
VoltNet:

A deep learning approach for on-chip voltage

emergency prediction

Yi Shen

Master of Engineering

Department of Electrical and Computer Engineering

McGill University

Montreal,Quebec

2019-8-14

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Engineering in Electrical Engineering

©Yi Shen, 2019



DEDICATION

To my parents.

ii



ACKNOWLEDGEMENTS

I would like to appreciate the help from my supervisor Prof. Roni Khazaka. He has

provided great insight, guidance and patience. I give special thanks to Prof. Brett Meyer

for his invaluable assistance in Linux. I thanks Marco Kassis and Karanvir Sidhu for their

accompany and help through my journey though Master of Engineering. Last but not the

least, I thank open source community for their selfless contributions. This thesis would not

complete without the help from Scikit-learn, Keras, TensorFlow, PARSEC, Numpy, Gem5,

McPAT, VoltSpot, ArchFP and VScode

iii



ABSTRACT

Voltage noise on the microprocessor power delivery network can be very dangerous.

When the voltage exceeds a certain threshold, it threatens the correctness of the micro-

processor’s operation. Current methods aggressively lower the voltage of power supply

so that the voltage emergency may never happen. However, the downside is that the

microprocessors are not working at their maximum capability. If voltage emergencies could

be predicted, then the potential of the microprocessors can be fully utilized. Some linear

regression-based algorithms are proposed in the literature. The thesis proposes two related

linear-regression algorithms along with a new deep-learning model to predict emergencies.

The new deep-learning model yields promising results.
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ABRÉGÉ

Le bruit de tension sur le réseau d’alimentation du microprocesseur peut être très

dangereux. Lorsque la tension dépasse un certain seuil, elle menace l’exactitude du fonc-

tionnement du microprocesseur. Les méthodes actuelles abaissent de manière agressive la

tension d’alimentation de sorte que l’urgence de tension ne se produise jamais. Cependant,

l’inconvénient est que les microprocesseurs ne fonctionnent pas à leur capacité maximale.

Si des urgences de tension pouvaient être prévues, alors le potentiel des microprocesseurs

peut être pleinement utilisé. Certains algorithmes basés sur la régression linéaire sont

proposés dans la littérature. La thèse propose deux algorithmes de régression linéaire simi-

laires ainsi qu’un nouveau modèle d’apprentissage en profondeur pour prédire les urgences.

Le nouveau modèle d’apprentissage en profondeur donne des résultats prometteurs.
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CHAPTER 1
Introduction

1.1 Motivation for the Voltage Emergency Prediction

As the technology node pushes closer to the physical limit, power supply noise is a

major threat to the accuracy and reliability of microprocessors’ (CPU) operations. The

power supply noise deteriorates CPU performance in many undesirable ways. Two glaring

issues are its slowing effect on microprocessors’ clock frequencies [3] and infringement on

operation correctness [32]. One effective counter to noise-induced problems is calibrated

power delivery network (PDN), which includes optimization of controlled collapse chip

connect (C4) pads arrangement [9], increased layers of PDN [40], 3-dimensional stacking

circuit [27], etc.

However, optimization of the physical PDN design would either require an enormous

amount of engineering effort like [40, 27] or increased space for power-ground (P/G) pads

which reduces the availability of signal I/O pads like [9]. Most importantly, even the most

optimized PDN design cannot solely guarantee the security of CPU operations. A safety

net is much needed.

One way to ensure the correctness of operations is a hybrid method of dynamic

margin adaptation (DMA) and noise-induced error recovery [39]. DMA reduces the

frequency and increases the voltage in an impulse manner to save operations from being

corrupted. The impulse will have its delay, which sometimes will cause failure to save.

Combining DMA with noise-induced error recovery is a smart way to overcome its

drawback. Once DMA failed, the recovery will rollback the microprocessor to its previous

state (usually 30 microprocessor cycles ago) and rerun the operations. The recovery will

slow down the microprocessor, but the correctness will be guaranteed.
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This thesis offers ways to predict voltage emergency so that the impulse from DMA

can be triggered earlier to reduce the occurrence of recoveries. Thus, it can improve the

performance of microprocessors.

1.2 Introduction to the Prediction Problem

Like any other prediction problems, a good predictor needs good input. The given

input should contain enough information to support our confidence in predicted events.

For CPU voltage emergency problem, we choose global CPU voltage profile as our input

space. Voltage varies at different points on CPU die. We take all voltages on the CPU

die over time as our potential inputs to the algorithm. Voltages are collected by voltage

sensors. Therefore, it is a sensor-based approach. Each sensor has its cost to build and

the cost becomes unaffordable if there are too many sensors. Consequently, only a few

locations on die could be monitored by sensors. Choosing the right locations is a key

research interest, which we call ”sensor placement problem”, which can also be considered

as feature engineering for later prediction algorithm. The emergency predictor is viewed

as a ”binary classification problem”. The accuracy of such predictor largely depends on

the quality of feature selection. We call each input to the binary classification model as a

feature. Then a placement algorithm aims to find the fewest features that would maximize

the classification accuracy. Binary classification problem concerns classifying given features

into two categories; specifically, those will lead to an emergency and those that will not.

Note that, we are only interested in emergencies in near future, which is defined in a

few CPU cycles ahead because CPU will inevitably confront the emergency in indefinite

future.

There are three sensor-placement algorithms proposed in this thesis, along with two

prediction models. The three proposed placement algorithms are unique in their definition

of the optimality for sensor placements. Quantitatively, three algorithms represent three

objective functions for the placement evaluation. As a topic for later discussion, the most

3



challenging part of the sensor placement problem is indeed finding a suitable objective

function, as there is no explicit way to evaluate the selection quality.

The most effort of this thesis are devoted to discussing different sensor placement

algorithms. It is because sensor placement plays a crucial role in the whole scheme, and it

is more interesting than the binary classification part. Prediction models can be directly

evaluated by the accuracy metric, but there is no established metric for evaluating sensor

quality. In addition, there are only a few sensors that can be fabricated on the real CPU,

and optimality of the placement algorithm is the bottleneck of extracting information from

the CPU.

1.3 Thesis Contribution

In summary, this thesis makes four contributions to the literature. They include

the integration of data generation infrastructure, algorithm improvements, and a new

algorithm, which can be concluded as:

1. A set of interfaces with established simulation software, which provides convenient

automation for generating PDN voltage data on CPU.

2. An improved version of the group Lasso sensor placement algorithm. Compared

to the original one, the improvement focuses on decreasing the human experience

required to apply the algorithm successfully.

3. An improved version of an eagle-eye sensor placement algorithm. It is an improve-

ment focusing on the scope of the algorithm, which aims to combat sensor-clustering

problem. The consequence is that the majority of the sensors will concentrate in a

small area on the integrated circuit (IC).

4. A new deep learning algorithm that yields the placement during the training

phase and predicts the emergency once training completes. This is a preliminary

inquiry into the application of deep learning to PDN domain which is destined to

have ample room for optimization. We hope this work could inspire more machine

learning applications in the field.
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1.4 Thesis Organization

The rest of this thesis is organized in the following way. In chapter 2, we illustrate

necessary background knowledge for understanding the proposed algorithms. In chapter

3, we explore the most current researches in related fields. We also describe two sensor

placement algorithms in great detail because they are related to two of our proposed

algorithms. In chapter 4, we present a highly automatic data generation pipeline and

its configuration for the data used in this thesis. In chapter 5, two regression-based

algorithms are documented in detail. In chapter 6, a deep-learning based algorithm is

introduced. In chapter 7, we present the evaluations of three algorithms.

5



CHAPTER 2
Background Information for Proposed Algorithms

Before we dive into the literature, we firstly introduce key theories and mathematical

models which are necessary to understand the literature. In this chapter, we categorize all

background information into sections corresponding to their applications. It appears that

those backgrounds are listed as if they are separated topics. In the chapter 3 and chapter

5, we will demonstrate how to assemble those building blocks into algorithms.

2.1 Background for Eagle-Eye

Eagle-eye is a statistical maximization algorithm. It greedily maximize the probability

of detecting an emergency by the placed sensor. In this section, we will review the

notations for probability and some useful properties.

2.1.1 Probability and Notation

For eagle-eye algorithm, we take a frequentist perspective. Given an event Z, we

define the the probability of this event as its relative frequency after a large number of

trials. Formally, we define:

P (Z) =
qZ
qt

(2.1)

where qZ is the number of trails where event Z occurs and qt is the total trails.

To further illustrate the notations used, consider two events Z1 and Z2. Denote

Z1

⋃
Z2 the event where either Z1 or Z2 happens. Denote Z1

⋂
Z2 the event where Z1

and Z2 both happens. Naturally, P (Z1

⋃
Z2) and P (Z1

⋂
Z2) are the probabilities of

corresponding events.

Finally, we denote the conditional probability of Z1 given the occurrence of Z2 as

P (Z1|Z2).

6



2.2 Background for Group Lasso Optimization

Group Lasso is an optimization-based algorithm. It takes advantages of the sparsity

of Lasso regularization to select sensors. Our improved group Lasso algorithm also uses

Lagrange multiplier and K-means clustering for optimization and automation.

2.2.1 Lasso and Group Lasso

In the context of ordinary least squares (OLS) estimation, ”Least absolute shrinkage

and selection operator” (Lasso) is a popular and powerful tool for reducing the number

of predictors [34]. Consider the following general univariate linear regression problem in

equation 2.2 , where we assume there are N observations and xi is the i -th observation

of single variable, y are the dependent variables of x and ε is the residual. We call the

dependent variable y as the ”target”. For each distinct variable xi, there is corresponding

weight parameter βi that will be optimized.

y =
N∑
i=1

βixi − ε (2.2)

The multivariate version of this general problem can be easily derived from stacking

equation 2.2. In other words, making it a matrix. Let’s keep the independent variable set

[x1, . . . , xi] unchanged and denote the total k multivariate targets as ŷ = [y1, . . . , yk]
T . The

corresponding β̂j = [βj1, . . . , β
j
i ]. Then we have:

y1
...

yk

 =


β̂1

...

β̂k


[
x1 . . . xi

]
(2.3)

Lasso method [35] solves the equation 2.3 along with the constraint to the l1 norm of

β̂k, which effectively reduces the value of unknown factors βki to zero if it is less a relevant

factor. Denote β̂ = [β̂1, . . . , β̂k]T , the multivariate Lasso’s formula can be written as:

7



(ε, β̂) = arg min

{
M∑
k=1

(
yk − ε− β̂kx

)2}

subject to
M∑
j

|β̂k| ≤ t (2.4)

where t is a hyperparamter for tuning.

The objective function of group Lasso algorithm is a variant of equation 2.4. One

drawback of equation 2.4 is that it assume every variable xi is a separated individual. To

generalize Lasso to grouped variables, a modified constraint was introduced which leads to

group Lasso [2, 25]. The formulation can be written as:

(ε, β̂) = arg min

{
M∑
k=1

(
yk − ε− β̂kx

)2}

subject to
M∑
j

G∑
g

|β̂kχg| ≤ t (2.5)

where χg is the index set belongs to the gth group.

2.2.2 Method of Lagrange Multipliers

We just introduced the objective function of group Lasso algorithm, which is an

optimization problem. In this section, we concern how to solve that objective. The

method of Lagrange multipliers is a commonly used technique for optimization. Consider a

optimization problem with inequality constraint:

Minimize: f(x)

Subject to: g(x) ≤ α

(2.6)

Its Lagrange function is given by:

L(x, λ) = f(x)− λg(x) (2.7)

8



The new introduced parameter λ is called Lagrange (undetermined) multiplier. It’s been

proved that if f(x0) is a minimum of f(x), then there exists a λ0 so that (x0, λ0) is a

stationary point of the Lagrange function.

Then, finding the solution of eq.2.6 is transformed into finding λ0 and stationary

points of the eq.2.7. It is common to find ideal λ0 by grid search and checking stationary

points is a standard Calculus problem.

2.2.3 K-Means Clustering

The K-means[24] clustering is a popular unsupervised clustering machine learning

algorithm. It takes a given number (k) clusters and tries to group given data into that

many clusters. The algorithm is NP hard to solve but there exists heuristic ways for quick

convergence to a local minimum. The objective function of k-means clustering can be

formulated as:

arg min
C

k∑
i=1

∑
zj∈ci

‖zj − ci‖2 (2.8)

where Z = {z1, . . . } is the data set where zj is an observation vector with arbitrary

dimensions, which will be grouped into clusters. k is the total number of clusters and

C = {c1, . . . , ck} is the cluster set where M = {µ1, . . . , µk} denotes the corresponding

cluster center set. Denote zj ∈ ci if zj is labeled as a member of a cluster with center µi.

One popular iterative method to find Z is as follows:

2.3 Background for Deep Learning Algorithm

In this section, we present the neural network structures and techniques used in the

proposed deep learning algorithm, VoltNet.

2.3.1 Activation Functions and SELU

Starting from this section, the remainder of this chapter will introduce the back-

ground knowledge for our proposed deep learning model VoltNet for sensor placement

and prediction. Let us begin with the most fundamental element of the neural network:

activation function.
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Algorithm 1: Iterative Solver for K-Means Clustering

Input: k←− number of clustering, Z←− {z1, . . . }, zj ∈ Rn

Output: C←− {c1, . . . , ck}, c1 ∈ Rn, M ←− {µ1, . . . , µk}
begin

Initialize M randomly
repeat

for zj ∈ Z do
i′ = arg mini ‖µi − zj‖
ci′ ∪ zj

end
Mold = M
for µi ∈M do

µi =
∑

zi∈ci zi /
∑

zi∈ci 1

end

until M = Mold

end

Consider a fully connected neural network or multilayer perceptron (MLP) network.

This neural network connects the inputs to the outputs with a user-defined number

of hidden layers where each layer contains a certain number of nodes for processing.

The activation function is the function used for that processing. For a single node, this

processing can be formulated as:

y = f(Ŵ ∗ x̂+ b) (2.9)

where f(∗) is the activation function, y is the output, x̂ is the input vector, Ŵ is the

corresponding weight and b is a constant for bias.

For the MLP model, mostly, only nonlinear functions are used. However, in general,

activation function can be any differentiable function. Naturally, different activation

functions have their own characteristics; therefore, their own application scenarios. For

VoltNet, we used scaled exponential linear unit (SELU) for our fully connected layers.
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SELU[16] is a self-normalizing activation function that can accelerate the training and

improve prediction accuracy[28]. SELU is a piece-wise function as follows:

SELU(x) = λ


x x > 0

αex − α x ≤ 0

where α = 1.6732 and λ = 1.0507 for standardized inputs.

2.3.2 Sigmoid Function

Another activation function to introduce is the sigmoid function. Its formula is shown

below.

S(x) =
1

1 + exp(−Ŵ x̂− b)
(2.10)

where x is the input vector to the layer; W is the corresponding weight; and b is the bias.

The sigmoid function is suitable to model the probability of a class thanks to its

close relationship with logistic regression. Logistic regression models the logit function

ln p/(1− p) with linear combination. Consider the probability of target y being class 1

given x or formally as P (y = 1|x), applying Bayes’ theorem, we get:

P (y = 1|x) =
P (x, y = 1)

P (x)

=
P (x|y = 1)P (y = 1)

P (x|y = 1)P (y = 1) + P (x|y = 0)P (y = 0)

=
1

1 + P (x|y=0)P (y=0)
P (x|y=1)P (y=1)

=
1

1 + exp(ln(P (x|y=0)P (y=0)
P (x|y=1)P (y=1)

))
(2.11)

Applying Bayes’ theorem again

=
1

1 + exp(− ln(P (y=1|x)
P (y=0|x)))

11



Note that the natural logarithm term in the denominator is a logit function or logarithm

of odds. Logistic regression models this logit function by linear combination of x which

writes:

ln(
P (y = 1|x)

P (y = 0|x)
) = Wx+ b (2.12)

Submitting equation 2.12 back to P (y = 1|x) we get the sigmoid function. This means

that sigmoid function models the probability directly.

2.3.3 Pruning

Neural network pruning or optimal brain damage [19] is a popular method for

optimizing neural networks. Empirically, neural networks, especially deep networks,

have millions of parameters to train and many of them contributes meagerly for the

prediction. During the training, pruning method uses a chosen rank system to evaluate

the importance of each parameters and remove the lesser ones. Intuitively, elimination of

less important parameters would result in a reduced training time and faster prediction.

There are also various evidence that a good pruning scheme can improve the prediction

accuracy as well [26]. Less important parameters can act like a noise which may damage

the accuracy overall.

Pruning is done in an iterative manner. Usually, it starts as normal training for some

epoches. Later in the training, a parameters will be gradually removed as the training

continues. Any removal would result in a temporary drop of the accuracy but can be

recovered as the training continues. The flowchart is shown in fig. 2–1

In this thesis, the pruning is used for sensor placement and the evaluation of impor-

tance is measured by the magnitude of the parameter or the l1 norm of the parameter.

Rewrite the equation 2.9 for the whole hidden layer, we get:

2.3.4 LSTM

Recurrent neural network (RNN) [31] is a special network structure that is designed

for temporal data analysis. When an input is given to RNN, it process the input one time-

step at a time and the output is determined by both previous and current inputs, unlike

12



Start Training

Pruning?

Evaluate 
parameters

Remove the 
least ranked Recover

Pruning?

Training End

No

Yes

No

Yes

Figure 2–1: Pruning procedure

other structures, i.e. MLP, requires whole input at once. This characteristic is achieved

by a recurrent cell structure which is dramatically different from the traditional layer-like

structure. For a vanilla RNN, the hidden state is also its output and it is determined by

both previous hidden state and the current input.
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As shown in fig. 2–2, the cell is usually initialized with hidden states of 0. When an

input is given, the first time step is passed to the cell and a hidden state is calculated. In

next time step, the new hidden state is calculated by previous hidden state and current

input. The previously mentioned cell is a group of neuron-like units where the number of

RNN Cell

ht

xt

Output

RNN Cell

h0

x0

RNN Cell

h1

x1

RNN Cell

h2

x2

Output

Figure 2–2: High level architecture of RNN; a recurrent representation is on the left hand
side and a unrolled representation is on the right hand side.

those ”neurons” is a hyper parameter to set. Naturally, the hidden state produced by cell

is a vector of that many dimensions. Fig. 2–3 shows a inner structure of RNN cell.

Long short-term memory (LSTM) [15] is a more complicated version of vanilla RNN.

The main difference is the ”neuron” structure and the hidden state. In addition to the

hidden state, LSTM has a cell state which is very similar to hidden state. The difference

is that cell state is updated by gates and the hidden state is a function of cell state in

addition to current inputs and previous hidden state. A standard LSTM ”neuron” can be

derived by replacing the sigmoid function in fig. 2–3 with formula below.
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xt

Output

ht-1
(1)

σ σ

ht
(1) ht

(n)

ht-1
(n)

Figure 2–3: Structure of a RNN cell

~i = σ(~ht−1Ui + ~xtWi)

~f = σ(~ht−1Uf + ~xtWf )

~o = σ(~ht−1Uo + ~xtWo)

~g = tanh(~ht−1Ug + ~xtWg)

~ct =~i ◦ ~ct−1 +~i ◦ ~g

~ht =~i ◦ tanh(ct)

(2.13)

where ~i, ~f, ~o,~g stands for input gate, forget gate, output gate and input modulation

gate; ct is the cell state at time step t and ht is the hidden state at time step t; W =

{Ui,Uf ,Uo,Ug,Wi,Wf ,Wo,Wg} is the weight of respective gates.

The LSTM architecture used in this thesis is called deep bidirectional LSTM

(BLSTM)[18, 11, 33]. The rest of this section is devoted to illustrate the architecture

and explain its improvement to the accuracy.

By being bidirectional, the hidden state at any given time step is determined by

both the input from prior time steps and future time steps. This is achieved by stacking a
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forward LSTM and a backward LSTM together as shown in fig. 2–4. The backward LSTM

takes the last time step of a given input sequence and recurrently continues to prior time

steps, which is the opposite of the forward LSTM. Naturally, the hidden state of BLSTM

consists that of the forward and backward LSTM.

One problem of BLSTM is that the forward and backward information is not dis-

tributed evenly to all hidden states. One extreme case is shown in fig. 2–5. At the first

LSTM layer, the hidden state hn has all the information from forwarding LSTM shown as

yellow arrows but none from the backward. At the second LSTM layer, h′n now has full

information from backward LSTM shown in red arrow. Despite the problem, a significant

improvement in accuracy has been observed from literature. Most state-of-the-art natural

language processing models used some stacked RNN. A quick summary can be found in

[10].

2.3.5 Skip Connections

Many neural networks are sequential, which means that the input of one layer is

the output of its previous layer. To increase the capacity of the model, people tend to

use deeper model rather than wider to reduce overfitting and training time. However,

deeper architecture caused a well-known issue: vanishing gradient. The neural networks

are mostly trained by backpropagation, which calculates the gradient by the chain rule.
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Figure 2–4: Typical architecture of bidirectional LSTM
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Figure 2–5: Forward and backward information flows in stacked bidirectional LSTM.
Yellow arrow is the forward flow for h′n; red arrow is the backward flow for h′n.

The learning process is mostly updating the wights of layers by the gradient. By the chain

rule, the calculation of one gradient involves multiplying the gradients of layers after it.

Many popular activation functions usually yield gradients smaller than 1 and multiplying

multiple of them will result in numerically negligible number. Hence, it directly slows or

stops the learning, especially in deep networks.

Skip connection [13] is a unique bridge within the neural network that embeds the

input of a previous layer to that of the following layer. This connection allows calculating

gradients without considering the gradients of bridged layers, which counters the vanishing

gradient problem. The embedding mechanism is usually implemented in one of two flavors.

Namely, additive skip connection and concatenate skip connection.

As shown in fig. 2–6, the input to the later end of the connection comprises the

output of the previous layer and the input on the other end of the connection. An additive
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Layer n

Layer n+1

Figure 2–6: A typical skip connection architecture

skip connection adds the output and the input while a concatenate skip connection

concatenate.

Concatenate skip connection produces very clean input to the following layer at the

expense of expanding feature space. On the contrary, additive skip connection preserves

the input space at the cost of noisy input.
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CHAPTER 3
Preview of Related Algorithms in the Literature

3.1 Problem Formulation

It is requisite to predict voltage-noise emergency and throttle the voltage in time to

ensure the correctness of CPU operation.

We took a divide-and-conquer way to predict the voltage noise emergency. The

problem can be divided into 2 part, namely, voltage sensor placement and emergency pre-

diction. The idea is to place a few sensors on the CPU to gather the necessary information

for the prediction algorithm. With this division, the throttling scheme is:

CPU Voltage 
Sensors

Prediction 
AlgorithmActuator

Voltage

Voltage Readings

Positive /
 Negative

Lower Vdd

Figure 3–1: Throttling Scheme
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In this section, a commonly accepted formal formulation of on-chip voltage sensor

placement problem is presented [22, 37]. The notation used in this formulation will be

consistent across the thesis.

With four listed inputs, the definition of on-chip voltage sensor placement problem

can be described as follows.

1) A collected data set D.

2) A candidate node set S = {s1, . . . , sm} containing m candidate nodes for voltage

sensor placement. In addition, we define all other nodes as target nodes.

3) A percentage P = ±p% denoting the noise-margin for detecting a voltage emergency.

Or as absolute value t = (1 + P ) ∗ r, where r is the supplied VDD voltage. Following

[12], we chose P = ±4% for the rest of the thesis.

4) An integer N denoting the total number of sensors to be placed.

The objective is to find selected node set C with N optimal nodes in S so that the

chosen loss function is minimized. The loss functions applied to the placement algorithms

are different and will be introduced in their respective sections.

The prediction problem is a canonical supervised binary classification problem. Like

the formulation for sensor placement problem, voltage-noise emergency prediction problem

can be formulated as:

Given the inputs:

1) A set of time-series of voltage data V = {v̂, . . . , v̂}.

2) An integer O denoting the predictive power. It describes the maximum time that a

prediction can be made ahead of the actual phenomenon. It is quantified by CPU

cycles.

The objective is to predict whether an emergency will happen in O CPU cycles.

3.2 Previous Voltage Sensor Placement Techniques

The ultimate goal for voltage sensor placement is to optimize the voltage emergency

detection/prediction. Although it is vital for most prediction algorithms, the problem is

20



still open. From our perspective, the most challenging part is evaluating sensor placement

algorithms.

Every placement algorithms have their unique evaluation metrics. Hence, it is

impossible to compare them consistently. In principle, the best evaluation should be

comparing their accuracy improvements for predicting the violations. However, this metric

will inevitably introduce a prediction algorithm which may have an affinity for a specific

placement algorithm. As a result, the prediction algorithm becomes a biased judge, which

makes a direct comparison of sensor placement algorithms unfair. This conundrum raises

the necessity for the exploration of new metrics.

In this section, two state-of-the-art sensor placement algorithms along with their

evaluation metrics will be briefly introduced, which will be referenced heavily in later

sections.

3.2.1 Eagle-Eye

Eagle-Eye [37] is a greedy algorithm that maximizes the probability of placing sensors

right on top of the hot-spots of a given microprocessor. The algorithm straightforwardly

maximizes the sensing quality metric (SQM). To better illustrate the algorithm, we first

introduce the evaluation metrics they used - SQM and miss rate.

Miss Rate is the probability of the occurrence of voltage violation when all placed

sensors failed to detect any violations at their monitored nodes. It can be formulated as:

Miss Rate = P (Zmax ≥ t|Zr1 ≤ t, Zr2 ≤ t, . . . , Zrs ≤ t)

= P (Zmax ≥ t|max(Zr1, Zr2, . . . , Zrs) ≤ t) (3.1)

where Zmax is the maximum noise among all nodes in the power grid and Zrn is the

voltage of nodes with sensors placed. It is obvious that to minimize the Miss Rate, one

need to maximize the probability that nodes with sensors do monitor an emergency. The
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rigorous derivation was provided as:

P (Zmax ≥ t|max(Zr1, Zr2, . . . , Zrs) ≤ t)

= 1− P (Zmax ≤ t|max(Zr1, Zr2, . . . , Zrs) ≤ t)

= 1− P (Zmax ≤ t,max(Zr1, Zr2, . . . , Zrs) ≤ t)

P (max(Zr1, Zr2, . . . , Zrs) ≤ t)

= 1− P (Zmax ≤ t)

P (max(Zr1, Zr2, . . . , Zrs) ≤ t)
(3.2)

This is defined as Sensing Quality Metric (SQM) which is formulated as:

SQM = P (max(Zr1, . . . , Zrs) ≥ t) (3.3)

The Eagle-Eye greedily seeks the maximum of SQM by selecting the nodes. For n

sensor budget, it selects 1 candidate node per iteration. Moreover, in each iteration, the

additional node that increases SQM the most is selected. Denote the additional node as k

and the selected node set as S; this thesis calculates the new SQM for comparison as:

SQM(S ∪ k) = SQM(S) + SQM(k)− SQM(S ∩ k) (3.4)

3.2.2 Group Lasso

Briefly, the Group Lasso [23] placement algorithm substitutes the formulation 3.1 into

the group lasso optimization formula and tries to derive a linear mapping between the

candidate sensors and all the nodes on the grid. Candidates are ranked according to the

linear mapping, and the top ranks exceeding a certain threshold P will be selected.

To illustrate the algorithm in detail, we briefly introduce the voltage grid here. The

time-series voltage data for validating and training all mentioned algorithms is the final

product from a simulation toolchain. For each time instance, the data includes voltages

for each node on a CPU. Each node represents a small area of the CPU, and all the nodes

comprise of a grid, as shown in the figure 3–2.
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Figure 3–2: Voltage grids from the toolchain.
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Firstly We assume there are total g nodes in a given voltage grid. Then let v̂k =

[v1, v2, . . . , vg−m]T and êk = [e1, e2, . . . , em]T denote the voltages of target nodes on the grid

and the candidate nodes at Time = k, respectively. Now we can denote the whole data set

as V = [v̂1, v̂2, . . . ] and E = [ê1, ê2, . . . ].

Standardization is applied to both V and E to obtain zero mean and unit variance.

Also let Y = [ŷ1, ŷ2, . . . ] and X = [x̂1, x̂2, . . . ] be the column-wise standardized V and E

respectively. One critical assumption of this algorithm is that the voltage on the grid can

be approximated as:

e1 =
m∑
i=1

a1,ivi (3.5)

where a is the weight of placed sensors.

Follow the above assumption for a single node, then the optimization objective for

voltage sensor selection for the whole grid could be written as:

ŷk =


β̂1

...

β̂k

 x̂k (3.6)

For all the time instances, above equation can be horizontally stacked as below:

[
ŷ1 . . . ŷk

]
=


β̂1

...

β̂k


[
x̂1 . . . x̂g

]
(3.7)

This is solved using group lasso optimization. By apply equation 2.5 into equation 3.7, the

group Lasso optimization formula for voltage sensor placement algorithm is:

(ε, β̂) = arg min

{
M∑
k=1

(
Y − ε− β̂X

)2}

subject to
M∑
j

G∑
g

|β̂kχg| ≤ t (3.8)
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Furthermore, the weights’ magnitude directly correlates with the importance of that

candidate sensor as the larger the weight gets, the more contribution is from that node.

Therefore, the score of ith sensors can be described as:

importance =

∥∥∥∥∥∥∥∥∥∥


β̂1
i

...

β̂ki


∥∥∥∥∥∥∥∥∥∥

2

(3.9)

All sensors with a score higher than T will be selected where T is a tuning parameter.

Unfortunately, this algorithm does not come with its unique metric function. It was

evaluated by prediction accuracy where the prediction was made by an ordinary least

square (OLS) optimization.

Pseudo-code is shown below:

Algorithm 2: Group Lasso with Cross Validation for Sensor Placement

Input: S←− Candidate node set, P←− noise margin, N←− number of sensors
to be placed, D←− voltage grid over time

Output: C ←− selected node set
begin

Separate D into V and E
Y = standardize(V)
X = standardize(E)
Select t based on experience
Solve group lasso optimization by eq. 3.8 with t

Calculate importance for all nodes ~I = {i1, . . . , im} by eq. 3.9
Select T based on experience
C = {si|ii > T}

end

3.3 Signature-Based Voltage Emergence Prediction Algorithms

Another route for predicting voltage emergency is by analyzing microprocessor trace.

The trace is the CPU operations’ statistics over time, i.e. the read of L2 cache over 100

CPU cycles. This type of algorithms try to find certain patterns that directly correlate to

voltage emergencies.

25



According to the works in [12, 30], the main idea of this approach is to find a handful

of very frequent CPU trace patterns that induce the majority of the voltage emergencies.

In this way, the voltage emergencies can be predicted without the voltage sensor on IC. In

addition, the trace patterns are supposed to have less noise than the patterns of voltage.

On one hand, the CPU trace pattern comes from code loops which are inherently identical.

On the other hand, the CPU traces are digital and do not suffer from process variation

like the voltage sensors do.

In this direction, perhaps the correlation between machine code and voltage emer-

gency could also be found.

3.4 Optimum Sensor Placement Problem in Other Areas

As the study for voltage sensor placement begins to increase, it can be helpful

to explore the established solutions in similar problems. And the temperature sensor

placement problem is extremely similar to the voltage noise counterpart. In this area, the

algorithms of placing temperature sensors varies, but the prediction is mostly a regression

problem that relies on the correlation between selected nodes and other nodes, which

is backed up by the second law of thermodynamic. In the following section, 2 types of

popular placement techniques are briefly introduced which inspired some algorithms

proposed in this thesis.

3.4.1 Correlation-Based Placement

This type of techniques [29, 6] explore the correlation of all the nodes on the CPU.

And the least correlated nodes are selected to maximize the information about the map

because they are the hardest to reconstruct in the later prediction stage.

3.4.2 Clustering-Based Placement

This type of techniques [17, 24] considers geometric characteristic of nodes with

previous “heat emergencies”. By placing sensors in the cluster, it would maximize the

information from the hottest region.
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CHAPTER 4
Automated Data Generation Flow

4.1 Introduction to the Data Generation Toolchain

Acquiring the data for analysis is one of the most critical problems in machine

learning. Some researches tried to extrapolate the data and inevitably introducing

additional variance to their model. This chapter will introduce the toolchain for per-CPU-

cycle simulation and the simulated Penryn-like microprocessor architecture[39, 36]. The

toolchain can automatically simulate all the voltage sensor data on a given microprocessor

per microprocessor cycle and later used for our voltage sensor placement algorithms. The

interfaces for those programs can be found here [1], which can automate the whole process.

The automated toolchain builds around VoltSpot which is the last stage of the

simulation. VoltSpot models the CPU power delivery as a mesh grid comprised of lump

components. It calculates the voltages at each node on the grid by transient analysis. The

final product is three dimensional data where two of three dimensions are coordinates on

the grid with an additional time dimension. The latter half of this chapter will illustrate

all modifications to this raw data for training models.

4.2 Structure of the Toolchain

The toolchain is summarized in fig.4–1. For reproducibility, the detailed procedure is

described below.

1. The Penryn-like microprocessor architecture is partially defined in Gem5 [5]. Full

system simulations are run with workloads from PARSEC 2.0 [4].

2. The simulation result from Gem5 is processed by Gem5-McPAT interface.

3. McPAT [21] is used to get the power and area of the Penryn-like microprocessor.

4. The simulation result from McPAT is processed by McPAT-VoltSpot interface.
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2-core

CPU-clock (GHz) 3.7
Supply Voltage (V) 0.8
L1 data cache (kB) 32
L1 instruction cache (kB) 32
L2 cache (MB) 6

Table 4–1: Gem5 microprocessor setting

5. The geometric information of the CPU is described in the floorplan file, which is

created using ArchFP.

6. The final voltage data is from a modified version of VoltSpot2.0 [41] with similar

configurations in [39].

Gem5 McPAT

Interface 1

ArchFP

VoltSpot

Interface 2

CPU Traces CPU Power
Consumption Voltage Grid Data

CPU Floorplan

CPU Spec

Figure 4–1: The flow chart for the simulation tool chain

The above procedure is automated by bash scripts where a template has been provided

in [1]. Besides, the same script, with minor modification, can pipeline data for online

analysis.

4.3 General Experiment Set Up

This thesis used a Penryn-like microprocessor architecture for demonstration pur-

pose. A 2-core version of such microprocessor is used for illustrating the key points of

algorithms. The architecture is partially defined in Gem5 and can be summarized as:
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Table 4–1 only introduces 2-core architecture because the other versions are achieved

by replicating the basic structure of 2-core microprocessor. The floorplans of all three

microprocessors are shown below, which is a mandatory input to the VoltSpot.
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Figure 4–2: Floor plan of 2-core Penryn-like CPU

The concludes the configurations for Gem5. Because of the triviality of running

McPAT, we directly skip to the configurations of VoltSpot. VoltSpot is essentially a

grid-based lump-component model for on-chip microprocessors. In particular, the grid is

29



formed by partition the microprocessor into cells with the size of the C4 pad. The voltage

data is acquired by applying transient analysis to this model. For any given CPU cycle,

the voltage data is the instantaneous voltage of each cell of the grid-based model. The

critical configurations for setting up VoltSpot is the same as in [39].

4.4 Output Structure of Simulation

This section discusses the product of introduced toolchain. The direct product is a

time-series voltage grid that has shown in Chapter 3. The unit for time is CPU cycles. As

a recap, one can consider a voltage grid as the voltage readings across the CPU. Each data

point in a voltage grid represents a node. A node is a small area on the CPU. In other

words, a voltage reading on the voltage grid is an average voltage of a small area on the

CPU. We call the direct product as the raw data.

As a topic for a later chapter, we discuss three prediction algorithms in this thesis.

They require very different data structure for training. While the time-series grids from

the toolchain are good enough for training linear regression algorithms, it is not enough

for the neural network algorithm. For that, we need batches of time-series grids over a

constant small time interval. Each prediction requires one batch of such data. We call

such batches of data as voltage grid traces. Voltage grid traces are essentially chopped raw

data. Within one grid voltage trace, the time-series voltage of a certain node is called the

voltage trace.

4.5 Prepared Data Set for Training

In this section, the preparations of three different data set will be introduced. They

all comes from the same simulation data but with different format, due to the varying

input format requirements of models.

4.5.1 Time-series Voltage Grid

As one of the three training set, this one is essentially the vanilla output from out

simulation toolchian. Both group Lasso and Eagle-Eye algorithms uses this training set.
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Benchmarks Name Benchmarks Application

blackscholes Option pricing with Black-Scholes Partial Differential Equation (PDE)
bodytrack Body tracking of a person
freqmine Frequent itemset mining

Table 4–2: Summary of benchmark purpose

This data set is a collection of three continuous simulation toolchain outputs. The

simulations respectively simulates three different programs from PARSEC benchmarks

suite [4], namely, blackscholes, bodytrack and freqmine. The benchmarks covers different

areas and they can be summarized in table 4–2

As introduced before, the data from the simulation toolchain are voltage grids over

simulated time. In other words, a complete collection of voltage trace over the whole

CPU. There are totally 5,005,062 CPU cycles in this data set and each benchmark takes

approximately 1/3 of the total cycles.

The data set has a shape of [samples, nodes] where a 2D voltage grid is flattened to a

vector in the second dimension.

4.5.2 Voltage Grid Trace

This data set is used for classification purpose, which means there is a label for each

trace denoting whether an emergency would happen, a few CPU cycles later, after the

trace. The gap between the end of the trace and the emergency-checking time point is

called prediction capability denoted as γ.

The voltage grid traces are continuous and 50 CPU cycles long chopped from time-

series voltage grid data set. However, many data is discarded when preparing. This data

set collects only voltage grid traces that would induce an emergency and an equal amount

of randomly sampled ”normal” traces. It is balanced with equal amount of positive and

negative samples. Emergencies are rare, so this set is substantially smaller than the

previous data set with roughly 250,000 traces.

The data set has a shape of [samples, nodes, trace] where ”trace” is the 50 CPU

cycles. In addition, it has a separate label vector with a label for each sample.
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4.5.3 Voltage Trace

This data set is for training a recurrent neural network model. It is also for classi-

fication. Therefore, each sample is labeled, too. To meet the architecture requirement,

each sample is voltages per node. In other words, they are voltage traces introduced in

the previous section. The voltage grid trace data set is decomposed into voltage traces to

form this data set. In addition, all the nodes responsible for the emergency are preserved

and labeled as positive. Other ”normal” nodes are randomly discarded. The final data set

keeps the positive to negative ratio to 1:3.

The data set has a shape of [samples, trace]. In addition, it has a separate label

vector with a label for each sample.

4.6 Extra Contribution and Unsolved Challenges

Apart from the automation scripts, another contribution of the proposed toolchain is

the per-CPU-cycle workaround for Gem5. Although Gem5 is per-CPU-cycle accurate, it

does not fully support per-CPU-cycle output. Without modification, the per-CPU-cycle

output from Gem5 would be corrupted. The proposed toolchain provides a customized

simulation script for Gem5 that can bypass this limitation. A collect-and-pause sampling

scheme achieves the workaround. For instance, it collects 5000 cycles of continuous data

and then pauses for another 5000 cycles. This process repeats until the end.

The proposed toolchain facilitates the workflow and provides templates for quick

configurations. Unfortunately, it cannot complete the configuration for the user. Manual

configuration leaves a glaring issue unsolved. For Gem5, the configuration mostly defines

the CPU of interest. The Gem5 configuration requires python programming, and it is

relatively hard to discover the logic bug of programmed CPU architecture.

For VoltSpot, the most challenging part is knowing the floorplan for interested CPU.

Many interesting CPUs do not have floorplans available to the public. Most open-sourced

CPU designs are RISC-V architecture based which is not fully supported by Gem5.
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CHAPTER 5
Regression-Based Methods

5.1 Introduction to Two Improved Methods

In this chapter, we are going to explain two regression-based prediction methods.

They are similar to the methods for predicting thermal emergency on CPU. Unanimously,

they use linear regression to predict the exact voltages in the future. We check if any

prediction violate the preset threshold to convert it to a binary classification problem.

The two methods differ in the way they select the optimum sensor locations. Group Lasso

method takes advantage of the sparsity created by group Lasso regression to select sensors.

Instead of regression analysis, Eagle-Eye maximizes the probability of a sensor catching an

emergency. Note that regression-based methods completely separate the selection and the

prediction problems and handles two problems with different algorithms.

5.2 Correlation Guided Group Lasso with Grid Search Cross Validation

In this section, we propose an improved version of group Lasso algorithm for sensor

selection, which was introduced in 3.2.2. The improvement is mainly for automating the

original algorithm. In this section, we will focus on the implementation of our modified

algorithm. Before that, let’s review the key parameter and steps in the original group

Lasso algorithm.

The original group lasso algorithm select a subset of nodes C from candidate node

set S to achieve maximum prediction accuracy. To achieve this goal, it optimize under

constraint for a weight matrix B. The tightness of the constraint is manually defined by

t. Matrix B establishes a linear relationship of voltages between nodes in candidate set

(X) and all other nodes on the grid (Y). Each column in X and Y contains voltages of

corresponding sensors sampled over time. The relationship between X and Y is formulated

as Y = BX. The columns in B are the importance vectors for corresponding sensors.
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The importance index of individual candidate node is evaluated by taking the norm of its

importance vector in B. For selecting the best nodes, a manually selected threshold T is

introduced, where any node with importance index higher than the threshold is selected.

5.2.1 Discussion of Original Algorithm

One serious drawback of the original group lasso algorithm is the difficulty of selecting

t and T . We found those 2 parameters are problem dependent. There are three major

concerns which complicate their selection.

1. The sensor ranking threshold T is S dependent. Even for the same training data,

if the size of the candidate node set S changes, i.e., the area available for placing

the sensors are changed, T would be different. It is usual to limit sensor placement

to certain locations on CPU. For example, consider designing a dual core CPU

with a L2 cache for each core, one may put voltage sensors on L2 caches for each

core at first but later decided to put sensors only on 1 of 2 L2 caches. For the

original algorithm, designer has to manually re-calibrate parameter T . As Shown

in figure 5–1, both the maximum and the average importance factors of sensors are

approximately doubled when the size of S decreases from 50% to 20% of the total

die area. Designer has to figure out the threshold T case by case. This represents

poor transferability.

2. The metrics for choosing t is limited. The only two constraints being considered

in [23] are the number of sensors and ”relative error,” which is the accuracy for

prediction. The original paper showed a positive correlation, within a small range of

t, between the number of selected sensors and the accuracy of prediction. Therefore,

they suggest the selection of t is a balance between accuracy and the cost of sensors.

However, there is no quantitative upper or lower boundaries. Without mathematical

tools to set the parameter t, balancing becomes an art of experience.

3. No quantifiable relationship between t and the number of sensors. It is because the

number of sensors is determined by both t and T . The conundrum here is that it is
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Figure 5–1: A demonstration of T variation with different S. The distribution of
importance factors changes dramatically when S changes. As a result, designer has to find
the optimal T case by case.

unclear how to reach a given number of sensors weather by relaxing the regulation t

during optimization or lowering the quality factor T after optimization.

5.2.2 Clustering, Cost function and Cross Validation

In section 3.2.2, the main issue about the original algorithm is its poor transferability.

A suitable parameter for one problem can be totally off for another. To solve this problem,

we introduce three changes for standardizing the algorithm to minimize the effort of

applying it to different applications. Those changes are:

1. Elimination of threshold T . We choose sensors from the most important to the least.

In addition, We apply a 2-means cluster algorithm to the importance factor, and the

cluster with higher importance is the upper bound of available sensors.
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2. Addition of cross-validation for searching the t with the lowest loss. Theoretically,

cross-validation can also be applied to the old algorithm. However, in our case, we

don’t have to train a prediction model to evaluate the selection, which essentially

half the training time.

3. Adoption of a loss function for sensors. Different candidate sets can be evaluated by

how much information they provide.

4. Optimizing by the average voltage grid instead of stacking samples. In the original

paper, the target nodes Y and candidate nodes X for group Lasso optimization have

the shape similar to m × n, where n is the number of samples, and m is the number

of nodes in the corresponding set. We take the average of all samples and result in a

shape of m× 1. This change has been applied to both sensor selection and prediction

models.

Those changes substantially minimize the human expertise required for applying the

algorithm. For the new algorithm, we cross-validate the group lasso optimization with

various t values. During the cross-validation, sensor locations will be selected by the

user-specified number and 2-means clustering, and the new loss function will evaluate

the selection. Consequently, the selection with the lowest loss will be the final choice.

Note that we can also apply cross-validation to the original algorithm to find a decent

t. However, this approach would require training a prediction model in each validation

iteration because the original algorithm does not have any metrics to evaluate the sensor

quality other than the final prediction accuracy. Theoretically, the average operation

should make the averaged data point falls right onto the estimated regression line. A quick

proof is provided below. The main benefit of averaging is the greatly reduced training

time, which makes the cross-validation over many t’s practical.

Consider a general optimization objective function min Y − BX, where Y is a m1 × n

matrix and X is a m2 × n matrix. Let xi,j, yi,j denote the element in ith row and jth

column in X and Y , respectively. Let Y = [y1, . . . , ym1]
T , X = [x1, . . . , xm2]

T , and ε be the
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error. In addition, the optimization of stacked samples yields B, and we have:

ym1 =
1

n

n∑
j

ym1,j

=
1

n

n∑
j

(

m2∑
i

βm1,ixi,j + ε)

The average regression error for all samples is 0

=

m2∑
i

βm1,i
1

n

n∑
j

xi,j

=

m2∑
i

βm1,ixi

This proves that the average Y and X is on the regression line.

Those changes would enable a group-lasso-based algorithm to automatically find

a decent t as well as fine-tuning of t afterward. On top of that, it also offers the ability

to evaluate the candidate set S before any prediction model applied, which effectively

decouples the process of selecting sensors (feature selection) and selecting models. Also,

the implementations of those sub-modules are introduced in the rest of this section,

followed by a discussion about alternative implementations.

The proposed loss function essentially averages the correlation matrix of the chosen

sensors set. However, calculating the average is not a straightforward process. 2-means

clustering does not guarantee a constant size of clusters. Hence, the size of the candidate

set will vary. So does the size of the correlation matrix. Once the Pearson correlation

matrix is calculated as eq.5.1, the correlation matrix will be symmetric with all 1’s a

diagonal. Besides, the size of the correlation matrix will vary by the different ts. To

reasonably compare different correlation matrices, only the lower triangular section of

the matrix is considered for the following transformation. To further reduce the bias,

the considered coefficients from the correlation matrix are transformed by Fisher z

transformation, averaged and transformed back[8].
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ρi,j =
cov(ci, cj)

σciσcj
(5.1)

where ρ is the correlation coefficient between voltage traces on node ci and cj; C is the

selected node set and ci, cj ∈ C; cov(*) denotes the covariance and σ∗ denotes the

standard deviation.

The Fisher z transformation and its inverse can be described as:

zi,j =
1

2
ln

(
1 + ρi,j
1− ρi,j

)
= arctan (ρi,j) (5.2)

ρi,j =
exp (2zi,j)− 1

exp (2zi,j) + 1
= tanh (zi,j) (5.3)

Discussion:

1. Correlation describes the similarity of two signals. For selecting nodes, we want to

harvest as much information about the grid as possible. Therefore, the lower the

correlation, the more extra information we would get. This idea also can be seen in

the heat sensor selection [6].

2. Apart from correlation, mutual information can also be used to measure the sim-

ilarity of signals. However, multivariate mutual information has not been fully

understood yet, which makes it less favorable than correlation.

3. The proposed loss function can be solely applied to select sensor placement, which

would maximize the information gained from a certain number of nodes. Its selection

capability is the main reason for choosing it as a loss function for cross-validation,

where it serves as a refinement of many candidate sets produced by various ts.

5.2.3 Overall algorithm

In this section, we recap and formalize the cross validated group Lasso algorithm.

Before proceeding to the pseudo-code, we introduce one last alternation on the original
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algorithm. We optimize the Lagrange function of the group Lasso instead of the original

optimization problem. The Lagrange function of group Lasso is given by:

‖Y −BX‖2fro − λ
∑∥∥∥β̂k∥∥∥

1
(5.4)

where β̂k is the kth columen of B.

Consequently, instead of the optimizing with various ts, we solve for various λs. The

major difference is the magnitude of two parameters are dramatic, where λs are usually

between 0 and 1 but t can be arbitrarily large.

Algorithm 3: Group Lasso with Cross Validation for Sensor Placement

Input: S←− Candidate node set, P←− noise margin, N←− number of sensors
to be placed, D←− voltage grid over time

, Output: C←− selected node set
begin

Separate D into V and E

Average all samples in V and E, get V and E
Y = standardize(V)
X = standardize(E)

Initialize ~λ = {λ0, λ1, . . . , λr} covering a range of reasonable λs for group lasso
optimization

for λr ∈ ~λ do
Solve group lasso optimization by eq. 3.8 with tr

Calculate importance for all nodes ~Ir by eq. 3.9

Perform 2-means clustering on ~Ir, let CR be the cluster with higher mean
Cr is the N most important nodes in C ′r, if N > ‖CR‖ , Cr = CR
Calculate the correlation matrix Mr of time-series voltage trace of nodes in
Cr.

Calculate the Fisher z transformation of the lower triangular section of Mr

and denote the average as ar.
Calculate the inverse Fisher z transformation of ar and denote the result as
sr.

end
r′ = arg minr([s1, s2, . . . , sr])
C = C ′r

end
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5.3 Segmented Eagle-Eye

Eagle-eye is very effective for optimizing its loss function. In a grossly simplified

prescriptive, it chooses locations where violations most likely to happen in the simulation

data. We implemented this algorithm mainly for comparison reason. Additionally, a subtle

change has been made for generalizing the algorithm for practical use.

One particular issue about the original eagle-eye algorithm is ”hot-spot clustering.”

Our observation is that violations tend to happen more likely in some hot-spots rather

than other areas. For example, in one experiment, most violations happen in the FPU

cache are shown in fig. 5–2. If we directly apply the original algorithm, due to its greedy

nature, most sensors will concentrate on hot-spot (FPU) and other integrated circuit

blocks (IC) risk not having any sensor. Note that simply increasing total sensor number

N is not a solution, because violations in hot-spot also have higher frequencies than the

violations in other spot and therefore gains selection priority. As a result, one has to

choose a large N to reach out to other IC blocks and inevitably with many sensors placed

in hot-spot. This approach beats the purpose of selecting sensors.

Our implementation divides the IC area by IC blocks defined in the floorplan and

applies eagle-eye to each segment individually. In this way, one can choose the desired

number of sensors for each IC block. The desired number can be quickly decided either

by domain knowledge or by setting it to proportionate to the violation frequency in each

block.

5.3.1 Floorplan-Based Segmentation

In this section, we demonstrate the clustering effect and compare the outputs from

the original eagle-eye and segmented eagle-eye.

As shown in fig.5–2, the original algorithm places sensors only on the FPU1 and

nowhere else. The segmented placement algorithm randomly spreads the sensor to other

user-controlled areas while keeping 2 sensors at the original cluster.
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Figure 5–2: Sensor selection from original Eagle-Eye algorithm

Figure 5–3: Sensor selection from segmented Eagle-Eye algorithm
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5.4 Prediction Models

The prediction models for voltage/thermal emergencies are similar. They both require

capability to prediction global extrema without complete spacial information. Many

prediction models in the literature tries to capture the relationship between selected nodes

and all other nodes with linear relationship [7, 38, 20]. This section presents a common

regression model. Both group Lasso and Eagle-Eye use this algorithm to handle the

prediction problem.

5.4.1 Linear Regression

The regression model solves an unconstrained OLS problem. In this case, we assume

the voltage of nodes without sensor is a linear weighted sum of nodes with sensors that

has been formulated in 2.2.1. To get the weights, we proceeds to solve:

β̂ = arg min

{
M∑
k=1

(
yk − β̂kx

)2}
where β̂k is the unique weights for target node yk; β̂ is the collection of all the weights; x

are all the selected nodes with sensors.

For a regression model, the direct output of this prediction model will be the pre-

dicted voltage values for all target nodes. To find whether an emergency occurs, we

examine if the lowest and the highest predicted voltage stays in a pre-defined voltage

range.

42



CHAPTER 6
VoltNet

6.1 Introduction to Deep Learning Model: VoltNet

In this section, we propose a deep learning algorithm, VoltNet. We hope our work can

inspire more deep learning applications in this field.

VoltNet is a deep neural network that solves both selection and prediction problems

together. Instead of two independent problems, VoltNet considers the prediction as the

feedback to optimize the sensor selection through backpropagation during the training

phase. Related to the group Lasso, VoltNet select sensors by introducing sparsity to the

weights for each sensor. For VoltNet, the sparsity comes from pruning. The prediction is a

natural result from the trained model.

A concern we had when experimenting with previous algorithms is that it is extremely

difficult to predict future based on a single freshly sampled data. Generally, good predic-

tion comes from legitimate utilization of history. We expect a model utilizing history data

could make better predictions thanks to the additional information.

So far, all the introduced sensor placement algorithms act like a feature selection

process. The prediction of emergency relies on an additional linear regression model.

This has two problems. First, intuitively, the voltage in the future likely does not have a

linear relationship with current voltages. Second, the training of prediction model gives

no feedback to the parameter selection of placement algorithms. The quality of the result

purely depends on trial-and-error attempts regardless whether it is automated or not. A

nonlinear feedback-based model is needed.

When training the two introduced algorithms, Eagle-Eye and Group Lasso, it is

mandatory to have voltage traces from all nodes on the grids. Because we want the

emergency prediction to be global on the CPU die and regression model needs global
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information for that. To capture the emergency voltage physically, a very large, if not all,

area of the CPU has to be sensed. It is simply impossible. It means those algorithms only

applies to simulation data. Consequently, it is impossible to apply them to real voltages.

The gap between simulation and reality is wide open.

To solve those problems, we propose a deep neural network model, VoltNet.

6.1.1 Overall Description of VoltNet

As shown in fig.6–1, VoltNet combines time distributed BLSTM and MLP archi-

tectures. In time distributed BLSTM layer, a single BLSTM model is responsible for

processing all the nodes provided. We interpret that BLSTM is trained to predict the

probability of emergency per node and the MLP processes all the probabilities per node

and predicts the overall probability of emergency. There are three training phase for Volt-

Net. In the first training phase, a BLSTM model is trained to process single voltage trace.

Since then, the BLSTM will be frozen and remain unchanged in the following sessions. In

the second training phase, the whole model is trained to predict if an emerngy would hap-

pen. The BLSTM model is applied to all nodes available by time distributed layer. The

results are passed to MLP layer with pruning. The pruning yields the sensor selection. In

the third phase, the whole model is trained again with the data size changed to match the

selection so that only the selected nodes are considered.

BLSTM model is designed specifically to handle time-series data. The idea using

one BLSTM for all nodes is inspired by the work in [12], where they showed that a small

amount of CPU operations are responsible for the most voltage violations. Hence, we

expect the voltage trace for violation could be summarized to a few patterns, too. A single

BLSTM should be capable of handling that.

The benefit of having only one BLSTM for all nodes is the boosted technical and

architectural flexibility. For technical flexibility, it dramatically expands the training

data set. Emergency is scarce. Some nodes may never have an emergency during the

simulation. An one-for-all BLSTM is trained with all traces from every node combined.
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Figure 6–1: The VoltNet architecture for sensor placement
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It solves the problem easily while enjoying an accuracy improvement thanks to the

increased training data. In addition, more extensive training set allows deeper structures

without overfitting. Moreover, a deeper structure introduces a higher level of abstraction

[14]; therefore, better information extraction. For architecture flexibility, it allows the

model to handle both simulation data and physical data alike. The source for physical

voltage data is limited because there are only a few voltage sensors on the CPU. The

training mixes voltages traces so there is no restriction on the source of the voltage trace.

It makes no difference if the training set comprises a full grid or a portion of the grid.

More importantly, this is a classification model which means exact emergency voltage is

unnecessary. The training can proceed as long as emergencies are detected somehow, i.e.

by finding unexpected CPU operations.

The sensor selection is produced by pruning the weights of a special MLP during

the second training phase. The effect of pruning is comparable to that of group Lasso, it

creates sparsity in the weight matrix. Instead of the B in group Lasso, we choose sensors

based on the weight matrix of pruned layer. The fundamental difference between the two

algorithms is the feedback. In VoltNet, a weight is pruned if it is too small. All wights are

updated by backpropagation to maximize the prediction accuracy. The nodes are selected

while keeping the accuracy maximized.

In the following section, we will describe each layer in detail.

6.1.2 Deep BLSTM Voltage Trace Analysis

This section discusses the time distributed BLSTM layer. The time distributed part is

basically a wrapper to apply the BLSTM to every node. With this trick, all nodes can be

processed together to take advantages of parallel computing.

The most important part is the node BLSTM model. It takes voltage trace as input

and is trained to predict the probability of emergency. This is achieved by setting the

output neural to a single sigmoid neuron.
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Table 6–1: Coarsely tuned hyper parameter for node BLSTM model

Hyper parameters Value

Length of input voltage trace 50 CPU cycles
Number of cells in BLSTM 50

BLSTM dropout 0.4
Number of SELU neurons 32

Number of output sigmoid neurons 1
Batch size for training 128

Epochs for training 20

The architecture of proposed node BLSTM is a deep residual bidirectional LSTM

network. As shown in fig. 6–2, it contains 3 residual blocks connected to shallow SELU

layer and batch normalization layer followed by an output layer of a single sigmoid neuron.

The residual block has two components. The first one is a bidirectional LSTM layer. The

other one is an additive skip connection layer that adds the input of the previous LSTM

with the output of the LSTM. For stacked bidirectional LSTM, additive skip connection is

chosen over the concatenate skip connection.Because, for stacked LSTM, the hidden state

of previous layer becomes the input of the next. Bidirectional LSTM doubles the hidden

state, which approximately doubles the input space of the next layer. And we want to

avoid further increase the input space which may increase the training time.

One major improvement over the group Lasso and Eagle-Eye algorithms is that Volt-

Net can be applied to the data gathered physically from the CPU. For a physical CPU,

the sensors are already fabricated on the IC. Given the means to detect the occurrence

of emergency is available, only the phase 1 and phase 3 training are necessary to train

the VoltNet. Because the time distributed layer can handle any number of nodes it does

matter if the input is a grid of nodes or a limited number of nodes. In comparison, the

group Lasso algorithm require the exact voltage of emergency which is much harder, if

even possible, to acquire.

We didn’t fine tune the model to its best possible performance. But the following

coarsely tuned hyper parameter, provided in table 6–1, yields decent results.
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Figure 6–2: The architecture of node BLSTM
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To train this model, we use the voltage trace data set introduced in chapter 4. The

first 10,000 samples are used to train, then the next 3,000 samples are used for validation

and the following 5,000 samples are used for testing.

6.1.3 Three Phase Training with Pruning

The pruning enables the sensor selection in VoltNet. As stated, there are totally 3

training session to train the VoltNet. In the previous section, we introduced the first stage

which trains the BLSTM. The remaining stages are introduced in this section.

The second performs the pruning. The third completes the training. In the second

session, the MLP layer after the time distributed layer is different from that of the third

session.

The second stage is pruning. It forcibly sets insignificant weights to zero during

the training. In this stage, we make a single neuron as the final layer of the VoltNet,

which is architecturally different from the VoltNet in the third stage. As seen from group

Lasso algorithm, if we have more than 1 weight representing the importance of a node,

then many nodes would have a non-zero importance factor. This leads to a mandatory

threshold. To avoid this, the MLP in the second training phase only has 1 layer and

1 sigmoid neuron. This setup gives exactly 1 weight for each node. If any weight is

set to zero, that node is automatically discarded. As a result, sensor selection is the

process selecting all nodes with non-zero weights and there is no need for a threshold.

Additionally, it gives direct control over the number of selected sensors. During the

pruning, one can specify the desired sparsity and the the number of sensors is controlled

by the sparsity. Given a grid of 100 nodes, we can select 5 nodes by setting the sparsity to

0.95.

Note that the objective function of VoltNet is different from that of the group Lasso

method. The weight update in neural network is carried out by backward propagation.

The update is proportionate to the discrepancy between expected classification and the

prediction. Therefore, the objective function can be interpreted as prediction accuracy.
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Figure 6–3: Architecture for the second training phase

In comparison, the original group Lasso method also tries to maximize the prediction

accuracy but only indirectly. Moreover, the modified group Lasso method maximize the

average correlation coefficient of selected sensors, which takes a different route.

In the second training phase, the architecture of the VoltNet is shown in the fig.6–3

After the second training phase, the sensor selection completes. The VoltNet will

adjust its size to match the size of selected sensors and retrain. In the third training, the

MLP has 3 layers. The first layer has SELU as activation function and initiated with 0

means and 1/34 standard deviation. It is followed by a bathnormalization layer and then

the last layer only has 1 sigmoid neuron. We believe the extra layers help reducing the
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Figure 6–4: Architecture for the third training phase

noise produced by the previous node BLSTM and performs better than a single neuron.

No model can predict 100% correctly, therefore the incorrect results from node BLSTM

act as noises. It is a legit concern that the optimal selection for VoltNet stage 2 is different

from that of stage 3. However, the modification is small and we observe an increase of the

performance. We conclude the concern is not threatening.

In the third traning phase, the architecture of the VoltNet is shown in the fig.6–4.

The hyper parameters for the MLP are provided below.
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Phase Hyper parameters Values

2 initial sparsity 0.50
final sparsity 0.98
begin step 500
end step 1500
prune frequency 100
batch size 32
epochs 15

3 Number of neurons 64
batch size 32
epochs 15

Table 6–2: Hyper parameters for training the MLP layer
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CHAPTER 7
Model Evaluation

7.1 Key Configurations for the Prediction Models

We are comparing 5 different models for their performance predicting emergency. It

is very align those algorithms to a similar level so that the comparison makes sense. To

compare them, we have to use similar amount of sensors, uniformed outputs and same

amount of training. There are a lot of configurations to go through.

7.1.1 Notation: Marking Algorithms

There are totally 5 different algorithms introduced in this thesis. We denote group

Lasso model as f(x), Eagle-Eye model as g(x) and VoltNet as h(x). For the improved

version of group Lasso and Eagle-Eye we denote them as f̄(x) and ḡ(x), respectively.

7.1.2 Parameter: Time to Event γ

One common critical configuration of all models needs to be addressed here. Our

models predict the occurrence of voltage emergency a few CPU cycles ahead of the time

when the inputs are sampled. But the original implementation in [23] does not. The

original implementation predict the emergency at the instant of sampling. Let f(·) be the

prediction model, xt, yt be the input and output at time t respectively, then the original

prediction model can be expressed as:

yt = f(xt) (7.1)

To actually predict the emergency, we use multi-step ahead prediction. We define

an integer γ or ”time to event” to indicate how many cycles ahead is the prediction. The

prediction model can be expressed as:

yt+γ = f(xt) (7.2)
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where γ >= 1

This is main contributor to the performance difference between the original paper and

the result from this thesis. In this thesis, we have train models with prediction capability

of 5,10,20,40 for all models and additional 0 capability for regression models. The addition

0 capability models are provided to compare with the set up in the [23].

7.1.3 Parameter: Sensor Count N

How many sensors do we need? We chose 50 sensors as the target number of sensors.

From literature, this number is decent to produce good predictions. Unfortunately, We

cannot meet the target perfectly because some algorithms have very weak control over

sensor count. We did successfully manage to control sensor count to a range of 40 - 60. In

the following, We list the technical difficulties for controlling sensor count for each method.

For Eagle-Eye algorithm family, the number of sensors is bounded by the training

data. The selected sensor count will not exceeds the the number of emergency nodes in the

data set, due to the nature of the algorithm. To maximize the number of sensors, we have

to use all but the last 5000 CPU cycles of data for sensor selection.

For Group Lasso algorithm family, the difficulty is to select fewer sensors but not so

few that the population no longer makes sense. In our experiment, the simulated CPU has

5776 nodes. Ideally, we want groups Lasso introduce as much sparsity as possible so that

the impact of the ”manual” selection is minimized. ”Manual” selection cannot guarantee

the optimality regardless whether it is carried out by a threshold or a top-down selection.

By setting λ between 0.65 to 0.75, the algorithm gives about 400 selections and we have to

manually filter some of them. However, if λ grows, the selection population quickly drops

to single digit. For an optimization of a few thousands variables, it seems that a small

increase of the regularization can constraint the outcome too much.

VoltNet has no problem controlling the selection size, thanks to the single layer design

which enables direct translation of sparsity to the selection size.

We denote the sensor count as N .

54



7.1.4 Configuration: Comparable Training

In short, there is no way to ensure same amount of training for so many different

algorithms. It is especially true for regression models and neural network models. The

former option trains forever given a large training data, whereas the latter directly benefit

from the increased size of the data set. Note that we use the average of data to train the

regression model, it does not take much time at the cost of indistinguishable models given

a large data set, i.e. models with prediction capability of 1 and 2 will be the same because

the average will be the same.

Although we cannot train all models with the same amount of data, the limitation

is not imposed by us. Those are their intrinsic limitations, which honestly shows their

usefulness. What we can guarantee in this thesis is that we have used sufficient samples

to reach their maximum capability. No significant improvement can be made by simply

increase the amount of data for training.

7.2 Comparing Prediction Models

In this section, we are evaluating the performance of all models. We employ a few

metrics from general to detail to evaluate the performance.

The data used in evaluating models is the test set from voltage grid trace data set

introduced in chapter 4. There are equal amount of positive and negative samples in this

data set. The occurrence of the voltage emergency is rare, therefore the samples in the

data set have great temporal distance with each other, which means they are likely from

different parts of the program. The sample balance and temporal distance make it ideal

for evaluating performance in general.

7.2.1 Evaluation by Statistical Metrics

Before we convert regression models to classification models, it is worthwhile to

examine the regression performance. To evaluate the regression result, we compare

the statistical characteristics of predicted voltages and true voltages. The statistical

metrics used are mean squared error and averaged R2. The mean squared error (MSE) is
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calculated by following equation:

MSE =
1

n

n∑
i=1

(yti − y
p
i )

2 (7.3)

The R2 is calculated per node and then averaged with the same weight. The R2 for a

single node is calculated as:

R2 = 1−
∑n

i=1(y
t
i − y

p
i )

2∑n
i=1(y

t
i − ŷ)2

(7.4)

We show the statistical results in table 7–1. Note that this is for evaluating regression

models so VoltNet is not included. Generally, as target prediction capability increases, the

regression result gets worse as expected. For all algorithms, the best result is always the

model with target 0 prediction capability, which only infers if there is an emergency at

current time. As the target prediction capability increases, the mean squared error tends

to increase and R2 tends to decrease with a few exceptions.

If we consider the implication of the result, it is easy to conclude that linear re-

gression models are not suitable for voltage emergency prediction, because only the

none-prediction models can achieve a R2 above 0. R2 has to be positive to be considered

not a failure.

Given the result presented, there is no solid conclusion to determine the perfor-

mance of each sensor placement algorithms as the performances are marred by the linear

prediction prediction models.

7.2.2 Evaluation by Prediction Accuracy

The prediction accuracy further proves the conclusion reached by the previous

discussion. None of the regression models are capable predicting the positive case in our

data set. The accuracy for linear regression models are around 50% which is no better

than random guessing.

VoltNet’s accuracy decreases along with increasing target prediction capability, which

is expected. As further down the future, the more difficult to predict.
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Table 7–1: Table for Statistical Metrics

Models γ Mean Squared Error Rˆ2

f(x) 0 0.000204671 -10.57871652
f(x) 5 0.001279349 -217.8130268
f(x) 10 0.002255958 -512.1550495
f(x) 20 0.047019879 -10231.79673
f(x) 40 0.002901609 -895.0097982
f̄(x) 0 6.15E-06 0.260527767
f̄(x) 5 3.32E-05 -4.122490523
f̄(x) 10 3.29E-05 -4.725554785
f̄(x) 20 2.25E-05 -1.834347755
f̄(x) 40 3.42E-05 -4.467721721
g(x) 0 1.02E-05 0.216498285
g(x) 5 3.08E-05 -3.551376279
g(x) 10 2.88E-05 -2.84174014
g(x) 20 2.18E-05 -2.031892097
g(x) 40 2.55E-05 -2.204592264
ḡ(x) 0 1.21E-05 0.206824691
ḡ(x) 5 3.14E-05 -3.536477787
ḡ(x) 10 3.05E-05 -3.466492877
ḡ(x) 20 2.36E-05 -1.949371465
ḡ(x) 40 3.57E-05 -4.471307947
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Models γ Acc(%)

f(x) 0 28.52
f(x) 5 46.96
f(x) 10 40.82
f(x) 20 44.9
f(x) 40 52.68
f̄(x) 0 28.82
f̄(x) 5 50.48
f̄(x) 10 49.96
f̄(x) 20 49.96
f̄(x) 40 49.96
g(x) 0 49.96
g(x) 5 49.96
g(x) 10 49.96
g(x) 20 49.96
g(x) 40 49.96
ḡ(x) 0 49.96
ḡ(x) 5 49.96
ḡ(x) 10 49.96
ḡ(x) 20 49.96
ḡ(x) 40 49.96
h(x) 5 90.3
h(x) 10 86.94
h(x) 20 73.02
h(x) 40 60.74
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7.2.3 Recall and Precision of VoltNet

Apart form accuracy, we introduce recall and precision to evaluate VoltNet. The

formula for recall and precision are:

Recall =
TP

TP + FN
(7.5)

Precision =
TP

TP + FP
(7.6)

where TP is ture positive, FP is false positive and FN is false negative.

Before we present the result, we would argue that the performance is underestimated.

We trained the model as exactly we described in section IV. No fine-tuning, no tricks or

heuristics used. Many of those can boost the performance greatly. We chose not to use

them because we want the evaluation as objective as possible. If we put any effort into

manually increasing the performance, it is impossible to ensure to put the same amount of

effort into all configurations with various signal lengths and various prediction intervals.

That been said, our provided parameters inevitably favors some configurations than the

others. This accounts for most abnormalities in the performance.

For a successful prediction model, we want the input information as little as possible

and the prediction as far ahead as possible. We call the time interval from now to predic-

tion as to the prediction interval. Let the length of input voltage reading from one sensor

be the signal length. Fig.7–1 shows a decreasing tendency in the prediction accuracy given

an increasing prediction interval. The accuracy is the average from various signal length.

However, there is an abnormal bump for the prediction inter with 20 CPU cycles. This is

most likely because our coarse hyperparameter favors this particular setup. Fig.7–2 tells

another story. The accuracy increases if the signal length increases. Similar to the previ-

ous case, the performance bump for trace length 20 is likely due to the hyperparameter.

Both cases match our intuitive expectations.

Accuracy should not be the sole metric to evaluate performance. Another key

factor is recall. It tells how many emergencies happened we failed to predict during the
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test. Ideally, we should never miss because the cost of recovering from a mistaken CPU

operation is much higher than preventing it. Table 7–3 tells the performance is less than

satisfactory, especially when the prediction configuration becomes more challenging. This

indicates that the positive case in the training set is under-represented. Many standard

balancing techniques could be used like weighted classes, to mitigate the problem.

The precision is shown in table 7–4 is a less critical factor to consider. Statically,

there are far more negative cases than in positive cases. As a result, a small percentage of

negative cases predicted wrong would result in a low precision regardless.
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Figure 7–1: Accuracy slightly decreases as prediction interval increases
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Figure 7–2: Accuracy greatly increases as signal length increases
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CHAPTER 8
Conclusion

This thesis have propose an automated toolchain for simulating voltages across the

CPU die area. Those data are necessary to study the voltage sensor placement problem

and voltage emergency prediction problems.

Overall, there are 3 new algorithms proposed in this thesis. For sensor placement

problem, original group Lasso algorithm has received a new loss function along with many

other changes. As a result, the new group Lasso can be applied to different CPUs with

minor human intervention. In addition, we observed and solved sensor clustering problem

for the original Eagle-Eye algorithm. We also proposed VoltNet as a machine learning

algorithm that embedded the sensor selection process into the model training.

Finally, we proceed to compare the performance of different models. It turns out

that the group Lasso family and Eagle-Eye family are severely bounded by the poor

performance of the linear regression prediction model. No solid conclusion can be drawn

to evaluate the placement algorithms. This finding invites new endeavours to find new

prediction model for capturing the non-linearity of voltage trace. Furthermore, we

have shown that VoltNet yields very promising results. With only coarse training, it

reaches accuracy of 90.3% and 86.94% for prediction capability of 5 and 10 CPU cycles,

respectively.

As for future work, a lot of directions can be pursued. One obvious uncharted domain

is the non-linear models for group Lasso and Eagle-Eye. Many seems fit, probably few

would work out. Another interesting path is applying VoltNet to physical CPU. As stated

before, there is no theoretical limitation bars VoltNet from simulation to reality. After

some literature research, another popular way to predict voltage emergency is not to look

at voltage at all. It turns out that the CPU signatures are also a good information source
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to predict emergency. We wonder what would be the outcome if we apply VoltNet to a

digital signal like CPU signature instead of analog voltage signal.
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