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Preface 

This is not a manuscript-based thesis.  Instead I have written a thesis in the 

traditional format – a narrative explaining the work that I have done throughout 

my MSc., as well as the conclusions I have drawn from my analyses.  
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Abstract 

 The MaxEnt (maximum entropy) approach is a recently introduced 

analytic framework that utilizes plant traits to predict community assembly along 

environmental gradients. I aimed to provide a rigorous test of this approach using 

forest understory fern communities. I executed the MaxEnt algorithm by inputting 

observed community-aggregated traits (CATs), and accurately determined species 

abundance distributions (SADs). These results support the notion that trait-based 

environmental filtering at least in part drives fern community assembly, but a 

more general application of the MaxEnt approach depends on its ability to predict 

SADs using CATs independently estimated from environmental data. In an initial 

exploration of this predictive ability I was unable to accurately predict SADs for 

fern communities despite screening many measures of environmental conditions. 

Very recent studies, however, provide new tools that can be used to further 

analyze my data and may yet establish the utility of the MaxEnt approach in 

predicting SADs. 
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Résumé 

Le modèle MaxEnt (entropie maximale) est un nouveau cadre analytique 

qui utilise des caractéristiques de plantes afin de prédire l‟assemblage de 

communautés suivant un gradient environnemental. J‟ai voulu tester cette 

approche de façon rigoureuse en utilisant des communautés de fougères de sous-

bois. En exécutant l‟algorithme du modèle MaxEnt avec des traits biologiques 

agrégés au niveau des communautés, j‟ai pu déterminer la distribution et 

l‟abondance des espèces. Ces résultats appuient la notion que l‟assemblage des 

communautés de fougères est au moins en partie déterminé par un filtre 

environnemental reposant sur les traits biologiques. Toutefois, une application 

plus générale de l‟approche MaxEnt dépend de son habileté à prédire la 

distribution et l‟abondance des espèces en utilisant les traits agrégés estimés 

indépendamment des données environnementales. Dans une première évaluation 

des capacités prédictives du modèle, il fut impossible de prédire les distributions 

et abondances des espèces pour des communautés de fougères malgré l‟essaie de 

multiples mesures de conditions environnementales. Néanmoins, plusieurs études 

récentes fournissent de nouveaux outils qui peuvent être utilisés dans des analyses 

plus poussées de mes données et pourraient établir l‟utilité du modèle MaxEnt 

pour prédire la distribution et l‟abondance des espèces.  
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Introduction  

 In November 2006, Shipley, Vile and Garnier (Shipley et al. 2006) 

published a novel method for predicting the composition of plant communities – a 

theory for species distribution and community assembly along environmental 

gradients.  This method was immediately criticized (e.g. Marks and Muller-

Landau 2007; Roxburgh and Mokany 2007; Haegeman and Loreau 2008; 

Haegeman and Loreau 2009), and Shipley responded to these criticisms in turn 

(Shipley 2007; Shipley 2009a; Shipley 2009b).  Shipley subsequently published a 

book (Shipley 2009c) elaborating and defending his theory, and the debate about 

the validity and utility of the approach continues presently.  For example, a recent 

publication of Oikos (April 2010) features four commissioned articles that 

consider different aspects of the MaxEnt approach (He 2010; McGill and Nekola 

2010; Roxburgh and Mokany 2010; Shipley 2010).  Additionally, the original 

article by Shipley et al. (2006) has been cited 73 times in the 3.75 years since its 

publication.  Despite this lively discourse, the theory remains little tested (Shipley 

et al. 2010; Sonnier et al. 2010).  If the MaxEnt approach is proven to work then 

it would not only further our understanding of community assembly, but also be 

used in conservation efforts such as determining the impact of a changing 

environment on plant communities, as well as predict the success of an invasive 

species in a given area.  My thesis concerns the test of Shipley‟s MaxEnt 

approach, but to put my own work in context I first need to briefly review the long 

history of research on community assembly and allied topics.   

 

Early ecology and concepts of succession 

Community assembly theory has been discussed and debated for at least 

the last century, with a particular focus on plant communities.  Until the mid-19
th

 

century the discipline of ecology had not really taken form, although the roots of 

the discipline in the natural history of plant and animal species were well 

established (McIntosh 1975).  By the mid-19
th

 century the foundations for 

contemporary views of community assembly began to emerge with the 
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publication of Darwin‟s (1859) Origin of Species and Haeckel‟s (1866) 

introduction of the term “ecology” in his publication on the General Morphology 

of Organisms.  Allee (1949) translated Haeckel‟s definition of ecology as “the 

body of knowledge concerning the economy of nature – the total relations of the 

animal to both its inorganic and organic environment; including above all, its 

friendly and inimical relations with those animals and plants with which it comes 

directly or indirectly into contact – in a word ecology is the study of all those 

complex interrelations referred to by Darwin as the conditions of the struggle for 

existence.” 

Even with a formal definition, there was no real paradigm organizing 

ecological studies until the early 20
th

 century when Frederic Clements proposed a 

holistic concept of ecology in which communities were viewed as 

“superorganisms” that could be classified as an association type (McIntosh 1975; 

Simberloff 1980).  Clements‟ proposed that succession was unidirectional and 

predictable, always leading to a homogeneous climax community in a state of 

stable equilibrium (McIntosh 1975; Simberloff 1980).  This view was widely 

accepted because the concept of a deterministic path is appealing, both in that it is 

easy to comprehend and in that it is aesthetically pleasing (Simberloff 1980).  

Although Clements‟ ideas dominated community ecology research in the 

early 20
th

 century, he had critics from the very beginning – most notably Henry 

Allen Gleason (McIntosh 1975).  Gleason propounded an individualistic concept 

of ecology in which communities were not analogous to organisms, but rather 

they were assemblages of coexisting individuals (Gleason 1939; McIntosh 1975).  

Gleason‟s individualistic concept stated that community structure is dependent on 

a number of variables, including: a) the characteristics of individuals, b) the 

nature of the surrounding populations from which species are dispersed, c) the 

probabilities of species dispersing to an area, and d) environmental conditions that 

fluctuate in time and space selecting for individuals that are adapted to the local 

conditions (Gleason 1939; McIntosh 1975).  It follows that communities are 

dynamic and temporary – to some degree constantly in a state of disequilibrium 

(McIntosh 1975; Simberloff 1980; Nicolson 1990).  Moreover, no two areas are 

http://science.jrank.org/pages/9045/Ecology-Origins.html


3 

 

identical in terms of the species that occur in them, the abundance of each species, 

or the way that the areas are spatially arranged (McIntosh 1975).  In essence, 

every community, as well as every part of a community, is the product of 

countless variables that are unique to the specific area in which the community is 

found.  Each community is therefore independent of every other community, 

except in regard to the chance dispersal of species from one community to another 

(Gleason 1939).  Gleason affirmed the existence of communities composed of 

groups of plants with similar requirements to survive, but denied Clements‟ 

holistic concept and its invocation of plant association types to categorize 

communities in a strict manner (Gleason 1939).  It eventually became evident that 

Clements‟ holistic concept of succession did not fit with vegetation patterns 

around the globe, but that Gleason‟s individualistic concept did (Nicolson 1990).  

In time Gleason gained support from other eminent ecologists, and a paradigm 

shift occurred (McIntosh 1967a; Simberloff 1980; Nicolson 1990; Austin 1999).  

Contemporary plant community ecology is still underpinned by Gleason‟s 

individualistic paradigm.   

 

Niche theory 

As illustrated by the paradigm shift from Clements‟ holistic view of 

ecology to Gleason‟s individualistic perspective, there is constant vacillation 

between theories in community ecology; yet the discipline is threaded together by 

a common, albeit ambiguous goal: predicting the composition of communities 

(Keddy and Weiher 1999, p. 2).  Niche theory is a framework of ideas that has 

been embraced by ecologists in their attempts to reach this goal.  Niche theory is a 

logical extension of Gleason‟s individualistic concept and has driven the majority 

of ecological research since its beginnings until the present day, including the new 

theory proposed by Shipley et al. (2006).  A niche is a multidimensional measure 

of the position of an individual or population along an environmental gradient in a 

locality (Vandermeer 1972).  The dimensions represent the different abiotic and 

biotic variables that are suitable for the survival of the species occupying that 

niche (Vandermeer 1972).  Chase and Leibold (2003) explain that there are two 
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major aspects of a niche: 1) species requirements for survival in a locality, as was 

focused on by Grinnell (1917) and Hutchinson (1957), and 2) the impact of a 

species on its environment, which was the focus of Elton (1927) and MacArthur 

and Levins (1967).  Grinnellian niches are comprised of variables that are 

essentially non-interactive environmental conditions that do not invoke the 

concept of competition and help us understand the broad ecological and 

geographic properties of a species (Soberón 2007).  Alternatively, Eltonian niches 

are comprised of variables that are resources over which consumers compete and 

interact locally (Soberón 2007).  Chase and Leibold (2003) have proposed a 

“synthetic” niche concept, which draws from both the Grinnellian and Eltonian 

niche, and they develop a framework to understand niches as the complex 

culmination of a number of ecological processes at different scales.  Niche theory 

is therefore an ecological framework that in general is used to understand nature 

at all scales in space and time by focusing on the abilities of individuals to cope 

with varying abiotic and biotic conditions to survive in an area (Vandermeer 

1972; Chase and Leibold 2003; Gilbert and Lechowicz 2004; Herault 2007).   

Niche theory-based research has dominated the discipline of community 

assembly since the principle of competitive exclusion was introduced by Gause 

(1934).  This principle essentially states that complete competitors cannot coexist, 

i.e. that no two species can occupy the same niche (Hardin 1960; Vandermeer 

1972).  For two or more species to coexist they must use the available and 

necessary environmental resources differentially, and hence occupy different 

niches.  Since Gause‟s principle of competitive exclusion, many other ecological 

principles based in niche theory have been introduced.  For example, Diamond 

(1975) famously created the notion of “assembly rules” to tackle the underlying 

problem of how communities assemble from a species pool.  These rules are 

ecological restrictions to species presence or abundance in communities (Wilson 

and Whittaker 1995; Keddy and Weiher 1999, p. 131).  While the concept of 

assembly rules has been improved and applied to sundry systems over time (e.g. 

Keddy 1992, Weiher and Keddy 1995; Wilson and Watkins 1994; Wilson and 

Whittaker 1995; Belyea and Lancaster 1999), it originated from Diamond‟s 
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research into the distribution of bird species on islands in the New Guinea 

archipelago.  Diamond (1975) was able to construct niches for the species he 

investigated by observing the interspecific differences in resource utilization on 

the islands and predicting which species could coexist. 

 

The continuum concept 

In addition to niche theory encompassing interactions among species, as 

was described in Gause‟s principle of competitive exclusion and Diamond‟s 

original case study, niche theory also includes interactions between species and 

the environment.   These interactions between the biotic and abiotic elements of a 

community are examined in the vegetation continuum concept.  The vegetation 

continuum concept is based in niche theory and was developed by many 

ecologists (e.g. Curtis and McIntosh 1951; Whittaker 1956) as an extension of 

Gleason‟s individualistic hypothesis (McIntosh 1967a).  A continuum, in terms of 

plant community ecology, refers to a gradient along which species distributions 

gradually change both spatially and temporally, according to the relationship 

between species and the environment (McIntosh 1967a).  The continuum concept 

supports Gleason‟s individualist hypothesis because it asserts that species do not 

occur in clearly defined associations.  Instead community composition varies 

according to how individual species interact with the environment differentially 

along an environmental gradient.   

Whittaker (1960) realized that environmental gradients can occur within 

local communities as well as span multiple communities.  He therefore defined 

three hierarchical levels of biodiversity – alpha, beta, and gamma – to assess 

vegetation patterns and community assembly along environmental gradients at 

different spatial scales.  Alpha diversity refers to species richness at a local scale, 

or within a habitat.  The species included in this level co-occur and interact with 

one another.  Beta diversity refers to species turnover taking place between 

habitats.  Finally, gamma diversity measures the species richness of a whole 

landscape, or region (Whittaker 1960; McIntosh 1967b; Whittaker et al. 2001; 

Silvertown et al. 2006).  Each biodiversity level contains heterogeneity within 
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itself due to “short” environmental gradients; however there is greater 

heterogeneity among each scale (Whittaker 1960).  There is ambiguity 

surrounding these diversity levels as a habitat can be defined in many different 

ways, according to the purpose of a study.  Nonetheless, it is important to note 

that scale greatly impacts vegetation patterns and is integral to the study of 

community assembly along environmental gradients. 

 

Utilizing ordination methods for gradient analysis 

Qualitative evidence for the gradual change of species along a gradient is 

plentiful and has been utilized to understand different aspects of species‟ niches 

within and across communities (see McIntosh 1967a for a historical review of the 

supporting research).  However, more objective sampling techniques and methods 

of quantitative analyses in the form of ordination have been developed to provide 

greater understanding of how communities assemble along environmental 

gradients and to aid in constructing species‟ niches at different spatial scales 

(McIntosh 1967a; ter Braak 1983).   

Ordination arranges species, communities, or environments in relation to 

ecological gradients for the purpose of revealing information about the 

relationships among them, and reducing complex data to a few dimensions 

(McIntosh 1967a; Austin 1985).  In other words, ordination clusters data so that 

quadrats or species that are similar to one another are placed closer to each other 

and dissimilar quadrats or species are farther away from each other.  Ordinations 

can be interpreted to infer under which environmental conditions a species 

typically occurs (Gauch et al. 1977; Whittaker 1978).   

Whittaker‟s (1956, 1967) gradient analyses inspired the development and 

use of different methods of both indirect and direct ordination in community 

ecology.  Indirect gradient analysis, sometimes referred to as vegetation 

ordination or indirect ordination, is a type of ordination in which the 

environmental causes of vegetation structure are examined (Austin 1985).  Plots 

are first placed along an axis according to their floristic similarity.  This 

ordination is then interpreted by correlating the axes with environmental factors 
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(Whittaker 1967; ter Braak 1986).  There are many forms of indirect ordination, 

ranging from linear models such as polar ordination, principle component 

analysis, principle coordinate analysis, canonical variates analysis, and canonical 

correlation analysis, to multivariate techniques like detrended correspondence 

analysis and metric or non-metric multidimensional scaling (Austin 1985). 

Similarly to indirect gradient analysis, direct gradient analysis (DGA) is a 

type of ordination that illustrates patterns of species distribution in relation to 

important environmental factors.  However, DGA uses ordination axes that 

incorporate environmental variables so to directly relate community variation to 

environmental variation.  In its simplest form, DGA is a form of regression 

analysis involving plotting species abundance against one or two environmental 

variables; this was the DGA method Whittaker (1967) employed (ter Braak 1986).  

Direct ordination can be made more complex by comparing sets of variables 

(canonical correlation analysis).  However, canonical correlation analysis assumes 

linear relationships between sets of variables, which are not likely in community 

ecology (Minchin 1987).  Ter Braak (1986) revolutionized ordination methods 

when he developed canonical correspondence analysis (CCA).  This method 

combines regression techniques with correspondence analysis and assumes a 

Gaussian relationship between sets of variables rather than a linear one.     

Both indirect and direct ordination methods have their advantages and 

disadvantages.  Some indirect ordination studies have displayed discontinuities in 

ordination space.  These have often been explained to be the result drastic changes 

in environmental conditions, which are bound to occur at large spatial scales; 

however indirect ordinations invoke assumptions regarding the nature of the 

distribution of the variables and their relationship to one another, and therefore 

about how species respond to gradients (Minchin 1987; Austin 2005, p. 63).  

Indirect ordination methods are useful for data exploration, but they cannot be 

used to test hypotheses and thus cannot really support theories like the continuum 

concept (Austin 1985; Minchin 1987).  Alternatively, hypothesis testing is 

possible for the CCA to determine if species composition is significantly related 

to the environment (ter Braak 1986); however, while Gaussian relationships are 
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more common than linear ones, they are certainly not present for all species 

(Minchin 1987).  Redundancy analysis is another direct gradient analysis 

technique that is commonly used.  Although it is a linear method it can be used to 

determine how much of the variance in one set of variables can be explained by 

the other (ter Braak 1986).   

 Ordination techniques have been used in a great deal of research to 

increase understanding of how niches are formed by the relationship between 

environmental gradients and various species, and hence of community assembly 

processes (Silvertown and Law 1987; Austin and Gaywood 1994).  However, this 

information is descriptive and phenomenological, and does not allow for 

predictions of species abundance along environmental gradients.  Indeed, niche-

based research entails studying the influence of all biotic and abiotic 

idiosyncrasies on community assembly.  This is such an overwhelming task that it 

has impeded the creation of a general predictive theory of community ecology and 

has led some to question the utility of niche theory and to come up with 

alternative ecological theories (Keddy and Weiher 1999, p.2; Roughgarden 2009). 

 

Neutral theory 

Recently, Hubbell (2001) reacted to the inability of niche theory to explain 

general ecological patterns by proposing a “unified neutral theory of 

biodiversity,” which was formalized in a book and has been heralded as a working 

model of species distribution and abundance.  Neutral theory has been broached a 

few times in the last several decades in different forms, with varying success in 

attracting the attention of ecologists (e.g. MacArthur and Wilson (1963, 1967); 

Caswell 1976; Hubbell 1979) (Bell et al. 2006; Leigh 2007).  According to 

Hubbell‟s (2001) theory, all individuals in a trophic level are equivalent in the 

sense that they have identical birth and death rates, as well as equal dispersal and 

speciation abilities.  As such, abiotic and biotic variables are assumed to be 

inconsequential in the establishment and persistence of any species.  Rather, a 

species will colonize an area simply if that area has been made available (for any 

number of reasons) and that species is able to disperse and grow there.  Because 
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dispersal drops off rapidly with distance, neighbouring species are more likely to 

colonize a newly available area than species that disperse from great distances.  

Dispersal limitation is thus hypothesized to strongly influence community 

composition, as floristic similarity between sites will decrease with increasing 

distance (Gilbert and Lechowicz 2004; Hubbell 2005; Jones et al. 2006).  The 

neutral framework does not claim that all species are identical in their biological 

traits, but rather that these traits are not responsible for patterns in community 

ecology. Alternatively, chance events involving species demography and dispersal 

are the foundation of these patterns (Hubbell 2001; Hubbell 2005; Jones et al. 

2006; Herault 2007).    

The inability to quantify general patterns using niche theory gives all the 

more power to neutral theory which has achieved success in capturing the patterns 

of species-area, species-turnover, and rank-abundance (Hubbell 2005; Herault 

2007).  The implication that niche theory research and differences among species 

are irrelevant to questions of community assembly has understandably spurred 

great debate and research in community ecology (e.g. Condit et al. 2002; Karst et 

al. 2005; Jones et al. 2006; Tuomisto et al. 2003), which has led to the realization 

that neither approach is complete in its ability to predict the relative abundance of 

species at a site.  Many researchers have therefore directed their efforts towards 

general concepts that incorporate aspects of both niche and neutral theory, e.g. the 

application of the trait-based approach that Shipley et al. (2006) developed. 

 

Potential for trait-based approaches to community assembly 

 Species can be characterized and grouped by the various morphological, 

physiological, and/or phenological features affecting their survival and 

reproduction, i.e. functional traits, which typically vary more among than within 

species (McGill et al. 2006; Violle et al. 2007).  Plant functional types are groups 

of species that are respond to environmental factors in a similar way, and/or share 

similar roles in an ecosystem, because they express certain traits in a similar 

manner (Lavorel 1997; Lavorel and Garnier 2002; Cornelissen et al. 2003; 

Herault 2007).  Many ecologists use the term “functional trait” to signify plant 
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traits that define plant functional types and are particularly relevant to vegetation 

and ecosystem dynamics (Cornelissen et al. 2003).  Violle et al. (2007) 

demonstrate that the term is ambiguous and often carries different meanings in the 

current literature.  They propose that functional traits be defined as traits that 

impact fitness indirectly via their effects on growth, reproduction and survival.     

Trait-based community ecology has built upon research into the 

relationship between species and environmental gradients (i.e. the continuum 

concept) to broaden the scope of the aforementioned assembly rules (e.g. Diaz 

and Cabido 1997; Diaz et al. 1998; McIntyre et al. 1999; Wang and Ni 2005; 

Silvertown et al. 2006; Ackerly and Cornwell 2007; Cornwell and Ackerly 2009).  

This vein of research theorizes that the environment serves as a filter that only 

permits species that have certain functional trait combinations to survive in a 

given environment.  Instead of the environment filtering out unsuitable genotypes, 

as is the case in evolution, unsuitable traits are being selected against (Keddy 

1992; Weiher and Keddy 1995; Belyea and Lancaster 1999; Booth and Swanton 

2002).     

The concept of environmental filtering is influenced by the spatial scale 

that is being observed.  Although some traits appear important to vegetation 

patterns at multiple spatial scales, others appear to be more relevant at a particular 

spatial scale.  For example, traits that are associated with climatic factors may be 

termed “gamma-traits” because they affect the range of a species on a continental 

scale.  Alternatively, traits that are associated with factors involved in the ability 

of a plant to garner resources in a specific environment may be termed “alpha-

traits” because they affect the survival of a species in a given locality (Morin and 

Lechowicz 2008).  Silvertown et al. (2006) as well as Ackerly and Cornwell 

(2007) propose that there are alpha, beta and gamma niches that can be defined by 

alpha, beta and gamma traits, respectively, as well as environmental factors that 

influence vegetation dynamics at these scales.  Furthermore, it should be noted 

that some traits may affect whether or not a species occurs in an area at all, i.e. a 

species‟ distribution, while others are relevant to the abundance at which a species 

occurs if it is in fact present in a given area (Morin and Lechowicz 2008).  All of 
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this suggests that understanding the scale of a study and choosing traits 

appropriately is very important in trait-based research.  Studying alpha traits will 

help elucidate community assembly processes within habitats, and beta traits will 

facilitate understanding of community assembly along vast environmental 

gradients that span many different habitats (Ackerly and Cornwell 2007).     

The differentiation between alpha and beta traits may also provide insight 

into the trait correlations that have been discovered (Ackerly and Cornwell 2007).  

A large amount of research into interspecific trait correlations has provided 

evidence that a relatively small number of plant functional traits greatly influence 

many aspects of plant life history, and explain plant responses to biotic and 

abiotic factors at different scales (Lavorel and Garnier 2002; Wright et al. 2004).  

For example, a trait correlation study was carried out by Wright et al. (2004) that 

used the “GLOPNET” data set, which contains 2,548 species at 175 sites.  This 

meta-analysis focused on leaf functional traits from a wide array of species and 

showed that these traits are highly correlated across the globe.  This “worldwide 

leaf economics spectrum” demonstrates that trait expression is constrained by 

trade-offs involving physiology and competitive interactions (Wright et al. 2004).   

Additionally, through an analysis of 640 species and 12 traits, Diaz et al. 

2004) demonstrated that certain patterns of trait specialization are common across 

floras from Argentina, England, Iran and Spain.  A principle component analysis 

(PCA) illustrated that traits associated with obtaining and using resources 

(specific leaf area, leaf thickness, leaf size, and leaf tensile strength) were highly 

correlated, accounting for 24% of the variance, while those associated with plant 

size (leaf area, seed mass, woodiness, and height) accounted for 17% of the 

variance.  It is evident that necessary tradeoffs between form and function must be 

fulfilled by plants to survive.  These PCA results suggest that such tradeoffs, and 

thereby the expression of various traits, are very similar across taxa because there 

is a common need among plants to reduce water, light and nutrient stress and to 

use these critical resources efficiently.   

Functional traits reflect species‟ “strategies” to survive in different 

environmental conditions, but environmental filters ultimately act upon whole 
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individuals who possess a myriad of traits (Grime 2002; Westoby et al. 2002).  

Therefore interspecific correlations between plant traits reflect a process of natural 

selection that facilitates certain combinations of traits over others at each scale 

(Westoby et al. 2002).  Even if species express these traits differently, according 

to what the particular environment they occur in necessitates, similar tradeoffs 

will cause trait correlation among species across the globe.  Trait-based research 

has thereby increased understanding of plant functional types and how ecological 

communities function at different scales. 

In summary to this point, I have reviewed evidence supporting the idea 

that plant functional traits contain a lot of information relevant to community 

assembly, and that the scale of a study influences which traits are most significant 

to the distribution and abundance of species.  In addition to providing insight into 

the environmental filtering hypothesis, and the fundamental tradeoffs governing 

plant functional types, trait-based research has the potential to develop general 

principles in community ecology.  When attempting to understand community 

assembly along environmental gradients and predict community composition, 

species-based studies are limited to specific areas and thus cannot be extrapolated 

to understand community dynamics in different habitats.  Alternatively, as the 

analyses by Diaz et al. (2004) and Wright et al. (2004) indicate, trait-based 

research allows for hypotheses to be generalized to multiple systems.  

Additionally, moving past the species concept eliminates the inevitable 

complexity of examining pairwise species interactions (Weiher and Keddy 1995; 

McGill et al. 2006).  Moreover, trait-based research functionally groups species 

together, further reducing the perceived complexity of ecological communities 

and directing focus toward more fundamental processes in community assembly 

(Weiher and Keddy 1995; Lavorel 1997; Mcgill et al. 2006; Ackerly and 

Cornwell 2007; Herault 2007).  Nonetheless, the problem of predicting 

community assembly has yet to be completely solved (Keddy 1992; Roughgarden 

2009).  Shipley, Vile and Garnier (2006) have come up with a possible solution 

that draws upon previous research, but also introduces some new ideas rooted in a 

trait-based approach to the problem of community assembly. 
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An explanation of Shipley, Vile and Garnier’s (2006) MaxEnt Approach 

Shipley, Vile and Garnier (2006) developed a trait-based model that in 

principle could reconcile the niche and neutral theory approaches to 

understanding community assembly.  This model utilizes plant traits as constraints 

driving the distribution and abundance of species along environmental gradients.  

This aspect of the MaxEnt approach falls within traditional approaches to 

predicting community assembly as it is assumed that the environment filters out 

the least suited plant traits so that only select species form a community in any 

given habitat.   

The novel aspect of Shipley, Vile and Garnier‟s (2006) model (hereafter 

called the MaxEnt approach) is that it employs Bayesian statistics and entropy 

maximization to ensure that species abundance distribution (SAD) predictions 

only incorporate observed trait assembly rules and no other information (Shipley 

2009c).  This approach is plausible because SAD predictions should be solely 

based on trait data that encodes important information about species‟ evolutionary 

histories and the process of community assembly, and not irrelevant information 

or other made-up assumptions.  This Bayesian approach integrates niche and 

neutral theory because species are considered ecologically equivalent and 

randomly assembled (neutral theory), except with respect to their functional traits 

governing the environmental filtering process (niche theory) (Shipley et al. 2006). 

  

Community-aggregated traits  

The plant trait data incorporated into the MaxEnt approach are actually 

“community-aggregated traits,” which are average trait values weighted by 

species abundance in a series of sample plots.  To obtain these community-

aggregated traits (CATs), selected plant traits must first be measured for all the 

species in a species pool.  This is done by sampling a number of individuals in 

populations across the entire area that the species pool is derived from.  Once 

these measurements are made, the average value of each trait is calculated for 

each species.  After this, relative abundance must be determined for each species 
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in the communities being studied.  The average trait values for each species are 

then weighted by the relative abundance of each species and summed to produce a 

single aggregate value for each trait in each community; these weighted average 

values are the CATs.  Weighting the trait data in this manner allows for trait 

comparison among communities rather than just among coexisting taxa.   

 

Bayesian statistics and entropy maximization  

In physics, entropy maximization has proven to be extremely useful in 

predicting many variables of a system using only a few constraints (Mcgill 2006; 

Haegeman and Loreau 2008; He 2010).  For example, maximum entropy has been 

used to develop complex weather system models (McGill 2006).  In general, 

Bayesian techniques such as this transform a probability distribution of some 

system component that is based on a priori information into a more accurate 

probability distribution once additional information regarding the system is gained 

in the form of constraints (Shipley 2009c).  Since it is impossible to consider all 

the factors involved in community assembly, applying the ecologically relevant 

information that is available in species traits in conjunction with the technique of 

entropy maximization, as is done in the MaxEnt approach, appears to be a 

promising solution to the problem of predicting the distribution and abundance of 

plants along environmental gradients.   

The entropy maximization procedure works by assigning certain 

probabilities to the possible states of a system; in the case of the MaxEnt 

approach, states are species (Shipley 2009c).  To predict the probability 

distributions of species in a community, one first derives an a priori, or “prior” 

distribution that is not yet informed by any trait information.  At the simplest or 

“maximally uninformative” level, this prior distribution can be based on only the 

information that a species occurs in the species pool and might contribute to a 

community (Shipley 2009c).  In this case each species is mutually exclusive, 

species are not ordered in any way, and the probabilities of each species occurring 

add to unity.  Consequently, the species in the species pool are assumed to yield a 

community in which every species has an equal abundance, or a uniform prior 
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distribution.  Alternatively, if other SAD information is known, it can be used to 

create a somewhat better informed prior distribution.  For example, the relative 

frequency of each species counted in a vegetation survey of the region 

encompassing the species pool could provide a prior distribution based on the 

assumption that the relative abundance of a species in the community is 

determined by its relative abundance in the regional species pool – an expectation 

in accord with neutral theory.  To reiterate, the prior distribution does not have to 

be maximally uninformative, but it must not contain any information pertaining to 

the community-aggregated trait constraints that will be used in the MaxEnt 

approach to predict the actual species distributions.   

Once this prior distribution is established, the community-aggregated trait 

information is added to the system to act as a constraint and create potential a 

posteriori probability distributions that are hopefully similar to the actual relative 

abundances of all the species in the communities being examined.  There are 

potentially many possible probability distributions that allow for the community-

aggregated trait constraints but the MaxEnt approach selects the one with 

maximum entropy (Shipley 2009c).  To do otherwise would be to predict an SAD 

that is based on information outside of the prior distribution and the 

predetermined constraints, which is a logical contradiction as these data should 

represent all the information available (Shipley 2009c). This also has the outcome 

of maximizing species diversity given the species richness of a community.  

 

Criticisms of MaxEnt and Shipley’s (2009) response 

Despite the plausibility of using the MaxEnt approach to predict SADs 

across communities from a species pool, the approach has gotten harsh criticism 

(e.g. Marks and Muller-Landau 2007; Roxburgh and Mokany 2007; Haegeman 

and Loreau 2008; Haegeman and Loreau 2009).  Here I will convey the criticisms 

Shipley‟s (2006) approach has received and Shipley‟s (2009a) response to these 

criticisms.  

The ostensible difficulty with imposing such community-aggregated trait 

constraints on ecological systems first manifests itself in the apparent inability of 
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the MaxEnt approach to predict abundances of rare species (Marks and Muller-

Landau 2007; Haegeman and Loreau 2008).  In Shipley et al.‟s (2006) test of their 

own model, most of the abundance data points are clustered together, as there are 

many species in their experiment with low abundance and relatively few with 

high abundance.  Even though this is typical for SADs in most plant communities, 

it makes the use of linear regression a poor choice for measuring the success of 

the prediction.  When the concentrated data representing less abundant species are 

separated from the outlier data and transformed (e.g. logarithmically or by the n
th

 

root), it seems as though the predictive power of the MaxEnt approach is not as 

strong as first suggested (Marks and Muller-Landau 2007; Haegeman and Loreau 

2008).  In fact, when Haegeman and Loreau (2008) reanalyze the original data by 

Shipley et al. (2006) it becomes apparent that the estimation of species abundance 

is too high for rare species, and too low for the most common species.  

Haegeman and Loreau (2008) also claim that only the more prevalent 

species are well predicted because the constraints are weighted averages 

necessarily determined predominantly by these dominant species.  Therefore plant 

communities that contain a few dominant species will be characterized by a 

community-aggregated trait value that is heavily weighted in favour of 

characteristics of these species; this subsequently allows for the relatively 

accurate prediction of only the dominant species‟ distributions.  The community-

aggregated trait constraints are therefore considered to be poor at predicting the 

abundance of rare species; in other words, the CATs are “overly restrictive” as 

they are responsible for the strong prediction of dominant species rather than 

operating on all species in the maximum entropy analysis (Haegeman and Loreau 

2008).  As such, for the MaxEnt approach to work, Haegeman and Loreau (2008) 

propose that the constraints chosen must contain information that represents all 

the characteristics of the entire community (i.e. not only the most dominant 

species), but simultaneously not be so restrictive that predicted species 

abundances are entirely the result of this added information, and not due to the 

maximization of entropy. 



17 

 

Shipley responds to these criticisms of his method by explaining that there 

has been a misinterpretation of what the MaxEnt approach is really doing.  In 

particular, he claims that Haegeman and Loreau (2008) have viewed the MaxEnt 

approach as a “maximum combinatorial” model, rather than a maximum entropy 

model derived from Bayesian logic and information theory (Shipley 2009a).  

While it is true that leaving out constraints carrying information that affect the 

actual SADs would be the downfall of a model based on traditional combinatorial 

statistics, this is not true for the Bayesian MaxEnt model, which assumes outright 

that such conditions have not been obtained (Shipley 2009a; Shipley 2009c). 

Furthermore, Shipley (2009a) agrees that all the predictive ability of the 

MaxEnt approach lies within the constraints, not in entropy maximization, and 

insists that the value of the latter is that it ensures that only the information 

available in the constraints is incorporated in the prediction of a probability 

distribution.  Hence MaxEnt is based on relative entropy -- new information may 

be gained and used to modify a prior distribution in the process of developing 

accurate distribution predictions (Shipley 2009a).  Relative entropy specifically 

refers to the amount of new information gained in the predicted a posteriori 

probability by using the new CAT information in addition to the information 

encoded in the a priori distribution, relative to only using the latter.  In this sense, 

MaxEnt may be better termed “relative maximum entropy” or “MaxREnt,” as is 

done by Dewar and Porté (2008), to elucidate the notion that the predicted SADs 

were influenced by constraint information that was missing in the prior 

distributions. 

I believe that the lack of ability to predict the SAD of rare species warrants 

more attention; Shipley (2009a) hardly acknowledges it in his assertion that 

predictions are based solely on the constraints, which represent all the information 

available (Shipley 2009c).  I can infer from this that Shipley (2009a) believes that 

if SADs of rare species are not predicted with the information available, then 

there is little or nothing that can be done.  This response does not satisfactorily 

address the problem in my opinion.  Nevertheless, my test of the MaxEnt 
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approach will shed more light on this issue, and perhaps it is sufficient to simply 

settle for the prediction of common and intermediately abundant species‟ SADs.   

Even if the MaxEnt approach does not produce perfect SAD predictions, 

the knowledge gained from it may still have great implications in the 

understanding of plant community assembly, as well as the conservation of 

terrestrial ecosystems.  For example, if rare species are not well predicted then it 

can be inferred that processes other than environmental filtering (e.g. stochastic 

dispersal, establishment or disturbance events) have a role in the assembly of 

plant communities, especially in the establishment of rare species.  Moreover, if 

the MaxEnt approach is able to predict the abundance of some species then there 

is support for the notion that traits do exhibit meaningful trends on a community 

level; i.e. that the process of environmental filtering does at least in part drive 

plant community assembly and that community-aggregated traits contain 

information about this process. 

 

Relating community-aggregated traits to environmental gradients 

Another criticism of the Shipley, Vile and Garnier‟s (2006) test of their 

MaxEnt model is that there was an erroneous circularity linking the prior 

distribution and predicted distribution.  Shipley et al. (2006) were limited in terms 

of their dataset and used the same relative abundances of species to both calibrate 

and test their model.  That is, they first computed the community-aggregated trait 

values from the observed species abundances in the communities in their study 

sites, and then used these values to form predictions of species abundance in the 

same sites.  Even though they eventually attempted to predict CATs by using a 

cubic-spline regression to smooth the observed CAT data over a successional age 

gradient, their method intrinsically tied the predicted and observed SADs 

together, thus undercutting any assertion that the MaxEnt approach worked in 

predicting species distributions through an analysis of independent knowledge of 

plant traits (Marks and Muller-Landau 2007; Roxburgh and Mokany 2007; 

Haegeman and Loreau 2008).   
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Shipley‟s (2009a) response to this dilemma is that it, “simply does not 

exist.”  First he states that this supposed circularity is actually a common practice 

in classical statistical mechanics and Bayesian statistics alike.  The example he 

provides is the utilization of temperature as a constraint on macroscopic average 

kinetic energy.  Shipley (2009a) explicates the process of adjusting the degrees of 

freedom in a statistical model when using the same data to estimate a distribution 

and test the accuracy of the prediction.  This adjustment allows the prediction and 

the test to be done with different information, and thus circularity is avoided.  In 

essence this rejoinder explains that this circular MaxEnt approach can be used to 

determine if a MaxEnt model fits species relative abundance and community-

aggregated trait data; i.e. it can show whether or not community-aggregated traits 

do drive species abundance distributions, at least in part.  Others have since 

agreed with this point of view, and many recent studies have used the circular 

MaxEnt approach to determine if community-aggregated traits are important to 

community assembly (e.g. He 2010; Mokany and Roxburgh 2010; Roxburgh and 

Mokany 2010; Sonnier et al. 2010).  Shipley (2009a) goes on to explain that 

measured values are not necessary to ascribe constraints, and in fact the goal of 

the MaxEnt approach is to eventually base the constraints on environmental 

gradients.   

I will attempt to use the MaxEnt approach in this more predictive manner 

by developing environmental gradients with which to estimate CATs and predict 

SADs.  This proposed method is a commonly accepted way to circumvent the 

questionable circularity altogether.  I simply will use separate communities 

sampled along the same environmental gradient in a locality, i.e. at the alpha 

scale, to calibrate and test the MaxEnt approach.  An underlying environmental 

gradient then can be established for both the calibration and test plots, and a 

generalized additive model (GAM) can be used to define the relationship between 

the gradient and the CATs calculated in the calibration plots.  A GAM fits a 

function to data using either parametric or non-parametric means, thereby 

potentially providing a better fit than other methods (Wood 2010).  Since the 

independent test plots are also arrayed along the same environmental gradient, the 
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GAM can then be used to estimate what the CATs are expected to be in the test 

plots.  Once these estimated CATs are computed, the MaxEnt approach can be 

employed to predict SADs in the test plots.    

Not only does this method avoid any type of circularity and test the true 

predictive ability of the MaxEnt approach, but it more firmly draws in the concept 

of the environmental filtering process by means of arranging communities along 

an environmental gradient to interpret community assembly processes.  Rather 

than simply assuming that the CATs reflect changes in the environment, the 

relationship between these CATs and the changing environment can be quantified 

by a GAM and thus provide insight into the environmental filtering process that 

was previously described (Keddy 1992; Weiher and Keddy 1995; Belyea and 

Lancaster 1999; Booth and Swanton 2002).   

The MaxEnt approach seems to have the potential to move community 

ecology a significant step forward.  If MaxEnt successfully predicts SADs across 

environmental gradients, it can be applied to predict how plant communities will 

change in response to environmental changes (e.g. climate change and land use 

change), and how successful species may be when introduced purposely or 

inadvertently in a new region.  Furthermore, MaxEnt has the potential to connect 

the fields of biogeography, functional ecology, and community ecology (Shipley 

et al. 2006).  Finally, if the MaxEnt approach works, the question of how 

communities assemble from a species pool, which links together all research in 

community ecology, will have a more complete answer.  Even if Shipley, Vile 

and Garnier‟s MaxEnt approach does not work, its potential makes it deserving of 

thorough empirical testing. 

 

Testing the MaxEnt approach 

Although the MaxEnt approach deserves empirical testing, very few such 

tests in fact have been performed (e.g. Mokany and Roxburgh 2010; Roxburgh 

and Mokany 2010; Sonnier et al. 2010; Shipley et al. in press).  Here I provide a 

brief outline of the steps I have taken to provide a meaningful test of the MaxEnt 

approach, and I then will explain each step in detail in the subsequent text: 



21 

 

1. Decide what sort of plant community to sample. 

2. Select a study site and determine the species pool. 

3. Select and measure a set of functional traits. 

4. Measure species abundance in plant communities located in varying 

environmental conditions and calculate community-aggregated traits for 

each study plot.  

5. Decide on a prior distribution to incorporate in the MaxEnt approach. 

6. Perform a circular test of the MaxEnt approach following established 

procedures. 

i. Predict SADs by inputting the observed CATs and the prior 

distribution for all the plots to the R code written for the 

MaxEnt approach in the „FD‟ package in R (Laliberté and 

Shipley 2010). 

ii. Compare the predicted SADs with the observed ones using the 

inferential permutation test developed by Shipley (in press), 

which is available through the „FD‟ package in R (Laliberté 

and Shipley 2010). 

iii. Work to improve the predictions by altering the different 

components of the MaxEnt approach. 

7. Perform a non-circular test of the MaxEnt approach using independent 

calibration and test plots.  

i. Create an environmental gradient from measured environmental 

variables, along which the communities can be placed and from 

which prediction constraints (CATs) can be estimated in test plots. 

a. Examine the environmental conditions in all of the plots 

and eliminate outliers if necessary.  

b. Divide the remaining plots into two subsets of “calibration” 

and “test” plots, along an environmental gradient. 

c. Define mathematical relationships linking different 

environmental gradients to the CATs calculated from 

observed data in the calibration plots. 
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d. Use the mathematical relationships to estimate CATs in the 

test plots. 

ii. Predict SADs by inputting the estimated CATs and the prior 

distribution for the test plots to the R code written for the MaxEnt 

approach in the „FD‟ package in R (Laliberté and Shipley 2010). 

iii. Compare the predicted SADs with the observed ones using the 

inferential permutation test developed by Shipley (in press). 

iv. Work to improve the predictions by altering the different 

components of the MaxEnt approach. 

 

In this section I will elaborate on the methods I used to realize steps 1-3. Steps 4-7 

will be covered in the section regarding my approach to data analysis.   

 

1. DECIDE WHICH COMMUNITIES TO SAMPLE 

 

Defining a community 

To test the MaxEnt approach I first had to determine which communities I 

was going to sample, which was difficult because it involved questioning the 

concept of a community in general.  Despite over a century of scientific study 

(McIntosh 1975), the definition of a community is still in debate and changes with 

taxonomic and spatial scale, as well as the purpose of a study (Booth and Swanton 

2002; Ricklefs 2008; Vamosi et al. 2009).  In its simplest form, a community can 

be defined as two coexisting species (Fauth et al. 1996); however communities 

are usually much more complex, containing many species from every kingdom of 

life, no matter the spatial scale. Most researchers do not try to study communities 

defined by all of the species in a particular area because such communities are 

intractable.  With each species that is considered, new relationships with other 

biota, as well as the environment are brought into the picture.  Studying all of 

these relationships and the overall ecological patterns that they form is an 
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extremely difficult task to carry out that is prevented by limitations in time and 

resource availability (Vellend et al. 2008).    

Many studies therefore focus on more restricted communities composed of 

relatively few species, but excluding some species may lead to misinterpretations 

of community assembly rules.  Community patterns can be missed because they 

are caused by excluded species, or because they are manifested in excluded 

species (Booth and Swanton 2002).  While these false impressions are obviously 

not desirable, it is nonetheless common practice in ecology to direct research 

towards interactions within restricted populations at a local scale (Ricklefs 2008).   

Often researchers elect to study species within a plant functional group, 

which is determined by species‟ traits, to elucidate mechanisms of community 

assembly.  This is because species within a functional group are more likely to 

interact competitively if they coexist than species among different functional 

groups (Vamosi et al. 2009).  This dynamic is significant to the central questions 

of community assembly.  Webb et al. (2002) conclude that sometimes species 

with similar traits coexist (phenotypic attraction), and sometimes they do not 

(phenotypic repulsion).  Furthermore, they reviewed the literature relevant to both 

phylogenetics and community ecology and came up with four possible 

explanations for these outcomes.  Phenotypic attraction occurs when species with 

similar traits coexist because they can survive in similar environmental 

conditions.  These species can either be 1) closely related and share traits that 

were conserved throughout evolution, or 2) distantly related and share convergent 

traits.  In both of these cases environmental filtering is the proposed mechanism 

that brings these species together.  Alternatively, phenotypic repulsion occurs 

when 3) highly unrelated species coexist because competitive exclusion causes 

closely related taxa to be locally excluded or 4) species with convergent traits 

interact competitively so that some species are excluded.  The first option, i.e. 

phenotypic attraction due to the clustering of phylogenetically related species, 

appears more often than the other three options in empirical studies, supporting 

the idea that environmental filtering is the mechanism shaping the majority of 

communities (reviewed by Webb et al. 2002; Vamosi et al. 2009).  Despite this, 
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what makes environmental filtering or competitive exclusion the dominant force 

in each case is yet unknown.   

I think this question may be answered by focusing on why 

phylogenetically related species with similar traits do or do not coexist in a 

habitat.  Such communities would provide a rigorous test of the MaxEnt approach 

because they are likely assembled by environmental filtering and the MaxEnt 

approach is based on the environmental filtering hypothesis.  If a test using such 

communities fails to support the MaxEnt approach, then doubt will be cast on the 

theoretical underpinnings of the MaxEnt approach.  As such, I decided to limit the 

communities I sampled in my test of the MaxEnt approach to include only a 

subset of phylogenetically related species that display trait conservatism, rather 

than all of the species in a given area. 

   

Using the fern functional group to test the MaxEnt approach 

The fern functional group fulfills the aforementioned criteria for a study 

group as they are phylogenetically distinct on the whole, and they share traits that 

other vascular plant groups do not.  The classification of “fern” is a broad one that 

encompasses thousands of species across the globe (Moran 2008).  Ferns are 

considered an ancient group of plants, as molecular and fossil evidence leads us to 

believe that they originated over 350 mya (Pryer et al. 2004; Schuetpelz and Pryer 

2008).  There is a great amount of physiological, morphological and phenological 

differences among all these species, stemming from the various evolutionary and 

phylogenetic pathways that developed over time.  Although several monophyletic 

families have been distinguished, and some are more closely related than others, 

all ferns are vascular plants that disperse lightweight spores, generally only 30-70 

µm long, rather than seeds to reproduce (Whittier and Wagner 1971; Pryer et al. 

2004).   

This lightweight reproductive structure is conducive to anemochory, 

which reduces the role of dispersal limitation in community assembly and hence 

lends support to the assumptions inherent in both niche theory and the MaxEnt 

approach. As Gleason propounded in his individualistic concept of ecology, the 
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structure of a community is greatly influenced by the nature of the surrounding 

communities and the movement of individuals to and fro.  Dispersal limitation is 

thought to be a particularly important constraint on community structure if neutral 

processes are more important than niche-related ones (Hubbell 2001); however as 

a result of fern spores being widely dispersed by wind, dispersal limitation is not 

likely to be an important factor for fern community assembly.  Atmospheric 

samples have found fern spores at high altitudes, even in jet streams (Moran 

2008).  Biogeographic and molecular evidence confirms that fern spores can 

traverse great distances as well, much more so than heavier propagules such as 

fruits and seeds (Dassler and Farrar 2001; Page 2002; Moran 2008).  That said, 

spores from ferns that grow on the forest floor (as do the majority of fern species I 

am studying) are not usually exposed to large amounts of wind.  Spore rain is 

therefore much more substantial within a few meters of the parent plant than it is 

even 50 m away (Peck et al. 1990; Penrod and McCormick 1996).  Nonetheless, 

since ferns can disperse virtually anywhere, their distribution and abundance is 

seemingly less determined by dispersal limitation than in seed-bearing plants.  

The small mass of fern spores is therefore a trait that reinforces the idea that 

niche-related processes are the dominant forces in fern community assembly, 

which supports the logic of the MaxEnt approach. 

Ferns also possess other traits that particularly support the niche-based 

concept of environmental filtering, which in turn makes the fern functional group 

a good candidate for testing the MaxEnt approach.  Ferns are generally less 

susceptible to herbivory and disease than many other plants are (Page 2002).  This 

bolsters the idea that abiotic factors may be greater drivers of fern community 

assembly than biotic factors, i.e. that the environmental filtering hypothesis is 

likely to be the dominant mechanism in community assembly rather than 

competitive exclusion (Page 2002; Karst et al. 2005).  In fact it has been proposed 

that climatic properties influence fern distribution on a regional scale, while 

edaphic variables do so on a local scale (Karst et al. 2005).   

Thus, in addition to simply being a phylogenetically related group of 

species displaying trait conservatism, ferns possess unique traits that support the 
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theory behind the MaxEnt approach and are therefore an excellent study group for 

rigorously testing it.  If my test of the MaxEnt approach using fern community-

aggregated traits provides positive results, then I will have confirmed that 

environmental filtering is indeed the dominant process in fern community 

assembly along environmental gradients.  If the MaxEnt approach proves unable 

to predict the assembly of fern communities, its capacity to predict that of other 

plant groups with traits that are less conducive to the notion of environmental 

filtering will most certainly be called into question. 

 

2. SELECT A STUDY SITE AND DETERMINE THE SPECIES POOL  

 

Study site 

After establishing that I wanted to sample fern communities, I had to 

determine which species of ferns I would include in my test of the MaxEnt 

approach.  This decision involved first choosing a study site that contained many 

populations of a wide variety of fern species.  These characteristics were 

necessary to provide a large enough sample size for my research and to fulfill the 

statistical requirements regarding degrees of freedom; the degrees of freedom 

available in a MaxEnt analysis equal the number of species sampled minus the 

number of traits measured (Shipley 2009c).  As previously discussed, choosing a 

study site with many coexisting species of ferns will also help me interpret the 

results of my test of the MaxEnt approach in regards to determining if 

environmental filtering really occurs on the alpha scale, or if competitive 

exclusion is the dominant driver of community assembly.  Additionally, because 

the purpose of the MaxEnt approach is to study the assembly of plant species 

across an environmental gradient within a habitat, the study site ideally should be 

identified as one type of habitat and contain areas with some variation in 

environmental conditions from which an environmental gradient can be identified. 

With these criteria in mind, I decided to sample fern communities in the 

Gault Nature Reserve, which is a 10 km
2
 tract of old growth forest on Mont Saint 

Hilaire in southern Quebec (45º32‟N, 73º08‟W) with high plant diversity.  Of the 
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approximately 40 fern species present in southern Quebec (Fleurbec 1993; Marie-

Victorin 1995), 38 are found in the Gault Nature Reserve (Bell et al. 2001).  

Although Mont Saint Hilaire can be identified as predominantly a hardwood 

forest habitat, there exists a great amount of heterogeneity within the forest that in 

part accounts for the high fern diversity (Maycock 1961; Arii and Lechowicz 

2002; Karst et al. 2005).  This site therefore serves the purposes of my study on 

the assembly of temperate forest fern communities along environmental gradients 

extremely well.   

Furthermore, this reserve has been the venue for numerous ecological 

investigations, which provided me with some of the information needed to test the 

MaxEnt approach.  In fact, sixty-nine 50 m
2
 permanent plots were established 

across the reserve by Ben Gilbert (Gilbert and Lechowicz 2004) for which fern 

abundance and environmental factors have been measured in both 2002 and 2004 

(Gilbert and Lechowicz 2004, unpublished data; Figure 1).  This is rather 

convenient since these data are necessary to fulfill steps 4 and 7 in my test of the 

MaxEnt approach.  I therefore tested the MaxEnt approach by trying to predict 

fern distribution and abundance in these plots – the fern species in each 50 m
2
 plot 

representing a fern community.  For reasons I will explain shortly, I focused on 

only 47 of the 69 plots.   

 

Species pool 

As discussed throughout my thesis thus far, the theory behind the MaxEnt 

approach is that the environment filters species based on their functional traits, so 

that only a subset of species from a regional species pool is able to survive in a 

given area.  Therefore it is integral to my test of the MaxEnt approach to 

determine which species are included in the regional species pool, which is a task 

involving some subjective judgement.  The species pool should theoretically be 

comprised of all the species that could potentially occur in any of the 47 

permanent plots I am considering.  The high vagility of fern spores means that it 

is possible that species not observed in the plots that occur elsewhere on the 

reserve or even off the reserve could be part of the species pool.  The potential 
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magnitude of the species pool forced me to impose my own limits on which 

species to include in my research.  I therefore deemed the species pool to include 

all of the species that were observed in any of the 47 plots I‟ve chosen to study in 

2002 and/or 2004.  The regional pool is therefore comprised of twenty-one fern 

species (See Table 1 for species names and relative frequencies).    

This somewhat arbitrary definition of the species pool does not affect the 

test of the MaxEnt approach because as discussed previously, the MaxEnt 

approach is one of maximum relative entropy.  The information contained in the 

species pool is part of the information contained in the prior distribution that I 

must set, as well as the community-aggregated traits that I must calculate and 

predict from the environmental gradient.  As such, even if the species pool that I 

set does not completely capture all of the information relevant to the assembly of 

the 47 local communities I am studying, this partial information should still 

improve my predictions.  If I were to include even more of such relevant 

information by better ascertaining which species should be in the species pool, 

then my predictions would be even more accurate.  Therefore I am satisfied with 

limiting the species pool to the twenty-one species that have been observed in the 

47 plots.  I measured functional traits for each of these species in order to predict 

species abundances in these plots. 

 

 

 

Figure 1. Map of the sixty-nine 

50m
2
 permanent plots 

established on the Gault Nature 

Reserve in Mont-Saint-Hilaire, 

Quebec, by Ben Gilbert that 

were surveyed in 2002 and 

2004. Taken from: Gilbert, B. 

and M.J. Lechowicz. 2004. 

Neutrality, niches, and 

dispersal in a temperate forest 

understory. PNAS 101: 7651-

7656. 
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Table 1. List of the 21 fern species and their absolute and relative frequencies in 

the forty-seven 50m
2
 permanent plots established by Ben Gilbert (Gilbert and 

Lechowicz 2004) that comprise the species pool that I am including in my test of 

the MaxEnt approach by Shipley et al. (2006). 

Species Family 

Absolute 

Frequency 

Relative 

Frequency 

Dryopteris intermedia Muhlenberg 

ex Willdenow 
Dryopteridaceae 36 24.5% 

Dryopteris marginalis Linnaeus Dryopteridaceae 25 17.0% 

Polystichum acrostichoides 

Michaux 
Dryopteridaceae 14 9.5% 

Athyrium filix-femina Linnaeus Dryopteridaceae 12 8.2% 

Deparia acrostichoides Swartz Dryopteridaceae 10 6.8% 

Adiantum pedatum Linnaeus Pteridaceae 9 6.1% 

Cystopteris fragilis Linnaeus Dryopteridaceae 8 5.4% 

Botrychium virginianum Linneaus Ophioglossaceae 5 3.4% 

Dryopteris carthusiana Villars Dryopteridaceae 5 3.4% 

Polypodium virginianum Linnaeus Polypodiaceae 5 3.4% 

Onoclea sensibilis Linnaeus Dryopteridaceae 3 2.0% 

Botrychium matricariifolium Döll Ophioglossaceae 2 1.4% 

Dennstaedtia punctilobula Michaux Dennstaedtiaceae 2 1.4% 

Phegopteris connectilis Michaux Thelypteridaceae 2 1.4% 

Phegopteris hexagonoptera 

Michaux 
Thelypteridaceae 2 1.4% 

Pteridium aquilinum Linnaeus Dennstaedtiaceae 2 1.4% 

Dryopteris clintoniana Eaton Dryopteridaceae 1 0.7% 

Gymnocarpium dryopteris Linnaeus Dryopteridaceae 1 0.7% 

Matteuccia struthiopteris Linnaeus Dryopteridaceae 1 0.7% 

Osmunda cinnamomea Linnaeus Osmundaceae 1 0.7% 

Woodsia ilvensis Linnaeus Dryopteridaceae 1 0.7% 

http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=10634
http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=10634
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3. SELECT AND MEASURE A SET OF FUNCTIONAL TRAITS  

Plant functional traits are characteristics of individuals that impact fitness 

indirectly via their effects on growth, reproduction and survival (Cornelissen et al. 

2003; Violle et al. 2007).  Of key importance to my test of the MaxEnt approach 

is selecting functional traits to measure that effectively reflect species‟ adaptations 

to the environment, since the environmental filtering hypothesis suggests that only 

species well-suited to a particular habitat will be able to survive there.  Since I am 

focusing on communities that occur in one type of habitat, “alpha-traits” should 

be focused on.  Furthermore, because of sampling limitations and feasibility, as 

well as the aforementioned statistical considerations regarding degrees of 

freedom, it was wise to choose the fewest number of traits necessary to 

encompass the most important ecological constraints on species abundance and 

distribution.  It was very difficult to know a priori which traits are the most 

important to the performance of plants along environmental gradients within a 

habitat and therefore plant community dynamics; however, a review of plant 

literature (e.g. Lavorel and Garnier 2002; Cornelissen et al. 2003; Violle et al. 

2007) has led to the following trait categories of interest: growth form, spatial 

colonization patterns, productivity, phenology, and reproductive capacity.   

To represent these categories I measured the following functional traits for 

each of the 21 species in the species pool: plant height, population density, 

photosynthetic area, leaf dry matter content, leaf mass per area, chlorophyll 

content, foliar nitrogen content, foliar carbon to nitrogen ratio, and maximum 

photosynthetic capacity.  I also obtained information regarding whether or not 

each species has overwintering fronds, as well as during which months they 

typically sporulate.  Finally, I attempted to measure gametophytic moisture 

tolerance, but was not successful.  I will now outline how I selected fronds to 

sample as well as the specific ecological significance of each trait and how I 

measured it. 
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Selecting fronds to sample  

The MaxEnt approach using weighted average trait values, meaning that I had 

to sample multiple individuals of each species.  I sampled ferns from many 

different areas of the Gault Nature Reserve to ensure that my samples provided a 

robust estimate of the mean, and to ensure that phenotypic plasticity was 

represented in the mean value of each trait.  To carry out this broad-range 

sampling method, I divided the Gault Nature Reserve into ten sectors of roughly 

the same area to sample from.  The sector boundaries were delineated so that they 

followed the topography of the reserve, as well as the hiking trails that have been 

established throughout the reserve, in a way that was conducive to sampling the 

sectors in a sensible and timely manner.  I aimed to collect samples of each 

species from the different sectors, but this was not always possible as some 

species only grow in certain areas of the reserve or are too rare to find in many 

places.  I managed to obtain between five and ten samples for each species   

The only criteria that a fern sporophyte had to satisfy to be eligible for data 

collection were that it be full-grown (i.e. have fully unfurled fronds) and that it 

not be visibly damaged or diseased.  I sampled both fertile and infertile fronds 

because often I could only find one or the other in a particular population.  Once I 

encountered a population of a species, I used a variation of the “Ignorant Man” 

technique (Ward 1974) to determine which fronds I collected trait data for.  This 

is a random sampling method that involved two people: my research assistant and 

I.  My research assistant blindly selected a number from a random numbers table, 

and without knowing that number I pointed to individual fronds that were eligible 

for sampling while counting them out loud.  When I called out the number that 

she had selected she told me to stop and that was the frond that I collected data 

from.   

In some cases it is extremely difficult to ascertain whether or not a fern 

sporophyte is truly an individual or if it is a ramet of an individual that possesses 

an unseen underground portion connecting many apparently individual fronds. 

Depending on the species, individual ramets can either grow as multiple fronds 

arranged in a tight circle that resembles a crown, or as solitary fronds that may or 
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may not form a loose patch or colony.  If I encountered a species that formed 

crowns then I would first randomly select a crown to sample, and then randomly 

sample a frond within that crown.  If the species did not form a crown and there 

was a large population in a small area, I counted individual full-grown fronds and 

measured the randomly selected frond.  If a particular population was dispersed 

into small patches in close-proximity to each other, I would first randomly select 

one patch and then follow the aforementioned selection protocol.  Once I selected 

a focal frond, I proceeded to measure its expression of the aforementioned 

functional traits.  This sampling method was developed to ensure that individual 

traits and community patterns were impartially observed. 

 

Sampling traits 

Plant height: I measured plant height as the vertical distance from the 

ground to the upper boundary of the fern frond in its naturally curved state (i.e. 

the frond was not straightened during measurement).  This trait is associated with 

competitive capacity through shading effects and is typically correlated with other 

size-related traits, such as aboveground biomass and rooting depth (Cornelissen et 

al. 2003). 

Population density: I calculated population density by first selecting one 

focal plant, and then measuring the distance to its five nearest neighbours, if there 

were five.  If a species formed crowns then I measured the distance between 

crowns.  If not, then I measured the distance between individual fronds.  I then 

inverted this distance measurement to estimate the density of a population, 

expressed in metres
-1

.  This trait signifies the spatial colonization patterns of each 

species, which again is associated with competitive vigour.  

Photosynthetic area: I measured photosynthetic area by scanning the 

sampled fronds with a LI-COR 3100 Leaf Area Meter (LI-COR Lincoln, 

Nebraska, U.S.A.), ensuring that the fronds remained hydrated prior to scanning.  

I scanned the whole frond five times and then removed the stipe and rachis.  Then 

I scanned the removed material five times.  I subtracted the average value 

calculated for the stipe and rachis area from the average value of the whole frond 
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area to obtain the final measurement of photosynthetic area.  Photosynthetic area 

is a correlate of the plants potential relative growth rate (Cornelissen et al. 2003). 

Leaf dry matter content (LDMC): I calculated LDMC for each frond by 

dividing the oven dried mass of its photosynthetic portion by its water-saturated 

fresh mass.  Before I scanned each whole frond to obtain photosynthetic area, I 

weighed it on an electronic balance with a precision of three decimal places.  I 

also weighed the stipe and rachis immediately after removing them from the 

frond.  I subtracted the mass of the stipe and rachis from the mass of the whole 

frond to obtain the water-saturated fresh mass of the frond.  After I removed the 

stipe and rachis, I dried each frond in a drying oven at 80°C for 48 hours.  Once 

this time had passed, I quickly removed the dried material from the oven and 

placed into a plastic bag with a desiccant pack inside.  This allowed the sample to 

cool down but not absorb any moisture in the meantime.  Once cool, I weighed all 

the pieces of the dried material at the same time, rather than separately, to increase 

accuracy of the oven dried mass.  The sample had to be cooled prior to being 

weighed to ensure that the mass readings were not made unstable by thermal 

currents.  LDMC typically negatively correlates with potential growth rate, or 

mass-based photosynthetic rate, and positively with leaf toughness and leaf 

longevity.  Species that have high LDMC values tend to be less productive and 

are found in infrequently disturbed environments (Cornelissen et al. 2003). 

Leaf mass per area (LMA): I calculated LMA for each frond by dividing 

the oven dried mass of its photosynthetic portion (i.e. the frond with its stipe and 

rachis removed) by its photosynthetic area.  LMA typically correlates with 

LDMC.  It has a strong positive correlation with leaf lifespan because it is 

assumed that plants in resource-poor environments invest more carbon into their 

leaves (i.e. have higher LMA and LDMC values) as a defence mechanism to deal 

with resource stress (Cornelissen et al. 2003).  

Leaf chlorophyll content (Chl): I measured leaf Chl by first using a 

SPAD-502 chlorophyll meter (Minolta Corp., Ramsey, N.J., U.S.A.).  This 

instrument measures light transmittance through the frond and provides an output 

that can be converted into foliar Chl (Markwell and Levins 1999).  I took twenty 
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SPAD readings from different areas of the sampled frond if possible. I recorded 

the average SPAD value and transformed it into a chlorophyll concentration value 

with the following conversion formula: Chl = 0.0885*SPAD reading*SPAD 

reading+1.9927*SPAD reading+32.78 (Monje and Bugbee 1992).  I did not 

measure Chl for all of the 21 species in my study because I used data previously 

collected by Amanda Karst at the Gault Nature Reserve who made several such 

measurements on ferns for her research on correlations among fern foliar traits 

(Karst and Lechowicz 2006).  I decided to simply add to Karst‟s data to ensure 

that I had at least five data points for each species.  Chlorophyll content is directly 

related to photosynthesis; thus this trait provides another measure of the 

photosynthetic capacity of each species. 

Leaf nitrogen content (N) and carbon to nitrogen ratio (C:N): I 

measured N and C:N by using an EA 1108 CHNS-O elemental analyzer (CE 

Elantech, Inc., Lakewood, N.J., U.S.A.) which is an instrument that can determine 

the concentration of carbon, hydrogen and nitrogen of sample.  I created a 

standard calibration curve using acetanilide, which is recommended for measuring 

C and N of vascular plants.  After calibrating the machine I encapsulated five 

ground and dried samples of fern fronds from each species and recorded the mass 

of each sample.  I then performed a combustion analysis of the samples in the 

elemental analyzer.  The machine burned the samples at high temperatures in a 

stream of oxygen flowing through a catalytic bed, causing the carbon and nitrogen 

in the samples to be oxidized to carbon dioxide and nitric oxide, respectively.  

These products were run through a gas chromatographic column in the analyser to 

estimate their respective amounts and this information was used in conjunction 

with the calibration curve and the weights of the samples before they were burned 

to determine the percentage weights of carbon and nitrogen in the sample per unit 

of dry leaf mass.  I calculated the average C and N values from the five samples 

of each species.  I determined C:N by dividing the C value by the N value for 

each sample, and then averaging the resulting values for each species.  N is 

strongly correlated with mass-based maximum photosynthetic rate (Cornelissen et 
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al. 2003).  C:N is a measure of the trade-off between carbon and nitrogen as high 

values indicate a greater investment in leaf longevity than in productivity.  

Maximum photosynthetic capacity (Amax): I used a LI-6400XT (LI-COR 

Lincoln, Nebraska, U.S.A.) portable photosynthesis system to measure Amax. I 

took Amax measurements between 7:30 am and 11:30 am (Eastern daylight saving 

time), because this is typically when photosynthesis is at its peak, and afternoon 

stomatal closure has not yet begun to affect Amax (Gildner and Larson 1992).  As 

was the case with Chl, I also used Amax data obtained by Amanda Karst (Karst and 

Lechowicz 2006) to augment my own data collection.  I added to Karst‟s data to 

ensure that I had at least five measurements for each species.  I made sure to use 

the same settings as Amanda Karst did in her measurements of Amax with the LI-

6400XT.  These included: ambient humidity, a CO2 concentration of 350 ppm, a 

temperature of 25C, a stomatal ratio of zero and a photosynthetic photon flux 

density of 2000.  Measurements were taken every ten seconds for a total of sixty 

seconds, and the average of these measurements used to determine Amax.  The 

portion of the frond that was clamped in the chamber of the instrument was cut 

from the whole frond and later scanned so that its area could be determined and 

final Amax per unit area could be calculated. 

  Wintergreen: Whether or not an individual retains green fronds 

overwinter impacts the return on investment of resources over its lifetime.  

Species with overwintering fronds tend to have a high LMA, high C:N, and high 

N on an areal basis, as compared to species that do not overwinter (Karst and 

Lechowicz 2006).  This trait was simply binary, and based on the published 

literature (Fleurbec 1993) and my own field observations.. 

Sporulation: Sporulation is relevant to the process of reproduction and its 

timing is an indication of both reproductive maturity and the timing of spore 

dispersal.  Spores need to be released for haploid gametophytes to germinate, 

develop and mate.  Therefore the timing of spore release affects the alternation of 

generations and production of new sporophytic individuals.  I obtained 

information regarding the months in which each species typically sporulates in 
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Quebec from Lamoureux‟s (1993) Fleurbec field guide to identifying ferns, 

horsetails and clubmosses, and I made my own field observations to corroborate 

these literature values.  I assigned a value from 1 to 6 to each species to represent 

their period of sporulation, with higher values coding later and longer periods of 

sporulation (Table 2). 

 

Table 2. Categories of fern sporulation 

periods that were assigned to the 21 

species in my study, according to the 

information provided in Lamoureux's 

(1993) Fleurbec field guide to 

identifying ferns in Quebec. 

 

 

 

 

 

Gametophytic drought tolerance: Fern gametophytes are small haploid 

organisms that precede the diploid sporophyte stage of the fern lifecycle.  

Therefore the growth and success of a fern sporophyte at a site is at the outset 

directly dependent on the survival of gametophytes at the site.  To assess 

differences in the response of gametophytes to moisture stress, I sowed spores of 

my study species on nutrient agar in Petri dishes, and subjected them to ambient 

conditions that mimicked those found at the Gault Nature Reserve in the summer 

time.  I had planned to transplant the gametophytes after spore germination into 

nutrient agar that was characterized by either having moisture stress or not, by 

using an osmoticum.  I wanted to then let the gametophytes grow in these 

conditions and eventually measure gametophyte size in order to determine the 

drought tolerance of gametophytes for each species.  This trial did not work 

because after spore germination it became clear that quantifying gametophyte size 

would unfortunately be impractical.  Both the three dimensionality of the 

gametophytes and the fact that gametophytes for many species grew in large 

Sporulation Period 

Assigned 

Category 

May-June 1 

June-July 2 

July-August 3 

August-September 4 

June-August 5 

June-September 6 
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clusters prevented a simple surface area measurement.  Furthermore, the fragility 

of these organisms prevented removing them from the agar to obtain a 

measurement of their mass, which in any case would have been extremely little 

and difficult to measure accurately. 

 

Approach to data analysis 

 Once I fulfilled steps 1-3 of the data collection, I was able to move on to 

executing the rest of the steps in my test of the MaxEnt approach.  In this section I 

will explain how I performed steps 4-7 in the previously presented outline 

summarizing my overall test of the MaxEnt approach:  

4. Measure species abundance in plant communities located in varying 

environmental conditions and calculate community-aggregated traits 

for each study plot.  

5. Decide on a prior distribution to incorporate in the MaxEnt approach. 

6. Perform a circular test of the MaxEnt approach following established 

procedures. 

i. Predict SADs by inputting the observed CATs and the prior 

distribution for all the plots to the R code written for the 

MaxEnt approach in the „FD‟ package in R (Laliberté and 

Shipley 2010). 

ii.      Compare the predicted SADs with the observed ones using the 

inferential permutation test developed by Shipley (in press), 

which is available through the „FD‟ package in R (Laliberté 

and Shipley 2010). 

iii.     Work to improve the predictions by altering the different 

components of the MaxEnt approach. 

7. Perform a non-circular test of the MaxEnt approach using independent 

calibration and test plots.  

i. Create an environmental gradient from measured 

environmental variables, along which the communities can be 
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placed and from which prediction constraints (CATs) can be 

estimated in test plots. 

a.    Examine the environmental conditions in all of the  

plots and eliminate outliers if necessary.  

b.    Divide the remaining plots into two subsets of 

“calibration” and “test” plots, along an environmental 

gradient. 

c.    Define mathematical relationships linking different 

environmental gradients to the CATs calculated from 

observed data in the calibration plots. 

d.    Use the mathematical relationships to estimate CATs in 

the test plots. 

ii. Predict SADs by inputting the estimated CATs and the prior 

distribution for the test plots to the R code written for the 

MaxEnt approach in the „FD‟ package in R (Laliberté and 

Shipley 2010). 

iii. Compare the predicted SADs with the observed ones using the 

inferential permutation test developed by Shipley (in press). 

iv. Work to improve the predictions by altering the different 

components of the MaxEnt approach. 
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4. MEASURE SPECIES ABUNDANCE IN PLANT COMMUNITIES 

LOCATED IN VARYING ENVIRONMENTAL CONDITIONS AND 

CALCULATE COMMUNITY-AGGREGATED TRAITS FOR ALL OF 

THE PLOTS 

 

In addition to the raw trait data that I obtained, I needed fern abundance 

data in order to calculate community-aggregated traits for the 47 communities 

across the Gault Nature Reserve that I decided to study.  As mentioned, 

abundance was measured in these 47 plots during two years (2002 and 2004).  I 

performed a model II regression and determined that the total abundance of the 21 

fern species I am studying observed in each plot between the two years 

significantly co-vary (adjusted R
2
=0.885, p<0.05); the linear regression line is 

shown in Figure 2.  This analysis highlighted one apparent outlier (coordinates of 

0, -1.0).  Upon closer examination of the raw abundance data, it became apparent 

that the plot contained only one species in both years (Polystichum 

acrostichoides), but the percent cover of that species decreased from 100% to 

10% from 2002 and 2004.  It is not apparent why this decrease occurred, so I did 

not exclude the plot from the analysis.  I therefore took the mean of both years to 

weight the averaged trait data to calculate the CATs, in accordance with the 

methods previously described in the introduction.  
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Using weighted means rather than individual trait data in calculating the 

CATs has important implications for the level of biological organization that is 

being investigated.  While each trait was measured from a specific part of the 

plant, averaging the trait data brought the information gained to a whole-plant 

level (Shipley 2009c).  For example, I measured LMA at the frond level, so on its 

own each LMA data point is a reflection of the carbon investment into one 

specific frond, not the whole plant.  The whole plant can contain multiple fronds 

as well as non-photosynthetic material, so it does not make sense to attribute one 

LMA measurement to the whole plant.  However, by averaging the five to ten 

data points I obtained for each species, the trait now represents the carbon 

investment of each species at a whole-plant level reasonably well.  Shipley 

(2009c) makes the point that because some functional traits can be measured at 

one level (e.g. the frond) and averaged to represent another level (e.g. the whole 

plant); these functional traits are really “plant-aggregated traits.”  By weighting a 

plant-aggregated trait value by the relative abundance of the species it was 

measured for, the trait becomes a “community-aggregated trait.”  

With the exception of the categorical wintergreen and sporulation traits,  I 

log10-transformed the trait data before averaging them to obtain plant-aggregated 

traits.  Transforming the height data in this way essentially changed the data to an 

Figure 2. Model II 

regression of the log10-

transformed total abundance 

for the ferns in all 47 plots, 

as measured in 2002 and 

2004.  There is a significant 

correlation among the years 

(adjusted R
2
=0.885, p<0.05) 
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estimate of relative growth rate, as plant growth is logarithmic over time 

(Blackman 1919).  Furthermore, logarithmically transforming the trait data 

emphasized relatively small trait differences among species, and is a common 

procedure in trait-analyses to obtain a normal probability distribution (e.g. Wright 

et al. 2004).  I also had to adjust some of the data points to make them positive 

values because the logarithmic transform sometimes negative numbers, which the 

MaxEnt algorithm cannot handle.  I did this by increasing the raw data values by 

an increment of one. 

 

5. DECIDE WHICH PRIOR DISTRIBUTION TO INCORPORATE IN 

THE MAXENT APPROACH 

 The prior distribution is an important component in testing the MaxEnt 

approach and is necessary to fulfill the relative entropy maximization aspect of 

the MaxEnt approach.  That is, using CAT constraints to inform predictions of 

species distributions requires that I start with a prior distribution that does not 

contain  information about traits.  The CAT information is used as a constraint to 

improve upon the prior distribution and develop a new distribution that in theory  

more accurately describes the relative abundance of species.  The prior 

distribution cannot contain any information pertaining to the CAT constraints, but 

on the other hand does not necessarily have to be maximally uninformative.  A 

maximally uninformative prior would involve each species being allocated an 

equal abundance so that there is uniformity among all of the species in the species 

pool.  This uniform distribution is part of the default settings of the MaxEnt 

approach.  While I did use this uniform prior distribution, I decided to also try 

another tactic in an attempt to further improve prediction results.  I have 

information regarding the regional distribution of each species counted from an 

independent vegetation survey of the Gault Nature Reserve in 1996 (Bell et al. 

2001), which can be used as a non-uniform prior distribution.  For this survey the 

presence of each fern species was counted within each hectare of the Gault Nature 

Reserve (1014 hectares surveyed in total).  To use the survey data in a non-

uniform prior distribution I assigned each species a relative frequency based on 
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the survey, and these values were taken to represent fern abundance in the 

regional pool relevant for all my 47 study plots (Table 1).  These survey data 

satisfies the requirements of a prior distribution equally as well as the uniform 

prior, but contains more information than the uniform prior does.  This extra 

information on the relative abundance of species in the regional pool can be used 

to complement the CAT constraints and potentially to improve predictions of 

species abundance using the MaxEnt approach.   
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Table 3. Relative frequency of the fern species in the species pool, as determined 

by a vegetation survey of each of the 1014 hectares in the Gault Nature Reserve 

on Mont-Saint-Hilaire, Quebec in 1996 (Bell et al. 2001). The survey scored 

presence or absence of fern species in each hectare of the reserve. Absolute 

frequency is the number of the hectares surveyed in the 10 km
2 

reserve in which 

each species was found; relative frequency is the frequency of each species 

expressed as a proportion of the total number of the 21 fern species I am studying 

observed in the survey, a measure of a species contribution to the regional species 

pool of ferns.  

Species 

Relative 

Frequency 

(%) 

Absolute 

Frequency 

Dryopteris intermedia Muhlenberg ex 

Willdenow 
14.02% 842 

Dryopteris marginalis Linnaeus 13.79% 828 

Polystichum acrostichoides Michaux 11.04% 663 

Athyrium filix-femina Linnaeus 10.48% 629 

Adiantum pedatum Linnaeus 8.68% 521 

Dryopteris carthusiana Villars 6.76% 406 

Botrychium virginianum Linneaus 4.71% 283 

Polypodium virginianum Linnaeus 4.65% 279 

Onoclea sensibilis Linnaeus 4.00% 240 

Deparia acrostichoides Swartz 3.98% 239 

Cystopteris fragilis Linnaeus 3.11% 187 

Pteridium aquilinum Linnaeus 2.93% 176 

Dennstaedtia punctilobula Michaux 2.50% 150 

Gymnocarpium dryopteris Linnaeus 2.48% 149 

Matteuccia struthiopteris Linnaeus 2.22% 133 

Phegopteris connectilis Michaux 2.07% 124 

Osmunda cinnamomea Linnaeus 1.18% 71 

Woodsia ilvensis Linnaeus 1.03% 62 

Phegopteris hexagonoptera Michaux 0.17% 10 

Botrychium matricariifolium Döll 0.15% 9 

Dryopteris clintoniana Eaton 0.05% 3 
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6. PERFORM A CIRCULAR TEST OF THE MAXENT APPROACH. 

It is possible at this point to perform the same “circular” test that Shipley 

et al. (2006) did on their data.  Shipley et al. (2006) computed community-

aggregated trait values from observed species‟ abundances in their study sites, and 

then used these values to form predictions of species‟ abundances in the same 

sites.  Testing the MaxEnt approach in this way involves three steps: i) predicting 

species abundance in all of the plots by fitting the MaxEnt approach to the CAT 

and prior distribution data using the “maxent” function, ii) comparing the 

predicted distributions with the observed ones using the inferential permutation 

test (maxent.test function) developed by Shipley (in press), and iii) working 

iteratively to improve the predictions by altering different components of the 

MaxEnt approach.  The maxent and maxent.test functions are available through 

the „FD‟ (functional diversity) package in R (Laliberté and Shipley 2010) 

 

TEST 1: In my first attempt at the circular test I used the default settings 

that are included in the maxent function as well as the maxent.test function, as 

found in the „FD‟ R package created by Etienne Laliberté and Bill Shipley (2010).  

These settings include a uniform prior distribution and a tolerance threshold of 1e
-

07
 to determine convergence (maxent function), as well as 99 permutations for 

allowing inference at an alpha level of 0.05 (maxent.test function).  I included 11 

traits in this test (height, density, photosynthetic area, LMA, LDMC, Chl, N, C:N, 

Amax, wintergreen and sporulation) and the results showed that the MaxEnt 

approach did achieve a statistically significant prediction of species abundance 

(R
2
=0.996, p=0.02; Figure 3a and 3b).  Figure 3a illustrates the results on an 

arithmetic scale that suggests a useful predictive power; Figure 3b illustrates the 

results on a logarithmic scale that makes the weak predictions of low abundances 

more clear.  
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TEST 2: My second test was the same as the first except that I decreased 

the number of traits from 11 to 8, eliminating Amax, wintergreen and sporulation.  

I did this because I wanted to assess the degree to which the number of traits 

included had an effect on the results.  I chose to exclude these three traits because 

Amax is a somewhat redundant trait in that similar information is conveyed through 

Chl, and the wintergreen and sporulation traits are categorical with the latter being 

based on a very broad description that might not be entirely accurate.  The results 

of this test showed that the MaxEnt approach now did not accurately predict 

species abundance (R
2
=0.878, p=1; Figure 4a and 4b) 

Figure 3a and 3b. Test 1 - 

results of a circular test using 

CATs of all 11 traits with a 

uniform prior and a 

convergence threshold of 1e
-07

 

plotted on both arithmetic (top) 

and logarithmic (bottom) scales. 

Note that the logarithmic scale 

emphasizes the weak prediction 

of more rare species despite the 

overall significance of the 

prediction. 
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.   

 

TEST 3: The maxent.test function includes an option to test if a subset of 

traits encodes information that is relevant to the prediction.  This test showed that 

the three traits that I had eliminated on biological and methodological grounds 

were in fact very relevant to the abundance prediction (p=0.01), and the other 

eight traits combined less strongly so (p=0.06).  This result led me to try testing 

the MaxEnt approach a third way, using only the three traits that I had originally 

removed (Amax, wintergreen, and sporulation), a tolerance threshold of e1
-07

, and 

a uniform prior.  The results proved to again be significant (R
2
=0.748, p=0.01; 

Figure 5a and 5b), although with a good deal of scatter in the data.   

Figure 4a and 4b. Test 2 - 

results of a circular test using 

CATs of 8 traits (Amax, 

wintergreen and sporulation 

CATs were not included), a 

uniform prior and a 

convergence threshold of 1e
-07

.   
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TEST 4: I also tried doing a test with only the two categorical traits 

(wintergreen and sporulation) and again the results proved to be significant 

(R
2
=0.471, p=0.01; Figure 6a and 6b), although with a lot of scatter in the data. 

Figure 5a and 5b. Test 3 - 

results of a circular test using 

CATs of 3 traits (only Amax, 

wintergreen and sporulation 

CATs were included), a 

uniform prior and a 

convergence threshold of  

1e
-07

.  
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 TEST 5: My fifth test was the same as the second, for which I used CATs 

of eight traits and the results were not significant, except that I decreased the 

tolerance threshold to 1e
-09

.  This had a dramatic effect on the results as the 

maxent.test function, which now showed that SADs were accurately predicted 

(R
2
=0.962, p=0.02; Figure 7a and 7b).   

 

Figure 6a and 6b. Test 4 - 

results of a circular test using 

CATs of 2 traits (only 

wintergreen and sporulation 

CATs were included), a uniform 

prior and a convergence 

threshold of 1e
-07

.  
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TEST 6: In this circular test I decreased the tolerance threshold to 1e-
09

 

and again included all 11 traits; the results were extremely significant (R
2
=1, 

p=0.01; Figure 8a and 8b) and the apparent fit much better than in previous 

combinations of parameters, although the rarest species remain poorly predicted. 

Figure 7a and 7b. Test 5 -- 

results of a circular test using 

CATs of 8 traits, a uniform 

prior and a convergence 

threshold of  

1e
-09

.  
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TEST 7: The seventh test was much like the sixth except that I used a non-

uniform prior distribution based on the 1996 survey of fern distributions within 

the reserve (Bell et al. 2001).  Again the results were extremely significant (R
2
=1, 

p=0.017; Figure 9a and 9b), but predictions remain weak for the more rare 

species. 

   

Figure 8a and 8b. Test 6 - 

results of a circular test using 

CATs of all 11 traits, a uniform 

prior and a convergence 

threshold of 1e
-09

.  
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The close to perfect predictive ability of these last two tests makes it 

unclear if using the non-uniform prior indeed makes any difference at all.  

Therefore I attempted one final circular test, using the same settings as in Test 2, 

which had not produced significant results (eight traits and a tolerance of 1e
-07

), 

but this time I used the non-uniform prior based on survey data.  The results 

showed that while the prediction was still not accurate, it was improved by use of 

a more informative prior (R
2
=0.965, p=0.857; Figure 10a and 10b) 

Figure 9a and 9b. Test 7 - 

results of a circular test using 

CATs of all 11 traits, a non-

uniform prior and a 

convergence threshold of 1e
-09

.  
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Through this series of circular tests I have confirmed that the MaxEnt 

approach can be fitted to my data.  In other words, the circular application of the 

MaxEnt approach is useful in that it shows that trait-based environmental filtering 

plays a role in the assembly of fern communities in the 47 communities I am 

studying.  The circular tests have also helped me decide how to optimize 

predictions by changing the various components of the MaxEnt approach.  I am 

now ready to perform non-circular tests that are based on environmental 

gradients.  These tests will determine if the MaxEnt approach can be used to 

predict relative abundance distributions in areas for which relative abundance has 

Figure 10a and 10b. Test 8 - 

results of a circular test using 

CATs of 8 traits (Amax, 

wintergreen and sporulation 

CATs were not included), a 

non-uniform prior and a 

convergence threshold of 1e
-07

.  
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not already been measured, which is useful for application of the MaxEnt 

approach to conservation efforts.   

 

7.  PERFORM A NON-CIRCULAR TEST OF THE MAXENT 

APPROACH 

Performing a non-circular test of the MaxEnt approach is very similar to 

performing a circular test, except extra measures had to be taken to avoid 

circularity when creating an environmental gradient from which CATs could be 

estimated.   

 

I) CREATE AN ENVIRONMENTAL GRADIENT FROM MEASURED 

ENVIRONMENTAL VARIABLES, ALONG WHICH THE 

COMMUNITIES CAN BE PLACED AND FROM WHICH PREDICTION 

CONSTRAINTS (COMMUNITY-AGGREGATED TRAITS) CAN BE 

DEVELOPED IN TEST PLOTS. 

 In my test of the MaxEnt approach I created an environmental gradient 

underlying all of my study plots to circumvent the circularity that Shipley et al. 

(2006) were criticized for in the analysis of their data on a successional gradient 

(e.g. Marks and Muller-Landau 2007; Haegeman and Loreau 2008 and 2009).  

Although the circular application of the MaxEnt approach has some utility, the 

true predictive ability of the MaxEnt approach relies on its ability to be used to 

predict SADs from CATs that are estimated independently from environmental 

gradients, not observed relative abundance data.  The environmental gradients I 

created to estimate CATs in test plots were based on observations made by Gilbert 

and Lechowicz (2004, unpublished data), whose study plots I am using in these 

analyses.  The CAT values in my test plots were not based on observed data in 

those same plots but rather on estimates of trends in the CATs that were derived 

from a different set of calibration plots along the environmental gradient.  The 

predicted SADs were not based on observed data, thereby circumventing the 

statistically questionable circularity involved when the same set of plots are used 
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to both estimate the CATs and to test MaxEnt predictions of SADs in the plots.  

The process for creating an appropriate environmental gradient and using it in the 

estimation of a CAT has four parts: a) examine the environmental conditions in all 

of the plots and eliminate any outlying plots that might destabilize the analysis, b) 

divide the remaining plots into two subsets of “calibration” and “test” plots 

distributed along the selected environmental gradient, c) use GAMs to define 

mathematical relationships for any trends in the CATs along the selected 

environmental gradient in data for the calibration plots, and d) use these 

relationships to estimate CATs for the test plots distributed along the selected 

environmental gradient.  The estimated CATs can then be used in a MaxEnt 

analysis to make statistically independent predictions of species abundance in the 

test plots. 

 

a) Examine the environmental conditions in all of the plots and eliminate 

outliers if necessary  

 My first task in creating an environmental gradient was to examine the 

distribution of communities established by Ben Gilbert (Gilbert and Lechowicz 

2004) in terms of habitat type and decide if outliers needed to be eliminated from 

my study.  To do this I gathered the following environmental information that was 

measured in all 69 plots in 2002 and 2004: log10-transformed phosphorus, 

calcium, magnesium, potassium, and nitrate concentrations, pH, log10-transformed 

percentage of organic matter, median moisture level, and log10-transformed total 

light level.  If environmental filtering does in fact drive the assembly of fern 

communities, then these environmental factors should be important to the process 

(Gilbert and Lechowicz 2004).  After collating these data I had to eliminate 11 

plots from my analysis because I combined the environmental data from both 

2002 and 2004, and 11 of the 69 plots had only been surveyed in 2004. I took the 

median moisture value for each plot from the eight measurements that were taken 

in 2002 and 2004 combined (four measurements were made each year).  I found 

the median value to be more informative than the mean value.  I then averaged the 

environmental data from 2002 and 2004 to obtain single values for each of the 
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other environmental factors I included, in each plot.  I felt that the environmental 

conditions and species abundance data averaged over two years would provide a 

more robust database so I chose to work with the 58 plots sampled in both years 

rather than all 69 plots in only 2004.   

I executed a principle component analysis (PCA) and identified ten of the 

remaining 58 plots as outliers (Figure 11).  I decided to eliminate these ten 

outlying plots from the 58 surveyed in 2002 and 2004 on the grounds that they 

could cause a disjunct in any environmental gradient I created and they would 

lead me outside the limits of the alpha diversity level that the MaxEnt approach 

focuses on.  With such a disjunct I would not be able to accurately relate the 

CATs to the environment.  Fitting a model to the gradient and the observed CATs 

would be less accurate if I were to use the data as a whole rather fitting a model to 

the data sans outliers.  Since I am relying on this mathematical relationship to 

estimate CATs in test plots and predict species‟ abundances in each plots, 

accuracy is very important.   

Furthermore, I am testing if the MaxEnt approach is able to predict species 

abundance and distribution along environmental gradients that exist within one 

habitat, i.e. at the alpha diversity level.  Although the Gault Nature Reserve is 

predominantly covered in an upland hardwood forest characterized by mineral 

soil, it does contain some small wetland areas that are characterized by more 

organic soils (Flinn et al. 2008).  Seven of the outlying plots contained soil with a 

very high percentage of organic matter (>40% loss on ignition) and therefore 

represented organic soils more characteristic of a wetland habitat than an upland 

forest habitat.  The definitions of organic and mineral soils are complex and 

involve knowledge of the thickness of the soil layer containing organic material, 

as well as the amount of time the soil is saturated with water; however soil 

material is considered to be organic if it contains more than 17% organic carbon, 

or approximately 30% organic matter, by weight (Canadian Soil Information 

Service, Chapter 2).  As such, using a 40% organic matter cut-off point for 

distinguishing between organic and mineral soils and identifying outlying plots 
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ensures that I only eliminate plots that are definitely not considered part of the 

upland forest habitat that the rest of the plots fall within.   

Although the other three outlying plots contained less than 40 percent 

organic matter, they had very high or very low pH and/or nutrient concentrations 

relative to the rest of the plots (Figure 4).  Including any of these extreme outliers 

could mean that I might end up examining species turnover across different 

habitat types, i.e at the beta rather than alpha diversity level.  This would cause 

confusion regarding the drivers of community assembly since there can be  

differences in the environmental filtering process between alpha and beta 

diversity levels and the traits that define alpha and beta niches (Silvertown et al. 

2006; Ackerly and Cornwell 2007; Morin and Lechowicz 2008).  I therefore 

selected this subset of 48 plots to study because they arguably represent upland 

forest habitat and fall along a coherent, continuous axis of environmental 

variation. 
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Figure 4. Principle component analysis of 58 plots surveyed by Ben Gilbert in 

2002 (Gilbert and Lechowicz 2004) and resurveyed in 2004 in the Gault Nature 

Reserve, Mont-Saint-Hilaire, Quebec. The plots are characterized by the 

following environmental factors: log10-transformed phosphorus, calcium, 

magnesium, potassium, and nitrate concentrations, pH, log10-transformed 

percentage of organic matter, median moisture level, and log10-transformed total 

light level.  Eliminated plots are filled (red=outlier with organic soil (>40% 

organic matter loss on ignition); blue=outlier with <40% organic matter; 

yellow=plot with no ferns present), while non-eliminated plots are not. The 

primary and secondary axes account for 47.78% and 20.27% of the variance, 

respectively. 

 

Finally, I also had to eliminate one other plot because it did not contain 

any fern species at all (Figure 4).  Although I would have liked to use it as a test 

plot to see if abundances would be predicted for this plot in a MaxEnt analysis, 

the R code written for the permutation test to determine the accuracy of 

predictions generated by the MaxEnt approach (Laliberté and Shipley 2010) 
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includes restrictions against observed abundance values of zero.  Hence, this 

“empty” plot had to be eliminated as well.   

 

b) Divide the 47 plots into two subsets: “calibration” and “test” plots 

With outlying plots removed, I had to divide the remaining 47 plots into a 

calibration group and a test group.  The plots in the calibration group would be 

used to quantify trends between observed CATs and environmental gradients 

using GAMs.  I would then use the relationships identified in the calibrations 

plots to estimate CATs and predict species abundance for the plots of the test 

group.  I wanted to divide the plots in such a way that each group contained plots 

representing the full range of environmental conditions in all of the plots.  I 

therefore had to array all of the plots along an environmental gradient before 

dividing them.  In an attempt to reduce all of the environment data to a gradient 

with one dimension I did a principle component analysis for the 47 plots, as 

characterized by the nine environmental factors.  The primary axis of this PCA 

accounts for 39.0% of the variance (Figure 12).  I subsequently wrote a program 

in R that ordered all the plots in accordance to their place on the primary axis of 

this PCA (See Appendix 1 for the R code).  My program then did a stratified 

random selection of plots across this gradient, making 35 of the plots (74.5%) 

calibration plots, and the other 12 plots (25.5%) test plots.  I chose this 

distribution because I needed to ensure that the GAM I fit to the calibration plots 

was as accurate as the data would allow, while leaving sufficient test plots to 

assess the predictive power of the MaxEnt approach.  If I used fewer calibration 

plots then the resulting relationship between the CATs and the environmental 

gradient would be less reliable, and estimations of CATs in the test plots would be 

less accurate.  The random nature of this stratified selection of calibration versus 

test meant that the two groups were comprised of a different subset of plots each 

time I ran my program.  Ideally I would have repeated these trials many times 

with different random sets of calibration and test plots, but limits on time and 
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computational power forced me to limit the number of runs and to select 

representative examples to present and discuss. 

 

Figure 12. Principle component analysis of 47 permanent plots established by Ben 

Gilbert (Gilbert and Lechowicz 2004) across the Gault Nature Reserve in Mont-

Saint-Hilaire, Quebec, as characterized by the following environmental factors: 

log10-transformed phosphorus, calcium, magnesium, potassium, and nitrate 

concentrations, pH, log10-transformed percentage of organic matter, median 

moisture level, and log10-transformed total light level.  The primary axis accounts 

for 39.0% of the variance, and the secondary axis accounts for 23.0% of the 

variance.   

 

c) Define mathematical relationships linking different environmental 

gradients to the CATs calculated from observed data in the calibration plots 

In order to estimate CATs in the randomly selected subset of test plots so 

that I could predict SADs in these test plots, I had to define a relationship between 
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CATs and environmental data for the calibration plots.  I chose to do so by fitting 

a generalized additive model (GAM) to the data.  GAMs are quadratically 

penalized generalized linear models and the degree of smoothness they include is 

estimated as part of the fitting process (Wood 2010).  A GAM is able to relate 

CATs and environmental data in a meaningful way because it strikes a balance 

between fitting the data closely and describing the general trend in the data.  I 

wrote a program to create GAMs in R, using the gam() function in the mgcv 

package written by Wood (2010) (See Appendix 1 for the R code).   

To accurately define a relationship between the CAT and environmental 

data in the calibration plots there has to exist a strong relationship between these 

variables in each plot, rather than a great deal of spread among the data points.  

The strength of this relationship is in part dependent on which environmental data 

I use, as each environmental factor is expected to have a different relevance to 

each trait.  That is, changes among plant traits can be expected to correlate with 

changes in the environment in a manner that is unique to each combination of trait 

and environmental factor.  I therefore struggled with choosing which 

environmental data I related to each CAT in my attempt to eventually develop a 

good estimate of the CATs in the test plots.  I tried to resolve this problem via 

trial and error by generating GAMs relating the CATs of each trait to many 

different environmental gradients for all 47 plots.  A priori I thought that the best 

GAM (i.e. the GAM showing the strongest relationship between the CATs and the 

environment) fitted to all 47 plots, would lead me to the best possible prediction 

of species abundance using the MaxEnt approach.  To evaluate which GAM was 

best I looked at the adjusted R
2
 and p-values that were generated, as well as the 

estimated degrees of freedom (EDF) and generalized cross-validation (GCV) 

score for each model. The adjusted R
2
 takes account of the number and relative 

contributions of factors in fitting the GAM; a GAM may be fitted to a single 

environmental variable or to a number of multiple variables dependent on the 

number of calibration plots. I note that the adjusted R
2
 for a GAM sometimes can 

be slightly negative if a multiple factor GAM is actually worse than a one 

parameter model.   
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Although it is possible in the MaxEnt approach to use a different 

environmental gradient to predict CAT values for each trait, I think it would be 

more useful from an application standpoint to use one gradient for all of the traits.  

Therefore in my first attempt to fit GAMs to the CAT and environment data I 

related CATs of each trait to all of the environmental factors at once by using the 

primary axis of the PCA I did for the 47 plots, which accounts for 39.0% of the 

variance in the environmental data (Figure 12).  The observed trends illustrated by 

the GAMs varied in that the CATs of some traits had a relatively strong 

relationship with the environmental gradient (e.g. LMA: adjusted R
2
=0.247, 

p<0.05; Figure 13), while others did not (e.g. height: adjusted R
2
=-0.0222, 

p>0.05; Figure 14).  Figures 1-13 in the Appendix 2 provide illustrations of all the 

GAMs based on univariate environmental gradients; I will only show selected 

examples in the main body of the text.  

 

  

 

 

 

Figure 13. GAM fitted to 

the LMA community-

aggregate trait and PCA1 

data in all 47 plots, and the 

95% confidence intervals. 

Adjusted R
2
=0.247, p<0.05 

EDF=1.93, GCV=1.61e
-05

. 

There is a reasonable, 

although not particularly 

strong, trend in the LMA 

CAT on this synthetic 

environmental axis. 
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I then created GAMs using both the secondary and tertiary axes of the 

PCA (accounting for 23.0% and 15.7% of the variance, respectively) rather than 

the primary one, and noticed that the trends had potential to change drastically.  

For example, LMA did not have a significant relationship with either the 

secondary axis (adjusted R
2
=0.0203, p>0.05) or the tertiary axis (adjusted R

2
=-

0.00904, p>0.05).  Alternately, while height did not have a significant relationship 

with the secondary axis (adjusted R
2
=-0.0198, p>0.05), it did have one with the 

tertiary axis (adjusted R
2
=0.211, p<0.05).  Table 4 summarizes all of the statistics 

regarding GAMs fitted to single PCA axes; yellow boxes indicate very significant 

relationships (p<0.05) and pink boxes indicate somewhat significant relationships 

(0.5<p<0.1); every table of the sort in this section follows this same color-coding 

scheme. 

These results indicated that using one PCA axis as the environmental 

gradient to relate each CAT to may not be the best method.  Any PCA axis I 

choose will not be significantly correlated to at least one of the CATs, and 

therefore fitting a GAM to the data will be meaningless in terms of using it to 

estimate CATs in test plots.  This led me to attempt using a multivariate 

environmental gradient composed of all three PCA axes to fit the GAMs to all of 

the CATs (cf. Table 5 for summary statistics of these GAMs).   

Figure 14. GAM fitted to 

the height community-

aggregate trait and PCA1 

data in the calibration plots, 

and the 95% confidence 

intervals. Adjusted R
2
=-

0.0222, p>0.05, EDF=1.00, 

GCV=0.009. There 

obviously is no trend in the 

height CAT on this 

synthetic environmental 

axis. 
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Table 4. Summary statistics for GAMs fitted to fern CATs and each axis of a PCA of the following environmental 

factors measured across the Gault Nature Reserve in Mont-Saint-Hilaire, Quebec: log10-transformed phosphorus, 

calcium, magnesium, potassium, and nitrate concentrations, pH, log10-transformed percentage of organic matter, 

median moisture level, and log10-transformed total light level.   

CAT: LMA LDMC Chl N C:N Amax Height  

Photosyn-

thetic 

Area 

Population 

Density 
Wintergreen Sporulation 

PCA1 

R
2
 0.247 0.311 0.214 0.297 0.364 0.270 -0.022 -0.019 0.138 0.213 -0.014 

p-

value 
0.002 0.002 0.007 0.001 0.000 0.002 0.957 0.719 0.049 0.032 0.559 

EDF 1.93 3.75 2.39 2.72 3.83 2.83 1.00 1.00 2.42 4.41 1.00 

GCV 0.000 0.002 0.008 0.001 0.002 0.007 0.009 0.040 0.001 0.135 1.640 

PCA2 

R
2
 0.020 0.305 0.034 0.024 0.087 0.098 -0.020 -0.002 0.232 0.226 0.027 

p-

value 
0.410 0.001 0.458 0.456 0.085 0.190 0.744 0.343 0.003 0.000 0.140 

EDF 1.63 2.89 2.55 1.46 1.67 2.83 1.00 1.00 1.64 1.00 1.00 

GCV 0.000 0.002 0.010 0.002 0.002 0.008 0.009 0.039 0.001 0.123 1.570 

PCA3 

R
2
 -0.009 -0.004 -0.013 -0.017 -0.021 -0.022 0.211 0.065 0.151 0.088 0.114 

p-

value 
0.447 0.366 0.515 0.631 0.847 0.985 0.001 0.047 0.004 0.025 0.012 

EDF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

GCV 0.000 0.003 0.010 0.002 0.002 0.009 0.007 0.037 0.001 0.145 1.430 

Maximum R
2
: 0.247 0.311 0.214 0.297 0.364 0.270 0.211 0.065 0.232 0.226 0.114 

Best 

Environmental 

gradient: 

PCA1 PCA1 PCA1 PCA1 PCA1 PCA1 PCA3 PCA3 PCA2 PCA2 PCA3 
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Table 5. Summary statistics for GAMs fitted to fern CATs and a multivariate 

environmental gradient composed of the first three axes of a PCA of the following 

environmental factors measured across the Gault Nature Reserve in Mont-Saint-

Hilaire, Quebec: log10-transformed phosphorus, calcium, magnesium, potassium, 

and nitrate concentrations, pH, log10-transformed percentage of organic matter, 

median moisture level, and log10-transformed total light level.   

CAT: LMA LDMC Chl 

GAM 

term: 
PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 

R
2
: 0.249 0.478 0.176 

p-

value: 
0.003 0.522 0.302 0.001 0.000 0.324 0.009 0.478 0.716 

EDF 1.430 1.469 1.000 1.446 1.952 1.658 1.489 1.000 1.230 

GCV 0.000 0.002 0.008 

CAT: N C:N Amax 

GAM 

term: 
PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 

R
2
: 0.279 0.344 0.272 

p-

value: 
0.001 0.474 0.470 0.000 0.056 0.885 0.003 0.182 0.649 

EDF 1.821 1.289 1.000 1.711 1.125 1.000 1.553 2.031 1.000 

GCV 0.001 0.002 0.007 

CAT: Height Photosynthetic Area Population Density 

GAM 

term: 
PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 

R
2
: 0.368 0.325 0.498 

p-

value: 
0.765 0.122 0.000 0.791 0.015 0.040 0.001 0.000 0.000 

EDF 1.000 7.497 1.331 1.000 8.394 1.234 1.000 1.000 1.000 

GCV 0.007 0.034 0.001 

CAT: Wintergreen Sporulation    

GAM 

term: 
PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 

   

R
2
: 0.429 0.139    

p-

value: 
0.004 0.000 0.005 0.542 0.257 0.010 

   

EDF 1.000 1.000 1.000 1.000 1.263 1.000    

GCV 0.095 1.464    
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The results in Table 5 suggest that GAMs fitted to a multivariate PCA axis 

gradient may not be very accurate since not all of the terms in these GAMs show 

significant correlations between the CAT and environment data.  Therefore I 

decided that I should also try using a different environmental gradient for each 

trait to see if that would improve the fit of the GAMs, despite the fact that this 

approach is more complicated than using a single environmental gradient in terms 

of the applying the MaxEnt approach.  To choose which environmental gradient I 

used for each trait, I fit a GAM to each CAT and each environmental factor 

separately for all 47 plots and determined which univariate gradient had the best 

relationship with each CAT in terms of adjusted R
2
, p-value, EDF and GCV.  At 

this point I shifted my focus away from the PCA axes because I decided it would 

be more beneficial to those who wish to apply the MaxEnt approach to simply 

measure a few key environmental factors rather than a whole slew of them in 

order to create a PCA.  I therefore separated the first three axes of the PCA from 

the rest of the environmental factors in this analysis (Table 6); see Figures 1-13 in 

the appendix for illustrations of these univariate GAMs for all CATs. 
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Table 6a. Summary statistics for GAMs fitted to fern CATs and environmental 

factors measured across the Gault Nature Reserve in Mont-Saint-Hilaire, Quebec.  

 CAT: LMA LDMC Chl N C:N Amax 

NO3
-
 

R
2
 0.190 0.067 0.094 0.171 0.131 0.210 

p-value 0.001 0.044 0.021 0.002 0.007 0.001 

EDF 1.00 1.00 1.00 1.00 1.00 1.00 

GCV 0.000 0.003 0.009 0.001 0.002 0.007 

P 

R
2
 0.153 0.055 0.132 0.044 0.068 0.038 

p-value 0.043 0.267 0.084 0.272 0.177 0.318 

EDF 2.33 1.95 2.43 1.83 1.98 1.89 

GCV 0.000 0.003 0.009 0.002 0.002 0.009 

K 

R
2
 -0.007 0.322 -0.021 -0.020 -0.014 0.003 

p-value 0.725 0.012 0.784 0.736 0.888 0.605 

EDF 1.46 7.97 1.00 1.00 1.23 1.61 

GCV 0.000 0.002 0.010 0.002 0.002 0.009 

Ca 

R
2
 0.261 0.292 0.198 0.280 0.327 0.278 

p-value 0.011 0.003 0.022 0.005 0.001 0.004 

EDF 4.76 3.36 3.06 4.22 4.03 3.77 

GCV 0.000 0.002 0.008 0.001 0.002 0.007 

Mg 

R
2
 0.194 0.189 0.212 0.200 0.252 0.159 

p-value 0.001 0.001 0.001 0.001 0.000 0.007 

EDF 1.00 1.00 1.00 1.00 1.00 1.47 

GCV 0.000 0.002 0.008 0.001 0.000 0.008 

pH 

R
2
 0.115 0.347 0.128 0.299 0.348 0.209 

p-value 0.054 0.000 0.079 0.007 0.001 0.005 

EDF 1.58 1.83 2.76 5.31 4.22 1.80 

GCV 0.000 0.002 0.009 0.001 0.002 0.007 

Moisture 

R
2
 0.098 0.282 0.130 0.085 0.175 0.060 

p-value 0.018 0.000 0.007 0.053 0.002 0.054 

EDF 1.00 1.00 1.00 1.14 1.00 1.00 

GCV 0.000 0.002 0.008 0.002 0.002 0.008 

% 

Organic 

Matter 

R
2
 0.105 0.220 0.068 -0.008 -0.022 -0.012 

p-value 0.286 0.051 0.449 0.431 0.858 0.498 

EDF 4.79 5.33 4.48 1.00 1.00 1.00 

GCV 0.000 0.003 0.010 0.002 0.002 0.009 

Light 

R
2
 0.138 -0.011 0.067 0.005 -0.009 0.055 

p-value 0.140 0.488 0.459 0.276 0.448 0.473 

EDF 4.52 1.00 3.96 1.00 1.00 4.11 

GCV 0.000 0.003 0.010 0.002 0.002 0.009 

Best Environmental 

gradient: 
Ca pH Mg pH pH Ca 
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Table 6a. continued 

 CAT: Height  
Photosynthetic 

Area 

Population 

Density 
Wintergreen Sporulation 

NO3
-
 

R
2
 0.049 0.004 -0.001 -0.020 0.014 

p-value 0.073 0.281 0.329 0.763 0.209 

EDF 1.00 1.00 1.00 1.00 1.00 

GCV 0.008 0.039 0.001 0.162 1.590 

P 

R
2
 0.018 0.024 -0.019 0.021 0.225 

p-value 0.562 0.516 0.720 0.166 0.007 

EDF 2.45 2.64 1.00 1.00 2.51 

GCV 0.009 0.040 0.001 0.155 1.290 

K 

R
2
 -0.022 -0.021 0.155 0.026 -0.003 

p-value 0.895 0.781 0.029 0.304 0.352 

EDF 1.00 1.00 2.23 1.20 1.00 

GCV 0.009 0.040 0.001 0.155 1.620 

Ca 

R
2
 -0.022 -0.022 0.173 0.139 -0.020 

p-value 0.967 0.859 0.023 0.050 0.733 

EDF 1.00 1.00 2.71 2.73 1.00 

GCV 0.009 0.040 0.001 0.142 1.650 

Mg 

R
2
 0.024 0.032 0.122 0.180 -0.021 

p-value 0.151 0.120 0.009 0.002 0.842 

EDF 1.00 1.00 1.00 1.00 1.00 

GCV 0.009 0.038 0.001 0.130 1.650 

pH 

R
2
 -0.022 0.010 0.369 0.313 -0.019 

p-value 0.996 0.538 0.000 0.000 0.703 

EDF 1.00 1.63 2.67 2.19 1.00 

GCV 0.009 0.039 0.001 0.112 1.640 

Moisture 

R
2
 0.059 0.046 0.334 0.247 -0.011 

p-value 0.078 0.080 0.000 0.000 0.488 

EDF 1.31 1.00 2.85 1.00 1.00 

GCV 0.008 0.037 0.001 0.120 1.630 

% 

Organic 

Matter 

R
2
 0.077 0.029 0.241 0.119 0.064 

p-value 0.307 0.064 0.024 0.137 0.271 

EDF 3.29 2.99 4.76 3.53 2.67 

GCV 0.009 0.040 0.001 0.148 1.570 

Light 

R
2
 0.234 0.172 0.022 0.056 0.105 

p-value 0.018 0.056 0.160 0.322 0.015 

EDF 4.07 3.53 1.00 2.66 1.00 

GCV 0.007 0.034 0.001 0.156 1.440 

Best 

Environmental 

gradient: 

Light Light pH pH P 
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Table 6b. Summary statistics for GAMs fitted to CATs and the first three axes of 

a PCA done of the 47 plots permanent plots established by Ben Gilbert (Gilbert 

and Lechowicz 2004) across the Gault Nature Reserve in Mont-Saint-Hilaire, 

Quebec, as characterized by the following environmental factors: log10-

transformed phosphorus, calcium, magnesium, potassium, and nitrate 

concentrations, pH, log10-transformed percentage of organic matter, median 

moisture level, and log10-transformed total light level.   

CAT: LMA LDMC Chl N C:N Amax 

PCA1 

R
2
 0.247 0.311 0.214 0.297 0.364 0.270 

p-

value 
0.002 0.002 0.007 0.001 0.000 0.002 

EDF 1.93 3.75 2.39 2.72 3.83 2.83 

GCV 0.000 0.002 0.008 0.001 0.002 0.007 

PCA2 

R
2
 0.020 0.305 0.034 0.024 0.087 0.098 

p-

value 
0.410 0.001 0.458 0.456 0.085 0.190 

EDF 1.63 2.89 2.55 1.46 1.67 2.83 

GCV 0.000 0.002 0.010 0.002 0.002 0.008 

PCA3 

R
2
 -0.009 -0.004 -0.013 -0.017 -0.021 -0.022 

p-

value 
0.447 0.366 0.515 0.631 0.847 0.985 

EDF 1.00 1.00 1.00 1.00 1.00 1.00 

GCV 0.000 0.003 0.010 0.002 0.002 0.009 

Best 

Environmental 

gradient: 

Ca pH PCA1 pH PCA1 Ca 

 

Table 6b continued 

 CAT: Height  
Photosynthetic 

Area 

Population 

Density 
Wintergreen Sporulation 

PCA1 

R
2
 -0.022 -0.019 0.138 0.213 -0.014 

p-value 0.957 0.719 0.049 0.032 0.559 

EDF 1.00 1.00 2.42 4.41 1.00 

GCV 0.009 0.040 0.001 0.135 1.640 

PCA2 

R
2
 -0.020 -0.002 0.232 0.226 0.027 

p-value 0.744 0.343 0.003 0.000 0.140 

EDF 1.00 1.00 1.64 1.00 1.00 

GCV 0.009 0.039 0.001 0.123 1.570 

PCA3 

R
2
 0.211 0.065 0.151 0.088 0.114 

p-value 0.001 0.047 0.004 0.025 0.012 

EDF 1.00 1.00 1.00 1.00 1.00 

GCV 0.007 0.037 0.001 0.145 1.430 

Best 

Environmental 

gradient: 

Light Light pH pH P 
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 The summary statistics of the GAMs based on univariate environmental 

gradients (Table 6) showed that certain gradients are significantly and consistently 

correlated to many CATs, e.g. NO3
-
, Ca, Mg, pH, and moisture.  I decided to 

again try using one environmental gradient for all of the CATs in a GAM, based 

on these seemingly most important environmental factors.  I first tried a univariate 

environmental gradient and chose which environmental factor to include based on 

previous research on the ecology of ferns.  Edgar Wherry (1927) demonstrated 

that the level of acidity in soil is particularly important to the distribution of many 

ferns present in Eastern North America.  This suggests that pH and calcium are 

important factors in the assembly of fern communities as calcium strongly buffers 

soil pH levels (Bache 1984).  Furthermore, pH and calcium significantly correlate 

with the majority of CATs in my dataset.  As such I performed a PCA to collapse 

pH and Ca into a single value estimating a gradient from less to more acid soils.  I 

assigned this pH+Ca value to each plot according to the plot‟s location on the 

primary axis of this PCA, which accounted for 89% of the variance in the data.  I 

fit GAMs to this gradient and the CATs of each trait (cf. Table 7 and Figure 14 in 

Appendix 2 for details on the summary statistics and illustrations of these GAMs). 

 

Table 7. Summary statistics for GAMs fitted to each CAT and an environmental 

gradient composed of a single pH+Ca composite factor based on measurements 

made across the Gault Nature Reserve in Mont-Saint-Hilaire, Quebec.  

CAT: LMA LDMC Chl N C:N Amax 

R
2:

 0.260 0.421 0.205 0.228 0.324 0.338 

p-

value: 
0.018 0.000 0.023 0.000 0.001 0.003 

EDF: 5.198 5.046 3.355 1.000 3.066 5.634 

GCV 0.000 0.002 0.008 0.001 0.002 0.007 

CAT: Height 
Photosynth

etic Area 

Population 

Density 

Winter-

green 

Sporu-

lation 
 

R
2:

 -0.022 0.136 0.532 0.301 -0.019  

p-

value: 
0.980 0.158 0.000 0.004 0.702  

EDF: 1.000 4.811 7.518 4.648 1.000  

GCV 0.009 0.001 0.037 0.121 1.644  
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It is apparent from Table 7 that not all of the CATs have a significant 

relationship with this composite measure of soil base status, i.e. the height, 

photosynthetic area and sporulation CATs are not significantly correlated to this 

pH+Ca gradient.   Table 6 indicates that the height CAT is only significantly 

correlated to the light gradient (p=0.018), the photosynthetic area CAT is not very 

significantly correlated to any gradient, but has the strongest relationship with 

light (p=0.056), and the sporulation CAT is only correlated to the P and light 

gradient.  As such I decided to use an environmental gradient composed of 

multiple environmental factors that are collectively significantly correlated to all 

of the CATs.  Unfortunately it became apparent that the estimated degrees of 

freedom (EDF) available in my data set limited the number of environmental 

factors I could use to approximately three depending on the specific variables I 

incorporated into the GAM and the amount of “wiggliness” they introduced to the 

GAM.  I therefore limited this environmental gradient to include a maximum of 

three environmental factors.  I included the composite pH-Ca factor because of 

the well recognized ecological importance of soil acidity to fern distribution, as 

well as the apparent significant relationship of this composite factor to many of 

the CATs in my dataset (Table 7).  I chose to include NO3
-
 and total light as the 

other two environmental factors in the trivariate environmental gradient because 

NO3
-
 significantly correlates with six of the eleven CATs, and light correlates 

with the CATs that do not significantly correlate with pH, Ca, or NO3
-
 (Table 6).  

The summary statistics of the GAMs fitted to this trivariate environmental 

gradient and all of the CATs can be found in Table 8. 
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Table 8. Summary statistics for GAMs fitted to each CAT and a trivariate 

environmental gradient composed of the pH+Ca composite factor, total light and 

nitrate, which were measured across the Gault Nature Reserve in Mont-Saint-

Hilaire, Quebec. 

CAT: LMA LDMC Chl 

GAM 

term: 
pH+Ca Light NO3

-
 pH+Ca Light NO3

-
 pH+Ca Light NO3 

p-

value: 
0.187 0.153 0.158 

8.43E 

-05 
0.308 0.314 0.142 0.216 0.226 

edf: 3.250 4.469 1.000 5.318 3.860 4.201 3.314 4.151 1.000 

R
2:

 0.363 0.527 0.302 

CAT: N C:N Amax 

GAM 

term: 
pH+Ca Light NO3

-
 pH+Ca Light NO3

-
 pH+Ca Light NO3

-
 

p-

value: 
0.025 0.709 0.249 0.014 0.578 0.812 0.055 0.473 0.236 

edf: 1.000 3.190 1.000 2.550 3.226 1.350 3.472 4.055 4.289 

R
2:

 0.257 0.333 0.414 

CAT: Height Photosynthetic Area Population Density 

GAM 

term: 
pH+Ca Light NO3

-
 pH+Ca Light NO3

-
 pH+Ca Light NO3

-
 

p-

value: 
0.248 0.077 0.221 0.152 0.269 0.328 0.000 0.064 0.072 

edf: 1.000 3.322 1.000 4.576 2.772 2.731 6.891 1.000 6.140 

R
2:

 0.210 0.267 0.645 

CAT: Wintergreen Sporulation    

GAM 

term: 
pH+Ca Light NO3

-
 pH+Ca Light NO3

-
 

   
p-

value: 
0.000 0.281 0.032 0.306 0.017 0.541    

edf: 4.383 1.000 3.177 6.804 1.000 1.000    

R
2:

 0.462 0.210    

 

The trivariate environmental gradient of pH-Ca, total light and NO3
-
 

appears to not be significantly correlated to many of the CATs (LMA, Chl, Amax, 

height and photosynthetic area), cf. Table 8.  Closer examination of the summary 

statistics for the GAMs based on this environmental gradient reveals that the NO3
- 

term is not significantly related to any of the CATs.  This information led me to 

try one last type of GAM using a single multivariate gradient for all of the CATs 

that is based on the composite pH-Ca factor, total light, and the interaction 
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between these two factors.  Table 9 gives the summary statistics for these GAMs, 

and Figure 14 in Appendix 2 provides illustrations for the relationships. 

 

Table 9. Summary statistics for GAMs fitted to each CAT and an environmental 

gradient composed of a pH+Ca composite factor, light, and the interaction 

between these two factors, based on measurements made across the Gault Nature 

Reserve in Mont-Saint-Hilaire, Quebec. 

CAT: LMA LDMC Chl 

GAM 

term: 
pH+Ca Light 

Inter-

action 
pH+Ca Light 

Inter-

action 
pH+Ca Light 

Inter-

action 

R
2:

 0.494 0.541 0.415 

p-

value: 
0.393 0.782 0.77 0.006 0.869 0.125 0.205 0.678 0.01 

edf: 3.223 3.307 6.015 5.964 1 5.016 3.555 1.000 6.398 

CAT: N C:N Amax 

GAM 

term: 
pH+Ca Light 

Inter-

action 
pH+Ca Light 

Inter-

action 
pH+Ca Light 

Inter-

action 

R
2:

 0.618 0.560 0.540 

p-

value: 
0.985 0.487 0.019 0.616 0.341 0.023 0.859 0.513 0.217 

edf: 1.742 1.957 16.46 1.000 1.000 15.65 1 5.031 6.451 

CAT: Height Photosynthetic Area Population Density 

GAM 

term: 
pH+Ca Light 

Inter-

action 
pH+Ca Light 

Inter-

action 
pH+Ca Light 

Inter-

action 

R
2:

 0.235 0.206 0.740 

p-

value: 
0.198 0.012 0.239 0.062 0.024 0.086 0.009 0.796 0.251 

edf: 1.000 4.185 1.000 1 3.64 1 8.278 4.589 7.136 

CAT: Wintergreen Sporulation    

GAM 

term: 
pH+Ca Light 

Inter-

action 
pH+Ca Light 

Inter-

action 
   

R
2:

 0.333 0.117    

p-

value: 
0.036 0.465 0.564 0.147 0.007 0.114    

edf: 1.000 1.708 2.726 1.000 1.000 1.000    
  

  

  

At this point I have generated GAMs using one univariate environmental 

gradient for all of the CATs (cf. Table 4 and 7) as well as one multivariate 

environmental gradient for all of the CATs (cf. Table 5, 8 and 9).  I have also used 

univariate environmental gradients that are unique to each CAT (cf. Table 6).  The 
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next logical step is to use multivariate gradients that are unique to each CAT, as 

some traits have strong relationships with multiple environmental factors.  This 

approach is ecologically plausible as it is clear from my data that multiple 

environmental factors affect community-aggregated traits and that each trait is 

affected by different factors; this is also a statistical strategy to obtain the best 

possible MaxEnt predictions.  By using different environmental gradients 

composed of multiple factors that are significantly correlated to each CAT I 

believe that I am maximizing the fit of the GAMs used to predict CATs in the test 

plots and thus I am maximizing the potential for an accurate SAD prediction. This 

approach is the most complicated in terms of applicability of the MaxEnt 

approach, but it also provides the best opportunity for good predictions.  I 

therefore decided to perform a stepwise multiple linear regression using Akaike 

information criterion (AIC) to determine which combination of environmental 

factors have the greatest impact on each CAT.  An AIC attempts to find a model 

that best explains the data with the fewest free parameters possible.  Once the 

environmental factors most affecting each CAT were selected (Table 10) it 

became clear that I could not use this information to develop GAMs fitted to these 

data because I was again limited by the estimated degrees of freedom  and forced 

to include only a few environmental factors.  I therefore created environmental 

gradients comprised of the three best environmental factors, including PCA axes, 

based on the summary statistics shown in Table 6.  Table 11 gives results for the 

best three environmental factors for each CAT, and the summary statistics of the 

associated GAMs. 
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Table 10. Results of a stepwise multiple linear regression using Akaike information criterion (AIC) to determine which combination of 

environmental factors have the greatest impact on each CAT.  Checkmarks indicate environmental factors that were included in the 

final model for each CAT. 
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Table 11. Summary statistics for GAMs fitted to each CAT and a trivariate 

environmental gradient composed of best three environmental factors for each 

CAT, which were measured across the Gault Nature Reserve in Mont-Saint-

Hilaire, Quebec. 

CAT: LMA LDMC Chl 

GAM 

term: 
Ca PCA1 Mg pH K PCA2 Mg PCA1 Ca 

R
2
: 0.231 0.465 0.254 

p-

value: 
0.494 0.303 0.738 0.031 0.211 0.176 0.140 0.422 0.301 

EDF 1.602 1.369 1.000 3.249 1.000 3.202 1.000 1.000 2.845 

GCV 0.000 0.002 0.008 

CAT: N C:N Amax 

GAM 

term: 
pH PCA1 Ca PCA1 pH Ca Ca PCA1 NO3

-
 

R
2
: 0.613 0.448 0.332 

p-

value: 
0.003 0.110 0.016 0.092 0.063 0.719 0.843 0.204 0.993 

EDF 8.053 1.000 6.044 3.681 2.346 1.000 1.000 3.675 1.000 

GCV 0.001 0.001 0.002 

CAT: Height Photosynthetic Area Population Density 

GAM 

term: 
Light PCA3 Moisture PCA3 Light Moisture pH Moisture OM 

R
2
: 0.250 0.197 0.571 

p-

value: 
0.387 0.306 0.544 0.711 0.124 0.119 0.001 0.032 0.202 

EDF 3.310 1.000 1.000 1.000 3.532 1.000 1.000 2.551 5.001 

GCV 0.007 0.035 0.001 

CAT: Wintergreen Sporulation    

GAM 

term: 
pH Moisture PCA2 P PCA3 Light 

   

R
2
: 0.395 0.210    

p-

value: 
0.163 0.034 0.094 0.013 0.543 0.125 

   

EDF 1.827 1.000 1.000 1.000 2.619 1.000    

GCV 0.102 1.386    
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The summary statistics in Table 11 indicate that this trivariate 

environmental gradient approach may not necessarily yield the best predictions 

using the MaxEnt approach, as there is an apparent lack of significant correlation 

between the gradients and the CATs. At this point and in light of approaching 

thesis submission deadlines, I concluded that I have tried enough different 

possible approaches to fitting GAMs to my data to provide a reasonably thorough 

test of the MaxEnt approach with my dataset.  

So far I have only been describing my efforts to fit a suitable GAM to the 

data in all 47 plots for each approach, but the ultimate goal was really to fit a 

GAM to the data in only the calibration plots and then estimate CATs in 

independent test plots.  I have been using all 47 plots to better assess the statistical 

behaviour of the GAMs, but to actually test the MaxEnt approach I must fit a 

GAM to the selected CAT and environmental data in randomly selected 

calibration plots for each of the approaches that I outlined above.  With the 

resulting independently estimated CAT-GAM relationships I can move forward to 

the next step in my attempt to circumvent circularity in the MaxEnt approach: 

estimating CATs in the test plots.  Although the preceding results suggest the 

GAM-CAT relationships may be too weak in my data set to support good 

noncircular predictions, I nonetheless proceeded to complete the program I 

initially had planned to fully test the predictive capacity of the MaxEnt approach. 

 

iv) Use the GAMs fitted to the CAT and environmental data in the 

calibration plots to estimate CATs in the test plots. 

  After going through the process of choosing which environmental 

gradients to use and fitting GAMs to the data in the calibration plots, I used the 

calibration GAM in conjunction with the environmental data in the test plots to 

estimate what the CATs were expected to be in the test plots.  This procedure was 

written in R, using the predict.gam() function in the mgcv package written by 

Wood (2010) (See Appendix 1 for the R code).  I estimated CATs for the test 

plots using all seven of the environmental gradients I described in the previous 
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section: 1) the primary axis of the PCA, 2) the first three axes of the PCA, 3) the 

best environmental factor for each CAT, 4) a pH+Ca composite factor, 5) pH+Ca, 

total light and nitrate, 6) pH+Ca, total light and the interaction of these two terms, 

and 7) the best three environmental factors for each CAT.  By developing CATs 

based on an environmental gradient rather than on observed data, I was prepared 

to move to steps ii, iii, and iv in performing a non-circular test of the MaxEnt 

approach. 

 

7.  PERFORM A NON-CIRCULAR TEST OF THE MAXENT APPROACH 

(CONT’D) 

A true test of the MaxEnt approach is a non-circular one in which SADs 

are predicted from CATs estimated from an environmental gradient, rather than 

from CATs entirely based on observed data.  After the step of estimating CATs in 

the test plots I was able to perform this non-circular test in a manner similar to the 

circular test by executing steps ii, iii, and iv in the procedure I outlined earlier:  ii) 

predict SADs in the test plots by using the maxent function in R to fit the MaxEnt 

approach to the estimated CATs and the prior distribution for the test plots, iii) 

compare the predicted distributions with the observed ones using the inferential 

permutation test (maxent.test function) developed by Shipley (in press), and iv) 

work to improve the predictions by altering different components of the MaxEnt 

approach. 

In the previous section I came up with seven different ways of creating 

environmental gradients to estimate CATs in the test plots, which I used to 

perform non-circular tests using all 11 traits.  I had already discovered that a low 

tolerance threshold to determine convergence was important to the significance of 

the results, so I used a tolerance threshold of 1e
-11

 in all of my tests.  I also used 

the prior distribution based on the vegetation survey data rather than the uniform 

prior distribution for these tests. 

TEST 1: The first non-circular test used test plot CATs that were 

estimated from an environmental gradient composed of the primary axis of the 
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PCA of all 47 plots.  In this test the MaxEnt approach proved unable to accurately 

predict species abundance in the test plots (R
2
=0.249, p=1; Figure 15).  The 

statistics are non-significant and fit to the data clearly deficient. 

 

 

 

TEST 2: The summary statistics for the GAMS made with an 

environmental gradient composed of the primary axis of the PCA of all 47 plots 

indicate that the height, photosynthetic area and sporulation CATs are not 

significantly correlated to the primary axis of the PCA (Table 5).  As such, I 

performed this test again after removing those CATs.  The results were improved, 

but still not significant (R
2
=0.335, p=1; Figure 16).  This improvement led me to 

Figure 15. Test 1 - Results of a 

non-circular MaxEnt test that 

used an environmental gradient 

composed of the primary axis of 

the PCA of all of the 

environmental factors measured 

in my study plots.  All 11 traits 

were included. 
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perform the rest of the tests with only the CATs that are significantly correlated to 

the environmental gradient being used. 

 

 

 

TEST 3: My third non-circular test used CATs that were estimated from 

an environmental gradient comprised of the primary, secondary, and tertiary axes 

of the PCA I created for the environmental data in all 47 plots.  No CATs were 

eliminated for this test because they all showed a significant relationship with the 

environmental gradient (Table 5).  These results also showed that the MaxEnt 

approach was unsuccessful in predicting species abundance in the test plots 

(R
2
=0.183, p=1; Figure 17). 

Figure 16. Test 2 - Results of 

a non-circular MaxEnt test 

that used an environmental 

gradient primary axis of the 

PCA of all of the 

environmental factors 

measured in my study plots.  

Height, photosynthetic area 

and sporulation CATs were 

not included because they 

were not significantly 

correlated to the 

environmental gradient. 
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TEST 4: The fourth test I performed used CATs that were estimated from 

different environmental gradients.  These gradients were based on the single 

“best” environmental factor for each trait, i.e. the environmental factor that the 

CATs had the strongest relationship with.  The results of this test were also 

insignificantly correlated with the observed data.  I performed this test five times 

(each result was different due to a random selection of test plots each time), and 

while the R
2
 value ranged from 0.147 (Figure 18) to 0.344 (Figure 19), the p-

value was 1 every time. 

 

Figure 17. Test 3 - Results of a 

non-circular MaxEnt test that 

used an environmental gradient 

comprised of the primary, 

secondary, and tertiary axes of 

the PCA I created for the 

environmental data in all of my 

study plots.  All 11 traits were 

included. 
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Figure 18. Test 4 - One example 

of the results of a non-circular 

MaxEnt test that used 

environmental gradients 

composed of the single “best” 

environmental factor for each of 

the 11 traits. 
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TEST 5: My fifth test involved using an environmental gradient 

combining pH and Ca as a composite factor derived via PCA.  I eliminated the 

height, photosynthetic area, and sporulation CATs because they were not 

significantly correlated to this gradient.  It should be noted that while I used the 

primary axis of the PCA (Figure 12) to order the 47 plots so that I could perform a 

random stratified selection of test plots for all of the other tests, I was able to 

order the plots along the pH+Ca gradient in this case.  The results showed that the 

prediction of species abundance in the test plots was not accurate (R
2
=0.191, p=1; 

Figure 20) 

 

 

Figure 19. Test 4 - One example 

of the results of a non-circular 

MaxEnt test that used 

environmental gradients 

composed of the single “best” 

environmental factor for each of 

the 11traits. 
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TEST 6: For my sixth test I used a multivariate environmental gradient 

that included the pH+Ca composite factor, as well as total light and nitrate.  I 

eliminated the Chl, Amax, height, and photosynthetic area CATs because they did 

not significantly correlate with this gradient.  The results of this test also proved 

insignificant (R
2
=0.211, p=1; Figure 21). 

Figure 20. Test 5 - Results of a 

non-circular MaxEnt test that 

used an environmental gradient 

composed of a pH and Ca 

composite factor. Height, 

photosynthetic area, and 

sporulation CATs were not 

included because they were not 

significantly correlated to this 

gradient. 
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After the sixth test I attempted a test using a multivariate environmental 

gradient that included the pH+Ca composite factor, as well as total light and the 

interaction between these two factors.  I was not able to perform this test because 

there were not enough estimated degrees of freedom when I tried to fit a GAM to 

the data in the calibration plots, despite there having been enough when I fit a 

GAM to the data in all 47 plots. 

 

TEST 7: For my seventh test I used CATs that were estimated from 

different multivariate environmental gradients.  These gradients were based on the 

three “best” environmental factors for each trait, I eliminated the LMA, Chl, Amax, 

Figure 21. Test 6 - Results of a 

non-circular MaxEnt test that 

used an environmental gradient 

composed of a pH and Ca 

composite factor, total light, and 

nitrate. Chl, Amax, height, and 

photosynthetic area CATs were 

not included because they were 

not significantly correlated to 

this gradient. 
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height, and photosynthetic area CATs because they did not significantly correlate 

with their unique multivariate gradients.  The results of this test proved 

insignificant (R
2
=0.082, p=1; Figure 22) 

 

  

 

TEST 8: I performed one final test using the same CAT estimation method 

as in my fourth non-circular test, i.e. CATs for each trait were estimated from the 

single “best” environmental factor, but this time I reduced the number of traits 

from to 11 to 3.  I decided to perform the test only using Amax, wintergreen and 

sporulation CATs because I was able to produce accurate predictions when I used 

only these three traits in a circular test.  Unlike that circular test, the results of my 

Figure 22. Test 7 - Results of a 

non-circular MaxEnt test that 

used a different multivariate 

environmental gradient for each 

CAT.  These gradients were 

based on the three “best” 

environmental factors for each 

trait.  I did not include the 

LMA, Chl, Amax, height, and 

photosynthetic area CATs 

because they did not 

significantly correlate with their 

unique multivariate gradients 
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fifth non-circular test proved unable to accurately predict the species abundance in 

the test plots (R
2
=0.253, p=1; Figure 23) 

 

 

The results of my non-circular tests overwhelmingly indicate that the 

MaxEnt approach cannot be used to predict SADs from CATs estimated from an 

environmental gradient.  If these results are definitive then the MaxEnt approach 

cannot be used to predict the affects of changes in environmental conditions on 

plant communities, nor can it be used to predict the ability of invasive species to 

colonize an area.  In other words, the apparent lack of predictive ability of the 

MaxEnt approach strips it of its potential utility for conservation purposes.  As 

such, I must analyze the results of my non-circular tests to determine if my non-

Figure 23. Test 8 - Results of a 

non-circular MaxEnt test that 

used a different univariate 

environmental gradient for each 

CAT.  These gradients were 

based on the single “best” 

environmental factors for each 

trait. I only included the Amax, 

wintergreen and sporulation 

CATs. 
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significant results are definitive, or if there is still a chance that the MaxEnt 

approach can be used to predict SADs from environmental gradients. 

 

Discussion 

The MaxEnt approach attempts to predict the relative abundances of 

species in communities that occur along an environmental gradient by 

incorporating both stochastic (neutral) and deterministic (niche) processes.  The 

prior used in the MaxEnt approach implicitly invokes a neutral perspective, either 

through the equality of species suggested by a uniform prior or through the 

stochastic process of dispersal limitation suggested by a prior defined by 

abundance in the regional species pool.  Species with high abundances that are in 

close proximity to a locality are more likely to colonize that locality and become 

abundant there than species that have low regional abundances and have to 

disperse to that locality from a greater distance (Gilbert and Lechowicz 2004; 

Hubbell 2005; Jones et al. 2006).  Alternatively, the deterministic process that the 

MaxEnt approach is based on is a niche perspective rooted in the trait-based 

environmental filtering inherent in the constraints in a MaxEnt approach.  The 

idea behind environmental filtering is that all the species in a regional species 

pool have the potential to enter a given community, but the environment acts as a 

filter that only permits entrance to species that have certain combinations of 

functional traits conducive to survival in that locality (Keddy 1992; Weiher and 

Keddy 1995; Belyea and Lancaster 1999; Booth and Swanton 2002).  It is 

hypothesized that this filtering process causes variation in the distribution and 

abundance of species and drives community assembly.  Species with traits better 

suited to a particular environment are more likely to become abundant than 

species with traits that are less conducive to survival in that environment, even if 

the latter species are less affected by dispersal limitation.   

From a statistical viewpoint, the MaxEnt approach to community 

assembly is Bayesian in that it is first assumed that communities are randomly 

assembled according to neutral processes, but then CATs that encode information 

about the environmental filtering process are included as constraints to inform 
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predictions of a abundance distributions in these communities.  These constraints 

shift the relative abundances of species that were set by neutral processes to ones 

set by niche processes.  Additionally, it should be reiterated that the abundance 

distributions that are predicted by the MaxEnt procedure only contain the 

information input as constraints, and are otherwise randomly assembled.  In other 

words, the abundance distributions that MaxEnt selects are random (neutral 

framework), except with regards to the imposed community-aggregated trait 

constraints (niche framework).  If the MaxEnt approach works, then the 

apparently opposing frameworks of niche and neutral theory will be linked and 

the central question in community ecology – how communities assemble from a 

species pool – will have a more complete answer.  Intriguing as the MaxEnt 

approach is in these respects, it has yet to be thoroughly tested empirically.   

My study of fern community assembly was designed to provide such a test 

and thereby assess the value of the MaxEnt approach in describing and predicting 

community structure.  To test the MaxEnt approach I first needed to select 

communities to study.  I chose to focus on a set of forty-seven 50 m
2
 plots 

established by Ben Gilbert (Gilbert and Lechowicz 2004) across the upland 

hardwood forest of the Gault Nature Reserve.  The 21 fern species present in these 

plots determined the species pool.  I was fortunate that the abundances of these 

species were previously measured in each of the plots that I chose to study 

(Gilbert and Lechowicz 2004, unpublished data).  I personally obtained average 

trait data for all of the species in the species pool using samples collected 

throughout the Gault Nature Reserve, and was then able to calculate community-

aggregated trait values (CATs) for each plot.  I did so by weighting the average 

trait values by the abundance of each species in each plot and summing the values 

for each species to obtain a single CAT for each plot.  With all of this information 

in hand I was able to test if the MaxEnt approach fit my data, i.e. if trait 

constraints can predict the relative abundance of species in the fern communities 

described by Gilbert and Lechowicz (2004).  Once I established that a MaxEnt 

model could indeed be fitted to these data, I then attempted to test the predictive 
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abilities of the MaxEnt approach using CATs independently estimated from 

environmental data for the Gilbert and Lechowicz (2004) study plots . 

 

Fitting the observed data in a MaxEnt approach 

I was able to test if a MaxEnt model fit my data by using the calculated 

CATs in the Gilbert and Lechowicz (2004) plots to constrain the predicted 

relative abundance of each species in each of the plots.  Since the calculated 

CATs were derived from the observed relative abundances of fern species in each 

study plot that were measured by Ben Gilbert, in this instance the relative 

abundances produced by the MaxEnt algorithm are essentially only a measure of 

how well a MaxEnt model can be fitted to the observed data, not true predictions.  

I have called this test of fit a “circular test” since the final abundance values 

generated by MaxEnt are so closely linked to the observed abundances.  In my 

attempts at fitting the MaxEnt approach to my data using circular tests I made 

incremental changes to the following components of the MaxEnt approach to 

improve the fit to the observed data: 1) the combinations and number of traits 

included, 2) the tolerance threshold used and 3) the prior distribution used.  I 

made changes to one component at a time in this order to observe if the alterations 

affected the quality of the fit of the MaxEnt approach to my data, independently 

of alterations in each of the other components. 

1) Trait selection: My first circular tests used the default settings of the 

R-code (Laliberté and Shipley 2010) implementing a MaxEnt model, which 

included a uniform prior distribution and a tolerance threshold of 1e
-07

 to 

determine convergence.  The number of traits, however, had no default value as it 

was up to me to decide which traits to include.  The ecological literature supports 

the notion that all 11 of the traits that I measured (height, density, photosynthetic 

area, LMA, LDMC, Chl, N, C:N, Amax, wintergreen and sporulation) hold 

biologically relevant information about community assembly processes at the 

alpha scale (e.g. Westoby et al. 2002; Lebrija-Trejos et al. 2010).  These alpha-

traits are associated with factors involved in the ability of a plant to acquire and 

use resources in a specific environment (Morin and Lechowicz 2008).  I therefore 
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included all 11 traits in my first circular test.  The relative abundances predicted in 

this test were significantly correlated to the observed abundances in all of the 

communities, i.e. the test showed that a MaxEnt model could be fitted to these 

data.  The CATs of these 11 traits could be used to predict relative abundances 

that were significantly similar to the observed relative abundances.   

There exists a trade-off between the number of traits I include and the 

statistical power of the test, as the degrees of freedom in a MaxEnt analysis are 

equal to the number of species minus the number of traits.  This trade-off 

prompted me to decrease the number of traits I used to determine if the fit of the 

MaxEnt approach could be improved.  Although all of these 11 traits are 

hypothesized to be relevant to community assembly, I eliminated three traits 

(Amax, wintergreen and sporulation) that I did not think were as important as the 

others due to being redundant (Amax) or being categorical rather than ordinal 

(wintergreen and sporulation).  When I removed these traits, I found that the fit of 

the MaxEnt approach actually worsened and was no longer significant.   

This decrease in the fit of the MaxEnt approach when using only 8 instead 

of all 11 traits at first led me to believe that having more statistical power was less 

important than having more information in the form of constraints for fitting the 

MaxEnt approach.   A very recently published study by Mokany and Roxburgh 

(2010) supports my initial decision to include all 11 traits because CATs of alpha 

traits similar to mine were shown to improve the fit of the MaxEnt approach at the 

alpha scale.  Their research also showed that at smaller spatial scales more traits 

appear to be significant, i.e. information on more traits produces a better fit of the 

MaxEnt approach at the alpha scale.  When I tested the importance of the Amax, 

wintergreen and sporulation CATs (combined) in comparison to the combination 

of CATs for the other eight traits in the first circular test, I was surprised to see 

that the combination of traits I removed in fact was more important than the 

combination of the ones I kept in the MaxEnt approach! 

The apparent significance of Amax, wintergreen and sporulation led me to 

attempt another test in which I only included the CATs of these three traits, and 

the fit of the MaxEnt approach was again significant.  I then tried another circular 
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test with only wintergreen and sporulation CATs, and while the fit of the MaxEnt 

approach declined from the previous test, it was significant as well.  The fact that 

using three traits and two traits improved the significance of the fit over using 

eight traits suggests two possibilities: 1) perhaps there is a critical point at which 

increased power trumps increased information and the MaxEnt approach will fit 

the data regardless of the traits used, or 2) perhaps Amax, wintergreen and 

sporulation CATs combined indeed contain more information about how fern 

communities are constrained than the other combination of traits does.  If the 

latter possibility is true, then perhaps other combinations of traits are even more 

important than the ones I tested.  I was not able to go through each combination 

individually as there were too many possibilities; however in their recently 

published paper, Mokany and Roxburgh (2010) developed a stepwise selection 

procedure that can identify which traits/combinations of traits are the most 

important constraints.  This procedure can be used on my data in the future to 

elucidate the importance of each of the traits I measured in my study.   

2) Setting the convergence tolerance threshold: In addition to the 

number of traits included in the MaxEnt approach, it became clear in my circular 

tests that the convergence tolerance was important to the significance of the 

predicted abundances produced by a MaxEnt model.  Although the fit of the 8-

trait model in which I eliminated Amax, wintergreen and sporulation was not 

significant at the default convergence tolerance of 1e
-07

, a lower tolerance of 1e
-09

 

improved the fit of the MaxEnt approach dramatically, making it significant.  

Roxburgh and Mokany (2010) discuss how to choose a convergence tolerance for 

MaxEnt to ensure that a satisfactory solution is found.  They comment on how 

more stringent tolerance levels generally improve fits in numerical optimization 

procedures, but that each dataset is unique in the relationships among species 

abundances and trait values that it contains.  Therefore care has to be taken when 

setting the convergence tolerance as this component of the MaxEnt approach 

should change according to the specific dataset being used.  My dataset contains a 

great number of low abundance values.  As such, a relatively low convergence 

tolerance is required to observe the small changes in predicted relative abundance 
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that occur between successive iterations when executing the MaxEnt approach.  A 

more stringent tolerance limit, however, can also substantially increase the time 

required to iteratively solve the MaxEnt algorithm. 

3) Choosing a prior distribution: To employ the MaxEnt approach I had 

to decide on a prior abundance distribution to which CAT constraints could be 

added so that the MaxEnt algorithm could come up with a predicted abundance 

distribution.  I used the default parameters in my initial circular tests, which 

included a maximally uninformative uniform prior distribution in which all of the 

species were equally abundant in all of the plots. This prior is part of the neutral 

aspect of the MaxEnt approach as it implies that all species have an equal ability 

to enter the communities that I am studying if traits are not taken into 

consideration.   

Shipley (2009c) indicated that a different prior distribution could be used 

if other information regarding species abundances was available.  A non-uniform 

prior distribution essentially acts as an additional constraint on the predicted 

relative abundance estimates that the MaxEnt approach generates.  I started off 

using a uniform prior because I wanted to see the effects of changing the traits as 

well as the tolerance threshold independently of the effects of adding information 

in the form of a non-uniform prior distribution.  Once I established the effects of 

trait selection and tolerance threshold, and determined how to obtain optimal 

results by changing these components, I decided to incorporate a non-uniform 

prior comprised of the relative abundances of each species in the regional pool of 

fern species on Mont Saint Hilaire.  I had the preconceived notion that the non-

uniform prior would improve the fit of the MaxEnt approach from that based on a 

uniform prior because it could add information more directly relevant to the 

assembly of fern communities at Mont Saint Hilaire.  I obtained this non-uniform 

prior distribution from a comprehensive vegetation survey of Mont Saint Hilaire 

made in 1996 (Bell et al. 2001).  I was concerned that the non-uniform prior 

might act as a misleading constraint since it is possible for a species to be 

regionally rare and locally abundant, but implementing the non-uniform prior did 

indeed improve the fit of the MaxEnt model to my data. 
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Neutral processes acting at the alpha level are still incorporated in the 

MaxEnt approach with this non-uniform prior, although in a different way than 

with the uniform prior.  Using the non-uniform prior implies that each species‟ 

ability to enter a community is directly proportional to its regional abundance so 

long as the environment is not filtering species based on their traits at the alpha 

scale.  The regional abundance of each species may still encode constraints, but  

these constraints would be acting at the regional scale (i.e. beta-traits). 

The non-uniform prior approach that I took is similar to one taken by 

Sonnier et al. (2010) in a recent study using the MaxEnt approach to assess if 

traits are good predictors of relative abundance at very large spatial scale – all of 

England.  Sonnier et al. (2010) describe three different scenarios of local 

community assembly: 1) “pure local trait-based assembly” in which the prior is 

maximally uninformative, and CATs are added as constraints, 2) “pure local 

neutral assembly” in which a non-uniform distribution obtained from the relative 

abundance of each species at the landscape level is used and CATs are not 

incorporated to constrain predicted relative abundances, and 3) a “hybrid model” 

in which the prior is the non-uniform regional species abundance distribution 

(scenario two) and CATs are included to constrain the predicted abundance 

distribution (scenario one).  Sonnier et al. (2010) compared the predicted 

abundances they obtained with the MaxEnt approach for each of the three 

scenarios, and the hybrid model produced the best results.  The pure local trait-

based assembly scenario produced good predictions as well, but unlike with the 

hybrid model the fit of the MaxEnt approach declined dramatically when a greater 

number of species were included in the species pool.  Nonetheless, permutation 

tests showed that the traits were still significant constraints on the MaxEnt 

predictions in all of their tests.  The pure local neutral assembly scenario produced 

worse predictions than both of the other scenarios, but the traits were also 

determined to significantly predict the observed relative abundance. 

My use of a regional abundance distribution as the prior distribution and 

CATs to constrain the predicted relative abundance generated by the MaxEnt 

algorithm is very similar to scenario three, the hybrid model, described by Sonnier 
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et al. (2010).  Furthermore, the results of the study by Sonnier et al. (2010) 

coincide with my results, as my use of the non-uniform prior also produced more 

accurate predictions than my use of the uniform prior, although the circular tests 

using both of these priors showed that the CATs significantly constrain the 

predicted abundance generated by MaxEnt.  The results obtained by Sonnier et al. 

(2010) in addition to my results alleviated my concern that the non-uniform prior 

would act as a misleading constraint. 

 

Utility of fitting the observed data in a MaxEnt approach 

All of the progressive changes I made to the MaxEnt approach in my 

circular tests helped me understand the conditions necessary to fit an effective 

model to my data.  The important outcome of all of these tests is that I can 

conclude that a MaxEnt model can indeed be fitted to my data, i.e. that 

community-aggregated traits can be used to predict the abundance distribution of 

ferns in the communities I sampled in the Gault Nature Reserve.  Although some 

researchers criticize this sort of circular implementation of a MaxEnt model and 

claim that it has neither validity nor utility (e.g. Marks and Muller-Landau 2007; 

Haegeman and Loreau 2008 and 2009), others defend the use this MaxEnt 

approach for assessing and describing the role of community-aggregated traits as 

measures of a filtering process affecting the relative abundance distributions of 

species in a community (e.g. Shipley 2009a; Shipley 2009b; He 2010; McGill and 

Nekola 2010; Mokany and Roxburgh 2010; Roxburgh and Mokany 2010; Sonnier 

et al. 2010).  I agree with the latter camp and have myself demonstrated that 

MaxEnt models can be fitted to community data, but I acknowledge that the real 

utility of the MaxEnt approach ultimately hinges on its predictive ability.  In other 

words, to apply a MaxEnt approach to predict the vegetation structure of 

communities that have not been surveyed, the MaxEnt approach must be able to 

predict relative abundance from CATs that are not derived not from observed 

abundances in a set of surveyed plots but from independently measured 

environmental conditions.   
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Exploring uncharted territory with environmental gradients 

I therefore have derived CATs from environmental gradients to assess and 

test the potential predictive ability of the MaxEnt approach. I want to emphasize 

that the predictive as opposed to simply descriptive ability of a MaxEnt model is 

entirely dependent on the ability to estimate CATs from an environmental 

gradient.  The circular tests did not employ this method, as environmental data 

associated with the Gilbert and Lechowicz (2004) plots were not considered in 

fitting MaxEnt models to their data on the relative abundance of species.  Testing 

the predictive ability of MaxEnt involves using GAMs to quantify the relationship 

between the CATs and the environmental gradient in a subset of calibration plots 

so that CATs can be predicted in test plots from which relative abundance 

predictions can be made for the test plots.  I am calling this predictive test “non-

circular” to emphasize the fact that in this method the CATs used to constrain 

relative abundance predictions are independent of the observed relative 

abundances, unlike in the circular tests I executed initially. 

I know of only one other, still unpublished study using environmental 

gradients to test the predictive ability of the MaxEnt approach (Shipley, Laughlin, 

Sonnier and Otfinowski, in press).  I therefore had to develop the non-circular test 

method on my own and struggled with how to incorporate the trait and 

environment components of the test.  As previously discussed, there is a trade-off 

between the number of traits I include in a MaxEnt model and the power of the 

test of that model.  Although I had already discovered that different combinations 

and numbers of traits have differential impacts on the significance of the 

prediction through my circular tests, I had to deal with this issue again in 

performing non-circular tests.  I fitted GAMs to the environment and CAT data in 

all of the plots, rather than just the calibration plots, to identify whether or not the 

CATs significantly correlated to each environmental gradient that I used, as well 

as what the characteristics of the correlation trend was, if there was a trend.  If the 

CATs of a trait were significantly correlated to the environmental gradient that I 

used then I included that trait in the subsequent non-circular test; if it was not then 

I excluded it from that particular test.  As previously discussed, I had no other 
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basis for excluding traits, although in the future the stepwise selection procedure 

recently developed by Mokany and Roxburgh (2010) can be used to determine if 

my correlation criterion caused me to only include the traits most important to the 

MaxEnt relative abundance distribution prediction, or if other combinations of 

traits should have been included in my non-circular tests.  

In addition to the statistical power vs. number of traits trade-off, there is 

also a trade-off between statistical power and the number of environmental factors 

I can include in the environmental gradients when I fit GAMs to these data.  

Using more test plots would increase the power of the test; however it would also 

take away from the number of calibration plots that I use.  Fewer calibration plots 

would mean that I had fewer degrees of freedom available when fitting the GAMs 

that the CATs would be estimated from in the test plots.  That translates into 

being able to include fewer environmental factors in the GAM fitted to the 

calibration plots, as each environmental factor decreases the estimated degrees of 

freedom available by an amount that is related to the wiggliness of the fit of the 

GAM.  I felt that using 25% of the plots as test plots and 75% of the plots as 

calibration plots was the best balance between power and number of 

environmental variables I was able to include.  I thought that using fewer 

calibration plots would cause any patterns observed among the CATs and the 

environmental gradients picked up by the GAMs to degrade, causing poor 

estimations of CATs from the environmental gradient.  It appears that Shipley et 

al. (in press) used the same percentage of their 96 plots as test plots and 

calibration plots, lending support to my decision to use this 25/75 split.   

Within the scope of this M.Sc. research, I have only been able to complete 

an initial exploration of the predictive ability of the MaxEnt approach, and the 

results so far suggest that successfully predicting species abundance distributions 

from CATs that are estimated from an environmental gradient will not be 

straightforward, if it is possible at all.  None of the non-circular tests that I tried 

based on insights gained in fitting MaxEnt models to my data yielded significant 

predictions. It is important to analyze the possible reasons for these non-

significant results in order to interpret if they are definitive, or if there is still 
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potential that the MaxEnt approach can not only describe but also predict relative 

abundance in communities along environmental gradients.  This analysis includes 

examining if the CATs were accurately estimated from an environmental gradient, 

as well as questioning if there are other more fundamental issues with the MaxEnt 

approach to community assembly that prevented me from obtaining significant 

predictions of species abundance. 

 

Were CATs well estimated in the test plots? 

It is necessary to investigate how good the CAT estimation process is to 

determine why the non-circular tests did not produce good predictions, as this 

process is the only difference between the non-circular tests and the circular tests, 

which did significantly describe the patterns of species abundance in my study 

plots.  For this investigation I compared the observed CATs in a randomly 

selected set of test plots to the estimated CATs in the same plots.  I did this for 

two of the estimation methods I tried in my non-circular tests: the one that 

involved using the single “best” environmental factor as the environmental 

gradient for each CAT, and the one in which I used the three best environmental 

factors.  I chose to examine these methods because the GAMs fitted to these data 

in all of the plots illustrate what I believe to be strong statistical relationships 

between the CATs and the environment that are consistent with expectations for 

the ecological roles of traits as filters in community assembly.  For example, 

LDMC strongly correlated with the univariate gradient of pH (R
2
=0.347,  

p=7.00e
-05

; Table 6a; Figure 6 in the appendix) and foliar nitrogen strongly 

correlated with the multivariate gradient comprised of pH, PCA1, and Ca 

(R
2
=0.613, p=0.003, 0.110 and 0.016 for each environmental factor, respectively; 

Table 11).   

I assumed that GAMs fitted to data exhibiting such strong relationships 

would produce good estimations of CATs in test plots.  I used a model II 

regression to determine whether or not the CATs in a randomly selected subset of 

test plots that were estimated from an environmental gradient significantly co-

vary with the observed CATs in the same test plots.  The results indicate that the 
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null hypothesis of zero correlation cannot be rejected for the majority of CATs 

(p>0.05), i.e. that the estimated CATs are significantly different from the 

calculated CATs for the test plots for most of the traits (Table 12 and 13).  To 

illustrate this incongruity I plotted the observed and estimated LDMC CATs for a 

subset of test plots along a pH environmental gradient (this was the best univariate 

gradient for LDMC) against each other (R
2
=0.0004, p=0.953; Figure 24). 

It must be reiterated that the calibration and test plots are different each 

time I perform a non-circular test, as they are randomly selected each time.  As 

such, the correlation between the estimated and observed CATs in the test plots 

will be different if the plots are randomly drawn in a different way.  In the time 

available for my M.Sc. research, I did not have the computing power to run these 

tests enough times to statistically verify that the CATs would always be poorly 

estimated using environmental gradients in my non-circular tests; however the 

experience I have in executing multiple non-circular tests leads me to believe that 

the results I outlined above are not anomalous.  

   

CAT 
Environmental 

Gradient 
R

2
 p-value 

Wintergreen pH 0.404 0.026 

Height Light 0.330 0.051 

N pH 0.202 0.143 

Photosynthetic 

Area 
Light 0.191 0.155 

Sporulation P 0.164 0.191 

C:N pH 0.139 0.233 

LMA Ca 0.116 0.279 

Chl Mg 0.082 0.366 

LDMC pH 0.047 0.497 

Amax Ca 0.009 0.771 

Population 

Density 
pH 0.006 0.806 

 

Table 12. Results of a 

model II regression 

performed on 

calculated and 

estimated community-

aggregated traits 

(CATs) for a randomly 

selected subset of test 

plots.  The CATs were 

generated from one of 

my non-circular tests of 

the MaxEnt approach 

by Shipley et al. 

(2006), using a 

different environmental 

gradient for each CAT; 

each gradient was 

composed of the single 

environmental factor 

most strongly related to 

each CAT. 
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Table 13. Results of a model II regression performed on calculated and estimated 

community-aggregated traits (CATs) for a randomly selected subset of test plots.  

The CATs were generated from one of my non-circular tests of the MaxEnt 

approach by Shipley et al. (2006), using a different environmental gradient for 

each CAT; each gradient was composed of the three environmental factors most 

strongly related to each CAT. 

CAT Composite Environmental Gradient R
2
 p-value 

LMA Ca PCA1 Mg 0.475 0.013 

LDMC pH K PCA2 0.009 0.771 

Chl Mg PCA1 Ca 0.220 0.124 

N pH PCA1 Ca 0.061 0.439 

C:N PCA1 pH Ca 0.055 0.463 

Amax Ca PCA1 NO3
-
 0.132 0.246 

Height Light PCA3 Moisture 0.255 0.094 

Photosynthetic 

Area 
PCA3 Light Moisture 0.093 0.335 

Population 

Density 
pH Moisture 

Organic 

Matter 
0.053 0.471 

Wintergreen pH Moisture PCA2 0.154 0.206 

Sporulation P PCA3 Light 0.120 0.270 

 

Figure 24. Regression 

line and results of a 

model II regression for 

observed and estimated 

LDMC community-

aggregated traits (CATs) 

in a randomly selected 

subset of test plots.  A 

pH gradient was used as 

this environmental factor 

was the most strongly 

related to the LDMC 

CATs of all the factors.  
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Possible Type II error 

This evidence strongly suggests that using a GAM to estimate CATs from 

an environmental gradient is not effective for my data, as the estimated CATs 

were significantly different from the observed CATs in the test plots in the two 

examples I present here.  Therefore it is possible that the negative results of my 

non-circular tests are in fact a reflection of a Type II error.  This error could have 

been caused by either a weak environmental gradient, the GAM being a poor 

choice of model to fit to the data, or a lack of power in my test of the MaxEnt 

approach.  In the following text I will explain why I believe that the latter 

possibility is the most plausible of these three possibilities   

In the conclusions of their article, Shipley et al. (2006) state that testing 

their model will require quantifying major environmental gradients and 

demonstrating general patterns of community-aggregated traits over such 

environmental gradients.  Shipley et al. (2006) were unable to fulfill these 

requirements because they had no environmental data characterizing their study 

sites.  Although Shipley et al. (2006) did not have any environmental data, they 

did attempt to predict CATs by using a cubic-spline regression to smooth the 

observed CAT data over the successional age gradient along which their study 

sites were distributed.  This successional gradient, however, was not well-suited 

to the theory of environmental filtering that the MaxEnt approach is based upon 

because time does not cause vegetation to change, but rather environmental 

variables cause vegetation to change over time.  Furthermore, vegetation changes 

differentially in different habitats over time (Shipley 2007, Shipley 2009c).  To 

better test the predictive ability of the MaxEnt approach I attempted to create 

environmental gradients using variables that do indeed directly affect vegetation 

patterns and that therefore could determine CATs through a filtering process 

during community assembly.   

I fulfilled the requirements to test the MaxEnt approach by quantifying 

major environmental gradients and demonstrating general patterns of CATs over 

these gradients as best as I could using my data.  I have tried a multitude of ways 
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to create environmental gradients with the environmental data available in order 

to demonstrate the relationships between them and the CATs, such as collapsing 

the environmental data into a few factors with PCAs, as well as by determining 

which environmental factors are most relevant to the different CATs by fitting 

univariate and multivariate GAMs to the data and performing stepwise linear 

regressions.  It is clear that environmental gradients can form complex and often 

nonlinear relationships with CATs, even if these gradients are comprised of only 

one environmental factor.  Using GAMs to capture this complexity is a legitimate 

method; Shipley et al. (in press) used GAMs to estimate CATs from an 

environmental gradient, and this produced accurate predictions in their study. 

Using GAMs, I have indeed shown that meaningful relationships do exist in my 

data (cf. Figures 1-13 in Appendix 2 for examples).  I believe I have exhausted 

my options in quantifying an environmental gradient underlying the communities 

spread around the diverse temperate forest of Mont Saint Hilaire, and that the 

GAMs have shown how CATs trend along these environmental gradients.  It is 

expected that these strong trends would translate into good estimations of CATS 

in the test plots.  Since this is not the case, I believe that the possible Type II error 

in my tests is instead the result of a lack of power in the analyses. 

 

Lack of statistical power 

Not having enough statistical power in testing the MaxEnt approach is a 

serious problem that I think has led to a Type II error in my results.  Statistical 

power determines the probability that a statistical test will correctly reject a false 

null hypothesis, i.e. not make a Type II error (Thomas 1997).  Power analyses can 

be done before statistical tests to determine the sample size that is necessary to 

have enough power, and similarly, post hoc power analyses are common.  These 

tests require information regarding the sample size, -level, sampling variance 

and effect size (Thomas 1997).  Due to the complicated nature of the MaxEnt 

approach, obtaining this information and performing a power analysis before 

beginning my study, as well as after, was not possible.  Nonetheless, I know that 
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the power of my test is dependent on the number of plots, the number of traits and 

the number of species that I included.  I can use this knowledge to speculate on 

possible causes of a lack of power and hence the risk of a Type II error in my 

results. 

   

Effect of the number of plots on power 

Since statistical tests use samples to make conclusions about populations, 

the number of samples used directly effects the power of a test, with more 

samples increasing power (Thomas 1997).  I already explained that there is a 

trade-off between power and number of plots, but I did so in the context of 

determining how to split up all of the plots into calibration and test plots so to fit 

GAMs to multivariate environmental gradients.  Since my data set is fixed at 47 

study plots, including more test plots in an analysis meant that I had fewer 

calibration plots to fit the GAM to, and thus could include fewer environmental 

factors in the gradient.  Here I am determining if I had enough plots to use GAMs 

to quantify the relationship between the CATs and the environmental gradient at 

all.  A lack of power jeopardizes my ability to use a GAM, or any type of model, 

to quantify the relationships between the CATs and environmental gradients in 

order to estimate CATs in test plots and predict abundances in these plots.  If I do 

not have enough calibration plots then fluctuations in the relationship between the 

CATs and the environment that are clear when I fit a GAM to all of the plots 

might not be reflected in the GAM fitted to only the calibration plots.  Therefore 

even if the CATs in the test plots behave similarly to those in the calibration plots 

over the environmental gradient, the CAT estimations in the test plots and the 

subsequent SAD predictions may be highly inaccurate.  Furthermore, it is possible 

that relatively subtle relationships may not be noticed because there are not 

enough plots to illustrate them.  

In retrospect, I believe that I do not have enough plots, and therefore 

statistical power, to provide a robust, noncircular test of a MaxEnt model.  When I 

fit GAMs to the CAT and environmental data in all of the plots, clear patterns 

arise yet when I fit GAMs to the data in the subset of 35 calibration plots, these 
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patterns appear to break down.  Figures 25-28 show examples of the contrast 

between GAMs fitted to all of the plots and GAMs fitted to only the calibration 

plots.  The fact that each non-circular test that I performed displayed very similar 

results (i.e. p=1) also supports this notion of lack of statistical power.  It did not 

matter which environmental gradient I used because the relationship between the 

gradients and the CATs was not being accurately defined by the GAMs due to my 

having too few calibration plots.   

  

                  

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 26. GAM fitted to the N 

community-aggregated trait and pH 

gradient data in 35 randomly 

selected calibration plots 

established by Ben Gilbert (Gilbert 

and Lechowicz 2004) on the Gault 

Nature Reserve in Mont-Saint-

Hilaire, Quebec, that I included in 

my study, including the 95% 

confidence intervals. R
2
=-0.00251, 

p=0.700 

 

Figure 25. GAM fitted to the N 

community-aggregated trait and pH 

gradient data in all 47 plots 

established by Ben Gilbert (Gilbert 

and Lechowicz 2004) on the Gault 

Nature Reserve in Mont-Saint-

Hilaire, Quebec, that I included in my 

study, including the 95% confidence 

intervals. R
2
=0.299, p=0.00653 
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Lack of power is a difficult problem to overcome because the best way to 

minimize the risk of it and the resulting Type II error is to increase the sample 

size (Thomas 1997).  This was not feasible in my study because in the scope of an 

M.Sc. thesis I did not have the time or resources available to expand upon these 

plot data by establishing and surveying more plots to be used for calibrating the 

GAMs, and was therefore limited to using the plots that were established by Ben 

Gilbert (Gilbert and Lechowicz 2004) in my research.  A priori these permanent 

plots seemed ideal for a test of the MaxEnt approach because they had already 

undergone a careful vegetation survey from which I could determine species‟ 

relative abundance, and many environmental variables had already been measured 

in them as well.  The only information therefore left for me to obtain was trait 

data required to characterize the various fern species in Ben Gilbert‟s (Gilbert and 

Lechowicz 2004, unpublished data) plots in the Gault Nature Reserve.  

Furthermore the number of test plots (versus calibration plots) in my study (12 

Figure 27. GAM fitted to the 

LDMC community-aggregated 

trait and log10–transformed Ca 

gradient data in all 47 plots 

established by Ben Gilbert 

(Gilbert and Lechowicz 2004) 

on the Gault Nature Reserve in 

Mont-Saint-Hilaire, Quebec, 

that I included in my study, 

including the 95% confidence 

intervals. R
2
=0.292, p=0.00261. 

 

Figure 28. GAM fitted to the 

LDMC community-aggregated 

trait and log10–transformed Ca 

gradient data in 35 randomly 

selected calibration plots 

established by Ben Gilbert 

(Gilbert and Lechowicz 2004) on 

the Gault Nature Reserve in 

Mont-Saint-Hilaire, Quebec, that 

I included in my study, including 

the 95% confidence intervals. 

R
2
=-0.0303, p=0.987. 
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plots) is equal to the number of sites used in the initial MaxEnt study (Shipley et 

al. 2006) and is in the same order of magnitude as the number of test plots used in 

the recent study by Shipley et al. (in press) during their cross-validation procedure 

(24 plots), which is the only other study I know of that used environmental 

gradients to estimate CATs.  Hence it was difficult for me to have known a priori 

that having only 47 plots in total might cause my noncircular tests to have a lack 

of power, potentially causing a Type II error in the results.  

One could argue that I should not have eliminated the outlying plots 

before beginning my analysis in order to provide more statistical power; however 

including these plots would probably have caused the GAMs to fit less well due to 

there being a break in the distribution of plots along the organic matter gradient 

and perhaps in other environmental variables as well. Since the distinction 

between organic and mineral soil is also associated with significant changes in 

habitat, including Ben Gilbert‟s plots with high organic matter might have 

changed the focus of my analysis from a spatial scale associated with alpha 

diversity to one involving some degree of beta diversity.  I wanted to, and am, 

using the MaxEnt approach as a tool to discover how alpha diversity is 

constrained along an environmental gradient.  Including the outlying plots would 

introduce multiple environmental gradients, thereby confusing alpha and beta 

scale processes and confounding the results.  Nonetheless a future direction for 

this study could be to include the outlying plots, perhaps resurveying the existing 

plots and adding additional plots as well.  It is likely, however, that this also 

would increase the species pool, so trait data would have to be obtained for these 

new species, which could be a significant task.  These options are well beyond the 

scope of an M.Sc. thesis. 

 

Effect of the number of traits and species on power 

As previously discussed, the number of traits and species I incorporated in 

my tests of the MaxEnt approach is also associated with the statistical power of 

my tests as these determine the degrees of freedom available in my analysis.  In a 

MaxEnt analysis, the degrees of freedom are equal to the number of species in the 
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species pool minus the number of traits (Shipley 2009c).  I was limited to 

including 21 species in the species pool as these were all of the species present in 

the 47 permanent plots that I used.  As such there was a cap of at most 20 degrees 

of freedom (if I only incorporated one trait) in this analysis.  I did have room to 

adjust the number of traits I included in my test of the MaxEnt approach; however 

as mentioned earlier in the discussion, I had no ecological basis to do so.  I do not 

believe that the number of traits I included caused a Type II error in my tests of 

the MaxEnt approach because the maximum number of traits that I included was 

11, meaning that I had at least ten degrees of freedom in all of my tests.  

Furthermore, excluding some of these traits did not affect the significance of the 

results of any of my non-circular tests, and removing or adding certain traits in my 

circular tests had the effect of both increasing and decreasing the significance of 

the results, depending on what the traits were.  As such, I believe that the number 

of traits I included does not have much bearing on the results, at least not as much 

as which specific traits I included.   

More importantly, I think that the number of plots I used in my study had 

the greatest impact of all of the components determining the power of my 

analysis, and perhaps caused a Type II error.  It therefore would be premature to 

conclude that the non-significant species abundance predictions produced by my 

non-circular tests indicate that the MaxEnt approach cannot work.  That said, 

neither can I discount the possibility that there was no Type II error and the 

MaxEnt approach in fact cannot yield useful predictions of community assembly 

along environmental gradients.  The situation merits some additional 

consideration of reasons for the lack of significant results in all of my non-circular 

tests. 

 

Might the MaxEnt approach have worked to some degree? 

Although the results were not significant as a whole, it is possible that 

some species‟ abundances were accurately predicted in my non-circular tests.  The 

results generated by the permutation test used to assess the fit of the MaxEnt 

approach indicated that the overall quantitative predictive ability of the MaxEnt 
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approach was not good for my data; however Shipley et al. (in press) recently 

devised a method to determine the qualitative predictive ability of the MaxEnt 

approach, i.e. to determine if predicted abundances were differentially accurate 

depending on the observed abundances of each species in each plot.  Indeed there 

has been speculation that a MaxEnt model may predict the relative abundances of 

dominant species better than those of rare species because the CATs are weighted 

in favour of these dominant species (Marks and Muller-Landau 2007; Haegeman 

and Loreau 2008).  Additionally, although I have not determined which relative 

abundance values were best predicted in my circular tests, a visual examination of 

the permutation test plots for the circular tests suggest that the rarer species were 

less well predicted than the dominant species (See Figures 3-10).  A recent study 

by Roxburgh and Mokany (2010) provides a method to modify the permutation 

test to give greater weight to rarer species so that the measure of fit of predicted 

abundances to observed abundances will not be over-determined by the most 

dominant species.  This newly published method can be applied to my data in the 

future and the results of the subsequent tests can be compared to the tests I have 

already performed to determine if the abundance distribution of the dominant 

species were in fact better predicted than that of the rare species. 

This new development by Roxburgh and Mokany (2010) aside, a  

qualitative analysis method developed by Shipley et al. (in press) involves first 

classifying all of the species as either dominant, rare, or absent in each plot, based 

on observed relative abundances.  After this is established, the number of plots in 

which the predicted relative abundances were accurate for all or some of the 

dominant species is counted.  The median, 2.5% and 97.5% quantiles of the 

predicted relative abundances can then be determined for the rare and absent 

species in each plot.  Shipley et al. (in press) found that the predicted relative 

abundances of dominant, rare and absent species varied in accuracy depending on 

the number of traits they used.  Due to the recent development of this qualitative 

analysis of the MaxEnt results by Shipley et al. (in press), I was not able to 

identify if the MaxEnt approach did in fact work in predicting such categorical 

abundances for some of the species in my dataset before completing my thesis 
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analyses.  This method can be used in the future, however, and will not only be 

useful in determining if the MaxEnt approach at least partially worked with my 

data, but also in deciphering the effects of trait constraints on the predictions that 

MaxEnt generates. 

 

Other speculations about why species abundances were not well-predicted 

It is possible that the overall non-significant results I obtained were not 

due to a Type II error caused by a lack of statistical power, but rather to more 

fundamental flaws in the MaxEnt approach and/or the way I applied the approach  

to fern communities in the Gault Nature Reserve.  In this section I consider the 

fact that the MaxEnt approach is unable to predict abundance values equal to zero, 

as well as the fact that my dataset contains many observed abundances equal to 

zero, or near zero.  Additionally, I will reflect on whether or not the traits I chose 

to include are indeed the most critical traits in the assembly of fern communities.  

Finally, I will discuss the possibility that stochastic processes involved in fern 

community assembly have not been accounted for in the MaxEnt approach and 

have caused inaccurate SAD predictions.   

 

Zero abundance 

Most of the 47 plots I included in my study contain very few species; the 

median species richness was 3 out of a total of 21 species, and 11 plots only 

contained one species.  As a result the majority of my observed relative 

abundance values are zero.  It is not possible for a MaxEnt model to predict zero 

abundance for a species because according to Bayesian statistics, that would mean 

it is not logically possible for that species to occur, and therefore it should not be 

in the species pool to begin with (Shipley 2009c).  Although it is unclear as of yet 

whether or not the relative abundances of the rarer species were less well 

predicted than those of the more dominant species, if the criticisms claiming the 

MaxEnt approach is unable to predict low species abundances (Marks and Muller-

Landau 2007; Haegeman and Loreau 2008) are based in reality, then the high 
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number of zero abundance values in my dataset could be the cause of the overall 

poor predictions of species abundances in my test plots.   

Nonetheless, I do not think that having so many abundance values 

equalling zero caused the MaxEnt approach to produce inaccurate predictions 

because this was not the case in the circular tests I performed.  It became clear in 

my circular tests that a relatively low convergence tolerance was required to 

obtain accurate results because I had so many low abundance values, and once 

this low tolerance was set the MaxEnt approach accurately predicted relative 

abundances overall (see figures 11-16).  I performed the non-circular tests with 

low convergence tolerances as well, but the results were that the MaxEnt 

approach did not accurately predict relative abundances overall.  I am therefore 

not convinced that the low abundance values in my data are not conducive to the 

MaxEnt approach working.   

 

Other critical traits in fern community assembly 

It is possible that I did not include the most critical traits in fern 

community assembly in my assessment the MaxEnt approach. Although there is 

great support for my choice of traits in the trait-based community ecology 

literature (e.g. Weiher et al. 1999; Westoby et al. 2002; Wright et al. 2004; Violle 

et al. 2007; Lebrija-Trejos et al. 2010), fern ecology literature (e.g. Page 2002; 

Watkins et al. 2007)  suggests that perhaps I missed some key traits in my study.   

Early in my thesis I stated that there were five categories of plant 

functional traits that affect community assembly: 1) growth form, 2) spatial 

colonization patterns, 3) productivity, 4) phenology, and 5) reproductive capacity.  

I included the timing of sporulation as a phenological measure associated with 

reproduction, and discussed the gametophyte drought tolerance experiment that I 

attempted but failed to complete.  In retrospect it may well be that for ferns, 

gametophytic traits are more important to the success of fern species over a range 

of environments than are reproductive traits involving spore production.  

Therefore omitting gametophytic traits in my analysis of the MaxEnt approach 

may have been to its detriment.   



110 

 

The logic behind this supposition is that all ferns are able to disperse great 

numbers of spores over large distances (Dassler and Farrar 2001; Page 2002; 

Moran 2008), thus reducing the impact of any variation in spore production across 

species.  Moreover, sporophyte recruitment would not be possible without the 

completion of the gametophyte life stage.  In fact, it is apparent that while not all 

spores will develop into gametophytes, an even smaller number of gametophytes 

will develop into sporophytes (Flinn 2007).  Thus, differential success of 

gametophytes due to the traits they possess (e.g. drought tolerance) has a large 

impact on sporophyte recruitment rates.  Unfortunately there are few studies 

examining the ecology of fern gametophytes, so there is very little known about 

them in comparison to fern sporophytes (Flinn 2006; Watkins et al. 2007).  Trait-

based approaches to fern ecology would benefit greatly from the development of 

experimental protocols for measuring gametophytic traits.  The information made 

available from such research would allow a new analysis of my data. 

Alternatively, perhaps gametophytic traits are in fact beta-traits, and thus 

do not necessarily constrain species abundance distributions at the alpha-scale. 

Although there is a lack of information on gametophyte tolerances to various 

environmental conditions, it is apparent that correlations exist between 

gametophyte growth form and habitat (Cooke and Racusen 1988; Dassler and 

Farrar 1997; Watkins 2007).  Growth form may affect the drought tolerance of a 

gametophyte since it affects the amount of moisture that a gametophyte can hold 

(Dasslar and Farrar 1997).  There are five basic growth form types of fern 

gametophytes: cordiform, strap, ribbon, gemmiferous strap and gemmiferous 

ribbon; the species I am studying are of the first two forms, which comprise most 

of the terrestrial fern species in the orders Polypodiales and Osmundales, 

respectively (Shorina 2000; Farrar et al. 2008).   

Since my study was focused on the upland hardwood forest of the Gault 

Nature Reserve, which is characterized as one type of habitat, and the species I 

studied were of only two types of gametophyte growth form, it can be assumed 

that a regional environmental filter acted on fern gametophyte form to constrain 

the beta diversity of ferns.  As such, perhaps gametophytic traits do not contain 
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very much information regarding the differential success of fern species along 

local environmental gradients.  Nonetheless, research into the ecology of 

gametophytes is greatly needed to develop a deeper understanding of fern 

community assembly processes. 

 

Do predicted abundances reflect where a species can grow rather than where it 

actually grows? 

The importance of gametophytes in fern community assembly may extend 

past the affects of their traits on constraining SADs at the alpha and beta scales.  It 

is possible that stochastic factors associated with gametophytes that are not 

explicitly incorporated in the MaxEnt approach cause there to be a difference 

between the potential and realized relative abundances of fern species in the 

communities I studied.  I am suggesting this because although dispersal limitation 

is greatly reduced for ferns in comparison to seed-bearing plants, fern 

gametophyte establishment and survival, and therefore fern sporophyte survival is 

in part based on stochastic factors and may not be frequent even if fern spore 

dispersal is good.  Spore banks containing extremely high numbers of spores exist 

for virtually all fern species (Dyer and Lindsay 1992; del Ramirez-Trejo et al. 

2004).  These banks usually contain very large amounts of spores from several 

species, with higher densities in the upper soil layers, and may persist for decades 

(Lloyd and Klekowski 1970; Dyer and Lindsay 1992).  Disturbance of the top soil 

layer (e.g. by erosion, animal activity) allows spores from deep within the bank to 

be exposed to the environmental conditions required for germination.  As such, 

gametophyte germination can be dependent on chance disturbance events, and 

there is potential for species that are not present in a community at one point in 

time to establish at a later date and survive in that area.  Furthermore, fern 

gametophytes rely on water films to transfer sperm from the antheridia of male 

gametophytes to the archegonia of female gametophytes (Klekowsi 1969); the 

sequence of weather conditions favourable to an episode of potential fertilization 

has high stochasticity.  It is therefore possible that a species may occur in a 

community but remain unseen as a gametophyte until fertilization requirements 
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are met and a sporophyte grows.  This latent establishment of fern sporophytes 

could have the potential to cause inaccurate predictions of species‟ abundances, 

even if the theory behind the MaxEnt approach, and the MaxEnt approach‟s 

execution, are correct.   

It is possible to test if the stochastic nature of gametophyte establishment 

and fertilization misled the MaxEnt algorithm and cause inaccurate SAD 

predictions.  In the future a planting experiment could be executed in which 

species that were not found to occur in a community were planted in that locality.  

If that species is able to survive and persist in its planted location then it is true 

that there are other mechanisms other than trait-based environmental filtering 

driving the assembly of fern communities at the alpha scale.      

 

Conclusions 

The MaxEnt approach is a significant step forward in community ecology.  It 

has provided a novel way that to approach the question of how plant communities 

are assembled from a species pool that draws from both niche and neutral theory.  

My research, in addition to other recent studies, confirms that community-

aggregated traits calculated from observed relative abundances can be used to fit 

species abundance distributions.  My study of the MaxEnt approach therefore 

supports the idea that trait-based environmental filtering at least in part drives the 

assembly of communities at a local scale.   

While confirming that the MaxEnt approach fits my data and the data of 

others is an important step in understanding the process of community assembly, 

the utility of the MaxEnt approach depends on its ability to make predictions in 

areas in which species‟ abundances have not already been measured.  Such 

predictive ability would make the MaxEnt approach valuable for conservation 

efforts, as it could be used to determine the ability of an invasive plant species to 

colonize an area, as well as the impact of changing environmental conditions on 

plant communities.  My study is one of the first to attempt to go beyond simply 

predicting species abundance distributions from CAT data that are based on 
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observed abundances; I have used the MaxEnt approach to try to make predictions 

from CATs that were estimated from data describing environmental gradients.  

My research indicates that executing a MaxEnt model in this manner is not 

straightforward.  Despite my trying many different strategies to characterize 

environmental gradients that might control species abundance, none of the 

predictions I generated based on the environmental gradients I evaluated were 

significant.  It is difficult to ascertain which traits are most important to 

constraining community assembly, as well as which environmental factors are 

most important to filtering species based on their traits.  Nonetheless, I have 

completed an initial exploration of the predictive ability of the MaxEnt approach, 

and believe that there is still a possibility that the MaxEnt approach to predicting 

community assembly can work.  There have been a number of very recent 

developments in the MaxEnt literature that can be used to determine how to alter 

the components of the MaxEnt approach to optimize predictions and provide a 

more thorough test of the approach.  While these new developments can be 

incorporated into a doctoral thesis extending analysis of my data, they exceed the 

scope and prescribed time limits of my Master‟s degree. 
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Appendix 1 

##Code for a circular test of the MaxEnt approach using a uniform prior and 

CATs of all 11 traits.  The basic code for this test can be found in the „FD‟ 

package in R (Laliberté and Shipley 2010). 

require(mgcv) 

require(FD) 

rm(list=ls())  

setwd("C:/Users/Monica/Documents/M.Sc./My Data Analysis/R code for testing 

MaxEnt") 

monica.abund<-read.table("observed abundances.txt",header=T,row.names=1) 

monica.traits<-read.table("average trait values.txt",header=T,row.names=1) 

constr<-functcomp(x=monica.traits,a=as.matrix(monica.abund)) # “constraint 

means vector” = observed CATs for all 47 plots 

states=t(monica.traits) # transposed matrix of average trait values 

obs=monica.abund # the observed probability distribution for all of the species in 

all 47 plots 

mtest<-maxent.test((model=maxent(constr, states, tol = 1e-11, lambda = 

FALSE)), obs, nperm = 99, quick = FALSE, alpha = 0.05, plot = TRUE) 

#executes the MaxEnt model and the permutation test 
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##Code for a non-circular test of the MaxEnt approach using a non-uniform prior, 

CATs of all 11 traits, and a synthetic environmental gradient defined by the 

primary axis of a PCA analysis of all of the other univariate environmental 

gradients.  Eric Pedersen helped me write parts of this code. 

 

require(mgcv) 

require(FD) 

rm(list=ls()) 

 

setwd("C:/Users/Monica/Documents/M.Sc./My Data Analysis/R code for testing 

MaxEnt") 

env.matrix<-read.table("environmental matrix.txt",header=T,row.names=1) 

monica.abund<-read.table("observed abundances.txt",header=T,row.names=1) 

monica.traits<-read.table("average trait values.txt",header=T,row.names=1) 

cat.matrix<-functcomp(x=monica.traits,a=as.matrix(monica.abund)) #calculates 

CATs for all of the plots based on the observed abundances and average trait 

values 

 

 temp.data = data.frame(plot.name = 1:47, enviro=env.matrix$PCA1, cat.matrix) 

#assigns plot names to the plots in their original order 

 temp.data = temp.data[order(temp.data$enviro),] #order the plots according to 

their place along PCA1 environmental gradient 

 random.index = c(sample (1:8,2), sample(9:16,2), sample (17:24,2), sample 

(25:32,2), sample (33:40,2), sample(41:47,2)) #random stratified selection of 12 

test plots 

 

test.matrix = temp.data[random.index,]  #12 randomly selected test plots are 

assigned to a test plot matrix 

calib.matrix = temp.data[-random.index,]  #the other 35 plots will be used to fit a 

calibration GAM  

test.cats=test.matrix[,3:13]  #identifies the 11 CATs for each trait in the test plots 
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calib.cats=calib.matrix[,3:13] #identifies the 11 CATs for each trait in the 

calibration plots 

     

all.envs=data.frame(plot.name=1:47,env.matrix) 

calib.env.plots=all.envs$plot.name%in%calib.matrix$plot.name 

calib.envs=env.matrix[calib.env.plots,] #identifies the environment data for the 

calibration plots 

 

    for (j in 1:11)   #run through each of the 11 CATs in cat.matrix 

  { 

CAT=calib.cats[,j] #identify the calibration CATs for trait j  

env=calib.envs$PCA1 #assigns the environmental gradient as PCA1 

gam.model = gam(CAT~s(env)) #fit a GAM to the CAT and environmental 

gradient data for the 35 calibration plots 

test.new = data.frame(env=env.matrix[random.index,"PCA1"],CAT = 

test.matrix[,j+2]) #new data for predicting CATs in the test plots using the GAM 

fitted to the calibration plots 

constr=predict(gam.model,test.new)  #"constraint means vector" = predicted 

CATs for the 12 test plots 

test.matrix<-cbind(test.matrix,constr) #combines the predicted CATs for the test 

plots with the observed CATs for the test plots 

  } 

 

states=t(monica.traits) #transposed matrix of average trait values 

constr<-(test.matrix[,14:24]) #identifies the predicted CATs for the test pots for 

each of the 11 traits 

 

prior_probabilities_relative_frequency<-read.table("non-uniform 

prior.txt",header=T,row.names=1) 

prior_probabilities=data.frame(plot.name=1:47,prior_probabilities_relative_frequ

ency) 



125 

 

prior_plots=prior_probabilities$plot.name%in%test.matrix$plot.name 

prior=prior_probabilities_relative_frequency[prior_plots,] #identifies the prior 

probability distribution for all of the species in all of the test plots 

 

observed_probabilities=monica.abund 

observed= data.frame(plot.name = 1:47, observed_probs) 

observed_plots=observed$plot.name%in%test.matrix$plot.name 

obs=observed_probs[observed_plots,] #identifies the observed probability 

distribution for all of the species in all of the test plots 

 

mtest<-maxent.test((model=maxent(constr, states, prior, tol = 1e-11, lambda = 

FALSE)), obs, nperm = 99, quick = FALSE, alpha = 0.05, plot = TRUE) 

#executes the MaxEnt model and the permutation test
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APPENDIX 2 

Appendix GAM figure template.  The following pages will include illustrations of GAMs fitted to each CAT along univariate 

environmental gradients in the page format summarized below. The layout of CATs for each respective trait is fixed and the legend 

applies ot all the pages in this format. 

 

Significant 

(p<0.10) 

 

Very significant 

(p<0.05) 

Figure number and title 

CAT Legend: LMA = Leaf mass per area (kg/m
2
); LDMC = Leaf dry matter content (mg/g); Chl=Leaf chlorophyll content (mg/m

2
); N = Leaf 

nitrogen content (percentage weight per gram of dry mass); C:N = ratio of leaf carbon to nitrogen content; Amax = Maximum photosynthetic capacity 

(µmol CO2/m
2
s); Height (cm); Photosynthetic area (cm

2
); Population density (distance to nearest neighbour

-1
); Wintergreen = Overwintering fronds 

(binary trait); Sporulation = Timing of spore release (cf. Table 2 for categories). 
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Figure 1. GAMs fitted to each CAT along a NITRATE GRADIENT with 95% confidence intervals.   
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Figure 2. GAMs fitted to each CAT and a PHOSPHORUS GRADIENT with 95% confidence intervals.  
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Figure 3. GAMs fitted to each CAT and a POTASSIUM GRADIENT with 95% confidence intervals.   

 



130 

 

Figure 4. GAMs fitted to each CAT and a CALCIUM GRADIENT with 95% confidence intervals.   
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Figure 5. GAMs fitted to each CAT and a MAGNESIUM GRADIENT with 95% confidence intervals.  
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Figure 6. GAMs fitted to each CAT and a pH GRADIENT with 95% confidence intervals.   

 



133 

 

 Figure 7. GAMs fitted to each CAT and a MOISTURE GRADIENT with 95% confidence intervals.   
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Figure 8. GAMs fitted to each CAT and a %ORGANIC MATTER GRADIENT with 95% confidence intervals.   
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 Figure 9. GAMs fitted to each CAT and a TOTAL LIGHTGRADIENT with 95% confidence intervals.  
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Figure 10. GAMs fitted to each CAT along a synthetic environmental gradient defined by the first axis of a PCA analysis of all of the 

other univariate environmental gradients, with 95% confidence intervals. The axis accounts for 39.0% of the variance in the data. 
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Figure 11. GAMs fitted to each CAT along a synthetic environmental gradient defined by the second axis of a PCA analysis of all of 

the other univariate environmental gradients, with 95% confidence intervals. The axis accounts for 23.0% of the variance in the data. 
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Figure 12. GAMs fitted to each CAT along a synthetic environmental gradient defined by the second axis of a PCA analysis of all of 

the other univariate environmental gradients. The axis accounts for 15.7% of the variance in the data. 
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Figure 13. GAMs fitted to each CAT along a composite environmental gradient, the primary axis from a PCA for just the pH and 

calcium gradients, with 95% confidence intervals; the axis accounts for 89.29% of the variance in the data.   

 


