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Abstract

This thesis presents the geometric investigation of hyperbolic partial differential

equations in the plane as carried out by Niky Kamran, Ian Anderson, and Martin

Juras. In particular, the relation between the Darboux integrability of an arbitrary

hyperbolic equation and the Laplace invariants of the linearization of this equation

is established. This extends to non-linear hyperbolic equations in the plane a clas­

sical result of Goursat for linear hyperbolic equations. The formaI setting for this

geometric investigation is afforded by the constrained variational bicomplex, which

allows the solution to a partial differential equation to be viewed as a manifold on

which standard differential geometric operations such as exterior differentiation and

Lie differentiation can be performed. The key element in this investigation is the

judicious construction and use of appropriate moving coframes which will refiect the

properties of the equations under investigation.

Résumé

Cette thèse décrit les grandes lignes de l'étude géométrique des équations aux

dérivées partielles hyperboliques telle que réalisée par Niky Kamran, Ian Anderson et

Martin Juras. En particulier, la relation liant l'intégrabilité de Darboux d'une équa­

tion hyperbolique arbitraire et les invariants de Laplace de la linéarisation de cette

même équation est étudiée. Cette relation étend au cas des équations aux dérivées

partielles hyperboliques non-linéaires un résultat classique de Goursat sur les équa­

tions hyperboliques linéaires. Le cadre formel de cette étude géométrique est fourni

par le complexe bi-variationnel contraint, exprimant la solution d'une équation aux

dérivées partielles en tant que variété sur laquelle les manipulations ordinaires de

géometrie differentielle, telles la differentiation extèrieure ou la dérivée de Lie, peu­

vent avoir lieu. L'élément clé de cette étude est la construction et l'utilisation

judicieuses d'un co-repère mobile approprié refiètant les propriétés de l'équation

étudiée.
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Chapter 1

Introduction

In this thesis, we present aspects of the geometric theory of hyperbolic partial dif­

ferential equations in the plane, following [3] and [9]. The cornerstone of this theory

is to view a partial differential equation as the locus, assumed to be a manifold, of a

particular equation in sorne higher-dimensional space; functional-theoretic proper­

ties of the partial differential equation then manifest themselves as geometric prop­

erties of this manifold. In particular, various differential operators can be defined

on this manifold, and integrability conditions can be expressed in terms of these

differential operators. Furthermore, vector fields and differential forms can also be

defined, and solutions to the original partial differential equation can be defined as

integral manifolds of differential ideals generated by certain one-forms. The choice of

an appropriate family, called a moving coframe, of one-forms adapted to the partial

differential equation leads to the expression of properties of the partial differential

equation in purely differential-geometric terms as structure equations of the moving

coframe.

The specifie result we shall study in this thesis is the equivalence established in

[3] and [9] between the Darboux integrability of an arbitrary hyperbolic equation

and the vanishing of the Laplace invariants of a linear hyperbolic equation derived

from the original partial differential equation. Such an equivalence had already been

established by Goursat [8] for linear hyperbolic equations. It is a very instructive

exercise to compare the treatment of Goursat for linear hyperbolic equations to
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that of [3] and [9] for arbitrary hyperbolic equations: Whereas Goursat's approach

is constructive and yields explicit solutions in the process of proving the equivalence,

the geometric treatment is far more implicit and hence far-reaching. AIso, whereas

Goursat's approach hinges on solving the hyperbolic equation itself, the geometric

treatment hinges on computing structure equations of particular moving coframes.

There is no reason a priori why moving coframes should embody any information of

interest about the partial differential equation, and the whole difficulty and challenge

of the geometric approach is the definition and use of appropriate moving coframes.

In the second chapter of this thesis, we present the classical theory of hyperbolic

equations in the plane as far as Darboux integrability and the Laplace transform

are concerned. We shall, in particular, state and partially establish Goursat's result

to the effect that the termination of both sequences of Laplace invariants implies

the Darboux integrability of the hyperbolic equation. In the third chapter, we

present the formaI geometric setting of jet bundles and the variational bicomplex,

together with the main technical results allowing us to fully exploit this geometric

formalization. In the fourth chapter, we shall establish the relation between Darboux

integrability and Laplace invariants using the method of moving coframes, and we

conclude with the last chapter.
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Chapter 2

Aspects of the classical theory of

hyperbolic partial differential

equations in the plane

In this chapter, we present the classical theory of Laplace transformations and Dar­

boux integrability for hyperbolic equations in the plane, as weIl as their relations

for linear hyperbolic equation, following Goursat's classical treatise [7] and [8], and

also the short treatise of Gosse [6].

2.1 Characteristics and the Cauchy problem

Consider the partial differential equation

(2.1)

defined for (x, y) in an open subset of }R2. We shall use the classical Monge no­

tation and denote the partial derivatives zx, ZY' Zxx, Zxy, Zyy by p, q, r, 8, t, respec­

tively. The Cauchy problem for equation (2.1) consists in determining the graph

(x, y) M (x, y, z(x, y)) of a solution to this equation such that it contains a given

curve r along which the tangent plane at every point is known. The Cauchy data
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is thus given by a curve

,x f-t (x(,x), y(,x), z(,x),p(,x), q(,x))

subject only to the condition dz = pdx +qdy. By the implicit function theorem, the

three conditions

dp = rdx + sdy,

dq = sdx + tdy,

F(x, y, Z,P, q, r, s, t) = 0

will allow us to determine r, s, and t as functions of ,x if and only if the functional

determinant

R S T

~ dx dy 0 = Rdy2 - Sdxdy + Tdx2

o dx dy

is non-zero, where R = ~~, S = ~~, and T = a:. ~.ïs a bilinear form in (dx, dy),

and is called the characteristic form of the partial differential equation (2.1). We

can attempt to determine partial derivatives of z of order larger than two in terms

of the Cauchy data by differentiating both sides of equation (2.1) with respect to x

and y. Denoting :::;;k by Pik, with z = Poo, the values of Pik with i + k = 3 are

provided by the following system of equations:

dP20 = P30dx + P21 dy,

dpn = P21 dx + P12dy,

dp02 = P12 dx + P03dy,

dF = 0
dx '

dF = 0
dy .

We can write ~~ = RP21 + SP12 + Tp03 + (~~) = 0, where (~~) contains no term in

Pik with i + k = 3. Sinee dF = ~~ dx + ~~ dy, the equation ~~ = 0 is a consequence

of F = 0 and ~~ = O. The partial derivatives Pik with i + k = 3 are thus to be
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determined from the system of seven equations in seven unknowns given by

F=O,

dF = 0
dy ,

dPik = Pi+l,kdx + Pi,k+ldy, i + k ::; 2.

The Pik with i + k

functional determinant

3 can be determined from this system if and only if the

dx dy 0 0

0 dx dy 0
=t::..dx

0 0 dx dy

0 R 8 T

is non-zero, where t::.. is the characteristic form. We can continue this procedure so

as to determine an the Pik with i + k > 3. Suppose then that we have determined

an the Pik with i + k = n as a function of À, through the system

F=O,

dF = 0
dy ,

(8)

dn
-

2 F 0
dyn-2 = ,

dPik = Pi+l,kdx + Pi,k+ldy, i + k ::; n - 1.

To determine the Pik with i + k = n + 1, we shaH, as before, augment this system

by the equations dXJd;y-nl~ j = 0, and the equations dPik = Pi+l,kdx + Pi,k+1dy, with

i + k = n. It is a simple matter to show that, just as previously, the n + 2 partial

derivatives Pik with i + k = n + 1 can be determined from this augmented system if

and only if the functional determinant

dx dy 0 0 0 0 0

0 dx dy 0 0 0 0

= t::..dxn - 1

0 0 0 0 0 dx dy

0 0 0 0 0 R 8 T
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is non-zero. If there does exist a value Ào of À for which ~(Ào) # 0, the solution z of

(2.1) can then be given locally by a formaI power series in x - x(Ào), y - y(Ào), the

convergence of which can be established whenever the Cauchy data (i.e. the function

F and the curve f) are analytic. This is the essence of Cauchy-Kovalewskaya's

theorem. The characteristic form ~ = Rdy2 - Sdxdy + Tdx2 is a fundamental

attribute of the partial differential equation (2.1) and is ubiquitous in the study of

partial differential equations. If the characteristic form has no real roots at a certain

point, then the equation F = 0 is said to be elliptic there; if it has exactly one real

root, the equation is said to be parabolic; the case of interest to us is the one where

the characteristic polynomial has two real distinct roots at every point, and we shall

assume this throughout the thesis. In this case, the equation F = 0 is called a

hyperbolic equation. For equation (2.1) to be hyperbolic, therefore, we need to have

4RT - S2 < 0 everywhere.

The notion of characteristic can be easily generalized. Suppose, for simplicity and

without loss of generality, that in the equation F = 0 we have solved for r in terms

of x, y, Z,P, q, s, t, and that F = 0 can be rewritten as r + f(x, y, Z,P, q, s, t) = 0, or

equivalently, P20 + f(x, y, Poo, PlO, POl, Pn, P02) = O. Differentiating both sides of this

equation with respect to y allows us to compute aIl of the P2,k in terms of the Pik,

with i = 0,1. Differentiating with respect to x, on the other hand, will allow us to

compute aIl the Pik with i 2': 3 in terms of the Pik with i ~ 2, and hence in terms

of the Pik with i = 0, 1. Thus, aIl of the Pik with i + k = n - 1 will be determined

once PO,n-I,PI,n-2 and the Pik with i + k < n -1 are known. The system (S), which

allowed the determination of the Pik with i + k = n, is then equivalent to the system

dz = PlOdx + POldy,

dplO = P20dx + Pndy,

(S') dPI,n-2 = P2,n-2dx + PI,n-Idy,

dpOI = Pn dx + P02 dy,

dPO,n-1 = PI,n-I dx + Po,ndy,
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where the P2,i are determined from the PO,i and Pl,i by differentiating both sides of

P2,O + 1 = 0 with respect to y. Doing so i times, we obtain

di l âl âl
P2,i + (dy) + âsPI,i+l + et PO,i+2 = 0, i = 0, ... , n - 2,

where (*1) contains no terms in Pjk with j + k = i + 2. The Pik with i + k = n are

obtained from the following three relations:

dPI,n-2 = P2,n-2dx + PI,n-Idy,

dPO,n-1 = PI,n-I dx + Po,ndy,

dn
-

2 f Qi.. Qi.._
P2,n-2 + (dyn-2) + 8sPI,n-1 + atPO,n - 0,

where (~::~{) contains no terms in Pik with i + k = n. Solving for PO,n, we obtain

the equation

The characteristic equation (*-)2 - %f* + Wt has, by assumptioil, two real distinct

roots ml and m2. If *= ml, then PO,n can be chosen arbitrarily, provided

dPI,n-2 dPO,n-1 [â1 ] (d
n
- 21 ) _ 0

-=--~- + - - ml + -- -
dx dx 8s dyn-2'

which is equivalent to

dPI,n-2 dPO,n-1 (dn-21) _
d + m2 d + d 2 - o.x X yn-

We thus define the first system of characteristics of order n as the system

dy _
dx - ml,

dz = PlOdx +POldy,

(1) dplO = pzodx + Plldy, ,dPl,n-Z = PZ,n-Zdx + Pl,n-ldy,

dpOI = Pn dx + P02 dy, ,dPO,n-2 = PI,n-2dx + PO,n-Idy,
d n - 2 j

dPI,n-2 + m2dpO,n-1 + (dyn-2 )dx = o.

The second system of characteristics of order n is defined by interchanging ml and

m2 in the above system.
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2.2 Involution and invariants

Consider a hyperbolic equation given in the form

r + 1 = 0,

and consider an arbitrary function e/> of order n, that is, e/> is a function of x, y, and

the Pik, with i + k ::; n. As we saw before, each Pik can be expressed in terms

of the POj and the Plj with j ::; i + k. We can thus assume that e/> is a function

of x, y, Z, Pl,O, ... ,Pl,n-l, PO,l, ... ,PO,n. For e/> to be of order n, we need to have at

least one of~ and -Ji- non-zero. We assume, without loss of generality, thatPl,n-l PO,n

~88 # O. Consider now the system of equations:Pl,n-l

{
r+ f = 0,

e/> = o.

We wish to determine whether or not this system has a solution. The Pik with

i + k = n + 1 can be obtained from the system of equations

tJ:!é. = (tJ:!é.) ~ -..Ê!L = 0dx dx + 8Pl,n_1 P2,n-l + 8Po,n Pl ,n ,

tJ:!é. - (dei» ~ -..Ê!L - 0dy - dy + 8Pl,n-l Pl,n + 8Po,n PO,n+l - ,
dn-1(r+f) _ (li (li (dn-1(r+f)) - 0

dyn 1 - P2,n-l + 8sPl,n + atPO,n+l + dyn 1 -,

where none of (~:), (~), (dn~:tif)) contain terms in Pik with i + k = n + 1. We say

that the hyperbolic equation r + 1 = 0 is in involution with the equation e/> = 0 if

these three equations reduce to two. It is easy to see that this will be the case if

and only if

and

(2.2)

~(de/» + al ae/> de/>
apO,n dx as apl,n-l dy

ae/> ae/> dn-ll
----(-.-) =0.
apl,n-l apO,n dyn-l

Equation (2.2) is readily identified as the characteristic equation of the hyperbolic

equation r + 1 = O. There will thus be two distinct types of equations in involution
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with r + f = 0, depending on whether the ratio -J!!L/~ is equal to ml or to m2·
PO,n Pl,n-l

We will say that the first system of characteristics is in involution with a function

</J of order n if the following holds:

Similarly, the second system of characteristics will be said to be in involution with

a function </J of order n if we have

The system (A) could be verified as a consequence of the equation </J = 0; in this

case, r + f = 0 and </J = 0 are simply said to be in involution. It could also happen,

however, that the system (A) is verified identicaIly, independently of the condition

</J = O. Since </J intervenes in (A) only through its derivatives, it is easy to see that

whenever (A) holds identically irrespective of </J = 0, then it holds as weIl for </J = c,

for any real constant c. In this case, the equation r + f = 0 is in involution with

aIl the equations </J = c, with cany real constant. We say in this case that </J is an

invariant of order n of the first system of characteristics. The reason for calling </J

an invariant is that </J does indeed stay constant along the characteristics of order n

of the hyperbolic equation r + f = O. To see this, note that

d</J =
8</J 8</J 8</J 8</J 8</J
-dx + -dy + -dz + --dPl,O + ... dPl,n-l +
8x 8y 8z 8Pl,0 8Pl,n-l

8</J 8</J
--dpO,l + ... --dPo,n,
800,1 8Po,n

and that replacing the expressions dPik by the ones obtained from the system of

characteristics of order n, we are left with

d</J d</J 8</J 8</J dn- l f
d</J = [(dx) + ml(dy))dx + -8-dPo,n - 8 [(d n-l )dx + m2dPO,n) ,

PO,n Pl,n-l Y

which is zero, since </J is assumed to satisfy the system (A) identicaIly. We thus see

that if </J is an invariant of order n of the first system of characteristics of r + f = 0,
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then d<jJ can be expressed as a linear combination of the forms:

dz - PI,odx - Po,ldy,

dy - mldx,

dPI,O - P2,odx - PI,ldy, ,dPI,n-2 - P2,n-2dx - PI,n-Idy,

dpO,1 - PI,ldx - PO,2dy, ,dPO,n-1 - PI,n-I dx - Po,ndy,

dPI,n-1 - P2,n-Idx - PI,ndy,

which define the first system of characteristics of arder n of r + f = o. Conversely, if

d<jJ is in the linear span of the one-forms defining one of the systems of characteristics

of r + f = 0, then <jJ remains constant along any characteristic of arder n of that

system, and <jJ is an invariant of arder n of r + f = o.
Consider now the system of equations

r + f = 0,

(8) <jJ = 0,

1/J=0

where <jJ and 1/J are of arbitrary arder. Assume that bath <jJ and 1/J are in involution

with r + f = 0, and that <jJ is in involution according ta the system (A) and 1/J

according ta the system (B) of characteristics; that is, we have:

The functional determinant D( D(c/>,'l/J) ) = (ml - m2)(~aa ~)2 is non-zero by
PO,n,Pl,n-l Pl,n-l Pl,n-l

virtue of the assumption of hyperbolicity of the equation F = 0 (or equivalently

r + f = 0). Renee, by the implicit function theorem, PO,n and PI,n-1 can be obtained

from the equations <jJ = 0 and 1/J = o. If Z H z(x, y) is a solution of the system

(8), aH the partial derivatives of arder n of z can thus be expressed in terms of

X,y,Z,PI,O,PI,I,··· ,PI,n-2,PO,I,PO,2,··· ,PO,n-l· Thus, Z and its partial derivatives

13



satisfy the differential system:

dz = Pl,odx + Po,ldy,

dPl,O = P2,odx + Pl,ldy,

(E)

dPl,n-2 = P2,n-2dx + Pl,n-ldy,

dPO,n-l = Pl,n-l dx + PO,ndy,

where Pl,n-l and PO,n are obtained from the equations 4J = aand 'ljJ = 0, whereas the

P2,i are expressed in terms of the PO,j and Pl,k. The existence of a solution z to the

system (5) is thus equivalent to the complete integrability of the system (E). The

system (E), on the other hand, will be completely integrable if and only if the three

equations r + f = 0, 4J = 0, 'ljJ = ayield a unique set of values for the (n + l)th order

derivatives PO,n+l,Pl,n, and P2,n-l' The equations that PO,n+l,Pl,n, and P2,n-l should

satisfy are obtained by differentiating both sides of the equations in the system (5),

yielding:

( dn-1t 8t!li_
dyn-l) + P2,n-l + 8sP1,n + atPO,n+l - 0,

(~) + 8::nP1,n + 8P~:-1 P2,n-l = 0,

(E') (!Y!.) ~ ~ - ady + 8Po,n PO,n+l + 8Pl,n-l Pl,n - ,

(~~) + 8;t,nP1,n + 8P~:-1 P2,n-l = 0,

( d'I/J)+~p +~ -0dy 8Po,n O,n+l 8Pl,n-l Pl,n - ,

where none of the terms(:;:~{),(~:), (~t), (~~), (~) contain terms in Pik with

i + k = n + 1. Since 4J is in involution with r + f = a according to the system

(A) and 'ljJ is in involution with r + f = a according to the system (B), the five

equations in system (E') reduce to three independent equations; the system (E) is

thus completely integrable.

2.3 Darboux integrability

Consider the equation r + f = 0, which we assume to be hyperbolic. Assume u

and v are both independent invariants (of whatever order) of the same system of

14



characteristics, say (A). Assume that on a solution surface (x, y) r-+ (x, y, z(x, y)) of

r + f = 0, we move along characteristic curves of the first system, given by ~ = ml.

Along one such curve, which we can 10caIly parametrize by either x or y (say x),

y, z, and the partial derivatives Pik are aIl functions of x; so too then are u and v,

and sinee they remain constant along these characteristics, they satisfy a functional

relationship of the form c/J(u, v) = 0, which we can assume, without loss of generality,

can be written u = c/J(v). Every solution of r + f = °thus satisfies u = c/J(v) for

a particular choiee of c/J. Conversely, u and v being invariants of the system (A) of

characteristics of r +f = 0, du and dv are in the linear span of the system of I-forms

(1) of characteristics, and so is then du - c/J' (v )dv, for any choice of function c/J. The

equation u - c/J(v) =°is thus in involution (according to the system (A)) with the

hyperbolic equation r + f = o. Assume now that UI and VI are both independent

invariants of the second system (B) of characteristics. Just as before, the equation

UI - 'ljJ(VI) = °is always in involution (according to the system (B)) with r + f = 0,

for any choiee of function 'ljJ. Putting these two observations together, we arrive at

the cornerstone of Darboux's method of integration, namely that if u, v are both

independent invariants of the same system of characteristics, and UI, VI independent

invariants of the other system, then the system

r + f = 0,

u = c/J(v),

UI = 'ljJ(VI),

is completely integrable, for any choice of functions c/J and 'ljJ. The essential step in

Darboux's method of integration is therefore the computation of the invariants u, v

and UI, VI, if they do exist. An attempt to classify aIl Darboux-integrable equations

has been made by Vessiot ([11] and [12]).

The simplest, almost trivial, example of the Darboux method is given by the
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wave equation s = O. The first system of characteristics is given by

(1)

dx = 0,

dz - qdy = 0,

dp=O,

dq - tdy - 0,

and the second system of characteristics is given by

(I1)

dy = 0,

dz - pdx = 0,

dp - rdx = 0,

dq = o.

The first system of characteristics thus has independent invariants x, p, and the

second system has independent invariants y, q. For any choice of functions cP and 'l/J,

the system

s = 0,

p = c/J(x),

q = 'l/J(y),

is thus completely integrable, and its general solution is given by (x, y) t---t z(x, y) =

<I>(x) + '1J(y), where <I>'(x) = c/J(x) and '1J'(y) = 'l/J(y).

The simplest non-trivial example of the Darboux method of integration is pro­

vided by Liouville's equation s = eZ
• The first and second systems of characteristics

of second order are given by

dx= 0,

dz - qdy = 0,

(1) dp - eZdy = 0,

dq - tdy = 0,

dr - peZdy = 0,
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and

dy = 0,

dz - pdx = 0,

(II) dp - rdx = 0,

dq - eZdx = 0,

dt - qeZdx = 0,

respectively. From the first system, we obtain the independent invariants x and

r - p2/2, and from the second system, we obtain the independent invariants y and

t - q2/2.Therefore, for any choice of functions </> and 'ljJ, the system

dz = pdx + qdy,

dp = (p2/2 + </>(x))dx + eZdy,

dq = eZdx + (q2/2 + 'ljJ(y))dy,

is completely integrable. It is easy to see that the general solution of this system is

given by z = Log &~~;2' where X is a function of x only, and Y a function only of

y. Conversely, any function z of this form is a solution of Liouville's equation.

2.4 The Laplace transform

Consider the linear hyperbolic equation

(2.3)

where the coefficients a, b, c, and Mare given functions of the independent variables

x, y. We can rewrite this equation as

o oz oz oa-(- + az) + b(- + az) - (- + ab - c)z = M.
OX oy éJy éJx

If (g~ +ab-c) = 0, then, writing Zl = g~ +az, we obtain ~+bZl = M, the general

solution of which is given by Zl = e- Jady {X + J{Y + JM eJbdxdx}, where Y is

an arbitrary function of y. z is in turn obtained from Zl by solving the differential

equation g~ + az = Zl, yielding z = e- J ady{X + J{Y + JM eJ bdx dx }eJ ady-bdx dy},
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(2.4)

where X is an arbitrary function of x. Equivalently, the original equation can be

rewritten as

[J [Jz [Jz [Jb
-(- + bz) + a(- + bz) - (- + ab - c)z = M.
[Jy [Jx [Jx [Jy

If now gt + ab - C = 0, then, writing LI = g~ + bz, we obtain the ordinary

differential equation a~;l + bZ-1 = M, the general solution of which is given by

Z-l = e-JadY{X + JMeJadYdy}, where X is an arbitrary function of x. Just as

before, z can be obtained from Z-l by solving the ordinary differential equation

g~ + bz = LI, yielding z = e-Jbdx{y + {X + JMeJadYdy}eJbdx-adYdx}, where Y

is an arbitrary function of y. In conclusion, if either of ~~ + ab - C and gt + ab - C

vanishes, then the linear hyperbolic equation (2.3) can be integrated out. We calI

~~ + ab - C and gt + ab - C the Laplace invariants of the linear hyperbolic equation

(2.3), and denote them by h and k, respectively.

Assume now that h =1= O. We can rewrite equation (2.3) as ~ + bZI - hz = M,

with Zl = ~~ + az. Differentiating both sides of this equation with respect to y, and

expressing z in terms of Zl in the resulting equation yields the equation

[J2 Zl [JZI [JZI
[Jx[Jy + al [Jx + bl [Jy + CIZI = Ml,

which is of the same form as (2.3), and where the coefficients al, bI, Cl, Ml are given

by

a = a _ Ologh
1 ay ,

bl = b,

C = C - aa + ab _ bOlogh
1 ax ay ay'

M = M(a _ Ologh) + aM.
1 ay ay

If a solution Z to (2.3) is known, then a solution Zl to (2.4) is immediately obtained

by Zl = ~~ + az. Conversely, if a solution to (2.4) is known, then a solution Z to
5 b M

(2.3) is immediately given by Z = âx +t - .Thus, the integration of equation (2.3)

is equivalent to the integration of equation (2.4). Since equation (2.4) is of the same

form as equation (2.3), we can compute its Laplace invariants, respectively given by

hl = ~ + al bl - Cl, and kl = ~: + al bl - Cl, or equivalently, hl = 2h - k _ a;~~ryh,
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(2.5)

and kl = h. By assumption h is non-zero, but we could very weU have hl = 0,

leading to a solution of (2.4) and thereby to a solution of (2.3).

We caU Zl the Y -Laplace transform of z, and equation (2.4) the Y-Laplace

transform of equation (2.3). It is important to note that the Y - Laplace transform

of Z is always defined, whereas the Y -Laplace transform of equation (2.3) is defined

only when its Y - Laplàce invariant h is non-zero.

Similarly, the X-Laplace transform of Z is defined as Z-l = g~+bz, and whenever

k =1= 0, the X-Laplace transform of equation (2.3) is defined as

fPLI 8z_ l b 8z_ l M
8x8y + a-l OX + -17iiJ + C-lZ-l = -1,

where the coefficients are given by

a-l = a,

b = b _ 8logk
-1 8x '

C = C - 8b + 8a _ a 8logk
-1 8y 8x 8x '

M - M(b _ 8l0gk) + 8M
-1 - 8x 8x'

The laplace invariants of the X -Laplace transform of equation (2.3) are given by

h - 8a_l b - - k d k - 8Ll b - - 2k - h _ 8
2
logk

-1 - 8x + a-l -1 C-l - ,an -1 - 8y + a-l -1 C-l - 8x8y .

Just as with (2.4), the integration of (2.5) is equivalent to the integration of (2.3).

Since (2.4) is of the same form as (2.3), we can apply the X - and Y -Laplace

transforms to it in case both hl and kl are non-zero; in case either of hl and kl

vanishes, we can solve for Zl, and subsequently for z, as was seen earlier. Similarly,

we can apply the X-and Y-Laplace transforms to equation (2.5) in case both

h_ l and k_ l are non-zero. in case either of h_ l and k_ l vanishes, we can solve for

LI, and subsequently for z. A simple calculation shows that with h =1= 0, apply­

ing the X-Laplace transform to the Y-Laplace transform of equation (2.3) yields

an equation which can be deduced from equation (2.3) by replacing the dependent

variable Z by hz. Similarly, with k =1= 0, applying the Y-Laplace transform to the

X - Laplace transform of equation (2.3) yields an equation which can be deduced

from equation (2.3) by replacing the dependent variable z by kz. Thus the repeated

application, whenever the corresponding Laplace invariants do not vanish, of the X -
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and Y-Laplace transforms to equation (2.3) yields only a singly-indexed sequence

... , (E_ 2 ), (E_I ), (E), (El)' (E2 ), ..• of linear hyperbolic equations, where (E) de­

notes the original equation (2.3), and where (EHI ) is the Y -Laplace transform of

(Ei) and (Ei-d its X -Laplace transform. It follows from our preceding discussion

that aIl of the equations in this sequence, and in particular the original equation (E),

can be integrated as soon as any of them can be integrated. The Laplace method of

integration consists in generating successive elements of this sequence, starting from

(E), until the X-or Y -Laplace invariant of the last generated equation vanishes.

Consider now the homogeneous linear hyperbolic equation

which we denote by (E). Assume that the Y - Laplace invariant h of (E) is non-zero.

Taking the Y -Laplace transform of (E) yields a new equation (El), given by

cPzl âZI âZI
âxây + al âx + bl ây + CIZI = 0,

which is homogeneous as weIl. Assume that hl =1= 0, h2 =1= 0, ... ,hi- l =1= 0, so that

we can take i successive Y -Laplace transforms, and obtain equation (Ei ):

â2 zi âZi âZi
âxây + ai âx + bi ây + CiZi = O.

Assume now that hi = O. Then, the general solution of (Ei) is of the form Zi =

a(X+J f3Y dy), where a, f3 are given functions of x and y, X is an arbitrary function

of x, and Y and arbitrary function of y. Working our way backwards, to z, we obtain

where A, Al, " . ,Ai are given functions of x, y. Since y is an arbitrary function of

y, we may choose it as being identically zero. We then obtain:

(2.6)

We conclude that whenever the sequence (hl) of Y -Laplace invariants of (E) ter­

minates at l = i, i.e. hl =1= °for l < i and hi = 0, then (E) has a solution of the
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form (2.6) depending on an arbitrary function of x. It is also a simple matter to

show that conversely, whenever (E) admits a solution of the form (2.6), then its

sequence (hl) of Y-Laplace invariants terminates at most for l = i. We arrive at a

similar conclusion concerning the X -Laplace invariants by exchanging x and y. In

particular, if the sequence (kl ) of X-Laplace invariants is such that kl =1= 0 for l < j

and kj = 0, then (E) has a general solution of the form

(2.7)

where E, El,· .. ,Ej are given functions of x, y, and Y is an arbitrary function of

y; conversely, whenever (E) has a solution of the form (2.7), then the sequence (kl )

of X -Laplace invariants of (E) terminates at index j at the latest. If now both

sequences (hl) and (kl) of Laplace invariants of (E) terminate, say (hl) at index i

and (kl ) at index j, then, by virtue of its linearity, (E) admits a general solution of

the form

where A, Al,· .. ,Aï, E, El, ... ,Ej are given functions of x, y, X is an arbitrary

function of x, and Y and arbitrary function of Yi and conversely, if (E) has a

general solution of the form (2.8), then both of its sequences of Laplace invariants

vanish.

2.5 Darboux integrability and Laplace

invariants

Consider the linear hyperbolic equation given by:

02Z oZ oz
<p(z) axay + aax + bay + cz = O. (2.9)

Assume that the sequence of X -Laplace invariants of (2.9) terminates at index p.

Then, it follows that (2.9) admits a solution of the form

(2.10)
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(2.11)

(2.12)

where B, BI,' .. ,Bp- l are given functions of x, y, and Y an arbitrary function of y.

Differentiating both sides of (2.10) with respect to x yields

dz _ dBy dBly' dBp-IY(P_I)
dx- dx + dx + ... + dx

and P successive differentiations of both sides of (2.10) with respect to x yield P

equations of the form

diz _ diB Y diBI y~ . . . diBp- l y(p-l)
d . - d' + d' + + d' ,i = 1,'" ,P,Xl Xl Xl Xl

to which we can append equation (2.10). We thus obtain a system of P + 1 linear

equations in Y, Y'"" ,y(p-l), from which it foIlows that z must satisfy an ordinary

differential equation of the form

8Pz 8P- 1z
FI(z) = 8xp + Tl 8xp- 1 + ... + Tp = 0,

where the Ti are functions of X and y. Differentiating both sides of (2.11) with

respect to y, differentiating both sides of (2.9) (p - 1) times with respect to x, and

combining the results, we obtain an equation of the form

dP-l<I> dP- 2<I> dFI(z)
d 1 +Œl-

d
2 + ... + Œp_l<I>(Z) - d - (3FI (z) = 0,

~- x~ y

where ŒI, Œ2,' .. ,{3 are functions of X and y. The coefficient of g:~ in this equation

is a - (3, and equating it to zero, we can rewrite (2.12) as

dP-l<I> dP- 2<I> d
eJadY {__ +ŒI-- + ... + Œ_1<I>(Z)} = -{eJadYFI(Z)},

dxp- l dxp- 2 p dy

Thus, any solution z of (2.9) automaticaIly satisfies d~{eJadYFI(Z)} = 0 as weIl.

Noting that the first system of characteristics of (2.9) is given by

dx = 0,

dz = qldy,

dql = q2dy,

(1)
dqn-l = qndy,

dPI = P2dy,

dp = âpndy
n ây ,
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we have that

d(
JadYF( ))= d(eJadYFl(Z))d d(eJadYFl(Z))d = d(eJadYFl(Z))d

e 1 Z dx x + dy y dx x,

and hence eJadyFI (Z) is a function of order p such that its differential lies in the

linear span of the first system of characteristics of (2.9); this yields two independent

invariant functions for the first system of characteristics, namely x and eJadyFI (z).

Similarly, if the sequence of X -Laplace invariants of (2.9) terminates at index q,

then we can construct a function of order q of the form eJbdxG1 (Z) such that its dif­

ferential d(eJbdxG1 (z)) lies in the linear span of the second system of characteristics

of (2.9); this yields two independent invariant functions for the second system of

characteristics, namely y and eJbdxGl(Z), We thus arrive at the important conclu­

sion that if both sequences of Laplace invariants of the linear hyperbolic equation

(2.9) terminate, then (2.9) is Darboux-integrable. It is also shown in [8] that con­

versely, whenever (2.9) is Darboux-integrable, then both of its sequences of Laplace

invariants do terminate.

As a simple example, consider the linear hyperbolic equation

s = z. (2.13)

The Y -Laplace invariant of (2.13) is h = 1, and its Y -Laplace transform yields the

same equation. By symmetry, the same is true for the X - Laplace invariant and

transform. In particular, the sequences of X-and Y-Laplace invariants of (2.13)

never terminate. Thus, (2.13) is not Darboux integrable.
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Chapter 3

The jet bundle and the variational

bicomplex

In this chapter, we present the formaI framework in which the geometric study of

differential equations is performed. Although this study has its roots in the work of

Élie Cartan [4], we follow here the modern treatment described in [1] and based on

the variational bicomplex originally introduced by Tulczyjew [la].

3.1 Pfaflian systems

Consider the partial differential equation

(3.1)

As we saw earlier, we can replace the partial derivatives zx, Zy, Zxx, Zxy, Zyy with the

variables p, q, r, s, t, respectively, so as to treat them as variables in their own right.

Let now U C JR2 be an open set and assume that the equation

F(x, y, z,p, q, r, s, t) = a (3.2)

defines a seven-dimensional submanifold ~7 of U x ]R6 which is parametrized by

(x, y). Let i : ~7 Y U X ]R6 be the inclusion mapping. Consider the 1-forms on
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u X IR6 given by

Wl = dz - pdx - qdy,

W2 = dp - rdx - sdy,

W3 = dq - sdx - tdy.

Let z : (x, y) H z(x, y) be any IR-valued function on U. The graph of z is defined

as the image of the map (x, y) H (x, y, z(x, y)); we define the 1-jet of z as the map

l z : (x, y) H (x, y, z(x, y), zx(x, y), Zy(x, y)),

and its two-jet as the map

j2Z : (x, y) H (x, y, z(x, y), zx(x, y), Zy(x, y), zxx(x, y), Zxy(x, y), Zyy(x, y)).

If z is a solution to (3.1), then j2Z(X, y) E ~7, V(x, y) E U, and (j2)*Wl = (j2)*W2 =

(P)*w3 = O. In other words, the map pz defines an integral manifold for the

system of 1-forms {w\ w2
, w3} which is a submanifold of ~7. Now since i*dw =

d(i*w), if z is a solution to (3.1), then pz defines an integral submanifold of ~7 for

the system {w\w2 ,w3,dw\dw2 ,dw3} as well, and since i*(w /\ 'T]) = i*(w) /\ i*('T]) ,

pz defines an integral submanifold of ~7 for the ideal generated by the forms

{w\ w2 , w3,dw\ dw2 , dw3}. Such an ideal is called a differential ideal. If, as is the

case here, this ideal is generated by a family of 1-forms and their exterior deriva­

tives, then such an ideal is called a Pfaffian system. Thus, two-jets of solutions

to (3.1) are submanifolds of ~7 which are integral manifolds of the Pfaffian system

generated by the forms {w\ w2
, w3}. Conversely, if i : (x, y) H (x, y, z,p, q, r, s, t)

is a two-dimensional submanifold of ~7 such that i*w1 = i*w2 = i*w3 = 0, then

z : (x, y) H z(x, y) is a solution to (3.1). Thus the problem of finding solutions to

(3.1) is equivalent to the problem of finding two-dimensional integral manifolds of

the Pfaffian system generated by {w\ w2 , W3} on the seven-dimensional submanifold

~7 of U x IR6 defined by (3.2).

Equation (3.1) gives one set ofrelations between the various partial derivatives of

order 2 of a solution. Relations between higher-order partial derivatives can also be

established by differentiating both sides of (3.1) arbitrarily many times with respect
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to x and y. For example, differentiating both sides of (3.1) once with respect to x

and once with respect to y yields the two additional relations:

dF oF oF oF oF
dx ox + oz zx + ozx Zxx + oZy Zxy +

oF oF oF
~zxxx+ ~Zxxy + ~Zxyy = 0,
UZxx uZxy UZyy

dF oF oF oF oF
d

~+~Zy+~Zxy+~Zyy+
y uy uZ uzx UZy

oF oF oF
~Zxxy+ ~Zxyy + ~Zyyy = O.
uZxx uZxy UZyy

Here again, solving (3.1) is equivalent to finding two-dimensional integral manifolds

of a particular Pfaffian system (generated by six one-forms) on a nine-dimensional

submanifold of U x RIO (more precisely, the one defined by F = 0, ~~ = 0, ~~ = 0).

Note that working on this nine-dimensional submanifold, we can consider func­

tions which involve partial derivatives of the third order of the solution to (3.1),

something which could not be done in the context of the former, seven-dimensional

submanifolds. There is a real advantage gained in not restraining oneself a priori by

the derivative order; this suggests that one must work not on a finite dimensional

submanifold of sorne U x Rn, no matter how large n, but rather on an infinite di­

mensional submanifold of another infinite dimensional manifold. This is what we

shaH make precise next.

3.2 Jet bundles

Let 7f : E -+ M be a fiber bundle over a connected base manifold M. Since aH our

considerations will be local, we can think of M as an open connected subset of Rn,

for sorne n E N*. Similarly, we can think of E as the product M x Rm for sorne

m E R*, and of 7f as the trivial bundle. Let s : M -+ E be a section of 7f. The

image s(M) of s is the graph of a particular Rm-valued function on M. Conversely,

if f : M -+ Rm is a given function, then the map x H (x, f(x)) is a section of 7f.

We extend this basic formalism as foHows: if s : U -+ E and s' : U -+ E are two
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local sections of E, and U, U' open subsets of M, then we say that s and s'are

equivalent at pEU n U' to order k if their partial derivatives to order k agree at p..

Note that this definition is independent of any trivialization used. The equivalence

class of s at p under this equivalence relation is denoted by jk (s) (p), and is called

the k-jet of s at p. We thus define the bundle 7rt : Jk(E) -+ M of k-jets of local

sections of E. For any point of M, the fiber (7rt) -1 (p) consists of equivalence classes

of local sections of 7r at p. If the local coordinates on Mare given by (Xi)i=l,... ,n,

and the fiber coordinates on E by (ZO<)o<=l, ... ,m, then the induced local coordinates

on Jk(E) are (Xi,Zo<,Z~,Z~i2'··· ,Z~i2"'ik)' where 1 :s; il :s; i2 :s; ... :s; ik :s; n,

and where ZO<(jk(S)(p)) = sO< (p) , Zf(jk(S)(p)) = ~:: (p), zij(jk(s)(p)) = a~~~:j (p),

and so on. We define JO(E) as being E itself. For any k, l E N with k ~ l, we

have the obvious projection 7rt : Jk(E) -+ Jl(E). This defines an inverse system

{Jk(E),7rt} of topological spaces. The inverse limit of this system is denoted by

Joo(E) and yields the bundle 7rM : JOO(E) -+ M, together with the projection maps

7r'k : Joo (E) -+ Jk (E), and 7r~ : JOO (E) -+ E. 7rM : JOO (E) -+ M is called the

infinite jet bundle of the bundle 7r : E -+ M. The fiber at p of the infinite jet

bundle is defined as equivalence classes, denoted JOO (s) (p) of local sections of p,

where two local sections s, s'are said to be equivalent at p if they have the same

partial derivatives to all orders at p. The equivalence class of s at p is called the

infinite jet of s at p, and is denoted by joo(s)(p). Clearly, any section s : U -+ E of

the bundle 7r lifts to a unique section joo(s) : U -+ Joo(E), called the infinite jet of

s. Conceptually, if E is the space coordinatized by the independent variables and

the dependent variables, the latter representing function values, Joo(E) is the space

coordinatized by the independent variables, the dependent variables, and all partial

derivatives of the dependent variables with respect to the independent variables.

Let f : Jk(E) -+ P, where P is sorne arbitrary smooth manifold, be a smooth

function. For any l ~ k, we can pull back f to a smooth P-valued function on

Jl(E) through the map f H f 07rk = (7rk)*(J). This defines the direct sequence

{coo(Jk(E), P), (7rk)*}, and we define the set Coo (Joo (E), P) of smooth functions

from Joo(E) to P as the direct limit of this sequence. By definition of the direct
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limit, a function f : joo(E) -+ P is smooth if and only if it factors through a

smooth function on jk (E) for sorne kEN, i.e. there exists !k : jk (E) -+ P such

that f = !k 07r'k. We call k the order of f. Viewing functions as zero-forms, we

can extend this construction to differential forms as well. Let /\P (jk (E)) be the pth

exterior product bundle. The sequence {/\P(jk(E)), (7rk)*} is a direct sequence with

direct limit /\P(joo(E)), the pth exterior product bundle of joo(E). A section of

/\P(joo (E)) is called a differential form on E. Every smooth differential p-form w

on joo(E) is represented by a p-form won jk(E) for sorne kEN, i.e. w = (7r'k)*(w).

In local coordinates, a p-form w on joo(E) is therefore a finite sum of terms of the

type

(3.3)

where r + s = p, and where the coefficient A is a smooth function on joo(E). The

order of the form (3.3) is the maximum of the orders of the coefficient function A

and the differentials dZÏ.

A vector field X on joo(E) is defined as a derivation on the ring coo(Joo(E)) of

smooth functions on joo(E). In local coordinates, we have

(3.4)

where the coefficients Ai and B~ ...ik are smooth functions on joo(E). Since smooth

functions f and forms w on joo(E) are of finite order, the expressions < df, X >

and < w, X > always reduce to finite sums and are therefore well-defined.

Definition 3.1 A differential form w on joo(E) is called a contact form if, for any

local section s of E, we have (joo(s))*(w) = o.

Contact forms are offundamental importance in all that follows since they character­

ize submanifolds of joo(E) which are graphs of infinite jets of functions on M. The

distributivity of the pullback operation with respect to the cup product on forms

implies that the set of contact forms on joo(E) is actually an ideal in n*(joo(E)),
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denoted by C(joo (E) ), and called the contact ideal of joo (E). C(joo (E)) is generated

by the contact one-forms

for aU k E No We denote by CS(joo(E)) the sth exterior product of the contact ideal

Definition 3.2 Let 1f' : E' -+ M' be another fiber bundle. A smooth map

is called a generalized contact transformation if it preserves the contact ideal, i. e.

If, in addition, <P covers a smooth map <Pl : JI (E) -+ JI (E'), i. e. <PI01ff = (IT') f O<P,

then <P is called a classical contact transformation.

Definition 3.3 A vector field X on joo(E) such that X -,w = 0 for every contact

one-form w is called a total vector field.

A total vector field on joo(E) can be seen as a vector tangent to the graph of the

infinite jet of a section of E. If the vector field in (3.4) is a total vector field, then

we should have X-,t9~"'ik = 0, "la E {l"" ,ml, Vk E N, yielding X = AjDj , with

D j the total vector field

D 0 0 Ci 0 Ci
j = oxj + OZCi Zj + OZCi zid + ....

~1

The Lie bracket [X, Y] of the two total vector fields X = AiDi and Y = BiDi is the

total vector field defined as [X, Y] = (Aj DjBi - BjDjAi)Di.

3.3 The variational bicomplex

We say a form w on joo(E) is of type (r, s), with r + s = p, if w(XI ,'" ,Xp ) = 0

whenever either more than s of the vector fields Xi are KM-vertical, or more than
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r of them are total vector fields. Let nr,s(Joo(E)) be the space of type (r, s) forms

on Joo (E). In local coordinates, a type (r, s) form is a finite sum of terms

a(x z(k»)dx i1 /\ .•. /\ dxir /\ O~1 . /\ •.• 0ka1 k .
, JI "'Jpl 1 ... Ps

By virtue of working on the infinite jet bundle Joo(E), we have the direct sum

decomposition

r+s=p

and we define the corresponding projection map 7fr,s : np(Joo(E)) -+ nr,S(Joo(E)).

Using local coordinates, it can be seen that the exterior derivative is a map

We can thus write d = dH + dv , where dH : nr,S(Joo(E)) -+ nr+l,s(Joo(E)) and

dv : nr,s(Joo(E)) -+ nr,S+l(Joo(E)) are defined as dH = 7fr+l,sod and dv = 7fr,s+lod,

respectively. dH is called the horizontal, and dv the vertical, exterior derivative.

Since 0 = d2 = (dH + dV )2 = d'k + dHdv + dvdH + d't, grouping these terms

by degree, we obtain d'k = d't = 0 and dHdv = -dvdH. We define the free

variational bicomplex for the fiber bundle 7f : E -+ M as the double complex

(0.*,* (Joo (E) ), dH, dv ) of differential forms on the infinite jet bundle Joo (E) of E.

-..!!.!4 0.1,1 (Coo) -..!!.!4 ... -..!!.!4 nn,1 (Coo)

Idv Idv

Idv
-..!!.!4 n 1,2(Coo)

Idv

-..!!.!4 ... -..!!.!4 nn,2 (Coo)

1dv
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Thus dHf = 'Tfl,O(df) = [ÊL + .Ê.Lz~ + .Ê.Lz~. + .. ·]dxi
, &x' &z'" ~ &zj ~J .

'Tf0,l(df) = [.Ê.LOa + .Ê.LO~ + .Ê.LO~. + ... ].
&z'" &zf ~ &zij ~

Now let 'Tf' : E' --+ M' be another fiber bundle, and let

be a smooth map. In general, the pul1back

will not preserve the horizontal and vertical bigrading on forms. This leads us to

the fol1owing:

Definition 3.4 Forw E nr,s(JOO(E)), we define the projected pullback map cI>~ ofcI>

by

We have the following important result:

Proposition 3.1 If cI> : JOO(E) --+ JOO(E') is a generalized contact transformation,

then the projected pull-back map cI>~ commutes with dH :

Proof. Since cI>* preserves the contact ideal, we have

cI>*(JOO(E')) c C(JOO(E))

c nr,s(JOO(E)) EB n r- 1,s+1(JOO(E)) EB n r- 2,s+2(JOO(E)) EB •••.

This shows that

and the conclusion follows. D

We have a similar definition for total vector fields:
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Definition 3.5 If X is a total veetor field on JOO(E) and w E nr,S(JOO(E)), we

define X(w) E nr,S(Joo(E)) to be the projected Lie derivative 1rr,s(.Cx w) of w with

respect to X.

We have the foHowing important Cartan-type formula for the projected Lie deriva-

tive:

Note that we have in particular Dj()f; ...ik = ()f;"'ikj' Note also that X(dHw)

X -,d~(w) + dH(X-,dHw) = dH(X-,dHw) + d~(X-,w) = dH(X(w)). We shaH make

constant use of these relations in aH that foHows. We shaH also make constant use

of the foHowing commutation relations, which are easily proved:

Proposition 3.2 Letw E nr,S(Joo(E)). If X andY are total vector fields on JOO(E)

and Z is any 1rM-vertical vector field on JOO(E), then

X(Y(w)) - Y(X(w)) = [X, Y](w) ,

Z-,X(w) = [Z, X](w) + X(Z-,w).

We will also make crucial use of the foHowing operators:

Definition 3.6 We define the interior Euler operator J in local coordinates by

where 1 is a multi-index and III its length.

We have the following important proposition:

Proposition 3.3 The interior Euler operator satisfies Jo dH = 0 and j2 = J.

For the proof, we refer to [1].
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Definition 3.7 For s ~ 1, we define the horizontal homotopy operator

hi/ : nr,s(JOO(E)) -+ nr-1,s(JOO(E))

r,s( ) _ 1 2:k
-

1
III + 1 [(Jo Ij ()]

W t---+ hH W - - III DI 1\ Fo Wj ,
s n-r+ +1

111=0

where Wj = Dr"w and

As its name indicates, the horizontal homotopy operator hi/ satisfies the following

relation, which is of key importance in what follows:

Proposition 3.4 For s ~ 1, the horizontal homotopy operator hi/ satisfies the

relation

For the proof, we refer again to [1].

3.4 The constrained variational bicomplex and

conservation laws

Consider a second-order partial differential equation defined in an open connected

subset U of :IR? and given by

or, equivalently

F(x, y, z,p, q, r, s, t) = 0,

(3.5)

(3.6)

with the classical Monge notation. Equation (3.6) defines a submanifold of E,

where E is the total space of the bundle U x lR.6 -+ U. Let n denote an open

connected and contractible subset of this submanifold. Let i : n2 y J2(E) be
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the inc1usion map. The successive prolongations of 1?} are defined recursively by

the total derivatives of (3.5), e.g. R 3 = {j3(s)(p)IP(s)(p) E R 2 1(Dx F)(j3(s)(p)) =

(DyF)(j3(S)(p)) = O}. Each prolongation i : R k '-t jk(E) fibers over R k- 1 and

this yields and inverse system with inverse limit i : Roo '-t jOO(E). R oo is called

the infinite prolongation of R 2
• We have the obvious projections 1r1:" : Roo --+

R k and 1ru :R oo --+ U. We denote by C(ROO ) the pulIback of the contact ideal

on jOO(E) to Roo, i.e., C(ROO) = i*(C(jOO(E))), and we let R be the triple R =
(ROO, 1ru,C(ROO)). It can be easily shown ([5]) that local solutions to (3.5) are in one­

to-one correspondence with sections a of 1ru : R oo --+ U which satisfy a*(C(ROO)) =

O. A total vector field on Roo is a vector field X such that X -'w = 0 for any 1­

form W E C(ROO). We can thus bigrade the differential forms on Roo by horizontal

and vertical degree, just as on jOO(E). We then define the variational bicomplex

for R = {ROO,1ru,C(ROO)} to be the pulIback of the free variational bicomplex

(n*,*(jOO(E)), dH, dv ) to R oo .

1dv 1dv Idv

0 ----+ nO,2(ROO) dH n 1,2(ROO ) dH n2,2(ROO)----=----t ----=----t

Idv 1dv 1dv

0 ----+ nO,l(ROO) dH n1,1(ROO) dH n2,1(ROO)----=----t ----=----t

Idv 1dv 1dv

o ----+ R ----+ no,O(ROO) dH n1,O(ROO) dH n2,O(ROO)----=----t ----=----t

Consider the one-form

w = M 1\ dx + N 1\ dy,

where M and N are smooth functions on Roo. If w is dH-c1osed, that is, dHw = 0,

we caU w a c1assical conservation law of the hyperbolic equation R. If M and N

are type (0, s) contact forms (s 2 1) and dHw = 0, we calI w a type (0, s) contact

form-valued conservation law of R. If in addition w is dH-exact, i.e. there exists a

type (s -1,1) form')' such that w = dH ')', then w is called a trivial conservation law.

In general, a type (r, s) form which is dH c10sed is called a type (r, s) conservation
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law of R. We shaH be interested in non-trivial conservation laws of R, i.e. the

cohomology groups HT,8(Roo, dH). Since type (2, s) forms are triviaHy dH-c1osed,

and since, by a theorem of Vinogradov [13], HO,8(Roo) = 0 for s 2: 1, we shaH focus

solely on type (1, s) contact form-valued conservation laws, that is, on elements of

Consider now equation (3.5). With no loss of generality, we can assume that we can

rewrite this equation as

The natural coordinates for R OO are then

and a basis for the contact ideal on R 00 is

where

0= dz - zxdx - zydy,

0xyk-l = dZxyk-l + (D;-l f)dx - zxykdy,

Oyk = dZyk - zxykdx - zyk+1dy.

We conclude this section with an example adapted from [2]. Let then E and E'

be two copies of the trivial bundle 7r : R3 ~ R2 , with respective jet coordinates

(x, y, u, ux, uy,"') and (v, w, Z, Zv, zw,"')'

Consider the wave equation

Zvv - Zww = 0

and the hyperbolic Monge-Ampère equation
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Consider the unique contact transformation cP : joo (E) -+ joo (E') determined by

the relations

v ° cP = Ux, wo cP = y, z ° cP = u - xUx,

Zv ° cP = - x, Zw ° cP = uy,

It immediately follows from these relations that cP* (1» = (), where 1> is the contact

form 1> = dz-zvdv-zwdw on joo(E'), and () is the contact form () = du-uxdx-uydy

on joo(E). We have

-dx - (zvv ° cP )dux - (zvw ° cP )dy

)[
1 ZVWocP]

- (zvv ° cP dux + cP dx + cP dy ,
Zvv 0 Zvv 0

and hence, the contact condition

implies that

1
Zvv ° cP =-­

Uxx

In addition, the contact condition

and
uxy

Zvw ocP =­
U xx

implies that

2uxy
Zww ° cP = Uyy - ­

Uxx

and consequently, we obtain

(zvv - zww) ° cP = __l_(uxXuyy - U;y + 1).
U xx

Thus, equations (3.7) and (3.8) are equivalent under the contact transformation cP.

Furthermore, it is easy to verify that cP preserves characteristic directions. Indeed,

the characteristic equation of (3.7) is
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with characteristic directions

and, (dw2 - dV 2)(Dv ± Dw ) = O. Similarly, the characteristic equation of (3.8) is

with characteristic directions

and, (Uyydy2+2uxydxdy+uxxdx2) (uyyDx+ (-uxy ±l)Dy) = Uyy(uxXUyy-u;y+l) = 0

as a consequence of (3.8). Now,

and hence,

< <I?*(dv) , D x >

Similarly, we have that

and we obtain therefore

Thus, <I? preserves the characteristic directions.
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Finally, consider the one-form

We have dHw = 0 as a consequence of (3.7) and hence, w is a classical conservation

law for (3.7). The pullback of w under q> is given by

and hence, the projected pullback of w is

which is then a conservation law for the hyperbolic Monge-Ampère equation (3.8) by

virtue of proposition 3.1.
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Chapter 4

The variational bicomplex for

hyperbolic PDEs

In this chapter, we prove the equivalence between the Darboux integrability of a

hyperbolic equation in the plane and the vanishing of Laplace invariants of the

linearization of this hyperbolic equation. This equivalence is established through

the construction of suitable moving coframes and their structure equations. The

presentation in this chapter follows [3], and to a lesser extent, [9].

4.1 Characteristics of hyperbolic PDEs and the

characteristic coframe

The characteristic equation for the second-order partial differential equation

F(x, y, z,p, q, r, 8, t) = 0

is the quadratic equation

(4.1)

Let (J = P(S) (x, y) be a point in j2 (E) satisfying (4.1). Since (4.1) is assumed to

be of hyperbolic type, there exist two distinct characteristic directions at (J, given
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by the linearly independent vectors (mx , m y) and (nx , ny), such that

(4.2)

where K, is a non-vanishing smooth function on Roc, and mx, m y, nx, n y smooth

functions on Roc. We define the foUowing basis for the total vector fields on R OO :

{

X = mxDx + myDy,

y = nxDx + nyDy,

and we caU {X, Y} the characteristic frame of (4.1). We express the Lie bracket of

X and Y in the {X, Y} basis as

[X, Y] = PX + QY. (4.3)

The coframe on Roc dual to {X, Y} is denoted by {CY, 7} and is defined by the

relations

{

cy(X) = 1, cy(Y) = 0,

7(X) = 0, 7(Y) = 1.

From the Lie bracket expression (4.3), we easily deduce the foUowing dH structure

equations:

Furthermore, for any type-(r, s) form w E nr,S(ROO), we have

dHw = CY /\ X(w) + 7/\ Y(w).

On the equation manifold Roc, we have F = 0, and hence dF = 0 as weIl. Since

dF = dHF + dvF, and since dHF and dvF have different degrees, we have dHF = 0

and dvF = 0 on n°c as well. In particular, the relation dvF = 0 can be written as

(4.4)

or equivalently as
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where () is the contact form

() = dz - pdx - qdy.

Equation (4.4) is called the universal linearization of the original partial differential

equation (4.1) and is verified on the equation manifold n°c of (4.1). The universal

linearization (4.4) is of fundamental importance in aIl that follows for the following

two reasons: On the one hand, it is a linear hyperbolic equation, and is amenable

to Laplace transformation following a suitable change of coordinatesj on the other

hand, it has the same characteristic directions as the original equation (4.1). We now

recall the classical result of chapter 2 establishing the equivalence between Darboux

integrability and termination of Laplace invariant sequences for linear hyperbolic

equations, and we are led to believe that such a result may hold for the universal

linearization (4.4) as weIl. Now since (4.4) and (4.1) have the same characteristic

directions, one could expect a relation between the Laplace invariants of (4.4) and

the Darboux integrability of (4.1). The remainder of this chapter is devoted to

proving precisely such a result.

As was hinted above, the universal linearization can be expressed in a simpler

form by a suitable choice of total differential operators:

Lemma 4.1 Let {X, Y} be the characteristic frame of (4.1). Then, in the basis

{X, Y}, the universallinearization (4.4) of (4.1) can be written as

(XY + AX + BY + C)O = 0

where

A [(h;Fp - X(nx))ny - (h;Fq - X(ny))nx],

B [-(h;Fp - X(mx))my + (h;Fq - X(my))mxJ,

where h; is given by the relation (4.2).

The proof follows from a simple calculation.
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Clearly, in the characteristic frame {X, Y}, the universallinearization (4.5) is in

a form which is reminiscent of the equations to which the Laplace transform can be

applied. This is precisely the route we shall take, and it is precisely the universal

linearization expressed in the characteristic frame basis that will provide the link

between Laplace invariants and Darboux integrability. The universallinearization is

of such fundamental importance as to warrant the following extension and definition:

Definition/Proposition 4.1 The universallinearization operator associated ta the

scalar second-arder hyperbolic partial differential equation (4-1) is the total differen­

tial operator 12 : n O,8 (nOO ) -+ nO,8+1 (nOO ) defined for w E n O,8 (nOO
) by

L:(w) = XY(w) + AX(w) + BY(w) + Cw,

where {X, Y} is the characteristic frame associated ta (4.1), and the coefficients

A, B, and C are defined by

A = A - Y(p)° p'
B = B

o
_ X(p)

p ,

C = C - XY(p) - A X(p) - B Y(p) + 2X (p)Y(p)
o.P op op p2'

where

A o = H(~Fp - X(nx))ny - (~Fq - X(ny))nx],

B o = H-(~Fp - X(mx))my - (~Fq - X(my))mx],

where p is a non-vanishing function on n°o, ~ is given by (4.2), and cS = mxny ­

mynx. With 8 = pO, the identity dvF = 0 on n°o becomes

12(8) = XY(8) + AX(8) + BY(8) + C8 = o.

This proposition is proved by a simple but tedious calculation.

Starting from the contact one-form 8 = pO, where p is an arbitrary smooth

function on n oo
, we can define higher order contact forms by repeated application

of the total differential operators X and Y. In particular, we define the contact

forms Çk = Xk(O), 'T]k = yk(8), and we say that a form w E np(nOO
) is of adapted
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order k if it lies in the exterior algebra generated over COO(nOO
) by the one-forms

{u, T, e, 6, Tf1, ... ,Ç,k, Tfd with k the minimal such integer. It is important to note

that the adapted order of a form may be different from its order as a form on n°o and

that a form of adapted order k does not necessarily factor through nk+1
• It is proved

in [5] that the adapted order of a form is invariant under contact transformations in

n°o. Note that we have

Y(Ç,k) YX (ç,k-d = XY(ç,k-d - [X, Y](ç,k-d

XY(f,k-1) - Pf,k - QY(f,k-1),

X (Tfk) - XY(Tfk-1) = YX(Tfk-1) - [X, Y](Tfk-1)

y X (Tfk-d - PX(Tfk-1) - QTfk,

and hence, by induction on k, we obtain that 'ï/k 2: 1, Y(Ç,k) and X(Tfk) are of

adapted order less than or equal to k. Since the total differential operators D~Di

can be expressed in terms of the total differential operators Xkyl
, and since for

k 2: 1 the contact forms Y(Çk) and X(Tfk) have adapted order :::; k on n°o, we obtain

the following theorem:

Theorem 4.1 Let n be a hyperbolic partial differential equation. A coframe on the

equation manifold n°o is given by the one-forms

{u, T, e, 6, Tf1, 6, T/2, ... ,Ç,k, Tfk, ... }.

We calI this coframe the characteristic coframe of n. The dH structure equations

for the characteristic coframe are easily obtained. Indeed, as seen above, dHu =

- Pu 1\ T and dHT = -Qu 1\ T, dHe = u 1\ X(e) + T 1\ y(e) = u 1\ 6 + T 1\ Tf!'

dHç,k = uI\X(Ç,k)+TI\Y(f,k) = ul\Ç,k+l +Tl\fJk, where fJk = Y(Ç,k) is a contact form

of adapted order :::; k. Similarly, dHTfk = u 1\ X (Tfk) + T 1\ Y(Tfk) = u 1\ lIk + T 1\ Tfk+!'

where lIk = X(Tfk) is a contact form of adapted order :::; k.

We shalIlater need to consider the behaviour of the universal linearization oper­

ator under rescaling. For this purpose, let X' = mX, Y' = nY, and e' = le, where

m, n, lare non-vanishing functions on n°o. We have the following lemma, which is

proved by simple but tedious calculations:
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Lemma 4.2 The universallinearization of R in terms of X', Y', and 8' is given

by

X'Y'(8') + A'X'(8') + B'Y'(8') + C'8' = 0,

where

A = A' + TIn
ni'

B = B' + X(n) + X(l)
m ni'

C = iL + X(l) A' + TInB' + X(n)Y(I) + XY(l)
mn ni ml ni 1

With the characteristic coframe {a, T, 8,6, 'Tf1, 6, 'Tf2, ... , Çk, 'Tfk, ... } in hand, we can

define the X - and Y- characteristic Pfaffian systems of order k by

Ck(X) = 01(T,8,6,'Tf1,6,'Tf2'··· ,Çk,'Tfk),

Ck(Y) = 01(a, 8, 6, 'Tf1, 6, 'Tf2, ... ,Çk, 'Tfk),

(4.6)

(4.7)

respectively. The characteristic Pfaffian systems of infinite order are similarly de-

fined by

Coo(X) = 01(T, 8, 6, 'Tf1, 6, 'Tf2,'" ),

C)Q(Y) = 01(a, 8,6, 'Tf1, 6, 'Tf2, ... ).

As was seen earlier, the hyperbolic equation (4.1) is Darboux-integrable if there exist

two independent functions l, Î (that is dI/\dÎ #- 0 at aIl points) and two independent

functions J, J such that dl, dÎ are in the span of the linear span of the first system

of characteristics of(4.1), and dJ, dJ in the linear span of the second systeIIl:; or,

in other words, dl, dÎ E Ck(X), and dJ, dJ E Ck(Y). Since dl = dHI + dvI =

a /\ X(I) + T /\ Y(I) + dv(I), we have that dl E Ck(X) if and only if X(I) = O. A

function l on ROC! for which X(I) = 0 is calIed an X -invariant function. Similarly,

we have that dJ E Ck(Y) if and only if Y(J) = 0, in which case we calI J a

y -invariant function on Roc!. Thus, Darboux integrability of (4.1) ultimately hinges

on the existence of X-and Y-invariant functions on Roo. The notion of X-and
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y - invariance of functions can be readily extended to arbitrary forms on Roo, with

X(w) and Y(w) denoting the projected X-and Y-Lie derivatives of w E nr,S(Roo ),

respectively. w E nr,S(ROO) is then said to be X -invariant if X(w) = 0, and

y -invariant ifY(w) = O. We shaH see later how Darboux integrability of (4.1) yields

suitably many X-and Y -invariant functions from which X-and Y -invariant

contact forms may be constructed. This notion of invariance can also be extended

by considering relative invariants: A form w E nr,S(ROO) is a relative X -invariant

if X(w) = Àw for sorne À E COO(ROO), and a relative Y -invariant if Y(w) = Àw.

Clearly, any invariant form is also a relative invariant.

Consider now the universal linearization given by

.c(8) = XY(8) + AX(8) + BY(8) + C8 = a

in terms of the characteristic frame {X, Y}. As aHuded to earlier, this equation is

in a form similar to an equation of the type

(4.8)

to which the Laplace transform can be applied. The Y - Laplace transform of a

solution z to (4.8) being Zl = ~~ + az, equation (4.8) becomes

(4.9)

where h is the Laplace invariant of (4.9), given by h = ~~ + ab - c. Mimicking these

steps, the Y - Laplace transform of a contact form w would be

J-l = Y(w) + Aw,

in terms of which the universallinearization would become

(4.10)

with H = X(A)+AB-C. As can be seen from (4.10), the relative X-invariance of

J-l is directly tied to the vanishing of H, and H can thus be seen as an obstruction to

J-l being a relative X -invariant. Since, as mentionned above, the existence of such
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relative invariants is guaranteed by Darboux-integrability of (4.1), this suggests a

link between Darboux-integrability of (4.1) and properties of the Laplace transform

of the universal linearization (4.5). It is precisely this link we shaH make precise in

the remainder of the thesis. First, however, we shaH suitably extend the theory of

the classical Laplace transform.

4.2 The generalized Laplace transform and the

Laplace-adapted coframe

Consider the hyperbolic total differential operator:F : no,8(nOO ) -+ no,8(nOO ) defined

by

:F(w) = XY(w) + AX(w) + BY(w) + Cw, (4.11)

on the equation manifold n°o of the second-order hyperbolic equation (4.1) with

characteristic frame {X, Y}. The commutator of X and Y being given by (4.3), :F

can also be expressed in the equivalent form

F(w) = YX(w) + DX(w) + EY(w) + Gw,

where

D A+P,

E B+Q,

G C.

There are two generalized Laplace transforms associated to the operator F, one for

each of the characteristic vector fields X and Y. To define the Y-Laplace transform,

we define the first-order total differential operator YF : [lO,8(nOO ) -+ [lO,8(nOO ) by

YF(W) = Y(w) + Aw. The form '17 = YF(W) is caHed the Y-Laplace transform of

the contact form w associated to F. Note the similarity with the classical Laplace

transform Zl = ~; + az. In terms of '17, the contact form F(w) can be expressed as

F(w) = X('I1) + B'I1 - Hw,
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where H = H(F) _ X(A) + AB - C. Again, we note the similarity between H

and the classical Laplace invariant h = ~: + ab - c. We calI H(F) the generalized

y -Laplace invariant for the total differential operator F. Just as with the classical

Laplace transform and classical Laplace invariants, we may construct a new total

differential operator of the same form as (4.11) if H(F) =1=- O. Indeed, F(w) = 0 =}

X(TJ) + BTJ - Hw = 0 =} y X(TJ) + Y(BTJ) - Y(Hw) = 0, and this last equation can

be rewritten as

XY(TJ) - BX(TJ) + (B - Q)Y(TJ) + (Y(B) - H)TJ + (AH - Y(H))w = O. (4.12)

8ince H =1=- 0 by assumption, we can solve for w in X(TJ) + BTJ - Hw = 0 and

substitute the resulting expression in (4.12), obtaining:

with

Y(A) = A - Y}f) - P,

Y(B) = B - Q,

Y(C) = C - X(A) - BY}f) + Y(B).

We calI Y(F) the Y-Laplace transformof F. Note that for commuting character­

istic vector fields (P = Q = 0), the coefficients of y (F) are analogous to those of

the classical Laplace transform. Just as with the classical Laplace transform, the

y -Laplace transform Y.:r(w) = Y(w) + Aw of the form w is defined for any total

differential operator F of the form (4.11), but the Y-Laplace transform Y(F) of F

is defined only when the generalized Laplace invariant H(F) does not vanish. We

can similarly define the X - Laplace transform of the form w by X.:r(w) = X (w) + Ew,

where X.:r : no,S(ROO ) -+ nO,S(ROO). In terms of ~ = X.:r(w), the contact form F(w)

can be expressed as

F(w) = Y(~) + D~ - Kw,

where K = K(F) Y(E) + ED - G. We caU K(F) the generalized X -Laplace

invariant of the total differential operator F. Here again, F(w) = 0 =} y (~) +
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Dç - Kw = 0 =* XY(ç) + X(Dç) - X(Kw) = 0; if now K(F) i- 0, then we can

express w in terms of ç by virtue of Y(ç) + Dç - Kw = 0, and substituting in

XY(ç) + X(Dç) - X(Kw) = 0, we obtain

(X (F)](ç) YX(ç) + X(D)X(ç) + X(E)Y(ç) + X(G)ç = 0,

where

X(D) = D+P,

X(E) = E - Xr) + Q,

X(G) = G - Y(E) - DXr) + X(D).

We caU X (F) the generalized X - Laplace transform of the hyperbolic total differen­

tial operator F. Just as with the Y-Laplace transform, the X-Laplace transform

XF(w) = X(w) + Ew of w is always defined, whereas the X -Laplace transform

X(F) of Fis defined only when K(F) i- o. Just as with the classical Laplace trans­

form, solutions to F = 0 yield solutions to Y(F) = 0 and X(F) = 0 whenever these

exist, and vice-versa. In other words, the solutions to F(w) = 0 and (Y(F)](w) = 0

(respectively, (X(F)](w) = 0) are in bijective correspondence. This is the subject of

our next proposition, which is easily proved:

Proposition 4.1 For any hyperbolic second-order total difJerential operator F and

for any forms w, TJ E no,S(ROO), (XY(F) 0 YF](W) = H(F)w + F(w), and, provided

H(F) i- 0, YF(H(F)XY(F)(TJ)) = TJ + H(F) (Y(F)](TJ)· If H(F) i- 0 and TJ = YF(W),

then F(w) = 0 implies (Y(F)](TJ) = 0; conversely, if w = H(F) XY(F) (TJ), then

(Y(F)](TJ) = 0 implies F(w) = o. Similar identities hold for K(F) and X(F).

As discussed earlier, if the Y-Laplace invariant H(F) of F vanishes, then the

y - Laplace transform YF(W) = Y(w) + Aw is a relative X -invariant form. If

however H(F) i- 0, we can draw no conclusion as to the X -invariance of the

form w, but instead we can consider the Y-Laplace transform Y(F) of F. If now

H(Y(F)) = 0, then we have a relative X -invariant form, given by YY(F) (w). If

however H(Y(F)) i- 0, then we can take another Y-Laplace transform Y(Y(F))
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and continue this procedure. The same conclusion holds for the X - Laplace trans­

form, with Y -invariance instead of X -invariance, and the X-Laplace invariant

K instead of the Y-Laplace invariant H. This suggests that we can consider

successive applications of the Y - and X-Laplace transforms of the total differ­

ential operator F. Let then Ho ::::; H(F), Hl ::::; H(Y(F)) provided Ho =f. O. Pro­

vided Ho =f. 0, Hl =f. 0, . . . ,Hi- l _ H (yi - l (F)) =f. 0, we define the ith generalized

y -Laplace invariant of F to be Hi ::::; H(yi(F)). The first integer p for which

Hp ::::; 0 is called the Y -Laplace index of F and is denoted by indy(F). If Hi =f. 0

for aIl integers i ~ 0, indy(F) is defined as 00. In a similar fashion, we define

Ko ::::; K(F) and K j ::::; K(Xj(F)) provided Ko =f. 0, KI =f. 0"" Kj - l i= 0, and we

define the X-Laplace index indx (F) of F to be the first integer q for which Kq ::::; O.

Note that it follows from the above proposition that H(XY(F) 0 Y(F)) ::::; H(F) and

K(Yx(F) 0 X(F)) ::::; K(F). Hence, there is no advantage in combining the X-and

y - generalized Laplace transforms.

Let 1:, : nO,S(ROO) -+ nO,S(ROC) be the second order total differential operator

1:, ::::; XY +AX +BY+C defining the universallinearization of the hyperbolic equa­

tion R, with the coefficients A, E, C given in definition/proposition (4.1). If 8 is

the contact form pO, then 1:,(8) ::::; O. If indy(l:,) ::::; p, then Hp ::::; H(YP(I:,)) ::::; 0 and

H(YP-I(I:,)) i= 0, and hence the contact form YYP-l(.c)(8) is a relative X -invariant

form; similarly, if indx(l:,) ::::; q, then Kq ::::; K(Xq(I:,)) ::::; 0 and K(Xq-I(L:)) =f. 0,

and the form X XQ -l(.c)(8) is a relative Y -invariant contact form. This suggests

that there may be sorne advantage in suitably modifying the characteristic coframe

via applications of the X - and Y-Laplace transforms, whenever possible, so as

to include these invariant contact forms. For simplicity of notation, we denote the

Laplace indices of 1:, by ind(Y) = indy(l:,) and indeX) indx(l:,) , respectively,

and the generalized Laplace invariants of 1:, by Hi - H(yi(I:,)), K j _ K(Xj(I:,)),

respectively. We modify the characteristic coframe constructed in the previous sec­

tion in order to obtain a new coframe on Roc, as follows: If ind(Y) ::::; p, we define

T/I ::::; Y.c(8)::::; Y(8)+A8,T/i::::; Yyi-l(.c) (T/i-l) ::::; Y(T/i-I)+Ai-IT/i-l,i::::; 2,'" ,p+1,

and T/p+i ::::; Y(T/p+i-l) for i ~ 2, where Ai- l is the coefficient of X in the op-
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erator yi-I(.L:). If on the other hand ind(Y) = 00, then the contact one-forms

TJi are defined by TJi = Y(TJi-l) + Ai-ITJi-1 for aIl i 2: 2. It immediately follows

from the above that X(TJ1) + BTJI - Ho8 = 0 and that if Ho =1= 0, Y(L:(TJI)) =

XY(TJI) + AIX(TJI) + BIY(TJI) + CITJI = O. A simple calculation also shows that

X(TJi) + Bi-ITJi - Hi-ITJi-1 = 0 for i = 2,3,," ,p + 1, and that for i = 1,'" ,p,

[yi(L:)](TJi) = XY(TJi) + AiX(TJi) + BiY(TJi) + CiTJi = O. We define the forms Ç,j

similarly with respect to the generalized X -Laplace transform. If ind(X) = q,

we define 6 = X.c(8) = X(8) + E8,ç,j = XX j-l(,C)(Ç,j-l) = X(Ç,j-l) + Ej-Iç,j-l,

for j = 2,'" ,q + 1, and Ç,q+j = X(Ç,q+j-1 for j 2: 2, where Ej - l is the coeffi­

cient of Y in the operator Xj-I(L:). If ind(X) = 00, then the contact one-forms

Ç,j are defined by Ç,j = X(Ç,j-l) + Ej-Iç,j-l, for aIl j 2: 2. The resulting coframe

{(J, T, 8, TJI, 6, TJ2, 6, ... ,} is called the Laplace-adapted coframe on n and will play

a fundamental role in aIl that follows. Before it can be used, however, its structure

equations have ta be defined.

4.3 Structure equations for the Laplace­

adapted coframe

We compute the dH and dv structure equations separately. To compute the dH

structure equations, we use the basic equation dHw = (J 1\ X(w) + T 1\ Y(w), Vw E

nr,S(nOO ). For example, for the first three contact forms of the Laplace-adapted
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coframe, we obtain:

(J 1\ X(8) + 7 1\ Y(8)

(J 1\ (6 - E8) + 71\ (TJI - A8),

(J 1\ X(TJI) + 7 1\ Y(TJI)

(J 1\ (-BTJI + Ha8) + 7 1\ (TJ2 - AITJI),

(J 1\ X(6) + 7 1\ Y(6)

(J 1\ (6 - E16) + 7 1\ (-D6 + K a8).

Gathering aIl of these, we have the foIlowing important proposition:

Proposition 4.2 Suppose 0 ::; p = ind(Y) < 00 and 0 ::; q = ind(X) < 00. The

dH structure equations for the Laplace-adapted coframe for the hyperbolic equation

n are given by

dHa -Pa 1\7,

dH7 -Q(J 1\ 7,

dH(8)

dHTJI

dHTJi

dHTJp+ 1

dHTJp+i

dH 6

dHç,i

dHç,q+1

dHç,q+i

a 1\ (6 - E8) + 7 1\ (TJI - A8),

(J 1\ (-BTJI + Ha8) + 7 1\ (TJ2 - AITJI),

(J 1\ (-Bi-ITJi + Hi-ITJi-l) + 7 1\ (TJi+l - AiTJi), 2::; i ::; p,

(J 1\ ( - BpTJp+I) + 7 1\ TJp+l,

(J 1\ (6 - E16) + 71\ (-D6 + K a8),

(J 1\ (Ç,i+l - Eiç,i) + 7 1\ (-Di-IÇ,i + Ki-IÇ,i-l, 2::; i ::; q,

(J 1\ Çq+2 + 71\ (-Dqçq+d,

(J 1\ Ç,q+i+l + 7 1\ j.1q+i, i 2: 2,

where Vp+i is a contact one-form such that
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and j1q+i is a contact form such that

If ind(Y) = 00, then the structure equations

remain valid for aU i ~ 2. Similarly, if ind(X) = 00, then the structure equations

remain valid for aU i ~ 2.

We shall need to know the behaviour of the generalized Laplace invariants and the

Laplace-adapted coframe under contact transformations. Let then R' be another

second-order hyperbolic system, and let 1> : R ---+ R' be a contact transformation.

Let X', Y' be the characteristic vector fields for R', and let X'Y'(8') + A'X'(8') +

B'Y'(8') + C'8' = 0 be the universal linearization on Roo'. 1> being a contact

transformation, the characteristic directions are preserved, and we can write X' =

mX, Y' = nY, and sinee contact forms are also preserved, we have 8' = l8, for

non-vanishing functions l, m, n on Roo. We have the following theorem, which is

established by simple but tedious computations:

Theorem 4.2 Suppose p = ind(Y) < 00 and q = ind(X) < 00. Then the Laplace

indices of Rand R' coincide. The generalized Laplace invariants H, K of Rand

H', K' of R' are related by HI = mnHi, KI = mnKi. Furthermore, the Laplace­

adapted coframes are related by cr' = ~cr, T' = ~T, TJ/ = nilTJi for i ::; i ::; p + 1,

TJ~+i =np+ilTJp+i mod {TJp+l,'" ,TJp+i-l} for 2::; i < 00; similarly, ç/ = mjlçj for

1 ::; j ::; q + 1, ç~+j - mq+jlçq+j mod {çq+l"" ,Çq+j-l} for 2 ::; j < 00; when

p = 00, we have TJ/ = nilTJi for aU i ~ 1, and when q = 00, we have f,,/ = mjlf"j for

aU j ~ 1.

In view of further computations, we also need to express the structure equations of

the Laplace-adapted coframe as structure equations of the corresponding dual frame

on Roo, which we define as follows:
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Definition 4.1 The vertical vector fields U, VI, WI, V 2, W 2,'" dual to the contact

forms e, TJI, 6, TJ2,ç,2, ... of the Laplace-adapted coframe are defined by the relations

e(u) = 1, TJi(U) = 0, Çi(U) = 0,

e(Vh
) = 0, TJi(Vh

) = br, çj(Vh
) = 0,

8(Wk
) = 0, TJi(Wk

) = 0, çj(Wk
) = bj,

We call {X, Y, U, VI, W I
, V 2

, W 2
, ••• } the Laplace-adapted frame on ROO.

Let Z be any total vector field on Roo, and w any contact one-form. Then dvw is

a contact two-form and Z-,dvw = 0, and hence, for any vector field V on ROC we

have

dw(Z,V) dHw(Z, V) = Z(w(V)) - V(w(Z)) - w([Z, V])

Z(w(V)) - w([Z, V]).

In particular, if w(V) is constant, then w([Z, V]) = -dHw(Z, V). This formula

relates the dH structure equations of the Laplace-adapted frame to the Lie bracket

structure equations of the dual Laplace-adapted frame. We thus obtain the following

simple, but useful, proposition:

Proposition 4.3 Let R be a second-order hyperbolic equation, and suppose that

a~ p = ind(Y) ~ 00 and a~ q = ind(X) ~ 00. Then the following congruences

hold for the Lie brackets of the total vector field X with the vertical vector fields

U, Vi, wj:

[X,U]

[X, VI]

[X, Vi]

[X, vp+i]

[X,W I
]

[X,wj]

[X, W q+j
]

EU - HaVI mod {X, Y},

BV I
- H I V 2 d {X Y}mo , ,

Bi- I Vi - Hivi+1 mod {X, Y}, 2 ~ i ~ p,

(Bp - (i - 1)Q)VP+i mod {X, Y, vP+i+ I , ... }, 1 ~ i < 00,

-U +EIWI mod {X,Y},

_Wj- I + EjWj mod {X, Y},

-Wq+j - I + EjWj mod {X, Y}, 1 ~ j < 00.
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Similar congruences are obtained for the Lie brackets of the characteristic vector

field Y with the vertical vector fields U, Vi, W j
• We shall also need the dv structure

equations for the Laplace-adapted coframe. We begin with a simple proposition.

Proposition 4.4 The dv structure equations for the horizontal forms Œ and 7 are

dVŒ Œ /\ Pl + 7 /\ a,

where a, /3, Pl, P2 are contact one-forms, and a, /3 are of adapted order 2. Moreover,

dvP X(a) - Y(PI) + PP2 - Qa,

dvQ X(P2) - Y(/3) + QpI - P/3,

dv /3 /3 /\ (P2 - Pl)'

dVP2 a /\ /3 = -dVPI,

dva a /\ (Pl - P2)'

Proof. Since Œ,7 E nl,O(ROO), dVŒ, dV7 E nl,I(ROO), and hence can be written as

dVŒ = a /\PI +7 /\a and dV7 = a /\/3+7 /\p2, for a, /3, Pl, P2 E nO,I(ROO). Now write

the horizontal form a in terms of the natural coordinate coframe {dx, dy} of the plane

as a = adx + bdy. From the relations X = mxDx + myDy and Y = nxDx + nyDy

and the fact that {a, 7} is dual to {X, Y}, we obtain

a

b

Since the functions m x , m y, n x , and n y are smooth functions on Roo that can be

factored through R 2
, the same holds for a and b, and hence for a as weIl. Hence the

adapted order of ais 2, and as a result that of a as weIl. It is shown similarly that the

adapted order of /3 is 2. Now the three relations dHa = -Pa/\7, dva = a/\PI +7/\a,
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dv(PeJ A T)

dvP A eJ A T + P A dveJ A T - PA eJ A dVT,

that is,

eJ A dH/-l I + dHT A a - T A dHa

dv P A eJ A T + PeJ A /-lI AT - PeJ A T A /-l2,

which simplifies to

-PeJ A T A /-lI eJ A T A Y(/-ll) - QeJ A T A a - T A eJ A X(a)

dvP A eJ A T + PeJ A /-lI /\ T - PeJ A TA /-l2'

Grouping terms, we obtain the desired result. Similarly, the integrability condition

d~eJ = 0 and d~T = 0 yield the last two relations. D

We have dH(dvw) = eJ /\ X(dvw) + T A Y(dvw). But we also have dH(dvw) =

-dv(dHw) = -dv(eJAX(w)+TAY(w) = dv(X(w))AeJ-X(w)AdveJ+dv(Y(w)) A

T - Y(w) A dVT. Using the expressions for dveJ and dVT computed in the previous

proposition, we obtain the following resu1t:

Proposition 4.5 Vw E 0*(8, rh, 6,"') : dv[X(w)] - X(dvw) = /-lI A X(w) + /3 A

Y(w), and dv[Y(w)] - Y(dvw) = eJ A X(w) + /-l2 A Y(w), where a, /3, /-lI, /-l2 are as in

proposition (4.4).

The commutation rules established in the previous proposition allow us to establish

the following dv structure equations for the Laplace-adapted coframe on Roo:

Proposition 4.6 The Laplace-adapted cofmme satisfies the foliowing congruences:

dv 8 0 mod {8},

dV'TJi 0 mod {6, 8, 'TJI, ... , 'TJi}, Vi 2: 1,

dVÇi 0 mod {'TJI,8,6,'" ,çà,Vi 2: 1.
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Proof. We have

dH (dv 8)

(J 1\ X(dv8) + T 1\ Y(dv 8)

dv (X(8)) 1\ (J - X(8) 1\ dv(J

-dv (dH 8) ~

-dv((J 1\ X(8) + T 1\ Y(8)) =

+ dv (Y(8)) 1\ T - Y(8) 1\ dVT.

The dv structure equations for the horizontal forms (J, T, together with the commuta­

tion rules of proposition (4.5) yield dv 8 0 mod {8}. The congruences for dV'f/i

and dVÇ,i for i = 1 similarly follow from the integrability condition dHdv+dvdH = 0,

and are established for i > 1 by a simple induction. D

It is important to note that the congruences in these structure equations are not

as sharp as they could be; for one thing, they are totally independent of the Laplace

indices on which the Laplace-adapted coframe itself is based. Armed with the dH

and dv structure equations, we are now able to characterize X - and Y- invariant

forms.

4.4 Characterization of relative invariants

Consider a contact one-form w E n1(6,6,··· ,6), for sorne l ~ 1; w can be written

as a linear combination w = E~=l aiç,i, where the ai are smooth functions on ROO.

Assume now that w is X -invariant, that is, there exists a smooth function À on

Roo such that X(w) = Àw. X(w) = E~=l(X(ai)ç,i + aiX(ç,i)) , and by construction

of the Laplace-adapted coframe itself, we have X(w) alÇ,l+1 mod nI (Ç,1' ... ,Ç,l)'

On the other hand, Àw 0 mod n1(6,··· ,6), and this implies that al = 0,

that is, w E nI (6, ... ,6-1)' Repeating this procedure l times, we deduce that

w = O. Thus, for any positive integer l, no contact one-form in nI (6, ... ,6) can

be a relative X -invariant. Similarly, no contact one-form in 0 1(771,'" ,771) can be a

relative Y-invariant form. The following key theorem makes this basic observation

more precise:

Theorem 4.3 Let R be a hyperbolic equation with characteristic vector fields X

and Y, Laplace indices ind(Y) = p and ind(X) = q, and Laplace-adapted coframe
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{a,r,8,6,rll,6,'Tl2""}' Let s ~ 1:

1. If w E no,S(ROO) is a relative X -invariant form, then

If ind(Y) = 00, then there are no non-zero relative X -invariant type (0, s)

forms;

2. If w E no,S(ROO ) is a relative Y -invariant form, then

If ind(X) = 00, then there are no non-zero relative Y-invariant type (0, s)

forms.

Proof. Suppose w is a relative X -invariant type-(O, s) form of adapted order k;

that is, w E n S(8, 6, 'Tll,'" ,Ç,k, 'Tlk) and X(w) = Àw, for sorne function À E COO(ROO).

Let U, Vi, wj be the vertical vector fields defined in (4.1) dual to the Laplaee­

adapted coframe. Sinee w has no dependenee on Ç,k+l by assumption of it being of

order k, we have that Wk+1.--,w = O. Thus Wk+l-,X(w) = ÀWk+1-,w = 0 as weIl,

and sinee W k+1-,X(w) = X(Wk+1.--,w) - [X, Wk+l]-,w, we obtain [X, Wk+l]-,w =

O. From the Lie bracket structure equations of proposition (4.3) it follows that

Wk-,w = O. Repeating this procedure, we obtain Wk-l-,W = Wk-2-,W = ... =
Wl-,W = U-,W = O. This shows that w E nS ('Tll , 'Tl2,'" ,'Tlk)' Since [X, U] EU ­

HOV I mod {X, Y}, U-,X = 0 and X(w) - Àw, we obtain HOVl-,w = 0, and sinee

Ho =1- 0, we have that Vl-,W = O. From the Lie bracket structure equation [X, VI]

Ev l - Hl V 2 mod {X, Y}, we obtain V2-,w = O. Repeating this procedure, we

find Vl-,W = V2-,W = ... = VP-,w = O. VP-,w = 0 yields HpVp+1-,w = 0, and since

Hp = 0 by assumption, we cannot deduce anything about Vp+1-,w. 0

We refine the previous theorem through the foIlowing proposition:

Proposition 4.7 Suppose Hp = O. Let l be a non-negative integer, let

w E n*(8, 'Tll, 6,"')'
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and suppose

Then W decomposes uniquely into a sum W = Wl +W2, where

Wl 0 mod {'T]P+l"" ,'T]p+l},

W2 E n* ('T]p+l+l , 'T]p+I+2, ... ).

Proof. We can decompose W uniquely as W = Wl + W2, where

and

We can further explicit the dependence of W2 on Ç,k by writing

where

Now, X(w) = Àw :::} X(Wl) +X(W2) = ÀWl + ÀW2' But Wl - 0 mod {'T]p+l"" ,'T]p+l}

by assumption, and hence X(Wl) 0 mod {'T]p+l,' .. ,'T]p+l} as weIl, by construction

of the Laplace-adapted coframe. Thus, we have

Now,

and hence, by construction of the Laplace-adapted coframe,
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where

Now since

,

X(W2) = ÀW2 mod {7]P+l,'" ,7]p+l}

and

we obtain that 'Y = O. As a result,

Repeating this argument yields

This proves the theorem for p = O. For p ~ 1, we can write W2 = 7]1 /\ 'Y + E, where

'Y, E E 0.8 (7]2, ..• ,7]p, 7]p+l+l, 7]p+l+2, ... ). This yields the congruence

where

Since Ho -# 0, we conclude that 'Y = 0, and hence

Repeating this argument p times, until Hp = 0, yields the proof of the theorem. 0

Relative invariants are closely tied to conservation laws: Assume ind(Y) = p,

consider the form a E 0.0,8-1 (ROO ), and construct the type-(I, s) form Wl = T /\

7]p+1 /\ a; then

dHWl = (5/\ T /\ 7]p+l /\ [X(a) - (B - (p - I)Q)a].
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Thus, if a is a relative X -invariant contact form such that X(a) = (B - (p-l)Q)a,

then the form W1 is a conservation law of the hyperbolic equation R, i.e. dHW1 - O.

This construction can be further generalized; indeed, consider the form w = T /\

'T]P+l/\ 'T]p+2/\ a. It foHows from the dH structure equations for the Laplace-adapted

coframe that

dHw = a /\ T /\ 'T]p+l/\ 'T]p+2 /\ [X(a) - 2(B - pQ)].

Thus, if a is a relative invariant form such that X(a) = 2(B-pQ)a, then the form w

is dH-closed. We can repeat this construction with w = T/\'T]p+l/\'T]p+2/\" '/\'T]p+l/\a,

for aH l E N*. Similarly, if ind(X) = q and the form (3 satisfies Y((3) = [A +

qP](3, then the form a /\ çq+l /\ (3 is a conservation law of the hyperbolic equation.

In the fol1owing section, we shaH give a detailed characterization of type- (1, s)

conservation laws for hyperbolic equations.

4.5 Structure theorem for type-(l, s)

conservation laws

Consider functions fi : !Rn -+ !R, i = 1, ... ,m, m < n, and assume M = nZ::1 fi- 1 (O)

is a submanifold of !Rn of dimension n - m, with i : M y !Rn the inclusion map. Let

{{h,'" ,On-m} be a coframe on M. We can complete this coframe to the coframe

{BI,'" ,On-m, dh,'" ,dfm} on !Rn. Let now w be a one-form on !Rn which vanishes

on M, i.e. i*w = O. We can express w in the coframe as w = 2:j~;n ajOj+2:;'1 (3jdfJ.

Since i*(dfj) = d(i* fJ) = d(fJoi) = 0, we obtain i*w = 2:j=l (aj oi)i*Oj = 0, and this

implies that aH the a j vanish, and hence, w = 2:7=1 (3jdfj. A similar result holds

for forms of arbitrary degree. Furthermore, this basic result can be generalized to

forms on jet bundles. This generalization is provided by the foHowing lemma, and

is proved in a manner similar to the result above:

Lemma 4.3 Let w E Dl(JOO(E)), and let i : ROO y JOO(E) be the inclusion map of
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the infinitely prolonged equation manifold. If i*w = 0, then

k k

W = L aij(D~D~F) + L fJij 1\ dv(D~D~F),
i,j=O i,j=O

The main application of this lemma is to provide us with a first characterization

of conservation laws of the second-order hyperbolic equation R. Indeed, let w E

nl,s (ROO) be a dH-closed form. By extending the natural coordinates

and the natural coframe on Roo to the natural coordinate system and the natural

coframe on JOO(E), there exists a type (1, s)-form Wo on JOO(E) such that i*wo = w.

Bince i*dH(wo) = dH(i*wo) = dHw = 0, we can write

k k

dHWo = dx 1\ dy 1\ [L (D~D~F)aij + L dv(D~D~F) 1\ fJij],
i,j=O i,j=O

dx 1\ dy 1\ (DxF)a (DxF)dx 1\ dy 1\ a = dHF 1\ dy 1\ a

dH(Fdy 1\ a) - FdH(dy) 1\ a + Fdy 1\ dHa

dH(Fdy 1\ a) - dx 1\ dy 1\ F(Dxa).

Thus, dx 1\ dy 1\ (DxF)a differs from dx 1\ dy 1\ F(Dxa) by the term dH(Fdy 1\ a),

which vanishes when pulled back to ROO. Repeating this basic integration by parts

operation starting from the highest derivative terms D~D;F and dv(D~D;F), we

can rewrite dHWo as

where {*} denotes terms which vanish when pulled back to Roo. We thus have:

Proposition 4.8 Let w E n1,s (ROO) be a dH- closed form on ROO. Then:3w E

n1,s(JOO(E)), ( E no,s(JOO(E)), p E no,s-l(JOO(E)) such that i*(w) = w and dHw =

dx 1\ dy 1\ [F( + (dvF) 1\ pl.
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This characterization of dH-closed forms on Roo in terms of forms on JOO(E) is of

fundamental importance, as it allows us to make use of the horizontal homotopy

operators and thereby complete our characterization of conservation laws. Recall

that the horizontal homotopy operators hi/ satisfy the identity w = h~S(dHW) +

dHh~S(w), for every type-(l, s) form w on JOO(E). With dHw = dx /\ dy /\ [F( +

(dv F) /\ 13], we obtain

h2S (d A) 1 () [âF A D(âF A
)] 1 () âF A

{}Il HW = -Vi /\ /\ -P - j -P + -Vi /\ j /\ -P + * ,
S âZi âZij S âZij

where {*} denotes terms which vanish when pulled back to Roo, and Vi = ô~j ---,dx /\

dy. From w = i*w = i*(h~S(dHW)) + dH(i*hH1, s(w)), we obtain W = Wc(Pc) + dH,,!,

where Pc = ~i*(p) and wc(Pc) = Vj /\ () /\ [~~Pc - Di(:~ Pc)] + Vj /\ ()i /\ [:~ Pc)].

To complete our characterization of the dH-closed form W in the natural coor­

dinate coframe, we need to characterize the contact form Pc as weIl. To do so, we

recall that the interior Euler-Lagrange operator J : D,2,s(J00(E)) -+ D,2,s-1(JOO(E))

has the fundamental property that J(dH&) = 0, V& E D,l,S(JOO(E)). Furthermore, it

is explicitely given by

J(&) = ~---,& - Di(~---,&) + Dij (~---,&) + ....
âz âZi âZij

We can thus rewrite J[dx /\ dy /\ (F( + (dvF) /\ 13)] = 0 as

âF A D (âF A) D (âF A) {}-P - i -P + ij -P + * = 0
âz âz· âz··t tJ

(4.13)

on JOO (E), where again {*} denotes terms which vanish when pulled back to R 00 .

Pulling (4.13) back to Roo, we thus obtain

âF' âF âF
-âPc - Di(-âPc) + Dij (-âPc) = o.

Z Zi Zij

This completes our characterization of dH-closed forms in the natural coordinate

coframe {dx, dy, (), ()x, ()y, ... }. We can thus state:

Theorem 4.4 Let W E D,l,S(ROO) be a dH-closed form on Roo. Then there exists a

form Pc E D,0,S-l(Roo ), and a form "! E D,0,S(ROO) such that w is given by
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where Wc : Ç20,S-1(ROO ) ---+ Ç21,S(ROO) is defined by

aF aF aF
wc(Pc) = Vj /\ (J /\ [az.pc - Di(az .. Pc)] + Vj /\ (Ji /\ [az .. pc )]

z ~ ~

and where Pc satisfies the equation

aF aF aF
-aPc - Di(-aPc) + Dij (-aPc) = o.

U Zi Zij

Let now W E Ç2o,s' (ROO) be a contact form. Note that we can write

aF
[au Pc

aF aF
Di (aZ

i
Pc) + Dij (aZ

ij
Pc)] /\ w /\ dx /\ dy

aF aF aF
Pc /\ [au w + aZ

i
Di(w) + aZ

ij
Dij(w)] /\ dx /\ dy + dHŒ

Pc /\ Lc(W) /\ dx /\ dy + dHŒ

where Œ E Ç21,s+s' (ROO) , and L c is the universallinearization of the hyperbolic equa­

tion R expressed in the natural coordinate coframe. Thus, at the level of cohomol­

ogy, the operator L~ : Ç2o,S(ROO ) ---+ Ç2o,S(ROO ) defined by

* aF aF aF
Lc(Pc) = -aPc - Di(-aPc) + Dij (-aPc)

u Zi Zij

is the adjoint of the universallinearization operator L c : Ç2o,S(ROO) ---+ Ç2o,S(ROO) for

the pairing

(p, w) I-t< P, W >= P /\ W /\ dx /\ dy.

To characterize dH-closed forms in the Laplace-adapted coframe, we need to re­

express aU these definitions.

Consider then the universallinearization L : Ç2o,S(ROO) ---+ Ç2o,S(ROO) of the second

order hyperbolic operator equation R, given by the total differential operator L =

XY + AX + BY + C. We define the adjoint L* of L as being the unique total

differential operator L* : Ç2o,S(ROO) ---+ Ç2o,S(ROO) such that

for sorne ry E Ç21,s+s' (ROO). The formula defining the adjoint operator is nothing

other than an integration by parts formula in the Laplace-adapted coframe. Since

(J /\ X(p /\ W/\ T)

(J /\ X(p) /\ W /\ T + (J /\ P /\ X(w) /\ T - Q(J /\ P /\ W /\ T,
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we have that the adjoint x* of X is X* = -X + Q. Similarly, the adjoint y* of Y

is given by y* = -y - P. It follows easily that the adjoint f:-* of f:- is given by

f:-*(p) = XY(p) + A*X(p) + B*Y(p) + C*p,

where

A* = -A,

B* = -B - 2Q,

C* = -X(A) - Y(B + Q) + C - AB + (A - P)(B + Q).

Let {o-, T, e, 7]1, 6, 7]2, 6, ... } be the Laplace-adapted coframe. With respect to this

coframe, we define, for each s 2: 1, a map 'lJ : 0°,8-1 --t 0°,8-1 by

with

1/;1 X(p) - (B + Q)p,

1/;2 -Y(p) + ap.

A simple ca1culation shows that dH'lJ(p) = -0- A T A e A f:-*(p) and hence, if the

contact form p satisfies the adjoint equation f:-*(p) = 0, then the form 'lJ(p) is

dH-closed. A simple but tedious ca1culation shows also that 'lJc(Pc) = 'lJ(p) , with

p = ~Pc, where 6, K, are given in definition/proposition (4.1). Combining this result

with the previous theorem, we obtain the following characterization of dH-closed

forms in the Laplace-adapted coframe:

Theorem 4.5 Let s 2: 1 and let w E 01,8(noo ) be a dH-closed form. Then there

exist contact forms p E 0°,8-1 and 'Y E 0°,8 (nOO
) such that w is given by

and where p satisfies the adjoint equation

XY(p) + A*X(p) + B*Y(p) + C*p = o.
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Using this characterization of conservation laws of n, we deduce the following the-

orem:

Theorem 4.6 Let n be a second-order hyperbolic equation and suppose

ind(Y) = 00 and ind(X) = 00. Then, for ail s ~ 3, ail type-(l, s) conservation

laws are trivial, i.e. H1,S(noo ) = O.

Proof. According to theorem (4.5), we need onlyprove that there are no non-zero

type-(O, s-l) solutions p to the adjoint equation XY(p)+A*X(p)+B*Y(p)+C*p =

O. We rewrite this second order total differential equation as a system of first-order

total differential equations

X(p) = (Q + B)p + 't/JI,

Y('t/JI) = Hop + (A - P)'t/JI.

Suppose p is a non-zero solution of adapted order k of this first-order system. We

can therefore assume, with no loss of generality, VL,p -=1= 0, Vk+L,p = 0, Vi ~ 1.

Then

X(Vk+l....,p) - [X, Vk+ll""'p

-[X, Vk+ll""'p

-Bk(Vk+l....,P) + Hk+l(Vk+2 ....,p)

0,

and hence Vk+L-,'Ij!l = O. From

we obtain Vk....,'Ij!l = O. Now

(Q + B)Vk....,p + Vk....,'Ij!l

(Q + B)Vk....,p

X(Vk....,p) - [X, Vkl....,p

X(Vk....,p) - Bk- 1Vk....,p.
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Thus, VL,p is a non-zero relative X -invariant contact form. But ind(Y) = 00

and this contradicts theorem (4.3). Thus p cannot satisfy the adjoint equation, and

hence H I ,s (ROO) = O. 0

We conclude this section with a structure theorem for conservation laws in

H I,S(ROO), s ;::: 3, for the proof of which we refer to [3].

Theorem 4.7 Let R be a second-order hyperbolic equation. Suppose ind(Y) = p

and ind(X) = q. Then, for s ;::: 3, every dH-closed form w E nI,S(ROO) may be

written as

X(a) + [-B + (p - l)Q]a = 0,

Y(jJ) - [-A + qP],8 = O.

If ind(X) = 00, then (4.14) remains valid with ,8 = o.

(4.14)

4.6 Darboux integrability and Laplace invariants

We recall from chapter 2 that a second-order hyperbolic equation R is Darboux­

integrable if there exist two functionally independent real-valued X-invariant

functions l,Ion R oo
, and two functionally independent real-valued Y - invari­

ant functions J, J on Roo, that is, X(I) = X(Î) = 0, dl Â dÎ =1 0, and X(J) =

X(J) = 0, dJ Â dJ =1 o. With the X-and Y - characteristic Pfaffian systems

of order k as defined in equations (4.6) and (4.7), respectively, it was shown in

section (3.1) that 1 E COO(ROO) of adapted order k is X -invariant if and only if

dl E Ck(X), and that J E COO(ROO ) of adapted order k is Y -invariant if and

only if dJ E Ck(Y). Consider now a Pfaffian system l on a manifold M. The

ith derived Pfaffian system r(i) is defined inductively by the short exact sequence

o -+ r(i+I) ~ I(i) ~ dI(i) mod I(i) -+ 0 where j is the inclusion map, and 6i
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is the composition of the exterior derivative d with the quotient modulo the ideal

generated by I(i). The derived Pfaffian systems form a sequence

... C I(i) C ... C I(2) c I(1) CI

which stabilizes at the maximal completely integrable subsystem of I, which we

denote by I(oo). Applying this construction to the characteristic systems Ck(X) and

Ck(Y) yields the maximal completely integrable subsystems Ckoo)(X) and Ckoo)(Y),

respectively. The structure equations of the Laplace-adapted coframe allow us to

give the following characterization of Ckoo)(X) and Ckoo)(Y); note that this charac­

terization is valid for the characteristic coframe as weIl.

Lemma 4.4 Let R be a second-arder hyperbolic equation with characteristic vector

fields X and Y, and let {a, 7, e, 6, r/I,'" } be the Laplace-adapted coframe on R OO
•

Then, Vk E N*, Ckoo
) (X) and Ckoo)(Y) satisfy

Ckoo)(X) C 0 1(7, e, 6, r/I, 'TJ2,'" ,'TJk),

Ckoo)(y) C Ol(a, e, 'TJl, 6, 6,'" ,Çk)'

Proof. Assume Çk E Ck1
) (X). Then, exactness of the sequence 0 -+ Ck1)(X) ~

Ck(X) ~ dCk(X) mod Ck(X) -+ 0 implies that dÇk 0 mod Ck(X). But dÇk =
dHçk + dVÇk a 1\ Çk+l + dVÇk mod Ck(X), and hence dÇk =1 0, modCk(X). Thus

Çk ~ Ck1
) (X). Since dÇk-l - a 1\ Çk + dVÇk-l mod Ck1)(X), and Çk ~ Ck1)(X), we

deduce that Çk-l ~ Ck2)(X). Continuing in this way, we eliminate the Çl up to and

induding 6. But we cannot eliminate 6, since dV 7 = a 1\ {3 + 7 1\ J.,l2 and (3, being

of adapted order 2, may contain 6. D

If 1 is an X-invariant function on Roo, then dl E Ck(X). Since d21 = 0,

dl E Ckoo)(X) as weIl. Thus, given a Darboux-integrable equation, dim CkOO
) (X)

will be at least 2 for sorne k ;:::: 1, and dim C1(00) (Y) will be at least 2 for sorne

l ;:::: 1. The characterization of dim Ckoo)(X) and dim C1(00) (Y) has been performed

by Goursat [8], and in what follows, we mention this characterization for Ckoo
) (X)

only, that for Ckoo
) (Y) being identical.
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Theorem 4.8 Let m be the minimum integer for which dim c~oo) (X) =1= o. Then

dim c~oo\X) is either 1, 2, or 3, and we have the following cases:

1. dimCfnoo)(X) = 1: Then there exists an integer n > m such that

dimCfnoo)(X) = 1,··· ,dimC~~i(X)= 1,dimC~oo)(X) = 2,··· ,

dimC~~l(X) = 2 + i,···

2. dim C~) (X) = 2: Then m is either 1 or 2, and we have the following subcases:

(a) m = 1: Then dimC~oo)(X) = 3,··· ,dimCi~)(X)= 2 + i,···.

(b) m = 2: Then dimC~oo)(X) = 3,··· ,dimCi(.';i(X) = 2 + i,···.

3. dimCfnoo)(X) = 3: Then m = 3 and dimCi~l(X) = 3 + i,···

The important thing to note here is tha:t Darboux-integrability of the hyperbolic

equation n immediately yields a plethora of X - and Y- invariant functions of

increasing order. In particular, in case (1), there exists a sequence of functionally

independent X -invariant functions lm, In, 1n+1 , 1n+2 ,··· of arder m, n, n + 1, n +
2, ... such that any X -invariant function may be expressed as a function of these;

in case (2a), there is a similar sequence of X-invariant functions Il, IL 12 , 13 , •.• ,

where h,I~ are of order 1 and 1j of order j; in case (2b), there is a sequence

12 , 1~, h,· .. of X -invariant functions, where 12 , 1~ are of order 2, and 1j of order j;

finally, in case (3), there is a sequence 1~, 1~, 12 , 13 , ... of functionally independent

X -invariant functions, where 1~, 1~, 12 are of order 2, and 1j of order j.

This abundance of X - and Y-invariant functions allows us to rescale the

characteristic total vector fields X and Y so that they commute:

Lemma 4.5 Let n be a hyperbolic equation with characteristic total vector fields

X and Y. If 1 and J are non-trivial X - and Y-invariant functions, respectively,

then the characteristic vector fields X = X(J) X andY = Y(I) y commute.

Proof. We have

[X, Y]
1 1

[X(J)X, Y(I) Y]

1 X(Y(I)) Y(X(J))
X(J)Y(I) (- Y(I) Y + X(J) X + [X, y)).
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X(Y(I))

Now

Y(X(I)) + [X, Y](I)

[X, Y](I) = PX(I) + QY(I) = QY(I).

We obtain similarly that Y(X(J)) = -PX(J). These two equalities yield [X, Y] =
O. D

If R is Darboux-integrable and we assume X and Y are rescaled so as to com­

mute, then as an immediate consequence we have that if l is an X -invariant

function, then so is Y(I). It is proved in Goursat [8] that the sequences of in­

variants in aU cases (1), (2a), (2b), and (3), are aU generated in this manner,

that is, by choosing X - and Y-invariant functions of minimal order and suc­

cessively applying the Y - and X - operators, respectively. We can thus find

X -invariant functions l, J, K such that K = Y(J) and, rescaling Y if neces­

sary, Y(I) = 1. Consider now the contact form w = dvJ - KdvI. We have

dHw = dHdvJ - dHK /\ dvI + KdvdHI = 7" /\ [dvK - Y(K)dvI], which implies

that X (w) = X .dHw = 0; in other words, the contact form w is an X -invariant

form. Y -invariant forms are similarly constructed. Together with theorem (4.3),

this leads to the foUowing result [3]:

Theorem 4.9 Let R be a second-order hyperbolic equation. If R 2S Darboux­

integrable, then the Laplace indices ind(X) and ind(Y) are finite.

Such a result was to be expected in light of the classical theory of linear hyperbolic

equations. The classical theory goes even further, establishing Darboux-integrability

of linear hyperbolic equations for which the Laplace indices are finite. We now prove

that the converse of theorem (4.9) holds as weIl. First, however, we shaH prove the

foUowing proposition:

Proposition 4.9 If Hp = 0, then there is a unique form

y E 0 1(6, e, rll,'" ,'T/p)

such that for some contact form il,

dV'T/p+1 = 'T/p+2 /\ Y + 'T/p+1 /\ il·
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The form T satisfies

X(T) -QT + fJ mod {1]P+1,1]p+2}"

dvT T /\ [ft2 - Y(T)] mod {1]p+1,1]p+2}'

The forms 1]p+i, i 2: 1, satisfy the dv structure equations dV 1]p+i 1]p+i+1 /\ T mod

{1]p+1, . . . ,1]p+d·

Proof. We have

dV (X(1]p+1)) - Ih /\ X (1]p+1) - fJ /\ Y(1]p+1) mod {1]P+1' 1]p+2}

-Bpdv (1]p+1) mod {1]p+1' 1]p+2}

and hence dV 1]p+1 is a relative X -invariant mod {1]P+1' 1]p+2}' We apply the charac­

terization of relative invariants in proposition (4.7) and we write

dV 1]P+1 = 1]p+2 /\ T + 1]P+1 /\ r, + w,

where W E 0 2 (1]p+3' 1]pH,' .. ). The dv structure equation

dV 1]i - 0 mod {Ç1' e, 1]1,'" ,1]i}, Vi 2: 1,

implies W = 0 and T E 0 1(6, e, 1]1,'" ,1]P+1)' Now

(dH1]p+2) /\ T -1]p+2 /\ dHT + dH1]P+1 /\ r, mod {1]p+d

a /\ [(Q - B p)1]p+2 /\ T + 1]p+2 /\ X(T)]

+7/\ [1]p+3 /\ T + 1]p+2 /\ Y(T) + 1]p+2 /\ r,] mod {1]p+d;

on the other hand,

dv (- Bpa /\ 1]p+1 + 7 /\ 1]p+2)

a /\ [QT + X(T) - fJ] mod {1]p+1}

omod {1]p+1},

that is, X(T) -QT + fJmod {1]p+1,1]p+2}. Now,

dV 1]p+2 dv(Y (1]p+1))

Y(dV (1]p+1)) + a /\ X(1]p+1) + ft2 /\ Y(1]p+1)

1]p+3 /\ T + 1]p+2 /\ Y(T) + 1]p+2 /\ r, + ft2 /\ 1]p+2 mod {1]p+d,
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and from d~f/p+1 = dv (f/p+2 /\ y + f/p+l /\ fi) = 0, we obtain dVf/p+2 - f/p+3 /\

Y mod {f/p+1' f/p+2}' Repeating this procedure, we obtain dVf/p+i =f/p+i+1 /\ Y mod

{f/P+l, f/p+2' ... ,f/p+d, Vi 2:: 1. D

The significance of the contact form Y defined in the previous structure theorem

is given by the following theorem [9]:

Theorem 4.10 The Pfaffian system Vp+i(X) = 0 1(7 - Y, f/p+1"" ,f/P+i) zs com­

pletely integrable for i 2:: 2 if Hp = O.

Proof.

d(7 - Y)

-(J /\ [X(Y) + QY -,8] + Y /\ [J-t2 - Y(Y)] - dvY mod V p+2(X)

omod V p+2 (X);

furthermore,

df/p+l dHf/p+l + dvf/p+l

(J /\ X (f/P+l) + 7 /\ f/p+2 + f/p+2 /\ Y + f/p+l/\ fi

omod V p+2(X);

finally,

df/p+2 dHf/p+2 + dVf/p+2

(J /\ X (f/p+2) + 7 /\ f/p+3 + f/p+3 /\ Y mod V p+2(X)

omod V p+2 (X).

This proves the theorem for i = 2. Using the same dH and dv structure equations,

the theorem is proved by induction on i. D

Recalling now that the hyperbolic equation n is Darboux-integrable if for suf­

ficiently large order k, the derived characteristic Pfaffian systems C~oo)(X) and

C~oo)(Y) each stabilize at a completely integrable subsystem of dimension at least

2, we deduce the following converse to theorem (4.9):

Theorem 4.11 Let n be a second-arder hyperbolic equation. If the Laplace indices

ind(X) and ind(Y) are finite, then n is Darboux-integrable.
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Chapter 5

Conclusion

In this thesis, we have illustrated two classical techniques for integrating partial

differential equations, namely the Darboux method, and the Laplace method for

linear hyperbolic equations, as weIl as the relations between the two techniques for

this latter class of equations. Following the work in [3] and [9], we have shown

how the variational bicomplex can provide a formaI differential geometric setting

in which such relations can be studied for non-linear hyperbolic equations as weIl,

and we have demonstrated the key role that moving coframes and their structure

equations play in this study.

Such a study can be extended in many directions, and it is reasonable ta expect

that numerous properties of hyperbolic and other partial differential equations would

manifest themselves geometricaIly; in particular, the questions of existence, unicity,

and regularity of solutions. In the classical setting, these questions are usually set­

tled through estimates obtained via sorne form or other of integration by parts and

classical conservation laws. In this geometric setting, the analogous technique would

be based on a Stokes formula for the dH operator and contact-form valued conser­

vation laws, and an important problem is to determine under what conditions such

a Stokes formula does indeed hold, and what information these contact-form valued

conservation laws do provide. The moving coframe technique is also a potentially

rich source of developments: Being non-constructive in its application, one could

expect that it would be much further-reaching than the techniques based on ex-
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plicit solutions. The question remains how to build a moving coframe on a solution

manifold in a systematic manner, so that its structure equations embed as much

information as possible about the original partial differential equation.
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