
Ballistic Shadow Art

Xiaozhong Chen

Master of Science

School of Computer Science

McGill University, Montreal

Quebec, Canada

December, 2016

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Science

c©Xiaozhong Chen, 2016

DEDICATION

This thesis is dedicated to my parents.

ii

ACKNOWLEDGEMENTS

First I would like to thank my supervisor, Dr. Paul G. Kry. Paul has been a very

resourceful advisor during the whole research process. Without Paul’s experience and

advice this thesis could not be initiated and continued.

I also would like to thank Dr. Sheldon Andrews for his help in many ways. Sheldon’s

aid on theory, experiments and writing are crucial for completing all these work.

I also would like to thank Dr. Derek Nowrouzezahrai for his support and suggestions.

Derek has participated in this project since the beginning and has also been helping a lot.

I also would like to thank Vincent Petrella, who provided a French version of abstract

for this thesis.

Finally I would like to thank my parents and all my friends who have been supportive

on my research and pursuit of my degree. Without them this would be a lot harder.

Moreover, I would like express my gratitude for the joy brought by F.C. Barcelona, who

won the treble in 2015.

iii

ABSTRACT

This thesis presents a framework for designing shadow art with occluders in ballistic

motion. A stochastic optimization is used to find the parameters of a multi-body physics

simulation that produce the desired shadow at a specific moment in time. Simulations

are performed across many different initial conditions, and a set of carefully designed

energy functions are used to evaluate the motion trajectories and shadows of bodies. The

best parameters are selected, resulting in a simulation on ballistic motion that produces

ephemeral shadow art. Users can design physically plausible artwork that would be ex-

tremely challenging or nearly impossible by manual effort. A number of compelling

examples are presented and analyzed.

iv

RÉSUMÉ

Ce mémoire thèse présente un ensemble d’outils facilitant la création d’ombres artis-

tiques à l’aide d’objets en mouvement balistique. Nous formulons un problème d’optimisa-

tion stochastique afin d’identifier les valeurs des paramètres d’une simulation d’objets

solides physiques qui projettent l’ombre désirée à certains temps clés. Nous effectuons

les simulations à partir d’une variété de conditions initiales, et employons un ensemble de

fonctions soigneusement élaborées pour évaluer les trajectoires et les contours des ombres

projetées par les objets. Les meilleurs paramètres qui sont ensuite sélectionnés génèrent

une simulation balistique produisant des ombres artistiques éphémères. L’utilisateur peut

dès lors élaborer des oeuvres physiquement possibles qu’il serait très difficile de façonner

à la main. Plusieurs exemples sont ensuite présentés et analysés.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

RÉSUMÉ . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introduction . 1

2 Literature review . 3

2.1 Shadow rendering . 3
2.2 Shadow editing . 4
2.3 Trajectory solving . 5

3 Methodology . 7

3.1 Overview . 7
3.2 Energy functions . 9

3.2.1 Image comparison . 9
3.2.2 Physics simulation . 13
3.2.3 Scene settings . 14

3.3 Optimization strategies . 16
3.3.1 Scheduled optimization . 16
3.3.2 Iterative optimization . 17

3.4 Summary . 17

4 Results . 19

4.1 Convergence . 20

vi

4.2 Performance . 26
4.3 Implementation . 28
4.4 Summary . 29

5 Discussion . 30

6 Conclusion . 33

References . 35

vii

LIST OF TABLES
Table page

4–1 Complexity of each example . 19

4–2 Weight of each energy function of the Mickey example 21

4–3 Performance of optimizations . 28

4–4 Performance of energy functions . 29

viii

LIST OF FIGURES
Figure page

1–1 Some snaphots from The Thinker example’s animation 2

3–1 A sketch of ballistic shadow art and its input 8

4–1 The target shadow shapes of the examples 20

4–2 The snapshots on the converged results of the examples 21

4–3 The converged shadow images of the examples 22

4–4 The results of the two stages of the Mickey example 22

4–5 The converged scenes of the two stages of the Mickey example 23

4–6 The convergence of the two stages of the Mickey example 24

4–7 The evolution of The Thinker shadows 25

4–8 The final shadow of The Thinker and comparisons 26

4–9 The convergence of three selected stages of The Thinker example 27

ix

CHAPTER 1
Introduction

The use of shadows in artwork dates back to pre-renaissance time periods. Some

contemporary artworks have even used shadows as the central visual medium. Specifically,

shadow art uses sculpture or arrangements of objects to create distinct silhouettes given

just the right lighting conditions. However, constructing these artworks can be a complex

and time consuming task.

The method presented in this thesis simplifies the task of shadow art creation by

partially automating the process. Furthermore, our approach creates shadows that form

recognizable silhouettes while the objects are in motion, introducing a dynamic aspect

that allows the visualized result to be appreciated as both shadow art and kinetic sculpture.

Figure 1–1 gives an example of how ballistic motions produce shadow art of The Thinker

sculpture’s profile.

The user provides a binary image as input that represents a target shadow shape,

along with a set of occluders and their starting configurations. A stochastic optimization

technique is then used to determine the initial velocities for the collection of objects such

that, at a specific instant in time, their cast shadows match a target silhouette image. The

optimization is challenging because of an objective function that involves a forward multi-

body dynamics simulation with contact, giving an inherently sensitive and noisy solution

space. The dimensionality also grows linearly with the number of objects, becoming large

1

Figure 1–1: A film strip of a ballistic shadow art example. From left to right: starting
positions of all chess pieces, launched chess pieces during ballistic motion, the instant that
all pieces cast the Thinker-shaped shadow, the pieces continuing on the ballistic motion,
and pieces rest on the floor.

for more complex scenes. Our framework therefore makes several accommodations to

improve the convergence rate and tractability of the optimization problem.

The remainder of this thesis is organized as follows. In Chapter 2, we discuss about

previous work on computer generated shadow art and physics simulation involving bound-

ary value problems. In Chapter 3 on methodology, an overview and formalized version of

the optimization problem solved by our framework is presented in Section 3.1, and specific

details of the object functions are provided in Section 3.2. Also, the strategies we use to

improve the tractability and convergence of the stochastic optimization are discussed in

Section 3.3. Compelling examples of ballistic shadow art that have been synthesized with

our framework are demonstrated in Chapter 4. In Chapter 5 we provide a discussion

of the advantages and limitations of our framework, along with possible future research

directions. Finally this thesis concludes in Chapter 6 with a summary of all the work that

has been done.

2

CHAPTER 2
Literature review

Our work is built on the foundation of numerous previous ones. Specifically, it

involves three aspects. First of all, existing shadow rendering techniques allow us to

have shadows and occlusions as needed. Previous studies on controlling shadows provide

inspirations, and so do the studies on trajectory solving.

2.1 Shadow rendering

Rendering shadows has been an important topic in computer graphics since the be-

ginning. Shadows indicate spatial relationship and lighting conditions, and thus they are

crucial for realistic rendering effects. For our framework, we need a real-time rendering

technique that produces shadows with accurate geometry. Generally there are three options

for real-time shadow rendering: projected shadow, shadow mapping, and shadow volume.

Blinn [4] proposes an algorithm to create shadows by projecting polygons to a planar

surface. This method is straightforward but with artifacts of false shadows when occluders

are not completely above the receiver, or anti-shadows when light source is between

occluders and the planar receiver. Furthermore it requires an offset between the shadow

geometry and the planar receiver to ensure visibility.

Williams [23] presents the shadow mapping method. By prerendering the geometry

from the light source viewpoint to a depth buffer, it can thus compare the distance infor-

mation to determine occlusion in the scene, regardless of the caster’s and receiver’s shape.

Zhang [27] introduces a forward shadow mapping method to improve performance, and

3

Reeves et al. [20] improve shadow quality on boundaries with filtering and self-shadowing

with a bias parameter.

Crow [5] introduces the shadow volume algorithm. This algorithm divides the scene

into shadowed and unshadowed regions, by constructing cones with one shadow polygon

per caster edge from each occluder, and the shadow cones face against the light source.

Heidmann [9] improves the performance with a GPU implementation, and Bergeron [2]

reduces the volume complexity by eliminating extra shadow polygons.

There are also numerous other work and variations on improving rendering shadows.

Woo and Poulin [26] provide a comprehensive survey on this topic. Considering perfor-

mance, shadow quality, and implementation complexity, we decide to use planar shadow.

2.2 Shadow editing

There are a few researches that have been done on editing shadows in recent years,

and they mainly fall into two categories. One category is editing the rendered shadow

directly for visual effect, optionally adjusting occluders correspondingly or sacrificing

correctness. The other one is to figure out a configuration of shadow occluders that cast

shadows matching given targets, and potentially fabricate such configuration.

For direct editing, Poulin and Fournier [19] first investigate on allowing user inter-

action with shadows and highlights in a rendered image, instead of iterating on adjusting

light and rerendering the expensive scene. Pellacini et al. [17] present a user interface

that permits an artist to interactively design shadows in animated feature films. DeCoro

et al. [6] propose an algorithm rendering stylized shadows. They provide controls on

tuning artistic properties for shadow rendering, such as abstraction and softness. Obert et

al. [16] describe a method for editing visibility for the design of all-frequency shadows.

4

Mattausch et al. [13] present a method for editing the boundaries of shadows inspired

by freeform deformations. These works inspired us on manipulating shadow geometries,

however these strategies can hardly apply to our problem. Considering the complexity,

indirectness and precision demand, straightforward editing can not reduce the amount of

user’s work.

In terms of arranging or generating occluders, Mitra et al. [14] present tools to design

a voxel-based occluder that casts different shadows when illuminated from a few different

directions. Bermano et al. [3] provide a method of producing a 3-D printable height field

illustrating multiple images from self-shadowing. Baran et al. [1] fabricate a multi-layer

light attenuator that casts multiple colored shadows of several target images, by changing

the light configuration. Won et al. [25] solve the very difficult optimization problem of

using human forms to create shadows. Inspired by shadow theater, they are able to produce

silhouettes and subtle animations. We use a similar technique for solving the movement of

our dynamic shadow casters, except that we prevent collision with a hard constraint rather

than a penalty function.

2.3 Trajectory solving

Applying the dynamical equations of motion to 3D animation problems has been well

explored in computer graphics. While most of the focus has been on solving initial value

problems, our framework solves a boundary value problem (BVP): for two configurations

and two points in time, compute a trajectory that connects them. The prominent work

by Witkin and Kass [24] on space-time optimization falls into this category. Popović

et al. [18] also describe a method that provides solutions for controlling rigid-body sim-

ulations via interactive manipulation of object trajectories. Twigg et al. [22] present a

5

method that uses backward time stepping to produce animations involving rigid bodies

and frictional contact. When solutions are not unique, their method proposes a plausible

one.

Our work differs in that the end simulation state is defined implicitly by the target

shadow shape. This expands the number of feasible solutions, but introduces non-linearity

that can make finding good solutions difficult. In terms of the methods of Popović et

al. and Twigg et al., they both require precise knowledge of end state such as positions,

orientations, and velocities. These information are pending to solve, and thus lack of them

makes these methods inapplicable. Furthermore, Popović et al.’s method allows contacts

to occur along the trajectory, and handles each motion between contacts separately. It

performs a local discrete search on parameter space to resolve the discontinuity. When

the number of rigid-bodies increases and contact becomes frequent, computation will

increase dramatically and convergence will become extremely difficult. Twigg et al.’s

method allows minor violation of physics, which does not fit in our demand.

6

CHAPTER 3
Methodology

In Chapter 2 we reviewed the related work that inspired us in building this framework.

However the existing work does not provide exact solutions to the problem we try to solve

and therefore we will present our solution in this chapter. First we define the problem

formally as a mathematic optimization problem. Then we design energy functions that

describe desired solutions. Our energy functions fall into three categories: image compar-

ison, physics simulation and scene settings. We also propose two strategies for organizing

optimization. By applying these strategies we expect efficiency and effectiveness that a

naive strategy does not have.

3.1 Overview

The input to our framework is a binary image Itarget defining the desired shadow

shape and a set of n occluders (O1, O2, . . . , On) with user-specified launching positions,

orientations, geometries, and masses. The user also specifies a duration t which is the

time in seconds when the shadows cast by the occluders should match the desired shape.

Shadows are projected onto a planar surface by a static point light source and observed

from a fixed viewpoint with a pinhole camera model. The configuration of the light source,

projection surface, and camera are part of the scene definition. Figure 3–1 indicates the

sketch of how input forms up the ballistic shadow art.

The core of our framework is a multi-objective optimization that determines the initial

velocities of each occluder such that, at time t, the shadows cast by the occluders closely

7

(a) (b) (c)

Figure 3–1: A sketch of ballistic shadow art. To build such a form of art work it takes
a point light source (indicated with a yellow light bulb), a planar receiver and a few
projectiles as shadow occluders. In (a) three spherical occluders are at their launching
positions awaiting projecting. In (b) occluders are launched and during their ballistic
motion, an artistic shadow of Mickey Mouse logo is cast at a predefined time instant.
The red lines represent their trajectories. In (c) the occluders continue their motions and
bounce on the receiver.

resemble the target image Itarget. The vectors vi ∈ R3 and ωi ∈ R3 store the initial

linear and angular velocities, respectively, of each occluder body i, and collectively for

all occluders this is denoted

V = (vᵀ1 , v
ᵀ
2 , . . . , v

ᵀ
n)ᵀ and Ω = (ωᵀ

1 , ω
ᵀ
2 , . . . , ω

ᵀ
n)ᵀ .

The optimization finds velocities that minimize a multi-objective cost function, or formally

argmin
V, Ω

Eimage + Ephysics + Escene, (3.1)

where Eimage, Ephysics and Escene are energy functions that introduce penalties pertaining to

image, physics, and scene criteria.

A forward dynamics simulation with gravity is used to update the position and ori-

entation of each body. This produces ballistic trajectories that are the signature feature of

our framework. Collision detection is also enabled, and so intersecting bodies generate

8

contact forces to resolve penetration. Since we are optimizing for the initial conditions

of a physics simulation involving contacts, the solution space is non-convex and highly

discontinuous. The CMA-ES [7] method is a stochastic optimization technique that is

well suited to these conditions, and so it is used to minimize the problem in Equation 3.1.

In the next section, details are provided on the terms that compose each energy

function and how their values are computed.

3.2 Energy functions

We categorize our energy functions into three, based on their input and semantics.

They are image comparison, physics simulation and scene settings. The image comparison

functions focus on matching captured shadows with the target image, and should reach 0

if a perfect match is encountered. The physics simulation functions are designed to avoid

physically correct but unreasonable solutions. Lastly the scene setting functions penalize

unwanted scene arrangements, and also provide opportunity for users to give guidance or

specify demands in building such dynamic scene. For instance, users may want a sharp tip

on one specific occluder to fit in a particular corner in the target image.

3.2.1 Image comparison

Energy functions on image comparison take a captured shadow image and a target

shape image as input, and both of them Ishadow and Itarget are in binary format as

I(x, y) =


1, pixel at (x, y) is in shadow,

0, pixel at (x, y) is not in shadow.

9

Energy functions on image space are defined as

Eimage = w0d0 + w1d1 + w2d2 + w3EXOR + w4Einner + w5Eouter

where wi denotes the weight of each separated energy, and di is the distance between

image moments of ith order. Captured shadows and the target image are also compared

with EXOR as the exclusive-or operation, as well as Einner and Eouter that emphasize on

inner and outer boundary matching.

Image moments distance

Image moment [15] is a representative and succinct description of an image. It is

widely used in computer vision and computer graphics. For instance, Lee et al. [12]

used Hu moments [10] to describe an actor’s motion from a camera image for real-time

character controls. Ren et al. [21] extend this work by bringing two more cameras, so that

recognition is capable for handling complex motions and subtle changes. Image moments

are proven effective for carrying low-dimensional information and we include them into

our framework.

Our energy functions that involve image moments are the distance between nor-

malized moments of the shadow image and the target shape. The distance is formally

represented by

di = ‖Mi(Ishadow)−Mi(Itarget)‖ ,

with Mi as moment of ith order. We use moments from the 0th order to the 2nd order.

Formally they are defined as follows.

10

The 0th order moment

M0(I) =
∑
x

∑
y

I(x, y)

essentially is the total area of the input image expressed in pixels. Thus the distance in

between would be the difference of shadow size.

As for the 1st order moment, we use

M1(I) =

∑x

∑
y x I(x, y) / M0(I)∑

x

∑
y y I(x, y) / M0(I)

 =

x̄
ȳ

 .

This vector represents the center of mass in image space, and the distance is the Euclidean

norm.

Originally the 2nd order image moment should be defined as a matrixµ20 µ11

µ11 µ02


where

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y) / M0(I).

This matrix represents the inertia tensor of the input image in two dimensional space.

However, note that the off-diagonal elements are both µ11. For avoiding repetition in

calculating distance, we define the 2nd order image moment as

M2(I) =

(
µ20, µ11, µ02

)ᵀ

,

and the distance is still an Euclidean norm, as the 1st order one is.

11

Image difference

We design energy functions that compare shadows with the target on a pixel level.

For the total comparison we use EXOR, which denotes the binary exclusive or operation

performed between the captured shadow image and the desired shape image:

EXOR =
∑
x

∑
y

Ishadow(x, y) Y Itarget(x, y).

To improve details in the final result, we also designed energy functions on matching

boundaries of the target shape. There are two types of boundary that we use: one is inner

boundary and the other one is the outer boundary. The matching is designed differently

based on the type. For the inner boundary, Einner is defined as

Einner =
∑
x

∑
y

Ishadow(x, y) ∧ Iinner(x, y),

with Iinner as the inner boundary image. This energy function encourages the shadow to

cover the target silhouette outline by using the “and” operation. For the outer boundary

matching, we define Eouter as

Eouter =
∑
x

∑
y

1− (Ishadow(x, y) ∧ Iouter(x, y)),

with Iouter as the outer boundary image. Similarly to the previous inner case, the matching

is calculated with an “and” operation, but negated in a boolean way. With this design, the

shadow is discouraged from intersecting the outline.

12

To compute these two boundaries we apply erosion and dilation operations on the

target image. For the inner boundary it is computed as

Iinner = Itarget − Itarget 	K,

and for the outer one as

Iouter = Itarget ⊕K − Itarget.

We apply K as the kernel in image dilation and erosion. In this case K is a 5 × 5 matrix

consisting with all 1s.

3.2.2 Physics simulation

We also design energy functions that take input from the physics simulation param-

eters, to guide our optimization to convergence and avoid unwanted solutions. There are

two parts in our physics-related energy functions

Ephysics = w6Econtact + w7Ereg

whereEcontact is a penalty on caster contacts before shaping up artistic shadows at the given

moment, and Ereg serves as a regularization term on the initial linear and angular velocity

of shadow casters, to avoid unreasonable solutions.

Contacts are very difficult to predict and thus add a lot of noise to the solution space.

Therefore our framework must avoid contacts before casting the target shadows. The

simulation terminates at the exact moment when contacts occur, to ensure target shadow is

contact free. In order to provide a smoother guiding, the contact penalty is designed to be

a countdown multiply a factor. This countdown is the time left for simulation to reach the

given shadow casting moment when contacts occur, so that the countdown is optimally 0

13

if contacts are not detected all along, the given duration if contacts occur at the beginning,

and gradually decrease if contacts are ’postponed’. The factor is defined as the number of

contact detected at the terminated moment. Formally, this penalty is computed as

Econtact = (ttotal − tcontact)ncontact

where ttotal is the given duration, that is, the exact instant when we want our occluders to

cast the target shadows, and tcontact is the actual duration that simulation has run. The factor

ncontact is the factor decribed above.

For regularization we use the sum of all magnitudes of projectiles’ linear and angular

velocities, that is

Ereg = α
∑
v∈V

‖v‖+ (1− α)
∑
ω∈Ω

‖ω‖.

We also provide a term α to balance between linear and angular velocities in case their

magnitudes are substantially different. We use 0.5 for our examples.

3.2.3 Scene settings

There are considerations on having a reasonable scene setting as well as taking ad-

vantage from human perceptual intuition to guide our optimization. With these concerns

we designed our energy functions on scene setting as

Escene = w8Ehint + w9Ebarrier

where Ehint denotes how well our occluders in the scene make use of hints and Ebarrier

is a barrier function that penalizes occluders that cast shadows out of the desired region.

14

Specifically, energy for hints are defined as

Ehint =
∑
h∈H

wh‖P (xh)− ph‖

where H denotes a collections of k point hints given by the user, formally H = {hj | j ∈

[1, k]}, and h denotes a single point hint that refers one point p in image space, and one

point x in model space of a specific occluderOi, as well as a weightw to prioritize between

hints:

h = {Oi, x, p, w | i ∈ [1, n], x ∈ R3, p ∈ R2, w ∈ R}.

The projection P : R3 7→ R2 maps a three dimensional coordinate in occluder’s model

space to the corresponding position on captured shadow image. Note that the projected

point can possibly be outside of the region for capturing.

Another energy functionEbarrier is designed to avoid the waste of occluders. There are

cases when one or more occluders do not participate in forming up a desirde shape because

cast shadows are outside of the region for capturing, and the previous energies may fail

in resolving that. For instance, if two occluder shadows run outside, they may cancel the

error of each other in terms of first order moments if they happen to balance across the

region. The exclusive-or may have a flat change if the shadow has not yet intersected the

target shape, and thus would fail to tell any difference among the samples if the shadow is

always cast outside.

The barrier function is specifically defined as

Ebarrier =
∑
i

B(P (Ci)),

15

with P : R3 7→ R2 the same projection as above, Ci denoting the center of mass of

occluder i in model space, and B : R2 7→ R the barrier function on a single occluder:

B(x) =


0, ‖x− c‖ < r,

‖x− c‖, ‖x− c‖ ≥ r.

Here, c is a point in image space, in this cases we use the center of the whole image, and

r is a user-defined radius. In our cases, we choose half of the image height for the radius.

3.3 Optimization strategies

As previously indicated, the optimization problem being minimized by our frame-

work is non-convex, involves discontinuities, and may also be high-dimensional if n is

large. For these reasons we applied different kinds of strategies in building scenes to

cast desired shadows, especially ones with bigger amount of occluders to manipulate, and

we integrated these strategies in our framework. These two types of strategies that we

employed that can produce solutions to the problem: scheduled optimization and iterative

optimization.

3.3.1 Scheduled optimization

At the early stages of optimization with bigger deviations, it would be useful to start

with simpler energy functions and leave others aside for later refinement. Energy functions

such as image moments and the barrier function have generally less noise in a wide range

of samplings. The overall smooth shape helps guiding the sampling range quickly to

narrow down into a smaller area that contains desired solution. By then users can restart the

optimization, enabling energy functions that focus on local details, such as the exclusive-or

16

comparison. Optionally users can adjust energy weights to emphasize on different aspects

of convergence.

3.3.2 Iterative optimization

As the number of projectile increases, contacts between each other become more

difficult to avoid. Especially when the shadow occluders are launched from clustered

positions, most of the early sample evaluations will end up with penalty on contact in

substantial amount, and they change dramatically with very small deviations. Therefore,

the solution space is filled with high frequency changes, the sampling results will appear

noisy, and the convergence becomes inefficient.

For this reason we made attempts to improve the convergence rate by a greedy strat-

egy with optional “back-tracing”, which actually produces nice results and converges more

efficiently in our experiments. The strategy is actually simple: with an order of all oc-

cluders, either generated, randomized or user-defined, it iterates all occluders individually

by sampling, simulating and optimizing on only one pair of initial linear and angular

velocities, meanwhile keeping the rest fixed, until all of them have reached optimality.

The iterative optimization can also fit in the scheduled strategy. After iterating on

all occluders, users can set up another stage that optimizes on all projectiles at once, but

with smaller sampling deviations. By this means we carried out an overall refinement of

previous result, and potentially can escape local minima.

3.4 Summary

In this chapter, we define the problem that our framework needs to solve into a

mathematic optimization problem. For this problem we also provide energy functions

designed carefully and strategies to help converging. Our energy functions have different

17

focuses such as image comparisons and contact avoiding. Our strategies apply to different

circumstances and demands. In the next chapter we will present four examples produced

with the framework, and the details in building them.

18

CHAPTER 4
Results

In Chapter 3 we elaborate on all the designs that form up this framework. In this

chapter we will present a few compelling examples of ballistic shadow art, and we will

also demonstrate details of different aspects in building these examples.

We present four target shapes in Figure 4–1 as example problems. They are a Mickey

Mouse logo in Figure 4–1a, a simplified Chinese character of “to fly” in boldface Gothic

typeface in Figure 4–1b, a Japanese phrase of “to be continued” (later shortened as “TBC”)

in an artistic font in Figure 4–1c, and a silhouette of The Thinker by Auguste Rodin in

Figure 4–1d.

Table 4–1: Complexity of each example
Mickey “to fly” TBC The Thinker

occluder number 3 6 12 16
hint number 3 6 12 32

The complexity of each example’s occluders is specified inside of Table 4–1. Each

example is provided different set of occluders as input. For the Mickey example, they are

three spheres. For the “to fly” example we have a few brick-shaped cuboids and for the

“to be continued” we have diverse dimensions of bricks. For The Thinker example, half a

set of chess pieces are provided. These chess pieces are also simulated with their reduced

triangle mesh for collision handling.

19

(a) (b) (c) (d)

Figure 4–1: The target shadow shapes of the examples. We have (a) the Mickey Mouse
logo, (b) Simplified Chinese character of “to fly”, (c) Japanese phrase “to be continued”
in an artistic font, and (d) The Thinker silhouette.

The converged scenes are presented with snapshots in Figure 4–2, in each of which

there are colored curved lines with one end on occluders indicating the trajectories of their

ballistic motions. The point light source is indicated with a white dot at the top of each

snapshot. The converged shadows in image space are also presented in Figure 4–3, where

the black shape indicates the target to reach and the semi-transparent red shape represents

the shadow in the scene.

4.1 Convergence

We apply different optimization strategies for these four examples. For the Mickey

example, we schedule a two-stage optimization, and for the other three examples we used

the iterative strategy that optimizes for one individual occluder at one stage.

For the Mickey example, the weights of two stages are presented in Table 4–2. First

we started with energies that focus on less detailed aspects, such as moments and hints,

along with penalties on wild solutions, such as the barrier function. When the shadows

converge to a generally matched shape, we added in more energy functions to refine the

details, optionally starting from where we left off with small sampling deviations. In this

case we only use exclusive-or comparison since the Mickey logo does not require many

20

(a) Mickey Mouse scene (b) “to fly” scene

(c) “to be continued” scene (d) The Thinker scene

Figure 4–2: The converged ballistic shadows. In each snapshot the curve lines indicate
occluders trajectories, and the white dot at the top indicates the point light source.

Table 4–2: Weight of each energy function of the Mickey example
energy stage 1 stage 2

0th moment 2 2
1st moment 10 10

2nd moment 5 5
XOR 0 300

regularization 0.01 0.1
barrier function 100 100

contact 50 50
hints 0.1 0.1

inner boundary 0 0
outer boundary 0 0

21

(a) Mickey Mouse shadow (b) “to fly” shadow

(c) “to be continued” shadow (d) The Thinker shadow

Figure 4–3: The converged shadows in image space compared with the corresponding
targets. In each image the semi-transparent red shape represents the shadow in image
space as the converged result, and the black shape in the background is the target shadow
shape to match.

Figure 4–4: The results of the two stages of the Mickey example. The initial stage on the
left and the final stage on the right.

22

Figure 4–5: The converged scenes of the two stages of Mickey. The left one is from
the first stage and the right one is from the second stage. For each one, trajectories are
indicated with the curved lines and the light source with the white dot on the top.

details to recognize. Note that in this Mickey example, the sphere projectiles still have

angular velocities. They are included for framework consistency concerns, but they have

no effect on convergence. Therefore we also increase the weight for regularization to

reduce the unnecessary angular velocities in the second stage. The converged results of

each stage are given by Figure 4–4 on the shadows and Figure 4–5 on the scenes.

In Figure 4–6 we also present the process of convergence of two stages. In the first

stage, the total value of all energies dropped quickly with the guidance of hints and the

first moments. Besides, at the early stages there are a few wild samples, potentially with

occluders running outside of the region for capturing, or into each other, penalized by

the barrier function and the contact penalty. After adding the exclusive-or and increasing

regularization, we started the second stage from the previous position. Less wild sampling

occurred this time and the shadows converged to a satisfactory shape, as the exclusive-

or decreased to a small magnitude. By then all other energy functions started to plateau

except the regularization, which led to the solution with smaller angular velocity but the

same visual effect.

23

100

101

102

103

total

100

101

102

103

104

total

10-1

100

101

0th moment

10-5
10-4
10-3
10-2
10-1
100
101
102

0th moment

10-2

10-1

100

101

1st moment

10-5

10-4

10-3

10-2

10-1

100

101

1st moment

10-1

100

101

2nd moment

10-3

10-2

10-1

100

101

2nd moment

10-1

100

101

102

103

barrier
contact

10-1

100

101

102

103

104

barrier
contact

10-1

100

101

102

103

hints

10-1

100

101

102

103

hints

10-1

100

reg

100

101

reg

10-1

100

101

102

103

xor

Figure 4–6: Convergence of the two stages of the Mickey example. The left column
presents convergence of the first stage and the right presents the second stage. Each
figure plots the evaluated value of every sampling instance along the convergence. The
red denotes the total of all applied energies, and the blues denote the weighted value of
each energy, short named in the legends. The contact and barrier function are plotted
together for space saving purpose. Each plot has a y-axis on log10 scale and therefore the
missing values indicate 0. Note the newly added exclusive-or function’s plot at the right
bottom, and the y-axis with scale may have changed.

24

Figure 4–7: The evolution of the Thinker shadows. Each image indicates the converged
result of each stage. For every stage there is only one chess piece being manipulated with
initial conditions for optimization. The rest of the chess pieces are kept untouched, either
remaining still at their launching positions, casting the small pieces of shadow that line up
straight, or adopting the same velocities from last stage convergence and casting the same
shadows.

The similar convergence process happens in other examples, except that energy func-

tion weights remain the same among all iterative stages. We also present the evolution

process of The Thinker example. The first 16 stages are optimized for one chess piece

in Figure 4–7. In the last stage we increased the weight on boundaries, fixed most of

the occluders and optimized only on the pieces that form up the status’ back to have a

smoother outline. The improvement is demonstrated in Figure 4–8. The back of The

Thinker is improved with a smoother outline, with a minor trade-off over the stomach.

Meanwhile the rest of The Thinker is kept untouched as the overall shape is satisfactory,

with the constraints of the chess piece shapes.

In Figure 4–9 three representative stages of the convergence of The Thinker example

are selected and illustrated with plot figures. We select the process of stages which

optimizes on the left rook, and on the right rook, as well as the extra stage that adjusts

a few chosen pawns that form up the back. In these three convergences, the process

always starts with wild sampling penalized by barrier functions or contacts. The hints and

exclusive-or are the main factors driving convergence, even though exclusive-or values do

25

Figure 4–8: The Thinker shadow from the extra stage and comparisons with the last stage
and target. From left to right: the comparison between the shadow from last stage (blue)
and the target (black); the comparison between the shadow of the extra stage (red) and the
target (black); the comparison between the shadows of the extra stage (red) and the last
stage (blue) and purple indicates overlapping.

not decrease visually as dramatic as hints. This is because exclusive-or is calculated on the

whole image, in which target shadows only take relatively small part, and thus the local

changes made by one chess piece appear less substantial than the hints in the figure. The

outer boundary function serves as prevention of outline intersection as expected, and the

inner boundary function, which replaces the hints in the last stage, decreases gradually,

and dominates the convergence.

4.2 Performance

We also provide some performance data in Table 4–3 and Table 4–4 for reference.

Table 4–3 presents some data indicating how far it takes to converge for each example.

Apparently for more complicated problems, we need more iterations and samplings to

converge. Moreover, using different optimization strategies makes a difference on its con-

vergence, as the latter three examples have a low average sampling and iteration number

on each stage.

26

100

101

102

103

total

100

101

102

103

104

total

100

101

102

total

100

101

102

103

barrier
contact

10-1

100

101

102

103

104

barrier
contact

10-1

100

101

barrier
contact

10-3

10-2

10-1

reg

10-3

10-2

10-1

reg

10-2

10-1

reg

10-1

100

101

outer

10-1

100

101

102

outer

10-1

100

101

102

outer

100

101

102

xor

10-1

100

101

102

xor

10-1

100

101

xor

100

101

102

hints

100

101

102

103

hints

10-1

100

101

inner

Figure 4–9: Convergence of three selected stages of The Thinker example. The figures
are plotted in the same way as Figure 4–6 does and in the bottom row, there are three
snapshots of the final converged scenes. Note that right above the snapshots in the bottom,
the third stage replaces the hints with the inner boundary function.

27

In the other table, we list the time it takes for computing each energy function in mil-

liseconds, except for the energies of regularization and contacts, which both take less than

0.1 milliseconds. Besides energies we also conducted profiling on ballistic simulations

and included the results together. One obvious bottle-neck on performance is the physics

simulation. Besides that other energies have a decent rate of computation. Synchronization

of threads, optimization algorithm, hard-drive IO, and other potential sources of significant

time consumptions are not taken into account.

Table 4–3: Performance of optimizations. The optimization process of each example is
presented with the numbers of stages, iterations, and samplings. The convergences are
also timed and the results are denoted in minutes and seconds.

Mickey “to fly” TBC The Thinker
stages 2 6 12 17

total iterations 283 458 987 1572
average iterations 141.5 76.3 82.25 98.25

total samplings 20376 10992 23688 54048
average samplings 10188.0 1832.0 1974.0 3378.0
total running time 29m07s 16m55s 44m57s 396m15s

4.3 Implementation

We used projected planar shadows for shadow rendering in our framework, and the

discussion of it will be covered in Chapter 5. For specifying the target shape and capturing

shadows, we used a image of 640 × 480 pixels. For simulating the ballistic motions, we

used the semi-implicit Euler method for integration and the time step is 1/60 second.

The framework is mainly written in Python 2.7.12. We used OpenGL 4.3 for render-

ing, Python Image Library and OpenCV for image processing, Vortex for physics simula-

tion, and NumPy and Python Computer Graphics Kit (cgKit) for matrix computation. The

operating system is Windows 10 Home. In terms of hardware, all our results, as well as

28

Table 4–4: Performance of energy functions. All functions in different examples are all
timed in milliseconds. For those energy functions that are not applied in some examples,
the value is labeled as “N/A”; for those not included in this table, the evaluation is trivial
and lasts less than 0.1 milliseconds. Besides energy functions, the physics simulation is
also timed and presented.

Mickey “to fly” TBC The Thinker
simulation 15.2 19.8 31.7 621.0

0th moment 1.6 N/A N/A N/A
1st moment 4.9 N/A N/A N/A

2nd moment 16.1 N/A N/A N/A
XOR 8.4 8.3 6.2 7.4

inner boundary N/A N/A N/A 18.7
outer boundary N/A N/A N/A 17.2

hints 1.2 1.4 1.4 3.9
barrier 1.0 1.6 1.6 2.3

performance tests in Table 4–3 and Table 4–4 are run on a PC with processor Intel Core

i7-4710HQ @ 2.50GHz and GPU of NVIDIA GeForce GTX 860M.

4.4 Summary

In this chapter we presented our results by demonstrating four successfully-built

examples with our framework. Each example has different targets and occluders, and

they have different complexities as well. We also demonstrated the convergence process

via the weights table and the convergence plots, to illustrate the changes that happened

in different stages with different weights. The iterative strategy is also presented with the

evolution of The Thinker shadows, and the convergence of three representative stages.

Then we analyzed our optimization in the performance aspect, in both convergence rates

and profiling results. Finally we presented the technical details in implementing our

framework. In the next chapter, we will discuss advantages and disadvantages of a few

decisions we made in the framework, and future plans to improve or extend on them.

29

CHAPTER 5
Discussion

The results in Chapter 4 demonstrate that our framework is capable to synthesize

compelling examples of ballistic shadow art, even when the simulation involves more

than a dozen objects and the target shadow is complex. The user-in-the-loop aspect of

our framework allows visually pleasing solutions to be found by helping to guide the

optimization.

We render shadows by planar projection in our framework, rather than shadow map-

ping or shadow volumes. Projected shadow has a perfect resolution for capturing and

image comparison purpose, and it is easy to implement as well as efficient to render.

However as a trade-off for fast prototyping, it produces fake shadows when an occluder is

located behind the plane, or anti-shadows when it stands behind the light, both of which

can be fixed [8] [26]. The major shortcoming is the exclusion to non-planar shadow

receivers. To exploit our framework’s potentials on different receivers, we plan to use

shadow mapping or shadow volume instead.

There are some factors defining the shadow art problem other than target or occluders

that we did not enumerate in our experiments. For instance, so far our shadow art effects

are only supposed to be captured from the same static camera, which is pointing to the

receiver plane perpendicularly. The light source generally lies above the shadow center in

all cases. To demonstrate the power, there should be experiments on problems with more

diverse configurations. Scene construction also could further be automated by optimizing

30

for the light configuration and camera parameters. However, this would introduce addi-

tional non-linearities to the optimization, not to mention increasing the dimensionality

of the problem. This deserves further investigation so that tractability is not severely

impacted.

When comparing the captured shadow image with the target shape, perfect matching

is the only optimal matching. Therefore the framework has the capability to help the

users acquire shadows at an exact desired location. However in the case when location

or orientation for the shape is not restricted, our framework does not support less stiff

matching. For future work, the framework should provide options to accept translated,

rotated or scaled matchings, or to add such energies in the optimization. Furthermore,

accepting slightly deformed shapes [11] is a powerful feature to add on.

Our framework only supports optimizing on a single target and as part of future work

we plan to investigate synthesizing shadows for multiple targets. One way is using multiple

light sources for one static placement of occluders [3][14], and applying this framework

to find a set of trajectories. However it normally requires very complex arrangements of

occluders and thus the convergence and simulation will be extremely challenging. Another

route will be taking advantage from ballistic motions. We can match different targets

on different instants in the ballistic process. At one instant all projectiles together cast

a shadow of one target shape, and as the motion continues they form up another target

shadow at a later instant. Timing becomes critical in this case, as a poor selection of

instants may create a problem without feasible solution, given the physics constraints.

Determining the exact instants will be difficult and perhaps it should be another variable

31

in the optimization. Moreover, adding the light source as a projectile may potentially

provide more solutions.

Contacts have been one factor we try to suppress in the framework. The friction

and the bounce that contacts produce will lead to a tremendous amount of differences

in the final status of ballistic motions, even with minor adjustments to starting condi-

tions. Therefore in the solution space, regions with contacts are filled with high frequency

changes. The sampling on this type of region is not representative unless with small

enough deviations. However, because of the dramatical changes that contacts can bring,

allowing contacts to occur before matching the target may produce more solutions. For

example, we can have two projectiles deflect from each other to change their trajectories,

so that they can reach places in a way that used to be impossible. Therefore this may

be very useful for multiple target problems, but it requires the capability of optimization

algorithms to search within the contact subspace effectively.

Lastly, successfully fabricating this ballistic shadow art in reality will be persuasive

but difficult. To build it we need more precise physics simulation, including smaller time

steps, bringing drag and accurate measuring projectile contact properties if it applies. We

also need stable, reliable and accurate methods for launching occluders into desired bal-

listic trajectories. Furthermore audience needs a more effective expression to demonstrate

the transitory art effect.

32

CHAPTER 6
Conclusion

This thesis presents our framework of creating ballistic shadow art. Besides the

existing shadow art forms, we bring a new form with ballistic motions involved - at an

exact given instant, all occluders launched to their trajectories together cast the artistic

shadow that is pre-defined by a target image. The initial conditions of occluders are crucial

in building the artwork.

To build this form of art in a less time-consuming way, we define the ballistic shadow

art formally into a mathematic optimization problem, and a stochastic optimization method

is applied to find the answer. For the optimization, we carefully design a set of energy func-

tions that focus on various aspects, including comparing captured shadows with a target

shape in image space, avoiding contacts, regularizing on input and penalizing unwanted

solutions.

Then we also provide two different strategies to help optimization converge with

multiple stages, since optimizing on all parameters and energy functions in one shot is inef-

ficient and sometimes even not effective. These two strategies are scheduled optimization

and iterative optimization. The scheduled strategy optimizes on initial conditions of all

occluders with adjusting weights of energies in different stages. The iterative optimization

generally applies the same energy configuration across stages but in every stage, only one

individual occluder’s initial condition is optimized.

33

With these energy functions and optimization strategies, we successfully created four

compelling examples. They are given different input of both occluders and targets. For the

first example of assembling the Mickey Mouse we use the scheduled optimization with

two stages, and for the other three, the “to fly” character, the “to be continued” phrase

and The Thinker, we use the iterative optimization. we also compare among the examples

on convergence and performance aspects. By demonstrating weights and convergence

process of each energy function from different stages, and the results of each iterated

stage, we present how the solutions converged to aesthetically pleasing shadow art that

matches the target shapes. By comparing the convergence rate and the profiling data of

energy function evaluation, we illustrate the performance of our framework. The results

presented in this thesis demonstrate that our framework is capable of creating ballistic

shadow art, even for complex examples.

34

References

[1] Ilya Baran, Philipp Keller, Derek Bradley, Stelian Coros, Wojciech Jarosz, Derek
Nowrouzezahrai, and Markus Gross. Manufacturing layered attenuators for multiple
prescribed shadow images. In Computer Graphics Forum, volume 31, pages 603–
610. Wiley Online Library, 2012.

[2] Philippe Bergeron. A general version of Crow’s shadow volumes. IEEE Computer
Graphics and Applications, 6(9):17–28, 1986.

[3] Amit Bermano, Ilya Baran, Marc Alexa, and Wojciech Matusk. Shadowpix: Multiple
images from self shadowing. In Computer Graphics Forum, volume 31, pages 593–
602. Wiley Online Library, 2012.

[4] James Blinn. Jim Blinn’s corner: Me and my (fake) shadow. IEEE Computer
Graphics and Applications, 8(1):82–86, 1988.

[5] Franklin C Crow. Shadow algorithms for computer graphics. In ACM Siggraph
Computer Graphics, volume 11, pages 242–248. ACM, 1977.

[6] Christopher DeCoro, Forrester Cole, Adam Finkelstein, and Szymon Rusinkiewicz.
Stylized shadows. In International Symposium on Non-Photorealistic Animation and
Rendering (NPAR), number 8. ACM, 2007.

[7] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation. In
Proceedings of the 1996 IEEE International Conference on Evolutionary
Computation, pages 312–317. IEEE, 1996.

[8] Paul S Heckbert and Michael Herf. Simulating soft shadows with graphics hardware.
Technical report, DTIC Document, 1997.

[9] Tim Heidmann. Real shadows, real time. Iris Universe, 18:28–31, 1991.

[10] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE Transactions
on Information Theory, 8(2):179–187, 1962.

35

36

[11] Takeo Igarashi, Tomer Moscovich, and John F Hughes. As-rigid-as-possible shape
manipulation. In ACM Transactions on Graphics, volume 24, pages 1134–1141.
ACM, 2005.

[12] Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hodgins, and Nancy S
Pollard. Interactive control of avatars animated with human motion data. In ACM
Transactions on Graphics, volume 21, pages 491–500. ACM, 2002.

[13] Oliver Mattausch, Takeo Igarashi, and Michael Wimmer. Freeform shadow boundary
editing. In Computer Graphics Forum, volume 32, pages 175–184. Wiley Online
Library, 2013.

[14] Niloy J Mitra and Mark Pauly. Shadow art. ACM Transactions on Graphics, 28(5),
2009.

[15] Ramakrishnan Mukundan and KR Ramakrishnan. Moment functions in image
analysis: theory and applications, volume 100. World Scientific.

[16] Juraj Obert, Fabio Pellacini, and Sumanta Pattanaik. Visibility editing for all-
frequency shadow design. In Computer Graphics Forum, volume 29, pages 1441–
1449. Wiley Online Library, 2010.

[17] Fabio Pellacini, Parag Tole, and Donald P Greenberg. A user interface for interactive
cinematic shadow design. ACM Transactions on Graphics, 21(3):563–566, 2002.

[18] Jovan Popović, Steven M Seitz, Michael Erdmann, Zoran Popović, and Andrew
Witkin. Interactive manipulation of rigid body simulations. In Computer Graphics
(Proceedings of SIGGRAPH 2000), pages 209–218. ACM, 2000.

[19] Pierre Poulin and Alain Fournier. Lights from highlights and shadows. In
Proceedings of the 1992 symposium on Interactive 3D graphics, pages 31–38. ACM,
1992.

[20] William T Reeves, David H Salesin, and Robert L Cook. Rendering antialiased
shadows with depth maps. In ACM Siggraph Computer Graphics, volume 21, pages
283–291. ACM, 1987.

[21] Liu Ren, Gregory Shakhnarovich, Jessica K Hodgins, Hanspeter Pfister, and Paul
Viola. Learning silhouette features for control of human motion. ACM Transactions
on Graphics, 24(4):1303–1331, 2005.

37

[22] Christopher D Twigg and Doug L James. Backward steps in rigid body simulation.
ACM Transactions on Graphics, 27(3):25, 2008.

[23] Lance Williams. Casting curved shadows on curved surfaces. In ACM Siggraph
Computer Graphics, volume 12, pages 270–274. ACM, 1978.

[24] Andrew Witkin and Michael Kass. Spacetime constraints. ACM Siggraph Computer
Graphics, 22(4):159–168, 1988.

[25] Jungdam Won and Jehee Lee. Shadow theatre: discovering human motion from a
sequence of silhouettes. ACM Transactions on Graphics, 35(4):147, 2016.

[26] Andrew Woo and Pierre Poulin. Shadow algorithms data miner. CRC Press, 2012.

[27] Hansong Zhang. Forward shadow mapping. In Rendering Techniques, pages 131–
138. Springer, 1998.

