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Abstract

Traditional tacton evaluation studies often rely on aggregating the results of a small num-
ber of participants to a predefined number of stimuli. This approach does not scale well
to a large number of tactons. In this work, we propose to flip this traditional framework
upside-down: instead of designing the tactons a priori, we randomly generate tactons
on-the-fly and send them for evaluation to the user. In addition, we develop a scalable
haptic smartphone data collection method that can deal with concurrent haptic ratings
to gather robust and relevant data, and deploy it remotely on the Amazon Mechanical
Turk platform. We measure vibrotactile perceptual similarity between tactons via a prob-
abilistic model, and further develop an active sampling strategy grounded in probability
and information theory to efficiently sample the space of possible tactons, thereby reduc-
ing the amount of data required by 6.5 times. We conduct an experiment with over 200
participants, from which we extract key information about tactile perceptual similarity
such as communities of perceptually similar tactons. Furthermore, we find evidence of
“personas,” or groups of people that share perceptual similitude, and report on the char-
acteristics and possible origins of these personas. We also show an approach to perform
machine learning on a graph representation of the similarity ratings, allowing us to suc-
cessfully predict the out-of-sample similarity scores. The personas are shown to help with
this out-of-sample prediction, proving to a greater extent their relevance and utility. All
in all, experimental results indicate that this high-data regimen is a promising new take
at conducting user studies in haptics.
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Résumé Scientifique

Traditionnellement, les études d’évaluation de tactons se fient sur l’aggrégation de ré-
sultats d’un faible nombre de participants à une quantité prédéfinie de stimuli. Cette
approche ne s’étend pas aisément à un grand nombre de tactons. Nous proposons ici de
générer les tactons en temps réel et de les envoyer à l’utilisateur pour évaluation directe-
ment, au lieu de les concevoir a priori. De plus, nous développons une approche de collec-
tion de données haptiques via smartphone qui puisse récupérer des annotations robustes
et pertinentes de manière concurrente, et la déployons sur Amazon Mechanical Turk.
Nous mesurons la similarité perceptuelle entre les tactons via un modèle probabiliste, et
développons une stratégie d’apprentissage active basée sur la théorie de l’information
pour échantilloner l’espace de tactons de manière efficace, réduisant de ce fait la quan-
tité de donnée requise par un facteur de 6.5. Nous conduisons une experience avec plus
de 200 participants, de laquelle nous tirons de l’information clé sur la perception tactile,
telle que des communautés de tactons similaires. En outre, nous montrons une preuve de
l’existence de “personas,” ou des groupes de personnes qui partagent des caractéristiques
similaires sur la perception haptique, et discutons de l’origine possible de ces personas.
Finalement, nous montrons une approche pour effectuer de l’apprentissage machine sur
une représentation graphique d’annotations de similarité, ce qui nous permet de prédire
les scores de similarité des tactons. L’intégration des personas améliore cette prédiction,
ce qui prove leur pertinence et leur utilité. En somme, les résultats empiriques de nos
expériences montrent que ce régime haut en données est une approche prometteuse pour
conduire des études d’évaluation haptique.
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Chapter 1

Introduction

The sense of touch, or haptics, has long been a source of intringue. The first occurrence of
synthetically generated haptics being used for communication goes back to the 1960s [3].
More recently however, there has been a need to develop novel means of communication
for situations in which other prevalent senses are overwhelmed with information [4], or
to contribute to the User Experience (UX) [5].

Tactile icons, largely referred to in the literature as tactons or haptic icons, depict struc-
tured abstract tactile messages that encode information that can be carried non-visually [6],
usually via tactile encoding or via force. These tactons are typically individually de-
signed, but can also be hierarchically designed, meaning that one tacton can build upon
previous tactons so as to combine their perceptual properties. By far, the most common
way to convey tactons is through vibrations. This work focuses primarily on vibrotactile
(VT) tactons, or tactons delivered to the user via vibrations rendered on the surface of the
skin, through an actuator more or less tightly coupled to the body.

While investigative work has looked into the effectiveness of tactons, there remain
three main challenges that push back on the adoption of tactons in life outside the lab.
First, very little work has been done to aggregate the results of tacton evaluation of several
user studies into one coherent, organized database [7, 8]. This decreases the ability of
designers to readily make use of the results of previous experiments, which in turn can
force designers to reinvent the wheel on every iteration [7, 9]. However, most if not all
the data that constitute these databases are aggregated from participants in user studies
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that were done in-the-lab, in a known and isolated setting, whereas in real life, tactons
are typically perceived in various uncontrolled environments. The data that constitute
the databases can thus be far from the reality of the perception of tactons.

Second, experiments involving tacton evaluation and characterization also tend to ex-
hibit large variability across participants, known as individual differences (ID) [10, 11].
These individual differences affect the takeaways of these types of studies: the results are
typically only applicable to a particular setting, and they are hardly ever reproducible as
the user base that one might encounter in real life could be completely different from that
of the experiment. One crucial component of the aforementioned databases could thus
include the characterization and the quantification of the variability in perception across
several individuals or groups thereof due to IDs.

Third, experiments typically explore a limited subset of the tacton space, where the
experimenter designs the tactons and evaluates them in an iterative fashion across ex-
periments in one or multiple user studies, thereby ignoring potentially meaningful but
seemingly unrelated tactons. This introduces a bias in the methodology in that the prior
knowledge of the experimenter can affect the outcome of the findings.

Last, negative results or results that do not depict an agreement across the population
are rarely reported and/or emphasized, although in the context of IDs they may not nec-
essarily be invalid. One hypothesis is that they may be characteristics of a given segment
of the participant population.

1.1 Perceptual Similarity

Obtaining a consensus on perception is often an arduous task, as it closely relates to the
senses, which in turn are very dependent on the individual who is sensing and the sur-
rounding context. Several studies have attempted to assess the thresholds for which hu-
man beings perceive music to be similar, especially in the new context of music recom-
mendation on online platforms, so much so that a whole book has been dedicated to the
topic [12]. However, despite its use in everyday life, VT haptics have yet to be investi-
gated to the same extent. This can be partly attributed to the fact that haptics are less
expressive as a channel of communication, but also because of the emergent nature of
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the subfield of haptic perception. Additionally, the abundance of contexts and the lack of
tailoring methods to those contexts make it very hard to generate meaningful haptics. For
instance, an alarming tacton may be perceived as an disturbance when presented during
a meeting, whereas it may be welcomed when notifying the user of an emergency. Al-
though the same stimulus was sent to the user, the context surrounding the percept was
different: its interpretation, therefore, is strongly linked to the context.

There has been a recent interest in the haptics community to automatically generate
haptic stimuli. Contrarily to music where the content generation process typically takes
place on the artist’s side, this haptic generation is expected to stem from both the designer
(the haptician [13]) and the end-user (the recipient) of the stimuli (through customization
or personalization). Before taking this step, we believe that the nature of haptics must be
analyzed from a perceptual standpoint. We make the case that without prior knowledge
of the perceptual similarity of haptics among several groups of users, customizing or per-
sonalizing tactons to suit a user in particular or a task in particular will prove difficult,
perhaps impossible. Hence, this work treats perceptual similarity as a stepping-stone to-
ward automatic generation of haptic content with the intent of personalizing the stimuli.

To accomplish this goal, our strategy removes inductive biases in the methodology
mainly by flipping the traditional approach upside-down: instead of evaluating a known
set of tactons, we randomly generate tactons and attempt to converge to an agreement (in
our case on similarity) through an iterative and data-intensive process.

1.1.1 Modeling Users

Our perception of touch is altered by our personality, our past experiences, our ethnic
background, and culture. As such, it is difficult to obtain agreement on perception of
haptic stimuli through independent user studies. Seifi et al. [14] has tackled end-user
stimulus customization in an attempt to make up for the IDs. Because end-user cus-
tomization aims to fit the user’s individual needs effectively, it is sometimes referred to
as stimulus personalization.

However, the literature still does not agree on a method for clustering users into
groups of people who perceive vibrations similarly. Such a grouping would allow to
reach an agreement across a number of people [15], such that stimuli could be tailored
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to that group of people only and thus be more effective in conveying meaning or intent.
This would let us quantify the differences and variations by which external factors influ-
ence our perception. In addition, finding groups of people who perceive tactons similarly
can have a major impact in domains such as affective haptics — which is increasingly per-
sonal and subject to a different interpretation by each individual — or machine-generated
haptic stimuli. In the case of machine-generated stimuli, any information about the user
can provide information about the perception of the intent of the stimulus; this intuition
is something that expert designers have but that machines lack.

1.2 Graph Approach

VT tactons are frequently classified by some characteristics derived from signal process-
ing or from the music world: energy, frequency spectrum, rhythm or tempo. Attempting
to extract meaning solely from these characteristics does not tell the whole story of the im-
pact of those characteristics on our perception, because they are noisy, punctual measures
in the tacton space. It remains unclear how modifying a single tacton’s characteristics im-
pacts our perception of it. As such, we wish to represent not only the tactons themselves
but their relationship to one another, in an attempt to characterize the linkage between the
different characteristics. Hence, there is a need for an approach that encompasses both
individual tacton features as well as the topology of tactons.

To accomplish this goal, and central to our methodology, we develop in Chapter 3 an
approach that leverages tactons as objects in a graph: the nodes represent the tactons, the
edges the relationships between them. This approach is both scalable to the hundreds or
thousands of tactons, and can naturally improve our understanding of the perception of
the tacton space despite its complexity and abstractness.

1.3 Author’s Contribution

In this work, we address the challenges reported in these previous section.
Our contributions are the following:
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1. We develop an Android application for smartphones that can render VT stimuli
and gather feedback about them in a crowdsourced setting, via Amazon Mechanical
Turk.1 (AMT)

2. We outline the lessons learned from crowdsourcing haptic tacton evaluation.

3. We apply our graph theoretic methodology that combines both tacton character-
istics and topological information to analyzing the data and show its relevance in
haptic perceptual studies.

4. We show strong evidence of the presence of users who share haptic perceptual char-
acteristics.

5. We use our graph approach to predict similarity between never-seen-before tacton
pairs in the graph, and show that the predictive power increases if we predict simi-
larity inside a particular group of users, thereby validating our groupings.

This is, to our knowledge, the first work to tackle both haptic perceptual similarity, as
well as quantifying the perceptual differences of tactons among several groups across the
population.

In Chapter 2, we review the existing literature about haptics, crowdsourcing, and per-
ceptual similarity. Next, we present our approach in Chapter 3. We evaluate the approach
and discuss the experimental results in Chapter 4. We conclude with the implications of
the current work and our expectations for future work.

1https://www.mturk.com/
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Chapter 2

Background

This thesis focuses on perceptual similarity in VT tactons. We divide this chapter into
two parts: haptic tacton perception and perceptual similarity evaluation. In the first part,
we overview the cognitive mechanisms that underlie how we perceive tactons, along
with the signal parameters by which we make sense of and attribute meaning to them.
Then, we survey how personalization, customization and error characterization help de-
velop more robust models of tacton perception. In the second part, we discuss perceptual
similarity in both music and haptics. Because of the proximity of the two domains, we
include relevant work from the musical literature; challenges that have been overcome in
one could translate to the other. Afterwards, we overview existing work in the domain of
haptic tactons similarity, from what was done to what needs improvement.

2.1 Tacton Perception

Tactile icons have been explored and analyzed from a variety of different angles. In this
section, we overview the development of tacton perception analysis through time.

2.1.1 Interpreting Tactons

The first occurrence of the term “tacton” to define short abstract tactile signals conveying
meaning was carried out by Brewster et al. [6]. Prior to this, drawing influence from the
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music literature, vibrations that were destined to be interpreted by the end user were
known as “tactile melodies” [16].

Subsequent research has focused on evaluating tactons for their usefulness to and per-
ception by users [17]. The investigation was further extended to mobile devices [18, 19]
and mobile phone alerts [20].

Tacton analysis typically refers to the analysis of the interpretation of tactons from a
perceptual standpoint. In the case of VT tactons, this interpretation implies a form of
communication between the generating device (i.e. the actuator) and the recipient (i.e. the
user). This communication channel is typically exploited in a number of contexts. In
some instances, it is used to carry meaning [21, 22], or affect [23, 24, 25, 26]. It can also be
used to convey spatial cues [27, 28, 29], and even transmit linguistic information [30, 31,
32, 33, 34].

These pieces of work highlight the importance of considering the cognitive mecha-
nisms (the mappings) underlying the interpretation of haptic tactons as metaphoric enti-
ties (the meanings).

2.1.2 Tacton Parameters

At the physical level, tactons are time series signals, the two main physical characteristics
of which are frequency and amplitude. Just like any signal, there are, however, a mul-
titude of physical parameters that can be used to further describe them, some examples
of which are: energy, rhythm, duration, roughness, spectral bandwidth, entropy, . . . Due
to the breadth of this parameter space, explaining and classifying tactons only through
frequency and amplitude proves difficult. Designers have thus conducted experiments
to identify the most important characteristics that humans use to distinguish and thus
interpret tactons.

Table 2.1 summarizes the parameters studied in the tacton perception literature through
time. The reader should notice the lack of trend in the table. This lack of trend justifies
the need to identify what physical parameters influence our perception of tactons, in the
hope that this will accelerate the development of meaningful tools to help design them.
In the more recent years, Jones et al. pointed out that “a better understanding of which



2 Background 8

dimensions of vibrotactile stimuli are perceptually important will require a larger set of
stimuli and a wider range of actuators.” [35] In the present work, we tackle just that.
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Table 2.1: Common tacton parameters found in the literature.

Spectral parameters (low-level concepts) Spatio-temporal parameters (high-level concepts)

Author Year Amplitude/
Intensity

Frequency/
Pitch Waveform/ Roughness Duration Tempo/ Rate Rhythm Texture Direction Spatial Location

Brewster et al. [6] 2004 x x x x x x
Brown et al. [17] 2005 x x x x x x
Brown et al. [20] 2006 x x x x x
Brown et al. [18] 2006 x x
Hoggan et al. [36] 2006 x x x x x
Luk et al. [19] 2006 x x x
Hoggan et al. [37] 2007 x
Lin et al. [27] 2008 x x
Ternes et al. [38] 2008 x x x
Hoggan et al. [39] 2009 x x x x x
Brewster et al. [21] 2010 x x
Azadi et al. [40] 2013 x x x
Qian et al. [41] 2013 x x x
Tam et al. [10] 2013 x
Osman et al. [24] 2014 x x x
Pakkanen et al. [29] 2014 x
Barber et al. [28] 2015 x
Seifi et al. [8] 2015 x x x x x
Ernst et al. [42] 2016 x x x
Schneider et al. [43] 2016 x x
Stein et al. [44] 2017 x x x x x
Egloff et al. [45] 2018 x x
Ferguson et al. [26] 2018 x x x x
Jones et al. [35] 2018 x x
Seifi et al. [46] 2018 x x x x x x
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2.1.3 Tacton Libraries

Tacton libraries are structured groupings of stimuli that can give insight into existing
haptic tacton perception knowledge. While not all libraries categorize tactons according
to their physical parameters, the effects that are in the libraries can improve our under-
standing of the cognitive processes behind the meaning-mapping done when receiving
the stimuli.

Guest et al. presented a comprehensive language that describes the whole experience
of touch, thereby establishing a touch lexicon [47]. They conducted a user study to see
how well the adjectives described sensory and emotional aspects of touch, and presented
the sensory attributes in an organized fashion. In 2013, Immersion Corporation released
Haptic Muse,1 an application part of their Haptic SDK that “invites developers into a
haptic museum with galleries built around common gaming use cases, like sports, trans-
portation, combat and casinos.”

In 2014, Israr et al. released a library of haptic feedback called FeelEffects [7]. They
defined a “Feel Effect” as an explicit pairing between a meaningful linguistic phrase and
a rendered haptic pattern. This is the first iteration of a library that illustrates a system-
atic approach to “designing a vocabulary of haptic sensations that are related in both the
semantic and parametric spaces.” [7] This set the way forward for VibViz [8], which cat-
egorized 120 VT effects into 5 distinct categories (physical, sensory, emotional, usage ex-
amples, metaphoric). The library has an interactive tool for end-user library navigation,2

as well as support for open-ended questions such as “Find a vibration that feels like...”.
This is a step towards more robust understanding behind the internal cognitive schemas
that we use to attribute meaning to the abstract stimuli. More recent work from the same
author has focused on improving VibViz, and concluded that the challenges inherent to
haptic evaluation can be “approached through the development of new, haptic-specific
methodologies and evaluation instruments.” [14]

All things considered, it seems that approaches involving scalable data collection to
mapping the users’ comprehension of large sets of haptic tactons are beneficial to further

1https://ir.immersion.com/news-releases/news-release-details/
immersion-releases-haptic-muse-effect-preview-app-android-game

2https://www.cs.ubc.ca/~seifi/VibViz/main.html

https://ir.immersion.com/news-releases/news-release-details/immersion-releases-haptic-muse-effect-preview-app-android-game
https://ir.immersion.com/news-releases/news-release-details/immersion-releases-haptic-muse-effect-preview-app-android-game
https://www.cs.ubc.ca/~seifi/VibViz/main.html
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improve our understanding of the VT space. We conclude by noting that there is, to our
knowledge, no existing library on tacton perceptual similarity.

2.1.4 Personalization & Customization

Previous sections assume that there is a global agreement on perception, that we perceive
tactons in a consistent manner across individuals. Historically, the design of haptic effects
for the general audience has been based on the aggregated perceptual characteristics of
an assumed “average user.” [15] The reality, however, is that people use several cognitive
schemas to make sense of, and describe, qualitative attributes of vibrations, typically rely-
ing on past personal experiences [22, 48]. Therefore, one can assume that tacton perception
varies from one individual to the next; this gives rise to the need for mechanisms that can
model this variation.

One representational approach to express alternate perceptions of the same vibration
is that of facets [14]. Akin to taxonomies, facets are alternative perceptions of the same
vibration. Because facets naturally incorporate the multiple schemas that people typically
make use of, personalizing stimuli can be made easier; however, they do not constitute a
distinct instrument for the development of and/or access to personalized haptics.

Another approach is to ask the end-user to tune the haptics patterns themselves, ac-
cording to their own preferences [49, 9]. Notably, Seifi et al. [49] found that participants
were not interested in “building” their own haptic signals by combining them, but that
there was a significant interest in customizing smartphone notifications in a meaningful
way. When asked to customize the vibrations, they were mostly focused on higher-level,
higher-impact, coarser changes rather than fine-grained tuning of haptic signals, an indi-
cation that users might not be interested in precise personalization but rather more crude
modifications.

Yet another approach to end-user customization on the designer side is to combine
predesigned tactile building blocks to create a personalized vibration or a set of VT stim-
uli [46]. For example, to assign haptic alerts to specific events on smartphones, users may
choose from a small repertoire of integrated vibrotactile patterns, or tap their own vibra-
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tions into the interface.3 Another example is to morph VT patterns (morphing is defined
as constructing a “child” pattern from its parent(s) by deforming it). Clark et al. [50] found
that Dynamic Time Warping (DTW) was useful and showed promise in constructing new
tactons that have predictable features from both parents, but that are also distinguishable
in that they are perceptually different from their parents.

To sum up, personalization and customization are important topics when talking
about tacton perception, because touch is a very intimate and personal sense: we all per-
ceive, make sense of, and describe haptics based on our own life experiences and our
cultural upbringing. Consequently, characterizing this difference is a necessity towards a
greater understanding behind our reasoning mechanisms for attributing meaning to VT
stimuli [14].

2.2 Evaluating Perceptual Similarity

Similarity plays a major theoretical role in the study of human cognition, building the
foundation both for the theory of inductive reasoning [51] and categorization [52, 53].

The degree to which we perceive similarity among a number of things fundamentally
affects our rational thought and behavior. As such, similarity is a core element in achiev-
ing an understanding of variables that motivate behavior and mediate affect — something
that haptics needs to gain access to a broader audience. This is especially true in theories
of the recognition, identification, and categorization of objects, where a common assump-
tion is that the greater the similarity between a pair of objects, the more likely one will be
confused with the other [2].

2.2.1 Measuring Similarity

Measuring similarity is a complex problem in itself that is still the subject of ongoing
discussion in the literature. There are two types of models for measuring similarity: de-
terministic and probabilistic models. The line between these two alternate views can be
blurry: both the percept and the decision process can be probabilistic or deterministic.

3https://www.pcworld.com/article/242238/how_to_use_custom_vibrations_
in_ios_5.html

https://www.pcworld.com/article/242238/how_to_use_custom_vibrations_in_ios_5.html
https://www.pcworld.com/article/242238/how_to_use_custom_vibrations_in_ios_5.html
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The decision process is deterministic if the same information always yields the same re-
sponse; it is probabilistic if a response is random sampled from a probability distribution
at each informational query.

One popular distance-based deterministic technique that leverages similarity judg-
ments is Multidimensional Scaling (MDS), built on the assumption that similarity is in-
versely correlated to percetual distance [54]: stimuli that are judged by subjects to be
similar are close in the perceptual space. This exposes the flaw of these purely determin-
istic techniques: they provide worthwhile information about the aggregate behavior, but
they cannot account for variability in the performance of subjects over time or, perhaps,
across individuals — many theorists thus argue that percepts are more probabilistic in
nature than deterministic [55]. To address this concern, a later statistical procedure called
INDSCAL (INdividual Differences SCALing) [56] extended MDS to account for Individ-
ual Differences and hypothesized that people give different similarity judgments because
of how they weight the various stimulus dimensions. Moreover, a number of machine
learning algorithms have been proposed that can learn the similarity metric either via
Support Vector Machines [57] or via clustering [58].

Conversely, probabilistic models mostly stem from two assumptions: (1) the percept
varies probabilistically over repeated exposures to the stimulus, and (2) there is a well-
defined rule that describes how a response is selected for any momentary value of the
percept [59]. Because they represent the perceptual space by naturally leveraging IDs,
probabilistic models can quantify the uncertainty and the variance that takes places inter-
and intra-participant in haptic perceptual studies. This makes them suitable to character-
ize the uncertainty around tacton similarity perception.

A summary of the different theoretical approaches for measuring similarity is pre-
sented in Table 2.2. In this work, we design a model that is purely probabilistic in both
percept and decision process, i.e. we develop a Type III model inspired from a mixture
between Type I and Type II models (see Section 3.5).
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Table 2.2: Classification of similarity psychometric models. Adapted from [2].

Decision Process
Deterministic Probabilistic

Percept
Deterministic

Type 0
MDS

Type II
Logistic

Probabilistic
Type I

Classical Thurstonian psychophysics [59]
Type III

Probabilistic extensions of Type II models

2.2.2 Similarity in Music

While the notion of haptic similarity remains somewhat unexplored to its full extent,
similarity in music has been explored to great lengths. Indeed, the music literature is a
profound inspiration for the analysis of VT stimuli [16].

Several studies have attempted to assess the thresholds at which human beings per-
ceive music to be similar, especially in the context of music recommendation on online
platforms, so much so that a whole book has recently been dedicated to the subject [12].
Jehan [60] presented a bottom-up approach to music analysis: by combining several short
pieces of musical beats from a sample library (approx. 300 ms), they gathered samples to
produce an “audio DNA” of the tracks.4 Silva et al. [61] measured similarity between var-
ious subsequences of music, thereby improving the cover song recognition problem. Other
notable achievements include the works of Casey et al. [62], who first used machine learn-
ing for sound classification and similarity using Hidden Markov Models, and Cooper et
al. [63], who developed a method to summarize music by averaging the similarity of
segments of entire tracks.

The work done in music similarity serves us as a guide to follow in the haptic domain.

2.2.3 Similarity in VT Haptics

Closest to the present investigation are a number of perceptual haptic similarity studies.
Pasquero et al. [64] were the first to use MDS in measuring perceptual distances between

4This article led to the founding of “The Echo Nest”, a company specialized in audio feature de-
sign. The company is now owned by Spotify. As a second side note, the idea to represent similarity
ratings using a graph also appears in Jehan’s “infinite jukebox” (see http://infinitejukebox.
playlistmachinery.com/faq.html).

http://infinitejukebox.playlistmachinery.com/faq.html
http://infinitejukebox.playlistmachinery.com/faq.html
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tactons. The authors gathered the results from the similarity comparison of a number
of simple waveforms rendered as tactons, and concluded that MDS was a suitable algo-
rithm to cluster VT stimuli dissimilarity. However, this approach cannot model annotator
error or characterize individual differences of the perception of the tacton. Hwang et
al. [65] extended the work of Pasquero et al. by adding adjective comparison on top of the
dissimilarity comparison. Park et al. [66] extended the dissimilarities between amplitude-
modulated waveforms. They found that the most distinguishable feature to perceptual
similarity was the stimulus envelope. Hwang et al. [67] extended the framework by com-
paring superimposed VT stimuli, i.e. two or more sinusoidal signals with different fre-
quencies.

As described in Section 2.2.1, these perceptual studies use MDS as a model for dissim-
ilarity, which does not account for Individual Differences and noise, yet requires a large
amount of data for each tacton. Contrarily, our method tackles the problem of haptic
similarity from a probabilistic perspective, allowing for statistical error characterization
and statistical learning. In addition, this enables us to derive active sampling strategies,
thereby increasing the amount of comparisons that can be done given the same time bud-
get (see Sections 3.5.2 and 3.5.3).
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Chapter 3

A Bottom-Up Approach to Tacton
Evaluation

Preface

This chapter reports on the data-driven approach taken to evaluate the perceptual simi-
larity of VT tactons, and summarizes the technical background necessary for this work.
Section 3.1 describes the flipped approach for sampling tactons and the limitations that
were placed on their generation.

Next, in Section 3.2, we detail the processes by which human judgement evaluate stim-
uli. Afterwards, we detail the crowdsourcing (Section 3.3) and data flow (Section 3.4) pro-
cesses through which participants rate the stimuli. Then, we formalize the probabilistic
model used for perceptual similarity in Section 3.5, and detail how this model facilitates
actively sampling the tacton space for the most informative tactons.

While our setup would technically be suitable for grouping tactons according to any
qualifier (e.g., aggressiveness, urgency, . . . ), we choose to cluster similarity because (1)
in the literature, it has not yet been fully observed at this scale and (2) it is a necessary
step towards identifying more complex qualifiers. Knowing that a group of tactons is
perceived similarly will accelerate the exploration of the tacton space for other qualifiers.
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3.1 Exploring the Tacton Space

3.1.1 Introducing the Bottom-Up Approach

In natural language, humans typically use two reading paradigms to infer meaning and
process language. Top-down processing of language refers to using background infor-
mation to predict the meaning of language. On the other hand, bottom-up processing
of language occurs when affixation is used to guess the meaning. In language, this is
typically used in conjunction with context to understand a text.

In haptics however, practitioners commonly design tactons and then conduct user
studies to evaluate their hypotheses about their perception by the users. This process is
cumbersome, does not scale well to a large number of tactons, and makes the extrapola-
tion of the influence of the tacton characteristics on our perception difficult to evaluate.
This hinders the ability to scale haptics to a level where it could have positive practical
influence on perceptibility [68], to customize tactons in social chat applications [69], or to
encode smartphone interaction parameters [18, 70]. Because they touch on multiple con-
straints such as device diversity and human perception, these use cases are very broad in
nature and require extensive studies with large amounts of data, and may require novel
methods for gathering that data at scale.

Equally important, very little research has been done where small affixations or sub-
tractions are added or removed from tactons to examine the influence of low-level fea-
tures on our perception of VT tactons. Close to this idea however, there have been at-
tempts at performing blending of multiple tactons, also called morphing [50].

In this context, we plan to examine the influence of low-level tacton characteristics
on our perception of similarity. As depicted in Figure 3.1, we propose to flip the design
approach of tactons. We browse the space of all possible tactons, evaluate them in an
iterative yet efficient procedure, and analyze their perceptual characteristics a posteriori
through data mining. This effectively bypasses the cumbersome “design” phase, and
yields greater insight into the perceptual space. Consequently, there is no need for pre-
defined sets of tactons before the experiment: tactons are randomly generated on-the-fly,
alleviating the bias produced by the experimental methodology.
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Fig. 3.1 The proposed bottom-up approach to designing tactons, as opposed
to the traditional top-down approach.

Nonetheless, the proposed approach poses a problem, which is that VT icon ratings are
typically very noisy [8]: the hope is that larger sample sizes may help reduce or simply
characterize this error. This characterization would also give support to the “need to
develop mechanisms for individual customatization” [11]. There could be groups of users
who share preferences and interpretations in terms of haptic perception, but this has yet
to be determined.

All in all, the bottom-up approach offers promise for helping solve the many chal-
lenges affecting the haptic world. In the rest of this thesis, we develop a haptic-specific
evaluation tool that allows for a scalable data collection approach to identify hundreds of
randomly generated tactons and report on the findings.

3.1.2 Tacton Rendering

Tactons are typically rendered on dedicated actuators. A number of years ago, the main
limitation to overcome to successfully bring about large-scale haptic data collection was
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the low availability of dedicated actuators that can render multiple patterns. Fortunately,
the recent mass production of smartphones with haptic actuators is a convenient proxy
for evaluating haptics on a larger scale and for improving our comprehension of our
perception of VT icons.

Unfortunately, smartphones’ actuators are not easily accessible for low-level control.
For instance, at the time of writing, Apple does not yet provide an API to directly control
the haptic actuator in their smartphones. On Android, Google provides an API to control
the actuator, but some (older) smartphones have actuators that do not support custom
vibrations other than binary control (on/off timings). On a large scale, this restricts the
potential space of tactons that can be generated, and thus, evaluated. Nevertheless, as is
the case with pulse-width modulation, we can simulate more complex waveforms with
simple on-off triggering of vibrations. It has also been found that when asked to tweak or
modify stimuli to fit a desired intent, users typically preferred coarser changes to VT icons
than smaller, more subtle changes [49]. With the intent of designing our experiments
for the broadest audience possible, we generate what we call random binary tactons, in
the sense that they are random sequences of on/off vibrations rendered by the haptic
actuator.

3.1.3 Tacton Characteristics

Due to the exploratory nature of study and to mitigate its complexity, we restrict the
dimensionality of tactons in several aspects. First, Ternes et al. suggest that the greatest
useful length of tactons is two seconds [38]. Second, we effectively only modify the fre-
quency parameters of the stimuli, although both parameters (frequency and amplitude)
are intermingled and altering the frequency of a signal also tends to change the perceived
intensity [71]. It has also been suggested that designers vary only one of these two pa-
rameters when conducting experiments [72]. In addition, Nukarinen [73] notes that am-
plitude is a complicated parameter for encoding information. Given the novelty and the
scale of the bottom-up approach, we elect to only vary the frequency of the stimuli.

Third, because we use smartphones as rendering proxies for the tactons, we expect all
participants to feel the VT stimuli in the palm of their hands, thus constraining the spatial
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location. Last, we use stimulus bins of 100 ms to vary the on/off status of the haptic
actuator. This is long enough to resolve the temporal separation of 10 ms [74], yet short
enough to carry meaningful content across two seconds of stimulus. Given one stimulus
is 2 seconds in length, this gives twenty 100 ms bins per stimulus.

The aim of these constraints is to simplify the problem to fit the task of rendering
tactons on a multitude of different smartphones, as well as simplifying the infinite space
of tactons to something tractable and meaningful given previous literature’s suggestions
to designing haptic experiments.

3.2 Discrete Choice Analysis

Subjective data from humans is typically collected in one of two forms: explicit/direct and
implicit/indirect labeling. Explicit labeling refers to collecting data from a data point it-
self (absolute data collection, single ratings), whereas implicit labeling refers to collecting
data from a comparison of two or more elements (relative data collection, multiple rat-
ings). The difference between score-based approaches and comparison-based approaches
exemplifies a “global” vs a “local” view: a score is global, a comparison is local. In other
words, in a multiple comparison scheme, a smaller number of alternatives N will lead to
a more granular view of the space, while a greater number of alternatives will provide
a coarser view of the space. The former is ideal in cases where the score can be defined
naturally in terms of measurable utility. In most real-world scenarios however, an inter-
pretable score (i.e. a Likert scale) can be difficult to define, or is simply nonexistent.

Alternatively, comparison-based approaches are usually done in adversarial contexts,
for instance in online game matchmaking, in image/video quality assessment, in rec-
ommendation systems, or in chess (the ELO rating system is an example of a popular
comparison-based approach). A well known phenomenon in the psychological study of
human choice claims that human response to comparison questions is more stable in the
sense that it is not easily affected by irrelevant alternatives [75]. Also, from an informa-
tion theoretic point of view, you gain more information by asking which of two or more
data points fits your desired label best, rather than placing them on a predefined scale:
the latter does not allow to decide among points that would have been placed at the same
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spot. This is not to say that implicit labelling is exempt of inconsistencies or is robust
to noise: the annotator’s expertise, their emotional state, or external factors such as the
environment or their demographic background all play a role in judgement making.

On the other hand, the disadvantage of the multiple comparisons scheme is that as the
amount of items to be compared, n, grows bigger, the amount of pairwise labels needed
to infer full comparison setting grows exponentially to O(n2). This makes settings in
which n is large difficult to work with, especially considering that human annotations are
expensive and time-consuming.

For the reasons described above, we elect a comparison scheme where we present
between 6 to 8 tactons1 at once to the annotator and asked them to group the tactons in
at least c groups. This multiple comparison scheme also avoids biasing the annotators
with regards to the task by presenting them with a richer sample of data points in the
beginning of the experiment.

We provided a lower bound on the number of groups for a specific reason: in deci-
sion theory, the Independence of Irrelevant Alternatives (IIA) axiom implies that adding
another option to two options does not affect the relative odds between the two options
considered. We deem this axiom unrealistic in our scenario. We relaxed it by allowing
annotators to produce singletons as groups, as long as the lower bound on the amount of
groups is respected.

3.3 Outsourcing to the Crowd

Paid platforms for outsourcing experiments (i.e. deploying them on a large scale) such
as Amazon Mechanical Turk2 (AMT) remunerate participants (informally called turkers)
for the work done. We designed a crowdsourced study to collect a large amount of data
points through AMT.

1In the majority of the experiments that were conducted, we chose n = 6 taking inspiration of Miller’s
Law of 7±2. Although we acknowledge that this law was later revised to lower amounts based on the cog-
nitive load of the task [76], we experimented with several values and found that it led to consistent results
among annotators (see Section 4.1.3). In addition, tactons can be replayed as many times as the annotator
desires during the experiment, and we found that annotators typically solve the task by comparing the n
stimuli in pairs and clustering them accordingly. Consequently, we expect these aids to lower the cognitive
load of the task.

2https://www.mturk.com/

https://www.mturk.com/
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It is necessary to keep in mind that while the outreach of those types of studies is
attractive because it allows to collect a considerable amount of data points in a short
amount of time, one needs to be wary of several drawbacks. Compared to a quiet lab, the
remote and asynchronous environment of AMT is not controlled, which leads to higher
noise in the data. AMT participants have various profiles and reasons for providing data
and participating in experiments, which makes them exhibit specific behaviors, especially
in tasks of mapping subsets of items to categories [77, 78].

According to Eickhoff and de Vries [79], there exist primarily two type of turkers.
The first are “entertainment-driven” workers, for whom the financial part of the task is
not so important, and who work on tasks mainly for the challenge that they pose. The
second are “money-driven” workers, for whom the monetary incentives are greater. For
this category, their chances of cheating the task or providing noisier responses is greater.
There is also evidence that there exists a third type of worker: the curious worker [80],
who is incentivized by either curosity-inducing stimuli during a long task, or the task is
designed in such a way to incentivize the worker not to quit and to complete more tasks
(this resembles the idea of gamification of the task).

In order to fend off most “money-driven” workers, requesters must incorporate robust
quality control techniques into their task on AMT to ensure that the data gathered is con-
sistent and valid [81]. Quality control measures include but are not limited to: simplify-
ing tasks to one single activity and using deterrents to prevent participants from cheating
or not concentrating. Additional quality controls include design-time approaches (effec-
tive task preparation and active worker selection), runtime approaches (input agreement,
ground truth labeling, majority consensus) [82], and ensuring that Turkers report prob-
lems, disabilities, and technical difficulties that might have impacted their performance
during the experiment [83]. It is believed that this honest self-reporting allows for trust-
building between the Requester and the worker pool.

Concretely, fend-off strategies to decipher cheating workers ordinarily consist of the
use of gold-standard data (to discover arbitrarily picked answers) and the use of petty
awareness questions (to catch annotators that are not paying attention) [82]. The aim
behind these strategies is to ensure that data pollution is at its lowest, and to discourage
malicious annotators or spammers to assign the wrong label to data. We elaborate about
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the implementation of the deterrent strategies — which we refer to as attention tests — in
Chapter 4.

In the field of haptics, to our knowledge,there is only one iteration of outsourcing
haptic VT tactons to the crowd: HapTurk [11]. The authors designed a new method for
proxying VT stimuli via the crowd, with the hope of empowering VT designers with
the benefits of crowdsourcing and large-scale data collection. We consider this work a
starting point to the present study and proof that outsourcing haptic VT stimuli to the
crowd is a realistic framework for exploring haptic perception.

3.4 Data Flow

We designed a web architecture that allows for collecting ratings of haptic VT stimuli
from smartphone devices. Each participant downloads the Android application from
the Google Play Store,3 which then connects to our central server and database (see Fig-
ure 3.3). Upon query, the tactons are generated on-the-fly through an API and sent to the
user for annotation.4 The concept of a “vibration API” has been recently explored in the
context of web-based hapticons [84]. The annotation process takes place directly on the
smartphone. Figure 3.2 shows the process by which annotators rate the similarity of a
number of tactons.

Because portability and reusability of the system are a priority, the design of the appli-
cation also takes into account version iteration and task refinement, as is recommended
in crowdsourced user studies where iterating on your user base is considered a robust
practice.

The application supports:

1. Version control: Android applications update automatically by default, so we pro-
vide participants with a password unique to that experiment to enter upon opening
the application. Workers only have access to the password once they accept the
Human Intelligence Task (HIT).

3https://play.google.com/store
4While in this context the data collection task is for similarity ratings, one could easily extend the process

to preference ratings (i.e. this tacton feels more urgent than this other one) among a number of tactons.

https://play.google.com/store
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Fig. 3.2 One round of grouping the tactons into similarity clusters. The user
iteratively evaluates the similarity between the tactons and places them into
clusters. Once they are satisfied with it, they submit the grouping. This process
repeats for R rounds.

2. Participant validation: The Unique User ID number (UUID) is only created once
the user has entered the valid password for that particular experiment. This avoids
populating the database with workers that are not active participants in the study.

3. Persistently anonymous UUIDs: The UUID changes for a same participant with
the application versions. This means that the participant remains anonymous and
cannot be retroactively discovered regardless of the application version.

Once the maximum amount of annotations has been reached, the application provides
a secret key as a completion token. This completion token is logged into the database and
is used to link the participant’s e-mail (in the case of real participants), or their worker
ID (in the case of AMT workers), to the completed HIT. The process can run in parallel
for a number of participants, without interruption (batch-crowdsourcing). As indicated
in Figure 3.3 and due to this parallelism, we make use of checksums between the server
and the participants’ smartphones in order to ensure that the right ratings are matched
with the right haptic signals and the correct user.
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Fig. 3.3 Overview of the software architecture behind the haptic rating sys-
tem.

3.5 Probabilistic Modeling for Similarity Evaluation

Because similarity rating implies an adversarial setting, we take inspiration in binary
choice models such as the Bradley-Terry model for paired comparisons [85] to develop
a probabilistic model of tacton similarity. Contrarily to the BT model however, we do
not attempt to infer a global ranking between the test candidates; rather, our objective is
merely to assess the similarity between the pairs of objects.5

5Because similarity measures are bidirectional, i.e. object A is similar to object B implies object B is
similar to object A, there is no need to infer a global ranking of all the test candidates. It would, however,
be possible to infer a global ranking on the similarity pairs, i.e. the similarity between objects A and B is
greater than between objects A and C.
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3.5.1 Definitions

We denote the whole tacton space T . We denote a candidate tacton Ti ∈ T , and pairs of
candidates {(Ti, T j) ∈ T, i 6= j}. We also extend this scheme to the multiple comparison of
candidates by considering all the pairwise comparisons in set M , {(Ti, T j)|i, j ∈ M , i 6= j}.
On each round r ∈ R, the annotator produces c similarity groups of T , and the outcome y

is decomposed into a series of pairwise comparisons of all {Ti, T j} ∈ T, i < j.
At round r, the outcome of each pair, y r

i j, follows a binomial random variable. The
outcome can be that the pairs are similar (then y r

i j = 1) or that the pairs are dissimilar
(then y r

i j = 0). In that sense, a rating of similarity represents a success while a rating of
dissimilarity represents a failure. As one can imagine, in the multiple comparison scheme,
in a round, we expect the amount of similar pairs will be much lower than the amount of
dissimilar. The intuition behind this is that the mean of a Bernoulli variable is the relative
frequency of the events in the data, and this constitutes the main information content of
the data set [86]: this can lead to biases in the probability estimates move in the direction
of the bias. To avoid having this imbalance in our data, we weighed the outcomes by
a factor wr

i j such that the sum of the outcomes is equal to the number of groupings (c)
performed by the annotators, both in the similarity ratings and in the dissimilarity ratings.

wr
i j =























c r

τr
s

, if Ti s T j, i < j

c r

τr
d

, if Ti � T j, i > j

0, otherwise

(3.1)

τs
r =

m
∑

i

m
∑

j

1{Ti ∼ T j}, i 6= j

τd
r =

m
∑

i

m
∑

j

1{Ti � T j}, i 6= j
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where s represents similarity, 1 is the indicator function, τr
s is the amount of pairs of

tactons that were rated as being similar, and τr
d is the amount of pairs that were rated as

being dissimilar at round r.
We pose the similarity Pair Comparison Matrix (PCM) as a positive square matrix

A in which each {row, column} ({i, j}) locus on the upper triangle (i < j) represents the
similarity weight αi j for objects Ti and T j, and every locus on the lower triangle represents
their dissimilarity weight α ji (i > j). Figure 3.4 shows a graphical visualization of how
we fill the PCM matrix A in a single round using the weighing scheme in Equation 3.2.

We parameterize the error on each annotation outcome y r
i j between tactons Ti and T j

due to extrinsic factors (i.e. human error) and intrinsic factors (i.e. human judgment) by
a Gaussian random variable εi j [87]. We model the performance of the annotator on the
attention test at round r, ηr , as a surrogate for the reliability of the rating [88]. In practice,
we use ηr = 1 for rounds where the attention test was a success, and ηr = 0.5 for rounds
where the attention test was a failure. The pair similarity value αi j is thus defined as the
sum of weighted outcomes up until round R:

αi j =
R
∑

r=0

ηr wr
i j y r

i j + εi j, εi j ∼N (0,σ2
i j) (3.2)

3.5.2 Probabilistic Model

We find the probability of objects Ti and T j to be rated as similar through logistic binomial
regression,6,7 such that

P(Ai s A j) = ŝi j =
1

1+ e−(αi j−α ji)
=

eαi j

eαi j + eα ji
, i < j (3.3)

We fit the data to the model by maximizing the associated likelihood function:
6The logit scale is relevant in the context of similarity where one item is compared against one or multiple

alternatives, and in which the outcome can be represented on a scale from 0 to 1 (the predicted odds). This
representation also works well when the objects for which choices are expressed constitute a “small world”,
where attention is confined to a limited and predefined set of static choices [89]. Note that while we choose
the logit link in the interest of simplicity, one could elect to link according to the probit function with very
similar outcomes.

7Although the observed variable is a weighted function of a binomial random variable, the logistic
function converts the output of the regression back into the predicted odds on a continuous scale.
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Fig. 3.4 Graphical explanation of the weighing scheme for the PCM matrix A.
Note the annotator performance weight ηr is not depicted here.

L(s | A) =
∏

i< j

s
αi j

i j (1− si j)
1−αi j , i < j

=
∏

i< j

s
αi j

i j (s ji)
α ji , i < j

(3.4)

There are two conditions that are required for this maximum likelihood to be valid.
First, each partition of objects must be separable into two nonempty subsets such that
some object in the second set has been preferred to at least one object in the first set [90].
For this very reason and because we do not know the number of annotators upfront, we
grow the number of tactons (and thus the PCM) incrementally during the experiment.
Second, the graph represented by the PCM must be strongly connected [88]. To ensure
full connectivity across the graph, we initialize the PCM with virtual nodes with one
success and one failure.

Assuming the outcomes yi j are independent in probability across time and across an-
notators, we can define the variance σ2

i j of the binomial similarity probability si j as:
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σ̂2
i j = ŝi j(1− ŝi j) =

αi jα ji

(αi j +α ji)2
(3.5)

By maximizing the log-likelihood in Equation 3.4, we can obtain the Maximum Like-
lihood Estimators (MLE) of the similarity pairs ŝi j with their associated variance σ̂i j:

ζi j ∼N (ŝi j, σ̂i j) (3.6)

Note that the σ parameter in Equation 3.6 does not depict the use of a multivariate
normal distribution in the sense that it does not describe the joint interactions between Ti

and T j (due to their independence), rather, it characterizes the variance of the similarity
ratings between two tactons. This notation is used to depict several independent normal
distributions for notation purposes only.

3.5.3 Maximal Information Gain

One unique issue that arises when employing the bottom-up approach to sampling is the
fact that the space of all tactons is unimaginably large and the estimated time to uncover
similarity scores si j from those test candidates remains problematic. For instance, the time
required to uncover the pairwise similarity scores of n test candidates is quadratic (O(n2)).
While randomly sampling the space and hoping for randomness to give rise to useful
information about our perception of tactons could work, we instead elect a sampling
strategy that is rooted in information theory to sample data points in an intelligent and
efficient manner so as to reduce this time complexity.

More formally, in the active learning case, we are interested in finding the pairs of
annotations that would yield the highest Expected Information Gain (EIG). The pairwise
comparison active learning literature typically focuses on using global information to effi-
ciently sample the space of possible comparisons [88]. This strategy works efficiently for
sampling pairs of items where there is an implicit correlation (i.e. covariance) between
pairs of items. Similarity ratings are independent of one-another, so we need to look at
local information to efficiently sample the tacton space. We use an approach similar to
Li et al. [91] to sample pairs of items but adapt it to the case where we do not wish to infer
a global ranking of test candidates.
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We define the expected Kullback-Leibler Divergence (KLD) between the prior proba-
bility distribution P(ζi j) and the posterior distribution given the current outcome P(ζi j|yi j)
as a surrogate to the EIG to be the distance function Di j:

Di j = DK L(P(ζi j | yi j) ‖ P(ζi j)), i < j (3.7)

Di j =

∫

∑

yi j

log
P(ζi j | yi j)

P(ζi j)
P(ζi j | yi j)P(yi j)∂ ζi j, i < j (3.8)

According to Bayes’ theorem, we can rewrite Equation 3.8 as:

Di j =

∫

∑

yi j

log
P(yi j | ζi j)

P(yi j)
P(yi j | ζi j)P(ζi j)∂ ζi j, i < j (3.9)

where P(yi j|si j) is the conditional probability of outcome yi j when comparing Ti and
T j at round r.

We define pi j = P(yi j = 1 | ζi j) and inversely qi j = P(yi j = 0 | ζi j); it follows that
P(yi j) = E(pi j) and P(y ji) = E(qi j).

Given that we only have two possible outcomes yi j, one can simplify Equation 3.9:

Di j =

∫ �

log
pi j

E(pi j)
pi j + log

qi j

E(qi j)
qi j

�

P(ζi j)∂ ζi j, i < j (3.10)

According to Equation 3.6, the similarities follow a Gaussian distribution with mean
ŝi j and variance σ̂i j. The probability density function of the similarities is therefore:

P(ζi j) =
1

σ̂i j

p
2π

e
−
(ζi j−Φ(ŝi j ))

2

2σ̂2
i j , i < j (3.11)

where Φ(·) is a function that maps the logistic output range [0, 1] to a hyperbolic tan-
gent range [−1,1] such that the mean of the normal distribution is not biased towards
similarities. Setting y2 =

(ζi j−Φ(ŝi j))2

2σ̂2
i j

, we have ζi j =
p

2σ̂i j y + Φ(ŝi j) and ∂ ζi j =
p

2σ̂i j∂ y .
Using Equations 3.3 and 3.11, Equation 3.10 can be rewritten as a sum of integrals:
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Di j =

∫

f1(y)e
−y2
∂ y −

∫

f2(y) log f2(y)e
−y2
∂ y +

∫

f3(y)e
−y2
∂ y −

∫

f4(y) log f4(y)e
−y2
∂ y

(3.12)

f1(y) =
1
p
π

1

1+ e−(
p

2σ̂i j y+Φ(ŝi j))
log

1

1+ e−(
p

2σ̂i j y+Φ(ŝi j))
, i < j (3.13)

f2(y) =
1
p
π

1

1+ e−(
p

2σ̂i j y+Φ(ŝi j))
, i < j (3.14)

f3(y) =
1
p
π

1

1+ e
p

2σ̂ ji y+Φ(ŝ ji)
log

1

1+ e
p

2σ̂ ji y+Φ(ŝ ji)
, i < j (3.15)

f4(y) =
1
p
π

1

1+ e
p

2σ̂ ji y+Φ(ŝ ji)
, i < j (3.16)

Equations of the form H(x) =
∫∞
−∞ f (x)e−x2

∂ x can be solved numerically using the
Gauss-Hermite quadrature. We solve each term in Equation 3.12 individually to compute
the EIG. In this study, we use 20 sample points for computing the approximation.
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Fig. 3.5 EIG as a function of the mean rating between two tactons and its
associated variance. As expected, pairs that have as many similarity ratings as
dissimilarity ratings exhibit the highest EIG.
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As seen in Figure 3.5, the EIG is maximal for pairs that have similar scores si j and s ji

and whose variance σ2
i j is large, and is minimal for pairs that have different scores and

small σ2
i j. This is consistent with the intuition that we should sample from pairs that have

maximal uncertainty, meaning pairs that do not exhibit clear similarity or dissimilarity.
For active sampling, we select the batches of tacton pairs that yield the greatest EIG

using the minimum spanning tree (MST) of −Di j. We add a new tacton in the global mix
when the batches from the MST are exhausted. Advantages of using the MST include a
lower computational budget and the possibility of querying batches of pairs of tactons.
For a more thorough explanation and in the interest of space, we refer the reader to Li et
al. [91].

The tactons are then sent to the annotator for evaluation, and the outcomes are weight-
ed according to the procedure defined in Equation 3.2. The process repeats for subsequent
rounds.

3.5.4 Graph Representation

The PCM square matrix A can be viewed as the adjacency matrix of a directed acyclic
graph. However, using logistic regression, we can represent the same information on an
undirected acyclic weighted graph G = (V, E, W ) with edge-weight function set W : E →
[0, 1], where the vertices (V ) represent tactons, the presence of edges (E) represents whether
the pair was compared, and the edge weights (W ) represent the degree to which the ob-
jects in V are similar (a weight of 0 is extremely dissimilar, and 1 is extremely similar), as
depicted in Figure 3.6. The edge weights W are obtained via binary logistic regression, as
described in Equation 3.3.

This type of graph representation showing similarity has been used in several domains
such as audio [92], social networks [93], and computer vision [94], among others. Graphs
put emphasis on the structural relationships between items, and are typically used to
represent information about the topology of the data.

Of notable mention is the work of Perraudin et al. [92], who constructed an audio sim-
ilarity graph, where each vertex is a segment of musical content, and the edges represent
the similarity between the segments. Note that they consider segments of musical tracks,
which is consistent with the concept of tactons (short VT patterns).
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Fig. 3.6 Tacton similarity as edge weights in a graph.

3.5.5 Machine Learning on the Graph

We intend to go further than just establishing the similarity clusters and a hierarchy
among them. We want to extrapolate the similarity to pairs of tactons that have not been
evaluated during the experiment, that is, predict similarity between never-seen-before
tacton pairs. Thus, we create a model that can predict the edge weights from the similar-
ity graph.

The intuition behind edge weight prediction on a graph network is simple: suppose
we have three tactons, the first two of which we know are similar, and we also know that
the first is similar to a third, we can leverage that information to infer similarity between
the second and third. The above example is one of first-order proximity, but it can easily
be extended to the nth-order node proximities (i.e. their n-degree neighbors). The process
of going from node to node along the edges of a graph is called “walking”. In this study,
we make use of Graph Convolutional Networks (GCN) [95] to perform these n-order
walks on the graph. GCNs naturally integrate node features into the learning process,
and high-order walks are made possible by stacking multiple layers.

In statistical inference and supervised learning, one typically splits the data into a
training and a testing set, such that there is no overlap between the two: this is super-
vised learning, which is linked to inductive reasoning. A concern is that, in contrast,
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representation learning on graphs typically assumes a fixed set of nodes to predict edge
information, which is inherently transductive reasoning.

In more mathematical terms, an inductive algorithm aims to learn a function f :

X t rain→ Yt rain, and inference will be made by evaluating f (x i) for all x i in the test set. On
the other hand, a transductive algorithm aims to learn a function f : X t rain×Yt rain×X test →
Ytest , and the predictions follow from this function. In that sense, transductive learning is
closer to semi-supervised learning.

However, in reality, many graphs are evolving: new nodes are added over time. To
allow our graph model to extrapolate to never-seen-before pairs of tactons, i.e., create
new similarity links, we must utilize techniques that do not rely on the whole graph to
infer node embeddings; rather, we must rely on techniques that only consider a node’s
neighborhood when performing the walks. One such technique is that of GraphSAGE [96]
convolution operators. It follows that there is no need to retrain the whole model when
adding a new tacton: the prediction can be performed on-the-fly.
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Chapter 4

Experiments

Preface

In the previous chapter, we introduced a data-driven methodology to gather efficient and
reliable haptic ratings in a crowdsourced setting. This methodology is now applied to
large-scale experiments on AMT.

We survey participants with the objective of mapping perceptual similarity in two
parts:

1. Getting a consensus on what tactons are similar across a large number of tactons
and of annotators.

2. Attempting to extract groups of people who share haptic perceptual similarity.

We refer to the former as the “global” experiment, and the latter as the “persona”
experiment. Although we acknowledge that, in traditional Human-Computer Interac-
tion, personas are intended to be descriptions of a specific aspect or area of focus of an
archetype, here we will use the word in the broader context of “a group of people who
share perceptual similarities.”

Section 4.2 is dedicated to the global experiment, Section 4.3 to the persona experi-
ment, and Section 4.4 links the two together.
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All experiments were approved by McGill University’s Research Ethics Board Office,1

REB file #432-0416. To take part in the experiment, participants were required to acknowl-
edge and accept a consent form.

Author’s Contribution

Marc Demers proposed the research direction, and conducted all experiments. He re-
ceived feedback from David Marino, Jeffrey R. Blum, Pascal Fortin, Yongjae Yoo and An-
toine Weill-Duflos for the analysis of data.

1https://www.mcgill.ca/research/research/compliance/human

https://www.mcgill.ca/research/research/compliance/human
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4.1 Methodology

4.1.1 Participants and Remuneration

All participants were recruited via AMT. We did not impose restrictions on geographical
location or AMT status (Master workers, . . . ). We implemented qualifications to avoid
participants submitting multiple HITs of the same experiment.

We compensated participants in accordance with the minimum hourly wage in Cana-
da (converted to USD), proportionally to the estimated duration of the experiment, which
we estimated to be 10 to 15 minutes. Accordingly, participants were compensated USD
0.40 for submitting a HIT, and were further awarded a bonus payment of USD 1.60 for
obtaining an accuracy score of 80% or greater on the attention tests.

4.1.2 Concurrency

The objective of this study is twofold: find a global agreement on VT perceptual similarity,
and extract individual characteristics of participants to obtain a better model of similarity
perception. Given the intricate links between those two objectives, we decided to conduct
both experiments concurrently. This concurrency is opaque to the participant; from their
point-of-view, there was only a single experiment with multiple rounds of the same task.

To test the global agreement on VT similarity, we ran an experiment where we asked
the participants to cluster tactons into a number of groups according to how “similar”
they perceived them. In this setting, we evaluated similarity iteratively with the active
sampling procedure described in Section 3.5.3. To extract personas, we ran the same pro-
cedure, but the tactons to group are the same across all iterations, across all participants.
The hope is to identify groups of perceptual similarity among the participants from the
repeated measures on the same task.

4.1.3 Pilot Studies

We conducted several pilot studies in order to assess the difficulty of the task for AMT
workers, the summary of which are available in Table 4.1. We first attempted, without
success, to evaluate ratings from a predefined clustering of tactons based on character-



4 Experiments 39

istics that have previously been found to be meaningful in similarity evaluation in the
literature. We later switched to the bottom-up approach in a simple pairwise compari-
son approach, in which the participants were only presented two stimuli at a time and
were asked to rate them. We also set out to implement a calibration phase during which
the participants were presented with toy examples of similar and dissimilar tactons. We
noticed a heavy bias in the participant population after having implemented these mea-
sures. The bias stemmed from the fact that the number of samples of tactons pairs that
were presented in the calibration phase was limited to six.

This made the subspace of tactons to which the participants were exposed non-representative
of the global population of tactons. We did not wish to have the participant population
simply replicate the similarity ratings in a calibration phase, as this would go against the
objective of mapping perceptual similarity. Instead, we are looking for tacton similarity
without inducing any notion of what is similar and what is not.

The final version of our experiment presented the users with a larger amount tactons
at a time, without a calibration phase, and with a more detailed description of the high-
level objectives of the experiment.
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Iteration # Exp. Type # of HITs Description Takeaways

1 AMT 18 We clustered tactons according to their similarity in features, asked workers
to rate the similarity and compared the agreement between the two clus-
terings. Participants were asked to report on 60 randomly selected tacton
pairs.

The clusters were very seldom in agreement with our predefined
clusters.

2 AMT 9 Given that the results were underwhelming, we gave the same task to a
number of AMT workers that have the "Masters" qualification, meaning
that they are known to pay attention to HITs.

Master workers could not identify the clusters either, indicating
that the task was either badly designed or too hard.

3 AMT 30 In an attempt to clarify what was meant by "similarity" ratings, we imple-
mented a calibration phase where the workers were shown toy examples
of pairs of tactons and given the "true" answer before beginning with the
experiment. We also implemented attention tests to see if the participants
was trying to bypass the experiment for financial incentives.

Calibration introduced a bias in the experiment (see Sec-
tion 4.1.3), but stabilized the results. Attention tests helped iden-
tify workers who did not pay attention during HITs.

4 live 13 We compared the above scheme with live participants, in an in-the-lab ex-
periment.

The performance of live participants was found to be very simi-
lar to AMT workers on this type of task.

5 AMT 70 Due to poor performance, we discarded the idea of a priori clustering the
tactons with respect to the similarity in their features, and used the bottom-
up pairwise comparison scheme instead.

The pairwise comparison scheme allowed to extrapolate features
from tactons and group them without setting any a priori cluster-
ing.

6 AMT 30 We attempted to have a "common" round for all participants in an effort to
identify "personas". We also removed the calibration phase because of the
bias that it would induce in personas.

Identification of "personas" or "groups of similar-minded people"
in the data shows promise to have a clearer understanding of the
tacton perception landscape.

7 AMT 10 The strategy that participants used was unclear to us, so we settled on a
post-experiment questionnaire that asked workers about their strategy go-
ing into the experiment, and whether or not it changed during the course of
the experiment.

Most users mapped their perception of tactons through rhythmic
patterns that they perceived.

8 AMT 32 In order to avoid biasing participants with the first few iterations of pairs of
tactons, we switch to querying the users with multiple tactons at a time and
asked them to produce groupings (clusters) by themselves.

Asking the workers to work with more tactons and then revert-
ing back to pairwise similarity ratings is more efficient and in-
duces less fatigue in the workers.

9 AMT 35 We added multiple safeguards for submitting a rating, because some par-
ticipants were suspected to rush through the experiment, highlighting the
need for a disincentive to cheat is necessary in uncontrolled environments
such as AMT; 12 ratings per round; 10 rounds.

12 ratings per round overwhelmed the participants as the agree-
ment between participants decreased.

10 AMT 30 We reduced the cognitive load of the task to fewer rounds and less ratings
per round.

6 ratings per round was a good number for participants to hold
the tactons in memory without complexifying the task.

11 AMT 23 In order to improve the speed at which the probabilistic model converges,
we implemented an active learning method that efficiently samples pairs
from the tacton space given low information gain regions – simulations
show the relevance of this method.

Active learning was successfully tested and shown to reduce
overall uncertainty (as measured through the probabilistic vari-
ance) of tacton similarity.

12 AMT 310 We combine all of the previous pilots’ learning experiences into one final
experiment, the results of which are presented in this work.

Table 4.1 Iterative process behind the final experiment. We ensured that no partici-
pant did the experiment more than once across all iterations.
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4.1.4 Description of the Experiments
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Fig. 4.1 Performance of participants on the “gold standard” attention test.

The final experiment was composed of R = 8 rounds of c = 6 tactons each. Five of
those rounds were dedicated to the “global” experiment, while three were dedicated to
the persona experiment. At each round, participants were asked to produce at least two
groups according to how similar they perceived the VT stimuli. Although a group would
technically comprise two or more tactons, we allowed participants to produce singletons,
so long as the rule above was satisfied. In order to deter participants who enter random
answers, we also required participants to have played each tacton at least three times
before submitting a grouping.

Our pilot studies (see Section 4.1.3) did not indicate that the participants interpreted
the word “similar” in the same manner, some would look for tacton equality rather than
closeness. For this reason, prior to starting the experiment, participants were provided
with the following explanation:

We are NOT asking you to tell us whether the vibrations are the SAME; instead we
are looking for your gut feeling as to whether they feel similar to you. A synonym to
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“similar” would be “close”, “comparable”, “near”, “alike”, or “resembling without
necessarily being identical.”

The complete instruction form that was presented to the participants on AMT is attached
in Appendix A.

Two tactons were identical in each round of the global experiment. This constituted
our “gold standard” attention test: participants passed the test if they grouped those
two tactons in the same cluster. We used this score for compensation and for evaluat-
ing the performance of each annotator, ηr , r ∈ R (see Section 3.5.1). Note that we can
calculate a performance indicator on a per-round basis, ηr , or on an aggregated version
per-participant, ηpar t icipant . This latter per-participant score corresponds to the accuracy
of the attention tests across all five rounds of the global experiment:

ηpar t icipant =
1
R

R
∑

r=1

ηr (4.1)

We used the ηr in compensation and for active sampling (see Section 3.5.1) and used
ηpar t icipant for assessing if the data from a participant was reliable enough to be included
in our pool of valid data (see Section 4.2.1).

Upon completion of the experiment, participants were asked to complete a small de-
mographic information questionnaire comprising a dozen questions (see Appendix B),
along with a unique token to enter on AMT to validate the HIT. The completion tokens
were stored in a database and HITs were approved only if the corresponding completion
tokens were genuine. This procedure is in accordance with common anti-cheating strate-
gies on AMT, because it avoids compensating workers who issue made-up confirmation
codes, who resubmit previously generated codes, or who submit empty tasks and claim
they did not get a code upon task completion [82].

There were 210 participants in total; we retained 129 because of attention test screen-
ing. In total, there were 1032 cluster ratings across 6192 binary tactons.

4.2 Global Similarity Assessment

This section presents the results of the global experiment, where we assess the perceptual
similarity of actively sampled randomly generated tactons. First, we present general re-
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sults on the attention tests. Then, we evaluate the active sampling procedure and show its
relevance. Further, we analyze the data from the similarity experiments, and we extract
ID characteristics from them. Finally, we perform community detection on the network
of tacton ratings to obtain similarity clusters.

4.2.1 Attention Tests

In Figure 4.1, we present the global performance of all participants on the “gold stan-
dard”, that is, if they correctly identified the two identical stimuli at each round. Partici-
pants who scored 80% or more on these questions were awarded a bonus, and we did not
make use of the data in further experiments for participants who scored below 50%.

4.2.2 Active Sampling
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Fig. 4.2 Performance of active sampling vs. a baseline that randomly selects
the same number of pairs at each round. A lower EIG signifies greater cer-
tainty in the groupings.

We evaluated the performance of the active sampling method presented in Section 3.5.3
by comparing it against a baseline of random sampling. The results are shown in Fig-
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ure 4.2. Both curves were calculated on a constant amount of 30 tacton pairs over 1000
rounds. The curves depict the Euclidean norm of the EIG on all possible pairs of tactons: a
lower norm indicates lower uncertainty with respect to the groupings, and is thus better.
As such, we can see, especially in the first 100 rounds, high improvement in the group-
ings’ information content, indicating that the active sampling strategy selects samples
more efficiently than random. In fact, we can quantify the improvement that our active
sampling strategy has in terms of time budget: it takes, on average, around 6.5 times more
rounds to achieve a comparable EIG norm for the random sampling as compared to our
option. Note that while in this plot the curves seem to saturate past the 500th round; in
true experimental conditions, the number of tactons is not constant and the information
gain tends to increase naturally, constantly yielding high EIG opportunities in areas of the
tacton space.

2

1

4

3

0

Rest of network

2

1

4

3

0
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Fig. 4.3 Well-connectedness in the communities found by the Leiden algo-
rithm (left). The right cluster becomes disconnected because node 0 was sent
to another community, thereby dismantling the previously formed red com-
munity. Inspired by Traag et al. [1].

4.2.3 Perceptual Similarity Aggregation

4.2.3.1 Community Detection

Analogous to detecting “cliques” of people in social networks, we use the tacton network
(see Figures 4.4 and 4.5) to detect communities of tactons that share common charac-
teristics and that are perceived similarly on a global scale. We make use of the Leiden
algorithm, an extension of the widely used Louvain algorithm for community detection
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Fig. 4.4 Community detection using the Leiden algorithm in the similarity
network. Edges representing similarity are depicted in green, and those repre-
senting dissimilarity edges are depicted in red.

in networks [1]. The Leiden algorithm is robust to different seeds, supports weighted
graphs, and detects structure in a way that guarantees well-connected communities. Well-
connected communities are communities that do not contain distinct disconnected sub-
graphs (see Figure 4.3). As opposed to the Louvain algorithm, the Leiden algorithm en-
sures that all tactons in one community have some connected path with the others. This
is vital because the similarity links represent the data collected from the participants; ig-
noring well-connectedness would invalidate the results for the purposes of our study.
Intuitively, while this procedure has a tendency to form a lower amount of bigger clus-
ters, it ensures that there are no biases in the community information.

We show the result from the Leiden algorithm in Figure 4.4, where we represent each
community by a distinct node color. The procedure not only detects similarity clusters,
but also provides a hierarchy of similarity for each cluster, which we depict in the dendro-
gram in Figure 4.5. We notice that the orange (#1) and pink (#2) communities are closer
to each other than to the blue community.
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Fig. 4.5 Pairwise similarity ratings across tactons and participants.

4.2.3.2 Community Characterization

We characterize the communities by analyzing the feature distribution of tactons among
each one, and show the results in Figure 4.6. A more detailed description of all the tacton
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Fig. 4.6 Feature distribution across all clusters. The distributions were nor-
malized so as to compare them on a similar scale. The asterix represents sta-
tistical significance across all groups for that feature according to a Kruskal-
Wallis H-test with 95% confidence.

features used for analysis is available in Appendix D. The distributions were standardized
so as to make a fair and clear comparison between the different scales of each feature.
We notice that the blue and orange communities exhibit strong preference for distinct
features, whereas the pink community does not seem to be characterized by any of the
features used in this study. We performed a Kruskal-Wallis H-test to determine which
features could significantly tell apart all three communities with 95% confidence. The
only feature that is statistically significant is the autocorrelation of the signal.

4.2.3.3 General Representation

Figure 4.5 presents a heatmap of the logistic regression on the similarity ratings. A higher
value on the heatmap depicts stronger similarity. Tactons are represented in community
order, on the rows and columns. Each square in the matrix corresponds to one simi-
larity logistic regression on the pairwise evaluations for those two tactons. Alongside
the heatmap, we present a dendrogram which portrays the similarity groups that were
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extracted using the Leiden algorithm [1] on the undirected graph represented by the ad-
jacency matrix. For details on this procedure, see Section 4.2.3.1. The dendrogram also
serves to depict the resemblance between the different clusters obtained.

Observing closer, one might notice the presence of big “holes” in the heatmap. These
holes represent tacton pairs that were never queried for comparison. This is the result
of the active sampling process, which learns the inter-dependencies between the tacton
similarities as the experiment progresses, and avoids comparisons that are redundant or
wasteful. The tactons that were never compared were thus “judged” by the probabilistic
model to have a high probability of being inferred from other relevant ratings.

A second observation is that as the number of tactons grew, the number of ratings
diminished greatly. This is an artifact of MST sampling (see Section 3.5.3). As the number
of tactons grows, the MST only allows to sample each tacton once per batch. In the case
of a high number of tactons, there is a greater chance that a tacton pair would require
more than a single rating to infer “true” similarity values; this introduces irregularities in
the global modeling where the more tactons there are, the less likely the active sampling
algorithm will sample them consecutively.

4.2.3.4 Characterizing Individual Differences

While the probabilistic model gives the average rating of the perceptual similarity of pairs
of tactons, our active learning framework can also give insight into the information gain
from querying that pair of tactons. This can be used as a proxy for the confidence in the
similarity ratings. Not only does this confidence score provide a global picture of the rat-
ings, but it can also be decomposed to show what features account for the most variability
in perception across individuals.

To do so, we first calculated the difference in feature values for each pair of tactons.
We standardized those feature values differences and all EIGs across all tactons to be able
to compare the EIGs. In Figure 4.7, we plotted the histogram of the feature differences
with respect to the EIG. A lower EIG indicates a higher certainty that two tactons are
similar. Darker colors indicate higher count of tacton ratings. One would expect that a
high difference in feature values would lead to a lower uncertainty, i.e., a high degree of
discrimination between the pair of tactons. For instance, if two tactons that have energy
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Fig. 4.7 Characterizing individual differences by decomposing the ratings for
each feature, and looking at the uncertainty (measured by the EIG) of the prob-
abilistic model with respect to the difference in feature values in the tacton
pairs.

values of 0.2 and 0.8 (out of a possible range of 0 to 1, thus a high feature difference)
are found to have a low EIG, we can confidently surmise that energy differences do not
explain individual differences in tacton perception.



4 Experiments 50

Features that exhibit low EIG when their respective standardized features differ by
more than two standard deviations in relative terms are more prone to characterizing
individual differences. As such, we are looking for high density in the rightmost part
of each graph. This would indicate that high differences in the feature’s values for each
tacton in the pair have led to high certainty in the ratings. Conversely, we want to avoid
features whose density is high in the left side.

We see that features such as autocorrelation and first location of minimum, as well as
most features that are discrete in nature (ramp-ups, tempo-related features), tend to be
good for characterizing individual differences.

4.2.4 Discussion

4.2.4.1 Running studies on AMT

All in all, the results of our experiment strongly support the relevance of large-scale data
collection platforms such as AMT in the evaluation of haptic perceptual tools. We how-
ever caution novices from repeating the same errors that we made (see Section 4.1.3): it
took several iterations to get to a point where the data were reliable and usable. Running
haptic studies is already complex; running them in a remote, unsupervised environment
required multiple iterations, robust monitoring tools and data analysis. All things con-
sidered, the lessons learned are that scientists should (1) make use of the bottom-up ap-
proach described in Section 3.1.1 whenever possible, (2) avoid having a calibration phase,
especially when gathering affective ratings (Section 4.1), (3) in evaluation studies, keep
the number of items for comparison low (< 8) to reduce the cognitive load of the task
and prevent workers from focusing on different tasks (Section 3.2), and (4) use the active
sampling scenario described in Section 3.5.2 to reduce the person-time budget required
for the task.

One crucial piece of advice for scientists is to avoid gathering too much information
from a single participant; one should prefer gathering less data across more participants.
Anecdotally, we noticed that the quality of ratings was reduced significantly beyond a
dozen minutes of experiment length: we attribute this mainly to sensory fatigue and loss
of concentration in the participants.
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4.2.4.2 Participant performance

Our haptic-related HITs are done on smartphones, outside of the traditional AMT ecosys-
tem. Moving away from this ecosystem tends to attract dishonest, malicious or simply
distracted participants, because they perceive these studies as less robust to cheaters. Vi-
sualizing the performance of the participants on the attention tasks can better inform re-
searchers when designing studies to run on AMT. To get a better idea of this distribution,
we plotted the attention test accuracy in Figure 4.1.

Through our pilot studies, we estimated that even someone with experience with hap-
tics may make mistakes about the similarity of the same two tactons about one fifth of the
time. Given the objective difficulty of the task of sensing differences in tactons that may
be very subtle for users who have no experience with haptics, we decided to discard the
data from participants whose attention tests results were below 50%, thereby discarding
around one third of the annotators. On one hand, the fact that the amount of annotators
who obtained above 50% is around two-thirds demonstrates that running remote haptic
studies on AMT is a promising direction. On the other hand, the fact that one-third of the
data were discarded highlights the importance of implementing attention tests.

4.2.4.3 Probabilistic modeling

Contrary to previous literature that relied on MDS to offer an understanding of the simi-
larity space, our probabilistic model attempts to model both the similarity between pairs
of tactons as well as the uncertainty surrounding those ratings; we then leveraged this
uncertainty to efficiently sample the tacton space. Figure 4.2 shows that this approach
greatly reduced uncertainty as compared to a random sampling baseline for a constant
number of tactons. The reduction in uncertainty is key to analyze, because haptic eval-
uation is typically very noisy. Unlike more traditional approaches such as MDS, it also
allows us to naturally integrate an analysis of the individual differences in the modeling
(see Section 4.2.3.4). In that sense, our model can be thought of as a hybrid between a
Bayesian and a frequentist appoach to modeling similarity ratings: Bayesian because we
have prior beliefs about the similarity pairs that we update sequentially and the purpose
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of the data collection process is to model the distribution; frequentist because the logit
model of regression does not rely on any prior information.

However, our perceptual similarity model does have its limitations. For instance, our
similarity model relies greatly on the “triangle inequality” [97] for global similarity as-
sessment. An example of the triangle inequality is that while red is similar to purple, and
purple is similar to blue, in contradiction, red is not similar to blue. This goes to show
that in reality, the internal mechanisms by which we distinguish two similar stimuli may
not be based on the same grounds. A second limitation is that similarity may not always
be symmetric. For instance, Tversky [98] reported that most people believe the similarity
of North Korea to China to be greater than the similarity of China to North Korea. In
summary, while the probabilistic model has advantages by modeling both the percepts
and the decision-making processes as probabilistic, it fails to consider the source of the
uncertainty generated by the ratings.

4.2.4.4 Global similarity assessment

All in all, the global experiment presents the first successful attempt at modeling percep-
tual similarity in a “bottom-up” fashion, providing a new perspective on tacton evalua-
tion. While previous haptic evaluation experiments for similarity typically involved 100
or less participants [64, 65, 99, 67], the high number of participants with diverse back-
grounds that took part in this study along with the outside-the-lab setting make the re-
sults more representative of the population in general. Mapping global perceptual sim-
ilarity can be further used in rating propagation in applications like tacton generation,
or in smartphone applications where one haptician might want users to users to discern
coarse changes in the VT patterns.

The main finding is that the approximately 200 binary tactons that were evaluated
could be grouped into three main perceptual similarity clusters, or “communities.” From
examples of tactons associated with each family, and their most salient features, we anec-
dotally labelled the pink, orange and blue communities, “short”, “coarse” and “jittery”
respectively. As seen in Fig. 4.4, the pink community tends to have short tactons, with a
low value of last-location-of-maximum (“short”); the orange cluster has a high number of
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buzzes of duration longer than a single period (“coarse”); the blue community has high
autocorrelation and a high number of buzzes, indicating fast tempo (“jittery”).

While this number may seem low, it is in-line with Seifi et al. [49] who found that
participants typically preferred higher-level changes to vibrations when asked to design
them. This may very well be the case here: the amount of perceptual similarity groups
that can be distinguished in the whole tacton population at a high-level could be quite
low.

Once the communities were determined, we analyzed the features of the distinct tac-
tons that were in those communities in order to gain insight into what the population as
a whole used to judge (dis)similarity. Naturally, due to the fact that we were limited to
binary tactons, the tacton features are less descriptive than those of amplitude-modulated
tactons. In this case, most, if not all, features depict some characteristic of the rhythm or
the tempo of the VT pattern. The only feature that exhibited statistical significance across
all groups is the autocorrelation. The low amount of statistically significant features was
expected, as with only three communities and a low number of clusters the features are
disparate inside each cluster. Given our data, our advice to designers is that if you want
simple, binary tactons to be perceived differently, autocorrelation seems to be the main
parameter to tune (see Figure 4.6). Based on our observations and although it was found
to be marginally non-statistically significant, the already widely used approach of modi-
fying the number of distinct buzzes (e.g., the triple-buzzes, as seen in Fig. 4.6) in a tacton
also seems to be a promising factor to consider to maximize tacton differentiability.

4.2.4.5 Characterizing individual differences

We implemented a methodology to detect the features that were most useful in finding
individual differences from a global consensus on the ratings. We saw that the concepts
of information gain and certainty/uncertainty were closely linked, and that we could use
the latter as a proxy for evaluating the former. Results in Figure 4.7 have shown that
tacton features such as autocorrelation and tempo-related features (i.e., number of ramp
ups or down, number of unique buzzes, etc.) were more discernible of the tactons than
more complex features that had to do with frequency information or signal processing.
In a deeper analysis that would analyze the distinctions between the perception across
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participants, one would therefore want to focus on these features to discern groups of
perceptual similarity.

These results corroborate the comments received gathered through the early pilot ex-
periments where participants gave the feedback that they were mostly focused on the
number of individual “buzzes” in the tactons more than anything else.

One shortcoming is that the number of features for binary tactons is limited. In the
case of more complex tactons, we anticipate that the feature diversity would be greater.
Gathering data on the perceptual similarity of amplitude-modulated tactons would likely
lead to a smoother characterization of the tacton space.

4.3 Personas

As described in Section 4.1.4, we used the same six randomly generated tactons to eval-
uate the persona experiment. We queried the tactons three times per participant, thus
obtaining three groupings on the same group of tactons. We combined these annotations,
and used them to map inter-user haptic similarity perception across all users.

The aggregation procedure is as follows: we first flattened the pairwise ratings inside
the clusters, such that we obtained, given 6 tactons in a round, 6×(6−1)

2 pairwise compar-
isons; we then reduced the dimensionality of each set using UMAP [100]; finally, we used
HDBSCAN [101, 102] to cluster the lower-dimension embeddings into personas. An exam-
ple of the flattening process for the 15 pairwise comparisons obtained from the groupings
for a single round can be seen in Figure 4.8. The final aggregation is the sum of the flat-
tened strings of the three rounds.

Contrarily to the more traditional principal component analysis (PCA), UMAP pre-
serves the global structure in the data – this is useful to later perform meaningful cluster-
ing on the low-dimensional embeddings. HDBSCAN is a clustering algorithm that can
find clusters without the need for a priori specifying the number of clusters. Not only does
it leave items unclustered, it can elect not to cluster an item in any group and provide a
confidence score for each item. The hyperparameters used in both of these algorithms are
available in Appendix E.1, and the linkage tree for splitting the UMAP low-dimensional
embeddings created by HDBSCAN can be seen in Figure 4.9.
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Fig. 4.8 Flattening the persona ratings.

Internally, HDBSCAN splits the various data points into clusters in a hierarchical fash-
ion. The linkage tree is useful to visualize the process by which the individual partici-
pants were split. The cluster count is the highest level grouping that can be formed from
branches of the linkage tree at a given distance level. The depth of the linkage tree plot
depicts the distance of the radii of the cluster centroids in the space of participants. This
points to a trade-off: a high distance will indicate a coarser view of the space, while a
lower distance will produce a tighter one. This is specifically depicted on the three plots
on the right, where we show that the same participants were respectively split into three
groups (clusters) at distance 6.1, eight groups at distance 4.1, and seventeen groups at
distance 2.05.
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Fig. 4.9 HDBSCAN clustering linkage tree for grouping the personas. A
smaller distance indicates a finer clustering. We settled on a splitting distance
of 4.4 because it exhibits the highest agreement between the personas and the
tacton features.

We found the most descriptive persona grouping with respect to the tacton percep-
tion as follows. At each round of the persona experiment, we counted the features of the
tactons that were found similar. At each distance, we performed logistic regression on
the cluster labels using this aggregated count. We summed the count of statistically sig-
nificant features (confidence level 95%) for each regressive model (one per distance) and
plotted it against the distances (see Figure 4.9 on the leftmost plot). The intuition is that a
higher count indicates that more tacton features explained the personas, thus pointing to
a higher relevance of the clusters (persona groupings) at that distance level.

Distance level 4.4 was found to be most explanatory of the features, and yielded six
different persona groups. At that level, HDBSCAN excluded 4 participants from being
in any group. The detailed flattened ratings for each persona group can be found in
Appendix C.
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4.3.1 Feature Saliency across Personas

For each persona group, we evaluated the feature distribution of the global tactons that
that group found similar. We standardized each distribution by subtracting its mean and
dividing by its standard deviation across all groups in order to get a comparable scale for
each group and feature. We plotted the mean of each distribution in Figure 4.10.
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Fig. 4.10 Feature saliency for each persona group and tacton feature.

We notice that the participants in persona groups #2 and #5 exhibit inversely correlated
feature distributions for multiple features, and groups #4 and #5 are sensitive to the same
features as a whole. Groups #0, #1 and #3 do not appear to have correlations with the
other groups.

4.3.2 Demographic Information and Personas

We collected demographic information about each participant after completion of the ex-
periment (see Appendix B for details of the information collected). We one-hot encoded
the demographic information and used Lasso regression to predict the persona groups.
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We then used Student’s t-test to find the demographic information that was statistically
significant predictors of the persona groups. The results are presented in Figure 4.11.
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Fig. 4.11 Demographic information distribution for each persona group.

We found that most participants with white ethnic background were classified into the
same persona group (#5), while all Native Americans were classified into group #1. Also,
nearly all south Asians were classified in group #2. Hispanics were mostly in group #1,
along with Latinos. The persona group distribution is similar among African Americans,
Hispanic and Latinos as they seem to share many similarities with respect to how they
perceive tactile stimuli. The plots for “experience with haptics” and “presence of sensory
disorder” appear to be mostly due to the unanimous presence of group #2 in the negative
responses; this does not appear to be conclusive.



4 Experiments 59

4.3.3 Discussion

The results of the present section are, to our knowledge, the first evidence of haptic eval-
uation tools that explicitly consider and analyze the inter-user differences in the percep-
tion of haptic stimuli through “personas.” Figure 4.9 shows that it is possible to “slice”
the linkage tree of a clustering to extract coarser or finer representations of the popula-
tion. Our haptically motivated method to find the optimal slice has shown promise in
differentiating the personas on a perceptual level (see Figure 4.10), using the feature char-
acteristics of the global tactons that were presented to each persona group’s participants.
We found that specific persona groups exhibited strong preference towards certain fea-
tures of tactons for perceptual similarity. This evidence strongly supports the hypothesis
that tactile perception is not uniform across the whole population.

Further supporting this claim are the results of Figure 4.11. Obvious elements are
that a great majority of Asian participants were found to be in the same persona group;
the same goes for White participants, and participants with Hispanic/Latino origins. We
caution in interpreting these results as proof that haptics is perceived differently across
ethnicities: this could simply be an artifact of the response process on AMT. Further work
that dives deeper into cultural differences in haptics would be needed to confirm or refute
this.

As a side node, we made sure to check the correlation between responses and the
cellphone brands that participants used across the persona groups and could not find
any meaningful link between the two.

Nevertheless, the results in this section reveal promising directions for future research
with regards to looking at differences in haptic perception across the population in gen-
eral. The next section will discuss how we can leverage these personas to gain a greater
understanding of the VT haptic perceptual similarity landscape as a proxy for stimuli
personalization.
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4.4 Predicting Similarity Ratings

4.4.1 Graph Representation Learning

The idea behind graph representation learning is to learn a faithful and exploitable rep-
resentation of the graph structure. We can achieve this by finding a higher-dimensional
representation of each tacton (node) in the graph that combines information from (1) its
temporal characteristics, (2) its one-hop neighbors and their associated similarity weight,
and (3) its n-hop proximity that enforces context sharing (i.e., nodes that share common
neighbors but are not directly connected). We refer to this higher-dimensional represen-
tation as the node embedding, ψ(T ).

Embeddings are not directly interpretable, but the vector similarity between the em-
beddings can give insight into how close two tactons are in the space, and we can perform
supervised or unsupervised learning on these embeddings in a generalizable manner. To
learn these embeddings, we minimize the triplet loss, which maximizes the distance be-
tween an “anchor” tacton A to a “negative” tacton N, while minimizing the distance
between the anchor and a “positive” tacton P. The process is depicted in Figure 4.12, and
can be described mathematically as:

L(A, P, N) =
1
B

B
∑

i=1

max(‖ψ(Ai)−ψ(Pi)‖
2
2 − ‖ψ(Ai)−ψ(Ni)‖

2
2 +α, 0) (4.2)

where α is the margin parameter, used to avoid convergence to trivial solutions, and B
is the batch size. Notice that there is no gain when ‖ψ(Ai)−ψ(Pi)‖

2 < ‖ψ(Ai)−ψ(Ni)‖
2+α,

so in practice we use hard-triplet mining: we only take into account hard or semi-hard
triplets that yield a positive loss. Anchor swap [103] was used to improve the convergence
of the algorithm. We repetitively sample triplets of tactons from the graph, run them
through the GCN model, compute the triplet loss, and backpropagate the error to learn
the embeddings ψ(T ). This is not the first instance of triplet loss being used in haptics:
Priyadarshini et al. also used triplet loss to learn perceptual (dis)similarities in the context
of haptic textures [104].
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Fig. 4.12 The triplet loss maximizes the distance between the anchor embed-
ding ψ(A) and the negative embedding ψ(N) whilst minimizing the distance
between the anchor embedding and the positive embedding ψ(P).

The following section will describe how we evaluated the embedding procedure learned
by the GCN with triplet loss, and will show how the information captured by the embed-
dings has predictive power over tacton similarity.

4.4.2 Predicting Similarity on the Global Experiment Data

As depicted in Figure 4.12, we learned an embedding ψ(T ) for every tacton that summa-
rized its relationship with other items in the graph as well as its physical characteristics.
To validate our embedding in the tacton space, we use them as inputs for a weighted
link prediction model, i.e., a model that can predict the degree of similarity between two
tactons.

We implemented two simple regressors to evaluate the performance of our node rep-
resentations: a linear regressor and a gradient boosting tree regressor, and trained both
models. The parameters for the gradient boosting tree model are located in Appendix E.3.

All of the results presented in Table 4.2 are averaged over a five-fold cross-validation
scheme and over five different seeds for the gradient boosting tree regressor.

4.4.3 Extending Similarity Prediction to Personas

Learning the global similarity with the graph approach is useful, but it would be even
more useful if we could tailor the similarity groups to suit individual participants. Pre-
viously, in Section 4.3, we grouped participants into a number of personas that described
their perceptual similarity. To evaluate these personas, we train the supervised learning
edge weight prediction model for each one and average the results. The performance of
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the weighted link prediction task then acts as a surrogate objective to evaluate the perfor-
mance of our unsupervised embedding procedure (the node representation learning).

We aggregate the results of the inter-persona similarity prediction experiment in Ta-
ble 4.2, and detail the R2 for every persona group in Figure 4.13. Appendix E.2 details the
triplet loss performance and the hyperparameters for tuning our graph learning mod-
els. All models were created using Pytorch Geometric [105] and optimized with Adam
gradient-based optimizer [106].

Table 4.2: Average error on the testing set for the similarity prediction task. All results
are averaged over five different seeds (for the gradient boosting regressor), and cross-
validated in a five-fold scheme.

Experiment R2 RMSE MAE

All Tactons Lin. Reg. 0.081± 0.042 0.249± 0.010 0.246± 0.005
Grad. Boost. 0.152± 0.012 0.129± 0.018 0.120± 0.020

Avg. by group Lin. Reg. 0.132± 0.015 0.238± 0.044 0.221± 0.050
Grad. Boost. 0.272± 0.109 0.091± 0.032 0.089± 0.038

The first observation is that, as is typically the case, gradient boosting performed better
on the task than linear regression. The second is that, as indicated by the R2 scores, the
models were indeed better than predicting the mean of the dataset. The third is that the
average by persona group improves upon the global experiment on average, indicating
that the persona groups were meaningful in the prediction of perceptual VT similarity.

4.4.4 Discussion

4.4.4.1 Performance of learning from the similarity graph

Predicting human behavior has a tendency to be noisy and unreliable, because humans
are complex machines. It is therefore quite encouraging to see that VT tacton percep-
tual similarity predictions were consistently better-than-random. While the range of R2

obtained is quite low, we achieved approximately 10% root mean squared error on the
test set. Although, this score would be deemed mediocre in some contexts, we believe
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Fig. 4.13 Detailed R2 results for all persona groups for the gradient boosting
regressor.

that in haptics it could provide useful information to the designer, or even help further
investigate tacton generation.

4.4.4.2 Performance on learning from the persona similarity graphs

As seen in Figure 4.13, on average, isolating the networks of personas to predict the sim-
ilarity between pairs of tactons increased the prediction scores. Although we cannot di-
rectly know the cause of this increase in score (due to the lack of interpretability of the
learned embeddings), a safe assumption is that the personas groups contain meaning-
ful information about the perception of VT tactons. We hypothesize that the augmenta-
tion in predictive power from the personas models further corroborate the relevance of
our methodology to finding perceptual similarity personas. The personas found were
not simply an artifact of the collection process but contain information about the tacton
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ratings that would not have been found had we looked only at aggregate data from all
participants.

In addition, the results show the relevance of the graph approach for modeling tac-
ton similarity: aggregating information from a tacton’s neighbors helps predict similarity
from that same tacton to others. In that regard, our approach to learning from the graph
is conditional on the validity of the IIA axiom (see Section 3.2 and 4.2.4.3). In reality,
violations of this axiom may account for generally low predictability of human behav-
ior: biases in the response, shifts in selective attention and other factors may account for
most of the error in the predictions; our machine learning model did not account for the
uncertainty in the similarity ratings.

The authors also wish to further highlight the inductiveness of the graph similarity
learning process: there is no need to re-train a model from scratch in order to predict the
similarity between never-seen-before tactons and tactons in the graph. Improvements to
the methodology include making use of graph-centrality features for the tactons, such as
PageRank or the Adamic/Adar index.
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Chapter 5

Conclusion

5.1 Summary

Past work in vibrotactile tacton evaluation has typically focused on designing tactons a
priori, and then conducting user studies to evaluate them. This has allowed scientists
to research meaningful parameters that influenced our perception of tactons, but has
failed to provide a common ground to build robust tooling to support research in haptics,
thereby forcing the community to “reinvent the wheel” on each new study (for a more
detailed explanation, see Section 2.1.2).

In order to prevent this “reinvention of the wheel” on each study, we introduced in
Section 3.1.1 a new paradigm to conduct haptic research, in which tactons are not de-
signed upfront but rather randomly generated and iteratively presented to the user for
comparison. We then extracted patterns and meaning from data mining techniques on
the collected data. This had three main effects: first, all tactons are built from the same
base; second, it mitigated the bias induced by the human design of tactons; third, it en-
abled efficient tacton research outside of typical laboratory conditions. This methodology
required a larger number of samples, which we solved by outsourcing the task to workers
on the Amazon Mechanical Turk platform (see Section 3.3). In order to further simplify
the problem, we restricted the VT tactons to the binary case (Sections 3.1.2 and 3.1.3), and
developed an active strategy to sample pairs of items that optimizes the exploration of
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the space as compared to traditional within-subject studies (Section 3.5.3). This led to a
drastic drop in the required person-time experimental budget by 6.5 times.

As described in Section 2.2, we chose to focus on the evaluation of tactile percep-
tual similarity, as it is a core element in achieving an understanding of the variables that
motivate behavior and mediate affect [2], and as such is a stepping stone towards the
validation of the bottom-up approach.

In order to test the methodology, we conducted a series of pilot studies to properly
design AMT studies for haptics, the takeaways of which can be found in Section 4.2.4.1.
In order to help scientists conduct remote haptic perceptual evaluation studies on AMT,
we suggest (1) avoiding having a calibration phase, especially when gathering affective
ratings, (2) keeping the number of items for comparison low (< 8) to reduce the cogni-
tive load of the task and prevent workers from focusing on different tasks, and (3) using
the active sampling scenario described in Section 3.5.2 to reduce the person-time budget
required for the task. We anticipate that this data-intensive process will allow these re-
searchers to gain greater insight into the underlying mechanisms by which we perceive
and interpret haptic stimuli.

Through data mining, we mapped VT haptic perceptual similarity at scale in Sec-
tion 4.2.3.1. We found that modeling haptic percepts as probability distributions (Sec-
tion 3.5.2) helped characterize the uncertainty in ratings, and this led to greater insight
into our perception of them (Section 4.2.3.4). Particularly, in our study, we found three
distinct clusters, or communities, of binary tactons that were perceived similarly across
all participants in our crowdsourced study. Each cluster is qualified by specific binary tac-
ton parameters, such as the autocorrelation of the signal or the number of distinct buzzes
(see Appendix D).

The uncertainty characterization led to a deeper analysis into “personas,” or groups
of users who share characteristics with regards to their perception of VT stimuli (Sec-
tion 4.3). We provided evidence that the users in these groupings exhibited sensitivity
to specific tacton characteristics (Section 4.3.1), and that some of them could be linked to
demographic information such as cultural background (“ethnicity”) or “prior experience
with haptics.”
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We further found that graphs represented a natural way of modeling haptic similarity
(Section 3.5.4). In a haptic graph, the nodes represent the tactons, and the edges the rela-
tionships between them. Graphs provide a scalable, compact way to represent perceptual
interactions, and they enable us to easily perform machine learning on the haptic data.
From our graph representation, we built a model that predicted the perceptual similarity
between pairs of tactons from the large amount of data gathered through our experi-
ments. The model first learned embeddings for all tactons in the graph using the triplet
loss (Section 4.4.1), and then predicted similarity with either a linear regression or gradi-
ent boosted decision trees (Section 4.4.3). The results showed that the RMSE was consis-
tently lower when using gradient boosting trees as opposed to linear regression (0.249 vs.
0.129), and the R2 improved from 8% to 15%. While these are relatively low scores, this
nevertheless showed promise in the relevance of the predictive model. Adding persona
information to the inputs of the model increased the scores across the board (0.129 vs
0.091 for RMSE, 0.152 vs 0.272 for R2), thereby highlighting the pertinence of the persona
groupings.

5.1.1 Shortcomings

Given the constraints on the experiments, three main shortcomings can be identified.
First, due to hardware limitations on smartphones at the time of conducting early ex-
periments on this work, only binary tactons could be considered. This greatly limited the
amount and the diversity of tacton features that could be analyzed. These days, the ma-
jority of smartphones contain haptic actuators that support amplitude modulation. Run-
ning the studies without the binary tacton constraint, thereby leading to an expansion of
the tacton space, would allow a more complete experiment in the space of possible VT
signals.

Second, results from AMT are often polluted with data from malicious workers. While
screenings and attention tests can alleviate the problem, the screening process is not per-
fect, and some of the noise persists in the data.

Third, although our methodology could be applied to other domains of haptics, our
experiments exclusively focused on vibrotactile stimuli, making the results only applica-
ble to that particular subdomain.
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5.1.2 Potential Impact and Future Work

The potential impact of this study in the haptic community is broad. Firstly, the flipped
approach to bottom-up tacton evaluation along with the probabilistic model are useful
to model perception in a more succinct, directed and generalizable way. The extraction
of persona groups in our participant pool points to the potential for personalizing and
tailoring haptics to suit the users’ needs, which has been identified as essential to increase
haptic adoption in consumer devices [15].

Secondly, an issue raised is that perceptual evaluation studies in haptics typically in-
volved designing a set of tactons with little to no regard to prior work on how to tie the
results to other work in the literature. Every study typically evaluates a subset of the
tacton space, but the results are rarely aggregated into a coherent, organized set. Because
this study employs a bottom-up approach by creating all tactons from the same common
ground, extensions to it could therefore constitute the building blocks to “glue” multiple
studies or libraries of tactons together.

Evaluating similarity in haptic tactons represents a base level from which to extract
more complex perceptual characteristics or interpretations. For instance, knowing that
two tactons are perceived similarly enables us to transfer our knowledge of one tacton to
another (evaluating a single one of the two should tell us plenty about the second). This
further reduces the need for “reinventing the wheel” at every perceptual study.

Additionally, our research suggests that there are specific groups of people in the pop-
ulation who exhibit perceptual similarity in haptics, and that these groups are more than
an artifact of the experiment or of the data because they possess greater predictive power
for perceptual similarity than the entire participant population. While we could not iden-
tify with certainty the provenance of these groups, we expect that future work should be
directed at persona identification from demographic and cultural characteristics.

In the same line of thought, characterizing the personas would enable the classification
of our perception of tactons on a finer level, i.e., digging deeper into what groups of
people share haptic perceptual characteristics. One could predict how an individual will
react to a stimulus without having ever collected data on them, but merely from how
users with similar demographic characteristics have reacted to the stimulus.
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Further lines of research should also be considered in the domain of affective com-
puting. Our probabilistic model and graph theoretic framework, and by extension our
active sampling scheme, could easily be extended to preference rather than similarity.
The main difference is that similarity is symmetric while preference implies a direction in
the judgement of the percept. In similarity, if tacton A is similar to tacton B, the opposite is
assumed to be true as well. However, in preference evaluation, we attempt to infer a rank-
ing from the candidates. For instance, the study could be re-run by asking participants
to group tactons based on their perceived aggressiveness: the objective would then be to
find the most aggressive tacton, which implies ranking the aggressiveness of the tactons.
While a similarity graph is undirected, in this case, due to the fact that aggressiveness is
not symmetric (tacton A is more aggressive than tacton B does not imply the opposite,
in fact, it lowers the probability of the opposite), the “aggressiveness” graph becomes di-
rected. This goes back to the Bradley-Terry model of preference for paired comparisons,
as discussed in Section 3.5.2.
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Appendix A

Instruction Form

Fig. A.1 Instruction form presented to participants before completing the ex-
periment.
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Appendix B

Post-experiment Questionnaire

Fig. B.1 Post-experiment questionnaire.
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Appendix C

Persona Groups



Table C.1: Persona groups composition.

FPC ratings

0 000020131200011, 011010022300001, 011011130310100
1 000000000120100, 000002212211210, 000010030001010, 000031210002212, 000100021000000, 000202002101100,

000210022010101, 000302103212200, 002000012001001, 002000020010000, 002000020102000, 002000021001000,
002000030203000, 002012020100001, 003000012000000, 003000020003000, 003000021002000, 003000021010000,
003000030002000, 003000030003000, 003000030102000, 003000031002001, 003000130003000, 003010030010010,
003012020001011, 003030030000030, 003101023201100, 010000020000010, 010000030000000, 012001031002011,
013010030011010, 013202011120200, 020000030000200, 020010101000201, 021000030001020, 022010031100021,
023000003200000, 023011030010010, 023030030202030, 023300002220300, 030000003000300, 030000010000200,
030012110001322, 033000003300001, 033020030302020, 033030030303030, 100110010010010, 110020000002110,
112010003100000, 113110030103110, 120032221110300, 121010112001210, 130001000000300, ...

2 000010302000020, 000100211000021, 010000301000010, 010302300010000, 102020202111031
3 000210010300000, 032000020200000, 110120110200000, 211230030301010, 222011110200000
4 000020200020000, 001001100011101, 001002000000000, 001010012110100, 002000000011000, 002000000111000,

002000001010001, 002000001111000, 002002003002101, 002002012011002, 002100001000002, 002133020020020,
003001001011001, 003001010200000, 003003032032002, 003021031211021, 003032030121030, 003303003003300,
010032000000000, 011000101010000, 012000002121001, 012000011011003, 012000100101000, 021020200203001,
021200202210101, 031100100110001, 100020002220111, 101001300100002, 112010001120001, 202000000211003

5 000100120201000, 003000000001000, 003000000003000, 003000000012000, 003000001012000, 003000003030000,
003000012020000, 003000100002001, 003001022020000, 003003030030000, 003010000000010, 012000012020010,
013000001102000, 013000013120000, 101100030100000, 102000010012100, 102100010010200
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Appendix D

Description of the Features

Feature Formula Description

Energy T ·T
N Signal energy; in the case of binary tactons, it is equivalent to the

sum of the signal.
Complexity

∑N
i=2

p

(x i − x i−1) · (x i − x i−1) Complexity measures the energy of the signal derivative.
Non-linearity

∑N
i=1 S · rol l(T, 4) · rol l(T, 2) Non-linearity measures the average difference between two de-

layed versions of a signal, and serves to evaluate how many
switches in frequency are in the signal.

Autocorrelation ar gmax(T · conv(T )) Traditional cross-correlation of the signal with a 1-lagged version
of itself.

Spectral Rolloff (outside scope) Frequency at which signal harmonics are filtered out. Calculating
Spectral Rolloff is outside the scope of this table, and should be
done using specialized libraries.

Binary entropy −log2(
T

1−T ) Measure of uncertainty in the signal.
First location of minimum - Index of first value of 0.
Last location of minimum - Index of last value of 0.
First location of minimum - Index of first value of 1.
Last location of minimum - Index of last value of 1.
Num. unique dbl buzzes - Number of unique sequences of pairs 1’s in the signal.
Num. unique trpl buzzes - Number of unique sequences of triplets 1’s in the signal.
Num. unique four plus buzzes - Number of unique sequences of four or more 1’s in the signal.
Num. ramp ups - Number of passages from 0 to 1 in the signal.
Num. ramp downs - Number of passages from 1 to 0 in the signal.
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Appendix E

Learning Experiments Details

E.1 Persona Clustering

E.1.1 Hyperparameters

Table E.1: Hyperparameters for Persona Clustering using UMAP and HDBSCAN.

Parameter Value

UMAP number of neighbors 2
UMAP minimum distance 0
UMAP number of components 2
HDBSCAN minimum cluster size 2
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E.2 Graph Representation Learning

E.2.1 Hyperparameters

Table E.2: Hyperparameters for graph representation learning.

Parameter Value

UMAP number of neighbors 5
UMAP minimum distance 0
UMAP number of components 2
HDBSCAN minimum cluster size 6
GCN number of layers 2
GCN hidden size dimension 16, 32
GCN normalization at each layer true
Batch size (1 batch per epoch) 32
Number of epochs 1250
Learning rate 5e-4
margin α 1e-4

E.2.2 Train/Test Loss Curves
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Fig. E.1 Triplet loss training and testing loss curves, plotted for 1 seed and a
single fold for ease of view.
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E.3 Regressor Hyperparameters

Table E.3: Hyperparameters for gradient boosting.

Parameter Value

Number of estimators 2000
Learning rate 0.06
Number of leaves 750
Regularizer α 2.40
Regularizer λ 0.0
Fraction of features at every split 0.95
Bagging fraction 0.96
Minimum child weight 4e-7
Objective L2 regression
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