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ABSTRACT

The following is a conjecture due to Goodman, Rahman, and
Ratti: if P, a polynomial of degree n,. has all its zeré in |z <1,
an'd.P(a) =0, 0 <ax<1, then P' must have a zero in | z-2/2] < l-a/2.
This (is proved for 2 < n <5. It is further conjectured that the
radius l-a/2 can be replaced by rn(a), where 1/2 < tn(a) < l-a/2
and rn(a) is the zero of (l/a) [(x + a./2)n - (x-a/Z)n] -1l. This is
proved for n = 3. It is also proved that if, under similar con-

ditions, P(1)

0, P'(1) # 0, n > &4, and P' does not have a zero in

lz-1/2] < 1/2, then P(z) = c(z"-1).
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ABSTRACT

The following is a conjecture due to Goodman, Rahman, and
Ratti: if P, a polynomial of degree n, has all its zero in |z| <1,
and P(a) =0, 0 < a <1, then P' must have a zero in Iz-a/2] < l-a/2.
This is proved for 2 < n < 5. It is further conjectured that the
radius 1-a/2 can be replaced by rn(a), where 1/2 < rn(a) < l-a/2
and rn(a) is the zero of (1/a) [(x + a/2)" - (x-a/2)™] -1. This is

3. 1t is also proved that if, under similar con-

proved for n

di;ions, P(1) =0, P'(1) # 0, n > 4, and P' does not have a zero in

|z-1/2] < 1/2, then P(z) = c(z"-1).
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INTRODUCTION

The fundamental result in the study of geometric relationships
between the zeros of a polynomial over the complex field and the
zeros of its derivative is the Gauss-Lucas Theorem. It asserts that
if all the zeros of a polynomial are inside a circle, then so are the
zeros of its derivative. A closely related problem which is far from
being solved is as follows: given that all the zeros of a polynomial
P are in a circle and one of the zeros is specified, describe the minimal

region that will always contain a zero of P'.

By a suitable translation and rotation followed by an expansion
or contraction this problem can be reduced to the following: given that
P(a,n), 0<a<1l, & >2, is the set of monic polynomials of degree n
that have all their zeros in ]zl <1 and have at least one zero at a,
and that‘,@' (a,n) is the class of all regions D(a,n) ‘that have the pro-
perty that if P e P(a,n) then P' has a zero in D(a,n), describe D*(a,n)

which is the intersection of all elements of o@(a,n).

As a st.art, the Gauss-Lucas Theorem assures us that the region
Iz] <1 is an element ofOB'(a,n), 0<a<l1l,n>2. The next step
in the solution was made by a conjecture due to Ilieff which asserts
that [z-al <1 is a member of‘,@(a,n). In [1], Goodman, Rahman and
Ratti further conjectured that the region ]z-a/2| < 1-a/2 is also a
member of @(a,n) » 0<a<l1l,n>2. This is a much better result

because
{|z-a/2] < 1-a/2)c{[z-a] <12 <1} .



The boundary case of the. above ;c:c';t‘tje_cf:g:e,]:l.”.é. when a=1,n >2y 0
has been proved in [};1],‘ {41, [5]. For .2 < n_<_ 4",‘t_he cohjéctufe~v has

been proved in [5],“ and implicitly in [2].

In this thesis we will exténd this result to n =5, Also, we
will describe a sequence of regions contained in |z-a/2] < 1l-a/2 which
we will conjecture are elements of ,g(a,n). This will be proved in
the cases n = 2 and 3, and moreover, in these cases they will describe

D*(a,2) and D*(a,3) .




1. Extension to Quintics.

Let 7) denote the set of monic polynomials over the complex
numbers. Let Dm denote the operation of differentiation with

normalization, so that if

n n-1
£(2) =z + az +... + a ,
a
D £(z) = zn-1 + (E:l)a zn"2 oot =2 .
oo n 1 n

Let DX denote polar differentiation with respect to )\ with norma-

lization. If
az + b
cz +d

T(2) = ’ ad # bc ,

is a linear transformation, and f ¢ 73 has zeros zl,zz,...,zn such
that T(zi) #ow , 1<i<n, then Tf is defined as the monic poly-

nomial whose zeros are T(zi), i.e.,

T£(z) = t(cz-a)nf(T-lz),

where

c™ £(-d/c) if c#0,

ot 1=
[

(ad)"” if c¢=0.

The following lemmas call attention to some well known facts which
we will be using. The first lemma describes the fundamental property of

the polar derivative.



LEMMA 1. Iet p,A belong to the extended complex plane, and

£ e P . If w=T(\, then T(),£) = D (T£).

The next lemma contains some elementary facts from complex
analysis.
LEMMA 2. 1If

az + b
cz +b ’

T(z) = ad # bc, c #0,

is a linear transformation and C is a circle such that -d/c is
outside C, then T(C) = {T(z): 2z e C] is another circle, with the
interior of C being mapped into the interior of T(C). In particular,
if a,b,c,d are real and C has a diameter on the real axis with ends

at p and q, the T(C) will have a diameter with ends at T(p) and T(q).

The next lemma is the Coincidence Theorem of Walsh [3; p.46 ].

ILEMMA 3. Let g(zl,...,zn) be a linear, symmetric function of

z ,...,zn, i.e.,

1
g&ruuﬁ)=%+aﬂlﬂu+%%,

where the oy (i = 1,...,n) are the elementary symmetric functioms of

the zse If w are on or outside a circle C, then there exists

l,ooo,wn

a w on or outside C such that
g(wl,...,wh) = g(Wyees,W)

provided that a, # 0,



COROLLARY. If
g(wl,...,wn) =a +o0ot a0,
h(Wl,...,Wn) = bo +o..0 + ann # 0’
we can extend Walsh's Theorem to apply to

g(wla oo swn)

q =
h(wl’ es e ,Wn)

provided q # an/bn .

Proof: By Walsh's Theorem applied to

qh(wl,...,wn) - g(wl,...,wn) =0

there exist a w on or outside C such that

qh(wyeeesw) - g(w,...,w)l= 0.

Hence )
g(Wy.000,W)

q= —"

h(W,.. .,w)

LEMMA 4, Let f£f,g € ¢> be both of degree n. If D.f =D

A A

£(z) = (1-t)(z-M)" - tg(z), .
Proof: We have
nf(z) - (z-A)f'(2) = tng(z) - t(z-A)g'(2),

Let h(z) = £(z) - tg(z). Thus, nh(z) = (z-A)h'(z).

g, then

t#£0.

t#0.



Assume that h(z) # 0. Then there exists a domain D, in the
upper half plane, where h'(z)/h(z) is analytic. But h'(z)/h(z)=n/(2-1),

z € D, and hence
I
£f(z) = ¢c(z-0) , z € D.

Because h is a polynomial, this equation is valid in the entire
plane. Thus
h(z) = C(z-M)" - tg(z).
Because f and g are monic, C = 1-t. Note that this equation is correct

even when h(z) = 0.

COROLLARY. If g € 7> and M\ # x, then £ €'7) is uniquely

determined by the following conditions:

1) £(x) =0; 2) Df=g; 3) deg(f)

N deg(g) + 1.

Iig. It should be noted

Thus we can introduce the notation f

that if the zeros of g are wl,...,w then

n-1’
*g(2) = Q(z,w _
A WyseeesW 42

where Q is the ratio of two linear symmetric functions in wl""’wn-l'

Now, direct verification yields .

:g = £f. Then

LEMMA 5. Let g(z) = (z-w)n-l, I
(z=0)"(A-x)" = (z-2)"(w-x)"
f(z) = .
-x)" - (w-x)"




‘ If w = A, define £ by continuity, i.e.

f(z) = (z-)\.)n-l(z-x) .

If

A-exp(2xki/n)w

X = k = 1 ese n-l
1-exp(2sxki/n) ’ 2o

I;:g does not exist.

We are now ready to prove

THEOREM 1. Let P ep be of degree n. Let P(a) =0, 0<ac< 1.
If 2<n<5 and all the zeros of P are in |z] <1, then D P must

have a zero in |z-a/2| < 1-a/2,

Proof. Consider the linear transformation

(xt+a) - (l+ax)z
T (2) s 0<x<1.
x 1+ ax - (x+ a)z

Clearly,
Tx(l) = -1, Tx(-l) =1, Tx(a) = X,
2
T (%) = ~tax = A(x) T _(a-1) = }-l-x-l-a_ﬁ_x_ = t(x)
* x+a ” x l+x+ a--a.2 )

Hence by Lemma 2, under the action of Tx the unit circle is mapped
into itself, while |z-a/2| = 1-a/2 1is mapped into the circle with diameter

ends at ~1 and t.

Assume all the zeros of D_P are in|z-a/2| > l-a/2. Then, all

zeros of T (D.P) are in |z| > t.



However, all the zeros of TxP are in |z| < 1. We will thus
arrive at a contradiction by showing that |TxP(0)|/;c > 1 for

x € (1-¢,1).

Let f = Tx(DmP). Hence by Lemma 1, f = Dk(TxP)’ and thus

xf. If the zeros of £ are'w ’""wn-l’ then Iwil >ty,1i=1,...,n-1,

TxP = Ik 1

and

T B(z) = Q(z,wl,--o,wn_l)

where Q is the ratio of two linear symmetric functions in wl,...,w

n-1

Applying Lemma 3,

TxP(O) = Q0 Wy o0, W), lw| > t.

Hence by Lemma 5,
wn(k.-x)n - )\.n(w-x)n
|7, B(0)| .

-x)" - (w-x)"

Lemma 3 cannot be applied if

L (ax)? - (1-x2)°

|T_PC0)| =" - (A-x)" = = s(x) .
X (x+a)"”
Because
s(l) =1, s'(1) = 2aD g
a+1

ITXP(0)| <1 for x ¢ (l-el,l).

Let
O-x)" - (w-x)"
|h(w)| = 1/|Tx?(0)| = .

wn( A-X) n. >\.n(w-x)n




We will show that h(w) is analytic in |w| >t for x € (1-€2,1);
i.e., if L is a zero of p(w) = wn()»-x)rl - )\.n(w-x)n, then |wo| < t.

Now, wo =)~», or .

exp(2nki/n)rx
w - - 3 k = 1, ccey n"l
o A-x-exp(2xki/n)\

If L A, h can be defined by continuity. Thus, we need to have

2 (1+ax)2x2 2
IW ' = <t ’ k=1’oo¢’n-1.

. ° 2 2 2
x " (xta)” + 2(l+ax)(1l-x")(l-cos2xk/n)

Cross multiplying, factoring out (l-xz), and letting x — 1, we need to have
(1'8)/(2"3) < 1‘008(2ﬂk/ﬂ), k = 1,...,[1‘1
which is valid for 2 < n< 6. Thus -}we’[’< t for x € (l-ez,l).

Now,h(®) can also be defined by continuity. Hence, for x € (1-(—:2,1),

by the Maximum Modulus Theorem we have

Ihw)| < [h(eel®)|

where ¢ =4d(x), 0<d< 2x. Let

sd(x) = |h(tei¢)|2, 0< d< 2x,

(1-x2) n( 1+x+a-az)n- (x+a)“c“

8 ,(x) =
¢ eind( 1-x2) n( 1+x+ax-a2x) " (l+ax) v



where

¢

C= (1+x+ax-azx)e1 .= (x#xz¥ax-a2x).

Because
s¢(1) =1, 83(1) = 2n(1-a)/(1+a) >0,

sd(x) <1 for x e(l‘-~eé,1),; 0< d< 2n.

Let . : ‘a-a2)"- .
so(x) afheey ) = $(1+xna ; )n x(xta) -
,-(1+xfax-8 x) = (l+ax)

' , (2-a)n-1(2+a-a2-na+na2)-(n-na+L+a)
1, so(l) = " .
(1+a)[(2-2)" -1]

so(l)

Hence for 2< n <5, s;(l) > 0. Thus in our case so(x) <1, for

X € (1"€&,1)o

Let € = min(el,...e4). Consequently |TxP(0)|/x s 1 for x € (1-¢,1).

But this is a contradiction, because all the zeros of TxP should be in

lz| < 1.

2. A More Genéral Conjecture,

Under the conditions of Theorem 1, can the circle |z-a/2| = 1-a/2
be made smaller? When a = 1, the circle |z-1/2| = 1/2 is the best as
shown by the polynomials |z-1/2| = 1/2 1is the best as shown by the
polynomials (z-l)n and zn-l. When a = 0, the region |z| 5_(1/n)1/(n-1),
satisfies the requirements of Theorem 1, as can be seen from the inequality

|P'(0)| < 1. This is the best result as shown by P(z2) = z(zn"1 - eid).

These observations sﬁggest the following conjecture.



\
If Pe 7) is of degree n, P(a) =0, 0< a< 1, and P has all
its zeros in |z| < 1, then P' must have a zero in |z-a/2| < pn(a),

where 1/2 < pn(a) < 1-a/2 and pn(a.) is a zero of

2)" - (x-a/2)"
g (x) = (x+a/2) £|(xa/) 1.

Remarks.

1) Whgn n =2, ga(x) = 2x-1, and obviously the conjecture is valid.
In the following notes it is assumed that n > 3.

| 2) When 0< a< 1 we have ga(1/2) <0, ga(l-a/Z) > 0, and
gg(x) >0 for 1/2< x< 1-a/2., Thus, pn(a) is uniquely defined.

1/(n-1)

n-1_

3) go(x) = nx 1 ; thus pn(O) = (1/n)

g1(1/2) =0 ; thus pn(l) =1/2 .

a a

) (x*‘a/z)ﬁ - (x-a/2)g 1> (x+¢a\/2)ﬁ+1 - (x-a/2)g+1

9. o

for 1/2< x< 1-a/2, 0< a< 1, Thus {pn(a)] is an increasing sequence.

5) When a,a', x>0, .

a' >a =g.(x)>g(x).
Thus pn(a) is strictly decreasing in a.

6) By implicit differentiation, p; (1) = (1/n) - (1/2). Hence

lim pl(1) = - 1/2.
n - o

Thus,by the results of 4) and 5) we have

lim p (a) = 1-a/2.
now o



10.

7) For n =3 this is the best result as shown by

B(z) = (z-a)(z-e?)(z-e"1%).
The zeros of P' are

1/2

[a+2 cos ¢-# (a2 -3-2a cos d+4 coszd) 1/3 .

As

2,1/2

[a-(12-3a%) 1/2

1/4 < cos ¢ < [a+(12-3a2) 1/4

and 0<d¢<m, |z-a/2| = [(4-82)/12]1/2 is traced out by the two. roots.

3. The Case of Cubics.

THEOREM 2, Let P € 7> be of degree 3. If P has all its zeros in
|z[ <1, and P(a) =0, 0< a< 1, then P' must have a zero in

|z-a/2| < [(4-a2)/121%72 .

Proof. Let P'(zta/2) have zeros WysWae Thus,

P(z)/(z-a) = z° + (1/2)[-8-3(w1+w2)]z+(1/4)[a2+12w1w2] .

Let us take the polar derivative with respect to 1.
2
2 = [-g=- - -a‘-
Pl(z) [~a 3(w1+w2)+4]z . [a+3(w1+w2) a’ 12w1w2] .
P1 is linear unless 1 is the center of mass of the zeros of

P(z)/(z-a); i.e., P(z) = '(z-1)>(z-a).

Assume |wi| > [(4-82)/12]1/2 =t, i =1,2 . Thus if z, is the

zero of Pl’ by Lemma 3

2 2
_ atbw-a -12w
2, = oot , [w] > t.

Let y =w/t. Then [y| > 1, and



11,

y2(4-a2)-y(12-3a2) 12 + 424 ()

o
y(12-3a2)172 4 aes a(y)

Now, it is easily ehecked that q(y)/p(y) is analytic for |y| > 1.
If a = 1, q(1)/p(1l) is defined by continuity. q(®)/p(®) can also be

defined by continuity. Thus, by the Maximum Modulus Theorem,

1 < a(e'® .
lz,| ~ |p(eld)
Let 9 -2
r(#) = [pe!®)|? - |acel®)? .
' (4) = 8a(l-2)(4-a) sind cosd .
Thus

1)
Izol > iﬁi‘) = 1.

Therefore by Laguerre's Theorem, P(z)/(z-a) must have a zero

outside the unit circle. But this is a contradiction, and thus the

theorem is proved.

4, A Refinement of the Boundary Case.

In what follows we shall assume that f has the following properties:

1) f is inpand is of degree n. 2.) £(1) =0, and £'(1) # O.

3) All the zeros of f are in |z| < 1.

THEOREM 3. If n > 4 and f' does not have a zero in |z-1/a| < 1/2,

then

f(Z) = Zh" 10



LEMMA 6. If f' does not have a zero in |2-1/2| < 1/2, then £

has all its zeros on {z| = 1, and £ has all its zeros on |2z-1/2| = 1/2,

Proof. The proof can be found in [4; Theorem 1].

LEMMA 7, Let f1 represent the polar derivative of f with

respect to 1. If £1 has a zero in |z-1/2| < 1/2, then so does f£f' .
1.

Proof. The proof follows fromLaguerre's Theorem. See[5; Lemma 1].

LEMMA 8. Let n =3, If f' does not have a zero in |z-1/2| < 1/2,

then
3 2
z -3cz +3cz-1, 0<c<1l,

£(2)
Proof. By Lemma 6,

£(z) (z-l)(z-eig)(z-eié),

and |£'(1/2)|/ 3 = 1/4. Consequently we have
|4exp(i0 - id)- 1|/12 = 1/4 .

Thus, ¢ =- 6. Let c = (142 cos ¢)/3, and result follows.

LEMMA 9. Let

g(z) = (n-t:)(z-l)'“'1 + tz“'l , t £ 0.

If n>4 and g has all its zeros on |2z-1/2| = 1/2, then t = n.
Proof.

h(z) = g3 = (n-t) (EH™ 1+ e &EhH!

has all its zeros on |z| = 1.



p(w) = (w+0)  Th{(w-1) /)] = (-0 Ho-t)+e™ !

has only real zeros. But this is only possible if n< 3, or t =n,

IEMMA 10. The theorem is true for n = 4.

Proof. Suppose f' does not have a zero in |z-1/2| < 1/2. Let

4 3 2
f(z) =2z + aq2 + a,2 + a,2z + a -

By Lemmas 7 and 8,

fl(z) = tz3- 3ctz2 +3ctz-t, 0<ec<1l, t#0.

Thus,
ag = t-4, a, = (1/2)(12-3t-3ct),
a, = t+2ct-4, a, = (1/2) (-t-ct+2).
By Lemma 6, [a | =1; 1i.e.,

@+2e% 0 +c), -n<d<n

cr
]

and

|£'(1/2)| /4 = 1/8.

Hence,
c(2¢ + 1)(cos ¢ + 1) = 0.
Therefore we must have ¢ = 0, Thus, f' satisfies the conditions
of Lemma 9. Consequently we have t = 4, and

f(z) = z4 - 1.

Proof of Theorem 3. Proof is by induction on n, the degree of f.
Because £(z) # (z-l)n, f1 is of degree n-1. Also since £(1) = 0,
fl(l) = 0. By Laguerre's Theorem, £, has all its zeros in |z| < 1,

and fi(l) # 0.

13.



Thus by Lemma 7 and inductional hypothesis,

fl(z) = tzn-1 -t, t #0,

£(z) = (1-t/n)(z-1)" + (t/n)(2"-1).

£1(z) = (n-t)(z-1)* L+ 221 |

Hence by Lemma 9, t = n, and

£(z) =z -1.

5. A Special Case of Ilieff's Conjecture.

LEMMA 11. The right bisector of the line segment joining two
zeros of a polynomial either separates the zeros of its derivative

or passes through at least one of them.

Proof. This follows from the proof of the Grace-Heawood Theorem

[3; p.84].

The following theorem was proved in [5]. Here we will use a

geometric point of view.

THEOREM 4. Let P be a polynomial with all its zeros in |z| <1.

If P(0) = 0, and P(a) = 0, then P' must have a zero in |z-a| <1

Proof. Without loss of generality we may assume 0< a < 1.

Thus by Lemma 11 and Gauss-Lucas Theorem, P' must have a zero in

s = (Re(2) > a/2 }N{]z] < 1} .

But SC{|z-a] < 1} . This completes the proof.

14.
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