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ABSTRACT 

The fo110~ving is a conjecture due to Goodman, Rahman, and 

Ratti: if P, a polynomial of dcgrec n, has aIL its zero in /z! ~ l, 
and p(a) = 0, 0 ~ a < l, then P' must have a z~ro in lz-a/2! ~ 1-a/2. 

This is proved for 2 ~ n ~ 5. It is further con je ct ur cd that the 

radius 1-a/2 can be rep1aced by rn(a), where 1/2 ~ rn(a) ~ 1-a/2 

and r (a) is the zero of (lIa) [(x + a/2)n - (x-a/2)n] -1. This j.~ 
n 

proved for n = 3. It is also proved that if, under stmilar con-

ditions, P(l) = 0, P'(l) f 0, n ~ 4, and P' does not have a zero in 

!z-1/2] < 1/2, then P(z) = c(zn_ 1). 
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ABSTRACT 

The following is a conjecture due to Goodman, Rahman, and 

Ratti: if P, a polynomial of degree n, has aIl its zero in 'zl ~ 1, 

and p(a) = 0, ° ~ a ~ 1, then pl must have a zero in lz-a/21 ~ l-a/2. 

This is proved for 2 < n < 5. It is further conjectured that the 

radius l-a/2 can be replaced by r (a), where 1/2 < r (a) < l-a/2 
n - n -

and r (a) is the zero of (lIa) [(x + a/2)n - (x-a/2)n] -1. This is 
n 

proved for n = 3. It is also proved that if, under sÜDilar con-

ditions, P(l) = 0, P'(l) ~ 0, n ~ 4, and pl does not have a zero in 

Iz-1/21 < 1/2, then P(z) = c(zn_ l ). 
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INTRODUCTION 

The fundamenta1 re~u1t in the study of geometric re1ationships 

between the zeros of a polynomial over the comp1ex field and the 

zeros of its derivative is the Gauss-Lucas Theorem. It asserts that 

if a11 the zeros of a polynomial are inside a circle, then so are the 

zeros of its derivative. A c10sely related prob1em which is far from 

being solved is as fo11ows: given that a11 the zeros of a polynomial 

P are in a circle and one of the zeros is specified, describe the minfma1 

region that will always contain a zero of P'. 

By a suitab1e translation and rotation followed by an expansion 

or contraction this problem can be reduced to the following: given that 

P{a,n), 0 $ a $ l, fi ~ 2, is the set of monic po1ynomials of degree n 

that have al1 their zeros in Izl $ 1 and have at least one zero at a, 

and that J). (a,n) is the class of a11 regions D{a,'n) that have the pro­

pert y that if P € P(a,n) then P' has a zero in D(a,n), describe D*(a,n) 

which is the intersection of a11 elements of Jj (a,n). 

As a start, the Gauss-Lucas Theorem assures us that the region 

'zJ < 1 is an element of J}(a,n), 0 $ a $ l, n ~ 2. The next step 

in the solution was made by a conjecture due to I1ieff which asserts 

that J z-aJ < 1 is a member of J) (a,n). In [1], Goodman, Rahman and 

Ratti further conjectured that the region Iz-a/21 < l-a/2 is a1so a 

member of j!(a,n), 0 $ a $ l, n > 2. This is a much better result 

because 

(J z-a/2f < l-a/2}c(f z-aJ < l} n (f zr < l} • 
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The boundarycas.e. of the. above conject\1re,Le. whena--1, n >2, .. 
. .-

bas been proved in [1], [4], (5]. For. 2 :5 n :5 4, the conjecture has 

been proved in [5],· am impl1cit1y in [2]. 

In this thesis we will extend this resu1t to n = 5. A1so, we 

will describe a sequence of regions contained in Iz-a/2! :5 1-a/2 which 

we will conjecture are e1ements of j).(a,n). This will be proved in 

the cases n = 2 and 3, and moreover., in these cases· they will describe 

* D (a,2) and D*(a,3)~ 

': .. 



1. Extension to Quinties. 

Let 1D denote the set of monie polynomials over the eomplex 

numbers. Let D denote the operation of differentiation with 
00 

normalization, so that if 

n n-l 
f (z) = z + al z +. •. + an , 

Let D~ denote polar differentiation with respect to ~ with norma­

lization. If 

T(z) = az + b 

ez + d 
, ad 'f: be , 

ia a linear transformation, and f ~ P has zeros zl,z2' ••• ,zn sueh 

that T (z.) 'f: 00 
1 

, 1 5 i :s n, then Tf 1s defined as the monie poly-

nomial whose zeros are T(zi)' i.e., 

where 

n -1 
Tf(z) = t(ez-a) f(T z), 

! = (en f(-d/e) 

(ad)n 

if e 'f: 0 , 

if e = 0 

The following lemmas calI attention to some weIl known faets whieh 

we will be using. The first lemma deseribes tœ fundamental property of 

the polar derivative. 



!.EMMA 1. Let j.l,À'belong to the extended eomplex plane, and 

f E JJ. If j.l = T(À) , then T(DÀf) = Dj.l(Tf). 

The next lemma eonta1ns some elementary faets from eomplex 

analys1s. 

LEMMA 2. If 

T(z) = az + b 
ez + b ad :f be, e:f 0, 

is a linear transformation and C 1s a eirele sueh that -dIe ia 

outside C, then T(C) = (T(z): z € cl 1s another e1rele, with the 

interior of C being mapped into the interior of T(C). In particular, 

if a,b,e,d are real and Chas a diameter on the real axis with ends 

at p and q, the T(C) will have a diameter with ends at T(p) and T(q). 

The next lemma is the Coineidenee Theorem of Walsh 13; p.46 ]. 

LEMMA 3. Let g(zl, ••• ,zn) be a linear, symmetrie funetion of 

g(zl' ••• 'z) = a + alal + ... + a a , non n 

where the ai (i = l, ••• ,n) are the elementary symmetr1e funetioDSof 

the zi. If wl, ••• ,wn are on or outside a eirele C, then there exists 

a w on or outside C sueh that 

g(wl ,··· ,wn) = g(w, •.• ,w) 

provided that an:f O. 

2. 



COROLLARY. If 

g(Wl, ••• ,wn)=a + ••• +aa·, o n n 

.we ean extend Walsh' s Theorem to apply to 

provided q ~ a lb • n n 

q = 
g(wl,···,wn) 

h(w
l

, .. .,wn) 

Proof: By Walsh's Theorem applied to 

there exist a w on or outside C sueh that 

Renee 

qh(w, ••• ,w) - g(w, ••• ,w) = O. 

q = 
g(w, ••• ,w) 

h(w, ••• ,w) 

LEMMA 4. Let f, g € P be both of degree n. If D
À 

f = DÀ g, then 

fez) = (l-t){z-À)n - tg(z), t ~ O. 

Proof: We have 

nf(z) - (z-À)f'(z) = tng(z) - t(z-À)g'(z), t ~ 0 • 

Let h(z) = fez) - tg(z). Thus, nh(z) = (z-À)h'(z). 

3. 



4. 

Assume that h(z). O. Then there exists a domain D, 1n the 

upper half plane,' where h' (z)/h(z) is analytic. But h'(z)/h(z)=n/(z-À), 

Z E D, and hence 

. n 
f(z) = C(z-À) , Z E D. 

Because h 1s a polynomial, this equat10n is val id in the entire 

plane. Thus 

h(Z) = C(z-À)n - tg(z). 

Because f and gare monic, C = l-t. Note that this equation is correct 

even when h(z) s O. 

COROLLARY. If g E tp and À +- x, then f E 'P 1s uniquely 

determined by the following conditions: 

1) f(x) = 0; 2) D f = g; 
À 

3) deg(f) = deg(g) + 1. 

Thus we can introduce the notation It should be noted 

that if the zeros of gare wl' ••• ,wn_l ' then 

where Q is the ratio of two linear symmetric functions in wl' ••• 'wn_l • 

Now, direct verification yields 

LEMMA 5. n-l x 
Let g(z) = (z-w) , IÀg = f. Then 

n n n n 
(z-w) (À-x) - (z-À) (w-x) 

f(z) = 
n n 

(À-x) - (w-ï:) 



If w = À, define f by continuity, i.e. 

n-1 fez) = (z-À) (z-x). 

If 

x = 

x 
IÀg does not existe 

À-exp(2rcki/n)w 

1-exp(2rcki/n) 

We are now ready to prove 

, k = 1, ••• ,n-1, 

THEOREM 1. Let P e; rp be of degree n. Let P(a) = 0, 0 < a < 1-

If 2 ~ n ~ 5 and a11 the zeros of P are in Izl ~ 1, then DœP must 

have a zero in Iz-a/21 < 1-a/2. 

Proof. Consider the 1tnear transformation 

T (z) = x 

(x+a) - (l+ax)z 

1 + ax - (x + a)z 
, O<x<l. 

C1ear1y, 

T (1) = -1, T (-1) = 1, T (a) = x, x x x 

l+ax 2 
T (œ) 

l+x+ax-a x 
= = Mx), T (a-1) = = tex). x x+a x 1 + x + a-a 2 

Hence by Lemma 2, under the action of T the unit circ1e is mapped 
x 

5. 

into itse1f, whi1e Iz-a/21 = 1-a/2 is mapped into the circ1e with diameter 

ends at -1 and t. 

Assume a11 the zeros of DœP are inlz-a/21 ~ 1-a/2. Then, a11 

zeros' of Tx(DœP) are in Izl ~ t. 



Rowever, aIl the zeros of T P are in Izl S 1. We will thus 
x 

arrive at a contradiction by showing that ITxP(O)//~ > 1 for 

x € (1-€,1) •. 

Let f = Tx(DœP). Rence by Lemma 1, f = D~(TxP), and thus 

6. 

TxP = I~f. If the zeros of f are wl '."'wn_1, then /w i / ~ t, i = l, ••• ,n-l, 

and 

T P(z) = Q(z,w
1
,···,w 1) x n-

where Q is the ratio of two linear symmetric functions in wl,.,.,wn_l • 

App1ying Lemma 3, 

Rence by Lemma 5, 

T P(O) = ~(O,w, ••• ,w), 
x 

n n n n 
w (~-x) - ~ (w-x) 

IT p(O)1 = 
x 

n n 
(~-x) - (w-x) 

Iwi ~ t. 

Lemma 3 cannot be app1ied if 

n 2 n 
(l+ax) - (l-x:) = s(x) 

Because 

s( 1) = 1, s'(1) n(a-1) = < 0, 
a + 1 

Let 
n n 

(~-x) - (w-x) 

n n n n 
w (~-x) - ~ (w-x) 



We will show th~t h(w) is ana1ytic in Iw 1 ~ tforx E (l-E2, 1); 

n n n n 1 1 Le., if Wo is a zero of p(w) = w (À-x) - À (w-x), then Wo < t. 

Now, w = À , or 
o . 

exp(2nki/n)Àx 
Wo = - À-x-exp(2nki/n)À 

, k = 1, ••• , n-1 

If w = À, h can be defined by continuity. Thus, we need to have o 

2 2 
(l+ax) x 2 

,--------------- < t , k=1, ••• ,n-1. 
x2(x+a)2 + 2(1+ax)(1-x2)(1-cos2nk/n) 

Cross mu1tip1ying, factoring out (1_x2), and 1etting x -t 1, we need to have 

(1-a)/(2-a) < 1-cos(2nk/n), k = 1, ••• , n-1 

which is vaUd for 2 ~ n ~ 6. Thus t"8 t' < t for x E (1-E2, 1). 

Now,h(~) can a1so be defined by continuity. Renee, for x E (1-E
2
,1), 

by the Maximum Modu1us Theorem we have 

where ~ = ~(x), 0 ~ ~ < 2n. Let 

o < ~ < 2n. 

s~(x) = 
2 n . 2 n n n (l-x ) (l+X+a-a ) - (x+a) C 2 

in~ 2 n 2 n n n e (l-x) (l+x+ax-a x) -(l+ax) C 



, ::':'",," 

8.- ", 

where 

2 i~. 2. 2 C = (l+x+ax-a x)e - (x+x +ax-a x). 

Because 

s~(l) = 1, s~(l) = 2nÇ1-a)/(1+a) > 0, 

s.~(x) < 1 for x e(l· _. e3,1),- 0 < ~ < 21(. 

Let 2 n n 
s (x) = x~h(t)11 = x(l~'a-a ) -x(x+a) 
o Ir. 2n ·--';"-n· 

.( l+X+ax-a x) - (l+ax) 

s' (1) = o 

n-1 2 2 (2-a) (2+a-a -na+na )-(n-na+1+a) 

Hence for 

s (1) = 1, 
o (1+a)[(2-a)n -1] 

Thus in our case s (x) < 1, for o 

Consequently IT p(O)I/x ~ 1 for x e (l-e,l). x 

But this is a contradiction, because a11 the zeros of T P shou1d be in 
x 

2. A More General Conjecture. 

Under the conditions of Theorem 1, can the circle Iz-a/21 = 1-a/2 

be made sma11er? When a = 1, the circ1e Iz-l/21 = 1/2 is the best as 

shawn by the polynomials Iz-l/21 = 1/2 is the best as shawn by the 

polynomials (z_l)n and zn_le When a = 0, the region Izl ~ (l/n)l/(n-l) , 

satisfies the requirements of Theorem 1, as can be seen from the inequality 

1 l 
' n-l i~ 

P'(O) ~ 1. This is the best result as shawn by P(z) = z(z - e ). 

These observations suggest the fo11owing conjecture. 



, 
If P E? is of degree n, P(a) = 0, 0 ~ a ~ l, and p. has a11 

its zeros in Izl ~ l, then p' must have a zero in Iz-a/21 S Pn(a), 

where 1/2 ~ Pn(a) S l-a/2 and Pn(a.) is a '~f'ro of 

Remarks. 

g (x) = 
a 1 • 

a 

1) When n = 2. g (x) = 2x-l, and obviously the conjecture is valide a 

In the following notes it is assumed that n ~ 3. 

2) When 0 < a < 1 we have g (1/2) < 0, g (1-a/2) > 0, and 
- a a 

g~(x) > 0 for 1/2 ~ x ~ l-a/2. Thus, Pn(a) is uniquely defined. 

3) g (x) = nxn-l_l; thus P (0) = (1/n)1/(n-1). 
o n 

g (1/2) = 0; thus P (1) = 1/1 • 1 n 

li n 
(x+a/2) - (x-a/2)-

- 1 > 
&+1 d+l (x+a/2) - (x-a/2) 4) 

a - 1 a 

for 1/2 ~ x ~ l-a/2, 0 < a < 1. Thus (Pn(a)} is an increasing sequence. 

5) When a,a', x> 0, 

a' > a ===> g ,(x) > g (x) • a a 

Thus P (a) is strictly decreasing in a. 
n 

6) By implicit differentiation, 

lim p~(l) = - 1/2. 
n-t oo 

pl (1) = (lIn) - (1/2). 
n 

Thus,by the results of 4) and 5) we have 

lim p (a) = l-a/2. 
n -t 00 n 

Renee 

9. 



10. 

7) For n = 3 this is the best resu1t as shawn by 

The zeros of pt are 

. 2 2 1/2 
[a+2 cos ~~ (a -3-2a cos ~ + 4 cos~) ]/3. 

As 

[a_(12_3a2)1/2]/4 ~ cos ~ ~ [8+(12_3a2)1/2]/4 

and 0:s ~:s 1(, /z-a/2/ = [(4_a2)/12]1/2 is traced out by the two,' roots. 

3. The Case of Cubics. 

THEOREM 2. Let P E 1> be of degree 3. If P has a11 its zeros in 

Izt :s l, and P{a) = 0, 0:s a:S 1, then pt must have a zero in 

Iz-a/21 :s [(4_a2)/12]1/2 • 

Proof. Let P'(z+a/2) have zeros w1,w2. Thus, 

2 2 
P(z)/(z-a) = z + (1/2) [-a-3(w1+w2)]z+(1/4)[a +12w1w2] • 

Let us take the polar derivative with respect to 1. 

Pl is 1inear un1ess 1 is the center of mass of the zeros of 

P(z)/(z-a); i.e., P(z) ='(z-1)2(z-a). 

/ 
2 1/2 Assume wil > [(4-a )/12] = t, i = 1,2. Thus if Zo 1s the 

zero of Pl' by Lemma 3 

z = o 

2 2 
a+6w-a -12w 
-a-6w+4 

Let y = w/t. Then tyl > l, and 

, ~wt > t. 



z = o 

y2(4_a2)_Y(12_3a2)1/2 + a2_a 

y(12_3a2)1/2 + a-4 

p(y) 
= - • 

q(y) 

Now, it is easi1y checked that q(y)/p(y) is ana1ytic for Iyl ~ 1. 

If a = l, q(l)/p(l) is defined by continuity. q(IlI!)/p(oo) can also be 

defined by continuity. Thus, by the Maximum Modu1us Theorem, 

Let 

r'(~) = 8a(1-a)(4-a2) sin~ cos~. 

Thus 

Iz 1 > o I:g~, = 1. 

Therefore by Laguerre's Theorem, P(z)/(z-a) must have a zero 

outside the unit circ1e. But this is a contradiction, and thus the 

theorem is proved. 

4. A Refinement of the Boundary Case. 

11. 

In what fo11ows we sha11 assume that f has the fo11owing properties: 

1) f is in P and is of degree n. 2.) f(1) = 0, and ff (1) 1= o. 

3) A11 the zeros of f are in Izi ~ 1. 

THEOREM 3. If n ~ 4 and ff does not have a zero in Iz-1/al < 1/2, 

then 

f(z) 
:h 

= z - 1. 



LEMMA 6. If fi does not have a zero in !z-1/2! < 1/2, then f 

hasall its zeros on Iz! III l, and f has all its zeros on !z-1/2! = 1/2. 

Proof. The proof can be found in [4; Theorem 1]. 

LEMMA 7. Let f 1 represent the polar derivative of f with 

respect to 1. If fi.. has a zero in ! z-1/2! < 1/2, then so does fi • 

Proof. The proof follows fromL8~eEr<t!"~ Theorem. See[5; Lemma 1]~ 

LEMMA 8. Let n = 3. If fi does not have a zero in !z-1/2! < 1/2, 

then 
3 2 

f(z) = z - 3cz + 3cz-1, 0 < c < 1. 

Proof": By Lemma 6, 

i9 itS f(z) = (z-l)(z-e )(z-e ), 

-,", . 

and If'(1/2)1/3 = 1/4. Consequent1y we have 

14exp(i9 - itS)- 11/12 = 1/4 • 

Thus, ~ = - 9. Let c = (1+2 cos tS)/3, and resu1t fo11ows. 

LEMMA 9. Let 

n-1 n-1 g(z) = (n-t)(z-l) + tz , t :/: o. 

If n ~ 4 and g has a11 its zeros on Iz-1/21 = 1/2, then t = n. 

Proof. 

has aIl its zeros on Izl = 1. 

12 



has only real zeros. But this is only possible if n ~ 3, or t = n. 

LEMMA 10. The theorem is true for n = 4. 

Proof. Suppose f' does not have a zero in Iz-l/21 < 1/2. Let 

f(z) 
4 3 2 + = z + a3z + a2z + alz a 

0 

By Lemmas 7 and 8, 

fl(z) 
3 2 

t F O. = tz - 3ctz + 3ctz - t, O<c< l, 

Thus, 

a3 = t-4, a2 = (1/2)(12-3t-3ct), 

al = t+2ct-4, ao = (1/2)(-t-~t+2). 

By Leuma 6, la 1 = 1; Le., o 

t = (2 + 2ei~)(1 + c), -1t < ~ < 1t, 

and 

If'(1/2)1/4 = 1/8. 

Hence, 

c(2c + l)(cos ~ + 1) = O. 

Therefore we must hâve c = O. Thus, f' satisfies the conditions 

of Leuma 9. Consequently we have t = 4, and 

4 
f(z) = z - 1. 

Proof of Theorem 3. Proof is by induction on n, the degree of f. 

Because n 
f(z) F (z-l) , fI is of degree n-l. Also since f(l) = 0, 

f l (l) = O. By Laguerre's Theorem, fI has aIl its zeros in Izl ~ l, 

and fi (1) F O. 

13. 



Thus by Lemma 7 and inductional hypothesis, 

trl:O. 

fez) = (l-t/n) (z_l)n + (t/n)(zn- l ). 

f'(z) = (n_t)(z_l)n-l + tzn- l • 

Hence by Lemma 9, t = n, and 

n 
fez) = z -1. 

5. A Special Case of Ilieff's Conjecture. 

LEMMA Il. The right bisector of the line segment joining two 

zeros of a polynomial either separates the zeros of its derivative 

or passes through at least one of them. 

Proof. This follows from the proof of the Grace-Heawood Theorem 

[3; p.84]. 

The following theorem was proved in [5]. Rere we will use a 

geometric point of view. 

THEORBM 4. Let P be a polynomial with aIl its zeros in Izl ~ 1. 

If P(O) = 0, and P(a) = 0, then p' must have a zero in Iz-al < 1. 

Proof. Without loss of genera1ity we May assume 0 < a ~ 1. 

Thus by Lemma Il and Gauss-Lucas Theorem, p' must have a zero in 

S = {Re(z) 2: a/2 ln{jzl ~ l} • 

But SC (I z-a 1 ~ 1) • This completes the .proof. 

14. 
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