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ABSTRACT

A novel algorithm for the estimation of rigid-body angular velocity and attitude—the most challenging part of

pose-and-twist estimation—based on isotropic accelerometer strapdowns, is proposed in this paper. Quaternions,

which employ four parameters for attitude representation, provide a compact description without the drawbacks

brought about by other representations, for example, the gimbal lock of Euler angles. Within the framework of

quaternions for rigid-body angular velocity and attitude estimation, the proposed methodology automatically pre-

serves the unit norm of the quaternion, thus improving the accuracy and efficiency of the estimation. By virtue of

the inherent nature of isotropic accelerometer strapdowns, the centripetal acceleration is filtered out, leaving only

its tangential counterpart, to be estimated and updated. Meanwhile, using the proposed integration algorithm, the

angular velocity and the quaternion, which are dependent only on the tangential acceleration, are calculated and

updated at appropriate sampled instants for high accuracy. This strategy, which brings about robustness, allows for

∗Address all correspondence to this author.
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relatively large time-step sizes, low memory demands and low computational complexity. The proposed algorithm

is tested by simulation examples of the angular velocity and attitude estimation of a free-rotating brick and the end-

effector of an industrial robot. The simulation results showcase the algorithm with low errors, as estimated based

on energy conservation, and high-order rate of convergence, as compared with other algorithms in the literature.

Keywords: quaternion integration, accelerometer strapdown, angular velocity, attitude, estimation

1 Introduction

Estimation of rigid-body twist (point-velocity and angular velocity) and pose (point position and attitude) is a recurrent

need in modern applications, involving air- and spacecraft, driverless automobiles and robots. The estimation can be real-

ized by means of conventional Inertial Measurement Units (IMU), which consist of at least three uniaxial accelerometers

to measure point acceleration and three gyroscopes to measure the three components of angular velocity [1]. Gyroscopes

are able to yield direct measurement of the angular velocity, but suffer from drawbacks of complex architectures, bulkiness,

and high cost, besides drifting. Therefore, gyroscope-free IMU (GF-IMU) using micromachined accelerometers, which are

also named accelerometer strapdowns, are becoming more attractive [2, 3]. A conventional accelerometer strapdown is

an accelerometer layout composed of uni-, bi- and triaxial accelerometers to yield readouts of angular and point accelera-

tion [4, 5]. From these readouts, the rigid-body (strapdown carrier, or simply carrier) pose and twist can be updated. By

far, the most challenging aspects in this context are angular velocity and attitude, hence the motivation of the work reported

here. Because of the applicability to arbitrary planar motion, relatively less complicated fabrication processes, and high

measurement accuracy, accelerometer strapdowns with biaxial accelerometers offer attractive alternatives [6, 7]. Among

biaxial accelerometer designs, an innovative concept for biaxial accelerometers, termed simplicial1 architecture, was pro-

posed by Cardou and Angeles [8]. Based on an improved Simplicial-Biaxial-Accelerometer (SBA) design, a novel concept

of isotropic SBA strapdown was proposed by Zou and Angeles [9]. By virtue of its inherent isotropy, the SBA strapdown

is able to decouple the tangential and centripetal components of the rigid-body acceleration field [10]. By this means, the

rigid-body angular-acceleration estimation becomes independent of the angular velocity, thus overcoming a hurdle in current

accelerometer strapdowns for angular-velocity and attitude estimation [11].

The determination of rigid-body angular velocity and attitude can be expressed in two Cartesian coordinate systems:

body-fixed (local, or strapdown) frame and inertial (global) frame [12]. Direct readouts of accelerometer strapdowns are

described in the carrier-fixed local frame. A transformation from the local frame to the inertial frame is required to describe

the strapdown readouts in the inertial coordinate system. Amongst the most commonly used transformation descriptions are

Euler angles, rotation matrices and unit quaternions [13, 14].

The three Euler angles describe the orientation of a rigid-body with respect to a predetermined fixed coordinate sys-

tem [15]. Although simple to use, the well known gimbal-lock singularity, intrinsic to the Euler angles, limits their applica-

tions in rotation computations [16].

1Paper [8] title carries the wrong qualifier “simplectic.”
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The 3× 3 rotation matrix is also commonly used to describe the rigid-body attitude [17]. The orthogonal rotation

matrix has nine components; however, they are not independent. The matrix column vectors are of unit Euclidean norm—

introducing three constraints—and orthogonal to each other—introducing three additional constraints. Hence, nine compo-

nents and six constraints yield three independent scalars [18, 19]. Enforcement of these constraints for complex systems in

dynamic simulation is computationally expensive [20] and, may we add, unreliable.

Unit quaternions, an elegant, straightforward and computationally robust tool for rotation description, is attractive and

widely used. Four parameters, namely, one scalar and one three-dimensional vector, make up the quaternion [21,22]. A unit

quaternion is defined upon normalizing its components. The normalization is significant in the accuracy and computational

efficiency for continuous tracking of the rigid-body angular velocity and attitude. In some integration algorithms in the

literature, renormalization is required at each time step to keep the quaternion of unit norm. Errors may be incurred, due to

the renormalization, and accumulated during the time span of integration [18, 23].

Instead of renormalization, an integration algorithm that automatically preserves the quaternion unit norm was pro-

posed [24]. The algorithm provides a closed-form solution of the quaternion integration, thereby yielding accurate results

without the roundoff errors produced by classical integration algorithms; however, this algorithm is too complex, and hence,

error-prone. Based on the above concept [24], the integration algorithm was improved by means of a predictor-corrector

scheme that automatically preserves the unit norm during the updating of the rigid-body angular velocity and attitude es-

timation at each time step [25]. By doing this, renormalization is avoided, thus increasing computational efficiency and

accuracy. Improvements on the predictor-corrector methodology were proposed to enforce the evaluation of position- and

velocity-dependent force and torque constraints [20]. The predictor-corrector method predicts the approximate angular ve-

locity at the next time step, by means of the quaternion at the current time step. The corrected angular velocity at the new

time step is determined by the unit quaternion at the same time step via the quaternion multiplication rules.

With increasing demands for accuracy in the estimation algorithm, improvements on the quaternion integration tech-

nique become an effective means to improve the accuracy and robustness of the estimation. Many industrial systems have

high degrees of freedom and multiple force and torque constraints. Within their long operation period, accurate quaternion

integration with relatively large time steps under time-varying constraints is very attractive, but challenging.

In this paper the authors propose a novel estimation algorithm, based on an innovative isotropic accelerometer strapdown

design, for the angular velocity and attitude estimation of a rigid body. Within this methodology, the quaternion at each time

step is not obtained via a Taylor expansion, i.e., the addition or subtraction of quaternions at the previous time steps, but

use direct quaternion-multiplication rules. Upon doing this, the quaternion norm is intrinsically preserved. By virtue of the

isotropic accelerometer strapdown, the rotation matrix is directly obtained by the unit quaternion at the same time step. No

approximation of the unit quaternion is required. Moreover, the isotropic accelerometer strapdown is able to decouple the

tangential from the centripetal component of the angular acceleration under estimation, leaving only the tangential acceler-

ation components to be estimated. This feature helps to greatly ease the estimation. Based on the isotropic accelerometer

strapdown, the proposed estimation algorithm provides a straightforward approach to determining the angular acceleration,

angular velocity and rigid-body attitude. No prediction and correction of the unit quaternion is needed. Noise is handled
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with the aid of the unscented Kalman filter; detailed investigation on the accuracy and efficiency of the algorithm is provided.

The proposed algorithm and other algorithms in the literature are applied on the test simulation examples: a) a free-rotating

brick in space and b) an industrial robot, then compared, to showcase the advantages of ours. Finally, conclusions are drawn.

2 Angular Velocity and Attitude Estimation in an Inertial Frame

Accurate transformation from the local frame of the rigid body under probing, the carrier, to the inertial frame is essen-

tial. For example, in order to yield the angular velocity and attitude information of the end effector of an industrial robot,

an accelerometer strapdown can be directly attached to the end effector, to provide estimation signals in the end-effector

frame. The strapdown moves together with the end-effector, its angular velocity and attitude estimation being in the local

frame. In order to obtain the accurate and non-delayed angular velocity and attitude information in the inertial frame, an

appropriate estimation algorithm is critical. However, it is noteworthy that this algorithm is not a stand-alone concept, but

highly dependent on the strapdown design.

3 An Isotropic Accelerometer Strapdown

3.1 Simplicial-Accelerometers

Based on a fusion of concepts of parallel-kinematics machines and mathematical programming2, a novel concept

of acceleromter design was proposed, namely, simplicial multi-axial accelerometers [8]. Depending on the acceleration

components to be measured, these accelerometers can be uniaxial (SUA), biaxial (SBA), or triaxial (STA). In simplicial-

accelerometer design, the proof-mass is suspended by n+ 1 limbs (n = 1, 2, and3 for uni-, bi- and triaxial, respectively).

Measurement redundancy by one extra limb not only offers robustness against measurement noise, but also enhances the

structure stiffness, particularly in the motion directions other than those of interest.

The SBA design, illustrated in Fig. 1, offers arbitrary translational motions of the proof-mass parallel to its plane, while

providing a high stiffness along the out-of-plane directions. To realize the design objectives, the proof-mass is attached to

three ΠΠ-joints in the same plane as the proof-mass, at 120◦ from one another. The ΠΠ-joint is the serial array of two

Π-joints. A Π-joint, in turn, is essentially a parallelogram linkage [27]. A detailed investigation on the SBA design with

ΠΠ-joints is available [9]. The SBA is designed for fabrication using Microelectromechanical Systems (MEMS) technology,

by means of single-crystal silicon, with a Young modulus E = 1.618× 105MPa, Poisson ratio ν = 0.222 and density ρ =

2.33× 10−15 kg/µm3.

3.2 Accelerometer Strapdowns

Figure 2 illustrates the geometry of an isotropic accelerometer strapdown, in a regular-tetrahedron array. By virtue of

its planar nature, four SBAs are attached onto the tetrahedron strapdown, one on each face. The proof-mass center of mass

(c.o.m.) coincides with the centroid of each face of the strapdown. However, the isotropic accelerometer strapdown is not

2In mathematical programming, a “simplex” is a hyper-polyhedron in a n-dimensional space with the minimum number of vertices, i.e., n+1 [26].
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limited to tetrahedral layouts, but applies to all isotropic polyhedral strapdowns, e.g., the other four Platonic solids, Bucky-

balls, and so on. Meanwhile, the structural simplicity of the tetrahedral strapdown uses a minimum number of accelerometers

and eases its assembly. In comparison with traditional accelerometer strapdowns, which employ uniaxial accelerometers, the

isotropic SBA strapdown offers identical estimation sensitivity along any directions in a plane, thus improving the estimation

accuracy in any direction within the plane. This is realized by the intrinsic planar elastostatic isotropy of the SBA employed

in the strapdown. The proof-mass plane in the SBA includes two principal axes of translational stiffness, at right angles, but

otherwise of arbitrary orientations within the plane. The two principal stiffnesses in the plane, Kx, Ky, are identical, thereby

leading to structural isotropy in the plane.

The position vector of the ith SBA c.o.m., located at Pi in the inertial frame I, is denoted as pi, the centroid C of the

strapdown, of position vector c in I, being given by

c =
1

n

n
∑

i=1

pi (1)

where n is the number of SBAs for the accelerometer strapdown; for the tetrahedron strapdown, apparently, n = 4.

The electrical circuit system etched on the SBA yields signals associated with the displacement of the proof-mass in

its plane, in the local coordinate system Fi of the ith SBA, with origin at Pi. Two additional coordinate frames are also

introduced, the strapdown-fixed coordinate frame S, and the inertial coordinate frame I. One single SBA is not sufficient

to provide a complete estimation of the acceleration of the body under probing. The relative acceleration of each SBA

proof-mass c.o.m. with respect to C is expressed as

p̈i − c̈ = (Ω̇+Ω2)(pi − c), i = 1, . . . ,n (2)

in the inertial frame I, Ω denoting the cross-product matrix of the angular velocity vector ω, defined as [28]

Ω = CPM(ω) =
∂(ω× r)

∂r
, ∀ r ∈ IR3 (3)

Also, a three-dimensional vector πi for the ith SBA is introduced:

πi = pi − c, i = 1, . . . ,n (4)
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Hence, based on eqs. (2) and (4), we have

π̈i ≡ p̈i − c̈ = (Ω̇+Ω2)πi, i = 1, . . . ,n (5)

The acceleration π̈i is decomposed into two orthogonal components, tangential π̈⊥
i and centripetal π̈‖

i , namely,

π̈⊥
i = Ω̇πi, π̈‖

i = Ω2πi, i = 1, . . . ,n (6)

The acceleration readout reported by the ith SBA at point Pi lies in the plane of the SBA, i.e., in the ith face of the

tetrahedron. With reference to Fig. 2, the position vector πi is perpendicular to the ith face of the polyhedron containing

point Pi. This property, termed henceforth the normality property, holds for all isotropic strapdowns3. By virtue of the

geometric isotropy of the tetrahedron as well as the structural isotropy of the SBA, only tangential acceleration readouts are

sensed, while filtering out their centripetal counterparts. This property is significant in simplifying the rigid-body angular

velocity and attitude estimation algorithm.

A direct readout of the ith SBA yields the relative tangential acceleration of Pi w.r.t. C expressed in its local coordinate

frame Fi. In order to express the readout in the inertial coordinate frame I, two coordinate transformations are needed, as

given by their associated rotation matrices: Ri, the transformation matrix from Fi to S, and Q, the proper orthogonal matrix

defining the attitude of the strapdown, i.e., of the carrier, which takes vectors represented in S into their representation in I,

namely4,

Sπ̈⊥
i = Ri

Fi π̈⊥
i , π̈⊥

i = QSπ̈⊥
i , (7)

Further, the 3× n array Π is defined as

Π ≡
[

π1, π2, · · · ,πn

]

(8)

with similar definitions for Π̇ and Π̈.

Based on the definitions of eqs. (7) and (8), for one strapdown containing n SBAs, assembling all n equations in eq. (6)

3In fact, a parallelepipedal array, a brick, which is not isotropic, is also endowed with this property, as illustrated with the example of Subsection 4.1.
4For simplicity, henceforth all vectors expressed in I carry no left superscript.
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yields,

Π̈⊥
= Ω̇Π, Π̈⊥

= Q

[

R1
F1 π̈⊥

1 R2
F2 π̈⊥

2 · · · Rn
Fn π̈⊥

n

]

(9)

where Π is expressed in the inertial coordinate frame I, its relation to the strapdown-fixed coordinate frame SΠ being

Π = Q
Ä

SΠ
ä

(10)

Post-multiplying both sides of the first equation of eqs. (9) by ΠT yields

Π̈⊥ΠT = Ω̇R, R ≡ ΠΠT (11)

Now, taking the axial vector5 of both sides of eq. (11) produces

vect(Π̈⊥ΠT ) =
1

2
Jω̇ (12)

where J is a symmetric, positive-definite matrix, given by [28]

J ≡ tr(R)1−R = QSJQT (13)

in which 1 denotes the 3× 3 identity matrix. In fact, J can be regarded as the 3× 3 inertia matrix of an array of unit masses

collocated at {Pi}
n
1, with respect to C. Since R is body-pose dependent, J is also. In strapdown-fixed coordinates, SJ, given

below, is constant:

SJ = tr(SR)1− SR, R = QSΠ(SΠ)T QT = QSRQT (14)

5The axial vector of a 3×3 matrix A is defined as a ≡ vect(A)≡ ∂(a×v)/v ∀v ∈ IR3, a vector invariant of A [28].
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The angular acceleration for an accelerometer strapdown is obtained from eq. (12) as

ω̇ = 2J−1vect
î

Π̈⊥
(Π)T

ó

(15)

For an isotropic tetrahedral strapdown, SJ = (a2/9)1, where a is the side length of the tetrahedron. It is noteworthy that,

for any isotropic strapdowns with n vertices, SJ is independent of the transformation matrix; it is only related to the side a

of the strapdown itself [11].

For brevity, SJ can be expressed as SJ = σ21, where σ2 represents a scalar factor. Therefore, eq. (13) becomes

J = σ2Q1QT = σ2QQT = σ21 = SJ (16)

Hence, for an isotropic SBA strapdown, the rotation matrix Q is filtered out, which leads to J = SJ, i.e., matrix J of

eq. (13) is immutable under a change of frame.

Consequently, based on the isotropic strapdown property, the angular acceleration is calculated as

ω̇ = 2SJ−1vect
î

QSΠ̈⊥
(SΠ)T QT

ó

=
2

σ2
Qvect

î

SΠ̈⊥
(SΠ)T

ó

(17)

By virtue of the identity vect(abT )≡−(1/2)a×b, the vect(·) expression above can be simplified as vect[SΠ̈⊥
(SΠ)T ] =

(1/2)SPSπ̈⊥, where SP =
[

SΠ1
SΠ2 · · · SΠn

]

denotes a row array of n 3× 3 blocks SΠi that map any three-dimensional

vector r into Sπi × r, Sπ̈⊥ =
[

(Sπ̈⊥
1 )

T (Sπ̈⊥
2 )

T · · · (Sπ̈⊥
n )

T

]T

being a 3n-dimensional vector.

Hence, ω̇ of eq. (17) can be expressed

ω̇ =
1

σ2
QSPSπ̈⊥ (18)

Remarkably, since SP is constant, it need be computed only once, then stored for online use.

Although the isotropic accelerometer strapdown greatly eases the angular acceleration estimation, with reference to

eq. (18), the estimation still requires the rotation matrix Q at each time step. Q can be expressed via its unit quaternion,
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isomorphic to the four-dimensional array η of Euler-Rodrigues parameters, namely,

η =





q

q0



≡





sin(φ/2)e

cos(φ/2)



 (19)

in which the rotation matrix Q is characterized by an axis of direction parallel to the unit vector e, and an angle of rotation φ

about the axis:

Q =
Ä

q2
0 −qT q

ä

1+ 2qqT+ 2q0CPM(q) (20)

with CPM introduced in eq. (3).

The estimation of the angular velocity is not directly obtained from the accelerometer strapdown readouts, but from

the integration of the angular acceleration. Classical integration methods, such as Simpson’s rule, Runge-Kutta, or central-

differences, will always bring truncation errors. Moreover, the estimation of rigid-body attitude and angular velocity are not

independent; they obey a linear relation between the time-rate of change of the array η and the angular velocity, namely [28]

η̇ = Hω (21)

with the 4× 3 matrix H defined as

H =
1

2





q01−CPM(q)

−qT



 (22)

Substitution of eq. (22) into eq. (21) leads to





q̇

q̇0



=
1

2





Ω(t) ω(t)

−ωT (t) 0









q

q0



 (23)

Hence, the precise integration of the angular acceleration plays a significant role in improving the estimation of the

angular velocity and the rigid-body attitude. Classical integration methods are based on Talyor expansion and require addition

or subtraction operations for the quaternion derivatives at each time step. However, the unit norm of the quaternion cannot be
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preserved due to these operations. In order to preserve the unit norm when applying the foregoing methods, renormalization

on the updated quaternion is required at each time step. Even if the renormalization does not require a high computational

effort, it may introduce roundoff error, which, even if small, may contribute significantly to the buildup of drift in the

attitude-estimation algorithm.

Instead of using Taylor expansion, the algorithm proposed here is based on quaternion multiplication, which preserves

the norm of the quaternion intrinsically, thus avoiding renormalization at each time step [24]. Based on this methodology,

an integration algorithm, of the predictor-corrector type, is proposed. Within the methods in the literature, the time-rate-

of change η̇ of the quaternion is known. However, no direct relationship between the angular acceleration signal and the

quaternion is included in the algorithms. Moreover, none of the algorithms available has discussed the applications in

rigid-body angular velocity and attitude estimation by means of accelerometer strapdowns. A novel estimation algorithm of

angular velocity and rigid-body attitude, based on the integration of the quaternion, is proposed in the steps below:

1. Predict the angular acceleration at the (n+ 1/4)th time step based on the unit quaternion.

If the angular velocity at the nth time step is labeled ωn, the angular velocity at a quarter of the next time step is expressed

as

ω
n+ 1

4
= ωn +

1

4
ω̇n∆t (24)

where ∆t = tn+1 − tn, ω̇n being the angular acceleration at the nth time step.

The rotation matrix at the nth time step, based on the current value ηn, with reference to eq. (20), is

Qn =
Ä

q2
n −qT

n qn

ä

1+ 2qnqT
n + 2qnCPM(qn) (25)

where, for the sake of simplicity, qn and qn denote the update of q0 and, correspondingly, of q, at the nth time step.

Within the framework of the scheme proposed by Seelen et al. [20], “quaternion multiplication algorithm” refers to the

direct multiplication of two quaternions, namely,

η
n+ 1

4
=

[

c

(

‖ω
n+ 1

4
‖∆t

8

)

, s

(

‖ω
n+ 1

4
‖∆t

8

)

ω
n+ 1

4

‖ω
n+ 1

4
‖

]





qn

q0n



 (26)

where c(·) and s(·) stand for cos(·) and sin(·), respectively.

Hence, the quaternion at the (n+ 1/4)th time step is determined with respect to ηn, separated by time (1/4)∆t. With
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η
n+ 1

4
known, the rotation matrix at a quarter of the next time step is obtained as

Q
n+ 1

4
=
(

q2

n+ 1
4

−‖q
n+ 1

4
‖2
)

1+ 2q
n+ 1

4
qT

n+ 1
4

+ 2q
n+ 1

4
CPM(q

n+ 1
4
)

(27)

For isotropic accelerometer strapdowns, the angular acceleration at the (n+ 1/4)th time step is

ω̇
n+ 1

4
=

1

σ2
Q

n+ 1
4

SPSπ̈⊥ (28)

2. Calculate the angular acceleration and the angular velocity at the mid-point (n+ 1/2)th time step.

Both angular velocities and quaternions are calculated at proper “fractional” time steps between the n and the (n+ 1)st

steps. The angular velocity, angular acceleration and quaternion at step n+ 1/4 serve as initial guesses for the angular

velocity at the mid-point (n+ 1/2)th time step:

ω
n+ 1

2
= ω

n+ 1
4
+

1

4
ω̇

n+ 1
4
∆t (29)

The quaternion at the mid-point step is determined following the direct multiplication relationship:

η
n+ 1

2
=

[

c

(

‖ω
n+ 1

2
‖∆t

8

)

, s

(

‖ω
n+ 1

2
‖∆t

8

)

ω
n+ 1

2

‖ω
n+ 1

2
‖

]





q
n+ 1

4

q
n+ 1

4



 (30)

The rotation matrix at the mid-point time step is calculated following an approach similar to that in eq. (27), namely,

Q
n+ 1

2
=
(

q2

n+ 1
2

−qT

n+ 1
2

q
n+ 1

2

)

1+ 2q
n+ 1

2
qT

n+ 1
2

+ 2q
n+ 1

2
CPM(q

n+ 1
2
)

(31)

In turn, the angular acceleration at the mid-point time step is calculated based on the rotation matrix:

ω̇
n+ 1

2
=

1

σ2
Q

n+ 1
2

SPSπ̈⊥ (32)
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3. Update the angular velocity and the angular acceleration at the next time step n+ 1 based on their counterparts at the

mid-point time step.

The angular velocity at step n+ 1 is calculated as

ωn+1 = ω
n+ 1

2
+ ω̇

n+ 1
2
∆t (33)

The direct multiplication, following an approach similar to that of time step n+ 1/2, yields

ηn+1 =

ï

c

Å

‖ωn+1‖∆t

4

ã

, s

Å

‖ωn+1‖∆t

4

ã

ωn+1

‖ωn+1‖

ò





q
n+ 1

2

q
n+ 1

2



 (34)

Now the rotation matrix follows:

Qn+1 =
Ä

q2
n+1 −qT

n+1qn+1

ä

1+ 2qn+1qT
n+1

+ 2qn+1CPM(qn+1)

(35)

According to the estimation algorithm of the isotropic accelerometer strapdown, the angular acceleration at the (n+1)st

time step can be obtained as

ω̇n+1 =
1

σ2
Qn+1

SPSπ̈⊥ (36)

4. End.

The proposed estimation algorithm provides a straightforward approach to determining the angular velocity and attitude

of the rigid body using the unit quaternion multiplication at appropriate time intervals. Estimation results at the next time

step are calculated based on the results at a quarter and at a half time step, thus allowing for relatively large time steps, while

yielding accurate estimates. Accuracy and efficiency of the proposed estimation algorithm are discussed in Section 4.
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3.3 Coping with Noise

Due to unavoidable noise, the ith accelerometer readout S ˆ̈π⊥
i (t) is expressed as the sum of three mutually independent

vectors: the actual value of the point-acceleration Sπ̈⊥
r,i(t), the bias error Sδπ̈⊥

b,i and the noise error Sδπ̈⊥
ν,i , namely,

S ˆ̈π⊥
i (t) =

Sπ̈⊥
r,i(t)+

Sδπ̈⊥
b,i(t)+

Sδπ̈⊥
ν,i(t) (37)

The bias and noise errors are modelled as independent random variables following a Gaussian distribution with zero mean

and isotropic variances σ2
b,i13×3 and σ2

ν,i13×3:





Sδπ̈⊥
b,i

Sδπ̈⊥
ν,i



∼N















03

03



 ,





σ2
b,i13×3 O3×3

O3×3 σ2
ν,i13×3















(38)

where 0n denotes the n-dimensional zero vector, 1n×n the n× n identity matrix and Om×n the m × n zero matrix. It is

noteworthy that the bias error is assumed constant throughout, noise error to be white and normally distributed.

The bias and noise errors for the n accelerometers in an isotropic accelerometer strapdown are grouped in 3n-dimensional

vector form as Sδπ̈⊥
b and Sδπ̈⊥

ν , respectively.

Therefore, eq. (37) for an isotropic accelerometer strapdown takes the form

S ˆ̈π⊥ = Sπ̈⊥+ Sδπ̈⊥
b + Sδπ̈⊥

ν (39)

3.4 Error Propagation

With reference to eq. (18), let y = α ≡ ω̇, the estimator ŷ of y being defined as

ŷ ≡ α̂ =
1

σ2
QSPS ˆ̈π⊥ (40)

Likewise, with reference to S ˆ̈π⊥ in eq. (39), ŷ is decomposed as

ŷ = y+ δyb+ δyν (41)

where y ≡ (1/σ2)QSPSπ̈⊥, δyb ≡ (1/σ2)QSPSδπ̈⊥
b , and δyν ≡ (1/σ2)QSPSδπ̈⊥

ν .
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Based on eq. (38), following a Gaussian distribution, δyb and δyν are expressed as





δyb

δyν



∼ N











06,





Σ2
y,b O3×3

O3×3 Σ2
y,ν















(42)

where Σ2
y,b ≡ (1/σ4)Q

î

Σn
i=1σ2

b,i
SΠi(

SΠi)
T
ó

QT , and Σ2
y,ν ≡ (1/σ4)Q

[

Σn
i=1σ2

ν,i
SΠi(

SΠi)
T
]

QT , with SΠi denoting CPM
(

Sπi

)

.

3.5 State-space Model

For the proposed estimation scheme, the state-space model is formulated as

ẋ = Fx+Gu

ŷ = h(x)+ δyν

(43)

where

x =
[

αT ωT δyT
b

]T

, δyb = δαb, u =
[

γT βT
α

]T

,

F =













O3×3 O3×6

13×3 O3×6

O3×3 O3×6













, G =













13×3 O3×3

O3×3 O3×3

O3×3 13×3













, h(x) = α+ δαb

The system inputs {γi}
3
1 and {βα,i}

3
1 are the time-rates of change of the angular acceleration—termed the angular

jerk—and those of the bias errors, respectively, which cannot be measured directly by an accelerometer strapdown. Hence,

piecewise-constant functions are employed to model uk, a six-dimensional vector with random constant values, which follows

a Gaussian distribution with zero mean and covariance matrix Σ2
u, namely,

u(t) =



















































u0, for t0 ≤ t < t1

u1, for t1 ≤ t < t2

...
...

uk, for tk ≤ t < tk+1

...
...

uk ∼ N
¶

06,Σ2
u

©

The angular jerk and the time-rates of change of the bias errors are assumed to be stochastically independent, their
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covariance matrices taking the form:

Σ2
u =





σ2
γ 13×3 O3×3

O3×3 σ2
β13×3



 (44)

where σ2
γ 13×3 is the covariance matrix of γ, σ2

β13×3 that of βα.

It is assumed that the initial estimate of the angular acceleration α̂0 and that of the angular velocity ω̂0 are independent,

with Gaussian distributions of means α0 and ω0, respectively, and corresponding isotropic variances σ2
α,013×3 and σ2

ω,013×3.

Therefore, the initial estimate x̂0 for the state-space system above is given as

x̂0 ≡













α̂0

ω̂0

δα̂b













∼ N



































α0

ω0

03













,













σ2
α,013×3 O3×3 O3×3

O3×3 σ2
ω,013×3 O3×3

O3×3 O3×3 Σ2
y,b



































(45)

3.6 Signal-to-noise Ratio

The signal-to-noise ratio (SNR) is significant in the sensitivity analysis of accelerometer strapdowns, which is defined

as [29]:

SNR = 20× log10ε (46)

where ε denotes the error between the true angular acceleration vector α and the one contaminated with noise, α̂, namely,

ε =
‖ α ‖2

‖ δα ‖2
=

‖ α ‖2

‖ α− α̂ ‖2
(47)

with ‖ · ‖2 representing the Euclidean norm of ( ·).

A highly obtrusive background noise will result in a low SNR, which means a low strapdown sensitivity.

3.7 Unscented Kalman Filter

In comparison with the commonly used extended Kalman filter (EKF), the unscented Kalman filter (UKF) [30–32] has

superior implementation properties and performance. On the one hand, in the UKF, no Jacobian or Hessian calculations

are required, which means a terser implementation. On the other hand, the fundamental idea underlying the UKF is the

unscented transformation (UT), which is the method for calculating the statistics of a random variable undergoing a nonlinear
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transformation [31]. In the UT, a deterministic sampling procedure is conducted, in which the sampling points fully capture

the true mean and covariance of the state variable, the a-posteriori mean and covariance thereby being accurate up to the

second order for a nonlinear function. In contrast, the EKF can only achieve first-order accuracy. For details of the procedure

to implement the UKF for coping with noise, the reader is referred to Appendix A.

4 Simulation Results and Discussion

The proposed estimation algorithm is tested with an example of the angular velocity and attitude estimation of a free

rotating brick and the end-effector of an industrial robot. The estimation algorithm is tested and compared with the classical

integration as well as the predictor-corrector method. Criteria for evaluating the comparison includes kinetic energy error,

root-mean-square error, angular velocity, rate-of-convergence, and computational time.

4.1 Free-rotating brick

The brick, while not isotropic, is endowed with the normality property, introduced in Subsection 3.2, the property being

exploited in this example.

Energy conservation is one of the most important criteria in evaluating the performance of numerical algorithms when

integrating the governing equations [25]. The simulation example in testing the estimation algorithm based on energy

conservation pertains to a free rotating brick in the absence of gravity, under conservative conditions. No external forces

or moments are applied on the brick. Hence, the total mechanical energy is the kinetic energy of the brick, which remains

constant, namely,

E =
1

2
Ixω2

x +
1

2
Iyω2

y +
1

2
Izω2

z (48)

where I = diag(Ix, Iy, Iz) is the inertia matrix of the brick, ω = [ωx, ωy, ωz]
T being its angular velocity.

The error in the energy conservation is expressed as

ε =
∥

∥

∥

∥

En −E0

E0

∥

∥

∥

∥

× 100% (49)

where En is the kinetic energy at the nth integration time step, E0 the initial kinetic energy.

One isotropic SBA strapdown is attached to the brick, as illustrated in Fig. 3. The dimensions of the free-rotating brick

are given as a = 0.3 m, b = 0.2 m, and c = 0.1 m. A frame B is attached to the brick under probing, with its origin O located
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at the brick center of mass. The equation of motion of the brick is

Iω̇+ω× Iω = 03, ω0 = [10, 15, 19]T rad/s (50)

where I is the inertia matrix with respect to OXYZ, expressed in frame B, which is given as

I = ρ diag(2.5, 5.0, 6.5)× 10−3 kgm2

with a density ρ = 2700 kg/m3. Assuming that ω0 is not parallel to any of the principal directions of inertia—coincident

with the directions of the brick edges—the brick will wobble.

Estimation algorithms based on three quaternion integration methods: a) classical Runge-Kutta; b) predictor-corrector;

and c) the proposed algorithm, are investigated, then compared under energy-conservation conditions. The time-history of

the angular velocity ωx under estimation over a simulation interval of 2.0 s is shown in Fig. 4. The error in the kinetic energy

as a function of time is illustrated in Fig. 5. For all numerical methods, the time step size is set as ∆t = 1.0× 10−4 s.

The error in the total rotational energy for all numerical methods under test is small. However, the proposed method

shows better energy conservation with smaller error. All methods show a slight increase of the error over simulation time,

with the proposed method showing the smallest increase.

The computational time for different numerical methods is also recorded and compared. Over the simulation time of

2.0 s, using the same time step size of ∆t = 1.0×10−4 s, the computational time for the Runge-Kutta method, the predictor-

corrector method and the proposed method are 0.875 s, 1.210 s and 0.944 s, respectively.

Within the numerical integration of the proposed algorithm, the quaternion norm ‖q‖ is recorded at each time step, as

illustrated in Fig. 6. It is apparent that the normality of the rotation quaternion is fairly well preserved.

For the free rotating brick, the SNR of the strapdown in estimating the angular acceleration is obtained as

SNR =













SNRx

SNRy

SNRz













=













35.68

30.84

30.12













(51)

4.2 Industrial robot

The second simulation example pertains to the angular velocity and attitude estimation of the end effector of an industrial

robot, the PUMA 560. This is a typical six-axis robotic manipulator, developed by Victor Scheinman at Unimation.

The angular velocity and attitude of the PUMA 560 end-effector are estimated using the isotropic accelerometer strap-
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down, directly attached to the end-effector, as illustrated in Fig. 7. A Matlab-based toolbox to calculate the angular velocity

and attitude of the end effector and joint motion of the robot between any two Cartesian poses, i.e., the initial and final

poses, is available [33]. Figure 8 describes the spatial smooth path followed by the operation point of the end-effector (the

end-effector tip) from the initial to the final position in three dimensional space, over the operational time of two seconds.

End-effector orientation is illustrated at sampled points on the curve. The end-effector orientation is defined as that of the

Frenet-Serret frame, a.k.a. the moving trihedron, composed of the tangent, normal and binormal unit vectors associated with

every smooth curve [34]. This triplet of vectors, arranged, in order of listing, in a 3× 3 matrix, represent the orientation of

the smooth curve.

In robotics, the 4×4 homogeneous transformation matrix T is commonly used to represent the three-dimensional pose.

The homogeneous matrix belongs to the special Euclidean group of dimension three, i.e., T ∈ SE(3), which is expressed as

T =





R p

0T 1



 (52)

where 0 denotes three-dimensional zero vector, R the 3× 3 rotation matrix, and p the position vector of the operation point

of the end effector.

The 4×4 transformation matrix is used to represent the initial and final poses of the end-effector. The numerical values

of this matrix, for the initial and the final poses, are

TI =



















1.000 0 0 0.400

0 −1.000 0 0.200

0 0 −1.000 0

0 0 0 1.000



















TF =



















0 0 1.000 −0.400

−1.000 0 0 −0.200

0 −1.000 0 0.300

0 0 0 1.000



















(53)

A smooth trajectory from the initial to the final pose is obtained by nonlinear interpolation, by means of 20,000 time

steps over a simulation time of 2.0 s. The angular velocity and attitude of the end-effector from the toolbox are recorded and

compared with their counterparts by various estimation algorithms. Figure 9 illustrates the angular acceleration component

ω̇x of the end-effector from the toolbox.

The estimation algorithms, including the quaternion integration by means of the classical Runge-Kutta method, the
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predictor-corrector method, and the proposed algorithm, are tested and compared. Figure 10 illustrates the estimation of

the angular velocity component ωx of the end-effector from various numerical methods, as a function of time over 2.0 s of

simulation time. For all methods, the time step size is set as ∆t = 1.0×10−4 s. All numerical methods show good agreement

with the angular velocity from the toolbox output; apparently, the proposed algorithm shows the lowest error.

Using our algorithm, the time-histories of the quaternion components are plotted in Fig. 11. Within the proposed

algorithm, the norm of the quaternion is automatically preserved, as shown in Fig. 12.

The rate of convergence for various numerical methods is investigated. The root-mean-square (rms) error with respect

to the angular velocity ωx from the toolbox output is calculated based on the error at each time step, namely,

β =
∆t

T

N
∑

n=1

βn (54)

where βn is the error at the nth time step, N being the final time step over the simulation time T = 2 s.

Due to the intrinsic preservation of the unit norm of the quaternion for both the predictor-corrector method and the

proposed algorithm, the numerical integration of the unit quaternion will always converge.

The time step size is set from ∆t = 1.0× 10−3 s to ∆t = 1.0× 10−6 s, for comparison of the rate of convergence, as

the Runge-Kutta method does not converge for a larger time step. It is noteworthy from Fig. 13 that, for all the time step

sizes in the test, all numerical methods converge; however, the predictor-corrector method and the proposed method show a

superlinear rate of convergence, while the classical Runge-Kutta method shows a linear rate, apparent from the slope of the

convergence curve.

For the industrial robot, the SNR of the strapdown in estimating the angular acceleration is obtained as

SNR =













SNRx

SNRy

SNRz













=













17.02

22.78

33.92













(55)

5 Conclusions

The authors proposed a novel algorithm for the estimation of rigid-body angular velocity and attitude using isotropic

accelerometer strapdowns, based on unit-quaternion integration. The unit quaternion offers a simple, accurate description

of rigid-body orientation. It has several intrinsic advantages over alternative representations like Euler angles and the full

rotation matrix. On the one hand, the unit quaternion, which requires four parameters to specify the orientation, provides

an accurate estimation without the gimbal-lock problem; on the other hand, Euler angles and rotation matrices suffer from

inherent drawbacks of instability and singularity-occurrence. The unit-quaternion integration algorithm, based on the rules

of quaternion multiplication, offers additional advantages, namely, improving accuracy and avoiding renormalization at each
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time step.

The isotropy of the accelerometer strapdown is capable of filtering out the centripetal acceleration component, leaving

only the tangential component to be estimated, thus significantly easing the estimation procedure. By virtue of the isotropic

strapdown, the proposed algorithm is able to provide a straightforward, efficient and accurate estimation of rigid-body angular

velocity and attitude. A direct relationship between the angular acceleration and the quaternion is established, the proposed

algorithm thus being simpler than the conventional predictor-corrector method. The angular acceleration, angular velocity

and rigid-body attitude at time step n+ 1 are calculated with respect to a quarter n+ 1/4 and a half time step n+ 1/2. By

doing this, the estimation algorithm allows for a relatively large time step, thus allowing for low memory demands while

improving the computational efficiency. By virtue of intrinsic normalization of the quaternion, the proposed algorithm leads

to a high accuracy. Noise is taken into account in the accelerometer readouts and handled by the unscented Kalman filter.

The angular velocity and attitude estimation of a brick rotating freely in space and the end-effector of an industrial robot are

used to test the proposed algorithm and its comparable counterparts. Simulation examples illustrate that energy conservation

is met within a low error; the study on rate of convergence shows that the proposed algorithm has a superlinear convergence.

As per the simulation results, the improved estimation algorithm for isotropic accelerometer strapdowns is accurate and

efficient.
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Appendix A: Working Process of the UKF

Selection of sigma points:

The n-dimensional random variable xk−1 with mean x̂k−1 and covariance Uk−1 is approximated by a set χk−1 of 2n+ 1

sigma points and their associated weights, given by

χk−1 = {
Ä

x
j
k−1, Wj

ä

| j = 0 . . .2n} (56)

The sigma points are selected as explained below, which incorporates higher-order information:

x0
k−1 = x̂k−1

xi
k−1 = x̂k−1 +

(
»

(n+λ)(Uk−1)
)

i
, i = 1. . . . ,n

xi+n
k−1 = x̂k−1 −

(
»

(n+λ)(Uk−1)
)

i
, i = 1. . . . ,n

(57)

where λ = α2(n+κ)− n is a scaling parameter, while α determines the spread of the sigma points around x̂k−1, which is

usually set to a small positive value, e.g., 10−4 ≤ α ≤ 1. As demonstrated elsewhere [32], the typical value of κ is set to

either 0 or 3− n. Besides,
Ä

√

(n+λ)(Uk−1)
ä

i
refers to the ith column of the Cholesky factorization.
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The UKF includes two steps:

(1) Model Forecast Step:

The state-transition matrix is introduced for any time step ∆t = tk+1 − tk:

Φ(tk, tk+1) = eF∆t = 1n×n +F∆t ≡ Φ (58)

with the assumption that ∆t = h is constant. Then, according to Brogan [35], the system state at time tk+1 is expressed

as:

xk+1 = Φxk +ϒuk (59)

where ϒ = Gh+FGh2/2. Further, the discrete-time measurement equation takes a form similar to the continuous-time

counterpart of eq. (43):

ŷk = h(xk)+ δyν,k (60)

Based on the UKF, each sigma point is propagated through the process model in eq. (59):

x
f ,i
k = f(xi

k−1) = Φxi
k−1

x̂−k =

2n
∑

i=0

W m
i x

f ,i
k

V−
k =

2n
∑

i=0

W c
i

Ä

x
f ,i
k − x̂−k

äT
+ϒΣ2

uϒT

(61)

with W m
0 = λ/(n+λ), W c

0 = λ/(n+λ)+
(

1−α2+β
)

, W m
i =W c

i = 0.5/(n+λ), i = 1, . . . ,2n, where β is employed to

incorporate the prior knowledge of the distribution of x.

Sigma points are propagated through the observation model of eq. (60) to obtain their predicted measurement counter-

parts:

y
h,i
k = h

(

xi
k−1

)

(62)
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The predicted observation ŷ−k , the innovation covariance Vỹk ỹk
and the cross-correlation matrix Vxkyk

are calculated as

sample statistics of the sigma points:

ŷ−k =
2n
∑

i=0

W m
i y

h,i
k

Vỹk ỹk
=

2n
∑

i=0

W c
i

Ä

y
h,i
k − ŷ−k

äT
+Σ2

y,ν

Vxkyk
=

2n
∑

i=0

W c
i

Ä

x
h,i
k − x̂−k

äT
+Σ2

y,ν

(63)

(2) Data Assimilation Step:

x̂+k = x̂−k +Kk

Ä

yk − ŷ−j

ä

Kk = Vxkyk
V−1

ỹk ỹk

V+
k = V−

k −KkVỹk ỹk
KT

k

(64)
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Fig. 2. Isotropic tetrahedron SBA strapdown
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Fig. 4. Comparison of the estimation of the angular-velocity time-history for three integration algorithms
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Fig. 5. Error in kinetic energy for three integration algorithms
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Fig. 6. Quaternion norm
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Fig. 7. PUMA 560 industrial robot
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Fig. 8. PUMA 560 operation point trajectory
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Fig. 9. PUMA 560 end-effector angular acceleration component ω̇x
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Fig. 10. PUMA 560 end-effector estimated angular velocity component ωx
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Fig. 11. Quaternion components of the end-effector attitude
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Fig. 12. Time-history of the computed norm of the quaternion
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Fig. 13. log-log plot of error in ωx vs the inverse of time step 1/∆t
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