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Abstract 

In the last years, brane world scenarios have been studied extensively, but most of these 

studies have been done in the case of five-dimensional spacetime. It is therefore of interest 

to investigate which of the particular features observed are proper to one extra dimension 

and which are generic to any number of dimensions. In this thesis, 1 present an overview 

of models and solutions to Einstein's equations for six-dimensional brane world scenarios. 

Solutions for a simple setup with cylindrically symmetric bulk centered about a three­

brane are derived and classified. There are two main kinds of topology: either solutions 

are compactified in a spherical topology, closed up by another three-brane, or they have a 

disc topology, which must be terminated by a four-brane. One of the particular features 

of codimension-two branes is demonstrated, namely that their tension, or vacuum energy, 

induces a deficit angle in the bulk. Solutions for different arrangements of codimension-one 

and codimension-two branes are also reviewed. Although the review focuses on topological 

and cosmological properties of the solutions, models using a field theoretical approach to 

the brane-world scenario, i.e. considering the brane as a topological defect arising from 

higher dimensional fields, are also considered. 
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Résumé 

Au cours des dernières années, les modèles d'univers branes ont fait l'objet de nom­

breuses études, la plupart d'entre elles ayant cependant été réalisées dans le contexte d'un 

espace-temps à cinq dimensions. Il est donc pertinent de se demander lesquelles des car­

actéristiques observées sont propres à ce nombre de dimensions et lesquelles s'appliquent 

de manière plus générale. Je présenterai dans ce mémoire un éventail de modèles et de so­

lutions aux équations d'Einstein pour des modèles d'univers branes dans un espace-temps 

à six dimensions. En particulier, les solutions pour un modèle simple consistant en un 

espace-temps à symétrie cylindrique centrée sur une "brane" à trois dimensions spatiales 

seront dérivées puis classifiées. Les solutions se divisent en deux catégories principales 

selon leur topologie: soit elles sont compactifiées de telle sorte qu'on obtienne une topolo­

gie sphérique terminée par une autre "brane" à trois dimensions, soit elles affichent la 

topologie d'un disque, bordée cette fois par une "brane" à quatre dimensions spatiales. 

Une propriété importante des "branes" à deux codimensions sera démontrée, soit le fait 

que leur tension introduise un angle déficitaire dans l'espace-temps. D'autres solutions 

pour des configurations différentes de "branes" seront aussi présentées. Malgré le fait 

que cette revue soit davantage centrée sur les propriétés topologiques et cosmologiques 

des différentes solutions, certains modèles abordant la question des champs à l'origine du 

défaut topologique qu'est la "brane" seront aussi examinés. 
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Chapter 1 

Introduction 

The standard model has accumulated successes, but there are still sorne unresolved prob­

lems. Two of the major ones are the hierarchy problem and the cosmological constant 

problem. The hierarchy problem refers to the huge difference between the electroweak 

scale and the Planck scale. It is usually assumed that the fundamental dynamic scale 

underlying gravit y is the Planck scale, 

(1.1 ) 

set by the observed value of Newton's constant. If so, one is faced with the problem of 

understanding the mechanism which stabilizes the very large hierarchy between this scale 

and the electroweak scale, mEW = 246 Gev. The cosmological constant problem is that of 

explaining why the observed vacuum energy is so small in comparison to the theoretical 

value. The net cosmological constant can be seen as the sum of apparently disparate 

contributions, including potential energies from scalar fields (that may change with time 
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as the universe passes through different phases) and zero-point fluctuations of each field 

theory degree of freedom, as well as a bare cosmological constant Ao. Unlike the last of 

these, in the first two cases we can make educated guesses at the magnitudes, which leads 

us to expect a contribution of order 

(1.2) 

On the other hand, cosmological observations imply 

(1.3) 

There is no obstacle to imagine that aU of the large and apparently unrelated contributions 

mentioned add together, with different signs, to produce a net cosmological constant as 

small as (1.3), other than the fact that it seems very unnatural. The ratio of (1.2) to (1.3) 

is the origin of the famous discrepancy of 120 orders of magnitude between the theoretical 

and observational values of the cosmological constant. But sinee energy density can be 

expressed as a mass scale to the fourth power, a more fair characterization of the problem 

would be 

M (iheory ) 1018 G V 
vac _ e t'V 1030 

M (obs) 10-3 eV . 
vac 

(1.4) 

Of course, this differenee of thirty orders of magnitude still constitutes a tough problem. 

A lot of attention has lately been devoted to the use of extra dimensions in trying to 

resolve these two problems, mostly because the solutions such models point towards offer 

simplicity. Originally, models considering spaee as multidimensional had been motivated 

by theories which incorporate gravit y in a reliable manner, namely string theory and its 
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derivatives. In fact, most of these theories need to be formulated in space-time of more 

than four dimensions to be consistent. The recent interest towards multi-dimensional 

scenarios has itself been brought up mainly by phenomenological studies, which by using 

simplified field theoretical models allow the consideration of various models, revealing a 

wide range of possibilities for how those long-standing problems of particle theory men­

tioned above might be solved. 

The framework of these studies is the brane world scenario, which consists in the 

ide a that we live on a hypersurface, a three-dimensional "brane", embedded in a larger 

dimensional warped spacetime bulk. A lot of effort has been invested in exploring such 

scenario in five-dimensional spacetime, giving rise to interesting possibilities for solving 

the hierarchy problem, but also to all sorts of unexpected features, like the modification of 

the Friedmann equation, or the requirement of negative tension branes. We already know 

that the latter does not arise in six dimensions, and so it is natural to wonder if the other 

observed features are artifacts of five-dimensional models, or if they are generic to any 

number of dimensions. That alone is a good reason for studying six-dimensional models, 

but there is more. Rubakov and Shaposhnikov [40] first proposed the idea of solving the 

cosmological constant problem using a six-dimensional model in 1983, and this hope is 

still one of the rationales for studying six-dimensional braneworlds. 

In this thesis will be presented a short review of possible solutions to Einstein's equa­

tion in a six dimension al bulk, with the standard model confined to a four-dimensional 

submanifold. This review could not have the pretension of being exhaustive. l rather 
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intended to describe and compare, with more or less details, the variety of models and 

solutions that l have encountered throughout my own search for six-dimensional cosmo­

logical solutions, either in the literature or working on it myself. Rather than remaining 

an eclectic ensemble of fruitless attempts to finding new solutions, the research that l have 

done could then be very helpful to someone eager to search in that direction or sim ply 

wanting to know more about it. The reader should keep in mind, however, that it was of 

course impossible to cover everything that has been done in six-dimension, and therefore 

a choice had to be made. 

Following the hnes of a more phenomenological approach, the accent will not be put 

here on the field theoretical properties of the solutions reviewed, but rather on the more 

general cosmological and topological properties of the models. This choice have been made 

in order to sim pl if y the discussion and therefore allow the consideration of many different 

models and make easier the comparison between those models. For details regarding a 

certain model or family of solutions, the reader may refer to the cited source. 

The organization of the thesis is as follows: The theoretical background will first be 

sketched in Chapter 2, mostly building up on the work that has been done in 5 dimensions. 

1 will then present, in Chapter 3, a general model of six-dimensional braneworld scenario, 

with a cylindrically symmetric bulk, centered on the codimension-two brane, or string, 

where the standard model particles are confined. Solutions to Einstein's equation for this 

configuration will then be classified according to their topology and other characteristics. 

Most of the results presented in this chapter can be found in [l1J. In Chapter 4, other 
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six-dimensional models and solutions from the literature will be described. l will finally 

conclude with a summary of the commonalities and differences amongst different solutions. 
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Chapter 2 

Theoretical Background: The Brane 

World Scenario 

2.1 The Kal uza-Klein Idea 

The investigation of higher dimensional theories can be traced back to the idea of Kaluza, 

later elaborated by Klein, that the appearance of electromagnetism may be viewed as an 

artifact produced by the existence of a five-dimensional spacetime that contains a version 

of general relativity. Long before the brane world scenario made its appearance, Kaluza 

considered in 1921 the case of a (4 + 1 )-dimensional spacetime. The symmetric metric 

tensor in 5 dimensions can be decomposed in terms of arbitrary 4 x 4 matrix 9{iv, vector 
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Af.' and scalar <p as 

(2.1) 

If we substitute this metric into the five-dimensional action of general relativity, 

(2.2) 

assuming that there is no dependence in the fifth dimension, the action can be rearranged 

into 

(2.3) 

where Ff.'V = (}f.' AV - (}V Af.'. In the last equation, 9 and Rare now the metric determinant 

and Ricci scalar calculated from the four-dimensional me tric gf.'V' and G corresponds to 

the usuai four-dimensional Newton's constant, in contrast with the quantities of equation 

(2.2): G(5) is the five-dimensional Newton's constant while g(5) and R(5) are derived from 

the full five-dimensionai metric g~r;J. The field Af.' have to be correctly normalized by 

removing the factor <p/167fG from the Ff.'V Ff.'v term in the rearranged action.1 The passage 

from equation (2.2) to (2.3) is merely a rearrangement, but the interpretation is that from 

a five-dimensional spacetime with general relativity, we can get ordinary four-dimensional 

general relativity, plus electromagnetism, plus a scalar field known as the dilaton. 

The physical significance of such extra dimensions is an important question in aH multi-

dimensional theories. If the extra dimensions are real, there has to be a mechanism by 

which they are hidden, so that the spacetime looks four-dimensional to us. In theories of 

1 More details on the calculations involved can be found in Chapter 13 of ref. [15]. 
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Kaluza-Klein type, the extra dimensions are assumed to be compactified: the spacetime 

is so highly curved that typical extent in the extra directions is of order the Planck 

length. That would explain why chunks of ordinary matter do not disappear entirely by 

a displacement in one of the new dimensions, and why these extra dimensions do not 

manifest themselves in everyday physics. In five dimensions, we would have a cylinder of 

a certain compactification radius (say R) on which the ordinary spacial dimensions are 

infini te , and the extra dimension runs from 0 to 21f R. If we consider the five-dimensional 

Klein-Gordon equation on this cylinder, it will give rise to a set of wave functions of a free 

massless particle, with extra-dimensional angular momentum eigenvalue n. The n = 0 

mode will correspond to an ordinary particle obeying the 4-dimensional Klein-Gordon 

equation. The other modes will carry energy of order 1/ R, and cannot be excited in 

low-energy processes. Thus, below the energy scale 1/ R, only n = 0 modes are relevant, 

and physics is effectively four-dimensional. But at energy E rv 1/ R, the extra dimension 

will start to show up. From a four-dimensional point of view, each Kaluza-Klein (KK) 

mode can be interpreted as a separate particle of mass m n = n / R, and in fact, every 

muitidimensionai field will correspond to a Kaluza-Klein tower of particles with increasing 

masses. Since the KK partners of ordinary particles have not been observed yet, the energy 

scaie must be at least in the few hundred Ge V range, so according to this scenario the 

size of the extra dimensions must be microscopie. 
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2.2 Large Extra Dimensions and the ADD ProposaI 

More recently, another kind of proposaI with extra dimensions aroused enthusiasm, be-

cause it opened up a new way to address the hierarchy problem: in this scenario, the 

fundamental dynamical scale of gravit y, 1v[, is not much lat'ger than the electroweak scale, 

mEW rv 1 TeV The way this is realized is by only allowing gravit y to propagate into 

the extra dimensions, the SM particles being trapped on a four-dimensional submanifold. 

Localization of matter on a four-dimensionai brane explains why low energy physics is 

effectively four-dimensional insofar as aH interactions except gravit y are concerned, while 

the fact that gravit y is diluted into the extra dimensions resolves the problem of why it is 

so weak compared to the other interactions. The fundamentai parameter of gravit y is not 

the four-dimensional Planck scale in this model; rather it is the multi-dimensional mass 

scale M, that enters the full multi-dimensional gravitational action, 

(2.4) 

where 

1 1 
G(D) = MD-2 - Md+2 (2.5) 

is the fundamental D-dimensional Newton's constant and d = D-4 is the number of extra 

dimensions. Here again the met rie is independent of the extra-dimensional coordinates, 

hence the effective four-dimension al gravitational action can be obtained by performing 

the trivial integration over the d extra dimensions. We obtain 
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where Vd rv Rd is the volume of extra dimensions (we assume that they have the same com-

pactification radius R, for simplicity). Comparing this with the ordinary four-dimensional 

gravitational action, 

(2.6) 

we obtain that the scale governing effective four-dimensional gravit y (the Planck mass) is 

given in terms of the fundamental scale by 

(2.7) 

up to a constant of order one. Hence it is possible to get a Planck mass which is much 

higher than the fundamental gravit y scale M, if the size of extra dimensions is large 

compared to the fundamentallength M-1 . In the original proposaI [1], N. Arkani-Hamed, 

s. Dimopoulos and G. Dvali (ADD) assume that M = mEW, taking the philosophy that 

mEW is the only fundamental short distance scale in nature, thus eliminating the hierarchy 

problem. Doing so, for the case of one extra dimension, d = 1, demanding that R be chosen 

to reproduce the observed Mpl yields R IV 1013 cm. This is experimentally excluded, since 

for distances sm aller than R, the gravitational potential should be, in this theory, that 

dictated by Gauss's law in D dimensions 

(2.8) 

For such a large R, it would imply deviations from Newtonian gravit y over solar system 

distances, so the case d = 1 is excluded. Now for distances much larger than R, the flux 

hnes between two test masses will not penetrate in the small extra dimensions, so the 
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gravitational potentiai felt will be the usuai 11r potential, 

(2.9) 

For the case d = 2, we obtain R t'V 0.1 - 1 mm, so that at scaies where gravit y has been 

tested, the large distance limit applies and we recover the usuai four-dimensional gravit y 

potential. However, the regime where full multi-dimensional potential applies is close 

enough that deviations from gravit y could be observed by new experiments. 

The major difference between this proposaI and Kaluza-Klein models is that the extra-

dimensions need not be microscopie. This is because the Standard Model physics is not 

averaged over the extra dimensions anymore, but localized on a brane. Only gravit y 

can propagate into the extra dimensions in this model, and gravit y has not been probed 

at distances smaller than a millimeter, so the extra dimensions can be that large. The 

Standard Model gauge forces, on the other hand, have been accurately measured at weak 

scale distances, and so the "slice" of spacetime to which they are confined must be very 

thin in the extra dimension, so that no deviation from their four-dimensional form could 

have been observed. Following the philosophy that mEW is the only short-distance scaIe 

in the theory, this thickness should be ,....., mË~ in the extra dimensions. Of course, a non-

trivial task is the explicit realization of this confinement. In [1], the authors show that 

trapping zero modes on a topological defect is one way to do it, but they stress that other 

mechanisms could be used, either in the context of field theory or of string theory, without 

affecting the key ideas and consequences of their proposaI. We defer the discussion about 

topological defects and trapping mechanisms to a subsequent section. We will sim ply say 

17 



here that for the localization of the Standard Model on the defect, there are different 

mechanisms for different spins, and generally a trapped mode arises from the coupling of 

the corresponding higher dimensional field with the vortex field (the field responsible for 

creating the defect). This issue requires a long and complicated discussion not particularly 

relevant for the present purpose, and so we refer the reader to more detailed treatments 

of this matter, for example in [1, 39]. 

To conclude this section, the ADD proposaI has brought new ways of thinking about 

the hierarchy problem. ADD showed that it was possible for the hierarchy between M pl 

and MEW to be entirely due to the geometry of the space. In their model, it is the 

large size of the extra dimension which creates this difference of scales. Rence the new 

hierarchy that has to be explained is that between the fundamental short-distance scale 

and the largeness of the extra dimensions. In the six-dimensional case, this corresponds 

to the hierarchy between the weak and the millimeter scales. This hierarchy is stable in 

the sense that small changes of parameters have small effects on the physics (so there is 

no fine tuning problem). 

2.3 Warped Extra Dimension and the RS Mechanism 

2.3.1 The Model 

In view of this new hierarchy problem, Randall and Sundrum (RS) proposed an alternative 

solution [37, 38]. In their model, an exponential hierarchy of mass scales arises without 
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the need for the extra dimensions to be large. This is because the space is not anymore 

the simple product of a four-dimension al spacetime with a d-dimensional compact space. 

Rather, the four-dimensional metric is multiplied by a "warp" factor which is a rapidly 

changing function of an additional dimension. In their model, Randall and Sundrum 

consider the case of one extra dimension. The full five-dimensional metric is 

(2.10) 

where k is a scale of order the Planck scale, xl1 are coordinat es for the familiar four dimen-

sions, while 0 :::; cjJ :::; 1f is the coordinate for an extra dimension, which is a finite interval 

whose size is set by rc. It is the exponential factor e-2krc<p that causes the exponential 

hierarchy of scale, by a mechanism which depends on the particular setup and will be 

explained shortly. 

This particular metric cornes about because, contrary to the ADD scenario, the effect 

of the brane(s) on the bulk gravitational metric is taken into account. In [1], the energy 

density of the brane itself, i.e. the gravitational field produced by the brane, was ignored. 

Randall and Sundrum showed that a gravitating brane in five-dimensional space can 

induce the interesting geometry characterized by the above metric. When considering 

distance scales much larger that the brane thickness, the gravitating brane can be seen 

as a delta-function source of gravity. Moreover, if we are interested in determining the 

metric in the ground state (in the absence of particle excitations), we can characterize the 

brane by only one parameter, the energy density per unit three-volume, or brane tension. 

We will denote this quantity by T. The five-dimensional action including the effect of a 
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brane is 

(2.11) 

where As is the cosmological constant in the bulk, G(S) is the fundamental five-dimensional 

Newton's constant and g(S) and R(S) are the metric determinant and Ricci scalar calculated 

from the full five-dimensional metric while g(4) is the determinant of the effective four-

dimension al metric. In [37], Randall and Sundrum consider a setup that has two branes, 

and work on the space SI / Z2. That is, the fifth coordinate </J is taken to be periodic and 

each point (x, </J) is identified with (x, -</J). In princip le , the range of </J is [-11",11"], so "le 

only need to solve for [0,11"] for the metric to be completely specified. The orbifold fixed 

points (the two boundaries of the space) at </J = 0 and </J = 11" are taken as the locations 

of the two 3-branes. Note that the presence of a second (gravitating) brane adds a term 

to the action, identical to the last term in equation (2.11), with the tension being that of 

the second brane now. The Einstein's equations for this action are given by 

where "le use the subscripts 0 and 11" to mean that these quantities are those measured on 

the branes located at </J = 0 and </J = 11", respectively. 

A solution to these equations that respects four-dimensional Poincaré invariance in 

the xl1 directions will take the form 

(2.13) 
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With this ansatz, the Einstein's equations reduce to 

(2.14a) 

(2.14b) 

Equation (2.14a) together with the requirement of symmetry 1 ---t -1 yield the solution 

(2.15) 

C is simply an additive integration constant that sets the overall constant scaling of the x J1 

coordinates. We keep it explicit because we will wish to do such a rescaling shortly. Now 

plugging this solution into the second equation (2.14b) and mat ching the delta functions 

will lead to the following condition for the existence of a solution: 

(2.16) 

The fine-tuning of each tension with the bulk cosmological constant remains even in the 

case of a single brane. Also, it can be shown that for this condition not to hold, there 

must be a non-zero four-dimension al cosmological constant on the brane. This fine-tuning 

can thus be associated with the cosmological constant problem. 

2.3.2 Solving Hierarchy 

Now ta understand how the above solution can solve the hierarchy problem, it is conve-

nient to take the viewpoint of a four-dimensional observer residing on our brane, i.e. the 

brane where the SM is located. In this setup, this is at 1 = 1f. Intuitively, we can see 
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why it is a good choice for solving the hierarchy problem by looking at the warp factor 

multiplying the Minkowski metric, e-2krccP (k = J -27fG(5)~)' noting that gravit y will be 

more weakly coupled away from cp = O. Now to show this properly, we will make a change 

of coordinates, xl-' --+ ércrrxl-', that is, we set C = J-27rG(5)~' With this choice, the 

solution is now 

(2.17) 

so that we recover the ordinary four-dimension al metric at cp = 7r (the warp factor is unit y 

there). 

We first replace the Minkowski metric by a more general four-dimensional metric 

g~~ (x) = 'r/I-'V + h~;J, where h~;J represents the tensor fluctuations about Minkowski space 

and is the physical graviton of the four-dimensional effective theory.2 We then substi-

tute into the gravitational action and evaluate the curvature at cp = 7r to get the four-

dimensional effective action, 

(2.18) 

where, again, R(4) is the four-dimensional Ricci scalar constructed from g~~ /rr' We can 

compare this effective action with the four-dimensional gravitational action to get the 

relation between the five-dimensional and the effective four-dimensional Newton's con-

2The physical graviton also corresponds to the massless mode, or zero-mode, in the Kaluza-Klein 

decomposition of the metric. 
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stants: 

_1_ = _2_ r d<f'!Tce-2krc(\4>\-1r) 

C(4) C(S) Jo (2.19) 

1 e2krc1r - 1 

C(S) k 
(2.20) 

We now express this result in terms of the fundamental five-dimensional mass scale JvI 

and the four-dimensional effective Planck scale Mpl , related to the Newton's constants 

through equation (2.5), and get 

(2.21 ) 

If we take the philosophy that the only fundamental scale is the Te V scale, then the 

Planck scale is a derived scale, that can be exponentially larger than the fundamental scale 

because of the exponential factor in equation (2.21). Because of the warped geometry of 

this space, we don't need large hierarchies among the fundamental parameters; in fact, 

we only require kTc l'V 10 to get é rc1r 
l'V 1016 and generate the Planck scale from the TeV 

scale. Also, since we have normalized the warp factor so that it is unit y at the location 

of our brane, the matter Lagrangian is unaffected by the warp factor, because the matter 

action 

(2.22) 

gives us the right coupling between matter and gravity. Hence the mass scale for other 

interactions remains the fundamental Te V scale. In comparison, if we were to put matter 

on the brane located at <f'! = 0, the 3-brane action thus obtained, 

(2.23) 
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shows us that we would need to renotmalize the Lagrangian in order to get the observed 

coupling between matter and gravity. Basically, on that brane any mass parameter of the 

fundamental higher dimension al theory (of order Te V if we follow our philosophy) would 

correspond to a physical mass é rc1r bigger. So on that brane, everything is of order M pl 

and there is no hierarchy. That is why resolving the hierarchy problem by the Randall­

Sundrum mechanism implies that the Standard Model is trapped on the negative tension 

brane. 

Of course, we could also take the alternative point of view of taking the Planck scale 

to be the fundamental scale, by not making any change of coordinates. But that wouldn't 

change anything for the brane located at cp = 0 if we tried to put matter on it, since 

although we would automatically obtain the right coupling between gravit y and the matter 

Lagrangian, since the fundamental scale would be the Planck scale everything would still 

be of order the Planck scale on that brane. lndeed, the strength of gravit y on the branes 

from this point of view is of the same order as the fundamental scale: 

M~l = ~3 (1 _ e-2krc1r) . (2.24) 

It is now the TeV scale that is a derived scale, sinee it is on the Standard Model (SM) 

brane, at cp = 1[, that the Lagrangian must be renormalized. We would have in these 

units 

(2.25) 

and so any mass parameter mo in the fundamental theory (of order M pl in this alternative 
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philosophy) would correspond to a four-dimensional physical mass 

(2.26) 

So from this point of view, the one originally taken by Randall and Sundrum, it is the 

TeV scale that is generated from the warp factor, and the hierarchy is still resolved on 

the negative tension brane. 

2.3.3 Infinite Extra Dimension 

Randall and Sundrum also showed [38] that it is possible to have infinite extra-dimensional 

volume and still get localized gravity.3 For that, they consider another setup where there 

is only one 3-brane, with positive tension. The second brane with negative tension is sent 

to infinity by letting rc -----+ 00. We will work from the point of view of a four-dimensional 

observer on the positive brane, with the warp factor being unit y there. Reeall the met rie 

in this case is given by equations (2.13) and (2.15): 

di = e-2krc!4>!7JpvdxPdxv + r~d<p2, k = J -21fG(5) ~5 (2.27) 

In the rC_DO limit, we see from equation (2.24) that the Planck scale is still weIl defined : 

M3 

M2 -Pl-T' (2.28) 

This a good indication that we can get a sensible effective four-dimension al theory with 

the usual Newtonian force law. This is radically different from what we could expect if 

3For any higher dimensional Universe model, it is essential to confine gravit y, in order not to modify 

the three-dimensional laws of gravit y, that have been experimentally tested on many different scales, 

ranging from the millimeter to intergalactic distances (a few Mega-parsec). 
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the space was a product space like in the ADD proposaI, M~l = M3rc7r (see equation 

2.7). 

More formally, one can prove (although we will not do it here) that the curved back­

ground of the model supports a bound state of the higher-dimensional graviton. Although 

space is infinite in extent, the graviton is confined to a small region within the space. Grav­

itational fluctuations can be written as a superposition of modes that are eigenmodes of 

a wave equation depending only on the extra dimensional coordinate. This corresponds 

to the Kaluza-Klein decomposition of the higher-dimensional gravitational fluctuations in 

terms of four-dimensional KK states. Every eigenmode has a given mass, and the zero­

mode is the wave function associated with the four-dimensional graviton. One can verify 

that this state is indeed a bound state and faIls off rapidly away from the brane. To calcu­

late how "strongly" it is bound to the brane amounts to calculating the relation between 

M and M pl , like we have done a few times already. But apart from this zero mode, there 

is a tower of KK modes that we have to take into account. In factorizable geometries 

like the ADD model, there is a gap after the zero mode, and four-dimensional gravit y 

is reproduced up to the scale determined by the gap. Here things are different; because 

there is no gap, we have a continuous KK spectrum. Fortunately, the authors show that 

the coupling of other KK modes with matter is greatly suppressed relative to the zero 

mode. Hence four-dimensional physics is very weIl approximated: the bound state mode 

reproduces conventional four-dimensional gravit y, and the other KK modes give only a 

26 



small correction.4 But this setup doesn't have the virtue of solving the hierarchy problem 

as the previous one. 

2.3.4 Phenomenology of the Brane-World Scenario 

For a viable theory, the "brane world" must reproduce correct gravit y and cosmology of 

our Universe. In the RS picture, the negative cosmological constant of the bulk is used 

to cancel the cosmologicai constant or tension on the brane. On a brane with positive 

tension, like in the single brane scenario, gravit y is effectively confined to the brane 

by the steep warp factor generated by the tension dominating the brane. In realistic 

cosmologies, of course, the energy density of the Universe must be dominated by matter 

instead. Taking that into account, an important observation about the cosmology of the 

(five-dimensional) brane world scenario was made, for example in [3]. It was shown that 

the equation governing the expansion of the scaie factor on the brane was not the usuaI 

Friedmann equation. The dependence of the Hubble parameter H on the energy density 

on the brane was H2 
rv p2, instead of the expected H2 

rv p. In another series of papers 

(see for example [12, 16, 27]), it was shown that for the Randall-Sundrum scenario, the 

full energy density p is a sum of a vacuum energy density, i.e. brane tension, and a 

matter energy density pm, and thus the correct expression for H 2 can be obtained by 

cancelling the A&rane term of (Abrane + Pm)2 with the term A5 coming from the negative 

4This correction is still experimentally testable, depending on the AdS curvature scale. 
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bulk cosmological constant, so that we get 

(2.29) 

plus a correction which is quadratic in the density. From this equation we see that we 

cannot live on a negative tension brane, since this would imply either negative energy 

density, or imaginary Hubble constant, and neither of these are observed. 

In [32J, generai rules for arbitrary number of dimensions have been derived. These 

ruIes, the consistency conditions, are a family of one-parameter conditions relating the 

geometry of the brane-world to its stress-energy content. They were shown to imply that 

negative tension branes are required in five-dimensional scenarios, but that requirement 

is evaded for more than five dimensions. As an example, in the same paper Leblond 

et al. construct a six-dimensional braneworld model with only positive tension branes. 

From this, and from the question of whether or not the Friedmann equation also gets 

modified in a higher number of dimensions, the search for six-dimensional solutions gets 

its motivation. 

2.4 The Topological Defect Approach 

2.4.1 The Trapping Mechanism 

Up to now, we have avoided the question of how it is possible for ordinary matter to be 

trapped on a brane, and what this brane is exactly. The term "brane" actually has quite 
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different meaning in different contexts, but here we are using it for any 3-dimensional 

submanifold to which ordinary matter could be trapped, irrespective of the trapping 

mechanism. There are many ways of obtaining this trapping, and in this thesis we will 

most of the time assume that it is done by one means or another, without mentioning any 

mechanism in particular, or worrying about this aspect explicitly. But l will nevertheless 

mention one example of such mechanisms, that will hopefully help clarify what a brane 

could be. 5 In a five-dimensional theory, a simple way to do it is to introduce in the bulk 

a scalar field 1Y that obeys the following action: 

(2.30) 

where z is the extra-dimensional coordinate, and the subscript A denotes aH five coordi-

nates. The key to obtaining a domain wall (the brane) where particles will be trapped is 

that the potential V (1Y) has a double-weIl shape, with two degenerate minima at 1Y = ±7]. 

The potential V (1Y) = ~ (1Y2 - 7]2)2, for example, has this property. The resulting field 

equation will have, in addition to the two ground state solutions 1Y = ±7], another solution, 

the "kink", which interpolates between the ground states. This solution has asymptotics6 

1Y(z -+ +00) = +7] (2.31) 

1Y(z -+ -00) = -7] (2.32) 

5For other trapping mechanisms, see refs. [20, 29, 30J. Note that in string theory the trapping is 

automatic, and you don't need to resort to field theory mechanisms. 

6There is another solution with opposite signs. 
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and the interpolating region of rapid change of the scalar field corresponds to the domain 

wall. 

Now if one introduces, say, fermions in that model, it turns out that there is a zero 

mode, a solution to the equation of motion with mass m = 0, which is localized near z = 0 

(the location of the domain wall) and decaying exponentially at large Izl. These massless 

four-dimensional fermions localized on the dornain wall are rneant to play the rôle of our 

matter. Interestingly, the number of zero modes can be larger than one, so that from 

one family of multi-dimensional fermions it is possible to obtain several four-dimension al 

families. This could help explain the origin of the nurnber of Standard Model generations. 

It is more difficult to localize gauge fields, but various mechanisrns have been proposed 

through which it can be done. 

2.4.2 Topological Defects 

The domain wall of the above example is one of a larger group of topological defects, that 

an have in cornmon that they are boundaries of phases of the theory. In the example 

just given, the domain wall was separating the two regions cp = +17 and cp = -17. In a 

one-dimensional (sub)space, a domain wall is a point defect, and that is why in the case 

of one extra dimension it can be associated with our universe, that has no extension in 

the extra dimension. Strings and monopoles are other kinds of topological defects. In 

three dimensions, domain walls still separate regions of definite discrete states of the field, 

strings are linear defects, where the phase of the field cp (which is no longer a scalar, but 
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a vector) changes by 211" in making a loop about the string, and monopoles are point 

defects, where the field points radially away from the defect. In two dimensions, which 

is the situation of interest in this thesis, point defects (vortices) are the equivalent of the 

strings in three dimensions, the field making one internaI rotation as we travel on a loop 

about the defect. 

Topological defects are related to sorne form of symmetry breaking, which gives rise 

to a set of degenerate ground states, just like in the example given above. To understand 

how topological defects can form, suppose that as temperature drops, for example, the 

direction of cp within its internaI space (its phase, or in the case of a scalar, its sign) 

is selected at random independently at each point in space. This is not a minimum­

energy state, because the field derivatives are non-zero, and so the fields in different 

places will attempt to align themselves. This pro cess may not be able to go to complet ion 

if there are gradients that cannot be removed by any smalliocai changes of the field. This 

situation is familiar from paramagnetism: below the Curie temperature, magnetization 

occurs spontaneously, but in different directions in different places, leading to magnetic 

domains. Now in the case we will be interested in, the point defect with two codimensions, 

it would arise if there was a loop such that the field cp makes one or more rotations in 

its internaI space as one moves around the loop. This is a topological configuration that 

cannot be erased by a continuo us change in the phase of cp. As we shrink the loop to 

zero size, the field derivatives increase, and so sorne energy lS associated with the field 

configuration. We have a topological defect. 
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2.4.3 Global vs. Local Defects 

Defects cau arise from the breaking of a global or a gauge symmetry. There is an important 

distinction to make between these two cases. In both cases, there is energy associated 

with fields derivatives in the core of the defect, but in the case of a gauge symmetry, 

both scalar and gauge fields can adjust in order to minimize the energy. The result is that 

defect energy is more localized in the case of the gauge (or local) defect than for the global 

defect. For global strings, for example, the field energy faIls as p ex 1/r2 at large distances 

from the string, so that the mass per unit length M = J p 21fr dr diverges logarithmically. 

On the contrary, the energy per unit length for a gauge string is perfectly well defined. 

Since its energy is really localized in its core, a codimension-two gauge string, or gauge 

vortex, is a good model for a codimension-2 brane. The metric induced by static cos mie 

strings (in an ordinary three-dimensional space) has been known for a while. In 1981, 

Vileukin [42J found it to be fiat with a conical defect at the core and a deficit angle around 

the string. 7 Cohen and Kaplan [14] did the equivalent for global strings in 1988, finding an 

exact solution to Einstein's equation, and they noted that there was a singularity at finite 

distance from the core. Global strings have been used in the framework of the braneworld 

scenario, and it was shown that this singularity can be removed by having a negative 

bulk cosmological constant [23J, or by adding a time dependence in the metric [24J, but 

as mentioned before, the global string has a strong effect far from the core and so it is 

not a realistic model for our three-brane universe. We will discuss in section 4.1.3 how 

7We will come back on the meaning of these in the next chapter. 
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the gauge, or local vortex can be used in a six-dimensional braneworld model. l will only 

mention that the model that is generally used when introducing strings in braneworld 

scenarios, the Abelian-Higgs model, cornes back to Nielsen and Olesen [35] who showed 

in 1973 that the Higgs Lagrangian 

(2.33) 

allowed for vortex-line solutions. 8 

2.4.4 Topological Defect vs. Phenomenological Approach 

Many people have been working on the topological defect aspect of brane world scenarios, 

trying to show for various models that the fields responsible for creating the brane couid 

be consistently incorporated in the action without affecting the beneficial characteristics 

of the models. But there is another approach which favours the exploration of the physical 

consequences of a large number of models in order to be able to associate them with the 

different observations that couid be done with the next generation of accelerators. In this 

approach, the models are simplified so that a larger number of them can be examined. We 

will be working along these lines in the present thesis, since our goal is to present many 

different solutions. In fact, for practical purposes, one can just assume that the Standard 

Model particles are trapped on a three-dimensional brane and work from there, keeping 

in mind that effective trapping mechanisms exist, and that it should be possible to find 

such a mechanism for models which will be proven to agree with future observations. 

8We used the Higgs Lagrangian in the example at the beginning of this section. 
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To simplify the model, one can consider the brane as a delta-function source for the 

gravitation al field. In the simplest case, the gravitating brane is characterized by just one 

parameter: the energy density per unit three-volume (or brane tension) T. This is the 

kind of procedure that we will use in the next chapter where we examine a simple generic 

six-dimensional model. 
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Chapter 3 

General Model with 

Codimension-two Brane 

We now look at a general model of six-dimensional braneworld scenario. The objective is 

to get a classification of the solutions to Einstein's equation for a six-dimensional brane­

world scenario that is as general as possible, while the model is simple enough so that we 

can actually study the solutions. The model is allowed to have arbitrary bulk and physi­

cal (effective four-dimensional) cosmological constants, solutions with vanishing physical 

cosmological constants having already been studied extensively. We will be of course 

interested in introducing a three-brane at sorne point of the space, where the Standard 

Model particles will be confined. However we leave open the possibility for more than one 

3-brane, and for 4-branes. We demand that the met rie be cylindrically symmetric, and 

that it depends only on the extra coordinates and thus do not break general covariance 
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along the four physical dimensions. One of the extra dimensions will be assumed to be 

compact. The other extra coordinate is not required to be either compact or non-compact 

a priori. 

We begin by looking at the different cylindrically symmetric 6D geometries without 

source terms, to have a first classification of the possible scenarios. We then introduce a 

brane tension at the origin, see how that changes the solutions, and finally look at those 

solutions which will contain another brane: either those for which we need to cut out 

part of the space, or those in which the space is naturally compactified, and that can 

consistently closed up with another 3-brane. 

3.1 Setup 

Consider the total action 

S = Sgrav + Sbrane (3.1) 

with the bulk action 

(3.2) 

where A is a bulk cosmological constant, ""~ = 81fG6 = 811"/ Mt where M6 denotes the six­

dimensional Planck mass, if denotes the determinant of the full 6-dimensional metric and 

R is the Ricci scalar constructed from this metric. The value of the cosmological constant 

is arbitrary at this point, so it includes the case of vanishing cosmological constant. 
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Our metric ansatz for this action is 

(3.3) 

where p and () are, respectively, the bulk radius and the bulk angle, 9J1v is the four-

dimensional metric (with mostly + signature) and JvI(p), L(p) are the warp factors. 

We compute the Einstein equations RAB - ~gABR = K;~(TAB + A6 ) for this metric: 

3H2 (M')2 Mlf M' L' L" 
- - 3 - - 3- - 3-- - - = K;~(Tg + A6 ) 
M2 M M ML L 

(3.4) 

6H2 (M')2 M' L' 2 - - 6 - - 4-- = K;6(TP + A6) 
M2 M ML P 

(3.5) 

6H2 (M') 2 M" 
M2 - 6 M - 4 M = K;~(T: + A6 ) (3.6) 

We have assumed the effective four-dimension al metric to be 9J1v = -dt2 + a(t)2dx2, 

with a(t) = eHt Alternatively, the above equations could be expressed in terms of a 

physical cosmological constant, A4, related to H through K;~A4 = 3H2
.
1 Similarly to 

its six-dimensional equivalent, K;~ is defined by K;~ = 81fG4 , with G4 the ordinary four-

dimensional Newton's constant. 

3.2 Bulk Solutions 

We wish to classify the possible solutions to the 6-dimensional gravitational action with 

arbitrary bulk and physical cosmological constants, which exhibit cylindrical symmetry 

1 In the case H2 < 0, corresponding to an anti de Sitter brane, the four-dimensionalline element will 

take a different form (a(t) = sin (iHt)) than the one given, which is appropriate in the de Sitter case. 
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and preserve general covariance along the four physical dimensions. This classification of 

6-dimensional geometries couId then be the starting point for a further classification of 

solutions, once source terms from the brane part of the action are introduced. Actually, 

since we will find out that the effect of introducing a brane tension on the solution is to 

introduce a deficit angle, and that it does not otherwise affect the geometry of the space, 

the classification of bulk solutions that we make hereafter stays relevant even in the case 

where source terms have been added, and so it is clearly a useful step at this point. 

3.2.1 Boundary Conditions 

Because of cylindrical symmetry, M(p) and M'(p) are constant for aIl angles. Now if we 

take the directional derivative of M along a straight hne passing through the origin, we 

can determine the jump in M' at the origin: 

~M' = VM(f)' p- VM(f)' (-p) (3.7) 

dM 1 ~ ~ dM 1 ~ ( ~) = - P'p- - p' -p 
dp € dp € 

(3.8) 

(3.9) 

80 in the absence of singular source terms, the continuity of the slope requires that 

M'(O) = O. That is the boundary condition that we will use in deriving the bulk solutions. 

It should be noted, however, that this condition will remain true in the case where we 

want to add a 3-brane at the origin, as we will see in a later section, in such a way that 

the solutions derived below are still relevant in that case. 
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3.2.2 General Bulk Solutions 

We wish ta study the properties of the six-dimension al cylindrically symmetric geometry 

by considering only the gravitational part of the action, not yet including the effects of the 

brane. In this case, all source terms vanish in equations 3.4-3.6 and only the cosmological 

constant term remains on the right hand side. Equating equations (3.5) and (3.6), we 

obtain 

Mil = MI~ =* either M' = 0 or M' = RL (3.10) 

where R is an integration constant. 

We first examine the unwarped solution, that is, the case M' - O. The complete 

solution for that case is 

M(p) = ~Mo, L(p) = (3.11) 

Lop if A6 = ° 
and 

(3.12) 

Of course, since we will eventually be interested in introducing a three-brane at the origin, 

meaning that L(p) vanishes at that point, L2 will be set to 0 (see section 3.3.1). Hence 

we get one solution, the case A6 > 0, where the extra-dimensional coordinate warp factor 

L(p) vanishes at sorne other radius (K,6j!iP = 7r ), so that there is only extension in the 

four ordinary dimensions there. We can then consistently introduce another three-brane 
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at that point. The two other unwarped solutions have L(p) increasing with p, in a way 

that prevents localization of gravity. The condition for gravit y to be localized, with this 

metric, amounts to: 

(3.13) 

Henee for the present case of unwarped solutions, with M constant, this condition becomes 

J dpC(p) < 00. In both cases ab ove, L rv sinh ("'6 ~ p) and L rv p, this integral blows 

up for an infinite extra dimension. Thus we will need to cut the space with a four-brane 

at sorne radius if we are interested in using these solutions. 

Now for the case M' = RL, we closely follow the elegant analysis of Rubakov and 

Shaposhnikov [40J. They showed that solving the 6D Einstein equations for this situation 

is equivalent to solving for the classical motion of a particle of unit mass in a potential U, 

i.e. solving the equation 

.. dU(z) 
z=---

dz 
(3.14) 

where p plays the role of the time variable, i.e. i = d1;) , the variable z is related to the 

warp factor M through z(p) = M(p)~ and the potential depends on the dimensionless 4D 

and 6D cosmological constants Â4 = ",~A4 and Â6 = ",~A6 via 

2 6/5 5 ~ 25 ~ 
U(z) = az - bz a = -A6 b = -A4 . , 16' 24 

(3.15) 

To show this, we start with bulk equation (3.6) 

( 
Â (M')2 Mil) 

2 M~ -3 M -2 M (3.16) 
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In order to solve this equation, let 1/ = dt:, so that Mil = v t~. We get 

2 ~ ~ 

_ (3~ + 2~ dv ) = A6 _ A4 . 
M2 MdM 2 M2 

(3.17) 

We multiply by M 4 on both sides: 

(3.18) 

integrate with respect to M to get 

(3.19) 

We now have 

(3.20) 

and we obtain 

(M(p) M3/2dM 

P= JM(O) J4t M3 -1t&M5+C1 

(3.21) 

Finally, we can express the result in term of z = M 5
/

2
, yielding 

l
Z (P) 

P= --;:======= 
z(O) ~J 4tZ6/5 - ~~ z2 + Cl ' 

dz 
(3.22) 

which is precisely 

(3.23) 

the integral form of the equation of energy conservation for a classical particle motion, 

E = ~Z2 + U(z), with the time variable p and the potential U(z) = :6 ÂZ2 - ;~Â4Z6/5 = 
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az2 - bZ6/ 5 , a = 156Â6' b = ;!Â4. E simply appeared in the equation as a constant of 

integration. 2 

The shape of the potential U (z) will depend on the signs of Â4 and Â6' Ta find solutions 

to the Einstein equations then amounts to fin ding the possible trajectories for a classical 

particle in this potential, starting with an initial "velocity" Z(O) = O. This corresponds 

to M'(O) = 0, which we have seen has to be so when no source term is present, but will 

also remain true if we add a three-brane at p = 0, as we will see later. The variable 

z corresponds to the position of the particle, and as we have said, p plays the role of 

time. Once the trajectory z(p) is known (and so M(p)), equation (3.10) gives us the 

corresponding L(p). 

3.2.3 Classification of Bulk Solutions 

Different shapes of the potential, and different initial conditions for the classical particle 

will yield different types of trajectories, which for us correspond to different types of 

solutions. It is interesting to classify thase different types of solutions, especially because 

their general properties will not be affected with the introduction of a brane tension, 

which only yields a deficit angle. 

2Note that thi8 equation i8 derived 801ely from the ee component of Einstein bulk equations (eq.3.6), 

which will be valid everywhere but at the location of a 4-brane, because both in the bulk and at a 3-brane 

we have Tt = o. 
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At first sight when looking at equation (3.23), it seems that there are two different 

initial conditions to specify: the total energy E and the initial position of the particle 

zoo In fact, with the additional condition i(O) = 0, knowing Zo will fix the integration 

constant E through E = ~i(0)2 + U(zo). We are always free to rescale the units so that 

Zo = 1 (unless it is zero). That is the approach that we will take here, so that time 

and energy are normalized in the usuaI way. (We are basically taking the viewpoint of 

a four-dimensional observer on our brane, just like we did on page 21 when interpreting 

the Randall-Sundrum mode!.) The constant E can then be expressed in terms of the 

cosmological constants, E = a - b, and specifying a particular value for E will select a 

particular solution. Basically, we are using the following boundary conditions: 

M'lp=o = 0 and Mlp=o = 1 (3.24) 

to fix the constants of integration in our equation. For example equation (3.20) becomes 

M" ~ ~4 -~~ M" + ~3 (~~ _ ~4) . (3.25) 

This equation, or its equivalent in integral form, equation (3.23), will remain unchanged 

in the presence of a 3-brane, and actually stays valid as long as one doesn't encounter a 

4-brane. This is because this equation is derived solely from the (BB) component of the 

bulk Einstein's equation (i.e. with vanishing T/), but in fact Tt will only be non-zero at 

the location of a four-brane. 80 these equations, and the solutions that we will extract 

from these equations, will remain valid everywhere, except at the location of a four-brane. 
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Before classifying the types of solution, we examine the shape of the potential for each 

case to see what happens:(Recall that a = 156Â6' b = ~~Â4) 

Â> 0, Âph > 0: U(z) ~ ° {=:=} z ~ (~)5/4 

U'(z) ~ ° {=:=} z> (3b)5/4 
- 5a 

UI/(z) ~ ° {=:=} z> (.1Q. )5/4 
- 25a 

Â ~ 0, Âph < 0: U(z) ~ ° V z 

U'(z) ~ ° V Z 

UI/(z) ~ ° V z 

Â:::; 0, Âph ~ 0: U(z) :::; ° V z 

U'(z) :::; ° V z 

U"(z) :::; ° V z 

Â < 0, Âph < 0: U(z) :::; 0 {=:=} z ~ (~)5/4 

U'(z) :::; 0 {=:=} z > (3b)5/4 
- 5a 

UI/(z) :::; ° {=:=} z> (.1Q. )5/4 
- 25a 

These four distinctive shapes of the potential are summarized in figure 3.1. Depend-

ing on the particular potential behavior and on the initial conditions, different types of 

trajectoriesjsolutions are possiblè once the particle starts rolling in the potential. We 

will distinguish between bulk solutions with z'(O) = M'(O) = L(O) = 0 and the others, 

concentrating on the former because we are mostly interested in solutions which allow for 
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LJlz) JI··· . c{l.) 

Figure 3.1: Shapes of the potential U (z) depending on the sign of A4 for (a) A6 > 0 and 

(b) A6 < O. Nurnbered dots show initial conditions leading to the three kinds of solutions 

discussed below. 

consistently introducing a 3-brane at p = O. (see section 3.3.1). We describe below these 

different types of trajectoriesjsolutions: 

1. In solutions of type 1, the particle reach z = 0 in a finite arnount of "tirne" p. That 

rneans M -+ 0 at sorne p. Sorne curvature invariants diverge at that point so the 

subspace ends at a singularity. To use this solution, we need to insert a 4-brane 

at p < ps to cut off the space before reaching the point where it becornes singular. 

This happens when: 
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2. In type 2 solutions, the particle eventually reaches z - 00. We therefore have 

M - 00 as P - 00, which prevents gravit y from being localized,.so we have to put 

a 4-brane at large p again. This happens when: 

3. In the third type of solutions, the particle cornes to rest again, z' = ° for sorne p. The 

corresponding solution is characterized by the internaI space closing off again at sorne 

point Pm (L = ° there) so that another 3-brane can be consistently introduced. The 

extra dimensions look like 32 with a wedge cut out. (the 3-branes induce a deficit 

angle). This solution is valid for 

As we have said, aU of the above types of solutions assume the particle starts from 

rest, i.e. at p = 0, M' = L = O. But there also are solutions with z'(O) =1= 0, trajectories 

where the particle st arts with a non-zero initial velocity. Those solutions cannot have a 

three-brane placed at the origin since p = ° doesn't correspond to a four-dimension al (3 

spatial dimensions) point anymore. At this location, we still have an extension in the 

other coordinate (J, since L doesn't vanish there in these solutions. We will not study 

these solutions in detail here, since we are interested in a model that allows for a 3-brane 

that could correspond with the four-dimensional uni verse. 
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We now examine in more detail each one of these three types of solutions, and give 

examples of particular analytic solutions where they exist. 

Type 1 Solutions 

To show that in type 1 bulk solutions, the warp factor vanishes at some radius p, or in 

the analogy that the classical particle reaches z = ° in a finite amount of time, one has 

to show that the integral 

(3.26) 

is finite for the three cases: 

a. a 2: 0, b 2: 0, E = (a - b) > ° 
b. a> 0, b < ° 
c. a::S: 0, b::S: 0, Zo < Zm i.e. ;~ > 1. 

If i(O) = L(O) = 0 (for a three-brane at the origin) and in units where z(O) = M(O) = 

1, this integral becomes 

Jo dz 
p-

- 1 )2 (a - b - az2 - bZ6 / 5 ) 
(3.27) 

Now the integrand only diverges at z = 1, so we can split up the integral into two parts 

jl-€ dz JO dz 
p= + 

1 )2 (a - b - az2 - bZ6 / 5 ) 1-€ )2 (a - b - az2 - bZ6/ 5 ) . 
(3.28) 
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(both parts of the trajectory take a positive amount of time) The second integral is 

obviously finite, so we only need to examine the first one more closely. In the vinci nit y of 

z = 1 - é, we can Taylor-expand the function in the square root, 

(3.29) 

So we have 

~=;====:==z :::::;:===~ (3.30) j l-€ d lE dé 

1 J2 (a - b - az2 
- bZ6

/
5

) - 0 J4(a - ~b)é + 0(é2 ) 

In an three cases ab ove , we have that a - ~b > O. Since the integral IoE ~ converges, the 

original integral will converge too. That means the classical particle in the analogy take 

a finite amount of time p to go from z(O) = 1 to z(p) = O. The translation of that in 

terms of the warp factor M = z2/5 is that given M(O) = 1, M(p) will vanish at sorne 

finite radius p. Now at that point, sorne curvature invariants diverge. For example, if we 

look at the Ricci scalar: 

R = -12 H
2 

+ 12 (dM)2 + _8_ (d
2
M) + 8 dM dL + _2_ (d

2
L) 

M(p)2 M(p)2 dp M(p) dp2 M(p)L(p) dp dp L(p) dp2 

(3.31) 

we see that it generically diverges when M ----+ O. In the special case H = A4 = b = 0 

where this is not as evident, we find the solution (A6 > 0) 

M (p) = COS2/5(kp); L(p) = Rksin2/5 (kp); k = J~Â6' (3.32) 
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For this solution, we see that when M -> 0 the derivative of M diverges, which autornat-

ically gives us a divergence in the Ricci scalar. Rence we have shown that for the three 

cases above, the warp factor vanishes at sorne radius, at which point sorne curvature in-

variant generically diverges. We will thus need to cut the space with a four-brane before 

that radius is reached. 

Type 2 Solutions 

We use the classical rnechanical analogy and look at the shape of the potential for the 

cases: 

We easily see that in these situations, the particle escapes toward infinity. That rneans 

as p increases, z(p) keeps on increasing, and so does M(p). These solutions are therefore 

rerniniscent of the Randall-Sundrurn solution to the hierarchy problern, with a warp factor 

increasing away frorn our brane. [37] That rnakes thern very interesting solutions. In fact, 

one particular solution of type 2 is the AdS soliton, (for A4 = 0 ) which has been studied 

before: [4] [32] 

2~ 2 2 sinh s k p 5 ~ 
M(p) = coshs(kp); L(p) = -Rk 3 ( ); k = -gA6' 

5 coshs (kp) 
(3.33) 

It is not possible to generalize this solution to the non-static case A4 > 0 analytically. It 

is nevertheless possible to obtain approxirnate analytic solutions by considering A4 as a 
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perturbation, yielding: [11 J 

M(p) = [zo cosh(k(p + dp))F/5; L (p) = RM'(p) , (3.34) 

where dp increases with p and approaches a constant at large p, so at leading order the 

only difference between the perturbed and unperturbed solutions at large p is a shift in 

the radial size of the extra dimension. 

Now for the case A6 :::; 0, A4 :::; 0, Zo > Zm, we find a solution with E = 0, 

M (p) = cosh(kp); L(p) = Rksinh (kp); k = ~ I~~I = iH, (3.35) 

Note that H is irnaginary here, and the 4D me tric is AdS space. Again, this particular 

solution does not generalize easily to the case E =1= O. 

Type 3 Solutions 

Exarnining the case A6 > 0, A4 > 0, E :::; ° through the analogy, we can use our classical 

rnechanical intuition to see that the particle will come to rest again at sorne time. Looking 

for exarnple at the equation E = ~z2 + U(z), which actually follows directly from the (ee) 

cornponent of Einstein equation, but corresponds in the analogy to the conservation of 

energy equation, we can deduce sorne general features of the solution. Rescaling z(O) = 1 

will fix E = a - b as before. Now depending on whether the particle st arts at the left or 

the right of the stable equilibriurn point, integrating the above equation will tell us the 
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sign of the acceleration, and therefore the direction the particle will initially take: 

6 { ~ 0 whenever z ~ (~!)5/4 
Z = -2az + _bz1/ 5 

5 5/4 
~ 0 whenever z ~ (~!) 

(3.36) 

Looking for example at a case where Zo ~ G~) 5/4, z will initially increase and so it 

will be positive. It will only start decreasing once z reaches (~!) 5/4 , the location of the 

equilibrium point. Now we use our classical mechanical intuition, which as we just saw 

is perfectly applicable. Looking at the shape of the potential, shown in figure 3.1, it is 

easy to see that the particle will reach the point where U (z) = E again, on the other 

si de of the equilibrium point, whatever side it started from. The only case which maybe 

cannot be determined that simply is the one with E = O. This solution is actually at the 

boundary between types 1 and 3:(A6 > 0, A4 > 0, E = ° ): 
. fA: fi: 

M (p) = cos(kp); L(p) = Rksm (kp); k = V 10 = V 3 = H. (3.37) 

On one side, we see that for this solution the space will close up again at kp = 7f ,.like for 

the other solutions of type 3 On the other hand, at the point kp = l' we have M -7 O. 

But unlike the solutions of type 1, no curvature invariant diverge at that point. In fact, 

they are aU constant for this solution. The Ricci Scalar, for example, is 6H2
• The 4D part 

of the spacetime seems to disappear at that point leaving only a 2D Euclidean space there. 

In fact, that strange point is a horizon (light cannot propagate across that radius3 ), and 

the space can be continued normally for values of l'ho on the other side. Unfortunately, 

3For a radial null trajectory, dpjdt = cos (kp) = sin (kpm - kp) and so it takes infinite time for a 

photon to reach Pm from either smaller or larger radii. 
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general solutions cannot be found exactly, but in the case where the particle stays close to 

the bottom of the weIl, we can approximate the potential there as a harmonie oseillator. 

The result is 

(3.38) 

( )

5/4 
Zo is the position of the minimum of the potential, Zo = ~ 

For all solutions of this type, we found that there is a point where the particle in the 

analogy cornes to rest (Zl = 0) again, i.e. a point where L = 0 and the extra-dimensional 

spaee closes off. At that point we will be able to consistently introduee another three-

brane, in addition to the three-brane where the standard model is supposed to lie, that 

we will introduee at the origin. 

3.3 Brane Tension 

80 far we have a classification for bulk solutions. Now we would like to get a classification 

of all solutions, including the effect of the branes themselves, i.e. the brane tension. 

This is harder because there are many possible combinations of branes, but also, sinee 

we don't have an explicit general solution, we must add the brane tension by perturbing 

specifie analytic solutions. Nevertheless there are still sorne overall properties that we can 

compute without going through that. 
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3.3.1 3-brane at p = 0 

To include the effects of the brane tension, we examine the metric behavior in the p --t 0 

limit. In order to introduce a 3-brane at p = 0, we demand that L = 0 at this point so 

that there is only extension in three spatial dimensions. Therefore in the vicinity of the 

3-brane equation eq.(3.1O) (which remains unchanged in the case of a 3-brane because 

Tt = Tt = 0) gives us 

L --t 0 ===?- M --t Mo (3.39) 

where Mo is a constant. The (00) Einstein equation in this limit becomes 

3H2 L" 
M2 - L = K~(Tg + A). 

o 
(3.40) 

So in the small p limit: 

Lo sinh ( J31f/g - K~(Tg + A)p) if 2( 0 A) H
2 

1'1,6 To + < 3M2 0 

L= Lo sin ( J K~(Tg + A) - 31f/gp) if 2( 0 ) H
2 

1'1,6 To + A > 3w 0 

(3.41) 

Lop if 2( 0 ) H2 
1'1,6 To + A = 3M2 0 

In any case, L can be expanded in a Taylor series around p = 0, which gives 

L';::j L'(O) . p (3.42) 

for smaU p. It is clear from the form of the metric that for general values of L'(O) there 

will be a conical singularity associated with a deficit angle 5. Computing the ratio of the 

circumference over the radius of a small circle around the singularity, CI R, we get the 

value of the deficit angle 

0= 27r - CIR = 27r(1- L'(O)). (3.43) 
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The existence of this conical singularity is connected to the presence of a 3-brane at 

p = O. To determine this connection one has to carefully define the brane tension and 

examine the Einstein tensor in the vincinity of the brane. For doing this, it is easier to 

write the metric in a conformally fiat form for the extra-dimensional space (in order to 

obtain the simple form of equation 3.46): 

(3.44) 

where f = f or2(L'(Q)-1) and p = i;'(~;. In these coordinates, the Einstein (00) equation 

reads 

(3.45) 

or 

(3.46) 

Now we look at the right-hand side of the equation. We first separate the stress-energy 

tensor into a brane tension part and an addition al energy source JTg :4 

(3.47) 

where 9 is the determinant of the 4-dimensional effective metric. Now, one must be very 

careful with the choice of the delta function used in this definition, which depends on 

4Strictly speaking, since the delta function is not a proper function but a linear operator, the non-linear 

equation (3.45) is mathematically il! defined if the energy density contains a delta function. However, 

our analysis can be made well defined by considering a highly peaked source and taking the appropriate 

limit at the end of the calculation. For simplicity, we keep the delta function notation throughout. 
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the coordinates 9 refers to. By definition, the tension 73 corresponds to what a four-

dimensional observer would calculate as the vacuum energy. Hence, writing the part of 

the six-dimension al action due to the brane tension: 

(3.48) 

we see that the appropriate combination of coordinates and delta function must satisfy: 

(3.49) 

For example, wh en using Cartesian coordinates YI, Y2, the 2-D Cartesian coordinates delta 

fun ct ion 02(y) is the correct delta function to use. In the present case, since we are using 

cylindrical coordinates, we use a properly weighted I-D radial cylindrical coordinate delta 

function: 5 

J drd() (o(r)) = 1 ==? o(r') = o(r). 
2K 2K 

(3.50) 

We can also express it in terms of the 2-D Cartesian delta function, and the correct 

definition of the brane tension for this metric is: 

(3.51) 

Noting further that V'2 1n r = 2K02(r') and matching the delta functions, equation 3.46 

gives us: 

- (L'(O) - 1) . 2K = K;~73, (3.52) 

5 Alternatively, we could keep 62(Yl' Y2) and refer to A as the determinant of the metric with its 

extra-dimensional part in cartesian coordinates. 

55 



so that the deficit angle is 

S = 211" (1- L'(O)) = K,~T3 (3.53) 

It is important to note that staying in the region of small radius p, the region we 

would expect to be perturbed by the introduction of the brane, we find that the 3-brane 

tension is not associated with anything but the deficit angle, so that the solutions are not 

affected in any other way than the conical singularity. This important result is typical of 

codimension-two branes in six-dimensions (see for example [5], [9], [33]) It is what makes 

our classification for the bulk solutions still relevant. 

Now once we have determined the behavior of the geometry close to the origin, we 

also need to look at the boundary conditions elsewhere. More specifically, as we have 

seen in section 3.2.3, aIl geometries with 2:(0) = 0 (those with a 3-brane at the origin) will 

either close off at sorne radius Pm or will have to be cut off at sorne radius Pm to avoid 

sorne undesirable behavior (divergence of curvature invariants, or divergence of the four­

dimensional Planck mass). 80 here we will include the effect of those boundary conditions 

at pm, distinguishing between the case where a 3-brane is introduced at that point and 

that where there is a 4-brane. 

3.3.2 3-brane at P = Pm 

We already found (eq. 3.52) that the requirement that there be a 3-brane at the point 

P = 0, and so that L(O) = 0, leads to K,~T3 = 21f (1 - L'(O)). The exact same reasoning 
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will lead to the equivalent condition for the point Pm : 

(3.54) 

The sign difference cornes about because if the radius of a small circle around the point 

Pm is E, the Taylor expansion around that point (on that circle) is 

(3.55) 

Sinee the circumference of the circle is J0271" LdB = -27r<cL'(Pm), the deficit angle is 

<5 = 21r - GIR = 21r(1 + L'(Pm))' (3.56) 

Condition 3.54 will apply to aIl solutions that were classified as type 3 in section 3.2.3 

because for these solutions, there exist a radius Pm > 0 where i = 0 (i.e. L = 0). In 

general, the value of L' need not be the same at P = 0 and P = pm. If we take the 

particular case of the unwarped (M' = 0 ) solution with two 3-branes (A6 > 0 case), 

an interesting characteristic is that in this particular geometry the deficit angle at the 

two 3-branes are the same, and so the tensions must also be the same. One could say 

that a fine-tuning of the stress-tensor is required. This happens because for this solution 

L' (0) = L' (Pm) . In general, for solutions with two 3-branes (type 3), we have a spherical 

topology with a deficit angle induced at each end. Renee the topology here is very close to 

that of the "football-shape solution" that we will mention in the next chapter [5, 11,33], 

except not neeessarily symmetric with respect to a certain radius P and not necessarily 

having equal deficit angles at both ends. The static unwarped solution (football-shaped) 

neeessitates a magnetic field, that we have not included in the present model. 

57 



3.3.3 4-brane at P = Pm 

Now if we want to cut the space at sorne radius Pm by introducing a 4-brane at that 

point, (as we have seen is generally necessary for type 1 and type 2 solutions) things are 

different than for a 3-brane. We do not have L(Pm) = 0, sa MI(Pm) can be anything, and 

the Einstein equations for this situation are, in the vincinity of Pm : 

(
MI) 2 Mil MI L' L" H 2 /'i;~ 
M + M + ML + 3L - M2 = -3 (8 (p - Pm) 1(il14-brane + A) (3.57) 

(
MI)2 + ~MI LI _ H 2 = _ /'i;~A 
M 3 M L M2 6 

(3.58) 

(
MI) 2 2 M" H 2 

/'i;2 

M + '3 M - M2 = - 6
6 

(8 (p - Pm) T$14-brane + A) (3.59) 

We now impose the Z2 symmetry at the 4-brane, that is, 

(3.60) 

Taking the directional derivative along the direction of the jump in a similar way as we 

did before, we calculate the jump to be: 

, - 1 - 1 !:lM = \lM· P - \lM· P 
Pm+E pm-E 

(3.61) 

dM 1 (A) A dM 1 A A = - -p . p - - p' P 
dp dp 

Pm+fO Pm,-15 

(3.62) 

(3.63) 
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80 the delta functions on the right of eq .. 3.57-3.59 can be matched with the second 

derivative terms on the left to give: 

M'I L'I /'\;~ Tgl4-brane = 6 Jt.1 _ + 2 L _ 
Pm Pm 

(3.64) 

/'\;2 r.f) 1 - 8 Jt.1' 1 
6 f) 4-brane - M _ 

pm 

(3.65) 

Now if the stress-energy tensor of the four-brane was pure tension, this would mean 

that Tgl4-brane = T:I4-brane' which implies 

LII = MIl 
L - M-

Pm Pm 

(3.66) 

This will impose a condition on the location of the four-brane. To see that, first express 

the difference between equations 3.5 and 3.4 in the form 

which is the same as 

(3.67) 

Now this can be easily integrated between P = ° and Pm, giving 

M4L --- -M4L --- = M2LAph (M' LI) 1 (MI LI) 1 l pm 

M L pm M L P=O 0 
(3.68) 

80 far, this equation is completely general since it only relies on Einstein's equation. Now 

if there is a three-brane at P = 0, the boundary conditions at this point, L(O) = M'(O) = 0 

reduces it to 

M4L (MI _ L')j + M4L'I = [pm Jt.12LA 
M L p=O Jo ph 

pnl 0 

(3.69) 
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Furthermore, if a pure tension 4-brane is introduced at Pm, we get 

(3.70) 

which is the promised condition on the location of that (pure tension) 4-brane. 

We can apply this condition to the few analytic solutions that we have mentioned in 

the last section. For solutions of type 2, equations (3.33) and (3.35), condition (3.70) 

gives that the pure tension brane would have to be placed at P ~ 00, which is obviously 

not what is desired. For type 1 solution (3.32), the conditions force A6 to be 0, Hence 

in aH those examples it is not possible to insert a pure tension four-brane at a finite 

radius. One must add some additional energy on it, to force rgl4-brane =1 r/14-brane' 

This will generally be the case, unless one finds a solution for which condition (3.70) 

can be satisfied. This additional source of energy must be anisotropie, and one way to 

obtain that is to "smear" a 3-brane along the compact dimension of the 4-brane[32]. This 

will give an extra contribution only to the Tt components, because the 3-brane will have 

TI = O. Another way to get a deviation from Tgl4-brane = r/14-brane is through the 

Casimir energy (vacuum quantum effect) of a massless field confined to the 4-brane [8J. 

Summarizing, for solutions of type 1 and 2 we have a disk topology with a three-

brane at the center, whose tension induces a conical singularity and deficit angle; at the 

boundary of the disk is a four-brane, generally provided with an anisotropie source of 

energy, like the tension of a smeared three-brane or the Casimir energy of a massless field. 

For sorne solutions, it might be possible to have a pure tension four-brane, but in such a 

case the location of that brane is fixed by the boundary conditions. 
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To conclude this chapter, solutions to a general model of six-dimensional gravit y with 

a 3-brane and cylindrically symmetric bulk can be classified, depending on the signs of 

the full six-dimensional and effective four-dimensional cosmological constants, under two 

different topologies. Solutions of type 3, with 0 < 130 Â6 :::; Â4' have a spherical topology, 

with two three-branes at the poles, one of which is our four-dimensional universe. The 

tensions of those three-branes induce conical singularities with deficit angles. For other 

values of the cosmological constants, we have the disk topology as explained ab ove, with 

a warp factor M(p) increasing away from our brane for type 2 solutions (A6 :::; 0, except 

< 0). In our general model, unwarped solutions exist when A6 = 2A4' for any sign of 

A6. Maybe the most important feature of models with codimension-two bran es remains 

the fact, already known for sorne time [41, 9, 30], that if one introduces a 3-brane at the 

center of a six-dimensional bulk with cylindrically symmetric background solution, the 

non-zero brane tension induces a conical singularity (or a deficit angle) in the transverse 

space. This particular way in which the 2D manifold 's internai geometry responds to the 

tension of a codimension-two brane willlead to unexpected results. The four-dimensional 

effective cosmological constant will in sorne cases be independent of this tension; in other 

instances it may depend on the tension in an unusual way. In general one needs to examine 

the stability of a solution to confirm the dependence of the four-dimensional cosmological 

constant on the brane tension. This and other extensions of the general model presented 

above will be looked at in the next chapter. 
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Chapter 4 

Other Six-Dimensional Solutions 

In the previous chapter, 1 classified and described in sorne detail solutions to a general 

model with a codimension-two brane. These were the solutions 1 have been most involved 

with in the course of my research. Nevertheless it would be beneficial to the reader to be 

aware that other types of solutions exist, with different setups. 1 will therefore mention 

in this chapter alternatives and additions to the solutions presented above. It should be 

noted that the goal here is rather one of covering a wide range of possibilities rather than 

exploring any one very deeply. Therefore, 1 do not intent to fill out aU the details, but 

rather to direct the reader towards appropriate sources by describing what has been done. 

4.1 Other solutions with codimension-two branes 

We first wish to complete the classification of solutions that was done in the last section by 

mentioning additional work that has been done on those solutions, and existing solutions 
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that are very close to the ones just described. 

4.1.1 Stabilization of previous solutions 

Stabilization of sorne solutions of the last chapter (namely the AdS soliton and the un­

warped case) was considered in [11], by adding either a scalar field or a magnetic flux. 

Stable solutions are those for which the size of the extra dimensions is determined by the 

dynamics of the model, so to make it stable one generally adds a field whose potential 

will have a minimum wh en the extra dimension has a certain size. 

In this paper, we first studied the stabilization of the warped solution corresponding to 

the AdS soliton model (3.33), sin ce it was known that the radial size of the extra dimension 

is unstable in the AdS soliton model, at least for the static case [4J. A scalar field was used 

for that stabilization, first concentrating on the static solution A4 = O. A4 is subsequently 

treated as a perturbation. This is reasonable because the present universe has an energy 

density (corresponding to A4 here) which is much less than that corresponding to the 

Planck scale. So once the solution for the scalar field is found using the static solution 

for the metric, the back reaction of the scalar on the metric is calculated, next we obtain 

the stabilized size of the radial extra dimension pm, and only then is the A4 perturbation 

considered. That led to a surprising result: the dependence of the rate of expansion on 

the tension of the standard model 3-brane (the relation between A4 and 673 ) is not what 

we would have expected. A decrease in the energy density (or tension) on the 3-brane 
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leads to cosmological expansion in this model: 

A - _ 3k
2 

6T3 h-6j5(k) 
4 - 1011" 1 _ 73 COS Pm . 

27r 

(4.1) 

Hence the Friedmann equation H 2 
t'V P of conventional four-dimensional cosmology cannot 

hold in this case and must somehow be modified. This result comes from the difference 

of the two jump conditions at the four-brane, 

L' M' 
L M 

(4.2) 

where Cl: determines the equation of state of the energy density of the 4-brane source 

T'. Substituting into this the result of the A4 perturbation to bulk solution .6. (f - Af:) 

combined with the zeroth order relation for f - Af:, we can de duce equation (4.1) and 

even a more general form of it, for arbitrary values of Cl: (see ref.[ll]). 

In the same paper, stabilization of unwarped solutions is also analyzed. Stable un-

warped solutions were also recently studied by Carroll and Guica [5J and Navarro [33J. 

They are similar in topology to solutions of type 3 described in the previous chapter, 

except that in order for the static case to be stable, it requires a nonvanishing magnetic 

flux Fpe ' The magnetic field strength satisfies the Maxwell equation OA ( JfGïFAB ) = 0, 

and adds a term to the Einstein equations that now take the form: 

3H2 (MI) 2 Mil MI LI L" (32 
M2 - 3 M - 3 M - 3 ML - L = K:~(Tg + A) + 2M8 (4.3) 

6H2 (MI) 2 M' L' 2 (32 --6 - -4--=K: (TP+A)--M2 M M L 6 P 2MB (4.4) 

6H
2 (MI) 2 M" 2 e (32 

M2 - 6 M - 4 M = K:6(Te + A) - 2M8 (4.5) 
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where (3 is related to the magnetic field strength by FpB = (3 L / M 4. In our usuai units 

where Mo = 1, the static solution takes the form: 

(4.6) 

[5] and [33] use sightly difIerent coordinates but have similar solutions. The relation 

between the different parameters for the general unwarped solution with magnetic flux is 

1 1 2 
A4 = -A6 - -(3 

2 4 
(4.7) 

so that we get ~A6 = ~(32 for the static case. In the last chapter we had (3 = 0, so that 

this relation (same as equation 3.12) forces the bulk cosmological constant to vanish if A4 

does so. Another characteristic of the static solution is that the two branes have equal 

tensions, or equivalently induce the same deficit angle. 

As we have already outlined in the last chapter, a remarkable feature of these solu-

tions with spherical topology (two 3-branes) is that the brane geometry (e.g. the rate 

of expansion of the universe) is insensitive to the value of the brane tension, whose only 

effect is to induce a deficit angle in the bulk. It was primarily to verify that this effect 

was not associated with a massless radion (typical of unstable solutions) that a thorough 

analysis of the stability of these solutions was performed in [11]. The fact that they are 

indeed stable makes this feature even more surprising. And sinee the tension cornes from 

the energy of the brane fields, but does not induce cosmological expansion on the brane, 

the eonventional Friedmann equation that links the field energy density to the cosmo-

logical expansion cannot hold in its original form. Also, the fact that this brane tension 
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represents what an observer on the brane would calculate as the vacuum energy moves 

the cosmological constant problem completely into the extra dimensions, since it does not 

affect the rate of expansion. Of course the problem is not completely resolved, as there 

is still the need to tune the bulk magnetic field against the bulk cosmological constant, 

but the cosmological constant problem is sufficiently difficult that transforming it into 

a different problem is a worthy endeavor, since the new formulation might suggest new 

solutions. One hope would be to use bulk supersymmetry to ensure A4 = O. If A4 is 

independent of the brane tension, it will be insensitive to the quantum corrections to the 

vacuum energy that usually give the large, irreconcilable with observations, contribution 

to the theoretical value of the cosmological constant. 

4.1.2 Other Models with 3-Branes 

There is another solution studied in [33], and it is again very close to the ones we have 

been discussed in chapter 3. It has a disc topology, like the solutions of type 1 and 2, but 

the author sim ply obtains it by taking only half of the sphere, i.e. identifying points in 

the northern and southern hemispheres that are symmetric under reflection through the 

equatorial plane., so that p (he uses () for that coordinate) ranges from 0 to 1f /2. For his 

particular solution, the first derivative of the metric warp factor are zero at the orbifold 

fixed points ( p = 1f /2 ), and the matching conditions are satisfied trivially, so that there 

is no need for adding a 4-brane carrying any energy at this position. 

Disc topology solutions are discussed in many other papers. The original AdS soliton 
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spacetime has been first studied by Horowitz and Myers [26]. It is a double analytic 

continuation of a planar AdS black hole metric, and as we can expect it involves two 

compact dimensions having the topology of a disc with a conical singularity at its center. 

It has been applied to the braneworld idea by Leblond et al. [32] and Burgess et al. [4]. 

The metric that they use is 

(4.8) 

The setup and particularities of the model described in those paper is pretty much identical 

to those of the AdS soliton solution of chapter 3 (equation 3.33). As for the solution we 

have seen, the boundary of the disc occurs at a four-brane placed at a certain radius 'T' = R 

and a 3-brane is placed at the conical defect. The geometry is everywhere smooth and 

nonsingular including at the location of the three brane, where the circle parametrized by 

e smoothly shrinks to a point and the internaI space ends. As usual, the 3-brane induces 

a conical defect of size 0 = K~T3 at this point. In agreement with the discussion of section 

3.3.3, the stress-energy of the 4-brane requires an anisotropie form which could arise from 

the smearing of 3-branes around the 4-brane or from Casimir energy of light particles 

confined to the four-brane. The way the hierarchy problem is resolved in this model is 

through a combination of warping and having a large extra dimension. The 3-brane has 

a Te V energy scale, while the four-brane is the Planck brane. [4] provides a complete 

accounting of the met rie modes. This model is also closely related to that of [9]. In [11], 

stabilization of the soliton is studied, an expanding soliton model is also considered and 

it is found that the modelleads to a nonstandard Friedmann equation. As we have seen 
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in the last section, a decrease in the energy density on the 3-brane leads to cosmological 

expansion. 

We have already discussed in the last section solutions with two three-branes found in 

the literature, like those in [5J and [33]. Another family of solutions, encountered in [10], 

is closely related to those classified in the last chapter. It has two 3-branes with different 

tensions embedded in a de Sitter bulk. The topology is again that of a sphere with a 

wedge cut out, but the metric, 

do es not allow for solutions with fiat 4D spacetime. This can be understood in terms of 

the limitations of this particular metric: there is no room for having different warp factors 

for radial and angular extra coordinates, contrary to the metric discussed in section 4.1.1 

which has fiat 4D spacetime. Despite this fact, Chodos and Poppitz show that it is 

always possible to tune the parameters of the model so that the solution agrees with 

observation, a fine-tuning that corresponds to the cosmological constant problem. In 

the language of chapter 3, Chodos and Poppitz's solution belongs to the category of 

type 3 solutions, with both the bulk and the metric induced on the brane being De 

Sitter. Their model encompasses a particular solution with constant 4D metric warp 

factor (unwarped solution), but otherwise, that warp factor generally depends on the extra 

dimensional coordinates, and no other specifie examples of solutions are given, the author 

concentrating on parameter space analysis. The deficit angles characteristic of point-like 

sources in 2 dimensions are also present in their model. Many of the characteristics just 
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mentioned demonstrate a similarity of the model with our, except for the extra limitations 

imposed on the metric, as discussed before. Also, this solution is just one six-dimensional 

example of their more general constructions in d+2 dimensions with d-1 branes. 

Finally, 1 will mention one last model which uses three-branes but in a particular 

setup. In (41], Sundrum considers a scenario where several parallel 3-branes are present. 

The Standard Model particles are confined to live on one of the 3-branes while different 

four-dimension al field theories may inhabit the others. These parallel, four-dimensional 

sub-universes interact weakly with each other via the bulk six-dimensional gravit y, so that 

they can be considered as hidden sect ors relative to each other. As in the other models we 

have seen thus far, each 3-brane induces a conical geometry in the two dimensions trans­

verse to it. Collectively, they act as sources for the curvature needed to compact if y the 

extra dimensions into a space of spherical topology. Basically once the author has shown 

that a single three-brane induces a conical geometry in the two transverse dimensions, 

he proceeds by patching together the cones from several three-branes. The bulk space­

time is the product of the compact two-dimensional manifold M 2 with four-dimensional 

Minkowski space. The conical singularity are the only source of curvature for M2' and 

the deficit angles must add up to 411' in order to yield a surface of spherical topology. 

A simple example for visualizing that is the tetrahedron, with the four vertices corre­

sponding to the positions of four 3-branes. The effective field theory is then constructed, 

introducing an abelian gauge field with a non-trivial magnetic flux through the compact 

space for stabilization. In fact, the size of the compact space is determined by the balance 
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between two effects: the potential due to a small bulk cosmological constant, and that 

due to the flux density. The U(l) gauge field has non-zero magnetic flux through the 

closed two-dimensional surface M 2. This flux is fixed, and so as the area of the surface 

(A) increases, the flux density decreases, leading to a lower magnetic energy density. On 

the other hand, the potential due to the bulk cosmological constant A6 increases as the 

compactified area A increases: 

(4.9) 

It is the competition between those two opposing forces which will stabilize the model. 

The resulting theory is consistent with aH experimental Standard Model and gravitational 

tests. In this model, it is possible to solve the hierarchy problem as in ADD, by taking the 

6D fundamental scale to be close to the weak scale, and the size of the compact space not 

much smaller than a millimeter. About the cosmological constant problem, he notes the 

now familiar result, that before compactification the problem disappears into the extra 

dimensions, in the sense that A4 can vanish without any need to fine-tune the 3-brane 

tension, since the only effect of the latter is to induce a conical singularity in the extra 

dimension. 

4.1.3 Topological Defect Approach 

So far we have taken a phenomenological approach to the braneworld scenario, in the 

sense that we have considered the brane as a fundamental object, modelled as a delta 

function source, without worrying about the origin of this brane. As we said in section 
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2.4, one can also use a field theoretical approach to the problem, by not only assuming 

sorne distribution for the energy-momentum tensor of the brane, but explicitly including 

in the total action of the system the contribution of the field(s) responsible for creating 

the topological defect (the vortex, or string, in our case). In the Abelian-Higgs model, 

for example, a string defect arises naturally. Giovannini, Meyer and Shaposhnikov [21 J 

considered essentially the same general setup with the same ansatz as we did in the last 

chapter (but only in the static case A4 = 0 ), except that they added those field theoretical 

source terms causing the defect. 

Gherghetta and Shaposhnikov[19J had already added arbitrary source terms to the 

setup, similar to ours, of [40], but not in the context of a proper field theoretical model 

justifying those terms. They had shown that a thin (local) string could lead to localization 

of gravit y if certain relations between the tension components were satisfied. While [18J 

generalizes these results to an arbitrary number of dimensions, in [2lJ a field theoretical 

realization of this idea is proposed. Both [19J and [21] examine the case of static four­

dimensional spacetime (A4 = 0) in a bulk with negative cosmologie al constant A6 < O. 

We will examine more closely the model described in these two papers, first because it is 

very close to that discussed in Chapter 3, and in order to present the other approach to 

brane-world scenario, that which regards our universe submanifold as a topological defect 

created by sorne scalar fields. 

Concretely, Giovannini, Meyer and Shaposhnikov use the action of a gravitating 

Abelian Higgs model in six dimensions: added to the six-dimensional gravit y bulk ac-
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tion Sgrav (equation 3.2) is a gauge-Higgs action describing the brane, 

In this equation, VA = \7 A - ieAA is the gauge covariant derivative while \7 A is the 

generally covariant derivative, and v is the vacuum expectation value of the Higgs field 

determining the masses of the Higgs and of the gauge boson 

mH = .J2:\v, mv = ev. (4.11) 

Because of the gauge field, the vortex (or string) arising in this particular model is a 

gauged (or localized) defect. In fact the solution to this action is a version of the Nielsen-

Olesen vortex, or string [35]. As we said in an earlier section, a gauged string is a better 

candidate for getting localized gravit y than a global string because the energy density of 

the latter falls off too slowly away (like ~) to be considered localized. 

The metric ansatz is as before, 

while the Nielsen-Olesen ansatz for the gauge-Higgs system reads: 

</J(p, B) = vf(p)e inB
, 

1 
Ao(p, e) = -ln - P(p)], 

e 

(4.12) 

(4.13) 

where n is the winding number. In [21], they concentrate mostly on the case n = l. One 
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can then compute the equations of motion with the ansatz: 

2 p2 
f" + (4m + l) fi + rr;H (1 - f2)f - L2 f = 0 (4.14a) 

(4.14b) 

( 4.14c) 

(4.14d) 

(4.14e) 

where the prime denotes the derivative with respect to the rescaled variable x = m12P, 

and the functions m(x) and l(x) are simply 

M'(x) l() = LI(X) 
m(x) = M(x) , x L(x) . (4.15) 

The difference with [19] resides in the two first equations, (4.14a) and (4.14b), which 

constraint the source fields. Both papers thus find the same bulk solution (away from the 

defect): 

(4.16) 

Giovannini et al. actually present a more general solution in the form 

(4.17a) 

(4.17b) 

but only the case E = 0 willlead to localization of gravit y and everywhere regular geometry. 

In the cases E > 0 or E :::; -1, gravit y is not localized, while for -1 < E < 0, the geometry is 
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singular at sorne point. This discussion on the properties of six-dimensional cylindrically 

symmetric warped geometry in the absence of defects corresponds to what we did in 

section 3.2, restricted to the case A4 = 0, A6 ::::; 0.1 

In [19], applying the boundary conditions to the solution (4.16) directly results in a 

condition on string tension per unit length components, /-ta and /-te: 

( 4.18) 

So with this solution, there is no tuning between the cosmological constant and the brane 

tension, but there is sorne tuning between components of the brane tension. Giovannini 

et al. actually find the same condition (with A now related to the parameters À and 

m H ), which is for them a particular case (for E = 0 ) of a more general condition for 

generic E. In their case, the tension components are directly related to the scalar and 

vector fields. Also, when the defect is introduced at the origin, E will now relate to the 

parameters of the model, mH, mv, À and A6) that will be constrained by the requirement 

E = O. The authors use these conditions and others coming from the boundary conditions 

at the origin and at infinity2 to get numerical solutions and scan the parameter space for 

sets of parameters that satisfy aH the requirements (boundary conditions obeyed, regular 

1 For example, note that for E = 1, this is exactly the AdS soliton solution of equation (3.33). On the 

other hand, the metric solution they focus on (E = 0) does not fit into the classification of bulk solutions 

of Section 3.2, simply because their bulk solution does not obey the condition that L(O) = 0, condition 

that we imposed to aH the bulk solutions entering the classification. 

2In addition to the same boundary conditions for M(p) and L(p) as we had in the last chapter, we 

now have boundary conditions for the scalar and gauge fields, that insure that they describe a string-like 

defect. We demand that the scalar field reaches, for large p, its vacuum expectation value, i.e. I<p(p) 1 -+ v 
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geometry and localization of gravit y). 

One important requirement is the localization of gravit y, which is equivalent to de-

man ding that the four-dimensional Planck mass is finite: 

2 47rMi J 2 Mp = v0 dxAI (x)L(x) < 00. 
2mH 

(4.21) 

This is necessary for the world to look 4-dimensional to an observer on the brane. In 

[19], Gherghetta and Shaposhnikov show Newton's law is not affected significantly by 

considering the equations of motion for the linearized metric fluctuations, i.e. for h,.tV 

defined by: 

g/-,V (x) = TJ/lV + h/-,v (x). ( 4.22) 

The zero mode tensor fluctuation (corresponding to the massless graviton) is localized 

near the origin p = 0 and is normalizable. Moreover, although the contribution from the 

non-zero modes modify Newton's law on the 3-brane, this correction actually grows like 

1/r3. It is more suppressed than in five dimensions because now the gravitational field 

of the bulk continuum modes spreads out in one extra dimension and so their effect is 

weaker. 

for p -> 00. In the same limit,the magnetic field should go to zero. Also, close to the core both fields 

should be regular. That gives: 

1(0) = 0, P(O) = n, (4.19) 

lim I(p) = 1, lim pep) = o. 
p-+oo p~oo 

(4.20) 

75 



Finally, in this model it is not possible to solve hierarchy in the manner of RSI [37], us­

ing the sole effect of the warping, because the extra-dimensional space is infinite. However, 

it is possible to obtain M6 « Mpl by adjusting the brane tension or the bulk cosmological 

constant, solving the hierarchy more along the lin es of ADD [1]. 

4.2 Other Types of Setup 

We now review and discuss different possibilities that have been 1eft out in the previous 

analysis and that are found in the literature, like models with four-branes only, models 

with intersections of branes and models with our three-brane embedded in a four-brane. 

Because the five-dimensional case had been so weIl studied, the easiest models to work 

with seemed to be ones with codimension-one branes, that are in close parallel with 

the five-dimensional case. 1 will first describe a few of these models. A possible path 

in working toward a codimension-two brane is to use the well known codimension-one 

branes and study the intersection of two of these. That is the type of model that will be 

reviewed next. 1 will then discuss an interesting type of setup, which uses both features 

of ADD-like and Randall-Sundrum-like scenarios, trying to take the best of both worlds 

by embedding a 3-brane in a four-brane. The natural continuation of that whole series 

of models is the use of genuine 3-branes, which is the case we have been discussing up to 

now. 
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4.2.1 Codimension-one Brane 

In [28], P. Kanti, R. Madden and K. A. Olive derive both static and non-static solutions 

for a six-dimensional bulk with a cosmological constant (the gravitational action is that 

of equation 3.2), starting from the ansatz: 

( 4.23) 

Both extra dimensions are initially non-compact; one of the two coordinates (I/J ) is quite 

similar to the fifth dimension in the Randall-Sundrum scenario. The size of this dimension 

is made finite by introducing 2 branes (4-branes here, 3-branes in RSl) at two different 

points along its coordinate. Periodic boundary conditions are imposed at those two points 

(I/J = 0 and I/J = L), and the inter-brane distance defines the size of this extra dimension. 

This setup already has many similarities with the Randall-Sundrum scenario [37], and if 

we look at the static solution, 

( 4.24) 

(4.25) 

we see that the dependence on the Randall-Sundrum-like coordinate, I/J, is a purely expo-

nential one, like the warp factor of the Randall-Sundrum model. This solution also has 

the same fine-tuning requirement between the two brane tensions as in the RS model: 

they have to be equal and opposite in order to be consistent with the boundary con-

ditions. However, the second RS fine-tuning between each brane tension and the bulk 

cosmological constant is absent. Instead, there is a new fundamental parameter, the size 
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of the longitudinal (e) dimension, which is fixed in terms of the brane tensions. The size 

of the transverse <p-dimension, on the other hand, remains a free parameter. Note that 

in the case of a single-brane configuration, we simply send the second brane to infinite 

distance from the first, just like Randall and Sundrum did [38]. 

The most promising difference with respect to the five-dimensional case occurs in the 

non-static case. In this case, the fine-tuning between the two brane tensions is relaxed, 

rendering the model free of any fine-tuning. In return, the locations of the two branes 

are then fixed: they are determined by the jump conditions in terms of the two brane 

tensions. The solution for the non-static case is still given by equation 4.24 for the metric 

function f(e) sinee the bulk equation of motion for the function remains unchanged. As 

for the warp factor, however, its time-dependenee radically changes the solution for the 

<p-dependent part. It is now: 

1 
aCe, <p, t) = H( ) if>(<p)f(8) , t - to 

(4.26) 

{ 

bH sinh [w I<p - <Pol] 
with if> ( <p) = W 

bI:(H) cosh [w I<p - <Pol] 

if His real 
(4.27) 

if H is imaginary 

The first case, H real, corresponds to a de Sitter four-dimensional submanifold, while the 

second, H imaginary, describes an anti-de Sitter submanifold. The time coordinate t above 

is the conformaI time. Since the tuning between the two brane tensions is now relaxed, 

the non-static case can accommodate pairs of positive-positive tension branes. This is 

another advantageous difference relative to the 5D case. But in fact, the solution that 

corresponds to two branes with positive tension, the first case of equation (4.27), proves 

78 



to be unstable under small time-dependent perturbations. The second case of equation 

(4.27), for its part, is stable but corresponds to two branes with negative tensions. 

In another paper, Z. Chacko and A. E. Nelson build from a setup with two four­

branes a slightly different model. Again they assume that the only source in the bulk is a 

cosmological constant, so the action is the same as usual. The metric ansatz is also quite 

similar to the one we used in Chapter 3: 

(4.28) 

e being the compact coordinate, that runs from 0 to 21f, and r the radial coordinate. The 

only difference with the metric we used before, apart from the choice of labels for the 

warp factors, is the restriction to the static case.3 However, the geometric setup, and thus 

the boundary conditions, will be different. Here the geometry of the model consists of 

two four-branes localized at different radii, r = a and r = b. The branes can be viewed 

as the surfaces of two infinitely long concentric cylinders in the higher dimension al space, 

with the regular four dimensions parallel to the common axis of the cylinders, the fifth 

dimension going around the surface but perpendicular to the axis, and the sixth dimension 

being the radius. A particularity of this model is that they do not assume that the bulk 

cosmological constant has to be the same for every region of the space-time. The ration ale 

for doing this is that the branes, being topological defects, might be separating different 

phases of the theory. Hence a priori the cosmological constant takes three values: 0:1 

3n should be noted that the general bulk solutions which are the starting point for the model elaborated 

in this paper are coordinate transformations of the bulk solutions found in ref. [IOJ. 
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wh en 0 < r < a, 0:'2 when a < r < band 0:'3 when r > b. Note that our universe does not 

lie at the origin in this model, but on the four-brane located at r = a. The singularity at 

the origin is simply smoothed out. Now the form of the solutions in the three regions are, 

explicitly, 

For r < a 

4 

f = hé"l r [1 + e-~Œlr] 5" , 

[ 5] -~ [ 5] 2 8 = 81eŒ1r 1 + e-2Œ1r 1 - e- 2Œ1r ; 

(4.29) 

4 

. f = heŒ2r [1 _ C2e-~Œ2r] 5" , 

. [ 5] -~ [ 5] 2 8 = 82eŒ2r 1 - c2e-2Œ2r 1 + c2e-2Œ2r ; 

For a < r < b (4.30) 

For r> b (4.31 ) 

The constants in these formulae need to be determined through boundary conditions, i.e. 

by matching the solutions across the branes. 

In this model the hierarchy can be resolved by the enormous difference in the warp 

factors at the positions of the two branes. Gravit y is mostly localized on the outer brane 

while the standard model lives on the inner brane, explaining the apparent weakness 

of gravit y in our world. Now the resolution of the hierarchy problem depends on the 

positions of the branes, and it is important that these positions be fixed. This is done by 

a combination of two effects comparable in size: the anisotropie contribution of quantum 

fields to the stress tensor of each brane, and a scalar bulk field, using the Goldberger-Wise 

mechanism [22]. Together those two effects yield a large enough value of brane spacing 

to solve hierarchy without much fine-tuning. 
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In a little more detail, the first effect, the anisotropie contribution coming from quan-

tum effects of fields, arises when we consider the stress-energy tensor for the four-branes 

in order to match the solutions at the branes. Because of four-dimension al Lorentz in-

variance, the stress tensor is of the form: 4 

( 4.32) 

Now this tensor comprises a contribution from the cosmological constant on the brane, 

and the rest comes from the matter Lagrangian, more precisely the expectation value of 

the stress tensor of the matter fields living on the brane. If only the cosmologie al constant 

was contributing, we would have (32 = "(2. Now the deviation from that is the Casimir 

effect arising from the vacuum energy of quantum fields, which we have mentioned before. 

They calculate that the difference between T;:' and Tt is of order (~) 5 , where a is the size 

of the compact dimension. It vanishes in the limit where the compact dimension becomes 

infinite. 5 Now the size of the compact dimension is in general an r-dependent function, 

determined by the Einstein equations, but we just saw that the brane tension depends on 

this size; as a result, the Einstein's equations fix the brane location. After this pro cess 

of mat ching the solutions across the four-branes, with anisotropie contributions to their 

4We are assuming the matter on the brane is in its ground state. 

5The calculation is lenghty and will not be presented here, but the result can be understood intuitively 

this way: since the only counterterm allowed by general covariance is the cosmological constant which 

contributes equally to both T::' and T~, the difference between these two must be finite and regulator 

independent in the limit that the cutoff is taken to infinity. For a massless field, a is the only available 

dimensionful parameter. 
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stress-energy tensor, the brane spacing is fixed, however to obtain a large hierarchy an 

exponentially precise fine-tuning of the parameter is still necessary. This is in addition 

to the fine-tuning necessary to set the four-dimensional cosmological constant to zero, a 

problem which is not addressed in this paper. 

Now cornes the other effect, the introduction of a Goldberger-Wise scalar field in 

the bulk, which will lessen the fine-tuning necessary for getting a large hierarchy. The 

metric and brane locations will then be completely determined. Also, we can see from 

the equation that determines the location of the outer brane b in terms of the mass of the 

scalar field m and the cosmological constant, 

(4.33) 

that m need not be much sm aller than 0: to get sizeable hierarchy. Exponentially precise 

fine-tuning is not necessary anymore. As before there is one fine-tuning left, which is that 

of the cosmological constant problem. Also, it should be noted that both branes in the 

theory have positive tensions. Finally, they examine physical implications of the model, 

showing that deviations from Newtonian gravit y are highly suppressed at long distances. 

l will mention one last model with two four-branes, that of 1. 1. Kogan et al. [30]. This 

paper is somewhat different than the two preceding ones, and we will not describe it in 

detail here, because its main interest is the realization of multigravity in six dimensions, 

which has to do mainly with field theoretical phenomenology of the model, and that is not 

the focus of the present thesis. In multigravity models, gravit y at sorne scale is mediated 

by both the massless graviton and other state(s). This possibility was introduced in a 
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five-dimensional model in [31].The motivation for the model was not different than others, 

(to find a brane world model in which we would live on a positive brane, thus avoiding 

the cosmoIogical problems associated with the usuaI negative branes of five-dimensional 

model) but their particular model gave fise to an unusual possibility. Gravit y (in an 

experimentally analyzed regions) may result from the exchange of the ordinary graviton 

plus an ultralight KK state (hence the name of "bi-gravit y" ) and modifications of gravit y 

may occur at both smaU and extremely large scales. This ultralight first KK state can 

be so light that the corresponding wavelength can be of order of 1% of the observable 

size of the Universe, while the second KK mode is in the submillimeter region. Only 

at scales larger than 1026cm will the first KK mode decouple leading to a much sm aller 

gravitational coupling beyond this length scale. 

Coming back to the six-dimension al generalization, the setup of [30] consists of a dou­

ble disc topology, bounded by two four-branes and with or without the presence of a 

conical singularity associated with a 3-brane in between (see figure 4.1). Gravit y is local­

ized on the four-branes, where the standard modellies. One of the four-branes' dimension 

is compact, unwarped and of Planck length, so in the low energy limit the spacetime on 

the branes appears three dimensional. The rationale for going to six-dimensional space­

time was that in five dimensions, aU multigravity models had a ghost field (the radion 

associated with moving negative tension branes) The hope was thus to find a multigravity 

model of fiat branes without ghost fields by adding another extra dimension, since the 

requirement of negative tension branes is relaxed in six dimensions. Now the construction 
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Figure 4.1: Warp factors cr(p) and ry(p) for Kogan et al. model of bi-gravity. The point 

po corresponds to a conical singularity. 
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of this model is done by pasting two single four-brane solutions. The simple single four-

brane solution that is their starting point is similar to that in [21] (see equations 4.17 for 

E = 0): 

(4.34) 

R is the radius of the four-brane. They then consider solutions that allow for a brane 

which lS not necessary fiat, with generic tension components. Ultimately, they construct 

two different models where two single four-brane solutions are pasted together, one model 

with a three-brane at the center, and one which is singularity-free. Those models are six-

dimensional generalizations of the quasi-Iocalized and crystalline models, both bi-gravit y 

models. 

4.2.2 Intersection of Codimension-one Branes 

When Randall and Sundrum proposed their mechanism for localizing gravit y on a three-

brane in a locally AdS five-dimensional bulk, it seemed quite difficult to extend the idea 

to any number of dimensions, sin ce it appeared to rely on the peculiar properties of co-

dimension one objects in gravity. Arkani-Hamed et al. thus suggested that this obstacle 

can be overcome by considering n intersecting (2+n) branes separating sections of the 4+n 

dimensional AdS space (2]. In this paper, the branes (two four-branes in six dimensions) 

intersect othogonally in a single 3-brane where gravit y is localized. Hence in contrast 

with the models of last section, where Standard Model particles lived on a four-brane 

which appear to us as four-dimensional because the fifth dimension was small, in this 
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model ordinary particles are truly confined to a four-dimensional "object" , the intersection 

of the two four-branes. This solution maintains a fine-tuning relationship between the 

brane tensions and the bulk cosmological constants, like in the Randall-Sundrum model. 

In addition, it requires that there is no additional contribution to the tension of the 

intersection from brane-brane interactions. In this paper it is assumed for simplicity that 

both intersecting bran es have the same tension. 

In two papers that appeared at about the same time, Csaki and Shirman [17), and 

Nelson [34] consider more general constructions of intersecting branes. In particular, 

they study "brane junctions", where (many) semi-infinite branes intersect in a single 3-

brane. Static solutions to Einstein's equations for branes intersecting at various angles 

are obtained, by gluing patches of AdS space together, with the branes as the boundaries. 

Unlike the Arkani-Hamed et al. model, in these more general models, different regions may 

have different bulk cosmological constants, and the branes may have different tensions. 

The branes aIl meet at the 3+ 1 dimension al Minkowski junction where gravit y is localized, 

as pictured in figure 4.2. It is found that the existence of a static solution de termines 

the angle between the branes uniquely, and moreover, there are other constraints that the 

parameters of the theory (the brane tensions, angles between the branes and cosmological 

constants) have to satisfy. There is one fine-tuning condition involving the brane tensions 

and the cosmological constants, the same condition that was obtained in [2). Since it is 

independent of the brane angles, it cannot have a dynamical origin. Both papers end 

with a discussion on possible resolution of the cosmological constant problem following 
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Figure 4.2: Semi-infinite 4-branes intersecting in a single 3-brane in 5+ 1 dimensions. The 

brane tensions are denoted by Vi, while the bulk cosmological constants are given by Ai' 

this avenue. Csaki and Shirman suggest that brane configurations might exist where 

the cosmological constant might be set to zero by adjusting only the orientations of the 

bran es , unlike the one just described. Then one could translate the cosmological constant 

problem to a completely dynamical problem in the given brane setup. 

In [13J, Cline et al. generalize these solutions to the nonstatic case. They find ex-

panding solutions for a setup of intersecting codimension-one branes in arbitrary number 

of dimensions. Again, the junction of these branes pIays the role of our four-dimensional 

uni verse. Standard cosmology Friedmann equation is recovered if the brane tensions and 

bulk cosmological constant are tuned. It is also possible ta create a hierarchy between 
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branes, but as usual this brings in negative tension branes. Finally, one problem with this 

model is that inflation of the bulk (it is inflating at the same rate as the branes) causes 

the strength of gravit y to decrease on the TeV brane (where the hierarchy problem would 

be solved). 

Finally, although the present thesis does not examine the vast range of new possibilities 

allowed if one considers supersymmetry, l will just mention here as an example one last 

paper on the subject of intersecting branes: Carroll et al., in [6], study (3+ l)-dimensional 

junctions of domain walls in higher dimension al supersymmetric theories. 

In general, those solutions for codimension-one brane junctions are mathematically 

quite different than the other solutions reviewed in this thesis, and that is why their 

details have not been discussed here. Qualitatively, however, certain features are constant 

whatever the setup, like the fine-tuning required in models with two codimension-one 

branes, involving the brane tensions. We have only seen it completely disappears in [8], 

when the Goldberger-Wise mechanism is used to stabilize the size of one of the extra 

dimensions, and in [30], for the non-static case. Also, this fine tuning was only involving 

the two tensions in the case of two parallel branes, while for intersecting brane it concerns 

the relation between branes and cosmological constants. 

4.2.3 3-brane embedded in a four-brane 

A last kind of model involving codimension-one branes in six-dimensional spacetime uses 

features of both ADD-like and RS-like scenarios to resolve the hierarchy problem by 
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embedding a three-brane in a four-brane. In [7], an ADD-like scenario lS generated from 

RS-like warped geometry. More precisely, the large dimensions required for solving the 

hierarchy in the manner of the ADD proposaI arise naturally from a higher dimensional 

warped geometry. This model with two compact extra dimensions is very close to that 

of ref. [8], except for the important difference in the boundary conditions: instead of 

two concentric four-branes, in [7] there is only one four-brane in which a three-brane 

is embedded, the three-brane where the Standard Model particles are confined. This 

difference will impact on the way hierarchy is obtained. Otherwise, the setup is very close 

to that of [8]: apart from the four-brane, the sources of gravit y are a bulk cosmologie al 

constant, a bulk scalar field which stabilizes the compact dimensions and another form 

of matter whieh is localized to the brane and gives an anisotropie contribution to the 

brane tension, such as the Casimir energy of massless fields, a flux or a complex scalar 

field with a non-trivial winding number in the compact direction. In [8] this anisotropie 

contribution was given by the Casimir effect. The metric ansatz is also the same: 

and the bulk solutions are expressed as 

4 

f(r) = cosh: o:r, 
coshs o:b 

( ) 
_ sinh2 0:r 

sr - 6' 

0:2 cosh 5" o:r 

( 4.35) 

( 4.36) 

( 4.37) 

b is the radius at which the four-brane is situated, f is normalized so that f(b) = l.and 

0: = -~h:~A6 (The bulk cosmological constant is negative). () runs from 0 to 21f as usuaI, 
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and the radial dimension is orbifolded about the four-brane, i.e. there exists a symmetry 

that identifies points on one side of the brane to points on the other side. Since we 

will place the standard model on the same four-brane which localizes gravit y, there is no 

need for a second brane here. This bulk solution is almost exactly identical to one of 

the solutions of chapter 3, the AdS soliton one (equation 3.33), although once again the 

boundary conditions are different. Here there is no requirement for a three-brane at the 

origin since the three-brane will be embedded in the four-brane. 

Now the important particularity of this model is that unlike in [8], where the SM was 

occupying all of the four-brane, the fifth dimension being invisible to us because it was 

compactified on a circle of small radius, here ordinary particles are trapped on a three-

brane inside the four-brane. Hierarchy does not arise because of the warping as in [8], 

rather it is due to the large compact angular dimension 4>: 

(4.38) 

where V corresponds here to the size of the 4> dimension. Conceptually, gravit y is localized 

on the four-brane, and it is weak due to the presence of the large compact dimension, 

and the fact that gravit y spreads evenly over the entire four-brane. We still have warped 

space in this model, along the radial coordinate r (the RS coordinate), but here its rôle is 

to lead, together with the scalar field, to a large ADD-like 4> dimension. This is achieved 

by stabilizing the four-brane at a radius where the warping is important. If the mass of 

the scalar is lighter than the fundamental scale by a factor of a few, the setup will be 

stabilized at finite but exponentially large volume for the ADD dimension. Thus we can 
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say that the large dimension necessary to solve the hierarchy problem in the ADD fashion 

is generated naturally by the presence of an other RS-like warped dimension. Actually, 

the six-dimensional model is only an example of their more general D-dimensional model. 

In the generalized version, there is one warped RS dimension and the other dimensions 

form a large ADD-like volume. 

91 



CI1.apter 5 

Conclusion 

l have presented in this thesis an overview of six-dimensional braneworld models and 

solutions. A certain emphasis has been put on a general model with a cylindrically sym­

metric bulk, centered on the codimension-two brane, where the standard model particles 

are confined. Arbitrary bulk and effective four-dimensional cosmological constants were 

considered. This model is the same as in ref.[l1]. Working on such a model, which was 

intended to be as general as possible but simple enough so that its solutions could ·be 

studied, provided a structure for classifying six-dimensional solutions. Solutions to Ein­

stein 's equation for this configuration can be classified, depending on the signs of the 

full six-dimensional and effective four-dimensional cosmological constants, under two dif­

ferent topologies. Solutions with 0 < 1~Â6 :::; Â4 have a spherical topology, with two 

three-branes at the poles, one of which is our four-dimensional universe. For other values 

of the cosmological constants, we have a disk topology with a three-brane at the center 
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and a four-brane at the boundary of the disk (generally provided with an anisotropie 

source of energy). For solutions with this topology the warp factor M(p) can either be 

increasing away from our brane, or decreasing. Unwarped solutions (with constant M(p)) 

arise wh en Â6 = 2Â4' for any sign of Â6' 

We also looked at sorne extensions of this general model; we mentioned for example 

the effect of stabilizing of the model with a scalar field or a magnetic flux. The stability 

analysis in fact reveals the surprising result that the Friedmann equation is modified 

in sorne cases: the four-dimensional cosmological constant could be independent of the 

brane tension, or increase as the latter decreases. Extensions of the model also include 

models from the literature that closely resemble ours. For example, one of Navarro's 

solutions, which has a double disc topology, with symmetry with respect to Pm instead of 

a four-brane there; Chodos' model, with solution encompassed in our general model, but 

provided with a parameter space analysis and extension of the model to more dimensions; 

the spherical topology model of Carroll and Navarro, which correspond to our unwarped 

solution stabilized with magnetic flux; details on the much studied AdS soliton model, 

which is also related to one of our general model solutions; and finally the Sundrum model 

with many parallel three-branes. These are the different extensions of the general model 

that were considered. 

We finally looked at other possibilities, broadening our horizons. We saw that there 

are six-dimensional models with other combinat ions of branes: models with four-branes 

only, with intersection of four-branes as our universe, the Chacko et al. model with our 
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three-brane embedded in a four-brane are examples we diseussed. We looked at another 

approaeh to braneworld models, which eonsiders the fields responsible for creating the 

vortex where the Standard Model particles are trapped. We concentrated on the work 

of Giovannini et al., which builds on that of Gherghetta and Shaposhnikov and is close 

enough to the model we studied in Chapter 3, in terms of the general setup. 

Most of an models studied try to find a solution to either the cosmologieal constant 

problem or the hierarchy problem (or both). The first of these gets hope of solution 

in the fact that the four-dimensional cosmologieal constant is in sorne cases observed to 

be independent of the three-brane tension. Renee, in many of the papers discussed in 

the thesis, it is mentioned that the problem could be transferred into extra dimensions 

in a case where A4 can vanish without any need to fine-tune the three-brane tension. 

On the other side many authors admit that their six-dimensional model still requires 

a fine-tuning which corresponds to the cosmological constant problem. The hierarchy 

problem is in general more successfully addressed in the models we considered. It is 

generally either solved using the warping of the extra dimensions, like in the Chacko and 

Nelson model, where gravit y is localized on a different brane than the Standard Model 

(explaining the apparent weakness of gravit y in our world) , or the hierarchy is rather 

due to the largeness of the extra dimensions, like in the Sundrum model, in which the 

hierarchy can be obtained by taking the 6D fundamental scale to be close to the weak 

seale and the size of the compact space not much smaller than a millimeter. Sometimes 

it is through a eombination of both that the problem can be solved. For example, in the 
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Chacko et al. model with a three-brane embedded in a four-brane, hierarchy is obtained 

from the large <p dimension, but the largeness of this dimension is in turn due to the 

warping along the radial coordinate. 

We have already noticed that an important feature of codimension-two branes, char­

acteristic of six-dimension al models, is that their tension, or vacuum energy, induces a 

deficit angle in the transverse space. One result of this particularity of six-dimensional 

geometry is the peculiar way in which the four-dimensional effective cosmological con­

stant will depend on the three-brane tension. In sorne cases it will be independent of 

this tension; in other instances it may depend on the tension in an unusual way, even for 

stable solutions. This is an important result because the Friedmann equation will thus get 

modified [11]. Hence, we may conclude that although turning to six-dimensional models 

resolves sorne of the problems intrinsic to the five-dimensional case, like the need for a 

negative tension brane for example, new problematic features appear. On the other hand, 

insensitivity to the three-brane tension seems to suggest a solution to the cosmological 

constant problem, although the standard Friedmann equation would have to be recovered 

for this to be applicable. The next step could be to link the models to fundamental the­

ory, which would probably shed new light on the problem. Supersymmetric versions of 

six-dimensional models, for example, appear to fix certain problems. The last word on 

braneworld models has certainly not be said. 
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