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Abstract . .
)

—

This thesis describes a novel approach to curve inference in digital images basedn
on curvature information. It divides the inference procedure into two stages: a trace
inference stage, and a curve /synthesis stage. Only the trace inference stége is addressed
in this thesis. the curve synthesis stage being the second part of a two-part research
effort. It is shown that recovery of the trace of a curve requires that the tangent and
curvature information be recovered at the same time. These make it possible to specify

powerful constraints between estimated tahgents to a curve (in terms of a neighbourhood

relationship called .co-circularity), and between curvature estimates (in terms of a curvature
consistency relation). Because all curve information is quantized. specia! carre must be
taken to obtain accurate estimates of trace points, tangent;s and curvatures. This issue
is addressed by the introduction of a smootﬁnesé constraint and a maximum curvature
constraint. The procedure is applied to two types of images: (i) artificial images designed

to evaluate curvature sensitivity and noise sensitivity, and (/) natural images.
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) (;ette thése décrit une nouvelle approche basée sur la courbure au probléeme de

I'inférence de courbes dans les images digitales.° Elle scinde la procédure d’inférence en

deux étapes: une étape d'inférence de trace, et une étape de synthése de courbf. Seule
|'étabe de I'inférence de trace sera traitée dans cette thése, {'étape de synthése de courbe -
étant la seconde partie d'un travail de recherche en deux volets. Il est démontré que |la
récupération de la trace d’'une courbe exige que la tangenté™et la courbure soient récupéqrées
en méme temps. Ces informations permettent de spécifier des contraintes puissantes entre
les tangentes estimées 3 une courbe (en termes d’une relation de \;oisinage appelée co-
+ circularité), et er;tre les courbures estimées (en termes d’une relation de cohérenc; de
courbure). Puisque toutes les informations sur les courbes sont discrétes, |'estimation
:précise des points dg la trace, des tangentes et des courbures.doit se faire soigneusement.
Ce ptobléme es£ résolu bar l'introduct.ion d’une contrainte de différentiabilité continue et
d'une contrainte de courbure maximale. La procédure est appliquée 3 deux types+d'images

" digitales: (i) des images artificielles congues pour évaluer la sensibilité 3 la courbure et au

: bruit, et (7i) des itmages naturelles.
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Chapter 1 ; Introduction

Curves arise from the projection of various kinds of structure in the visual world,
such as occluding contours of objects, curvature extrema in surfaces, and discontinuities
in surface coverings and lighting. But curves are not directly observable in images; rather,
curves are abstract entities (mappings) and images consist only of intensities. All that is

observable in images is.information about the trace of curves. or information about the set

* of image locations through which the (projected) curve passes. The curve must then be

inferred from this. inform_a'tibn. In this thesis we formulate such an inference process in

terms of traces. tangents, and curvatures. and develop consistency relationships between

t

them.

~ 1)

The formation of images of curves is a forwarg problem, and is well-pm
inverse problem—the inference of curves from images—is not. however, since information
is lost during the imaging pro;:ess. Additional constraints must be found. and we seek
them through an analysis of the discrete nature of the problem.. We show, in .particular,
how discretized versions of standard notions from differential geometry lead naturally to

smoothness constraints, and how quantization leads to minimization as a method for using

these constraints.

N
Our approach differs from others in two fundamental ways. First, the standard
approéch to inferring curves assumes that the trace points are known. In spline inter- °

polation, for exarpple..a collection of points is given, and polynomial values are sought

-



Introduction

between them [Pavlidis, 1982]. in our formulation, however, the tracé-points must alsa be-
determined. If images were purely binary, with dark points correspondirig to trace points,
and with adjacent trace points on the curve adjacent in the image. then trace inference
would be straightforward: But images contain structure other than the raw traces. so
that a preliminary problem—the inference {or sep_arationr)%“of'"\the trace from other image
structure—must be solved as well. We therefore separate the curve inference process into
two distinct stages. the first in which iocal information (such as the trace) is determined,

and the second in which the global curve is inferred.

Other attempts at curve inference lumped the problem of inferring the trace of
the curve together with the problem of inferring the.curve. However. this mixes local and
global information together. and makes it difficult to take advantage of interactions between
them. Martelli [Martelli, 1976], for example. minimized a functional of intensity differences
along the curve with a glébal constraint on curvature; however, it was still necessary to
specify the initial and final points, and the final résult was dependent on properties of the
noise. In general the trace of a curve is not the ‘straighte's;t sequence of pixels wiih the
minimal iﬁtensit-y chﬁngg along them. Pavlidis also examined the minimization of global

\

functionals through a split-and-merge procedure [Pavlidis. 1982[.

) Our decomposition of the curve inference process into two stages corresponds
naturally to their diffgreglgial geometry. We show that reliable trace inference requires
ipformation about tangents and curvatures as well, so_the %osl of the ﬁrstlétage is to
recover the trace together with tangent and curvgture fields. Once these fields are given,
since the tangent is the first derivative of the curve with respect to arc length, integrals‘
through them can be readily found within the second stage. But there is still something
of a Ehicken-and-egg probiem, since the exact recovery of the trace requires information
about the curve, andvice versa. Our solution to this problem is to first recover the trace,
tangent. and curvatures only coarsely, so that discontinuiﬂties can be properly placed. and

then, in the second stage. to recover them more exactly.

.

The second sense in which this _approach differs from standard ones .is the

2
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. Introduction

manner in which we seek the constraints necessary to accomplish trace. tangent. and cur-

vature inference. In fitting surfaces to disparity data. for example, it is now an accepted
practice to assume a physical model, e.g. that. the surfaces consist ‘of\' thin plaj_tes and
membrane;‘[Terzopoulos. 1986). Energy considerations then lead to elegant minimizations
of second-order functionals. However, it is not at all clear that such physical assumptions
should motivate the trace inference process. We begin with standard notions in differential
geometry, and discretize them onto quantized grids. This leads to an analagous for‘mula-
tion, but suggests that we include one more derivative than is normally assumed. Rather
than minimizing a functional through curvature [Terzopoulos. 1986]. we (implicitly) obtain
a functional through curvature variation. This additional derivative appears necessary for
localizing discontinuities. The minimization is accomplished usi}mg standard relaxation la-
belling techniques. and this formulation substantially outperforms earlier. more heuristic
attempts [Zucker, Hummel and Rosenfeld. 1977: Zucker and Parent. 1984]. Of course, fi)r
reasons of numerical stability, one must be careful how thése derivatives are estimated, and
we present a novel approach to this as well. It is much more accurate than those based.:

for example. on the chain code [Davis and Freeman, 1977].

_ This thesis is the first part of a two-part research effort. In this thesis we
develop the inference of the (discrete) trace, tangent. and curvature fields. Given 'these
fields, in the second part of the effort [Kimia and Zucker. in preparation] it is shown how
to find integral curves through them, i.e., how to actually infer the global curves ar;d their
discontinuities. We begin, in this thesis. by motivating the constraints, and e‘nd with several |

real examples that illustrate the robustness of the approach.

~



Chapter 2 ' _ ' Background and motivation

Two different kinds of iﬁformation are lost during the curve imaging process: (1)
. information about the third dimension, through projection: and (2) details about small-scale -

variations, because of sampling. The latter—quantization noise—introduces significant
F \ —_— -

uncertainty in positional information and reduces the image to a finite set. Consideration

of the details of the quantization, and how they affect the discretization of concepts from

differentia] ‘geometry, forms the backbone of our approach.

2.1 The discyete trace of,a curve

[

-

= The, entiré effect of the imagihg process can be formalized as follows. Let the

curve B bé a méppjng y: I ——v("E3. from an interval -7 on the real line'to Euclidian 3-space.

such that .' .-
vt = ().n.u0) . ey

is a continuous function of ¢, a parémeter running along the curve. yy. yp-and y; are the

Euclidian coordinates of the trace of B. that is, the image of the mapping. Through a

projection operator 1, B -maps to a curve C in the plane
B¢, ' . (2.2)
where the curve C is a mapping x : I — E2, with

S =m0l 23)




a 2.1 The discrete trace of a curve

- (a) () :

(c) . B

Figure 2.1 Various curves and corresponding discrete traces (shaded areas). ' (a)
distinct planar curves may share a common discrete trace. (b) a small orientation
change is undiscernible, {c) a corner and a bend of high curvature have identical
traces. (d) two orientation changes in close proxlmnty and a smooth bend have
snmilar discrete traces.

being a continudus function of the parameter t. Finally_.’a sampling operator L takes the
trace of C. which is the set {(zl(t),zi(t)) | t € I}, into a discrete trace on a square

sampling lattice with integer coordinates

trace C—=-T. . (29

T is a discrete trace,-that is a set.of points with integer coordinates. The sampling function

-

f

is given by .
11

| | = [x(t) + (5, E)J . | ‘ (2.5)

Observe that T is a many-to-one mapping. which méps all the pointé of the curve inside

a unit square of the sampling grid to the center point of the square.‘ Therefore, both the

projection operator I and the sampling operator X, are non—-invertibl‘e. Many‘ distinct space

curves—in fact an infinity of them, and some non-curves too—can give rise to identical

2
projection$. Likewise, dlstmct planar pro;ectnons may have indistinguishable discrete traces,

-

as deplcted in Figure 2.1. o ‘ .



2.2 Smootliness assumptions permit trace inference

2.2 Smoothness assumptions permit trace inference

While the forward problems of obtaining a planar projection C from a space
curve B, and obtaining a discrete tl;ace T from the planar projection are well-posed. neither
of the c'or.respbnding inverse problems are. Additional constr.aints'ére required to limit
ttle'_farhily of solutions. In the case of the inverse projection problem, constraints about
physical objects may come into play [Barrow and Tenenbaum 1981, Witkin 1981]. while

. only general-purpose constraints, or, constraints that must hold over large classes of images,

-are available to invert the sampling process. From this point on, we shall consider only -

the projected curve C." Since small-scale details are primarily what is lost by sampling,
o
it is natural to impose a certain order of smoothness on the projected curve (except at~

discontinuities) giving rise to a given discrete trace. an%nothing more.

The trace inference problem is further exacerbated by the fact that, in general,

. the trace 'of a curve is not directly observable in the image in° which it is encoded. The trace
itselfmust be inferred from the image intensities. We contend that the trace inference prob-

lem is c_:losely Iinked'té) the sampling inversion prolllgm. since the smoothness assumptions

about the planar curve myst influence the trace inference process. Thus it will be shown

that it is not §ufficient to infer only the trace of a curve. but that tangent and curvature

fields must Cbe inferred as well. Again. we formulate these diséretely. The tangent and

curvature fields embody the smoothness assumptions, and act as further constraints on

the inverse sampling problem. Thus, the tangent and curvature estimaies ;;oviqe a local

“model” of the curve in a neighbourhood around the putative trace point.

"~ © To illustrate the different orders of constraint, Figure‘2.2 depicts 2 discrete
trace to which continuous curves have been fitted. .Given points in the discrete trace (a).
a discrete orientation constraint (through the discrete tangent field) is added in (b). and
then the combined orientation and curvature constraints (through the discrete tangent and
curvature fields) are m (c): Observe that the curves in (c) and (b) satisfy the positional’

constraini in (a): that is, they all pass through the indicated positions. Similarly. the

- 6
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23 Overview of dif;ferenhalvgeometty

[N

» 7 . Figure 2,2 Three curves fitted to'a given discrete trace: (a) positional constraint
only, one fit among_.a large family of curvegwith a broad spectrum of behaviour:
(b) position and orientation ‘constraint. the family of curves is more constrained:
(c) position. orientation and curvature constraints combined with a2 smoothness
criterion, the family of solutions is reduced to a single curve Observe that. the
curve in {c) satisfies the orientation (tangent) constraint and that both curves {c)
and (b) satisfy the positional constraint (a), But the curve in (a) does not. satisfy
the tangent (b) or curvature (c) constraints ~

curves in (b) and (c) satisfy -the tangent constraint in (b) but not (a). - Finally..only
curve (c) satisfies a curvature constraint (depicted as short arcs of osculating circles in
(c)) and it is also the smoothest curve satlsfynng these combmed constramts Thus

addmonal (smoothness) constramts hmlt the space of possable curves; what is reqmred

for our problem is to provide suffi C|ent constramts|so that there is a unique“curve which

satisfies them. The problem is then well-posed. We now start to’ concentrate on the

trace inference problem. and. begin our search for constraints with a review of differential

- higher dimensional curves exist. , ,

geometry. Moreé global smoothriess constraints limiting the full space of possible curves

will. of course, influence the analysis. These will also be discussed in appropriate places.

2.3 Over;view of diffgrential geoﬁetw |

9,

\

It is useful to review a few elementary notions of differential ‘geometry [do

¢
Carmo, 1976] to establish the context in which the smoothness constraints will be for-

mulated. The review will be centered on curves in the plane, although géneralizations to

-

— - 7 -
7



23 Over,view of difieregtial geometry

Let I be an interval in one-dimensional Euclidian space E!. A curve C is defined -

0 as a continuous mapping x : I — E2 from the interval to the plane. where )

x(t) = (z1(0),22(0) * (26)

where t € I is a parameter running along the curve, and 3. Ty are continuous functions of
t. The curve is said to have order of continuity k. denoted CF. if all derivatives up to and
including the kth derivative of 1 and z, are continuous. Taking the first derivative with

respect to ¢t everywhere along C, we obtain thetangen_ts
‘ ’ O EC0 1) S )

s where the vectors x'(t) have bases, at (z4(t), z3(t)). Their magnitudes can be interpreted

as the velocity of a particle following the curve. A curve may be reparameterized in terms of ~

———

its arc length s, equivalent to a particle traveling at constant unit velocity along the curve.

In this casexthe tangent vectors are unit_length vectors. - .
SRR ' X(s) = (zj(s),z3(s)), ~ . | (2.8)
where s = f(t) is a reparameterization of the curve, and ||x'|| = 1. _ .

]

The interesting aspect of the tangent'l is its or‘ientation. The geometric inter- ’
® pretation of the tangent to a curve is depicted in Figure 2.3 (a). Letting P be a point on
a curve, and A a neighbouring point, the tangent T at_P is the limit of the line AP as A

approaches P along the curve. The tangent yields the orientation of a curve at a point.

Taking the second derivative with respect to s everywhere along C', we obtain

p , -

-

. o X s) = () s, e

where the vecfor x"'(s) is normal to the-vector x/(s). and the magnitude of x"(s) is called
. the curvature of C Curvature is a measure of the rate of change of orlentatlon per unit arc

length The geometnc interpretation for the curvature ls depicted i m Figure 2. 3 (b). Let :
o P be a pqzlgt on a curve, T the tangent at that pomt and A-a neighbouring pomt on the -

- i

-
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2.4 Derivatives through curvature consistency

N @ (b) (o)

Figure 2.3 (a) Tangent T is the limit of segment P as A approaches P along C.

) (b) The curvature < of C at P is the limit of the ratio a/l‘?B| @s A and B approach s
P independently along C. (c) The osculating circle O at P is the limit of-the circle
that passes thraugh A. P and B.as A and B approach P independently along C
The osculating circle in {c) is a substantrally better |oca| approximation than the

tangent in (a).
curve. Let a denote the angle between the line AP and T. The curvature x at P is the

limit_of the ratio a/|AB| as A approaches P along the curve. Related to this interpretation

" of curvature is the osculating circle. Referring to Figure 2.3 (c). et A. P and B be three

-neighbouring_points on a curve, and let O be a circle through these /points As A and B

mdependently approach P alo’ng the curve, 'the crrcle O converges towards a limit, whose

°
’x

radius i rs precisely the inverse of the cwvature x at P.

1

2.4 - Derivatives through curvature consistency
Although third and hlgher order derivatives can be. deﬁned for curves, practrcal.
considerations dlctate that the process must stop somewhere Our posmon is that the ,_

trace. tange\n{and curvature fields provide the local basis for inferring global curves, and

. are necessary, for placing discontinuities, corners, or breakpomts. Qualitatively for people,

P

interesting e\'rents along curves consist only of abrupt changes of orientation and curvature,
'Jocal maxima of curvature, and mﬂectlon points (i.e. zero crossings of curvature) [Attneave,
1959 Hoffman and Richards. 1986; Koenderink and van Doorn, 1982 Fischler, 1983].
These are the places that a_human observer is most Ilkely to choose to segment long

curves into shorter ones. ngher order discontinuities such as dlscontrnultnes in curvature

Y

variation do not seem to matter. Between the selected corner pomts curves srmply appear -

'

«
-

- ) . -
" '
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" to be smooth.

i.S Tangent and curvature fields .

-
¢ s

%

Althicugh this argument for limiting the number of derivatives considered is .
informal and based on human perception, any machine vision system will have to confront
this issut as well. While any namber of derivatives can be defined, only a finite (and..in

fact. small) number of them can actually be computed. Evolution, presumably, has settled

upon an optimal number.

In terms of differential geometry, then, the visual system would appear to per-
ceive curves as being piecewise-C'™, with' segmentation occuring .at discontinuities in the
first and second derivatives of the curves. Iri the sequel. we shall show that curvature
consistency—a ﬁeceé?ari relationship between discrete estimates of curvature along a
smooth curve—amounts to a bound on the third derivative, i.e. on the curvature vari-

ation. Higher order discentinuities are smoothed over and ignored.

]

* There is a numerical reason for limiting the anglysis to cirvature variation as
well. Quantization can be modeled as the addition of ."noise" [Papoulis. 1965], and each .
derivative numerically amplifies this noise. It is well known that the numerical stability of
computing higher-order déri\{atives is poor, Althou'gh we shall come bagk to this point later
in thi$ thesis, for now suffice it to note that some number of derivatives are necessary to -
- control smoothness and to signal discontinuities, and we shall take tt:at number to be 3.

Furthermore, real care must be used in computing @em‘,
! - . \ M - )

-

2.5 Tangent and curvature fields : o &

+

_ So far, we have thought about curves iﬁtririsically. i.e. as given functions x(s)
of an arc-length parameter s. ,However,s’ce this is primarily the object we are after, and
not given, it is necessary to fdrrpulate some of our algorithms extrinsically in terms of the
Euclidian space in whi_ch‘the curves are embedded. Consider' a retinotopic restriction of .
the plane E2 to finite extent D C E2. We shall be l'n'teres”t'e;i in 2 vector fields on D,

one which is a mapping that associates a tangent vector x" (8) to each point in D, and the

10 .
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. I3 2.6 Discrete representation of trace. tangent. and curvature

other which assoaates a curvature x"(s). We refer to these fields as tangent and curvature

) fi elds respectwely The ﬁelds form the basis of our representation fog gurves. Thus, those

pomts in the trace of a curve will have unit tangents with associated curvatures mapped.
- to -them, while others will have null tangents and curvatures.
- ' -~ ,
2.6 Discrete representation of trace, tangent, and curvature

Since our problem begins in the discrete domain, we choose aArepresentation

for curves based on their traces. with associated t'angent fields and curvature fields. These
latter fields are represented discretely as well, to reﬂect'the fact that carve inference consists
of a two-stage process. In this first step. the goal is to estimate the trace, tangent, and
curvature fields finely enough so that discontinuities can be placed, but coarsely enough
SO tha;overwhelmingly restrictive assumptions are not made. The compromise solution.
then, is with discrete tangent and curvature fields, which serve as inequality bounds on

which-the next, global stage can be based.

——

1

\The di‘scret:e trace of a curve consists of a set of points in the discrete plane.

_The discrete 'Eangent field is formed by finding, for each point of the discrete trace. the
quantized orientation of the curve as it runs through that point. It thus consists of.a set of

unit tangents to curves, characteri}.ed by their position and orientation. Hence, assuming

‘ " m discrete onentatqons and letting &, denote the dlscrete orientation of the tangent at a

particular position, A = 1, ces ,m the actual onentatuon 8* lies in the interval

- ‘ ’ 0)\—-2-%50’5<0,\+£;. i (210)

— ) . |

- ——

The discrete curvature field is similarly formed by associatink to each unit tangent the

-

quantized curvature at that point. .

. S ; ¢

. It is desirable to have a uniform.representation for all points in the discrete
plane, capable. among other things. of distinguishing between trace points and non-trace

@ . . points. If. for example, the orientation of a curve is allowed to have one of 8 values. i.e.

“ ’

11
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2.7 Curve inference as a two-stage procedure

——

the orientation is quantized to multiples of ¢ = 7/8. each point of the discrete plane could

" be associated with a vector of 8 elements. each one a predicate true or false according

to whether or not a curve passes through that point with approximately that (quantized)
orientation. Alternately, the true or false predicates cauld be replaced by real numbers in
the interval [Oq, 1], where the; extremes assert presence or absence of a curve with absolute
certainty, while inte?mediate values represent less certain assertions. Thus, for curve points,
‘there is at least one element of the certainty vector with a value near 1. while for non-curve
points, all elements are near 0. Some points may have more than one near-1 value. e.g.
curve crossings, and orientation discontinuties. The following notation is used fo. the

certainty of tangent A at position (z4,9,):

~

p(M fori=1,....n A=1,..7m. (2.11)

. assuming an image with n pixels and m discrete orientations of tangents at each pixel.

With each orientation vector element p,(A) is associated a single discrete mea-
sure of curvature. k,()). It becomes part of the discrete curvaturé field when the corre-

-

sponding tangent is part of the discrete tangent field. ~
2.7 -€urve inference as a two-stage procedure

Sufficient background material has now been developed to specify the two stages

involved in inferring a curve.

Stage % Trace Inference and Orientation Selection
Taking an image as input. infer the discrete trace. tangent. and curvature fields

v subject to quantization and maximal curvature constraints.

Stage 2: Curve Synthesis

Taking the discrete trace, tangent. and curvature fields as input. locate discon-

tinuities and find integral curves running through them. su&ct to discontinuity
. N .
and smoothness constraints. \

12.
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- ' ’ 27 Curve inference as a two-stage procedure

<

Stage 2. curve synthesis, will be treated in subsequent work [Kimia and Zucker,

in preparation]. We now concentrate on Stage 1. .
[
- 4s
«
4
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"approximations suffers the same problems as well.

K “ N R
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Chapter 3 Trace inference and orientation selection

-

‘o

The goal of the first stage of our curve inference process is the recovery of
local information. Clearly this must include the recovery of trace points. If the curve
were known. then tracg points could be separated from other image structure simply b)}
calculating them. But the curve is not known. so we are forced to estimate the structure
of the curve in the neighborhood of each putative trace point. As we shall show. coarse
estimates of the tangent and curvatures provide sufficent I5tal information about the curve.
These estimates provide a partial local model for tﬁe curve sufficient to gather evidence

» |

about individual trace points from their neighbours.
€ ’ \ I R

Two terms used abové—local and coarse—warrant further expansion. because
they are related in a fundamental Way. Observe that. when searching for a book in the
library, one‘ first searches through broad categories before finely scanning the exact tities.
Analogously. curve recovery is facilitated by first obtainipg a rough—or coarse—estimate of
its structure to guide subsequent analyses. Thé need for a local analysis follows for similar
reasons, since few (if any) assn;mptions can be made a priori about the global structure of
the curve. Moreover, given the presence of noise from both sensors and quantization, such
a coarse, local analysis becomes necessary: imagine trying to exactly estimate the tangent
of a contour from‘ an image to three decimal places without strict a priori assumptions.,

such as the straightness of the sides of a block\Binford, 1981].\ Seeking,hiéher-order

T

Similar arguments touid be made in detail about the tangents and curvatures.
' !

&
o

——
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31 The two.steps of Stage 1

If the curve were known, then these could Be computed exactiy. But since it i; not. then,
G‘ | they must be estimated as well. There is spmething of a hierarchy of information here,
with the (estimated) tangents supSlying constraints on the positions of nearby (estimated)
trace points, with the (estimated) curvatures supplying constraints on the (estimated) tan-
gents and their (estimated) locations: and. finally, with curvature consistency relationships
supplying constraints_on (estimated) curvatures. We now develop these constraints in de-
tail. based on quantizations of the differential geometry already described. In the end we
will have obtained an inference procedure for estimating (quantized) trace. tangent. and

curvature fields such that a particular functional with terms through curvature variation is

minimized.

H . ’ )
3.1 Thetwo steps of Stage 1
The Stage 1 inference procedure consists of two distinct steps, a measurement
" step and an interpretation step. The functional minimization and tangent field inference

are accomplished in the second step.

b

‘ Step 1: Measurement ’ N\ - .

Comvolution of linear operators against the image to obtain initial tangent cer-

tainty @stimates at each position and for each (quantized) orientation.

——

—

Step 2: Interpretation
' , Selection of a subset of the tanhgents signaled in Step 1 accordihg to the func- -

- s

tional minimization procedure to be defined.

Classically, of course, the linear operators amount to “line detectors” [Rosenfeld
and Kak. 1976]. although our selection procedure is much more complicated‘\than simply
taking the “strongest” convolutions. Rdther, it amounts to selecting those “strong” con-

e .- volutions that are strongly supported by—or consistent with—the other convolutions in '

15
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N 31" The two steps of Stage |

e

-Figure 3.1 The initial convolutlons are performed with this “line detector” operator
which is a difference of three Gaussians in the z direction, multiplied by a single
Gaussian in the y direction

their neighbourhood according to the estimated local curve model. We now discuss the

two steps in turn.

3.1.1 Step 1: Initial tangent estimates

. P ¢
The requirement for the first step is a set of operators that estimate the presence

of (jangent at each position in the image. Since drscretely the tangent can be viewed as a
short. straight line segment, templates tuned to thrs structure aré the obvious ¢andidates.
Such templates amount, of course, to so-called “line detectors” [Rosenfeld and Kak. 1976

Zucker 1982]. 'and.we use the following one (see Fig. 3.1):
§(z,y) = LSF(z) - exp(-y /ay ) | (3..0)

Witheeo, : S : ‘ ’
LSF(:)_.exp(—-xZ/al) Bexp(-z 2/022)+Cexp(—:2]o32) o (3.10)

where B and C’ are the normalized welghts of the second and thlrd ‘Gaussians.

~ The classical rationa‘le for choosing such operators is clear; they are ternplate
representanons of short stralght line segments. The Gaussran kernels have the attractive
property that they smooth over intensity variations along the tangent direction, but sharpen
.them in the orthogonal direction [Zucker and Hummel, 1986]. Such operatars resemble the
reooptive fields of so-cailed simple-celis in primate visual cortex [HuBeI and Wiesel, 1977].

a

.* and hence are also attractive from a biological point of view.

—
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3.1 The twosteps of Stage 1

3.1.2 Step 2: Interpreting the initial tangent estimates

2

Classical treatments of curve detection also involve two steps, the first of which
is very similar to the one just described. But the second-step—interprétation of the operator

convolutions—is usually much simpler than the scheme that we shall be‘describing. Since’

the operator templates hat;h high-contrast straight lines so well, it is often assumed that

,siipply selecting the’ strbnge_st convolutions is sufficent for obtaining a local representation

of the contour (what we are calling a tangent field). But this is not the case for any pattern
other than widely spaced, straight lines. Curvature, corners, and nearby contours all affect
the convolutions, and all are sufficent to invalidate the ‘maximum convolution selection

strategy [Zucker, 1982; 1985]. A richer model for curves is clearly needed. -

From the differential geometfy revnewed in Chapter 2.itis clear that our model -
must at feast include curvature. Reca" that, in the ne:ghborhood of each pomt the osculat-
ing circle is a substantially better approximation tothe curve than the tangent (Fig. 2.3).
We shall later argue that'curvature is also a high-enough approximation to separate closely |
spaced curves, so that incorrect corwoiutions that cover distinct curves can be properly
interpreted. Therefore we shall focus on curvature, and shall\ begin to derive an estimation‘
p}ocedure basqd on (a quantized version of) it. Our goal, briefly stated. is to minimize the

curvature variation at each point by maximizing circularity. N
+ < - Q 1

-
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Orientation, curvature,
Chapter 4 - , , ' .
: " smoothness, and position constraints

\)

In .this chapter, we shall first establish the neighbourhood circularity ngleasdfe
in terms of a pairwise relation between (estimated) tangent elements, callsd co~circularity,
which determines an orientation constraint. lntroducfng the maximum curvature constraint
that arises from grid quantization is then sfraightforward. Secondly. it will be shown
that the orientation constraint is not sufficient and that interaction between neighbours

should be mediated by a curvature consistency constraint.” This constraint can be applied

_provided local estimates of curfature are available. It will be shown that these estimates

can be obtained by partitioning neighbourhoods into regions called curvature classes, and
that tangent estimates can be obtained by propagating suppart through these regions.

Cons'istency of curvature is achieved by comparison of the curvature classes. Thirdly, the

" smoothness constraint is examined in relation to the maximum curvature constraint-and

the neighbourhood size. a

Finally. a level of constraint is required to achieve the high localization accuracy

which is characteristic of curvilinear patterns in images. This positional constraint is a

" form of lateral maximum selection whereby a pier-Wide region is determined to be part of

the curve.’ It is required because support for tangent elements may occur over a relatively
wide area near curves, whereas the discrete trace of a curve is composed only of the set of
pixels' through which the curve actually passes. This level of constraint thus improves the

accuracy of the trace inference. procédure.




 basis for curvature estimates through the co-circularity relationship.

dtscretlzatlon and use of the not:on differs substantially from theirs.

" 4.1.2 - Co-circularity in-the discrete case . ' *

4. o-circularity

4.1 Co-circularity

o————

The standard afnproach to estimating curvature is to fit a polynomial to a col-
lection of points, and then to differentiate the polynomiaf twice [Pavlidis. 1982]. This,
however, amplifies noise. and hence is unusable in our quahtized context. We shall present

a different scheme. in which the information contained in tangent estimates provides the

4.1.1 Definition - : &

The relation of co-circularity applies to distinct tangents to a circle (see Figure

4.1(a)): A property of this spatial configuration is that the tangents fprm angles of equal

. magnitude, but of opposite sign, with the line joining the points of%angency (see Figure

4.1(b})). Thus. abstraction can be made of thie circle. and the’ symmetry of the configuration
can be retained as the characteristic of co-circularity. Note that when the radius of the
circle becomes infinite, we obtain a special case of co-circularity; co-linearity. Co-circularity’

is therefore a function of. both the orientations and the positions of the tangents.

' Definition.” Two unit tangents A and X’ are co-circular, denoted

/\X )Y

. . ... . LB
iff there exists a ciicie tc which they are both tangent.

14 .

Co-ccrcula.tty is a kind of symmetry relataon between tangents, and bears some .

relatlonshlp to the way in which [Brady and Asada, 1984] define a local symmetry But our

- . . < -

-
-

When posmon and onentat«lon are quantlzed tangent palrs are seldom exactly

co-arcular The small perturbatlons mtroduced by quantlzatnon must ,somehow be taken

- : 19
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4.1 Co-circularity

©

Figure 4.1 in (a). unit tangents A and B are both tangent to the same circle,
therefore A is co-circular to B (denoted A =< B) This condition is geometrically
equivalent to that depicted in'(b). where « = —4. -

Figure 4.2 Two unit tangents ) and A with respective orientations A+ 851 whose

» positions are restricted to the circte of radius 1/2 centered at the pixel pasitions
{z,, 9;) (z], Y, ). the line-with orientation 6, 1 joining the centers of the pixels; the.

IimE with orientation 8; joining the tangents.
mto account. To do this. we begm by allowing the position of the tangents to be anywhere
wnthm the cnrcle oflradlus i /2 plxel centered at the pixel. leewnse. we Iet their orientatjon
vary wuthm -a nelghbourhood of size ¢, for onentataons quantlzed to multiples of e. The

tangent palr is thus co-circular if therg exists at least one assngnment of the position and
onentatlon variables for which co-cnc}arity as defined above is true.

4 -

Let (z;,%) and (z,,y;) be the coordinates of nodes i and 7. and let (z,y) be
aﬁ%rbltrary pomt within the circle of radids 1 /2 centered at (ziywu ). and (z’,y’) a point in
a circular nelghbourhood of (z;,9;): let A and X be unit tangents at these locations and
0,\ and ), be their respectwe orientations; let 6 be an orientation in an e-nelghbourhood
of 8. and & an orientation in an e-neighbourhood of 4, (see Figuré'4.2). The‘orient’ation

of the line joining the centers of the pixels is given by

tV

where Az = z; — z; and Ay =—Jyj - Y.

\

2

-

0, = arctan(Ay/Az) @)

1
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ot
Figure 4.3  The interval for the Brientation 6, of the line joining two unit tangents '
A and ) located in circles-of radius 1/2 céntered at (z;,y;) and (22 v7) 8 (6,5 = ,
; . a,&,-j-f-a). whete aij is the orienta;ion of the line joining the centers of the circles, '
. and a depends on the distance d,, separating them. The sine of a is 1/2 divided N
e by the distance from O to (z,, yt-)\, whiich.is d;;/2. hence o = arcsin(1/d, ]).

»

We wish to determijne the minimum and maximum values that may be taken e
f - (] - -

by 6. the orientation of the line joining the tangents as (z,y) and («',y) are allowed to

vary within their circular neighbourhoods. As in Figure 4.3, the extrema coincide with the .

two intersecting tangents common te the circdlar neighbourhoods, In the case of: circles

i

- of equal radii, it can be shown that the angle between the.common tangent and the line )
joining their centers is given by ‘ . ‘ \
» BRI a = arcsin(1/d,;) ‘ - (4.2)

+

Let the function I (3, 7) désignate the interior angle between a pair of lines with ’

-

- orientations ﬂ,-anﬂ ~. as in Figure 4.4, Let the sign of this function be the same as the

" djrection in which the first line must rotate in okder to close the interior angle and coincide

-

" with the second, that is. positive for counterclockwise and negative for clockwise rotations.

The formal definition of this function, assuming that 0 £ f < 7 and 0 < v < 7, is the .

~
-

) follqwing" S
- T y-8, ' ifly-pl<E . .
S T E{y=B-m ff<r-BSm Wy
I y—=B+m, f-r<y-f< -3 . '

i

<

\ ' Turning back to Figure 42 and 'r’\ecalling the geometrical definition of co-circu-
0 . " larity, we find that the tangents at_{z;,y;) and (zj,yj)‘ are co-circular if the interior angle

7oA - ' 3 . " '
J ; i . - 21
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. ‘ - 41 Cocircularity

) | _ , -
V 77T |
: ©  Figure 4.4 The interior angle function (6,7} is the interior angle between a pair

of lines with orientations 3 and v The sign of this function is determined by the -
" direction-in which the first line must rotate in order to close the interior angle.

between the first tangent and the line.jéining the tangents -is the same as that between the’

* " latter line and the second tangent. Formally, . \ ‘ re
A< X iff [(0,6)=r(6.,6), - . '(4.4)

for some 0; € (0,) ~ a,0;;+ o). 0 € (6) — 5,05+ §). '€ (0, — 5,00+ 5) This condition

" s clearly equivalent to

. ot \

“Ax N |r(6),6,,) - {8:,,0,)] < €+ 2a, R (4.5)

-

" Condition (4 5) is a dlscrete co—Clrculanty condition: it is elther true or false
jn : A contmuous verslon of l.hls condition can be |mp|emented by measunng the closeness
x/ . to co-cnrculanty and we refer to this measi.lre as a co—cnrculanty coefficient. Departure
, from exact co-circularity occurs by rotatlon of one ‘of the tangents. Wthh suggests that a
func’( tion of the difference in orientation between a tangent and the co-circujar tangent in the ‘
- same position could be used as a measure of co-circularity. . The co—c:rculanty coefficient
! - . then consists of a real number between 0 and 1, where 0 means not co—carcular 1 means‘

co—cnrcular and values close to 1 are mterpreted as néarly: cp—curcular

Generally. the coéfﬁcvent |s 1 for a certain range of onentatlons of tangents-at
the nelghbourmg node, because of bullt-m quant:zatnon noise tolerance in (4 5).-Denote

) thls range by [am,,,,om,,] We let the magmtude of the. coefﬁment fall off monotomcally

o ‘ e outside thls range (see Flgure 4 5)

s > "
e LN ' \ b ' - - P
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- 4.1 Co-circuiarity

»

iy (A X)

0.5

¢ + 20—

Cmin

0 ’(
' 0. amm 0A ) 9inaa: N

Flgure 4 5 Co-circularity coefficient c, (.\ M) as a function of orientation 0,\, of
neighbouring tangent. The length of the interval {min, Omaz] is ¢ + 2a (see
Condition 4.5). ) .

Thus the co-circularity coefficients 5 (s /\’)"are given by ’

® (4 (/\ A') . : if | r(er\’ 1_7) r( 179 AIN < e+ 2
Y max(l ~ |y — Om|, cmin), oOtherwise. ,

(4.6)

where, 8y, is the extreme of the range [fpun,fmaz] closest to 6. and 5 isrthe absolute

_value of the slope of the drop-off region, assuming a linear decrease. -

- Because of the grid and tangent quantization. it is necessary to consjder tan-
gents distributed in a neighbourhood around each image point. If only the 3 by 3 immediate
neighbours were qbnsidergd. then-the angular quéntizatio'n of 0,J would be much too severe.
The co-circul:arity‘ coefﬁcieni so 'deﬁned can be measured for all neighbouring tangents in

a r\eighbpurhood of a given siie_. and the set of ;hése measures forms the neighbourhood

¥

support set.

¥

e

4.1.3 Maximum curvature constraint

In order to mtroduce the maximum curvature constraint (recall Fig. 2. 1(c)). a

measure of the radius of curvature implied by a pair of’ tangents is required,, Létting p;; (A)

v

denote the implied radius, we use -_
-5 2) = : J 4.7
L Pl = Tt 1,
" as its measure. The maximum curvature co‘rrstraint implies that
"o (A N) =0 whenever  5;;(}) < pmin. (4.8)
| n
I Y \ . .
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N o 4.2 Co-circulanty support

Figure 4.6(a) shows the set of neighbours co-circular to a tangent with a vertical orientation

for a neighbourhood diameter of 15 with the maximum curvature constraint applied.

v . -—

4.2 Co-circularity support- .

+
¥

We are now in a position to estimate how well ‘a particular (estimated) tangent
is supported by other (estimated) tangents in its neighbourhood, Recall that the first
measurement stage consisted in convolutions against “line detectors” (Section 3.1). Letting
0,\3 denote the orientation of the operator at node ¢ with coordinates (z;,y,). for A =
1,...,m. the normalized convolutions {p,(}),i =1,...,7,A =1,,..,m},0 <.p(A) < 1.

provide an initial estimate of the confidence in tangent \ at node . Note, for a long

* straight line of orientation 8,+ passing thr’oughci. that p,(A\*) will be maximal at that

position. and that p;(A) will drop off from p;(A*) according to the orientation tuning curve

for the operator.

But when the curve does not consist of long straight lines. p,()) can _follow

a more complex distribution at each node 1. Therefore.)th/e cir'c/ularity measyre must be -

evaluated over a Iocgl neighbourhood around ¢ and must depend on the entire distribution of

possible tangents atxeach point. We take a linear weighted sum to indicate the co-circularity
support for a unit tangent A at posmon 1

i) = > % ,A’)pj(x') _ )

j=14'=1
where r,](/\ X) = ¢, (A, N), the co-circularity coefficient. Clearly those tangents Iymg

along a curve should have maximal support. More remains to be done before this is
guaranteed however. because linear averaging schemes such as this have the potential to

smooth across dlﬂ’erent but neagby (within the given nenghbourhood) cdrves.

~

4.3 ‘Curvature classes

Consider a small neighbourhood of an image containing many curves. Within

this neighbourhood, many tangent pairs are' mutually co-circular. with. some co-circular

-

- *‘
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Figure 4.6 A diameter ‘15 neighbourhood (a), partitioned into 7 curvature classes
for the vertical orientation (b) — (h). {a) bears some resemblance to the consistency
operators for curve enhancement developed in [Hedlund, Granlund and Knutsson,

1982

pairs belonging in fact to distingct curves. More speciﬁcally;. given three ta@ents A. B and
C in such a neighbourhood and given that A < Band A =< C, it does not follow necessarily
that B < C.'In particular, the interpretation of A remains ambiguous when B 3% C: does
Abelong to the curve going through A and B, or to the ane through 4 and C? One way to
decide the situation is to partition the neighbourhood support set about A into sufficiently

~

narrow curvature classes Ki(A). k= 1,..., K as in Figure 4.6(b)-(h).

Each curvature class consists of all the osculating circles whose radius is be-
tween the limits for that class or, equivalently, whose curvature is within certain limits.
-Thus, if A < B, A < C, and B. C belong to the same curvature class K;(A) with respect

to A. it may be concluded that B < C.

Two benefits accrue from the use of partitioning. First, it’imposes n-wise

. ’

consistency of tangents within curvature classes at a low cost in complexity. The tangent
support function can be modified to take advantage af-the partition, by measuring support

independently by curvature class. and by selecting the highest as the final tangent suppoat.

b,
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Figure 4.7 In (a). A < B and A~and B are tangent to the same curve. In (b)
however, the spatial configuration of A and B is the same as in (a). but they are
tangent to distinct curves.

(a)

The support of tangent X at node ¢ is thus given by

s,(A) = max Z Z (AN py (V) (4.10) |
]-—1 M= -
oJ
where the coefficient rzkj(é\, A’) is the product of the co-circularity coefficient c,, (A, A’) and

if p%.n < By,(A) < PKr 4
K5\ N “{ + W Pun < By (A) < Prac 4.1
(A X) 0, otherwuse‘ (4.11)

a partitioning function

for given. curvature class limits pk,,, and pk ...

The second benefit is that a discrete estimate of curvature «,()) is obtained by
correspondencg with the curvature class th;?’fﬂéximizes the support function. With this
e‘stimate. itis b‘e possible to introduce a further constraint on the selection of neighbouring
tanigents for Iocall‘supﬂport. This constraint is examined in the next Section. First note,
however, that these discrete curvature estimates have been obtained without the numerical ’

problems inherent in standard, spline-fitting techniques.

4.4 Consistency of curvatures

: —

One kind of ambiguity persists even after partitioning into curvature classes.

Consider for example Figures 4.7(a) and (b).

In Figure 4.7(a). tangents A and B are co-circular and they are ?ent'to

the same curve. In Figure 4.7(b) however. tangents A and B occur in the same spatial

;7
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Figure ‘2.8 In"(a). A < B but the estimated curvature at B is inconsistent with
the interpretation of a curve through A and B In (b) however. mutual_support is

4

4.4 Consistency of curvatures

(b)

possible because the curvatyres are consistent

configuration as in (a), yet they are tangent to distinct curves. Should the tangents A and

B mutually support each other in (b)7 If not. how can configurations (a) and (b) be told

apart?

The solution to this problem requires comparison of local curvature class es-

timates. The orientation of a tangent and the local curvature class estimate together

determine a region about the position of the tangent where a curve is most likely to exist.

In Figure 4.8. B <

A, therefore B belongs to at least one of the curvature classes of

A. But in Figure 4.8(a). the local curvature class estimate at B does not include A as a

member. The curvatures are said to be inconsistent and- this €ondition precludes mutual

support of A and B. Figure 4.8(b) depicts a situation where curvatures are consistet with

the interpretation that a curve passes through A and B. Note that in this case we have o

both A € Ki(B) and B € Ky1(A) for some k and k' (not necessanly equal).

-

. ! - . . .
Letting C!;-" (A, A7) denote the predicate variable for curvature consistency, i.e.

1,

Ckk,(/\ A') {
0,

we obtain a new coefficient

if curyature class k of A at ¢ is consustent
_with estimated curvature class %’ of A’ at ]

otherwise;

r{;k’ (A, N) = ¢, (A X)

e

b

S
K5 (A X) CEF (A, N),

which is a function of-curvature as well as orientation and position.

<

(4.12)

(4.13)
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45 Smoothness constraint

4.5 Smoothness constraint -
)

v
So far, it has been assumed that the tangent and curvature fields embodied
the smoothness constraint without explicitating its actual mechamism. In this Section. the
smoothness constraint will be discussed in relation to the circularity measure, which is a

function of the maximum curvature constraint and the neighbourhood size.

L]

-

The smoothness constraint takes on two distinct but related forms. First and
foremost, it is mediated through the maximum curvature constraint, whose role is to filter
out quantization noise lgtroduced by discretization of the image. The upper bound on
maximum curvature is dictated directly by the rfesolution.of the discrete i |mage. As depicted
in Figure 2.1 (c). very high curvature is indistinguishable from a corner, so the limit is at

the point where the maximum curvature leads to"a trace different from a corresponding
b

" corner. Experiments with the trace inference procedure suggest that the minimum radius

of curvature should be in the range of 2.5 to 3.0 pixels.

-

The second form of smoothness constraint depends on the size of the neighbour-

"hood used to collect support for unit tangents along a curve. It is implicitly assumed that

the osculating circle is a good approximation of the neighbourhood. that is. the curvature

variation is small within a given neighbourhood size. Thus, the greater the neighbourhood
is. the Igss sensitive the circularity measure’ wrll be to small detmls in the-cturve—and the
smoother the inferred trace will be. For example, a regular polygon would be perceived as a
circle usrng a sufficiently large neighbourhood. Chapter 6 describes an experiment showing

the effect of varying neighbourhood size on inferred trace and tangent and curvature fields.

,Neighb-ourhood size and maximum curvature are not totally independent. In%
general, the minimum radius of curvature scales with neighbourhood size. just as the
radius of curvature limits of the curvature classes (assuming a fixed number of curvature
classes). As wil! be seen in the next chapter, the extent of the neiéhbohrhood is defined in
such a way that all circles\tangent i:o the center of the neighbourhood have equal arc length
within the neighbourhood. This is one solution to avoiding the problem of preference for

—
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4.6 Lateral maxima

certain curvature classes over others. Thus. the minimum radius of curvature must scale
with neighbourhood size. Another approach to the curvature preference probleh would be
to adjust the co-circularity coefficients to offset the.eﬂ‘,ects of variable intra-neighbourhoéd
arc lengths. Then, a Iawrge neighbourhood size could be daosen while maintaining a low
minimum radius of curvature, perhaps at the cost of increasing the number of cuArvature
classes to cover the extended range more effectively. Thi§ solution was not developed due

to the high complexity cost of in?:r;a;ng the number of curvature classes.

-

4.6 Lateral maxima

In this Section, we address the problem of inferring the trate of a curve from the -

. certainties associated with the tangents.during our procedure. The objective is to extract a

pixel-wide region about a curve. The method is based on comparisons between certainties

in a small neighbourhood, with selectiofvof the tangents with highest certainty, i.e. the

L

lateral maxima. /

4.6.1 Techniques for extracting lateral maxima

“

) The rationale for lateral maximum selection is the observation that the sup-
port function exhibits a characteﬂstlc maximum at the precise location of a curve. The

magmtude of the support functlon decreases gradually on either side of this locatlon

Lateral maximum selection is, in principle,-a S|mple technique, but its imple-

mentatnon on a discrete grid requires careful consideration. The most obvnous problem

. is that. on an orthogonal grld only tangents with orientation parallel to a grid axis have

{ateral nelghbours with whlch to compare. For other orientations, interpolated values for

lateral neighbours must be used, rather than the neighbour Elosest to the ideal position. A
straightforward linear interpolation based on a plane fitted to the three nearest neighbours

is quite sufficient. A téngent A at (z,y) is therefore a lateral maximum if its certainty

L

is maximal among all tangents in the 3 by 3 neighbourhood in position-orientation space.

' 2
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4.6 Lateraj maxima

et

Letting m;(A) denote the predicate variable for a lateral maximum for orientation A at node —~

1. we have
1, iff p,(A) > py()N). ¥ € {A -1,\,A 1}, and, -
_ 1 p(A) > pr(N). YA = {X -1, A.A+ 1}, and -
() = ) > B ). VY € (A - LA+ 1) (4.4
™ 0, »otherwise; 8

where pl,(/\’)faf’uld pr(*') denote the certainties of the left and right. or interpolated left and

right certainties for tangent X',

-~

As an alternative ta interpolated certdinties. one could also perform a strict

- comparison against a set of neighbouring certainties determined by the orientation of the 8 .
certainty under test. Comparison sets can be defined in such a way that the selection
process is stable. More formally,

: ! ! ,_ T : k.
m(\) = {1, iff p,(4) >py(X). VN € (A=1,X X +1}. vj € N (4.15)
0, otherwise;

where the neighbour set N f is a predefined set-depending on the local estimated orientation

A and estimgted curvature k.

-

The lateral maxnmum property of neighbouring tangents can be used as an ad-
dltlonal constramt in the support function. Since only those tangents in the neighbourhood
_that are lateral maxlm; are compatible with a curve interpretation (observe, that the ini-
tial convolutions drop off with lateral displacement from the curve), the support function
* should be—correspon&ingly restricted. Thus, we obtain a new expression for the support of
a tangent: ' |

5:(\) = max Z }: K (A N) b, (,\') mi(N). s (4.16)
1-1 M=t -
The net effect of this constraint is to further narrow the region near curves where tangents

receive high support. ‘ o
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. Chapter 5 . Inferring tange‘nt‘ﬁelds by m'aximizing support

N t

N

Since the expression (4.16) for the support of a tangenr should be maximized

at each position, a natural choice for a global functional is the average local support

)
- ¢ n

A(p) =Y & (p () (5.1)

K 1=1

. Qualitatively, the p;()) indicate which.tangents and positions are chosen, and the s, ()

indicate how mutually consistent they are-thrdugh the quantized geometrical constructs
just developed. That is, the s;(}) codes the local model far the curve in.the neighbourhood
of tangent A it node 1. In particul'.'ar as the positional quantization Ai -, 0 orientation
quantlzatlon AX — 0. and the curvature classes approach the actual curvature. s,()\) —1

for aII tangents along the (smooth) curve, and s;(A) — 0 elsewhere. : . ,

Relaxatlon labelling is a procedure for maximizing expressions such as (5.1)
[H ummel and Zucker, 1983]. and in the followmg Section, we review the relaxatlon labelling

procedure and tailor it to this application.

5.1" Overview of relaxation labelling’

I4 . .

. } - . . . o
Relaxation labelling is an iterative procedure applied over a network of nodes.

Assoclated wnth each node is a set of labels, and associated with each label is a measure

of conﬁdence. or certainty. Let there.be n nodes and. for the sake of SlmpllClty a upique

set of m lab}iat each node.: Further, let p;(2) denote the confidence of label A at node’

’
o
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52 The relaxation graph

. The values of the p,(}) are restr[cted to- the mterval {0.1]. and are subject to the added
constraint that at each node i, ' ‘
Zp,(,\)=1 fori=1,..,n. ., . (52

in vector notation. this constramt can be written as p, 1=1, where 1 is the m-drmensronal

vector of 1's (1,1,...,1). The degree of compatibility between a label and its nerghbour- .
hood can be measured by what Is known as the Iabel s support. which is a function of
other label certainties in the nerghbourhood and thear compatrbrhty (parr—wrse) wrth the
label being supported. The constraints between labels are represented by a-matrix of com-
patibilities, r,-j(/\, A'), which serve to embody the problem-dependent knowledge. ln this

notation. r,;(X, ') denotes the compatibility between labef A’ associated with node j and

‘label A associated with node i. We use the following expression for the supports, (A) of \

| .8 | .,
) 8,(A~=ZZ zj(A ’\ p]()‘) MR " ) (53) '

=1 x/=1

label A at\node i

i . .
Relaxation labelling is the process of achieving consistency. Hummel and Zucker

[Hummel and Zucker 1983] defined consrstency in variational terms; they "also_proved

_that, for éymmetnc compatlbrlrty coefficients, consrstent states of the relaxation. network,

maximized functionals of the form A(p) in (5.1). Such maxima are achieved iteratively:
{ .

begrnnmg wrth an lmtral labelling {pl (A)} the iteration .
< .
) = £(0! (A):s"(x)) S 1)

continues untrl convergence "Hummel and Zucker [Hummel and Zucker, 1983] develop a

© general scheme for the iteration (5.4) utrlrzmg the Mohammed [Mohammed, Hummel and

K 4

0

- Zucker. 1983] ptojection operator. However the effi cnenr:y of thrs scheme can be improved

substantrally for this. apphcatron see [Parent and Zucker, 1985] and Appendrx A

!

5.2 The relax’ation g'raph.
The original approach [Zucker. Hunimel and Rosenfeld. 1977] to representing
cur\rfe,s'irr a telaxation graph used m orientations of tangents to a curve at each.node, plus

L]
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5.2, The relaxation graph

[

the no-line fabel. with certainties subject to condition
m+-1° . . - .
, Y m(\) =1, fori=1,...,n : (5.5)
<7 : ) A=1. .

o

According to ‘this convention. a labelling is consistent -and certain only if at most one
- orientation is chosen by the relaxation process. However, curve iintersections and corners
Y 1

tequire that ‘rhdltible orientations be chosen at certain nodes.

H

Our ‘solution is to have not one-but many superimposed relaxation graphs, one
' for each label A = 1,..s,m. We shall refer to this collection as a relaxation hyper-graph.
Each node of graph A requires 2 labels: ) and no-line. Interactions are permitted between

the graphs through the compatibility coefficients.

- : Note that the certainty vector at each node of each ‘graph consists of two
co‘mponents 'with unit sum. Clearly, notl‘iﬁg is gainedyby representing both components
of the vector explicitly. one of the cowrﬁponents being simply the complement of the other.

Similar savings can be achieved in the compatibility matrix by eliminating the no-/ine label

-

\

completely. - -

- Co Consider the contribution of node j to the support of the two fabelS (0 and 1)

) at node i. . Letting ryq = ri;(1,1). ¢ --’é‘?ﬁ(l,O).‘ etc.. and p'j = p;(1). we obtain, from

(5'3)' . ' . ./‘y{ . | \.‘\ - .
| P . ) ”\ ) u/f'" ’ \ ’ . o . ‘
! - > ',.("/ A . - ( ' ‘ ( . )
1 - \ o s5i(1) =ry9(1 - p,) :f- t11P, —_ (5.6)
A R SR , | il \ )
T a0 =reolt-py) +rogpy o - (BT

: Assu"l"i"g-that f00 =.T11- fo1 = r10 = "'11‘- the above are red;chd to . - .
’ . sll)=2m (PJ' ""2’) L. (5.8)
- - - 8(0) = —3;:(1),: o , . . 59)

- where both expressjohs are void of terms related to label 0. Hence, for this special case. ‘

@ o (.and mahy similar ones where all compatibility coefficients are functions of a single one).

PR Y
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5.3 Complete relaxation model

it is: possnble to reduce the complexnty of the relaxation graph and the compatibility matrix.

' N

.The assumptions about the compatlblllty coefFicients are not unreasonable when Iabel 0

is interpreted as no-line. This result shows that if certain labels are left out and only

the con-;patibility coefficients between the remaining labels are specified. the system is
equnvalent to another one where all the labels and compatlbrllty coeﬂ‘lcrents are specrfred
Thus truncation of the graph and compatibility matrix does not vuolate rglaxatlon labelhng '

theory. The result is extensible to systems of more than two Iabels.

i
1

5.3° Complete relaxation model

" To summarize, a sketch of the complete relaxation model as it will be used in
the trace inference process is as follows:

»
r

. _Hyper-graph: m graphs of n nodes, one for each orientation, The labels represent
. . . . . ! ", -— l

tangents with onﬂtkatlons quantlzed' to multiples of €= m The

-"no-line” label is not explicitly represented. The m labels at node 1

have independent certainties p;(A) € [0,1].

-
’ 4

L4 -

‘ Support function;, the support s,(A) of label X at node i is a normahzed function of the
. ‘ sum of the products of neighbouring label certamtles by appropriately
chosen compatlblllty coefficients, as in Eq. (4‘16), ‘ '
Update formula: each p;(A) is updated as though in a two-label graph. wuth the other
" label interpreted as no-lme and havmg complementary support e =
=8 (A). p(A)is upda_teo in such a way as to coriverge asymptotically

to 1 when excited. and to 0 when inhibited (see Appgnaix A).
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l&igure 5.1 An equi-length neighbourkiood for the vertical orientation with 7 curva-
- ture classes. All arcs of circle. vertically tangent to the center of the.peighbourhood

‘have the same length. \an (= 1/kmgqz) is the minimum radius, of curvature. .
" which limits the extent of the necghbourhood according to the maxlmum curvature
constraint.

5.4 Nbrma"lization details

L4 -
'

Two details remain, but they are central to successful implementations. First,
the su}port functions must be normalized to account for arc-length effects, and secondly
they have to be mapped into a common interval so that values are comparable across

positions. We discuss each of these normalizations in turn.

5.4.1 -Exteént of neighbourhood support

The unit tangent support function has so -far been described in terms of co-
cucularlty coefficients, but nothing has been said about the shape or extent of the neigh-

bourhood over which tangents interact. We could assume a circular neighbourhood shape.

detérmined by the neighbourhood diameter and the maximum curvature constraint. How-

_ ever, this ¢ircular shape is not ideal because arcs of different curvature have distinét intra-

neighbourhood lengths, implying a bias of the support function towards longer arcs.
> B
In order to make the support of a tangent to a curve mdependent of the particular

+

_curvature. the extent of the neighbourhood is adjusted $0 that arcs of circles with all

:curvatures have the same intra-neighbourhood length.

e, N

Letting R denqte the maximum arc length distance of interaction between unit

¥ s
. v . 35
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tangents. thecurve describing the boundary of the equi-length region is given by .

p=R;’sinc(£——l€i)- for —n<0<m . “ -. (5.10)

in polar coordmate form. Flgure 5.1 depicts such a nelghbourhood with the minimum

.radlus of curvature ryun = 1/K.maz constraint applied. The neighbourhood of node ¢

" of curvature p,;(A) with , -
n ’ | . . DE&P&(ZPIJ(’\),F(Q% tj)l (5.11)

is. thus composed of all unit tangents whose estimated arc length distance from (z;,y,)

ﬁij-(k) < R. The estimated arc length distance can be obtained from the estimated radius
{

Letiing E,;(3) denote the nelghbourhood extent' predicate, we have

: 1, ifD, (N <R . .
E;;(A) =4 2V = 51
J (3) {O, otherwise. , (5:12)

t

5:4.2 Intra-pixel length correction

Next. we consider. the ‘intra-pixel length correction to the compatlbnllty coeffi-
cients. This is necessary in order.to insure that the process is lSOtl’OplC A straight line

of a given length intersects a different number of pixels of a dtgntal grid_depending on its

~ orientation. For example, diagonal lines intersect fewer pixels than lines of the same length

at any other orientation, whilé the lines parallel to a grid axis intexsect the most. Unless a

compensatlon is introduced. the process wnll therefore ‘prefer” forthogonal orlentatlons to

dlagonal ones. A snmple normalization coefficient is gwen by

vz - e (5.13)

’ e ——————————
) = 2cosw,\,

T

where w. N is the angular dlfference between f,+ and the nearest gnd axis.

giving

With these two con%ensatipns, we obtain the fipal expression for the compat-

ibility coefficients by multiplying the expression of Equation (4.13) by E,,(X) and [(X), )

¢ )
h

B ) = 0, (WY) B KEQN) S LN 1), (5

where ¢;;(), X) is the co-cnrculanty coefficient, K° k (X, X'} is the curvature class partitioning

function, and C‘!;.’" (A, M) is the curvature consistency predicate.
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- ' . ' 5.4.3 Normalization of the support function

- . The support function obtained previously is

o

si(A) ; max Z Z rE (3, ) p, (V) mj(X). (5.15)

v . pr Py

but its range must be normalized before use. v

o For a given neighbourhood_ radius, one can compute the integral of the local

) ‘compatibility coefficients given t?at a single curve (assume a straight line) traverses the
‘entire nelghbourhood in the proper orientation. Denote this mtegral by Smaz. This sum
determmes the maximum support that a label can obtain from its neighbourhood and the

- " sum varies according, to the radius of the neighbourhood. This is the maximum support

that can be achieved.

[

. . The minimum acceptable support for a label depends both on geometry and
noise. First, the process should be stable near the end of a genuine (non-nonse) curve; that
is.the curve should neither grow nor shrink during relaxation. Second. a threshold can be
" established according to the response of the initial operatdr convolutions in the presence
of pure noise. Now. consuder the unit tangent at the end of a low contrast line. The
operator response, which is sensitive to contrast, wnII be rather low at that point, while
the support for the tangent would be approximately smqz/2 (the curve traverses only half
the neighbourhood). times the average certainty of the tangents on the curve. Assuming a

'minimum contrast cgitérion. Prun. we fix the minimum acceptable support of a label as

Smin = M{;ﬂ'ﬁ ' ) (5.16)

[y

With this choice of smin. relative stability at end-fines is insured for a wide
range of initial contrasts. If. on the other hand, the injtial contrast of a curve is below the

' @ * minimum. then that curve will gradually. shorten until it ‘disappears.

i3
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The label support is normalized by mapping the interval [Smin,Smaz] linearly
into_the interval [0,1]. The required normalized support, S,()]. is therefore .
A) - - .
/ S,()) = :'(_)__sﬂl‘__ , (5.17)
mag ~ Srmn .
/
It can readily be seen that this expression is equal to 1 when the raw support s, (}) equals

the méxirgum support, Smaz. While the numerator vanishes if the raw support equals the

_ minimum acceptable support, syn. Of course, anyt'hing less for the raw support leads to a

negative normalized support. The normalization of the support occurs before the projection
of the support vector at a node onto the positive quadrant; see Ap\pendix A

. L4

_This completes the discussion of the technical issues related to the implemen-
tation of a discrete trace inference process within a relaxation labelling, computational
framework. We turn our attention now to the resuits of the trace inference process over

¢

°

various kinds of images. ‘
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—__in the second part of this Chapter.

6.1 ' Artificial images

o

I

Chapter 6 \ ' Experiments

~

In discussing the experiments 6erfo medhwith the trace inference process de-
scribed in the preceding Chapters. we will go from simple to complex. Thus. in the first
part of this Chapter, we discuss experiments based on artificial images designed to evaluate
specific features of the process, such as sensitivity to curvature, robustness in the pres-
ence of noise, and the effect of neighbourhood size on the smoothness of the inferred t;ace.
A{\t the same time, the trace inference procéss is compared to other procedures to extract
curves from images. in the presence of large amounts of noise. Further experiments based

on real images. such as satellite and bio-medical imagery. and fingerprints, are discussed

-

¥

6.1.1 Sensitivity to curvature

The first experiment is designed to evaluate sensitivity to curvature. Referring to

[

Figure 6.1, the image is composed of 4 concentric circles whose radii were chosen to match
individual curvature classes. The following parameters are used for the‘initial operators

(see Eq. (3.1) for the parameterized form of the operator):

. 4 .
! .

oy =114 0)=18 03=228 0y=36 . :
B=1266 C =05 T (6.1)
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—

1 nearly straight

~ low curvature

» medium curvature
» high curvature

Figure 6.1 Trace inference process on concentric circles after 2 iterations. The

*  resulting tangent field (short segments) and curvature field (arrows pointing to
center of curvature) are superimposed on the image (filled pixels) The assigned
tangent and curvature fields are perfect everywhere except at a few locations were
quantization affects the local structure of the curve more severely These errors
would disappear using a larger neighbourhood size

A neighbourhood diameter of 15 pixels 1s used. with 7 curvature classes determined by the

—

following radius limits (in pixels):

radius hmits:  2.7,4.2,7.2,21.0 (6.2)

Thescircles have the following radii:

radii of circles: 3.5,6.8,15.0,23.0 - (6.3)

The result displayed in FRigure 6.1 is after 2 iterations, with step size 1, and using a
[ ]

supporting threshold s = 0.5. In these displays. tangents are indicated by short line

ments, and cyrfatures by vectors pointing toward the center of the osculating circle.

The magnitude of the curvature vector is proportional to the radius of curvature,

N 5

6.1.2 Sehsitivity to noise N

The next experiment is designed to evaluate the effect of noise on the trace
inference process. The image consists of a single hand-drawn curve on a uniform back-

ground, featuring a sharp orientation discontinuity and varying curvature. The experiment

s —
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6.1 Artificial images

is perform'ed independently for two neighbourhood sizes, 15 and 25 pixels respectiveiy.-and
for each size there are 5 noise levels: S/N = oo, 1.8, 0.9, 0.6, and 0.45. The noise added
to the image has uniform distribution U (0, A). where A is the peak-to-peak amplitude of

i
the noise. Given that the ‘curve has constant intensity I. over a background of constant

intensity I, the S/N ratio is obtained by 'k\&\

S/N = 'ﬁ—;—{ﬂ , (6.4),

Both experiments use 7 curvature classes. and the radius limits for each size

1

are as follows: -

size 15 radius limits: 2.7,4.2, 7.2,21.0 ¢
size 25 radius limits: 4.5,7.0,12.0,35.0 (6.5)

— -

The initial convolutions are with operators whose size is adjusted to the respective neigh-
bourhood sizes. For the smaller neighbourhbod size; the parameters are those in (6.1), and

for the larger one, the parameters are as follows:

09=19 07=30 03=38 o0y=6.0 /-
’ B=1266 C=05 . ’ (6.6)

The results displayed in Figure 6.2 are after 2 iterations, using’ d supporting threshold
! smin = 0.5. The performance of the trace inference. process in the presence of noise is

very satisfactory. especially for the larger neighbourhood size. "

To emphasize these results. a comparison between various other methods for

selecting curves is displayed in Figure 6.3. These are based on the same curve as in Figure -

—

6.2, at S/N = 0.45, the noisiest case.

[y

In (a). an optimalintensity threshold is chosen, interactively, so that most of
the curve points are selected, but*this results in too many non-curve points being selected

¥ . I " y . . .
at the same time. Significant additional processing would be required to remove these noise

* points.

R4

N T a1



6.1 Artificial images

Neighbourhood size 2!:>

Flgure 6.2 Trace inference on an image conmstmg of a single curve, usmg two
neighbourhood sizes. and with the addition of various amounts of noise; to obtain
S/ N ratios of oo, 1.8.0.9 on this page and ratios 0.6 and 0.45 on the following page.
After two iterations. only those tangents with certainties-above 0.5 are displayed
The smaller neighbourhodd size results in fairly stable inference down to S /N =0.9,
while the larger neighbourhood size remains quite stablé for S/N down to 0 45,

- where the.curve is nearly smperceptlble at close range.

o

size of 25. as for the large neighbourhood of Figure 6.2. This result is in fact the

iteration of the trace inference process.'and hence resembles a process of selecting

)

oth.

the

maximal response at each-position. Again, to obtain all curve points, a low threshold must

1 3 .~

42
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In (b). a threshold is applied to the lateral maxima based on an initial operator

»
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- | Neighbourhood size "15 , Neighbourhood size 25 -

0 T . ‘ ‘ X

. 0.45

Figure 6.2 (,cc;ntinued) Noise sensitivity experiment for $/N = 0.6 and 0.45.

' \ be chosen'., resulting in too many non-curve points, .and significant-post=processing would

i

" be required. ‘ ) ’ \ : i

In (c). the result disptayed comes from an earlier attempt to formulate an infer-
ence process [Zucker and Parent, 1984] in which consistency is achieved through compari-
son of .expected versus observed operator responses. This method is corner-sensitive. and

2

sllghtly curvature-sensitive, -and thus, represents an’ lmprovement over an earlier method
usmg only tangent mfo;matlon [Zucker Hummel and Rosenfeld 1977]. the result of which
is'not displayed here. The effective _nelghbourhood diameter for this experiment is 3. Thus,
.this proce;iure has orﬂy slight curvature sensitivity, and does not have a built-in noise re-
moval capability for short low-contrast segments as in the traég inference process. It is no
su\rpri_se then, that this ;nethod also degrade‘s rapidly in the presence of noise.

ez

‘ Flnally in (d). the result for the Iargest neighbourhood at S/N = 0.45 from
o 8 F|gure 6.2 is reproduced Comparison with the rest of the figures clearly indicates the

t
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() | - @ -

Figure 6.3 A comparison of different methods for detecting curves (a) intensities *
thresholded to intlude most of the curve points, resulting in many non-curve points
being selected. (b) thresholded lateral maxima, equivalent to the D iteration of
the trace inference protess; again, o lya/lbv? threshold allows all curve points to
be selected. at the cost of including some non-curve “points; (c) previous Parent
and ‘Zucker method. based on comparison of expected versus observed operator
responses, this method is not curvature-based, and depends only on the immediate
3 by 3 neighbourhood for support. hence the noise sensitivity.. (d) trace infefence

-process. same as previous Figure for neighbourhood size 25 and S/N = 0.45. It
clearly illustrates the advantage of using curvature information

importance of curvature information.
¥ s

6.1.3 Neighbour-héod size and smoothness - )

! . .
The experiment designed to evaluate the effect of neighbourhood size on smooth-

o . . L . c,
ness is performed on a single curve, using three neighbourhood sizes. The curve is essen-
tially a straight line, with a gaussian-like bump in its center being the region of interest for

this experiment. Three neighbourhood diameters were used:
size 15 radius limits: 2.7, 4.2, .7.2,21.0 -
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size 25 radius limits: 45, 7.0,12.0,35.0
O ' " .. size 45 radius limits: 8.1,12.6,21.6,63.0 C(67).

1

and each neighbourhood size was matched with initial convolution operators of correspond-

. ing size: -~ ‘ )
' Size 15: '01\ =114 oy = 1..8 03 =2.28 oy =36
B=126 C=05 ‘ '
Size25: -+ o03=19 03=30 0;=38 0, =60 S
- ‘ ‘ B=1266 C=05 ¥
Size 45: 0y=38 09=60 03=76 o,=120 '

B=126 C=05 » (6.8)

\

The results are displayed in Figure 6.4. The progression -of neighbourhood size
is from the smallest in (a) to the largest in (c). While the bump is fully represented in (a).

" with position, orientation and curvature, there is only a slight variation in position in (cj.
and neither orientation nor curvature variation. Thus, the inferred trace is smoother when
using a larger neighbourhood. p N ,

Note ihat this experiment is possible only because fhe macro-structure of the
curve used in this experiment is that of a straight line, hence that its curvature is within -

o certain limits. It is always possible to utilize large nreighbourﬁoods \;\lhen the macro-structure

of the curves in an image ihave curvatures within the maximum curvature constraint implied
by the neighbourhood size (as discussed in Section 4.5)..and it may be interesting to do

| . SO, as in multiple-level processing. However. if the image consists of curves with long High-

* curvature segments, the effect of utilizing a larger neighbourhood. or of imposing a smaller
maximum curvature constraint, would be to filter out the higher curvature components
of the curves. This happens because the tangent support along these segments remains

, small for any given curvature class, because the curves will tend to traverse many curvature

. 6 ‘ classes rwithiﬁ such a large neighbourhood. ' T

i
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S ®)

. | ©

" Figure 6.4 Effect of varying neighbourhood size on the smoothness of the inferred
trace of a curve. The image is a single curve, essentially straight but with a gaussian-
like bump. Three neighbourhood sizes are used. going from the smallest in (a) to
the largest in (c). In (a), the diameter of the neighbourhood is 15, and the bump,,
is well represented in the result, |ts_ curvature being within the maximum curvature
constraint, In (b). the diameter is 25, and already the bump is smoother than in -
(a). Finally, in (c). where the diameter of the neighbourhood is 45, the curvature
field . inferred is straight everywhere.’ and there is only a slight lateral displacement
of the trace where the bump is.



6.2 Natural images.

(a) S )

Figure 6.5 (a) a satellite image of a forest with logging roads, and (b) the result of
2 iterations of the trace inference process, using a neighbourhood size of 25, a step
“size of 1.0, and displayed at a confidenge threshold of 0.6 - The curvature vectors ar
= omitted for the sake of clarity ‘ .

. 6.2 Natural images

The precedmg ‘experiments on artuf:cual images sl;owed that the curvature m—

formatlon helped the trace inference process to find curves in controlled situations. The,

main interest of the procedure, however. I|es in its apphcatlon to finding curves in real im

" ages, such as satellite images, -bio-medical imagés, and fingerprints. In this Section, three

experiments based on such images are described.

6.2.1 Satellite image: logging roads in forest
The first natural i image experlment is based on a satellite i image of forest terrain

in which logging roads are visible as hght elongated streaks, on a shghtly darker back-

‘ground. The experiment is performed using a size 25 neighbourhood. with parameters for
the initial convolution and radius limits as defined in Eqs. (6.7) and (6.8) for Size 25. The

" inference process is run for two iterations, with a step size of 1.0.

’
7
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(a) _ (b)

Flgure 6.6 (a) an angtogram or radiograph of blood vessels -in the brain, and, {b)
the result after 2 iterations of the trace inference process, using a neighbourhood
‘size of 15. a step size of 1.0. and displayed at a confidence threshold of 0.5.

) The result displayed in Figure 6.5 is thresholded at a J:Onﬁdence level of 0.6.

'

© 6.2.2 Angiogram

. The second experiment takes a.bio-medical image as jts input, an angiogram.

ora radtograph of blood vessels in the brain. It is a good example of an image with many

, ‘Curves; all of which have varymg curvature with many curve crossmgs at various ang1es

‘s

The image is first convolved with operator parameters as given in Eq.' (6.1).

The neighbourhood size is 15. the number of iterations is 2 with a step size of 1.

.

-

Al tangents wnth a certainty of at least 0.5-are dlSpIayed in Figure 6.6, however

the curvature vectors are omitted for the sake of clarity.

coe

6.2.3: Fingerprint-

Thefinal experiment involves a fingerprint image. The neighbourhood size which

- 48




62 Natural images

(a) ' ‘ (b)

. Figure 6.7 (a) the image of a fingerprint, and (b) the result after 2 iterations of the
« trace inference process, using a neighbourhood size of 11, a step size of 1 0, and ‘
displayed at .3 confidence threshold of only 0 3, due to the extremely fow contrast

of the original image.

" was chosen,. 11 pixel$ in diameter. is smallef than in the other experiments. However, the

) initial convolutions were performed with the same operator as for Yoe angiogram experiment,

i.e. With parameters as in Eq. (6.1). '
Again, 2 ‘i’teratiq'ns of the process were used. The display threshold for the

tangents is set to 0.3, a’low value because the image itself had low contrast.
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Chapter 7 : _ Summary and Conclusions

_ Information about the exact sfructure of curves is lost when they are projected
into qua—ﬁtized imagés. Hence curve detection is an inferential process. utilizing both image
information and other constraints. We formulate the curve inference process-as two distinct
" stages. in which local information is first recovered so that it can guide the global stage.
In this thesis we concentrated on the recovery of local information, and demonstrated that

it could be accomplished both in- theory and in practice.

Images contain information not directly about curves, bﬁt rather about their
traces, or the set of quantized image positions through which the curve passes. But. -
. these traces af? not uniquely specified; they must be separaied from other image struc-
ture. Therefore the first stage of curve inference must include trace inference, and the

. development of an approach to this occupied most of this thesis.

.

Inherent in trace inference is a chicken;and-egg problem. If the functional form
of the curve were known. then the trace could simplyrbe calculated. But since it i§ not,
most of the effort went into developiné an estimation procedure sufficently pc;werful. to
provide a model for the curve in the neighborhood of each possible trace point.-The model
for curves included the tangent and curvature at each point, and it is this model that gunded
trace inference. The result was what we called-a tangent field, or a representation of the

trace, tangent, and curvatures suitably quantized.

Since ‘it is the high-frequency micro—styuc?(re of curves that is \Iést through

(=3



2
L

0 .

e LG
2"&.433‘:
¥ .
i

Summary and Conclusions

.- quantization, it is natural to employ smoothness constraints 'while estimating them. We
defive& such an estimation procedure by examining how discretizatioﬁ and quantization
affect their differential-geometric definitions. The result was a functional with terms through
curv?ture variation which could be maximized to guide trace inference. It appears that
functionals through curvature variation are necessary to properly separate the influences of
nearb}' curves, yet are sufficient to plaée discontinuities. A

The computation of curvatyre is notoriously sensitive to noise. To avoid these
problems. we introduced an alternate method for coarsely estimating it. based on average

i
vajues of tangent estimates within spatial neighbourhoods called curvature classes.

*

Computing the tangent field was the overall goal of the first stage of curve
inference. and we demonstrated that curvature and curvature -consistency (or limits on
curvature variation) can be utilized advantageously. The information in the tangent field

certainly provides a rich, stable foundation for global curve inference.

—
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A. Radiaf Projection: An }Eﬁcieng_UpdaCe Rule for Relaxation Labelling

A. RadiaI‘Proje;:tion: An Efficient Update ‘Mg for Relaxatiqn

9' . Labelling

-~

I‘ . A1 Notation and terminology

| [

‘ " Let the relaxation graph consist of .n nodes. with m labels at each node. For
) ‘simplicity, we assume that each node has the same set of labels A={A | A =1,,..,m}.
o Let p;(A) denote the certainty of label A at node i, restricted to the interval [0,1]. and such

that the sum~of the certainties at any given node is

m . .
. . Y omi\) =1 fori=1;...,n (A1)
A=t 7 o

. R N
In vector notation, the certainty vector at ngde i is ;. and Eq. (A.1) can be expressed as

P, -1 =1, where 1 denotéy thé m-dimensional vector of 1's (1,1,...,1).

¢

) The support of label A at node ¢ is denoted s,(}). ,and the support vector at
node i is denoted 5;. The normalized support vector is obtained from 5; by scaling it by

1/(3; - 1); the sum of the components of the normalized support vector is 1, and it thus

satisfies canstraint (A.1). . . : .

o

Let -a superscript on a-vector denote the iteration number. Thus, 5 and §¥

denote respectively the certainty vector and the support vector of node 1 at iteration k.

© A labelling at node ¢ isnsafd toq be on the boundary of the labelling space if*
) ' - p;{A) = 0 for at least one value of A \Saturatig,n of node 1 occurs when p;(A\)} = 1
for same A; this condition is alos referred to as an unambiguous labelling of node i. If
VA0 < 1?,-{:\) <1, th;n ‘the labelling is said to be ambiguous:, a labelliné is perfectly
“ambiguous if VA, p;(A) =1/m. ‘ '

'
PN

. A.2 . Consistent Iabellin?s ’ : LN
;e L Definition.. A labelling is consistent if and }mly if the certainty vector matches the nor-
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* malized support ‘vector at every node. that is.

81
51
. -~ + . ’
AN

. To find a consistent labelling from an inconsistent one, one possibility would

p; = fori::.l»...,n.“ - - (A2)
" ’ / :.

be to assign the normalized support vector‘\ directly to the certainty vestor of the following

iteration, with T
. % ’
D AR . (A.3)

-

However, since the support vector s, may vary considerably from one labelling assignment
to another. it is more cautious to take a series of small steps, towards the support vector

instead. Let i)'{‘ denote the difference between the normalized support vector and the
W

P Sk S

0 = 22— —pF . © (A.4)

certainty vector at iteration k:

.
A consistent labelling i§ obtained by taking. at each iteration k. a step in the same direction
as 171’5. Note that vector z‘;’f lies in a plane tangent to constraint (A.1) on the labelling
assignment. It seems natural therefore to obtain an update vector by projectinimort

vector 5:‘ onto this tangent plane, which is indeed the standard solution to s {ems
[Faugeras and Berthod, 1979; Mohammed. Hummel and Zucker, 1983). Care must be
taken, however, to avoid projecting 3% in such a way that the resulting updated labelling

no longer satisfies the constraint
0<p;(\)<1 fori=1,...,n,A=1,...,m. (A.5)
r4

The) case of an initial assignment inside the boundary is trivial and requires only normal
projection onto the tangent plane, with the proviso-that the update vector may have to be
scaled to avoid violating the constralnt On the other hand when the initial assignment
is on the boundary—when at least one of the p(A) is 0—sca|ing is not sufficient, and a
more sophisticate;i projection scheme must be utilized to find a proper direction for the
update vector [Mohammed, Hummel and Zucker. 1983]. To date, all proposed projection
methods suffer from this basic drawback-—the added complexity incurred when boundaries

are encountered—which makes them computationally expensive.
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pi(1)

p:i(2) : @
Figure A.1 Forthe case of a node with two labels: an updatéd labelling assignment
is obtained by scaling i" + 5* to satisfy the constraint p; 1=1. .

We propose a method that avoids this problem entirely by restricting support

vectors to the posmve quadrant, and by using radjal projection instead of normal projection.

] Thus if the initial labelling is stnctly within (not on the boundary of) the positive quadrant,

then all updated labellings will also be strictly within the positive quadrant, hence avotdlng
any complex computations at, the boundary. This property holds although the labelling may
in fact be converging towards some boundary or intersection of boundaries of the labelling

space.
' -

-

A.3 Radjal projection ypdate rule . ’ \
@

-The update rule that we propose does not use normal projectiori onto the tangent

* plane. Instead. it uses a radial projection with ‘the origin as center. Thus. an updated

“labelling assignment is obtained simply with

4 5* 5k 4 5k
o+l i»"‘+~k - B fkst fori=1,...,n. (A.6)
. hO (P +3 ) -1 1+sz 1 .

Referring to Figure A.1, it can be seen that (A.6) amounts merely to scaling the sum of

the support and cRrtainty vectors.'iif-c + S'f. to satisfy the assignment constraint (A.1).

What we require is that the update vector ﬁ"-‘ = i)"‘“ - ;'J‘f be parallel to the

vector v of Equation (A.4). We have (dropping the subscript i momentarily)

po PHE - -
. ‘ 1+ ‘ . .'/ -' .
\ : . 57
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~ (¥ 1)p :
‘ 1+s"c 1
’ RN R
1+ 51 .3* 1 s
\ gk F
BrER. (s* 1 ”)
=a£°6'£‘ fori=1,...,n. (A7) _.

Thus, @ |s a scalar muitiple of 7! v . and consequently, these two vectors ate parallel u is
therefore in the correct direction. The scalar a , under the conditions defined in the next

Section, satisfies the condition 0 <. a <t . ) -

A.3.1 Avoiding projection outside {abelling space

The update rule ,(A.G) produces valid labelling assignments as long as the vector
sum p1 +3 “" lies in the positive quadrant. This is always the case when the support vector

ntself points to that quadrant, i.e. when all of its components are non- negatlve lf such is

_not the case, however, the only way to insure correctness is to first project (see Figure A.2)

the support vector onto the boundary of the positive quadrant with the formula

[y

3 = min s,(A) . (A.8)
A=1m .
C oy — J si(A) -5 i 3. <0 .
()= {31(1\) otherwise. ('.‘\39)

In vector notation, 5’"" = 5{‘ + |3,|1. when 3; < 0. After this transformation,

all components of the support vector are either positive or 0. It follows that labelling

“assignments updated using é’;""with (A.6) always lie in the valid labelling space.

It is interesting to note that the normal projections ‘onto the tangeht plane of

" & and é‘{" coincide. Thus. as far as the standard projection methods are concerned. 5%

1

and 3% are strictly equivalent.
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A. Radial Projection: An Efﬁcsent Update Rule for Relaxatlon Labelling
Dy (1)

‘ 7i(2) -
-+ Figure A.2Z When the vector sum fi" 'k lies outside the positive quadrant, the.
vector 3 4" is first projected onto the boundary of the positive quadrant ( k) Thus,

]

- "k + 32k s guaranteed to lie in the positive quadrant, 3 ":" is obtained from “"’ by
subtractmg its most negatnve component from all its components. -

A.3.2° Convergence properties and preservation of order information

I

None of the components of the updated labelling assignment can actually be 0.
G - N _ -
unless the initial assignment contained null components as well. This follows because the
radial projection rule is such that successive labelling assignments converge asymptotically

towards a limiting value. The rate of convergence is determined by, the magnitude of the

This property is what distinguishes the radial projection method most from
tradltlonal prOJectlon methods. While the latter methods allow labellings to saturate at
unambngunty. the radial update rule does not, provided the initial labelling is everywhere
ambiguous. Moreover. in a hypothetical graph where many nodes in a small neighhourhood
received essentially unambiguous support, traditional updating would eventually saturate
all the nodes, regardless of the magnitude of the support vector at each node. In the event

that the outcome of the relaxation process is meant to be further processed by techniques

-

which rely on relative magnitudes of certainties in a small neighbo'urhood.‘s.turation would

be totally unwelcome.

Radial updating. on the other hand. produces a labelling structure that reflects

the relative magnitudes of the support vectors throughout the relaxation network Recall
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from Section A.3 that the update vector zI"

is equal to a constant times the difference
vector v . In the light of the saturation avoidance technique of the precedmg Section. we
are now in a position to determme the range of this constant. $ubstututmg 5’:" for st in

Equation (A.7), we obtain

i

But since all components of 5}"‘ are non-negative, by definition, it follows that the quaniit‘y
é;"‘ -1 is also non-negative. Conséquently. af is non-negative, strictly Ielss than -unity,
and is a monotonic incre_asiﬁg function of the magnitude of 5‘;". over all Stkﬁ‘in a constant
direction. Thus. given the same initial certainties, two nodes receiving supports/whiqh differ
only in magnitude will obtain distinct certainties. with the node receiving greater support

converging fastest towards its limit.

A.3.3 Comparison with previous rules

The radial pro;ectlon rule is identical in’ essence to the normal projection rule
employed in [Faugeras and Berthod, 1979] when the Iabellmg is made to converge towards
purely consistent labellings. The inconsistency term that is mmu{nzed in that method is
the norm Ilv |l Given the same support vector .s . and provided that all components of the
support vector are non-?egatwe. both their method and the radial projection rule converge
to the same result. The principal difference between the two methods lies in the handling

of the .case of projection outside the yalid labelling space.
1

The radial projection rule can also be related to the framework described in

+ [Hummel and Zucker. 1983]. In this method. Hummell and Zucker propose ‘a global func-

tional to maxlmlze which is effectively the dot product p p "" Note that the magmtude of
p varies wuth posutlon on the constraint p -1=1. Infact, the magnitude of p reaches a

maximum jn the corners of the constraint, i.e. for perfectly unambiguous labellmgs Thus,

"for constant 3% over the entire Iabellmg space, the functional will be maximized for the

1
unambiguous labelling corresponding to the maximal component of 5{‘. This explains the

built-in bias towards unambiguous labellings of their method.
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. o

(1) . ' ' , ) y

Al =1

: p:(2) . o ’
Figure A.3 If the constraint ||5;]| = 1 is substituted for the usual labelling con-
straint, the Hummel and Zucker framework converges to the same labelling as with

the radial projection rule, assuming that all components of 51.‘ are non-pegative.

. Moreover, if more than one component of ‘é'f is maximal, there is no unique

a

solution to the optimization problem as they have formulated it. In the extreme case where

all components of :s'f are equal, 1 = 1,...,n, the process terrﬁinates._ regardless of the
initial labelling assigrimeng. because the normal projection of the support vector onto the

tangent plane is the null vector.

Consider the following modification to the Hummel and Zuckér framework: if

the constraint (A.1) on local labels is changed to

m ' ‘ i N “ K
S m))2=1 fori=1,...,n; (A1)
A=1 ' :

‘then their method is virtually identical to the radial projection rulé. Referring to Figure A.3,

it can readily be seen that the constraint over which the global functional would then be ,

maximized is a hypersphere instead of a hyperplane. Because the magnitude of i)‘f is now

" constant over the entire labelling space. the aforementioned bias no longer takes effect.

And since their method maximizes a linear functional, the process is guaranteed to have a

unique solution over this non-linear convex set. In particular, when all components of .§'f

are positive, the solution is the same as with the radial projection rule.

.

A.3.4 Summary of radial projection method

- In summary, three steps are required to obtain updated labelling assignments
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, ’ using the radial projection method. Given the initial measures i;f confidence, p?(«\). and the
0 compatibility coefficients. r,'j(z\,,\’ ). the first step is accumulating the support evidence for
" each label: ' :
sk = 2:2: (A X) AN, . (A12.)
1=1A=1

The second step is a projection, if required, of the support vector at a node onto the

boundary of t_he positive quadrant, to avoid labelling outside the valid assignment space:

ko ky ‘ |
’JS{ - A:."-Iil?m 3 ()‘) . ('A.lz.b) .
k ~k . ~k .
»k S(A) - 8 if 38 < QO '
,\ B ; z‘ erw . .
ak {sf('\) otherwise. ) (4.12.¢) ‘

Finally, the third step is the radial projection method as such. It consists, for each node i,

N

of the scaled vector sum

T k+l Py .
1l . . Al12.d
P 1+5%.1 , ( )

‘ +» This rule amounts to takmg from the curnent assngnment a step in the direction
‘of the nearest consistent asstgnment. The magmtude of this 'step is governed by the

quantity
\ *k 1 -

R S Al2.e
RREPPIY (4.12.¢)

oL where it is known that 0 < ak < 1. The'rate of convergence a{‘ can be modified by scaling

the support vector. §¥ umformly throughout the netwark by any positive constant.
A4 Conclusion

In this Appendix.*we have shown that an efficient update mechanism for .con-
tinuous relaxation labelling is possible. The radial projection rule is formally related to
previous rules, but overcomes the complexity of update vector projection at thesboundaries

of the labelling space.

[ — ey "~

Th’e\réduc;ion in complexity is achieved by first restricting support vectors to

o the positive quadrant, and then using radial projection onto the constraint instead of normal

¥ ' . '
Kl
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projection. Among the features of the new update rule are smooth convérgence towards
& ~ o, - .

a solution, and preservation of crucial order information which is sometimes required for
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