
Aspect-Oriented Modelling

with Instantiation Cardinalities

illustrated using

Software Design Patterns

Sunit Bhalotia

Master of Science

School of Computer Science

McGill University

Montreal,Quebec

2014-07-08

A thesis submitted to McGill University in partial ful�llment of the requirements of the
degree of Master of Science

Copyright c© Sunit Bhalotia, 2014

DEDICATION

This thesis is dedicated to all the students and professors who have been responsible

for the success of Software Engineering Lab.

ii

ACKNOWLEDGEMENTS

I thank my supervisor, Jörg Kienzle for his excellent support and guidance.

iii

ABSTRACT

The power of aspect-oriented modelling is that a model designer can encapsulate the

structural and behavioural properties of a speci�c concern within an aspect model. Theo-

retically, if the functionality provided by such a modularized concern is needed repeatedly

within a system, a model user can instantiate the aspect model multiple times within

the same target model. Practically, though, it is often not clear which model elements

from the aspect model the model user is allowed to instantiate multiple times, and how

the model weaver is supposed to compose the structural and behavioural elements of the

aspect model instances with the target model. Motivated by past research that points

out the pending issues related to multiple aspect model instantiations, this master thesis

proposes to extend the customization interface of aspect models with instantiation cardi-

nalities , a novel concept that allows the model designer to unambiguously declare which

model elements of an aspect model can be multi-mapped. As a result, customization ambi-

guities are completely avoided for the model user. Furthermore, instantiation cardinalities

give the model designer �ne-grained control about how many instances of each structural

and behavioural element contained in an aspect model are to be created in the target

model. This thesis describes the syntax and semantics of instantiation cardinalities in

detail, and shows how they integrate with object-oriented concepts such as inheritance and

polymorphism. The elegance of the approach is illustrated by presenting aspect-oriented

design models of six well-known and widely used behavioural, structural and creational

design patterns.

iv

ABRÉGÉ

La puissance de la modélisation orientée aspect est que le concepteur d'un modèle

peut regrouper toutes les propriétés structurelles et comportementales d'une préoccupation

particulière. En théorie, si la fonctionnalité que fournit un modèle aspect est utilisée à

plusieurs endroits dans un même système, l'utilisateur de ce modèle aspect peut instancier

le modèle plusieurs fois dans le même modèle cible. Cependant, en pratique, il s'avère que

ce n'est souvent pas évident pour l'utilisateur de savoir quels éléments du modèle il a le

droit d'instancier plusieurs fois et comment le tisseur de modèle doit les combiner avec le

modèle cible dans ce cas là. En partant des problèmes connus de multi-instanciations des

modèles aspects, cette thèse de maîtrise propose d'inclure des cardinalités d'instanciation

dans l'interface de personnalisation d'un modèle aspect. Ce nouveau concept permet au

concepteur d'un modèle de préciser exactement quels éléments peuvent être instanciés

plusieurs fois, ce qui évite à l'utilisateur de faire des erreurs de personnalisation. De plus,

en spéci�ant des cardinalités d'instanciation, le concepteur du modèle peut contrôler le

nombre d'instances de chaque élément du modèle aspect qui seront créées dans le modèle

cible. Cette thèse décrit la syntaxe et la sémantique des cardinalités d'instanciation et

montre comment les intégrer avec les concepts orientés objet tels que l'héritage et le

polymorphisme. L'élégance de l'approche est démontrée en présentant les modèles aspects

de six "design patterns" structurels et comportementaux bien connus.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introduction . 1

1.1 Aspect-Oriented Modelling . 2
1.2 Thesis Contributions . 4
1.3 Thesis Outline . 6

2 Background . 7

2.1 Introduction to RAM . 7
2.1.1 Support for Multi-View Modelling 7
2.1.2 Support for Reusability . 8
2.1.3 Support for Explicit Model Dependencies 10
2.1.4 Tool Support . 11
2.1.5 RAM Example . 12

2.2 Instantiation Ambiguities . 15

3 Instantiation Cardinalities . 19

3.1 Instantiation Cardinalities . 19
3.1.1 Overview . 19
3.1.2 Instantiation Cardinality Syntax and Variables 22
3.1.3 Single-Mapping and Multi-Mapping 22
3.1.4 Class Cardinalities and Mappings 25

vi

3.1.5 Method Cardinalities . 26
3.1.6 E�ects of Class Cardinalities on Cardinalities of the Contained

Methods . 27
3.2 Consequences of Multi-Mapping . 29

3.2.1 Associations Between Multi-Mapped Classes 29
3.2.2 Multi-mapping and Message Views 30

3.3 Integrating Instantiation Cardinalities with Object-Orientation 32
3.3.1 Subclassing . 35
3.3.2 Inherited Methods . 35
3.3.3 Polymorphism using Automated Call Forwarding 38

4 Design Patterns Revisited . 40

4.1 Structural Design Patterns . 40
4.1.1 Composite . 41
4.1.2 Decorator . 43

4.2 Behavioural Design Patterns . 50
4.2.1 Template Method . 50
4.2.2 Command . 51

4.3 Creational Design Patterns . 58
4.3.1 Builder . 58
4.3.2 Abstract Factory . 63

5 Related Work . 73

5.1 Aspect-Oriented Modelling . 73
5.1.1 Theme/UML . 74
5.1.2 HiLA . 74
5.1.3 MATA . 74
5.1.4 SmartAdapters . 75

5.2 Aspect-Oriented Programming Languages 76
5.2.1 Control over Aspect Instances . 76
5.2.2 AOP and the Observer Pattern . 77

6 Conclusion . 80

6.1 Future Work . 81

References . 85

vii

LIST OF TABLES
Table page

3�1 Rules for Variable Declaration . 23

3�2 Mappings and Cardinalities . 24

3�3 How Class Cardinalities A�ect the Model User 26

3�4 How Method Cardinalities A�ect the Model User 28

viii

LIST OF FIGURES
Figure page

2�1 Observer RAM Model Interface (Customization and Usage) 13

2�2 Internal Design of the Observer Aspect . 14

2�3 Simpli�ed Naval Battle Base Model . 16

3�1 Observer RAM Model with Instantiation Cardinalities 20

3�2 Rules for Associations . 31

3�3 Multi-mapping nested methods . 33

3�4 Example Weaving of Message Views with Multi-Mapping 34

3�5 Multi-mapping Subclasses . 36

3�6 Multi-mapping Inherited Methods . 37

4�1 Composite RAM Model . 41

4�2 Example Instantiation of Composite . 42

4�3 Example Use of Composite . 43

4�4 Woven Model using Composite . 44

4�5 Decorator RAM model . 46

4�6 Example Instantiation of Decorator . 47

4�7 Example Use of Decorator . 48

4�8 Woven model using Decorator . 49

4�9 TemplateMethod RAM Model . 52

4�10 Example Instantiation of TemplateMethod 53

ix

4�11 Example use of TemplateMethod . 54

4�12 Woven Model using TemplateMethod . 55

4�13 Example Instantiation of Command with Single Receiver 56

4�14 Command RAM Model with a Single Receiver 57

4�15 Example Use of Command with Single Receiver 58

4�16 Woven Model using Command with Single Receiver 59

4�17 Example Instantiation of Command with Multiple Receivers 60

4�18 Command RAM Model with Multiple Receivers 60

4�19 Example use of Command with Multiple Receivers 61

4�20 Woven Model using Command with Multiple Receivers 62

4�21 Builder RAM Model . 64

4�22 Example Instantiations of Builder . 65

4�23 Example use of Builder . 66

4�24 Woven Model using Builder . 67

4�25 Abstract Factory in UML . 68

4�26 AbstractFactory RAM Model . 68

4�27 Example Instantiation of AbstractFactory . 70

4�28 Example use of AbstractFactory . 71

4�29 Woven Model using AbstractFactory . 72

6�1 Re�ning the Behaviour of Template Method in a Higher-Level Aspect 84

x

Chapter 1
Introduction

Modelling allows the representation of entities and the relationships between them. It

allows the expression of the meaning ideas used by experts to discuss problems. A model

aims to provide clarity in the interpretation of the terms and concepts used. . The clarity

is important since it allows e�cient and unambiguous communication of ideas between the

designers of the model and those who make use of it. Due to their visual representation,

models also aid in �nding relationships between the concepts.

Software systems are a natural candidate for modelling and this has given rise to various

modelling approaches and notations including the widely used Uni�ed Modelling Language

(UML) [31]. In Software Engineering, when domain models are used as primary software

development methodology, it is called Model-Driven Engineering (MDE) [17, 36]. MDE raises

the level of abstraction by allowing a modeller to visualize the relationships between classes

using diagrams. For example, in a UML class diagram, a modeller can describe the properties

of classes and describe the relationships between them. As long as the class diagram stays

relatively small (up to 10-15 classes), such a diagram fosters the understanding of what is

being modelled and allows for faster communication between team-members, which leads to

improved productivity of the development team. Model-Driven Engineering is also able to

generate a signi�cant percentage of code automatically which cuts down development time,

reduces the possibility of errors and facilitates debugging.

1

1.1 Aspect-Oriented Modelling

Aspect-orientation adds a new dimension to modularization. In aspect-oriented mod-

elling (AOM), advanced modularization techniques make it possible for aspect models to

encapsulate structural and behavioural elements related to a particular concern. This allows

the model designer to reason about all properties of relevance to the concern in isolation.

AOM also draws special attention to the composition of concerns, which allows the modeller

to focus on the intricacies of concern interactions and con�icts.

As a result, AOM has the potential to address two of the main challenges of model-driven

engineering: model reuse and model scalability [38]. Building complex models is very time

consuming: models are often created from scratch, as opposed to reusing existing models.

This makes modelling often more cumbersome than coding, since most programming lan-

guages nowadays o�er extensive libraries facilitating code reuse. Furthermore, models of

complex applications tend to grow in size, to a point where the models are not readily un-

derstood or analyzable anymore. With advanced features for separation of concerns, the

model can be decomposed into concern models of reasonable size. With advanced modu-

larization techniques, the model can be packaged in a generic way so that it can be reused

in di�erent contexts. The potentially crosscutting nature of the concern requires that the

structure and functionality provided by the model can be applied several times within the

same application.

Many researchers have recognized this opportunity, and worked on aspect-oriented mod-

elling approaches for many di�erent modelling notations. For example, AOM approaches

have been proposed for UML class diagrams [13, 35], sequence diagrams [21, 20], state dia-

grams [12, 40, 16], protocol models [24, 25], live sequence charts [23][23], activity diagrams,

2

the Speci�cation and Description Language (SDL) [10, 11], the User Requirements Notation

(URN) [30, 29], and more.

However, only a small number of AOM approaches have concentrated their e�orts on

making aspect models reusable. In the context of reuse and MDE, a distinction needs to

be made between model designers and model users. Model designers are modellers that

specify a reusable model, i.e., de�ne its structural and behavioural properties. In AOM

approaches that explicitly support reuse, the model designer also de�nes a model interface

that clearly speci�es how the model is intended to be (re)used [4]. Based on this interface,

the model user can compose the reusable model with the application model to be able to

use its functionality.

Di�erent aspect-oriented modelling approaches provide di�erent means to apply a reusable

aspect within a target model. Some approaches require the speci�cation of explicit map-

pings [35, 9, 19], whereas others allow the use of wildcards in so-called pointcut expres-

sions [10, 39, 16]. Most approaches, though, have focussed mainly on composing a small

number of models (typically two (!)), and illustrated their approach with academic exam-

ples. Rarely have these techniques been demonstrated on systems of considerable size, which

would require several aspect models to be applied repeatedly within the same application.

To the best of our knowledge, none of the current AOM approaches speci�es precisely how

a model user should go about applying a reusable model multiple times. As a result, the

model user is faced with multiple possibilities: specifying multi-mappings or multiple individ-

ual mappings, or specifying a single complex pointcut expression vs. using several pointcut

expressions. This is a problem, since it has been shown in [28] that in practice, the model

3

designer of a reusable aspect model needs �ne-grained control over how many instances of

each reusable model element are created in the target model when an aspect is applied.

1.2 Thesis Contributions

This thesis presents a novel concept for aspect-oriented modelling: instantiation cardinal-

ities. Instantiation cardinalities augment the interface of aspect models with a speci�cation

that describes precisely how the model is to be used and composed, even when the aspect's

functionality is needed repeatedly within the target model.

Speci�cally, this thesis makes the following contributions:

• Instantiation Cardinality Concept

� Instantiation cardinalities are introduced as a novel concept that is part of the

model interface of an aspect model. The semantics of instantiation cardinalities

allow the model designer to precisely specify how the model user is supposed to

map model elements from the aspect model that is being reused to model elements

in the target model. Speci�cally, the model designer can determine if model

elements from the interface of the aspect can be multi-mapped, and if so, how

many times (minimally and maximally). This solves customization ambiguities

for users of aspect-oriented models that have been identi�ed in previous research.

� By declaring and using variables within the range declarations of the instantiation

cardinalities, the model designer can express dependencies between the minimum

and maximum number of mappings of structural entities encapsulated in the

aspect model. Based on these dependencies, the model weaver can determine

how many instances of each model element found in the aspect model are to be

created in the target model, even in the case where the aspect is used multiple

4

times. With such �ne-grained control, the model designer is able to specify all

the instantiation policies deemed important according to [28].

� Most aspect-oriented modelling approaches and programming languages include

object-oriented features as well. The thesis describes how to integrate instantia-

tion cardinalities with standard object-oriented concepts such as inheritance and

polymorphism. In particular, the thesis describes:

∗ The e�ects that the cardinalities of a superclass and its methods have on its

subclasses and the methods that they override,

∗ How automated call forwarding can be applied by the weaver in order to

allow for polymorphic treatment of multi-mapped subclasses in one model,

while not requiremeng uniform naming of polymorphically related operations

in each individual subclass.

• Integration of Instantiation Cardinalities with Reusable Aspect Models:

While instantiation cardinalities are a general concept, they are illustrated concretely in

this thesis using the Reusable Aspect Models notation (RAM)) [19], an aspect-oriented

multi-view modelling approach for software design modelling. The thesis proposes

a concrete syntax for instantiation cardinalities, and shows how they can be used

to augment the customization interface of RAM models to reap the aforementioned

bene�ts.

5

• Design Pattern Case Study:

The applicability and usefulness of instantiation cardinalities and their seamless inte-

gration with object-oriented concepts is demonstrated by showing the detailed aspect-

oriented design models of seven well-known and widely used design patterns: the cre-

ational design patterns Builder and Abstract Factory, the structural design patterns

Composite and Decorator, as well as the behavioural design patterns Observer, Tem-

plate Method and Command.

1.3 Thesis Outline

This master thesis is structured as follows. Chapter 2 introduces the Reusable Aspect

Models approach that is used in the rest of the thesis for illustration purpose. The issues

that are caused due to multiple model reuse and instantiation ambiguities are reviewed by

means of an example model that speci�es the structural and behavioural design of the Ob-

server Design Pattern.Chapter 3 proposes Instantiation Cardinalities as a solution to the

problems stated in Chapter 2. The syntax and semantics of Instantiation Cardinalities are

de�ned, and clear rules of how they are to be used in RAM by the model designer are de-

veloped . Automated Call Forwarding is introduced to enable integration of Instantiation

Cardinalities with object-oriented concepts such as polymorphism. Chapter 4 demonstrates

the applicability and usefulness of the Instantiation Cardinalities approach by showing ex-

tensive example models of commonly used design patterns, and how they can be applied in

practice. The modelled design patterns are selected to evenly represent creational, structural

and behavioural patterns .Chapter 5 surveys related work in this �eld, and the last chapter

concludes the thesis and presents ideas for future work.

6

Chapter 2
Background

As mentioned in the introduction, aspect-oriented modelling (AOM) approaches apply ad-

vanced separation of concern techniques to modelling notations with the aim of modularizing

crosscutting concerns. Many approaches have been developed in the past 12 years. These

approaches show variability with regards to the notation they employ, the targeted level of

abstraction as well as the temporal aspect of the software development process. The most

prominent ones are reviewed in chapter 5.

This chapter �rst introduces Reusable Aspect Models, the AOM approach used in this

thesis to illustrate instantiation cardinalities, and then explains the problems that a model

user faces when a concern has to be applied multiple times within the same target model.

2.1 Introduction to RAM

Reusable Aspect Models (RAM) is an aspect-oriented modelling technique targeted at agile,

concern-oriented software design modelling. RAM lies within the general framework of AOM

with some distinct characteristics that are explained in the following subsections.

2.1.1 Support for Multi-View Modelling

RAM is a multi-view modelling approach. Every software design concern expressed in

RAM within an aspect model has three di�erent kind of views: a structural view, message

views and state views.

The structural view is similar to a UML class diagram. It allows the model designer

to express the structural properties of a software design concern, i.e., the classes with their

7

attributes and operations and the associations among the classes relevant for that concern. In

addition to providing the standard object-oriented concepts that UML o�ers, i.e., subclassing

and overriding, RAM also o�ers support for aspect-oriented techniques such as class merging

and method advising as explained later.

Message views describe the behaviour of the concern being modelled. There is one mes-

sage view for each public operation de�ned by a class in the structural view. Each message

view describes the sequencing of message interchanges that occur between instances of classes

of the concern when providing the functionality o�ered by the public operation. RAM mes-

sage views are based on the UML Sequence Diagram notation, extended with aspect-oriented

concepts.

. Finally, state views allow a model designer to specify an operation invocation protocol

for instance of classes of the structural view using a simpli�ed version of the Protocol Mod-

elling [25, 7] notation. The main idea of this additional behavioural view is to document

the intended use of the classes that an aspect de�nes to the model user. Furthermore, the

modelling tool can use the state views to check that the model user indeed obeyed the invo-

cation protocol speci�ed by the model designer. This is done by using a model checker that

compares the sequence diagrams and state diagrams with each other.

2.1.2 Support for Reusability

RAM (Reusable Aspect Models), as the name suggests is about aspect models that are

intended for reuse. This is a very signi�cant feature in RAM. Each model has a well-de�ned

model interface [4], in which the model designer speci�es how the design can be (re)used

within other models. Having an explicit model interface makes it possible to apply proper

information hiding principles [34] by concealing internal design details from the rest of the

8

application. In RAM, an aspect model has two kinds of interfaces: the usage and the

customization interface.

• Usage Interface: The usage interface speci�es the design structure and behaviour

that the model provides to the rest of the application. In other words, the usage

interface presents an abstraction of the functionality encapsulated within the model to

the model user. It describes how the application can trigger the functionality provided

by the model. It is comprised of all the public model elements, i.e., the structural and

behavioural properties that the classes within the design model expose to the outside.

• Customization Interface: The customization interface of a RAM model speci�es

how a generic design model needs to be adapted to be used within a speci�c appli-

cation. To increase reusability of models, a RAM modeller is encouraged to develop

models that are as general as possible. As a result, many classes and methods of a

RAM model are only partially de�ned. For classes, for example, it is possible to de�ne

them without constructors and to only de�ne attributes relevant to the current de-

sign concern. Likewise, methods can be de�ned with empty or only partial behaviour

speci�cations. The idea of the customization interface is to clearly highlight those

model elements of the design that need to be completed/composed with application-

speci�c model elements before a generic design can be used for a speci�c purpose. In

RAM, these model elements are called mandatory instantiation parameters, and are

highlighted visually by pre�xing the model element name with a �|�, and by expos-

ing all model elements at the top right of the RAM model similar to UML template

parameters.

9

In object-orientation and object-oriented modelling, structural and behavioural properties

encapsulated inside a class can be reused (i.e., transferred to other classes) through inheri-

tance. However, structure and behaviour that involves multiple classes can not be reused in

a simple way. In OO, a designer is con�ned to the reuse of individual interface/classes, but

needs to rede�ne how messages are passed between all these classes every time, even if the

interactions he needs to create are always similar. This is not the case for reuse in RAM,

since RAM allows the reuse of an aspect that usually contains multiple classes as well as the

relationships and behaviour de�ned between instances of the classes as a whole.

This is why in object-orientation design patterns have become quite popular [14]. A

design pattern encapsulates the knowledge of frequently reused component interaction ap-

proaches, and describes how to modify them to the design-speci�c context at hand. How-

ever, the pro�cient use of design patterns comes through signi�cant experience [citation].

Sometimes, more than one design pattern can be skillfully combined to achieve a desired

functionality. Combining multiple design patterns is a task that tends to get complex even

for experienced programmers [citation]. Since RAM allows the reuse of classes as well the

interactions between them, an entire design concern can be modularized and reused as a

single unit. These concerns could be design patterns, also other interactions that recur often

in software designs. Typical examples of such design concerns are complex data structures

or network communication infrastructure.

2.1.3 Support for Explicit Model Dependencies

The ability to reuse aspects allows the creation of complex aspect dependency chains in

RAM. Higher-level aspects, i.e., aspects that encapsulate complex structure and behaviour,

depend on lower-level aspects, reusing the generic structure and behaviour that they de�ne

10

for their own purpose. This ability to reuse models simpli�es the task of creating extremely

complex models bringing it within the cognitive load of the modeller. Studies have shown

that when an individual undertakes a mental task (e.g. attempting to analyze a model or

answer questions about a model) that exceeds their working memory capacity, errors are

likely to occur [37]. As a result, recent psychology research argues that mental tasks should

always be designed such that they can be processed within the limit of ones working memory

capacity [33].

When a higher-level aspect (HL) reuses a lower-level aspect (LL), the model designer of

HL (who is the model user of LL) must specify detailed instantiation directives that map at

least all the model elements from LL that were designated by the model designer of LL as

mandatory instantiation parameters to model elements in HL. This is necessary in order to

allow the weaver to generate a composed model as explained in the following subsection.

2.1.4 Tool Support

In the context of MDE and in particular of AOM, tool support for the creation, analysis

and composition of models is essential. The RAM tool is called TouchRAM [3], and is

developed following the current state-of-the-art techniques for MDE tools: a metamodel [22]

for the abstract syntax of RAM has been de�ned, and the realization is done within the

Eclipse Modelling Framework (EMF) [1].

Contrary to standard modelling tools, though, TouchRAM has an intuitive and stream-

lined user interface that enables agile software design modelling. In particular, it takes

advantage of multi-touch input when running on a digital surface, such as a touch-enabled

11

table, tablet or wall display. Touch-based input not only speeds up standard modelling activ-

ities (creating, moving, and connecting model elements), but also enables faster model reuse,

because it speeds up browsing though model libraries and specifying model customizations.

The most important feature of TouchRAM in the context of this thesis is the model

weaver, which is capable of composing aspect models, i.e. their structural, message and state

views, according to the instantiation directives speci�ed by the model user. The weaving

algorithm is out of the scope of this thesis. The interested reader is referred to [3] for more

details.

TouchRAM allows the model user to perform selective weaving, i.e. the user can choose

to compose the structure and behaviour of a reused (lower-level) aspect with the structure

and behaviour of the reusing (higher-level) aspect. Alternatively, the user can also directly

instruct TouchRAM to weave the complete model, which recursively composes all reused

aspects according to the instantiation directives to yield one big woven model. Selective

weaving is useful, because it allows the model user to study the detailed interaction between

the higher-level and lower-level concerns to ensure that the resulting structure and behaviour

is consistent with his expectations. Complete weaving is useful for model analysis or code

generation purpose.

2.1.5 RAM Example

This subsection illustrates the ideas introduced in the previous subsections by presenting

the RAM design of the Observer design pattern aspect. The Observer design pattern [14] is a

software design pattern in which an object, called the subject, maintains a list of dependents,

called observers. The functionality provided by the pattern is to make sure that, whenever

the subject's state changes, all observers are noti�ed.

12

aspect Observer

structural view
|Subject<|modify>

|Observer<|update>

+ * |modify(..)

|Subject

+ startObserving(|Subject)
+ stopObserving(|Subject)
~ |update(|Subject)

|Observer

Usage Interface Customization Interface

structural view |Subject
|Observer

|modify
|update

~ add(|Observer a)
~ remove(|Observer a)
~ ArrayList<|Observer> getObservers()
+ * |modify(..)

|Subject

+ startObserving(|Subject)
+ stopObserving()
~ |update(|Subject)

|Observer

1
myList 0..*~ add(|Observer)

~ remove(|Observer)

<<impl>>
java.util.ArrayList

|Observer

mySubject
0..1

aspect Observer

message view |modify affected by notification
message view notification

target: |Subject
|modify(..)

Pointcut

|modify(..)

target: |Subject

o: |Observer
|update(..)

 observers := getObservers()

loop [o within observers]

* *

Advice

message view startObserving target: |Observer

startObserving(s)

s: |Subject

add(target)

message view stopObserving target: |Observer

stopObserving(s)

s: |Subject

remove(target)

myList:
ArrayList

add(target)

myList:
ArrayList

remove(target)

2.2 Instantiation Ambiguities

In the object-oriented world, where classes are the main modularization unit, generic

designs are encapsulated within generic classes (also called template classes). The cus-

tomization interface of a generic class clearly speci�es what information the programmer

who wishes to reuse a generic class needs to provide in order for the class to be usable. For

instance, the Java class ArrayList<E> requires the user to specify the type of the elements

that are to be stored within the array. If the user needs two di�erent kinds of ArrayLists

in his design, she can simply instantiate the generic class twice with di�erent element types.

In RAM, when a modeller wants to reuse an already existing, generic RAM model within

her current design, she must also use the customization interface to adapt the generic model

to her speci�c design. This is done by providing instantiation directives that map every

model element in the customization interface to a model element in current design model.

If desired, TouchRAM [3], the modelling tool for the RAM approach, can compose the

structure and behaviour of the two models using the instantiation directives to yield the

complete software design model.

In some way, the reuse process in RAM is therefore similar to the one of generic classes

in programming languages. However, in contrast to generic classes, RAM models typically

encapsulate more than one design class, and the functionality provided by the aspect results

from interacting instances of several di�erent classes. Just like with classes, a modeller might

want to reuse the functionality provided by an aspect once or multiple times in his design.

However, since the functionality of the aspect is split over several classes, the user might

need parts of the structure or functionality provided by an aspect model multiple times, but

not all of it.

15

structural view
aspect NavalBattle

+ void moveShip(int newX, int newY)
+ void sinkShip()

- int currentXPos
- int currentYPos
- Status currentStatus

Ship

~ void shipSunk(Ship s)
~ void gameFinished(Player p)

PlayerStatsDisplay

+ void playerWins()
+ void playerLoses()

- String name
- int numberOfWins
- int numberOfLosses

Player

~ void updatePosition(Ship s)
~ void shipSunk(Ship s)

BattlefieldDisplay

myShips
0..*

Figure 2�3: Simpli�ed Naval Battle Base Model

Fig. 2�3 illustrates such a situation. The model shows parts of the design of a turn-based

naval battle game, where players control ships that move around on a battle�eld. Lets assume

that there is a BattlefieldDisplay class that takes care of visualizing the battle�eld on

the screen, and there is also a PlayerStatsDisplay class that shows the list of all players

together with statistics about their game performance, e.g., how many games they won or

lost, and how many ships they sunk.

In such a design, the modeller may want to reuse the Observer concern shown in Fig. 2�1

to notify the display classes whenever the state of the ships or players change. An instanti-

ation directive such as:

Subject → Ship
modify → moveShip

Observer → BattlefieldDisplay
update → shipMoved

would make sure that whenever a ship moves (because someone invokes the moveShipmethod

on a ship), the updatePosition method of any BattlefieldDisplay instances that previ-

ously registered with the ship instance would be called.

16

In this situation, however, one could imagine more complex reuses of the Observer design

that are not trivial to express. For instance, when a ship sinks (because someone invokes the

sinkShip method on a ship), all registered BattlefieldDisplay instances and registered

PlayerStatsDisplay instances should be noti�ed by a call to their respective shipSunk

methods. The modeller might be tempted to multi-map the Observer class, i.e., to write an

instantiation directive such as:

Subject → Ship
modify → sinkShip

Observer → BattlefieldDisplay, PlayerStatsDisplay
update → shipSunk

to achieve the desired e�ect. Unfortunately, the implementation of the Observer design

shown in Fig. 2�2 does not support such a multi-mapping, since the generic java.util.ArrayList

class can only be parameterized with one type. To solve this problem, and in order to be

able to reach both BattlefieldDisplay and PlayerStatsDisplay with a call to shipSunk,

a superclass needs to be introduced and shipSunk must be transformed into a polymorphic

call.

Without these changes, the only way to achieve the desired e�ect is to reuse Observer

twice, i.e., to map Observer in one instantiation directive to BattlefieldDisplay, and

to map Observer in the second instantiation directive to PlayerStatsDisplay. This will

achieve the desired e�ect, but internally we then get two array lists, one containing BattlefieldDisplay

instances, and the other one containing PlayerStatsDisplay instances. The sinkShip

method is also advised twice, i.e., after updating the ship status, a �rst loop noti�es all

BattlefieldDisplay instances, and then a second loop noti�es the PlayerStatsDisplay

instances. Although this works, using two array lists (and looping through the observers in

17

two separate loops) is not elegant, increases memory use and maybe even decreases perfor-

mance.

In general, the need for �ne-grained control over how many instances of a speci�c element

de�ned in an aspect model should be created when the aspect model is reused multiple times

within the same target model has been already highlighted in [28]. The authors de�ne four

so-called introduction policies. By default, new instances of the element are created each

time the aspect model was reused (named PerPointcut-Match in [28]). It is also possible to

specify that only a single instance is created regardless of how many times the aspect model

is reused (referred to as Global). Finally, the authors also provide the possibility to specify

new instances should be created only for a given matched set or tuple of model elements in

the target model (PerMatchedElement or PerMatchedRole).

18

Chapter 3
Instantiation Cardinalities

This chapter introduces an extension to the customization interface of aspect-oriented

models that addresses the issues introduced in section 2.2: it solves the reuse ambiguity

that the model user currently experiences in RAM and similar AOM approaches. At the

same time, this extension makes it possible for the model designer to have �ne-grained

control about how many instances of a speci�c model element de�ned in an aspect model

are introduced into the target model. Section 3.1 �rst presents a general overview of the

idea, and then provides the detailed de�nitions. Section 3.2 analyses the consequences of

multi-mapping with respect to structural and message views. Finally, section 3.3 explains

the integration of instantiation cardinalities with object-orientation.

3.1 Instantiation Cardinalities

3.1.1 Overview

We propose to augment the customization interface of a reusable unit by allowing the

model designer to specify instantiation cardinalities for each model element. The instanti-

ation cardinality of a model element declares how many times, minimally and maximally,

the model element can be mapped to model elements of the target model within one instan-

tiation, i.e, within one reuse. Visually, we suggest to show the instantiation cardinality in

curly brackets to the right of the name of the model element using a syntax similar to what

is done for UML multiplicities on association ends [31].

19

structural view

+ * modify(..)

Subject

+ void startObserving(Subject s)
+ void stopObserving(Subject s)
~ void update(Subject s)

ObserverInterface{1}

{m=1..*}

{m}

~ void update(Subject s)

Observer {1..*}

aspect Observer

→
→

→
→
→
→

for the model designer we also de�ne a default cardinality for classes, i.e., {0..1}. For meth-

ods, the default cardinality is {0} since they are usually provided a de�nition when they are

declared.2 .

In order to express the situation where the number of instantiations of one model element

must be equal to the number of instantiations of another model element, it is possible to

de�ne variables within the instantiation cardinality speci�cation. For example, Fig. 3�1

states that there must be at least one modify method within the Subject class, but there

can be more than one. However, for every modify method there should be a corresponding

update method in the ObserverInterface class. By assigning the number of instantiations

of the Subject class to the variable m (by specifying {m=1..*}), we are able to express this

constraint on the update method of the ObserverInterface (by specifying its instantiation

cardinality to be {m}).

In this case it is possible to write an instantiation directive such as:

Subject → Player
modify<1> → playerWins
modify<2> → playerLoses

ObserverInterface → DisplayInterface
update<1> → gameCompleted
update<2> → gameCompleted

Observer → BattlefieldDisplay

to specify that whenever playerWins or playerLoses is invoked on a Player instance,

gameCompleted of the registered PlayerStatsDisplay instances is called.

2 This makes sense not only because there are often classes and methods that do not
need to be mapped, but also because that way classes and methods are not mandatory
instantiation parameters by default. As a result, the model designer is forced to make a
conscious decision when exposing model elements as mandatory instantiation parameters.

21

3.1.2 Instantiation Cardinality Syntax and Variables

Instantiation cardinalities can take the form of one integral number (or variable), e.g. {2},

or a range of numbers, e.g. {0..q}. For ranges (two numbers separated by two dots), the

�rst number represents the minimum value and the second number represents the maximum

value of the cardinality. For the second number, the character * can also be used which

means that there is no prede�ned maximum value. When there is only one number (or

variable) representing a cardinality, e.g. {2}, it can be equivalently represented as {2..2} in

the two number format. In other words, the minimum value of {2} is 2 and the maximum

value of {2} is also 2.

Whenever a variable like p appears in a cardinality, it is assumed that it is declared in

the model somewhere. We have this rule for declaring variables in cardinalities:

Variable Declaration Rule: �Each variable name that appears within an instan-

tiation cardinality speci�cation must be declared exactly once within the aspect

model. The declaration must equate the variable to a cardinality range that may

depend on other variables, if needed. Circular variable dependencies, however,

are forbidden.�

The examples shown in Table 3�1 illustrate how this rule is applied in practice.

3.1.3 Single-Mapping and Multi-Mapping

As seen above, when a higher-level aspect (subsequently referred to as HL) reuses a lower-

level aspect (LL), the model user must provide instantiation directives that consist of a set

of mappings that relate a model element from LL to a model element in HL of the same

22

Example of Variable
Declaration

Comments

{p=0..*} or {p=1..*} or
{p=2..*}, etc.

Recommended way to declare a variable

{p=0..q} or {p=1..q} or
{p=2..q}, etc.

Allowed. Make sure that q is declared exactly once and its
declaration does not directly or indirectly depend on p. While
we haven't experienced a situation where this kind of
declaration might be useful, it might prove itself useful in the
future.

{p=0} or {p=1} or {p=2}
or {p=3}, etc.

Allowed. On declaring {p=3}, whenever any other element that
has a cardinality that depends on p, e.g. {p}, it would be clear
which element has an independent cardinality and which has a
dependent cardinality. Also, in such a case, if a di�erent value
is needed, e.g. {p=4}, the value has to be changed at only one
place.

{p=q..r} Not recommended but allowed. Make sure that q and r are each
declared exactly once and their declaration does not depend on
p. In such a case it is also important that the maximum
possible value of q is less than or equal to the minimum
possible value of r. While we haven't experienced a situation
where this kind of declaration might be useful, it might prove
itself useful in the future.

{p=q..4} or {p=q..5} or
{p=q..6}, etc.

Not recommended but allowed as long the declaration of q
makes it clear that its maximum possible value is 4 (or 5 or 6,
etc.) e.g. {q=0..3}. While we haven't experienced a situation
where this kind of declaration might be useful, it might prove
itself useful in the future.

{p=q} Not allowed. Referring to one cardinality with two variable
names would be confusing and not serve any useful purpose.

Table 3�1: Rules for Variable Declaration

23

Cardinality
Type of Mappings
Possible

{0}, {1} and {0..1} Single Mapping Only

{0..*}, {1..*}, {2..*}, ... {0..p}, {1..p}, {2..p}, ... {p},{p..q} Single and Multi-Mapping

Table 3�2: Mappings and Cardinalities

type. The general rule for mappings is as follows:

Mapping Rule: �Every model element (class or method) of a reused aspect can

be mapped to a model element (of the same type) in the reusing aspect irre-

spective of its instantiation cardinality� .

Mappings can be divided into two categories: Single-Mapping and Multi-Mapping.Single-

mapping refers to the case where the model user provides only one mapping for a given

model element in LL. Multi-mapping corresponds to the case where more than one mapping

for a given model element in LL are provided. Table 3�2 provides the possible instantiation

cardinalities, and what kind of mappings they allow.

When a single mapping is used for a model element, the woven model will contain that

element exactly once. For multi-mappings, the woven view contains the element at least

once. Since it is not possible to have the multiple model elements with the same name and

type in one model, the following rule for multi-mappings is de�ned:

24

Multi-Mapping Rule: � When a class or method has a multi-mapping cardinal-

ity, if it is mapped more than once, it must be renamed in each assignment�.

Syntactically, when a class or method gets mapped more than once, the su�x <numeral>

is used to refer to each instance of the model element. The only place where the su�x is

allowed to be used is within a mapping. The su�xes should not appear in structural or

message views.

3.1.4 Class Cardinalities and Mappings

In this subsection we describe the meaning of mapping classes. When a model user of

LL speci�es that a class LC from LL is mapped to a class HC of HL, he has the possibility

to rename the class, and also to augment the class.

Class renaming occurs when the class name HC di�ers from LC. Renaming of classes is

important to adjust the name of the class from LL to accurately re�ect its purpose in HL.

For example, subsection 3.1.1 shows an instantiation directive where the Subject class of the

Observer model is mapped to the Player class in NavalBattle.

Class augmentation occurs when the model user of LL, who is also the model designer of

HL, speci�es additional properties for HC in HL. When a class is augmented, it means that

either one or more of the following four things happen to the class:

1. At least one new attribute or association is de�ned on HC in the structural view of

HL. This is a case of structural augmentation.

2. At least one new method de�nition mnew is de�ned for HC in the structural view.It is

a case of structural augmentation. Optionally, the modeller can also provide a message

view for mnew, which results additionally in a behavioural augmentation.

25

Class Cardinality What can be done to the Class in a Higher-Level
Aspect

{0} It can be mapped once (see mapping rule in subsection 3.1.3),
and serves to change the name of a class to more accurately
describe its purpose in HL. The class is not allowed to be
augmented.

{1} It must be mapped once (see rule in subsection 3.1.3). The
class must be augmented.

{0..1} It can be mapped once(see rule in subsection 3.1.3). It is
optional to augment the class.

{1..*} It must be mapped at least once, but can be multi-mapped. If
mapped more than once, it must be renamed in each
assignment. For each assignment, the class must be augmented.

{0..*} In addition to the behaviour that is shown by {1..*}, {0..*} also
allows the possibility of not mapping the class.

{p} It must be mapped exactly p times. If p is greater than 1, it
must be renamed in each assignment. For each assignment, the
class must be augmented.

Table 3�3: How Class Cardinalities A�ect the Model User

3. At least for one method mold declared in the structural view of LL for which there is

no provided message view in LL, a message view is de�ned in HL. This is a case of

behavioural augmentation.

4. A new message view is de�ned in HL that advises an existing method mold in LL. This

is a case of behavioural augmentation as well.

Table 3�3 lists how instantiation cardinalities determine what the model user is allowed to

do with the class in HL.

3.1.5 Method Cardinalities

In this subsection we describe the meaning of mapping methods. Just like for classes,

when a model user of LL speci�es that a method mlower (ml) of a class LC from LL is

26

mapped to a method mhigher (mh) of class HC of HL, he has the possibility to rename the

method, and also to de�ne the method.

Method renaming occurs when the method name mh di�ers from ml. Renaming of meth-

ods is important to adjust the name of the method from LL to accurately re�ect its purpose

in HL. For example, subsection 3.1.1 shows an instantiation directive where the update

method of the Observer class is mapped to the shipSunk method.

De�ning a method means to provide a message view for mh in HL. This makes sense in

the case where ml does not have a message view de�ned in LL.

Table 3�4 lists how method instantiation cardinalities determine what the model user is

allowed to do with the method in HL.

3.1.6 E�ects of Class Cardinalities on Cardinalities of the Contained Methods

The case where a class has a cardinality of {0} deserves special mention, because it has

an e�ect on the possible cardinalities of the methods it contains. In this case, only class

renaming is possible. No new attributes, associations or methods can be added to the class.

Furthermore, the message view for existing methods cannot be modi�ed.

Hence, no method contained in LC should have a cardinality {1}, since {1} implies that

the message view must be modi�ed. Also, multi-mapping methods is not allowed, since the

rule of multi-mapping says that the message view for the methods must be modi�ed. This

means that in a class with cardinality {0} all methods must have cardinality {0}. However,

this should not be cause of concern because in our experience, the only situations where it

might make sense to have a class cardinality {0} is when it is an implementation class, i.e.,

an unmodi�able class provided by a third party or a language run-time.

27

Method Cardinality What can be done to the Method in a Higher-Level
Aspect

{0} It can be mapped once (see mapping rule in
subsection 3.1.3).The existing message view from the
lower-level aspect cannot be re-de�ned.

{1} It must be mapped once (see mapping rule in subsection 3.1.3).
The (non-existing) message view must be de�ned in the
higher-level aspect (unless it is an abstract method).

{0..1} Not allowed. For every method, the designer must be aware
whether it is intended to be de�ned in a higher-level aspect.

{1..*} It must be mapped at least once, but can be multi-mapped if
the model user chooses to do so. If mapped more than once, it
must be renamed in each mapping. For each mapping, the
message view must be de�ned if it does not exist (unless it is an
abstract method).

{0..*} In addition to the behaviour that is shown by {1..*}, {0..*} also
allows the possibility of not mapping the method.

{p} It must be mapped exactly p times. If p is greater than 1, it
must be renamed in each mapping. For each assignment, the
message view must be de�ned if it does not exist(unless it is an
abstract method)

Table 3�4: How Method Cardinalities A�ect the Model User

28

3.2 Consequences of Multi-Mapping

In the previous section, we introduced the concept of Instantiation Cardinalities, and

precisely de�ned what kind of cardinalities are allowed and what they mean with respect

to classes and methods. It must be stated here that these rules have simple explanations

and hence, the designer does not need to actually memorize them. Also, as we shall see

in the next chapter, when using instantiation cardinalities in real-world examples, they are

straight-forward to use. In any case, the rules can be easily enforced by the modelling tool.

In this section, we look into the consequences of multi-mapping with respect to how many

instances of each model element appears in the target model. In particular, we describe how

the weaver needs to handle associations between classes, message views and method calls

depending on the di�erent cases that arise.

3.2.1 Associations Between Multi-Mapped Classes

In the presence of instantiation cardinalities, the weaver can easily determine how many

instances of each model element from the reused aspect should be created in the target model.

For model elements that are explicitly mapped, the number of instances is determined by

the instantiation directive. Classes, operations and attributes that are not explicitly mapped

are created once, except for classes that are contained in another class. In that case, the

number of instances of the class is equal to the number of instances of the containing class.

Handling of relationships between classes, i.e., associations, aggregations, compositions

and generalization-specialization, are more interesting. Assuming that class A and class B

are related with relationship r, the di�erent cases are handled as illustrated in Fig. 3�2 and

described in the following list:

29

1. If the instantiation cardinality of class A is {0}, {0..1} or {1}, and the instantiation

cardinality of B is {0}, {0..1} or {1}, then one single instance of r is created in the

target model.

2. If the instantiation cardinality of class A is {q=1..*} or {q=0..*}, and the cardinality

of B is {0}, {0..1} or {1}, then q instances of the relationship r are created in the

target model.

3. If the instantiation cardinality of class A is {0}, {0..1} or {1}, and the cardinality of B

is {q=1..*} or {q=0..*}, then q instances of the relationship r are created in the target

model.

4. If the instantiation cardinality of class A is {q=1..*}, and the cardinality of B is

{p=1..*}, then we are in a situation where the number of instances of A and B are

completely independent. Hence, p*q instances of the relationship r are created in the

target model.

5. The last and the most interesting case occurs if the instantiation cardinality of class

A is {q=1..*} or {q=0..*}, and the cardinality of B is {q}, then we are in a situation

where the number of instances of B is derived from the number of instances of A. In

other words, every instance of A has its corresponding instance of B, and hence, 1

instance of the relationship r is created in the target model for each mapping of A.

This gives a total of q instances.

3.2.2 Multi-mapping and Message Views

In the previous section, we looked at the e�ect of multi-mapping on classes and associ-

ations. In this section, we look at the e�ect of multi-mapping on message views. When a

method calls another method, depending on the cardinalities of the methods as well as the

30

A1 {0..1}

B1 {0..1}

 A2 {q=1..*}

B2 {0..1}

A4 {q=1..*}

B4 {p=1..*}

1 1

1
1 2

3

1 1

2 2

3

A5 {q=1..*}

B5 {q} 1 1

2 2

3 3

 A3 {0..1}

B3 {q=1..*}

1

1

2

3

1

2

3

4

5

Figure 3�2: Rules for Associations

31

classes in which they are declared, there are multiple possibilities for the resulting woven

message view. To handle the multiple cases that can arise, we de�ne three rules and then

show how they can be applied:

1. The number of message views of a method whose instantiation cardinality is p in the

woven model is equal to p.

2. In the message view m of class A, any method call to a method n with cardinality q is

replaced by a sequence of q method calls (n<1>, n<2>...n<q>) in the woven view,

except if the cardinality of m or the cardinality of A is also q. If this is the case then

only one method call to the corresponding instance of n appears in the woven message

view.

3. In a message view m of class A, any method call to a method n that is de�ned within

a class B that has cardinality q is replaced by a sequence of q method calls (B<1>.n,

B<2>.n.. B<q>.n) in the woven view, except if the cardinality of m or the cardinality of

A is also q. If this is the case, then only one method call to the corresponding instance

of B.n appears in the woven message view.

Fig. 3�4 shows the application of the above rules in some cases. The application of the

rules is straightforward in the di�erent cases. The above three rules can also be applied to

nestedOp and sameOp in Fig. 3�3 without any special considerations.

3.3 Integrating Instantiation Cardinalities with Object-Orientation

In the previous section we discussed how the weaver handles associations and message

views with instantiation cardinalities. In this section we explore how subclassing and inher-

ited methods integrate with cardinalities.

32

message view sameOp

message view diffOp

structural view

sameOp(..)

a:A

 nestedOp(..)

a:A
diffOp(..)

 anotherOp(..)

b:B

+ * sameOp(..)
+ * diffOp(..)
+ * nestedOp(..)

A

+ * anotherOp(..)

B1
b

Note 1: In actual woven view, a numeric suffix will not appear (e.g. anotherOp<1> or A<2>)
because the rule of multi-mapping forces the user to rename the methods and classes.

These diagrams are meant to illustrate how the weaver handles multi-mappings in message views.

diffOp {0} A {0..1} anotherOp {q=1..*} B {0..1}

a:A
diffOp

 anotherOp<1>

b:B

 anotherOp<2>
 anotherOp<3>

a:A<3>
diffOp<4>

 anotherOp<1>

b:B<1>

 anotherOp<1>

b:B<2> b:B<3>

 anotherOp<2>

 anotherOp<2>

 anotherOp<1>

 anotherOp<2>

diffOp {0} A {0..1} anotherOp {1} B {p=1..*}

a:A
diffOp

 anotherOp

b:B<1>

 anotherOp

b:B<2>

 anotherOp

b:B<3>

message view A.diffOp

message view A.diffOp

diffOp {p=1..*} A {r=1..*} anotherOp {q=1..*} B {s=1..*}

message view A<3>.diffOp<4>

diffOp {p=1..*} A {r=1..*} anotherOp {p} B {s=1..*}

message view A<3>.diffOp<4>

a:A<3>
diffOp<4>

 anotherOp<4>

b:B<1>

 anotherOp<4>

b:B<2>

 anotherOp<4>

b:B<3>

diffOp {p=1..*} A {r=1..*} anotherOp {r} B {p}

message view A<3>.diffOp<4>

a:A<3>
diffOp<4>

 anotherOp<3>

b:B<4>

diffOp {p=1..*} A {q} anotherOp {p} B {p}

message view A<3>.diffOp<4>

a:A<3>
diffOp<4>

 anotherOp<4>

b:B<4>

1

2

3

4

5

6

3.3.1 Subclassing

Generalization-Specialization, or inheritance as it is often called in object-orientation,

de�nes a �is a� relationship between classes. It therefore makes sense that the instantiation

cardinality of a superclass A has an e�ect on the cardinality of its subclasses. We de�ne the

following rule:

Rule: Multi-Mapping of Subclasses: �When a subclass is multi-mapped, the car-

dinality of the subclass represents the number of times it can be mapped with

respect to its superclass.�

Fig. 3�5 illustrates two cases. In case I, class B must be mapped p times for each mapping of

class A. If there is a situation like case II, class C must be mapped q times for each mapping

of class B. Class B in turn must be mapped p times for each mapping of class A. The reason

behind this is that while actually using instantiation cardinalities we found that it allows for

the most natural usage.

3.3.2 Inherited Methods

When a method is inherited from a superclass, there can be multiple cases. In Fig.

3�6case 1, B.operation() has a cardinality {1} and it is inherited from A.operation()

which has a cardinality{1..*}. This means that B.operation()must be mapped exactly

once for each mapping of A.operation(). To make the example more concrete, consider

the mappings:

35

A {1..*}

B {p}

A {1..*}

B {p}

C {q}

Case I Case II

Figure 3�5: Multi-mapping Subclasses

A → Media

operation<1> → playMedia

operation<2> → stopMedia

B → Song

operation<1> → playSong

operation<2> → stopSong

Since A is the superclass, the multi-mappings of operation serve the additional purpose

of determining the number of times A.operation() is actually mapped. The Song class

that is mapped to B will become a subclass of Media in the woven view as B is a sub-

class of A. Consequently, both the methods playMedia and stopMedia will be inherited by

the Song class. Since the designer has speci�ed a cardinality {1} for B.operation(), it

means that B.operation() must be mapped and a message view must be provided for each

B.operation(). The cardinality of {1} is somewhat similar to the idea of method overriding

in OO languages. While it serves a similar purpose, playSong does not override the message

36

+ * operation(..) {1..*}

A

+ * operation(..) {1}

B

+ * operation(..) {1..*}

A

+ * operation(..) {1}

B

+ * operation(..) {1}

C

Case I Case II

Figure 3�6: Multi-mapping Inherited Methods

view of playMedia. Instead, playMedia now simply calls playSong using Automated Call

Forwarding described in the following section(3.3.3).

If B.operation() has the cardinality {0}, it is not allowed to be de�ned in a higher-level

aspect. However, the user can still rename it to a di�erent method name.

Fig. 3�6 Case II has an additional subclass C. C.operation() has the cardinality {1}.

Hence, like B.operation(), C.operation() must be mapped the same number of times

as A.operation() is mapped. The cardinality for inherited methods Fig. works slightly

di�erently from the cardinality of subclasses as shown in Fig. 3�5. In fact, an inherited

method can have a cardinality of {0} or {1} only, which leads to the following rule:

Rule: Multi-Mapping for Inherited Methods:�If a method is to be multi-mapped,

this is always indicated in the class where the method is declared. Inherited

methods are not allowed to be multi-mapped.�

37

In Fig. 3�6, if one or more of the classes A, B or C had a cardinality greater than 1, it

would not a�ect the above rule in any manner. The rules for multi-mapping of subclasses

and inherited methods can mutually co-exist without any special considerations.

3.3.3 Polymorphism using Automated Call Forwarding

The rules of object-orientation dictate that in a subclass, the name for a method that

overrides a method de�ned in a superclass must remain the same. In AOM, where sub- and

superclasses may happen to be de�ned in separate aspect models, this constraint hinders

true separation of concerns. It requires a designer to chose the method names in one concern

based on name de�nitions of another concern.

To remedy this situation, we allow overridden methods in subclasses to optionally be

mapped to methods that do not necessarily have the same name as the superclass method

(or any of the method names in the sibling classes). The only constraint is that the method's

parameter number and types must match.

If the model user speci�es such a mapping, then the model weaver automatically inserts

an additional method with the name de�ned in the superclass, that directly forwards all

calls to the mapped method. As a result, it is possible in the aspect model that de�nes the

superclass to make a call that polymorphically dispatches to a di�erently named method of

a subclass de�ned in a di�erent aspect model.

This feature is not only convenient, it becomes essential when a high-level aspect reuses

several generic aspect models or existing implementation classes. For instance, in the Naval-

battle example discussed earlier, if the player statistics are kept on a remote web server, then

one might want to reuse the Observer aspect model de�ned in Fig. 3�1 as follows:

38

Subject → Ship
modify → sinkShip

Observer<1> → BattlefieldDisplay
update → refreshWindow

Observer<2> → PlayerStatsDisplay
update → sendStatsToServer

39

Chapter 4
Design Patterns Revisited

Chapter 3 introduced instantiation cardinalities by means of the Observer behavioural

design pattern example. This chapter presents an in-depth case study in which instantiation

cardinalities are applied to create detailed reusable aspect models of six additional design

patterns [14]. First, the structural design patterns Composite [14] and Decorator are shown

in section 4.1. To complement the Observer design pattern, section 4.2 presents the design of

the behavioural design patterns Template Method and Command. Finally, the design models

of the creational design patterns Builder and Abstract Factory [14] are shown in section 4.3.

The intent of this extensive case study is to highlight:

• how instantiation cardinalities provide a precise speci�cation of the customization in-

terface of a model that unambiguously determines how the model user is supposed to

map the generic model elements from the reused model to a target model,

• how instantiation cardinalities integrate with object-oriented concepts, and �nally,

• how the weaver can exploit instantiation cardinalities to determine the exact number

of times each model element from the reusable model needs to appear in the target

model.

4.1 Structural Design Patterns

Structural patterns are concerned with how classes and objects are composed to form

larger structures using inheritance and object composition [14]. In this section, we discuss

two structural patterns: Composite and Decorator.

40

structural view

+ * operation(..)
+ ArrayList<Component> getChildren()

Component

{1..*}

+ * operation(..) {0}
+ ArrayList<Component> getChildren()
+ void addChild(Component c)
+ void removeChild(Component c)

Composite {1}

+ * operation(..)

Leaf {1..*}

1
myComps

0..*
content

~ void add(Component c)
~ void remove(Component c)

<<impl>>
java.util.ArrayList

Component

message view operation

operation(..)

aspect Composite

loop [c within Component]

target: Composite

c: Component

operation(..)

message view Component.getChildren
r := getChildren()

target: Component

null

message view Composite.getChildren is Getter<myComps>

{1}

Component → Media
operation<1> → playMedia
operation<2> → stopMedia

Leaf<1> → Song
operation<1> → playSong
operation<2> → stopSong

Leaf<2> → Video
operation<1> → playVideo
operation<2> → stopVideo

Composite → PlayList
operation<1> → playPlayList
operation<2> → stopPlayList

Figure 4�2: Example Instantiation of Composite

interface is optional to map, but at least one operation must be speci�ed {1..*}. Mapping

it multiple times allows the model user to expose multiple leaf operations. In the message

view for Composite.operation, we de�ne the behaviour that loops through all the children

and calls operation on each child. Note that, we need to and are allowed to de�ne only one

message view for this method, irrespective of the number of times operation is going to be

mapped in a higher-level aspect.

For example, suppose a higher-level aspect Jukebox reuses the Composite aspect as fol-

lows:

The mappings in the Jukebox aspect also nicely illustrates the advantage of automated

call forwarding. The designer of Jukebox is not bound to use identical method names for

the common operations de�ned in the di�erent leaf classes. This allows for a great amount

of �exibility while modelling. For instance, a user might have started creating the Jukebox

aspect with the Song and Video classes together with the playSong and playVideo oper-

ations. Only later, when designing PlayList, she realizes that the Composite pattern is

useful in this context. Thanks to automated call forwarding, she can simply map the meth-

ods to operation de�ned in Composite without the need to modify any existing method

42

structural view

+ void playMedia()
+ void stopMedia()

Media

+ void playSong()
+ void stopSong()

Song

+ void playVideo()
+ void stopVideo()

Video

+ void playPlayList()
+ void stopPlayList()

PlayList

aspect Jukebox

structural view

+ void playMedia()
+ void stopMedia()
~ ArrayList<Media> getChildren()

Media

+ void playSong()
+ void stopSong()
+ void playMedia()
+ void stopMedia()
+ ArrayList<Media> getChildren()

Song

+ void playVideo()
+ void stopVideo()
+ void playMedia()
+ void stopMedia()
+ ArrayList<Media> getChildren()

Video
PlayList

+ void playPlayList()
+ void stopPlayList()
+ void playMedia()
+ void stopMedia()
+ void addChild(Media c)
+ void removeChild(Media c)

1
myComps ~ void add(Media c)

~ void remove(Media c)

<<impl>>
java.util.ArrayList

0..*
content

Woven Jukebox, Composite

toppings, the number of possible pizzas would grow exponentially with each topping. The

limitations of subclassing now start to become clear. If there is change in the price of one

component, the price of the component would need to be changed individually in all the

classes. The Decorator pattern works elegantly in this kind of situation. It allows the selec-

tion of the ConcreteComponent (pizza base) and the di�erent ConcreteDecorator (toppings)

at runtime.

Fig. 4�5 shows the Decorator RAM model with instantiation cardinalities. The mappings

in the higher-level aspect PizzaStore that reuse the Decorator aspect are as follows :

It should be noted that mapping operation in the Topping class is optional and a user

is not allowed to rede�ne its message view since the cardinality of operation is {0}. The

message view assignComponent is an advice that a�ects the behaviour of constructors of a

Decorator. Constructors are represented by the keyword create in RAM and are treated

exactly like methods with respect to cardinalities. The cardinality of {1..*} implies that

multiple constructors can be de�ned for the class that maps to Decorator. The advice for

assignComponent states that whenever create is called, after the de�nition for create

as de�ned in the higher-level aspect has been executed, the component reference in the

Decorator class should be assigned to the Component object c that must be passed to create

as a parameter.

Fig. 4�8 shows the woven model that combines PizzaStore and Decorator. The message

views of Topping are shown. The message views of other methods utilize a straightforward

application of Automated Call Forwarding and have not been shown for space reasons.

45

message view Decorator.operation

operation(..)

target:Decorator component: Component

operation(..)

structural view

+ * operation(..) {1..*}

Component

+ * operation(..) {1}

ConcreteComponent {1..*}

+ create(.., Component c) {1..*}
+ * operation(..) {0}

Decorator {1}

+ * operation(..) {1}

ConcreteDecorator {1..*}

1
component

message view assignComponent

caller:
Caller

target:
Decorator

create(.., c)

Pointcut

*

caller:
Caller

target:
Decorator

create(.., c)

*

message view create affected by assignComponent

aspect Decorator

component := c

Component→Pizza

operation<1>→getPizzaDescription

operation<2>→getPizzaCost

ConcreteComponent<1>→ThinCrust

operation<1>→getThinCrustDescription

operation<2>→getThinCrustCost

ConcreteComponent<2>→StuffedCrust

operation<1>→getStuffedCrustDescription

operation<2>→getStuffedCrustCost

Decorator→Topping

operation<1>→getToppingDescription

ConcreteDecorator<1>→Mushrooms

operation<1>→getMushroomsDescription

operation<2>→getMushroomsCost

ConcreteDecorator<2>→Onions

operation<1>→getOnionsDescription

operation<2>→getOnionsCost

ConcreteDecorator<3>→Chicken

operation<1>→getChickenDescription

operation<2>→getChickenCost

ConcreteDecorator<4>→Pineapple

operation<1>→getPineappleDescription

operation<2>→getPineappleCost

Figure 4�6: Example Instantiation of Decorator

47

structural view

+ void getPizzaDescription()
+ void getPizzaCost()

Pizza

+ create(Pizza p)
+ void getToppingDescription()

Topping

+ void getThinCrustDescription()
+ void getThinCrustCost()

ThinCrust

+ void getStuffedCrustDescription()
+ void getStuffedCrustCost()

StuffedCrust

+ void getMushroomsDescription()
+ void getMushroomsCost()

Mushrooms

+ void getChickenDescription()
+ void getChickenCost()

Chicken

+ void getOnionsDescription()
+ void getOnionsCost()

Onions

+ void getPineappleDescription()
+ void getPineappleCost()

Pineapple

aspect PizzaStore

message view Topping.getPizzaDescription

message view Topping.create

structural view

1
component

woven view PizzaStore, Decorator

+ void getPizzaDescription()
+ void getPizzaCost()

Pizza

+ void getPizzaDescription()
+ void getPizzaCost()
+ void getThinCrustDescription()
+ void getThinCrustCost()

ThinCrust

+ void getPizzaDescription()
+ void getPizzaCost()
+ void getStuffedCrustDescription()
+ void getStuffedCrustCost()

StuffedCrust

+ create(Pizza p)
+ void getPizzaDescription()
+ void getPizzaCost()
+ void getToppingDescription()

Topping
+ void getPizzaDescription()
+ void getPizzaCost()
+ void getMushroomsDescription()
+ void getMushroomsCost()

Mushrooms

+ void getPizzaDescription()
+ void getPizzaCost()
+ void getOnionsDescription()
+ void getOnionsCost()

Onions

+ void getPizzaDescription()
+ void getPizzaCost()
+ void getChickenDescription()
+ void getChickenCost()

Chicken + void getPizzaDescription()
+ void getPizzaCost()
+ void getPineappleDescription()
+ void getPineappleCost()

Pineapple

target:Topping

component := p

create(Pizza p)

getToppingDescription()

target:
Topping

component:
Pizza

getPizzaDescription()

getPizzaDescription()

target:Topping

 getToppingDescription()
getPizzaCost()

target:
Topping

component:
Pizza

getPizzaCost()

message view Topping.getToppingDescription

message view Topping.getPizzaCost

4.2 Behavioural Design Patterns

Behavioural patterns describe the patterns of communication between objects and classes

with respect to algorithms and assignment of responsibilities [14]. Observer is a common

behavioural design pattern and has been discussed in section 3.1. In this section we discuss

two more behavioural patterns: Template Method and Command.

4.2.1 Template Method

Template Method is a behavioural design pattern. The intent is to de�ne the skeleton

of an algorithm in an operation, deferring the details of some of its steps to subclasses.

Template Method lets subclasses rede�ne certain steps of an algorithm without changing

the algorithm's structure. [14] Let us consider an example (taken from [2]). Suppose, there

is a class Sandwich and it declares a method makeSandwich. makeSandwich in turn calls

multiple methods like addMeat, addCheese and addCondiments. The user wants to create a

subclass for each of the di�erent types of Sandwich. The method makeSandwich follows the

exact same steps in each of the sandwiches. However, the type of meat (or no meat), type

of cheese (or no cheese) and the type of condiments depend on the actual sandwich. Hence,

the de�nitions of the methods addMeat, addCheese and addCondiments are delegated to the

individual subclasses. However, the makeSandwich method is de�ned in the superclass and

it should not be rede�ned in the subclasses. In this example, makeSandwich would be the

template method.

Fig. 4�9 shows the RAM model for the Template Method pattern. It also exhibits the

power of instantiation cardinalities. The fact that the templateMethod must not be over-

ridden is shown by using the cardinality of {0} in Subclass for templateMethod. In an OO

language it would be typically represented by using the �nal keyword for templateMethod

50

in SuperClass. Also, the fact that primitiveOperation must be de�ned in Subclass is

shown by the cardinality of {1}. Since, primitiveOperation is abstract, it would have been

true anyway, but this is a case where the cardinality clearly shows the user exactly what

needs to be done. In the message view, a simple note is used to indicate that all methods

mapped to primitiveOperation must be called inside the templateMethod. However, it is

also possible that the method mapped to templateMethod does other things as well. In our

example, makeSandwich might also have an if statement to check if addMeat should be ex-

ecuted. As of now, the RAM metamodel does not support the de�nition of such constraints

for message views. This is work for future consideration (section 6.1)

Here are the mappings for the aspect SandwichMaker (Fig . 4�11):

4.2.2 Command

Command is a well-known behavioural design pattern. It encapsulates a request of

execution of a single or multiple actions in an object. In other words, a command object

rei�es one or multiple method executions. When desired, the command object can be asked

to execute itself, which results in calling the appropriate method(s) on a receiver object.

To better understand the Command pattern, let us consider an example. Suppose we

have a smart room environment which automatically switches on the light whenever someone

enters the room and switches o� the light when the person leaves the room. The fact that a

person has entered the room is encapsulated in a Command object that exists independently of

the Light object. This object has a generic execute method which simply calls the action

method in the Receiver (Light in this case). It can be seen how the Command pattern

allows the designer to separate the action to be performed and the object that actually

performs it. This separation is very useful since it can be used to create command queues,

51

message view templateMethod

structural view

+ * templateMethod(..) {1}
+ * primitiveOperation(..) {1..*}

SuperClass

+ * templateMethod(..) {0}
+ * primitiveOperation(..) {1}

SubClass {1..*}

target:SuperClass

templateMethod(..)

aspect TemplateMethod

primitiveOperation()

SuperClass → Sandwich

templateMethod → makeSandwich

primitiveOperation<1> → addMeat

primitiveOperation<2> → addCheese

primitiveOperation<3> → addDressingSauce

SubClass<1> → BeefSandwich

templateMethod → makeBeefSandwich

primitiveOperation<1> → addBeef

primitiveOperation<2> → addCheddarCheese

primitiveOperation<3> → addMayonnaise

SubClass<2> → TurkeySandwich

templateMethod → makeTurkeySandwich

primitiveOperation<1> → addTurkey

primitiveOperation<2> → addSwissCheese

primitiveOperation<3> → addHoneyMustard

Figure 4�10: Example Instantiation of TemplateMethod

command managers that facilitate undo and redo, to pass commands over a network, etc.

The discussion of all possible uses of the command pattern are beyond the scope of this

work. We show here how instantiation cardinalities allow the model designer to clearly

communicate the intent of the design pattern to the model user.

Command with Single Receiver

he RAM model of Command with a single Receiver is shown in Fig. 4�14. The mes-

sage view for execute calls the action method in the Receiver object associated with the

Command object. Since, the designer wants the execute method of ConcreteCommand to not

be modi�ed in a higher-level aspect it is assigned a cardinality {0}. Another point of inter-

est is that ConcreteCommand has cardinality {p=1..*}, and action has cardinality {p}. This

ensures that there exists a corresponding action for each Command class in the Receiver.

Fig. 4�15 shows a higher-level aspect SmartLight that reuses the aspect CommandSin-

gleReceiver. The mappings reinforce the utility of RAM, since the user simply needs to think

53

structural view

+ void makeSandwich()
+ void addMeat()
+ void addCheese()
+ void addDressingSauce()

Sandwich

+ void makeBeefSandwich()
+ void addBeef()
+ void addCheddarCheese()
+ void addMayonnaise()

BeefSandwich

+ void makeTurkeySandwich()
+ void addTurkey()
+ void addSwissCheese()
+ void addHoneyMustard()

TurkeySandwich

aspect SandwichMaker

message view Sandwich.makeSandwich

target:Sandwich

makeSandwich()

 addMeat()

 addCheese()

 addDressingSauce()

message view TurkeySandwich.makeSandwich, TurkeySandwich.addMeat

structural view

+ void makeSandwich()
+ void addMeat()
+ void addCheese()
+ void addDressingSauce()

Sandwich

+ void makeSandwich()
+ void addMeat()
+ void addCheese()
+ void addDressingSauce()
+ void makeBeefSandwich()
+ void addBeef()
+ void addCheddarCheese()
+ void addMayonnaise()

BeefSandwich

+ void makeSandwich()
+ void addMeat()
+ void addCheese()
+ void addDressingSauce()
+ void makeTurkeySandwich()
+ void addTurkey()
+ void addSwissCheese()
+ void addHoneyMustard()

TurkeySandwich

woven SandwichMaker, TemplateMethod

target:TurkeySandwich

makeSandwich()

 makeTurkeySandwich()

target:TurkeySandwich

target:TurkeySandwich target:TurkeySandwich

addMeat()

addTurkey()

addCheese()

addSwissCheese()

addDressingSauce()

addHoneyMustard()

message view TurkeySandwich.addCheese, TurkeySandwich.addDressingSauce

Receiver → Light

action<1> → switchOn

action<2> → switchOff

ConcreteCommand<1> → EnterRoom

ConcreteCommand<2> → LeaveRoom

Figure 4�13: Example Instantiation of Command with Single Receiver

in terms of the higher-level aspect only. The user is free to assign di�erent method names

for di�erent actions, e.g., switchOn and switchOff.

The mappings for the aspect SmartLight are shown in Fig. 4�13.

By applying the rules for calling multi-mapped methods, the weaver modi�es each execute

message view to call the corresponding action in the receiver, i.e., EnterRoom.execute calls

switchOn, whereas ExitRoom.execute calls switchOff.

Command with Multiple Receivers

When there are two or more receivers for each command, the Command pattern can

be extended as shown in Fig. 4�18. Each mapping of ConcreteCommand contains refer-

ence to its own list which stores the multiple receiver objects. The receiver objects can

belong to di�erent classes which must be mapped to ConcreteReceiver. Each mapping of

ConcreteReceivermust contain a corresponding action for each mapping of ConcreteCommand.

An example higher-level aspect reusing the aspect CommandMultipleReceivers is shown in

Fig. 4�19. The corresponding mappings are shown in Fig. 4�17.

In Fig. 4�20,the message view for Light.onEntering, Blinds.onEntering and Radio.onEntering

show the application of Automated Call Forwarding.

56

structural view

+ * action(..) {p}

Receiver {1}

message view execute

execute()

aspect CommandSingleReceiver

myReceiver:
Receiver

action(..)

+ void execute()

Command

+ create(.., Receiver r)
+ void execute() {0}

ConcreteCommand {p=1..*}

target: ConcreteCommand

1
myReceiver

message view assignComponent

caller:
Caller

target:
ConcreteCommand

create(.., r)

Pointcut

myReceiver:= r

message view ConcreteCommand.create affected by assignComponent

caller:
Caller

target:
ConcreteCommand

structural view

+ void switchOn()
+ void switchOff()

Light

LeaveRoom

EnterRoom

aspect SmartLight

message view LeaveRoom.execute

structural view

+ void switchOn()
+ void switchOff()

Light

message view EnterRoom.execute

execute()

woven SmartLight, CommandSingleReceiver

myReceiver:Light

switchOn()

+ void execute()

Command

+ create(Light r)
+ void execute()

EnterRoom

target:EnterRoom

1
myReceiver

+ create(Light r)
+ void execute()

LeaveRoom

1
myReceiver

execute()

myReceiver:Light

switchOff()

target:LeaveRoom

message view EnterRoom.create

target:EnterRoom

myReceiver:= r

create(Light r)

message view LeaveRoom.create

target:LeaveRoom

myReceiver:= r

create(Light r)

→
→
→

→
→
→

→
→
→

→
→
→

structural view

+ * action(..) {p}

Receiver

+ * action(..) {1}

ConcreteReceiver {2..*}

1..*

<<impl>>
java.util.ArrayList

message view execute

execute()

aspect CommandMultipleReceivers

loop [r in myList] r: Receiver

action(..)

+ void execute()

Command

+ void execute() {0}

ConcreteCommand {p=1..*} 1
myList

target: ConcreteCommand

structural view

+ void switchOn()
+ void switchOff()

Light

+ void turnOn()
+ void turnOff()
+ void increaseVolume()
+ void changeChannel()

Radio

+ void lowerBlinds()
+ void raiseBlinds()

Blinds

EnterRoom

LeaveRoom

aspect SmartRoom

+ void onEntering()
+ void onLeaving()

RoomContents

message view Light.onEntering, Blinds.onEntering, Radio.onEntering

message view EnterRoom.execute

structural view

+ void onEntering()
+ void onLeaving()

RoomContents

+ void switchOn()
+ void switchOff()
+ void onEntering()
+ void onLeaving()

Light

1..*

<<impl>>
java.util.ArrayList

+ void execute()

Command

+ void execute()

EnterRoom

+ void execute()

LeaveRoom

+ void lowerBlinds()
+ void raiseBlinds()
+ void onEntering()
+ void onLeaving()

Blinds

+ void turnOn()
+ void turnOff()
+ void increaseVol()
+void onEntering()
+ void onLeaving()

Radio

1
myList

1
myList

execute()

loop [r in myList] r: Receiver

onEntering()

target:EnterRoom

message view LeaveRoom.execute

execute()

loop [r in myList] r: Receiver

onLeaving()

target:LeaveRoom

onEntering()

target:Light

 switchOn()

onEntering()

target:Blinds

 raiseBlinds()

onEntering()

target:Radio

 turnOn()

woven SmartRoom, CommandMultipleReceivers

from the director that calls those methods in a speci�c order. This allows the constituent

parts of a product to be dynamically passed to the director that combines these parts to

create the �nal product.

Fig. 4�21 shows the RAM model for the Builder design pattern.

Fig. 4�23 shows an example use of the Builder pattern. The corresponding mappings

are shown in Fig. 4�22

4.3.2 Abstract Factory

Abstract Factory is a creational design pattern that provides an interface for creating

families of related or dependent objects without specifying their concrete classes [14].

The pattern can be best described by an example. Consider two vehicle factories: Toyota

and Honda. Each factory produces three types of vehicles: Car, Motorcycle and Truck.

Toyota produces exactly one vehicle of each type: ToyotaCar, ToyotaMotorcycle and

ToyotaTruck. The same is true for Honda.

Abstract Factory allows a modeller to instantiate a factory when the application is initial-

ized (VehicleFactory fact = new Toyota()). Subsequently, whenever a speci�c type of

vehicle is needed, it can be instantiated (Car newcar = fact.createCar()) without having

to know if the application uses ToyotaCars or HondaCars. This decouples the creation of

the products from the speci�c factory that actually produces them.

Figs. 4�25 and 4�26 highlight the di�erence between a standard Abstract Factory UML

diagram (taken from [14]) and the Abstract Factory RAM model. The advantages of using

instantiation cardinalities are obvious:

63

message view assignComponent

message view construct

structural view

+ create(.., Builder b)
+ * construct(..) {1}

Director {1}

+ * buildPart(..) {1..*}

Builder

+ * buildPart(..) {1}
+ Product getResult() {1}

ConcreteBuilder {1..*}

Product {1}

target:Director

construct(..)

aspect Builder

1
builder

0..1
productUnderConstruction

message view getResult is Getter<productUnderConstruction>

caller:
Caller

target:
Director

create(.., b)

Pointcut

*

caller:
Caller

target:
Director

create(.., b)

*

builder := b

builder.buildPart(..)

message view Director.create affected by assignComponent

Builder → RobotBuilder

buildPart<1> → makeArms

buildPart<2> → makeLegs

buildPart<3> → makeHead

ConcreteBuilder<1> → OldStyleRobotBuilder

buildPart<1> → makeBlowTorchArms

buildPart<2> → makeRollerSkatesLegs

buildPart<3> → makeTinHead

getResult → getRobot

Director → RobotDirector

construct → makeRobot

Product → Robot

Figure 4�22: Example Instantiations of Builder

• The RAM model with instantiation cardinalities is a lot more compact, while it still

clearly visualizes how the model is intended to be used. It captures the essence of Ab-

stract Factory completely. The standard OO diagram shows only two ConcreteFactories

and two AbstractProducts. In OO design pattern diagrams that depict multiple sub-

classes of a common supertype, it is typically shown by two classes with similar names

and adding a numeric su�x to the names (e.g. ConcreteFactory1, ConcreteFactory2).

In RAM, the fact that there can be one or more AbstractProducts {1..*} whereas

there need to be at least two ConcreteFactories {2..*} is clearly shown in the no-

tation.

• Similarly, since the maximum cardinality can be *, the RAM notation is scalable. The

OO diagram relies on di�erent su�x types (numerical and alphanumerical) to show the

independence of the number of subclasses of AbstractProduct and AbstractFactory.

This technique becomes problematic in case a third set of independent subclasses needs

to be speci�ed. In RAM, a designer simply needs to introduce a di�erent variable for

every class that can exist independently multiple times, e.g., {q=1..*}.

65

structural view

+ void makeBlowTorchArms()
+ void makeRollerSkatesLegs()
+ void makeTinHead()
+ Robot getRobot()

OldStyleRobotBuilder

+ void makeArms()
+ void makeLegs()
+ void makeHead()

RobotBuilder

+ create(RobotBuilder r)
+ void makeRobot()

RobotDirector

aspect RobotMaker

Robot

message view RobotDirector.makeRobot

target:RobotDirector

makeRobot()
makeArms()

makeLegs()

makeHead()

builder:RobotBuilder

message view Director.create

target:RobotDirector

create(RobotBuilder r)

builder := r

structural view

+ void makeArms()
+ void makeLegs()
+ void makeHead()
+ void makeBlowTorchArms()
+ void makeRollerSkatesLegs()
+ void makeTinHead()
+ Robot getRobot()

OldStyleRobotBuilder

+ void makeArms()
+ void makeLegs()
+ void makeHead()

RobotBuilder

+ create(RobotBuilder r)
+ void makeRobot()

RobotDirector

woven RobotMaker, Builder

Robot
0..1
productUnderConstruction

1
builder

+ AbstractProductA createProductA()
+ AbstractProductB createProductB()

AbstractFactory

+ commonOperation()

AbstractProductA

Concrete
Factory1

+ AbstractProductA create()

ProductA1Concrete
Factory2

+ AbstractProductA create()

ProductA2

+ commonOperation()

AbstractProductB

+ AbstractProductB create()

ProductB1

+ AbstractProductB create()

ProductB2

structural view

aspect AbstractFactory

+ AbstractProduct createProduct(..)

AbstractFactory

+ * operation(..)

AbstractProduct{0..1} {p=1..*}

{p} {1..*}

+ AbstractProduct createProduct(..)

ConcreteFactory {q=2..*}

+ AbstractProduct create(..)

ConcreteProduct {q}

{1}

message view createProduct target: ConcreteFactory

product = createProduct(..)

product: ConcreteProduct
product := create(..)

product

•

� The number of di�erent AbstractProducts {p=1..*} (variable p is declared)

determines the number of constructor methods in the AbstractFactory class

{p} (variable p is used).

� For each AbstractProduct, there must be as many ConcreteProduct subclasses

{q} (variable q used) than there are ConcreteFactories {q=2..*} (variable q is

declared).

� There is no direct relation between the number of ConcreteFactories {q=2..*}

and AbstractProducts {p=1..*} (they declare di�erent variables p and q).

• In one message view it is possible to de�ne the behaviour for all createProduct op-

erations of all ConcreteFactories, i.e., for p*q methods! Because of the di�erent

variable declarations, the weaver knows that when generating the message view for

createProduct<i,j>, it is supposed to call the create method of the jth mapping of

the ConcreteProduct subclass of the ith mapping of the AbstractProduct class. For

example, given the instantiation in Fig. 4�27, the weaver can generate the message

view ToyotaFactory.createTruck that calls ToyotaTruck.create.

69

AbstractFactory → VehicleFactory

createProduct<1> → createCar

createProduct<2> → createTruck

ConcreteFactory<1> → Toyota

ConcreteFactory<2> → Honda

AbstractProduct<1> → Car

operation<1> → drive

AbstractProduct<2> → Truck

operation<1> → drive

operation<2> → load

AbstractProduct<3> → Motorcycle

operation<1> → ride

ConcreteProduct<1,1> → ToyotaCar (the first mapping dimension refers to

create → buildToyotaCar the mapping of the superclass)

ConcreteProduct<1,2> → HondaCar

create → buildHondaCar

ConcreteProduct<2,1> → ToyotaTruck

create → buildToyotaTruck

ConcreteProduct<2,2> → HondaTruck

create → buildHondaTruck

ConcreteProduct<3,1> → ToyotaMotorcycle

create → buildToyotaMotorcycle

ConcreteProduct<3,2> → HondaMotorcycle

create → buildHondaMotorcycle

Figure 4�27: Example Instantiation of AbstractFactory

70

structural view

+ Car buildHondaCar()
+ Truck buildHondaTruck()
+ Motorcycle buildHondaMotorcycle()

Honda

+ Car buildToyotaCar()
+ Truck buildToyotaTruck()
+ Motorcycle buildToyotaMotorcycle()

Toyota

+ Car createCar()
+ Truck createTruck()
+ Motorcycle createMotorcycle()

VehicleFactory

+ void drive()
+ void load()

Truck

+ void ride()

Motorcycle

+ void drive()

Car

ToyotaCar HondaCar

ToyotaTruck HondaTruck

ToyotaMotorcycle HondaMotorcycle

aspect VehicleFactory

Figure 4�28: Example use of AbstractFactory

71

structural view

+ Car createCar()
+ Truck createTruck()
+ Motorcycle createMotorcycle()

Honda

+ Car createCar()
+ Truck createTruck()
+ Motorcycle createMotorcycle()

Toyota

+ Car createCar()
+ Truck createTruck()
+ Motorcycle createMotorcycle()

VehicleFactory

woven VehicleFactory, AbstractFactory

+ void drive()
+ void load()

Truck

+ void ride()

Motorcycle

+ void drive()

Car

+ void drive()
+ Car buildHondaCar()

HondaCar

+ void drive()
+ Car buildToyotaCar()

ToyotaCar

+ void drive()
+ void load()
+ Truck buildToyotaTruck()

ToyotaTruck

+ void drive()
+ void load()
+ Truck buildHondaTruck()

HondaTruck

+ void ride()
+ Motorcycle buildToyotaMotorcycle()

ToyotaMotorcycle

+ void ride()
+ Motorcycle buildHondaMotorcycle()

HondaMotorcycle

message view Toyota.createCar

target: Toyota
product = createCar()

product: ToyotaCarproduct := buildToyotaCar()
product

Figure 4�29: Woven Model using AbstractFactory

72

Chapter 5
Related Work

Section 5.1 reviews the most well-known AOM approaches, focussing on describing those

features that are related to instantiations and model element creation. Section 5.2 presents

related work in programming languages.

5.1 Aspect-Oriented Modelling

Aspect-oriented modelling techniques have been applied to extend many popular mod-

elling notations. For example, AOM approaches have been proposed for UML class di-

agrams [13, 35], sequence diagrams [21, 20], and protocol models [24, 25]. Our own RAM

approach integrates these three approaches into one multi-view modelling approach, to which

we have shown how instantiation cardinalities can be applied in this thesis.

Other AOM approaches target modelling notations such as state diagrams [12, 40, 16],

live sequence charts [23], activity diagrams, the Speci�cation and Description Language

(SDL) [10, 11], the User Requirements Notation (URN) [30, 29], and more. To the best of

our knowledge, none of these AOM approaches provide customization interfaces for aspect

models that expose information equivalent to what instantiation cardinalities provide.

We therefore believe that they could also bene�t from adding instantiation cardinalities

to their models in a way that is similar to how we extended RAM. Some more information

on certain related approaches is presented in the following subsections.

73

5.1.1 Theme/UML

For example, in Theme/UML [9], the models that contain crosscutting structure and

behaviour are called themes. A theme is a parameterized UML package, and it exposes the

generic model elements that must be bound to application speci�c elements in form of UML

template parameters. Just like in RAM before the introduction of instantiation cardinalities,

it is not obvious for a modeller to know if she can bind a parameter to several model elements

(similar to multi-mapping in RAM), or rather bind a theme multiple times to elements in a

target model. Furthermore, when a theme is applied n times, it seems like all model elements

that are created by the theme will be introduced n times as well.

5.1.2 HiLA

Zhang et al. propose the High-Level Aspects for UML State Machines (HiLA) ap-

proach [40, 16], in which they signi�cantly extend UML state machines with aspect-oriented

modelling techniques. They use state machines to specify behaviour of base machines and

aspect machines, which can be parameterized using UML template parameters similar to

RAM models. They provide several asymmetric pointcut-advice composition mechanisms

that enable aspects to disallow and restrict transitions, describe mutual exclusion between

two states in orthogonal regions and coordinate multiple state machines. In the case of

HiLA, instantiation cardinalities could be used to prevent orthogonal, concurrent states to

be introduced multiple times when an aspect is applied several times within a target model.

5.1.3 MATA

MATA [39] is a graph-based approach for composing UML diagrams that supports pattern

matching to determine where an aspect model is to be applied. If in the aspect model a model

74

element is tagged with the stereotype <�<create>�>, it means that this model element is cre-

ated in the target model whenever the pattern matches. This is equivalent to the instantiation

policy PerPointcut-Match described in [28]. [8] later extended the notation with additional

stereotypes <�<create++>�> for introducing new model elements into a package common to all

aspect models (equivalent to the Global policy described in [28]), <�<create+>�> to introduce

new model elements into a package common to all pattern matches, and <�<create->�> to

introduce new model elements into a new package that is speci�c to each parameter binding.

Although this allows for more �ne-grained control over how many times model elements are

introduced when an aspect is applied, it does not help the designer decide on whether to

write one complex pattern match or several speci�c ones.

5.1.4 SmartAdapters

As mentioned in section 2.2, the paper [28] points out di�erent introduction policies that

a pattern-based model weaver must support when aspect models are applied multiple times

within the same target model. The di�erent policies are:

• PerPointcut-Match, where new instances of the element are created each time the

aspect model is instantiated,

• Global, where only a single instance is created regardless of how many times the aspect

model is instantiated,

• PerMatchedElement, where a new instance is created for each model element that is

matched by the pointcut pattern, regardless of what role in the pattern it plays, and

• PerMatchedRole, where a new instance is created each time a model element is matched

by the pointcut pattern in a di�erent role.

75

The paper does not talk about how these policies could be speci�ed by the model designer,

but it explains how the di�erent policies can be implemented inside a model weaver using

the SmartAdapters [27] model transformation language. Although the implementation is

interesting, the presented techniques can not be applied as such to the TouchRAM tool,

since RAM does not use patterns for specifying multi-mappings.

5.2 Aspect-Oriented Programming Languages

There has been a lot of work on introducing advanced modularization features into pro-

gramming languages that is related to instantiation cardinalities.

5.2.1 Control over Aspect Instances

At a programming level, some aspect-oriented programming languages have introduced

features that give the programmer �ne-grained control over the number of instances of aspects

that are created at run-time.

In AspectJ [18], for example, an aspect has per default only one instance that cuts across

the entire program. Consequently, because the instance of the aspect exists at all join points

in the running of a program (once its class is loaded), its advice is run at all such join points.

However, AspectJ also proposes some elaborate aspect instantiation directives, such as: 1)

perthis(pointcut) aspects, meaning that an instance of the aspect is created for every di�erent

object that is executing when the speci�ed pointcut is reached; pertarget(pointcut), meaning

that an instance of the aspect is created for every object that is the target object of the join

points matched by pointcut; 3) perc�ow(pointcut), meaning that an instance of the aspect is

created for each �ow of control of the join points matched by the speci�ed pointcut. These

elaborate aspect instantiations are all dynamic, i.e., they are based on the execution of a

76

program, and might become relevant in future AOM approaches that support execution of

models.

5.2.2 AOP and the Observer Pattern

Several works on AOP have used design patterns to illustrate the shortcomings of the

modularization features of popular AOP languages, and presented new modularization tech-

niques to address these drawbacks.

CaesarJ

In [26], Mezini et al. use the Observer design pattern to point out several de�ciencies of

AspectJ 's join point interception model, namely:

• Lack of support for sophisticated mappings : the authors demonstrate with examples

that the mapping from aspect abstractions to base classes via the declare parents

construct is e�ective only when each aspect abstraction has a corresponding base class.

• Lack of support for reusable aspect bindings : the authors argue that the aspect-to-

class binding achieved via the declare parents construct strongly binds an aspect to a

particular base class; hence, such bindings cannot be e�ectively reused.

• Lack of support for aspectual polymorphism: this limitation is comparable to the lack

of support for per-object association of aspects identi�ed in this paper. The paper

argued that it is not possible in AspectJ to determine at runtime whether an aspect

should be applied or not, or which implementation of the aspect to apply.

The authors then proposed a new aspect-oriented programming tool called CaesarJ [5] to

address these de�ciencies. CaesarJ is based on Aspect Collaboration Interfaces (ACI). In

ACIs, the aspect implementation is decoupled from the aspect binding in independent, in-

directly connected modules. CaesarJ relies on a new type called a weavelet to compose the

77

implementation and the binding of the aspect to form the �nal system. Di�erent weavelets

can combine an aspect binding with di�erent aspect implementations, or a particular as-

pect implementation with di�erent aspect bindings; making both the aspect bindings and

implementations independently reusable. As opposed to AspectJ, compiling these weavelets

with the base application does not have any e�ect on the execution of the application. This

is because the weavelets must be explicitly deployed to activate their pointcuts and advice.

The weavelets can be deployed statically or dynamically; hence, the support for runtime

deployment of aspects on a per-object basis.

Sally

In [15], the authors investigate how design patterns can be modularized and implemented

in AspectJ [18] and Hyper/J [32]. They point out that both languages fail to encapsulate

design patterns in a reusable way and illustrate the problems using the Singleton, Visitor and

Decorator design patterns. They then proceed to present Sally, an AspectJ-like programming

language that provides the programmer with parametric introductions, a language feature

which can be seen as the aspect-oriented equivalent to generic types or parametric types. A

parametric introduction allows an aspect to statically declare �elds that are to be introduced

into other classes just like standard introductions, but in addition they can be parameterized

with types that are determined during weave-time, i.e., when the introduction is bound

to a speci�c class. The authors then demonstrate how parametric introductions solve the

inadequacies for modularizing design patterns e�ectively.

Package Templates

In [6], the authors utilize the package template mechanism with a small aspect-oriented

extension to provide a reusable package for the Observer pattern. A package template (PT) is

78

a mechanism for code modularization that targets the development of collections of reusable

interdependent classes. The authors describe package templates as being syntactically de-

rived from Java packages with signi�cant semantic di�erences. A package template can be

instantiated at compile time, which creates a local copy of template classes. The authors

then introduce a minimal set of constructs for AOP extensions to the PT mechanism. Point-

cuts and advice are de�ned as members of template classes, and aspects are limited in scope

by corresponding template instantiation. The authors then demonstrate their approach us-

ing the Observer pattern with single subject, single observer classes and multiple subject,

multiple observer classes.

79

Chapter 6
Conclusion

In this thesis we have presented instantiation cardinalities, a novel concept useful in the

context of aspect-orientation in general and aspect-oriented modelling in particular. It allows

the designer of a reusable aspect that comprises multiple structural entities to:

• Specify the customization interface of the module, i.e., highlight which entities are

generic and need to be completed with application-speci�c structure in order for the

reusable aspect to be usable in a speci�c context, and

• Clearly specify maximally how many times each structural entity can be mapped to

application-speci�c entities.

By declaring and using variables within the instantiation cardinality speci�cation, depen-

dencies between the number of mappings of structural entities can be expressed in a precise

way. This solves the inherent ambiguity that most aspect-oriented approaches exhibit when

it comes to reusing existing aspects within an application, and gives the model designer

�ne-grained control over how many instances of each model element are created in the target

model. As a result, the designer of the reusable aspect is able to specify all the instantiation

policies identi�ed in [28].

Since most aspect-oriented modelling approaches and programming languages include

object-oriented features as well, the thesis describes how to integrate instantiation cardi-

nalities with standard object-oriented concepts such as inheritance and polymorphism. We

80

described the e�ects that the cardinalities of a superclass and its methods have on its sub-

classes and the methods that they override. Furthermore, we introduced a technique called

automated call forwarding that is applied by the weaver in order to allow for polymorphic

treatment of multi-mapped subclasses in one model, while not requiring uniform naming of

polymorphically related operations in each individual subclass.

In order to illustrate the usefulness of instantiation cardinalities, this thesis presented how

instantiation cardinalities integrate with the Reusable Aspect Models approach. Furthermore,

the practicality and elegance of the approach was demonstrated by showing the detailed

aspect-oriented design models of seven design patterns: the creational design patterns Builder

and Abstract Factory, the structural design patterns Composite and Decorator, as well as

the behavioural design patterns Observer, Template Method and Command.

6.1 Future Work

We are convinced that instantiation cardinalities is a very powerful approach that solves

signi�cant problems. The possibilities for future work are as follows:

1. It might be possible to extend the approach of instantiation cardinalities to allow a

model designer to specify minimum and maximum number of parameters for construc-

tors and methods. As of now, we have depended on well-known design patterns to

develop the ideas of instantiation cardinalities. However, parameters do not feature

signi�cantly enough in the design patterns to be able to derive the insight to extend

cardinalities in a convincing manner to parameters. TouchRAM, the RAM tool that is

built to demonstrate and experiment with RAM, is currently under active development

and it is hoped that the use of TouchRAM to create complex real-world software will

81

provide new insights on how the idea of instantiation cardinalities can be extended to

include parameters.

2. Instantiation cardinalities have solved persisting issues with RAM in a manner that we

found to be elegant. While working on the thesis, we tried other approaches to solve

these issues. We found that with all the other approaches that were tried, signi�cantly

more e�ort was involved in communicating the working of the approach. Based on

our experience, the approach of instantiation cardinalities is easy to understand and

straightforward to apply by a model user. The approach is amenable to user feedback

for further improvement as well as veri�cation of its usefulness. A user study should

be conducted to study the e�cacy of the approach and its e�ect on learning time once

TouchRAM is su�ciently developed.

3. There are also indications that it might be possible to get rid of abstract methods in

the RAM metamodel. In this work, apart from instantiation cardinalities we have also

introduced the notion of Automated Call Forwarding. In Java, abstract methods have

two important characteristics: they are not allowed to have a method de�nition and

they must be overridden in subclasses. In fact, it might be argued that the primary

reason that they are not allowed to have a method de�nition is because they must be

overridden. Also, the idea of overriding can be rephrased as saying that the subclass

must provide its own de�nition for the method. In the Composite Pattern (4.1.1) it

was shown that it is possible in RAM to a force a method in a subclass to have message

view by having {1} cardinality for the method. This means that when an aspect is

reused, instantiation cardinalities can provide the exact same information to a method,

that is, it must be de�ned. From our experience, it is not clear if not allowing a method

82

to have a de�nition is important by itself. However, to be able to say that abstract

methods are not needed with con�dence, we will need to gather more experience using

instantiation cardinalities to model real-world software systems.

4. RAM currently does not allow a higher-level aspect to modify the control �ow of

existing message views, nor can a lower-level aspect de�ne constraints that must be

upheld by message views de�ned in a higher-level aspect. In the TemplateMethod

aspect shown in Fig. 4�9, for example, the designer wants to specify that any con-

crete de�nition of templateMethod in a higher-level aspect should call each of the

operations primitveOperation<x> at least once. For example, the situation shown

in Fig. 6�1 where a user wants to always call primitiveOperation<1>, and then

use an alt fragment to call either one of the methods, primitiveOperation<2> or

primitiveOperation<3> in a higher-level aspect would be a correct behavioural re-

�nement for templateMethod. Further research is needed to determine the best way

of addressing this issue. One approach could be to extend the notion of pointcut and

advice to allow arbitrary modi�cations of behaviour de�ned in lower-level aspects. An-

other approach could be to de�ne language features that allow for the speci�cation of

constraints in lower-level aspects.

83

target:SuperClass

templateMethod(..)

opt

Note: In actual woven view, the different mappings of primitiveOperation(..) would be visible
and not primitiveOperation<1>(..), etc. The diagram above is for illustration only.

 primitiveOperation<1>(..)

 primitiveOperation<2>(..)

 primitiveOperation<3>(..)

References

[1] The Eclipse Project. URL: http://www.eclipse.org, 2011.

[2] NewThinkTank Design Patterns. URL: http://www.newthinktank.com, 2014.

[3] Wisam Al Abed, Valentin Bonnet, Matthias Schöttle, Omar Alam, and Jörg Kienzle.
TouchRAM: A multitouch-enabled tool for aspect-oriented software design. In 5th In-
ternational Conference on Software Language Engineering - SLE 2012, number 7745 in
LNCS, pages 275 � 285. Springer, October 2012.

[4] Wisam Al Abed and Jörg Kienzle. Information Hiding and Aspect-Oriented Modeling.
In 14th Aspect-Oriented Modeling Workshop, Denver, CO, USA, Oct. 4th, 2009, pages
1�6, October 2009.

[5] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of
caesarJ. Transactions on Aspect-Oriented Software Development, 3880:135�173, 2006.

[6] Eyvind W. Axelsen, Fredrik Sørensen, and Stein Krogdahl. A reusable observer pattern
implementation using package templates. In Proceedings of the 8th Workshop on Aspects,
Components, and Patterns for Infrastructure Software, ACP4IS '09, pages 37�42, New
York, NY, USA, 2009. ACM.

[7] Abir Ayed and Jörg Kienzle. Integrating Protocol Modelling into Reusable Aspect
Models. In Proceeding of the 5th ACM SIGCHI Annual International Workshop on Be-
haviour Modelling - Foundations and Applications - BM-FA 2013, Montpellier, France,
pages 1�12. ACM, July 2013.

[8] Jorge Barreiros and Ana Moreira. Reusable model slices. In 14th Aspect-Oriented
Modeling Workshop, Denver, CO, USA, Oct. 4th, 2009, October 2009.

[9] Andrew Carton, Cormac Driver, Andrew Jackson, and Siobhan Clarke. Model-driven
theme/uml. In Transactions on Aspect-Oriented Software Development VI, volume 5560
of Lecture Notes in Computer Science, pages 238�266. Springer, 2009.

85

86

[10] Thomas Cottenier, Aswin Van Den Berg, and Tzilla Elrad. The Motorolla WEAVR:
Model Weaving in a Large Industrial Context. In Industry Track of the 5th Interna-
tional Conference on Aspect-Oriented Software Development (AOSD'06), Bonn, Ger-
many, 2006. ACM.

[11] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Stateful aspects: The case
for aspect-oriented modeling. In Proceedings of the 10th International Workshop on
Aspect-oriented Modeling, AOM '07, pages 7�14, New York, NY, USA, 2007. ACM.

[12] Tzilla Elrad, Omar Aldawud, and Atef Bader. Expressing aspects using UML behavioral
and structural diagrams. In R.E. Filman, T. Elrad, S. Clarke, and M. Aksit, editors,
Aspect-Oriented Software Development, pages 459�478. Addison-Wesley, 2005.

[13] Robert France, Indrakshi Ray, Geri Georg, and Sudipto Ghosh. Aspect-oriented ap-
proach to early design modelling. IEE Proceedings Software, pages 173�185, August
2004.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, Reading, MA, USA, 1995.

[15] Stefan Hanenberg and Rainer Unland. Parametric introductions. In Proceedings of
the 2nd International Conference on Aspect-oriented Software Development, AOSD '03,
pages 80�89, New York, NY, USA, 2003. ACM.

[16] Matthias Hölzl, Alexander Knapp, and Gefei Zhang. Modeling the Car Crash Crisis
Management System with HiLA. Transactions on Aspect-Oriented Software Develop-
ment VII, LNCS 6210:234�271, 2010.

[17] Stuart Kent. Model Driven Engineering. In International Conference on Integrated
Formal Methods � IFM, pages 286�298, London, UK, 2002. Springer-Verlag.

[18] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Je�rey Palm, andWilliam G.
Griswold. An overview of aspectj. In ECOOP '01: Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming, pages 327�353, London, UK, 2001.
Springer-Verlag.

[19] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-Oriented Multi-View Mod-
eling. In AOSD 2009, pages 87 � 98. ACM Press, March 2009.

[20] Jacques Klein, Franck Fleurey, and Jean Marc Jézéquel. Weaving multiple aspects in
sequence diagrams. Transactions on Aspect-Oriented Software Development (TAOSD),
III:167�199, 2007.

87

[21] Jacques Klein, Loïc Hélouët, and Jean-Marc Jézéquel. Semantic-based weaving of sce-
narios. In Proceedings of the 5th International Conference on Aspect-oriented Software
Development, AOSD '06, pages 27�38, New York, NY, USA, 2006. ACM.

[22] Thomas Kühne. Matters of (Meta-) Modeling. Software and Systems Modeling, 5:369
� 385, December 2006.

[23] Mark Mahoney and Tsilla Elrad. Weaving crosscutting concerns into live sequence charts
using the play engine. In 7th International Workshop on Aspect-Oriented Modeling,
Montego Bay, Jamaica, Oct. 2nd, 2005, 2005.

[24] Ashley McNeile and Ella Roubtsova. Composition semantics for executable and evolv-
able behavioral modeling in mda. In Proceedings of the 1st Workshop on Behaviour
Modelling in Model-Driven Architecture, BM-MDA '09, pages 3:1�3:8, New York, NY,
USA, 2009. ACM.

[25] Ashley McNeile and Ella Roubtsova. Aspect-oriented development using protocol mod-
eling. Transactions on Aspect-Oriented Software Development VII, pages 115�150, 2010.

[26] Mira Mezini and Klaus Ostermann. Conquering aspects with caesar. In Proceedings
of the 2Nd International Conference on Aspect-oriented Software Development, AOSD
'03, pages 90�99, New York, NY, USA, 2003. ACM.

[27] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg.
Models@run.time to support dynamic adaptation. IEEE Computer, 42(10):44�51, Oc-
tober 2009.

[28] Brice Morin, Jacques Klein, Jörg Kienzle, and Jean-Marc Jézéquel. Flexible Model
Element Introduction Policies for Aspect-Oriented Modeling. In 13th International
Conference on Model Driven Engineering Languages and Systems - MoDELS 2010,
Oslo, Norway, Oct. 3 - 8th, 2010, number 6395, pages 63 � 77, October 2010.

[29] Gunter Mussbacher, Daniel Amyot, João Araújo, and Ana Moreira. Requirements
Modeling with the Aspect-oriented User Requirements Notation (AoURN): A Case
Study. In Shmuel Katz, Mira Mezini, and Jörg Kienzle, editors, Transactions on
Aspect-Oriented Software Development VII, volume 6210 of Lect. Notes Comp. Sci.,
pages 23�68. Springer, 2010.

88

[30] Gunter Mussbacher, Daniel Amyot, and Michael Weiss. Visualizing Early Aspects with
Use Case Maps. In Awais Rashid and Mehmet Aksit, editors, Transactions on Aspect-
Oriented Software Development III, volume 4620 of Lect. Notes Comp. Sci., pages 105�
143. Springer, 2007.

[31] Object Management Group. Uni�ed Modeling Language: Superstructure (v2.4.1), De-
cember 2011.

[32] Harold Ossher and Peri Tarr. Hyper/j: Multi-dimensional separation of concerns for
java. In Proceedings of the 22nd International Conference on Software Engineering,
ICSE '00, pages 734�737, New York, NY, USA, 2000. ACM.

[33] F. Paas, J.E. Tuovinen, H. Tabbers, and P.W.M. Van Gerven. Cognitive load measure-
ment as a means to advance cognitive load theory. Educational psychologist, 38(1):63�71,
2003.

[34] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the Association of Computing Machinery, 15(12):1053�1058, December
1972.

[35] Y.R. Reddy, S. Ghosh, R. France, G. Straw, J. Bieman, N. McEachen, E. Song, and
G. Georg. Directives for Composing Aspect-Oriented Design Class Models. Transactions
on Aspect-Oriented Software Development I, LNCS 3880:75�105, 2006.

[36] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39:41�47, 2006.

[37] J. Sweller. Cognitive load during problem solving: E�ects on learning. Cognitive science,
12(2):257�285, 1988.

[38] Jon Whittle. "the truth about model-driven development in industry - and why re-
searchers should care". http://www.slideshare.net/jonathw/whittle-modeling-wizards-
2012/, 2012.

[39] Jon Whittle, Praveen K. Jayaraman, Ahmed M. Elkhodary, Ana Moreira, and João
Araújo. MATA: A uni�ed approach for composing UML aspect models based on graph
transformation. Transactions on Aspect-Oriented Software Development VI, 5560:191�
237, 2009.

[40] Gefei Zhang and Matthias Hölzl. Hila: High-level aspects for uml state machines. In
Proceedings of the 2009 International Conference on Models in Software Engineering,
MODELS'09, pages 104�118, Berlin, Heidelberg, 2010. Springer-Verlag.

