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Abstract

Dark matter is postulated to exist as a bound state of gauge bosons in a hidden SU(N)

theory, dubbed ‘dark glueballs’. These dark glueballs have no direct couplings to the standard

model, but are instead allowed to decay via loops of heavy mediator particles, Φ. We consider

scenarios in which the Φ particles are coupled with U(1) hypercharge, SU(3) strong forces,

and Higgs bosons respectively. Additionally, a numerical approach to solving the Boltzmann

equation is considered in Mathematica. This software package can be applied and modified

to a wide class of generic particle dark matter candidates.
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Abrégé

Il existe une hypothèse qui stipule que la matière noire est considérée comme étant un état

lié de boson de jauge suivant une théorie de SU(N), surnommée boule de glu ‘dark’. Ces

boules de glu n’ont pas de relation directe avec le modèle standard, mais sont en effect, en

mesure de se décomposer en segments égaux de particules médiatrices, Φ, ayant une grande

masse. Nous considérons plusieurs scénarios dans lesquels les particules Φ sont liées avec

hypercharge U(1), de puissantes forces SU(3), et des bosons de Higgs respectivement. De

plus, nous considérons l’approche numérique afin de résoudre l’équation de Boltzmann dans

Mathematica. Le progiciel proposé par Mathematica peut être manipulée afin de tester un

large éventail de particules génériques de matière noire.
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Chapter 1

Introduction

For more than an age, people have gazed up and looked at the cosmos. For some, the seem-

ingly infinite vastness is frightening, mysterious, and not reconcilable with beliefs forged here

on earth. For others, the feeling of insignificance that creeps in when considering something

so grand can bring comfort. It presents an exciting opportunity to probe ones past, and

indeed, the past of the universe as well.

While the universe may seem so very large to us today, it wasn’t always that way. The

observable universe represents the causal patch of photons emanating from a so-called big

bang until now, some 13 billion years ago, and was much smaller in the past. We note that

from standard thermodynamics, the reduction in the size of a box, while keeping the con-

tent inside the box constant, causes an increase in temperature. Today, while the standard

conditions in the universe are quite benign (aside from obvious astrophysical sources such

as star forming regions, supernovae, black holes, and others), the early universe was a much

more volatile and chaotic state.

Since light has a finite propagation time, remnants of the early universe remain for us to
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observe today, with the cosmic microwave background, the oldest photons in the universe,

being our gold standard as a dataset to work with. The universe still holds many mysteries

from us, and so utilizing information from early universe cosmology can be fantastic in de-

termining exotic physics hidden to us here on earth.

The particular phenomenon we wish to study in depth is that of dark matter. Dark matter

is an undiscovered form of matter postulated in order to explain various astrophysical phe-

nomenon, such as the flat rotation curves of spiral galaxies. Many different approaches have

been taken over the past few decades in describing these effects (modified gravity, primordial

black holes, etc), but the most popular explanation seems to be that dark matter has some

origin embedded in particle physics.

We aim to make use of the formalism granted to us by quantum field theory and parti-

cle physics to explain the abundance of dark matter as bound states of the gauge bosons

of an asymptotically free SU(N) theory. We refer to these states as dark glueballs, and

are an attractive choice as they can be made to have naturally small indirect couplings to

the standard model, and can also ease tensions with some shortcomings that standard cold

dark matter experiences, such as the cusp/core problem with the inclusion of self-interaction.

In this work, we begin with a general overview of the standard model of particle physics,

which will serve as our basis for understanding this new gauge theory. We then move on

to discussing physics beyond the standard model in the form of low-energy effective La-

grangians, and their applications to particle cosmology. Following this, we briefly review a

variety of approaches to explaining dark matter, and then talk about the Boltzmann equa-

tion in the context of setting relic densities of late-time surviving particle species. Work is

then presented in chapter 3 of numerical simulations of particle evolution via the Boltzmann
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equation, implemented in Mathematica.

Finally, in chapter 4, we discuss how one would introduce a new SU(N) force to the standard

model, and discuss the possible indirect couplings our dark glueball can have to the standard

model, via some heavy mediator particle, Φ. Constraints are discussed in the context of both

cosmological signals, and particle collider signals before concluding. Much of this discussion

is a review and commenting of work done by other authors working with non-Abelian gauge

theories of dark matter. Novel ideas come from applying constraints on different couplings to

the parameter space of our model, calculating the implications of reheating, and discussing

the viability of different couplings on our mediator.
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Chapter 2

An Introduction to Particle

Cosmology

The interface between particle physics and cosmology is a complicated one, with many nu-

ances and subtle details that should be appreciated. In this chapter, the relevant background

knowledge will be presented in a pedagogical way in order to aide the reader in understand-

ing how the two sectors are coupled.

We begin with an overview of the standard model, with a slight emphasis on strong inter-

actions as they are the most relevant for the remainder of the thesis. After reviewing these

concepts, we will introduce the technique of effective Lagrangians, which are critical when

considering theories with heavy degrees of freedom. Finally, we will introduce the basic con-

cepts of cosmology in an attempt to reconcile them with our understanding of the standard

model of particle physics.
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2.1 The Standard Model of Particle Physics

The standard model of particle physics is the result of a many decades effort to come up

with a theoretical explanation for the fundamental observations made in particle physics. Its

underlying mathematical structure appears to be group theoretic, yet ideas from complex

analysis and other branches of mathematics come in handy for making accurate computa-

tions within the framework of the theory. Here we present the framework, and briefly show

how it applies to electroweak interactions before discussing in more depth its application

to the strong force. This review follows ideas presented in the standard undergraduate and

graduate level texts [1] [2] [3] [4] [5].

The standard model describes the weak, strong, and electromagnetic forces of nature in

one unified framework. Each interaction has one or more gauge bosons which carry the

force, and a number of other particles (leptons, quarks, and bosons) which help build up

the world we see around us. Without the inclusion of gravity, we can’t consider this to be a

theory of everything, but still it offers unparalleled accuracy between theory and experiment.

2.1.1 The Framework of the Standard Model

As stated above, group theory seems to be the underlying mathematical descriptor of the

known particle states found in nature. Quantum field theory, however, provides physicists

with a more useful toolbox in computing quantities associated with elemental particle inter-

actions. The structure of the standard model is extraordinarily rich, with what is colloquially

referred to as a zoo of particles giving rise to the macroscopic features we see in the world

today.
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Quantum field theory takes the viewpoint that the fundamental objects of nature are fields,

and particle states arise as localized perturbations of these fields at different points in space-

time. At its core, quantum field theory is just the application of quantum mechanics to

relativistic particles. Taking classical field theory as a starting point, we assert that the

equations of motion for particle states should be the extremized variations of an action,

δS = 0, where our action is defined with a Lagrangian density, L as such

S =

∫
L(φ, ∂μφ)d4x (2.1)

Variations with respect to this give us the general Euler-Lagrange form that describes the

equations of motion

∂μ

(
∂L

∂(∂μφ)

)
− ∂L

∂φ
= 0 (2.2)

This operation recovers the familiar Klein-Gordon equation for simple scalar fields, or the

Dirac equation for spin 1/2 particles.

The ‘quantum’ in QFT refers to the fact that we interpret the dynamical variables in the

action (φ, for example) as operators obeying commutation relations. In particular, we take

these relations to be those of the harmonic oscillator, giving a physical interpretation to our

fields. As an example, the Lagrangian for a Klein-Gordon field is

L =
1

2
∂μφ

∗∂μφ− 1

2
m2|φ2| (2.3)

Expanding the field φ in Fourier modes, we see using the harmonic oscillator analogy that

φ(x) =

∫
d3p

(2π)3
1√
2ωp

(
ape

ip·x + a†pe
−ip·x) (2.4)
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where the ap and a†p are annihilation and creation operators of the Klein-Gordon field respec-

tively. Here, ωp =
√|p|2 +m2 is related to the energy of the harmonic oscillator. Noting the

usual commutation relations, [a, a†] = 1 (this is for bosons, fermions carry anticommutation

relations, ({a, a†} = 1)) we can construct the Fock state of particles by repeated use of the

creation operator a† on the ground state

|n〉 = (a†)n |0〉 (2.5)

This is the general procedure used to create multiparticle states in quantum field theory.

In fact, this tactic of expanding the field in terms of ladder operators is precisely what is

meant when we talk about quantizing a field. From here, it is possible to construct general

Lagrangians satisfying different physical and symmetry based constraints which we can then

quantize in order to compute observable quantities. We will come back to the computation

of these observables after a quick detour into the topic of symmetries in physics.

2.1.2 Symmetries in the Standard Model

Without the notion of symmetry, much of physics would not be tractable, and seemingly

simple phenomenon would become obscured behind a mountain of mathematics. Thankfully,

nature has been kind enough to us in giving symmetries to be exploited. The general aim

in quantum field theory is to construct the most general Lagrangian possible, with a priori

knowledge of how the field interacts, and what symmetries it possesses.

Symmetries come in both discrete and continuous forms, and are related to conservation

laws via Noether’s theorem. With this, important connections were formed between well

established concepts. Translational invariance in time and space provided energy and mo-

mentum conservation, rotational isotropy yielded angular momentum conservation, and a
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newer concept, that of gauge transformations, gives us conserved charges. A Lagrangian

that is invariant under a set of local continuous transformations is said to be gauge invariant

under those transformations. In the simple case of an Abelian U(1) field, this means that L
is invariant under

φ → φ′ = φeiΛ(x) (2.6)

where Λ(x) is a function of the spacetime coordinates (hence the transformation is local).

Gauge theories make up the standard model, and so we consider them in more detail below.

Of more importance to the idea of glueballs is the idea of some discrete symmetries, such as

parity and charge conjugation.

Parity is the idea that physics should not be altered over a mirror reflection of any specific

process. This symmetry may seem obvious, but in fact the weak interactions don’t nec-

essarily respect this [6]. For strong and electromagnetic interactions, however, parity is a

conserved quantity. The parity operation acts as reflection in the spacial coordinates of a

field, and so we can define the parity of such a field by the eigenvalues it has under this op-

eration. In the case of a vector, the parity operation completely changes its orientation, and

so we can write P (v) = −v, meaning vectors carry parity of −1. Pseudovectors are another

type of field that is quantified by having a parity of +1, and can be formed, for example, by

the cross product of two normal vectors. The story for scalars is intuitive, since there is no

spacial dependence on the value of the scalar is has parity of +1, while pseudoscalars (formed

by a scalar triple product, for example) carry parity −1. This can again be generalized to

higher spin objects such as tensor fields, but will not be relevant for the remainder of the work.

The charge conjugation operation replaces all particles in a theory with their antiparticles.

Like parity, the eigenstates of this operation are ±1, however unlike parity most natural
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particles in nature are not eigenstates. This operation is played out by reversing the signs of

all the internal quantum numbers of a particle, and so to be an eigenstate of this operator,

the particle and antiparticle must be indistinguishable, otherwise known as Majorana type.

Like parity it is conserved in strong and electromagnetic interactions, but not necessarily for

weak decays.

The idea that the laws of physics should be unchanged when boosted or rotated from one

frame to another is called Lorentz invariance. More specifically, transformations of the

coordinate system

xμ → x′μ = Λμ
νx

ν (2.7)

should leave the equations of motion invariant. Having a Lagrangian that is not Lorentz

invariant introduces a sort of preferred reference frame, which is in violation of the laws of

relativity. This is an additional symmetry we wish to possess, and so our fields must also

transform under what is called the Lorentz group.

Finally, lets turn our attention to the idea of continuous gauge symmetries. In the language

of group theory, particle physics can be expressed in terms of Lie groups (groups whose

elements depend on parameters that vary continuously on some closed interval), such as the

general set SU(N). The electroweak force is represented by the groups SU(2)×U(1), while

strong interactions can be described by the SU(3) group. Here, S means ‘special’ and refers

to the group matrices having determinant +1, and U means we have unitarity amongst the

elements. In fact, it was the identification by Gell-Mann that nature carried some SU(3)

symmetry that led to the weight diagram of the baryon decuplet, and subsequently the pre-

diction and discovery of the Ω− particle.
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Generally, gauge theories represent Lagrangians that are invariant under such a continuous

group of transformations. These transformations are local, and so new gauge fields need to

be introduced to compensate the derivative terms of these local transformations. Consider

the generalized Klein-Gordon equation used in scalar quantum electrodynamics

Ls−QED = −1

4
F αβFαβ − ∂μφ

∗∂μφ−m2φφ∗ (2.8)

Where Fαβ = ∂αAβ − ∂βAα is the EM field strength tensor. This equation is invariant under

global φ → e−ieΛφ transformations, but not local (gauge) transformations where we allow Λ

to vary with the position in spacetime. This gauge is known as a U(1) transformation and

is representative of the underlying structure of electromagnetism. By introducing the gauge

covariant derivative Dμ = ∂μ + ieAμ and noting that Aμ → Aμ − 1
e
∂μΛ(x) under a U(1)

transformation, we can make the scalar QED Lagrangian completely gauge invariant. This

procedure is used in the SU(2) and SU(3) constructions of the strong and weak Lagrangians

as well. The gauge invariant Lagrangian for scalar QED is thus

L = −1

4
F αβFαβ −Dμφ

∗Dμφ−m2φφ∗ (2.9)

With these symmetries in mind, let us turn our attention to their applications on the gauge

theory structure of the standard model, starting with the electroweak interactions.

2.1.3 The Electroweak Theory of SU(2)× U(1)

The most simple gauge theory was that of U(1) interactions we considered above. Since the

standard model is known to obey the SU(N) gauge groups as well, we note the following

symmetry transformation that gives us gauge invariance for these groups. For a field ψ(x),

10



the transformation

ψ(x) → eiα
a(x)taψ(x) (2.10)

leaves the general Lagrangian invariant for an SU(N) interaction, provided that the ta (the

generators of the group) satisfy the commutation relations of the group, namely [ta, tb] =

ifabctc. Here, fabc are the structure constants of the group and are defined for the value

of N in an SU(N) group. The infinitesimal transformations of the other quantities in the

Lagrangian are thus

Dμ = ∂μ − igAa
μt

a (2.11)

Aa
μ → Aa

μ +
1

g
∂μα

a + fabcAb
μα

c (2.12)

The kinetic term for the gauge field now has an additional term representing the structure

of the group

F a
μν = ∂μA

a
ν − ∂νA

a
μ + gfabcAb

μA
b
ν (2.13)

and obeys the infinitesimal transformation rule

F a
μν → F a

μν − fabcαbF c
μν (2.14)

These are general properties of SU(N) gauge theories, and so they will be of great impor-

tance later on in this work.

In the early universe, the electromagnetic and weak forces were unified under a different

set of gauge groups, namely SU(2)L × U(1)Y related to the weak isospin and hypercharge,
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respectively. As we will describe below, the cooling of the universe eventually led to a phe-

nomenon known as spontaneous symmetry breaking in which the Higgs boson acquires a

vacuum expectation value and breaks this symmetry. In the breaking of this symmetry,

three of the gauge bosons acquire a mass (the Z,W±), and one linear combination of the

original SU(2)L×U(1)Y generators remains unbroken, which gives us the currently observed

U(1)EM with the photon as the sole remaining massless gauge boson.

The number of gauge bosons in an SU(N) theory are described by the number of generators

in the adjoint representation, namely N2 − 1. Before this symmetry breaking, the SU(2)×
U(1) symmetry therefore yields three massless ‘W ’ particles and one ‘B’ particle. Linear

combinations of these states yield the massive W±, Z particles and the massless γ state after

symmetry breaking. To keep this work modular, the full Lagrangian for electroweak theory

(before symmetry breaking) is

Lew =
1

4
W μν

a W a
μν −

1

4
BμνBμν +DμH

†DμH

+i(Q̄i /DQi + ūi /Dui + d̄i /Ddi + L̄i /DLi + ēi /Dei)

−λ

(
H†H − v2

2

)2

−yu,ijε
abH†

b Q̄
i
au

j − yd,ijHQ̄idj − ye,ijHL̄iej + h.c.

(2.15)

We have split the Lagrangian up into the kinetic terms for the gauge and Higgs bosons, the

kinetic terms for the fermion content of the theory, the Higgs potential which is spontaneously

broken, and the Yukawa coupling terms which cause the fermions to acquire mass when the

Higgs gets a vacuum expectation value (VeV). We note that the standard model is a chiral

theory, and as such only the left-handed fermions transform non-trivially under SU(2)×U(1)

interactions. The Qi terms refer to left handed up and down quarks in their doublet, and Li
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the left handed leptons. u, d, e are the right handed particles which transform as singlets in

this representation. We also note that the covariant derivative for SU(2)× U(1) is

Dμ = ∂μ − igW a
μ τ

a − i

2
g′Bμ (2.16)

where τa are the generators of SU(2) and related to the Pauli matrices by τa = σa/2. The

gauge bosons acquire their masses from this term after SSB. After SSB the Lagrangian be-

comes more cumbersome, but allows for us to compute a wide variety of observables that

can be tested both in colliders and in cosmology. We will come to that later, but for now let

us take a brief detour into the Higgs mechanism to better understand its couplings to the

standard model.

2.1.4 The Higgs Mechanism

The Higgs mechanism ([7]) is the way in which particles in the standard model acquire their

mass. It relies on an idea called spontaneous symmetry breaking (SSB). Loosely speaking,

SSB occurs when the shape of the Higgs potential changes from one where the field sits in

a stable minimum, to one where it sits at an unstable maximum and rolls down to a true

vacuum state in an unspecified direction in field space. The changing shape of the potential

is driven by finite temperature effects, and so this process occurs naturally when the uni-

verse cools below what is known as the electroweak symmetry breaking scale, about 150GeV .

Above this scale, standard model particles did not have mass, and the SU(2)L × U(1)Y re-

mains unbroken. Afterwords we are left with the broken SU(2)weak and the unbroken U(1)em

forces which we observe on more accessible energy scales here on earth. For theories with

massive dark matter candidates above the symmetry breaking scale, there must be another

mechanism to dynamically generates its mass. If these dark matter candidates couple to the

Higgs, they receive a correction to their mass as the symmetry breaking scale is reached.
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Figure 2.1: Evolution of the Higgs potential as a function of temperature in the early universe

In the spirit of electroweak symmetry breaking, lets briefly look at how symmetry breaking

and the Higgs mechanism occurs in the Glashow-Weinberg-Salam (GWS) theory of weak

interactions ([9], [10], [11]), in the context of gauge boson mass generation. For this explana-

tion, we assume to be below the symmetry breaking scale. First, consider the Lagrangian for

a Higgs interaction, which could be included in a theory with any SU(N) gauge symmetry

LHiggs = Dμφ
∗Dμφ−

(
−μ2φ∗φ+

λ

2
(φ∗φ)2

)
(2.17)

Where we have written the Higgs field as a complex scalar φ and the covariant derivative

can take whichever form necessary to satisfy the gauge symmetries of the full Lagrangian.

Looking now at the derivatives of this potential, we can see that there is an unstable maxi-

mum at |φ| = 0, and a true (stable) minimum at |φ| = φ0 =
(

μ2

λ

) 1
2
. We can make this true

minimum manifest by rewriting the potential (to quadratic order) in the expansion of our

complex field about this minimum

φ = φ0 +
1√
2
(φ1 + iφ2)

V (φ) = − μ4

2λ2
+ μ2φ2

1 +O(φ3
1,2)

(2.18)
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Where one of our scalar fields, φ1 has a mass term with mφ1 = 2μ2 and the φ2 field remains

massless. This massless field is known as a Goldstone boson and gives a physical interpreta-

tion to the extra degree of freedom the once massless gauge bosons of SU(2)L acquire after

symmetry breaking. We see actually that the gauge freedom we have allows us to make the

φ field real valued at all points in spacetime, thus eliminating the need for φ2 at all. This

is convenient to do since it negates some strange couplings of φ2 to the gauge fields in the

expansion of the covariant derivative. This expansion of the |Dμφ|2 term is precisely what

gives us gauge boson masses after symmetry breaking. We note that it is also customary to

label φ0 = v.

In the case of the electroweak SU(2) × U(1) theory (eq 2.15), our Lagrangian obeys the

following gauge transformation

φ → eiα
aτaeiβ/2φ (2.19)

where the scalar field has been given a hypercharge of +1/2, and we note the τa are related

to the usual Pauli matrices. It is also useful to note that just as the global U(1) invariance

yielded electric charge (or hypercharge, Y before spontaneous symmetry breaking), global

SU(2) invariance yields another type of ‘charge’, this time referred to as T3. After symmetry

breaking, electric charge is determined by Q = T3 +
1
2
Y . Using our gauge freedom, and

specifying our field to be in the spinor representation of SU(2), we can put our vacuum

expectation value as

〈
φ
〉
=

1√
2

⎛
⎜⎝ 0

v

⎞
⎟⎠ (2.20)
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Now, for these gauge symmetries, the covariant derivative is defined as

Dμφ =

(
∂μ − igW a

μ τ
a − i

2
g′Bμ

)
φ (2.21)

Therefore, the terms quadratic (of the form 1
2
m2BμB

μ) will be generated by the kinetic term

of the Higgs field. Squaring this kinetic term after the Higgs field acquires a VeV gives us

the relevant mass terms

Lmass =
1

2

(
0 v

)
(g2W a

μ τ
aW μ,bτ b +

gg′

2
W a

μ τ
aBμ +

gg′

2

+BμA
μ,aτa +

g′2

4
BμB

μ)

⎛
⎜⎝ 0

v

⎞
⎟⎠ (2.22)

By inputting the generators of SU(2), τa = σa/2 this equation can be made much more

provocative

Lmass =
1

2

v2

4

(
g2(W 1

μ)
2 + g2(W 2

μ)
2 + (−gW 3

μ + g′Bμ)
2
)

(2.23)

From this we see that the original gauge fields of SU(2)L × U(1)Y all seem to acquire some

type of mass. This is false, however, as it is possible to write these fields in a basis where

only three of them acquire masses, and one remains massless. This is the symmetry breaking

of SU(2)L × U(1)Y → U(1)em. The relationship between the different bases is thus

W±
μ =

1√
2

(
W 1

μ ∓ iW 2
μ

)
Z0

μ =
1√

g2 + g′2
(
gW 3

μ − g′Bμ

)
A0

μ =
1√

g2 + g′2
(
g′W 3

μ + gBμ

)
(2.24)
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Where we have made contact with the more familiar gauge bosons of the standard model.

Insertion of this new (orthogonal) basis into equation (2.23) yields the mass terms

mW± =
gv

2

mZ0 =
v
√

g2 + g′2

2

mA0 = 0

(2.25)

This is the Higgs mechanism and symmetry breaking pattern that happens in the early uni-

verse which causes the gauge bosons, Higgs boson, and fermions to acquire their masses. We

note that the SU(3) generators of the strong force remain unbroken under this effect, and

so the gluons remain massless today.

2.1.5 SU(3) Strong Interactions

Now, let us turn our attention to the final force in the standard model, namely the strong

interactions that mediate internuclear forces. This theory is SU(3) gauge invariant, and so

as usual, the mediators of this force are the eight gauge bosons known as gluons. Before we

write down the Lagrangian for this theory, it seems prudent to discuss another feature of

gauge theory interactions, that of running coupling constants.

Standard methods in perturbative quantum field theory make note of a (usually small) cou-

pling constant at each vertex. This coupling makes it obvious that more complex diagrams

with a large number of vertices are significantly suppressed when computing observables.

17



Figure 2.2: Left: Schematic illustration of how perturbation theory in QED works; the more
vertices in a diagram, the more suppressed the interaction is. The second diagram is a one
loop correction to e+e− scattering. Right: The running of couplings in the standard model,
illustrating the qualitative difference between Abelian and non-Abelian gauge couplings.
Figure adapted from 2004 Nobel prize website [8]

It has been found that these coupling constants are not actually constant, and appear to

run with the energy scale of the interaction that they describe. This phenomenon appears

as an effect of the renormalization procedure. Renormalization is a scheme that absolves the

standard model of infinities that arise from higher order loop corrections to well understood

processes. It is a rich and fascinating subject, but beyond the scope of this review, so we will

just borrow a few results from this scheme. A particularily interesting result is the fact that

in fermion-free theories, Abelian gauge theories such as U(1) have a coupling that runs to

infinity in the ultraviolet (high momentum scales), whereas non-Abelian theories can exhibit

a property known as asymptotic freedom. Asymptotic freedom quite literally means that

the coupling constant goes to zero in the UV, but is large in the infrared (low p limit). For

QED, this coupling runs like

ᾱQED =
αQED

1− (αQED/3π) log(q2/M2)
(2.26)
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Here, M is scale of QED interactions (taken to be near the electron mass here), and the

negative sign between the terms in the denominator is indicative of the fact that this coupling

goes to a constant value in the low momentum limit (q → M), and is unbounded for

large q. For a non-Abelian gauge theory SU(N) with nf light fermions in the fundamental

representation, the coupling instead runs as

ᾱ =
α

1 + (α/4π)(11N/3− 2nf/3) log(q2/M2)
(2.27)

The relative positive sign in this expression (that is present for a small number of nf ) is

the smoking gun for an asymptotically free theory. Quantum chromodynamics (QCD) is

one that follows such an evolution, and so the perturbative framework pioneered for QED

is of limited use in the low energy regime. Nevertheless, perturbative calculations are useful

in understanding the general features of QCD, but the non-perturbative effects cannot be

neglected.

The theory of strong interactions contains six different ‘flavours’ of quarks, and eight different

types of gluons. The quarks and gluons contain a new property exclusive to SU(3) called

colour charge, which must be conserved at a vertex. Quarks also contain fractional electric

charge, and thus transform under the other forces as well as SU(3). For completeness, lets

write out the Lagrangian for QCD

LQCD = ψ̄(i /D −m)ψ − 1

4
Ga

μνG
μν,a − nfg

2θ

32π2
FμνF̃

μν (2.28)

Where the gluon fields implicitly defined in /D and Ga
μν come are a result of the eight Gell-

Man matrices used to generate infinitesimal rotations in SU(3). The final term violates CP

symmetry, which is an expected (but not measured) effect of QCD. This θ parameter must

be very small (presenting us with a fine-tuning problem) otherwise CP violation would have
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been observed in QCD experimentally. This term is explored in more detail next chapter.

The masses of quarks are generated along with other SM particles after spontaneous sym-

metry breaking in the early universe.

Figure 2.3: A schematic diagram of how confinement and flux tube generation happens in
QCD. As a bound state of quarks separates, a pair of matching quarks is popped out of the
vacuum when d ∼ Λ−1QCD

An interesting property of the strong interactions not observed elsewhere in nature is quark

confinement. Quark confinement is the statement that only colour neutral states may appear

in nature. A meson is a bound state of quarks consisting of a quark-antiquark pair. One

may imagine attempting to separate the two quarks in a state so that they are free from one

another, but it turns out that the two remain connected by what is known as a gluon flux

tube. This flux tube is merely a constant interchange of gluons between the two particles,

and the energy of such a tube scales with the distance between the two quarks. As the

distance between the quarks reaches Λ−1QCD (the inverse of the confinement scale of QCD),

it becomes energetically favourable to pop a new quark-antiquark pair out of the vacuum.

This process is what creates jets of particles detected in colliders.
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Because of the composite states that quarks live in at collider energies, parton models of

the proton and electron are commonly used to compute scatterings requiring QCD. This

formalism will be reviewed later on in the context of a composite dark matter model. As

primary motivation, since gluons interact with themselves, there are hypothetically a num-

ber of composite states made up purely of these gauge bosons. These composite states are

referred to as glueballs, and are commonly distinguished based on their quantum numbers,

JPC (angular momentum, parity, and charge parity). Due to mixing with meson states, [12],

glueballs are extremely challenging to detect in collider experiments, and as such have no

been experimentally confirmed thus far.

2.1.6 Decay Rates and Cross Sections

Now that we have discussed the gauge structure that makes up the standard model, we

turn our attention towards perhaps a more practical side, that of computing observables.

Feynman diagrams are generally used to computed amplitudes, M, which are then used to

compute the observables themselves. QFT is conventionality defined in a way which gives rise

to Feynman rules, or ways to bridge between the graphical interpretation of an interaction

and the mathematics it encodes. These Feynman rules are usually intuitively read from the

terms with field couplings. For example, the QED expanded Lagrangian is

LQED = ψ̄(iγμ∂μ −m)ψ − 1

4
F μνFμν − eψ̄γμAμψ (2.29)

The interaction vertex is easily read off from the term with two spinor fields and the one

gauge field, such that

21



Figure 2.4: Feynman rule for the interaction vertex in QED

Now the other kinetic terms in the Lagrangian go into defining quantities such as the prop-

agators (amplitude for a particle to go from the spacetime point μ to ν for example) of our

fields. A derivation of all these Feynman rules will be left to the textbooks, even though we

will quote values of propagators and vertex factors throughout this work. Suffice to say that

knowledge of these rules is necessary to compute the probability amplitude, M.

On a similar note, the derivation of differential cross sections is involved and will also be

left to textbooks. First, let us present the general formula for the cross section of a 2 → n

particle scattering [1] [13]

dσ =
1

2EA2EB|vA − vB|

(
n∏

f=1

d3pf
(2π)3

1

2Ef

)
|M(pA, pB → p1 + p2 + . . . pn)|2

×(2π)4δ(4)(pA + pB − p1 − p2 − . . . pn)

(2.30)

For certain interactions with certain symmetries, though, simple analytic expressions exist.

For example, in the centre of mass frame of a 2 → 2 scattering problem, the differential cross

section becomes

(
dσ

dΩ

)
CM

=
1

2EA2EB|vA − vB|
|p1|

(2π)24Ecm

|M(pA, pB → p1, p2)|2 (2.31)

Where particles A,B are the incoming state, and 1, 2 are the outgoing. A further simplifi-
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cation occurs when we set all the masses of the incoming and outgoing particles identical to

each other

(
dσ

dΩ

)
CM

=
|M|2

64π2E2
cm

(2.32)

Decay rates can almost be viewed as a simplification of the cross sectional formula, where

the initial phase space only contains one particle. Without invoking any real symmetry

arguments (other than being in the rest frame of the decaying particle), the decay rate of

one particle into n is given by

dΓ =
1

2mA

(
n∏

f=1

d3pf
(2π)3

1

2Ef

)
|M(mA → p1+p2+. . . pn)|2(2π)4δ(4)(pA−p1−p2−. . . pn) (2.33)

For the simple and more common case of only two final state particles, it is straightforward

to show that the differential decay rate is

(
dΓ

dΩ

)
1→2

=
|p|

32π2M2
|M(M → p1, p2)|2 (2.34)

Where M is the mass of the decaying particle, and p is the 3-momentum of either of the two

final state particles, since they must be equal.

2.2 Effective Lagrangians

From the previous section, it is clear that the Lagrangian is a natural starting point for

computing observable quantities in quantum field theory. The notation can be cumbersome,

however, and good approximate methods have been developed for calculating quantities both

within the standard model, and beyond it. A particularly crucial idea in Lagrangian building
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is that of an energy scale [2] [14].

As it stands thus far, the Lagrangian for the standard model is an accurate descriptor of

the strong, weak, and electromagnetic forces that we observe phenomenologically. However,

it doesn’t scratch the surface on anything gravitationally related, and there is always the

possibility that new effects could be discovered as we probe higher energy scales in colliders.

By this, we know that LSM cannot be what is called ‘UV complete’, as we don’t know (but

assume) that it doesn’t capture the higher energy degrees of freedom that exist within na-

ture. This is what is meant by an energy scale.

2.2.1 The Effective Lagrangian of Weak Interactions

First, to develop an intuition for effective Lagrangians, and to appreciate their power as an

approximative tool, we will look at what happens in particle physics at a scale much lower

than the scale of the W boson. This is often referred to as the Fermi theory. We closely

follow some of the ideas presented in [2].

Consider the amplitude for the decay of a τ particle into two fermions, and a τ neutrino.

This decay amplitude may be written as

M(τ → ντ f̄mfn) = e2WU∗mn[ūν(l)γ
μ(1 + γ5)uτ (k)][ūn(p)γ

ν(1 + γ5)vm(q)]

×
[
ημν + (k − l)μ(k − l)ν/M

2
W

(k − l)2 +M2
W

] (2.35)

Where eW is the weak coupling, U is related to the quark mixing matrix, the u, v are in-

coming and outgoing spinors, and the last term is the W boson propagator. As usual, the

bolded l, k, p, q terms represent the momenta of the particles.
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In an effective theory below the W mass, we are left with all the standard fermion content,

modulo the top quark. If we turn our attention to the propagator, we see that because

of the low masses and momenta of the fermions compared to the W , we can introduce a

simplification

ημν + (k − l)μ(k − l)ν/M
2
W

(k − l)2 +M2
W

∼ ημν
M2

W

+O(M−4
W ) (2.36)

Since MW >> mf , it is appropriate to just keep the lowest order term in the expansion.

Using this expression yields an amplitude

M(τ → ντ f̄mfn) =
e2W
M2

W

U∗mn[ūν(l)γ
μ(1 + γ5)uτ (k)][ūn(p)γμ(1 + γ5)vm(q)] (2.37)

The difference now, is that before in equation (2.35) we had to make use of three vertex

Feynman rules for weak interactions, as well as a W propagator to determine this amplitude.

Now, the expansion in M2
W has masked our propagator in such a way that we say the particle

is ‘integrated out’. Using this approximation, we are able to construct a simple, effective

interaction that encodes the 4-point interaction of a τ → ντfmf̄n without even recognizing

the existence of the W boson, but instead having its effects encoded in the coupling term.

Such an interaction term would look like

Lτ→ντfmf̄n = − e2W
2M2

W

U∗mn[ν̄τγ
μ(1 + γ5)τ ][f̄nγμ(1 + γ5)fm] (2.38)

and would be included in this low energy description for the weak interactions.
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Figure 2.5: The schematic collapse of a Feynman diagram when using an effective Lagrangian.
None of the initial or final state particles are altered, just the mathematical computation.
Note the black circle is meant to emphasis that a propagator has been removed

Since many interactions in the standard model have light initial and final states mediated

by the exchange of a W boson, it is possible to generalize this interaction Lagrangian to all

such processes. Generally speaking, the W boson mediates weak processes that involve the

exchange of electric charge, and couples to other light particles by way of a charged current

Lagrangian,

Lcc = eWW−
μ Cμ + h.c. (2.39)

Where Cμ is a term that couples the charged interactions between fermions in the standard

model (see [2] for more details). Replacing the W boson interaction yields

Lcc,eff =
e2W
M2

W

CμC∗μ (2.40)

The same can be done for the Z boson exchange in neutral current interactions, yielding

Lnc,eff =
e2Z
2M2

Z

NμNμ (2.41)

Where Nμ is the associated neutral coupling between standard model fermions. Finally, we
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can write a total effective Lagrangian for weak interactions below the W scale as

Lweak,eff = Lcc,eff + Lnc,eff (2.42)

If we were to extend our theory not just to those of weak interactions, but of the standard

model in general, we would have to include effective interactions of other heavy particles

such as the Higgs as well.

2.2.2 Effective Lagrangians Beyond the Standard Model

Now that we have seen how effective field theories can be implemented into the standard

model, lets attempt to use these techniques as a way to probe physics that does not quite fit

into the standard paradigm. This framework is particularly useful in constructions of parti-

cle dark matter, where any standard model couplings must be highly suppressed to satisfy

experimental constraints.

Oftentimes, we define such a scale, Λ, as the point up to which our theory is defined. Above

that, the details of the theory may be obfuscated by a lack of information on our system, so

we construct an effective Lagrangian which can parametrize our ignorance in a sense, and

help give predictions. Within the standard model, this can be a useful approximative tool.

For example, the low energy description of QCD can be written in terms of mesons in such a

way that calculations can be easily done without losing much information on the underlying

composite structure of the bound state. At higher energy scales, this description must be

discarded and we must once again return to the LQCD that we discussed earlier. Another

advantage is looking beyond the standard model, by introducing new (suppressed) interac-

tions between a hidden dark sector and the standard model, we can make phenomenological

predictions which may help narrow our search for an elusive dark matter candidate.
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The general recipe is as follows; imagine you have some Lagrangian describing a physical

process. For the sake of argument, lets say thats its scalar QED as we wrote above. As a

reminder, the Lagrangian for this theory was

Ls−QED = −1

4
F αβFαβ −Dμφ

∗Dμφ−m2φφ∗ (2.43)

Now imagine that we discover in the far future that some other particle couples to our field

φ in the theory, with an extremely small probability. This can be interpreted as having a

very small coupling between the sectors. If we introduce this new field χ and couple it to the

scalar in the form of a 4-point function, we would imagine equation (2.35) as the effective

theory of a more complete Lagrangian, namely

Ls−QED = −1

4
F αβFαβ −Dμφ

∗Dμφ−m2φφ∗ − λφφ∗χ2 (2.44)

Now from dimensional analysis, the scalar field φ has mass dimension of M , since our La-

grangian must possess mass dimension 4. Indeed, all bosonic fields possess mass dimensions

of M , while fermions have M3/2. If our χ particle is a boson, no further amending is nec-

essary. Due to the restriction on the dimension of the Lagrangian density, however, if χ is

a fermion (or a vector-like fermion, as is popular in dark matter models), we can explicitly

write the mass effective Lagrangian as

Ls−QED = −1

4
F αβFαβ −Dμφ

∗Dμφ−m2φφ∗ − λ′

M
φφ∗χ2 (2.45)

Where the couplings are suppressed by the scale of this interaction. If this scale is high, it

gives an intuition between why these interactions take place so infrequently; the coupling is

highly suppressed!
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The inverse process can also be done, where you introduce some new coupling that is sup-

pressed by a mass scale, and determine the observations that should arise from this new

interaction. This can then be compared with data and then either accepted as a new inter-

action (almost never), or ruled out (almost always).

2.3 The Thermal History of the Universe

The setting of many of the particle interactions we wish to study is much different than what

we observe here on earth. Indeed, almost all the effects mentioned above have been worked

out for nice, vacuum-like conditions. In order to introduce new extensions to the standard

model which may describe dark matter, we need to talk about not only their properties

today, but how they evolved throughout the thermal evolution of the universe. It turns out

that a great many constraints on new particles come from cosmologically based surveys, so it

seems only prudent to go into a little bit of detail on the standard paradigm of the evolution

of our universe. This section takes inspiration from a number of enlightening textbooks and

papers [15] [16] [17] [18] [19]. In this section we aim to present a review of this material,

by going roughly chronologically and speaking more specifically about different parts of the

theory that can provide constraints on early time dark matter.

2.3.1 Cosmological Preliminaries

Before we begin, let us make some remarks on the mathematical framework cosmology is

usually worked out in. The standard big bang picture that we will discuss below, along with

observations on the large scale homogeneity and isotropy of the universe, allow us to assume
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a very simple metric

ds2 = dt2 − a2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2θdφ2)

]
(2.46)

This is the Friedmann-Robertson-Walker metric and describes the geometry of spacetime

with very few parameters. Here, a(t) represents the scale factor, which grows with time, and

κ represents the spatial curvature of the universe (κ = −1 for a hyperbolic universe, κ = 0

for a flat one, and κ = +1 for a spherical universe). Experimental data suggests that κ is

very close to 0. The well known Hubble parameter, H(t) is determined by ȧ(t)/a(t).

With the basic structure of spacetime specified, Einstein’s equations can be solved to yield

the Friedmann equations. Assuming the matter in the early universe can be modelled by a

perfect fluid, the energy-momentum tensor is given by

Tμν = −pgμν + (p+ ρ)uμuν (2.47)

Where u is a velocity vector for our fluid in co-moving coordinates, p and ρ are the pressure

and energy density of the fluid respectively. Einstein’s equations (without a cosmoogical

constant term) are

Rμν − 1

2
gμνR = 8πGNTμν (2.48)

WhereR is the Ricci scalar, andRμν is the Riemann tensor, both defined by the FRW metric

above. From these two expressions, it is possible to construct the Friedmann equations which
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describe the dynamics of the universe

H2 =

(
ȧ

a

)2

=
8πGNρ

3
− κ

a2

ä

a
= −4πGN

3
(ρ+ 3p)

(2.49)

Assuming a curvature parameter of 0, density parameters for each of the three major species

of energy content can be determined.

Ωm =
ρm
ρc

ΩDM =
ρDM

ρc
ΩΛ =

ρΛ
ρc

(2.50)

Where ρc = 3H2/8πGN is the necessary energy density required for a flat universe. From

observations, it seems that Ωm + ΩDM + ΩΛ ≈ 1, or ρ ≈ ρc. Note that we have excluded

the energy density of relativistic species such as photons, as their contribution to the total

energy density is negligible at late times. As a final note, we mention that the Friedmann

equations are also useful to probe the scaling of the Hubble parameter as a function of time

(temperature).

2.3.2 Thermodynamics and Particle Interactions

Before jumping into the interactions that particles undergo in the presence of an expanding,

thermal background, let us review a few basic thermodynamic properties. In the early

universe, the primary energy content was photons, hence this era is known as the radiation

dominated epoch. First, lets note that it is straightforward to write the equilibrium energy
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density and pressure of a particle species

ρi =

∫
Eidnqi

pi =
1

3

∫
q2i
Ei

dnqi

(2.51)

Where dnqi is the number density of a species, and follows the Fermi or Bose distribution

depending on its spin

dnqi =
giq

2
i dqi

2π2
(
e(Eqi−μi)/Ti ± 1

) (2.52)

The qi are related to the energy of the species by E2
qi

= m2
i + q2i , and μi is the chemical

potential of the species. In the radiation dominated epoch, the energy density of relativistic

species is

ρrel =
π2

30
g∗(T )T 4 (2.53)

In this final definition, g∗ refers to the number of degrees of freedom of the particles species

that are still relativistic. In a thermal bath, a particle is said to be relativistic if T > m, so

we see that as the universe cools g∗ will drop as particles become nonrelativistic.
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Figure 2.6: The evolution of g∗ as the universe cools. Different temperatures mark where
certain species become non-relativistic. Figure from [15]

We should also note that the effective degrees of freedom g∗ are defined as g∗ =
∑

b gb +

7
8

∑
f gf , so fermions contribute less than bosons to this quantity. Note that the introduction

of new particles above standard model masses will give a different evolution of this quantity

at high temperatures.

Now, in understanding particle interactions in such a background, the idea of particle num-

ber freeze out (decoupling) from the thermal bath becomes important. In a naive realization,

decoupling occurs when the rate of particle interactions falls below the Hubble expansion

rate of the universe (Γ < H). The physical motivation for this is that once the universe is

expanding fast enough, particles that would like to interact can no longer find each other at

an efficient rate, and so the interactions effectively ‘freeze out’. We will consider the more

elegant method of using the Boltzmann equation to solve this problem of particle number

freeze out in the next chapter.
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To briefly illustrate the freeze out process, imagine you have a particle whose only interactions

are 2 → 2 scatterings mediated by the weak force. If we assume these interactions take place

at low energy scales (say, lower than the mass of the W±, Z bosons), we can use our effective

Lagrangian approach to estimate the cross section. From dimensional analysis, we first note

that σ has units of distance squared, and hence in our ‘god-given’ units this means that

σ ∼ T−2. From equations (2.43) and (2.44), we can make the estimate for the cross section

to be

σ ∼ e4W,Z

M4
W,Z

T 2 (2.54)

The rate of interactions is usually defined as Γ ∼ nσv where n is the number density of the

particles, and v is their average velocity. Setting v ∼ c and noting n ∼ T 3. Dimensional

analysis also provides us with H ∼ T 2/MP l, and so fitting all of these together gives us a

condition on the freeze out temperature of a weakly interacting particle

Γ

H
=

e4W,ZMP l

M4
W,Z

T 3 ∼
(

T

1MeV

)3

(2.55)

This implies weakly interacting particles decouple from the thermal bath at a temperature

of around 1MeV .
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Figure 2.7: Tracking the (comoving) abundance of a weakly interacting particle species before
and after decoupling from the primordial plasma

As we can see, the longer a species stays in equilibrium with the photon bath, the more

exponential suppression it undergoes and therefore the lower its final number density.

2.3.3 The Thermal History: A Timeline

To finish off this section, it seems worthwhile to at least mention the different phases of the

universe during its evolution from the supposed ‘big bang’ to now. We will label different

events by the temperature of primordial photons, rather than time as is standard convention.

Though the big bang is the most popular idea of how the universe started, its introduction

of a singularity causes some discomfort amongst physicists. Non-singular alternatives have

been developed from string theory origins [20], as well as from a nonsingular bounce where

the universe went from contracting to expanding [21]. Now we know that the universe ap-

pears to be homogenous and isotropic on large scales, but how can we get such a natural

smoothness on large scales naturally? If you observe cosmic microwave background (CMB)

photons, you notice that they are nearly uniform in temperature across the whole sky, but
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this seems very unlikely since the causal cone of CMB photons is of the degree scale. Inflation

provides a solution to this problem, as well as a couple others that pop out of inconsistencies

between early time and late time physics models. Inflation is a phase of the universe where

the universe expands at an exponentially fast rate, allowing early time photons to be in

causal contact with each other in the late universe today. This phase is generally driven by

a scalar field, and it is the decay of this scalar field that is thought to source all standard

model particles (and perhaps dark matter as well).

After inflation, we must find some way to introduce an imbalance between baryons and

antibaryons. Such a process is called baryogenesis, and while many models have been studied

to source this effect, none has so far been given preference from observations. After this, the

universe cools and as it hits T ∼ 150GeV , it undergoes the electroweak phase transition.

This is where the spontaneous symmetry breaking of the Higgs takes place (as described

in the section 2.1.4). Here, particles acquire their mass via the Higgs mechanism, and the

electromagnetic and weak forces decouple from one another. The underlying gauge structure

of the standard model breaks from

SU(3)× SU(2)L × U(1)Y
EWSB−−−→ SU(3)× U(1)em (2.56)

After this, the QCD phase transition takes place, at which point the strong nuclear force

becomes ‘strong’ and quarks get bound together to form Hadrons. This transition greatly

reduces g∗, as indicated in the plot above since the number of relativistic degrees of freedom

in the system greatly decreases. This happens around T ∼ 150MeV . Many different types of

particle species freeze out after this point, until we reach the era of big bang nucleosynthesis.

During this phase, ionized hydrogen fused with itself in order to create heavy nuclei, such

as helium and deuterium. BBN takes place around T ∼ 100keV and limits on the observed

abundances of these different elements is highly constraining to models which interact with
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the standard model prior to this time.

Figure 2.8: A schematic illustration on the relative evolution of the universe from the big
bang to the present [22]

Arguably one of the most observable effects of the standard cosmological model is that of

recombination, which takes place around T ∼ 0.25eV . During recombination, the soup of

free electrons and ionised hydrogen are finally able to recombine without photons to reionize

them. This happens as the cosmological redshift of the expansion of the universe weakens the

energy of each photon, to the point where they have Eγ < Ebind for neutral hydrogen. With

the primordial soup now electrically neutral, photons free stream from the last scattering

surface, all the way to us today. These photons make up the CMB, and contain a wealth of

information related to the evolution of the universe. Studying the temperature anisotropies,

polarization schemes, and spectral distortions have led to many constraints on primordial

physics. After this, structure eventually begins to form in the universe, and finally we evolve

to the current time-slice of cosmology in front of us today.
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Chapter 3

Relic Densities and the Dark Matter

Paradigm

The observable universe is well described by particle cosmology thus far, but curiously, it

seems that most of the content of the universe remains unobservable. In fact, a combination

of galactic mass surveys, as well as the determination that the universe is roughly flat forces

us to postulate the existence of exotic physical quantities. Dark energy is slated to make

up about 70% of the universes mass-energy budget, and supplies a sort of negative pressure

to the universe, preventing its closure. Dark energy is very strange, as it also possesses an

energy density that does not dilute as the universe expands. While a fascinating subject to

study, we will not consider it further, and instead step away to the other poorly described

phenomenon in cosmology, dark matter.

Of the remaining mass-energy budget, ordinary baryonic matter makes up roughly 5%, and

dark matter the final 25%. All of the complex scaffolding we have created to describe physics

only accurately describes about 5% of the universe. Evidently we have a lot of work to do if

we want to have any hope of coming up with a more complete description of physics.
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Velocity rotation curves offer a compelling source of evidence for the existence of dark matter

[23]. From Newton’s laws it is easy to find that the rotational speed of a star that is a distance

R away from the centre of the galaxy should fall off as vR ∝ R−1/2 if the mass is localized to

the centre. As the first few papers measuring this in the late 1970s found [24] [25], this was

not the case. Instead, the velocities seemed to flatten out, implying a linear scaling between

the enclosed mass and distance from the centre.

Figure 3.1: The rotational velocity of stars in spiral galaxies observed via 21cm astronomy.
Figure taken from [25]

This observation led to the speculation that a non-visible form of matter must be lurking

in clumpy, halo-like structures around galaxies. Afterwards, more observational effects of

dark matter where detected via gravitational lensing, as well as in the power spectrum of the

CMB. The main purpose of this work is to develop a consistent mathematical framework to

describe the nature of this mysterious form of matter.
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3.1 Dark Matter Candidates

In this section we will review a few of the possible explanations of dark matter, and illustrate

how smoothly WIMP dark matter fits into the cosmological framework. Before we get there,

however, let us first parse through a few creative solutions to the mystery of dark matter.

The criteria for a (non-baryonic) dark matter candidate is that they must be stable on cos-

mological time scales, must have highly suppressed interactions with photons, and have to

possess the observed relic density in the universe today. Baryonic dark matter is very heavily

constrained by the observed abundances of light elements such as helium and deuterium [26],

with constraints strengthened by recent the recent Planck satellite results [27].

3.1.1 Primordial Black Holes

Black holes forming in the early universe (called ‘primordial’ black holes in the literature)

have been proposed as a possible source of dark matter [28]. Primordial black holes are

created not due to collapsing stars as in the usual astrophysical picture, but due to large

density fluctuations in the very early universe much before star formation began taking place.

Primordial black holes can hypothetically be of any mass, since they do not require core

collapse to be formed [29]. The existence of Hawking radiation bounds the mass from below,

however, as black holes with mPBH < 1015g would have evaporated by this time [30]. In

fact, the currently unexplained gamma ray bursts originating from the centre of galaxies

can further constrain this lower bound. On the opposite side, large mass PBHs are heavily

constrained due to the weak lensing signatures that they would introduce. These constraints
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fit us in a window of

1017g < mPBH < 1024g (3.1)

A recent paper also suggests that black holes in this mass range are ruled out due to the

fact that old neutron stars still exist today in regions with high ρDM . Old neutron stars in

this environment should have gravitationally captured some of these PBHs, in which case

they (the neutron star) would be destroyed by the rapid accretion of matter into the black

hole [31]. While the idea of PBHs is well physically motivated, their role as a dominant

constituent of dark matter seems to be dwindling.

3.1.2 Axion Dark Matter

Axions are a hypothetical particle thought to give rise to the CP violation in QCD. Recall

the CP violating term in the QCD Lagrangian

LQCD ⊂ nfg
2θ

32π2
FμνF̃

μν (3.2)

In non-Abelian gauge theories, potentials have disjoint sectors which are accessible to one

another via quantum tunnelling [32]. Because of this, the vacuum state becomes a super-

position of different configurations of the minima of these potentials, which we classify by a

winding number, n, labelling the minima of each disjoint sector, and θ which describes the

QCD vacuum. n is the topological winding number. The vacuum configuration of QCD is

labelled as

|θ〉 =
∑
n

e−inθ |n〉 (3.3)

This θ parameter is then related to the quark mass mixing matrix M by θ̄ = θ− arg detM,
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and θ̄ is interpreted as a dynamical field in the Peccei-Quinn solution to this strong CP prob-

lem [33] [34]. In more detail, the smallness of the θ parameter is a result of the axion field

θ̄ relaxing to the bottom of its potential which is not quite zero due to the chiral symmetry

of the standard model being broken by the masses of quarks.

Axion production in the early universe can take place by mechanisms such as vacuum re-

alignment [35], or cosmic string decays [36]. The vacuum misalignment mechanism is one

in which the axion field initially has a value not near its potential minimum. When this

is the case, the field coherently oscillates around its nearest minimum, which acts as an

efficient way to dissipate energy by decaying into other particles. This puts the axions in a

low momentum state in the late time universe, allowing them to be considered as cold dark

matter even though they are extremely light. Due to the fact that the vacuum state of QCD

is not simply connected once the Peccei-Quinn symmetry is broken, we can also consider the

formation of oosmic axion strings. Cosmic strings can form objects called kinks and cusps

(specific solutions to the equations of motion from a Nambu-Goto action), which will radiate

away parts of their field content when these objects enter the horizon. These axions can

provide additional signatures to search for.

These hypothetical particles would be very light, but their abundance could be immense

yielding a viable candidate for dark matter. It should be noted that standard constructions

of string theory (particularly when compactification occurs) give a large number of axions

that could be interpreted as dark matter as well, so there is significant theoretical motivation

for the study of such particles.
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3.1.3 Weakly Interacting Massive Particles (WIMPs)

Let us briefly mention one last generic type of particle dark matter that is immensely popu-

lar within the community. Observationally, we can only be sure that dark matter interacts

gravitationally with the rest of the standard model. Strong constraints exist on charged

dark matter, so coupling to photons is unlikely, and strong couplings would be thought to be

easier to see at particle colliders. Weak interactions, however, are not so heavily constrained

and thus can present us with a good channel for phenomenological discovery.

It turns out that for cross sections typical of weak processes, the number changing interac-

tions freeze out at a time in which the remaining number of WIMPs is very nearly ΩDM ,

the observed density of dark matter in the universe today. This is referred to as the WIMP

miracle, and will be reviewed in some detail next section. This coincidental fact makes a

very strong claim that dark matter could be weakly interacting.

3.2 The Boltzmann Equation: Determination of Relic

Abundances

We turn now to our greatest tool in relating interactions involving dark matter (and other

primordial particles), to their relic densities persisting in the universe today: the Boltzmann

equation.

If we take the thermal bath of CMB photons to be our background, the evolution of ther-

modynamical quantities for particles in equilibrium with the photons are simple, they just

track that of the photons. After decoupling, the evolution is even more simple, the number

density of a species ns dilutes with the expansion of space, as a−3, and its momenta as a−1.
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The difficulty is describing qualities like number density right around the time of decoupling

from the photon bath, or when the rate of particle interactions Γ is of the order of the

Hubble parameter. The Boltzmann equation does just that, by following the microscopic

evolution of the phase space distribution of a particle species, we can determine exactly when

it decoupled and how much of it is left today. We follow ideas presented in [15] [16], and

present the Boltzmann equation with its application to a WIMP-type dark matter candidate.

3.2.1 Out of Equilibrium Thermodynamics

Without any further ado, let us introduce the collisionless Boltzmann equation

dni

dt
+ 3

ȧ

a
ni = 0 (3.4)

This is a rather boring picture, it is simply a reflection of the fact that the number of particles

in a volume a3 is conserved. We can rewrite the left hand side as 1
a3

d(nia
3)

dt
. We need to add

a collision term in order to determine departures from equilibrium. The most general term

we can write (for an i+ a → y + z 2 to 2 particle interaction with) casts the equation as

1

a3
d(nia

3)

dt
= −

∫
dΠidΠadΠydΠz(2π)

4|M|2δ4(pi + pa − py − pz)[fifa − fyfz] (3.5)

Here, we fi’s are the phase space distributions of each type of particle involved, M is the

amplitude of such a scattering process, and we integrate over the phase space momentum as

dΠ =
g

(2π)3
d3p

2E
(3.6)

Where g is the internal degrees of freedom of the species in question. Its typical to redefine

a couple quantities to make the calculation more tractable, so we define Y = ni/s where we

recall that s ∼ a−3, and x = m/T where m will be the mass of our dark matter particle. Y
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will represent the evolution of our species in a fixed comoving volume, and x the timescale

at which our particle freezes out. While still in thermal equilibrium, the abundance (Y ) of

a species goes as

Y ∼ x3/2e−x (3.7)

and so only particles that decouple shortly after they become non-relativistic (m/T ∼ 1)will

have an appreciable relic density today due to the exponential suppression. Refer to figure

2.7 for a qualitative picture of the freeze out process. With these substitutions, we can write

the Boltzmann equation in the form known as the Riccati equation

dY

dx
= − λ

x2

(
Y 2 − Y 2

EQ

)
(3.8)

Here we have absorbed most of the constant terms as

λ =
2π2

45
g∗s(m)

m3〈σv〉
H(m)

(3.9)

The information on the phase space and amplitude of the interaction are encoded in the

thermally averaged cross section, 〈σv〉. We will consider the challenge of evaluating this

quantity in the next subsection. We have defined H(m) = 1.67g
1/2
∗ m2/mP l, and it is related

to the usual Hubble parameter during the radiation dominated phase by H = H(m)x−2.

The value at which the abundance stops tracking equilibrium (when Y �= YEQ) depends now

on the parameter λ, which is constant over the thermal evolution of the species, with larger

values freezing out slower than smaller ones.

At late times (long after decoupling), we know that YEQ << Y , and so we can get a good
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approximation on the final relic density by setting YEQ = 0 in the Riccati equation.

dY

dx
≈ − λ

x2
Y 2 (x >> xf ) (3.10)

Solving this differential equation and integrating from x = xf to x = ∞ yields the approxi-

mate solution for the late time abundance of a particle species

Y ∞ ≈ xf

λ
(3.11)

3.2.2 Thermal Averaging

Lets switch gears for a moment and consider how to go about computing the thermally

averaged cross section for a scattering event, 〈σv〉 [37]. This thermally averaged cross section

times velocity is usually defined as

〈σv〉 =
∫
σv dneq

1 dneq
2∫

dneq
1 dneq

2

(3.12)

Where neq
1,2 are the equilibrium number densities of the initial state particles in a 2 →

2 collision. As a simplifying approximation, consider the equilibrium distributions of the

particles to be Maxwell-Boltzmann (neglecting Bose-Einstein/Fermi-Dirac effects). With

this simplification, the cross section becomes

〈σv〉 =
∫
σve−E1/T e−E2/Td3p1d

3p2∫
e−E1/T e−E2/Td3p1d3p2

(3.13)
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Using the relativistic energy momentum equation, as well as the following change of variable

E+ = E1 + E2

E− = E1 − E2

s = 2m2 + 2E1E2 − 2p1p2cosθ

(3.14)

We can rewrite the volume element for our integration in a more useful way

d3p1d
3p2 = 2π2E1E2dE+dE−ds (3.15)

Integrating the numerator and denominator of equation (3.13) yields us a simple, single

integral expression for 〈σv〉, as found by [37]

〈σv〉 = 1

8m4TK2
2(m/T )

∫ ∞

4m2

σ(s− 4m2)
√
sK1(

√
s/T )ds (3.16)

This is the general equation we will use in the next chapter when we compute the thermally

averaged cross section of a dark matter species. Note that s is the usual Mandelstam variable

s = (p1 + p2)
2, and so our integration bounds run over all possible momenta of the incom-

ing/outgoing particles. Note that K1, K2 refer to modified Bessel functions of the first and

second kind. A few of the details of this computation have been reproduced in the appendix

of this work.

3.2.3 The WIMP Miracle

Now that we understand the mechanics of the Boltzmann equation, it is time to take a look

at the so called WIMP miracle. Since we know the observed dark matter density in the

universe today, it is natural to ask the value of 〈σv〉 necessary to reproduce this abundance.
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Recall that the dark matter abundance is specified by ΩDM = ρDM,0/ρc,0 where the the 0

subscript refers to quantities at the present day. If we recall ρc ∼ 3H2M2
P l we can write this

as

ΩDM =
mDMnDM,0

3M2
P lH

2
0

= mDMY ∞
s0

3M2
P lH

2
0

(3.17)

Where we have replaced the number density of dark matter by its Boltzmann calculated

abundance variable, Y , and noting that this comoving abundance is constant after freeze

out. Note that the entropy of a collection of species can be written as

s =
2π2

45
g∗s(T )T 3

g∗s = gTh
∗s + gDec

∗s

(3.18)

Where g∗s counts the number of effective degrees of freedom in the entropy, split between

particles that are thermally coupled to the primordial plasma, and those that are not. Using

this expression for the entropy density, as well as Y ∞ ≈ xf/λ from the previous subsection,

we are left with

ΩDM =
g∗s(T0)T

3
0H(mDM)xf

m2
DM〈σv〉g∗s(mDM)

1

3M2
P lH

2
0

(3.19)

Cleaning this equation up a little bit by plugging in measured values of the temperature,

Hubble parameter, and effective degrees of freedom in the standard model today, we can get

the suggestive form [15]

ΩDMh2 ∼ 0.1
xf

10

(
10

g∗(mDM)

)1/2
10−8GeV −2

〈σv〉 (3.20)

The observed dark matter abundance is ΩDM ∼ 0.1, and we make note that numerically,

freeze out happens at order xf ∼ 10, similarly, g∗(mDM)/10 ∼ 1, so in order to reproduce
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this result we require our cross section to be

〈σv〉 ∼ 10−8GeV −2 ∼ Gf · 10−2 (3.21)

Where Gf is the Fermi coupling constant in front of the effective Lagrangians defined in the

previous chapter for weak interactions. Since this analysis gives us a cross section typical of

a weak scale interaction, it is referred to as the WIMP miracle and puts weakly interacting

dark matter in a very favourable position from a model building standpoint.

Similar analysis has also been performed for all known early universe particle species, and it

is precisely this that gives constraints on the abundances of light elements produced during

big bang nucleosynthesis. The Boltzmann equation is arguably our best tool for constraining

new types of particle species in the early universe.

3.3 Towards a Numerical Solution of the Boltzmann

Equation

While the semi-analytic solutions of the Boltzmann equation offer good approximations to

relic densities, it can be useful to numerically model such solutions for both accuracy, peace

of mind, and ease of adjustment of model dependent parameters. While working on some

models of dark matter, it became prudent to develop some Mathematica code allowing us

to quickly check and scan the parameter space of generic models. In this section we will

show the capabilities of this software and analyse its usefulness. A copy of the code has been

attached to the appendix for the interested reader.
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3.3.1 Numerical Challenges and Features of the Program

The initial idea here was to build a program to solve the Boltzmann equation for a variety

of particle freeze out scenarios. While this has been done before, it was deemed a good

exercise in numerical computation. Inspiration was taken from [38] in finding a computa-

tionally acceptable form of the equation, but not in the application of advanced techniques

in Mathematica, nor examples.

As Mathematica has a difficult time handling some large numbers, we recall our previous

form of the Boltzmann equation,

dY

dx
= − λ

x2
(Y 2 − Y 2

EQ)

λ =
2π2

45
g∗s

m3〈σv〉
H(m)

=
s(m)

H(m)
〈σv〉

(3.22)

Where we have defined s in the previous subsection. We use the non-relativistic regime

(as we are concerned with cold dark matter exclusively, relativistic forms must be used if

considering warm or hot candidates) for our YEQ since this is the time in which we care to

find the relic abundance of the species in question. Therefore we use the form

YEQ = g

(
mT

2π

)3/2

e−m/T (3.23)

Now, due to Mathematica limitations, it is best to make the additional substitution y =

s(m)
H(m)

〈σv〉Y , which gives the following transformation to our equation and our equilibrium
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yield

dy

dx
= − 1

x2
(y2 − y2EQ)

yEQ =
s(m)

H(m)
〈σv〉g

(
mT

2π

)3/2

e−m/T ≈ 0.192MP lm〈σv〉x3/2e−x
(3.24)

The second line here will serve as our initial condition, y(x = 1) = yEQ in the solution to

the differential equation.

The NDSolve method was utilized to solve the Boltzmann equation numerically, with ad-

justable input parameters mDM , g, and 〈σv〉. Use of NDSolve yields an interpolating

function that can be plotted. The asymptotic behaviour of this function is related to the

freeze out time, xf of the dark matter candidate.

Figure 3.2: A code snippet specifying the input parameters to our numerical Boltzmann
solver

Mathematica utilizes different methods for solving these equations, and for a reasonable set

of parameters (such as those in the above figure), all methods seem to converge upon the

same result. However, for a broader range of input parameters of interest from a model

building standpoint, most methods appear to fail due to computational difficulties, for ex-

ample in the limit of small mass, large cross section.

In this regime, our differential equation suffered what is known as a stiffness problem. Stiff-

ness is a property of a numerical solver that takes into account the form of the equation
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to be solved, the method used, the initial condition, and local error tolerances. Equations

deemed ‘too stiff’ return errors and diverge. Often stiffness occurs due to the step size in

a numerical solution being too small (I suppose almost like a UV divergence in QFT). By

implementing the stiffness-switching method, the solver dynamically changes the step size

in order to achieve a convergent solution for our region of interest. The shortcoming is that

high variance is introduced into the solution over the ‘stiff’ parts of the domain.

After numerical tests, the stiff regions occur in the low x regime, before freeze out. Because

we are interested in the asymptotics to determine the freeze out temperature and abundance,

this was deemed an acceptable solution for a short while. Eventually, a better method was

found which reproduced our late-time stiffness-switching results, without the errors for low x

values before decoupling of the species. We should note that while this new method, accessed

by ‘EquationSimplification → residual’, does not impact the physically important late time

results, it is a more secure method. Results of these different methods are presented in the

figure below.

Figure 3.3: Left: The time evolution of a generic dark matter candidate with parame-
ters (m, g, 〈σv〉) → (1000GeV, 100, 10−10GeV −2), comparing between the stiffness switching
and automatic methods. No discrepancy exists in the large x regime. Right: A com-
parison between the residual and stiffness switching method for parameters (m, g, 〈v〉) →
(1GeV, 10, (0.139)−2GeV −2), a late-time freeze out particle. The early time stability is easy
to see, and is our preferred method for this solver.
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This program can be applied to a wide variety of early universe particles, whether hypothet-

ical or not. A full section of the code is presented in the appendix for extended review. We

now show the code in action as it computes the freeze out temperature and abundance of

baryons in a baryon symmetric universe.

3.3.2 Baryon-Symmetric Universe: An Example

An interesting computation we can do is to determine the baryon relic abundance in a uni-

verse that did not undergo baryogenesis. This calculation will give a numerical approach to

something done in Kolb and Turner [16], and indeed is the reason we expect a process that

introduces asymmetry between particles and antiparticles in general.

The annihilation of a baryon-antibaryon pair takes place via pion exchange, and can be

roughly estimated to have a cross section of order 〈σv〉 ∼ m−2
π . Without assuming any

initial asymmetry (as is done when we compute relic abundances of light elements from

recombination) we can plug this cross section into our program along with the baryon mass

(∼ 1GeV ), and the number of degrees of freedom in the epoch that this process freezes out

(g ∼ 10).

53



Figure 3.4: A comparison between the baryon to photon ratios in a universe with an initial
asymmetry (red), and one without (blue). Note that our program computed the blue curve,
the red was added afterwards for visual comparison.

Looking at the asymptotics of this result, we see that freeze out occurs at about xf = 42.63,

and gives a final Baryon abundance of about Y∞ ∼ 3 · 10−19. The present baryon to photon

ratio is well known to be about ∼ 10−11, and so we can see that without a period of baryo-

genesis, we generate an abundance about 8 orders of magnitude lower than we see! Indeed,

the universe would be very much more empty if this were the case.

3.3.3 Applicability of the Software

As demonstrated, this software offers a reliable and straightforward way to compute freeze

out temperatures and relic densities. Results are consistent with computations presented in
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other textbooks and works, and so this could prove a powerful, yet simple, tool of analysis

for these types of calculations.

This code is still in its early stages, and as such there are still many improvements and

features that could be implemented. For example, adding the ability to introduce an initial

asymmetry in particle species being considered would allow for more robust computations

of particles undergoing lepto/baryogenesis. On top of this, having some software that allows

for complete analysis of particles that have multiple decay channels could produce more ac-

curate abundances. Finally, in many dark matter models, coupling constants can be allowed

to run over a range of values. It should be possible to introduce a coupling variable implicitly

in the 〈σv〉 expression to determine a ‘space’ of relic densities based on the couplings.

With these improvements implemented, there should be no problem in utilizing this program

to compute cosmological features of particle models in a research capacity. The raw code of

a few research applications of this work have been included in the appendix for more context.
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Chapter 4

SU(N) Glueball Dark Matter

Dark matter model building is a rich subject with a truly staggering number of different

theories emerging as plausible candidates to explain the particle cosmological mysteries left

in the universe. While theorists have a hard time coming to a consensus on the precise

mathematical framework of dark matter, there are a couple properties that seem universal

over good candidates

• Non-baryonic: If dark matter were made of baryonic particles, many aspects of

standard cosmology would be negatively affected. For example, baryonic dark matter

would cause more helium, lithium, and other heavy elements to form during BBN,

contrary to what is observed astrophysically. This points to a non-baryonic candidate.

• ‘Cold’: High velocity, relativistic dark matter is referred to as ‘hot’ because its free

streaming length is large. Hot dark matter washes out structure on small scales, and as

such is typically not thought to be manifest in the true theory of dark matter. Warm

and cold dark matter moves more slowly, with free streaming scales on the order of a

protogalaxy or less. This allows small-scale structure to form, and eventually clump

together into clusters. This small free streaming length is preferable in candidates, and

so dark matter is preferred to be cold [39].
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We should also mention the interface between dark matter simulations and observations in

terms of their halo distributions. Galactic rotation curves seem to predict a large amount of

dark matter localized in halos around galaxies. Simulations agree with this, and can even

define a density profile for the distribution of dark matter around a galaxy

ρ(r) =
ρcδc(

r
rs

)(
1 + r

rs

)2 (4.1)

This is the NFW profile [40], and here ρc is the typical critical density for a flat universe,

δc is the characteristic density of the galaxy in question, and rs is the scale radius. This

leads to a problem between observations and simulations known as the cusp/core problem

([41]) which we will revisit in the next section. We should mention, however, that it need

not be dark matter which causes this discrepancy, as it could be caused by baryonic feedback.

Competitive models of dark matter conform to the above criteria, but this still leaves a wide

variety of different theories that could work. The most popular theory is that of WIMP dark

matter, since it seems to naturally predict the relic density of dark matter ‘by accident’, but

as we await a detection, it is important to consider other models as well.

When making comparisons to the standard model, one can naturally imagine some rich gauge

structure that permeates the dark sector. Abelian extensions to the standard model have

been considered and constrained using cosmological data [42]. In the U(1) case, a ‘dark pho-

ton’ is the gauge boson responsible for the relic density of dark matter. In this work we will

consider the non-Abelian case, where we have some general SU(N) gauge structure to our

theory that describes our candidate. This sector has at most 1 fermion (since nf < 11N/2

for any N > 1 , the theory is asymptotically free), and so the massless ‘dark gluons’ in our

theory will undergo a confining phase transition and form bound states of glueballs, which
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give a contribution to the dark matter relic density.

In particle physics, the introduction of a new particle (or particles) is usually accompanied

by a Lagrangian of possible couplings between the sectors. In the theory we will consider,

we have a pure glue SU(N) dark sector (with gauge bosons known as ‘hypergluons’), as

well as an auxiliary heavy fermion field (scalar field in the case of Higgs coupling, as will

be discussed later), call it Φ. Pure refers the fact that the only fermion content coupling to

the SU(N) group is very massive, and thus integrated out at scales E << MΦ. Therefore,

the running of the coupling goes exactly like a theory with αHC containing nf = 0, as in

equation (2.27). Our hypergluon field doesn’t couple directly with any of the standard model

fields, but the Φ field does. We will choose more specific properties of this Φ field, such as

its different quantum numbers and couplings, later on as we consider different realizations

of this theory. We put the mass of this auxiliary field much higher than the scale at which

these interactions will take place, allowing us to use an effective Lagrangian approach. With

this mediator field integrated out, the effective Lagrangian coupling the hypergluon to the

standard model is given generally by

LHC ∼ αHC

60M4
Φ

tr(HμνH
μν)[c1α1BαβB

αβ + c2α2tr(WαβW
αβ) + c3α3tr(GαβG

αβ)] (4.2)

+
λαHC

M2
Φ

tr(HμνH
μν)(H†H) (4.3)

Where the HC subscript stand for ‘hypercolor’, in analogy with the strong SU(3) interac-

tion, and Hμν is the non-Abelian gauge field strength for our hypergluon field. We have put

the effective dimension 8 operators coupling to the standard model on the first line, and a

dimension 6 operator induced by Higgs couplings on the second line. We will make contact

with this effective Lagrangian throughout the chapter. We also note that in a pure-glue hid-
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den theory, the mass of the lightest glueball is related to the confinement scale of this theory

by m0++ ≈ 7ΛHC [48] for the case of an SU(3) hidden gauge group. Explicit calculations in

this chapter will assume our hidden gauge group is SU(3), as this allows us to make use of

quantities calculated from lattice QCD studies (more detail on this below). Note here that

ΛHC corresponds the the energy scale at which these free hypergluons become confined in

their hypercolour neutral glueball states.

The idea of glueball dark matter is not novel, and has been studied previously in the liter-

ature. Authors of [47] studied the freeze-out and relic densities of dark glueballs, discussed

the confining phase transition, and discuss semi-quantitatively the effects of different stan-

dard model connections. In [50], decay rates of the 0++ dark glueball into various standard

model particles is mentioned, and the authors of [51] [52] [53] discuss these couplings to the

Higgs and other standard model constituents in much greater detail. Also, authors in [54]

discuss this same type of model, and also consider constraints on photon production and

other mechanisms from line searches, but not on constraints from reheating, which we will

study here.

The aim of this work is to both review and discuss the results presented in the aforementioned

papers, as well as to consider new constraints that we can set on the model. In particular,

we consider specific couplings of our mediator to U(1)Y , SU(3)s, and the Higgs in order to

investigate the constraints and potential signals. As well as compiling line search constraints

from photons, we also introduce a new, stronger constraint from reheating which severely

limits the parameter space of some of these couplings for reasonable values of a reheating

temperature under the assumption that the two sectors are never in thermal equilibrium

with one another. In the subsection on Higgs couplings, however, we aim mostly to review

the semi-quantitative arguments presented in [47][53].
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4.1 Non-Abelian Gauge Theories and their Applica-

tion to Dark Matter

We discussed non-Abelian gauge theories in our section on the strong interaction in chapter

2, so we will just do a quick overview of the important properties. We then describe the

formation and properties of glueballs in a pure gauge theory, and finally discuss how we can

calculate cross sections and other phenomenological signatures of composite particles using

the parton distribution function.

4.1.1 Properties of Non-Abelian Gauge Theories

Perhaps the most surprising property of non-Abelian theories is their ability to be asymp-

totically free. Recall the running of a non-Abelian coupling with scale presented earlier

ᾱ =
α

1 + (α/4π)(11N/3− 2nf/3) log(q2/M2)
(4.4)

For nf < 11N/2, the coupling becomes weak at high energy scales, and confinement occurs

as you traverse to lower energies. In SU(3) strong interactions this is seen in the rich struc-

ture of mesons and baryons that form the building blocks of the natural world we see around

us.

The field theory properties of a non-Abelian gauge theory are somewhat changed as well
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with the field strength tensor and covariant derivative taking the form

F a
μν = ∂μA

a
ν − ∂νA

a
μ + gfabcAb

μA
c
ν

Dμ = ∂μ − igAa
μt

a

(4.5)

Where g is the coupling constant for this field, fabc are the structure constants of the group,

and ta are the generators of such a group. The structure constants are defined by

[ta, tb] = ifabctc (4.6)

4.1.2 An Introduction to Glueballs

Glueballs are bound states consisting only of gluons, with no quark content. They occur

naturally as gluons carry color charge, and as such can make color singlets with one another.

Glueballs are thought to exist within the standard model, however they have been elusive in

collider experiments, and so are still considered hypothetical particles [43].

Pure-glue theories, those without fermions, have had many properties worked out from a

theoretical standpoint, and are the main topic of this chapter. Most of the effort in the

literature is in computing features of an SU(3) pure glue theory, and so we make contact

with this by making a few remarks about these complicated, composite states.

Glueballs are generally considered to be made up of two or three gluons, meaning that the

spectrum consists of particles with total angular momentum (J) of 0, 1, 2 or 3. Glueballs

possess no electric charge, nor baryon number since their constituents possess neither either.

Glueballs are labelled by their angular momentum (J), parity (P ), and charge-parity (C) as

JPC .
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Some properties of glueball physics cannot be determined using the standard perturbative

techniques developed in QFT, and so a field known as lattice QCD was developed to address

these challenges [44]. Lattice QCD is a computational technique that takes quark masses and

a mass scale (ΛQCD for the strong force) in order to evaluate the Green’s function necessary

to study features of the spectrum. The mass spectrum of glueballs for a pure glue theory

are presented in figure 4.1 [45].

Figure 4.1: The glueball spectrum for a pure glue SU(3) theory, from lattice QCD techniques.
The masses are normalized to the mass of the lightest state (0++) [45]

Lattice QCD has also been successful in computing glueball matrix elements for scattering

cross sections, which we will come to in the subsequent sections. From pure glue lattice

QCD techniques, the lightest glueball is thought to be m0++ = 1730 ± 80MeV ([45]). For

the standard model, the presence of dynamical quarks can bring this mass down to roughly

1GeV , though this is still an active area of research [46]. In a hidden SU(N) pure glue

theory, different decay channels can cause the decay of these glueballs into standard model

particles and give us phenomenological signatures to hunt for in detectors and in cosmology.

In some models, the dominant number changing interaction of the particle species generally
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take the form of 2 → 2 (χχ → ξξ where χ is dark matter and ξ is a standard model particle),

or 3 → 2 self interactions. The benefit of these interactions in the standard model is limited,

but self interactions in general in the dark sector can help ease a tension between simulation

and observation known as the cusp/core problem.

The cusp/core problem ([41]) is the statement that observed dark matter density profiles do

not match the form of the ones determined from N body simulations. Specifically, N body

simulations give a density profile that peaks sharply near the centre of the halo (a ‘cusp’),

while observed densities seem to follow a much smoother curve. Self-interacting dark matter,

specifically those whose relic densities are set by self interactions have been mentioned as

a possible way to get rid of this problem, and so the self interactions of glueballs has been

considered in the literature [54] [55].

Finally, let us consider the nature by which we perform the calculations presented below.

There are two distinct objects in our theory, the dark gauge bosons of the hidden sector (hy-

pergluons, or dark gluons), as well as the bound states they form after confinement called

dark glueballs. Computations of standard scattering rates between hypergluons and stan-

dard model particles takes place in the usual way, by evaluating the four point function of

the effective Lagrangian in equation (4.2), but how do we deduce the late time decay rates

of glueballs?

0++ glueballs can be created via the scalar operator, S = Ha
μνH

μν,a [52], and so the amplitude

for the decay of these dark glueballs into a pair of standard model particles is

〈ζζ| . . . |0++〉 = 〈ζζ|SM |0〉 〈0|S |0++〉 (4.7)

Where 0 represents the vacuum, ζ is a standard model particle, SM represents the standard
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model fields generated in the coupling, and S the scalar glueball operator. The scalar

operator acting on a glueball state is an analytically challenging object to work with, and is

usually written 〈0|S |0++〉 = fS
0++ , the glueball decay constant. For the specific case of an

SU(3) dark sector, the following relationship is known from lattice computations [59] [60]

g2HCf
S
0++ ≈ 3m3

0++ (4.8)

Finally, we wish to stress that in this work we consider interactions involving both the dark

glueballs and dark gluons. For dark gluons, we compute the scattering cross section with

different standard model particles using an effective Lagrangian approach and the usual

Feynman rule analysis. This will allow us to put constraints on the model from a variety of

reheating temperatures of inflation.

For dark glueballs, we are interested in computing their late time decay rates as they can be

constrained by line search surveys, CMB measurements, and dwarf spheroidal galaxies (de-

pending on the standard model connection). In these cases, the procedure outlined above in

equation (4.6) and (4.7) is followed. In regards to relic densities, we note that the relic densi-

ties between dark gluons and glueballs are related, since glueballs consist only of dark gluons.

For additional information on the form of the computations of glueball decay rates, please

see [52].

4.1.3 Composite Collisions and Parton Distribution Functions

We wish to introduce a bit of the theory of composite collisions, as they are necessary for

studying the collider phenomenology of dark matter interactions. This discussion will follow

notes from [1] [2]. We will study briefly the Drell-Yan process (figure 4.2) in preparation for
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determining the cross section of a fermion-like particle that could be produced in colliders

in the presence of a hidden SU(N) theory.

Imagine the collision of two protons in a collider producing a pair of leptons, pp → ��̄. Since

protons are composite particles, standard Feynman rules for QED cannot be naively used.

Instead, we must consider the interaction as taking place by the interaction of a quark-

antiquark pair (the ‘active’ participants in the collision) while the other members of each

proton remain as spectators.

Figure 4.2: The Drell-Yan process of pp → ��̄ occurring via photon exchange

Before we get involved with the actual cross section, lets discuss how we determine which

quarks take place in the interaction. This is done by modelling the distribution of partons

(constituent quarks) inside the proton to match collider data. The exact numerics of the

distribution are not necessary for this theoretical introduction, but there are constraints it

must realize. For example, within a proton we expect that

∫ 1

0

dx[fu(x)− fū(x)] = 2

∫ 1

0

dx[fd(x)− fd̄(x)] = 1 (4.9)
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Where fi is the parton distribution function for a species, i that can be any generation of

quark, antiquark, or gluon. The x is defined as x = q2/2P ·q where q is the virtual momentum

in the active quark participating in the interaction, and P is the momentum of the incoming

proton. This effectively counts the number of up and down quarks in a proton. The quantity

x can be regarded as the fraction of proton momentum that the parton undergoing scattering

possesses, and so we get one more constraint for these PDFs from the total momentum

∫ 1

0

dxx[fu(x) + fd(x) + fū(x) + fd̄(x) + fg(x)] = 1 (4.10)

Now we recall the cross section for the internal process, qq̄ → ��̄ is just σ =
4πα2

EM

9s
Q2

q. Here,

Qq is the electric charge of the quarks, q involved, and s = (q1 + q2)
2 ∼ 2q1 · q2, is the usual

Mandelstam variable relating the in-state momenta. Now if we have a pair of protons as

our in-state particles like in Drell-Yan scattering, we would like to relate s once again to

their momenta. Noting that now, the internal state quarks have a fraction of the nucleons

momentum, we write ŝ = (x1q1 + x2q2)
2 ∼ 2x1x2q1 · q2 in the light quark limit. Relating this

to the usual cross-section, we can make the substitution ŝ = x1x2s.

The rapidity of a system, Y , is used to compensate the fact that the centre of mass frame

for the proton-proton collision is not necessarily the same as the rest frame for the final state

leptons. It is defined as Y = 1
2
ln(x1/x2). Integrating over the momentum distributions on

the partons, the differential cross section for this process becomes

dσ

dq2dY
=

∫
dx1dx2

∑
f

(ff (x1)ff̄ (x2) + ff (x2)ff̄ (x1))

·4πα
2Q2

q

9q2
· δ(q2 − x1x2s) · δ

(
y − 1

2
ln

x1

x2

) (4.11)

Where f runs over all the fermion PDFs, and we recall that q is the momentum transfer of
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the system, defined by q = k − k′, the change in momentum of one of the protons involved

in the collision. This form is very useful, and will be studied in slightly more detail in the

next sections when we consider collider signatures from a dark matter particle with highly

suppressed strong couplings.

4.2 Coupling of Dark Glueballs to U(1)Y

With the preliminaries taken care of, we now need to choose which standard model particle(s)

our mediator Φ will couple to. This choice will determine the phenomenology we study and

the constraints we must apply. As a first choice, let us consider a scenario where our mediator

carries only hypercharge, and thus couples to the U(1)Y gauge field, Bμ before electroweak

symmetry breaking, and the photon and Z0 boson afterwards. The effective Lagrangian we

will consider for this process is a subset of the one in equation (4.2)

L ∼ αHCα1

60M4
Φ

tr(HμνH
μν)FαβF

αβ (4.12)

As before, we choose to represent our SU(N) field strength asHμν . We note that α1 = g′2/4π,

where g′ is coupling constant for hypercharge interactions. Couplings to photons are highly

constrained as we will see shortly, and so we will consider how these hypercharge couplings

translate into photon constraints further below.

4.2.1 Experimental Constraints and the Parameter Space

Dark matter can be constrained in a number of creative ways, but perhaps the most obvious

signal to look for is that of decaying or annihilating dark matter in regions with high density.

Annihilation or decay of these particles can produce nearly monochromatic γ rays, and so
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there has been considerable experimental effort in searching for such signals in the centre of

galaxies, and from other astrophysical sources. The Fermi Large Area Telescope (LAT) is

one such collaboration searching for spectral lines in the range of 5− 300GeV [56].

Other constraints on the lifetimes of dark matter candidates can come from power spectrum

measurements of the CMB [57] and other line-search techniques [58]. More details on these

constraints will follow, when we plot them in order to determine the allowed regions in the

parameter space between the mediator and glueball mass.

So how do we relate the glueball mass to that of the mediator? First, note that to determine

the decay rate of such a process, we need to determine the amplitude of the interaction. The

amplitude of transitioning from glueballs to photons can be schematically written as M ∼
〈γγ|αHCαEM

60M4
Φ

FαβF
αβ|0〉〈0|S|0++〉, where S = Ha

μνH
μν,a and is the scalar glueball operator,

while 〈0|S|0++〉 ∼ fS
0 is the scalar glueball matrix element. Squaring and combining with

the phase space factors, it is possible to write the decay as [50],

Γ(0++ → γγ) ∼ α2
EM

32π3

m3
0

M2
Φ

(
1

60

g2HCf
S
0

M3
Φ

)2

(4.13)

Where αHC = gHC/4π. The matrix element, fS
0 , cannot be solved analytically, but does have

a numerical solution from lattice computations in SU(3) [59] [60], g2HCf
S
0 ≈ 3m3

0. Using this,

and noting that the decay rate is related to the lifetime by Γ = 1/τ we find that

m0τ =
m0

Γ
∼ 7.4× 109

(
MΦ

m0

)8

> Constraints (4.14)

The constraints come from line search surveys, and the power spectrum CMB measurements

which will be explained in a bit more detail later. These constraints come in the form of τ or

m0τ vs mass plots, hence why we have written equation (4.13) in that suggestive form. We
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require that the computed lifetime of our dark glueballs, m0τ be greater than constraints set

by these experiments. We will revisit this result shortly.

4.2.2 Aside: Cosmologically Long-Lived Particles

In the following sections, we will make use of a few different constraints coming from ex-

periment on the lifetime of our dark glueball states. The lowest order Feynman diagram

for each scenario will set the lifetime of the dark glueballs, and so we should check which

regions of parameter space yield lifetimes on the order of the age of the universe. Since the

decay of glueballs to final state photons and gluons is so similar (merely replace αEM → αs

in equation (4.13), since it is the same one loop process, as we will see in later sections), we

will discuss these two cases together here. Since the age of the universe is 4.3 · 1017 s, we can
cast a general constraint on the lifetime of our glueballs such that they are cosmologically

long lived. This constraint is

1

Γ
= τ =

400 · 32π3

α2

M8
Φ

m9
0

· 6.582 · 10−25 GeV · s > 4.3 · 1017s

∼ 1

α2

M8
Φ

m9
0

> 1.65 · 1036GeV −1

Where we have included the units to be explicit, and α can be either αEM or αs. It is easy

to see that the constraint depends on the the masses of the particles, as well as the coupling

between the two sectors. Since we would like to see which mass ranges of Φ and the glueball

are allowed, we need only to choose a value of α to see where our theory can live. Lets first

consider electromagnetism (or hypercharge) couplings.

From QFT and the renormalization group, we know that couplings run with energy scale,

69



thus are not static entities. Glueballs form at the confining transition in the dark theory

(ΛHC), and so we should consider their lifetimes at any point from this confinement on-

wards. We will define two points to evaluate couplings at, αEM,UV (ΛHC) and αEM,IR(T0)

where αEM,UV is the coupling at high energies at the dark confinement scale, and αEM,IR is

the temperature scale of the universe today. From looking at our constraint inequality, we

see that the larger the coupling, more difficult it is to satisfy the constraint, thus we use the

highest value of α as our cosmological bound.

For electromagnetism, we know from both theory and experiment that αEM,IR ∼ 1/137.

Since this theory isn’t asymptotically free, the coupling gets larger as you increase the energy

scale. Indeed, at LHC level energies, it is necessary to use a value of α ∼ 1/128 to reproduce

experimental results (at an energy scale of ∼ TeV ). In fact, there is a Landau pole in the

theory where the coupling grows to infinity. This Landau pole gets reached at very high

energies (>>> Mpl), at a point where the standard model is not expected to be the proper

description of the laws of nature, and so this pole is unphysical. At energies higher than

EWSB, electromagnetism is no longer a good descriptor and one needs to actually consider

αB,UV , the value of the hypercharge coupling at large energies. The value of this coupling

near the GUT scale is αB,UV ∼ 1/25. To exhibit how little our constraint changes over this

range of energy levels, we compute the inequality for both the IR and UV versions of the

coupling. The results are

MΦ,IR > 9.8 · 103m9/8
0 GeV −1/8

MΦ,UV > 2.3 · 104m9/8
0 GeV −1/8

We include the stronger of the two constraints amongst upcoming parameter space plots,
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and will make further comments there.

Now we should consider QCD, which is qualitatively much different than electromagnetism/hypercharge.

This theory remains unbroken through EWSB, and its coupling is tiny at high energies. Thus,

we know that αs,UV << αs,IR, and since we are looking for the higher value of αs we just

need to consider what happens at low energies to determine a maximum decay rate for the

glueballs. Once again, there is a Landau pole in the theory, but it occurs at energies lower

than ΛQCD, the confinement energy for QCD, where we cannot trust the perturbation theory

that predicts the pole in the first place. Late time decays of glueballs to gluons occur in the

nonperturbative regime, so we would like to understand how αs behaves at these low energies.

Unfortunately, the community appears to be split on the issue (see [61] for a review). The

different camps argue that

• The coupling diverges as 1/Q2 in the Q −→ 0 limit

• The coupling freezes at some (O(1)) value

• The coupling vanishes in the deep IR

Many subtleties lead to these different conclusions, including gauge choices, renormalization

schemes, and others ([61] for a comprehensive list). It is prudent to make some comment

about the viability of our model in the event that one of these scenarios is correct.

If the coupling diverges, αs,IR → ∞, and our theory breaks down. In this case, the lifetimes

of our dark glueballs would become infinitesimal, and no dark matter would exist at late

times. If this is the correct scenario, our model fails due to lifetime constraints.

If the coupling in the IR is of order 1, we can write our constraint equation as
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MΦ > 3.3 · 104m9/8
0 GeV −1/8

Which we will plot and comment on in the relevant QCD coupled section.

Finally, if the coupling vanishes in the deep IR, our bound is completely satisfied for any

range of m0 and MΦ, and so we cannot restrict the parameter space by lifetime constraints,

as the glueballs would be stable at late times.

4.2.3 The Scattering Cross-Section

Before progressing any further, let us discuss entropy considerations between the two sectors.

Recall the entropy density of a collection of particle species

s =
2π2

45
g∗s(T )T 3 (4.15)

Where g∗s is the (temperature dependent) effective number of degrees of freedom in the

collection, and T is the temperature of the thermal bath the particles reside in. Two sectors

that are thermally decoupled no longer exchange entropy, and so it is possible to define a

conserved quantity, R, which relates the entropy densities in the dark and visible sectors

(after all first order phase transitions have taken place in both sectors). This is done in [47],

and reads

R =
sHC

s
∼ g∗sHC

(THC)T
3
HC

g∗s(T )T 3
(4.16)

where sHC is the entropy density of the dark sector. This quantity, R, is set by the assump-
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tion that inflation reheats asymmetrically to the dark and visible sectors. It is an input

to the theory, and so to tie to other work on dark glueballs in the literature, we consider

the range 10−12 < R < 10−3, for which results have been calculated by Forestell et al [47].

Particle species in thermal equilibrium with one another share the same temperature, T .

For a scenario where the two sectors were in thermal equilibrium, and decoupled at some

temperature scale, the subsequent evolution of the temperatures won’t deviate by much (for

example, compare the temperature difference of the CMB (∼ 2.7K) and the decoupled cos-

mic neutrino background (∼ 1.9K)). In order to match this range of R values, it would be

necessary to have g∗sHC
/g∗s between 103 and 1012, or at minimum 103 degrees of freedom

in the standard model for every 1 in the dark sector. Since this is not possible, we (and

they) consider a more plausible scenario where the two sectors were simply never in thermal

equilibrium at any point over the thermal history of the universe. This allows the THC/T

parameter to become free, in order to explore a range of R values already investigated in the

literature, from 10−12 < R < 10−3.

It should also be noted that R controls the relic yield of dark matter particles. This can

be seen by noting that for a non-relativistic particle, the dark sector entropy density can

be recast as sHC ∼
(

m0++

THC

)
n0++ where THC is the temperature of the dark sector. The

freeze out abundance of dark matter is then written YHC = n0++/s ∼ R/xfo
HC where s is the

entropy density of the standard model. Here, xfo
HC = m0++/T fo

HC , where T
fo
HC is the freeze out

temperature of the dark sector. From these relations we can see that R affects the abundance

of freeze-out abundance of glueballs in the late time universe.

Since we have chosen to couple our dark sector to a U(1) gauge field through our mediator,

we have to consider when this interaction goes out of equilibrium to determine if the sectors

were ever thermally coupled. To keep a consistent picture of thermally decoupled sectors, we
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require that any interactions between them possess a freeze out temperature higher than the

standard reheating temperature from inflation. Of course, this reheat temperature itself isn’t

known, so we will consider a range of them later on. This freeze out temperature between

the dark gluons and standard model particles is expected to be higher than the hypercolor

phase transition.

To gain more information about the freeze-out properties of dark glueballs, it is prudent to

make a more detailed computation of the cross section from two hypergluons to the final

state gauge bosons. Once this cross section is calculated, we can determine the freeze-out

temperature of the interaction. We will start by considering the coupling to the Bμ field,

and extend our results to photons and Z0 bosons afterwards. In this, we assume that the

hypercolor confining scale, ΛHC is lower than the freeze out temperature of these interactions,

thus the proper effective interaction to consider that couples the two sectors is the 2 → 2

scattering of dark gluons and photons. Recall the effective Lagrangian for this coupling (as

illustrated in figure 4.3)

L ∼ αHCα1

60M4
Φ

FαβF
αβHa

αβH
a,αβ (4.17)

To fourth order in the fields (neglecting the gfabcW b
μW

c
ν term in the expansion of the hyper-

gluon field, Ha
μν), this effective interaction Lagrangian will look like

L4−pt =
αHCα1

60M4
Φ

(∂μBν − ∂νBμ)(∂μBν − ∂νBμ)(∂
αW a,β − ∂βW a,α)(∂αW

a
β − ∂βW

a
α) (4.18)

For simplicity, we will work in momentum space where these derivatives are simply trans-

formed ∂μ → kμ. Our gauge fields are all vectors as well, and so they will pick polarizations

when we attempt to compute the matrix element for this process. Explicitly, the process we
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are considering is that of two hypergluons going to two hypercharge gauge bosons via a loop

of our heavy mediator particle, Φ.

Figure 4.3: Hypergluon couplings to hypercharge gauge bosons are loop suppressed by our
heavy field Φ, and so we can write an effective 4-point function. The field B refers to the
hypercharge gauge boson.

Now, derivative interactions introduce momentum contractions in our calculation. Specifi-

cally, we can see that derivative interactions contracted amongst identical initial and final

state particles give

∂μφ
∗∂μφ∗∂νφ∂νφ → 4[(k1 · k2)(k3 · k4)] (4.19)

See the appendix for a more detailed description of the form of this derivative interaction.

Here k1,2 are the momenta of the two identical in-state particles, and k3,4 the momenta of the

two out-state ones. Since expansions of the 4-point Lagrangian will only have contributing

terms of this form, we can pull out a factor of 4 from such interactions and write our matrix

element

M =
4αHCα1

60M4
Φ

(kμ
3 ε
∗,v
3 − kν

3ε
∗,μ
3 )(k4,με

∗
4,ν − k4,νε

∗
4,μ)(k

α
1 ε

β
1 − kβ

1 ε
α
1 )(k2,αε2,β − k2,βε2,α) (4.20)
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Where we have explicitly written the polarizations of each particle, ε. We can now exploit

the general antisymmetry of the FμνF
μν and Ha

αβH
a,α,β terms to pull out another factor of

22

M =
4 · 22αHCα1

60M4
Φ

(kμ
3 ε
∗,v
3 )(k4,με

∗
4,ν − k4,νε

∗
4,μ)(k

α
1 ε

β
1 )(k2,αε2,β − k2,βε2,α) (4.21)

Since we will be spin-averaging this cross section, we can make use of the well known relation

[1]

∑
polarizations

ε∗μεν → −gμν (4.22)

We work in flat space, so the metric gμν is Minkowski. Explicitly doing the polarization sums

and averaging over initial spin states, and squaring our matrix element (noting that M∗ is

just the same as M but with different indices), we get the complicated expression

1

2 · 2
∑
ε∗,ε

|M|2 = 1

4

(
16αHCα1

60M4
Φ

)2

×gμσkν
1k

ρ
1(g

μσkρ
2k

ν
2 + gνρkμ

2k
σ
2 − gσνkρ

2k
μ
2 − gμρkν

2k
σ
2 )

×gατkβ
3 k

δ
3(g

ατkδ
4k

β
4 + gβδkα

4 k
τ
4 − gτβkδ

4k
α
4 − gαδkβ

4 k
τ
4)

(4.23)

Thankfully, this equation simplifies nicely once we contract indices using the metric, so our

spin-averaged matrix element is

〈
∑

|M|2〉 = 162

4 · 602 (4 + 0− 1− 1)2
α2
HCα

2
1

M8
Φ

(k1 · k2)4(N2
c − 1) (4.24)

Where we have introduced the group theoretic color factor stemming from contractions of

the a indices in our initial effective Lagrangian. Finally, lets put this in terms of the total

energy Mandelstam variable, s (which relates directly with the centre of mass energy of in-
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state particles in colliders). Since we have identical, massless initial and final state particles

we note k1 · k2 = k3 · k4 = s/2, so

〈
∑

|M|2〉 = 16s4

602
α2
HCα

2
1

M8
Φ

(N2
c − 1) (4.25)

Another way to write the differential cross section presented in chapter 2, yields the following

result

dσ

dt
=

〈|M2|〉
64πsk2

cm

=
s3

4 · 602πk2
cm

α2
HCα

2
1

M8
Φ

(N2
c − 1) (4.26)

Where t is another Mandelstam variable, t = (k1 − k3)
2. The full cross section can be

obtained by integrating over t, which is trivial as our expression does not contain it at all.

σ =

∫ 0

−4k2cm
dt
dσ

dt

1

2
=

s3

2 · 602π
α2
HCα

2
1

M8
Φ

(N2
c − 1) (4.27)

Where the factor of 1/2 in the first expression comes from the fact we have identical final

state particles.

4.2.4 Determining 〈σv〉

We wish to determine when such an interaction would freeze-out, and as such we must

determine 〈σv〉, the thermally averaged velocity weighted cross section. Thankfully, we have

already formulated an expression for determining this with a little help from [37]. Recall the

simple, single integral expression

〈σv〉 = 1

8mHgTK2
2(m/T )

∫ ∞

4m2
Hg

σ(s− 4m2
Hg)

√
sK1(

√
s/T )ds (4.28)

Now, since our hypergluons are massless, we need to find out what happens in the m → 0
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limit. There are no problems with the integral expression, but the prefactor gives something

to worry about. Recall the expression for the modified Bessel function of the second kind,

K2

K2(x) = lim
α→2

π

2

I−α(x)− Iα(x)

sin(απ)
I2(x) = lim

α→2

∞∑
m=0

1

m!Γ(m+ α + 1)

(x
2

)2m+α

(4.29)

We note that from this it is possible to perform a series expansion in x such that

1

x2K2(x)
=

1

2
+

x2

8
+O(x3) (4.30)

and so in the massless limit, x = m/T → 0 our thermally averaged cross section becomes

〈σv〉 ≈ 1

32T 5

∫ ∞

0

σs3/2K1(
√
s/T )ds (4.31)

This expression is only approximate as suitable corrections coming from Bose-Einstein statis-

tics should be implemented in a more rigorous computation. Performing the integral trans-

formation of x =
√
s/T allows us to extract the proper temperature dependence, after which

a straightforward integration in Mathematica is performed. Our final expression for 〈σv〉 is
thus

〈σv〉 = 45 · 32 · 5
602π

T 6

M8
Φ

α2
HCα

2
1(N

2
c − 1) ≈ 4.07α2

HCα
2
1(N

2
c − 1)

T 6

M8
Φ

(4.32)

These gauge couplings should be evaluated at the scale T , the temperature at which the

interactions take place. In particular, the pure SU(N) hypercoupling was computed in

Mathematica using up to the four loop beta function coefficient for our theory in the M̄S

renormalization scheme (details outlined here [62]).
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4.2.5 Extension to Photons and Z0 Bosons

Now that we have computed 〈σv〉 for hypergluons to the hypercharge gauge bosons, we can

consider how this coupling will look after EWSB. The Aμ and Z0
μ fields are related to the

W 3
μ and Bμ fields by a simple rotation, characterized by the two equations

Z0
μ =

1√
g2 + g′2

(gW 3
μ − g′Bμ) = cos θwW

3
μ − sin θwBμ

Aμ =
1√

g2 + g′2
(g′W 3

μ + gBμ) = sin θwW
3
μ + cos θwBμ

(4.33)

Where the coupling constants before and after the EWSB are related by the Weinberg angle,

θw as

g =
e

sin θw
g′ =

e

cos θw

g′

g
=

sin θw
cos θw

(4.34)

Now, eliminating the W 3
μ field from these equations yields an expression for our hypercharge

field such that

Bμ = cos θwAμ − sin θwZ
0
μ (4.35)

Since the four point function of our fields comes in the form of ∂μBν∂μBν (with different

variations of the μ and ν indices), and since the couplings g, g′ don’t depend on spacetime

coordinates, we can easily see the relation between hypercharge couplings, and the more

familiar low energy photon and Z0 couplings by inputting and expanding our equation above

∂μBν∂μBν → ∂μ(cos θwA
ν − sin θwZ

0 ν)∂μ(cos θwAν − sin θwZ
0
ν ) (4.36)

Which essentially means that our hypercharge coupling will give rise to decay patterns of our

glueball to γγ, Z0Z0, and γZ0. Since our expression for 〈σv〉 contains a g′2 = e2/ cos2 θw from
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the hypercharge couplings, we get an adjustment to the coupling constants to our photons

and Z0 bosons. With this in mind, our couplings for these three decay channels become

α(γγ) → α1 · cos2 θw = αEM

α(Z0Z0) → α1 · sin2 θw = αEM · sin
2 θw

cos2 θw

α(γZ0) → α1 · 2 sin θw cos θw = αEM · 2 sin θw
cos θw

(4.37)

For the rest of this subsection, we will be considering explicitly the coupling to the diphoton

channel (that is, replacing α1 → αEM , though the other two channels are related to this

process by the simple factors of the Weinberg angle, as derived above).

4.2.6 Freeze-out Temperature/Outlook of Model

We follow the logic discussed above, and the literature in assuming that this dark glueball

sector was never in thermal equilibrium with the standard model [47] [69]. This allows

us to constrain our parameter space by requiring that the freeze-out temperature of this

interaction be above the reheating temperature from inflation. If we make this assumption,

the dark sector temperature T evolves independently of the CMB photon temperature. To

make use of this idea, consider the rate of interactions between photons and hypergluons

Γ = 〈σv〉n n =
ζ(3)T 3g

π2
(4.38)

Where we have utilized the relativistic number density for the number density of photons,

noting that g counts the internal number of degrees of freedom, g = 2. To determine

when decoupling occurs, we set this equal to the Hubble rate, where H2 = ρ/3M2
P l. In the

early universe immediately after reheating, we enter a phase of radiation domination, where

ρr = π2

30
g∗T 4. As a reminder, g∗ counts the effective number of degrees of freedom in the
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universe. Throwing all of these together, we relate the freeze out temperature to the glueball

coupling and mediator mass

T 7
f =

M8
Φπ

2√g∗
12.29α2

EMζ(3)gMP l(N2
c − 1)

· 1

α2
HC(Λ, Nc, T )

(4.39)

We note here that allowing the SU(N) gauge coupling to run gives us another relationship

between MΦ and m0++ since m0++ ∼ 7Λ for specified values of the reheat temperature. The

SU(N) gauge coupling, αHC is once again related to the temperature scale T at which the

interactions take place, by the 4 loop beta function coefficients defined in [62].

In order to satisfy the idea that the dark and standard sectors never be in equilibrium, we

note that the temperature of reheating must be lower than the freeze out temperature of

this interaction, implying the sectors are always frozen out from one another. From this, we

note

Treheat < Tf =

(
M8

Φπ
2√g∗

12.29α2
EMζ(3)gMP l(N2

c − 1)
· 1

α2
HC(Λ, Nc, T )

)1/7

(4.40)

As before, this coupling is evaluated at the T scale. We note αEM should also be evaluated

at this scale, but we have used αEM ≈ 1/128 for simplicity, as the expression is fairly

insensitive to this factor due to the 1/7 power suppression. We can make a plot with varied

values of the reheating temperature, and overlay it with the constraints from line searches

and other experiments. Reheating temperatures can go as low as ∼ 4MeV [63] without

disrupting cosmological abundances, but we consider temperatures above 1GeV to be on

the conservative side. Note that g∗ is a function of T , but since we want to be out of

equilibrium right at reheating, the effective number of degrees of freedom in the standard

model is g∗ = 106.75. The allowed parameter space is defined as the part of figure 4.4 above

the reheating curve, as well as the constraints considered previously.
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Figure 4.4: Constraints on new particle masses from reheating, line searches [56] [58] and
CMB studies [57]. Reheating constraints are computed for a variety of possible temperatures,
represented by the contours, Treheat and appear to be quite strong. Reheat constraints
computed in Nc = 3. The allowed region of parameter space is above the curves set by
reheating and the other constraints. Note that the contours disappear for m0++ > MΦ,
which is where we expect the EFT approach to break down. We also assume that freeze
out takes place above ΛHC (implicit in the calculation since we also assume Treheat > ΛHC).
The black dashed line comes from the constraint equation for MΦ,UV in section 4.2.2, where
any point below that line corresponds to a model in which the dark glueballs decay on a
timescale shorter than the age of the universe. The allowed region of parameter space is
above all contours.

Its prudent that we take a moment and discuss the constraints we have plotted in figure (4.4).

Specifically, we have plotted two different constraints: line searches and constraints from

CMB observations. Dark matter annihilations are capable of producing nearly monochro-

matic photons, and so telescope collaborations such as the Fermi large area telescope search

for these spectral lines in regions of high dark matter density. It is possible to generate con-

straints by considering the γ ray emission from the galactic centre, as well as by looking at
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the diffuse, isotropic photon background. Fermi-LAT looks for these γ rays above the back-

ground signal coming from the bulge of the Milky Way galaxy. These types of constraints

are considered in [56] [58].

CMB measurements also offer new approaches at restricting dark matter decays and annihi-

lations. Annihilations or decays occurring both before recombination and after can produce

spectral distortions, deviations from a perfect blackbody in the CMB photon spectrum.

Dark matter decays can cause injection of photons into the intergalactic medium which can

leave imprints on the polarization and temperature fluctuations of the CMB. Photons from

the CMB are generally thought to be influenced by reionization of the universe from the

first stars, causing them to develop temperature and polarization fluctuations from other

processes as they stream through the intergalactic medium (IGM). Additional fluctuations

on CMB photons (above and beyond what is predicted from IGM models) are used to con-

strain the lifetime of dark matter. Constraints coming from late-time dark matter decay are

considered in [57].

The allowed parameter space in figure (4.4) is that which is above the lines set by the afore-

mentioned constraints, as well as our computed reheat condition. The non-reheating based

constraints are taken from plots of dark matter lifetime vs mass. We utilize equation (4.13)

where we quote the decay rate of dark glueballs into photons in order to generate constraints

on the above plot. Common cosmological rhetoric tends to assume a reheat temperature

near the grand unified (GUT) scale ∼ 1015GeV . While there is no real consensus on when

reheating occurred, values of Treheat orders of magnitude below the GUT scale still highly

constrain our parameter space. This puts significant pressure on a model with electromag-

netic couplings, as we are are restricted to very high mediator masses.
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The constraints presented from reheating seem to cover a large portion of the parameter

space for this model. As such, it is interesting to also consider different types of indirect

couplings between the dark sector and standard model. Couplings to the SU(3) strong force

are relatively easy to study (since they are unaffected by EWSB), and give a qualitatively

different picture as they can produce a diffuse spectrum of photons, not just lines. We note

that the above constraint from reheating appears to be a novel result.

We should also note that coupling photons to the Φ mediator creates a scenario in which Φ

has electric charge. Strict constraints exist on the production and abundance of electrically

charged dark matter candidates, and so this is undesirable. However, if the Φ particles carry

a non-appreciable abundance in the late-time universe (as in, their existence is mainly to

mediate the interactions between the dark glueballs and photons), these restrictions can be

avoided. We have implicitly assumed this during the analysis above.

In the above references, constraints are given in the form of a lifetime (or mass-weighted

lifetime) vs. dark matter mass plot. Lower bounds on these lifetimes are converted to

parameter space plots such as figure 4.4 by relating the lifetime of glueballs to the mediator

mass MΦ and m0++ using equation 4.13. Quantitatively, this relationship (for photon decay

products) became

m0++τ =
m0++

Γ
∼ 7.4× 109

(
MΦ

m0++

)8

> Constraints (4.41)

Which we used to generate the non-reheating constraints on figure 4.4.
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4.3 Dark Glueballs to Gluons: A Quirky Approach

Now that we have generated a parameter space plot in the U(1)Y coupled case, we can move

on to consider other mediator couplings. By replacing the coupling of our mediator to the

U(1)Y gauge bosons (and subsequently, to photons after EWSB), we can adapt the model

in a way that hopefully relaxes the reheating constraints, but what phenomenological signa-

tures can we look for?

A natural next choice is to allow coupling of Φ to the SU(3) strong force, instead. SU(3)

remains an unbroken symmetry throughout the standard model at cosmologically accessible

temperatures, and so we don’t need to consider any mixing as we did in section 4.2.4. The

phenomenology is different here as well, as it is possible to produce both a diffuse spectrum

of photons, and lines that astrophysical experiments can search for. Here, we consider two

different types of diagrams. First, a three loop diagram of the form of 4.5 (left) allows us to

reuse the previous line search constraints, while also seeing how a replacement of αEM → αs

effects the reheating contours. Second, we can consider a diagram like 4.5 (right) that will

give us a diffuse final state of photons to hunt for. Additional constraints on diffuse photons

from Fermi-LAT and the HAWC survey of dwarf spheroidal galaxies are used to further

constrain this case.

4.3.1 3-Loop Line Production Diagram

The question of which phenomenological signature to look for is still open. The effective

Lagrangian for our couplings between the dark sector and SU(3)strong is as follows

L ∼ αHCαs

60M4
Φ

(Ha
μνH

a,μν)(Gb
αβG

b,αβ) (4.42)
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Where Gb
αβ is the gluon field strength. The cleanest signal we can hope to detect is once

again in the photon channel, so it is useful to see how we can construct such a scenario. The

lowest order interaction producing a spectral line from glueball decay, is having a gluon loop

attached to the hyperquark loop, and then attaching another regular quark loop on the end

which can emit photons. This diagram is shown below on the left, in figure 4.5.

Figure 4.5: The lowest order loop diagrams with SU(3)strong couplings producing a spectral
line of photons (left) and a diffuse spectrum (right)

Figure 4.5 (left) shows that a three loop process can yield a resonant photon signal that

we could potentially hunt for. Since the reheating constraints come from the lowest order

interaction coupling standard model and dark matter particles, the one loop ofHg Hg → g g

will set the reheating temperature. Drawing analogues to the electromagnetic case, we see

that the cross sections of the two interactions should just be related by αEM → αs with an

additional color factor coming from the colored final state.

σstrong ≈ σEM(αEM(T ) → αs(T )) · (N2 − 1) (4.43)

Here, σEM is the cross section computed in the previous subsection for photon couplings

on our mediator, and N = 3 is the strong coupling gauge group. Throughout we have

explicitly put the scale that the couplings should be evaluated at (the temperature scale
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of the interactions, T ). We note that in our computation of Γ = 〈σv〉n, the freeze-out

temperature is related to the 1/7 power of our cross section. This means that any changes

obtained by the αEM → αs in σstrong are fairly minuscule.

Figure 4.6: Constraints on new particle masses from reheating, line searches [56] [58] and
CMB studies [57] for the 3-loop QCD coupled diagram above. Parameter space constraints
are almost identical to that of the electromagnetic case, due to the 1/7 suppression of αs.
Reheat constraints computed in Nc = 3. Reheating and cosmological lifetime constraints
come from the lowest order (1-loop) gluon production diagram. Line search constraints are
weaker than in the 1-loop case due to additional loop suppression factors coming from QCD
loops. The allowed region of parameter space is above the curves set by reheating and the
other constraints

As can be seen in figure 4.6, the reheating constraints remain stringent for values of the

reheat temperature approaching the GUT scale. The replacement of couplings does not offer

much of a qualitative or quantitative change compared to the direct photon case.

We should also note that our line constraint equations have been modified in regards to the
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one loop photon production of the previous subsection. In particular, the amplitude to go

from a glueball to two resonant photons becomes

〈γγ|αHCαEM

60M4
Φ

FαβF
αβ|0〉〈0|S|0++〉 −→ 〈γγ|αHCαEM

60M4
Φ

FαβF
αβ α2

s

16π2
|0〉〈0|S|0++〉

Where each QCD loop adds a suppression factor of αs/4π. The decay rate goes as the square

of this, and so to constrain the lifetimes of photon production from glueballs in the QCD

coupled scenario, we get a constraint inequality that goes as

m0τ3−loop =
m0

Γ3−loop
∼ 9.9× 109

(
MΦ

m0

)8
1

α2
EMα4

s

> Constraints

This additional suppression loosens the constraints set by line searches, bringing them down

slightly compared to the one loop photon production. The changes are small due to the 1/8

power suppression on the change of the prefactor in the constraint inequality between the

one loop and three loop cases.

4.3.2 1-Loop Diffuse Photon Diagram

Phenomenologically, we can also consider the case of a one loop diagram, in which the gluons

hadronize and produce a diffuse spectrum of final state photons for us to detect, as illustrated

in the right hand side of figure 4.5. This process is lower order in the couplings compared to

the three loop photon case. Reheating constraints remain relevant as we must still check that

the interaction rate between hypergluons and regular gluons is always below the Hubble rate

to maintain the out of equilibrium condition. Line searches no longer constrain us, however,

as the final state photons are not monoenergetic. For this, we turn to constraints from other
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astrophysical sources.

It is possible to constrain this diagram by way of dwarf spheroidal galaxies. Dwarf spheroidals

exhibit gravitational effects that imply much more mass than is observed through luminous

matter. This implies a rich region of dark matter. They also seem to have low diffuse

gamma ray emission, both from galactic and astrophysical sources. The coupling of these

effects makes them an attractive candidate to observe and/or constrain signatures produced

from decaying or annihilating dark matter, as has been done by the Fermi-LAT and HAWC

surveys [64] [65].

Dwarf spheroidals utilize the diffuse gamma ray flux from dark matter interactions to con-

strain cross sections and lifetimes. The differential gamma ray flux coming from an astro-

physical source can be given by [65]

dF

dEann

=
〈σv〉

8πM2
0++

dNγ

dE
J

dF

dEdecay

=
1

4πτM0++

dNγ

dE
D (4.44)

Where the J and D factors are dark matter densities integrated along the line of sight and

solid angle of a source, and dNγ/dE is the diffuse spectrum of gamma rays produced (in-

directly) by the dark matter interactions. For the purposes of our work, we are concerned

with dF/dEdecay, the flux stemming from decaying dark glueballs.

A possible way to determine the produced photon spectrum is to use the PPPC [66] and/or

Pythia [67] software packages. With these packages, it is possible to go from the decay prod-

ucts of our 0++ glueballs (regular gluons), to a final photon spectrum, dNγ/dE. We look

at a mathematica package from a recent paper by Slatyer et al [68] which does just that.

Note that in this paper, the spectra are presented for a ’cascade’ of multiple decays within

the dark sector. Our diagram above would then be for a ’direct spectrum’ in the jargon of [68].
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Before going further, we need to clarify any differences and justify the usage of [68] in our

work. One point to make is that in the Slatyer software package, the analysis takes place by

imagining the initial process is a dark matter annihilation, generically speaking χχ → gg,

whereas we are interested in the decay of a glueball. However, since the final state photon

spectrum calculated is sourced by the hadronization and cascade of gluons, it becomes hard

to distinguish between an initial decay vs. annihilation. In fact, Slatyer et al. state that the

production of direct spectra can be viewed as either a direct annihilation or a decay, and are

seen as analogous processes. This is because PPPC (the software utilized by Slatyer) cares

only about the energetics of the produced final state particles, and not so much about the

production mechanism.

Using their software, we compute the direct spectrum of photons from both final state gluons,

and bb̄ in figure 4.7.

Figure 4.7: Left: A comparison between the b quark and gluon final state spectra for the
same energetics. Right: Evolution of the photon spectra for final state gluons as a function
of m0++ . x refers to the fractional energy of the photons, x = E/m0++

Constraints from dwarf spheroidals are generally only applied in the literature to final state

bb̄ particles, and not to gluons. Thus we need to convince ourselves that it is acceptable to

use these bb̄ constraints for our gluon final state scenario.
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Qualitatively, the bb̄ spectrum is very similar in shape to the gg spectrum. In fact, if we

change the production energy for both decay particles in the same way, the spectrum also

changes in qualitatively the same way (they both follow an evolution like the right side of fig-

ure 4.7). In both cases, increasing the glueball mass causes the photon spectrum to broaden

and shift its peak to smaller values of x. It is this behaviour that motivates us, as well as

other authors such as [68] to treat the two spectra as similar enough to apply bb̄ constraints

to our scenario of final state gluons.

Now, since we have justified the use of the bb̄ constraints for our case, we can constrain

the parameter space of the gluon coupled model from the Fermi-LAT [64] and HAWC [65]

experiments. To relate the lifetime constraints from these experiments to the masses m0++

and MΦ, we estimate the lifetime of our dark glueballs in the same way as was done in section

4.2.1 (specifically equation 4.12) to find [50]

Γ(0++ → gg) =
1

τ
∼ α2

s

32π3

m0++

M2
Φ

(
1

60

g2HCf
S
0

M3
Φ

)2

(4.45)

Applying these diffuse photon constraints, as well as the reheating constraints allows us to

once again plot the parameter space below in figure 4.8
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Figure 4.8: Diffuse photon constraints from Fermi-LAT [64] and HAWC [65] experiments
investigating decaying dark matter from dwarf spheroidal galaxies. As before, the allowed
parameter space is that above the reheating contours, the cosmological lifetime constraint,
and the diffuse photon constraints. The cosmological lifetime constraint is computed from
the 1-loop gluon-hypergluon interaction. We have also included the constraints from line
searches presented in figure 4.6 for ease of comparison.

No excess signal has been detected by the Fermi-LAT or HAWC teams as of this point,

and so these constraints come from non-detection of an additional source of diffuse photons.

Fermi-LAT offers the strongest constraints for a dark matter candidate with m0++ < 4 TeV ,

whereas for higher glueball masses from 10 TeV < m0++ < 100 TeV HAWC offers the best

constraints.

For our analysis, we relate once again the lifetimes of the dark glueballs using the expres-

sion (4.45). We estimate αs ∼ 1 as the strong coupling for the decays of glueballs in dwarf

spheroidals.
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4.3.3 Heavy Φ Production in Colliders

As we have seen so far, the heavy Φ particle allows our dark glueballs to decay because it

possesses both an SU(N) dark charge, as well as some standard model coupling. If this is

the case, though, the direct couplings of Φ to the standard model fields should create an

observable imprint on observational particle data. Cosmologically speaking, if these heavy

particles are produced rarely we will see little impact on observables such as structure for-

mation and CMB measurements. Colliders, however, could produce noticeable quantities of

these new particles, and hence we can estimate the signal expected from such a Φ particle.

We note that this has been considered already in the literature, and the existence of a heavy

quark like particle has been called a ‘quirk’, but we will stick to Φ for our work as we present

a brief review [52] [70].

Consider proton-proton collisions in the LHC as our method to probe the existence of this

Φ particle. The process happens in a similar fashion to Drell-Yan scattering, but includes

multiple diagrams (see figure 4.9). This subsection will be concerned with computing the

scattering cross-section of the production mechanism, and we discuss the phenomenological

effects in the following subsection.
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Figure 4.9: Φ production can take place through quark or gluon fusion processes in colliders.
All curly lines are gluons (not hypergluons). Note that hypercolor confinement will keep
these final state Φ particles bound to one another.

As this production makes use of hadron-hadron collisions, we must employ the parton for-

malism to compute the cross-section. To determine these cross sections, we follow [2] and

[52]. The internal interaction responsible for the production of Φ particles takes place by

either quark or gluon fusion, as described in the above figure. From our parton formalism,

we must compute the cross section of each internal interaction in order to determine the

full cross section for this production process. Quoting [2], the differential cross sections for

quark and gluon fusion are

dσ̂

dt
(qq̄ → ΦΦ̄) =

4πα2
sN

9ŝ4
[
(m2 − t̂)2 + (m2 − û)2 + 2m2ŝ

]
dσ̂

dt
(gg → ΦΦ̄) =

πα2
sN

8ŝ2
[
6(m2 − t̂)(m2 − û)

ŝ2
− m2(ŝ− 4m2)2

3(m2 − t̂)(m2 − û)

+
4(m2 − t̂)(m2 − û)− 8m2(m2 + t̂)

3(m2 − t̂)2
+

4(m2 − û)(m2 − t̂)− 8m2(m2 + û)

3(m2 − û)2

−3
(m2 − t̂)(m2 − û) +m2(û− t̂)

ŝ(m2 − t̂)
+ 3

(m2 − û)(m2 − t̂) +m2(t̂− û)

ŝ(m2 − û)
]

(4.46)

Here, m = MΦ has been made for clarity, and variables with the hat denote their parton
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versions, for example ŝ = (x1p1 + x2p2)
2 where x1 is the momentum fraction of the parton

coming from one of the incoming protons p1, and x2 the momentum fraction of the other

parton stemming from the proton with momentum p2. N is related to our gauge group,

SU(N) and is representative of the degeneracy in the number of ‘hidden’ colors in our dark

sector. Integrating these equations and defining a dimensionless quantity, z = 4m2/ŝ yields

σ̂(qq̄ → ΦΦ̄) =
4πα2

sN

27ŝ
(2 + z)

√
1− z

σ̂(gg → ΦΦ̄) =
πα2

sN

48ŝ

[
−(28 + 31z)

√
1− z + (16 + 16z + z2) ln

1 +
√
1− z

1−√
1− z

] (4.47)

With these, we can write the full cross section for production of these Φ particles coming

from proton-proton collisions.

σ(P1P2 → ΦΦ̄) =

∫ 1

0

dx1dx2[gP1(x1)gP2(x2)σ̂(gg → ΦΦ̄)

+(qP1(x1)q̄P2(x2) + q̄P1(x1)qP2(x2))σ̂(qq̄ → ΦΦ̄)]

(4.48)

Where P refers to the proton parton distribution function, empirically found. This equation

can be solved numerically to acquire constraints on the mediator mass MΦ.

4.3.4 Phenomenology of Φ

The idea of the production of this Φ particle has been considered in detail in [52], and so

we will review some of the results here. We stress that our aim is to present a heuristic

review of results presented by other collaborations, and that future work should include a

more complete and quantitative analysis of the constraints set by the LHC. It is important

to first recall a little about color confinement and how it applies to the production of heavy
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particles interacting under the strong force.

Very schematically, recall that in the usual strong interactions, production of quarks or glu-

ons create jets of particles due to color confinement. Since free particles cannot have color,

the production of say, a quark antiquark pair is not free, and the two particles are bound

by a so called flux tube. This flux tube consists of a stream of color charged particles, and

increases in energy as the newly formed quarks increase their physical separation. At a

separation of about d ∼ Λ−1QCD, it becomes energetically favourable for these flux tubes (or

QCD strings) to break and pop a corresponding quark-antiquark pair out of the vacuum.

This is because mq < ΛQCD, and so the flux tubes have more than enough energy to create

light quarks out of the vacuum. This creation allows for color neutral mesons or baryons to

be formed, ensuring the final state particles do not possess color.

In a theory with a very heavy quark-like object such as our Φ particles, this is not possible. In

general, flux tubes have energy per unit length of order Λ2, and since for a heavy, integrated

out degree of freedom, MΦ >> Λ, the tube does not have the energy required to pop a ΦΦ̄

out of the vacuum. This leads to a bound state that has been dubbed ‘quirkonia’ in recent

literature where such particles are called quirks.
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Figure 4.10: Full production cross section of Φ particles from parton formalism.
√
s =

13 TeV for the latest LHC run. Figure adapted from [52]

As shown in figure 4.10, the heavier the mediator particle, the less likely it is to be produced.

The size of the gauge group N also suppresses this cross section linearly. For a sufficiently

light enough Φ particle, there could be a significant ‘missing energy’ signal to look for in

proton-proton collisions at the LHC. This missing energy would come from the production

of Φ particles, which would escape without being detected, thus giving us a deficit at some

resonant energy. Alternatively, a ΦΦ̄ found state will oscillate, producing gluons, dark glu-

ons, and/or dark glueballs. Since the dark glueballs are stable, they will leave the detector

unperturbed yielding missing energy. The radiation of colored particles such as gluons will

produce jets that can also be used to constraint the model. A similar scenario happens

in the case that a bound state of Φ annihilates inside the detector, potentially producing

both standard model and dark sector particles. particles The full quantitative theory on

the production of the ΦΦ̄ bound states is beyond the scope of this work, but we will review

arguments presented in [52] on how these states can decay.

97



As stated beforehand, we cannot break the flux tube separating two Φ particles due to their

high mass, so the produced Φ and Φ̄ in a collision oscillate about their classical turning

points. These oscillations are damped, however, due to the non-perturbative emission of

dark glueballs, and the perturbative emission of standard gluons. After sufficient damping

occurs, the ΦΦ̄ state can annihilate with itself to produce even more particles, giving us po-

tential signals to hunt for in detectors. Possible annihilation products include hypergluons

(which will bind into dark glueballs at long distances) as well as standard quarks or gluons.

Three different types of decays are reviewed in the literature. Hard annihilations occur when

the ΦΦ̄ state annihilate directly into hypergluons (and subsequently, more dark glueballs).

Radiative decays are also possible, with both the standard model and the hidden sector

playing a role. From the standard model side, the bound state can slowly decay by a cascade

of gluons, which would hadronize into pions and kaons (mostly). It is also possible to have

dark glueball radiative decays, in which a bound state emits a standard JPC glueball as a

way to lower its energy. We should note, however, that this is a non-perturbative effect from

a hidden sector, so this mechanism is highly uncertain. For ΛHC << MΦ, a potential model

similar to that for heavy quarkonium can be used as an analogue for this decay. Detailed

results for the decay rates of these different processes are available in chapter 4 of [52].

An additional point to consider are constraints coming from bound states of ΦΦ̄ in the limit

of a low hidden confinement scale. This is interesting because the lower we take Λ, the

further away (in physical space) the bound state of Φ particles can travel from each other

before reaching their classical turning points and snapping back together. For values of the

scale, 1eV < Λ < 104eV , the length of the flux tube connecting the Φ particles can become

macroscopic (in relation to CMS and LHC detector sizes), creating signatures that could be

seen in the LHC or CMS experiments [73]. Specifically, it has been found in the literature
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that in the Nambu-Goto approximation, the flux tube connection between our Φ bound state

has an effective length, given by

�eff ≈ 10m
( mΦ

1TeV

)(
100eV

Λ

)2 ( v

0.7

)2

(4.49)

Where mΦ is the mass of our Φ particle, Λ is the confining scale in our dark sector, and v is

the relative velocity of a Φ particle with respect to the centre of mass of the bound state of

ΦΦ̄. If we are looking for phenomenology due to the macroscopic separation of the mediator

particles, we are looking at 1eV < Λ < 10keV . For smaller confinement scales, the flux

tube is too large (Λ ∼ d−1) and wont impose any signatures on collider data. For larger

confinement scales, the separation distance is smaller than the tracking resolution of the

detectors. Φ in this regime can be constrained by observing non-standard particle tracks in

detectors. Standard quarks exhibit helical shaped trajectories in the xy plane, so deviations

from this can stem from a new hidden gauge group. Note that these helical trajectories are

produced by a magnetic field, so these constraints can only be applied to a case with elec-

trically charged Φ particles. The signature in this intermediate Λ regime is thus deviations

from helical trajectories inside the detector. Heavy stable charged particle searches (HSCPs)

have been reinterpreted by [73] using datasets from the CMS [74] and Atlas detectors [75].

Monojet search results from CMS [76] and Atlas [77] are also reinterpreted to give constraints

on the Φ parameter space.

Finally, it is also possible to utilize 0T data from CMS [78] (no external magnetic field in

the tracking) to constrain the parameter space further. The idea here is that in the absence

of a magnetic field, quarks travel in straight lines, whereas these Φ particles still have their

paths bent due to the flux tube connecting a pair of them. In this case, Φ does not need

to be electrically charged. Combining constraints in this low Λ regime, the authors of [73]

produced a plot of the Φ parameter space (figure 4.11)
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Figure 4.11: 95% confidence limits on a new fermionic Φ particle transforming as a triplet
under SU(3)strong. The hidden gauge group here has N = 2. Red and green shaded regions
are constraints from HSCPs and monojets respectively. Projected constraints are also given
for the 0T scenario. Unshaded lines represent projected constraints with more data. Grey
dashed lines correspond to the effective length of the flux tube separating a ΦΦ̄ pair. Figure
credit to [73]

As with any constraints, we need to choose a few properties of the Φ particle to make a

parameter space plot. Here, the authors of [73] assume the hidden gauge group is SU(2),

and that Φ transforms as a fermionic triplet under the standard model SU(3).

Further constraints on this ’quirky’ Φ scenario have been considered by [71], and so for a

more quantitative analysis of this case the reader is invited to examine this paper, as well

as the arguments presented by [52] [70].
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4.4 Higgs Portal Decay

As our final point of discussion, let us consider the case in which our dark glueballs inter-

act with Φ mediators like usual, but the Φ particles don’t couple to any standard model

gauge bosons. Instead, decays happen via Higgs portal interactions. This is possible by

specifying that the mediator in this case is a scalar particle, and couples to the Higgs in the

form of a H2S2 type interaction. These decays happen primarily via dimension six opera-

tors, as opposed to the dimension eight suppressed operators in the previous two subsections.

In the absence of any other standard model couplings, the 0++ glueball (normally thought

to be the vastly abundant species) is allowed to decay via this dimension six Higgs operator.

However, the lack of standard model couplings prevents the 1+− glueball from radiatively

decaying into a 0++ (due to conservation of charge parity), and so conversely, if we can allow

the 0++ state to decay fast enough, our dark matter candidate could be the vector glueball

state. We also note that the 0−+ glueball may be protected by some additional symmetries

that prevents decay into the 0++, but this is much more model dependent [47] [53] [72]. In

this subsection, we primarily report the work of the aforementioned citations, and briefly

discuss consequences of such a coupling on an SU(N) dark theory of this kind.

4.4.1 Decay Rate of the 0++

As in the previous subsections, we induce decays of our glueballs via higher dimensional

operators with our scalar mediator particle, Φ. The Lagrangian for our Φ particle is assumed

to take the form given in [47] (also see [49])

LΦ ∼ M2
ΦΦ

2 + λΦ2|H|2 (4.50)
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At scales lower than MΦ but higher than the dark confinement scale and EWSB, we get

the following dimension 6 operator mediating the coupling between the dark gluons and the

Higgs sector

Leff ∼ λαHC

M2
Φ

(H†H)(Ha
μνH

a,μν) (4.51)

Where we have used the momentarily confusing notation of H being the Higgs doublet, and

Ha
μν being our hypergluon field strength. The suppression coming from a combination of λ

and 1/M2
Φ coefficients can lead to large suppressions (potentially even larger than those of

the dimension 8 operators considered above), and so corrections from any standard model

couplings could become important. We negate this issue by considering a pure coupling of

our Φ particles to the Higgs sector.

While we have a spectrum of dark glueballs, radiative decays allow most (but not all!) of the

heavier states to decay to the 0++ state. This state is thus thought to be the most abundant,

and in some models thought to be the dominant contribution to the dark matter density,

ΩDM . Because of this, analysis of the decay of 0++ is of the paramount importance. From

the effective Lagrangian, it is possible to deduce the decay rate of a 0++ to a pair of standard

model particles via an s-channel Higgs exchange. Quoting [47] (and[53]), this decay rate is

Γ(0++ → ξξ) ≈
(

λvHg
2
HCf

S
0

4π2M2
Φ(m

2
H −m2

0++)

)2

Γ(h → ξξ;m2
0++) (4.52)

where mH is the mass of the Higgs (≈ 126GeV ), vH is the vacuum expectation value of

the Higgs (≈ 246GeV ), Γ(h → ξξ;m2
0++) is the decay width of a Higgs to standard model

particles if it had a mass m0++ , and fS
0 is the 0++ decay constant. If we recall from above,

lattice calculations for a pure SU(3) theory that g2HCf
S
0 ≈ 3m3

0++ . With this substitution,
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the decay rate takes a more tractable form

Γ(0++ → ξξ) ≈
(

λvHm
3
0++

4π2M2
Φ(m

2
H −m2

0++)

)2

Γ(h → ξξ;m2
0++) (4.53)

This is the only decay channel for m0++ < 2mH , so it makes sense to expand in the limit

m2
0++ << m2

H , noting that the Higgs is related to its VeV by mH ∼ vH . This expansion

yields

Γ(0++ → ξξ) ≈
(

λm3
0++

4π2M2
ΦvH

)2

Γ(h → ξξ;m2
0++) (m2

0++ << m2
H) (4.54)

If m0++ > 2mH , the decay channel of a glueball to a pair of Higgs particles also opens up.

The width of this decay can be written as [53]

Γ(0++ → hh) =
1

32πm0++

(
λm3

0++

4π2M2
Φ

)2 (
1 +

3m2
H

m2
0++ −m2

H

)2
√

1− 4m2
H

m2
0++

(4.55)

In the opposite mass range, for very heavy dark glueballs such that m2
0++ >> m2

H , this decay

rate becomes

Γ(0++ → hh) =
1

32πm0++

(
λm3

0++

4π2M2
Φ

)2

(m2
0++ >> m2

H) (4.56)

These limiting expressions roughly match other results found in the literature [47] for the

case of an SU(3) hidden sector.

4.4.2 1+−, 0−+ in a Sea of Metastable 0++

As stated earlier, there are two possible scenarios for Higgs coupled glueball dark matter.

First off, we can carry out the usual procedure where we determine the freeze out temper-

ature of the 0++ decays and push it above the reheating temperature to see how tight the
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constraints on our parameters have to be. Due to the vast number of glueball states that

can decay down to the 0++ via Higgs radiative processes, these dark glueballs would be the

dominant contribution to ΩDM . With no additional couplings on our mediator, however,

there are a couple other glueball states that persist as they are protected by other symme-

tries. These other glueballs would become the subdominant contribution to ΩDM .

Alternatively, it is possible to paint a picture where the 0++ glueballs decay very quickly via

the Higgs portal. This idea is first discussed in [47], and so we restate their arguments here.

This is only possible if we have conservation of C and P quantities independently in the

dark sector, and so we take that as an assumption in what follows. If the 0++ particles are

cosmologically short-lived, they would not contribute to the dark matter density at all, and

instead we must look for another candidate. Luckily, there are a couple that naturally occur

in a Higgs-only connection between the standard model and the hidden sector, and those are

the 1+− and 0−+ glueballs. The 1+− is the lightest particle in the C = − sector, and so any

decays it could undergo would have to change its charge conjugation number. The Higgs is

unable to do so, therefore in the absence of additional standard model couplings, it is stable.

In the absence of extensions to the standard model such as additional parity violation in the

or a two Higgs doublet model, the 0−+ is stable as well. The radiative decay 0−+ → 0++h

cannot occur because in order to conserve angular momentum (Lbefore = Lafter = 0), you

must violate parity. Both of these glueballs make for potential candidates in the scenario

where the lifetime for the 0++ is cosmologically short. This unique characteristic of dark

glueballs is still unexplored, and would be a great extension to the work presented here.

We should note a possible shortcoming of this idea, however. Since the standard model does

have C violation, it is possible that higher loop orders could induce C violation allowing

this 1+− state to decay. This is possible as the Higgs couples to C violating processes in the
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standard model, but these processes would be suppressed by additional loop factors, so it

is not clear that they would significantly effect the lifetimes of the 1+− states. This is not

considered in the arguments of Forestell et al [47].

Relic densities for dark glueballs have been computed in [47]. The abundance of the lightest

glueball (0++) was calculated assuming 3 → 2 number changing processes set the yield. The

heavier glueballs are expected to decay to the lightest state in the absence of additional dark

sector symmetries, so their 3 → 2 interactions are not as important as the 2 → 2 transfer

reactions. We assume the decays of the 0++ have all occurred by the late-time universe,

and so we wont be interested in that result. Heavier glueballs had their Boltzmann yield

calculated assuming 2 → 2 transfer processes. These relic densities are plotted by Forestell

et al in [47], which we have reproduced as figure 4.12.

Figure 4.12: Relic densities of the 0−+ and 1+− states, weighted by their masses. R = sHC/s
is the relative entropy between the two sectors, and is a conserved quantity after all confining
phase transitions. The horizontal line represents the necessary value of m · Y to give the
observed dark matter abundance in the universe today Figure adapted from [47]
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Chapter 5

Discussion and Outlook

The aim of this work was to present a coherent and modular attempt at explaining dark

matter in terms of an SU(N) hidden gauge group, in the context of particle cosmology. To

that end, we found it prudent to introduce many of the main concepts in quantum field

theory and cosmology, before applying them in the context of the Boltzmann equation for

determining relic densities of primordial particle species. After concluding this, we finally

came to the description of an SU(N) glueball making up the dominant dark matter density

in the universe. In this section we go over open questions, problems, and ideas concerning

our work on the numerical Boltzmann equation code, as well as the dark matter model con-

structed in the previous chapter.

In chapter 3, we presented a work-in-progress of a mathematica notebook capable of com-

puting Boltzmann yields and freeze out temperatures for generic classes of particle dark

matter. At this stage, the code seems capable of reproducing accepted results such as the

abundance of baryons in a baryon-antibaryon symmetric universe (presented analytically in

Kolb and Turner [16]), and thus seems to be trustworthy. Because of this solid foundation,

it is natural to ask what improvements can be made on such a piece of code.
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Improvements can come on computational, user-friendly, and robustness fronts. Computa-

tionally, much of this code has been written in such a way that it performs the tasks set in

front of it, but not necessarily in the most efficient ways. Time has not been invested in de-

termining the efficiency at which the NDSolve and other functions run within Mathematica.

It is possible that when considering more complicated forms of dark matter, we may run into

efficiency issues, and so this aspect should be investigated. On the user-friendly side, as it

stands the code can be cumbersome and confusing to work with. If made available to other

working groups in their computations, it would benefit with the addition of a graphical user

interface (GUI). GUIs are easily made in Mathematica using the GUIkit package, and would

highlight the simple elegance of our software.

Lastly, in order to make our software more robust, additional attributes, both on a cosmo-

logical and on a particle physics side, should be included in our calculation. This could be

realized with additional parameters specifying any initial asymmetry in particle species be-

ing considered, allowing for corrections to relic densities from more than one decay/number

changing channel, and allowing coupling constants of interactions to run with the energy

scale. Improving the software with the above suggestions could make the package an at-

tractive choice for other research groups wishing to determine relic densities and decoupling

times in a simple, yet powerful, manner.

Moving forward, we next considered our SU(N) glueball dark matter candidate. We allowed

for the decay of this glueball to occur via loops of a heavy mediator particle, Φ, which we

considered to possess couplings to different standard model fields. We will briefly discuss

each of these couplings once more, and discuss the outlook of each scenario.
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First, we considered coupling the Φ particle to U(1) hypercharge (and subsequently, electro-

magnetism and the Z below EWSB). Due to a number of line search surveys over the past

decade, constraints on the decay modes of this dark matter were quite stringent. From en-

tropy considerations, we required that the two sectors were never in thermal equilibrium with

one another. Pushing the freeze-out temperature above sensible values of the reheat temper-

ature from inflation showed that the parameter space was highly constrained. In an effort

to study how this phenomenology changes, we considered different standard model couplings.

Couplings to the strong force were introduced instead. First, we considered a diagram that

would produce a line of photons, as in the previous case. This happens at the three loop level,

though no change of the reheat temperature constraints was observed, as the αEM → αs

was raised to the 1/7th power. Next, we considered the production of a diffuse spectrum of

photons by allowing the final state gluons to hadronize and emit particles. Constraints from

the HAWC and Fermi-LAT surveys were utilized to constrain this scenario, along with our

reheat constraints. This coupling does give the ability to detect Φ particles in colliders, as

they should be produced abundantly in proton-proton collisions. The collider phenomenol-

ogy of this is discussed above, and in depth in [52].

To conclude, we discussed the possibility of Higgs couplings on our Φ mediator. Higgs

couplings are different than other gauge bosons in that these glueball decay operators come

at dimension 6 rather than dimension 8. This allows us to consider two possibilities:

� The Higgs couplings could produce extra suppression that would counteract the fact

that the operator is suppressed by only mass dimension 6. This is the standard ap-

proach attempted with the previous two couplings, and so we could hope this additional

suppression allows us to raise the freeze out temperature substantially. This seems un-

likely, however, due to the scaling between Tf and σ discussed above.
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� The Higgs couplings are not very suppressed, and decay of the lightest and most

abundant 0++ dark glueball occurs very rapidly. With only Higgs couplings, the next

lightest glueballs, 1+− and 0−+ are stable due to symmetries. These other glueballs

could then form the dominant dark matter contribution.

Though both scenarios are possible, the second case with the fast decaying 0++ dark glueball

seems of particular interest to the author. If a large proportion of these decays take place

in the early universe, they could generate additional signals such as μ or y type spectral

distortions in the CMB.

Spectral distortions are departures from a blackbody for the CMB frequency spectrum. Since

decaying glueballs would transfer energy from the dark sector to the standard model, they

can perturb the thermal frequency spectrum of the thermal bath of photons. These distor-

tions can potentially be observed by future satellites such as PIXIE or EUCLID, who would

probe these distortions to a ΔI/I ∼ 10−9 level. Significant energy releases at a redshift of

z ≤ 106 that could be observed. For an interesting read, refer to [79] and references therein

on potential new physics that can be constrained by spectral distortions.

The next step in this project should be to investigate these Higgs portal connections in much

more detail.
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Chapter 6

Conclusions

In this work we have presented a general overview of particle cosmology, analytic and numeric

methods to solving the Boltzmann equation, and introduced a new SU(N) gauge group in

an attempt to describe the dark matter phenomenon. We have attempted to keep everything

as self-contained as possible.

The numerical Boltzmann code developed has been shown to correctly predict relic densities

and freeze out temperatures of analytically calculated phenomenon. Moreover, it serves as a

simple tool for determining freeze outs and relic densities for generic classes of particle dark

matter. With some tune-ups, both computationally and visually, this software could be a

simple, yet powerful tool for easily determining Boltzmann yields.

A pure SU(N) theory gives dark glueballs as the main massive species contributing to

the observed dark matter density in the universe today. Phenomenological signals can be

obtained by considering a heavy mediator Φ acting as a portal between the dark and standard

sectors. Decays of the lightest 0++ into photons and gluons seem constrained by aspects of

cosmological reheating, though gluon couplings do present the opportunity for interesting
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phenomenology at colliders. Couplings induced via the Higgs can present an interesting

scenario where the lightest glueballs decay quickly, and the 1+−, 0−+ become the dominant

late-time species as their decay is protected by some symmetries. This scenario should be

investigated in more detail.
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Appendix A

Overview of Units and Unit

Conversions

The units used in this thesis are such that c = � = kB = 1 in order to make the formulae

less cumbersome. To the unfamiliar reader, a lot of the units presented in this thesis can

look utterly wrong, so let us go over a few scenarios.

We have a matter-energy equality, leading us to present quantities such as the dark matter

mass in terms of an energy (mDM = 5MeV ). This comes from Einstein‘s famous relationship

E = mc2

As c = 1 in this situation, we can see that expressing mass in energy units is natural. We also

have a temperature-energy equality, which stems from the units of the Bolztmann constant.

In SI units the Boltzmann constant, kB, is

kB = 1.38 · 10−23 J
K
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In units where kB = 1, we can always multiply or divide an equation by kB in order to

switch between units of temperature and of energy. The same goes for the units of �, but

this substitution has rarely been used in our thesis.

We have chosen the mostly minus signature for our metric, conforming to that of Peskin’s

textbook [1].
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Appendix B

Miscellaneous Computations

Here we present a couple of computations that are perhaps not the most obvious. As such,

we expand upon these computations in order to provide motivation for forms used in the

above work.

B.1 Differential Element in the Computation of 〈σv〉
If we recall in section 3.2.2, we had the differential element d3p1d

3p2 in our computation.

This form is relatively unusable in actually computing the thermally averaged cross section

times velocity, and so we include in more detail the transformation done to give us a more

practical integral.

Note in transforming from a Cartesian type differential to a spherical one, we have

d3p1 = |p1|2d|p1|d(cos θ)dφ (B.1)

We note now that the rest of our integrand is independent of θ, φ and thus we can perform a

couple of integrations on this element. Since we want to eventually introduce the Mandelstam
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variable s which has an angular dependence between p1 and p2, its prudent to align our

coordinate system with the direction of p1 and integrate the angle of p2 with respect to its

angle with this rotation. This means we can write

∫
|p1|2d|p1|d(cos θ′)dφ

∫
|p2|2d|p2|d(cos θ)dφ =

∫
4π|p1|2d|p1|

∫
2π|p2|2d|p2|d(cos θ) (B.2)

Now, from the relativistic energy equation, and its derivative we have

E2 = m2 + p2

EdE = pdp

(B.3)

So making this substitution, we our differential element has transformed to

d3p1d
3p2 = 8π2p1p2E1E2 dE1dE2d(cos θ) (B.4)

From here, the substitutions of E+, E−, s are straightforward and we get to the final, useful

differential element

d3p1d
3p2 = 2π2E1E2 dE+dE−ds (B.5)

With a transformed integration region

|E−| ≤
√

(1− 4m2/s) (E2
+ − s)

E+ ≥ √
s

s ≥ 4m2

(B.6)
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and the rest of the computation continues straightforwardly from here.

B.2 Derivative Interactions

In the section on photon couplings to our mediator Φ, we noted that the derivative interac-

tions stemming from the ∂μAν∂
μAν∂αW

a
β ∂

αW a,β gave us something like 4[(k1 · k2)(k3 · k4)],
where the 1, 2 correspond to in state particles, and the 3, 4 correspond to out state ones.

Consider first an interaction term in some scalar field Lagrangian that looks like

Lint ∼ gφ∂μφ∂μφ (B.7)

The vertex function for such a term does not stipulate which particles (in or out state)

have the derivative interactions associated with them. As such, the vertex factor takes into

account this discrepancy by setting

gφ∂μφ∂μφ → 2g(k1k2 + k1k3 + k2k3) (B.8)

Similarly, a four point function with one real scalar field yields by the same logic

λ∂μφ∂
μφ∂νφ∂

νφ → 4λ[(k1 · k2)(k3 · k4) + (k1 · k3)(k2 · k4) + (k1 · k4)(k2 · k3)] (B.9)

So it stands to reason that our derivative interactions, which contain two undetermined

fields, will have a vertex factor structure like

∂μφ
∗∂μφ∗∂νφ∂νφ → 4[(k1 · k2)(k3 · k4)] (B.10)

The only difference between the complex scalar field we are considering here and the vector
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fields in the work, is that of the polarization states, which are considered separately.
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Mathematica Notebook
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