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Abstract

This thesis presents the geometric investigation of hyperbolic partial differential
equations in the plane as carried out by Niky Kamran, Ian Anderson, and Martin
Juras. In particular, the relation between the Darboux integrability of an arbitrary
hyperbolic equation and the Laplace invariants of the linearization of this equation
is established. This extends to non-linear hyperbolic equations in the plane a clas-
sical result of Goursat for linear hyperbolic equations. The formal setting for this
geometric investigation is afforded by the constrained variational bicomplex, which
allows the solution to a partial differential equation to be viewed as a manifold on
which standard differential geometric operations such as exterior differentiation and
Lie differentiation can be performed. The key element in this investigation is the
judicious construction and use of appropriate moving coframes which will reflect the
properties of the equations under investigation.

Résumé

Cette these décrit les grandes lignes de ’étude géométrique des équations aux
dérivées partielles hyperboliques telle que réalisée par Niky Kamran, Ian Anderson et
Martin Juras. En particulier, la relation liant 'intégrabilité de Darboux d’une équa-
tion hyperbolique arbitraire et les invariants de Laplace de la linéarisation de cette
meéme équation est étudiée. Cette relation étend au cas des équations aux dérivées
partielles hyperboliques non-linéaires un résultat classique de Goursat sur les équa-
tions hyperboliques linéaires. Le cadre formel de cette étude géométrique est fourni
par le complexe bi-variationnel contraint, exprimant la solution d’une équation aux
dérivées partielles en tant que variété sur laquelle les manipulations ordinaires de
géometrie differentielle, telles la differentiation exteérieure ou la dérivée de Lie, peu-
vent avoir lieu. L’élément clé de cette étude est la construction et l'utilisation
judicieuses d’un co-repere mobile approprié refletant les propriétés de I’équation

étudiée.



Acknowledgments

I wish to thank Professor Niky Kamran for having kindly accepted to supervise
my work. Working with Professor Kamran has been a wonderful learning experience,
and I shall always cherish the memory of those weekly meetings we had over the
last two years. Professor Kamran has been far more than an academic advisor: he
has been a role model, and even though it is difficult to assert with certainty how
the future will unfold, I hope I will again have the privilege to work with him and
learn from him.

I wish to thank Professors John Toth, Steven Boyer, Frangois Lalonde, Fabrizio
Andreatta, and Tadashi Tokiede'm for the wonderful courses they have taught; I es-
pecially wish to thank Professor Tokieda for his many enlightening mathematical
expositions inside and outside of the classroom.

I wish to thank Carmen Baldonado of the Mathematics and Statistics Depart-
ment for her unrelenting assistance in all administrative matters.

I wish to thank my employer Institut National de la Recherche Scientifique (INRS
Télécommunications) for kindly accepting that I engage in mathematics studies
while remaining a researcher with them. I especially wish to thank its former director
Professor André Girard, its administrator Mr. Normand Touchette, and the director
of the Visual Communications group Professor Amar Mitiche.

I hereby express my infinite gratitude to my family for their constant love and
support; my wife Ilvana has kindly endured my many hours away from home and in
the library, and encouraged me in my studies. My parents have imparted their love,
support, and the love of learning to their two children, and I dedicate this thesis
to the memory of my father Mohammad-Ali Mansouri, and to the memory of my

mother Parvaneh Kheyri.



Contents

1 Introduction 4

2 Aspects of the classical theory of hyperbolic partial differential

equations in the plane 6
2.1 Characteristics and the Cauchy problem . . . ... ... .. ... .. 6
2.2 Involution and invariants . . . . . .. .. ... ... ... .. ..., 11
2.3 Darboux integrability . . . . . . . . ... L Lo L 14
2.4 The Laplace transform . . . . ... ... e 17

2.5 Darboux integrability and Laplace

invariants . . . . . . . ... e e e e e 21

3 The jet bundle and the variational bicomplex 24
3.1 Pfaffiansystems . . . ... ... ... .. .. ... ... .. ... . 24
32 Jetbundles . ... . .. ... ... 26
3.3 The variational bicbmplex ........................ 29

3.4 The constrained variational bicomplex and

conservation laws . . . . . . ... ... L 33
4 The variational bicomplex for hyperbolic PDEs 39
4.1 Characteristics of hyperbolic PDEs and the characteristic coframe . . 39

4.2 The generalized Laplace transform and the Laplace-adapted coframe . 46
4.3 Structure equations for the Laplace-

adapted coframe . . . . . .. ... 50



4.4 Characterization of relative invariants . . . . . . . . . S 56

4.5 Structure theorem for type—(1,s)

conservation laws . . . . . . ... .. Lo L 60
4.6 Darboux integrability and Laplace invariants . . . . . .. ... .. .. 66
5 Conclusion 72



Chapter 1

Introduction

In this thesis, we present aspects of the geometric theory of hyperbolic partial dif-
ferential equations in the plane, following [3] and [9]. The cornerstone of this theory
is to view a partial differential equation as the locus, assumed to be a manifold, of a
particular equation in some higher-dimensional space; functional-theoretic proper-
ties of the partial differential equation then manifest themselves as geometric prop-
erties of this manifold. In particular, various differential operators can be defined
on this manifold, and integrability conditions can be expressed in terms of these
differential operators. Furthermore, vector fields and differential forms can also be
defined, and solutions to the original partial differential equation can be defined as
integral manifolds of differential ideals generated by certain one-forms. The choice of
an appropriate family, called a moving coframe, of one-forms adapted to the partial
differential equation leads to the expression of properties of the partial differential
equation in purely differential-geometric terms as structure equations of the moving
coframe.

The specific result we shall study in this thesis is the equivalence established in
[3] and [9] between the Darboux integrability of an arbitrary hyperbolic equation
and the vanishing of the Laplace invariants of a linear hyperbolic equation derived
from the original partial differential equation. Such an equivalence had already been
established by Goursat [8] for linear hyperbolic equations. It is a very instructive

exercise to compare the treatment of Goursat for linear hyperbolic equations to



that of [3] and [9] for arbitrary hyperbolic equations: Whereas Goursat’s approach
is constructive and yields explicit solutions in the process of proving the equivalence,
the geometric treatment is far more implicit and hence far-reaching. Also, whereas
Goursat’s approach hinges on solving the hyperbolic equation itself, the geometric

treatment hinges on computing structure equations of particular moving coframes.

There is no reason a priori why moving coframes should embody any information of

interest about the partial differential equation, and the whole difficulty and challenge
of the geometric approach is the definition and use of appropriate moving coframes.

In the second chapter of this thesis, we present the classical theory of hyperbolic
equations in the plane as far as Darboux integrability and the Laplace transform
are concerned. We shall, in particular, state and partially establish Goursat’s result
to the effect that the termination of both sequences of Laplace invariants implies
the Darboux integrability of the hyperbolic equation. In the third chapter, we
present the formal geometric setting of jet bundles and the variational bicomplex,
together with the main technical results allowing us to fully exploit this geometric
formalization. In the fourth chapter, we shall establish the relation between Darboux
integrability and Laplace invariants using the method of moving coframes, and we

conclude with the last chapter.



Chapter 2

Aspects of the classical theory of
hyperbolic partial differential

equations in the plane

In this chapter, we present the classical theory of Laplace transformations and Dar-
boux integrability for hyperbolic equations in the plane, as well as their relations
for linear hyperbolic equation, following Goursat’s classical treatise [7] and [8], and

also the short treatise of Gosse [6].

2.1 Characteristics and the Cauchy problem
Consider the partial differential equation
F(z,y, 2, 25, 2y, Zogs Zays Zyy) = 0 (2.1)

defined for (z,y) in an open subset of R®2. We shall use the classical Monge no-
tation and denote the partial derivatives z, zy, 24z, 22y, 2yy by P, q,7,8,%, Tespec-
tively. The Cauchy problem for equation (2.1) consists in determining the graph
(z,y) = (z,y,2(z,y)) of a solution to this equation such that it contains a given

curve I" along which the tangent plane at every point is known. The Cauchy data



is thus given by a curve

A (2(A),y(A), 2(A), p(A), ¢(N))
subject only to the condition dz = pdx + gqdy. By the implicit function theorem, the

three conditions

dp = rdx + sdy,
dq = sdx + tdy,
F(x7 y? z7p7q’ r’ 8’ t) = O

will allow us to determine 7, s, and ¢ as functions of A if and only if the functional

determinant
R S T
A=ldzx dy 0 |= Rdy2 — Sdxdy + Tdz?
0 dx dy

is non-zero, where R = %f , S = 337 and T = f . A is a bilinear form in (dz, dy),
and is called the characteristic form of the partial differential equation (2.1). We
can attempt to determine partial derivatives of z of order larger than two in terms
of the Cauchy data by differentiating both sides of equation (2.1) with respect to x
and y. Denotmg 5% @a 2—2 by pix, with 2 = pgg, the values of p;;, with ¢ + k = 3 are

provided by the following system of equations:

,

dpoo = psodz + pardy,
dp1, = pai1dz + piady,
dpoz = p12dz + po3dy,

dF __

=0,

dF __
| o=,

We can write 95 = Rpy + Spiz + Tpo + (%) = 0, where () contains no term in

pik with ¢ + k = 3. Since dF = %dz + %dy, the equation % = 0 is a consequence

of F = 0 and % = 0. The partial derivatives p;; with ¢ + k = 3 are thus to be



determined from the system of seven equations in seven unknowns given by

F=0,

dpir = pit14dT + pip+1dy, 1+k <2

The p; with 4 + k = 3 can be determined from this system if and only if the

functional determinant

de dy 0 O
0 dr dy O
= Adzx
0 0 dr dy
0 R S T

is non-zero, where A is the characteristic form. We can continue this procedure so
as to determine all the p;; with 2 + k > 3. Suppose then that we have determined

all the p;; with ¢ + k = n as a function of A, through the system

F=0,

dF __
dy _0’

(S) <

dn—2F _
W - 0)

| @Pik = Piy1kdT + Pikady, i+k<n-1

To determine the p; with ¢ + k = n + 1, we shall, as before, augment this system
dn-'F

by the equations 4

a7 = 0, and the equations dp;; = pi+1.d2 + pir+1dy, with

1+ k = n. It is a simple matter to show that, just as previously, the n + 2 partial
derivatives p;; with ¢ +k = n+ 1 can be determined from this augmented system if

and only if the functional determinant

de dy 0 0 ... 0 0 O

0 dr dy 0 ... 0 0O O
= Adz"?
0 0 0 0 .. 0 dr dy
0o 0 0 00 R S T




is non-zero. If there does exist a value A\g of A for which A(Xg) # 0, the solution z of
(2.1) can then be given locally by a formal power series in z — z(Xo), y — y(Xo), the
convergence of which can be established whenever the Cauchy data (i.e. the function
F and the curve T') are analytic. This is the essence of Cauchy-Kovalewskaya’s
theorem. The characteristic form A = Rdy? — Sdzdy + T'dz? is a fundamental
attribute of the partial differential equation (2.1) and is ubiquitous in the study of
partial differential equations. If the characteristic form has no real roots at a certain
point, then the equation F' = 0 is said to be elliptic there; if it has exactly one real
root, the equation is said to be parabolic; the case of interest to us is the one where
the characteristic polynomial has two real distinct roots at every point, and we shall
assume this throughout the thesis. In this case, the equation F' = 0 is called a
hyperbolic equation. For equation (2.1) to be hyperbolic, therefore, we need to have
4RT — S? < 0 everywhere.

The notion of characteristic can be easily generalized. Suppose, for simplicity and
without loss of generality, that in the equation F' = 0 we have solved for r in terms
of z,y,2,p,¢,s,t, and that F = 0 can be rewritten as 7 + f(z,v, 2,p,¢, s,t) =0, or
equivalently, pao + f(, ¥, Doo, P10, Po1, P11, Poz) = 0. Differentiating both sides of this
equation with respect to y allows us to compute all of the py; in terms of the py,
with ¢ = 0, 1. Differentiating with respect to z, on the other hand, will allow us to
compute all the p; with ¢ > 3 in terms of the p; with 7 < 2, and hence in terms
of the py with ¢ = 0,1. Thus, all of the p;z with i + k = n — 1 will be determined
once Pon—1,P1,n—2 and the p;; with 2+ k < n — 1 are known. The system (S), which

allowed the determination of the p; with ¢+ k = n, is then equivalent to the system

.
dz = prodx + po1dy,
dp1o = paodz + p1dy,

(Sl) 9 dp1,n—2 = pz,n—2d$ + pl,n—ldya
dpor = p11dx + po2dy,

L de,n—l = pl,n—-ldx +p0,ndya

9



where the p,; are determined from the py; and p;; by differentiating both sides of

P20 + f = 0 with respect to y. Doing so 4 times, we obtain

df.  of 0 .
P2t ( )+ pl i+l afpo,i_i_z =0, 1=0,....,m—2,
where (‘j—;@) contains no terms in p;; with j +k =i+ 2. The py, with i +k = n are

obtained from the following three relations:

dpl,n—2 = pz,n—2dl’ + pl,n—ldya
dpop—-1 = P1,p—1dT + Do ndy,
P2n—2 + (d—yn—é) + _Lpl,n 1+ ?ftipo,n =0,

where (j;—:é) contains no terms in p;, with ¢ + &k = n. Solving for py,, we obtain

the equation

dy, Ofdy  0Of " dp1,n—2 n dpon-1,0f dy d"*f

)—Egd_m- ot dz dz [88 dx] (dy"‘z)zo'

On[(

The characteristic equation (%)2 5535 + —i has, by assumption, two real distinct

roots m; and my. If % = m,, then py, can be chosen arbitrarily, provided

dpin—2  dpon—1.0f dn2f .
dz + dr '0s ma] + (dy"“z) =0,
which is equivalent to
dp1n—2 dpon-1 , A" °f.
iw Mgy T gm) =0

We thus define the first system of characteristics of order n as the system

.
dy _

dz my,

dz = p1odz + pordy,

(I) § dpro = paodz +puidy, - - -, dpyn—2 = P2p—2dx + p1 n_1dy,
dpor = pndr + po2dy, - - -, dpon—2 = P1,n—20T + Pop—1dy,
dp1 n—2 + madpop_1 + (%)dm =0.

\
The second system of characteristics of order n is defined by interchanging m, and

_mg in the above system.

10




2.2 Involution and invariants
Consider a hyperbolic equation given in the form
r+ f=0,

and consider an arbitrary function ¢ of order n, that is, ¢ is a function of z,y, and
the p;, with 7 + k < n. As we saw before, each p;; can be expressed in terms
of the po; and the py; with 5 < ¢+ k. We can thus assume that ¢ is a function

of 2,y,2,01,0, " 1 P1n—1,P0,1," - ,Pon- For ¢ to be of order n, we need to have at

least one of 3p16¢ and agfn non-zero. We assume, without loss of generality, that

—Lap? = # 0. Consider now the system of equations:

r+ f=0,
¢ = 0.

We wish to determine whether or not this system has a solution. The p;, with

i+ k =n+ 1 can be obtained from the system of equations

= (_@) + p2 n—1 + _atpl,n = 0

dz 31)1 n—1 dpo,n

% = (B) + esPrn + gpesPonts =0,
m—1 ar 1
uﬂl = pPapn-1+ 55191,71 + 5§P0,n+1 + (ﬂ)

dy dyn 1

where none of (42), (%‘5) (%ﬁ) contain terms in pj; with ¢ +k =n+1. We say

that the hyperbolic equation r + f = 0 is in involution with the equation ¢ = 0 if

these three equations reduce to two. It is easy to see that this will be the case if

and only if
09 o _0f 06 09 9f 06 5 _
(6p0,n) aS 8p1n 1 apOn + ot apl,n—l) =0 (22)
and

Opon  dz s Op1.n—1 dy Gpl,n_l Opon dy™!
Equation (2.2) is readily identified as the characteristic equation of the hyperbolic

equation » + f = 0. There will thus be two distinct types of equations in involution

11



with r+ f = 0, depending on whether the ratio a;?% /

iy 1S equal to m; or to ms.

We will say that the first system of characteristics is in involution with a function

¢ of order n if the following holds:

o 8¢ _
(A 9po,n mlamn 1 =0,
? n—lt
(ﬁ) +me (‘ail‘;) Bpin~1 (Zy"—l) =0.

Similarly, the second system of characteristics will be said to be in involution with

a function ¢ of order n if we have

9¢ 9  __
dpo,n ms p1n-1 0’

() +mi($) - et (G=h) =0.
The system (A) could be verified as a consequence of the equation ¢ = 0; in this
case, 7 + f = 0 and ¢ = 0 are simply said to be in involution. It could also happen,
however, that the system (A) is verified identically, independently of the condition
¢ = 0. Since ¢ intervenes in (A) only through its derivatives, it is easy to see that
whenever (A) holds identically irrespective of ¢ = 0, then it holds as well for ¢ = c,
for any real constant c. In this case, the equation r + f = 0 is in involution with
all the equations ¢ = ¢, with ¢ any real constant. We say in this case that ¢ is an
invariant of order n of the first system of characteristics. The reason for calling ¢

an invariant is that ¢ does indeed stay constant along the characteristics of order n

of the hyperbolic equation r + f = 0. To see this, note that

0¢ ¢ 0 0¢ 0
d¢p = —dr+ —dy+ —dz+ dpro+--- dpipn-1+
¢ oz Oy 0z Op1,0 P10 O0P1,n-1 P1n-1
0¢ 0¢
d ..
800’1 pO,l + a Ondpo 113]

and that replacing the expressions dp;;, by the ones obtained from the system of

characteristics of order n, we are left with

d d 0 0 a1t
9= (G) + ma(GoNdo + 5 o = 52T+ ],

which is zero, since ¢ is assumed to satisfy the system (A) identically. We thus see

that if ¢ is an invariant of order n of the first system of characteristics of r + f = 0,

12



then d¢ can be expressed as a linear combination of the forms:

(

dz — p1,odx — po,dy,

dy — mydzx,

\ dp1o — p2,0dT — p11dy, -, dP1n—2 — P2an—2dT — P1 14y,
dpo,1 — P1,14Z — Po2dy, - - -, dPoa—1 — P1,a-10T — Po,ndy,
dp1n—1 — P2n—1dT — D1ndy,

\
which define the first system of characteristics of order n of r+ f = 0. Conversely, if
d¢ is in the linear span of the one-forms defining one of the systems of characteristics
of r + f = 0, then ¢ remains constant along any characteristic of order n of that
system, and ¢ is an invariant of order n of r + f = 0.

Consider now the system of equations

r+ f=0,
(8)q 6=0,
=0

where ¢ and 1 are of arbitrary order. Assume that both ¢ and v are in involution
with » + f = 0, and that ¢ is in involution according to the system (A) and %

according to the system (B) of characteristics; that is, we have:

( 0 _ my 29— =0,

9po,n 1 p1 1
d d 2] dn-1 _
() +m2(gf) - m%(d—ynr;) =0,

IR VR

9po,n ma 0p1,n-1

d 2 m—1
(%) + ml(ﬁ) o 31)1,:/:—1 (Zy”—{) =0.

\

| The functional determinant #mz—) = (my — mz)(ﬁ:%)z is non-zero by
virtue of the assumption of hyperbolicity of the equation F' = 0 (or equivalently
7+ f = 0). Hence, by the implicit function theorem, po , and p; ,—1 can be obtained
from the equations ¢ = 0 and ¢ = 0. If z — 2(z,y) is a solution of the system
(), all the partial derivatives of order n of z can thus be expressed in terms of

Z,Y,2,P1,00PL,1," " »P1,n—2,P01,P0,2,° " ,Pon—1- LThus, z and its partial derivatives

13



satisfy the differential system:

§
dz = pypdx + po,1dy,

dp1o = paodz + p1,1dy,

dpl,n—? = p2,n—-2d$ + pl,n—ldy7

| dPo,n-1 = P1,n-1dT + Pondy,

where p; ,—1 and po,, are obtained from the equations ¢ = 0 and 1 = 0, whereas the
P2 are expressed in terms of the py; and pyx. The existence of a solution z to the
system (5) is thus equivalent to the complete integrability of the system (). The
system (E), on the other hand, will be completely integrable if and only if the three
equations r + f = 0, ¢ = 0,7 = 0 yield a unique set of values for the (n + 1)%* order
derivatives pg n+1,P1,n, and py ,_1. The equations that pg 41, P10, and pan_i should
satisfy are obtained by differentiating both sides of the equations in the system (S),
yielding:

( n 1
(Zyn r) +P2n 1+ 3sp1n+ U pomt1 =0,
(4) + pOn ,n+5;7¢—102n—1=0

_¢—'p0n+1 + apln lpln = 07

(E’) \ (ﬁ dpo,n
dy

(&
(%

)+
)+3po p1"+6p1 p2n 1—07
)

+ —QLPO n+1 + 3171 pl n — 0)

\ Opo,n

where none of the terms (ZZ—:{) ( ) (d¢) (%),(%) contain terms in py with
i+ k =mn+ 1. Since ¢ is in involution with » + f = 0 according to the system
(A) and % is in involution with » + f = 0 according to the system (B), the five
equations in system (E’) reduce to three independent equations; the system (E) is

thus completely integrable.

2.3 Darboux integrability

Consider the equation r + f = 0, which we assume to be hyperbolic. Assume u

and v are both independent invariants (of whatever order) of the same system of

14



characteristics, say (A). Assume that on a solution surface (z,y) — (z,v, z(z,y)) of
r+ f = 0, we move along characteristic curves of the first system, given by % =m;.
Along one such curve, which we can locally parametrize by either x or y (say z),
Y, z, and the partial derivatives p;; are all functions of z; so too then are v and v,
and since they remain constant along these characteristics, they satisfy a functional
relationship of the form ¢(u,v) = 0, which we can assume, without loss of generality,
can be written u = ¢(v). Every solution of r + f = 0 thus satisfies u = ¢(v) for
a particular choice of ¢. Conversely, 4 and v being invariants of the system (A) of
characteristics of r+ f = 0, du and dv are in the linear span of the system of 1-forms
(I) of characteristics, and so is then du — ¢'(v)dv, for any choice of function ¢. The
equation u — ¢(v) = 0 is thus in involution (according to the system (A)) with the
hyperbolic equation r + f = 0. Assume now that u; and v; are both independent
invariants of the second system (B) of characteristics. Just as before, the equation
u1 — ¥(vy) = 0 is always in involution (according to the system (B)) with r + f =0,
for any choice of function 1. Putting these two observations together, we arrive at
the cornerstone of Darboux’s method of integration, namely that if u,v are both
independent invariants of the same system of characteristics, and u;, v; independent

invariants of the other system, then the system

rf=0,
u = ¢(v),
Uy = w(vl)7

is completely integrable, for any choice of functions ¢ and 1. The essential step in
Darboux’s method of integration is therefore the computation of the invariants u,v
and wuy, vy, if they do exist. An attempt to classify all Darboux-integrable equations
has been made by Vessiot ([11] and [12]).

The simplest, almost trivial, example of the Darboux method is given by the

15



wave equation s = 0. The first system of characteristics is given by

.
dz =0,
dz — qdy = 0,

(1) < qay
dp =0,

\ dq — tdy = 0,

and the second system of characteristics is given by

4

dy =0,

dz — pdz =0,
(IT) ¢

dp — rdx =0,

dq = 0.

\
The first system of characteristics thus has independent invariants z,p, and the

second system has independent invariants y, ¢. For any choice of functions ¢ and %,

the system
s=0,
p = ¢(z),
q="v(y),

is thus completely integrable, and its general solution is given by (z,y) — z(z,y) =
B(z) + U(y), where ¥'(z) = g(z) and ¥'(y) = ¥(y).

The simplest non-trivial example of the Darboux method of integration is pro-
vided by Liouville’s equation s = e*. The first and second systems of characteristics

of second order are given by

dz = 0,
dz — qdy =0,
(1) dp—e*dy =0,
dq — tdy = 0,
\ dr — pe*dy =0,

16



and

dy =0,
dz — pdx :’0,
(II)< dp—rdz =0, .
dq — e*dx =0,
\ dt — qe*dz =0,

respectively. From the first system, we obtain the independent invariants z and
r — p?/2, and from the second system, we obtain the independent invariants y and

t — q%/2.Therefore, for any choice of functions ¢ and 1, the system

dz = pdx + qdy,
dp = (p*/2 + ¢(z))dz + e*dy,
dg = e*dz + (¢°/2 + 9 (y))dy,

is completely integrable. It is easy to see that the general solution of this system is

given by z = Log(—%}f—;z, where X is a function of z only, and Y a function only of

y. Conversely, any function z of this form is a solution of Liouville’s equation.

2.4 The Laplace transform

Consider the linear hyperbolic equation

9%z 0z 0z |
520y +a—a;—l-ba—y+cz_M, (2.3)

where the coefficients a, b, ¢, and M are given functions of the independent variables

z,y. We can rewrite this equation as

0 0z %

da
a—x(a—y+az)+b(ay+aZ)—(—+ab—c)z_M.

ox

If (% +ab—c) = 0, then, writing z; = g—; +az, we obtain % +bz; = M, the general
solution of which is given by z; = e”J*#{X + [{Y + [ Me/%=dz}, where Y is
an arbitrary function of y. z is in turn obtained from z; by solving the differential

equation g—; +az =z, yielding z = e J*W{X + [{Y + [ Mel ¥=dz}el adv—bdzgy}
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where X is an arbitrary function of z. Equivalently, the original equation can be

rewritten as

0 0z 0z 0b
—(=—+b = +bz) — (=— +ab— =M.
3y(3x+ Z)+a(8x+ Z) (6y+a )z
If now %Z- + ab — ¢ = 0, then, writing 2, = % + bz, we obtain the ordinary

differential equation ag;l + bz_; = M, the general solution of which is given by

2y = e JW{X + [ MeJo%dy}, where X is an arbitrary function of . Just as
before, z can be obtained from z_; by solving the ordinary differential equation
8 1 bz = 2.4, yielding z = e~ J*{Y + {X + [ MeJs®dy}elt¥=—2% g}, where Y
is an arbitrary function of y. In conclusion, if either of g—; +ab— c and % +ab—c
vanishes, then the linear hyperbolic equation (2.3) can be integrated out. We call
% + ab— c and g—z + ab — ¢ the Laplace invariants of the linear hyperbolic equation
(2.3), and denote them by h and k, respectively.

Assume now that h % 0. We can rewrite equation (2.3) as 22 + bz; — hz = M,
with z; = gﬁ + az. Differentiating both sides of this equation with respect to y, and

expressing z in terms of z; in the resulting equation yields the equation
821

8?2 0z
axa; +a1-a?1+b18—y+6121 =M1, (24)

which is of the same form as (2.3), and where the coeflicients ay, b1, ¢1, M; are given

by

oy
) =,
_ n__ Oa 8b _ 1 8logh
c=c 3$+6y b—Lay,

— dlogh oM
| My = M(a - Yoty y oM

If a solution z to (2.3) is known, then a solution 2; to (2.4) is immediately obtained

by z1 = g—z + az. Conversely, if a solution to (2.4) is known, then a solution z to

.. . . 6—ZL+bz1—M . . .
(2.3) is immediately given by z = . Thus, the integration of equation (2.3)

R
is equivalent to the integration of equation (2.4). Since equation (2.4) is of the same
form as equation (2.3), we can compute its Laplace invariants, respectively given by

d ab : 82logh
hi =55 4+ a1b) — ¢y, and ky = G+ a by — ¢y, or equivalently, hy = 2h — k — 3;‘38’;/—,
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and k; = h. By assumption A is non-zero, but we could very well have h; = 0,
leading to a solution of (2.4) and thereby to a solution of (2.3).

‘We call z; the Y —Laplace transform of z, and equation (2.4) the Y— Laplace
transform of equation (2.3). It is important to note that the Y— Laplace transform
of z is always defined, whereas the Y —Laplace transform of equation (2.3) is defined
only when its Y —Laplace invariant h is non-zero.

Similarly, the X —Laplace transform of z is defined as z_; = %+bz, and whenever
k # 0, the X —Laplace transform of equation (2.3) is defined as

822’_1 6z_1 aZ_l
_ 1—t+c1z_1=M_ .
axay +a 1 O +b 1 ay +c 12-1 1, (2 5)

where the coeflicients are given by

p
a_, = a,

__ p _ Ologk
b_l =b oz ?

_ ._ O 8a _  Ologk
€C1=¢C 6y+6z dz

M_, = M(b— %) 4 oM

\

The laplace invariants of the X —Laplace transform of equation (2.3) are given by

5. b 8%logk
hoy =2 +abag—caa=kand by = +aqby—ca=2k—h— Bw%y :

Just as with (2.4), the integration of (2.5) is equivalent to the integration of (2.3).
Since (2.4) is of the same form as (2.3), we can apply the X— and Y —Laplace
transforms to it in case both h; and k; are non-zero; in case either of h; and k;
vanishes, we can solve for z;, and subsequently for z, as was seen earlier. Similarly,
we can apply the X— and Y—Laplace transforms to equation (2.5) in case both
h_, and k_, are non-zero. in case either of h_; and k_, vanishes, we can solve for
z_1, and subsequently for z. A simple calculation shows that with A # 0, apply-
ing the X —Laplace transform to the Y —Laplace transform of equation (2.3) yields
an equation which can be deduced from equation (2.3) by replacing the dependent
variable z by hz. Similarly, with & # 0, applying the Y —Laplace transform to the
X —Laplace transform of equation (2.3) yields an equation which can be deduced
from equation (2.3) by replacing the dependent variable z by kz. Thus the repeated

application, whenever the corresponding Laplace invariants do not vanish, of the X —
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and Y —Laplace transforms to equation (2.3) yields only a singly-indexed sequence
- (E9), (E_q), (E), (E), (Ey),--- of linear hyperbolic equations, where (F) de-
notes the original equation (2.3), and where (E;;;) is the Y —Laplace transform of
(E;) and (F;_;) its X —Laplace transform. It follows from our preceding discussion
that all of the equations in this sequence, and in particular the original equation (E),
can be integrated as soon as any of them can be integrated. The Laplace method of
integration consists in generating successive elements of this sequence, starting from
(E), until the X— or Y'—Laplace invariant of the last generated equation vanishes.

Consider now the homogeneous linear hyperbolic equation

0% + a% + b%
0x0y Jxr Oy

+cz =0,

which we denote by (E). Assume that the Y —Laplace invariant h of (E) is non-zero.
Taking the Y —Laplace transform of (E) yields a new equation (E}), given by

8221 azl 6z1
Doy + (11—5; + bla—y +c121 =0,

which is homogeneous as well. Assume that hy # 0,hy #0,--- ,h;—1 # 0, so that

we can take ¢ successive Y —Laplace transforms, and obtain equation (E;):

&+a~%+b~%+c- .= ()
dxdy 'O0r 'Oy % =1

Assume now that h; = 0. Then, the general solution of (E;) is of the form z; =

a(X + [ BY dy), where a, § are given functions of z and y, X is an arbitrary function

of z, and Y and arbitrary function of y. Working our way backwards, to z, we obtain

z=AM+/ﬁh@+A¢V+ ngm+~+ma@+/y%%m

where A, Ay,---, A; are given functions of z,y. Since Y is an arbitrary function of

y, we may choose it as being identically zero. We then obtain:
2= AX + A X' + -+ AXO (2.6)

We conclude that whenever the sequence (h;) of Y —Laplace invariants of (E) ter-

minates at [ = ¢, i.e. hy # 0 for | < i and h; = 0, then (F) has a solution of the
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form (2.6) depending on an arbitrary function of z. It is also a simple matter to
show that conversely, whenever (F) admits a solution of the form (2.6), then its
sequence (k) of Y —Laplace invariants terminates at most for [ = i. We arrive at a
similar conclusion concerning the X —Laplace invariants by exchanging # and y. In
particular, if the sequence (k;) of X —Laplace invariants is such that k; # 0 for I < j

and k; = 0, then (E) has a general solution of the form
2=BY + B)Y'+---+ B;Y") (2.7)

where B, By,---, B; are given functions of z,y, and Y is an arbitrary function of
y; conversely, whenever (F) has a solution of the form (2.7), then the sequence (k;)
of X—Laplace invariants of (EF) terminates at index j at the latest. If now both
sequences (h;) and (k;) of Laplace invariants of (E) terminate, say (h;) at index ¢
and (k;) at index j, then, by virtue of its linearity, (F) admits a general solution of

the form
z=AX+ A4 X +--+ AXD + BY + BiY' +--- + B;y" (2.8)

where A, Ay, -+, A, B, By, -+, B; are given functions of z,y, X is an arbitrary
function of z, and Y and arbitrary function of y; and conversely, if (E) has a
general solution of the form (2.8), then both of its sequences of Laplace invariants

vanish.

2.5 Darboux integrability and Laplace
invariants

Consider the linear hyperbolic equation given by:

62
i +a%+b%+cz:0. (2.9)

(2) = 0x0y ox oy

Assume that the sequence of X —Laplace invariants of (2.9) terminates at index p.

Then, it follows that (2.9) admits a solution of the form
z=BY +BiY' +---+ B, ;Y* (2.10)
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where B, By, -+, B, are given functions of z,y, and Y an arbitrary function of y.

Differentiating both sides of (2.10) with respect to z yields
dz dB dB; dBp_1 . ,(p—
L=y Tyt 22y (el
A Tl T T

and p successive differentiations of both sides of (2.10) with respect to z yield p
equations of the form
d"; _ diB d'B; V4. din._l
dzt  dz* dx? - dat
to which we can append equation (2.10). We thus obtain a system of p + 1 linear

Y(p—l)’ ’LII, » Dy

equations in Y, Y”, .-+, Y1 from which it follows that z must satisfy an ordinary

differential equation of the form

0Pz 0P 1z
Fi(2) = 5 T Do+ + L =0, (2.11)

where the T; are functions of x and y. Differentiating both sides of (2.11) with

respect to y, differentiating both sides of (2.9) (p — 1) times with respect to z, and

combining the results, we obtain an equation of the form

. N dFi(z)
1 T T ®(2) - _ji/—_ — BFi(z) =0, (2.12)
where a1, s, - - - , 8 are functions of x and y. The coefficient of in this equation

is a — B, and equating it to zero, we can rewrite (2.12) as
dr1® dp 29
dxp-! ta Vdzr—2

Thus, any solution z of (2.9) automatically satisfies %{ef “WE (2)} = 0 as well.

[ ady {

4o 0y ®(a)} = e R ()

Noting that the first system of characteristics of (2.9) is given by

’

dx =0,

dZ = QIdya

dth = q2dya
(I) < ’

dgn-1 = qndy,

dpl = pZdya

dp, = %2 dy,
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we have that

[ ady S ady [ ady
d(efadyFl(z)) - d(e dFl(Z))dx + d(e Fl(Z))dy _ d(e Fl(Z))dx,
x dy dx

and hence e/ ¥ F\(z) is a function of order p such that its differential lies in the
linear span of the first system of characteristics of (2.9); this yields two independent
invariant functions for the first system of characteristics, namely  and e/ %% F(z).
Similarly, if the sequence of X —Laplace invariants of (2.9) terminates at index g,
then we can construct a function of order q of the form e/ "G (2) such that its dif-
ferential d(e %G1 (z)) lies in the linear span of the second system of characteristics
of (2.9); this yields two independent invariant functions for the second system of
characteristics, namely y and e/ %23, (z). We thus arrive at the important conclu-
sion that if both sequences of Laplace invariants of the linear hyperbolic equation
(2.9) terminate, then (2.9) is Darboux-integrable. It is also shown in [8] that con-
versely, whenever (2.9) is Darboux-integrable, then both of its sequences of Laplace
invariants do terminate.

As a simple example, consider the linear hyperbolic equation
s=z. (2.13)

The Y —Laplace invariant of (2.13) is h = 1, and its Y —Laplace transform yields the
same equation. By symmetry, the same is true for the X — Laplace invariant and
transform. In particular, the sequences of X — and Y — Laplace invariants of (2.13)

never terminate. Thus, (2.13) is not Darboux integrable.
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Chapter 3

The jet bundle and the variational

bicomplex

In this chapter, we present the formal framework in which the geometric study of
differential equations is performed. Although this study has its roots in the work of
Elie Cartan [4], we follow here the modern treatment described in [1] and based on

the variational bicomplex originally introduced by Tulczyjew [10].

3.1 Pfaffian systems
Consider the partial differential equation
F(xayyzyzxyzyazwwazmyazyy) =0. (31)

As we saw earlier, we can replace the partial derivatives 2, 2y, 22z, 24y, 2Zyy With the
variables p, q, 7, s, t, respectively, so as to treat them as variables in their own right.

Let now U C R? be an open set and assume that the equation
F(CL’,’y,Z,p,q,’f’,S,t) =0 (32)

defines a seven-dimensional submanifold ¥; of U x R® which is parametrized by

(z,y). Let i : ¥7 — U x R® be the inclusion mapping. Consider the 1-forms on
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U x R® given by

w! = dz — pdz — qdy,
w? = dp — rdx — sdy,
w® = dq — sdz — tdy.

Let z : (z,y) — 2(z,y) be any R-valued function on U. The graph of z is defined
as the image of the map (z,y) — (z,y, 2(z,y)); we define the 1-jet of 2z as the map

itz (z,9) = (2,9, 2(2,9), 2:(%,9), 2 (2, 9)),

and its two-jet as the map

iz (z,y) & (2,9, 2(2,9), 2(2, ), 2(2, ¥), 200 (2, ), 2oy (T, Y), 249 (2, ¥))-

If z is a solution to (3.1), then j%z(x,y) € 7, V(z,y) € U, and (52)*w! = (§2)*w? =
(73)*w® = 0. In other words, the map j?z defines an integral manifold for the
system of 1-forms {w!,w? w3} which is a submanifold of ¥;. Now since i*dw =
d(i*w), if z is a solution to (3.1), then j2z defines an integral submanifold of ¥; for
the system {w!, w? w3, dw!, dw? dw?} as well, and since *(w A7) = *(w) A i*(n),
j%z defines an integral submanifold of ¥; for the ideal generated by the forms
{w!, w?, W3, dw?, dw?, dw?}. Such an ideal is called a differential ideal. If, as is the
case here, this ideal is generated by a family of 1-forms and their exterior deriva-
tives, then such an ideal is called a Pfaffian system. Thus, two-jets of solutions
to (3.1) are submanifolds of ¥; which are integral manifolds of the Pfaffian system
generated by the forms {w!, w? w3}. Conversely, if i : (z,y) — (2,9, 2,p,4,7,5,1)
is a two-dimensional submanifold of ¥; such that #w! = #*w? = *w3 = 0, then
z : (x,y) — 2(z,y) is a solution to (3.1). Thus the problem of finding solutions to
(3.1) is equivalent to the problem of finding two-dimensional integral manifolds of
the Pfaffian system generated by {w!,w? w®} on the seven-dimensional submanifold
Y7 of U x R® defined by (3.2).

Equation (3.1) gives one set of relations between the various partial derivatives of
order 2 of a solution. Relations between higher-order partial derivatives can also be

established by differentiating both sides of (3.1) arbitrarily many times with respect
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to z and y. For example, differentiating both sides of (3.1) once with respect to
and once with respect to y yields the two additional relations:

dF oF OF OF OF

= + 2y + A Rzz + _zmy +

dz dr ' 0z " Oz 92,
oF oF oF
éz;zzzz + %zm:y + az';;zxyy = O)
dF oF OF OF oF
a T oy e T an oy
oF OF oF
WM zoy T %Zwyy + aTyyzyyy =0

Here again, solving (3.1) is equivalent to finding two-dimensional integral manifolds
of a particular Pfaffian system (generated by six one-forms) on a nine-dimensional
submanifold of U x R!® (more precisely, the one defined by F = 0, € =0, % =0).
Note that working on this nine-dimensional submanifold, we can consider func-
tions which involve partial derivatives of the third order of the solution to (3.1),
something which could not be done in the context of the former, seven-dimensional
submanifolds. There is a real advantage gained in not restraining oneself a priori by
the derivative order; this suggests that one must work not on a finite dimensional
submanifold of some U x R*, no matter how large n, but rather on an infinite di-
mensional submanifold of another infinite dimensional manifold. This is what we

shall make precise next.

3.2 Jet bundles

Let 7 : E — M be a fiber bundle over a connected base manifold M. Since all our
considerations will be local, we can think of M as an open connected subset of R”,
for some n € N*. Similarly, we can think of E' as the product M x R™ for some
m € R*, and of 7w as the trivial bundle. Let s : M — FE be a section of w. The
image s(M) of s is the graph of a particular R™-valued function on M. Conversely,
if f: M — R™ is a given function, then the map z — (z, f(x)) is a section of .

We extend this basic formalism as follows: if s : U — F and s’ : U = E are two
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local sections of F, and U,U’ open subsets of M, then we say that s and s’ are
equivalent at p € UNU’ to order k if their partial derivatives to order k agree at p.
Note that this definition is independent of any trivialization used. The equivalence
class of s at p under this equivalence relation is denoted by j*(s)(p), and is called
the k—jet of s at p. We thus define the bundle 7%, : J¥(E) — M of k-jets of local
sections of E. For any point of M, the fiber (7%,)~1(p) consists of equivalence classes
of local sections of 7 at p. If the local coordinates on M are given by (z%);=;,... n,
and the fiber coordinates on E by (2%)a=1,...,m, then the induced local coordinates
on J*(E) are (z¢,2% 28,28, -
and where 2%(j%(s)(p)) = s°(p), 22 (7*(5)(P)) = %5 (), 25(1*(s)(P)) = s (),
and so on. We define J*(E) as being F itself. For any k,l € N with & > [, we

: 7zﬁi2.‘.ik)7 where 1 S il S Z.2 S S Z.k S n,

have the obvious projection 7F : J*(E) — J!(E). This defines an inverse system
{J¥(E), nF} of topological spaces. The inverse limit of this system is denoted by
J®(E) and yields the bundle 73 : J®(E) — M, together with the projection maps
TP 1 J®(E) = J¥E), and 7% : J®(E) = E. 7% : J®(E) — M is called the
infinite jet bundle of the bundle 7 : F — M. The fiber at p of the infinite jet
bundle is defined as equivalence classes, denoted j*°(s)(p) of local sections of p,
where two local sections s, s’ are said to be equivalent at p if they have the same
partial derivatives to all orders at p. The equivalence class of s at p is called the
infinite jet of s at p, and is denoted by 7°°(s)(p). Clearly, any section s : U — E of
the bundle 7 lifts to a unique section j°(s) : U — J*®(F), called the infinite jet of
s. Conceptually, if E is the space coordinatized by the independent variables and
the dependent variables, the latter representing function values, J*(F) is the space
coordinatized by the independent variables, the dependent variables, and all partial
derivatives of the dependent variables with respect to the independent variables.
Let f : J*(E) — P, where P is some arbitrary smooth manifold, be a smooth
function. For any [ > k, we can pull back f to a smooth P—valued function on
JYE) through the map f ~ fonrl = (7L)*(f). This defines the direct sequence
{C=(J*¥(E), P), (r})*}, and we define the set C®(J*®(E), P) of smooth functions
from J°(F) to P as the direct limit of this sequence. By definition of the direct
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limit, a function f : J*®(E) — P is smooth if and only if it factors through a
smooth function on J*(E) for some k € N, i.e. there exists f : J*(E) — P such
that f = fr on®. We call k£ the order of f. Viewing functions as zero-forms, we
can extend this construction to differential forms as well. Let AP(J*¥(E)) be the p*
exterior product bundle. The sequence {A\?(J*(E)), (wL)*} is a direct sequence with
direct limit AP(J*(E)), the p* exterior product bundle of J®(E). A section of
NP (J°(E)) is called a differential form on E. Every smooth differential p—form w
on J*(E) is represented by a p—form & on J*(E) for some k € N, i.e. w = (7°)*(&).
In local coordinates, a p—form w on J*°(F) is therefore a finite sum of terms of the

type
Alz, 2)d2ft A - - Adzfs Adat A - Ada, (3.3)

where 7 + s = p, and where the coefficient A is a smooth function on J*(E). The
order of the form (3.3) is the maximum of the orders of the coefficient function A
and the differentials dz7.

A vector field X on J*(F) is defined as a derivation on the ring C*®(J*(FE)) of

smooth functions on J*°(E). In local coordinates, we have

. R )
X=A 8931 + Z Bﬁzzzkgga—’ (34)
k=0,a 11020k

where the coefficients A* and B®

i, are smooth functions on J*°(E). Since smooth

functions f and forms w on J®(E) are of finite order, the expressions < df, X >

and < w, X > always reduce to finite sums and are therefore well-defined.

Definition 3.1 A differential form w on J(E) is called a contact form if, for any

local section s of E, we have (§°(s))*(w) = 0.

Contact forms are of fundamental importance in all that follows since they character-
ize submanifolds of J*°(FE) which are graphs of infinite jets of functions on M. The
distributivity of the pullback operation with respect to the cup product on forms

implies that the set of contact forms on J*(FE) is actually an ideal in Q*(J*°(E)),
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denoted by C(J*(E)), and called the contact ideal of J*(E). C(J*(E)) is generated

by the contact one-forms

o e 0 L V]
9,1% = dzilmik Zil---ikjdx )

for all K € N. We denote by C*(J*°(E)) the st exterior product of the contact ideal
C(J=(E)).
Definition 3.2 Let 7' : E' — M’ be another fiber bundle. A smooth map
®: J®(E) — J®(E"
is called a generalized contact transformation if it preserves the contact ideal, i.e.
*(C(J=(E)) c C(J>(E)).

If, in addition, ® covers a smooth map ®, : J'(E) — J*(E'), i.e. ®107m° = (7')0d,

then ® is called a classical contact transformation.

Definition 3.3 A vector field X on J®(E) such that X—w = 0 for every contact

one-form w is called a total vector field.

A total vector field on J*°(E) can be seen as a vector tangent to the graph of the
infinite jet of a section of E. If the vector field in (3.4) is a total vector field, then
we should have X072 , =0, Va € {1,---,m},Vk € N, yielding X = A’Dj, with

D; the total vector field

A A P I P A

The Lie bracket [X, Y] of the two total vector fields X = A‘D; and Y = B*D; is the
total vector field defined as [X,Y] = (47D;B* — B'D;A")D;.

3.3 The variational bicomplex

We say a form w on J®(E) is of type (r,s), with r +s = p, if w(Xy,---,X,) =0

whenever either more than s of the vector fields X; are n§g—vertical, or more than
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r of them are total vector fields. Let Q™*(J°(E)) be the space of type (r,s) forms

on J®(E). In local coordinates, a type (r, s) form is a finite sum of terms

a(z, 2% dz™ A - Adz™ A 05 oy N Ok,

By virtue of working on the infinite jet bundle J*(F), we have the direct sum
decomposition

P(J=(E) = P 9~ (I=(E)),

r+s=p
and we define the corresponding projection map 7™ : QP(J®(E)) — Q" (J*®(E)).

Using local coordinates, it can be seen that the exterior derivative is a map
d: Q7 (J®(E)) = Q3 (J*(E)) ® Q" (J*(E)).

We can thus write d = dy + dy, where dg : Q¥ (J®(E)) — Q14 (J®(FE)) and
dy : Q¥ (J®(E)) — Qst1(J®(FE)) are defined as dyy = 7"""*od and dy = 77" od,
respectively. dy is called the horizontal, and dy the vertical, exterior derivative.
Since 0 = d® = (dy + dv)? = d% + dydy + dydy + d%, grouping these terms
by degree, we obtain d% = d? = 0 and dydy = —dydy. We define the free
variational bicomplex for the fiber bundle # : F — M as the double complex
(*(J*(FE)),dy,dy) of differential forms on the infinite jet bundle J®°(FE) of E.

To, " T
0 — QO2(C®) 2, Qu2(cw) 1, ... 4, gn2(eoo)
Adv ] dv Adv
0 s QUI(C®) U, Qui(ee) U, ... 91, g (ceo)
[ ay Ly Tay
0 —— R — QUO(C®) %, quo(ceey %, ... 91, no(ooo)
As an example, if f € C®°(J*(FE)) is a smooth function on J®(E),
df = %dmi—l—gfd +§Z];da+...
= [gaj; +87];zf‘+(,;9}; 2%+ - Jdat +
of 0% + f oy f @ 4.

FEME P P
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Thus, dgf = 70(df) = [2 + £Lzp + 228 + - :]ds’ = D;fds’, and dyf =
2

oz 0z%
Ol (df) = [2L6° + a%%ef + a%%ggj +eee).

Now let #’ : B’ — M’ be another fiber bundle, and let
O : J®(E) —» J®(E
be a smooth map. In general, the pullback
> P (I(E) - (I (E))

will not preserve the horizontal and vertical bigrading on forms. This leads us to

the following:

Definition 3.4 Forw € Q"*(J®(E)), we define the projected pullback map ®" of ®
by

& (w) = 7"°(2*(w)).
We have the following important result:

Proposition 3.1 If & : J°(E) — J*(E’) is a generalized contact transformation,

then the projected pull-back map ® commutes with dy:
o dy = dg o B
Proof. Since ®* preserves the contact ideal, we have

*(J*(E) C C(J*(E))
C Qr,s(Joo(E)) D Q'r—l,s+1(Joo(E)) e Qr—2,s+2(Joo(E)) @®---

This shows that
7t (dP*w) = dg(P*w) and  dy (PPw) =0,

and the conclusion follows. O

We have a similar definition for total vector fields:
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Definition 3.5 If X is a total vector field on J®(E) and w € Q™ (J®(E)), we
define X(w) € Q*(J°(E)) to be the projected Lie derivative n™*(Lxw) of w with

respect to X.

We have the following important Cartan-type formula for the projected Lie deriva-

tive:
X(w) = X~dg(w) + dg(X—w).
Note that we have in particular D;0%. ., = 67 ., Note also that X (dpw) =

X-d%(w) + dg(X~dgw) = dg(X~dgw) + d%(X-w) = dg(X (w)). We shall make
constant use of these relations in all that follows. We shall also make constant use

of the following commutation relations, which are easily proved:

Proposition 3.2 Letw € Q*(J*(F)). If X andY are total vector fields on J*(E)

and Z 1is any n39—wvertical vector field on J®(E), then

X(Y () - Y(X(w)) = [X,Y](w),
Z-X(w) = [Z, X|(w) + X (Z-w).

We will also make crucial use of the following operators:

Definition 3.6 We define the interior Euler operator J in local coordinates by

J o QU(IR(E)) — Qv (J%(E))
1 o 0]

we J) == 3 (~D)0hw]

H|=0

where I is a multi-index and |I| its length.
We have the following important proposition:
Proposition 3.3 The interior Euler operator satisfies Jody =0 and J? = J.

For the proof, we refer to [1].
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Definition 3.7 For s > 1, we define the horizontal homotopy operator

By o QUS(JP(E)) — QUL (J°(E))

k-1

T 1 |I| + 1 o Ij
»8 — F .
<")'_>hH(W) Slén_r_'_'I'_*_lDI[o A a(wj)]a
where w; = Dj—~w and
pa Oy Y,
Fi=3" 1 (—D);(8y ~w).
= |1}

As its name indicates, the horizontal homotopy operator A, satisfies the following

relation, which is of key importance in what follows:

Proposition 3.4 For s > 1, the horizontal homotopy operator h% satisfies the

relation
h Y (dgw) + dp (hw) =w, Yo € Q7 (J®(E)).

For the proof, we refer again to [1].

3.4 The constrained variational bicomplex and
conservation laws

Consider a second-order partial differential equation defined in an open connected

subset U of R? and given by

F(2,y, 2, 22, 2y, Zaw, Zay, Zyy) = 0, (3.5)
- or, equivalently
F(z,y,2,p,q,71,8,t) =0, (3.6)

with the classical Monge notation. Equation (3.6) defines a submanifold of E,
where F is the total space of the bundle U x R® — U. Let R denote an open

connected and contractible subset of this submanifold. Let i : R? — J?(E) be
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the inclusion map. The successive prolongations of R? are defined recursively by
the total derivatives of (3.5), e.g. R = {j3(s)(p)|72(s)(p) € R2|(D.F)(53(s)(p)) =
(D, F)(53(s)(p)) = 0}. Each prolongation i : R¥ < J*(E) fibers over R*¥~! and
this yields and inverse system with inverse limit ¢ : R® — J°°(E).‘ R is called
the infinite prolongation of R?. We have the obvious projections 7° : R® —
RF and 7 : R® — U. We denote by C(R*) the pullback of the contact ideal
on J®(E) to R®, i.e., C(R®) = i*(C(J*(E))), and we let R be the triple R =
(R, 7%, C(R>)). It can be easily shown ([5]) that local solutions to (3.5) are in one-
to-one correspondence with sections o of 7§ : R® — U which satisfy 0*(C(R*>)) =
0. A total vector field on R* is a vector field X such that X—-w = 0 for any 1-
form w € C(R>). We can thus bigrade the differential forms on R* by horizontal
and vertical degree, just as on J*(E). We then define the variational bicomplex
for R = {R®,n,C(R®)} to be the pullback of the free variational bicomplex
(Q**(J*(E)),dy,dy) to R*.

Tdv z\dv /\dv
0 s 90,2 (Roo) dy y 91’2(R°°) du ) Q2,2 (Roo)
]\dv Adv Adv

~

dy 1 dy

0 | QO,l(Roo) dH; Ql,l(Roo) dH} Q2,1(Roo)
dy
_dn

0 — R —— QUO(R™) QUO(R™) Ly 20(Re)

Consider the one-form
w=MAdx+ N Ady,

where M and N are smooth functions on R*. If w is dg—closed, that is, dgw = 0,
we call w a classical conservation law of the hyperbolic equation R. If M and NV
are type (0, s) contact forms (s > 1) and dgw = 0, we call w a type (0, s) contact
form-valued conservation law of R. If in addition w is dy—exact, i.e. there exists a
type (s —1,1) form 7 such that w = dgy, then w is called a trivial conservation law.

In general, a type (7, s) form which is dy closed is called a type (7, s) conservation
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law of R. We shall be interested in non-trivial conservation laws of R, i.e. the
cohomology groups H™*(R>,dg). Since type (2,s) forms are trivially dg—closed,
and since, by a theorem of Vinogradov [13], H**(R*) = 0 for s > 1, we shall focus
solely on type (1, s) contact form-valued conservation laws, that is, on elements of

Ker(dy : QU9 (R®) — O02%(R™))
Tm(dy : Q3(R®) — Q1 (R™)) ’

Hl’s(Roo,dH) = s > 1.

Consider now equation (3.5). With no loss of generality, we can assume that we can

rewrite this equation as
Zaz + F(2,Y, 2, 25, 2y, Zay, Zyy) = 0.
The natural coordinates for R*° are then
(T,Y, 2, 2o, Zys Zaoy, Zyys "+ * > Zagh=1, Zaghy "+ * ),
and a basis for the contact ideal on R is
{0,05,0y,00y,0yy, - ,Opyi—1,0pk,- -+ },

where

0 = dz — zzdz — z,dy,
Opye-1 = A2gyn-1 + (D’;‘lf)dx — Zgyedy,

Hyk = dZyk — Zgyk dx — Zyk+1 dy.

We conclude this section with an example adapted from [2]. Let then F and E’

be two copies of the trivial bundle 7 : R® — R?, with respective jet coordinates
(Z,9, U, Uz, Uy, -+ - ) and (v, W, 2, 2y, Zup, - " ).
Consider the wave equation
Zow — Zww =0 (3.7
and the hyperbolic Monge-Ampeére equation

Uagllyy — Usy, = —1. (3.8)
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Consider the unique contact transformation ® : J*(E) — J*(E') determined by

the relations

vo®=u;,, wod=y, 2z0®=u-—zu,,
2y ® = —x, 240P=u1u,y,
It immediately follows from these relations that ®*(¢) = 6, where ¢ is the contact

form ¢ = dz—z,dv—z,dw on J*(E’), and 6 is the contact form 0 = du —u,dx—u,dy

on J®(E). We have

O*(dz, — 2pydv — Zydw) = —dz — (24 © B)duy — (24 0 )dy
1 Zyw © P
= (w0 B)ldus + —da+ 222 2y

and hence, the contact condition
®*(¢y) =0 mod {0,0,,6,}

implies that

1 Uy
and 2y, 0® = 2
ul‘x ux$

Zyy 0P = —
In addition, the contact condition
®*(¢y) =0 mod {0,0,,0,}

implies that

2
ul‘
zwwoszuyy——y

T

and consequently, we obtain

1
(Zvv - wa) od = _““f(uxmuyy - uiy + 1)

Thus, equations (3.7) and (3.8) are equivalent under the contact transformation ®.
Furthermore, it is easy to verify that ® preserves characteristic directions. Indeed,

the characteristic equation of (3.7) is
dw® — dv? =0,
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with characteristic directions
D, £ D,,
and, (dw? — dv?)(D, = D,,) = 0. Similarly, the characteristic equation of (3.8) is
uyydy2 + 2ugydrdy + Ugedx® = 0,
with characteristic directions
Uyy Dy + (—ugy £1)D,,

and, (tyydy® +2Usy drdy +Usedz?) (tyy Do+ (— Uy 1) Dy) = Uy, (Upglyy —uZ,+1) =0

as a consequence of (3.8). Now,

< dv,®,(D;) > = < ®*(dv),D, >
= <dug, D; >

= Uge,

and hence,
Similarly, we have that

and we obtain therefore

um:
1
B mu—)[(l — uZ,) Dy + g (Ugy £ 1) D]
Tz zy
1

= — 1t uzy ['U,nyZ + (_Uwy + 1)Dy]

Thus, ® preserves the characteristic directions.
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Finally, consider the one-form
Lo o
W= ~2—(zv + 2y, )dv + 2,2y dw.

We have dyw = 0 as a consequence of (3.7) and hence, w is a classical conservation

law for (3.7). The pullback of w under ® is given by

1
" (w) = 5(:::2 +ul)dug — zuydy,

and hence, the projected pullback of w is

1 1
dH(w) = 5(932 + Ug Uz T + (— 2y + 5(:1:2 + U3 ) Uy ) dy

which is then a conservation law for the hyperbolic Monge-Ampére equation (3.8) by

virtue of proposition 3.1.
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Chapter 4

The variational bicomplex for

hyperbolic PDEs

In this chapter, we prove the equivalence between the Darboux integrability of a
hyperbolic equation in the plane and the vanishing of Laplace invariants of the
linearization of this hyperbolic equation. This equivalence is established through
the construction of suitable moving coframes and their structure equations. The

presentation in this chapter follows [3], and to a lesser extent, [9].

4.1 Characteristics of hyperbolic PDEs and the
characteristic coframe
The characteristic equation for the second-order partial differential equation
F(z,y,2,p,q,7,5,t) =0 (4.1)
is the quadratic equation
F 2 — Fu+ Fuy = 0.

Let o = j2(S)(z,y) be a point in J?(E) satisfying (4.1). Since (4.1) is assumed to

be of hyperbolic type, there exist two distinct characteristic directions at o, given
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by the linearly independent vectors (m,, m,) and (ng,ny), such that
(MmaA — myp) (neA — nyu) = K(F02 — Fdp + Fuu®), (4.2)

where s is a non-vanishing smooth function on R*, and mg,my,ng,n, smooth

functions on R®. We define the following basis for the total vector fields on R*°:

X =mzD; +myD,y,
Y =n,D; +n,D,,

and we call {X,Y} the characteristic frame of (4.1). We express the Lie bracket of
X and Y in the {X,Y} basis as

[X,Y] = PX + QY. (4.3)

The coframe on R* dual to {X,Y} is denoted by {o,7} and is defined by the

relations

o(X)=1,0(Y) =0,
7(X)=0,7(Y) = 1.

From the Lie bracket expression (4.3), we easily deduce the following dy structure

equations:

dgo = —Po AT,
dgm = —Qo A T.

Furthermore, for any type-(r, s) form w € Q™ (R>), we have
dgw =0 AN X(w)+ 7 AY(w).

On the equation manifold R*°, we have F = 0, and hence dF = 0 as well. Since
dF = dgF +dyF, and since dgF' and dy F' have different degrees, we have dgF' = 0

| and dyF' = 0 on R* as well. In particular, the relation dy F' = 0 can be written as
Fr050 + Fi0py + Fifyy + F,0, + F,0, + F,0 = 0, (4.4)
or equivalently as
(F.D}+ F,D,D, + D + F,D, + F,D, + F,)0 = 0,
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where @ is the contact form
0 = dz — pdx — qdy.

Equation (4.4) is called the universal linearization of the original partial differential
equation (4.1) and is verified on the equation manifold R™ of (4.1). The universal
linearization (4.4) is of fundamental importance in all that follows for the following
two reasons: On the one hand, it is a linear hyperbolic equation, and is amenable
to Laplace transformation following a suitable change of coordinates; on the other
hand, it has the same characteristic directions as the original equation (4.1). We now
recall the classical result of chapter 2 establishing the equivalence between Darboux
integrability and termination of Laplace invariant sequences for linear hyperbolic
equations, and we are led to believe that such a result may hold for the universal
linearization (4.4) as well. Now since (4.4) and (4.1) have the same characteristic
directions, one could expect a relation between the Laplace invariants of (4.4) and
the Darboux integrability of (4.1). The remainder of this chapter is devoted to
proving precisely such a result.

As was hinted above, the universal linearization can be expressed in a simpler

form by a suitable choice of total differential operators:

Lemma 4.1 Let {X,Y} be the characteristic frame of (4.1). Then, in the basis
{X,Y}, the universal linearization (4{.4) of (4.1) can be written as

(XY+AX+BY+C)0=0 (4.5)
where

A

[(6Fp — X (na))ny — (5Fy — X (ny))nal,
B = [—(kF, — X(mg))my + (kFy — X (my))mg],
C = kF,,

where Kk is given by the relation (4.2).

The proof follows from a simple calculation.
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Clearly, in the characteristic frame {X, Y}, the universal linearization (4.5) is in
a form which is reminiscent of the equations to which the Laplace transform can be
applied. This is precisely the route we shall take, and it is precisely the universal
linearization expressed in the characteristic frame basis that will provide the link
between Laplace invariants and Darboux integrability. The universal linearization is

of such fundamental importance as to warrant the following extension and definition:

Definition/Proposition 4.1 The universal linearization operator associated to the
scalar second-order hyperbolic partial differential equation (4.1) is the total differen-

tial operator L : Q% (R>) — Q¥T1(R>®) defined for w € Q% (R>) by
L(w) = XY (w) + AX(w) + BY (w) + Cw,

where {X,Y'} is the characteristic frame associated to (4.1), and the coefficients
A, B, and C are defined by

14-':140—Z(£2
p
B=B,- X

p ?
C =0C, _l%(ﬂ) - Aoﬂpﬁl _ BOYE)p) + 2X(p/))3/(p),

where

Ao = %[(”Fp — X (ng))ny — (Fy — X(ny))ng),

By = %[_(”Fp — X(mg))my — (kFy — X(my))my],
C'O = Fm

&

where p is a non-vanishing function on R, k is given by (4.2), and 6 = myn, —

myng. With © = pf, the identity dy F' = 0 on R* becomes
L(©)=XY(©)+ AX(0)+ BY(©)+CO =0.

This proposition is proved by a simple but tedious calculation.

Starting from the contact one-form © = pf, where p is an arbitrary smooth
function on R*°, we can define higher order contact forms by repeated application
of the total differential operators X and Y. In particular, we define the contact

forms & = X*(0), . = Y*(©), and we say that a form w € QP(R™) is of adapted

42



order k if it lies in the exterior algebra generated over C*°(R*) by the one-forms
{o,7,©,&,m,"* , &, M} with k the minimal such integer. It is important to note
that the adapted order of a form may be different from its order as a form on R* and
that a form of adapted order k does not necessarily factor through R**!. It is proved
in [5] that the adapted order of a form is invariant under contact transformations in

R>®. Note that we have

Y(&) = YX(&-1) = XY (&-1) = [X, Y](€e1)
= XY (&-1) — P& — QY (§-1),

X(m) = XY(me-1) =YX (1) — [X, Y](m-1)
= YX(1k-1) — PX(1-1) — Qg

and hence, by induction on k, we obtain that Vk > 1, Y (&) and X () are of
adapted order less than or equal to k. Since the total differential operators D;D;
can be expressed in terms of the total differential operators X*Y*, and since for
k > 1 the contact forms Y (&) and X (n,) have adapted order < k on R*, we obtain

the following theorem:

Theorem 4.1 Let R be a hyperbolic partial differential equation. A coframe on the

equation manifold R* is given by the one-forms

{0777 @7 §1:7717€2)772a T 7€k777k7 o }

We call this coframe the characteristic coframe of R. The dy structure équations
for the characteristic coframe are easily obtained. Indeed, as seen above, dgo =
—PoATand dyr = —Qo AT, dg® = o AX(O)+T7AY(O) =0 A& + 7 An,
duée = o ANX (&) +T7AY (&) = 0 Aja1 +7 A g, where py, = Y (&) is a contact form
of adapted order < k. Similarly, dgmp = o AX () + 7 AY (k) = 0 Avg + 7 A a1
where v, = X (1) is a contact form of adapted order < k.

We shall later need to consider the behaviour of the universal linearization oper-
ator under rescaling. For this purpose, let X' = mX,Y’ = nY, and © = [0, where
m,n, | are non-vanishing functions on R*. We have the following lemma, which is

proved by simple but tedious calculations:
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Lemma 4.2 The universal linearization of R in terms of X', Y', and ©' is given

by
XY (©)+AX'(0)+BY'(0)+C'0 =0,

where
Al Y(l
A n + Jll’
_ B | X(n , X
B==+ Jn"_ + =2,
c | X( Y(l XY , XY(l)
C __ﬁ_}_Jnl_lA’_FJiZB'_}_ - + =5

With the characteristic coframe {o, 7, ©, 1,71, 82,72, -+ , €k, Tk, - - - } in hand, we can

define the X — and Y — characteristic Pfaffian systems of order £ by

Ck(X) = QI(T7@7§17771,§27772"” 7£k777k), (46)
Ck(Y) = 91(0,9;51,771,52,772,"' 7£k777k)7 (47)

respectively. The characteristic Pfaffian systems of infinite order are similarly de-

fined by

Coo(X) = 91(7-7@75177717£27772a v )7
Coo(Y) = Ql(a, @7§17 7717§2a N2, )

As was seen earlier, the hyperbolic equation (4.1) is Darboux-integrable if there exist
two independent functions I, I (that is dI AdI # 0 at all points) and two independent
functions J, J such that dI,dl are in the span of the linear span of the first system
of characteristics of(4.1), and dJ, dJ in the linear span of the second system; or,
in other words, dI,dl € Cy(X), and dJ,dJ € Ci(Y). Since dI = dyl + dyI =
o AX(I) + 7 AY(I) +dy(I), we have that dI € Cy(X) if and only if X(I) = 0. A
function I on R* for which X (I) = 0 is called an X —invariant function. Similarly,
we have that dJ € Ci(Y) if and only if Y(J) = 0, in which case we call J a

Y —invariant function on R*. Thus, Darboux integrability of (4.1) ultimately hinges

on the existence of X — and Y — invariant functions on R*°. The notion of X — and
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Y — invariance of functions can be readily extended to arbitrary forms on R, with
X (w) and Y (w) denoting the projected X — and Y'— Lie derivatives of w € Q"*(R*),
respectively. w € QM*(R*) is then said to be X—invariant if X(w) = 0, and
Y —invariant if Y’ (w) = 0. We shall see later how Darboux integrability of (4.1) yields
suitably many X — and Y —invariant functions from which X— and Y —invariant
contact forms may be constructed. This notion of invariance can also be extended
by considering relative invariants: A form w € Q"*(R*) is a relative X —invariant
if X(w) = A\w for some A € C*(R*®), and a relative Y —invariant if Y (w) = Aw.
Clearly, any invariant form is also a relative invariant.

Consider now the universal linearization given by
L(O©)=XY(©)+ AX(©)+BY(©)+CO =0

in terms of the characteristic frame {X,Y}. As alluded to earlier, this equation is

in a form similar to an equation of the type

0%z 0z 0z
82y + az— + ba_y +cz=0 (4.8)

to which the Laplace transform can be applied. The Y —Laplace transform of a

solution z to (4.8) being 2z; = g—z + az, equation (4.8) becomes

8
o7 b —hz =0, (4.9)

where h is the Laplace invariant of (4.9), given by h = 22 + ab— c. Mimicking these

steps, the Y —Laplace transform of a contact form w would be
p=Y(w)+ Aw,
in terms of which the universal linearization would become
X(p)+ Bu— Hw =0, (4.10)

with H = X(A)+AB—C. As can be seen from (4.10), the relative X — invariance of
w is directly tied to the vanishing of H, and H can thus be seen as an obstruction to

1 being a relative X —invariant. Since, as mentionned above, the existence of such
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relative invariants is guaranteed by Darboux-integrability of (4.1), this suggests a
link between Darboux-integrability of (4.1) and properties of the Laplace transform
of the universal linearization (4.5). It is precisely this link we shall make precise in
the remainder of the thesis. First, however, we shall suitably extend the theory of

the classical Laplace transform.

4.2 The generalized Laplace transform and the
Laplace-adapted coframe

Consider the hyperbolic total differential operator F : Q%(R®) — Q%*(R*°) defined
by

F(w) = XY (w) + AX(w) + BY (w) + Cw, (4.11)

on the equation manifold R* of the second-order hyperbolic equation (4.1) with
characteristic frame {X,Y}. The commutator of X and Y being given by (4.3), F

can also be expressed in the equivalent form

F(w)=YX(w)+ DX (w)+ EY (w) + Gu,

where
D = A+ P,
E = B+Q,
G = C.

There are two generalized Laplace transforms associated to the operator F, one for
each of the characteristic vector fields X and Y. To define the Y —Laplace transform,
we define the first-order total differential operator Yz : Q0%(R>®) — Q0$(R*®) by
Vr(w) = Y(w) + Aw. The form n = Yz(w) is called the Y —Laplace transform of
the contact form w associated to F. Note the similarity with the classical Laplace

transform z; = g—; + az. In terms of 7, the contact form F(w) can be expressed as
F(w) =X(n) + Bn — Huw,
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where H = H(F) = X(A) + AB — C. Again, we note the similarity between H
and the classical Laplace invariant h = 2 + ab — c. We call H(F) the generalized
Y —Laplace invariant for the total differential operator F. Just as with the classical
Laplace transform and classical Laplace invariants, we may construct a new total
differential operator of the same form as (4.11) if H(F) # 0. Indeed, F(w) =0 =
X(m)+Bnp— Hw=0=YX(n)+Y(Bn) — Y(Hw) =0, and this last equation can

be rewritten as

XY(n) - BX(n)+ (B-Q)Y(n)+(Y(B) - Hn+ (AH - Y(H))w = 0. (4.12)

Since H # 0 by assumption, we can solve for w in X(n) + Bp — Hw = 0 and

substitute the resulting expression in (4.12), obtaining:
Y (F)(n) = XY (n) + Y(A)X () + V(B)Y (n) + Y(C)n =0,

with

YA =4-YD _p

Y(B) =B - @,

Y(C)=C - X(4) - B¥A) | y(B).
We call Y(F) the Y —Laplace transform of F. Note that for commuting character-
istic vector fields (P = @ = 0), the coefficients of Y(F) are analogous to those of
the classical Laplace transform. Just as with the classical Laplace transform, the
Y —Laplace transform Vr(w) = Y (w) + Aw of the form w is defined for any total
differential operator F of the form (4.11), but the Y —Laplace transform Y(F) of F
is defined only when the generalized Laplace invariant H(F) does not vanish. We
can similarly define the X —Laplace transform of the form w by Xz(w) = X (w)+ Ew,

where Xx : Q0% (R*®) — Q%5 (R>). In terms of £ = Xr(w), the contact form F(w)

can be expressed as
Flw)=Y(&) + D¢ — Kw,

where K = K(F) = Y(E) + ED — G. We call K(F) the generalized X —Laplace
invariant of the total differential operator F. Here again, F(w) = 0 = Y (§) +
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D¢ — Kw=0= XY(&) + X(Df) — X(Kw) = 0; if now K(F) # 0, then we can
express w in terms of £ by virtue of Y (£) + D{ — Kw = 0, and substituting in
XY (&) + X(D€) — X(Kw) = 0, we obtain

[X(F)E) =Y X(§) + X(D)X(§) + X(E)Y () + X(G)§ = 0,

where

X(D)=D+P,
X(E)=E-%*K g
X(G)=G-Y(E)-DXE 4 x(D).

We call X (F) the generalized X —Laplace transform of the hyperbolic total differen-
tial operator F. Just as with the Y —Laplace transform, the X —Laplace transform
Xr(w) = X(w) + Bw of w is always defined, whereas the X —Laplace transform
X (F) of F is defined only when K (F) # 0. Just as with the classical Laplace trans-
form, solutions to F = 0 yield solutions to Y(F) = 0 and X(F) = 0 whenever these
exist, and vice-versa. In other words, the solutions to F(w) = 0 and [V(F)](w) =0
(respectively, [X(F)](w) = 0) are in bijective correspondence. This is the subject of

our next proposition, which is easily proved:

Proposition 4.1 For any hyperbolic second-order total differential operator F and
for any forms w,n € Q¥ (R*), [XyF) o Vr)(w) = H(F)w + F(w), and, provided
H(F) # 0, Vr(l o (m) = 1+ i DPN0). I HF) £ 0 and n = Vr(w),
then F(w) = 0 implies [V(F)|(n) = 0; conversely, if & = H—(lﬂXy(f)(n), then
[V(F)](n) = 0 implies F(o) = 0. Similar identities hold for K(F) and X (F).

As discussed earlier, if the Y —Laplace invariant H(F) of F vanishes, then the
Y —Laplace transform Yr(w) = Y(w) + Aw is a relative X —invariant form. If
however H(F) # 0, we can draw no conclusion as to the X —invariance of the
form w, but instead we can consider the Y —Laplace transform Y(F) of F. If now
H(Y(F)) = 0, then we have a relative X —invariant form, given by Vyr)(w). If
however H(Y(F)) # 0, then we can take another Y—Laplace transform Y(Y(F))
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and continue this procedure. The same conclusion holds for the X —Laplace trans-
form, with Y —invariance instead of X —invariance, and the X —Laplace invariant
K instead of the Y—Laplace invariant H. This suggests that we can consider
successive applications of the Y— and X —Laplace transforms of the total differ-
ential operator F. Let then Hy = H(F), Hy = H(Y(F)) provided Hp # 0. Pro-
vided Hy # 0,H; # 0,--- ,H; 1 = H(Y"Y(F)) # 0, we define the 1" generalized
Y —Laplace invariant of F to be H; = H(Y*(F)). The first integer p for which
Hp = 0 is called the Y—Laplace index of F and is denoted by indy(F). If H; # 0
for all integers 4 > 0, indy(F) is defined as co. In a similar fashion, we define
Ko = K(F) and K; = K(X9(F)) provided Ko # 0,K; # 0,---K;_1 # 0, and we
define the X —Laplace index indx(F) of F to be the first integer ¢ for which K, = 0.
Note that it follows from the above proposition that H(Xyz) o Y(F)) = H(F) and
K(Yx(F) o X(F)) = K(F). Hence, there is no advantage in combining the X — and
Y — generalized Laplace transforms.

Let £ : Q%(R®) — Q% (R>™) be the second order total differential operator
L = XY+ AX + BY +C defining the universal linearization of the hyperbolic equa-
tion R, with the coefficients A, B, C given in definition/proposition (4.1). If O is
the contact form pf, then £(©) = 0. If indy (L) = p, then H, = H(YP(L)) = 0 and
H(YP~1(L)) # 0, and hence the contact form Yy»-1(.)(©) is a relative X —invariant
form; similarly, if indx(L) = ¢, then K, = K(X9(£)) = 0 and K(X77'(L)) # 0,
and the form Xxq-1(£)(©) is a relative Y —invariant contact form. This suggests
that there may be some advantage in suitably modifying the characteristic coframe
via applications of the X— and Y — Laplace transforms, whenever possible, so as
to include these invariant contact forms. For simplicity of notation, we denote the
Laplace indices of £ by ind(Y) = indy(L) and ind(X) = indxy(L), respectively,
and the generalized Laplace invariants of £ by H; = H(V*(L)), K; = K(X7(L)),
respectively. We modify the characteristic coframe constructed in the previous sec-
tion in order to obtain a new coframe on R, as follows: If ind()) = p, we define
m =Yc(©) =Y(0)+A0,n; = Vyi-rgy(mic1) = Y (i) +Aiamicr, i =2, -+ ,p+1,
and My = Y(npti—1) for i > 2, where A;_; is the coefficient of X in the op-
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erator Y'"'(£). If on the other hand ind()) = oo, then the contact one-forms
7; are defined by n; = Y(n_1) + Ai_1m;-1 for all ¢ > 2. It immediately follows
from the above that X () + By — Ho© = 0 and that if Hy # 0, Y(L(m)) =
XY (m) + A X(m) + BiY(m) + Cimp = 0. A simple calculation also shows that
X(m) + Biami — Hi—imi—y = 0 for 4 = 2,3,--- ,p+ 1, and that fors = 1,--- ,p,
VI(O)(m) = XY () + AiX(n) + BY () + Cim; = 0. We define the forms &
similarly with respect to the generalized X —Laplace transform. If ind(X) = g,
we define § = A(0) = X(0) + EO,§; = Xyi-1(0)(&i-1) = X(&-1) + Ej—1&j-1,
for j = 2,---,¢+ 1, and §4; = X(&4;—1 for j > 2, where E;_, is the coeffi-
cient of Y in the operator X9=1(L). If ind(X) = oo, then the contact one-forms
&; are defined by & = X(&_1) + Ej_1&—1, for all j > 2. The resulting coframe
{o,7,©,m,&1,Mm2,&2,- -, } is called the Laplace-adapted coframe on R and will play
a fundamental role in all that follows. Before it can be used, however, its structure

equations have to be defined.

4.3 Structure equations for the Laplace-
adapted coframe

We compute the dyg and dy structure equations separately. To compute the dy
structure equations, we use the basic equation dgw = 6 A X(w) + 7 A Y (w),Vw €

Q*(R>). For example, for the first three contact forms of the Laplace-adapted
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coframe, we obtain:

du(©) = oAX(©)+7AY(O)

= oAN(&—EO)+7AN(m — AO),
dam = oAX(m)+7ANY(m)

= oA (=Bm + He©)+ 1A (2 — Aimn),
du&y = oANX(&)+T7AY (&)

= o N(& = Er&) + 7N (D& + K©).

Gathering all of these, we have the following important proposition:

Proposition 4.2 Suppose 0 < p = ind(Y) < 00 and 0 < q¢ = ind(X) < oco. The
dg structure equations for the Laplace-adapted coframe for the hyperbolic equation

R are given by

dyo = —Po AT,
dgt = —Qo AT,
dH(@) = fl — E@) +7A (?71 — A@),

Bm + Ho©) + 7 A (12 — Aimy),

dum; =

oA (
dgm = oA(—

o A(=Bi-1mi + Himamie1) + 7 A (i — Ami), 2<1 < p,

oA (-

dymps1 = Bpnp+1) + 7 A paa,
dafp+i = OAVpri +T AMpyiy1, 122,

du&i = o A (& — Ei&) +7 A (=D& + Ko©),

duéi = oA (i1 — E&) +7A(=Dini&i + Ki1&iq, 2<i<qg,
dglqr1 = 0 NEa+ T A (—=Dgéera),

dglqri = 0 N&griy1 +T A gy, 122,

where vpy; is a contact one-form such that

Vpyi = [(Z - 1)Q - Bp]np-i—i mod {77;0+1: Tt 777p+i—1},
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and peti 15 a contact form such that

pari = [( = )P — Dyl€gyi  mod {§g41, -+, €gri1}

If ind()) = oo, then the structure equations
dgn = 0 A (=Bi—ami + Hi_1mic1) +7 A (i1 — Aimi)

remain valid for all i > 2. Similarly, if ind(X') = oo, then the structure equations
dr&i =0 A (&iy1 — Ei&) + 7 A (—Dis1& + Kio1&imr)

remain valid for all 1 > 2.

We shall need to know the behaviour of the generalized Laplace invariants and the
Laplace-adapted coframe under contact transformations. Let then R’ be another
second-order hyperbolic system, and let ® : R — R’ be a contact transformation.
Let X', Y’ be the characteristic vector fields for R, and let X'Y"(©") + A’X'(©') +
B'Y'(©') + C'@ = 0 be the universal linearization on R°'. & being a contact
transformation, the characteristic directions are preserved, and we can write X' =
mX,Y’' = nY, and since contact forms are also preserved, we have © = [O, for

non-vanishing functions /,m,n on R*. We have the following theorem, which is

established by simple but tedious computations:

Theorem 4.2 Suppose p = ind(Y) < co and ¢ = ind(X) < co. Then the Laplace
indices of R and R' coincide. The generalized Laplace invariants H, K of R and
H' K' of R' are related by H] = mnH;, K = mnK;. Furthermore, the Laplace-
adapted coframes are related by o' = Lo, 7' = Lr.p! = nily, fori < i < p+1,
Mhys = 0PPnp mod {npi1,- -+, Mpyima} for 2 <4 < oo; similarly, &' = mIlg; for
1<j<q+1, & =mMiE,; mod{{u1,- ,&tj-1} for 2 < j < oo; when
p = 0o, we have n;' = n*ly; for all i > 1, and when q = oo, we have &' = mIl; for

all 7 > 1.

In view of further computations, we also need to express the structure equations of
the Laplace-adapted coframe as structure equations of the corresponding dual frame

on R, which we define as follows:
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Definition 4.1 The vertical vector fields U, VY, W, V2 W2, ... dual to the contact

forms ©,m1,&,1m0,&9, -+ of the Laplace-adapted coframe are defined by the relations

o) =1,m{U) =0,&(U) =0,
O(Vh) = 0,n:(V") =&, &(V*) =0,
O(W*) = 0,n;(W*) = 0,£;(W*) = &,

We call {X,Y,U,V, WY V2 W2 ...} the Laplace-adapted frame on R*.

Let Z be any total vector field on R*°, and w any contact one-form. Then dyw is

a contact two-form and Z-dyw = 0, and hence, for any vector field V on R*® we

have
d(Z,V) = dgw(Z,V) = Z@(V)) - V(@(2)) - w((Z,V])
= Zw(V)) —w(z V).
In particular, if w(V) is constant, then w([Z,V]) = —dgw(Z,V). This formula

relates the dy structure equations of the Laplace-adapted frame to the Lie bracket
structure equations of the dual Laplace-adapted frame. We thus obtain the following

simple, but useful, proposition:

Proposition 4.3 Let R be a second-order hyperbolic equation, and suppose that
0 <p=1ind(y) < oo and 0 < g = ind(X) < co. Then the following congruences
hold for the Lie brackets of the total vector field X with the vertical vector fields
U, Vi, Wi:

[X,U] = EU-HyV' mod{X,Y},
[X, V'] = BV'-HV? mod{X,Y},
X,V = B.Vi-HV* mod{X,Y},2<i<p,
(X, VP = (B, — (i —1)Q)VP™ mod {X,Y,vP *! ...}1<i < oo,
(X, W' = -U+EW! mod {X,Y},
X, Wi = -W/ '+ EW/ mod {X,Y},
(X, W] = W™ 1L EWI mod{X,Y},1<j < o0.
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Similar congruences are obtained for the Lie brackets of the characteristic vector
field Y with the vertical vector fields U, V*, W7. We shall also need the dy structure

equations for the Laplace-adapted coframe. We begin with a simple proposition.

Proposition 4.4 The dy structure equations for the horizontal forms o and T are

dVo' = o Am+TAQ,

dyt = o AB+TA g,

where o, B, i1, 2 are contact one-forms, and o, B are of adapted order 2. Moreover,

dyP = X(a)-Y(um)+ Pys — Qa,
dvQ = X(p2)-Y(8)+Qum — Pp,
dvB = BA(p2—m)

dvpy = aAf=—dyu,

dva = aA(u — ).

Proof. Since 0,7 € Q" (R*®), dyo,dyT € Q' (R>), and hence can be written as
dvo = oA +7 A and dyT = o AB+T A, for a, B, py, pa € QO (R>). Now write
the horizontal form o in terms of the natural coordinate coframe {dz, dy} of the plane
as 0 = adz + bdy. From the relations X = m,D, + m,D, and Y = n,D, + n,D,
and the fact that {o,7} is dual to {X,Y}, we obtain

Ny
Mgy — MyNy’

Mgy — My

Since the functions mg, m,,n,, and n, are smooth functions on R* that can be
factored through R?, the same holds for a and b, and hence for o as well. Hence the
adapted order of ¢ is 2, and as a result that of « as well. It is shown similarly that the

adapted order of 3 is 2. Now the three relations dgo = —PoAT,dyo = o Apu+7Aq,
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and dydyo +dydyo =0 yield

dg(c A +7ANa) = dy(PoAT)

= dyPANoAT+PAdyo AT—P Ao ANdyT,
that is,

dgo ANy — oANdgpuy+dgtr ANa—TAdga

= dyPANOAT+PoApuy AT —PaoATA pa,
which simplifies to

—PoATAp — oATAY () —QoATAa—TAoAX(a)

= dyPAcAT+PoApuyy AT—Po AT A ps.

Grouping terms, we obtain the desired result. Similarly, the integrability condition
d?0 = 0 and d%7 = 0 yield the last two relations. O

We have dg(dyw) = 0 A X(dyw) + 7 A Y(dyw). But we also have dg(dyw) =
—dy(dgw) = —dv (e AN X (W) +TAY (w) = dv(X (W) Ao — X (w) Adyo +dy (Y (w)) A
7 — Y (w) A dy7. Using the expressions for dyo and dy7 computed in the previous

proposition, we obtain the following result:

Proposition 4.5 Yw € Q*(0,11,&1,---) : dv[X (w)] — X (dvw) = 1 A X (w) + B A
Y(w), and dy[Y (w)] = Y(dyw) = 0 A X (w) + pe AN Y (w), where o, 3, p1, pho are as in
proposition (4.4).

The commutation rules established in the previous proposition allow us to establish

the following dy structure equations for the Laplace-adapted coframe on R*:

Proposition 4.6 The Laplace-adapted coframe satisfies the following congruences:

dy©

il
=

mod {6},
ani = 0 mod {51,@’771,"' 7771}7VZ > 17
dVé-i =0 mod {771)@)617"' 752}7VZ Z 1.
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Proof. We have

dH(dV@) = —dv(dH@) —
cANX(dyO)+T7AY(dyO) = —dy(cANX(O)+TAY(0)) =
dy(X(©) Ao —X(©O)Advo + dy(Y(O©)AT-=Y(O)AdyrT.

The dy structure equations for the horizontal forms o, 7, together with the commuta-
tion rules of proposition (4.5) yield dy® =0 mod {©}. The congruences for dyn;
and dy&; for ¢ = 1 similarly follow from the integrability condition dgdy +dydy = 0,
and are established for ¢ > 1 by a simple induction. O

It is important to note that the congruences in these structure equations are not
as sharp as they could be; for one thing, they are totally independent of the Laplace
indices on which the Laplace-adapted coframe itself is based. Armed with the dgy
and dy structure equations, we are now able to characterize X — and Y — invariant

forms.

4.4 Characterization of relative invariants

Consider a contact one-form w € Q'(&;,&, -, &), for some [ > 1; w can be written
as a linear combination w = Zz=1 a;€;, where the a; are smooth functions on R*.
Assume now that w is X —invariant, that is, there exists a smooth function A on
R> such that X(w) = \w. X(w) = S (X (a:)& + a;: X (&), and by construction
of the Laplace-adapted coframe itself, we have X (w) = qi§;41  mod Q(&;,---,&).
On the other hand, A\w = 0mod Q'(&,---,¢&), and this implies that ¢; = 0,
that is, w € Q(&;,---,&_1). Repeating this procedure [ times, we deduce that
w = 0. Thus, for any positive integer [, no contact one-form in Q!(£,---,&) can
be a relative X —invariant. Similarly, no contact one-form in Q!(n,- -, n) can be a
relative Y —invariant form. The following key theorem makes this basic observation

more precise:

Theorem 4.3 Let R be a hyperbolic equation with characteristic vector fields X
and Y, Laplace indices ind(Y) = p and ind(X) = q, and Laplace-adapted coframe
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{‘777‘7@,51,771752,772,“'}. Let s > 1:

1. If w € Q% (R*™) is a relative X —invariant form, then

w € Qs(np—{-h Mo+2y )

If ind(Y) = oo, then there are no non-zero relative X —invariant type (0, s)

forms;

2. If w € Q% (R™®) is a relative Y —invariant form, then

w e QS(€q+1, §q+2, e )

If ind(X) = oo, then there are no non-zero relative Y —invariant type (0, s)

forms.

Proof. Suppose w is a relative X —invariant type—(0, s) form of adapted order k;
that is, w € Q%(0, &, M, -+, &, M) and X(w) = Aw, for some function A € C®(R>).
Let U, Vi, W7 be the vertical vector fields defined in (4.1) dual to the Laplace-
adapted coframe. Since w has no dependence on &, by assumption of it being of
order k, we have that W**t1-w = 0. Thus W*"'-X (w) = \WW**+l—w = 0 as well,
and since W*H=X (w) = X(WkHl—w) — [X, W*1]-w, we obtain [X, W**l]-w =
0. From the Lie bracket structure equations of proposition (4.3) it follows that
Wk—w = 0. Repeating this procedure, we obtain W* l-w = Wk2—w = ... =
Wl-w = U~w = 0. This shows that w € Q*(n1, 79, -+ ,mk). Since [X,U] = EU —
HyV! mod{X,Y}, U-X =0 and X(w) = \w, we obtain HyV!'-w = 0, and since
H, # 0, we have that V!-w = 0. From the Lie bracket structure equation [X, V1] =
BV — HiV? mod {X,Y}, we obtain V?~w = 0. Repeating this procedure, we
find Vi-w = V2w =" = VP-w = 0. VP-w =0 yields H,V?*'-w = 0, and since
H, = 0 by assumption, we cannot deduce anything about V?*!'-w. O

We refine the previous theorem through the following proposition:
Proposition 4.7 Suppose H, = 0. Let | be a non-negative integer, let

weE Q*(@an17§17 o ')7
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and suppose

X(w) = Aw mod {741, Mp+2, "+ +  Tp-i}-

Then w decomposes uniquely into a sum w = w; + wq, where

w = 0 mod {np+17"'777p+l}7

we € Q(Mpti1s Mpriaz, )

Proof. We can decompose w uniquely as w = w; + ws, where

w = 0 mod {741, Mp+2s > Mp+i}
and

wa € (&, k-1 1 €1,0, M1, 5 Mookt M1y ** )
We can further explicit the dependence of wy on & by writing
wr =& Ny +e,
where
Y, € € (k1,0 ,€1,0, M50+ + y Mptsy M1, **)-

Now, X (w) = Aw = X(w1) + X (w2) = dwy + dwsp. But wy = 0 mod {741, , Mot}
by assumption, and hence X (w;) = 0 mod {np+1, -, Mp41} as well, by construction

of the Laplace-adapted coframe. Thus, we have

X(w2) = dwz mod {np+41, "+, Mpi}-
Now,
X(w2) = X (&) Ny + & A X(y) + X(e),
and hence, by construction of the Laplace-adaptedvcoframe,

X(w2) = &ey1 Ay + 6 mod {mpr1, Mps2, -+, Mot}
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where
6 € (&, 1 €,0, M, Mgy Mptie 1, Mo, °)-
Now since
X (w2) = A mod {par, s}
and
wa € Q°(&ky k=1, O, M, 3 My M1 "7 ),
we obtain that v = 0. As a result,
wy € Qs(gk—l,"‘ ,@,771,... anpanp+l+17"')-
Repeating this argument yields

wo € Qs(’l’ll, 2 Nps Mp+i4-1y Thp+1425 * )

This proves the theorem for p = 0. For p > 1, we can write ws = n; A v + €, where

¥, € € Q¥ (N2, ** 5 Mpy Mp+i+1, Mp+i+2, * -+ ). This yields the congruence

X(wQ) = HO@ A Y + 6 mod {np+1’ To+2, ’77P+l}7

where

) & 93(771, Tt 7np7np+l+1777p+l+27 o )

Since Hy # 0, we conclude that v = 0, and hence

W € 93(7]2, Sy Ty Tp+i+1s Thp+1425 )

Repeating this argument p times, until H, = 0, yields the proof of the theorem. O
Relative invariants are closely tied to conservation laws: Assume ind(Y) = p,
consider the form a € Q%*~1(R*), and construct the type—(1,s) form w; = 7 A

Np+1 A\ «; then
dgwy =0 AT Api A X (a) — (B —(p—1)Q)al.
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Thus, if o is a relative X —invariant contact form such that X(a) = (B—(p—1)Q)«,
then the form w; is a conservation law of the hyperbolic equation R, i.e. dgw; = 0.
This construction can be further generalized; indeed, consider the form w = 7 A
Np+1 A Np42 A . It follows from the dy structure equations for the Laplace-adapted

coframe that
dgw = 0 AT Anp1 ATpya A [X () — 2(B - pQ)]-

Thus, if « is a relative invariant form such that X (o) = 2(B—pQ)c, then the form w
is dy—closed. We can repeat this construction with w = TAnp 1 Ao A- - -AnprAa,
for all [ € N*. Similarly, if ind(X) = ¢ and the form § satisfies Y(8) = [A +
¢P]g, then the form o A {41 A [ is a conservation law of the hyperbolic equation.
In the following section, we shall give a detailed characterization of type—(1,s)

conservation laws for hyperbolic equations.

4.5 Structure theorem for type—(1,s)
conservation laws

Consider functions f; : R* =+ R,i =1,-++,m,m < n, and assume M = (-, £, *(0)
is a submanifold of R” of dimension n—m, with 7 : M < R" the inclusion map. Let
{61, -+ ,0n_m} be a coframe on M. We can complete this coframe to the coframe
{61, - ,0p—m,dfr, - ,df,} on R*. Let now w be a one-form on R® which vanishes
on M, i.e. ¢*w = 0. We can express w in the coframe asw = 3 71" o/0;+3 77" | f7df;.
Since i*(df;) = d(i* f;) = d(f;0i) = 0, we obtain *w = Y7, (o’ 0i)i*0; = 0, and this
implies that all the o/ vanish, and hence, w = > (?df;. A similar result holds
for forms of arbitrary degree. Furthermore, this basic result can be generalized to

forms on jet bundles. This generalization is provided by the following lemma, and

is proved in a manner similar to the result above:

Lemma 4.3 Let w € QP(J®(E)), and let i : R® — J*®(E) be the inclusion map of
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the infinitely prolonged equation manifold. If t*w = 0, then
k k
w= Y ay(DiDIF)+ Y B Ady(DLD)F),
§,j=0 i,j=0
where ay; € WP(J*(E)) and f;; € P~1(J®(E)).
The main application of this lemma is to provide us with a first characterization

of conservation laws of the second-order hyperbolic equation R. Indeed, let w €

Qb (R*°) be a dg—closed form. By extending the natural coordinates

(x7 Y, 2y Zxy Byy Zays Zyys """ )7

and the natural coframe on R* to the natural coordinate system and the natural
coframe on J®(E), there exists a type (1, s)—form wy on J®(E) such that i*wy = w.

Since i*dg (wp) = dg(?*wo) = dgw = 0, we can write

k k
dpwo = dz Ady A[D_(DLDIF)ay; + Y dy(DiDIF) A B,

,j=0 i,j=0
where ;; € Q%*(J®(E)) and §;; € Q*~1(J*(E)). Now note that
dz Ndy A (D,F)a = (D F)dzANdyAa=dgF Ndy A«
= dH(de/\a)—FdH(dy)/\a+de/\dHa
= dg(Fdy A a)—dz Ady A F(D,a).

Thus, dz A dy A (DyF)a differs from dz A dy A F(Dye) by the term dg(Fdy A o),
which vanishes when pulled back to R*°. Repeating this basic integration by parts
operation starting from the highest derivative terms DED¥F and dy (DEDEF), we

can rewrite dgwy as
dywo = dz A dy A[FC + (dy F) A p] + {x}
where {x} denotes terms which vanish when pulled back to R*. We thus have:

Proposition 4.8 Let w € QY (R™®) be a dy—closed form on R*®. Then 30 €
QL (J*(E)), ¢ € QU(J®(E)), p € QO Y (J®(E)) such that *(0) = w and dyd =
dz A dy A[FE 4+ (dvF) A p).
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This characterization of dy—closed forms on R* in terms of forms on J*(E) is of
fundamental importance, as it allows us to make use of the horizontal homotopy
operators and thereby complete our characterization of conservation laws. Recall
that the horizontal homotopy operators h7’ satisfy the identity @ = h2 (dp@) +
dhk® (@), for every type—(1,s) form & on J®(E). With dyd = dx A dy A [F¢ +
(dvF) A p|, we obtain

1 OF 1

oOF oF
2,5 . _ = i _A—D' ___’\ — 1 .
h (drd) plg /\GA[azi,D g(azijp)]"‘ it A A 02

p+{x}

where {x} denotes terms which vanish when pulled back to R, and v; = 32 —dz A
dy. From w = *Q = i*(h%’ (dg®)) + dg(i*hgl, s(@)), we obtain w = ¥.(p.) + du,
where p, = 1i*(p) and W(p.) =v; A0 A [g—ipc - Di(%pc)] +v; ANO; A [gTI;pC)].

To complete our characterization of the dy—closed form w in the natural coor-
dinate coframe, we need to characterize the contact form p, as well. To do so, we
recall that the interior Euler-Lagrange operator J : Q25(J®(E)) — Q»*~1(J*°(F))
has the fundamental property that J(dgd) = 0,Vé& € Q*(J*®(E)). Furthermore, it

is explicitely given by

NS 0o . 0
J(&) = 5 ¢ D"(a_z,-ﬁa) + Dij(gij—'a) +oee

We can thus rewrite J{dz A dy A (FC + (dy F) A p)] = 0 as

oF  _ OF. OF ~
rrid D"(a_zi”) + Dij(%/)) +{x}=0 (4.13)

on J®(FE), where again {x} denotes terms which vanish when pulled back to R*.
Pulling (4.13) back to R*, we thus obtain

OF OF oF
—p, — D;(—- (=—p.) = 0.
92 Pe z(aziPC)‘*‘Dw(azijPC) 0

This completes our characterization of dy—closed forms in the natural coordinate

coframe {dz,dy,0,0;,0,,--}. We can thus state:

Theorem 4.4 Let w € QH(R™®) be a di—closed form on R*®. Then there ezists a
form p, € Q¥*~1(R>), and a form v € Q% (R>®) such that w is given by

w = Yc(p.) + duy
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where ¥, : Q%" 1HR®) — Q5 (R™) is defined by

oF oF OF
de%:WAGA%Zm—IMazmH+%A@”45;WN
and where p. satisfies the equation
oF OF OF
Sale Di(a_zipc) + Dij(b‘szc) = 0.
Let now w € Q% (R*) be a contact form. Note that we can write
OF OF OF
a M T Dz a. Fe i\ q_ Fe d d
[5.° (6zip)+Da(azijp)]/\w/\ z A dy
OF OF OF
= pN[=— —D; —D;; dz ANdy +d
P /\[auw—l—aZi (w)+8zij (W) ANdz Ady + duo

= pe N\ L(w) ANdx Ady + dya

where o € QU5+ (R*), and L, is the universal linearization of the hyperbolic equa-
tion R expressed in the natural coordinate coframe. Thus, at the level of cohomol-

ogy, the operator £ : Q%*(R*®) — Q% (R>) defined by

. OF oF oF
L(pe) = a_upc - Di(aPC) + Dij(az--pc)
i ij

is the adjoint of the universal linearization operator £, : Q%*(R>) — Q%*(R>) for
the pairing

(p,w) =< p,w >=pAwAdz Ady.
To characterize dgy—closed forms in the Laplace-adapted coframe, we need to re-
express all these definitions.

Consider then the universal linearization £ : Q%%(R*>) — Q%%(R*) of the second
order hyperbolic operator equation R, given by the total differential operator £ =
XY + AX + BY + C. We define the adjoint £* of £ as being the unique total
differential operator £* : Q% (R>®) — Q% (R*) such that

Vp € Q¥ (R®),Vw € Q%' (R®), [p A L(w) — L(p) Aw] Ao AT = dg,
for some v € QU*+¥(R>®). The formula defining the adjoint operator is nothing
other than an integration by parts formula in the Laplace-adapted coframe. Since
dg(pAwAT) = cANX(pAWAT)

= oANX(P)AWATH+OAPAX(W)AT—QoApAWAT,
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we have that the adjoint X* of X is X* = —X + Q. Similarly, the adjoint Y* of Y

is given by Y* = —Y — P. It follows easily that the adjoint £* of L is given by
L¥(p) = XY (p) + A*X(p) + BY (p) + C*p,

where

A= -A,
B*=-B -2Q,
C*=-XA)-YB+Q)+C—-AB+(A-P)(B+Q).

Let {0, 7,0, m, &1, M2, &2, - - - } be the Laplace-adapted coframe. With respect to this

coframe, we define, for each s > 1, a map ¥ : Q%~1 — Q0s—1 by

Up)= 2o AOAY & Apl+ LT A[O A +m Ag)

with
Y2 = —Y(p)+ap.

A simple calculation shows that dg¥(p) = —0 A7 A © A L*(p) and hence, if the
contact form p satisfies the adjoint equation L*(p) = 0, then the form ¥(p) is
dg—closed. A simple but tedious calculation shows also that ¥.(p.) = ¥(p), with
p= %pc, where 6, k are given in definition/proposition (4.1). Combining this result
with the previous theorem, we obtain the following characterization of dy—closed

forms in the Laplace-adapted coframe:

Theorem 4.5 Let s > 1 and let w € QV*(R™®) be a dg—closed form. Then there

ezist contact forms p € Q%! and v € Q¥ (R>) such that w is given by
w = Y(p) +dguv,
and whe‘re p satisfies the adjoint equation
XY (p) + A*X(p) + B*Y(p) + C*p=0.
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Using this characterization of conservation laws of R, we deduce the following the-

orem.

Theorem 4.6 Let R be a second-order hyperbolic equation and suppose
ind(Y) = oo and ind(X) = oo. Then, for all s > 3, all type—(1,s) conservation

laws are trivial, i.e. H*(R*®) = 0.

Proof. According to theorem (4.5), we need only prove that there are no non-zero

type—(0, s—1) solutions p to the adjoint equation XY (p)+A*X (p)+B*Y (p)+C*p =
0. We rewrite this second order total differential equation as a system of first-order

total differential equations

X(p) = (Q@+ B)p+1y,
Y (1) = Hop+ (A — P)yy.

Suppose p is a non-zero solution of adapted order k of this first-order system. We
can therefore assume, with no loss of generality, V*—p # 0,V*ti-p = 0,Vi > 1.

Then

VX (p) = X(VEHop) — [X, V]
= —[X,VF-p
= —By(VF*'p) + H (VF2p)
= 0,
and hence V*+!—¢; = 0. From
VEI-Y (9y) = HoV* ' =p + (A — P)V gy = 0,
we obtain V*-4; = 0. Now
VE-X(p) = (Q+B)VF-p+V*—y
= (@+B)VFp
= X(VE=p) = [X,V¥]-p
= X(V*=p) — Bp_1VFp.
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Thus, V¥=p is a non-zero relative X —invariant contact form. But ind())) = oo
and this contradicts theorem (4.3). Thus p cannot satisfy the adjoint equation, and
hence H'*(R>®) =0. O

We conclude this section with a structure theorem for conservation laws in

HYM#(R*>), s > 3, for the proof of which we refer to [3].

Theorem 4.7 Let R be a second-order hyperbolic equation. Suppose ind(Y) = p
and ind(X) = q. Then, for s > 3, every dg—closed form w € QY (R>®) may be

written as
w =0'/\€q+1/\ﬂ+7-/\77p+1/\a+dH7a
where ¥ € Q%*(R™) and a € Q' (Mp11, Mpt2, - - -) and B € QN (Egy1,Egr2, - - +) satisfy

X(@) +[-B+(p-1)Qla=0,
Y(6) - [-A+qPIB=0. (4.14)

If ind(X) = oo, then (4.14) remains valid with 3 = 0.

4.6 Darboux integrability and Laplace invariants

We recall from chapter 2 that a second-order hyperbolic equation R is Darboux-
integrable if there exist two functionally independent real-valued X— invariant
functions I ,f on R*°, and two functionally independent real-valued Y — invari-
ant functions J,J on R, that is, X(I) = X(I) = 0,dI AdI # 0, and X(J) =
X(J) = 0,dJ AdJ # 0. With the X— and Y — characteristic Pfaffian systems
of order k as defined in equations (4.6) and (4.7), respectively, it was shown in
section (3.1) that I € C®(R>™) of adapted order k is X —invariant if and only if
dl € Cx(X), and that J € C®(R*®) of adapted order k is Y —invariant if and
only if dJ € Ci(Y). Consider now a Pfaffian system Z on a manifold M. The
i* derived Pfaffian system Z® is defined inductively by the short exact sequence

0 = 26 <y 760 % 470 ;mod Z(z) — 0 where j is the inclusion map, and §;
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is the composition of the exterior derivative d with the quotient modulo the ideal

generated by Z). The derived Pfaffian systems form a sequence
CI(@) C ...CI(Z) CI(I) cT

which stabilizes at the maximal completely integrable subsystem of Z, which we
denote by Z(>). Applying this construction to the characteristic systems Cy(X) and
Cy(Y) yields the maximal completely integrable subsystems C{™(X) and C{®(Y),
respectively. The structure equations of the Laplace-adapted coframe allow us to
give the following characterization of C’,(c°°) (X) and C’,(C°°)(Y); note that this charac-

terization is valid for the characteristic coframe as well.

Lemma 4.4 Let R be a second-order hyperbolic equation with characteristic vector
fields X and Y, and let {o,7,0,&,m1, -} be the Laplace-adapted coframe on R*.
Then, Yk € N*, C°(X) and CY(Y) satisfy

CI(COO)(X) C 91(77@,51,771;772,' T ?nk)a
CIE:OO)(Y) C 91(07 @,7}1;51752,‘ o 7{]0)

Proof. Assume ¢ € C',El) (X). Then, exactness of the sequence 0 — C,(Cl) (X) xR
Cy(X) % dCi(X) mod Ci(X) — 0 implies that d&, =0 mod Ci(X). But dé; =
dpéy +dyé&y = 0 A1 +dvée  mod Ci(X), and hence d&y # 0, mod Cy(X). Thus
& ¢ C(X). Since d&y_; = 0 A & + dy&x_y mod C{V(X), and & ¢ C(X), we
deduce that &1 ¢ C’,(CQ)(X ). Continuing in this way, we eliminate the & up to and
including &. But we cannot eliminate &, since dym™ = o A f+ 7 A o and 3, being
of adapted order 2, may contain &. O

If I is an X—invariant function on R*, then dI € Ci(X). Since d*I = 0,
dI € C°®(X) as well. Thus, given a Darboux-integrable equation, dim C{°(X)
will be at least 2 for some £ > 1, and dim Cl(oo)(Y) will be at least 2 for some
I > 1. The characterization of dim C™)(X) and dim C{*(Y) has been performed
by Goursat (8], and in what follows, we mention this characterization for C,£°°) (X)

only, that for C’,(Coo)(Y) being identical.
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Theorem 4.8 Let m be the minimum integer for which dim C,(c°°) (X) # 0. Then
dim C,(C°°) (X) is either 1, 2, or 3, and we have the following cases:

1. dimC& (X) = 1: Then there exists an integer n > m such that
dimCE)(X) =1,---,dimC)(X) =1,dimC(X) =2, -,
dimCN(X) =2 +1,---

2. dim C (X) =2: Thenm is either 1 or 2, and we have the following subcases:

(a) m=1: Then dmC(X) = 3,---,dimCEP(X) =2+, - -
(b) m=2: Then dim C{(X) = 3,---,dim CY(X) = 2+, --

3. dimCL)(X) = 3: Thenm =3 anddlmC,(f_?(X)—3+z

The important thing to note here is that Darboux-integrability of the hyperbolic
equation R immediately yields a plethora of X— and Y — invariant functions of
increasing order. In particular, in case (1), there exists a sequence of functionally
independent X —invariant functions I, I;, In+1, Iny2,- -+ of order m,n,n + 1,n +
2,--- such that any X —invariant function may be expressed as a function of these;
in case (2a), there is a similar sequence of X — invariant functions I, I3, I, I, - - -,

where I, I7 are of order 1 and I; of order j; in case (2b), there is a sequence

I, I, I3, - - - of X—~invariant functions, where I, I}, are of order 2, and I; of order j;
finally, in case (3), there is a sequence I}, I}, I, I3, - - - of functionally independent

X —invariant functions, where I3, I3, I, are of order 2, and I; of order j.
This abundance of X— and Y — invariant functions allows us to rescale the

characteristic total vector fields X and Y so that they commute:

Lemma 4.5 Let R be a hyperbolic equation with characteristic total vector fields
X and Y. If I and J are non-trivial X — and Y — invariant functions, respectively,

then the characteristic vector fields X = 2 7 X andY = Yb)Y commute.

Proof. We have

X,¥] = [ﬁx,ﬂ%n
1XYW | YK
Xor@ ym LT xw) YD



Now
XY () = Y(XI)+I[X,Y]U)
= [X,Y](I) = PX(I) + QY () = QY ().

We obtain similarly that ¥ (X (J)) = —PX(J). These two equalities yield [X,Y] =
0. O

If R is Darboux-integrable and we assume X and Y are rescaled so as to com-
mute, then as an immediate consequence we have that if I is an X —invariant
function, then so is Y(I). It is proved in Goursat [8] that the sequences of in-
variants in all cases (1), (2a), (2b), and (3), are all generated in this manner,
that is, by choosing X— and Y — invariant functions of minimal order and suc-
cessively applying the Y — and X — operators, respectively. We can thus find
X —invariant functions I, J, K such that K = Y(J) and, rescaling Y if neces-
sary, Y(I) = 1. Consider now the contact form w = dyJ — KdyI. We have
dyw = dgdyJ — dgK A dyl + Kdydgl = 7 A [dy K — Y(K)dyI], which implies
that X (w) = X—-dgw = 0; in other words, the contact form w is an X —invariant
form. Y —invariant forms are similarly constructed. Together with theorem (4.3),

this leads to the following result [3]:

Theorem 4.9 Let R be a second-order hyperbolic equation. If R is Darboux-
integrable, then the Laplace indices ind(X) and ind(Y) are finite.

Such a result was to be expected in light of the classical theory of linear hyperbolic
equations. The classical theory goes even further, establishing Darboux-integrability
of linear hyperbolic equations for which the Laplace indices are finite. We now prove
that the converse of theorem (4.9) holds as well. First, however, we shall prove the

following proposition:

Proposition 4.9 If H, =0, then there is a unique form

T e (€, 0,m, 1)

such that for some contact form 1,
dynprr = Mps2 AT+ AT
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The form Y satisfies
X(T) = QY + B mod {Mp+1,Mp+2},

dvT = T Alpe —Y(T)] mod {np41, ps2}-

The forms npyi, % > 1, satisfy the dy structure equations dympyi = Mpriv1 A T mod
{np—}-l’ Tty 77P+i}'

Proof. We have
X(dvipt1) = dv(X(Mp41)) — 1 A X (ps1) — BAY (1py1) mod {7ps1, Mpt2}
= —dev(np+1) mod {np+1, 77p+2}

and hence dy 1,41 is a relative X —invariant mod {7y41, 7p+2}. We apply the charac-

terization of relative invariants in proposition (4.7) and we write
dyvpy1 = Mpi2 AT + Mpri A+ w,
where w € Q*(1p43, Mp+4, - - - ). The dy structure equation
dyn; =0mod {£,0,m,- -+ ,m}, Vi > 1,
implies w =0 and YT € Q' (£,,0, 71, , Mpy1)- Now

du(dvnps1) = (dunpe2) AT — ppa AdgY + dgnprs A9 mod {7p41}
o A(Q— Bp)pra AT +1pra A X(1)]

+7 A s AT + mpp2 AY(T) + npi2 A mod {mp11};
on the other hand,
dH(anp—H) = dv(—chr A Tlp+1 +7TA ’f]p+2)
= oA [QY + X(Y)— ] mod {np41}
= 0Omod {np+1}7
that is, X(Y) = —QY + B mod {np+1, Mp+2}. Now,
dyprz = dv(Y(mps1))

Y(dv(nps1)) + o A X (Npy1) + o AY (1p11)

= N3 AL+ 02 AY () + Npi2 A+ pig A iz mod {741},

I
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and from d¥np1 = dy(Mpaa AT + Mpy1 A ) = 0, we obtain dyTpra = 7pts A

T mod {np+1,Mp+2}- Repeating this procedure, we obtain dy i = Mptit1 A T mod

{np+1777p+27 T 7np+i})Vi > 1. O

The significance of the contact form Y defined in the previous structure theorem
is given by the following theorem [9]:
Theorem 4.10 The Pfaffian system Dpii(X) = QYT — T, Npy1, -+ 5 Npya) 18 com-
pletely integrable for ¢+ > 2 if H, = 0.
Proof.

d(T — T) = dHT -+ dVT — dHT — dVT

—o AX(Y)+ QY — 8]+ T Atz — Y(T)] — dy'Y mod D,a(X)

= 0 mod Dp2(X);
furthermore,
dpr1 = dgmpy1 + dyipia
= oAX(Mp+1) + T ANpr2 + i AT +1p1 A
= 0 mod Dpi2(X);
finally,

dpre = dutpra + dvipra
= 0 AX(Mpt2) + T Apts + Mprs AT mod Dpia(X)
= 0mod D,y2(X).

This proves the theorem for 7 = 2. Using the same dy and dy structure equations,
the theorem is proved by induction on <. O

Recalling now that the hyperbolic equation R is Darboux-integrable if for suf-
ficiently large order k, the derived characteristic Pfaffian systems C’,Eoo)(X ) and
C',(coo)(Y) each stabilize at a completely integrable subsystem of dimension at least

2, we deduce the following converse to theorem (4.9):

Theorem 4.11 Let R be a second-order hyperbolic equation. If the Laplace indices
ind(X) and ind(Y) are finite, then R is Darbouz-integrable.
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Chapter 5

Conclusion

In this thesis, we have illustrated two classical techniques for integrating partial
differential equations, namely the Darboux method, and the Laplace method for
linear hyperbolic equations, as well as the relations between the two techniques for
this latter class of equations. Following the work in [3] and [9], we have shown
how the variational bicomplex can provide a formal differential geometric setting
in which such relations can be studied for non-linear hyperbolic equations as well,
and we have demonstrated the key role that moving coframes and their structure
equations play in this study.

Such a study can be extended in many directions, and it is reasonable to expect
that numerous properties of hyperbolic and other partial differential equations would
manifest themselves geometrically; in particular, the questions of existence, unicity,
and regularity of solutions. In the classical setting, these questions are usually set-
tled through estimates obtained via some form or other of integration by parts and
classical conservation laws. In this geometric setting, the analogous technique would
be based on a Stokes formula for the dy operator and contact-form valued conser-
vation laws, and an important problem is to determine under what conditions such
a Stokes formula does indeed hold, and what information these contact-form valued
conservation laws do provide. The moving coframe technique is also a potentially
rich source of developments: Being non-constructive in its application, one could

expect that it would be much further-reaching than the techniques based on ex-
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plicit solutions . The question remains how to build a moving coframe on a solution
manifold in a systematic manner, so that its structure equations embed as much

information as possible about the original partial differential equation.
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