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Abstract 

Years of open pit mine production results in a pit of increased width and depth.  This 

causes the cost of producing deeper ore to increase.  The ore produced can also be more 

heavily diluted by surrounding waste.  In order to increase the amount of economic reserves 

and mine life, a transition to underground mining can be made.  There is a threshold where 

mining through underground methods becomes more profitable than open pit, and it is 

important to effectively identify this threshold as it can have a great impact on a mine’s 

profits.  This thesis uses stochastic mine planning methods to identify the optimal open pit 

to underground mining (OP-UG) transition depth.  The method proposed herein decomposes 

the problem by identifying a series of candidate scenarios where it is feasible to make an OP-

UG transition.  The economic viability of each member of the set of candidate transition 

depths is then evaluated by producing uncertainty-based life-of-mine production plans 

which are used to outline expected yearly cash flows.  An initial application of this proposed 

method is presented in Chapter 3 where the benefits of using stochastic mine planning to 

provide well-informed long-term strategic decision-making criteria are observed.  

Specifically, an application of the stochastic approach produces operational schedules which 

lead to a 9% or $43 M increase in net present value (NPV) over the corresponding 

deterministic framework.  A second work presented in Chapter 4 describes the application 

of the proposed method at Geita gold mine, a large gold mine in Eastern Africa.  At this 

operation, future ore production is forecasted to fall well below the mill’s capacity, and to 

supplement this deficiency a transition from open pit to underground mining is being 

considered.  The resulting analysis from the proposed stochastic framework shows that the 

most profitable decision involves forgoing underground mine development and continuing 

to produce through solely open pit mining for the foreseeable future.  Valuable insights 

towards the risk associated with the proposed mine design are gained through stochastic 

risk analysis.  Results show a 23% NPV increase for the stochastic mine plans when 

compared to the conventional deterministic equivalent. 
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Résumé 

Années de ouvertes résultats de la production de la mine à ciel dans une fosse de 

l'augmentation de largeur et de profondeur. Cela provoque le coût de production de minerai 

plus profond à augmenter. Le minerai produit peut aussi être plus fortement dilué par les 

déchets environnante. Afin d'augmenter le montant des réserves économiques et vie de la 

mine, une transition à l'exploitation souterraine peut être faite. Il existe un seuil où 

l'exploitation minière par des méthodes souterraines devient plus rentable que la mine à ciel 

ouvert, et il est important d'identifier efficacement ce seuil car elle peut avoir un grand 

impact sur les profits d'une mine. Cette thèse utilise des méthodes de planification de la mine 

stochastiques pour identifier le ciel ouvert optimale à l'exploitation souterraine (OP-UG) la 

profondeur de transition. La méthode proposée ici se décompose le problème en identifiant 

une série de scénarios de candidats où il est possible de faire une transition OP-UG. La 

viabilité économique de chaque membre de l'ensemble des profondeurs de transition 

candidats est ensuite évaluée en produisant des plans fondés sur l'incertitude de la vie de la 

mine de production qui sont utilisés pour décrire les flux de trésorerie annuels attendus. Une 

première application de cette méthode proposée est présentée dans le chapitre 3, où les 

avantages de l'utilisation planification de la mine stochastique de fournir des critères de 

prise de décisions stratégiques à long terme bien informés sont observées. Plus précisément, 

une application de l'approche stochastique produit des horaires de fonctionnement qui 

conduisent à un ou 43 M $ en hausse de 9% en valeur actuelle nette (VAN) sur le cadre 

déterministe correspondant. Un deuxième travail présenté dans le chapitre 4 décrit 

l'application de la méthode proposée à Geita mine d'or, une grande mine d'or en Afrique de 

l'Est. A cette opération, la future production de minerai est prévu de bien tomber en dessous 

de la capacité de l'usine, et de compléter cette lacune une transition à ciel ouvert à 

l'exploitation souterraine est envisagée. L'analyse résultant du cadre stochastique proposé 

montre que la décision la plus rentable implique de renoncer au développement de la mine 

souterraine et de continuer à produire par l'exploitation minière à ciel ouvert uniquement 

pour l'avenir prévisible. Des idées précieuses vers le risque associé à la conception de la mine 

proposée sont obtenus grâce à l'analyse de risque stochastique. Les résultats montrent une 



 

vi 

 

augmentation de la VAN de 23% pour les plans de la mine stochastiques par rapport à 

l'équivalent déterministe classique. 
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Goals and Objectives 

The goal of this thesis is to develop and apply a method to determine the optimal transition 

depth from open pit to underground mining which utilizes stochastic mine planning 

techniques and effectively describes the transition depth in an operationally implementable 

manner in three dimensions.  In order to achieve this goal, the following objective must be 

fulfilled: 

1. Perform a critical review of the recent literature that is relevant to the open pit to 

underground transition decision.  This involves developments on the topics of: 

traditional open pit mine planning, underground mine planning, incorporating 

uncertainty into the mine planning process and the open pit to underground 

transition problem itself. 

2. Develop a framework to determine optimal transition depth from open pit to 

underground mining which utilizes stochastic mine planning techniques and perform 

a field test of proposed method through a case study. 

3. Apply developed approach to a currently operating, full-scale mining operation which 

is currently considering the decision to transition for open pit to underground 

mining. 
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Thesis Outline 

This thesis is organized into the following chapters: 

Chapter 1 provides a literature review of traditional open pit and underground mining 

practices, advanced stochastic mine planning methods, and previous attempts to solve the 

open pit to underground mining transition problem. 

Chapter 2 presents the developed methodology to identify the optimal open pit to 

underground mining transition depth which utilizes stochastic mine planning techniques.  

An application of the method at a gold deposit is also discussed. 

Chapter 3 discusses an application of the developed methodology at a full-scale, 

operating gold mine in Tanzania.  Details of the benefits of stochastic mine planning in 

long-term strategic decision-making are provided. 

Chapter 4 summarizes the contributions made by this work and outlines suggestions for 

future research on this topic.
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1. Literature Review 

1.1  Overview  

 Any approach to determine a mine's optimal OP to UG transition depth can be viewed 

by its ability to address a set of specific issues.  The first task involves discretizing the 

material above and below ground.  For surface mining, material is typically discretized into 

blocks, where each block is characterized by its metal content, mining cost, processing cost 

and recovery (Hustrulid & Kutcha, 2013).  Below ground, material is grouped into stopes 

that vary in shape and size based on the mining method chosen.   After discretizing material 

into selective mining units, a long-term mine plan is produced which outlines the production 

schedule for both the OP and UG components of the mine.  This mining sequence is created 

through use of optimization frameworks that aim to maximize discounted cash flows profits.  

Frameworks exist to incorporate sources of uncertainty into the planning process that create 

value while mitigating risk.  It has been shown that geological uncertainty can have a large 

impact on the profits generated by mine plans. In this thesis geological uncertainty refers to 

grade or metal content uncertainty and it is important to incorporate this type of uncertainty 

into mine planning by considering a set of equally-probably orebody simulations (Godoy, 

2003; Ramazan & Dimitrakopoulos, 2007; Jewbali, 2006; Albor & Dimitrakopoulos, 2010; 

Goodfellow, 2014;  Montiel, 2014).  These mine plans can then be used to accurately calculate 

the value of a mine by considering the amount of valuable material extracted on a yearly 

basis while incorporating time value of money.  From there, the interaction between the OP 

and UG components can be modeled to accurately value the act of making a transition 

between mining methods.  It is worthwhile to review the important past work done in these 

issues pertinent to the OP-UG problem, beginning with long-term OP planning and UG 

planning methods, then notable works that attempt to solve the OP-UG transition problem, 

and finally techniques that incorporate geological uncertainty into advanced mine planning 

frameworks.  
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1.2  Traditional Open Pit Planning 

 Traditional mine planning practices utilize estimation methods that produced a single 

(deterministic) orebody model which makes assumptions about metal content and contains 

no information related to variability and the magnitude of geological risk. The conventional 

planning process begins by using this estimated model to determine the ultimate pit limits 

which designate the extent to which is it economically feasible to mine.  To determine the 

optimum pit limits for an open-pit mine an implementation of the Lerchs and Grossman 

algorithm is typically used (Lerchs & Grossman, 1965). This algorithm is run with the 

objective of maximizing the economic value of the deposit, and discounted cash flows can be 

approximated by using a bench-phase heuristic which aims to fill the processing or mining 

capacity, whichever comes first, on a yearly basis (Whittle, 1998). A parameterized 

implementation of the Lerchs and Grossman algorithm (1965) can be run to produce several 

ultimate pit contours or varying size, known as nested pits, by applying a dynamic factor to 

the economic value of each block (Hustrulid & Kuchta, 1996).  Nested pits of material can be 

grouped into pushbacks which provide an operational guideline as to how to progress from 

a pit design standpoint as production progresses. The pushbacks also provide a basis for 

production scheduling, a process which determines the period that a given mining unit 

should be extracted within in order to maximize the mine’s discounted annual cash flows 

(Johnson, 1969; Dagdelen, 1985).  Annual discounted cash flows can be projected based on 

the yearly schedule and the estimated value of each mining block.  These disjoint processes 

are consistently executed as today’s current mine planning practices. More advanced work 

aims to improve upon current practices by unifying the process and determining the 

schedule first.  The extent of the portion of the orebody that has been schedule then outlines 

the ultimate pit contour (Stone et al., 2007). This methodology has the ability to integrate a 

mining complex consisting of several mines within complex processing streams (Menabde, 

2011; Menabde & Stone, 2010).   

1.3  Stochastic Mine Planning 

 In addition to the limitations associated with the sequential nature of traditional mine 

planning techniques, it has been demonstrated that using a single estimated orebody model 

for planning can result in a sub-optimal mine plan along with an in-accurate valuation of a 
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mining asset (Vallee, 2000; Ravenscroft, 1992).  To overcome this, geological uncertainty is 

integrated throughout the planning process using a set of equally probably orebody 

simulations. The benefits of stochastic mine planning where geological uncertainty is 

considered has been extensively demonstrated (Greico & Dimitrakopoulos, 2007; Leite & 

Dimitrakopoulos, 2007; Ramazan & Dimitrakopoulos, 2013). These practices differ from the 

previously discussed traditional methods by utilizing a resource model comprised of several 

equally probable orebody simulations which encapsulate the variability within a given 

deposit.     

 In its simplest form, stochastic mine planning techniques can be used to conduct a 

risk analysis that quantifies the impact of geological uncertainty on an existing production 

schedule by observing the schedule’s ability to meet key production targets (Ravenscroft, 

1992). Dimitrakopoulos, Farrelly and Godoy (2002) perform a risk analysis on a 

conventional mine plan for a gold deposit and observe several shortcomings.  The authors 

show an application where the originally projected NPV using a single estimated orebody 

appears to be misleading, as the risk analysis shows that under geological uncertainty the 

produced mine plan has only a 5% chance of reaching this original NPV (Dimitrakopoulos et 

al., 2002). Additionally, the authors conclude that the expected, NPV derived through risk 

analysis is 25% below what is originally projected by the deterministic optimizer 

(Dimitrakopoulos et al., 2002). The results of risk analysis highlight the uncertainty 

surrounding key project parameters in the mining business. The root of these shortcoming 

stems from a deficiency in ore production on a yearly basis, which can be attributed to the 

inability of a single estimated orebody model to accurately represent the spatial variability 

and connectivity of high grades. Moreover, the economic value of each block based on its 

mineral contents is determined through a non-linear transfer function. Therefore, the 

resulting profits of an optimized schedule produced by using a single input orebody model 

that is an average of a set of simulations will not be identical to the average profits of a 

stochastic schedule built considering the same set of simulations. This non-linear transfer 

function makes it imperative that an entire set of orebody simulations – not just the average 

– are considered for mine planning and decision-making purposes.   
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 Given the impact geological uncertainty has on the cash flows a given production 

schedule is able to generate, a focus towards considering such geological simulations during 

the scheduling process is made by Godoy (2003), Ramazan and Dimitrakopoulos (2007), 

Goodfellow (2014), and Montiel (2014) among others. Godoy (2003) presents an approach 

towards production scheduling which aims to maximize value and mitigate risk.  In this 

work, the authors initially produce a set of production schedules using conventional 

techniques on a set of orebody simulations for a deposit. From there the results of the initial 

scheduling runs provide the optimizer with information relating to the probability that a 

given block should be scheduled in a certain period.  A simulated annealing optimizer then 

perturbs such blocks with the objective of minimizing expected deviations from ore and 

waste targets across all of the simulations to produce a single production schedule which is 

risk resilient. The result of applying this method at the Superpit in Western Australia shows 

a benefit of 28% for the perturbed schedule over the starting deterministic solution. In 

addition to this increase in value, the authors report a reduction in risk whereby the 

perturbed schedule has a 3% chance of failing to meet yearly ore production targets, 

compared to the starting schedules chances of 13%. The author notes the increase in NPV is 

largely due to the optimizer’s ability to extract more metal earlier on in the project life, and 

defer mining waste until later periods. On a yearly basis, the optimizer schedules a 

combination of blocks with a high grade values along with those which have a high 

probability of having a high value. This results efficient risk blending over each period 

produces a schedule that realistically projects cash flows under geological uncertainty. The 

approach has a number of benefits, but the method has a few downfalls which include not 

explicitly aiming to maximize NPV in the simulated annealing algorithms objective function, 

and a time-consuming beginning step of producing a production schedule for each 

simulation.   

 A mine production scheduling method utilizes mathematical programming 

techniques to incorporate geological uncertainty is presented by Ramazan and 

Dimitrakopoulos (2004).  A mixed-integer-programming (MIP) formulation produces 

unique schedules for a set of simulated orebodies to obtain a probability distribution 

outlining the likelihood of a given block being mined in a certain period.  The authors then 
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attempt to maximize the expected net present value which incorporates the probability for 

each block.  Also included in the optimization's objective is a term which aims to limit 

deviations from creating a spatially smooth schedule.  Dimitrakopoulos and Ramazan (2004) 

propose a similar MIP methodology with the objective of limiting deviations of mined 

material from having 100% probability of being a certain specification.  The objective 

function also tries to produce a smooth and operationally implementable schedule and limit 

deviations from key production targets.  The authors introduce the concept of geological risk 

discounting, where a factor is applied to the unit cost of deviating from a specified target.  

This factor penalizes deviations early on in the project more heavily than those that occur 

later.  In the capital-intensive business of mining, it is important to ensure that early year 

targets will be meet in order to produce cash flow to pay back creditors.  When the proposed 

MIP is applied to a nickel laterite deposit, the formulation performs well at reducing the 

impact of geological risk on a production schedule.  When compared to the corresponding 

deterministic schedule, the stochastic schedule has a much higher probability of hitting 

yearly ore production targets.  The downfall of the two mentioned MIP approaches both put 

forth by Ramazan and Dimitrakopoulos revolves around its reliance on a probabilistic 

representation of the uncertainty within each block independently of those surrounding it. 

This measure ignores the variability and uncertainty associated with neighbouring material.  

Such joint local uncertainty can be better represented by considering a set of equally-

probable geological simulations.  

 To overcome the limits of probabilistic methods, Menabde et al. (2007) develop an 

MIP approach that simultaneously optimizes cut-off grade and production sequence while 

considering geological uncertainty through use of a set of orebody simulations.  The 

approach implements a formulation that allows the optimizer to select a cut-off grade for 

each production year.  The complexity of the MIP is reduced by aggregating blocks into 

panels and considering a single binary decision variable for scheduling each panel.  When 

compared to the results gathered using a deterministic optimization with a marginal cut-off 

grade, the schedule produced through a stochastic optimization with a variable cut-off grade 

increases the NPV of a mining project by 26%. 
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 Ramazan and Dimitrakopoulos (2007, 2013) expand on this uncertainty-based 

scheduling work and develop a two-stage stochastic programming (SIP) formulation, which 

receives a set of orebody simulations as an input for production scheduling.  The SIP 

formulation has the objective of maximizing discounted cash flow produced by a mine and 

minimizing deviations from key targets on a yearly basis while considering geological 

uncertainty.  The authors utilize a two-stage optimization framework where anticipative 

(first-stage) and adaptive (second-stage) programming models are combined to form a 

unique formulation with recourse variables (Birge & Louveaux, 2011).  In the work by 

Ramazan and Dimitrakopoulos (2013), scheduling decisions are made through first-stage 

decision variables based on the expected economic value of a given block when considering 

a set of orebody simulations.  These mining-related decisions are scenario-independent to 

provide an operationally implementable schedule.  The second-stage, or recourse linear 

variables are scenario-dependent and govern the amount of material that should be 

reclaimed from a stockpile in a given year, for a specific simulation.  Such decisions are made 

once the uncertainty is revealed in a given simulation, and allow for the mitigation of risk 

across the scenarios considered.  In a case study at a small gold deposit, the SIP formulation 

produces a result with an NPV that is 10% higher than the deterministic-equivalent that uses 

a single estimated orebody model to make scheduling decisions (Ramazan & 

Dimitrakopoulos, 2013). Although, practicality issues arise as large SIP problems that rely 

on mathematical programming techniques take a large amount of time to solve, the case 

study mentioned took 40 hours to solve.  

 Leite and Dimitrakopoulos (2007) apply the developed SIP to a copper deposit and 

report a 29% increase in the expected NPV of a stochastic schedule over the deterministic 

equivalent after performing risk analysis.  The authors see a familiar trend as the stochastic 

schedule outperform the deterministic schedule when observing how the impact of 

geological uncertainty affects the schedule's ability to meet production targets on a yearly 

basis.  Benndorf and Dimitrakopoulos (2013) then further test the SIP methodology on a 

multiple-element deposit that has complex metal grade targets and blending requirements.  

Along with an increased chance of meeting metal grade targets for the stochastic schedule, 

the authors investigate the impact of the magnitude of a penalty unit cost in the objective 
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function. The presented work concludes that increasing this unit cost will help the optimizer 

reduce yearly deviations up to a certain threshold, after which the optimizer will not have 

the ability to further mitigate risk.   

 Montiel (2014) and Goodfellow (2014) expand upon the initiative of incorporating 

geological uncertainty by developing methods that take a global optimization approach to 

planning mining complexes. A mining complex is an interactive system comprised of several 

producing mines and multiples processing streams located in a close proximity. Taking a 

holistic approach to optimizing a large number of decision variables results in a globally 

optimal solution which has been shown to be more optimal than a series of disjoint 

optimization runs (Whittle, 2010). Both authors deviate from traditional block-based 

valuation techniques, as revenue is instead declared when a stream of valuable material 

reaches a processing destination. Shifting the revenue to the processor overcomes 

limitations of defining the economic value of a discrete unit of mined material since the 

impact of blending multiple units and optimal processing streams can be considered.  This 

also allows for the inclusion of non-linear recovery curves, and more accurate valuation of 

the metal content.  In addition to this non-linear transfer function, the authors are both able 

to model complex constraints such as blending restrictions and the impact of deleterious 

elements. The authors also implement the ability to effectively route mined material through 

a mining complex in order to maximize value.  First-stage processing-related decisions are 

modeled as binary decision variables which govern the material flow of each unit of material 

as it leaves the mine, and then second-stage continuous recourse variables are utilized to 

mitigate risk at tertiary destinations, such as stockpiles, once uncertainty has been revealed.   

 To solve the large problem related to globally optimizing a mining complex Montiel 

(2014) uses a simulated annealing solution method that relies on three perturbation 

methods that occur on different operational levels. The author also explores the impact of 

controlling different operating modes. Here, it is discovered that having the ability to 

oscillate between operational modes at the processing plant which alter the grinding size 

and consequently throughput can add value. Within the developed framework the author 

demonstrates the ability to simultaneously schedule both an open pit and underground cut-
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and-fill mine. Further improvements can be made to this work by including a diversification 

strategy within the simulated annealing algorithm.   

 Goodfellow (2014) allows the optimizer to make decisions related to capital 

expenditures and produces a destination policy which is robust to uncertainty.  To overcome 

the complex task of assigning a binary processing destination decision variable to each unit 

of mined material, Goodfellow clusters blocks of similar attribute values and assigns and 

optimal destination to this cluster.  In real-time, once mining commences and a block's 

cluster membership is known, so is its optimal destination based on the processing policy 

derived for each cluster during the optimization process. This provides mine operators with 

a detailed and implementable plan as they gather more data related to the material mined in 

the short-term. To overcome complexity issues the author implements a hybrid approach 

that alternates between particle swarm optimization and simulated annealing. The complex 

heuristic takes a long time to solve and demands a high degree of knowledge when tuning 

optimization related parameters.  

 In addition to the simulated annealing, other metaheuristics can be used to overcome 

the computational complexity issues of large realistic production scheduling of deposits that 

require unpractical amounts of time to solve. Metaheuristics are able to provide a high 

quality solution to the mine production scheduling problem in an efficient amount of time.  

Lamghari and Dimitrakopoulos (2012) propose a metaheuristic method based on tabu 

search which is further improved upon by Senecal (2015). This method starts with an initial 

feasible solution that is iteratively modified by performing perturbations within a specified 

neighborhood. Results show are encouraging with small gaps of less than 4% between the 

solution produced by the metaheuristic and the optimal solution reached using 

mathematical programming (Lamghari & Dimitrakopoulos, 2012).  

1.4  Underground Planning 

 Optimization techniques for underground mining are not as advanced as what has 

been developed for open-pit. This is largely because of the case-specific nature of each 

underground mine. As well, the scheduling optimization formulation for an underground 

mine tends to be substantially more complex than what is typically seen for open pit 
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(O'Sullivan, Brickey & Newman, 2015). A number of factors contribute to this increased 

complexity, most notably constraints that contain several variables, which leads to a dense 

constraint matrix. As well, there are several activities associated with extracting a single 

stope, all of which need to be independently scheduled and many underground mines do not 

stockpile ore, therefore scheduling decisions must immediately satisfy all blending 

requirements (O'Sullivan et al., 2015).   

 In general underground long-term planning is divided into two phases: stope design 

and stope sequencing.  Determining an optimal stope design is the first phase of this 

procedure, and from there the stope extraction sequence can be produced.  For the purposes 

of the large-scale strategic decision of determining the optimal point to transition from open 

pit to underground mining, efforts mainly focus on scheduling stope extraction to produce 

guidelines which allow for the accurate valuation of underground mines.  

 The floating stope algorithm was the first stope design algorithm to be developed and 

is implemented in a commercially available software product (Alford, 1995). In this 

algorithm, a minimum cut-off grade is set and a resulting minimum stope size is floated 

around the deposit to outline the minimum dimension of stopes, where the average grade 

within the stope is above the cutoff. Two envelopes are then formed: the inner envelope and 

outer envelope. The inner envelope contains the union of all highest grade stope positions 

for each block above the cutoff grade.  The outer envelope contains the union of all possible 

stope positions for a block above the cutoff grade. It is then up to a mining engineer to decide 

where between the inner and outer envelope the optimal stope design lies. Issues with this 

method arise when stopes overlap, meaning that two or more stopes share one or more high 

grade blocks. When using this method, the result's optimality is highly related to the 

interpretation of the engineer as the envelopes merely provide a guideline for stope design.   

 Geological uncertainty was incorporated into stope design by Grieco and 

Dimitrakopoulos (2007). This probabilistic method uses mixed integer programming 

techniques to determine stope and pillar designs. A predetermined grid of rings is grouped 

together by the optimizer as it aims to maximize metal content. The potential drawback of 
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this method is that the probabilistic nature of the optimizer uses strict binary variables and 

is not able to accurately capture the joint local uncertainty of the orebody.   

 Newman and Kuchta (2007) attempt to solve the underground production scheduling 

problem at a large underground sublevel caving operation. The model aims to decide when 

the extraction of large panels should occur through the use of Load-Haul-Dump (LHD) 

machine placements. The problem is large and heavily constrained through vertical and 

horizontal sequencing requirements along with blasting capacity issues. The objective 

function of this formulation aims to minimize deviations from monthly ore demand for the 

two different types of ore. The scheduling process is important because no stockpiles exist 

at the mine under investigation. Due to the size and complexity of the formulation, the 

authors attempt to solve an aggregation version of the original formulation where time 

periods are combined to form phases. Further efforts to overcome the computational 

complexity of scheduling at the large sublevel caving operation are presented by Martinez 

and Newman (2011). In this work the authors utilize a decomposition heuristic to simplify 

the original formulation by creating a series of sub problems that each includes a component 

from the original objective function. The results of this run produce a solution with a higher 

objective value and in less time than the original than what is seen for the earlier work 

(Martinez & Newman, 2010). Shortcomings of both works include failing to incorporate 

maximizing profits as an objective in the optimization, and solely focusing on minimizing 

deviations from ore demand. It has been demonstrated that both objective can be 

incorporated into an optimization formulation as seen in Ramazan and Dimitrakopoulos 

(2013).   

 Another underground stope production scheduling method that includes 

modifications to mathematical programming formulation in order to address solving speed 

issues is developed by Epstein et al. (2012), who effectively schedule a copper mining 

complex that is comprised of multiple open pit and underground mines, processors and 

products. The formulation takes a holistic approach to simultaneous scheduling separate 

open pit and underground mines at once. The underground method considered implements 

sub-level caving, where mining units are combined to build vertical columns where the 
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highest grades are located at the bottom of the column and grades decrease upwards 

vertically. The authors perform an LP relaxation on the originally NP-hard underground 

scheduling formulation, which works favorably because the layout of the high grade ore at 

the bottom of each column. This relaxation provides a near-integer solution, and a rounding 

heuristic is utilized in an iterative fashion to improve the integer quality of the relaxation. A 

similar rounding heuristic is used to solve the open pit. When benchmarked against 

traditional practices where a disjoint approach is taken to sequentially schedule 

neighbouring mines, the advanced integrated model shows an 8% NPV benefit. The method 

is impressive in its ability to model an entire mining complex simultaneously and reduce 

solving time of the underground scheduling to a few hours using the rounding heuristic 

compared to a process that took several weeks using the traditional approach. Although, 

further testing through case studies where the grade distribution does not play favorably 

into the architecture of the formulation are required to demonstrate versatility of the solving 

speed measures implemented.   

 Bley and Terblanche (2012) present two formulations to schedule the extraction of 

underground stopes. Beginning with a resource production and consumption framework 

which models the different mineral products produced while considering consumption 

activities such as the labour required to extract to stope. The authors, then present a low-

resolution resource model with micro-selectivity, which makes utilizes a piece-wise linear 

approximation of a mining method specific grade tonnage curve to approximate the metal 

tonnage generated by mining a given stope. The authors aim to model and schedule stopes 

in the short term on a monthly basis and conclude that the low-resolution resource model is 

able to handle the relevant short-term constraints and problem size more effectively than 

the production/consumption framework. Although, relying on a grade tonnage curve to 

approximate the metal tonnage mined, the method neglects the local heterogeneity and 

uncertainty of mineral grades associated with mineral deposits.   

 Nehring, Topal and Little (2009) present a way to substantially reduce the solution 

time of underground MIP optimizers by limiting the number of binary decision variables 

included in the formulation. Their approach involves decreasing the number of binary 
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variables for each mining stope from the number of extraction related activities to one per 

block. Instead of independently scheduling extraction activities for each block, a single 

binary decision variable is used to define the commencement of mining activities at that 

given block. Subsequent extraction activities are then carried out on a predetermined 

timeline. This technique is used in the method presented in this paper to increase the solving 

speed of the scheduler. Despite the benefits in solving speed, combining these activity 

decisions may have an impact of the overall optimality of the solution. Little, Knight and 

Topal (2013) present a profound approach where an operation's stopes are design and 

scheduled simultaneously. Little et al. (2013) determine the optimal stope layout and stope 

extraction sequence within the same optimizer. It has been shown in the past that this type 

of simultaneous optimization leads to better solutions (Whittle, 2010).   

 Due to a limited number of underground scheduling software products, Roberts and 

Bloss (2014) alter the scheduling optimization formulation of an underground stoping 

operation so that it can be accommodated by BLASOR, an existing software product that 

produces long term schedules for open pit mines (Stone et al., 2007). The relevant UG 

constraints are formatted much like slope constraints commonly seen in OP scheduling. As 

well, each stope is divided into grade bins to allow for cut-off grade optimization. In order to 

keep the mill operating at full capacity, the highest projected value corresponds to the lowest 

cut-off grade. The results show that this type of scheduling can be successfully executed and 

in the case study examined.  

1.5  Combined Open Pit to Underground Planning for Transition 

 The increasing frequency at which the decision of when to transition from open pit to 

underground mining has motivated several research studies in the past. Since some of the 

world’s largest mines will reach their ultimate pit in the coming years, it has become 

increasingly important to develop methods that optimize and explore the possibility of 

transitioning from open-pit to underground (Fuentes, 2004). For example, the world’s 

deepest copper mine Codelco’s Chuquicamata in Chile will complete a transition in 2019 

from OP to UG mining (block caving), gaining access to approximately 1.7 billion tonnes of 

copper ore reserves which lie beneath the existing pit (Kjetland, 2012). Fuentes and Caceres 
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(2004) also conclude that there is no algorithm that can simultaneously manage and 

generate an optimal mine plan that outlines the transition from open-pit mining to 

underground.   

 The relevant literature can be grouped into two main focuses: indicator-based and 

scheduling-based. Indicator-based methods make use of comparison between key indicators 

and parameters for the open pit and underground portions of the deposit. Others approaches 

focus on looking further into the scheduling aspect which then allows for comparison 

between financial values of open pit and underground portion. As the capability of 

computers has advanced, efforts have shifted away from indicator-based and towards a 

more computationally cumbersome task of scheduling-focused analysis.   

 Methods to determine an optimal transition depth began with a heavy reliance on the 

use and comparison of mining indicators. This trend begun with developing the term 

allowable stripping ratio (ASR) which compares the additional cost incurred for 

underground mining over open pit versus the unit cost per unit of waste (Popov, 1971). The 

author states that if the value of the conventionally user Overall Stripping (OSR) exceeds, the 

ASR then the transition to underground, because at this point it is more expensive to extract 

through open pit than underground despite the cost differences, because of the amount of 

external dilution. Musendu (1995) expands this analysis to include several parameters in his 

analysis in determining an optimal transition level. Notably, the author believes that if the 

following relationships are met, then it is permissible to make a transition to underground. 

The required relationships include: lower recovery for OP, low grades, higher OP cost, high 

stripping costs, low production rate, and low UG dilution. These guidelines provide a 

conceptual description of an optimal open pit to underground transition point, but for such 

a capital-intensive decision more analysis is required.     

 Opoku and Musingwini (2013) builds upon this idea by incorporating geological 

uncertainty into the benchmarking of key parameters to determine when a mine should 

make the transition. As a change from other works which take a similar approach, the 

authors describe the transition point in as a production year instead of a depth, stating that 

this allows a mine operator to capture the dynamic nature of the decision. The author 
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observes the impact of geological uncertainty on several key project indicators, such as cost, 

processed gold, average grade, NPV and gold price to cost ratio. Such indicators are 

benchmarked against the value of these other projects that have previously successfully 

made the transition. Focusing on the impact of indicators forces the author to lose resolution 

on the problem and is not accurately able to determine how varying the transition year 

impacts the decision at each mine investigated, which can have a great impact on profits.   

 There are several shortcomings associated with indicator-based approaches to 

solving the OP-UG transition problem. Methods which focus on stripping ratio neglect the 

revenue component generated by extracting valuable material. Stripping ratio fails to 

incorporate all components which contribute to the economic value of a block. The revenue 

generated may change between open pit and underground mining methods and thus this 

revenue difference should be incorporated in any study that is aiming to maximize a mine's 

profits through making an OP-UG transition. Marginal fluctuations in strip ratio will be seen 

in NPV calculations as all of the parameters included in strip ratio are also tracked in NPV. It 

is apparent that NPV is a superior metric since an NPV calculation incorporates all of the 

information that is conveyed by indicators such as strip ratio. As well, apart from Opoku and 

Musingwini's work (2013), indicator-based approaches fail to account for the impact of 

uncertainty can have. For instance, there is inherent geological uncertainty associated with 

the classification of a block and as its classification changes between ore and waste this can  

impact the stripping ratio, head grade, cost of mining ore and recovered metal.   

 Scheduling efforts began with Nilsson (1992), who investigated scheduling within 

pushbacks of growing size to determine which transition depth is optimal. Four different 

pushback designs are evaluated, along with their corresponding underground orebodies. 

The author notes that the pushback deem optimal for the combined OP-UG method is 

different from the ultimate pit if the operation went solely through OP methods. In the 

hypothetical case study presented, the option of combined OP-UG mining increases the value 

of the operation by 19%. A hybrid approach that includes both scheduling and indicator 

analysis is developed by Visser and Ding (2006), who aim to solve the transition problem by 

jointly observing the impact of transition depth and open pit slope angle on profits and other 
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key project indicators. The objective of perturbing the open pit slope angle in order to 

decrease strip ratio and operating cost is performed in conjunction with iterative bench-wise 

scheduling. The OP optimization process iterates downwards through a deposit, observing 

NPV, IRR and unit costs for progressively deeper benches until a pre-set criteria is met. 

Scheduling UG is done after OP, as the author looks at a block caving setup which progresses 

upwards from the deepest strata available for underground mining. The author applies this 

method to Pallabora Copper Mine in South Africa and observes a $28M or 4% increase in 

NPV for the case of transitioning to underground mining as opposed to solely focusing on 

open pit mining for the duration of the life-of-mine. The author lays out a framework that 

provides analysis on financial impact and encourage observing NPV and IRR, but no clear 

decision criteria is stated and the final decision is left up to the user. The approaches by 

Nilsson (1992) and Visser and Ding (2006) fail to capture the local complexity of a resource 

model, as a constant homogenous grade is assumed throughout a deposit. 

 Carli and Peroni (2013) present an approach similar to Nilsson (1992), but in 3-

dimensions.  The authors begin by classifying each block based on marginal and breakeven 

cut-off grades as developed by Rendu (2013). Each block is assigned an economic value 

based on where its grade lies in relation to the cut-off thresholds.  Once these economic 

values are established, Datamine Studio 3 NPV Scheduler (Datamine Software, 2013) is used 

to produce five open pit shells with price factors ranging from 60%-100% on 10% 

increments. These shells are used as ultimate pit contours for the candidate transition depths 

evaluated.  Below each pit, a similar procedure of identify portions of the orebody that are 

ore using a breakeven cut-off grade (Rendu, 2013) using the underground parameters is 

carried out for the portion of material not included in the extent of the open pit contour. The 

author then evaluates the financial viability of solely open pit mining, underground mining 

and combined open pit and underground mining. The option to transition to UG mining 

increases the NPV over the option of solely mining through OP by 9%. Within the options of 

where to transition, each transition depth has quite a similar NPV, as the optimal depth 

chosen has an NPV 4% higher than the worst-case decision.  The method fails to consider the 

location and impact of the crown pillar. As well, by neglecting geological uncertainty and 
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imposing a strict cut-off grade to classify ore, the optimizer has strict guidelines which limit 

optimality based on predetermined economic parameters.   

 Roberts, Elkington, van Olden, and Maulen (2013) build a strategic plan for a large 

copper mine which currently mines through a stoping operation and is investigating the 

benefit of expanding underground production. The mine is also considering the potential of 

an open pit mine which has already been planned for future production. The authors 

evaluate how the opportunity cost of mining a block through underground methods impacts 

the overall profitability of the mine. After investigating scheduling both OP and UG mines in 

an overlapping section, the authors conclude that UG stopes that lie within the optimal OP 

ultimate pit should not be scheduled because they will reduce the profitability of the project. 

The authors mention that expanding the UG mine to extract high-grade material lying below 

the open pit is advantageous because UG methods can mine this material earlier in the 

project life and make up for potential shortfalls in OP ore production in order to ensure that 

the processor is operating at its full capacity. Although, the authors do not evaluate the 

decision at a high resolution, in terms of how varying the size of the underground expansion 

will impact the increase in profits. 

 A movement towards optimization is made by Bakhtavar and Shahriar (2009), who 

present a heuristic method that compares the economic value of mine blocks when extracted 

through OP versus their value if extracted by UG techniques. The method iterates 

progressively downwards through a deposit, comparing the profit of the two techniques 

until the value of a certain mining progression underground exceeds the value of mining it 

through open-pit. Once this threshold is reached, the method concludes that this level is the 

optimal transition depth. The author moves to an integer programming approach in a later 

work (Bahktavar, 2012), where binary decision variables are used to determine whether or 

not a unit of material is extracted through OP or UG methods. Constraints governing open pit 

slope requirements and a minimum size threshold for underground stopes are included in 

the formulation to model the problem. A soft reserve constraint is included to prevent the 

optimizer from assigning a unit more than one method of extraction. This approach 

overcomes the previous shortfalls of a heuristic method since using mathematical 
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programming guarantees an optimal solution. Although, the optimization does not schedule 

blocks in a specific year, only a decision on what method to mine is determined which affects 

how accurately the operation can be valued. Newman, Yano and Rubio (2013) format the 

transition depth problem as a longest-path network flow. This approach determines the 

optimal transition depth by creating a network that outlines possible mining sequences, 

their corresponding transition depths along with the associated NPV (Newman et al., 2013). 

The orebody is discretized into horizontal strata for the above a below-ground mining 

components, and it is assumed that a worst-case bench mining schedule is adopted for open-

pit production, and a bottom-up schedule for the underground block caving component of 

the mine (Newman et al., 2013). Both Bahktavar and Shahriar (2009) and Newman et al. 

(2013) choose to discretize the space into strata and effectively reduce all solutions to two-

dimensions, since the optimal transition depth is described as a strata or plane in the x-y 

dimension. This result is not implementable, since a two-dimensional plane considered to be 

the transition depth cannot be used as an ultimate pit guideline. In addition to this, studies 

have shown that bench-wise mining is not optimal, and mining schedules outlined by nested 

pits generate more value (Godoy, 2003). Fixing the production schedule to progress from the 

top downwards for OP and from the bottom upwards for UG may not adequately value the 

asset, since the schedule will not be optimal.  More realistic selective mining units and an 

optimized schedule can also provide a more accurate representation of a mine’s value. In 

addition, the attempts to solve the OP-UG problem discussed above also fail to consider 

geological uncertainty.  

 Realistic selective mining units and an optimized schedule can provide a more 

accurate representation of a mine’s value, and this is the approach taken by Dagdelen and 

Traore (2014) who further extend this OP to UG transition idea to the context of a mining 

complex. In this work, the authors investigate the transition decision at a currently operating 

open pit mine that exists within the context of a mining complex that is comprised of five 

producing open pits, four stockpiles and one processing plant. The authors take an iterative 

approach by evaluating a set of selected transition depths through optimizing the life-of-

mine production schedules of both the open pit and underground mines using mixed linear 

integer programming techniques. The authors begin by using Geovia’s Whittle software 
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product (Geovia, 2012) to generate a series of pits which provide an ultimate pit contour. 

The crown pillar, a large portion of undisturbed host material serves as protection between 

the lowest OP working and the highest UG levels, is located below the ultimate pit. The 

location of the ultimate pit and crown pillar provide a basis for the underground mine design. 

Optimized life-of-mine production schedules are then created to determine yearly cash flow 

and resulting NPV. This procedure is repeated for progressively deeper transition depths 

until the NPV observed in the current iteration is less than what was seen for a previously 

considered transition depth, at which point the authors conclude that the previously 

considered depth, with a higher NPV, is optimal.  

 Whittle et al. (2015) make an initial attempt to accurately model the optimal 

placement of a crown pillar which is a large portion of undisturbed host material which lies 

between the ultimate pit and the high underground opening for geotechnical stability 

reasons. The work to expand on a network-flow formulation used to determine the optimal 

ultimate pit for an open pit mine (Lerchs and Grossman, 1965), to solve the OP UG transition 

decision. The authors introduce an alternate opportunity cost approach in a formatted 

digraph. The model alters the flow of arcs in the open pit portion of the digraph in order to 

effectively control the shape and size of the crown pillar which is a paramount feature that 

needs to be addressed when considering the OP-UG transition. This work makes an initial 

attempt at solving one of the largely neglected topics involved with the OP-UG transition 

problem, but fails to consider sources of uncertainty.   

 All previous attempts to solve the transition problem fail to address the impact of 

geological uncertainty.  Such deterministic frameworks produce misleading NPV projects 

and have a low chance of meeting production targets once mining commences 

(Dimitrakopoulos et al., 2002). Stochastic mine planning techniques have been shown to 

produce favorable results in the presence of uncertainty (Godoy, 2003; Goodfellow, 2014; 

Montiel, 2014).  Before outlining a method that incorporates geological uncertainty into the 

OP UG decision making framework, it is useful to review past efforts to developed risk-based 

resource modeling frameworks that are relied upon to produce the geological simulations 

required for stochastic planning. 
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1.6  Modeling Geological Uncertainty 

 Previously mentioned stochastic mine planning methods highlighted the benefits of 

considering geological uncertainty throughout the planning process. In order to represent 

the inherent variability of a given deposit selected for scheduling, discrete equally-probable 

simulations are produced. Orebody simulations are created in a sequential fashion based on 

the hard conditioning data available, which in mining typically is in the form of drillhole 

assays or geological interpretations. In order to confirm that a given simulation is an 

accurate realization of the deposit, validations must be performed to ensure that the 

statistics of the original hard data are reproduced.   

 The distribution of mineral contents throughout a deposit is considered to be a 

random process. Models to characterize such processes in space rely on a distribution of 

certain attributes over a random spatial field. Equally probable simulation can then be made 

sequentially by drawing realizations from the conditional probability distribution functions 

associated with such a spatial random field at different locations. The most common method 

that implements this sequential approach is Sequential Gaussian Simulation (SGS), which 

assumes a random field is governed by a Gaussian distribution (Isaaks, 1991). SGS among 

other methods, use the conditioning data point to build a Gaussian distribution over each 

node in the random spatial field. In a randomly generated order, these nodes are visited and 

a randomly generated realization is drawn from the distribution. This local realization then 

becomes a member of the conditional data set. While creating multiple simulation 

realizations, the path through simulated nodes changes, as well does the specific values 

drawn from local distributions, which results in a set of simulations that have local 

differences from each other. The inclusion of recently simulated nodes within the 

conditioning data set was shown to demand a considerable amount of memory and lead to a 

performance decline (Godoy, 2003). In order to overcome these issues, Godoy (2003) 

proposes direct block simulation (DBSIM) which simulates on a point-support scale in the 

same manner seen for GSGS (Dimitrakopoulos & Luo, 2004). DBSIM begins by simulating the 

internal nodes within a selective mining unit. A block value is then calculated as the average 

of the internal simulated nodes and the simulated points are discarded as the average block 

value is entered into the conditioning data set.  This algorithm effectively integrates 
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conditioning data on both the block and point support scale. The DBSIM algorithm is efficient 

because utilizes the advantages capitalized upon by GSGS, where the adjacent nodes are 

considered to share a common neighbourhood. As well DBSIM performs fewer searches than 

strictly point-wise simulation algorithms. Assuming a Gaussian distribution throughout the 

random field and relying on two-point statistical measures such as variance are the main 

shortcomings of SGS, GSGS and DBSIM. Particularly when modeling complex geological 

phenomena that deviate from a Gaussian distribution, other simulation methods are 

required to overcome the limitations of two-point simulation frameworks.    

 To expand upon the limitations of conventional simulation techniques that only 

consider first and second-order statistics, multiple point (MP) models have been developed 

that utilize high-order spatial statistics. High-order statistics are important measures that 

require consideration in order to model and reproduce the connectivity of complex 

geometries often seen in mineral deposits. It has been demonstrated that MP methods are 

able to accurately model such complex spatial features that deviate from Gaussianity (Arpat, 

2005; Mariethoz, Renard, & Straubhaar, 2010). MP sequential simulation methods store the 

frequency of repeatable spatial patterns and determine the probability associated with such 

patterns occurring on a simulation grid. A commonly used MP simulation technique is a 

mining setting is single normal equation simulation or SNESIM (Strebelle, 2002). MP 

statistics require closely spaced conditioning data (Guardiano & Srivstava, 1993) and 

therefore rely on the use of a training image, or geological interpretation of the schematic of 

the structures within a deposit, to serve as an input to the MP simulation algorithm. 

Measures have been taken to reduce solving speed issues such as storing data event 

probability distributions in a tree and optimizing size of the template (Strebelle, 2013).  In a 

mining setting, MP simulation algorithms such as SNESIM are often called upon to simulate 

categorical variables such as lithologies based on such a training image. 
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2. A Stochastic Optimization Formulation for the Transition from Open Pit 
to Underground Mining  

2.1 Introduction 

 The transition from open pit (OP) to underground (UG) methods requires a large 

capital cost for development and potential delays in production but can provide access to a 

large supply of reserves and subsequently extend a mine’s life.   Additionally, an operating 

mine may benefit from such a transition because of the opportunity to utilize existing 

infrastructure and equipment, particularly when in a remote location.  Optimization 

approaches towards the open pit to underground transition decision (or OP-UG) may 

commence with discretizing the space above and below ground into selective units. For 

surface mining, material is typically discretized into mining blocks, while underground 

material is frequently grouped into stopes of varying size depending on the mining method 

chosen.  From there and through production scheduling optimization, the interaction 

between the OP and UG components can be modeled to realistically value the asset under 

study.   

 Historically, operations research efforts in mine planning have been focused on open 

pits as opposed to underground operations. Most commonly, the open pit planning process 

begins by determining the ultimate pit limits and industry standard is the nested 

implementation of the Lerchs - Grossman’s (LG) algorithm (Lerchs and Grossman, 1965; 

Whittle, 1988, 1999). This algorithm utilizes a maximum closure concept to determine 

optimal pit limits, and a nested implementation facilitates economic discounting.  For 

underground mine planning, optimization techniques are less advanced as when compared 

to those employed for open pit mines and heavily depend on the mining method used.  In 

practice, underground long-term planning is divided into two phases: stope design and 

production sequencing.  For stope design methods, the Floating Stope algorithm (Alford, 

1995) is the oldest computerized design tool available, although not an optimization 

algorithm.  Mine optimization research has developed methods that schedule the extraction 

of discretized units in underground mines (e.g. Trout, 1995; Nehring and Topal, 2007) based 

on mixed integer programming (MIP) approaches.  Nehring, Topal and Little (2009) and 

Little and Topal (2011) extend MIP approaches to reduce the solution times by combining 
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decision variables. Adaptation of open pit MIP approaches for optimization of underground 

strategic mine planning have also been proposed (Roberts and Bloss, 2014). 

 Some of the world’s largest mines are expected to reach their ultimate pit in the next 

15 years (Kjetland, 2012). Despite the importance of the topic, there is no well-established 

algorithm to simultaneously generate an optimal mine plan that outlines the transition from 

open pit mining to underground (Fuentes and Caceres, 2004). The first attempt to solve the 

OP to UG transition problem was made by Popov (1971). More recently a movement towards 

applying optimization techniques to the problem has been made starting with Bakhtavar, 

Shahriar, and Oraee (2008) who present a heuristic method that compares the economic 

value of mine blocks when extracted through OP versus their value if extracted by UG 

techniques. The method iterates progressively downwards through a deposit, concluding 

that the optimal transition is the depth reached when the value of a block mined by UG 

methods exceeds the corresponding OP mining value.  Drawback of this method is that it 

provides a transition depth only described in two-dimensions which is unrealistic from a 

practical standpoint. A 2D plane is not an implementable guideline for open pit production, 

which relies upon pushbacks and ultimate pit contours to govern production progress. A 

main effort is presented in Newman, Yano and Rubio (2013) where the transition depth 

problem is formulated as a longest-path network flow problem.  Each path within the 

network has a unique extraction sequence, a transition depth and a corresponding net 

present value (NPV).  Major limitation of this development is that it amounts to a 2D solution 

of what is a 3D problem, as the orebody is discretized into horizontal strata for the above 

and below ground mining components. At the same time worst-case bench-wise mining 

schedule is adopted for open pit production and a bottom-up schedule for the underground 

block caving component of the mine. These highly constrained mining bench-wise 

progressions have been demonstrated to be far from optimal (Whittle, 1988) and are rarely 

implemented in practice.  More realistic selective mining units and an optimized schedule 

can provide a more accurate representation of a mine’s value, and this is the approach taken 

by Dagdelen and Traore (2014) who further extend this OP to UG transition idea to the 

context of a mining complex.  In this work, the authors investigate the transition decision at 

a currently operating open pit mine that exists within the context of a mining complex that 
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is comprised of five producing open pits, four stockpiles and one processing plant.  Dagdelen 

and Traore (2014) take an iterative approach by evaluating a set of selected transition 

depths through optimizing the life-of-mine production schedules of both the open pit and 

underground mines using mixed linear integer programming techniques.  The authors begin 

by using Geovia’s Whittle (Geovia, 2012) software to generate a series of pits which provide 

an ultimate pit contour. The crown pillar, a large portion of undisturbed host material that 

serves as protection between the lowest OP working and the highest UG levels, is located 

below the ultimate pit. The location of the ultimate pit and crown pillar provide a basis for 

the underground mine design. Optimized life-of-mine production schedules are then created 

to determine yearly cash flow and resulting NPV.  This procedure is repeated for 

progressively deeper transition depths until the NPV observed in the current iteration is less 

than what was seen for a previously considered transition depth, at which point the authors 

conclude that the previously considered depth, with a higher NPV, is optimal.   

 All above mentioned attempts to optimize the OP-UG transition depth fail to consider 

geological uncertainty, a major cause for failure in mining projects (Vallee, 2000).  Stochastic 

optimizers integrate and manage geological uncertainty (eg grades, material types, metal, 

and rock properties) throughout the scheduling process.  Such scheduling optimizers have 

been long shown to increase the net present value (NPV) of an operation, while providing a 

schedule that has a high probability of meeting metal production and cash flow targets (e.g. 

Godoy, 2003; Ramazan and Dimitrakopoulos, 2007; Jewbali, 2006; Albor and 

Dimitrakopoulos, 2010; Goodfellow, 2014; Montiel, 2014; and others).  Implementing such 

frameworks is extremely valuable when making long-term strategic decisions because of 

their ability to accurately value assets.   

In this paper, the financial viability of a set of candidate transition depths is evaluated in 

order to identify the most profitable transition depth.  In order to get an accurate projection 

of the yearly cash flows each candidate transition depth is capable of generating, a yearly 

life-of-mine extraction schedule is produced for both to OP and UG components of the mine.  

Here, a two-stage stochastic integer programming (SIP) formulation of the production 

scheduling problem is used, which is similar to the work developed by Ramazan and 
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Dimitrakopoulos (2013).  The proposed method improves upon previous works related to 

the OP-UG transition problem by simultaneously incorporating geological uncertainty into 

long-term decision-making while providing a transition depth described in three-

dimensions that can be implemented and understood by those who operate the mine. 

In the following sections, the method of evaluating a set of pre-selected candidate transition 

depths to determine which is optimal is discussed.  Then a stochastic integer programming 

formulation used to produce a long-term production schedules for each of the pre-selected 

candidate transition depths is presented.  Finally, a field test of the proposed method is 

analyzed as the method is applied to a gold mine.   

2.2   Method 

2.2.1  The general set up: Candidate transition depths 

The method proposed herein to determine the transition depth from OP to UG mining is 

based on the discretization of the orebody space into different selective units and then 

accurately assessing the value of OP and UG portions of the mine based on optimized yearly 

extraction sequences of these discretized units. More specifically, this leads to a set of several 

candidate transition depths being assessed in terms of value and then the candidate depth 

that corresponds to the highest total discounted profit is deemed optimal for the mine being 

considered. Stochastic integer programming (SIP) provides the required optimization 

framework to make an informed decision, as this optimizer considers stochastic 

representations of geological uncertainty while generating the OP and UG long-term 

production schedules that accurately predict discounted cash flows.   

 For each transition depth being considered, the OP optimization process begins with 

discretizing the OP orebody space into blocks, sized based on operational selectivity. 

Candidate transition depths can be primarily identified based on feasible crown pillar 

locations.  A crown pillar envelope outlined by a geotechnical study delineates an area that 

the crown pillar can be safely located within.  In the proposed method, it is assumed that the 

crown pillar is not mined. As the crown pillar location changes within this envelope, the 

extent of the OP and UG orebody also changes and the impact this has on yearly discounted 

cash flow can be investigated (Figure 2.1).    The year in which the transition is planned to 



 

28 

 

occur varies across the candidate transition depths. Since the orebodies vary in size across 

the candidate transition depths, it is logical to allocate more years of open pit production for 

transition depths with a larger OP orebody and vice versa.  In addition to a unique transition 

year, each candidate transition depth corresponds to a unique ultimate open pit limit, crown 

pillar location and underground orebody domain, all of which are described in the three-

dimensional space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 - Schematic representation of the proposed optimization approach 

Figure 2.1 - Generating candidate transition depths 
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 An optimization solution outlining a long-term schedule that maximizes NPV is 

produced separately for the OP and UG operations at each of the candidate transition depths 

considered.  Once optimal extraction sequences for the open pit and underground portions 

have been derived for each depth, the value of transitioning at a certain depth can be 

determined by summing the economic value of the OP and UG components.  From here, the 

combined NPVs at each depth can be compared to easily identify the most favorable 

transition decision.  This process is outlined in Figure 2.2. 

2.2.2  Stochastic integer programming: Mine scheduling optimization   

 The proposed stochastic integer program (SIP) aims to maximize discounted cash 

flow and minimize deviations from key production targets while producing an extraction 

schedule that abides by the relevant constraints.  The OP optimization produces a long-term 

schedule that outlines a yearly extraction sequence of mining blocks, while UG optimization 

adopts the same two-stage stochastic programming approach for scheduling stope 

extraction.  The formulation for both OP and UG scheduling are extremely similar, as such 

only OP formulation is shown.  The only difference for the UG formulation is that stopes are 

being scheduled instead of blocks, and yearly metal is being constrained instead of yearly 

waste as seen in the OP formulation.  

2.2.3  Developing Risk-Based Life-of-Mine Plans: Open Pit Optimization Formulation 

 The objective function for the OP SIP model shown in equation (1) maximizes 

discounted cash flows and minimizes deviations from targets, and is similar to what is 

presented by Ramazan and Dimitrakopoulos (2013).  Part 1 of the objective function 

contains first-stage decision variables, 𝑏𝑖
𝑡, which govern what year a given block i is extracted 

within.  These are scenario independent decision variables and the metal content of each 

block is uncertain at the time this decision is made.  The terms in Part 1 of equation (1) 

represent the profits generated as a result of extracting certain blocks in a year and these 

profits are appropriately discounted based on which period they are realized in.   
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 Part 2 of equation (1) contains second-stage decision variables that are used to 

manage the uncertainty in the ore supply during the optimization.  These recourse variables 

(d) are decision variables determined once the geological uncertainty associated with each 

scenario has been unveiled.  At this time, the gap above or below the mine’s annual ore and 

waste targets is known on a scenario-dependent basis and these deviations are discouraged 

throughout the life-of-mine.  This component of the objective function is important because 

it is reasonable to suggest that if a schedule markedly deviates from yearly ore and waste 

targets, then it is unlikely that the projected NPV of the schedule will be realized throughout 

a mine’s life.  Therefore, including these variables in the objective function and reducing 

deviations allows the SIP to produce a practical and feasible schedule along with cash flow 

projections that have a high probability of being achieved once production commences.  

The following notation is used to formulate the first-stage of the OP SIP objective function: 

i is the block identifier; 

t is a scheduling time period; 

𝑏𝑖
𝑡 = {

1   Block 𝑖 is mined through OP in period 𝑡;
0   Otherwise                                                         

 

𝑔𝑖
𝑠 grade of block 𝑖 in orebody model 𝑠; 

𝑅𝑒𝑐 is the mining and processing recovery of the operation; 

𝑇𝑖is the weight of block i; 

𝑁𝑅𝑖 = 𝑇𝑖 × 𝑔𝑖
𝑠 × 𝑅𝑒𝑐 × (Price − Selling Cost) is the net revenue generated by selling all the 

metal contained in block i in simulated orebody s; 

𝑀𝐶𝑖  is the cost of mining block i; 

𝑃𝐶𝑖 is the processing cost of block i; 

𝐸{𝑉𝑖} =  {
𝑁𝑅𝑖 −𝑀𝐶𝑖 − 𝑃𝐶𝑖  if 𝑁𝑅𝑖 > 𝑃𝐶𝑖 
−𝑀𝐶𝑖                         if 𝑁𝑅𝑖 ≤ 𝑃𝐶𝑖 

is the economic value of a block i; 
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r is the discount rate; 

𝐸{(𝑁𝑃𝑉𝑖
𝑡)} =

𝐸{𝑉𝑖
0}

(1+𝑟)𝑡
 is the expected NPV if the block 𝑖 is mined in period 𝑡; 

N is the number of selective mining units available for scheduling; 

z is an identifier for the transition depth being considered; 

𝑃𝑧 is the number of production periods scheduled for candidate transition depth z. 

The following notation is used to formulate the second-stage of the OP SIP objective function: 

s is a simulated orebody model; 

S is the number of simulated orebody models; 

w and o are target parameters, or type of production targets; w is for the waste target; o if 

for the ore production target; 

u is the maximum target (upper bound); 

l is the minimum target (lower bound);      

𝑑𝑠𝑢
𝑡𝑜 , 𝑑𝑠𝑢

𝑡𝑤 are the excessive amounts for the target parameters produced; 

𝑑𝑠𝑙
𝑡𝑜 , 𝑑𝑠𝑙

𝑡𝑤 are the deficient amounts for the target parameters produced; 

𝑐𝑢
𝑡𝑜 , 𝑐𝑙

𝑡𝑜, 𝑐𝑢
𝑡𝑤, 𝑐𝑙

𝑡𝑤are unit costs for 𝑑𝑠𝑢
𝑡𝑜 , 𝑑𝑠𝑙

𝑡𝑜 , 𝑑𝑠𝑢
𝑡𝑤, 𝑑𝑠𝑙

𝑡𝑤respectively in the optimization′𝑠      

objective function. 

OP Objective function 

𝑀𝑎𝑥 ∑∑𝐸{(𝑁𝑃𝑉𝑖
𝑡)}𝑏𝑖

𝑡

𝑁

𝑖=1

𝑃𝑧

𝑡=1⏟            
Part 1

 −  ∑∑
1

𝑆

𝑃𝑧

𝑡=1

(𝑐𝑢
𝑡𝑜𝑑𝑠𝑢

𝑡𝑜 + 𝑐𝑙
𝑡𝑜𝑑𝑠𝑙

𝑡𝑜 + 𝑐𝑢
𝑡𝑤𝑑𝑠𝑢

𝑡𝑤 + 𝑐𝑙
𝑡𝑤𝑑𝑠𝑙

𝑡𝑤)

𝑆

𝑠=1⏟                              
Part 2

      (1) 
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OP Constraints 

The following notation is required for the constraints: 

𝑊𝑡𝑎𝑟 is the targeted amount of waste material to be mined in a given period; 

𝑂𝑡𝑎𝑟 is the targeted amount of ore material to be mined in a given period; 

𝑂𝑠𝑖 is the ore tonnage of block i in the orebody model s; 

𝑄𝑈𝐺,𝑡𝑎𝑟 is the yearly metal production target during underground mining; 

𝑀𝐶𝑎𝑝𝑚𝑖𝑛 is the minimum amount of material required to be mined in a given period; 

𝑀𝐶𝑎𝑝𝑚𝑎𝑥 is the maximum amount of material that can possibly be mined in a given period; 

𝑙𝑖 is the set of predecessor for block 𝑖. 

Scenario-Dependent: 

Waste constraints for each time period t 

∑𝑊𝑠𝑖𝑏𝑖
𝑡 − 𝑑𝑠𝑢

𝑡𝑔
+ 𝑑𝑠𝑙

𝑡𝑔
= 𝑊𝑡𝑎𝑟

𝑁

𝑖=1

       𝑠 = 1,2, … , 𝑆; 𝑡 = 1,2, … , 𝑃𝑧   (2) 

Processing constraints 

∑𝑂𝑠𝑖𝑏𝑖
𝑡 − 𝑑𝑠𝑢

𝑡𝑜 + 𝑑𝑠𝑙
𝑡𝑜 = 𝑂𝑡𝑎𝑟

𝑁

𝑖=1

       𝑠 = 1,2, … , 𝑆; 𝑡 = 1,2, … , 𝑃𝑧  (3) 

Scenario-Independent: 

Precedence constraints  

𝑏𝑖
𝑡 − ∑𝑏ℎ

𝑘  ≤ 0        𝑖 = 1,2, … ,𝑁; 𝑡 = 1,2, … , 𝑃𝑧

𝑡

𝑘=1

; ℎ ∈  𝑙𝑖    (4) 
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Mining capacity constraints 

𝑀𝐶𝑎𝑝𝑚𝑖𝑛 ≤ ∑𝑇𝑖𝑏𝑖
𝑡

𝑁

𝑖=1

≤ 𝑀𝐶𝑎𝑝𝑚𝑎𝑥             𝑡 = 1,2, … , 𝑃𝑧   (5) 

Reserve constraints 

∑𝑏𝑖
𝑡  ≤ 1        𝑖 = 1,2, … ,𝑁     (6)

𝑃𝑧

𝑡=1

 

 Constraints (2) and (3) are scenario-dependent constraints that quantify the 

magnitude of deviation within each scenario from waste and ore targets based on first-stage 

decision variables (𝑏𝑖
𝑡).  Constraints (4) – (6) contain only first-stage decision variables (𝑏𝑖

𝑡) 

and thus are scenario-independent.  The precedence constraint (4) ensures that the 

optimizer mines the blocks overlying a specific block i before it can be considered for 

extraction.  The reserve constraint (6) prevents the optimizer from mining a single block i 

more than once. 

 The size of OP mine scheduling problems cause computational issues when using 

commercial solvers since it can take long periods of time to arrive at or near an optimal 

solution (Lamghari et al 2013).  In order to overcome these issues, metaheuristics can be 

used.  These are algorithms which efficiently search the solution space and have the proven 

ability to find high quality solutions in relatively small amounts of time (Ferland, Amaya and 

Djuimo, 2007; Lamghari and Dimitrakopoulos, 2012; Lamghari, Dimitrakopoulos and 

Ferland, 2014).  To be effective these algorithms must be specifically tailored to match the 

nature of the problem being solved.  In the context of mine production scheduling, the tabu 

search algorithm is well suited and a parallel implementation is utilized here to schedule the 

open pit portion of the deposit for each transition depth that is considered (Lamghari and 

Dimitrakopoulos, 2012; Senecal, 2015).  For more details on tabu seach, the reader is 

referred to the appendix. 
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2.2.4  Developing Risk-Based Life-of-Mine Plans: Underground Optimization 
Formulation 

 The UG scheduling formulation is very similar to the OP formulation.  Both have 

objective functions which aim to maximize discounted profits, while minimizing deviations 

from key production targets.  The UG objective function is similar to what is proposed for the 

OP scheduling function in equation (1), except the binary decision variables can be 

represented using 𝑎𝑗
𝑡 which designates the period in which extraction-related activities 

occur for each stope j.  As well, recourse variables in the second portion of the objective 

function aim to limit deviations from ore and metal targets, as opposed to ore and waste 

targets in the OP objective function.  Since UG mining methods have a higher level of 

selectivity than OP mining, waste is often not mined, but rather left in situ and only valuable 

material is produced. Therefore it is more useful to constrain the amount of yearly metal 

produced in a UG optimization. Underground cost structure is viewed from a standpoint of 

cost per ton of material extracted.  This standard figure contains expenses related to 

development, ventilation, drilling, blasting, extracting, backfilling and overhead.  In terms of 

size and complexity, the UG scheduling model presented here is simpler than what is seen 

for the OP model.  The reduced size is due to only considering long-term extraction 

constraints and a small number of mining units that require scheduling.  This allows for the 

schedule to be conveniently solved using IBM ILOG CPLEX 12.6 (IBM, 2011), a commercially 

available software which relies on mathematical programming techniques to provide an 

exact solution. 

UG Constraints 

Scenario-Dependent: 

Metal constraints for each time period t 

∑𝑔𝑠𝑗𝑂𝑠𝑗𝑎𝑗
𝑡 − 𝑑𝑠𝑢

𝑡𝑚 + 𝑑𝑠𝑙
𝑡𝑚 = 𝑄𝑈𝐺,𝑡𝑎𝑟

𝑀

𝑗=1

          𝑠 = 1,2, … , 𝑆; 𝑡 = 1,… , 𝑃𝑧    (7) 
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Processing constraints 

∑𝑂𝑠𝑗𝑎𝑖
𝑡 − 𝑑𝑠𝑢

𝑡𝑜 + 𝑑𝑠𝑙
𝑡𝑜 = 𝑂𝑡𝑎𝑟

𝑀

𝑗=1

                   𝑠 = 1,2, … , 𝑆; 𝑡 = 1,… , 𝑃𝑧  (8) 

Scenario-Independent 

Precedence constraints 

𝑎𝑗
𝑡 − ∑ 𝑎ℎ

𝑘  ≤ 0                    𝑗 = 1,2, … ,𝑀;  𝑡 = 1,… , 𝑃𝑧

𝑡

𝑘= 1

;  ℎ ∈  𝑙𝑗     (9) 

Mining capacity constraints 

𝑀𝐶𝑎𝑝𝑚𝑖𝑛
𝑈𝐺 ≤ ∑𝑇𝑗 𝑎𝑗

𝑡

𝑀

𝑗=1

≤ 𝑀𝐶𝑎𝑝𝑚𝑎𝑥
𝑈𝐺                      𝑡 = 𝑃𝑂𝑃 + 1,… , 𝑃   (10) 

 Equations (7) – (10) show the constraints included in the UG SIP formulation.  In 

equation (9), the set of predecessors for each stope (𝑙𝑗) are defined by considering the 

relevant geotechnical issues which constrain the sequencing optimization.  These 

precedence relationships are created using Enhanced Production Scheduler (EPS) software 

from Datamine (Datamine Software, 2013).  In the case of the application presented in this 

paper, the precedence relationships implemented were passed along by industry-based 

collaborators who operate the mine.  

 Once the optimization for both the OP and UG components is completed for each 

candidate transition depth, the optimal transition depth can then be identified as the depth 

z that leads to a maximum value of the expression below. 

𝑁𝑃𝑉𝑧
𝑂𝑃 + 𝑁𝑃𝑉𝑧

𝑈𝐺    z =  1, … , 𝐷       (11) 

2.3  Application at a Gold Deposit 

 In order to evaluate the benefits of the proposed method, it is applied to a gold deposit 

that has been altered to suit an OP-UG transition scenario.  In this case study, the optimal 

transition depth from open pit to underground mining of a gold operation is investigated.  
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The mine’s life begins with open pit mining and will transition to production through 

underground mining by implementing the underhand cut and fill method.  Underground 

production is planned to commence immediately after open pit production ceases.  On the 

mine site there is one mill processing stream with a fixed recovery curve.  No stockpile is 

considered.  A crown pillar envelope for the deposit is identified a-priori along with four 

crown pillar locations within this envelope leading to four distinct candidate transition 

depths which are evaluated. Each transition depth possesses a unique above and below 

ground orebody, dictated by a varying crown pillar location in the vertical plane.  The year 

in which the transition between mining methods occurs varies throughout the candidate 

transition depths to accommodate for increased reserves in the OP or UG orebody as the 

location of the crown pillar shifts. The combined OP and UG mine life is 14 years for all 

candidate transition depths tested.  The discrepancy in orebody size and reserves that can 

be accessed by OP and UG methods for each candidate transition depth along with the 

transition year is shown in Figure 2.3.   As the size of the OP deepens and the number of OP 

blocks increases, the amount of UG stopes within the accessible underground resource 

decreases. A schematic of how the crown pillar location varies can be seen in Figure 2.4. 

Figure 2.3 - Size of potential orebody at each transition depth 

 

 

 

 

 Transition Depth 1 Transition Depth 2 Transition Depth 3 Transition Depth 4 

Number of OP Blocks 64,255 72,585 80,915 89,245 

Number of UG Stopes 418 356 340 311 

Production Years 

through OP 
7 8 9 10 

Production Years 

through UG 
7 6 5 4 
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The relevant economic and technical parameters used to generate the optimization models 

are shown in Figure 2.5.   

Metal Price $900/oz 

Crown Pillar Height 60ft 

Economic Discount Rate 10% 

Processing cost/ton $31.5 

OP Mining cost/ton $1.5 

UG Mining cost/ton $135 

OP Mining Rate 18,500,000t/year 

UG Mining Rate 350,000t/year 

OP Mining Recovery 0.95 

UG Mining Recovery 0.92 

Figure 2.5 - Economic and technical parameters 

 

 

Location 2 – Crown Pillar Depth: 820ft 

Location 3 – Crown Pillar Depth: 760ft Location 4 – Crown Pillar Depth: 700ft 

Location 1 – Crown Pillar Depth: 880ft 

Crown 

Pillar 

Potential 

Open-pit 

Resource 

Figure 2.4 - Schematic of transition depths for case study based on crown pillar location 
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2.4   Stochastic Optimization Results and Risk Analysis 

 The transition depth determined to be optimal for the proposed stochastic 

optimization framework is Transition Depth 2 (TD 2) as seen in Figure 2.6.  This transition 

depth can be described by having a crown pillar located at an elevation of 760ft, and access 

to 72,585 open pit blocks and 356 stopes.  The optimal transition depth in this case study 

provides a 5% higher NPV than the next best candidate transition depth and a 13% NPV 

improvement over the least optimal depth.  Such a large impact on the financial outcome of 

a mine confirms that in-depth analysis before making this type of long-term strategic 

decision is beneficial.   

 

 

 

 

 

 

 

 

 

Figure 2.6 – Risk profile on NPV of stochastic schedules 

 In order to evaluate to risk associated with stochastic decision making, a risk analysis 

is performed on the life-of-mine plans corresponding to the optimal transition depth stated 

above in.  Similar analysis has been done extensively on open pit case studies 

(Dimitrakopoulos, Farrelly and Godoy, 2002; Godoy, 2003; Leite and Dimitrakopoulos, 2007; 

Ramazan and Dimitrakopoulos, 2013).  To do so, a set of 20 geological simulations are used 

and passed through the long-term production schedule determined for the optimal 

transition depth, which is this case is Transition Depth 2.  This process provides the yearly 

figures for mill production tonnages, metal production and cash flow projections for each 
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simulation if the schedule was implemented and the grades within a given simulation were 

realized.  Figure 2.7 and Figure 2.8 show that the stochastic schedule produced for Transition 

Depth 2 has a high probability of meeting mill input tonnage targets on a yearly basis.  The 

ability to meet targets translates into a high level of certainty with regards to realizing yearly 

cash flow projections once production commences; this is expanded upon later. Stochastic 

schedules perform well during risk analysis because the inherent geological variability 

within the deposit is captured within the simulations and then considered while making 

scheduling decisions in a stochastic framework. 

 

 

 

 

 

 

 

Figure 2.7 - Risk profile of yearly cumulative cash flow of stochastic result 

  

 

 

 

 

 

 

Figure 2.8 - Performance of stochastic schedule in meeting yearly ore targets 
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 In Figure 2.8 there are large deviations from the target yearly ore production targets 

in period 7 and 8, before the Transition Depth 2 schedule shifts to underground production 

in period 9.  This is because geological risk discounting (Ramazan and Dimitrakopoulos, 

2005) is utilized as a risk management technique during OP scheduling, which penalizes 

deviation from production targets more heavily in the early years of production.  This is 

valuable in the capital-intensive mining sector to increase certainty within early year project 

revenue and potentially decrease the length of a project’s payback period.  In addition to this, 

common long term scheduling practices within the mining industry involves updating the 

schedule on a yearly basis as new information about the orebody is gathered so the large 

deviations later in the open pit mine life are not a large cause for concern.  After the transition 

is made to underground mining in year 9, a high penalty incurred on deviations from ore 

targets to ensure that ore targets are met in the early years of the underground mine. This 

leads to a tight risk profile throughout the underground life of mine (periods 9 to 14). Figure 

2.9 shows the stochastic schedule’s ability to produce metal at a steady rate throughout the 

entire life-of-mine. 

 

 

 

 

 

 

 

 

Figure 2.9 – Risk profile on cumulative metal produced by stochastic schedule 

2.4.1  Comparison to Deterministic Optimization Result 

 To showcase the benefit of incorporating geological uncertainty into long-term 
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optimization that uses the same formulation.  The deterministic optimization process 

however receives an input of only a single orebody model containing estimated values for 

the grade of each block and stope.  Yearly production scheduling decisions are made based 

on these definitive grade estimates, and from there yearly cash flows streams are projected.  

This procedure is followed for each of the four transition depths considered, as was done for 

the stochastic case.  Geovia’s Whittle mine planning software is used to schedule the open-

pit portion of the mine, while an MIP is used for the underground scheduling (Geovia, 2012).  

This underground scheduling utilizes the deterministic equivalent of the stochastic 

underground schedule formulation seen earlier.  The projected yearly discounted cash flows 

can be seen in Figure 2.10 and suggest that Transition Depth 2 (TD 2) is also optimal from a 

deterministic perspective.   

 

 

 

 

 

 

 

 

Figure 2.10 - Analysis of NPV's projected by deterministic schedules 

 To assess the deterministic framework’s ability to manage geological uncertainty, risk 

analysis is performed on the deterministic schedule for the optimal transition depth 2. The 

20 geological simulations mentioned earlier are passed through the deterministic schedule 

produced for Transition Depth 2 and yearly cash projections based on each simulation are 

summarized in Figure 2.11.  The results are compared to identical analysis on the stochastic 

schedule, also for Transition Depth 2.  The P50 (median) NPV of the simulations when passed 
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through the stochastic schedule is 9% or $42M higher than the P50 observed for the 

deterministic case.  Further to that point, this analysis suggests that there is a 90% that the 

deterministic schedule’s NPV falls below the NPV of the stochastic schedule.  

 

 

 

 

 

 

 

Figure 2.11 - Risk analysis of projected deterministic NPV 

 In Figure 2.11, the NPV projected by risk analysis is 5% below what the optimizer 

originally predicted.  Along with this, there is a large variation in yearly cash generated. 

Figure 2.11 also concludes that there is a 70% chance that once production commences, the 

realized NPV will be less than the original projection.  Figure 2.11 shows that the P50 of the 

stochastic risk profiles for transition depth 2 are higher than both the deterministic 

projected NPV and the P50 of the deterministic risk profiles by 4% and 9% respectively. This 

trend of increased value for the stochastic framework extends to other transition depths as 

well.  
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Figure 2.12 - Comparison of NPV at different transition depths 

 Figure 2.12 shows that in addition to the stochastic schedule at the optimal transition 

depth (TD 2) generating a higher NPV than the optimal deterministic result, also TD 2, the 

next best transition depth in the stochastic case (TD 3) is $17M or 3.4% than the optimal 

deterministic result.  The transition depth is shown as Location 2 in Figure 2.6. The increased 

NPVs seen for the stochastic approach are due to the method’s ability to consider sources of 

geological uncertainty while making scheduling decisions.  Trends within the gold grades are 

captured within the simulations, and making scheduling decisions while have more 

information on the spatial continuity and variability of the grades allows the optimizer to 

capitalize on such trends.  Overall, the stochastic scheduler is motivated to mine high grade 

areas with low variability early in the mine life and defer extraction of low grade and risky 

material to later periods.    

 Figure 2.13 shows the median (P50) of deviations from yearly mill tonnage targets 

for the stochastic and deterministic schedules with respect to the 20 simulated orebody 

models.  Throughout the entire life of mine, the stochastic schedule limits these deviations 

from targets while the deterministic schedule has no control over such risk.  The 

deterministic schedule’s inability to meet yearly mill input tonnage is a cause for concern 

and suggests that the mine is unlikely to meet important targets once production commences 

if such a schedule is implemented.   
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Figure 2.13 – Magnitude of deviation from yearly mill input tonnage target 

 

 Figure 2.14 shows a visual comparison between the stochastic and deterministic 

schedules produced for Transition Depth 2.  The shading in the Figure 2.14 describes which 

period a mining block is scheduled to be extracted in.  Overall, the stochastic schedule 

appears to be smoother and more mineable than the deterministic schedule, meaning that 

large groups of near-by blocks are scheduled to be extracted within the same period.  As well, 

Figure 2.14 - Two cross sectional views of deterministic schedule produced by Whittle (right) and the 

schedule obtained by the proposed SIP (left) for Transition Depth 2 
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both cross sections reveal that the stochastic schedule mines more material than the 

deterministic schedule produced by Whittle, resulting in a larger ultimate pit for the 

stochastic case.  These differences stem from Whittle determining the ultimate pit before 

scheduling by utilizing a single estimated orebody model containing smoothed grade values.  

In the stochastic case, the task of determining the ultimate pit contour is done while having 

knowledge of 20 geological simulations which provide detailed information on the high and 

low grade areas within the deposit. In this case the stochastic scheduler identifies profitable 

deep-lying high grade material that cannot be captured using traditional deterministic 

methods. 

2.5  Discussion 

 A new method for determining the optimal OP-UG transition depth is presented.  The 

proposed method improves upon previously developed techniques by jointly taking a truly 

three-dimensional approach to determining the optimal OP-UG transition depth, through the 

optimization of extraction sequences for both OP and UG components while considering 

geological uncertainty.  The optimal transition decision is effectively described by a 

transition year, three-dimensional optimal open pit contour, a crown pillar location and a 

clearly defined underground orebody.  In the examined case study, it was determined that 

the second of four transition depths evaluated is optimal which involves transitioning to 

underground mining in period 9.  Making the decision to transition at the second candidate 

transition depth evaluated results in a 13% increase in NPV over the worst-case decision, as 

predicted by the stochastic framework.  Upon closer inspection through risk analysis 

procedures, the stochastic framework is shown to provide a more realistic valuation of both 

the OP and UG assets.  In addition to this, the stochastic framework produces operationally 

implementable production schedules that lead to a 9% NPV increase and reduction in risk 

when compared to the deterministic.  It is shown that the yearly cash flow projections 

outlined by the deterministic optimizer for the underground mine life are unlikely to be met 

resulting to misleading decision criteria.  Overall, the proposed stochastic framework has 

proven to provide a robust approach to determining an optimal open pit to underground 

mining transition depth.  Future studies should aim to improve on this method by more 

effectively searching the solution space of the problem. 
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3. Determining the optimal open pit to underground mining transition 
depth at Geita gold mine using stochastic mine planning  

3.1 Introduction 

 The Geita gold mine is a large gold mining complex located in northern Tanzania.  The 

mine is completely owned and operated by AngloGold Ashanti.  The mining complex is 

comprised of six operating open pits which feed a carbon-in-leach processing plant and 

produces roughly 500,000 ounces of gold per year.  Geita is widely considered to be 

AngloGold Ashanti’s flagship African gold mine.  Current mine plans show a concerning 

deficit in ore production below the mill’s capacity in a few years.  In order to supplement this 

deficit and to keep the mill operating at full capacity, a transition to underground mining is 

being considered to provide additional ore.  The developed approach which relies on 

stochastic mine planning techniques will be applied to evaluate the decision to go 

underground at the Nyangkanga pit within the Geita gold mining complex.    

 Motivation for considering the transition to underground mining includes gaining 

access to a large supply of reserves and subsequently prolonging a mine’s life.  As well, 

existing production facilities can be utilized during underground production.  The task of 

determining an optimal transition depth from open pit to underground mining incorporates 

several aspects of mine planning which are combined to address the decision.  Extensive 

work has been done on long-term mine planning for open pit and underground mines 

separately (Dimitrakopoulos, 2011; Newman, 2010) but to date work on the transition 

problem has been limited.  Recent efforts have been aimed to incorporate the decision to 

transition from open pit to underground into an optimization framework.  A work by 

Dagdelen and Traore (2014) attempts to determine the optimal transition depth for an open 

pit mine currently operating in the context of a mining complex which contains several other 

mines and processors. The authors test the financial viability of a number of transition 

scenarios by iteratively increasing the size of the open pit resource until they have identified 

a maximum value.  Carli and Peroni (2015) present a similar approach to Dagdelen and 

Traore (2014), by considering five separate candidate transition depths based on pit shells 

produced using price factors that range from 60%-100%.  The authors report a 9% increase 

in NPV for making the optimal transition when compared to mining through solely open pit.  
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 Newman, Caro and Rubio (2013) decompose the problem using a network flow 

formulation, where each possible extraction sequence is represented as an arc in the flow. 

The method assumes top-down bench-wise mining above ground and bottom-up below for 

a block caving operation which is limits the optimality of the schedule (Whittle, 1988).  The 

work by Newman et al. (2013) is limited as the proposed method provides a solution which 

is restricted to 2-Dimensions and is not operationally implementable.   

 Each of the mentioned works fail to consider geological uncertainty throughout the 

planning process which has been extensively demonstrated to have a large impact on a 

mine’s profits (Godoy, 2003; Leite, 2007; Ramazan and Dimitrakopoulos, 2013).  Geological 

uncertainty can be effectively integrated into the planning process through the use of several 

conditionally simulated orebody models.  A set of orebody simulations encapsulates the 

inherent variability within the grades of deposit.  Developed geostatistical algorithms 

SNESIM (Strebelle, 2002) and DBSIM (Dimitrakopoulos and Luo, 2004) can be used to 

efficiently simulate lithologies (categorical attributes) and mineral content (continuous 

attributes).   

 The method developed begins with identifying number of viable candidate transition 

depths where the switch can be made from open pit to underground mining.  Stochastic 

production schedules dictating yearly extraction for both the open pit and underground 

portions of a deposit are then produced for each candidate transition depth.  These stochastic 

schedules provide an accurate projection of yearly cash flows under uncertainty, by utilizing 

a resource model which is comprised of several equally-probable geological simulations.  

The summation of the underground and open pit mine’s NPV results in the NPV of the act of 

transitioning at a given candidate transition depth.  The most profitable of all depths 

considered is deemed optimal.  This approach improves upon previous works by jointly 

describing the optimal transition depth in 3-dimensions, predicting cash flows with 

optimized schedules, while incorporate geological uncertainty into the decision-making 

framework.   
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3.2   Method 

3.2.1  Quantifying Geological Uncertainty 

 Before the scheduling process commences, orebody simulations are produced to 

quantify geological uncertainty.  These simulations encapsulate the inherent variability 

within the orebody which allows for an accurate valuation along with a quantitative 

description of the level of technical risk associated with a certain deposit.  Simulations can 

be created for continuous or categorical attributes.  Three separate types of simulations are 

produced for this case study: lithology simulations, open pit gold grade simulations, and 

underground stope gold grade simulations.  The lithologies are represented as a categorical 

attributes during the simulation process, while grades are continuous. 

 Lithologies are simulated first using an implementation of SNESIM (Strebelle, 2002) 

within SGeMS (Remy, Boucher and Wu, 2005).  Three different lithologies were simulated: 

Banded Iron Formation, Diorites and Feldspars.  Figure 3.1 shows a strong visual 

reproduction of the drill hole data in a simulations.  Further validation of the simulations 

through comparing indicator variograms from these simulations to that of the original drill 

hole data was also completed.  

 

 Once these lithological boundaries have been simulated, gold grade can be separately 

simulated within each lithological domain.  In Figure 3.2, the different simulated portions of 

the orebody for each lithology can be seen.  These gold grade simulations were produced 

Figure 3.1 - Visual reproduction of lithology simulations 
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using direct-block simulation (Boucher and Dimitrakopoulos, 2009).  Variograms produced 

from the simulations showed a strong reproduction of the original drill hole data. 

 

 

 

 

 

 

 

 

 Stope simulations are created by filtering gold grade simulations on a point support 

into the volume of each stope using Datamine Studio 3 (Datamine Software, 2013).  Once 

points have been grouped together for each stope and across each simulation, the average is 

taken. This provides a series of simulated values for each stope.  

3.2.2  Candidate Transition Depths 

 To decompose this large problem, the solution space is broken down into a finite 

number of scenarios where the mine will be able to make the transition.  It is important to 

describe these transition situations in 3-dimension, so they can be easily understood and 

implemented at the mine site.  Therefore, transition depths are described through three 

components: the ultimate pit contour, extent of underground orebody, and crown pillar 

location.   
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Figure 3.2 - Simulating gold grade within separate lithologies 
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3.2.3  Stochastic Mine Planning 

 In order to accurately assess the economic value associated with transitioning at each 

of the identified transition depths, optimized schedules are produced under geological 

uncertainty which accurately project yearly cash flows.  In the proposed method production 

scheduling uses an optimization framework that relies on Stochastic Integer Programming 

(SIP) to maximize value while minimizing the risk of failing to meet productions targets on 

a yearly basis. The SIP optimizer is unique in its ability to accommodate several orebody 

simulations, as opposed to a single estimated orebody model required for deterministic 

optimization.  In order to gauge the benefits of including uncertainty, a similar deterministic 

optimization can be executed in parallel so the results can be benchmarked against the 

stochastic framework’s outputs.   

 The proposed formulation utilized for scheduling the OP and UG are quite similar.  

Both require an input of 20 geological simulations, and share common objectives of 

maximizing discounted value while minimizing deviations from targets as seen in equations 

(1) and (2).  The objective function for the OP scheduling formulation can be seen in equation 

(1). Part (1) of equation (1) represents the discounted profit (𝐸(𝑁𝑃𝑉
𝑖
𝑡)) generated by mining 

an OP block i in period t, an action governed by the binary decision variable 𝑏𝑖
𝑡.  The second 

part of equation (1) is included to minimize deviations from ore and waste tonnage 
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production targets on a yearly basis.  Here, the d variables relate to the magnitude of 

deviation within each scenario from yearly ore and waste targets.  The magnitude of such 

deviations is based upon the scheduling variables in part (1) - 𝑏𝑖
𝑡. Within each simulation 

extracting a block will correspond to a different amount of ore, metal and waste since the 

grade values vary between simulations.  Minimizing these unique deviations above (𝑑𝑠𝑢) and 

below (𝑑𝑠𝑙 ) targets across all simulations aims to mitigate geological risk throughout the 

scheduling process.  The parameter c in part (2) of equation (1) represents the unit cost of 

deviation.  Altering this c parameter value shifts the focus of the optimizer between 

maximizing NPV (part 1) and minimizing deviations from yearly production targets (part 2).  

The objective function for the UG scheduling optimization seen in equation (2) is similar to 

what was seen in the OP objective function, except stopes are scheduled for extraction 

through the binary decision variable 𝑎𝑗
𝑡.  The OP and UG scheduling formulations contain 

constraints that govern the logistics of the mining process.  Such expressions constrain the 

optimizer to mine every unit, meet yearly targets, and acknowledge precedence 

relationships between mining units. Further details of the two-stage SIP formulation 

implemented for open pit scheduling can be found in Ramazan and Dimitrakopoulos (2013).      
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 The cardinal difference between the OP and UG optimization processes lies in the 

solution method, since their size varies greatly.  Despite recent work that has suggested UG 

optimization is more cumbersome due to complex constraints (O'Sullivan, Brickley and 

Newman, 2015), in the case study evaluated within this paper the OP problem is much larger 

as only long-term scheduling constraints are considered for the UG portion.  To overcome 

the complexity of the OP scheduling problem, metaheuristics can be used (Lamghari and 

Dimitrakopoulos 2012). Here, a parallel implementation of tabu search (Lamghari and 

Dimitrakopoulos, 2012; Senecal, 2015) is utilized which has been demonstrated to provide 

a high quality solution in a reasonable amount of time.  Since the UG scheduling optimization 

is smaller, a commercially available tool, IBM ILOG CPLEX (IBM, 2011), is conveniently used 

which relies on mathematical programming techniques to find the optimal solution.   

3.3  Case Study at Geita Gold Mine 

3.3.1  Introduction 

 The proposed methodology for determining an open pit to underground mining 

transition depth is tested at Geita gold mine, a currently operating mining complex in 

northern Tanzania.  It has been discovered that in the next few years the ore production from 

the currently operating pit will not be able to meet the yearly mill tonnage target.  In order 

to make up for this deficit, those operating the mine within AngloGold Ashanti are 

considering a transition to underground mining to provide supplemental ore production.   

3.3.2  Site Specifics 

 Within the area of the deposit identified for underground potential, there are four 

zones.  Zones 1 and 2 have preliminary stopes designs completed and are being targeted for 

immediate production, while zones 3 and 4 are areas for future production.  The current 

thinking at the mine site is to use the cash flow generated through mining zones 1 and 2 in 

order to fund further delineation drilling in zones 3 and 4.  Since stopes have not yet been 

designed for zones 3 and 4, they are not directly incorporated into the following financial 

analysis, but the upside potential of this area is kept in mind when making a final 

recommendation.    
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 To construct a set of candidate transition depths, three provided pushback designs 

are utilized that serve as potential ultimate pit contours.  These pushback designs, labelled 

Cut 7, Cut 8 and Cut 9, along with each of their own unique corresponding underground 

orebodies will be considered for transitioning.  These candidate transition depths will be 

referred to as Cut 7, Cut 8 and Cut 9. Open pit production is planned to continue until the 

extent of a given pushback design is reached, while underground production is scheduled to 

commence in production year 4 across all candidate depths.  Figure 3.5 below shows the 

three candidate transition depths tested.   

 

 

 

 

 

 

Zone 1 and 2 for 

immediate production 

Zone 3 and 4 for 

future production 

Cut 7 

Cut 8 

Cut 9 

Figure 3.5 - Candidate transition depths to be evaluated 

Figure 3.4 - Mine layout 
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The number of stopes that are able to be mined underground varies as the size of the ultimate 

pit changes.  The details of the dimensions of the open pit and underground orebody for each 

candidate transition depth can be seen in Figure 3.6.  Since only a preliminary scoping study 

has been completed on the underground mine, these design stopes do not contain a 

significant tonnage and therefore lead to a short underground mine life. 

 

Figure 3.6 - Description of candidate transition depths 

3.3.3  Results and Analysis 

Figure 3.7 shows the risk profiles of the cash flow resulting from the decision to transition at 

Cut 7, 8 or 9.  It is apparent that transitioning at Cut 9 is optimal, the transition depth which 

corresponds to the largest open pit and longest combined mine life.    

 

 

 

 

 

 

 

Figure 3.7 –Risk profiles on cumulative cash flows of stochastic framework 

  

 

Open-Pit Underground 

Mine Life (years) Number of Blocks Mine Life (years) Number of Stopes 

Cut 7 5 13,000 3 92 

Cut 8 7 20,000 1 37 

Cut 9 9 25,000 1 42 
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 In order to evaluate to risk associated with stochastic decision making, a risk analysis 

is performed on the life-of-mine plans corresponding to the optimal transition depth stated 

above.  Similar analysis has been done extensively on open pit case studies (Godoy, 2003; 

Leite and Dimitrakopoulos, 2007; Ramazan and Dimitrakopoulos, 2013).  To do so, a set of 

20 geological simulations are used and passed through the long-term production schedule 

determined for the optimal transition depth, which is this case is Cut 9.  This process 

provides the yearly figures for mill production tonnages and cash flow projections for each 

simulation if the schedule was implemented and the grades within a given simulation were 

realized throughout mining.  Figure 3.8 shows that the stochastic schedule produced for 

transitioning at Cut 9 has a high probability of meeting mill input tonnage targets on a yearly 

basis.  This ability to meet ore targets solves the issue of a deficiency in future ore production 

which was the original motivation for considering to transition to underground mining. As 

well, this result translates into a high level of certainty with regards to realizing yearly cash 

flow projections once production commences.  

 

 

 

 

 

 

 

 To benchmark the benefits of stochastic decision-making, a deterministic framework 

using a similar optimization formulation is applied to the mentioned case study.  The 

difference between stochastic and deterministic frameworks lies within the orebody  model 

input that the optimizer recieves.  In stochastic optimization, the optimizer recieves a set of 

twenty equally probably simulations which quantifies the uncertainty associated with a 
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deposit.  For the determinstic framework, a single estimated orebody is used which contains 

smoothed grades and minimal information about uncertainty.  Currently, the vast majority 

of the mining industry relies on deterministic frameworks to make their long-term strategic 

decisions. 

 

 

 

 

 

 

 

 Figure 3.9 shows that transitioning at Cut 9 is also optimal for the deterministic 

framework.  As was done for the stochastic case, risk analysis can be performed on the 

production schedule created by the deterministic optimizer for Cut 9.  In doing this analysis, 

there are two different cumulative cash figures, the projected cash which is the amount of 

cash the deterministic scheduler expects to produce based on the grades within the single 

orebody used for scheduling.  The second and more accurate figure is the cash risk profile, 

where the value that would be seen if a given simulation was realized and the proposed 

schedule was implemented is shown.  It is useful to summarize the resulting values for each 

simulation using P10, P50, and P90 curves.  Figure 3.10 shows the results of cash flow risk 

analysis on the deterministic schedule produced for transitioning at Cut 9.  Here a projected 

NPV of $831M is seen, while P50 of the risk profile, or the expected value based on risk 

analysis, of $765M.  This implies that the expected value of the deposit when considering 

geological uncertainty is 8% and $66M less than what was originally projected by the 

optimizer based on a single estimated orebody used for scheduling.  Further to that point, 17 

of the 20 simulations provide an NPV through risk profiles that is below what the originally 

Figure 3.9 - Cumulative cash flows of deterministic framework for each candidate transition depth 
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projected NPV, which leads us to conclude that there is a 85% chance that this projected cash 

value will not be realized once production commences.    

 

Figure 3.10 – Risk profiles of cumulative cash flow for deterministic schedules at Cut 9 

 In addition to this uncertain financial valuation, the deterministic schedule produced 

for transitioning at Cut 9 fails to meet a key project indicator, the annual mill tonnage.  Figure 

3.11 shows that on a yearly basis, the deterministic schedule struggles to meet the yearly 

mill production target.  Upon closer inspection, a drastic decrease in input tonnage in 

production year 6 and 7 can be seen, and as was mentioned earlier this deficit is the original 

motivation for considering the transition from open pit to underground mining.  Therefore, 

within the deterministic framework, making a transition to UG mining at Cut 9 does not solve 

the important ore deficiency issue.  Conversely, Figure 3.8 shows the stochastic schedule has 

the ability to meet the ore production target throughout the entire life of mine. 
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 Along with the ability to meet annual ore targets, the stochastic schedule also 

significantly increases the value of the mine.  When considering the schedules produced for 

making the transition at Cut 9, there is a 23% or $145M increase in the stochastic NPV as 

predicted by risk profiles when compared to the NPV risk profiles of the deterministic 

schedule.  This comparison is seen in Figure 3.12. 
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 The above risk-based evaluation of the candidate transition depths has led us to 

conclude that transitioning at Cut 9 is optimal.  Although, the underground mine below Cut 

9 has an NPV of $1.1M over its one year mine life, while the open pit has an NPV of $908M. 

As well, the magnitude of variation between P90 and P10 for the UG mine is $11.9M.  This 

low NPV and high variation of cash are a cause for concern in the capital intensive process of 

underground mining and suggest that there is a very high level of technical risk associated 

with the current underground mine design. 

3.4  Discussion 

 Based on the previous analysis, the decision of making the transition from open pit to 

underground mining at Cut 7 and Cut 8 is ruled out.  Therefore the recommendation is to 

continue mining through open pit until Cut 9 since cash is being consistently generated late 

in the mine life.  As well, there is a stable mill feed during risk analysis on the stochastic 

schedule which resolves a key issue currently facing the mine’s operators.  Since the 

underground mine beneath Cut 9 has low profits and high technical risk, a further 

investigation towards improving the financial benefits are required before a decision to 

begin underground mining is recommended.   One area for future investigation is zones 3 

and 4 which were originally deemed to be of interest for future production. 

 In this paper, a risk based approach is applied to a currently operating mine facing a 

strategic decision with a large financial impact.  The decision to forgo underground mining 

and continue producing through open pit was reached after in-depth analysis. As well, the 

benefit of stochastic mine planning over conventional deterministic methods has once again 

been shown with an increase in NPV of 23%. In addition to this, the schedule produced by 

the stochastic optimizer is able to meet the mill requirement throughout the life-of-mine 

thus providing a low-risk alternative to transitioning to underground mining. 

 

 

 



 

60 

 

4. Conclusions 

 The presented and tested method developed within this thesis improves upon 

previous works by jointly: considering geological uncertainty, describing the optimal 

transition depth in three dimensions, thoroughly searching the solution space through a 

simultaneous optimization formulation, and producing an optimized schedule which 

incorporates time value of money to give an accurate valuation of the mining complex. 

 Improvements can be made on the existing OP UG transition problem methods by 

simultaneously optimizing production scheduling decisions for both the open pit and 

underground portions of the deposit.  It has been extensively demonstrated that such a 

simultaneous approach leads to a globally optimal solution, as opposed to running several 

disjoint optimizations which can be trapped in a series of local optima (Whittle, 2010; 

Montiel, 2014; Goodfellow, 2014).  Once an orebody has been simulated and discretized into 

mining blocks for open pit mining and stopes for underground production, the authors 

propose an approach to maximize value achieved throughout the act of transition between 

mining methods.  The proposed approach relies upon stochastic mine planning methods that 

have been effectively demonstrated on the mine production scheduling problem to increase 

value and reduce risk.  A two-stage stochastic integer programming formulation that aims to 

maximize discounted cash flow while limiting the risk of failing to meet key project targets 

on a yearly basis, as seen by Ramazan and Dimitrakopoulos (2013) can be expanded to 

schedule mining blocks and stopes on a yearly basis, with a few added constraints to govern 

the logistics of transitioning between mining methods.  The resulting extent of mining blocks 

and stopes scheduled will outline the ultimate pit contour, crown pillar location, and the 

extent of the underground orebody, which are three metrics that have been demonstrated 

throughout this thesis to effectively describe an open pit to underground transition depth on 

an operational level.  In addition to the constraints included in the Ramazan and 

Dimitrakopoulos (2013), a crown pillar constraint is necessary to prevent closely 

neighbouring stopes and blocks from being mined out by separate methods.  This will result 

in a large portion of undisturbed host material between the final open pit and the 

underground openings, known as the crown pillar, which is important for stability reasons.   
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Appendix 

In the presented work, a parallel implementation of Tabu Search is used to solve the large 

open pit mine scheduling problem in a reasonable amount of time.  This metaheuristic 

method takes advantage of the multi-core processing architecture in modern computers to 

effectively distribute tasks and find high quality solutions.  Essentially, the algorithm 

perturbs an initial feasible production schedule by changing the yearly scheduling decision 

for a given block, then impact of these perturbations is evaluated and they are accepted 

based on their ability to increase the value of the solution.  As the algorithm accepts 

perturbation and progresses through the solution space, it prohibits itself from repeatedly 

visiting the same solution by labeling these previously visited solutions as tabu (forbidden) 

for a certain amount of time. The Tabu Search procedure stops after a specified number of 

proposed perturbations have been evaluated which fail to improve the solution.  In order to 

prevent the algorithm for getting trapped in a locally (as opposed to globally) optimal 

solution, a diversification strategy is included in the metaheuristic to generate new, unique 

starting solutions to that can then be improved.  

The specific implementation used in the work presented here is known as Parallel 

Independent Tabu Search (Senecal, 2015) where the Master-Slave (Hansen, 1993) parallel 

algorithm design is used.  In this scheme, a master thread delegates the task of performing 

Tabu Search to each available thread and provides them with a unique starting solution. 

These threads then operate independently to identify the best solution possible using Tabu 

Search.  These solutions for each are then compared to identify the optimal solution.  With 

this efficient implementation of Tabu Search, more instances of the algorithm can be run 

simultaneously to thoroughly cover the solution space in less time than a purely sequential 

and single threaded approach.   More algorithmic details can be found in the work by 

Lamghari and Dimitrakopoulos (2012). 
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