM = 0.10 and αM = 1. However, it sharply increases as the particle size is decreased below

≈ 6.30 µm, and it eventually plateaus. This behavior suggests that the mass transport process

governs the ignition behavior of very fine particles, as the delivery rate of oxidizer to the particle

surface becomes small compared to the kinetic rates of the particle. The small particles burn fully

in the diffusion-controlled regime at the ignition point, and the ignition becomes independent on

the transition between the kinetic- and diffusive- limited regimes.
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Simmons & Dwyer [30] performed a semi-empirical fit of the sticking coefficient as a function of

oxygen exposure at the particle surface for iron reacting at an ambient pressure of 10-6 torr and at

room temperature (≈ 298 K). The lowest sticking coefficient they reported across the range studied

is 0.20. Although the behavior observed in Figure B.3 for very small αM is intriguing, this effect is

observed only for exaggeratedly small values of αM. In the current work, a value of αM = 0.10 is

retained for the analysis, and the ignition behavior is unaffected for values of αM ranging between

0.10 and 1.
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Appendix C

Mathematical Solution of the Implicit

Boundary Sphere Method

The full formulation for the boundary sphere method requires solving an implicit system of three

equations, three unknowns. The system can be solved using appropriate nonlinear numerical

solvers for systems of equations. However, such an approach has shown to yield significant com-

puting times and medium to low accuracy. Instead, the mathematical formulation outlined in the

current appendix is implemented to solve the system of equations.

The approach aims to formulate all the unknowns as a function of Tθ only, to reduce the system

of equations to a uni-variate problem. It can then be solved using a simple uni-variate root finding

algorithm, such as the bisection algorithm. The system of Equations as described in Section 4.5 is:

αTπr
2
p
pc̄θ
2

(
γ∗p + 1

γ∗p − 1

)(
Tp

Tθ
− 1

)
= 4π(rp + θ)k∗g,θ(Tθ − Tg) (C.1)

ṁO2 = αMπr
2
p(CO2,θ c̄θ − CO2,p c̄p) (C.2)

ṁO2 = 4π(rp + θ)D∗
θ(CO2,g − CO2,θ). (C.3)
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C.1 Solution in the Kinetic-Limited Regime

In the kinetic limit, the unknowns are {Tθ, CO2,θ, CO2,p }. In Equation C.3, the diffusion coefficient

is:

D∗
θ =

10−7T ∗
θ
7/4
[
Winert+WO2

WinertWO2

]1/2
p

101325

[(∑
v
)1/3

O2
+
(∑

v
)1/3

inert

]2
LetK1 =

101325 x 10−7

p
[(∑

v
)1/3

O2
+
(∑

v
)1/3

inert

]2(Winert +WO2

WinertWO2

)1/2

It follows that:

D∗
θ = K1T

∗
θ
7/4. (C.4)

Equation C.3 then yields:

ṁO2 = 4π(rp + θ)K1T
∗
θ
7/4(CO2,g − CO2,θ)

It follows that:

CO2,θ = CO2,g −
ṁO2

4π(rp + θ)K1T ∗
θ
7/4

which is a function of Tθ only, since T ∗
θ = (2/3)Tθ+(1/3)Tg. GivenCO2,θ, Cinert,θ can be computed

using:

Cinert,θ =

(
p

kBTθ
− CO2,θ

mO2

)
minert = Cinert,θ(CO2,θ(Tθ)) ≡ Cinert,θ(Tθ)

a function of Tθ only. As well:

c̄θ =

√
8kBTθ
π

√
Cinert,θ + CO2,θ

Cinert,θminert + CO2,θmO2

= c̄θ(Cinert,θ(Tθ), CO2,θ(Tθ)) ≡ c̄θ(Tθ)

Cinert,p =

(
p

kBTp
−
CO2,p

mO2

)
minert = Cinert,p(CO2,p)

c̄p =

√
8kBTp

π

√
Cinert,p + CO2,p

Cinert,pminert + CO2,pmO2

= c̄p(Cinert,p(CO2,p), CO2,p) ≡ c̄p(CO2,p)
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Given these relations, Equation C.2 can be re-written as:

0 = CO2,θ(Tθ)c̄θ(Tθ)− CO2,pc̄p(CO2,p)−
ṁO2

αMπr2p

a function of CO2,p and Tθ only. Given a value of Tθ, this equation can be solved numerically with

a bisection algorithm for CO2,p.

These formulations for CO2,θ and CO2,p are substituted in Equation C.1, allowing to express c̄θ,

γ∗p , and k∗g,θ as functions of Tθ only. The system of three equations, three unknowns is therefore

reduced to a single equation with one unknown. An iterative root-finding algorithm can readily be

applied to find the solution Tθ that satisfies Equation C.1. The overall procedure then consists on

performing univariate rootfinding on a function of Tθ, while inside the function of Tθ, rootfinding

for CO2,p is performed.

C.2 Solution in the Diffusion-Limited Regime

In the diffusive-limited regime, CO2,p = 0, and the unknowns are {Tθ, CO2,θ, ṁO2}. Equation C.4

is re-used to express the mass diffusion coefficient. Then, Equations C.2 and C.3 can be equated

to yield:

αMπr
2
pCO2,θc̄θ = 4π(rp + θ)K1T

∗
θ
7/4(CO2,g − CO2,θ).

Given the relations:

Cinert,θ =

(
p

kBTθ
− CO2,θ

mO2

)
minert = Cinert,θ(CO2,θ)

c̄θ =

√
8kBTθ
π

√
Cinert,θ + CO2,θ

Cinert,θminert + CO2,θmO2

= c̄θ(Cinert,θ(CO2,θ), CO2,θ, Tθ) ≡ c̄θ(CO2,θ, Tθ)

this can be re-written as:

0 = 4(rp + θ)K1T
∗
θ
7/4(CO2,g − CO2,θ)− αMr

2
pCO2,θc̄θ(CO2,θ, Tθ) .
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which is a function of Tθ and CO2,θ only. Given a value of Tθ, this equation can be solved numeri-

cally for CO2,θ with a bisection algorithm.

This formulation for CO2,θ is substituted in Equation C.1, allowing to express c̄θ, γ∗p , and k∗g,θ as

functions of Tθ only. The system of three equations, three unknowns is therefore reduced to a

single equation with one unknown. An iterative root-finding algorithm can readily be applied to

find the solution Tθ that satisfies Equation C.1. The overall procedure then consists on performing

univariate rootfinding on a function of Tθ, while inside the function of Tθ, rootfinding for CO2,θ is

performed. Then, ṁO2 can be resolved from either Equation C.2 or C.3.
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