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ABSTRACT 

Failure of transmission line overhead conductors due to fretting fatigue has led to an increased 

research effort in understanding the mechanical behavior of these multi-body structures from 

an experimental perspective and more recently from a computational perspective. However, 

research devoted to understanding the structural reliability of overhead conductors undergoing 

deterioration due to fretting fatigue is limited. The current approach to estimate the reliability 

of these structures has depended on the performance of expensive experiments on conductor – 

clamp systems that are then grouped into classes on the basis of the idealized stress method. 

Reliability estimates are then usually defined for the first wire failure of a conductor or some 

percentage of wire failures in terms of the number of cycles to failure for a specified idealized 

stress level.  A limitation of this approach is that it is not based on the distribution of stresses 

at the local contact points responsible for initiating and propagating fretting fatigue cracks. The 

use of this approach results in large uncertainties on the prediction of conductor fatigue life 

since it does not account for the characteristics of different conductor/clamp configurations.  

In this thesis, the sources of variability in overhead conductor fatigue life prediction are first 

identified. A framework for assessing the reliability of overhead conductors under fretting 

fatigue conditions is then developed. The framework uses finite elements analyses of single 

contacts and of the conductor/clamp assembly to determine the state of stress at each wire-wire 

and wire-clamp/keeper contact.  The state of stress at contacts is used to evaluate the fretting 

fatigue potential and to evaluate the probability of fatigue failure at each contact using single 

wire plain fatigue data.  The Poisson binomial distribution is used to estimate the probability 

of failure for single and multiple wire failures considering all the contact within the 

conductor/clamp assembly and to develop fragility curves. The model is validated through 

comparisons with experimental data. Stress-number of cycle curves for one or more wire 
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failures are presented for overhead conductors. Distribution of the number of wire failures in a 

conductor are also presented. Unlike the current approach, the framework presented in this 

thesis does not rely on performing expensive tests on the conductor and provides a means for 

generating specific conductor-clamp SN curves and safe limits for overhead conductor fatigue 

assessment and management.  
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RÉSUMÉ 

La défaillance des conducteurs aériens des lignes de transport électriques due à la fatigue par 

frottement est le sujet de plusieurs projets de recherche expérimentaux et de modélisation 

numérique. Par contre, peu de projets de recherche se sont penchés sur l’évaluation de la 

fiabilité mécanique des conducteurs aériens assujettis à la fatigue par frottement. L'approche 

actuelle pour estimer la fiabilité des conducteurs se base sur la réalisation d'expériences 

coûteuses sur différents assemblages conducteur-pince et le regroupement des résultats sur la 

base de la méthode des contraintes idéalisées. Les estimations de fiabilité sont alors 

généralement définies pour la première défaillance d’un fil du conducteur ou un certain 

pourcentage de fils brisés en fonction du nombre de cycles pour un niveau de contrainte idéalisé 

spécifié. Une limitation de cette approche est qu'elle n'est pas basée sur la distribution des 

contraintes aux points de contact locaux responsables de l'initiation et de la propagation des 

fissures de fatigue par frottement. L'utilisation de cette approche engendre plusieurs 

incertitudes sur la prédiction de la durée de vie du conducteur car elle ne tient pas compte des 

caractéristiques des différentes configurations de conducteur/pince. 

Dans cette thèse, les sources de variabilité dans la prédiction de la durée de vie en fatigue des 

conducteurs aériens sont d'abord identifiées. Une procédure pour l’évaluation de la fiabilité des 

conducteurs aériens dans des conditions de fatigue par frottement est ensuite développée. La 

procédure se base sur des analyses par éléments finis du contact entre deux fils ainsi que des 

contacts multiples pour un assemblage conducteur/pince. L'état de contrainte aux contacts est 

utilisé pour évaluer le potentiel de fatigue par frottement et pour évaluer la probabilité de 

rupture par fatigue à chaque contact à l'aide de données de fatigue sur un fil. La distribution 

binomiale de Poisson est utilisée pour estimer la probabilité de défaillance pour un ou plusieurs 

fils en tenant compte de tous les contacts dans l'assemblage conducteur/pince et pour 
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développer des courbes de fragilité. Le modèle est validé par des comparaisons avec des 

données expérimentales. Des relations contrainte-nombre de cycles pour une ou plusieurs 

défaillances de fil sont également dérivées à partir du modèle. Contrairement à l'approche 

actuelle, la procédure présentés dans cette thèse ne dépend pas de la réalisation de tests coûteux 

sur le conducteur et fournit un moyen de générer des courbes SN spécifiques pour un 

assemblage particulier ainsi que des limites de sécurité pour l'évaluation et la gestion de la 

fatigue des conducteurs aériens. 
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Symbols and Notations  

𝜇     friction coefficient  

∇     partial derivatives  

 Г(.)     Surface region  

 𝛺(.)      Volume region  

 ℒ(.)      Line region  

 [𝐻(. )]    Heaviside step function   

[𝑆𝑔𝑛(. )]     Sign function   

𝑢      Displacement  

 ()̇      time derivative 

 E      Modulus of elasticity  

 𝐺      Shear modulus  

 𝐸∗     Composite modulus  

 �̂�     Composite modulus  

 W      Work done 

 𝜆()     Lagrange multiplier  

 𝜀(.)     Penalty parameter  

 𝑔(.)     Gap function  

 𝑢(𝑇)    Tangential sliding distance  

 𝑢(𝑁)    Normal penetration distance  

 ~    Distributed according to 

ℙ(𝑥)      Probability of the event x 

𝔼(𝑥)      Expectation of x.   

 𝕍𝕒𝕣(𝑥)    Variance of x 

(a|𝑏)     Conditional variable a given b  

(𝑎 ∪ 𝑏)       a union b  

 (𝑎 ∩ 𝑏)     a intersection b  
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𝑓𝑥(. )     Probability density function of the random variable X 

 𝐹𝑋(. )     Cumulative distribution function of the random variable X 

𝑄 − 𝑄     Quantile-Quantile  

𝑃 − 𝑃     Probability-Probability 

CDF     Cumulative distribution function  

ECDF     Empirical cumulative distribution function  

PDF     Probability Density Function  

EPDF     Empirical Probability Distribution Function 

𝑇𝐵𝑇     Timoshenko Beam Theory  

𝑁𝑇𝑁     Node-to-Node 

𝐵𝑇𝐵     Beam-to-Beam 

𝑆𝑇𝑆     Surface-to-Surface  

NTS     Node-to-Surface  

S     Slave  

M     Master  

C      Contact or Contactor  

T     Target  

𝑓      Vibration frequency  

RCFM     Running Condition Fretting Maps  

MRFM     Material Response Fretting Maps  

MC     Million Cycle 

CIGRE    Conseil International des Grands Reseaux Electriques  

CSBL     Cigré Safe Boarder Line  

EPRI     Electric Power Research Institute  

OPGW    Overhead Ground Wires with Optical Fibers 

𝐴𝐶𝑆𝑅     Aluminum Conductor Steel Reinforced  

𝐿𝑃𝐶     Last Point of Contact  

𝐾𝐸     Keeper Edge  
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CSC     Center of Suspension Clamp 

P-S     Poffenberger-Swart  

 

𝑌𝑏     Bending amplitude at 89mm from the last point of contact  

 𝜎𝑎/ 𝜀𝑎    Idealized stress resulting from bending amplitude  

 𝐹𝑐     Clamping force  

 T     Conductor tension  

 𝑇0     Initial tension  

𝔅    Number of failed wires  

β     Bending angle  

𝛽𝑝     Bending angle at passive end of conductor  

 𝛽0     Bending angle at the active end of conductor  

EI     bending stiffness of conductor  

𝐸𝑎     Elastic modulus of aluminum wire 

 𝐸𝑖     Elastic modulus of wire i 

E     Energy dissipated at a contact  

 𝐼𝑖     Moment of inertia of wire i  

 𝑑𝑐     Diameter of conductor  

𝑑𝑖     Diameter of wire i 

𝑑𝑗      Axial position of wire center line j 

𝜃     Angular position of wire center line  

N     Number of cycles  

SN     Stress-number of cycles  

 𝒗     Poisson ratio  

 𝑛𝑖     Number of wires in layer i 

 𝑟𝑐     Radius of slave beam element  

 𝑟𝑡     Radius of master beam element 

∆𝜎     Stress range  

𝑄(𝑡)     Tangential force of slave node at time t 

 u(t)     Sliding distance of slave node at time t   
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 SWT     Smith-Watson-Topper fatigue criteria  

 𝑆𝑊𝑇𝐿 | 𝑌𝑏 = 𝑦   SWT value obtained from finite element model at a given  

    bending amplitude  

 𝑆𝑊𝑇𝑅 | 𝑁 = 𝑁𝑖   SWT value obtained from plain fatigue model of aluminum 

    wires at a given number of cycles  

 𝑓(𝑆𝑊𝑇𝑅 | 𝑁 = 𝑁𝑖)   probability density function of plain fatigue model of aluminum 

    wires  

𝜇(𝑆𝑊𝑇𝑅)    mean of the distribution of plain fatigue model of aluminum 

    wires  

𝜎(𝑆𝑊𝑇𝑅)   standard deviation of plain fatigue model of aluminum wires  

𝑆𝑊𝑇𝐿𝑚 | 𝑦𝑏   SWT of wire segment m  

 𝜎1     Maximum principal stress  

 𝐺(𝐸)     Indicator function for fretting regimes  

 𝐺(𝐸𝑚,ℱ)   Indicator function for fretting regimes for wire segment m with 

    contact at the top and bottom 

𝔅    Number of wire failures  

 𝑘(𝜎𝑑 , 𝜎𝜃)    Two-dimension gaussian kernel with parameters 𝜎𝑑 , 𝜎𝜃 

 𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑𝑗 , 𝜃𝑗)
⏞          

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑑

   SWT value for a given bending amplitude at wire axial and  

    angular position obtained from finite element model and  

    averaged with gaussian kernel 𝑘(𝜎𝑑 , 𝜎𝜃) 

𝐿𝑃𝐶𝑚𝑜𝑑𝑒𝑙    Last point of contact observed in finite element model  

𝐿𝑃𝐶𝑒𝑥𝑝    Last point of contact observed in experiment  
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a. Development of a mixed dimensional finite element model for a single wire to 
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c. The application of a multiaxial fatigue procedure for fatigue analysis using beam 
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 INTRODUCTION  

 

1.1 OVERVIEW  

Failure of overhead transmission line conductors resulting from wind-induced vibrations has 

been known since the 1920’s (Varney, 1926)1. Since then research on different fronts have 

been initiated. This includes the development of analytical mathematical models that allows 

relating the bending amplitude of the conductor to a global measure of stress (Poffenberger and 

Swart, 1965). Experimental developments also followed with the construction of specialized 

conductor fatigue test benches (Cardou and Cloutier, 1990; McGill and Ramey, 1986; Rawlins, 

1979; Varney, 1928) that allowed the use of a conductor global stress measure to be related to 

the number of cycles to failure of wires in the conductor. The analysis of these experiments 

were used to evaluate the effect of the bending amplitude on fatigue, the type of contact damage 

occurring between wires in the same layer, in adjacent layers and between wires and the 

suspension clamp and keeper (Zhou et al., 1994a; Zhou et al. 1994b; Zhou et al., 1996). These 

experimental tests also revealed that the micro slip state of contact between wires and 

wire/supports in the sticking and mixed fretting regime are responsible for failure from fretting 

fatigue.  

Figure 1-1(a) shows a typical transmission line and its components. Figure 1-1(b) details the 

connection between the conductor and the suspension clamp. In this region, the conductor is 

retained to the suspension clamp by a clamping force 𝐹𝑐 applied to the keeper through U-bolts. 

Under the self-weight of the conductor, the conductor is initially at an angle 𝛽0 relative to the 

 
1 This document appears to be the one of the first document to describe aeolian vibrations on a transmission 
line, although this name as it is known now was not used in that document.  
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horizontal (Figure 1-1(b)). Under the action of wind-induced motions, the conductor oscillates 

Conductor  

Tower   

Damper 

Insulator 

suspension clamp   

a. 

b. 

Figure 1-1:(a) Typical transmission line showing its components (Source: Mechatrofice (2020).   (b). 

Detail of the connection between the conductor and suspension clamp (Source: Lalonde et al. (2018)). 
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through the angle ±∆𝛽 around 𝛽0, which produces alternating bending stresses in the region 

of the suspension clamp. The alternating bending stresses can lead to fretting fatigue failures 

of the conductor as shown in Figure 1-2.  

Given the multibody contact nature of stranded conductor-clamp systems, the determination of 

the internal forces and moments in the wires is required to determine which contacts are most 

likely to fail due to fretting fatigue. Analytical models (Cardou and Jolicoeur, 1997; Costello, 

1997; Feyrer, 2015; McConnel and Zemke, 1982; Papailiou, 1997) were developed to study 

the behavior of stranded cables without the clamp. Lévesque et al. (2011)  and Lévesque and 

Legeron (2012) developed numerical models based on the finite element method for a single 

wire to clamp contact and a wire to wire contact respectively. For these local computational 

models, the contact loads were determined by inverse analysis from strain gauge results.  It 

was not until recently that a complete model of a conductor-clamp system (global model) was 

completed using a computational approach (Gang, 2013; Lalonde et al., 2018). With the global 

computational approach, it was possible for the first time to obtain the distribution of internal 

forces and moments in a conductor-clamp system.  

Figure 1-2: (a) Fatigue failure of a conductor at a suspension clamp (b). Typical wire breakage in 

fretting fatigue in overhead conductors at suspension clamps. (Source: CIGRÉ WG B2.47 (2017)) 

a. b. 
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It has become evident that the global models do not provide a sufficient degree of resolution to 

the localized contact stresses that are responsible for fretting fatigue failure in overhead 

conductors due to restrictions of computation resources ; they must be coupled with local 

models to obtain detailed distribution of stresses. Said et al. (2020) have proposed an approach 

for coupling a computational global model to a computational local model. Their approach 

corresponds to selecting force quantities that are believed to influence conductor fatigue from 

the global model and applying them on a local model as boundary conditions.   

The end-product of all computational models developed for overhead conductor-clamp 

assemblies is to predict the fatigue life of the constituent wires of the conductor. However, 

there has been no study that has attempted to study from a computational perspective the fatigue 

strength of conductors by using information on the fatigue of its constituent wires in the context 

of multiple wire failures. Rather, the predictions are mostly experimental, are restricted to first 

wire failure (Cloutier et al., 2006; Hardy and Leblond, 2001; Omrani et al., (2021)) or some 

percentage of the wires of a conductor (CIGRÉ, 1979) within a deterministic framework. These 

conductor fatigue strength models are based on performing expensive experimental tests on the 

conductor-clamp system whose fatigue resistance is sought. This is an expensive and time-

consuming procedure. This limits the ability of transmission system operators (TSO) to 

perform robust reliability analyses of their overhead lines experiencing aeolian vibrations and 

to put in place measures for the inspection, maintenance and replacement of transmission line 

assets.  

According to the American Society of Civil Engineers (ASCE) 2021 infrastructure report card 

on energy (ASCE, 2021), transmission and distribution (T&D) systems suffer from reliability 

issues. The cost of power outages in the USA ranges from $28 to 169 annually per households 

and $8,851 per minute for critical sectors such as data centers. To offset the incurred costs due 
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to power outages, the industry increasesd spending on transmission line assets from 15.6 billion 

USD in 2012 to 21.9 billion USD in 2017.  

In order to improve the reliability of T&D assets and optimize operational costs, reliability-

based methods are best suited for implementing optimal maintenance and replacement plans.  

1.2 PROBLEM DESCRIPTION  

The analysis of the failure of overhead conductors due to fretting fatigue has been mostly based 

on deterministic multiaxial fatigue models, and deterministic/probabilistic experimentally 

derived stress–life (SN) curves (Hardy and Leblond, 2001). Hathout (2016) and  Hathout et al. 

(2015) have on the other hand used fuzzy logic to predict the conductor fatigue life resulting 

from fretting fatigue. Both the SN and fuzzy logic models are based on a global response of 

the conductor and do not consider the localized contact physics that is responsible for conductor 

fatigue.  

There is a need for the development of physics-based probabilistic fatigue models for 

conductor–clamp systems. Such a development is needed for the assessment and performance 

prediction of existing conductor-clamp systems and the development of new conductor-clamp 

systems. However, this development has been challenging due to the highly nonlinear nature 

of the problem. In addition, the presence of multibody contact interactions greatly complicates 

the analysis and solution of the problem. The question which is answered herein is:  

“How can the fretting fatigue reliability of overhead conductors be estimated using fatigue 

properties of aluminum wires.” 

The problem studied in this thesis provides a framework to overcome these challenges and to 

develop a probabilistic model to assess the fatigue resistance of conductor-clamp systems for 

single or multiple wire failures. This encompasses the development of computational strategies 
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for the analysis of multibody contacts in overhead conductors and the development of structural 

reliability strategies for the assessment of the fatigue resistance of conductor–clamp systems.  

1.3 RESEARCH SCOPE AND OBJECTIVES  

The research reported herein is on the probabilistic analysis of fretting fatigue resistance of 

multi-layered stranded cables supported at suspension clamps. The scope being the 

development of a framework that yields the probabilistic fatigue resistance of any conductor–

clamp configuration in terms of fragility curves and SN curves. This scope is accomplished 

through the following objectives of the research: 

a. Development of FE models for single wire to clamp contact using beam theory and full 

3D elasticity theory; demonstration of the equivalence between fatigue conditions in 

beam theory and the 3D elasticity theory.  

b. Develop fragility curves for the fatigue resistance of overhead conductor–clamp 

systems under multiple wire failures scenario. 

c. Development of a method for determining the distribution of the number of wire 

failures in a conductor–clamp systems as a function of the number of cycles.  

d. Provide stress–number of cycles (SN) curves for conductor–clamp systems using the 

numerical framework for single and multiple wire failures 

1.4 RESEARCH METHODOLOGY 

The development of fatigue resistance models for overhead conductor-clamp assemblies has 

always required the performance of fatigue tests. The exception to this is the work of Gang 

(2013). However, this study does not present the fatigue resistance in terms of SN curves or 

fragility curves.  To date, most of the fatigue data compiled by these tests are for the first wire 

failure and there exists no systematic method in the literature to predict multiple wire failures. 



21 
 

Most of  the current approaches for defining the fatigue resistance of conductor-clamp 

assemblies such as the EPRI endurance limit method proposed in Cloutier et al. (2006), the 

CIGRÉ safe boarder line method (CIGRÉ, 1979) and the safe limit proposed by Hardy and 

Leblond (2001) are based on experimental compiled data in (Cloutier et al. 2006; Rawlins, 

1979; CIGRÉ 1979).  

This research is aimed at developing a framework for defining the fatigue resistance of 

conductor-clamp assemblies in terms of fragility curves, fatigue curves and distribution of the 

number of failed wires in a conductor-clamp assembly using a combination of the finite 

element method and information on plain fatigue of aluminum wires. The method followed 

herein involves the following:  

1) Calibration of experimental fatigue curves to be used for validation of computational 

fatigue curves.  

2) Identification of a method for the analysis of conductor-clamp assemblies that provides 

the best computational cost in terms of time and solution variables.  

3) A comparison of the 3D Timoshenko beam finite element modeling approach against 

the 3D solid finite element modeling approach to discover the merits and demerits of 

the Timoshenko beam theory in modeling contacts in conductor-clamp assemblies. 

4) Determination of information required to know if a contact in a conductor-clamp 

assembly will fail or not (i.e. contact failure probability).  

5) Identification of the method that can combine the individual contact failure probabilities 

to yield the probability of failure of the conductor-clamp assembly in terms of multiple 

wire failures (i.e. fragility curves).  

6) Define an approach to determine fatigue curve (i.e. SN curve) for the conductor-clamp 

assembly for single or multiple wire failures.  
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7) Determine the distribution of the number of wire failures as a function of the number 

of fatigue cycles for the conductor-clamp assembly.  

 

1.5 RESEARCH PUBLICATIONS  
 

a) Thomas, O.O., Chouinard, L.E., and Langlois, S. (2020). A Probabilistic Stress-Life 

Model for Fretting Fatigue of Aluminum Conductor Steel Reinforced Cable-Clamp 

Systems. In: Liyanage J., Amadi-Echendu J., Mathew J. (eds) Engineering Assets and 

Public Infrastructures in the Age of Digitalization. Lecture Notes in Mechanical 

Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-48021-9_78   

b) Thomas, O.O., Chouinard, L., and Langlois, S. (2022) Probabilistic Fatigue Fragility 

Curves for Overhead Transmission Line Conductor-Clamp Assemblies, Accepted for 

publication in Frontiers in Built Environment: Computational Methods in Structural 

Engineering.  

c) Thomas, O.O., Chouinard, L., Langlois, S., and Omrani, Study of the Fatigue of Wire 

to Clamp Contacts Using Solid and Beam Elements. To be Submitted to the Journal of 

Fatigue and Fracture of Engineering Materials and Structures. 

 

1.6 MANUSCRIPT LAYOUT 

This thesis consists of six chapters. Chapter 1 briefly introduces the problem of fatigue failure 

in overhead conductors caused by wind induced vibration. This followed by a summary of the 

description of the problem addressed in this thesis. Subsequently, the scope and objectives, 

methodology and the layout of the manuscript is presented.  

https://doi.org/10.1007/978-3-030-48021-9_78
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Chapter 2 reviews the existing literature on fatigue of conductor-clamp assemblies. The 

methods for stress analysis of contacts in conductor-clamp assemblies are reviewed. 

Subsequently, fatigue resistance of conductor-clamp systems is reviewed from a structural 

reliability point of view.  

Chapter 3 derives fatigue curves for conductor-clamp assemblies with tight confidence 

intervals from experimental data available in Cloutier et al. (2006). These fatigue curves will 

be used as validation for the fatigue curves to be derived from a computational approach in 

subsequent chapters.  

In Chapter 4, a comparison of the 3D Timoshenko beam finite element approach and the 3D 

solid finite approach is carried out in other to examine the limitations and strength of the 

Timoshenko beam theory in fatigue life predictions of conductor-clamp contacts. The 

comparison entailed reproducing a single wire fatigue test bench using both 3D Timoshenko 

beam theory and 3D elasticity theory. From this work, it was concluded that while the 

Timoshenko beam theory allowed for rapid fatigue life assessment, its life estimates are biased 

and an approach to remedy this bias is required.  

Chapter 5 presents a framework for generating fragility curves and SN curves for the fatigue 

resistance of overhead conductor-clamp assemblies. In this chapter, the 3D Timoshenko beam 

model is used with a maximum likelihood approach to correct the bias of the Timoshenko beam 

theory. The 3D Timoshenko beam finite element, the plain fatigue data of aluminum wires and 

the Poisson binomial distribution are combined to produce fragility curves, fatigue curves and 

distribution of number of wires failures for a Bersfort conductor-clamp assembly. 

Subsequently, the results of the analysis are validated and discussed.  

Finally, Chapter 6 presents the summary and conclusions of the research study, along with 

future research recommendations.  
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 LITERATURE REVIEW  

This chapter presents a comprehensive review of the literature on the aspects that are relevant 

to this work. This includes fretting fatigue, analytical and computational contact mechanics, 

and fatigue life assessment. The approach taken herein is to provide a historical perspective of 

each aforementioned areas that applies to fretting fatigue problems of overhead conductors. 

Shortcomings of the current methodologies are highlighted and discussed.  

2.1 FRETTING FATIGUE  

Failure of engineering materials from fretting fatigue is a well-documented phenomenon (see 

e.g. Hills and Nowell, (1994)) and the topic of multiple ongoing research projects in industry 

and academia. Fretting is defined as a small amplitude oscillatory motion that occurs between 

surfaces of bodies in contact (Waterhouse, 1992). When contacting surfaces are subjected to 

this oscillatory motion, fretting can lead to the formation of oxide debris; this phenomenon is 

termed fretting wear and  

Figure 2-1: (a) cylinder on flat contact ; (b) Cattaneo – Midlin representation of the interface 

stresses in the XZ plane (reproduced from (Waterhouse, 1992)) 

a.  b.  
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in the case of the formation and propagation of fatigue cracks, it is termed fretting fatigue 

(Waterhouse, 1992). In fretting fatigue, It has been established that Cattaneo–Mindlin 

condition (also called stick-slip condition)2, as shown in figure 2-1 (b),  must be present for 

fretting cracks to initiate (Waterhouse, 1992).  This condition require a stick and a slip zone 

within the contact region which can be defined from the shear traction 𝒒(𝑥)(𝑥, 𝑦),. If the contact 

is not frictionless in the x-direction, the coefficient of friction 𝜇 leads to the development of 

shear traction 𝒒(𝑥)(𝑥, 𝑦), which is unbounded at the contact edges (Barber, 2018; Waterhouse, 

1992) as shown in Figure 2-1(b) and related to the force 𝒇(𝑥). This behavior of the contact is 

obtained when it is assumed that the contact region is in full stick mode (i.e. (−𝑎0 𝑡𝑜 + 𝑎0 )). 

A corrective solution to the tangential stress is thus the requirement that rather than having a 

full stick contact, regions of micro–slip must develop at the edges of the contact region (i.e. 

(±𝑎0 𝑡𝑜 ± 𝑎1 )) and a region of stick (i.e. (−𝑎1 𝑡𝑜 + 𝑎1 ) ) in the central portion of the contact 

( Barber, 2010). Thus, in the slip region, the admissible shear traction is 𝜇𝒑(𝑧)(𝑥, 𝑦), while in 

the stick zone, the admissible shear traction must be less than 𝜇𝒑(𝑧)(𝑥, 𝑦) as shown in figure 

2-2(a) (Barber, 2018). The equation of the tangential stress distribution is given as (Barber, 

2010):  

 
2 This was referred to as sticking regime (Zhou and Vincent, 1995) while it is referred to as partial slip regime in 
(Jeong and Lee, 2006). 

Figure 2-2: (a) Tangential stress distribution of cylinder in contact with a plane (b). Effect of 

friction coefficient on the tangential stress distribution for cylinder to plane contact  

a.  b.  
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𝒒(𝑥)(𝑥) =
2µ𝒇(𝑧)

𝜋𝑎2
(√𝑎0

2 − 𝑥2 − [𝐻(𝑎1
2 − 𝑥2)]√𝑎1

2 − 𝑥2) (2.1) 

From Figure 2.2 (a) one notes that the maximum values of the tangential stress occurs at the 

stick-slip boundary, which corresponds to the position of failures of wires observed in ACSR 

conductors (Zhou et al., 1996).  

The slope to the tangential stress distribution given by Equation (2.1) is not defined at the stick-

slip boundary. The tangential stress at the spatial stick-slip boundary3 is defined by analytic 

continuation (Gray et al., 2006; Knopp, 1945). Also, since ∇ (𝒒(𝑥)(𝑥)) increases with the 

friction coefficient, as shown in Figure 2-2 (b), the order of the polynomial to approximate 

𝒒(𝑥)(𝑥) is dependent on the friction coefficient4 

A condition similar to the Cattaneo–Mindlin condition (CMC) has been presented by Zhou and 

Vincent (1995), which is termed the mixed fretting regime (MFR). Differences between 

fretting fatigue resulting from MFR as compared to the Cattaneo–Mindlin condition are the 

morphology of the contact damage, the sensitivity to bulk stress, the tangential force–

displacement relationship, and the number of cycles at which fretting fatigue failure is 

observed. Zhou and Vincent (1995) reported that while particle detachment is limited to the 

regions of micro-slip in the CMC as seen in Figure 2-3 and 2-5 (a), in the MFR, the particle 

detachment is often limited to the initial elastic contact zone as seen in Figure 2-4 and 2-5 (c). 

The tangential force–displacement relationship for the CMC shows a quasi–linear relation in 

the stabilized state while those of the MFR shows a closed elliptical loop in the stabilized state 

 
3 Such a requirement is not necessary for the maximum value of the normal contact pressure.  
4 This has the important implication that a single discretization (e.g. in finite elements) cannot approximate 
properly the tangential stress and thus the size of the discretization should be dependent on the friction 
coefficient if the value of the tangential stress at the stick-slip boundary is important. 
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as shown in Figure 2.6 (a) and (b) respectively. In comparison, gross slip (Figure 2.6 (c)) 

presents the largest energy dissipation with a parallelepiped-closed loop. In terms of the 

number of cycles observed before failure is reached, the difference between MFR and CMC is 

about a factor of 10 with contacts in MFR experiencing lower number of cycles before failure 

(Zhou and Vincent, 1995). The coefficient of friction has also been reported to be higher in 

mixed fretting regime when compared to the Cattaneo–Mindlin condition and the gross slip 

regime (Zhou and Vincent, 1995). Unlike gross–slip, where the contact degradation and size 

increases due to the relatively large movement of the contact interface and wear (Cloutier et 

al., 2006; Zhou and Vincent, 1995), in MFR the displacement is just large enough to cause 

scarring of the contact area but only a slight increase in the contact size is observed with 

increasing number of cycles (Zhou and Vincent, 1995).  

More recently, Jang and Barber (2011) have discovered a phenomenon from a numerical 

perspective, which appears to be a special case of the MFR phenomenon. In their work, they 

Figure 2-3: Contact experiencing the CMC condition with a central stick region.  

Source: (Foggi, 2020) 
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point out the importance of phase shift between the normal force and the tangential force. It 

was shown that in the case where the amplitude of the normal force exceeds the mean normal 

force and a phase shift exists between the normal and tangential force, a higher amount of 

energy dissipation is observed when compared against a case where the normal and tangential 

forces are in phase. This is in line with the observation of Barber et al. (2011) and  Zhou and 

Vincent (1995) where higher energy dissipation is associated with increased tendency of 

fretting fatigue failure. It also aligns with the observation of Lalonde (2017) where a phase 

shift was observed between the axial force and bending moment in wires between the keeper 

edge (KE) and last point of contact (LPC) of a conductor.  

Barber et al. (2011) have also reported the occurrence of separation5, which can occur as much 

as 50% of the time during cycling. This phenomenon of possible contact separation between 

wire of the external layer and the clamp has been conjectured by Cardou et al. (1993) and they 

provide experimental evidence for its occurrence in a 42/7 Bersimis conductor-clamp system. 

 
5 Part of the contact interface will be in contact and another part separate in space or the whole contact 
separates and comes back in contact in time.  

Figure 2-4: Contact experiencing mixed fretting regime conditions. Source: (Foggi, 

2020)  
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However, no discussion on the occurrence of this phenomenon has appeared since their work 

in 1993.  

In conductor fatigue, all three fretting regimes (i.e. stick-slip, mixed fretting regime and gross 

slip) have been observed (Azevedo et al., 2009; Zhou and Vincent, 1995) with contacts in the 

stick-slip regime being geometrically close to those in the mixed fretting regime (Zhou and 

Vincent, 1995).  

Three distinct damage morphologies corresponding to the three fretting regimes have been 

reported by Zhou et al. (1996) in ACSR conductors (Figure 2.5). In this figure, wire to wire 

contacts in the sticking (stick–slip) regime within the clamp experience damage with an 

asymmetry in the slip region being restricted to regions where the wire enters the clamp. The 

reduced size of the slip zone (or the lack of it) in the region where the wire enters the clamp 

has been attributed to the compressive effect of the clamping force (Zhou and Vincent, 1995). 

The cracking initiation location as indicated for contacts in the partial slip regime is not 

restricted to wire–wire contacts only but cracks can also be initiated at the contacts between 

the wires of the conductor and the clamp. The wearing damage illustrative of the gross–slip 

Figure 2-5: Contact damage morphology for (a) Sticking regime; (b) Slip (gross slip) regime; 
(c) Mixed fretting regime. Source: (Zhou et al., 1996) 
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regime is seen in Figure 2.5 (b) while the damage over the entire elliptical region of the contact 

in the mixed fretting regime and the corresponding larger crack length is seen in Figure 2.5 (c).  

In conclusion, three different fretting regimes have been identified as occurring in conductor 

fatigue (Zhou et al., 1996): the sticking regime, the mixed fretting regime and the gross slip 

regime. The sticking regime is based on the occurrence of the CMC conditions in the contact 

and displays a quasi-linear tangential force displacement relationship. The MFR in comparison 

with contacts in the sticking regime displays a closed elliptical tangential force displacement 

relation. These are the two fretting states that lead to fretting fatigue failure. This shows that 

the energy dissipation of contacts is an important parameter in the quantification of fretting 

failures and should be included in modelling.  

2.2 METHODOLOGIES TO ASSESS FRETTING INDUCED STRESSES 

In order to estimate fretting fatigue induced stresses, the mathematical tools of contact 

mechanics are required to determine the stresses at the contact and at the interior of the bodies 

in contact. Thus, contact mechanics models are reviewed in this section. A global overview of 

the equilibrium equations for contact problems are discussed, followed by a review of 

analytical solutions and the assumptions on which they are based. Finally, studies using the 

Figure 2-6: (a) Tangential force - displacement relation for stick -slip at stabilized state. (b) 

Tangential forced-displacement relation for mixed  fretting regime at the stabilized state. (c). 

Tangential force-displacement for gross-slip regime in the stabilized state  
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finite element method (FEM) for the solution of conductor contact mechanics are reviewed. 

This section closes with shortcomings of the analytical and finite element studies and highlights 

areas for improvements.    

2.2.1 Equilibrium Equations for Bodies in Contact  

To review the methods available for the solution of contact problems, consider the diagram 

shown in Figure 2.7 for three bodies in contact (Omrani, 2021)6, with the orthogonal cartesian 

coordinate system defining the origin located at some point in space as shown. With 𝒑, t , u  

and  𝒖𝑪𝑩 representing force boundary condition on the clamp, wire and displacement boundary 

condition on the wire and clamp bottom respectively.  Equilibrium equations for this three-

body contact can be written using the principle of virtual work following the approach 

presented in (Konyukhuv and Izi, 2015; Konyukhuv and Schweizerhof, 2012; Washizu, 

1975)7:  

∑ ∫(∇𝑖�̇�
𝑖𝑗)𝛿�̇�𝑗  𝑑𝛺 

𝐵∪𝑊∪𝐶

+ ∑ ∫ �̇�(𝑛)
𝑗
𝛿�̇�𝑗  𝑑Г

𝐵∪𝑊∪𝐶

+ ∑ ∫�̇�(𝑛)
𝑗
𝛿�̇�𝑗  𝑑Г 

(𝐵∩𝑊)∪(𝑤∩𝐶)

= 𝟎 (2.1)8
 

 
6 This problem has been analyzed experimentally by Omrani (2021) and it thus provides a good case study for 
analyzing the fretting behavior of a simple fretting contact.  
7 The displacements attached to the contact terms should be considered as those at the contact points.  
8 Note that the Einstein summation convention applies as  ∇𝑖�̇�

𝑖𝑗 = ∑ ∇𝑖�̇�
𝑖𝑗3

𝑖=1 = ∇1�̇�
1𝑗  +  ∇2�̇�

2𝑗  +  ∇3�̇�
3𝑗 

p 

u t 

 clamp 

Wire  bearing 

𝐮𝐂𝐁  
Figure 2-7: Three-body system with two unilateral contacts  
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Where i, j = 1,2,3, ∇𝑖(. ) =
𝜕(.)

𝜕𝑥𝑖
, ∇𝑖�̇�

𝑖𝑗 represents the gradient of the internal stress rates 

evaluated over the respective volume domains Ω𝐵, Ω𝑊, and Ω𝐶 which represent the volume of 

the bearing, wire and clamp respectively. 𝛿�̇�𝑗,(.) represents the variation in velocity of the 

corresponding body, �̇�(𝒏)
𝑗

 represents the projection of an arbitrarily oriented stress rate vector 

to the three orthogonal directions of the respective surfaces 𝛤(.) : bearing bottom (𝐵𝐵), wire top 

(𝑊𝑇), wire bottom (𝑊𝐵) and clamp top (𝐶𝑇). It is thus observable from (2.1) that �̇�(𝒏)
𝑗
≝

 {�̇�(𝑛)
1 , �̇�(𝑛)

2 , �̇�(𝑛)
3 } are simply the contact stress rates. �̇�(𝒏)

𝑗
 and �̇�(𝒏)

𝑗
 are the projections of the 

applied boundary conditions �̇� and  �̇� along the unit normal 𝒏 ≝  
𝛁 𝛤(.)

‖𝛁 𝛤(.)‖
  to 𝛤(𝑊𝑅) and 𝛤(𝐵𝐵).  

For each of the contact interface shown in Figure. 2-7, equilibrium of the components of stress 

acting on each point (or contact interface point) must hold as follows  (Konyukhuv and Izi, 

2015):  

�̇�(𝑛)
𝑗
𝑑𝛤𝐵𝐵 + �̇�(𝑛)

𝑗
𝑑𝛤𝑊𝑇

= 0 (2.2) 

�̇�(𝑛)
𝑗
𝑑𝛤𝑊𝐵

+ �̇�(𝑛)
𝑗
𝑑𝛤𝐶𝑇 = 0 (2.3) 

By making the contact vectors on the wire surface (top and bottom) the subject in (2.2) and 

(2.3) and substituting into (2.1), the following is obtained:  

∑ ∫(∇𝑖�̇�
𝑖𝑗)𝛿�̇�𝑗  𝑑𝛺 

𝐵∪𝑊∪𝐶

+ ∑ ∫ �̇�(𝑛)
𝑗
𝛿�̇�𝑗  𝑑Г

𝐵∪𝑊∪𝐶

+ ∑ ∫�̇�(𝑛)
𝑗
𝛿(�̇�𝑗,𝑀 − �̇�𝑗,𝑆) 𝑑Г 

(𝐵∩𝑊)∪(𝑤∩𝐶)

= 𝟎   (2.4) 
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where M and S are the master and slave surfaces. Equation (2.4) is subject to  the boundary 

conditions shown in Figure 2.7, the Hertz-Signori-Moreau conditions in normal (Konyukhuv 

and Izi, 2015; Konyukhuv and Schweizerhof, 2012) and tangential directions  (Hills et al., 

1993; Konyukhuv and Izi, 2015; Konyukhuv and Schweizerhof, 2012; Yastrebov, 2013) in 

Figures 2-8 and 2-9 respectively.  Further details on Equation (2.4) are provided in Appendix 

B.  

  

a b 

Figure 2-9: (a) Relationship between tangential stress vector components and the resultant 

slip velocity in 3D stress-velocity space. (b) Friction cone illustrating the Coulomb friction 

relation between the contact pressure and the tangential stress vector in 3D stress space 

(Reproduced from Yastrebov, 2013).    

Figure 2-8: Relationship between the contact pressure and the penetration/non-penetration 

condition (Reproduced from Yastrebov, 2013).    
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The equilibrium equations for the simple contact system given by Equations (2.4) can be 

extended to a conductor-clamp system as:  

∑(∫ (𝛻𝑖𝛿�̇�𝑗,𝑘)�̇�
𝑖𝑗  ⏟        

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑒𝑟𝑚𝑠

𝑑Ω𝑘  )

𝑛+2

𝑘=1

+ ∑ 𝑏𝑐𝑘⏟
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝑡𝑒𝑟𝑚𝑠 

2𝑛 +2

𝑘=1

+ ∑ (∫ �̇�(𝑛)
𝑗
(𝛿�̇�𝑗,𝑘 − 𝛿�̇�𝑗,𝑘+1 ) ⏟            𝑑𝛤𝑘

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑒𝑟𝑚𝑠 

)

𝑛𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑘=1⏟                        
𝑐𝑟𝑜𝑠𝑠−𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 

  

+∑(∫ �̇�(𝑛)
𝑗
(𝛿�̇�𝑗,𝑘 − 𝛿�̇�𝑗,𝑘+1 ) ⏟            𝑑𝛤𝑘

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑒𝑟𝑚𝑠 

)

𝑛

𝑘=1⏟                      
𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 

+ ∑ (∫�̇�(𝑛)
𝑗
(𝛿�̇�𝑗,𝑘 − 𝛿�̇�𝑗,𝑘+1 ) ⏟            𝑑𝛤𝑘

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑒𝑟𝑚𝑠 

)

𝑛𝑘𝑒𝑒𝑝𝑒𝑟/𝑐𝑎𝑚𝑝

𝑘=1⏟                            
𝑘𝑒𝑒𝑝𝑒𝑟 𝑎𝑛𝑑 𝑐𝑙𝑎𝑚𝑝 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠  

= 𝟎;         (2.5)
 

This relation (2.5) is also subject to the same constraints shown in Figures 2-8 and 2-9 for each 

contact pair. The internal energy terms are those of the wire, keeper and clamp and 𝑏𝑐𝑘 

correspond to the set of the boundary conditions of aforementioned entities, n is the number of 

wires , 𝑛𝑘𝑒𝑒𝑝𝑒𝑟/𝑐𝑎𝑚𝑝 is the number of contacts between the keeper/clamp and the external layer 

and 𝑛𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is the number of contact points between all two adjacent layers. Compared to the 

simple system in Figure 2-7, the number of terms increases significantly with the number of 

wires in the conductor. Further details on Equation (2.5) are provided in Appendix B.  

The equations (2.1) through (2.5) show properties of a contact important for solving conductor 

fretting fatigue problems.  These properties are highlighted in Table 2-1.  

Table 2-1: Properties of a Contact System 

No. Property Comment  Reference  

1 Path  

dependent 

solution  

The presence of friction, which is path 

dependent, has led to the introduction of a 

time variable in the equilibrium equations 

even though the problem is static 

 Hills et al.(1993) 

2 Coupling of 

contact 

integrals on 

opposing 

surfaces   

The contact integrals are coupled through 

the displacement 𝑢𝑗,𝑊. Thus, in general, 

conditions on an interface affect those on its 

sister interface. E.g. the distribution of 𝜎(𝒏)
𝑗

 

on 𝛤𝑊𝐵
∩ 𝛤𝐶𝑇 will be affected by geometry 

Lévesque et al. 

(2011) 
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of interface 𝛤𝑊𝑇
∩ 𝛤𝐵𝐵 (Geometric 

asymmetry) 

3 Coupling of 

the normal 

and tangential 

stresses 

Normal and tangential stresses are coupled 

through the Coulombs friction. In general, 

normal loadings will produce tangential 

tractions.  

Johnson (1985) 

Timoshenko (1941) 

 

4 Coupling of 

contact 

integrals to 

boundary 

conditions  

Asymmetry in the boundary conditions will 

lead to asymmetry in the tractions on 𝛤 

(Loading asymmetry).  

 

The contact tractions depend on the way the 

loading is applied, and the body supported 

(Saint-Venant principle).  

Johnson (1985) 

Barber (2018) 

5 Discontinuous 

nature  

Both the contact pressure and tangential 

stress contain discontinuous functions in 

time and space 

Barber (2018) 

 

6 Phase 

difference 

Depending on the BC, the normal pressure 

and tangential stress can be out of phase. 

This leads to non-proportional loading of a 

contact.  

 Barber et al.(2011) 

 

 

7 Bifurcation 

phenomenon    

Three deformation modes can occur 

between the LPC and the point where the 

wire exits the bearing (BE). This affects the 

type of contact established on 𝛤𝑊𝐵
∩ 𝛤𝐶𝑇 .  

 

In other words, it is possible to have some 

part of an interface be in contact (i.e. fulfils 

2.7) and another part of the same interface 

be separated at a given time t 

 

It is also possible that at a time 𝑡1 an 

interface is in contact and a time 𝑡2 it is 

separated.   

 

The occurrence of a precise deformation 

mode is dependent on the bending moment, 

the applied normal contact force and 

boundary conditions 

Cardou et al.(1993) 

8 Stick-Sliding 

phenomenon  

Like point 7 above, it is possible to have 

some part of an interface be in stick and (i.e. 

fulfils 2.9) and another is sliding (i.e. fulfils 

2.10). This is the partial-slip condition.  

 

It is also possible that at a time 𝑡1 an 

interface is in sticking and a time 𝑡2 it is 

sliding.    

 

Jang and Barber 

(2011) 

10 The reliability 

of the 

Since the number of wires control the 

number of contacts points for fretting, it also 
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conductor 

should 

depend on the 

number of 

contact points  

controls the fatigue reliability of a 

conductor. An increase in the number of 

fatigue contacts points increases the chances 

of finding failure points. In other words, 

increases the probability of failure of the 

conductor 

 

To solve fretting problems, we must thus attend to the nature of contact equations (2.1) through 

(2.5) and pay attention to the properties of the contact such as those given in Table 2-1 as they 

determine the methodology to solve a contact problem and predicting fretting failures.  

The solution methods in the discussions to follow make various assumptions or use alternative 

means in order to satisfy or justify neglecting the properties in Table 2-1. A collection of the 

various methods for solving contact problems are collected in Appendix A.  Amongst these 

methods, only four of them are reviewed herein for the purpose of this thesis. For details of the 

other methodologies, Appendix A provides references for further information.   

 

2.2.2 Analytical Methods  

In developing analytical solutions for contact problems, different approaches have been 

proposed in the literature. The discussion herein does not intend to cover all methods available 

in the literature. Rather, the emphasis is on analytical methods that provide solutions for 

contacts typical to ACSR conductors such as elliptical contacts between crossing wires in a 

conductor and line contacts between wires and the clamp/keeper. Studies on conductors are 

reviewed to highlight their assumptions, limitations and advantages. Methods using structural 

elements (such as beams) are also reviewed given that some numerical studies on conductors 

(Baumann and Novak, 2017; Lalonde, 2017) are based on contacts between structural elements.  
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The analytical solutions are categorized as : (1)   Stress and Displacement Functions, (2) The 

Method of Dimensionality Reduction, (3) Structural Elements in Conductor Contact 

Mechanics. 

2.2.2.1 Stress and Displacement Functions:  

This is commonest approach to construct analytical solutions to the equilibrium equations (2.5) 

where a stress function or a displacement function that satisfies the equilibrium equation of the 

individual bodies and the contact conditions is required. In two dimensional problems and 

problems satisfying the half-plane assumption9, the Flamant solution for the normal loading 

and tangential of a half–plane at the origin as shown in Figure 2-10 can be combined to give 

the Airy stress function for a two–dimensional surface subjected to a normal load and a 

shearing force Q across the surface  (Hills et al., 1993):  

∅ = −
𝑟𝜃

𝜋
(𝑃𝑠𝑖𝑛 𝜃 + 𝑄𝑐𝑜𝑠 𝜃) (2.6) 

 
9 With this assumption, the contact patch dimensions are small compared to the dimensions of the bodies and 
thus we can treat the contact integrals in equation (2.4) independently.  

Figure 2-10: (a) Point force P and Shear force Q acting on the Surface of a Half-Plane  and 

the resulting stresses in the Half – Plane  (b). Pressure distribution acting over the surface of 

a Half – Plane. Note that the distribution of Q(𝜉) lies on the x axis for each dξ (Reproduced 

from (Hills et al. 1993)) 

a b 
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Equation (2.6) is the Airy stress function for the half–plane subject to a point load P and 

shearing force Q where the definitions of r and 𝜃 are shown in Figure 2-10 (a). The individual 

stress components are obtained from the relation between the stress components and the stress 

function (Hills et al., 1993). From the set of equations for the point force solutions, the solutions 

for other forms of loading on the half-plane such as that presented in Figure 2-10(b) can be 

obtained by discretizing the distribution of the load over the half–plane and integrating the 

resulting point force solutions of each discretization over the contact length  as described in 

Barber (2018). In this case, the solutions are given in Hills et al. (1993) and Johnson (1985). In 

three-dimensional space, Boussinesq stress functions can be used to obtain the stresses (Barber 

2010) and displacement functions of Papkovich-Neuber as described in Barber (2010). The 

complex variable representation of Muskhelishvili (1954) have also been used to construct 

solutions of the stress fields. 

 Lévesque et al. (2011) have used this approach to obtain the stress fields in the contact between 

a wire compressed between two identical clamps which led to a conclusion that the influence 

of the opposing contact interface cannot be ignored. This conclusion is also in line with those 

of Timoshenko and Goodier (1951) and (Johnson, 1985) who have shown that the way the 

body is supported is important. The observation of Lévesque et al. (2011) is so because for a 

wire to clamp contact, it is difficult that both the contact length and width respect the half-space 

assumption and as such, the stress field at the top and bottom contacts interact thereby violating 

the half-space assumption.  

 A limitation of this approach is that it requires the distribution of the normal pressure, shear 

stresses on the interface, or dimensions of the contact patch. When this is not known, the slope 
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formulation10  (Barber, 2018; Hills et al., 1993) of the contact gap functions are obtained in 

terms of the stress functions for the point force solution. This approach leads to Cauchy 

integrals for the contact pressure and shear tractions subject to only the conditions that they 

satisfy the equilibrium conditions of the contact tractions. For the case of a wire-to-clamp 

contact with the assumption that both wire and clamp are deformable, is a line contact and the 

half-space assumption holds, the Cauchy integrals can be written as (Barber, 2018) :  

𝑑𝑢𝑥
𝑑𝑥

=
−2𝛽𝑝(𝑥)

𝐸∗
−

2

𝜋𝐸∗
∫
𝑞𝑥(𝜉)𝑑𝜉

(𝑥 − 𝜉)

𝑎

𝑏

(2.7) 

𝑑𝑢𝑧
𝑑𝑥

=
−2𝛽𝑝(𝑥)

𝐸∗
−

2

𝜋𝐸∗
∫
𝑝(𝜉)𝑑𝜉

(𝑥 − 𝜉)
+
2𝛽𝑞𝑥(𝜉)

𝐸∗

𝑎

𝑏

(2.8) 

𝑑𝑢𝑦

𝑑𝑥
= −

2

𝜋𝐸′
∫
𝑞𝑦(𝜉)

(𝑥 − 𝜉)

𝑎

𝑏

(2.9) 

Where 𝑢𝑥 , 𝑢𝑦 𝑎𝑛𝑑 𝑢𝑧 are the relative surface displacement between the wire and clamp in the 

x, y and z direction as shown in Figure 2-11 (b), 𝛽 represents the degree of coupling between 

the tangential traction 𝑞𝑥(𝜉)𝑑𝜉 and the normal pressure 𝑝(𝜉)𝑑, 𝐸∗ and 𝐸′represents the 

composite modulus of both contact materials defined as:  

1

𝐸′
=
1 + 𝑣𝑤𝑖𝑟𝑒
𝐸𝑤𝑖𝑟𝑒

+
1 + 𝑣𝑐𝑙𝑎𝑚𝑝

𝐸𝑐𝑙𝑎𝑚𝑝
(2.10) 

1

𝐸∗
=
1 − 𝑣𝑤𝑖𝑟𝑒

2

𝐸𝑤𝑖𝑟𝑒
+
1 − 𝑣𝑐𝑙𝑎𝑚𝑝

2

𝐸𝑐𝑙𝑎𝑚𝑝
(2.11) 

 
10 This is called the Integral equation formulation sec. 6.2 of Barber ( 2018) because it leads to an Integral 
equation. However, this integral is obtained from the derivative of the gap function in Equation 6.6 of the 
same document and thus the name.  
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 This approach has been used by Andresen et al. (2019) for the solution of a compound punch 

indenting a half-plane with normal force, tangential force and bending moment. Ciavarella et 

al. (1998) have also analyzed a flat punch with rounded edges subjected to normal force and 

tangential force.  

The flat punch with rounded edges solution of  Ciavarella et al.(1998) represents the solution 

of the symmetric wire to clamp experimental set-up presented in Lalonde (2017) and shown in 

Figure 2-12 in the longitudinal direction subject to the restriction that the coupling between the 

clamp and wire be ignored since their modulus of elasticity are similar and the half space 

assumption is satisfied. It is important to mention that the contact analyzed by Lalonde (2017) 

is a three-dimensional contact given that the surface profiles of both bodies are quadratic and 

the gap functions along the 𝑅𝑐1 and 𝑅𝑐2  (see Figure 2-12(a)) both vary; hence, the plain strain 

solution of Ciavarella et al.(1998) is only  applicable over a thin strip at the center of the contact 

and its applicability decreases in the 𝑅𝑐2 direction due to the decrease in the contact pressure. 

The observations of Lévesque et al. (2011) also hold for the fretting set-up of Lalonde (2017) 

if the contact length is greater than the diameter of the wire.  

Figure 2-11: (a) Diagram of the various types of contacts in a conductor. (b) Corresponding 

half space representation of the wire to clamp contact (Image b reporduced from ( Barber, 

2018) )  

a b 
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The fretting fatigue test set-up of Omrani (2021) (Figure 2-7) is similar to that of Lalonde 

(2017) (Figure 2-12a) except that it does not preserve the geometric symmetry of Figure 2-12a. 

If the contact normal load is small such that the contact satisfies the half-space assumption, 

then the wire to clamp contact can be treated as a half-space and the functional form of the 

contact normal pressure of the contact between the wire and clamp will be the same as that of  

Lalonde (2017). However, if the half-space assumption is violated, then in accordance with the 

observation of Lévesque et al. (2011) the contact pressure at the wire-to-bearing contact may 

affect the contact pressure at the wire-to-clamp contact.   

For the wire to wire contact, the normal contact solution for such problems are due to Hertz 

(Barber, 2018; Johnson, 1985) for the elliptical contact case. However, this solution also has 

the limitation that the half-space assumption must be satisfied (Barber, 2018; Johnson, 1985). 

Tangential stresses for the three-dimensional elliptical contact in sliding condition can be 

obtained by methods presented by (Barber, 2018; Hills et al., 1993; Johnson, 1985).  

When friction exists between the interfaces in contact, the contact is in partial slip; two portions 

exist at the contact interface. A portion of full stick where 𝑞(𝑥, 𝑦) < 𝜇 𝑝(𝑥, 𝑦) and a region of 

Figure 2-12: (a) Symmetric Wire to Pad Configuration (Source: Lalonde, 2017a). (b) 

Contact pressure distribution along longitudinal contact region (Source: Ciavarella et al. 

1998)  
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slip 𝑞(𝑥, 𝑦) = 𝜇 𝑝(𝑥, 𝑦) with 𝜇 being the friction coefficient. The method to construct partial 

slip solutions to contact problems are summarized by Hills et al. (2018). Barber (2018) 

discusses the cases for the partial slip solutions of elliptical contacts for monotonically 

increasing shear force, cyclic shear force and cyclic normal force. A similar technique (for the 

cyclic shear case) has been applied by Lévesque and Legeron (2010) for an elastic-perfectly 

plastic contact of wire to clamp contact. However, cases of cyclic normal and cyclic shear loads 

are yet to be analyzed for the wire-to-clamp and wire-to-wire contact using these methods.  

2.2.2.2 The Method of Dimensionality Reduction  

The method of dimensionality reduction (MDR) (Popov and Heb, 2015) is another method for 

the analysis of three-dimensional contacts. Although not yet applied to conductor contact 

Figure 2-13:(a) Point contact in a conductor. (b). Equivalent spheres embedded in the 

half-space representing wires. (c). Equivalent Winkler foundation model indented by a 

sphere equal to the wire of the radius. (Image (c) is modified from (Barber, 2018)). 

 

P 

Q 
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problems, the MDR requires that the contact be of an axisymmetric nature and involves 

mapping of the three–dimensional problem into an equivalence one–dimensional problem of 

the indenter indenting a series of independent springs (wrinkle foundation). Figure 2-13 shows 

the application of the MDR to the point contact of a conductor. 

When the contact patch is small, spheres of radius equal to the wire radius can be embedded in 

the respective half-space representing the conductor wires. In this case, it can also be assumed 

that the deformations produced by the contact tractions (both normal and tangential) are the 

same as those that would be produced in an equivalent body (sphere in this case) in contact 

with a plane surface (Barber, 2018). With this simplification, normal gap functions of the 

contacting spheres can be described by the equivalent sphere of radius R in contact with a plane: 

1

𝑅
=
1

𝑅1
+
1

𝑅2
(2.12) 

Where 𝑅1 and 𝑅2 represent the radius of the wires that compose the contact. The resulting 

contact equations are provided by (Popov and Heb, 2015) and given below for the case of 

normal contact:  

∆𝑘𝑧 = 𝐸
∗∆𝑥 (2.13) 

Where Equation (2.13) represents the stiffness of an individual spring of the contact that 

supports the sphere over a small distance ∆𝑥 and 𝐸∗ is the composite modulus defined in 

Equation (2.11). The vertical displacement in the contact zone is given by (Popov and Heb, 

2015):  

𝑢𝑧(𝑥) = 𝑑 −
𝑥2

2𝑅𝑤𝑖𝑛𝑘
(2.14) 
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Where d represents the depth of the elastic foundation after the application of the load P and 

𝑥2

2𝑅𝑤𝑖𝑛𝑘
 represents the normal gap function of the equivalent Winkler foundation -sphere model 

before loading. By using the Popov rule of 𝑅𝑤𝑖𝑛𝑘 = 𝑅/2, the half contact length is obtained 

from (2.14)  by setting 𝑢𝑧(𝑎) = 0 (Popov and Heb, 2015):  

𝑎 = √𝑅𝑑 (2.15) 

The normal force-displacement relation of the foundation and the sphere is obtained by 

integrating the spring relation over the contact length:  

𝑃 = ∫ 𝐸∗𝑢𝑧(𝑥)

+𝑎

−𝑎

= ∫ 𝐸∗ (𝑑 −
𝑥2

𝑅
)

+√𝑅𝑑

−√𝑅𝑑

𝑑𝑥 =
4

3
𝐸∗𝑑√𝑑𝑅 (2.16) 

Equations (2.15) and (2.16) are the exact solutions for the case of a contact between two 

spheres. By using d from (2.15) in (2.16), we obtain the half contact length a as (Lévesque, 

2009; Popov and Heb, 2015): 

𝑎 = (
3 𝑃 𝑅

4 𝐸∗
)
1/3

(2.17) 

The normal contact pressure can be obtained from the following integral (Popov and Heb, 

2015): 

𝜎𝑧𝑧(𝑟) =
1

𝜋
∫
𝑑 𝑑𝑥⁄ (𝑝𝑥(𝑥))

√𝑥2 − 𝑟2
 𝑑𝑥

∞

𝑟

(2.18) 

where 𝑝𝑥(𝑥) is the linear force density defined as:  

𝑝𝑧(𝑥) =
𝑓𝑁(𝑥)

∆𝑥
(2.19) 
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and 𝑓𝑁(𝑥):= ∆𝑘𝑧 𝑢𝑧(𝑥).  

For the case of two wires in contact as shown in Figure 2-13(a), Equation (2.18) gives the 

contact pressure as (Popov and Heb, 2015):  

𝜎𝑧𝑧(𝑟) = −
2

𝜋
𝐸∗ (

𝑑

𝑅
)
1/2

√1 − (
𝑟

𝑎
)
2

(2.20) 

Following the same approach as for the normal contact force P, the tangential stiffness per unit 

length ∆kx is defined as:  

∆𝑘𝑥 = 𝐺
∗∆𝑥 (2.21) 

where G∗is defined as:  

1

𝐺∗
=
2 − 𝑣1
4𝐺1

+
2 − 𝑣2
4𝐺2

(2.22)  

and 𝐺1 and 𝐺2 are the shear modulus of the first and second wires respectively and 𝐺∗ is the 

composite shear modulus of the contact. 

In tangential contact, a spring may be sticking or sliding when the contact is in partial slip.  For 

the case of sticking, let 𝑥 = ±𝑐 represent the boundary that separates the stick region from the 

slip region and noting that at this boundary 𝑞𝑥(𝑐) = 𝜇𝑓𝑁(𝑐), where 𝑞𝑥 and 𝑓𝑁represents the 

tangential force and normal force on an individual spring on the stick–slip boundary, the 

sticking force on a spring on this boundary using this Coulomb condition is then  :  

𝐺∗∆𝑥 𝑢𝑥(𝑐) = 𝜇 (𝑑 −
𝑐2

𝑅
)𝐸∗∆𝑥 (2.23) 

Which gives the tangential displacement of a spring at the stick-slip boundary as 
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𝑢𝑥(𝑐) = 𝜇
𝐸∗

𝐺∗
(𝑑 −

𝑐2

𝑅
) (2.24) 

For the contacts in the slip–zone, the same Coulomb law holds with the boundary now being 

between c to a. Using this, the total tangential force in the contact zone is:  

𝑄 = 2∫𝐺∗ 𝑢𝑥

𝑐

0

𝑑𝑥

⏟        
𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑖𝑐𝑘 𝑟𝑒𝑔𝑖𝑜𝑛

+ 2∫𝜇 (𝑑 −
𝑥2

𝑅
)

𝑎

𝑐⏟          

𝐸∗

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛

= 𝜇𝑃 (1 − (
𝑐

𝑎
)
3

) (2.25)
  

𝑐

𝑎
= (1 −

𝑄

𝜇𝑃
)
1/3

(2.26) 

The stresses induced in the contact is given by Abel integrals of the form (Popov and Heb, 

2015) : 

𝜏𝑧𝑟(𝑟) =
1

𝜋

1

𝑟

𝑑

𝑑𝑟
∫
𝑑 𝑑⁄ (𝑞𝑥(𝑥))

√𝑥2 − 𝑟2

𝑎

𝑟

𝑑𝑥 −
1

𝜋

𝑞𝑥(𝑎)

√𝑎2 − 𝑟2
(2.27) 

where 𝑞𝑥(𝑥):=
∆𝑘𝑥𝑢𝑥

∆𝑥
 . The tangential stress for the two-wire contact illustrated in Figure 2-13 

is then:  

𝜏𝑧𝑟(𝑟) = −
2𝜇𝐸∗

𝑅𝜋
{√𝑎2 − 𝑟2  [𝐻 (1 −

𝑟

𝑎
)] − √𝑐2 − 𝑟2   𝐻 (1 −

𝑟

𝑐
)} (2.28) 

𝑤ℎ𝑒𝑟𝑒 [𝐻(. )] 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒 𝑠𝑡𝑒𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

The MDR converts the three dimensional contact into two one-dimensional problems – one in 

the normal direction and the other in the tangential direction. The MDR provides the exact 

solutions for the axially symmetric contact problem of two spheres either in tangential or 
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normal contact. Thus, if the contact between two wires can be approximated by a circular area11 

and fulfil the half–space assumption, the MDR also provides methodologies easier to 

implement than the full elliptical solution resulting from stress and displacement stress 

functions. One of its advantages is for non–monotonic variation of the tangential force as the 

incremental equations are easier to solve numerically than those using the stress and 

displacement functions since the problem becomes one-dimensional.  

Not all conductor contacts can be idealized as half-space thereby limiting the applicability of 

the method of dimensionality reduction. Furthermore, its applicability reduces with increasing 

eccentricity of a contact ellipse12. In this regard, the experimental work of Omrani (2021) has 

shown that under the action of bending moment, the eccentricity of contact can become large 

for wire to clamp contacts making the MDR inapplicable to such contacts.  

2.2.2.3  Structural Elements in Conductor Contact Mechanics  

In 2018, it was shown by Lalonde et al.(2018) that a variation in bending moment governs the 

conductor fatigue phenomenon between the keeper edge (KE) and the last point of contact 

(LPC). More recently, Omrani et al. (2021) have also shown that bending moment creates 

elliptical contacts with large semi major axis. If this is the case, then the method of 

dimensionality reduction and using stress and displacement functions with the half-space 

assumption cannot be used.  

One of the approaches to overcome the restriction of the half-space assumption is to treat the 

wires of the conductors as a beam where the effect of the bending moment can be included. It 

has been remarked by Timoshenko and Goodier (1951) and Johnson (1985) that if the beam 

depth is large in comparison with the length of the contact, then the stress field in the contact 

 
11 Such an approximation has been used by Lévesque and Legeron (2010) 
12 The contact marks often found in conductors are of elliptic geometry.  
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region can be regarded as a superposition of the usual Hertzian contact stresses and those from 

simple bending theory. However, when the contact length becomes comparable to the depth of 

the beam, the stresses are bending dominated.  

The analytical solution of contact problems using elements such as beams, plates and shells is 

an area that has been less studied. However, beam and shell structures are increasingly used 

for solution of conductor problems (Baumann and Novak, 2017; Lalonde et al., 2018) due to 

the reduced number of degrees of freedom. However since structural elements reduce the three-

dimensional details of contacts, it is important to determine what information is lost for contact 

analysis. In addition, in beam theory, the distribution of stresses is a function of the order of 

the interpolating polynomial.  

Consider a beam under indentation by a force ( 𝑃𝑎𝑝𝑝) that  is in contact with a cylindrical surface 

, it  reacts with a normal line contact pressure q at the contact line, the distribution of the line 

Figure 2-14: Contact pressure between a 2D beam and a circular surface  (Gasmi, Joseph, 

Rhyne, & Cron, 2012). 
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pressure follows the Hertz contact pressure (Gasmi et al., 2012; Castillo and Barber, 1997; Kim 

et al., 2014) as shown in Figure 2-14 (case 1)   but for 𝑃𝑎𝑝𝑝 greater than some value 𝑃0, the 

contact line bifurcates into two contact regions at the ends of the contact region with a 

separation region at the center of the contact  as shown by Kim et al. (2014). This behavior also 

holds true if instead of applying the contact force we apply end moments (Essenburg, 1975; 

Naghdi and Rubin, 1989) or apply vertical forces to the ends of the beam (Gasmi et al., 2012) 

as shown in Figure 2-15. This bifurcated contact pressure distribution is different from that 

observed in the normal Hertz contact problem for the half–plane and this has been attributed to 

the localized bending of the beam in the contact region (Barber, 2018; Essenburg, 1975)13.  

Figure 2-14 shows the normalized line contact pressure between a plane beam and a cylindrical 

surface obtained from a 2D  FE analysis and from three different beam theories developed by 

 
13 Page 264 of Barber (2018) for further discussion on this phenomenon.  

Figure 2-15: Frictionless beam to cylindrical surface contact with symmetric end shear and 

moment loading (Adapted from: Gasmi et al., 2012) 
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Gasmi et al. (2012). A diagrammatic representation of the beam and cylindrical surface is 

shown in Figure 2-15. 

In this analysis, the beam lays symmetrically on the surface and is subjected to symmetrical 

shear forces at it ends.  When the half contact length ( x–coordinate) is less than the depth of 

the beam h, (Figure 2-14 (case 1)), the contact pressure approximates a 2D Hertzian contact 

distribution as predicted by the plane stress finite element model. For the same contact length, 

the Timoshenko beam theory (TBT) predicts a different distribution and predicts that the 

maximum contact pressure is at the edge of the contact region rather than at the center. As the 

contact half–length increases beyond the depth of the beam, two different types of contact 

pressure distributions different from the Hertz type emerge. The first one (case 2) has a lower 

contact pressure at the center of the contact and peaks towards the end for x=1.2h (Figure 2-14 

(case 2)); the TBT captures the trend of the contact line pressure distribution but peaks at the 

contact edge. For the last two contact pressure distributions (Figure 2-14, case 3 and 4) where 

the half contact length 𝑥 > 2.5ℎ, there is no contact at the center. The TBT is able to capture 

the separation but again peaks at the edge, which is incorrect. In fact, the TBT overestimates 

the contact force per unit length in all cases. This is because the TBT is stiffer than the higher-

order beam theories. Nonetheless, the resultant contact force and displacement are the same for 

all the beam theories investigated by Gasmi et al. (2012) and they all match those of the plane 

elasticity FE solution.  

It was remarked by Gasmi et al. (2012) that depending on the beam displacement kinematics, 

the contact length at which separation begins varies. It was observed that for separation to occur 

in the TBT, the half contact length needed to be greater than ten times the beam depth (i.e. 𝑥 >

10ℎ). This differs from higher beam theories and the elasticity solution presented in (Gasmi et 

al., 2012). This observation implies that if the TBT is used to model the contact between a 
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beam and a surface, when separation is supposed to occur due to bending, it may predict a 

contact condition. This conclusion has also been explicitly observed by Naghdi and Rubin 

(1989).  

Figure 2-16: Three types of contact modes between a conductor and a clamp (Alain 

Cardou, Leblond, & Cloutier, 1993)  

Conformal Contact  

Nonconformal Contact  

Limit Contact  
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  The condition of separation has been observed in an ACSR Bersimis conductor’s axial plane 

of symmetry (Cardou et al., 1993) as shown in Figure 2-16 (b). In their work, these authors 

used strain gauges attached to the bottom face of the clamp to reproduce the contact line 

pressure on the wire to clamp contact. This contact line pressure is as shown in Figure  2-17. 

This crude approximation reproduced from strain gauge measurements gives an approximation 

to the distributions shown in Figure 2-14 case 1 and 2.    

The observation of the unique contact pressure distribution shown in Figures 2-14 and 2-17, 

which has been attributed to bending, has been often neglected in the modeling of single 

contacts between a wire and the clamp (Redford et al., 2018; ) and in single wire to clamp 

experiments (Zhou et al., 1995). It is only recently that Omrani et al. (2021) has been able to 

conceive a single wire to clamp experiment that considers the effect of bending.  

Essenburg (1975), Naghdi and Rubin (1989), and Gasmi et al. (2012)  have shown that to 

approximate the line pressure properly using the TBT, the Timoshenko beam theory must 

Figure 2-17: Contact line force prediction for contact between Bersimis conductor and a 

generic clamp (Source: Cardou et al. (1993)) 
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include higher order terms, especially for the transverse normal stress. For example, for the 2D 

Timoshenko beam theory, the kinematics for small strain-small displacement are given as 

(Gasmi et al., 2012): 

𝑈𝑥(𝑥, 𝑦) = 𝑈(𝑥) + 𝑦𝜃(𝑥) (2.30) 

𝑈𝑦(𝑥, 𝑦) = 𝑤(𝑥) (2.31) 

Where 𝑈𝑥(𝑥, 𝑦) represents the axial deformation of the beam, 𝑈𝑦(𝑥, 𝑦) represents the 

deformation of the beam in the direction perpendicular to the axial direction, y represents the 

thickness coordinate of the beam, 𝑤(𝑥) is the displacement of the beam centerline and 𝜃(𝑥) 

the rotation of the beam centerline. The strains obtained by the Timoshenko beam kinematics 

Equations (2.31) imply that the strain in the thickness direction 𝜀𝑦𝑦 =
𝜕𝑈𝑦(𝑥,𝑦)

𝜕𝑦
= 0 and thus the 

beam cannot carry any normal strain in the normal direction. This is one of the anomalies 

responsible for the behavior of this beam theory shown on Figure 2-14. Hence, for the TBT the 

contact line pressure is balanced by shear and bending only.  

Another anomaly arising from the Timoshenko beam theory when used for contact problems 

is its inability to model bending moments induced by the contact loads. Since the loads are 

applied at the elastic line representing the beam, these moments are lost. This can be observed  

from the equilibrium equations for a 2D Timoshenko beam in contact with a cylindrical surface 

at the top and bottom(Gasmi et al., 2012)14:  

𝑑𝑁(𝑥)

𝑑𝑥
= −(𝑞𝑥

+ + 𝑞𝑥
−) (2.32)    

 
14 This reference did not denote the contact tractions as 𝑞𝑥

(+)
 and 𝑞𝑥

(−)
 but used a single term  𝑞𝑥. This is correct 

since only the centerline of the beam can be loaded. However, 𝑞𝑥
(+)

 and 𝑞𝑥
(−)

 are used here to indicate that the 
beam could be loaded at the top and bottom 
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𝑉(𝑥) −
𝑑𝑀(𝑥)

𝑑𝑥
= 0 (2.33)      

𝑑𝑉(𝑥)

𝑑𝑥
= −(𝑞𝑦

+ + 𝑞𝑦
−) (2.34)      

subject to the appropriate mechanical and geometric boundary conditions. 

where 𝑁(𝑥), 𝑉(𝑥) and 𝑀(𝑥) represent the axial force, shear force, bending moment along the 

beam center line coordinate x. 𝑞𝑥
+ + 𝑞𝑥

− represents the tangential tractions at the top and bottom 

of the beam and 𝑞𝑦
+ + 𝑞𝑦

− represents the normal traction at the top and bottom of the beam. 

Since 𝑈𝑦(𝑥, 𝑦) is independent of y, the contact tractions are at the beam centerline and not at 

the beam surface (top or bottom). 

To correct for the loss of moment and to include the influence of the transverse normal strain, 

(Gasmi et al., 2012) used the following beam kinematics:  

𝑈𝑥(𝑥, 𝑦) = 𝑈(𝑥) + 𝑦𝜃(𝑥) (2.35)     

𝑈𝑦(𝑥, 𝑦) = 𝑤(𝑥) + 𝑦𝜓(𝑥) + 𝑦
2𝛽(𝑥) (2.36)    

the kinematics now include a quadratic dependence of 𝑈𝑦(𝑥, 𝑦) as a function of  y, and the 

normal strain 𝜀𝑦𝑦 = 𝜓(𝑥) +  2𝑦𝛽(𝑥) is not zero, unlike the Timoshenko beam. Thus, this beam 

theory is closer to reality. The equilibrium equations for the 2D beam with kinematics given 

by Equations  (2.35 and 2.36) are provided in (Gasmi et al., 2012) as:  

𝑑𝑁(𝑥)

𝑑𝑥
= −(𝑞𝑥

+ + 𝑞𝑥
−) (2.37)  

𝑉(𝑥) −
𝑑𝑀(𝑥)

𝑑𝑥
=
ℎ

2
(𝑞𝑥
+ − 𝑞𝑥

−) (2.38) 
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𝑑𝑉(𝑥)

𝑑𝑥
= −(𝑞𝑦

+ + 𝑞𝑦
−) (2.39) 

𝐻(𝑥) −
𝑑𝐽(𝑥)

𝑑𝑥
=
ℎ

2
(𝑞𝑦
+ − 𝑞𝑦

−) (2.40) 

2𝑆(𝑥) −
𝑑𝑇(𝑥)

𝑑𝑥
=
ℎ2

4
(𝑞𝑦
+ + 𝑞𝑦

−) (2.41) 

subject to the appropriate mechanical and geometric boundary conditions.  

where  𝐻(𝑥) = ∫𝜎𝑦𝑦 𝑑𝐴, 𝐽 = ∫𝑦 𝜏𝑥𝑦  𝑑𝐴, 𝑆 = ∫𝑦 𝜎𝑦𝑦  𝑑𝐴, 𝑇 = ∫𝑦2𝜏𝑥𝑦  𝑑𝐴 and A is the 

cross-sectional area of the beam. Immediately from Equations (2.38) and (2.39), the quantities 

ℎ

2
(𝑞𝑥
+ − 𝑞𝑥

−) and 
ℎ

2
(𝑞𝑦
+ − 𝑞𝑦

−) are identified as the moment15 terms missing from the 

Timoshenko formulation, which, if the difference between contact tractions is small do not 

matter.  

This beam formulation16 given by Equations (2.37) through (2.41) now accounts for the normal 

strain and moments couples due to contact, the number of equations has increased. However, 

the beam theory like the TBT still has a contact pressure distribution that is discontinuous at 

the contact edge.  

Given the observation that for small difference in the contact tractions, the contact moment 

terms do not matter, the increasing complexity of beam theories and the complexity of 

conductor-clamp contact analysis, the Timoshenko beam theory is a good compromise between 

complexity and accuracy for the reliability analysis of conductor-clamp assemblies. The 

limitations such as prediction of sticking instead of separation (Gasmi et al., 2012) and large 

 
15 In a 3D case, a moment term resulting from torsion is also present. See (konyukhuv & Schweizerhof, 2012) 
so that in total there are three couples not accounted for by the Timoshenko beam theory 
16 This beam formulation is the same one shown in Figure 2-14 called quadratic beam theory 
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contact pressure concentration at the contact edge as shown in Figure 2-14 for the TBT will 

lead to predicting probabilities of failure than are higher than they should be.  Thus, before the 

TBT can be used for reliability analysis of overhead conductor-clamp assemblies, it is 

necessary to develop ad hoc strategies that would counteract the effect of the deficiencies of 

the TBT on fatigue life predictions.  

 

2.2.3 The Finite Element Method  

In the numerical solution of contact problems in conductors, the finite element method is the 

most used procedure (Gang, 2013; Baumann and Novak 2017, Lalonde et al., 2018; Said et al., 

2020). Herein, only the literature on modelling full conductor/clamp assemblies are reviewed.  

Gang (2013) presented the first finite element (FE) model of a conductor-clamp system with 

all contacts reproduced in a 3D solid FE framework. This work explored the behavior of a 2-

layer Drake conductor under tension and bending reproducing experimental observations of 

Zhou et al.(1994b) that the critical regions for fretting fatigue are between the keeper edge (KE) 

and the last point of contact (LPC) between the conductor and the clamp. The disadvantage of 

this model is the small model length considered. The meshing scheme of this work is shown in 

Figure 2-18c. Only a length of 184mm was studied; even with this small length, a fretting cycle 

was reported to take 3.5 days (Gang, 2013) Also, symmetry conditions were used at the 

suspension clamp center (SCC). It has however been shown by Baumann and Novak (2017) to 

produce consistent bending stiffness for the Drake conductor, the model length must be at least 

500mm. Thus, it is not practical to use such a modeling approach for the purpose of structural 

reliability computations where multiple runs of the same model are required.  
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Lalonde et al. (2018) produced the FE model of a conductor-clamp system using 3D 

a. 

b. 

c. 

Figure 2-18:Finite Element Models of Overhead Conductors Using (a). Timoshenko beam to 

beam and beam to surface contact (b). Hexahedron solid elements with quadrilateral surface 

to surface contact (c).  Hexahedron solid elements with quadrilateral surface to surface 

contact (Sources: Lanlonde at al. (2018); Said et al. (2020); Gang (2013)) 
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Timoshenko beam finite elements with beam-to-beam (BTB) contacts and beam-to-surface 

(BTS) contacts as shown in Figure 2-18 a. This approach overcomes the limitation of the 

model of Gang (2013) allowing for large model lengths and efficiency in computation time. 

For a Bersfort conductor-clamp assembly, a computation time of 18 hours was reported. 

Hence, the approach of Lalonde et al. (2018) is a more efficient alternative for studying the 

reliability of overhead conductors.  

The limitation of the 3D Timoshenko beam approach of Lalonde et al. (2018) is the same as 

those discussed in section 2.3.2 for the Timoshenko beam theory. In addition to these, the 3D 

Timoshenko beam approach is unable to account for stress gradient observed in fretting fatigue 

in overhead conductors.  

To account for the rapidly varying stress along the depth and surface of the wires of the 

conductor,   Said et al. (2020) have used a multiscale approach where the global conductor 

model is first solved (Figure 2-18 (b)) and the forces from this global model are applied to a 

local model of a single wire-wire contact. In this work, the variation of the normal force as a 

function of time has been neglected in the local model. However, as observed by Lalonde et al. 

(2018) the contact conditions can go from contact to separation in a load cycle for the contacts 

between the last layer of a conductor and the bottom of the suspension clamp.  In other words, 

the normal force varies considerably and is null where separation occurs. It is also known that 

bending can introduce contact normal tractions that are quite different from those produced by 

a static normal force (Kim et al., 2014) with the contact normal pressure distribution tending 

to be larger in size (Omrani et al. 2021). Thus, the modeling approach of  Said et al. (2020) 

does not apply to the wire to clamp contacts which have mostly a varying normal force 

component due to bending. These set of contacts have also been shown to be critical for fretting 

fatigue in a Bersfort conductor by Omrani et al. (2021).  
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2.2.4 Summary 

The equations of equilibrium for a three-body contact problem exemplifying the contact 

between a conductor wire and the clamp were discussed. It was extended to a conductor-clamp 

assembly. Three methods that are available to solve a contact problem were reviewed from the 

literature. The simplifying assumptions and limitations of each of the method were discussed. 

For the analytical models that rely on the half-space assumption, it has been discussed that this 

assumption is not valid for the conductor wire to clamp contact as discussed by (Lévesque et 

al., 2011) and observed experimentally in the work of Omrani et al. (2021).  For the models 

that make use of beam theory, it has been discussed that normal stress to the beam axis are 

important variables that limit the applicability  of the beam theories constrained against normal 

deformation to describe properly the separation kinematics between the KE and LPC. 

Nevertheless, the beam theories produce the correct stress resultants and resultant 

displacements (Gasmi et al., 2012) and thus can be used as ad hoc approach for fretting fatigue 

analysis of overhead conductors if what is required is the fatigue life of the conductor and the 

exact contact stress distribution is not needed.  

The finite element method was reviewed, it was concluded that the FE method with beam 

discretization provides the most efficient means for computational structural reliability analysis 

of overhead conductors. Thus, this approach is adopted and used in this thesis.  

2.3 STRUCTURAL RELIABILITY OF OVERHEAD CONDUCTOR-CLAMP SYSTEMS  
 

In the previous sections, the behavior of contacts in conductors was derived under the 

assumption that the factors controlling the response of the conductor are known and that the 

mathematical models are exact. However, as evidenced by the scatter from fatigue experiments 

of aluminum wires (4.28× 106- 5.29× 108 cycles around the endurance limit of 50 MPa) 

(Kaufman, 2008) and three layer conductor fatigue tests (2.5× 106- 5× 108 cycles around the 
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endurance limit of 8.5 MPa) (Cloutier et al., 2006), the modeling of this phenomenon should 

include uncertainty quantification.  

 

2.3.1 Fatigue Resistance of Overhead Conductor-Clamp Systems  

Conductor-clamp assemblies are multi-component systems and a fundamental question that 

arises here is how to relate the failure of wires to the overall failure of the conductor, which 

can be defined as a function of the total number of aluminum wires that fail, e.g. 1st wire failure, 

2nd wire failure, 3rd, 4th, or nth wire failure. 

Idealized flexion model 

Figure 2-19: Fatigue testing bench for conductor clamp systems (Adapted from (CIGRE-WG-

B2.30, 2010) 

a 

b c 
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To characterize the fatigue resistance of conductor-clamp assemblies, the conductor-clamp 

assembly is tested in a specialized testing system shown in Figure 2-19 (a). The conductor is 

subjected to standing wave vibration as shown in Figure 2-20. Close to the clamp, the conductor 

is assumed rigidly fixed as shown in Figure 2-19 (c) and the conductor deflection near the fixed 

end is shown in Figure 2-20. The bending moment M induced in the conductor due to the 

tension T near the fixed end are related by (Cloutier et al., 2006; Lalonde 2017):  

𝑑2𝑦𝑡
𝑑𝑧2

=
𝑀

𝐸 𝐼
=
𝑇

𝐸 𝐼
𝑦𝑡 (2.42) 

Where 𝐸 𝐼 is the bending stiffness of the conductor. With boundary conditions 𝑧 → ∞, 𝑦𝑡  → 0 

and 𝑧 = 0,
𝑑𝑦𝑡

𝑑𝑧
= ∆𝛽, and small displacement assumption,  the curvature at the fixed end is 

given as (Cloutier et al. 2006; Lalonde et al. 2017):  

(
𝑑2𝑦𝑡
𝑑𝑧2

)
𝑧=0

=
𝑇

𝐸 𝐼
𝐴 (2.43) 

where 𝐴 = 𝑦(𝑧) (𝑒−√𝑇 𝐸𝐼⁄   𝑧  −  1 + √𝑇 𝐸𝐼⁄   𝑧)⁄  and 𝑦(𝑧) = −𝑦𝑎  +  ∆𝛽 𝑧 + 𝑦𝑡.  

Figure 2-20: Vibration of a conductor in a conductor conductor fatigue test bench (Adapted 

from  Lalonde et al. (2017)) 
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By assuming that the wires of the conductor bending independently, the bending stiffness of 

the conductor becomes:  

𝐸𝐼 = ∑ 𝐸𝑖  𝐼𝑖

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑟𝑒𝑠 

𝑖=1

(2.44) 

where  𝐸𝑖 and 𝐼𝑖 are the Young modulus and moment of inertia of the ith wire. With Equation 

(2.43), it is possible to define an idealized stress 𝜎𝑎 or strain 𝜀𝑎which relates the amplitude of 

vibration 𝑦(𝑧) at some distance z from the fixed end. The industry standard for the distance z 

is 89mm (Cloutier et al., 2006; IEEE, 2006) as shown in Figure 2-19 (c). Thus, the idealzed 

stress and strain are (Poffenberger and Swart, 1965; Cloutier et al., 2006; IEEE, 2006; Lalonde 

et al. 2017):  

𝜎𝑎 =
𝑑 𝐸𝑎  (

𝑇
4 𝐸𝐼) 

(𝑒−√𝑇 𝐸𝐼⁄   𝑧  −  1 + √𝑇 𝐸𝐼⁄   𝑧)
𝑌𝑏 (2.45) 

 

𝜀𝑎 =
𝑑  (

𝑇
4 𝐸𝐼) 

(𝑒−√𝑇 𝐸𝐼⁄   𝑧  −  1 +  √𝑇 𝐸𝐼⁄   𝑧)
𝑌𝑏 (2.46) 

 

where 𝑌𝑏 = 2 𝑦(𝑧 = 89). The Equations (2.45) and (2.46) are called the Poffenberger-Swart 

Formula. Note that the Poffenberger-Swart equation does not refer to the contact conditions in 

a conductor. 
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With the Poffenberger-Swart equation, it is possible to relate the number of cycles at which a 

conductor wire fails 𝑁: = {𝑁1, 𝑁2,∙∙∙∙∙∙, 𝑁𝑘  | 𝑘 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚 𝑤𝑖𝑟𝑒𝑠 } to the idealized 

stress or idealized strain.  

Using the specialized fatigue test bench (Figure 2-19 (a)) and the Poffenberger-Swart Formula, the 

set of idealized stress and number of cycles to failure is collected as:  

 

𝜎𝑎𝑁 = {(𝜎𝑎,1 ,  𝑁𝑘,2), (𝜎𝑎,1 ,  𝑁𝑘,2),∙∙∙∙∙∙, (𝜎𝑎,𝑖 ,  𝑁𝑘,𝑖) | 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑡𝑖𝑔𝑢𝑒 𝑡𝑒𝑠𝑡} (2.47) 

 

A plot of 𝜎𝑎,𝑖 against 𝑁𝑛,𝑖 on a linear-log scale characterizes the fatigue resistance of the 

conductor as the number of cycles the conductor-clamp assembly can undergo at a given 

idealized stress amplitude before 𝑁𝑘 wire failure is observed  𝑁𝑘|𝜎𝑎. This plot is called an SN 

curve or Wohler curve (Castillo and Fernandez-Canteli, 2009).  

Using the set of  the Poffenberger-Swart stress and the observed number of cycles to failure, 

different approaches have been proposed to describe the fatigue resistance of overhead 

conductor-clamp assemblies.  

2.3.1.1 CIGRÉ’s Safe Border Line Method  

One of the first approaches proposed to define overhead conductor-clamp assemblies' fatigue 

resistance is the CIGRÉ (Conseil International des Grands Réseaux Electriques) safe border 

line. The CIGRÉ safe border line is a curve defined as 𝜎𝑎 = 𝐴 𝑁1
𝑏 fitted to the dataset of the 

Poffenberger-Swart stress 𝜎𝑎 and observed number of cycles to first wire failure 𝑁1 (CIGRÉ, 

1979), where A and b are regression coefficients.   

CIGRÉ (1979) defines the fatigue resistance of multilayer and single layer conductors in typical 

clamps as: 
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𝜎𝑎 =
450𝑁−0.20, 𝑁 ≤ 1.56 × 107𝑐𝑦𝑐𝑙𝑒𝑠

263𝑁−0.17, 𝑁 > 1.56 × 107𝑐𝑦𝑐𝑙𝑒𝑠 ⏟                            
𝑚𝑢𝑙𝑡𝑖𝑙𝑎𝑦𝑒𝑟 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 

(2.48)
 

𝜎𝑎 =
730𝑁−0.20, 𝑁 ≤ 2.0 × 107𝑐𝑦𝑐𝑙𝑒𝑠

430𝑁−0.17, 𝑁 > 2.0 × 107𝑐𝑦𝑐𝑙𝑒𝑠 ⏟                            
𝑠𝑖𝑛𝑔𝑙𝑒 𝑙𝑎𝑦𝑒𝑟 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 

(2.49)
 

These curves provides a conservative limit above which a conductor is deemed unsafe and 

endangered to fail due to fretting fatigue.  

These safe limits do not provide a probability distribution function of the conductor fatigue 

resistance; rather they represent a lower bound on the idealized stress level below which the 

conductor is considered safe for a given number of cycles. It has however been pointed out by 

Hardy and Leblond (2001) that the CIGRÉ safe border line is not safe when considering 

multilayer (i.e. two and three layer conductors) and is over conservative for single layer ACSR 

conductors. The CIGRÉ safe border line is also limited to the first wire failure of the conductor.  

2.3.1.2 Hardy and Leblond (2001) Safe Limit  

 Hardy and Leblond (2001), use the experimental test results on fatigue from EPRI (1979) for 

first wire failure, and estimate a probability distribution function for the fatigue resistance of 

conductor-clamp assemblies,  𝑓𝑙𝑛𝑁1|𝜎𝑎(𝑛) by assuming that the logarithm of the number of 

cycles to first wire failure for a given stress level follows a student t distribution. Using their 

results, they show that the CIGRÉ safe borderline for multilayer conductors lies next to the 

median curve of their distribution. In the case of single layer ACSR, their results illustrate that 

the CIGRÉ safe borderline gives a conservative value of fatigue resistance in comparison to 

their result. Like the CIGRÉ safe borderline method, this method is also limited to the first wire 

failure of the conductor, cannot account for multiple wire failure,  depends on the simplification 
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of  the Poffenberger-Swart equation and depends on performing multiple tests on conductor-

clamp assemblies.  

2.3.1.3 EPRI’s Endurance Limit Method  

In Cloutier et al. (2006) the Electric Power Research Institute (EPRI) presents datasets of 

fatigue results on conductors of single, double and 3-layer ACSR. Using this data, it was 

determined that a good fatigue resistance for single and multilayer conductors at 500 million 

cycles is 22.5 MPa and 8.5 MPa respectively in terms of Poffenberger-Swart stress. Using this 

limit, the allowable bending amplitude (𝑌𝑏) for a conductor -clamp assembly can be obtained 

from Equation (2.45) as:  

𝑌𝑏 =
  (𝑒−√𝑇 𝐸𝐼⁄   𝑧  −  1 + √𝑇 𝐸𝐼⁄   𝑧) 

𝑑 𝐸𝑎  (
𝑇
4 𝐸𝐼)

𝜎𝑎 (2.50) 

This EPRI approach does not utilize the distribution of 𝑓𝑁1|𝜎𝑎(𝑛). Rather it states that a 

conductor-clamp assembly can withstand 500 million cycles of Poffenberger-Swart stress if its 

bending amplitude is below that predicted by Equation (2.50).  

The EPRI approach cannot account for multiple wire failures as it is limited to the first wire 

failure, assumes that effects such as the contact conditions are implicit in the Poffenberger-

Swart stress.  

2.3.1.4 Neural Network Approaches  

In Kalombo et al. (2020), Câmara et al. (2021) and Câmara et al. (2022), neural networks were 

used to determine the median of 𝑓𝑁1|𝜎𝑎(𝑛) but do not provide a distribution for it. Like the 

previous methods, this method is dependent on testing the conductors in specialized fatigue 

test bench such as Figure 2-19 (a). This method also does not make any refernce to contact 

conditions, the clamp/keper radius, clamping torque in the conductor and assumes that they are 



68 
 

implicit in the  Poffenberger-Swart stress. It is also only limited to the first wire failure in the 

conductor-clamp assembly and unable to account for multiple wire failures.  

2.3.1.5 Lalonde et al. (2017) Approach  

Lalonde et al. (2017) used the finite element model of a conductor without the clamp to 

determine the fatigue resistance of Drake and Crow ACSR conductors supported at suspension 

clamps. The wires of the conductor are modeled using 3D Timoshenko beam finite elements 

and the contact between the wires are modeled as beam-to-beam contacts. In this approach, the 

contact interaction between the wires are considered and the assumption of minimum bending 

stiffness of the Poffenberger-Swart relation is discarded. However, the conductor is still 

modelled as a set of wires with contact and a fixed end as shown in Figure 2-21.  

Due to the use of the FE model, the maximum stress at the fixed end (Figure 2-21) in each layer 

of the conductor can be computed. Using the stress and strain values together with the fatigue 

Figure 2-21: Diagrammatic representation of the model of Lalonde et al. 

(2017) (Reproduced from Lalonde et al. 2017) 
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properties of the aluminum wires that compose the conductor, Lalonde et al. (2017) were able 

to predict the median fatigue resistance of conductor-clamp assemblies without resorting to 

special fatigue testing.  

The approach of Lalonde et al. (2017) is limited as it does not account for the effect of the 

suspension clamp, does not account for multiple wire failure as it is limited to first wire failure, 

it  does not account for the possibility of fatigue failures on the same layer of a conductor and 

does not provide the distribution of  𝑓𝑁𝑘|𝜎𝑎(𝑛).   

2.3.1.6 Gang (2013) Approach  

The work of Gang (2013) utilized a 3D FE analysis of a conductor-clamp assembly where the 

wire and suspension clamp are discretized with 8 node Hexagons. Like the method of Lalonde 

et al. (2017), it does not depend on the assumption Poffenberger and Swart (1965). It is also 

devoid of the fixed end assumption of Lalonde et al. (2017). In this method, the Contact 

between the wires and wire to clamp are implemented with surface-to-surface contact elements. 

From the stress analysis performed, the stress amplitude and mean stress values are used 

together with modified Goodman relation (Stephens et al. 2001) to give predictions of the 

endurance limit of the conductor at 500 million cycles.  

The approach of Gang (2013) although accounts for all contacts in the conductor, it does not 

account for the fact that not all contacts will lead to failure. The approach is also limited to first 

wire failure only and cannot predict multiple wire failures. This method unfortunately does not 

give any information about 𝑓𝑁1|𝜎𝑎(𝑛) but requires that the estimated endurance limit be used 

together with the fatigue data available in EPRI (2006). Thus, making this method depend on 

experimental data generated by special fatigue test bench for conductor-clamp assemblies.  
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2.3.1.7 Numerical-Experimental Approach of Omrani et al. (2022) 

In the work of Omrani et al. (2021), a 3D FE approach similar to that of Lalonde et al. (2017) 

was used. However, in this case the clamp and keeper of the conductor are modeled and their 

contact specified with beam-to-surface contact.  

Using the combined bending and tensile stress to locate the most solicited contact in the 

conductor-clamp assembly. With this information, a special wire to pad fatigue test bench was 

designed to reproduce this contact. The experimental results from the wire to pad fatigue test 

can be used to construct 𝑓𝑁1|𝜎𝑎(𝑛). It was observed by these authors however that the median 

of their fatigue life distribution for a given idealized stress is higher than that observed 

experimentally in the conductor-clamp assembly (Lévesque, 2005). In addition, the standard 

deviation of the experimental result on the conductor clamp assembly were higher than those 

produced by the experimental wire to pad experiment.  

The reasons for the discrepancy between the approach of Omrani et al. (2021) and observations 

on the actual conductor-clamp assembly (Lévesque, 2005) may be attributed to the inability of 

the approach to account for the increased probability of failure due to the presence of multiple 

contacts in the conductor.  

2.3.2 Limitations of the Current Approach in Determining Conductor Fatigue Resistance  

The main disadvantage of the experimental methods described above is that they necessitate 

multiple expensive conductor fatigue tests. The test methodology relies on the idealized flexion 

model (i.e. Poffenberger-Swart idealization of the conductor-clamp assembly) to group results 

from conductors with different types of wires, clamp radius and number of wires into classes 

based on the number of wire layers. This grouping increases the scatter in results in addition to 

the scatter from aleatory uncertainties on material properties.  For example, considering the 

clamp radius, a wire is in contact along the circular portion of the clamp, the bending moment 
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and contact pressure in the wire following the Timoshenko beam hypothesis and assuming 

frictionless condition is (Gasmi et al., 2012) 17:  

𝐸 𝐼

𝑅
+ (𝑚𝑜 −  𝑐 

𝑃

2
+  𝐿 

𝑃

2
 −
𝐸 𝐼

𝑅
) cosh (

√𝐺 𝐴 (𝑐 −  𝑥)

√𝐸𝐼
) +

1

2

√𝐸 𝐼  𝑃 sinh (
√𝐺 𝐴 (𝑐 −  𝑥)

√𝐸𝐼
)

√𝐺 𝐴
(2.51)

 

where E I is the bending stiffness, R is the clamp radius, L is the length of the wire,  P/2 is the 

loads applied at the ends of the wire, 𝑚𝑜 is the bending moment applied at the end of the wire, 

c is the contact length and x is the coordinate along the wire length. The effect of the clamp 

radius is thus evident from Equation (2.51).  In the classical approach of using conductor S-N 

curves, this effect is a source variability given that the idealized flexion model is used to 

represent the EPRI fatigue data (Cloutier et al. 2006), which increases the uncertainty on the 

estimate of fatigue life. The different sources of uncertainty in conductor fatigue as summarized 

in Figure 2-22  and are implicitly included in the idealized flexion approach.  

Another important issue with the aggregation of conductor fatigue data is that coupled contact 

systems18 are sensitive to initial conditions. Barber (2011, 2012) has conjectured that for 

coupled contact problems a slight change in the initial conditions leads to different energy 

dissipation characteristics. In practice, it implies that if conductors are not positioned in the test 

bench in the same manner, it results into different local contact conditions, which may explain 

some of the differences in results obtained with different experimental test benches. 

The methods that have made use of FE method such as those of Omrani et a. (2021), Lalonde 

et al. (2018) and Gang (2013) have not been able to account for the increase in probability of 

 
17 This solution is based on the 2D Timoshenko beam assumption with the beam subjected to end shear forces 
and end moments. Only the solution for the contact region is given. It is based on small displacement 
assumption 
18 By coupled, it is meant that a change in the tangential tractions causes a change in the normal traction and 
vice versa. Bending moment can induce such behavior.  
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failure of the conductor due to the presence of multiple contacts in the conductor. They have 

also not been able to take into account the various fretting regimes in determining the fatigue 

life of conductor-clamp assemblies.  

Given the advancement in numerical models that can replicate experimental test bench results 

(Lalonde et al., 2018), it is possible to propagate uncertainties in the analysis of the conductor 

fatigue phenomenon by eliminating factors that are well controlled and can be considered 

1. Conductor fatigue resistance 

2. Material fatigue resistance  

3. Conductor parameters  

4. Geometry  

5. Loading conditions  

6. Conductor size effect  

7. Testing system  

8. Modelling  

9. Wire geometry  

10. Clamp radius  

11. Keeper radius  

12. Clamping torque  

13. Amplitude  

14. Conductor tension 

15. Wire size  

16. Number of wires per layer  

17. Difference in testing systems  

18. Human error in measurement  

19. Exact location of contact  

20. Friction coefficient  

21. Modeling simplifications  

Figure 2-22: Tree diagram of sources of uncertainty in conductor fatigue 
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deterministic. This approach is used in the next sections to estimate the uncertainty on the state 

of stress at contact points and reduce the uncertainty on fatigue life prediction in comparison 

to those derived from the idealized bending model. The effect of the presence of various fretting 

regimes in the conductor-clamp assembly are considered. The increase in the probability of 

failure of the conductor-clamp assembly due to presence of multiple contacts is also shown. A 

framework to derive the probability density function  𝑓𝑁𝑘|𝜎𝑎(𝑛) for any number k of wire failure 

is developed.  

2.4 SUMMARY AND OUTLOOK 

Various methods for assessing the internal stresses and contact stresses in overhead conductors 

have been reviewed; from which it was concluded that the finite element approach using 3D 

beams with beam-to-beam and beam-to-surface contact represents the best compromise 

between solution time and solution variables necessary for reliability analysis of overhead 

conductor-clamp assemblies. 

 The general reliability problem has been briefly discussed. Various approaches for 

representing the resistance of overhead conductors available in the literature have been 

discussed. As pointed out, these methods rely on expensive experiments to determine the 

fatigue resistance of a conductor-clamp configuration. To overcome this, in the next chapters 

of the thesis, a numerical approach is presented that can determine the fatigue resistance of 

overhead conductors in terms of SN curves and fragility curves. This approach also overcomes 

the limitations of the previous methods that only predict first wire failure. To achieve this, 

chapter 3 entails an analysis of the current EPRI results (Cloutier et al. 2006) on conductor 

fatigue results. The outcome of chapter 3 shall be used as a validation for the model to be 

developed. In chapter 4, equivalence between fatigue resistance computations using beam 

models or solid models is established. This chapter shows that although the Timoshenko beam 
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presents some paradoxes in modeling contact, it has the capability to be used for fatigue 

resistance computations. In chapter 5, a framework to predict the distribution of fatigue 

resistance of overhead conductors is proposed. This framework is validated with experimental 

results available in the literature (Lévesque, 2005) and model established in chapter 3.  
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 A PROBABILISTIC STRESS – LIFE MODEL FOR FRETTING FATIGUE OF 

ALUMINUM CONDUCTOR STEEL REINFORCED CABLE – CLAMP 

SYSTEMS19  

3.1 INTRODUCTION  

Conductors of transmission lines are subjected to a variety of cross – flow induced vibrations 

such as aeolian vibration, sub-conductor oscillation and galloping (Cloutier et al., 2006). Of 

these, the phenomenon of fatigue due to aeolian vibrations is discussed in this paper. The 

fatigue of materials is often treated from two approaches – a total life approach which includes 

the stress – life (S – N)  approach and strain – life approach; a damage tolerant approach 

based on fracture mechanics (Suresh, 1998).  The S – N approach is often used in   representing 

fatigue test data on conductors (Cloutier et al., 2006), where the fatigue data are generated 

using a test bench. The fatigue stress levels are quantified using Poffenberger and  Swart ( P – 

S ) relationship (Poffenberger and Swart, 1965) or the maximum antinode amplitude  (Cloutier 

et al., 2006) while the number of cycles is quantified as the first wire failure in  (Cloutier et al., 

2006) or 10% of the total number of aluminum wires by (CIGRÉ, 1979). The data set and 

criteria set in (Cloutier et al., 2006) are used herein.  

There have been previous statistical analysis on conductor fatigue lifetime data (Hardy and 

Leblond, 2001; Thi-lien, 2015). These models present the S – N regression curve in terms of 

the conditional cumulative distribution function for the lifetime given a stress level 

𝐹(𝑁1|𝜎𝑦𝑏 = 𝜎𝑦𝑏,𝑖), where 𝑁1 is lifetime of the first wire of the conductor and 𝜎𝑦𝑏,𝑖 is the ith 

 
19 Thomas, O.O., Chouinard, L.E., and Langlois, S. (2020). A Probabilistic Stress-Life Model 

for Fretting Fatigue of Aluminum Conductor Steel Reinforced Cable-Clamp Systems. In: 

Liyanage J., Amadi-Echendu J., Mathew J. (eds) Engineering Assets and Public Infrastructures 

in the Age of Digitalization. Lecture Notes in Mechanical Engineering. Springer, Cham. 

https://doi.org/10.1007/978-3-030-48021-9_78   
 

https://doi.org/10.1007/978-3-030-48021-9_78
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stress level at 89mm from the last point of contact between the conductor and the clamp. 

Confidence intervals about the 50th percentile curve are then produced based on an assumed 

lognormal distribution of the lifetime. However, 𝐹(𝑁1|𝜎𝑦𝑏 = 𝜎𝑦𝑏,𝑖) cannot be constructed 

from data because the amount of conductor fatigue data at each stress level is too small and 

non-constant variance of each 𝐹(𝑁1|𝜎𝑦𝑏 = 𝜎𝑦𝑏,𝑖). The solution usually adopted is to ignore the 

variation of variance with stress level or treat it as a function of the stress level (Hardy and 

Leblond, 2001; Thi-lien, 2015).  Because of these, the fit of the model to data cannot be checked 

using simple statistical means such as probability plots or the theoretical probability density 

function (PDF) checked against that of the data. Rather the validity of the model is checked by 

minimizing the empirical risk, use of the coefficient of correlation (Hardy and Leblond, 2001) 

or plot of the residuals. Strictly speaking minimizing the empirical risk (EMR) doesn’t 

guarantee good prediction ability of the model (Vapnik, 1998). The EMR of the model 

presented herein will still be compared with the one of the model previously proposed by 

(Hardy and Leblond, 2001) for the same class of conductor 

The previous works (CIGRÉ, 1979; Hardy and Leblond, 2001; Thi-lien, 2015) have not 

assessed also the tail behaviour of their fatigue distributions. Hence there is no information on 

how the run – out data influence the model prediction and generalization ability. The model 

presented herein allows studying how the run – outs can influence the tail distribution. The 

region of validity of these previous models are also not known. Is it valid in the region of the 

mean? Is it valid at the extremes? When making predictions, an engineer would like to know 

the region of validity and limitations of his model.  

The general objective of this paper is to present an S – N model that allows to evaluate the 

conductor lifetime, evaluate the accuracy of such prediction and show the effect of ignoring 

run – out fatigue data on conductor S – N regression models.  Due to the limited amount of 
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data in conductor fatigue testing, the model presented herein uses a normalization variable that 

allows data pooling from various stress levels allowing a larger amount of data to be used in 

generating the CDF and PDF and checking the theoretical distribution against the empirical 

probability density function (EPDF) and empirical cumulative distribution function (ECDF).  

In the sections to follow, considerations and assumptions used to select the required distribution 

function are presented. This is followed by a presentation of the methodology used to determine 

the model parameters. Results of goodness of fit test are presented; finally, validation dataset 

excluded from the model training are used to check the prediction ability of the model.  

3.2 DETERMINATION OF DISTRIBUTION FUNCTIONS  

To determine the fatigue characteristics of stranded conductors, a fatigue test is usually carried 

out on a test bench. The fatigue stresses are characterized by two stress indicators :  P – S 

relationship or the maximum antinode. These relationships are presented in (Cloutier et al., 

2006). The stress indicators are obtained as a function of the bending amplitude at 89mm from 

the last point of contact of the conductor with the clamp or as a function of the maximum 

antinode amplitude in the test span.  A plot of these stresses against the natural logarithm of  

number of cycles to failure gives  S – N plots which are different for both stress indicators.  

The lognormal distribution is usually assumed for the CDF 𝐹(𝑁1|𝜎𝑦𝑏 = 𝜎𝑦𝑏,𝑖) in conductor 

fatigue data analysis (CIGRÉ, 1979; Hardy and Leblond, 2001; Thi-lien, 2015). However, it is 

assumed that 𝐹(𝑁1|𝜎𝑦𝑏 = 𝜎𝑦𝑏,𝑖) can also take an extreme value distribution. Consider a 

conductor with n number of wires subject to stress at 𝜎𝑦𝑏,𝑖:  

 𝑁1|𝜎𝑦𝑏,𝑖 = 𝑀𝑖𝑛(𝑁1, 𝑁2, . . . . . . . , 𝑁𝑛|𝜎𝑦𝑏 = 𝜎𝑦𝑏,𝑖)   (3.1) 
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It is seen that the if the lifetime of the first wire of the conductor is used as a criterion to stop 

the conductor fatigue test, then the conductor lifetime can be considered from the point of view 

of extreme value statistics of the minimum. The condition of independence between the 𝑁𝑖 is 

not necessary for admissibility of an extreme value distribution to 𝐹(𝑁1|𝜎𝑦𝑏 = 𝜎𝑦𝑏,𝑖) (Castillo, 

1988). The first wire to fail is considered as the weak wire in the whole conductor, thus the 

Weibull distribution for the minimum is selected to model 𝐹(𝑁1|𝜎𝑦𝑏 = 𝜎𝑦𝑏,𝑖).  

The distribution of stress level given a number of cycle to first wire failure 𝐹(𝜎𝑦𝑏|𝑁1 = 𝑁1,𝑖) 

is unknown. The normal, lognormal and Weibull distributions have been adopted in the 

literature to model stress distributions in fatigue (Hanaki et al. 2010). A Weibull distribution is 

selected to model this distribution. This selection is influenced by some statistical consideration 

as follows: given any other distribution of 𝐹(𝜎𝑦𝑏|𝑁1 = 𝑁1,𝑖), such   distributions could be 

transformed to a Weibull distribution (Castillo and Galambos, 1987). A physical consideration 

that also influences the selection over the normal or lognormal is that under field conditions, 

the aeolian peak stresses have been defined to follow Rayleigh distribution et (Noiseux et al., 

1986) which is a special case of the Weibull distribution (Marshall and Olkin, 2007).  

It is accepted that a marginal and conditional density are required to construct 𝐹(𝜎𝑦𝑏,, 𝑁1), the 

joint distribution of the stress level and first wire lifetime. However, it has also been accepted 

that joint distributions can be specified by their conditionals only (Arnold et al., 1999; Besag, 

1974; Bhattacharyya, 1943; Castillo and Galambos, 1987). In this light, it is possible to specify 

the form of 𝐹(𝜎𝑦𝑏,, 𝑁1) given that both conditionals have been identified. A  bivariate function 

when both conditionals are Weibull distributions is given in (Castillo and Fernandez-Canteli, 

2009; Castillo and Galambos, 1987) :  
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 𝐹(𝑁1, 𝜎𝑎) =  1 − exp [− (
(ℎ(𝑁1)−𝜁)(𝑔(𝜎𝑦𝑏)−𝜉)−𝜆

𝛿
)
𝛽

] ; 𝑁1, 𝜎𝑎  ∈ ℝ++  (3.2) 

where  𝑉 = (ℎ(𝑁1) − 𝜁)(𝑔(𝜎𝑦𝑏) − 𝜉); ℎ 𝑎𝑛𝑑 𝑔 𝑎𝑟𝑒 log  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

𝜁, 𝜉, 𝜆, 𝛽 𝑎𝑛𝑑 𝛿 𝑎𝑟𝑒 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

 

3.3 FITTING THE MODEL TO DATA 

To fit the model to data, the parameters 𝜁 and 𝜉 are first estimated using a least square approach. 

Once the values of the parameters  𝜁 and 𝜉 have been determined, the location parameter 𝜆, 

scale  𝛿 and shape parameter 𝛽 of 𝐹(𝑁1, 𝜎𝑦𝑏) can be determined by standard methods of 

parameter estimation; see e.g.  (Castillo and Fernandez-Canteli, 2009; Kotz and Nadarajah, 

2000) The maximum likelihood (ML) method has been used to estimate 𝜆, 𝛿, 𝛽 respectively 

as (Cousineau, 2009; Crowder et a., 1991; Kotz and Nadarajah, 2000):  

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {∏𝑗(𝑉𝑖; 𝛽, 𝛿, 𝜆)

𝑖𝜖𝑈

} {∏𝑆(𝑉𝑖; 𝛽, 𝛿, 𝜆)

𝑖𝜖𝐶

} (3.3) 
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Subject to the constraint that the Jacobian matrix is stationary. Where 𝑗 is the Weibull density 

function and 𝑆 the survival function, 𝑈 is a set of failure data and 𝐶 is a set of run-out data. The 

analysis done herein has not considered the effect of run-out on the model parameters hence 

the survival function in (3) was not utilized in obtaining the likelihood function. All data were 

treated as failure data. Because run-outs are not usually considered in the statistical treatment 

of conductor fatigue data, see e.g. (Hardy and Leblond, 2001), this approach has been followed 

to show the effect of not considering run – out on the S – N curve.     

Figure 3-1: S - N Curves in terms of Bending Amplitude 
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The stress – lifetime pair dataset available in (Cloutier et al., 2006) were collected for single, 

double and 3-layer ACSR class of conductors in terms of bending amplitude. The fitted stress 

– first wire lifetime models with bending amplitude stress indicator are shown in Figure 3.1.  

The run-out points are indicated in red on these plots.  

3.4 EVALUATING THE GOODNESS OF FIT OF THE MODEL 

There are various ways to test if a selected distribution function model is a good fit for the 

underlying distribution that generates the data. The simplest being the comparison of the EPDF 

and ECDF to that of the selected theoretical distribution. If there is a resemblance between the 

EPDF and the theoretical PDF, it is acceptable to conclude that the selected distribution is a 

probable function that generated the sample data. If the ECDF also converges well to the 

theoretical CDF, then it is expected that the frequency of fatigue failure events converges to 

their probability of occurrence.  

In Figure 3.2a, the theoretical CDF of the parameter V is compared against its ECDF for the 

single layer, two layer and three layer ACSR group of conductors. Figure 2b also presents the 

theoretical PDF of the parameter V against its EPDF for the same class of conductors. It is 

observable that the theoretical PDF and CDF are a good fit to the EPDF and ECDF respectively 

for all three classes of conductors. The PDF’s of the two layer and single layer conductor is 

more right skewed than the three layer ACSR conductors confirming the already available 

knowledge of a decreasing fatigue lifetime with increasing number of layers of the conductor.  

A problem that occurs with judging visually the closeness of the theoretical CDF to the ECDF 

is due to the curvature of the theoretical CDF. It is difficult to observe differences in the upper 

tail where the curve begins to flatten out. To remedy this, probability plots can be used to check 

the distribution assumption. These plots are also better in determining the appropriate 

distribution for small finite sample size than comparing the EPDF and theoretical PDF  
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(Montgomery and Runger, 2003). Therefore, probability paper plots are also presented to 

corroborate the comparison of the ECDF, EPDF and their theoretical equivalent of the model. 

Approximate linearity on the probability plots allows to determine if the selected model is a 

plausible representation of the underlying distribution. Two types of probability paper plots 

namely the quantile – quantile (QQ) plot and the probability plot (PP) are used to check the 

model fit. The plotting coordinates of each of these probability paper plots are given 

respectively as follows (Crowder et al. 1991):  

 [(𝐿𝑜𝑔𝑁1,𝑖 − 𝜁)(𝐿𝑜𝑔𝜎𝑦𝑏,𝑖 − 𝜉)]𝑗 , 𝐹
−1(𝑝𝑗)  (3.4) 

 

 

 𝑝𝑗 , 𝐹 ([(𝐿𝑜𝑔𝑁1,𝑖 − 𝜁)(𝐿𝑜𝑔𝜎𝑦𝑏,𝑖 − 𝜉)]𝑗;  �̂�)  (3.5) 
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Where F is the selected CDF, j represents the ordering of the random sample and �̂� the estimate 

of the model parameters. The point estimates of the model parameters from the ML method are 

used. The difference between the PP and QQ plots is in the region with highest variability 

(Crowder et al. 1991). In the PP plots, the points at the tails of the distribution have the lowest 

variability (Crowder et al. 1991). The opposite is true for the QQ plot. From an engineering 

point of view, the PP plot can thus be used to judge the fit of the model around the central 

region of the distribution while the extreme points can be judged by the QQ plot because in 

fatigue, the upper points are usually those with the greatest variability. The PP plots for the 

three classes of conductors is presented in Figure 3.3a and the QQ plots in Figure 3.3b. 

Linearity of the PP plot for all three class of conductors shows that the distribution assumption 

Figure 3-2(a) Comparison of CDF to ECDF                     (b) Comparison of PDF to EPDF 
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is valid. The QQ plots however show instability at the tails. Factors that could contribute to 

this include: the model not accounting for the effect of run - out, lesser amount of data points 

at the extremes, the distribution is not valid at the upper tail (D'Agostino and Stephens, 1986) 

and the higher variability assigned to extreme points by the QQ plots (Crowder et al. 1991). 

Interestingly, the QQ plot for the three layer class of conductors shows a trend at the upper tail 

suggesting a Weibull distribution with different parameters; that is the points show a linear 

trend parallel to the line.  
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Previous models (CIGRÉ, 1979; Hardy and Leblond, 2001) have not provided any information 

on the region of validity of their model hence it is impossible to know where prediction can be 

made with the model with a high degree of accuracy. The model presented herein gives a 

quantitative measure of its region of validity, which can be determined from the PP and QQ 

plots.  

Figure 3-3(a): Probability - probability plot for all three classes of ASCR conductors;   (b) 
Quantile - Quantile plots for three classes of ACSR conductors 
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3.5 MODEL VALIDATION  

To test the predictive ability of the model, validation dataset which were excluded from the 

training process are used. Table 3.1 gives the data source, the type of conductor, the stress 

level, data type (run out or failure), the actual number of cycles to failure recorded when the 

test was terminated and the probability of failure.  

It is usual in the conductor fatigue literature to select a curve for failure analysis that is based 

on a certain probability of failure (CIGRÉ, 1979; Hardy and Leblond, 2001) and suggested as 

a lower bound curve. Such a selection is not made herein. However, for the sake of validation, 

the 50th percentile curve has been selected to predict the lifetime of the first wire failure. The 

model predictions are presented in Table 3.1. The computed probabilities of failure are 

computed using the actual number of cycles to failure and the stress level.  

The model doesn’t perform well on the run – out data. This is as expected as run – outs weren’t 

accounted for in the model. Very good agreement is obtained between the model predicted 

number of cycles to failure and all data from (Fade et al. 2012) for the Ibis 26/7 conductor. The 

mean number of cycles to first wire failure are approximately equivalent to that predicted by 

the model in table 1 as seen in columns 5 and 6. The reason for this accuracy is that if one looks 

at the S-N for the class of conductors which this Ibis 26/7 belongs to (2 – layer), it is observed 

that those stress levels are at the extreme lower tail of the distribution. A concurrent look at the 

QQ and PP plots for this class of conductors shows that that the variability at the lower tail is 

properly captured by the model. For the Tern 45/7 conductor, the model underestimates the 

lifetime. To explain this, observe from the S-N for its class of conductors (3-layer) that the P – 

S stress level of 29.65 MPa is in the lower tail of the distribution. A concurrent look at the PP 

and QQ plots for the three layer class of conductors shows that the model probability of failure 

and quantiles are both underestimated by the model respectively. For the Bersfort conductor 
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submitted to a P – S stress level of 11.58 MPa, the model overestimates the lifetime at the 50th 

percentile curve. Again, to explain this, it is observed in the S-N curve for its class of 

conductors (3-layer) that this stress level is in the upper tail of the distribution. A concurrent 

look at the QQ plots of this class of conductor shows that the model overestimates the 

distribution quantiles at the upper tail. This overestimation at the upper tails shows the 

influence of not accounting for run out on the distribution or excluding them from the analysis.  

A point of caution in interpreting these results is to recall the meaning of probability from a 

frequentist point of view. It is expected that the frequency converges to the probability with 

increasing sample size (Vapnik, 1998)  thus it is not surprising that where the average value of 

a number of lifetimes is presented in table 1, it is closer to the prediction of the model. Thus, 

not all the overestimation or underestimation by the model discussed above is due to tail 

distribution error but accounting for run-outs should decrease tail prediction error.  

To further show the validity of the model, the methodology of (Hardy and Leblond, 2001) is 

compared with the model presented herein. The statistical analysis in (Hardy and Leblond, 

2001) has been repeated with the 84 data points used for the model presented for 3 – layer class 

of conductors. Given the large amount of data now available, a lognormal distribution as 

postulated by (Hardy and Leblond, 2001) is used and the Strohmeyer model (Strohmeyer, 

1914) used to represent the 50th percentile curve as done by (Hardy and Leblond, 2001). To 

compare the performance of both models, the empirical risk of both models is computed. The 

model that has the minimal empirical risk is considered the better model (Vapnik, 1998). The 

empirical risk is computed as (Vapnik, 1998):  

                                             𝑅(𝑒𝑚𝑝)(�̂�) =
1

𝑙
∑(𝐿𝑜𝑔 𝑁1,𝑖 − 𝐼(𝑁1,𝑖, �̂�))

2
𝑙

𝑖=1

                       (6) 
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Table 3-1: Validation dataset for conductor vibration using bending amplitude stress 

indicator 

Data Source Conductor 

Type 

(𝜎𝑎(𝑌𝑏)) 

(MPa) 

Data 

Type 

Actual 

Number 

of Cycles 

to 

Failure 

(∗ 106) 

Predicted 

Number of 

Cycles to 

Failure 

(∗ 106) 

Probability of 

Failure 

 

(Cloutier et 

al., 2006) 

Rail 45/7 10.53 Run out 318.07 163.93 0.66 

Crow 54/7 16.96 Run out 24.78 11.92 0.69 

(Goudreau, 

Lévesque, et 

al., 2010) 

Bersfort 

48/7 

11.58 Failure 71.74 102 0.40 

Tern 45/7 29.65 Failure 1.11 1.00 0.61 

29.65 Failure 1.87 1.00 0.74 

29.65 Failure 2.74 1.00 0.82 

(Fadel et al., 

2012) 

Ibis 26/7 25.08 Failure 5.50 6.67 0.42 

25.08 Failure 2.98 6.67 0.18 

28.22 Failure 3.00 3.92 0.39 

28.22 Failure 1.90 3.92 0.21 

31.35 Failure 2.47 

(mean) 

2.45 0.5 

34.49 Failure 1.13 

(mean) 

1.61 0.36 

39.82 Failure 1.00 

(mean) 

0.86 0.56 

43.31 Failure 0.53 

(mean) 

0.59 0.45 
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Where the function 𝐼 is the 50th percentile curve and 𝑙 is the length of the dataset. The obtained 

empirical risks are presented in Table 3.2. On this basis, the model presented herein 

outperforms the previous model on the 3-layer ACSR class of conductors and is a better model 

in predicting the time to failure of the first wire of the 3-layer class of conductor.  

Table 3-2: Comparison of Empirical Risk 

Model 𝑅(𝑒𝑚𝑝)(𝛼) 

Present Model 1.62 

(Hardy & Leblond, 2001) 2.29 

Because the empirical risk is also a measure of the model error, the model presented herein has 

lower prediction error and produces tighter confidence interval about the 50th percentile curve 

than the type of model presented in (Hardy and Leblond, 2001).  

3.6 CONCLUSION AND SUBSEQUENT RESEARCH  

A statistical analysis on the ACSR conductor fatigue data has been conducted. Non-constant 

variance of the conditional density of lifetime given stress level has been considered by the 

model. The region of validity of the model has been shown using quantile – quantile probability 

paper plots and probability – probability paper plots. The Normalization variable used by the 

model allows to construct the empirical probability density and cumulative distribution 

functions. It is shown that the theoretical CDF and PDF for all classes of conductors examined 

agree with the ECDF and EPDF respectively. The model prediction capability is demonstrated 

by comparing predictions of the model with a validation dataset. Good agreement is obtained 

in the region of the mean. It is shown that the effect of run – out on the conductor must be 

accounted for in conductor fatigue statistical analysis to improve the tail behaviour. 

Comparison of the present model and a previous model showed that the present model provide 

a lower prediction error and tighter confidence intervals. However, a lacuna of the present 
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model is that one of the marginal densities doesn’t exist. Nonetheless, the emphasis is on 

predicting as closely as possible the time to first wire failure and the model has demonstrated 

its capability for this. Further analysis is required to refine the model and to ensure that it 

provides the minimum possible risk in prediction, which will guarantee minimum error in 

residual life estimation of transmission line conductors subjected to aeolian vibrations.  
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3.8 SUMMARY AND OUTLOOK  

Chapter 3 has presented the probabilistic SN curves for conductor-clamp assemblies using 

experimental data on conductors of different classes. The developed SN curves will be used to 

compare the probabilistic SN curves to be derived in chapter 5 from a numerical perspective. 

The method presented in chapter 3 relies on experimentally testing of conductor-clamp 

assemblies which is expensive and time-consuming. To reduce the requirement of testing every 

conductor-clamp assembly to determine it’s fatigue resistance,  chapter 4 presents a numerical 

study of the contact between a wire and a clamp. The purpose of this numerical study is to 

observe the ability or inability of the Timoshenko beam to predict the fatigue life of a typical 

wire-to-clamp contact that is found in overhead conductor-clamp assemblies.   
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 STUDY OF THE FATIGUE OF WIRE TO CLAMP CONTACTS IN OVERHEAD 

CONDUCTOR USING SOLID AND BEAM ELEMENTS20  

 

 

4.1 INTRODUCTION  

The failure of stranded cables used as overhead conductors due to fretting fatigue has been the 

subject of extensive research in the transmission line community (CIGRE-WG-B2.30, 2010; 

Cloutier et al., 2006). These works have led to an understanding of the mechanisms of fretting 

fatigue in overhead conductors at the conductor level (global level). Fatigue failure is 

associated to small amplitude relative motions at the contacts between wires of adjacent layers 

or at contacts  between wires and the suspension clamp and spacer clamps (Cloutier et al., 

2006; McGill and Ramey, 1986). 

The understanding of conductor fretting fatigue in the past four decades has gone through 

various phases, which include the development of conductor test benches (Azevedo et al., 

2009; Fadel et al., 2012; Lévesque, et al., 2010; Kalombo et al.,2015; McGill and Ramey, 1986; 

Zhou et al., 1994; Zhou et al., 1996) which have led to an understanding of the failure 

mechanisms, the effect of the clamp geometry and the development of empirical stress–life 

relationships for various classes of conductors using the bending amplitude (𝑌𝑏) or  maximum 

antinode amplitude (𝑌𝑚𝑎𝑥) to characterize vibration amplitudes. However, these tests did not 

provide much insight on the distribution of internal forces and moments through wire-wire and 

wire-clamp contacts. The next phase of research consists of the development of mathematical 

models to replicate the full conductor clamp system with all contacts (Gang, 2013; Lalonde et 

al., 2018; Said et al. 2020a). The latter have shown that bending stresses induced in the wires 

 
20 Thomas, O.O., Chouinard, L., Langlois, S., and Omran (2022) Study of the Fatigue of Wire to Clamp Contacts 
Using Solid and Beam Elements. To be Submitted to the Journal of Fatigue and Fracture of Engineering 
Materials and Structures. 
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between the keeper edge (KE) and the last point of contact (LPC) are important factors to  

consider in conductor fretting fatigue (Lalonde et al., 2018).  

More recently, attention has evolved to the development of experimental set-ups that reproduce 

local wire to wire contacts  or wire to clamp contacts  (Omrani et al., 2021; Rocha et al., 2019; 

Said et al., 2020a; Zhou et al., 1995). This was been done in conjunction with the development 

of  numerical  models of single contacts with loads obtained from conductor level models (Said, 

2020a; J.  Said et al., 2020b). The single contact models have improved the understanding of 

effects such as the clamp compressive stresses on fretting fatigue (Said et al., 2020b) and 

provide stress distributions required for multiaxial fatigue models and predicting the number 

of cycles to failure.  

The local level models are mostly based on the finite element method (FEM) (see e.g. 

(Lévesque and Legeron, 2012; Redford et al., 2019; Rocha et al., 2019; Said et al., 2020a; Said 

et al., 2020b). However, most of these models have been developed for contacts that satisfy the 

half space assumption (Lévesque and Legeron, 2012; Pereira et al. 2020; Rocha et al., 2019) 

or are symmetric (Lévesque et al., 2011; Redford et al., 2019; Said et al., 2020a) with respect 

to contact interfaces. However, (Zhou et al., 1994) have reported contact lengths that invalidate 

the half-space assumption. For example,  contact lengths up to 90% of the wire diameter has 

been reported between the keeper edge (KE) and the last point of contact (LPC) (Zhou et al., 

1994).  In such cases, the stresses in the region of contact are dependent on the shape of wires, 

which cannot be ignored. Similarly, the geometry of the penultimate wires cannot be neglected 
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in the analysis of the interface between the clamp and the wire (Figure 4-1). Also, the ultimate 

layer wires to clamp contact and the penultimate wire form a geometrically asymmetric system 

Passive end  

Center of suspension clamp (CSC)  

Keeper Edge (KE) 

Last Point of Contact (LPC)   

Active end  

Figure 4-1: Geometric representation of a Bersfort conductor-clamp system illustrating 

the geometric asymmetry of the wire to clamp contact.  

Ultimate layer 

wire  

Keeper  

Penultimate 

layer wire  

Suspension 

clamp   
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which induces bending in the ultimate layer wire. These peculiarities of the wire-to-clamp 

contact system have not been studied. 

In this work, we thus develop local level FE models for an asymmetric wire to clamp contact 

with contact length that exceeds the diameter of the wire that are found in transmission line 

conductor-clamp systems. A three-dimensional finite element model of the wire and a clamp 

is developed using a submodelling technique. For the purpose of understanding the limitations 

of beam theory in fretting fatigue life prediction, a 3D FE Timoshenko beam to surface 

representation of the wire to clamp contact is simultaneously developed. The effect of contact 

parameters, mesh refinement, friction coefficient and asymmetry of the geometry and loading 

on the response of the contact system is studied. Multiaxial fatigue criteria are applied to the 

3D solid and 3D beam solutions for fatigue life predictions. The  life prediction from the 

numerical models are compared with those obtained from experimental observations of the 

same contact system.  

4.2 METHODOLOGY  
 

4.2.1 Finite Element Meshing Scheme 

The contact system studied in this work is an asymmetric contact system shown in Figure 4-2. 

This contact configuration is taken from a Bersfort conductor shown in Figure 4-1. However, 

for simplicity the angle between the clamp and the wire is neglected. Rather than supposing 

that the wire is compressed between two similar clamps, it is assumed that it is in contact with 

the clamp on the bottom interface with radius as depicted in Figure 4-2 and a steel bearing on 

the top interface with radius 23mm in the XZ plane and 15mm in the XY plane. The wire length 

is 350mm with diameter of 4.24mm. Other dimensions of the geometry are shown in Figure 4-

2.  
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The properties of the contact system components used in the numerical models are given in 

Table 1. All numerical analyses assume linear elastic behavior for both the aluminum Al 1350 

– H19 wire and the A350 – T6 pad.  

Table 4-1: Properties of components of the contact system 

Component Material 
Elastic Modulus 

(E) (GPa) 

Poisson ratio 

(𝜈) 

Material 

behaviour 

Bearing Steel rigid - Rigid 

Wire AA 1350 – H19 69 0.33 Linear elastic 

Clamp (Pad) A 350 – T6 73 0.33 Linear elastic 

 

The 3D solid finite element mesh of the contact system is shown in Figure 4-3 and Figure 4-4 

for the global model and submodels respectively.  Only a 60-degree arc segment of the steel 

bearing as indicated in Figure 4-2 has been included in the computations. The meshing scheme 

details are presented in Table 4-2 for the boundary layer regions of all meshes. The boundary 

layer regions have dimensions of 40𝑚𝑚 × 2𝑚𝑚 × 0.8𝑚𝑚 and 33.37𝑚𝑚 × 2𝑚𝑚 × 0.8𝑚𝑚  

for the wire and pad respectively in the global meshes as shown in Figure 4-3. For the submodel 

R=23mm 

R=15m

m 

R=330 mm 

R=∞ 

R=330 mm 

Figure 4-2: Geometry of the contact system. (a) Full geometry of the contact 

system. (b). Front view of the contact system. (c). Close-up of side view of the 

contact system.  

Bearing 

Pad(clamp) 

Wire a. 

b. c. 



102 
 

meshes, the boundary layer has dimensions 10𝑚𝑚 × 0.6𝑚𝑚 × 0.2𝑚𝑚 and 10𝑚𝑚 ×

0.6𝑚𝑚 × 0.07𝑚𝑚 for the wire and pad respectively as shown in Figure 4-4. All meshes in the 

boundary layer are made of linear hexahedrons. The pad is meshed with quadratic tetrahedrons 

in the global model and linear hexahedrons in the submodel.  The bearing is meshed with  

 

Table 4-2: Mesh sizing for the boundary layer region of the Solid finite element models  

Component 

Global Meshes (𝜇𝑚) Submodel Meshes (𝜇𝑚)  

Coarse Medium Fine Coarse Medium Fine 
Ultra 

fine 

Bearing 100 100 100 - - - - 

Wire and pad 400 200 100 100 50 20 10 
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a. 

b. 

c. 

d. 
~100𝜇𝑚 

Multiple point 

constraint 

connecting   beam 

and solid region  

Quadratic 3D – Timoshenko 

beams   

Figure 4-3: (a) Global view of the contact system. (b) Close up view of the contact zone of the 

global fine mesh. (c). Boundary layer region of the fine global mesh. (d). Close up view of the 

boundary layer mesh sizing in the fine global mesh  

Origin of coordinate system 

Linear 

hexahedral 

elements 
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Figure 4-4: (a) ). Boundary layer region of the fine global mesh. (b)3D view of the resulting 

submodel region. (c). Cross section of submodel medium (d). Cross section of submodel fine. 

Dimensions indicated in mm.  

1.6 

2 

a. 

b. 

c. 

d. 
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four noded rigid shell elements. For the regions of the wire not within clamp, the 3D 

Timoshenko beam with quadratic displacement interpolation function and 10mm in length is 

used as shown in Figure 4-3 (a). The node of the 3D beam is coupled to the nodes of the 3D 

hexahedral elements at the point of intersection as shown in Figure 4-3 (b) using multiple point 

constraints. In implementing the submodelling procedure of Cormier et al. (1999), the 

displacement from the cut boundary between the boundary layer region in the global fine mesh 

is transferred to the coarse, medium, fine and ultra fine mesh (Table 4-2) of the submodel. 

For the 3D Timsohenko beam and shell representation of the contact system, the meshing 

scheme is shown in Figure 4-5. The length of the 3D Timoshenko beam element is 0.25mm 

and the length and width of the shell elements used to discretized the bearing and pad are 

0.25mm.  A node to surface representation is used to represent contact between the beam and 

the clamp/bearing. The normal and tangential interactions are modelled with the augmented 

Lagrange method. The element sizes were chosen as 0.25mm for the beam and shells.  

 All computations are performed using the commercial finite element code Ansys®. For the 

3D solid representation (Figures) 4-3 and 4-4. the contact between the wire and the pad is 

discretized with frictional surface-to-surface contact algorithm with wire and pad defined as 

the slave and master surfaces respectively. For the bearing to wire contact, the wire and bearing 

are set as the slave and master respectively and is frictionless. To model the normal and 

tangential contact interaction, the normal Lagrange and the augmented Lagrange method 

(ANSYS, 2018b) were used for the wire to bearing and wire to pad respectively. For the 3D 

Timoshenko beam and shell representation (Figure 4-5), the node-to-surface algorithm was 

used to enforce contact between the wire to pad and wire to bearing contact. In both cases, the 

wire is defined as the slave.  
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0.25mm 3D 

Timoshenko 

beam elements  

a.  

b.  

c.  

Figure 4-5: Beam to Shell Representation of contact system. (a). Discretization of bearing with 

0.25mm shell elements. (b)Contact system with wire discretized with 0.25mm 3D Timoshenko 

beam elements. (c). Pad discretized with 0.25mm shell elements 
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4.2.2 Loading Scheme  

The loading protocol for the global 3D solid (Figure 4-3) and 3D beam (Figure 4-5)  FE model  

is presented in Figure 4-6 (a) and the application scheme of the loads are shown in Figure 4-6 

(b). The base of the pad is fixed in all directions preventing any motion. For the bearing, the 

shell nodes are all coupled to a master node located at the centroid of the bearing. At the 

Figure 4-6: (a) Loading protocol for the global FE models. (b). Load 

application and boundary conditions  

 

P 

U(t) T(t) 

𝑈𝑥 = 𝑈𝑦 = 𝑈𝑧 = 0 

 

𝑈𝑦 = 𝑈𝑧 = 0; 𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 0 

 

a 

b 

𝑓𝑜𝑟𝑐𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

 

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑛𝑜𝑑𝑒  𝑛𝑜𝑑𝑒 
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beginning of the loading scenario, the displacement node (see Figure 4-6 (b)) is fixed in all 

displacement and rotation degrees of freedom  and the mean tension 𝑇𝑚𝑒𝑎𝑛 is applied to the 

force control node. With  𝑇𝑚𝑒𝑎𝑛 held in place, the contact force P  is applied to the master node 

of the bearing. At the end of the contact force application phase, 𝑡2, the tension force T(t) and 

the displacement U(t) are applied to the force and displacement control nodes respectively.  

The loading scheme presented in Figure 4-5 (a) is performed for five different values of the 

displacement boundary condition U(t) and the force boundary condition T(t). These five 

numerical simulation scenarios are presented in Table 4-3, where the signs represent the 

directions of the displacement or force with respect to the coordinate system shown in Figure 

4-6 (b) with origin at the center of the wire to clamp contact.  

Once the solution of the fine global model is obtained, its displacements are applied to the 

submodel meshes.  

Table 4-3: Values of the force and displacement boundary conditions for five considered 

loading scenarios 

No. 𝑇max(𝑁) 𝑇𝑚𝑖𝑛(𝑁) 𝑇𝑚𝑒𝑎𝑛 (𝑁) 𝑈𝑚𝑖𝑛(𝑚𝑚) 𝑈𝑚𝑎𝑥(𝑚𝑚) 𝑈𝑚𝑒𝑎𝑛(𝑚𝑚) 𝑃(𝑁) 

1 -912 -545 

729 

-0.127 0.127 

0 500 

2 -1153 -305 -0.03 0.03 

3 -1228 -239 -0.033 0.033 

4   -1298 -170 -0.0188 0.033 

5 -1364 -93 -0.009 0.009 
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4.3 RESULTS AND DISCUSSION  

One of the problems of submodelling using displacements in fretting problems is that the 

contact parameters such as the normal contact stiffness (𝜀𝑁), tangential contact stiffness (𝜀𝑇), 

the normal gap (𝑢𝑁) and tangential gap(𝑢𝑇) can affect the solutions (Elke and Sracic, 2019; 

Rajasekaran and Nowell, 2005). Another problem is the location of the boundaries of the 

submodel when they are too close to the contact region, inaccuracies in the predicted contact 

Figure 4-7: (a). Effect of normal contact stiffness on contact pressure distribution. (b). Effect 

of tangential contact stiffness on tangential stress 

a. 

b. 



110 
 

tractions can occur (Elke and Sracic, 2019). To guard against these problems, numerical 

experiments were performed to determine a value for the contact stiffnesses that was stable 

across both the global model and submodels. This is presented in Figure 4-7 (a) and 4-7 (b) for 

the normal pressur e and tangential stress respectively at the time 𝑡2 (see Figure 4-6 (a)) for the 

solid model. All results in the Figure 4- 7 are obtained with 20𝜇𝑚 mesh submodel except for 

the full model which has a 20𝜇𝑚 mesh in the boundary layer and is a full geometry of figure 

4-3(a).  In addition, a full model that allows for checking the adequacy of the parameters and 

boundary effect is included in both figures. In these results,  𝑢𝑁 and 𝑢𝑇 are fixed at the default 

value 0.1 and 0.01 the element dimension in the contact zone (ANSYS, 2018a). Also included 

in Figure 4-7 are results in which 𝜀𝑁 and 𝜀𝑇 are determined automatically by the ANSYS 

system and allowed to vary during the solution and between scales at the wire to pad interface 

and denoted 𝜀𝑁,𝑉𝑎𝑟 and 𝜀𝑇,𝑉𝑎𝑟. The minimum and maximum value of 𝜀𝑁,𝑉𝑎𝑟 and 𝜀𝑇,𝑉𝑎𝑟 are 

what is shown in Figure 4-7. 

Figure 4-7 (a) indicates that if the normal constant stiffness can vary between the scales, an 

overestimation of the contact pressure can occur while in the case of the tangential stress, it 

can lead to an underestimation when compared to the Lagrange multiplier method (𝜆𝑁 and 𝜆𝑇). 

The contact pressure is overestimated by 25.6%. This high error is due to an underestimation 

of the contact stiffness in the global scale, which led to error in the contact interface 

displacement.  

 It is also seen from these Figures that the boundary location of the submodel is adequate as it 

gives similar results in contact tractions to the full model and there is no need to enlarge the 

submodel region. Hence the contact stiffness parameters are set at 5.4 × 106 and 

7 × 106 𝑁/𝑚𝑚3 for the normal and tangential direction respectively for the rest of all solutions 

in this work for the 3D solid model.  
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To validate the predictions of the solid model, the contact length determined experimentally by  

Omrani et al. (2021) for the stick zone is 6.2mm while the stick zone shown for the solid model 

in Figure 4-7 is 6.7mm representing an error of about 8%.  

An interesting feature of this contact system is that although the central region of the clamp is 

flat along the Z-axis, the central region of the contact pressure displays the characteristics of a 

contact imprinted by a compound punch (Vázquez et al., 2010) with finite radius in its center 

and rounded at its edges. This shows that the profile of the indenter (bearing in this case) for 

such a large contact has an effect on the wire-clamp pressure profile. This has consequences 

for the analysis of contacts in a conductor-clamp system such as between the ultimate layer and 

the keeper or clamp. The indenting geometry of the penultimate wire cannot be neglected from 

the analysis for such a geometrically asymmetric system.  

4.4 MESH CONVERGENCE AND FRICTION COEFFICIENT EFFECT 

The effect of the friction coefficient on the convergence rate of fretting fatigue problems has 

been reported by (Pereira et al., 2016) for two dimensional fretting problems. Here, we verify 

the convergence in the resultant tangential shear traction at the leading edge (𝑄𝑚𝑎𝑥) and trailing 

edge (𝑄𝑚𝑖𝑛) of contact during the cyclic motion as shown in Figure 4-8 for all meshes and 

loading scenarios. The contact pressure values at the specified locations are also checked for 

convergence since they are coupled to the tangential tractions. The maximum principal stress 

in a cycle are also checked since these are found to be good indicators of failure tendency in 

fretting fatigue at stress concentrations (Taylor, 2007) and are presented in Table 4. The range 

of friction coefficient studied is from 0.7 to 1.1 for the wire to pad contact. This is the range of 

friction coefficient covers the range reported in Omrani et al. (2022) for the wire to clamp 

contact.  
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It is observed from Figure 4-9 that the increase in the friction coefficient increases the 

tangential stress distribution peaks 𝑄𝑚𝑎𝑥 and 𝑄𝑚𝑖𝑛. But more importantly, the peak 𝑄𝑚𝑖𝑛 

becomes steeper with increasing friction coefficient as seen on the finest meshes. Thus, the 

Figure 4-8: (a)Three-dimensional view of typical resultant tangential shear traction. (b). 

Typical resultant contact shear traction along the line Z-Z on the surface of the wire to clamp 

contact indicating the tangential stress.(∆𝑇 =, 30𝑀𝑃𝑎, 𝜇 = 0.9) 

 

𝑄𝑚𝑎𝑥 

𝑄𝑚𝑖𝑛 

a. 

b. 
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friction coefficient increases the tangential stress gradient along the longitudinal axis of the 

contact for which a smaller mesh grid will be required.  

Figure 4-10: Effect of friction coefficient on tangential stress distribution with mesh 

refinement for the loading scenario 4 



114 
 

Table 4-4: Convergence of contact stress quantities with mesh refinement for the loading 

scenario 4  

∆𝑇 

 

𝜇 Mesh 

size 

Tangential 

stress 

𝑄𝑚𝑖𝑛 

[MPa] 

Tangential 

stress 

𝑄𝑚𝑎𝑥 

[MPa] 

Maximum 

principal 

stress  

[MPa] 

Contact 

pressure 

𝑝𝑚𝑖𝑛 [𝑀𝑃𝑎] 

Contact 

pressure 

𝑝𝑚𝑎𝑥  [𝑀𝑃𝑎] 

565 0.7 400 0 285.95 197.19 0 408.52 

  200 0 530.57 275.03 0 759.25 

  100 200.31 919 323.83 288.99 1316.49 

  50 226.67 575.79 349.34 309.69 822.56 

  20 265.35 572.03 424.15 377.31 817.19 

 0.8 400 0 344.86 231.15 0 429.38 

  200 0 639.84 291.72 0 793.81 

  100 141.69 1088.65 362.22 174.63 1369.31 

  50 178.52 671.49 399.09 215.07 839.36 

  20 258.94 671.89 500.11 327.04 839.86 

 0.9 400 0 400.96 271.54 0 451.79 

  200 0 747.57 341.45 0 828.63 

  100 0 1283.60 415.06 97.93 1427.95 

  50 119.89 766.14 465.02 127.47 856.84 

  20 230.14 780.67 578.27 260.20 862.21 

  10 222.17 775.75 650.24 250.67 861.95 

 1.0 400 0 465.43 295.30 0 463.96 

  200 0 867.51 385.53 0 868.55 

  100 0 1449.82 488.49 0 1449.82 

  50 0 871.53 536.78 0 871.53 

  20 227.16 881.04 667.48 227.16 881.04 

 1.1 400 0 544.69 320.22 0 495.48 

  200 0 1000.57 437.29 0 905.37 

  100 0 1617.26 538.32 0 1467.77 
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  50 0 984.87 616.37 0 895.34 

  20 254.58 1003.5 765.21 227.68 912.31 

 

In Table 4, the maximum principal stress in a cycle is seen to have not converged at any mesh 

level even at the submodel mesh with a 10𝜇𝑚 mesh or the smallest friction coefficient.  

However, as mentioned by (Taylor, 2007) a mesh size smaller than the critical distance is 

sufficient for fatigue life estimation. Also, following the work of Omrani et al. (2022), that 

shows that the mean friction coefficient of the wire to pad contact is 0.9, this friction coefficient 

will be used for the rest of this study. For this particular friction coefficient, as seen in Table 4 

and Figure 4-9, the normal contact pressure and tangential stress have completely converged 

at a mesh size of 20 𝜇𝑚. Thus this mesh size will be used for fatigue life assessment of the wire 

to clamp interface using the 3D solids.  

4.5 FATIGUE DAMAGE PARAMETERS AND LIFE ESTIMATION 

 

4.5.1 3D FE Solid Model Fatigue Life Estimation  

The submodelling procedure for the 3D solid and the 3D beam approach presented in section 

2 is applied to estimate the lifetime of the AA 1350 – H19 wire in the contact system. This is 

achieved using the point method (PM) of the theory of critical distances (TCD) (Taylor, 2007) 

together with Smith – Watson – Topper (SWT )  criteria (Rocha et al., 2019) for the solid 

elements. The fatigue criteria is evaluated for all loading scenarios as follows:  

 𝑆𝑊𝑇(
𝐿

2
, 𝑡) =  √𝜎𝑛,𝑎(𝑡) 𝜎𝑛,𝑚𝑎𝑥(𝑡)                                                                                                  (4.1) 
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Figure 4-11: SWT Values for all five loading scenarios computed at 𝜇 = 0.9. (a) through (e) 

represents SWT values for loading scenario 1 through 5  
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where L represents the critical length and t represents time. 𝜎𝑛,𝑎(𝑡) is the stress amplitude on 

the failure plane and  𝜎𝑛,𝑚𝑎𝑥(𝑡) is the maximum normal stress on the failure plane.  In using 

the point method in three dimensions, we identify the failure plane using (1). The focus path 

on this plane is chosen as shown in Figure 4-10 (a) where the tangent to the maximum stress is 

drawn and a line orthogonal to it is the focus path.  

 

4.5.2 3D Timoshenko Beam Fatigue Life estimation 

For the beam model, the stress computations for the five loading scenarios are shown in Table 

5. Each beam solution takes on average 30 minutes as compared to the solid solutions that took 

 

Table 4-5: 3D Timoshenko beam results for fatigue life assessment 

Axial 

stress 

amplitude  

𝜎𝑎 

(MPa) 

Bending 

stress 

amplitude  

𝜎𝑏 

(MPa) 

Minimum 

Axial 

stress 

𝜎𝑎,𝑚𝑖𝑛 

(MPa) 

Maximum 

Axial 

stress  

𝜎𝑎,𝑚𝑎𝑥 

(MPa) 

Axial 

mean 

stress  

𝜎𝑎,𝑚𝑒𝑎𝑛 

(MPa) 

Bending 

mean 

stress 

𝜎𝑏,𝑚𝑒𝑎𝑛 

(MPa) 

Alternating 

shearing 

stress   

𝜎𝑣 

(MPa) 

Mean 

shear 

stress 

𝜎𝑣,𝑚𝑒𝑎𝑛 

(MPa) 

Combined 

mean 

stress  

𝜎𝑎+𝑏,𝑚𝑒𝑎𝑛 

(MPa) 

Maximum 

combined 

stress  

𝜎𝑎+𝑏,𝑚𝑎𝑥  

(MPa) 

SWT 

𝜎𝑆𝑊𝑇 

(MPa) 

SWT/𝐶𝑙𝑑 

 

 

(MPa) 

45  0 6.6 96 51.63 46.11 0 15.90 97.74 142.74 80  94.12 

40 0 11.52 91.61 51.63 46.125 0 15.96 97.76 138 74.3 87.41 

35 0 15.82 86.72 51.63 46.04 0 15.98 97.67 133.12 68.69 80.81 

30 <2 21.60 81.68 51.68 31.08 0 16.53 82.71 112.75 58.20 68.47 

25 <3 38.60 64.61 51.63 25.12 0 10.08 76.75 89.76 34.17 40.2 

on average 20 hours. An interesting observation from the results of the beam model stress 

results given in Table 4-5 is that a mean bending stress, alternating bending stress and mean 

shear stress exist even when no bending moment is applied. This bending moment and shear 

force is a result of the contact normal force and tangential force as the Timoshenko beam resist 

a normal contact force by shear and bending. Thus, it is seen that this bending moment and 

shear increases mean stress in the wire. However, the increase is bending dominated rather than 

shear dominated especially at high amplitudes.  Thus, in the Timoshenko beam theory the 

purpose of the contact is to act as a stress concentrator that increases the mean bending stress 
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and mean shear stress in the contact region. This is in agreement with the work of  (Lalonde et 

al., 2018) that showed that the contact between a wire and a clamp in a Bersfort conductor is 

governed by a bending amplitude. Although the presence of mean bending stress was not 

assessed in that study, from our observation in this work, there is the possibility of increased 

mean bending and shear stress in the wires. Thus, this is an observation that should be further 

studied.  

For the purpose of life prediction, the plain fatigue data of Kaufman (2008) is used to calibrate 

the stress-number of cycles curve for prediction. The fatigue data of Kaufman (2008) used to 

calibrate the prediction model (SN curve) were obtained from rotating bending test. However, 

the test of set-up modelled herein is loaded mainly in tension. Thus, in accordance with 

literature evidence (Bannantine et al.1989; Milella, 2013) that the fatigue limit of a material in 

axial loading is less compared to rotation bending, the calculated SWT values in the 3D 

Timoshenko beam model in Table 4-5 are modified as (Bannantine et al.1989; Milella, 2013):  

𝐶𝑙𝑑 =
𝑆𝑊𝑇𝑎𝑥𝑖𝑎𝑙
𝑆𝑊𝑇𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

= (2𝑚 +  2)−1/𝑚 (2) 

Where m is the Weibull exponent. A Weibull exponent of 25 (Milella, 2013) was chosen giving 

a load factor 𝐶𝑙𝑑 of 0.8. The factored SWT values are given in the last column of Table 4-5. A 

comparison of the predicted and experimental fatigue lives is given in Figure 4-11. It is seen 

that despite the crudeness of the beam and shell modeling approach, they can predict the fatigue 

lives of the wire to clamp contact. This is not surprising given that the Timoshenko beam 

satisfies the contact equations of equilibrium in the global sense. However, one observes that 

the predictions of the solid model are closer to the experimental values than those of the beam 

model. This can be explained by the fact that the solid model accounts for deformation modes 
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such as normal deformation in the normal force direction whereas the Timoshenko beam is not 

able to deform in such a manner and must instead generate shear and bending stresses.  

4.6 PREDICTION OF FAILURE LOCATION  AND DISTRIBUTION OF STRESS 

Although it has been demonstrated herein that Timoshenko beam theory is capable of being 

used for fretting fatigue life predictions, there are downsides to using this beam theory. One of 

the first problem with the Timoshenko beam theory is in the prediction of the location of failure. 

Figure 4-12: Comparison of the experimental life against the predicted life time for loading 

scenario 1 through 5 from top left to bottom left.  
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In Figure 4-12 below, the distribution of the SWT for the solid model and beam model are 

shown for the axial stress amplitude of 45 MPa. In this Figure, the failure point of the solid 

model and the beam model are identified. While the solid model identifies a failure location of 

3mm from the center of the contact, the beam model identifies 4.25mm from the center of the 

contact.  This behavior of the Timoshenko beam is not surprising since it does not contain the 

displacement polynomials to approximate the stress field exactly but only does so in an average 

sense over the depth of the beam.  

However, the beam approach can predict a contact length that is comparable to both the solid 

approach and the experimental observation. Figure 4-13 shows the contact length for the beam, 

solid and experimental observation for an axial stress amplitude of 45 MPa. Since the shear 

force and bending moment resist the normal contact force in the beam model, either can be 

checked to detect the length of the contact. For the solid model, the contact pressure when the 

actuator F pulls (in black), and pushes (in blue) are plotted. A comparison of the contact lengths  
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that the beam model predicts a contact length of 8mm, the solid model a contact length of 

8.1mm and the experimental value reported by Omrani et al. (2021) is 8.8mm. However, one 

notices that the contact pressure for the solid model experiences a contact and no contact phase 

Figure 4-13: Comparison of prediction of location of failure using SWT between solid and beam 

model for axial stress amplitude of 45 MPa: (a). Solid model (b). Beam model  
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at the edge between -3 to -4mm and 3 to 4mm. This corresponds to the slip region observed in 

(Omrani et al. 2021) as shown in Figure 4-20 (c) and is about 1.37mm in length in the 

experimental observation. The beam model cannot show this since it is only required to satisfy 

the force equilibrium conditions in an average sense over the depth of the beam. However, for 

the case of the solid elements, equilibrium is satisfied locally allowing for local features to be 

detected. It is also observed that the contact pressure changes as the actuator F pulls or pushes, 

but the shear force remains constant. In other words, Timoshenko beam, since it is only required 

Figure 4-14: Comparison of the contact length prediction of (a) Beam model (b). Solid model (c). Experimental 

Observation  
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to satisfy force equilibrium, cannot detect this coupling of the normal and tangential stress that 

causes the normal contact pressure to oscillate.  

4.7 CONCLUSIONS  

A numerical strategy to assess the fatigue life of a single wire to clamp contact was developed 

using the solid and beam finite element method and the multiaxial Smith-Wastson-Topper 

relationship. The following conclusions are drawn from this work:  

1. For submodels to satisfy force equilibrium, the contact stiffnesses should be kept the 

same across all scales when penalty-based methods are used.  

2. For wire to clamp contacts in a overhead conductor not satisfying the half space 

assumption, the geometry of the indenting wire (i.e. the penultimate wire) cannot be 

neglected as this affects the stress distribution at the wire to pad contact due to 

asymmetry in the geometric configuration and should be considered in life estimation.  

3. For adequate prediction of fatigue life in fretting fatigue of a wire to clamp contact, it 

is not necessary that all members of the stress tensor be converged but if the contact 

normal pressure and tangential stress which represent the stress concentration due to 

contact are converged on a given mesh, then it is possible to make reliable predictions 

using this mesh.  

4. The Timoshenko beam model can be reliable for fretting fatigue life estimation if local 

features such as location of contact failure, tangential stress and contact pressure 

distributions are of secondary importance to the analyst.  

5. It was observed that effect of a normal force for the 3D Timsohenko contact was to 

introduce a mean bending stress and mean shear stress in the contact.   
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6. The normal based stress criterion (SWT) has shown to provide reliable fatigue life 

predictions for wire to clamp contacts in both solid and beam models and should be 

explored further for use in a full conductor clamp system.  

7. The results of the solid model are less biased in comparison to the beam model.  

8. The solid model SWT values are not sensitive to the type of fatigue data used to 

calibrate the prediction model as compared to the beam model.  
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approach, a framework is developed that considers all contacts in the conductor to predict 

multiple wire failure of conductor-clamp assemblies.  
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 PROBABILISTIC FATIGUE FRAGILITY CURVES FOR OVERHEAD 

TRANSMISSON LINE CONDUCTOR-CLAMP ASSEMBLIES21  

5.1 INTRODUCTION  
 

Aging of infrastructure coupled with a projected increased reliance on electric energy has been 

an issue of concern for electrical utilities worldwide. Overhead conductors are the major 

components of a transmission line network and there has been an increased interest in 

estimating the residual life of the overhead conductors for improving asset management 

planning (Hathout, 2016; Pouliot et al., 2020). The dominant mechanisms associated with the 

degradation of overhead transmission line conductors is atmospheric corrosion and fretting 

fatigue. Amongst these two phenomena, fretting fatigue has received the most attention. 

For conductor-clamp assemblies, field observation has shown that fretting fatigue is caused by 

aeolian vibrations that induce cyclic bending of the conductor and that fatigue damage is 

confined to the clamp/keeper where the conductor is supported (CIGRÉ 2010; Cloutier et al., 

2006; Rawlins, 1979) (Figure 5.1). The cyclic motion of the conductor causes relative motions 

at wire-to-wire, wire-to-clamp and wire-to-keeper contacts (Cloutier et al., 2006). The relative 

motion at contacts leads to the phenomenon of fretting, which is a surface degradation process 

that leads to the formation of surface cracks (Hills and Nowell, 1994). In the presence of tension 

(Hills and Nowell, 1994) and bending moment (Lalonde at al., 2018) in the wires, the surfaces 

cracks propagate through the wire leading to fretting fatigue failure.  

 
21 Thomas, O.O., Chouinard, L., and Langlois, S. (2022) Probabilistic Fatigue Fragility Curves for Overhead 
Transmission Line Conductor-Clamp Assemblies, Accepted for publication in Frontiers in Built Environment: 
Computational Methods in Structural Engineering. 
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Simplified analytical models have been developed to relate the bending amplitude (𝑌𝑏) of 

vibration of the conductor at a specified distance from the last point of contact (LPC) with the 

clamp, to an idealized stress measure 𝜎𝑎 at the topmost fiber of the conductor at the LPC 

Figure 5: (a). Typical conductor-clamp assembly with applied conductor tension T, 

Clamping force 𝐹𝑐, change in alternating bending angle (∆𝛽) and bending amplitude 

(Yb) (Adapted from Lalonde et al (2018)) (b). Cross section A-A  of a typical 

conductor-clamp assembly showing the steel wires, aluminum wires, keeper and clamp 

configuration and the wire numbering system. 

𝐹𝑐 

𝐹𝑐 

Clamp 

Keeper 

Aluminum wires  

Steel wires  

a 

b 
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(Figure 5.1 (a) and Figure 5.2) (Poffenberger and Swart, 1965). The idealized bending stress is 

defined in Lalonde et al. (2017) as:  

𝜎𝑎 =
𝑑𝑐  𝐸𝑎  (

𝑇
4 𝐸𝐼)

𝑒−√𝑇 𝐸𝐼⁄  𝑧 − 1 + √𝑇 𝐸𝐼⁄  𝑧 
𝑌𝑏 (5.1) 

where 𝑑𝑐 is the diameter of the conductor, 𝐸𝑎 is the modulus of elasticity of aluminum, T is 

the tension applied to the conductor, 𝑌𝑏 is the bending amplitude at 89mm from the last point 

Idealized flexion model 

Figure 2: (a). Fatigue testing bench for conductor clamp systems (Adapted from (CIGRE, 

2010). (b). Conductor-clamp assembly showing region of maximum bending stress . (c). 

Simplified representation of the conductor-clamp assembly and the idealized stress or strain 

induced by bending ampitude 𝑌𝑏 

a 

b c 
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of contact as shown in Figure 1a,  and 𝐸𝐼 is the bending stiffness of the conductor defined  in 

Cloutier et al. (2006) as:  

𝐸𝐼 = ∑ 𝐸𝑖  𝐼𝑖

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑟𝑒𝑠 

𝑖=1

(5.2) 

where 𝐸𝑖 and 𝐼𝑖 are the Young modulus and moment of inertia of the ith wire. The idealized 

stress obtained from Equation (5.1) is derived under the assumption that the conductor wires 

act independently in the region where the conductor enters the clamp, and is modeled as a 

Euler-Bernoulli beam with a fixed end (Figure 5.2 (c)) (Cloutier et al., 2006).  

Based on the idealized stress model, experimental fatigue test benches, such as that shown in 

Figure 5.2 (a), are used to obtain experimental stress-number of cycles data 

{𝜎𝑎 , 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠} data for given conductor-clamp assemblies (Cardou and Cloutier, 

1990; CIGRE, 1979; Cloutier et al., 2006). Compilations of these experimental datasets have 

been used to derive empirical Stress-Number of cycles (SN) curves to predict first wire failures 

in conductors (Cloutier et al., 2006; Rawlins, 1979; CIGRE, 1979; Hardy and Leblond, 2001; 

and Thomas et al., 2020). However, SN models derived from experimental test benches that 

rely on the idealized bending model have limited applicability due to the reliance on the 

idealized stress, which neglects effects associated with the clamping force and clamp/keeper. 

Another limitation from compiled databases is the lack of uniform testing protocols between 

laboratories. Finally, the tests are very expensive and time consuming to perform, and the 

resulting SN curves are usually valid only for the first wire failure in the conductor.  

In order to derive SN curves for multiple wire failures, Lalonde et al. (2017) modeled a 

conductor using 3D beam elements. However, this work did not model the clamp/keeper of 

conductor/clamp assembly but only the conductor was modelled, and it was assumed that the 



132 
 

clamp/keeper can be replaced by fixed end boundary conditions. The stresses developed at the 

fixed end are then used to determine the number of cycles to failure from plain wire fatigue 

data from which first wire failure SN curves were developed. The limitation of this work is the 

simplification of the clamp/keeper as a fixed end boundary condition and its inability to account 

for the possibility of failure at multiple locations within a conductor-clamp assembly.  

Models have also been proposed that focus on a single critical location for wire failure and do 

not account for the possibility of failure at multiple locations within the conductor-clamp 

assembly (Said et al., 2020; Omrani et al., 2021). In Omrani et al. (2021), a numerical model 

of the conductor-clamp assembly is used to identify the wire and contact with the largest 

contact stresses, which is assumed to be the location for the first wire failure.  The state of 

stress obtained from the numerical model for different amplitudes of vibration is used to specify 

loads to be applied in single wire fretting fatigue experiments and to develop a (first-wire 

failure) SN curve for the conductor-clamp assembly. However, results from these single 

contact experiments overestimate the number of cycles at which first wire failure are observed 

experimentally for conductor-clamp assemblies with multiple wire-wire and wire-clamps 

contacts.  

Considering the limitations of current models, the objective of this work is to propose a 

framework that combines the physically based numerical model of Lalonde et al. (2018), single 

wire plain fatigue data, and probabilistic models to estimate fragility and SN curves that can 

account for multiple contacts and multiple wire failures within conductor-clamp assemblies. 

To achieve this, the finite element model of Lalonde et al. (2018) for a Bersfort conductor is 

used to assess the fretting regimes and internal stresses at each contact. A fatigue criterion is 

proposed that considers the fretting regimes, internal stresses and the plain fatigue strength of 

the constituent wires of the conductor. The fatigue criterion is used to rank contacts for fatigue 
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failure and to estimate the probability of failure from plain fatigue data for a given amplitude 

and number of cycles. Surfaces representing the probabilities of failure of each layer in the 

Bersfort conductor are generated for varying number of cycles and bending amplitude. The 

Poisson Binomial distribution is then used to generate fragility curves that considers different 

probabilities of failure at each contact point and wire-to-wire variability in fatigue resistance, 

which gives fatigue life predictions for one or multiple wire failures (up to 3 in this application). 

The fragility curves are compared to empirical cumulative distribution functions derived from 

experimental data for the same conductor-clamp configuration (Levesque, 2005). The 

probability distribution for the number of failed wires as a function of the number of cycles is 

also obtained. SN curves generated from the new approach for 1st wire failures are also 

presented for the specimen conductor-clamp configuration and compared against the current 

available SN curves.  

5.2 THE FINITE ELEMENT MODELING METHODOLOGY 

A finite element model is used to reproduce the conditions of the experimental fatigue test 

bench used by Levesque (2005) (Figure 5.2). The model follows the procedure of Lalonde et 

al. (2018), which uses quadratic 3D Timoshenko beam elements (10mm in length) for the 

wires, and quadratic rigid shell elements (2.5mm in length and width) for the clamp and keeper. 

The wire-wire, and wire-clamp/keeper contacts are modeled using line-to-line and line-to-

surface contact elements in the ANSYS® system. Lalonde et al.( 2018) has demonstrated that 

the beam model can accurately reproduce the strains measured experimentally in the wires of 

the Bersfort conductor-clamp assembly.  

In this work, the conductor-clamp assembly modeled is a Bersfort conductor-clamp as shown 

in Figure 5.3. A cross-section of the conductor is shown in Figure 5.1 (b) and the length of the 

conductor is 1600 mm. Additional geometric details on the conductor-clamp assembly can be 
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found in Lalonde et al. (2018) and Goudreau et al. (2010). The finite element mesh of the 

conductor-clamp assembly and contact elements are shown in Figure 5.4.  

 

Passive end (Z=0mm) 

Clamp 

Center of suspension clamp (Z=600 mm) 

Keeper Edge (KE) 

Last Point of Contact (𝐿𝑃𝐶𝑒𝑥𝑝 = 685𝑚𝑚)  

Conductor centerline helix 

Keeper 

Active end (Z=1600mm) 

Figure 3: Geometric representation of the Bersfort conductor-clamp system 
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c. 

Figure 4: (a) Finite element mesh of the Bersfort conductor-clamp assembly showing the beam and rigid shell 

elements. (b). Line-to-line contact between the conductor wires of the same layers modeled with slave element 

CONTA177 and master element TARGE170.  (c). Line-to-line contact between the conductor wires of different 

layer modeled with slave element CONTA177 and master element TARGE170. (d). Line-to-surface contact 

between the Layer 4 wires and the keeper/clamp   

b. 

a. 

d. 
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The material properties of the conductor wires are listed in Table 1. The core is a steel wire in 

the center of the conductor (Figure 5.1 (b)). The layer numbering and wire numbering is also 

shown in Figure 1b. The coefficient of friction is 0.3 for steel-to-steel contacts and 0.9 for 

aluminum-to-aluminum and aluminum-to-steel contacts (Lalonde et al., 2018; Omrani et al., 

2021).  

The beams are modeled as linear elastic elements with large displacement and rotation 

capabilities. The linear elastic assumption has been shown to provide fretting fatigue life 

predictions for aluminum wires that are in agreement with experimental fatigue life 

observations (Rocha et al.2019; Said et al., 2020).  

 

 

 

 

 

 

 

5.3 LOAD APPLICATION AND SEQUENCING SCHEME 

The loading sequence of the Bersfort conductor finite element model follows the experimental 

procedure established in Levesque (2005) who tested Bersfort conductors with the fatigue test 

bench shown in Figure 5.2, and is similar to the sequence used by Lalonde et al. (2018) in their 

numerical model. For the load application to the model, the nodes of the beams at the passive 

end of the conductor are coupled to a master node located at the center of the conductor using 

Layer 𝑛𝑖 
𝑑𝑖  

(mm) 
𝐸𝑖  

(GPa) 
𝑣 

Core 1 3.32 207 0.3 

1 6 3.32 207 0.3 

2 10 4.27 69 0.33 

3 16 4.27 69 0.33 

4 22 4.27 69 0.33 

𝑛𝑖: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑟𝑒𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑖 ; 

𝑑𝑖: 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑤𝑖𝑟𝑒𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑖 ; 

𝐸𝑖: 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑤𝑖𝑟𝑒𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑖;; 

𝑣: 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 ;  

Table 5.1: Characteristics of the Bersfort Conductor 
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Multiple Point Constraints (MPC) (Figure 5.5).  The nodes of beams at the active end (Figure 

5.5) are similarly coupled to a master node at the center of the conductor. For the clamp/keeper, 

all the nodes are coupled using rigid MPC. For the clamp, all nodal degrees of freedom (DOF) 

are fixed for displacements and rotations. For the keeper all rotation and displacement are fixed 

except for the displacement in the y-direction.  

The first step of the loading protocol is to incrementally apply an initial tension 𝑇0 at the passive 

end of the conductor at an angle 𝛽𝑝 relative to the horizontal while the active end of the 

conductor is restrained for all 6 DOFs (Figure 5.5). At the end of step 1, the passive end is fixed 

at its current position and the z-direction and y-direction displacement DOF at the active end 

is released, this is followed by the application of the conductor tension 𝑇0 at the master node 

z 

Figure 5: Loading sequence of Bersfort conductor-clamp assembly (Adapted from Lalonde et 

al (2018)) 

y 
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of the active end at an angle 𝛽0  (step 2  in Figure 5.5). During the loading steps 3 and 4, the 

conductor tension at the active end is increased from 𝑇0 to 𝑇. The effect of the clamping force 

is simulated by introducing a force 𝐹𝑐 in the y-direction on the keeper master node in loading 

step 5. Once the clamping force is completely applied, it is replaced by the displacement 

induced by  𝐹𝑐. The loading steps 6 to 10 consist in cycling the angle of the active end of the 

conductor with tension T by ±∆𝛽 to induce a displacement 𝑌𝑏. The value of ±∆𝛽 is specified 

to match the target bending amplitude 𝑌𝑏 . The loads and angles corresponding to the 

experimental setup are provided in Table 5.2. Additional details can be found in Lalonde et al. 

(2018) and Levesque (2005). 

 

 

 

 

5.4 CONDUCTOR FATIGUE MODEL  

5.4.1 Model Formulation 

Fretting fatigue analysis for a single contact can be performed by specifying displacement  and 

force boundary conditions on the two bodies in contact, a plain fatigue model, and a procedure 

to define an equivalent stress state that is related to the fretting fatigue potential. This approach 

that has been followed by (Redford et al., 2019; Rocha et al., 2019) in the assessment of fretting 

fatigue failure for two wires in contact at a single point. However, for a multiple contacts 

system such as a conductor, it has been shown that contacts are subjected to at least three 

different fretting regimes – sticking regime, mixed fretting regime and gross slip regime (Zhou 

and Vincent, 1995) and that the analysis  must first determine if a contact is in a fretting regime 

𝑻𝟎 

(kN) 

T 

(kN) 
𝑭𝒄  
(kN) 

𝜷𝒑 

(°) 

𝜷𝟎 

(°) 
 

1.85 45 74.8 4.3 6.2 

Table 5.2: Applied Boundary conditions in Finite Element Model 
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that leads to crack initiation and propagation. This state introduces an additional criterion for 

the analysis of conductor fatigue in comparison to single contact fretting fatigue. 

 In the proposed methodology, a criterion is proposed that considers both the tangential force 

Q(t) and sliding distance 𝑢(𝑡). This criterion is based on the energy dissipated E at the 

contact and is given by: 

𝐸 = ∮𝑄(𝑡)𝑢(𝑡) 𝑑𝑡 (5.3) 

 

Figure 6: Examples of fretting regimes indicated by the plot of Q(t) against u(t) when the conductor 

goes through 𝛽0 ±∆𝛽 for bending amplitude of 0.75mm. (a). Miixed fretting regime on a  Layer 4 to 

3 Contact. (b). Mixed fretting regime on a Layer 4 to Clamp Contact. (c). Sticking contact on a layer 

4 to 3 contact . (d). Gross slip contact on  a layer 4 to contact 

a 
b 

c d 
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Where  t is a time tracking parameter.  A plot of 𝑄(𝑡) against  u(t) illustrates the various fretting 

regimes  (Figure 5.6).  In these Figures the axial position of contacts is:  

Axial position =  z coordinate − 𝐿𝑃𝐶𝑒𝑥𝑝 (5.4) 

where 𝐿𝑃𝐶𝑒𝑥𝑝 = 685𝑚𝑚 and is the Last point of contact determined by Levesque (2005). A 

negative value of the axial position indicates that the contact is within the clamp while a 

positive value indicates that the contact is outside the clamp.  

The three fretting regimes: sticking, mixed fretting, and gross slip, as defined by Zhou and 

Vincent (1995) are shown in Figure 6. The fretting regimes are defined by the energy 

dissipation curves for contacts between wire-to-wire and wire-to-clamp in conductor-clamp 

assemblies. Characteristic behavior of the energy dissipation curves of these fretting regimes 

are given in Degat et al. (1997) and summarized as follows:  The mixed fretting regime has a 

closed energy dissipation curve of elliptical shape, small or large tangential force, and short 

sliding distance (Figure 5.6 (a)). The sticking regime is characterized by a closed loop energy 

dissipation curve in the shape of a line and large tangential force (Figure 5.6 (c)). The gross 

slip is characterized by an open energy dissipation curve (often rectangular), small tangential 

force and large sliding distance (Figure 5.6 (d)).  

The fretting regime is combined with the stress-based Smith-Watson-Topper (SWT) criteria to 

formulate the conductor fatigue criteria as:  

𝐺(𝐸) (𝑆𝑊𝑇𝐿 | 𝑌𝑏 = 𝑦) ≥ (𝑆𝑊𝑇𝑅 | 𝑁 = 𝑁𝑖) (5.5) 

where 𝑆𝑊𝑇𝐿 | 𝑦𝑏 represents the Smith-Watson-Topper criteria of the wire contact at a given 

bending amplitude, the SWT is defined in Rocha et al.(2019) as: 
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                                                 𝑆𝑊𝑇 =  √
∆𝜎

2
〈𝜎𝑚𝑎𝑥〉                                                                      (5.6) 

where 
∆𝜎

2
 is the stress amplitude and 𝜎𝑚𝑎𝑥 is the maximum stress in a loading cycle. The SWT 

is a tension-based fatigue criterion. From the 3D beam model, the stress range ∆𝜎 and 

maximum stress 𝜎𝑚𝑎𝑥 are obtained as:  

∆𝜎 = |𝜎1(𝛽0 + ∆𝛽) − 𝜎1(𝛽0 − ∆𝛽)| (5.7) 

𝜎𝑚𝑎𝑥 = max(𝜎1(𝛽0 + ∆𝛽), 𝜎1(𝛽0 − ∆𝛽)) (5.8) 

where  𝜎1 is the maximum principal stress at the beam nodes.  
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Figure 7: Distribution of maximum principal stresses (in MPa) for a bending amplitude of 0.75mm. 

(a,c,e) 𝛽0 + ∆𝛽 and (b,d,f) 𝛽0 − ∆𝛽 

a 

c 

e 

b 

d 

f 
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The values of 𝜎1(𝛽0 + ∆𝛽) 𝑎𝑛𝑑 𝜎1(𝛽0 + ∆𝛽) obtained from the FE analysis are shown in 

Figure 5.7 for a bending amplitude of 0.75mm for different wires (layers) in the Bersfort 

conductor-clamp assembly.  

In the following section, the fatigue resistance of a wire to plain fatigue for a given number of 

cycles Ni is defined through the Smith-Watson-Topper criteria (𝑆𝑊𝑇𝑅 | 𝑁 = 𝑁𝑖) and is 

estimated from rotating bending data provided in Kaufman (2008) for aluminium wires. A 

Basquin type stress–life relationship is used to describe 𝑆𝑊𝑇𝑅 | 𝑁 = 𝑁𝑖 and it is assumed that 

𝑓𝑆𝑊𝑇𝑅(𝑆𝑊𝑇𝑅 | 𝑁 = 𝑁𝑖) follows a lognormal distribution with mean 𝜇(𝑆𝑊𝑇) and standard 

deviation 𝜎(𝑆𝑊𝑇) which are defined as (Babuška et al. 2016; Pascual and Meeker, 1997):  

𝜇(𝑆𝑊𝑇𝑅) = 𝐴1 + 𝐴2 𝑙𝑜𝑔(𝑆𝑊𝑇𝑅  −  𝐴3) (5.9) 

𝜎(𝑆𝑊𝑇𝑅) = 𝑒𝑥𝑝(𝐵1  +  𝐵2  𝑙𝑜𝑔(𝑆𝑊𝑇𝑅 )) (5.10) 

where 𝑓𝑆𝑊𝑇𝑅(. ) is the probability distribution function. The parameter vector of the model 𝜽 =

(𝐴1, 𝐴2, 𝐴3,𝐵1 ,𝐵2 ) is estimated by the method of maximizing likelihood (𝐴1 = 48.04, 𝐴2 =

−7.37,𝐴3 = 2.23,𝐵1 = 5.46 ,𝐵2 = −1.29 ) (Figure 5.8). The function G(E) defines the type of 

fretting regime as:  

𝐺(𝐸) = {

0                                   𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑚𝑒 
1                       𝑚𝑖𝑥𝑒𝑑 𝑓𝑟𝑒𝑡𝑡𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑚𝑒 
0                                𝑔𝑟𝑜𝑠𝑠 𝑠𝑙𝑖𝑝 𝑟𝑒𝑔𝑖𝑚𝑒 
0                                                  𝑛𝑜 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

 (5.11) 
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This indicator function follows from experimental observations that the mixed fretting regime 

is the most critical for fretting fatigue in conductors (Zhou and Vincent, 1995). This function 

excludes other contacts that are not in this regime from the analysis. The value of 𝐸 for which 

a contact transitions from one regime to another is difficult to define precisely and relies on 

heuristics, such as the shape of hysteresis curve to assign values to  𝐺(𝐸) (Figure 5.6). Ideally, 

all types fretting regimes should be considered.  Both the sticking and gross slip regimes can 

lead to crack initiation as shown in Zhou and Vincent (1995); however, the cracks do not 

propagate in the gross slip regime and do not lead to fatigue failure. In the case of the sticking 

regime, cracks can propagate to failure but typically this occurs for a number of cycles much 

larger than for the mixed fretting regime and can be ignored for a failure criteria based on a 

small number (< 4) of wire failures.  

 In the following, only contacts between wires of different layers or between wires and the 

suspension clamp are considered for fretting fatigue. Contacts between wires on the same layer 

have much lower normal and tangential forces and are much less likely to be locations for the 

initiation and propagation of fretting fatigue failure. Considering the two contacts at the top 

and bottom of a wire segment discretized with a beam element m, the probability of failure of 

the wire segment for 𝑁𝑖 cycles at an amplitude yb is:  

Figure 8: Fatigue Data obtained from (Kaufman, 2008) and the fitted fatigue model. 
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ℙ𝑚(𝑁 = 𝑁𝑖) = ℙ(𝐺(𝐸𝑚) (𝑆𝑊𝑇𝐿𝑚 | 𝑦𝑏) ≥ (𝑆𝑊𝑇𝑅 | 𝑁 = 𝑁𝑖)) (5.12) 

 

The probability of failure of k wires within the conductor-clamp assembly can then be expressed as: 

ℙ(𝑘|𝑁 = 𝑁𝑖) = ∑ ∏ ℙ𝑚(𝑁 = 𝑁𝑖)𝑡 ∈ 𝐴 ∏ (1 − ℙ𝑚(𝑁 = 𝑁𝑖))𝑗 ∈𝐴𝑐𝐴 ∈ 𝒢𝑘
(5.13)    

where 𝒢𝑘 is the set of size (𝑛
𝑘
) of all combinations of k failed wires that can be formed from the 

set of n contact points within the conductor/clamp assembly, A is the set of contact points where 

fretting fatigue failure occurs, t are members of A, 𝐴∁ is the set of contacts points that do not fail 

in fretting fatigue, and j are members of 𝐴∁ . This equation is the Poisson binomial distribution 

described in Wang (1993) and provides the probability of obtaining exactly k wire failures at a 

given number of cycles. The failure of a conductor can then be defined as the first wire failure 

or by specifying the number of multiple wire failures.  Assuming that failure of a conductor is 

defined when k (or more) wires have failed, the probability of failure of the conductor is 

evaluated as,   

ℙ(𝐾 ≥ 𝑘|𝑁 = 𝑁𝑖) = 1−ℙ(𝐾 < 𝑘|𝑁 = 𝑁𝑖) (5.14) 

The Equation (5.14) considers both the top and bottom contacts acting on a wire segment. For 

3D beam finite elements, the maximum principal stress 𝜎1  occurs at either the top or bottom 

contact since bending stresses predominate as shown by Lalonde et. al (2018). In consequence, 

only the contact with the maximal principal stress is considered in Equations (5.13) and (5.14).   

Since the finite element model is formulated for a specific position of the cable in contact with 

the clamp, contact points are spaced at 10mm intervals in the axial direction and the angular 

position at 16° intervals as shown by the black dots in Figure 5.7. The results from experimental 

tests can correspond to locations of contacts that vary within this range. Since analyses cannot 

be performed to reproduce the exact conductor-clamp configuration of each experiment, a 
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procedure based on interpolating the 𝑆𝑊𝑇𝐿 | 𝑦𝑏 is used instead. The interpolation procedure 

averages stresses locally as a function of axial position d and angular position 𝜃 through a 

Gaussian kernel function with parameters 𝜎𝑑 , 𝜎𝜃 as:  

𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑, 𝜃)
⏞          

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑑

= ∑ 𝑘(𝜎𝑑, 𝜎𝜃)  ∙  𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑𝑗 , 𝜃𝑗  ) 

𝑛𝑛𝑜𝑑𝑒𝑠

𝑗=1

(5.15) 

𝑘(𝜎𝑑, 𝜎𝜃) =
1

𝜎𝑑√2 𝜋
𝑒
−(
𝑑−𝑑𝑗
𝜎𝑑

)
2

  
∙

1

𝜎𝜃√2 𝜋
𝑒
−(
𝜃−𝜃𝑗
𝜎𝜃

)
2

  
(5.16) 

where 𝑛𝑛𝑜𝑑𝑒𝑠 is the number of nodes  from which the maximum principal stresses are extracted 

from the finite element model; 𝑑𝑗 and 𝜃𝑗  are the axial and angular positions of the node j. 

The estimates of 𝜎𝑑 and  𝜎𝜃 are obtained by maximizing the likelihood of the observed failures 

given the number of cycles and location of failure:  

𝑙(𝜎𝑑 , 𝜎𝜃) = ∏ 𝑓𝑆𝑊𝑇𝑅|𝑌𝑏,𝜎𝑑,𝜎𝜃,𝑑𝑗,𝜃𝑗(𝑆𝑊𝑇𝐿(𝑌𝑏, 𝜎𝑑 , 𝜎𝜃 , 𝑑𝑗 , 𝜃𝑗)|𝑁𝑗)
𝑛𝑓𝑎𝑖𝑙𝑒𝑑 𝑤𝑖𝑟𝑒𝑠
𝑗=1

(5.17)          

where 𝑙(𝜎𝑑 , 𝜎𝜃) is the likelihood function, 𝑆𝑊𝑇(𝑌𝑏 , 𝜎𝑑 , 𝜎𝜃 , 𝑑𝑗 , 𝜃𝑗) is obtained from Eq. 6, 

𝑛𝑓𝑎𝑖𝑙𝑒𝑑 𝑤𝑖𝑟𝑒𝑠 is the set of observed first wire failures given 𝑌𝑏 (0.75mm and 0.6mm), (𝑑𝑗 , 𝜃𝑗) is 

the position of the failure wire, Nj the number of cycles at failure, and 𝑓𝑆𝑊𝑇𝑅 is the probability 

distribution of SWT from plain fatigue wire data given failure occurs at N cycles (Equations 

5.9 and 5.10). 

5.4.2 Procedure for the Derivation of Fragility Curves  

This section summarizes the steps in the procedure for deriving fragility curves (Figure 5.9). 

First, the finite element model of the conductor-clamp assembly is formulated in ANSYS finite 

element program. In step 2, the maximum principal stress at the top or bottom contact of each 

wire element is obtained. In step 3, the tangential force and sliding distance at the contact with 
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the maximum principal stress are obtained from the FE model to define the fretting regime 

(Figure 5.6). This is followed by step 4, where  𝑆𝑊𝑇𝐿 | 𝑦𝑏 is evaluated using Eq. (6). Step 5 

involves averaging the 𝑆𝑊𝑇𝐿 | 𝑦𝑏values using Eq. (15) to obtain 𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑, 𝜃)
⏞          

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑑

. The 

indicator function G(E) (Eq. (11)) is assigned to each node as a function of the corresponding 

fretting regime in step 6. Step 7 consists in fitting the fatigue model (Eq. 9 and 10) to the plain 

fatigue data (Figure 5.8) to obtain 𝑓𝑆𝑊𝑇𝑅(𝑆𝑊𝑇𝑅 | 𝑁 = 𝑁𝑖). In step 8, the indicator function 

Figure 9: Flow chart for developing conductor-clamp assembly fragility curve 



148 
 

G(E) and the 𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑, 𝜃)
⏞          

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑑

  used to obtain the probability of failure for each beam element 

(Eq. 12). Finally, in step 9, the probability of k wire failures in the conductor is computed using 

the Poisson binomial distribution given by Equations (5.13) and (5.14).  

The procedure from step 8 to step 9 is repeated to evaluate the probability of failure for the 

desired range of number of cycles (104 to 107). 

5.4.3 Model Validation and Discussion  

Validation of the framework is done by first comparing the predicted 𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑, 𝜃)
⏞          

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑑

 and 

indicator function G(E) from the FE model to observed failure locations reported in Levesque 

(2005). Next, the empirical cumulative distribution function (ECDF) of the fatigue life for a 

given number of wire failure is compared against the predicted cumulative distribution function 

(CDF) generated by the Poisson binomial distribution given in Equation (5.14).  

For bending amplitudes of 0.75mm, only 13 of the experiments report the location, order of 

wire failure and number of cycles to failure (39 events for 1st to 3rd wire failures), while 15 

experiments report the same for an amplitude 0.60mm. Two additional experiments providing 

the first wire failure for bending amplitudes of 0.4mm and 0.5mm are also available.  
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In application of the framework, the number of potential failure points are limited to the region 

within the clamp. Thus, checking for failure is restricted to the region between the last point of 

contact (LPC) and the keeper edge (KE). It has been shown that this is the critical region for 

failure in conductor-clamp assemblies by Levesque (2005) and  Zhou et al. (1994).  

Figure 10: Location and number of cycles of Experimental Observation of Levesque[19] :  (a) first 
wire failure (b) second wire failure (c) third wire failure on layer 4 (d) third wire failure on layer 3; 
All for bending amplitude of 0.75mm. Indicated number of cycles are in Millions (106). 

a. b. 

c.  d. 
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A comparison of the spatial variation of 𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑, 𝜃)
⏞          

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑑

 for a bending amplitude of 0.75mm 

(Figure 5.10(a-c)) against the locations of observed wire failures in the experiments by 

Levesque (2005) show good agreemnt and demosntrates that  the FE model can correctly 

Figure 11: Indicator function G(E) for : (a). Layer 4 to clamp contacts (b).  Layer 4 to 3 contacts. (c). Layer 3 

to layer 2 contacts. (d). Layer 2 to layer 1 contacts.  

a 
b 

c 
d 
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identify regions susceptible to wire fatigue failure in the conductor-clamp assembly.  For the 

3rd wire failures in layer 3 (Figure 5.10 (d)), high values of SWT are not as well correlated with 

wire failure locations; however, this can be explained by the observation the mixed fretting 

regime occurs at contacts in the lower part of the conductor where wire failures are most likely 

to occur (Figure 5.11 (b) and (c)). This observation highlights the importance of considering 

a b 

c d 

Figure 12: Maximum SWT distribution on the wires of layer 4 of the Bersfort conductor. Units 
of the SWT are in MPa. 
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both the 𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑, 𝜃)
⏞          

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑑

 fatigue parameter and the fretting regime to predict fatigue failure in 

conductor-clamp assemblies and distinguishes the proposed approach from the current practice 

that only considers the fatigue parameter.  

Furthermore, the LPC from the experiment of Levesque (2005) and that from the numerical 

model shown as black double head arrow and broken double head arrow in Figures 5.10 and 

5.11 show some difference. This difference in the location of the LPC between the model and 

experimental setup has been attributed by Lalonde et al. (2018) to plasticity effects that are not 

included in the numerical model. Indeed, it has been noted that the Timoshenko beam theory 

exhibits a stiffer response when in contact with a surface as compared with a full elasticity 

solution (Essenburg, 1975; Gasmi et al., 2012; Naghdi and Rubin, 1989). Nonetheless, the 

analysis provides estimates of the spatial variation of stresses that are sufficiently precise for 

the purpose of the fatigue analysis of multi-body systems such as conductors (Lalonde et al. 

2018; Omrani et al., 2021).  

Figure 5.12 shows the SWT distribution for other bending amplitudes. The  𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑, 𝜃)
⏞          

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑑

 

of Figure 5.12 and the wire fatigue resistance 𝑓𝑆𝑊𝑇𝑅(𝑆𝑊𝑇𝑅 | 𝑁 = 𝑁𝑖) are substituted in 

Equation (12) to obtain the probability of failure for each contact point. The results are shown 

as probability contour plots for the wires of layer 4 at bending amplitudes of 0.75mm, 0.6mm, 

0.5mm and 0.4mm respectively in Figures 5.13 and 5.14.  For the case where the bending 

amplitude is 0.75mm and 0.6mm, the probabilities of failures are governed by the wires at the 

bottom in layer 4 for number of cycles 105  −  106. However, as the number of cycles increases 

to 107 the probabilities of failures at the top of the conductor increases.  In the case of lower 

bending amplitudes of 0.5mm and 0.4mm, the increment in size of the region of failure is less 

with the 
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Figure 13: Probability of failure for the wires in layer 4 of the Bersfort conductor at a bending amplitude of 

0.75mm (a to c) and 0.6mm (d to f) 

a 
b 

c 
d 

e 
f 
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Figure 14:   Probability of failure for the wires in layer 4 of the Bersfort conductor at a bending amplitude 

of 0.5mm (a to c) and 0.4mm (d to f) 

a 
b 

c d 

e f 
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Figure 15: Fragility curves for Bersfort conductor clamp assembly. (a,b,c). Bending amplitude of 0.75mm. (d,e,f). 

Bending amplitude of 0.6mm. 

a 
b 

c d 

e f 
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increasing number of cycles as compared to higher amplitudes. This shows that for lower 

amplitudes, the number of wires at risk of failure is smaller.  

Given the probabilities of failure for each contact point ℙ(𝑆𝑊𝑇𝐿 | 𝑦𝑏(𝑑, 𝜃)
⏞          

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑑

≥ (𝑆𝑊𝑇𝑅 | 𝑁 =

𝑁𝑖)) and the fretting indicator function G(E),  the probability of failure of the conductor can 

be obtained by using Equation (14). The results of these computations are fragility curves 

shown in terms of the cumulative distribution function (CDF) of 𝑁 |𝑦𝑏 in Figures 5.15 and5. 

16 for bending amplitudes 0.75mm, 0.6mm, 0.5mm and 0.4mm respectively. The plots are 

shown for the first, second and third wire failures.  

To validate the predicted fragility CDF, the empirical cumulative distribution functions 

(ECDF) for the experimental data in Levesque (2005) on the same Bersfort conductor are also 

Figure 16:  Fragility curves for the Bersfort conductor at a bending amplitude of : (a). 0.5mm. (b). 0.4mm.  

a b 

First wire failure  Second wire failure Third wire failure  

Experimental first wire failure  
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presented. For the bending amplitudes 0.75mm and 0.6mm for which a reasonable amount of 

experimental data is available, the CDF compares well with the ECDF for the first, second and 

third wire failures.  

For a bending amplitude of 0.6mm, the fragility curves given in Figure 5.15 (a-c) shows that 

there are outliers in the experimental data presented in Levesque (2005). The cause of these 

outliers is not known and may possibly be due to different experimental conditions.  

Different models, exclusively derived from experimental data, such as the CIGRE Safe Boarder 

Line (CSBL) (CIGRE, 1979), the EPRI dataset  (Cloutier et al., 2006), the safe limit of Hardy 

and Leblond (2001) and the confidence  interval of Thomas et al.(2020), have been proposed 

for the fatigue resistance of overhead conductor-clamp systems for first wire failure. The stress-

life predictions derived from the numerical model are compared to these empirical models in 

Figure 5.17. The SN curve for the numerical model is obtained by computing the quantile of 

the Poisson Binomial distribution  for the first wire failure as:  

ℙ(𝑁𝑝 ≤ 𝑁|𝑘 ≥ 𝑘) = 𝑝 (5.18) 

where the values of the probability 𝑝 are {0.05, 0.5, 0.95} which represents the 5th, 50th and 

95th fractiles of the SN curve and k=1. SN curves for second and third wire failures can also be 

generated by using k=2 and k=3.  

 For large amplitudes (0.75mm), the median predicted life from the proposed model is close to 

the median curve proposed by (Thomas et al., 2020). It also noted that the CIGRE-CSBL is not 

a safe boarder line since it is above the 5% probability of failure predicted by the new model. 

Such a limitation of the CIGRE-CSBL has also been noted by Hardy and Leblond ( 2001). The 

results of the new model also show that the safe limit of Hardy and Leblond (2001) is also 
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above the 5% probability of failure predicted by the new model and the model of Thomas et 

al., (2020). 

It is also noted that the 95% confidence interval for the new model is narrower than the interval 

proposed in Thomas et al. (2020). This can be explained by the fact that conductor fatigue data 

in Cloutier et al. (2006) used by Thomas et al. (2020) includes data using different experimental 

conditions and conductor-clamp types and configurations on the basis of idealized stress model.  

Figure 17: A comparison of the stress-life curves derived from the proposed framework  for 

first wire failure with previous models. All black data points are from (Cloutier, Goudrea, & 

Cardou, 2006) except otherwise stated.  
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In addition to the fragility curves and SN curves, the expected value and variance of the number 

of failed wires 𝔅 as a function of number of cycles can be obtained (Wang, 1993):  

𝔼(𝔅|𝑁 = 𝑁𝑖) = 𝔼(∑ ℙ𝑚(𝑁 = 𝑁𝑖)

𝑛

𝑚=1

)  (5.19) 

𝕍𝕒𝕣(𝔅|𝑁 = 𝑁𝑖) = ∑ ℙ𝑚(𝑁 = 𝑁𝑖)(1 − ℙ𝑚(𝑁 = 𝑁𝑖))

𝑛

𝑚=1

(5.20) 

The conditional mean and variance of Equations (5.19) and (5.20) are compared to observed 

values in Table 3.  

 

 

Bending 

amplitude 

 𝑦
𝑏
 (mm) 

Number 

of cycles 

to failure 

𝑁𝑖 

Predicted 

expectation 

of number of 

wire failures 

𝔼(𝔅|𝑁 = 𝑁𝑖) 

Predicted 

variance of 

number of wire 

failures 

𝕍𝕒𝕣(𝔅|𝑁 = 𝑁𝑖) 

Experimental 

expectation of 

number of 

wire failures 

𝔼(𝔅|𝑁 = 𝑁𝑖)
⏞        
𝑠𝑎𝑚𝑝𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

 

Experimental 

variance of 

number of wire 

failures 

𝕍𝕒𝕣(𝔅|𝑁 = 𝑁𝑖)
⏞          
𝑠𝑎𝑚𝑝𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

 

0.75 105 - - 0 0 

106 0.6 0.34 1.75 0.21 

107 3.95 1.32 4.33 0.32 

0.60 105 - - 0 0 

106 0.07 0.06 0 0 

107 2.24 0.48 2.29 1.14 

0.5 105 - - 

No Data 

106 0.0036 0.0036 

107 1.4 0.38 

0.4 105 - - 

106 - - 

107 0.35 0.25 

Table 3: Comparison of predicted number of wire failures against experimental 

observation 
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The information in Table 5.3, can be used to supplement the fragility curves by considering 

both a target probability of failure for a conductor and an allowable number of wire failures for 

the conductor-clamp system . However, more data is needed to validate Equations (5.19) and 

(5.20) for lower amplitudes.  

5.5 CONCLUSIONS 

A methodology for the derivation of fragility curves for electric overhead conductor-clamp 

systems has been presented. First a finite element model of the conductor-clamp assembly is 

used to evaluate the contact stresses and fretting regime at all contact points between wires and 

between wires and clamp for a given amplitude of displacement. The state of stress at each 

contact is used to evaluate a fretting fatigue criterion based on the SWT and the potential for a 

mixed fretting fatigue regime that is most conducive to failure.  For contacts that are 

characterized with a mixed fretting regime, the probability of failure as a function of number 

of cycles is evaluated as a function SWT by considering the distribution  of SWT at failure as 

a function of number of cycles for fatigue data obtained from single aluminum wires.  The 

probability of failure of the conductor as a function of number of cycles is then evaluated by 

considering a single, two or three wires as the failure criterion.  The model is validated by a 

comparison of the predicted location of failed wires as well as the number of cycles to failure 

with experimental data available in the literature. The presented methodology offers the 

following advantages and innovations:  

• The conductor is not idealized as a single entity but models the conductor fatigue failure 

as a system of wires;  

• The model accounts for the configuration of a conductor-clamp assembly, clamp radius, 

clamping torque etc.; 
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• It provides predictions of single and multiple wire failures and avoids or reduces the 

number of tests that are performed in practice to derive SN curves for each type of 

conductor-clamp assembly;  

• Fragility curves for a Bersfort conductor are presented for up to three wire failures for 

any amplitude of vibration; 

• The SN model derived from the proposed method has much smaller variance than 

current models that combine experimental results from different conductor-clamp 

assemblies on the basis of the simple flexion model and improves significantly the 

accuracy of fatigue life predictions. 

The next steps for future developments of the approach are to apply the procedure to the other 

conductor/clamp configurations, extend the analysis to damage accumulation rules that 

considers a combination of cycles of vibrations of different amplitude, and to investigate 

procedures to extend the applicability of the model for conductor failures based on larger 

numbers of conductor wires. However, it is unlikely that the industry would adopt such a 

criteria considering the current practice in addition to the significant increase in the complexity 

of the analysis of stress redistribution needs to be considered. 
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 CONCLUSIONS 

6.1 SUMMARY OF RESEARCH FINDINGS  

The main goal of this thesis was to develop a framework for which fragility curves and SN 

curves for multiple wire failures in overhead conductor-clamp assemblies under conditions of 

fretting fatigue could be generated using the finite element method and methods of structural 

reliability. This approach should reduce the number of experimental tests required for overhead 

conductor fatigue testing.  

The research activities carried out in this work and the corresponding observations are as 

follows  

• In Chapter 3 an improved SN curve with nonconstant variance for overhead conductor-

clamp fatigue was developed in terms of the idealized bending stress amplitude of 

Poffenburger-Swart. This study illustrated that in fitting SN curves to overhead 

conductor fatigue data, accounting for the effect of nonconstant variance and use of the 

Weibull distribution led to tighter confidence interval and better prediction around the 

median and left tail. However, on the right tail of the distribution of the number of 

cycles for a given stress level, the prediction is less accurate due to the presence of run-

out and errors in tail probability estimation due to small sample size. Based on the 

method 

• In chapter 4, the difference between the 3D Timoshenko beam FE and 3D solid FE are 

compared for their accuracy in fatigue life evaluation. It was observed that while the 

Timosheko beam model can predict the fatigue life of wire to clamp contacts in over 

head conductor-clamp assemblies, its predictions are biased and should be corrected.   

• In chapter 5, the prediction of the 3D Timoshenko beam theory are corrected by a 

maximum likelihood approach, the finite element method is combined with the Poisson 
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binomial distribution to generate fatigue fragility curves for overhead-conductor clamp 

systems. SN curves for the multiple wire failures (i.e. 1st to 3rd in the case study) for 

overhead conductor-clamp systems are also generated. The distribution of the number 

of wire failures in a overhead conductor-clamp system after undergoing a given number 

of cycles is also presented. The SN curves generated in this study is compared with that 

generated in chapter 3 using the idealized stress criterion. It was observed that the 

variance appearing in the SN curved generated using the idealized stress approach is 

larger than that due to the new model. This is as expected given that the new approach 

accounts for a variety of factors such as the clamping toque, clamp radius etc that have 

been considered that variability in the classical approach using the idealized stress.  

The framework proposed in this thesis will allow for the generation of fragility and SN curves 

for specific conductor-clamp assemblies and reduce the number of tests required to characterize 

the fatigue resistance of conductor-clamp assemblies.  

6.2 SUGGESTIONS FOR FUTURE WORKS  

The research reported in this thesis involved the development of a probabilistic method for the 

fatigue strength analysis of overhead conductor-clamp assemblies. There are several areas that 

improvements can be made. These areas are classified as follows:  

 

6.2.1 Computational Mechanics in Overhead-Conductor Clamp Assemblies  

• It was observed that a lot of time was spent in processing the wire to clamp and wire to 

keeper contact. The detection and computation of the contact integrals for these 

elements dominated the solution even with the rigid clamp and keeper assumption. It is 

thus apparent that a methodology that enhances the detection and computation of the 
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wire to clamp/wire to keeper contact will speed up the solution and enhance the 

computation of reliability measures for overhead conductor-clamp assemblies.  

• The second time consuming element of the computation analysis was in determining 

the stick-slip/contact-separation transition in time. This is a function of the constraint 

algorithm and numerical integration algorithm. Since commercial finite element codes 

such as ANSYS used in this work do not implement special routines for solving PDEs 

with discontinuous right-hand sides, it will be interesting to see if implementations of 

such routines can lead to efficient solution times.   

• Although this work has demonstrated that the Timoshenko beam theory can be used for 

fatigue analysis of overhead conductors, it was observed that this beam theory is stiffer 

than the full 3D solution. It has a larger error in the prediction of the failure location 

and gives a wrong distribution for the contact pressure. Given that it is still difficult to 

model an appreciable length of a conductor using full 3D theory, the suggested 

alternative here is the development of higher-order beam theories with appropriate 

displacement kinematics that can match the results of the full 3D theory in prediction 

of stress distribution and contact length prediction. 

6.2.2 Conductor Fatigue  

• The methodology presented for the constructing conductor SN curves should be 

extended to variable amplitude loading  

• The methodology developed in this thesis should be extended to account for the 

influence of wire failure on the distribution of stress in region of KE and LPC 

• Development of loading models for transmission line conductors that could be 

combined with the fatigue resistance models developed herein will be useful for the 

residual life estimation of overhead conductors under conditions of fretting fatigue.  
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• The conductors that have been studied in this work are in ideal situations in a laboratory. 

Conductors in the field are subjected to conditions of corrosion, electrical energy and 

thermal fatigue. These phenomena can have an influence on the fatigue resistance of 

conductors. A study is thus required to extend the methods presented herein to these 

situations.  

• The contact behavior in overhead conductor has mostly been described to go through a 

sticking phase. However, in this work it was observed that some contacts also under a 

separation phase (i.e. stick-slip-separation). Most of these contacts also had very low 

contact normal force and a varying normal force. It will be important to study the 

difference between these kinds of contact and those of the sticking contact in fatigue.  

6.2.3 Structural Reliability of Overhead Conductor-Clamp Assemblies  

• The probability that a conductor fails in fretting fatigue is composed of two parts – the 

probability that the contacts are in the fretting zone and the probability for fatigue to 

occur. In this thesis, the probability that the contact is in the fretting zone has been 

approximated by a Boolean indicator function due to lack of information on this 

probability distribution. Although, this Boolean approach has been shown to be 

sufficient, a more theoretical approach to determining the probability of a contact is 

required.  

• In the reliability method presented in this thesis, it has been assumed that the probability 

of failure of a contact point is not affected by that of another contact point i.e. they are 

independent. This statement holds true for the first wire failure. The case studies in this 

thesis also show that it holds true for the second wire failure. However, it appears that 

the dependence between the probability of failures should be considered for higher 

number of failure.  
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• During this work, it was noticed that the conductor reliability problem could be posed 

as a network reliability problem with the network topology specified by the finite 

element mesh on which the computation was made. In this way, the contacts and wires 

of the conductors are simply edges and vertices of a graph whose probability of failure 

is to be computed. Also, since very efficient algorithms are already available for 

computations on graphs, the computations of fragility for overhead conductor fatigue 

can become easier using such an approach. Also, this network approach allows the 

extension of the method presented in this thesis to large scale network of transmission 

lines when appropriate loading models become available.  

• Given that it now possible to generate fragility and SN curves computationally for 

overhead conductors, the time has come to build a knowledge base of available 

overhead conductor fatigue data that will include important variables such as the clamp 

dimension, the clamping force and loading protocol to serve as validation tool for 

developed fragility and SN curves. The method developed herein can then be used to 

study the effect of these parameters This knowledge base can also serve as a backend 

library to an overhead conductor fatigue residual life estimation program.  

• The methodology presented in this work can be extended to the robust optimization of 

conductor-clamp design to reduce the probability of failure. In other words, what is the 

best combination of conductor and clamp that present the minimum probability of 

failure after N years in service.  

• The methodology developed in this thesis for defining the probability of failure for 

conductors does not account for the effect of the sequence of failure. Further studies 

are required to account for this effect on the conductor fatigue resistance distribution.  
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APPENDIX A: SOME METHODS FOR ANALYSIS OF CONTACT PROBLEMS  

 

Method Types of 

loading 

Assumptions Applications on 

conductor 

References 

Glide dislocations Constant 

normal load 

 

Monotonic 

shear 

 

Monotonic 

bulk 

tension 

 

Cyclic 

shear load 

 

Cyclic bulk 

tension 

 

Cyclic 

bending 

Half-plane 

 

Partial slip 

 

Elastic material 

behaviour 

 

Holds for any 

contact profile 

 

Uncoupled 

contact 

 (Hills et al. 2018) 

 

(Andresen et al. 

2020) 

 

Ciavarella-J�̈�ger 

principle 

Constant 

normal load 

 

Monotonic 

shear 

 

Monotonic 

bulk 

tension 

 

Constant 

moment 

 

Cyclic 

shear load 

 

Cyclic bulk 

tension 

 

Cyclic 

moment 

Half – plane 

 

Partial slip 

 

Elastic material 

behaviour 

 

Holds for any 

contact profile 

 

Uncoupled 

contact 

 (Ciavarella, 

1998a, 1998b) 

 

(Ja¨ger, 1998) 

Green’s function 

method 

Any 

loading 

No assumptions  (Barber, 2018) 

Cattaneo and 

Mindlin 

Methodology 

Constant 

normal load 

 

Half-plane / 

space 

 

 

(Goudrea, 

Charette, 

(Cattaneo, 1938) 

 

(Mindlin, 1949) 
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Monotonic 

shear load 

 

Monotonic 

moment 

Quadratic 

contact profile 

 

Uncoupled 

contact 

Hardy, & 

Louis., 1998) 

 

(Hardy, 1990) 

(Frederic. 

Levesque & 

Legron, 2010) 

 

(Leblond & 

Hardy, 2005) 

 

(Hardy & 

Leblond, 2003) 

 

(F.  Levesque, 

2009) 

 

 

 

(Hills et al.1993) 

 

 

Hertz 

Methodology 

Constant 

normal 

loading 

Half space 

 

Body with 

quadratic 

profiles 

 

Frictionless 

contact 

(Frederic. 

Levesque & 

Legron, 2010) 

 

(Pereira, Díaz, 

Ferreira, da 

Silva, & 

Araújo, 2020) 

 

(Hardy, 

Leblond, 

Goudreau, & 

Cloutier, 1999) 

 

(F.  Levesque, 

2009) 

 

(Frederic. 

Levesque & 

Legeron, 2012) 

 

 

 

 

 

 

(Hertz, 1881) 

 

(Johnson, 1985) 

Kalker’s Line 

contact theory 

Any 

loading 

Half-space  (Kalker, 1972) 

 

Mossakovskii-

Barber Procedure 

Any 

loading  

Half-plane  Hills and 

Andresen (2021) 

Displacement 

functions 

Any 

loading 

No assumptions  (Barber, 2018) 
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(Johnson, 1985) 

Stress functions Any 

loading 

No assumptions  (England, 2003) 

 

(Barber, 2018) 

 

(Green & Zerna, 

1992) 

 

(Muskhelishvili, 

1977) 

 

(Johnson, 1985) 

 

(Timoshenko & 

Goodier, 1951) 

 

Finite element 

method 

Any 

loading 

No assumptions (Roshan Fekr, 

McClure, & 

Farzaneh, 1999) 

 

(Gang, 2013) 

 

(Lalonde, 2017) 

 

Lalonde et al. 

(2018) 

 

(Baumann & 

Novak, 2017) 

 

(J. Said et al., 

2020) 

 

(Said, Fouvry, 

Cailletaud, 

Yang, & Hafid, 

2020) 

 

(Pereira et al., 

2020) 

 

(Omrani, 2021) 

 

(Rocha, Díaz, 

Silva, Araújo, 

& Castro, 2019) 

 

(Frigerio et al., 

2016) 

 

Kikuchi and Oden 

(1988). 

 

Zhong (1993) 

 

Laursen (2002) 

 

Wriggers (2006) 

 

Litewka (2010) 

 

Konyukhuv and 

Schweizerhof, 

(2012) 

 

Yastrebov (2013) 

 

Konyukhuv and 

Izi, (2015) 
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(F.  Levesque, 

2009) 

 

(Wang, Lara-

Curzio, King, 

Graziano, & 

Chan, 2008) 

 

(Frederic. 

Levesque & 

Legeron, 2012) 

 

Analytical Beam 

Theory 

Any 

loading 

No assumptions  

 

 

(Johnson, 1985) 

 

(Barber, 2018) 

 

(Castillo and 

Barber, 1997) 

 

(Kim, Ahn, Jang, 

and Barber, 2014) 

 

(Naghdi and 

Rubin, 1989) 

 

(Essenburg, 1975) 

 

(Gasmi, Joseph, 

Rhyne, and Cron, 

2012) 

 

(Timoshenko and 

Goodier, 1951) 

Method of 

Dimensionally 

Reduction 

Any 

loading 

Approximate 

contact profile 

by equivalent 

2D profile 

 (Popov and Heb, 

2015) 

Boundary 

element method 

Any 

loading 

No assumption  (Washizu, 1982) 

Variational 

Inequalities and 

Optimization 

Techniques 

Any 

loading 

No assumption  (Duvaut and 

Lions, 1976) 

 

(Klarbring and 

Björkman, 1988) 
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APPENDIX B: EQUILIBRIUM EQUATIONS FOR OVERHEAD CONDUCTORS  

 

The Case of a Wire to Clamp Contact  

Details of the equilibrium equation of the wire to clamp contact presented in chapter 2 

(Equation (2.4)) are presented herein.  

The detailed formed form of the equilibrium Equation is:  

∫(∇𝑖�̇�
𝑖𝑗)𝛿�̇�𝑗,𝐵 𝑑Ω𝐵 + ∫(∇𝑖�̇�

𝑖𝑗)𝛿�̇�𝑗,𝑊 𝑑Ω𝑊 +∫(∇𝑖�̇�
𝑖𝑗)𝛿�̇�𝑗,𝐶  𝑑Ω𝐶  

=  − (∫(∇𝑖𝛿�̇�𝑗,𝐵)�̇�
𝑖𝑗  𝑑Ω𝐵 + ∫(∇𝑖𝛿�̇�𝑗,𝑊)�̇�

𝑖𝑗  𝑑Ω𝑊 +  ∫(∇𝑖𝛿�̇�𝑗,𝐶)�̇�
𝑖𝑗  𝑑Ω𝐶)⏟                                            

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑤𝑜𝑟𝑘 

+   ∫ �̇�(𝑛)
𝑗
 𝛿�̇�𝑗,𝑊 Г𝑊𝑅

 + ∫ �̇�(𝑛)
𝑗
 𝛿�̇�𝑗,𝐵 Г𝐵𝑇⏟                        

𝑓𝑜𝑟𝑐𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑡𝑒𝑟𝑚𝑠 (𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑤𝑜𝑟𝑘)

+ (∫ �̇�(𝑛)
𝑗
𝛿�̇�𝑗,𝐵 𝑑𝛤𝐵𝐵  + ∫ �̇�(𝑛)

𝑗
𝛿�̇�𝑗,𝑊 𝑑𝛤𝑊𝑇

+∫ �̇�(𝑛)
𝑗
𝛿�̇�𝑗,𝑊 𝑑𝛤𝑊𝐵

+∫ �̇�(𝑛)
𝑗
𝛿�̇�𝑗,𝐶  𝑑𝛤𝐶𝑇⏟                                                  

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑒𝑟𝑚𝑠 (𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑖𝑡𝑢𝑎𝑙  𝑤𝑜𝑟𝑘)

) 

= 𝟎 ;                     

𝑖, 𝑗 = 1,2,3, (𝐵. 1) 

 

where ∇𝑖(. ) =
𝜕(.)

𝜕𝑥𝑖
  and ∇𝑖�̇�

𝑖𝑗 = ∑ ∇𝑖�̇�
𝑖𝑗3

𝑖=1 = ∇1�̇�
1𝑗  + ∇2�̇�

2𝑗  + ∇3�̇�
3𝑗 

Using the condition of equilibrium at each point of contact between the wire to bearing contact 

and wire to clamp contact given in Equation (2.2) and (2.3), we have :  
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∫(∇𝑖�̇�
𝑖𝑗)𝛿�̇�𝑗,𝐵 𝑑Ω𝐵 + ∫(∇𝑖�̇�

𝑖𝑗)𝛿�̇�𝑗,𝑊 𝑑Ω𝑊 +∫(∇𝑖�̇�
𝑖𝑗)𝛿�̇�𝑗,𝐶  𝑑Ω𝐶  

=  − (∫(∇𝑖𝛿�̇�𝑗,𝐵)�̇�
𝑖𝑗  𝑑Ω𝐵 + ∫(∇𝑖𝛿�̇�𝑗,𝑊)�̇�

𝑖𝑗  𝑑Ω𝑊 +  ∫(∇𝑖𝛿�̇�𝑗,𝐶)�̇�
𝑖𝑗  𝑑Ω𝐶)

+   ∫ �̇�(𝑛)
𝑗
 𝛿�̇�𝑗,𝑊 Г𝑊𝑅

 + ∫ �̇�(𝑛)
𝑗
 𝛿�̇�𝑗,𝐵 Г𝐵  

+ (−∫ �̇�(𝑛)
𝑗
𝛿�̇�𝑗,𝐵  

𝑑𝛤𝑊𝑇

𝑑𝛤𝐵𝐵
𝑑𝛤𝐵𝐵  + ∫ �̇�(𝑛)

𝑗
𝛿�̇�𝑗,𝑊 𝑑𝛤𝑊𝑇

+∫ �̇�(𝑛)
𝑗
𝛿�̇�𝑗,𝑊 𝑑𝛤𝑊𝐵

+∫−�̇�(𝑛)
𝑗
𝛿�̇�𝑗,𝐶

𝑑𝛤𝑊𝐵

𝑑𝛤𝐶𝑇
 𝑑𝛤𝐶𝑇)  = 𝟎;                            

𝑖, 𝑗 = 1,2,3, (𝐵. 2) 

Collecting like terms in the above gives:  

∫(∇𝑖�̇�
𝑖𝑗)𝛿�̇�𝑗,𝐵 𝑑Ω𝐵 + ∫(∇𝑖�̇�

𝑖𝑗)𝛿�̇�𝑗,𝑊 𝑑Ω𝑊 +∫(∇𝑖�̇�
𝑖𝑗)𝛿�̇�𝑗,𝐶  𝑑Ω𝐶  

=  −(∫ (∇𝑖𝛿�̇�𝑗,𝐵)�̇�
𝑖𝑗  𝑑Ω𝐵⏟          

𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

+ ∫ (∇𝑖𝛿�̇�𝑗,𝑊)�̇�
𝑖𝑗  𝑑Ω𝑊⏟            

𝑤𝑖𝑟𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

+  ∫ (∇𝑖𝛿�̇�𝑗,𝐶)�̇�
𝑖𝑗  𝑑Ω𝐶⏟          

𝑐𝑙𝑎𝑚𝑝 𝑖𝑛𝑡𝑒𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

)   +       ∫ �̇�(𝑛)
𝑗
 𝛿�̇�𝑗,𝑊 Г𝑊𝑅

 + ∫ �̇�(𝑛)
𝑗
 𝛿�̇�𝑗,𝐵 Г𝐵⏟                      

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

  

−∫ �̇�(𝑛)
𝑗

(𝛿�̇�𝑗,𝑊 − 𝛿�̇�𝑗,𝐵 ) ⏟          
𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑙𝑖𝑝 𝑟𝑎𝑡𝑒 

𝑑𝛤𝑊𝑇

− ∫ �̇�(𝑛)
𝑗
⏟

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠 

(𝛿�̇�𝑗,𝑊 − 𝛿�̇�𝑗,𝐶) 𝑑𝛤𝑊𝐵
= 𝟎; 

(𝐵. 3) 

Subject to: 
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𝑜𝑛 𝑡ℎ𝑒 𝑏𝑜𝑢𝑑𝑎𝑟𝑖𝑒𝑠: {
‖∫ �̇�(𝑛)

𝑗
 𝑑Г𝑊𝑅

‖ = �̇�     𝑎𝑛𝑑      ‖∫ �̇�(𝑛)
𝑗
 𝑑Г𝐵𝑇‖ = �̇�

‖ �̇�𝑗,𝑊𝐿
‖ = �̇� 𝑎𝑛𝑑 ‖ �̇�𝑗,𝐶𝐵‖ = 0

 (𝐵. 4) 

{

�̇�(𝑛)
1 = �̇�(𝑛)

1 [𝐻 (−(�̇�1,𝑊 − �̇�1,𝐵))]  ∶  �̇�1,𝑊 − �̇�1,𝐵 ≤ 0 , 𝑜𝑛 𝛤𝑊𝐵
∩ 𝛤𝐶𝑇

�̇�(𝑛)
1 = �̇�(𝑛)

1  [𝐻 (−(�̇�1,𝑊 − �̇�1,𝐶))]  ∶  �̇�1,𝑊 − �̇�1,𝐶 ≤ 0, 𝑜𝑛 𝛤𝑊𝑇
∩ 𝛤𝐵𝐵⏟                                              

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

(𝐵. 5) 

 

{
 

 �̇�(𝑛)
1 = �̇�(𝑛)

1 [𝐻 (−(�̇�1,𝑊 − �̇�1,𝐵))]  ∶  �̇�1,𝑊 − �̇�1,𝐵 > 0 , 𝑜𝑛 𝛤𝑊𝐵
∩ 𝛤𝐶𝑇

�̇�(𝑛)
1 = �̇�(𝑛)

1  [𝐻 (−(�̇�1,𝑊 − �̇�1,𝐶))] ∶  �̇�1,𝑊 − �̇�1,𝐶 > 0, 𝑜𝑛 𝛤𝑊𝑇
∩ 𝛤𝐵𝐵⏟                                            

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

(𝐵. 6) 

 

           {

�̇�(𝑛)
1  (�̇�1,𝑊 − �̇�1,𝐵) = 0 , 𝑜𝑛 𝛤𝑊𝐵

∩ 𝛤𝐶𝑇
�̇�(𝑛)
1  (�̇�1,𝑊 − �̇�1,𝐶) = 0, 𝑜𝑛 𝛤𝑊𝑇

∩ 𝛤𝐵𝐵⏟                          
𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

                                                                      (𝐵. 7) 

 

{
 
 

 
 ‖�̇�(𝑛)

𝑗
‖ < 𝜇|�̇�(𝑛)

1 | ,                         𝑜𝑛  𝛤𝑊𝑇
∩ 𝛤𝐵𝐵  𝑎𝑛𝑑  𝛤𝑊𝐵

∩ 𝛤𝐶𝑇    

[𝑆𝑔𝑛(�̇�𝑗,𝑊 − �̇�𝑗,𝐵)] = 0,            𝑜𝑛  𝛤𝑊𝑇
∩ 𝛤𝐵𝐵

[𝑆𝑔𝑛(�̇�𝑗,𝑊 − �̇�𝑗,𝐶)] = 0,            𝑜𝑛 𝛤𝑊𝐵
∩ 𝛤𝐶𝑇⏟                            

𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

;              𝑗 = 2,3
(𝐵. 8) 

 

{
 

 ‖�̇�(𝑛)
𝑗
‖ = 𝜇 |�̇�(𝑛)

1 |[𝑆𝑔𝑛(�̇�𝑗,𝑊 − �̇�𝑗,𝐵)] ,          𝑜𝑛  𝛤𝑊𝑇
∩ 𝛤𝐵𝐵

‖�̇�(𝑛)
𝑗
‖ =  𝜇 |�̇�(𝑛)

1 |[𝑆𝑔𝑛(�̇�𝑗,𝑊 − �̇�𝑗,𝐶)] , 𝑜𝑛 𝛤𝑊𝐵
∩ 𝛤𝐶𝑇⏟                                    

𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 ;    𝑗 = 2,3 (𝐵. 9) 

 

{
 

  ‖�̇�𝑗,𝑊 − �̇�𝑗,𝐵‖ (𝜇 |�̇�(𝑛)
1 | − ‖�̇�(𝑛)

𝑗
‖) = 0,          𝑜𝑛  𝛤𝑊𝑇

∩ 𝛤𝐵𝐵

‖�̇�𝑗,𝑊 − �̇�𝑗,𝐶‖ (𝜇 |�̇�(𝑛)
1 | − ‖�̇�(𝑛)

𝑗
‖)  = 0, 𝑜𝑛 𝛤𝑊𝐵

∩ 𝛤𝐶𝑇⏟                                    
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 ;    𝑗 = 2,3 (𝐵. 10) 

where [𝐻(. )] is the Heaviside function,  [𝑆𝑔𝑛(. )] is the sign function and 𝜇 is the isotropic 

friction coefficient.  
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The Case of a Conductor-Clamp Assembly  

As given in Equation (2.5) of Chapter 2, the equilibrium equation for a conductor-clamp 

assembly can be written using the principle of virtual work as:  

∑(∫ (𝛻𝑖𝛿�̇�𝑗,𝑘)�̇�
𝑖𝑗  ⏟        

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑒𝑟𝑚𝑠

𝑑Ω𝑘  )

𝑛+2

𝑘=1

+ ∑ 𝑏𝑐𝑘⏟
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝑡𝑒𝑟𝑚𝑠 

2𝑛 +2

𝑘=1

+ ∑ (∫ �̇�(𝑛)
𝑗
(𝛿�̇�𝑗,𝑘 − 𝛿�̇�𝑗,𝑘+1 ) ⏟            𝑑𝛤𝑘

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑒𝑟𝑚𝑠 

)

𝑛𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑘=1⏟                        
𝑐𝑟𝑜𝑠𝑠−𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 

  

+∑(∫ �̇�(𝑛)
𝑗
(𝛿�̇�𝑗,𝑘 − 𝛿�̇�𝑗,𝑘+1 ) ⏟            𝑑𝛤𝑘

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑒𝑟𝑚𝑠 

)

𝑛

𝑘=1⏟                      
𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 

+ ∑ (∫�̇�(𝑛)
𝑗
(𝛿�̇�𝑗,𝑘 − 𝛿�̇�𝑗,𝑘+1 ) ⏟            𝑑𝛤𝑘

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑒𝑟𝑚𝑠 

)

𝑛𝑘𝑒𝑒𝑝𝑒𝑟/𝑐𝑎𝑚𝑝

𝑘=1⏟                            
𝑘𝑒𝑒𝑝𝑒𝑟 𝑎𝑛𝑑 𝑐𝑙𝑎𝑚𝑝 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠  

= 𝟎;         (𝐵. 11)
 

where n is the number of wires in the conductor, and as such, there are n+2  terms that 

contribute to the internal virtual work (i.e. all n wires, the keeper and suspension clamp), 2𝑛 +

2 boundary conditions that contribute to the external virtual work, 𝑛𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is the number of 

cross contacts in the conductor. The number of cross contact point between all wire in layer i 

and all wires in layer i+1 over a lay length h  can be determined from Cardou (2013):  

𝑛𝑐𝑤,𝑖 = ⌊1 + 𝑛𝑖+1 (1 + 
𝑡𝑎𝑛 𝛼𝑖+1
𝑡𝑎𝑛 𝛼𝑖

)⌋ × 𝑛𝑖  (𝐵. 12) 

where  𝑛𝑖+1 is the number of wires in layer i+1, 𝑛𝑖 is the number of wires in layer i and 𝛼 is 

the lay angle. For the length of the conductor, the number of contacts between layer i and 

i+1over a length L is then: 

𝑛𝑐𝑤,𝑖,𝐿 ≈ ⌊1 + 𝑛𝑖+1 (1 + 
𝑡𝑎𝑛 𝛼𝑖+1
𝑡𝑎𝑛 𝛼𝑖

)⌋ × 𝑛𝑖 ×
𝐿

ℎ
(𝐵. 13) 

From which the 𝑛𝑐𝑜𝑛𝑡𝑎𝑐𝑡, the total number of cross contact in the conductor can be estimated 

as : 
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𝑛𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = ∑ 𝑛𝑐𝑤,𝑖,𝐿

𝑛𝑙𝑎𝑦𝑒𝑟

𝑖=1

(𝐵. 14) 

where 𝑛𝑙𝑎𝑦𝑒𝑟is the number of layers in the conductor.  

For the line contacts, the number of line-to-line contacts in a layer is the same as the number 

of wires in that layer, so the number of line-to-line contacts in a conductor is equivalent to the 

number of wires in the conductor.  

The number of contact points between the keeper/clamp and the conductor 𝑛𝑘𝑒𝑒𝑝𝑒𝑟/𝑐𝑎𝑚𝑝 

depends on the geometry of the keeper/clamp and the number of wires in the external layer of 

the conductor.  

The boundary conditions 𝑏𝑐𝑘 represents the boundary conditions applied to each end of all 

wires (i.e. 2n) and the keeper and clamp, giving 2n+2 boundary conditions. However, in the 

conductor the force/displacement is applied to the conductor as a single entity thus requiring a 

constraint between wire displacement/forces and the force/displacement of the conductor.  

The exact mathematical form of this constraint will depend on how the load is applied to the 

conductor boundaries in the experimental set-up. For example, in the experiment of Papailou 

(1995), a rigid block was used to apply forces to the boundaries of the conductor.  Herein, only 

a general formulation is given.   Using the principle of virtual work, a constraint between the 

rigid block and wires in the conductor at one end of the conductor can be written as (Olsson 

and Dahlblom, 2016):  

𝛿 𝑐(𝒖𝑅𝐵, 𝒖𝑤𝑖𝑟𝑒𝑠) =  𝛿(𝒖𝑅𝐵  −  𝑪 𝒖𝑤𝑖𝑟𝑒𝑠) = 0⏟                            
 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡/𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

(𝐵. 15)
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where 𝒖𝑅𝐵 is the displacement vector of the rigid block, 𝒖𝑤𝑖𝑟𝑒𝑠 is the set of displacement 

vectors of all wires in the conductor at the point of connection between the rigid block and the 

conductor, 𝑪 is a coefficient matrix that ensures that the displacement of the wires is compatible 

to that of the rigid block. Equation (B.15) is a statement of the compatibility of displacement 

and rotation between the wires and the rigid block.   

In addition to the compatibility of displacement and rotation, the force at the connection 

between the rigid bar and the wires in the conductor should be equvalent. This equilibrium 

condition is given by:  

𝛿𝒖𝑅𝐵
𝑇 𝑭𝑅𝐵 + 𝛿𝒖𝑤𝑖𝑟𝑒𝑠

𝑇 𝑭𝑤𝑖𝑟𝑒𝑠 = 0 (𝐵. 16) 

where 𝒖𝑅𝐵
𝑇  is the transpose of the displacement vector 𝒖𝑅𝐵 and 𝒖𝑤𝑖𝑟𝑒𝑠

𝑇  is the transpose of the 

displacement vector 𝒖𝑤𝑖𝑟𝑒𝑠, 𝑭𝑅𝐵 is the force vector applied to the conductor through the rigid 

block and 𝑭𝑤𝑖𝑟𝑒𝑠 is the force vector of the individual wire forces. One may think of 𝑭𝑤𝑖𝑟𝑒𝑠 as 

a vector that contains each set of wire forces.  

Using (B.15) in (B.16), the equilibrium equation is transformed to   

𝛿( 𝑪 𝒖𝑤𝑖𝑟𝑒𝑠)
𝑇𝑭𝑅𝐵 + 𝛿𝒖𝑤𝑖𝑟𝑒𝑠

𝑇 𝑭𝑤𝑖𝑟𝑒𝑠 = 0 

𝑪𝑻𝛿( 𝒖𝑤𝑖𝑟𝑒𝑠)
𝑇𝑭𝑅𝐵 + 𝛿𝒖𝑤𝑖𝑟𝑒𝑠

𝑇 𝑭𝑤𝑖𝑟𝑒𝑠 = 0 (𝐵. 17) 

since the virtual displacement are arbitrary, the equilibrium condition yields: 

𝑭𝑤𝑖𝑟𝑒𝑠 = −𝑪
𝑻𝑭𝑅𝐵⏟          

force/moment equilibrium

(𝐵. 18)
 

From (B.18) it is clear that the set of forces in the wires 𝑭𝑤𝑖𝑟𝑒𝑠 is  obtained by redistributing 

the applied conductor force 𝑭𝑅𝐵 by the coefficient matrix.  
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Hence, in addition to the constraint (B.5) to (B. 10), for each contact, multipoint  constraint 

(B.15) and (B.18) are added for the conductor-clamp assembly case (B.11)  due to boundary 

conditions. 
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