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Abstract

In this thesis, we study sequences of functions of the form Fnp → {0, 1} for varying n,

and define a notion of convergence based on the induced distributions from restricting the

functions to a random affine subspace. One of the key tools we use is the recently developed

theory of ‘higher order Fourier analysis’, where the characters of standard Fourier analysis

are replaced with exponentials of higher degree polynomials. This is not a trivial extension

by any means, but when the polynomials are chosen with some care, the higher order

decomposition can be taken to have properties analogous to those of the classical Fourier

transform.

The result of applying higher order Fourier analysis in this setting is the necessity to

determine the distribution of a collection of polynomials when they are composed with

some additional linear structures. Here, we make use of a recently proven equidistribution

theorem, relying on a near-orthogonality result showing that the higher order characters

can be made orthogonal up to an arbitrarily small error term.

With these tools, we prove that the limit of every convergent sequence of functions can

be represented by a limit object which takes the form of a certain measurable function

on a group we construct. We also show that every such limit object arises as the limit of

some sequence of functions. These results are in the spirit of analogous results which have

been developed for limits of graph sequences. A more general, albeit substantially more

sophisticated, limit object was recently constructed by Szegedy in [Sze10].
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Abrégé

Cette thèse étudie les séquences de fonctions de la forme Fnp → {0, 1} pour n variant, et

définit une notion de convergence sur la base des distributions induits par la restriction des

fonctions à un sous-espace affine statistique. Un des outils essentiels est la théorie de «l’ordre

supérieur analyse de Fourier», où les caractères de l’analyse de Fourier sont remplacés par

des exponentielles de polynômes de degré plus élevé. Ce n’est pas une extension triviale,

mais lorsque les polynômes sont choisis avec soin, la décomposition d’ordre supérieur peut

avoir des propriétés analogues à celles de la transformation classique de Fourier.

Le résultat de cet application de l’analyse de Fourier est la nécessité de déterminer la dis-

tribution d’un ensemble de polynômes quand ils sont composés avec les structures linéaires

supplémentaires. Ici, un théorème d’équidistribution récemment prouvé est utilisé, en

s’appuyant sur un résultat quasi-orthogonalité montrant que les caractères d’ordre supérieur

peuvent être orthogonale à un terme d’erreur arbitrairement petit.

Avec ces outils, nous montrons que la limite des séquences de fonctions convergentes

peut être représentée par un objet limite qui prend la forme d’une fonction mesurable sur

un groupe que nous construisons. Nous montrons également que chaque objet de limite

est le limite d’une séquence de fonctions. Ces résultats sont dans l’esprit des résultats

analogues qui ont été développés pour les limites de séquences de graphes. Un objet de

limite plus générale, quoique sensiblement plus sophistiqué, a été récemment construit par

Szegedy dans [Sze10].
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Chapter 1

Introduction

A recently emerging theme in the theory of discrete structures is the interplay between local

and global information. One reason for this advent is that modern applications necessitate

the study of prohibitively large objects, in the sense that even traversing the entire structure

is computationally intractable. The main technique we have for working with such objects

is to randomly sample from them and work locally. Thus, there is some motivation to see

what kind of global properties are discernible when looking only at a set of ‘local statistics’

which can be efficiently sampled. This has spurred activity in the field of property testing

in recent years and, not surprisingly, this is a major area of application for much of the

material that will be presented in this thesis.

Now, let us try to make this idea at least slightly more precise. Although ‘local statistics’

is a particularly vague expression, there is a fairly standard program at work here: Given

a discrete structure and a corresponding notion of substructure, every rule for randomly

sampling a (small) substructure induces a probability distribution over the set of all such

substructures. Then one is interested in what kind of properties of the original structure

can be inferred from this distribution. This is still rather abstract, so to dispense with

generality, and also to further motivate what will follow, let us take the time to examine

an example of this program applied in graph theory which has garnered some significant

attention of late.

2014/08/11
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1.1 Subgraph sampling and graph limits

Given a graph G on n vertices and a positive integer k < n, our sampling rule is to

independently choose k vertices from V (G) and look at the subgraph of G induced by

these vertices. For every graph H on k vertices, we denote the probability that a random

map ϕ : V (H) → V (G) preserves both adjacency and non-adjacency by tind(H,G). Here,

if we were to condition on the map ϕ being injective, this would just be the probability

that the subgraph induced by a k-subset of vertices is isomorphic to H. In some literature,

this is even taken to be the definition of tind(H,G). Note that, however, when k = o(n),

the difference between sampling independently or injectively is a quantity going to 0 as n

grows.

The most optimistic question to ask at this point is what values tind(H,G) are required

to reconstruct G. Regrettably, this is not actually possible, and there is an easy counterex-

ample: For any integer m > 2, define the m blowup of G, denoted by G(m), to be the

graph obtained from G by replacing each vertex with m copies, and connecting 2 vertices

if and only if their originals are connected in G. Then note that G and G(m) are indistin-

guishable by (independent) sampling, so we have that tind(H,G) = tind(H,G(m)) for every

graph H. However, this is all that can go wrong. If G and G′ are any two graphs such

that tind(H,G) = tind(H,G′) for every graph H, then there is a third graph G′′ such that

both G and G′ are (possibly different) blowups of G′′. If G and G′ are known to have the

same number of vertices, then this implies that G ∼= G′. For a graph G with n vertices, it

is established that the values tind(H,G) for all graphs H with 6 n vertices determine G. It

is conjectured that the values tind(H,G) for H strictly smaller than G (in either vertex or

edge sense) will suffice, but this remains a large open problem in the area.

Thinking of a graph as a list of subgraph densities gives an interesting perspective on

things. This projects into a very well studied kind of space: real vector spaces. To actually

work in this space, however, there are some hurdles to overcome. One immediate issue is

that the set of graphs under this projection is sorely lacking in limit points. Consider a

sequence of random graphsG(n, 1/2). With high probability, every tind(H,G) with |V (H)|=
k converges to 2−(k2), but there is no finite graph exhibiting these subgraph densities. So to

complete this space, we will need to work with something more than graphs. A sequence

of graphs {Gn}n∈N is called convergent ([LS06]) if tind(H,Gn) converges for every graph

H. We would like to find a ‘limit object’, extending graphs, that correctly completes this
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notion of convergence.

A graphon is a symmetric, measurable function W : [0, 1]2 → [0, 1]. It is instructive to

think of a graphon as a weighted, infinite adjacency matrix. Note that if G is a graph with

adjacency matrix AG then

tind(H,G) = E
v1,...,vk∈V (G)

 ∏
(i,j)∈E(H)

AG(vi, vj)
∏

(i,j)/∈E(H)

(1− AG(vi, vj))


for every graph H on k vertices, so it is not unnatural to define the density of H in a

graphon W as

tind(H,W ) = E
x1,...,xk∈[0,1]

 ∏
(i,j)∈E(H)

W (xi, xj)
∏

(i,j)/∈E(H)

(1−W (xi, xj))

 .
For every graph G on n vertices, we can define a graphon WG as follows. Partition [0, 1]

into n intervals I1, . . . , In of the same measure, and set W to 1 in every rectangle Ii × Ij
where i ∼ j in G. Then the sequence of blowups {G(m)}m∈N converges to WG, in the

sense that tind(H,Gn)→ tind(H,WG) for every graph H. In [LS06], the authors show that

every convergent sequence of graphs converges to a graphon, so that graphons complete

the space of graphs as desired. Moreover, they show that every graphon is the limit of

some convergent sequence, indicating that graphons are precisely the right limit object to

capture this notion of convergence.

1.2 Limits of boolean functions

In this thesis, we are interested in subsets of the vector space Fnp , where p is some fixed

prime and n is a large positive integer. Equivalently, we will want to think of these as {0, 1}-
valued functions over Fnp , and so we will often conflate a set with its indicator function.

Given a subset A ⊆ Fnp , the local information we would like to work with is the distribution

of small linear structures, e.g. arithmetic progressions, contained within the set. Formally,

we define a linear form in k variables as a vector L = (λ1, . . . , λk) ∈ Fkp, where we consider

L to be a linear function from (Fnp )k to Fnp by writing L(X) =
∑k

i=1 λixi for every X =

(x1, . . . , xk) ∈ (Fnp )k. We then define a system of linear forms to be a subset L ⊆ Fk of
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linear forms. We are concerned with the distribution of (A(L1(X)), . . . , A(Lm(X))) where

X ∈ (Fnp )k is taken uniformly at random. Let us denote this distribution by µA(L).

One quantity that is immediately accessible from this distribution is the density of L
in A, denoted tL(A), which is just the probability that all the Li(X) lie inside A. As an

example, consider the system of linear forms {x, x+ y, x+ 2y, . . . , x+ (d− 1)y}, where we

have specified L by the action of each L ∈ L on a pair (x, y) ∈ (Fnp )2. Here it is easy to see

that tL(A) is just the density of d term arithmetic progressions in A, so we can think of L
as ‘counting’ this structure. Somewhat surprisingly, there is an observation to be made (see

Observation 5.2) showing that the values tL(A) for every L′ ⊆ L actually determine µA(L),

so when it is convenient we may work with densities rather than the full distribution.

In fact, we can even further narrow our focus. A linear form L = (λ1, . . . , λk) ∈ Fkp is

called an affine linear form if λ1 = 1. Analogously, we define a system of affine linear forms

as any system of linear forms consisting solely of affine linear forms. Affine systems of linear

forms are, among other things, translation invariant, a property that makes them much

more natural to work with than general systems. Notice that the system of linear forms

counting arithmetic progressions is always affine, and indeed, all of the explicit systems we

encounter will be affine.

For a function f : Fnp → {0, 1} and an affine system L = {L1, . . . , Lm} ⊆ Fkp, there is

another interesting way to think of the distribution µf (L), which is that it is obtained by

restricting f to a random affine subspace. Consider sampling a random affine transforma-

tion T : Fkp → Fnp . Then the random variable Tf : Fkp → {0, 1} defined by Tf : x 7→ f(Tx)

induces a probability distribution on the set of function {Fkp → {0, 1}}. Let us denote

this distribution by µf . Note that further restricting µf to L, we obtain the distribution

µf (L), since the distribution of (TL1, . . . , TLm) over a random T : Fkp → Fnp is just that of

(L1(X), . . . , Lm(X)) over a random X ∈ (Fnp )k.

Now we can define the notion of convergence whose investigation will become the main

topic of this thesis. A sequence of functions {fn : Fnp → {0, 1}}n∈N is called convergent if

the distributions µfn converge for every k, or equivalently, if the densities tL(fn) converge

for every affine system of linear forms L.
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1.3 Fourier analysis and linear densities

For an arbitrary affine system L and a function f : Fnp → {0, 1}, it may be difficult to control

the behavior of tL(f) in terms of f . Developing the theory to do so will constitute a large

portion of the work in this thesis, but there are certain types of systems that are amenable to

a simple analysis. Unfortunately, arithmetic progressions will prove difficult to handle in full

generality, but we will see that 3 term progressions (3-APs) behave quite nicely. Better yet,

we have 3-parallelepipeds, which are given by the affine system L = {x, x+y, x+z, x+y+z}.
Larger parallelepipeds will play a major role in the general theory. The density of 3-

parallelepipeds, i.e. tL(f), is a key quantity, and it will be useful to distinguish it from

other densities. We denote this density by ‖f‖4
U2 and call ‖f‖U2 the U2 norm of f . An

easy exercise shows that the density of 3-APs in a set is always bounded by its U2 norm,

so controlling the U2 norm suffices to force the behavior of 3-APs as well.

There is a beautiful and powerful connection to be made between the U2 norm and

Fourier analysis. To do this, let us recall some of the basic theory. The space of functions

{f : Fnp → C} is a Hilbert space over C with the inner product of two functions f, g : Fnp → C
given by

〈f, g〉 = E
x
f(x)g(x),

where g(x) denotes the complex conjugate of g(x).

For a function f : Fnp → C, the Fourier transform expresses f in the basis of group

characters (homomorphisms from Fnp → C\{0}). On Fnp , these are precisely the functions

{χa}a∈Fnp where χa is defined by

χa(x) = e
2πi
p

∑n
i=1 aixi

for every x ∈ Fnp . The character χ0 (which is just the constant 1) is called the princi-

pal character (of Fnp ), and will usually exhibit different behavior from the non-principal

characters.

For any character χa, we have that

E
x
χa(x) = E

x
χa(x+ y) = χa(y) E

x
χa(x)

for any y ∈ Fn, where the first equality makes use of the group structure of Fn. So if
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χa is non-principal, taking χa(y) 6= 1 implies that Ex χa(x) = 0. Using this, for any two

characters χa, χb, we have

〈χa, χb〉 = E
x
χa(x)χb(x) = E

x
χa−b(x)

which is 1 if and only if a = b. So distinct characters are orthogonal, and a dimension

counting argument shows that they do in fact consist of a basis for the space of functions

{Fnp → C}. This lets us write a function f : Fnp → C as

f =
∑
a∈Fnp

f̂(a)χa

for a unique choice of coefficients f̂(a) ∈ C. The values f̂(a) are called the Fourier coef-

ficients of f , and are computed by Ex f(x)χa(x). The Fourier coefficients of f satisfy the

Parseval identity

‖f‖2
2= 〈f, f〉 =

∑
a∈Fnp

|f̂(a)|2,

which follows easily by replacing f with its Fourier transform: All the non-diagonal pairs

will vanish because the characters are orthogonal.

The largest non-principal Fourier coefficient of a function, denoted by ‖f̂‖∞, is closely

related to its U2 norm. First, we have the identity

‖f‖4
U2=

∑
a∈Fnp

|f̂(a)|4, (1.1)

whose proof is similar to that of Parseval’s with only a bit more effort. Now note that for

any 0 6= a ∈ Fn, we have

f̂(a) = E f(x)χa(x) 6 ‖fχa‖U2= ‖f‖U2 ,

where the non-trivial steps here are both easily implied by Eq. (1.1). Since a 6= 0 was

arbitrary, this gives ‖f‖U2> ‖f̂‖∞. This is an example of a direct theorem, asserting that

functions with large maximum Fourier coefficient also have large U2 norm. There is also

an inverse theorem, which will complete the characterization of such functions. Using
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Eq. (1.1) again, we have

‖f‖4
U2=

∑
a∈Fn
|f̂(a)|46 max|f̂(a)|2

∑
a∈Fnp

|f̂(a)|2,

so if f is bounded by 1 in L2 norm (e.g. if f is {0,1}-valued), then Parseval implies that

‖f‖U26 (‖f̂‖∞)1/2.

Now let us see, informally, how this could be used to determine the behavior of the

densities of simple affine systems. The Fourier transform of f , along with the inverse

theorem for the U2 norm give us a way to decompose an arbitrary function f : Fnp → [0, 1]

into a ‘structured’ part and a ‘quasirandom’ part. Here, the structured part will hopefully

depend only on a bounded number of characters, while the quasirandom part will be small

in U2 norm. Consider the following example of a simple decomposition theorem: For any

ε > 0, take f1 to be the function obtained from f by restricting to its Fourier coefficients

larger than ε2. Then trivially, f2 = f−f1 has ‖f̂2‖∞6 ε2 and so the inverse theorem implies

that ‖f‖U26 ε. There are some significant shortcomings to this simple decomposition, but

it will suffice for the purpose of this discussion.

For any affine system L with densities bounded by the U2 norm (e.g. 3-APs), the

study of tL(f) can be reduced to that of tL(f1), since f1 approximates f in the U2 norm.

Analyzing tL(f1) is not particularly difficult, since it is determined by the distribution of

some characters composed with an affine system of linear forms. Using the orthogonality

properties of characters, this distribution can be shown to be uniform over its support.

1.4 Main results and organization

The primary contribution of this thesis is the construction of a limit object for convergent

sequences of functions {fn : Fnp → {0, 1}}. The limit objects are measurable functions

from a particular infinite group into C which encapsulates the idea of being a function of

a (possibly infinite) collection of polynomials. In the special case where these are all linear

polynomials, this group is just FN
p , and the limit object can be thought of as specifying

an infinite Fourier expansion for a function. Following along lines of work from the theory

of graph limits, we prove that every convergent sequence of functions converges to some

limit object. We further show that every limit object can be obtained as the limit of some

convergent sequence.
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The rest of the thesis will be organized as follows. For an abridged version of the results,

we refer to the reader to our paper [HHH14], which contains only the main results from

Chapter 3 and Chapter 4, along with the better part of Chapter 5.

Chapter 2 will be devoted to laying some necessary groundwork. First, we will define

an extension of the U2 norm (the Ud norm) and prove some of its basic properties. Next,

before we can state the generalized direct/inverse theorem for the Ud norm, we will need

introduce the notion of non-classical polynomials and develop some of their theory. Finally,

we will give the previously mentioned theorem. The general inverse theorem is a highly

non-trivial result, taking considerably more effort than the inverse theorem for the U2 norm.

In Chapter 3, we will show how the inverse theorem Theorem 2.14 can be used to

develop a theory of ‘higher order Fourier analysis’. The key is to develop a decomposition

theorem for the Ud norm, similar to the one we saw for the U2 norm, which has properties

similar to those of a Fourier decomposition. This will allow us to decompose an arbitrary

function into a ‘structured’ part which is a function of some bounded degree polynomials,

as well as a ‘quasirandom’ part which is small in the Ud norm.

Chapter 4 will introduce a notion of complexity for systems of linear forms such that

bounded complexity systems have densities which can be controlled by some Ud norm.

Then, after decomposing f according to Theorem 3.18, we will be able to discard all but

the structured part of f . The chapter culminates with an equidistribution theorem which

allows us to study the behavior of polynomials when composed with low complexity systems

of linear forms using a near-orthogonality condition on the polynomials.

Finally, in Chapter 5 we will show how Theorem 3.18 and Theorem 4.10 can be used

to find a limit object for convergent sequences of boolean functions. We also prove a

semi-relevant result regarding non-classical polynomials which may be useful in other ap-

plications.
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Chapter 2

Basic Background

Notation

The following is a list of the basic notation and conventions that will be used throughout.

For d ∈ N ∪ {∞}, denote [d] = {1, . . . , d} if d < ∞, and [d] = N otherwise. We

shorthand F = Fp for a prime finite field p, and p is always implicitly assumed to be the

characteristic of F. We denote by T the circle group R/Z, and by D the unit disc in the

complex plane. For a function f : Fn → C, we use the normalized Lp norms ‖f‖1= E|f(x)|,
‖f‖2

2= E|f(x)|2, and ‖f‖∞= max|f(x)|, as well as the inner product 〈f, g〉 = E f(x)g(x).

Note that ‖f‖16 ‖f‖26 ‖f‖∞. The expression om(1), or just o(1) when the limiting value

m is implicit, denotes a quantity which approaches 0 as m grows. The limit notation →r

is also used occasionally to indicate convergence as the variable r is taken to infinity. We

write x± ε as shorthand for any quantity in the interval [x− ε, x+ ε].

The operator C will sometimes be used for complex conjugation. For a set A ⊆ Fn, we

will often also use A to denote its indicator function. On the other hand, if A is an event in

some probability space, we will denote its indicator function by 1(A). We will try to stick

to the convention of using lower case letters like f or g to denote functions Fn → C, while

upper case letters like P or Q will be reserved for functions Fn → T. For variables, lower

case (possibly in boldface) will denote a vector, while upper case will be used for variables

coming from a matrix group like (Fn)k, which we will usually shorthand as Fnk.

2014/08/11
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2.1 Uniformity norms

In the paper [Gow01], Gowers introduced a family of norms {‖ · ‖Ud}d∈N, defined on func-

tions f : ZN → C, and used them to give a new analytic proof of Szemeredi’s famous the-

orem on arithmetic progressions. These norms would become known as Gowers uniformity

norms, and have since been used extensively to tackle problems in additive combinatorics.

Before we delve any deeper into this discussion, let us give the basic definition.

Definition 2.1 (Gowers uniformity norm). Let G be a finite abelian group, and d > 1 an

integer. Given a function f : G→ C, we define the Gowers uniformity norm of order d of

f by

‖f‖Ud=

∣∣∣∣∣∣ E
x,y1,...,yd∈Fn

∏
S⊆[d]

C|S|f(x+
∑
i∈S

yi)

∣∣∣∣∣∣
1/2d

. (2.1)

From here on we will often refer to the Gowers uniformity norm of order d as simply

the Ud norm. Also, while we have defined the norm on functions f : G → C, where G

is an arbitrary finite abelian group, we will not need the full generality of this definition.

We will only be interested in the case where G = Fn, so in further instances we will make

this distinction. A final note to make is that when working with Ud norms, it will often

be instructive to consider the case when f : Fn → {0, 1} is boolean-valued, so that f

corresponds to a subset of Fn. Here, when d = 2 we see that Definition 2.1 agrees with our

previous definition of the U2 norm for sets. Analogously, the Ud norm of a set has a clear

meaning which is the Ud norm of its indicator function.

The Ud norm is, roughly, a measure of additive structure. For sets, we can see this

from the definition: If A ⊆ Fn is a set, then ‖A‖2d

Ud
is just the probability that a random

d-parallelepiped lies in the set A. This may seem restrictive, but we will see (much) later

that parallelepipeds are in fact a very general type of structure, in the sense that the study

of arbitrary additive structures, e.g. arithmetic progressions, can be reduced to that of a

suitably high dimensional parallelepiped. This should hopefully give some insight into why

the Ud norms have become so prevalent in the field.

Now, there are many useful properties of the Gowers norms that are not immediate

from Definition 2.1. Indeed, it is not even obvious whether ‖·‖Ud defines a norm at all, and

in actuality, it is not completely true; there is a small caveat. In the case when d = 1, for
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any function f : Fn → C we have

‖f‖U1=

(
E
x,y
f(x)f(x+ y)

)1/2

= |E
x
f(x)|.

Here, we have homogeneity and the triangle inequality, but as there are (many) non-trivial

functions with expected value 0, the U1 ‘norm’ is in fact only a semi-norm. However, we

will soon see that for d > 2, ‖·‖Ud does define a norm. The homogeneity requirement is

trivial from the choice of normalization in Eq. (2.1). What remains is to check the triangle

inequality, and to show that if f : Fn → C is a function, then ‖f‖Ud= 0 if and only if f ≡ 0.

These two facts, and many other basic properties of the Ud norms, can often be proven

by repeated applications of the classic Cauchy-Schwarz inequality. This can be a rather

arduous task, so we are fortunate to have the following lemma from [Gow01] which encap-

sulates several applications of Cauchy-Schwarz into a single inequality which can be applied

in a multitude of ways.

Lemma 2.2 (Gowers-Cauchy-Schwarz inequality). Let d > 1 be an integer and {fS : Fn →
C}S⊆[d] a family of functions indexed by subsets of [d]. Then we have∣∣∣∣∣∣ E

x,y1,...,yd∈Fn

∏
S⊆[d]

C|S|fS(x+
∑
i∈S

yi)

∣∣∣∣∣∣ 6
∏
S

‖fS‖Ud . (2.2)

To prove this, there is a convenient notation we will make use of.

Definition 2.3 (Gowers inner product). Let d > 1 be an integer and {fS : Fn → C}S⊆[d] a

family of of functions indexed by subsets of [d]. Then we denote

〈f∅, f{1}, . . . , f[d]〉 = E
x,y1,...,yd∈Fn

∏
S⊆[d]

C|S|fS(x+
∑
i∈S

yi)

 (2.3)

= E
z1,...,zd,z

′
1,...,z

′
d∈Fn

∏
S⊆[d]

C|S|fS(
∑
i∈S

zi +
∑
i/∈S

z′i)

 .
The second equality in Eq. (2.3) is particularly useful, and comes from making the

following change of variables. We set x = z1 + · · · + zd and yi = z′i − zi for 1 6 i 6 d;



2 Basic Background 12

the value of the expectation will remain fixed because of the group structure. As a matter

of convenience, we will often identify subsets of [d] with the integer set [2d] in the natural

way, so that we may write

〈f1, . . . , f2d〉

and have it be understood that we mean

〈f∅, f{1}, . . . , f[d]〉.

Finally, note that Eq. (2.3) also implies that for any function f : Fn → C we have

‖f‖2d

Ud= 〈f, . . . , f〉 = E
y1,...,yd,y

′
1,...,y

′
d∈Fn

∏
S⊆[d]

C|S|f(
∑
i∈S

yi +
∑
i/∈S

y′i)

 , (2.4)

giving an alternate formulation of the Ud norm. Now let us prove Lemma 2.2.

Proof of Lemma 2.2. What we will show is that

〈f1, . . . , f2d〉 6 〈f2d−1+1, . . . , f2d , f2d−1+1, . . . f2d〉1/2〈f1, . . . , f2d−1 , f1, . . . f2d−1〉1/2.

From here, the result will follow by induction, using the fact that the inequality is trivial

when all the fS are the same (Eq. (2.4)).

To do this, let us begin with the alternate form of the Gowers inner product. From here,

we can write this as an iterated expectation: First over yd, y
′
d ∈ Fn, and then the outer

expectation over the remaining y1, . . . , yd−1, y
′
1, . . . , y

′
d−1 ∈ Fn. We also split the product in

two based on containing the element d. This looks like

E

E

∏
S3d

C|S|fS(
∑
i∈S

yi +
∑
i/∈S

y′i)
∏

S⊆[d−1]

C|S|fS(
∑
i∈S

yi +
∑
i/∈S

y′i)

 ,
Now, all the terms in the first product use yd, and all the terms in the second use y′d, so

they are independent over the inner expectation and we get

E

[
E
yd

(∏
S3d

C|S|fS(
∑
i∈S

yi +
∑
i/∈S

y′i)

)
E
y′d

(∏
S3d

C|S|fS(
∑
i∈S

yi +
∑
i/∈S

y′i)

)]
.
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Applying Cauchy-Schwarz to this gives the upper bound

E

[
E
yd

∏
S3d

C|S|fS(
∑
i∈S

yi +
∑
i/∈S

y′i)

]2
1/2E

E
y′d

∏
S⊆[d−1]

C|S|fS(
∑
i∈S

yi +
∑
i/∈S

y′i)

21/2

.

Each of the terms here are exactly in the desired form: We can write[
E
yd

∏
S3d

C|S|fS(
∑
i∈S

yi +
∑
i/∈S

y′i)

]2

as two independent expectations, yieldingE

[
E
yd

∏
S3d

C|S|fS(
∑
i∈S

yi +
∑
i/∈S

y′i)

]2
1/2

= 〈f2d−1+1, . . . , f2d , f2d−1+1, . . . f2d〉1/2,

and similarly for the other term. �

From here, we will be able to infer many facts about the Ud norm by simply choosing the

family {fS : Fn → C}S⊆[d] suitably and applying the Gowers-Cauchy-Schwarz inequality.

Let us first complete the proof that ‖ ·‖Ud , d > 2, does in fact define a norm. To prove

the triangle inequality, take all the fS to be f +g, where f, g : Fn → C are arbitrary. Then,

an application of the standard triangle inequality gives

‖f + g‖2d

Ud= 〈f + g, . . . , f + g〉 6 |〈f, f + g, . . . , f + g〉|+ |〈g, f + g, . . . , f + g〉| .

Applying the Gowers-Cauchy-Schwarz inequality to both terms now concedes

‖f + g‖2d

Ud6 ‖f‖Ud‖f + g‖2d−1
Ud

+‖g‖Ud‖f + g‖2d−1
Ud

,

and so we have the triangle inequality for ‖ · ‖Ud . To see that ‖·‖Ud separates points, take

f∅ = f[d] = f for some f : Fn → C, and the rest of the fS ≡ 1. Since d > 2, there is a

dependence relation in the system {x+
∑

i∈S yi}S⊆[d], and so there is a change of variables

which lets us write

〈f, 1, . . . , 1, f〉 = E f 2.



2 Basic Background 14

Applying Gowers-Cauchy-Schwarz here shows that

E f 2 6 ‖f‖2
Ud ,

implying that ‖f‖Ud= 0 if and only if f ≡ 0.

Before moving on, there is one more useful fact we can get from Lemma 2.2. Taking

fS = f whenever S ⊆ [d− 1] and fS = 1 otherwise, Eq. (2.2) becomes

‖f‖2d−1

Ud−16 ‖f‖2d−1

Ud ,

which shows that the Ud norms are increasing in d. As a special case of this, we have the

identity

|〈f, g〉| 6 ‖fg‖Ud , (2.5)

for every d, since |〈f, g〉| is in fact just ‖fg‖U1 .

With the basic properties of Gowers norms we have established, we can begin to expose

how they will become relevant to the work in this thesis. In particular, what we will show

that there is a deep connection between Gowers norms and polynomials.

2.2 Derivatives and non-classical polynomials

To see how Ud can be related to polynomials, there is an important observation to make

that will allow us to give a third formulation of the Ud norm. First, let us define the

following differential operator.

Definition 2.4 (Multiplicative derivative). Let f : Fn → C be a function and fix an element

h ∈ Fn. The multiplicative derivative in direction h of f is defined to be the unique function

∆hf : Fn → C satisfying

∆hf(x) = f(x+ h)f(x)

for every x ∈ Fn.

Now, observe that iterative applications of the multiplicative derivative have a familiar

form. Indeed, for any f : Fn → C and directions h1, . . . , hd ∈ Fn, we have

(∆h1∆h2 · · ·∆hdf)(x) =
∏
S⊆[d]

C|S|f(x+
∑
i∈S

hi)



2 Basic Background 15

for every x ∈ Fn. This is just the term appearing inside the expectation from Eq. (2.1),

and so we can write

‖f‖Ud=
∣∣∣∣ E
h1,...,hd,x∈Fn

[(∆h1∆h2 · · ·∆hdf)(x)]

∣∣∣∣1/2d . (2.6)

In words, the Ud norm of f is given by taking the multiplicative derivative in d random

directions and then computing the expected value. We will be able to infer a lot of useful

information from Eq. (2.6). First, though, we need some notation.

For every k > 1, let Uk denote the subgroup p−kZ/Z ⊆ T, where p−kZ = {j/pk | j ∈
Z} ⊆ R. For reasons that will soon become clear, it will be useful to identify F with its

isomorphic subgroup U1 ⊆ T by the map x 7→ p−1|x|, where | · | denotes the standard map

from F to {0, 1, . . . , p − 1}. In this way, if P : Fn → F is a polynomial in the usual sense,

then we can also treat it as a function into U1, or more generally, T.

Now, although polynomials do not behave particularly well under the multiplicative

derivative, they are compatible with another differential operator.

Definition 2.5 (Additive derivative). Let P : Fn → T be a function and fix an element

h ∈ Fn. The additive derivative in direction h of P is defined be the unique function

DhP : Fn → T satisfying

DhP (x) = P (x+ h)− P (x)

for every x ∈ Fn.

It is not hard to see that the additive derivative of a polynomial of degree 6 d is now

a polynomial of degree 6 d − 1, and hence such a polynomial vanishes under any d + 1

additive derivatives.

The two derivatives we have defined so far are not unrelated. If P : Fn → T is a function

and h ∈ F n, then

(∆he (P ))(x) = e ((DhP )(x)) (2.7)

for every x ∈ Fn, where e : T→ C denotes the character defined by e (x) = e2πix for every

x ∈ T.

Now, let us take a polynomial P : Fn → T of degree 6 d, and consider the function

f : Fn → D given by f = e (P ). Then it follows from Eq. (2.7) that f becomes constant (in

particular, 1) under any d + 1 multiplicative derivatives, and it follows that ‖f‖Ud+1= 1.



2 Basic Background 16

Conversely, we would like to say something about functions with Ud+1 norm 1. This is

somewhat meaningless to ask if we allow our functions to be unbounded, so we will assume

further that our function satisfies ‖f‖∞6 1.

Unfortunately, there is still a subtle issue that arises. If d < p, then under the bounded-

ness assumption we do get a full converse: Any function g : Fn → D satisfying ‖g‖Ud+1= 1

is of the form e (P ), where P : Fn → T is a polynomial of degree 6 d. However, when

d > p, we will see that there are different functions satisfying these properties. To deal

with this, we will extend the collection of polynomials to a more general class of T valued

functions.

Definition 2.6 (Non-classical polynomials). Let d > 0 be an integer. A function P : Fn →
T is said to be a non-classical polynomial of degree 6 d (or simply a polynomial of degree

6 d) if for all h1, . . . , hd+1 ∈ Fn, it holds that

(Dh1Dh2 · · ·Dhd+1
P )(x) = 0 (2.8)

for every x ∈ Fn. The space of all such functions is denoted by Polyd(Fn).

A function P : Fn → T is said to be a classical polynomial of degree 6 d if P ∈
Polyd(Fn) and additionally, the image of P is contained in U1.

It follows directly from Definition 2.6 and Eq. (2.7) that a function f : Fn → C with

‖f‖∞6 1 satisfies ‖f‖Ud+1= 1 if and only if f = e (P ) for a (non-classical) polynomial

P ∈ Polyd(Fn). It will be useful to give functions of this form a name.

Definition 2.7 (Phase polynomials). A function f : Fn → D is called a phase polynomial

of degree 6 d if

f = e (P )

for some P ∈ Polyd(Fn).

Now, the issue we stumbled upon regarding fields of low characteristic can be phrased as

follows. When d < p, every polynomial is also classical, but for d > p, there are polynomials

which are not classical: they take values in a larger subgroup of T.

The following lemma of [TZ12] characterizing non-classical polynomials shows that they

have a representation not unlike that of classical polynomials, i.e. as a suitably weighted

combination of monomials.
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Lemma 2.8. Let d > 1 be an integer, and P : Fn → T. Then P ∈ Polyd(Fn) if and only

if it has a representation of the form

P (x1, . . . , xn) = α +
∑

06d1,...,dn<p;k>0:
0<

∑
i di6d−k(p−1)

cd1,...,dn,k|x1|d1· · · |xn|dn
pk+1

mod 1,

for a unique choice of cd1,...,dn,k ∈ {0, 1, . . . , p− 1} and α ∈ T. The element α is called the

shift of P , and the largest k such that there exist d1, . . . , dn for which cd1,...,dn,k 6= 0 is called

the depth of P .

As a simple example, consider the function P : F2 → T given by P (x) = 1
4
|x|. An easy

computation of taking derivatives (there is only 1 non-trivial direction to check) shows that

this is not a linear polynomial: it is in fact quadratic. Observe how we can read this off

from Lemma 2.8 by noting that P is a depth 1 polynomial, which in turn implies that the

degree is 2 rather than 1. Now, let us prove the lemma.

Proof. In the case that the image of P lies in a coset of U1 (including, e.g., when P is

classical), it is easy to see that we must have k = 0 always, and a standard induction

argument gives the result. For the general case, we will need to use the following claim.

Claim 2.9. If P ∈ Polyd(Fn), then pP ∈ Polyd′(Fn), where d′ = max(d− p+ 1, 0).

Proof. What we will show is that for any direction h ∈ Fn, we have

∆p
hP ≡ 0 =⇒ ∆hpP ≡ 0. (2.9)

With this, if P ∈ Polyd(Fn) with d > p− 1, then for any directions h1, . . . , hd−p+2 ∈ Fn we

have

∆p
h1

∆h2 · · ·∆hd−p+2
P ≡ 0 =⇒ ∆h1 · · ·∆hd−p+2

pP ≡ 0,

which shows that P ∈ Polyd−p+1(Fn). When d < p− 1, essentially the same argument will

show that deg(pP ) = 0.

Now, to prove Eq. (2.9), expand (∆p
hP )(x) as

(∆p
hP )(x) =

∑
S⊆[p]

(−1)|S|P

(
x+

∑
S

h

)
=

p∑
i=0

(−1)i
(
p

i

)
P (x+ ih).
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Without loss of generality, suppose p is odd: The calculations will work when p = 2 with

only minor differences. Then, using ph = 0, we can group terms to write this as

p [P (x− h)− P (x+ h)] +O(p2).

If this is 0 for every x, then it must be the case that p [P (x− h)− P (x+ h)] itself is as

well, but an easy change of variables writes this as (∆hpP )(x), completing the proof of the

claim. �

Now, to prove the lemma, we will induct on the degree d using Claim 2.9. When

d < p− 1, deg(pP ) = 0, so P takes values in a coset of U1 and we are done. Otherwise, by

induction pP ∈ Polyd−p+1(Fn) can be written in the form

α +
∑

06d1,...,dn<p;k>0:
0<

∑
i di6d−(k−1)(p−1)

cd1,...,dn,k|x1|d1· · · |xn|dn
pk+1

mod 1.

Thus, we can write P (x1, . . . , xn) as

α/p+
∑

06d1,...,dn<p;k>1:
0<

∑
i di6d−k(p−1)

cd1,...,dn,k|x1|d1· · · |xn|dn
pk+1

+Q(x1, . . . , xn) mod 1

for some classical Q ∈ Polyd(Fn). Since the coefficients of Q are unique, and the remaining

coefficients are unique by our induction hypothesis, the proof is finished. �

For convenience of exposition, we will assume throughout this thesis that all polynomials

have shift 0. This can be done without affecting any of the results we present. Hence, all

polynomials of depth k take values in Uk+1. For referring to a polynomial by its depth, we

make the following definition.

Definition 2.10. A polynomial P : Fn → T of degree exactly d and depth exactly k is

called a (d, k)-polynomial.

Now, Lemma 2.8 immediately implies some useful facts about non-classical polynomials.

Remark 2.11. If Q : Fn → T is a (d, k)-polynomial, then pQ is a polynomial of degree

max(d− p+ 1, 0) and depth k− 1. In other words, if Q is classical, then pQ vanishes, and
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otherwise, its degree decreases by p − 1 and its depth by 1. If λ ∈ [1, p − 1] is an integer,

then deg(λQ) = d and depth(λQ) = k.

Additionally, degree d polynomials have depth at most k = b(d − 1)/(p − 1)c, and so

such a polynomial takes at most pk+1 distinct values.

We have seen that phase polynomials of degree 6 d characterize the functions f : Fn →
D that satisfy ‖f‖Ud+1= 1. Although this fact is interesting, it will only serve to motivate

a stronger result. Indeed, we will need to be able to argue about functions which may only

be bounded away from 0 by some small constant in the Ud+1 norm.

2.3 Direct and inverse theorems

Recall from Chapter 1 the direct and inverse theorems for the U2 norm which collectively

show that having a large U2 norm is roughly equivalent to having a large non-principal

Fourier coefficient. Before we can give a more general version of this result for the Ud+1

norm, we need to define a notion of similarity between two functions.

Definition 2.12 (Correlation). Let ε > 0 be fixed. If f, g : Fn → C are functions, then we

say that f and g are ε-correlated if

|〈f, g〉| =
∣∣∣∣ E
x∈Fn

f(x)g(x)

∣∣∣∣ > ε.

For d > 2, we will not be able to show that a function f : Fnp → C with large Ud+1

norm has any relation to ‖f̂‖∞. Note, however, that |f̂(a)| is just the correlation of f with

the character χa (a linear phase polynomial). So it seems natural that we should replace

the notion of Fourier coefficients by correlation with degree d polynomials.

Let us assume then that f is ε-correlated with a phase polynomial of degree 6 d. Using

Eq. (2.5), this implies that

‖fe (−P )‖Ud+1> |〈f, e(−P )〉| > ε

for some P ∈ Polyd(Fn).

However we also have the easy fact that ‖fe (P )‖Ud+1= ‖f‖Ud+1 , which is immediate

from Eq. (2.6). This in turn implies that ‖f‖Ud+1> ε. So ‖f‖Ud+1 is larger than the

correlation of f with any phase polynomial. Thus, we have proved the following theorem.
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Theorem 2.13 (Direct theorem for Ud+1 norm). Let f : Fn → C be a function. Then

‖f‖Ud+1> sup
P∈Polyd(Fn)

|〈f, e (−P )〉| .

Note that Theorem 2.13 also encompasses the equality case from earlier as 1-correlation

is just equality when f : Fn → D is bounded.

We would now like an inverse theorem to complement this direct theorem. In particular,

we would hope that bounded functions f : Fn → D with ‖f‖Ud+1> δ would δ-correlate with

some degree 6 d phase polynomial. This turns out to be too much to ask for, but we can

salvage the idea. We will weaken the conclusion by allowing f to be only ε-correlated with

a degree 6 d phase polynomial, for some ε that is now allowed to depend on δ. This result

is given formally by the following theorem from [TZ12], and is one of the most important

results in the entire field. The proof will be omitted, as it is a highly non-trivial result,

going beyond the scope of the thesis.

Theorem 2.14 (Inverse theorem for Gowers norms). Let d > 1 be an integer. For any

δ > 0, there exists an ε = ε2.14(δ, d) such that the following holds. For every function

f : Fn → D with ‖f‖Ud+1> δ, there exists a polynomial P ∈ Polyd(Fn) such that P is

ε-correlated with f , so that ∣∣∣∣ E
x∈Fn

f(x)e (−P (x))

∣∣∣∣ > ε.

There is an interesting history to Theorem 2.14. Barring the trivial cases for the U1

and U2 norms, the result for the U3 norm was the first to be known ([GT08]). In this

case, by a convenient technicality (see Lemma 5.12), f can be taken to correlate with a

classical quadratic phase polynomial. In the same paper, the authors then conjectured

for the general case that f could also correlate with a classical polynomial. However,

the necessity of non-classical polynomial in fields of low characteristic (i.e. when d > p)

was eventually discovered ([LMS08]). Following this, the theorem was proven in the high

characteristic case ([BTZ10]) where non-classical polynomials can be avoided. Finally we

have Theorem 2.14 which completes the picture.

Theorem 2.14 will be the starting point for all of the work in the section to follow.
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Chapter 3

Higher Order Fourier Analysis

In Chapter 1, we saw, albeit somewhat informally, that the standard theory of Fourier

analysis is a very useful tool for analyzing the density ‘simple’ systems of linear forms. For

now, let us focus on the Fourier analysis part of that discussion. The key point is that

there is an inverse theorem that gives a rough equivalence between having a large U2 norm

and having a large Fourier coefficient. This in turn implies a decomposition theorem which

can write a function as a bounded combination of some characters as well as an error term

which is small in U2 norm. To analyze the structured part of a function, it remained only

to use the basic properties of the Fourier expansion, namely that the characters span the

entire space of functions f : Fn → C and more importantly that they form an orthonormal

basis. This latter property allows us to significantly reduce formulae involving expectations.

Unfortunately, the U2 norm is not a sufficiently strong error term to control densities of

arbitrary linear structures, something we will see in more detail later on. Thus, we would

like to develop a theory of ‘higher order Fourier analysis’.

Lacking a true higher-order Fourier expansion, we will rather aim to prove a decompo-

sition theorem not unlike the one for the U2 norm, but with a stronger error condition. In

the higher order setting, the error we are allowing ourselves is in the Gowers Ud+1 norm.

Theorem 2.14 gives an inverse theorem for the Ud+1 norm, which says that functions with

large Ud+1 norm correlate with a phase polynomial of degree 6 d. When d = 1, note

that correlating with a linear polynomial is the same as computing a Fourier coefficient,

something we exploit in proving our decomposition theorem. So one should be optimistic

that we can use the general inverse theorem to prove a decomposition into a bounded

2014/08/11
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combination of degree 6 d polynomials, admitting a small Ud+1 error term.

Under such a decomposition, the ‘structured’ part of a function f : Fn → [0, 1] will be

of the form f1(x) = Γ(P1(x), . . . , PC(x)), where P1, . . . , PC ∈ Polyd(Fn) and Γ : TC → [0, 1]

is a function. In fact, denoting by ki the depth of each polynomial Pi, then since Pi

takes values in Uki+1, Γ is actually a function on
∏C

i=1 Uki+1. Applying the usual Fourier

transform to Γ and substituting in P1, . . . , PC , this gives us

f1(x) =
∑
γ

Γ̂(γ)e

(
C∑
i=1

γ(i)Pi(x)

)
, (3.1)

where we sum over all γ in the group
∏C

i=1 Zpki+1 . This can be thought of as the ‘higher

order Fourier expansion’ of f , where the higher order characters are now phase polynomials

of degree6 d. In order to be able to use such an expansion, however, we still require that the

higher-order characters be orthogonal. As it turns out, we do not even need the characters

to be completely orthogonal. Since our decomposition theorem admits a certain amount

of error, it is also acceptable if our characters are not completely orthogonal. Recall the

orthogonality of linear characters follows from the fact that any non-principal character has

expectation 0. Thus, all that we will require is that expectation of any non-trivial higher-

order character is small. This will turn out to be possible by choosing our polynomials

correctly.

We will now devote a fairly significant amount of effort to finding the decomposition

we described above. We will in fact prove three decomposition theorems, each building

on the last in order to obtain one with all the desired properties. Most of the work here

follows a program which is fairly standard. Examples include the treatment from [Gre07]

for the U3 norm (before the inverse theorems for larger d were known), as well as the more

recent [BFL13] which proves even more general decompositions than we will require. Since

we will be working repeatedly with polynomials, our first order of business is to introduce

a convenient notation that encapsulates a collection of polynomials with the structure it

induces on Fn.
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3.1 Polynomial factors

Let {A1, . . . , Ak} be a finite partition of Fn, and let A denote the σ-algebra on Fn generated

by this partition. Recall that a function f : Fn → C is called A-measurable if it is constant

on each set Ai. Now consider a collection of polynomials P1, . . . , PC ∈ Polyd(Fn). We

can partition Fn according to the values that these polynomials take by writing Fn =

∪a∈TC{x ∈ Fn : (Pi(x))j∈[c] = a}. We shall give a special name to the σ-algebra generated

by this partition.

Definition 3.1 (Polynomial factors). Let P1, . . . , PC ∈ Polyd(Fn), and for every a ∈ TC

denote by Ba the set {x ∈ Fn : (Pi(x))j∈[C] = a}. The σ-algebra B on Fn generated by the

partition {Ba}a∈TC is called a polynomial factor of degree d and complexity at most C.

The sets Ba are called the atoms of B, and for any x ∈ Fn, the notation B(x) is used

to denote the unique atom of B containing x. The degree of B is denoted by deg(B), while

the complexity is denoted by |B|.

Now let B be the polynomial factor defined by a collection of polynomials P1, . . . , PC ∈
Polyd(Fn). In this notation, B-measurable functions are of particular interest to us, since

it follows from the definition of being B-measurable that these functions depend only on

the values of the polynomials P1, . . . , PC . In other words, they can be written in the form

Γ(P1, . . . , PC) for some Γ : TC → C.

Given an arbitrary function, the obvious way to obtain a B-measurable function is to

project it into the space of all B-measurable functions by averaging it over each atom of

the partition. More precisely, we have the following definition.

Definition 3.2 (Conditional expectation). Let B be the polynomial factor defined by a

collection of polynomials P1, . . . , PC ∈ Polyd(Fn). For any function f : Fn → C, the

conditional expectation of f over B, denoted by E [f |B], is the C-valued function on Fn

defined by writing

E [f |B] (x) := E
y∈B(x)

[f(x)]

for every x ∈ Fn.

Remark 3.3. Let B be a polynomial factor and f : Fn → C a function. To see that

E [f |B] is indeed a projection in the usual sense, note that, for any B-measurable function
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g : Fn → C, we have the identity

〈f, g〉 = 〈E [f |B] , g〉, (3.2)

which is easy to see from the definition of being B-measurable. In fact, for general σ-

algebras the conditional expectation is defined as the (unique) function satisfying Eq. (3.2)

for every g.

When constructing a polynomial factor, we will often start with some initial factor

(which may be the empty, or trivial, factor) and build it up iteratively. One way to

extend a polynomial factor is simply to extend the collection of polynomials defining

it. If the factor B is defined by the polynomials P1, . . . , PC , and B′ by the polynomials

P1, . . . , PC , Q1 . . . , QC′ , then B′ refines B as a σ-algebra. However, it is also possible for a

polynomial factor to refine B without a relation between the polynomials. For this reason

we will want to be able to differentiate between these types of refinement.

Definition 3.4 (Refinement of factors). Let B and B′ be polynomial factors defined by

the collections of polynomials P1, . . . , PC and Q1, . . . , QC′, respectively. If the collection

Q1, . . . , QC′ extends P1, . . . , PC in the sense that {P1, . . . , PC} ⊆ {Q1, . . . , QC′}, then B′ is

called a syntactic refinement of B, denoted as B′ �syn B. If B′ refines B as a σ-algebra, in

the sense that each atom of B′ is contained in an atom of B, then B′ is called a semantic

refinement of B, denoted as B′ �sem B. The bare notation � will be used synonymously

with �sem.

Remark 3.5. It is clear from the definition that syntactic refinement implies semantic

refinement. The converse of this is of course not true, but we can say something partial: If

B is defined by P1, . . . , PC and B′ by Q1, . . . , QC′ with B′ � B, then the factor B′′ defined

by the polynomials in the union {P1, . . . , PC} ∪ {Q1, . . . , QC′} has the same atoms as B′,
but now also satisfies B′′ �syn B. The complexity of B′′ will in general increase, but it will

at the very least satisfy |B′′|6 |B′|+|B|.

Now let us move on and give our first decomposition theorem.



3 Higher Order Fourier Analysis 25

3.2 Decomposition from inverse theorem

This first decomposition theorem will follow from the inverse theorem Theorem 2.14 with

only a small amount of additional effort, much of which is notational. It should not, then,

be too surprising that this will be a particularly weak decomposition theorem. However, it

will be pivotal as a starting point for proving stronger decompositions.

Theorem 3.6 (Decomposition theorem I). Let d > 1 be an integer, and B0 be a polynomial

factor of degree at most d. Given any δ > 0, there exists a constant C = C3.6(δ, d, |B|)
such that the following holds. For any function f : Fn → [0, 1], there exist two functions

f1, f2 : Fn → R and a polynomial factor B � B0 of degree at most d and complexity at most

C such that

f = f1 + f2,

where

f1 = E [f |B] ,

and

‖f2‖Ud+16 δ.

Note that, since f is [0, 1]-valued, it is clear that f1 will also be [0, 1]-valued as it just

averages f over the atoms of B. Then because f2 = f − f1, we see that f2 will be [−1, 1]-

valued. An important thing to keep in mind here is that when f is {0, 1}-valued, i.e. when

f is the indicator function of a subset, f1 will not be {0, 1}-valued: it may take arbitrary

values in [0, 1].

Now, before we can actually prove Theorem 3.6, we will need some setup, but the general

idea is quite simple. If the conditional expectation E [f |B0] is far from f in Ud+1 norm, then

Theorem 2.14 implies that there exists a polynomial P ∈ Polyd(Fn) that correlates highly

with f − E [f |B0]. Syntactically refining B0 by appending P to the underlying collection

of polynomials, we obtain a new polynomial factor and repeat the procedure if necessary.

We continue until the polynomial factor satisfies the conclusions of the theorem. We will

show that, by our particular choice of the polynomial P , this process will terminate in a

bounded number of steps. To make this arguement rigorous, we will need the following

definition.
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Definition 3.7 (Energy of a factor). Let f : Fn → [−1, 1] be a function, and B a polynomial

factor. The quantity

‖E [f |B] ‖2
2= 〈E [f |B] ,E [f |B]〉

is called the energy of f over B.

The key observation to make regarding this definition is that if f : Fn → [−1, 1] is a

function and B is some polynomial factor, then refining B will never incur a decrease in

energy. This is not enough, however, to guarantee that the process of repeatly refining a

factor will eventually terminate. We need to further ensure that the energy increases by

some amount that is bounded away from 0 at each step. A simple, yet important tool

here is the next theorem, which is essentially a generalization of Pythagoras’ theorem to

σ-algebras. We will state the theorem for polynomial factors, but the result is true for

arbitrary σ-algebras as well.

Theorem 3.8 (Pythagoras’ theorem). Let B and B′ be polynomial factors such that B′ � B.

Then if f : Fn → [−1, 1] is any function, we have

‖E [f |B′] ‖2
2= ‖E [f |B] ‖2

2+‖E [f |B′]− E [f |B] ‖2
2. (3.3)

Proof. We have

‖E [f |B′]− E [f |B] ‖2
2 = 〈E [f |B′]− E [f |B] ,E [f |B′]− E [f |B]〉

= 〈E [f |B′] ,E [f |B′]〉 − 2〈E [f |B′] ,E [f |B]〉+ 〈E [f |B] ,E [f |B]〉.

Now since B′ � B, it follows that E [E [f |B′] |B] = E [f |B], so using Eq. (3.2) from

Remark 3.3 we get

〈E [f |B′] ,E [f |B]〉 = 〈E [E [f |B′] |B] ,E [f |B]〉

= 〈E [f |B] ,E [f |B]〉,

which gives the desired result. �

With this, we are ready to prove Theorem 3.6.
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Proof of Theorem 3.6. We will construct the polynomial factor B iteratively. Initially, take

B = B0. Now suppose we are at an arbitrary step, with B partially constructed; we do

the following. Denote g = f − E [f |B]. If ‖g‖Ud+16 δ, then we stop. Otherwise, by

Theorem 2.14, there is a polynomial P ∈ Polyd(Fn) that is ε2.14(δ, d)-correlated with g.

Syntactically refine B by appending the polynomial P to obtain the factor B′, and repeat

this procedure with the factor B′ in place of B.

It is clear that if this process terminates in a bounded (depending only on δ and d)

number of steps with a polynomial factor B, then taking f1 := E [f |B] and f2 := f − f1

will satisfy the conclusions of the theorem. It remains to show that this process will indeed

terminate. We will do this by showing that at each step, starting with the factor B and

obtaining the new factor B′, we have ‖E [f |B′] ‖2
2−‖E [f |B] ‖2

2> ε2, where ε = ε2.14(δ, d).

Since energy is a quantity bounded by 1, this ensures that a maximum of b1/ε2c iterations

can occur.

Applying Theorem 3.8 and using the fact that E [f |B] = E [E [f |B] |B′] whenever B′ � B,

we have

‖E [f |B′] ‖2
2−‖E [f |B] ‖2

2= ‖E [f |B′]− E [f |B] ‖2
2= ‖E [g|B′] ‖2

2.

Now, since P is ε-correlated with g, we get

ε 6

∣∣∣∣ E
x∈Fn

g(x)e (−P (x))

∣∣∣∣ =

∣∣∣∣ E
x∈Fn

E [g|B′] (x)e (−P (x))

∣∣∣∣ ,
where we have used Eq. (3.2) with the fact that e (−P ) is B′-measurable (by definition).

The triangle inequality and the fact that the Lp norms are increasing now yield

ε2 6 ‖E [g|B′] ‖2
16 ‖E [g|B′] ‖2

2= ‖E [f |B′] ‖2
2−‖E [f |B] ‖2

2,

as desired. We complete the proof by noting that, since the complexity of our factor

increases by 1 at each iteration, the final polynomial factor B we obtain has complexity at

most C = |B0|+b1/ε2c. �

We mentioned previously that the decomposition given by Theorem 3.6 will not suffice

for our needs, and will only be used to prove stronger theorems. To see why this is so,

note that we have made no attempt to impose any additional structure on the polynomials

defining the factor B. Recall that our goal was to obtain a decomposition with orthogo-



3 Higher Order Fourier Analysis 28

nality properties similar to those in a Fourier decomposition. It turns out that, en route

to a decomposition of this form, we will run into another problem, which is as follows.

Although we can take the Ud+1 error δ to be arbitrarily small, this in turn increases the

constant C bounding the complexity of the polynomial factor B. When we iteratively apply

Theorem 3.6, in order for the error term to stay negligible, we will need it to be small as

a function of the complexity C. This might initially seem like a difficult thing to ask for,

and reasonably so, as in fact it turns out that such a decomposition theorem is simply not

true. However, if we allow ourselves a reasonably small (not depending on C) global L2

error, then we can ensure the Ud+1 error is bounded as any function of the complexity.

If one is more familiar with graph theory, it is instructive to make an analogy to graph

regularity. It is very reasonable to think of Theorem 3.6 as a weak regularity lemma.

Continuing this line of thought, the decomposition we desire is a strong regularity lemma,

which we will obtain by iteratively applying the weak lemma. Of course, as in the case of

graph regularity, there is a downside to this process: the bounds we ultimately obtain will

inevitably be of tower-type. Even worse, our third decomposition, which will iteratively

apply the second, and will then end up with bounds which are towers of towers. This is

to say nothing of the implicit reliance on the constant appearing in the inverse theorem

Theorem 2.14. The full version of this theorem which we are using is proved using a limit

approach which does not even give any bounds. In applications where one cares about

particular bounds, one will start with a quantitative (albeit weaker) version of the inverse

theorem, and then prove something similar to Theorem 3.6, e.g. in [GT09].

Let us now state and prove the strong decomposition theorem.

Theorem 3.9 (Decomposition theorem II). Let d > 1 be an integer, and B0 be a polynomial

factor of degree at most d and complexity at most C0. Given any δ > 0 and a non-

decreasing function ω : R>0 → R>0 (where ω may depend on δ), there exists a constant

C = C3.9(δ, ω, d, |Bo|) such that the following holds. For any function f : Fn → [0, 1], there

exist three functions f1, f2, f3 : Fn → R and a polynomial factor B � B0 of degree at most

d and complexity at most C such that

f = f1 + f2 + f3,

where

f1 = E [f |B] ,
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‖f2‖Ud+16 1/ω(C),

and

‖f3‖26 δ.

Proof. We will apply Theorem 3.6 iteratively with parameters δi, i > 1, to obtain a sequence

of polynomial factors Bi of respective complexities at most Ci such that for every i, we have

1. Bi � Bi−1;

2. ‖f − E [f |Bi] ‖Ud+16 δi;

3. Ci depends only on Ci−1 and δi;

4. δi+1 6 1/ω(Ci).

To do this, we start by taking 0 < δ1 < 1/ω(C0). Applying Theorem 3.6 with parameters

δ1 and B0, we obtain a polynomial factor B1 � B0 of complexity at most C1 satisfying

conditions (1) − (3) above. Taking 0 6 δ2 6 1/ω(C1) to satisfy condition (4), we iterate

this procedure by applying Theorem 3.6 with parameters δ2 and B1.

Now, since the sequence of energies ‖E [f |Bi] ‖2
2 is non-decreasing and bounded by 1,

the pigeonhole principle implies that there is some i 6 d1/δ2e such that

‖E [f |Bi+1] ‖2
2−‖E [f |Bi] ‖2

26 δ2.

For such an i, take

f1 = E [f |Bi] ,

f2 = E [f |Bi+1]− E [f |Bi] ,

and

f3 = f − E [f |Bi+1] ,

so that f = f1 + f2 + f3. Taking C = Ci, which clearly depends only on δ, ω and d, our

choice of the δi ensures that f2 will satisfy ‖f2‖Ud+16 1/ω(C). Finally, it follows directly

from Theorem 3.8 that ‖f2‖26 δ, and so we have obtained the requisite decomposition. �

Again, it follows from the conclusion that f1 will be [0, 1]-valued, while it is clear from

the proof that f2 and f3 will be [−1, 1]-valued.
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With Theorem 3.9, we will now be able work towards imposing the promised orthogo-

nality conditions on our polynomial factor.

3.3 Rank

To motivate some of the definitions to follow, recall Eq. (3.1) which gives something like a

higher order Fourier decomposition. The characters of this decomposition are now phase

polynomials of degree 6 d. Ideally, the characters would be completely orthogonal, but

we will be satisfied with an approximate orthogonality, such that the expectation of any

non-trivial character is small. In fact, we can ask for even more: That the Ud norm of any

character is small. It will be useful to give a name to polynomials with this property.

Definition 3.10 (Uniform polynomials). Fix some ε > 0. A polynomial P ∈ Polyd(Fn) is

said to be ε-uniform if

‖e (P )‖Ud< ε.

To see what kind of structure uniform polynomials have, consider the following. If a

polynomial P ∈ Polyd(Fn) satisfies ‖e (P )‖Ud= 1, then we have seen that in fact we must

have P ∈ Polyd−1(Fn). It is reasonable to suspect, then, that if such a P now satisfies

‖e (P )‖Ud> ε, for some ε, then there should be an algebraic explanation for this in terms

of degree d− 1 polynomials. This leads us to the following definition.

Definition 3.11 (Rank of a polynomial). For a polynomial P ∈ Polyd(Fn) and an integer

d > 1, the d-rank of P , denoted rankd(P ) is defined to be the smallest integer r such that

there exist polynomials Q1, . . . , Qr ∈ Polyd−1(Fn) and a function Γ : Tr → T satisfying

P (x) = Γ(Q1(x), . . . , Qr(x)) for every x ∈ Fn. When d = 1, we define rank1(P ) to be ∞ if

P is non-constant and 0 otherwise.

The rank of a polynomial P ∈ Polyd(Fn) is its deg(P )-rank, and is denoted as just

rank(P ). We say that P is r-regular if rank(P ) > r.

It may be difficult to see how this corresponds to a notion of rank. It is instructive to

consider the case when d = 2 where P is a (classical) quadratic polynomial. Here, we can

write the quadratic part of P in the form xTMx, where M is a matrix and x is the vector

of variables. In this case, rank(P ) simply corresponds to the rank of the matrix M .
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We now seek a proper correspondence between uniformity and rank that justifies our

heuristic argument. This turns out to be difficult, and we call upon the following theorem

from [TZ12].

Theorem 3.12 (Inverse theorem for polynomials). For any ε > 0 and integer d > 1,

there exists an integer r = r3.12(ε, d) such that the following is true. For any polynomial

P ∈ Polyd(Fn), if P is ε-uniform, then rankd(P ) 6 r.

This immediately implies that a sufficiently regular polynomial will be uniform.

Corollary 3.13. Let ε, d, and r(d, ε) be as in Theorem 3.12. Then every r-regular poly-

nomial is also ε-uniform.

As with the inverse theorem for the Gowers norms, Theorem 3.12 is a deep result

which is beyond this thesis to prove. In fact, in [TZ12], Theorem 2.14 is deduced from

Theorem 3.12 along with a weaker version of the inverse theorem that was already known.

Hence, one could say that Theorem 3.12 underpins almost all of the work in this thesis.

At this point, we would like to extend our definitions of rank and uniformity to a

collection of polynomials. In particular, we will need these when the collection comes from

a polynomial factor. However, it is not immediately obvious what the correct definition

should be. It will not be sufficient to simply require a rank (uniformity) condition on each

individual polynomial in the collection. To see why this is so, we look again to Eq. (3.1).

The characters of this decomposition are phase polynomials, where the phase is an arbitrary

linear combination of polynomials. In order to obtain the approximate orthogonality that

we desire, we will have to require that all linear combinations of our polynomials be high

rank (uniform).

Definition 3.14 (Rank of a polynomial factor). A polynomial factor B defined by a se-

quence of polynomials P1, . . . , PC : Fn → T with respective depths k1, . . . , kC is said to have

rank r if r is the least integer for which there exist (λ1, . . . , λC) ∈ ZC with λi mod pk1+1 6= 0

for all i ∈ [C], such that rankd
(∑C

i=1 λiPi

)
6 r, where d = maxi deg(λiPi).

Given a polynomial factor B of complexity at most C and a function r : Z>0 → Z>0,

we say that B is r-regular if B is of rank larger than r(C).

Definition 3.15 (Uniform Factors). Let ε > 0 be a real. A polynomial factor B defined by

a sequence of polynomials P1, . . . , PC : Fn → T with respective depths k1, . . . , kC is said to
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be ε-uniform if for every collection (λ1, . . . , λC) ∈ ZC with λi mod pk1+1 6= 0 for all i ∈ [C],

we have ∥∥∥∥∥e
(

C∑
i=1

λiPi

)∥∥∥∥∥
Ud

< ε,

where d = maxi deg(λiPi).

Remark 3.16. Let ε : N → R+ be an arbitrary non-increasing function. Similar to

Corollary 3.13, it also follows from Theorem 3.12 that an r-regular, degree d factor B is

also ε(|B|)-uniform, where r = r3.12(d, ε(·)).

From Remark 3.16, we see that it is not particularly important whether we work with

rank or uniformity. As such, we will generally use whichever is most convenient. Rank is

particularly useful when trying to prove things about collections of polynomials, since the

definition gives us some algebraic structure we can try to exploit. Uniformity, on the other

hand, is more useful when we are actually using these results, since it gives a quantitative

bound on the Ud norm of the polynomials. In what remains of this section, we will be

working with rank.

Now, we would like to obtain a decomposition theorem akin to Theorem 3.9 but where

the factor B is now r-regular for some growth function r : N→ N. To do this, we will need

the following lemma of [BFL13], which shows that any polynomial factor B can be refined

into a rank factor with complexity bounded by some universal function depending only on

the desired rank and the degree.

Lemma 3.17 (Polynomial regularity lemma). Let d > 1 be an integer, and r : N → N
an arbitrary non-decreasing function. Then there exists another non-decreasing function

τ : N → N with the following property. If B is any polynomial factor of degree at most d

and complexity at most C, then there is another polynomial factor B′ (semantically) refining

B, also of degree d, of complexity at most τ(C) and rank at least r(C ′).

The idea here is quite simple. If the factor is not sufficiently high rank, then there is an

explanation in terms of a bounded number of low degree polynomials. Thus we can refine

B by removing a high degree polynomial and replacing it with lower degree ones. Iterating

if necessary, we will argue that the process terminates by using the fact that the degree of

the factor B decreases.
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Proof. Suppose B is defined by the polynomials P1, . . . , PC of respective depths k1, . . . , kC .

If B does not have rank at least r(C), then there exist λi ∈ Zpki+1 not all 0 such that

C∑
i=1

λiPi = Γ(Q1, . . . , Qr(C))

for a function Γ : Tr(C) → T and polynomials Q1, . . . , Qr(C) ∈ Polyd′−1(Fn), where d′ =

maxi{deg(λiPi) : λi 6= 0}. Suppose without loss of generality that d′ = deg(λ1P1). The

value of P1 is determined by the values of P2, . . . , PC along with the values of Q1, . . . , Qr(c);

hence the factor B′ obtained by removing P1 and adding Q1, . . . , Qr(C) to the polynomials

underlying B semantically refines B.

If B′ still does not have the desired rank, then we can iterate this process. Because we

always choose to remove a polynomial of maximum degree, this will eventually reduce the

degree of B, in a number of iterations depending only on d, r and C. If eventually we are

left with only linear polynomials, then we are done, and so this defines the function τ . �

Finally, we have all the tools we need to give our third and final decomposition theorem.

3.4 A stronger decomposition theorem

First, let us give the statement of the theorem.

Theorem 3.18 (Decomposition theorem III). Let d > 1 be an integer. Given any δ > 0

and two arbitrary non-decreasing functions η : N→ R>0, r : N→ N, there exists a constant

C = C3.18(δ, η, r, d) such that the following holds. For any function f : Fn → [0, 1], there

exist three functions f1, f2, f3 : Fn → R and a polynomial factor B of degree at most d and

complexity at most C so that the following conditions are satisfied:

1. f = f1 + f2 + f3.

2. f1 = E [f |B].

3. ‖f2‖Ud+16 1/η(C).

4. ‖f3‖26 δ.

5. f1 has range [0, 1]; f2 and f3 have range [−1, 1].
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6. B is r-regular.

Remark 3.19. As in Remark 3.16, taking r = r3.12(d, ε(·)), we obtain a decomposition

where now condition (vi) reads that the factor B is ε(C)-regular, where ε : N→ R>0 is an

arbitrary non-increasing function.

Before we try to prove Theorem 3.18, let us see what we have achieved. We appear to

have incorporated everything we desired into a single theorem. Let f : Fn → [0, 1] be a

function, and decompose f as f1 + f2 + f3 according to Theorem 3.18. Let B denote the

resulting polynomial factor defined by the polynomials P1, . . . , PC and write C = |B|. As

in Remark 3.19, let us take B to be ε(C)-regular for some function ε : N→ R>0. This gives

us bounds of the form

E
x
e

(
C∑
i=1

γiPi(x)

)
6 ε(C)

for any γ from a suitable product group (depending on the depths of the Pi). It is not clear

yet why this is so useful, but expectations of this form will become prevalent in Chapter 4.

Proving Theorem 3.18 will not be too much effort at this point. As with the previous two

theorems, we proceed iteratively. We will apply Theorem 3.9 with some carefully chosen

parameters and then use Lemma 3.17 to refine the factor into one of high rank. The energy

increment argument from the proof of Theorem 3.6 will again show that the process must

terminate in a bounded number of steps. Note that we are not passing an initial factor

B0 as an input in Theorem 3.18; we will start iterating from the trivial factor. It is not

that this presents a problem for us, rather that we have no need of it, and so it is omitted

to clean up the statement marginally. If one were interested in proving an even stronger

decomposition theorem, it would be necessary to retain this additional input. After the

proof of Theorem 3.18, we will wrap up the section with a short discussion regarding such

stronger decompositions.

Proof of Theorem 3.18. Apply Theorem 3.9 with B0 as the trivial factor, and the remaining

parameters chosen so that the decomposition f = f1 +f2 +f3 and the resulting polynomial

factor B (with C = |B|) satisfies

‖f2‖Ud+16 1/η(τ(C))
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and

‖f3‖26 δ/2,

where τ is the function obtained when applying Lemma 3.17 to r. Applying this lemma

to B gives another polynomial factor B′ � B of complexity C ′ 6 τ(C) and rank at least

r(C ′). Now write

f ′1 = E [f |B′]

f ′2 = f2

and

f ′3 = f3 + E [f |B]− E [f |B′] ,

so that f = f ′1 + f ′2 + f ′3. In this decomposition, by our choice of parameters, f ′1 and f ′2 are

as desired, so if the decomposition fails it is because ‖f ′3‖2> δ. This implies, by our choice

of f3, that

‖E [f |B]− E [f |B′] ‖2> δ/2.

By Theorem 3.8, this leads to the energy increment

‖E [f |B′] ‖2
2−‖E [f |B] ‖2

2> δ2/4.

Thus, if f = f ′1 +f ′2 +f ′3 is not the desired decomposition, we may iterate this procedure,

and the process will ultimately terminate, after at most d4/δ2e steps. �

Now, Theorem 3.18 will suffice for our needs, but before moving on, it is worth men-

tioning that there are cases when an even stronger decomposition is required. In particular,

one would like the L2 error δ to also be able to decrease as a function of the complexity of

the factor B. For a function f : Fn → [0, 1], consider such a decomposition f = f1 +f2 +f3,

where f2 is small in Ud+1 norm as a function of |B|, and f3 is small in L2 norm as a function

of |B|. Since the Ud+1 norm is always bounded by the L2 norm, by combining f2 and f3 this

would imply a decomposition of the form f = g1 + g2, where g2 is small in Ud+1 norm as

a function of |B|. This is essentially equivalent to the decomposition we initially proposed

following Theorem 3.6, which we have already mentioned is impossible.

What turns out to be possible is that the L2 error decreases as a function of the com-

plexity of a different polynomial factor B′ � B. The factor B′ is close to B in a sense that
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we will not go into. If one is so inclined, the factor B′ can also be taken to be of high rank.

The details of this decomposition are contained in [BFL13], and is aptly named the super

decomposition theorem.
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Chapter 4

Equidistibution of Regular Factors

The decomposition given by Theorem 3.18 is a powerful tool which reduces the study of

general functions to ones of the form Γ(P1, . . . , PC), where P1, . . . , PC is a uniform collection

of polynomials (in the sense that they define a uniform polynomial factor). What remains

is to actually be able to study these objects. As a warm-up, let us see what can be said

about the distribution of (P1(x), . . . , PC(x)), where x ∈ Fn is taken uniformly at random.

The following theorem, which appears in [BFL13], but whose proof implicitly goes back to

[Gre07] and possibly further, shows that this distribution can be made arbitrarily close to

the uniform distribution by taking P1, . . . , PC to be sufficiently uniform.

Theorem 4.1 (Polynomial Equidistribution). Let B be a polynomial factor defined by the

collection of (classical) polynomials P1, . . . , PC ∈ Polyd(Fn). Suppose that B is ε-uniform

for some ε > 0, then, identifying the atoms of B with elements in FC, we have that for

every b ∈ FC,

Pr [B(x) = b] = p−C ± ε. (4.1)

This will follow almost directly from the definition of uniform factors.

Proof. We will exploit the fact that Pi(x) = bi if and only if p−1
∑

λ∈F e (λ(Pi(x)− b(i)) = 0.

This is because the latter formula is just the expectation of a character which is 0 if and

only if that character is principal. Now we can write

Pr [B(x) = b] = E
x∈Fn

[
C∏
i=1

1

p

∑
λi∈F

e (λi(Pi(x)− b(i))

]
.

2014/08/11
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Interchanging the expectation and the sum, this reduces to

p−C
∑

λ1,...,λC∈FC

[
E

x∈Fn
e

(
C∑
i=1

λi(Pi(x)− b(i))

)]
= p−C(1± pCε),

where we have used the fact that B is ε-uniform to bound the inner expectation by ε

whenever the λi are not all 0. �

We gave this theorem for a polynomial factor defined by classical polynomials, but with

a bit of care one can give an analogous result for arbitrary polynomials. The result will be

the same: The distribution will be uniform over a product group depending on the depths

of the polynomials. We do not give it here because it is more effort than we are willing to

spend on a warm-up, and also because it will follow from a much stronger theorem that we

will give later on. Indeed, we will need to understand more than just the distribution of

(P1(x), . . . , PC(x)), even if we allow the polynomials to be non-classical. To see why this

is the case, we need to introduce the notion of complexity.

4.1 Complexity of linear forms

A central quantity associated with a system of linear forms, which we discussed in Chap-

ter 1, is a measure of density. Given a set A ⊆ Fn and a system of linear forms L =

{L1, . . . , Lm} ⊆ F`, the probability, taken over a uniform X ∈ Fn`, that Li(X) ∈ A for

every i ∈ [m] is a density of sorts, and will be particularly important when we come to

Chapter 5. There is a natural functional analogue of this, which is given below.

Definition 4.2 (Density). Let f : Fn → C be a function and L = {L1, . . . , Lm} ⊆ Fk a

system of linear forms. We define

tL(f) := E
X∈Fn

[
m∏
i=1

f(Li(X))

]
(4.2)

Recall that we are primarily interested in affine systems of linear forms, as they satisfy

a certain homogeneity condition (translation invariance). We will not actually need the

following definition, but include it for the sake of completeness.
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Definition 4.3 (Homogeneous linear forms). A system of linear forms L = {L1, . . . , Lm} in

k variables is called homogeneous if the distribution of (L1(X), . . . , Lm(X)) over a uniform

X ∈ Fnk is the same as that of (c+ L1(X), . . . , c+ Lm(X)) for every c ∈ Fn.

A problem we have alluded to at least twice is that for any fixed d > 1, there are

systems of linear forms whose behavior is not controlled by the Gowers Ud+1 norm. More

precisely, there are systems of linear forms L such that we cannot in general bound tL(f)

in terms of ‖f‖Ud+1 , where f : Fn → [0, 1] is a function. Thus, we would like to define a

notion of complexity so that systems of linear forms with bounded complexity have well

behaved densities. The obvious definition to make here is the following one from [GW10].

Definition 4.4 (True complexity). Let L = {L1, . . . , Lm} ⊆ Fk be a system of linear forms.

The true complexity of L is defined to be the smallest integer d such that there exists a

function δ : R>0 → R>0 with limε→0 δ(ε) = 0 and∣∣∣∣∣ E
x1,...,xk

[
m∏
i=1

fi(Li(x1, . . . , xk))

]∣∣∣∣∣ 6 min
i
δ(‖fi‖Ud+1)

for all f1, . . . , fm : Fn → [−1, 1].

This is clearly the correct definition, but as we have done little more than restate what

we wanted, it does not lend itself to actually describing what kind of systems of linear forms

have bounded true complexity. A characterization of such systems does exist: See [HHL14],

which resolves a conjecture of [GW10] on this matter. However, there is a different notion

of complexity, introduced in [GT10], which immediately gives some structure to systems

with bounded complexity.

Definition 4.5 (Cauchy-Schwarz complexity). Let L = {L1, . . . , Lm} ⊆ Fk be a system of

linear forms. The Cauchy-Schwarz complexity of L is defined to be the smallest integer s

such that for every 1 6 i 6 m we can partition the set L\{Li} into s+ 1 subsets so that Li

does not lie in the linear span of any subset.

An immediate consequence of this definition is that an affine system of linear forms

L = {L1, . . . , Lm} ⊆ Fk has Cauchy-Schwarz complexity at most m − 2. This is because

affine systems of linear forms are pairwise independent, so we can always split L\{Li} into

the m− 1 singleton subsets.
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Cauchy-Schwarz complexity is related to true complexity via the following lemma from

[GT10], whose proof is via some clever applications of the eponymous Cauchy-Schwarz

inequality.

Lemma 4.6 (Counting lemma). Let L = {L1, . . . , Lm} ⊆ Fk be a system of linear forms of

Cauchy-Schwarz complexity s. Then for any functions f1, . . . , fm : Fn → [−1, 1], we have∣∣∣∣∣ E
x1,...,xk∈Fn

[
m∏
i=1

fi(Li(x1, . . . , xk))

]∣∣∣∣∣ 6 min
i
‖fi‖Us+1

Proof. We will only prove the inequality in the case when s = 2. The same argument will

extend to the general case, except that the notation becomes somewhat toxic.

Without loss of generality, suppose ‖f1‖U3= mini‖fi‖U3 . We may also assume (through

a trick from [GT10]) that L1 is supported on its first 3 entries and that it is the only linear

form in L with this property. Thus, we can write

E
x1,...,xk

[
m∏
i=1

fi(Li(x1, . . . , xk))

]
= E E

x1,x2,x3∈Fn
f1(x1, x2, x3)g1(x1, x2)g2(x1, x3)g3(x2, x3),

where the gi are bounded functions that may additionally depend on any of the variables

x4, . . . , xk in the scope of the outer expectation.

To bound the inner expectation, a first application of Cauchy-Schwarz gives

E
x1,x2,x3∈Fn

g = f1(x1, x2, x3)g1(x1, x2)g2(x1, x3)g3(x2, x3)

6

(
E

x1,x2
g1(x1, x2)2

(
E
x3
f1(x1, x2, x3)g2(x1, x3)g3(x2, x3)

)2
)1/2

.

Bounding g1(x1, x2)2 by 1 and expanding the the squared expectation as two independent

expectations, this becomes

6

(
E

x1,x2,x3,x′3

f1(x1, x2, x3)f1(x1, x2, x
′
3)g2(x1, x3)g3(x2, x3)g2(x1, x

′
3)g3(x2, x

′
3)

)1/2

=

(
E

x3,x′3

E
x1,x2

[f1(x1, x2, x3)f1(x1, x2, x
′
3)][g2(x1, x3)g2(x1, x

′
3)][g3(x2, x3)g3(x2, x

′
3)]

)1/2

.
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Here, the inner expectation has exactly the form we started with except with one fewer

variables (consider the functions indicated by the brackets and suppress the dependence on

the variables x3, x′3). Thus, after two more iterations of Cauchy-Schwarz, we will obtain

the upper bound

(E f1(x1, x2, x3)f1(x′1, x2, x3)f1(x1, x
′
2, x3)f1(x′1, x

′
2, x3)·

·f1(x1, x2, x
′
3)f1(x′1, x2, x

′
3)f1(x1, x

′
2, x
′
3)f1(x′1, x

′
2, x
′
3))1/8,

which is exactly ‖f1‖U3 (from Eq. (2.4)). Taking the expectation over the remaining vari-

ables x4, . . . , xk completes the proof. �

Remark 4.7. It follows directly from Lemma 4.6 that Cauchy-Schwarz complexity is an

upper bound for true complexity. In particular, we have that the true complexity of an affine

system of linear forms is bounded by m.

Now let d > 1 be an integer, and take L to be a system of linear forms of true complexity

at most d. By suitably decomposing a function f : Fn → [0, 1] as f1 + f2 + f3 according to

Theorem 3.18, it follows that we can make both tL(f2) and tL(f3) arbitrarily small. The

culmination of our discussion regarding complexity is the following lemma, which shows

that, in fact, tL(f1) can be made to arbitrarily approximate tL(f).

Lemma 4.8. Let L = {L1, . . . , Lm} ⊆ Fk be a system of linear forms of true complexity at

most d and ε > 0 a constant. Decompose f : Fn → [0, 1] as f = f1 + f2 + f3 according to

Theorem 3.18 with parameters δ, η, r. Then

|tL(f)− tL(f1)| 6 ε,

provided that δ is sufficiently small and η and r grow sufficiently fast.

Proof. We can expand tL(f) = tL(f1 + f2 + f3) as

∑
(ij)j∈[m]∈[3]m

E
X∈Fnk

[
m∏
j=1

fij(Lj(X))

]
.

Most of the terms in this sum are negligible: If any ij = 2, then we get that the summand

is at most δ′(1/η(|B|)), where δ′ is from Definition 4.4 and B is the polynomial factor from
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Theorem 3.18. Additionally, if some ij = 3, then an application of Cauchy-Schwarz yields

E
X∈Fnk

[
m∏
j=1

fij(Lj(X))

]
6

(
E

X∈Fnk
f3(X)2

)1/2

,

and so we can bound the summand by δ. The only other term, when all the ij = 1, is

precisely tL(f1), so we get

|tL(f)− tL(f1)|6 3m max{δ′(1/η(|B|)), δ} = oη,r,δ(1).

�

It is worth noting that the proof of Lemma 4.8 does not use the full power of Theo-

rem 3.18. It would suffice to decompose f as f1 + f2 according to Theorem 3.6. We have

stated the lemma this way, however, because we will only be applying it as a first step,

after which the additional conclusions of Theorem 3.18 will be required.

With these tools, we will be able to complete the discussion we started at the beginning

of the section.

4.2 Consistency

Consider a function f : Fn → {0, 1}, and a system of linear forms L = {L1, . . . , Lm} ⊆ Fk

of true complexity at most d. Lemma 4.8 above shows that we can arbitrarily approximate

tL(f) by tL(f1), where f = f1 + f2 + f3 is decomposed according to Theorem 3.18 with

suitably chosen parameters. Suppose this decomposition writes f1 = E [f |B] for some

highly uniform polynomial factor B defined by the polynomials P1, . . . , PC ∈ Polyd(Fn) with

respective degrees d1, . . . , dC and depths k1, . . . , kC . Then we can write f1 = Γ(P1, . . . , PC)

for some function Γ : TC → [0, 1], and this gives

tL(f1) = tL(Γ(P1, . . . , PC)) = E
X∈Fnk

[
m∏
i=1

Γ(P1(Li(X)), . . . , PC(Li(X)))

]
.
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Thus, rather than the distribution of (P1(x), . . . , PC(x)) over a uniform x ∈ Fn, we would

like to be able to understand the distribution of the random matrix
P1(L1(X)) P2(L1(X)) · · · PC(L1(X))

P1(L2(X)) P2(L2(X)) · · · PC(L2(X))
...

...
...

P1(Lm(X)) P2(Lm(X)) · · · PC(Lm(X))

 , (4.3)

where X is a uniform random variable taking values in Fnk. Each column of this matrix

takes values in Um
ki+1 for some i. When m = 1 and (without loss of generality) L1 = (1),

the non-classical analogue of Theorem 4.1 we mentioned earlier says that the distribution

can be made as close as desired to uniform over the product group
∏C

i=1 Uki+1 by taking B
to be sufficiently uniform. However, when m > 2, more complicated situations can arise.

The most obvious issue comes from the fact that for a degree d polynomial P ∈
Polyd(Fn), we have the derivative identity Eq. (2.8). Hence, if we take L ⊆ Fk to be

the system of linear forms indexed by subsets S ⊆ [d+ 1], where LS = (1S(i))i∈S, the rows

of the matrix will sum to 0. In this case, the i-th column will not even be fully supported

on Um
ki+1, since the (say) last entry will be determined by the previous ones. Before we say

anything more, let us give a name to the columns on which the distribution of Eq. (4.3) is

supported.

Definition 4.9 (Consistency). Let L = {L1, . . . , Lm} ⊆ F` be a system of linear forms. A

sequence of elements b1, . . . , bm ∈ T is said to be (d, k)-consistent with L if there exists a

(d, k)-polynomial P ∈ Polyd,k(Fn) and a point X ∈ Fn` such that P (Li(X)) = bi for every

i ∈ [m].

Given vectors d = (d1, . . . , dC) ∈ ZC>0 and k = (k1, . . . , kC) ∈ ZC>0, a sequence of vectors

b1, . . . ,bm ∈ TC is said to be (d,k)-consistent with L if for every i ∈ [C], the elements

b1(i), . . . ,bm(i) are (di, ki)-consistent with L.

If B is a polynomial factor, the term B-consistent is synonymous with (d,k)-consistent,

where d and k are, respectively, the degree and depth sequences of the polynomials defining

B.

In this language, the rows of Eq. (4.3) are B-consistent with L, which is equivalent to

saying that each (i-th) column is (di, ki)-consistent with L. Fortunately, consistency turns

out to be the only obstruction to getting equidistribution. The following theorem shows
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that, once we condition on the consistency requirement, the distribution of Eq. (4.3) can

be made arbitrarily close to uniform. There is a homogeneity requirement here, which can

either be on the polynomials or the linear forms. Since we are mainly interested in affine

systems of linear forms, the form of the theorem we will use is from [BFH+13], but more

recently in [HHL14] the result was proved for general systems under the assumption that

all the polynomials Pi are homogeneous. This is a much stronger result, as with a bit of

effort, one can give an analogue of Theorem 3.18 where the polynomial factor is completely

defined by homogeneous polynomials. This is nearly pointless effort for us, however, so we

will stick with affine systems of linear forms.

Theorem 4.10 (Equidistribution over linear forms). For some ε > 0, let B be an ε-uniform

polynomial factor of degree d > 0 and complexity C, that is defined by the polynomials

P1, . . . , PC ∈ Polyd(Fn) having respective degrees d1, . . . , dC and depths k1, . . . , kC. Let

L = {L1, . . . , Lm} ⊆ F` be an affine system of linear forms.

Suppose b1, . . . ,bm ∈ TC are atoms of B that are B-consistent with L. Then

Pr
X∈Fnk

[B(Lj(X)) = bj ∀j ∈ [m]] =
1

|K|
± ε,

where K denotes the subgroup of tuples (b1, . . . ,bm) that are B consistent with L.

To prove Theorem 4.10, we would like to proceed as in the proof of Theorem 4.1. Before

we can do this, however, we need to prove that the uniformity condition on the polynomials

is somehow preserved even when they are composed with linear forms. This result is often

referred to as ‘strong near-orthogonality’, and will be most of the effort towards proving

the equidistribution theorem.

4.3 Strong near-orthogonality

Let B be a uniform polynomial factor defined by the polynomials P1, . . . , PC ∈ Polyd(Fn).

The uniformity condition here implies that if P is any non-trivial linear combination of the

Pi, then ‖e (P )‖Ud+1 can be made arbitrarily small by increasing the uniformity. Unfortu-

nately, if L = {L1, . . . , Lm} ⊆ F` is a system of linear forms, then there are non-trivial linear

combinations of the Pi(Lj) which are identically 0. There is an obvious source of these:

If any tuple (λ1, . . . , λm) satisfies
∑m

j=1 λjbj for every (d, k)-consistent sequence b1, . . . , bm,
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then clearly
∑m

j=1 λjP (Lj) ≡ 0 for every (d, k)-polynomial P . Let us give a name to this

set.

Definition 4.11 (Dependency). Let d > 1 and k > 0 be integers. For a system of linear

forms L = {L1, . . . , Lm} ⊆ F`, the (d, k)-dependency of L is defined to be the set of tuples

(λ1, . . . , λm) ∈ Zm such that
∑m

j=1 λjbj = 0 for every sequence b1, . . . , bm that is (d, k)-

consistent with L.

Equivalently, the (d, k)-dependency of L is the orthogonal complement of the subgroup

of (d, k)-consistent sequences.

The question now is whether there are more non-trivial solutions to
∑
λi,jPi(Lj) ≡ 0

than those where each tuple (λi,j)j∈[m] lies in the (di, ki)-dependency of L. It turns out

that, when the polynomials are sufficiently uniform, the answer is that there are not. This

leads us to the following dichotomy theorem from [BFH+13].

Theorem 4.12 (Near-orthogonality over linear forms). Given ε > 0, suppose B is an ε-

uniform polynomial factor defined by the polynomials P1, . . . , PC ∈ Polyd(Fn). Let L =

{L1, . . . , Lm} ⊆ F` be an affine system of linear forms, and for every tuple Λ of integers

(λi,j)i∈[C],j∈[m] define

PL,B,Λ(X) :=
∑

i∈[C], j∈[m]

λi,jPi(Lj(X))

for every X ∈ Fn`. Then, one of the two statements below is true.

1. PL,B,Λ ≡ 0.

2. PL,B,Λ is non-constant and |EX∈Fn` e (PL,B,Λ(X))| 6 ε.

Furthermore, PL,B,Λ ≡ 0 if and only if for every i ∈ [C], the tuple (λi,j)j∈[m] lies in the

(di, ki)-dependency of L.

Proof. First, we will need to make some modifications to the system of linear forms L.

For any affine linear form L = (λ1, . . . , λ`) ∈ F`, we denote |L|=
∑`

i=2|λi|. Now suppose

that |L|> d. Then if P ∈ Polyd(Fn) is any polynomial, for any y1, . . . , yk, where k = |L|,
Eq. (2.8) implies that ∑

S⊆[k]

(−1)|S|P (x+
∑
i∈S

yi) = 0.
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for every x ∈ Fn. Take the first |λ2| of the yi as x2, the next |λ3| of the yi as x3, and so on.

Then the S = [k] term above will be exactly P (L(X)), where X = (x, x2, . . . , x`) ∈ Fn`.
All the remaining terms are of the form P (L′(X)) where |L′|< |L|, and so we can write

P (L(X)) as a linear combination of these. Iterating this process, we can write P (L(X))

as a linear combination of P (L′(X)) where every |L′|6 d. Doing this every polynomial Pi

underlying B, we can write PL,B,Λ as PL′,B,Λ′ , where every L′j ∈ L′ satisfies |L′j|6 deg λ′i,jPi

for every i ∈ [C].

Now, if PL,B,Λ ≡ 0, then PL′,B,Λ′ ≡ 0 as well. However, since the transformation

Λ→ Λ′ depends only on the degree and depth sequences of B, PL,B′,Λ ≡ 0 for any factor B′

generated by polynomials with the same degree and depth sequence as B. This is precisely

the requirement for Λ to have marginals in the dependency of L.

On the other hand, if PL′,B,Λ′ 6≡ 0, we will be able to show that |E e (PL′,B,Λ′)|6 ε. To

do this, we will ‘derive’ PL′,B,Λ′ until only a maximal term remains. More precisely, we will

suppose without loss of generality that L′1 satisfies

1. λ′i,1 6= 0 for some i ∈ [C].

2. L′1 is maximal in the sense that for every j 6= 1, either λ′i,j = 0 for all i ∈ [C] or it is

the case that |λj,t|< |λ1,t| for some t ∈ [`].

Given a vector a = (α1, . . . , α`) ∈ F`, a direction y ∈ Fn, and a function P : Fn` → T,

we define the differential operator Da.y by

Da,yP (x1, . . . , x`) = P (x1 + α1y, . . . , x` + α`y)− P (x1, . . . , x`).

Note that the operator Da,y behaves particularly well when P is composed with a linear

form L ∈ F`:

Da,yPi(L(x1, . . . , x`)) = Pi(L(x1, . . . , x`) + 〈L, a〉y)− Pi(L(x1, . . . , x`))

= (D〈L,a〉,yPi)(L(x1, . . . , x`)).

Hence, if a and L are orthogonal, then Da,yPi(L) ≡ 0 for every y.

Let d = |L′1|, and define the vectors a1, . . . , ad ∈ F` by taking, for every i ∈ [2, `] and

0 6 λ 6 |λ1,i|−1, the vector (−λ, 0, . . . , 0) + ei. Since L′1 is maximal as defined above,
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〈L′1, ak〉 6= 0 for every k ∈ [d], but for any j > 1, there exists some k ∈ [d] such that

〈L′j, ak〉 = 0. This implies that

Dad,yd · · ·Da1,y1PL′,B,Λ′ ≡ Dad,yd · · ·Da1,y1

(
C∑
i=1

λ′i,1Pi(L
′
1)

)

≡

(
D〈L′1,ad〉,yd · · ·D〈L′1,a1〉,y1

C∑
i=1

λ′i,1Pi

)
(L′1)

for every choice of directions y1, . . . , yd ∈ Fn. Taking expectations and making a change of

variables sending L′1 to e1, we have shown that

E
y1,...,yd,

x1,...,x`∈Fn
e ((Dad,yd · · ·Da1,y1PL′,B,Λ′)(x1, . . . , x`)) = ‖

C∑
i=1

λ′i,1Pi‖2d

Ud . (4.4)

To complete the proof we will use the following claim.

Claim 4.13.

E
y1,...,yd,

x1,...,x`∈Fn
e ((Dad,yd · · ·Da1,y1PL′,B,Λ′)(x1, . . . , x`)) >

(∣∣∣∣ E
x1,...,x`∈Fn

e (PL′,B,Λ′(x1, . . . , x`))

∣∣∣∣)2d

.

Proof. It suffices to show that for any function Q : Fn` → T and non-zero a ∈ F` we have∣∣∣∣ E
y,x1,...,x`∈Fn

e ((Da,yQ)(x1, . . . , x`))

∣∣∣∣ > ∣∣∣∣ E
x1,...,x`∈Fn

e (Q(x1, . . . , x`))

∣∣∣∣2 .
The claim will then follow by iteratively applying this inequality.

Without loss of generality we can assume that a = e1. Then∣∣∣∣ E
y,x1,...,x`

e ((De1,yQ)(x1, . . . , x`))

∣∣∣∣ =

∣∣∣∣ E
y,x1,...,x`

e (Q′(x1 + y, x2, . . . , x`)−Q′(x1, . . . , x`))

∣∣∣∣ .
Since x1 and x1 + y are independent, we can write this as

E
x2,...,x`

∣∣∣∣Ex1 e (Q(x1, . . . , x`))

∣∣∣∣2 > ∣∣∣∣ E
x1,...,x`

e (Q(x1, . . . , x`))

∣∣∣∣2 .
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�

Combining Eq. (4.4) with Claim 4.13, the result follows directly from our uniformity

assumption on the factor B. �

From here, it will be easy to push the proof of Theorem 4.10 through in a manner

analogous to that of Theorem 4.1: We replace the use of the uniformity of the polynomials

by an application of Theorem 4.12. Of course, we will also need to treat with non-classical

polynomials, but that will only require taking care with our notation.

Proof of Theorem 4.10. As before, we will want to rewrite the indicator function of the

event Pi(Lj(x)) = bj(i) as the expectation of a character. The polynomial Pi takes values

in the subgroup Uki+1, so the correct statement to make is that

1(Pi(Lj(X)) = bj(i)) = p−(ki+1)
∑

λ∈Z
pki+1

e (λ(Pi(Lj(X))− bj(i)))

for any X ∈ Fnk. This then implies that

Pr [B(Lj(X)) = bj ∀j ∈ [m]] = E

∏
i,j

p−(ki+1)
∑

λi,j∈Zpki+1

e (λi,j(Pi(Lj(X))− bj(i)))

 .
Interchanging expectation with sum, this reduces to

p−m(K+1)
∑

λi,j∈Zpki+1

e

(
−
∑
i,j

λi,jbj(i)

)
E

[
e

(∑
i,j

λi,jPi(Lj(X))

)]
,

where K =
∑C

i=1 ki. Now for every i ∈ [C], let Λi denote the (di, ki)-dependency of

L. Whenever (λi,j)j∈[m] ∈ Λi for every i ∈ [C], it follows from the fact that the bj

are consistent with L and Theorem 4.12 that the corresponding summand is equal to

1. Otherwise, Theorem 4.12 shows that the summand is bounded by ε. Putting things

together, this gives us

Pr [B(Lj(X)) = bj ∀j ∈ [m]] = p−m(K+1)

(
C∏
i=1

|Λi|±εpmK
)
.
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Using the fact that Λi is the orthogonal complement to the subgroup of (di, ki)-consistent

atoms, this immediately implies the result. �

The equidistribution theorem Theorem 4.10, along with Theorem 3.18, will be our main

tools for finding a limit object for convergent sequences.



50

Chapter 5

Main Results

5.1 Convergence and limit objects

Let us first recall the sampling rule that we will use to define convergence. Given a function

f : Fn → {0, 1} and an affine system of linear forms, L ⊆ Fk, we select a random affine

transformation A : Fk → Fn uniformly. By looking at the function Af : x 7→ f(Ax), this

induces a probability distribution µf over the set of functions {Fk → {0, 1}}. Then the

distribution µf (L) is obtained by restricting µf to the set of functions {L → {0, 1}}. We

defined a sequence of functions {fi : Fni → {0, 1}}i∈N to be convergent if the distributions

µf converge for every k. It will be easier to work with the following notion of convergence

in terms of the distributions µf (L).

Definition 5.1 (d-convergence). Let d > 1 be an integer. A sequence of functions {fi :

Fni → {0, 1}}i∈N is called d-convergent if for every integer k > 1 and every affine sys-

tem of linear forms L = {L1, . . . , Lm} ⊆ Fk of true complexity at most d, the probability

distributions µfi(L) converge.

It follows from Remark 4.7 that a sequence {fi : Fni → {0, 1}}i∈N is convergent if and

only if it is d-convergent for every d. Thus, as a slight abuse of notation we will often talk

about ∞-convergence, which is understood to mean convergence.

To study convergent sequences, we would like to be able work with the averages tL(fi)

rather than the distributions µfi(L). Recall that µfi(L) ∼ (f(L1(X)), . . . , f(Lm(X))),

where X ∈ Fnk is chosen uniformly. This clearly determines the value tL(fi). The following

2014/08/11
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observation shows us that, in fact, the distribution µfi(L) is determined by the values

tL′(fi), where L′ ⊆ L.

Observation 5.2. For every d ∈ N∪{∞}, a sequence of functions {fi : Fni → {0, 1}}i∈N
is d-convergent if and only if for every affine system of linear forms L of true complexity

at most d, the values tL(fi) converge.

Proof. To simplify the notation, let us write ν := µfi(L) for some i and affine L of true

complexity at most d. We can identify the distribution ν with a function ν : {0, 1}L → [0, 1].

Then, applying the Fourier transform, we can write

ν(x) =
∑
S⊆L

ν̂(S)χS(x)

for every x ∈ {0, 1}L, so that ν is determined by the ν̂(S). However, we have

ν̂(S) = E
y∈{0,1}L

[ν(y)χS(y)] = E
y

[
ν(y)(−1)

∑
i∈S yi

]
= E

y

[
ν(y)

∏
i∈S

(1− 2yi)

]
.

Expanding this product, we see that ν̂(S) is a linear combination of terms of the form

E
y

[
ν(y)

∏
i∈S′

yi

]
,

where S ′ ⊆ S ⊆ L. By definition, ν(y) is the probability that (f(L1(X)), . . . , f(Lm(X))) =

y over a uniform X ∈ Fnk, which shows that

E
y

[
ν(y)

∏
i∈S′

yi

]
= tS′(fi).

It follows that the values ν̂(S), and hence the distribution ν, are determined by the values

tL′(fi), where L′ ⊆ L (and so has true complexity at most d). �

Now we would like to find a representation for the limit of a d-convergent sequence. At

this point, we hope it seems reasonably natural to consider the following definition. We

will elaborate on our choice more shortly.
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Definition 5.3 (d-limit objects). For every d ∈ N ∪ {∞}, denote

Gd :=
d∏
j=1

b j−1
p−1
c∏

k=1

UN
k+1.

So every element in the group Gd is of the form a = (aj,k,i : j ∈ [d], k ∈ [0, b j−1
p−1
c], i ∈ N),

with each aj,k,i ∈ Uk+1.

A d-limit object is a measurable function Γ : Gd → [0, 1].

A d-limit object Γ : Gd → [0, 1] can be thought of as being a function of infinitely many

polynomials: For every degree j ∈ [d] and then for every possible depth k ∈ [0, b j−1
p−1
c]

(recall Lemma 2.8), Gd has a factor of UN
k+1, which is the group a countable collection of

(j, k)-polynomials takes values in.

To prove that d-limit objects correspond to the limits of d-convergent sequences, we need

to define the probability distribution that a d-limit object induces on the set of functions

{L → {0, 1}}. First, we need another definition, extending the notion of consistency to

elements of Gd.

Definition 5.4 (Consistency II). Let L = {L1, . . . , Lm} ⊆ F` be a system of linear forms. A

sequence of elements b1, . . . ,bm ∈ Gd is consistent with L if for every j ∈ [d], k ∈ [0, b j−1
p−1
c,

and i ∈ N, the elements b1(j, k, i), . . . ,bm(j, k, i) are (j, k)-consistent with L.

From Theorem 4.10, we are led to suggest the following sampling rule. Consider a d-

limit object Γ : Gd → [0, 1]. For any affine system of linear forms L = {L1, . . . , Lm} ⊆ F`,
select b1, . . . ,bm ∈ Gd uniformly at random, conditioned on being consistent with L. Then

define the random function g : L → {0, 1} by setting g(Li) = 1 with probability Γ(bi) and

g(Li) = 0 with probability 1 − Γ(bi) independently for every i ∈ [m]. This induces a

probability measure µΓ(L) on the set of function {L → {0, 1}}.

Definition 5.5. For every d ∈ N∪ {∞}, we say that a sequence of functions {fi : Fni →
{0, 1}}i∈N d-converges to Γ if for every affine system of linear forms L of true complexity

at most d, the probability measures µfi(L) converge to µΓ(L).

To continue working with the values tL(fi) as we would like, we need an analogue of

Definition 4.2 for d-limit objects.
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Definition 5.6. For a d-limit object Γ : Gd → [0, 1], we define

tL(Γ) = E

[
m∏
i=1

Γ(bi)

]
,

where b1, . . . ,bm ∈ Gd are chosen uniformly at random, conditioned on being consistent

with L.

Observation 5.2 can be extended in light of Definition 5.6.

Observation 5.7. For every d ∈ N∪{∞}, a sequence of functions {fi : Fni → {0, 1}}i∈N
d-converges to a d-limit object Γ : Gd → [0, 1] if and only if for every affine system of linear

forms L of true complexity at most d, we have limi→∞ tL(fi) = tL(Γ).

For any notion of convergence, there are two properties basic of a limit object that

should be satisfied if we would like it to properly represent convergent sequences. First,

every convergent sequence should converge to a limit object, so that the space of limit

objects is complete. Second, every limit object should be obtainable as the limit of a

convergent sequence. This second property can be thought of as the space of limit objects

being dense in the original structures.

The main theorem of this thesis below shows that d-limit objects have both of these

properties with respect to d-convergence. This holds even when we allow d =∞, in which

case d-convergence corresponds to our original notion of convergence.

Theorem 5.8 (Main Theorem). For every d ∈ N ∪ {∞}, every d-convergent sequence

d-converges to a d-limit object. On the other hand every d-limit object is the limit of a

d-convergent sequence.

5.2 Proof of the main theorem

We will prove our main theorem via two lemma which correspond to the two statements

that make up Theorem 5.8. First, we have the completeness lemma.

Lemma 5.9 (Completeness). Let {fi : Fni → {0, 1}}i∈N be a d-convergent sequence. There

exists a d-limit object Γ such that limi→∞ tL(fi) = tL(Γ) for every affine system of linear

forms L of true complexity at most d.
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The idea of the proof is quite straightforward. If we decompose a function f : Fn →
{0, 1} as f = f1 + f2 + f3 according to Theorem 3.18, then there is a natural way to treat

f1 as a d-limit object Γ : Gd → [0, 1] (using only finitely many of the coordinates in Gd).

By choosing the parameters in the decomposition correctly, we can not only ensure that

tL(f1) well approximates tL(f) (Lemma 4.8), but additionally that tL(Γ) well approximates

tL(f1) (Theorem 4.10). Doing this for each function in our sequence, we will be able to

construct a d-limit object which is the limit of the sequence.

Proof. Consider a decreasing sequence {εi}i∈N of positive reals tending to 0. Let the pa-

rameters δi, ηi, and ri be chosen as required by Lemma 4.8 so that for every affine system

of linear forms L = {L1, . . . , Lm} of true complexity at most d, if i is sufficiently large, then

the following holds:

(i) |tL(fi)−tL(f 1
i )|6 εi where fi = f 1

i +f 2
i +f 3

i is decomposed according to Theorem 3.18

with the parameters δi, ηi, and ri, and degree di, where di = d if d < ∞, and di = i

if d =∞.

(ii) The assertion of Theorem 4.10 is true with ε = εip
−idiC when applied to the factor B

in the decomposition fi = f 1
i + f 2

i + f 3
i . Here C is the complexity of B.

Decompose each fi as fi = f 1
i + f 2

i + f 3
i according to Theorem 3.18 with the above

mentioned parameters. We have f 1
i (x) = Γ̃i(P

i
1(x), . . . , P i

C(x)) for some function Γ̃i : TC →
[0, 1] and polynomials P i

1, . . . , P
i
C ∈ Polydi(F

n). Considering the degrees and the depths

of the polynomials, the function Γ̃i corresponds naturally to a d-limit object Γi: Indeed,

let φ : [C] → N × N × N be any injective map that satisfies φ(t) = (deg(P i
t ), depth(P i

t ), ·)
for every t ∈ [C]. Define π : Gd → TC as π : b → (b(φ(1)), . . . ,b(φ(C))), and let

Γi(b) := Γ̃i(π(b)) for every b ∈ Gd.

Let L = {L1, . . . , Lm} be an affine system of linear forms of true complexity at most

d, and let i be sufficiently large. We will show that |tL(f 1
i ) − tL(Γi)|6 εi. Choose

b1, . . . ,bm ∈ Gd uniformly at random conditioned on being consistent with L. Since

consistency is defined coordinate-wise, it follows that (π(b1), . . . , πC(bm)) is distributed

uniformly conditioned on being B-consistent with L, and hence that tL(Γ̃i) = tL(Γi).
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Now we can write

tL(f 1
i ) = E

x

∏
Lj∈L

Γ̃i(P
i
1(Lj(x)), . . . , P i

C(Lj(x)))

 = E

∏
Lj∈L

Γ̃i(yj)

 ,
where the yj are distributed as (P1(Lj(x)), . . . , PC(Lj(x))). The condition (ii) above shows

that the distribution of (b1, . . . ,bm), where the bj ∈ TC are chosen uniformly condi-

tioned on being B-consistent with L, is ε-close in total variation distance to that of

(Pi(Lj(x)))i∈[C],j∈[m] when x is chosen uniformly at random. This gives

E

∏
Lj∈L

Γ̃i(yj)

 6 tL(Γ̃i) + pidiCε

since each P i
t , t ∈ [C], has degree at most di, hence there are at most pidiC choices for the

yj when i > m. So we have the desired approximation.

So far we have established that for every system of affine linear forms L, if i is sufficiently

large, then

|tL(fi)− tL(Γi)|6 2εi. (5.1)

Next we construct the limit object Γ. For every t ∈ N denote Gt
d =

∏t
j=1

∏b j−1
p−1
c

k=0 Ut
k+1.

Note that Gt
d corresponds to a partition of Gd. For every measurable Γ : Gd → [0, 1] and

t ∈ N, define Et(Γ) = E [Γ | Gt
d]. Note that the set {G1

d → [0, 1]} is a compact space,

and thus one can find a subsequence of {Γi}i∈N such that E1(Γi) for i in this subsequence

converges to a function µ1 : G1
d → [0, 1]. Now we restrict ourselves to this subsequence and

consider E2. Again by compactness we can find a subsequence for which E2(Γi) converges

to a function µ2 : G2
d → [0, 1]. Continuing in the same manner we define µt : Gt

d → [0, 1] for

every t. Note that since we restricted to a subsequence at every step, we have E[µt|Gr
d] = µr

for every r < t. Furthermore, by picking the first element from the first subsequence, the

second element from the second subsequence, and so on, we obtain a subsequence Γ′1,Γ
′
2, . . .

of the original sequence that satisfies lim E [Γ′i | Gt
d] = µt for every t ∈ N.

The measure µt is a σ-finite measure over the atoms Gt
d, and thus by Carathéodory’s

extension theorem, there is a unique measure (also σ-finite) µ on Gd such that E[µ|Gt
d] = µt

for every t. Now let ν denote the uniform measure, and note that for any t and any

particular Γi we have E[Γi |Gt
d] 6 1. Since µt is a limit (over a subsequence) of these
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averages, we have µt(A) 6 ν(A) for every A ⊆ Gt
d. It follows that µ(A) 6 ν(A) for any

µ-measurable A ⊆ Gd. In particular, µ is absolutely continuous with respect to ν. Let

Γ : Gd → [0, 1] be the Radon-Nikodym derivative of µ.

Note that as lim E [Γ′i | Gt
d] = µt, the sequence of Γ′i converge to Γ in L1, and conse-

quently lim tL(Γ′i) = tL(Γ). We showed in (Eq. (5.1)) that lim tL(fi) = lim tL(Γi), and since

the former limit exists by assumption, it follows that tL(Γ) = lim tL(fi). �

Before we can prove the second part of Theorem 5.8, we will need an additional lemma

which shows the existence of collections of uniform polynomials with arbitrary degree and

depth sequences.

Lemma 5.10. Let d = (d1, . . . , dC) ∈ ZC>0 and k = (k1, . . . , kC) ∈ ZC>0 satisfy 0 6 ki 6

bdi−1
p−1
c for every i, and let ε > 0 be a constant. There exists an ε-uniform collection of

polynomials P1, . . . , PC such that Pi is of degree di and depth ki for every i ∈ [C].

The obvious way to generate polynomials with few low-degree dependencies is to simply

have each monomial use a disjoint set of variables. The sum of r monomials of this type

will clearly have rank that is bounded as a function of r.

Proof. Let r′ be an integer. For each i, let mi satisfy di = mi + (p − 1)ki. Allot

variables xi1, . . . , x
i
mir′

for exclusive use by Pi, and let Pi = p−ki−1(xi1 · · ·ximi + · · · +

ximi(r′−1)+1 · · ·ximir′). It is clear that P1, . . . , PC has the desired degree and depth sequence.

For sufficiently large n we have enough variables to do this, and for sufficiently large choice

of r′, these polynomials will have rank at least r3.12(d, ε), where d = maxi di. �

With Lemma 5.10, we can now complete the proof of Theorem 5.8. The technique

should not be surprising: We will restrict Gd to the finite subgroup Gt
d and generate a

uniform collection of polynomials with degrees and depths corresponding to the entries of

Gt
d. We will then use these polynomials to define a sequence of functions that can easily

be shown to d-converge to the desired d-limit object.

Lemma 5.11 (Denseness). Let d ∈ N ∪ {∞}, and let Γ be a d-limit object. There exists a

d-convergent sequence of functions {fi : Fni → {0, 1}}i∈N whose limit is Γ.

Proof. For every t ∈ N, define the function Γt : Gd → [0, 1] to be the function obtained from

E [Γ | Gt
d] (a map from Gt

d to [0, 1]) by extending it to a function on Gd. The Γt converge
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to Γ in L1 norm, and each Γt depends on only a finite number of coordinates of Gd. Let

dt = (dt1, . . . , d
t
C) and kt = (kt1, . . . , k

t
C) be the degree and depth sequences corresponding

to the coordinates of Gd used by Γt.

For every r ∈ N, we can apply Lemma 5.10 to get a collection of polynomials P1, . . . , PC

of rank > r such that Pi has degree dti and depth kti for every i. Now define the function

f rt : Fnr → [0, 1] by letting f rt (x) = Γ(P1(x), . . . , PC(x)), where we treat (P1(x), . . . , PC(x))

as an element of Gd. It follows from Theorem 4.10 by the same argument used in the proof

of Lemma 5.9 that we have tL(f rt )→r tL(Γt) for every affine L of true complexity at most

d. Taking a suitable diagonal subsequence of the f rt , we obtain a sequence of functions

fi : Fni → [0, 1] with tL(fi)→i tL(Γ) for every affine L of true complexity at most d.

To complete the proof, consider the random functions f ′i : Fni → {0, 1} where f ′i(x)

takes value 1 with probability fi(x). It is not hard to see that these d-converge to Γ

with probability 1, and hence the existence of a d-convergent sequence converging to Γ is

evinced. �

This concludes the proof of Theorem 5.8. This answers the two most important ques-

tions regarding the veracity of d-limit objects. Now, before we conclude, there is an inter-

esting problem to consider that is relevant to the discussion.

5.3 Necessary depths

Recall the inverse theorem for the Gowers Ud+1 norm Theorem 2.14, which shows that

functions with large Ud+1 norm must correlate with a polynomial P ∈ Polyd(Fn). From

Lemma 2.8, it is clear that any P that is non-classical must have degree at least p. However,

it is further known that polynomials of degree d = p that are not-classical are unnecessary

in higher order Fourier analysis (hence why non-classical polynomials can be avoided in

quadratic Fourier analysis). More precisely, in Theorem 2.14, taking d = p, one can assume

that the polynomial P is in fact a classical polynomial of degree at most p. This can be

carried through the decomposition theorems to Theorem 3.18, and on to the definition of

a d-limit object. We will elaborate on this below, but first let us prove a generalization of

this fact, which says that the polynomials of maximum possible depth are unnecessary in

higher order Fourier analysis.
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Lemma 5.12. Every (1 + k(p − 1), k)-polynomial P : Fn → T can be expressed as a

function of a (1 + k(p− 1), k− 1)-polynomial, a (1 + (k− 1)(p− 1), k− 1)-polynomial, and

a (k(p− 1), k − 1)-polynomial.

Proof. By Lemma 2.8, we have P (x1, . . . , xn) =
∑
ci|xi|
pk+1 +R(x1, . . . , xn) mod 1 for integers

0 6 ci 6 p− 1, where R is a (1 + k(p− 1), k − 1)-polynomial. Let M :=
∑
ci|xi|, and let

0 6 a < pk and b ∈ [p− 1] be the unique integers satisfying M ≡ a + bpk mod pk+1. The

value of P is fixed by the three values a, b and R. The value of a is determined by the

value of the (1 + (k− 1)(p− 1), k− 1)-polynomial M
pk

mod 1. Furthermore knowing a, the

value of b is determined by the value of the Mp−M
pk+1 mod 1. Indeed

bpk ≡ (a+ bpk)p − (a+ bpk)− (ap − a) mod pk+1. (5.2)

It remains to show that Mp−M
pk+1 mod 1 is a (1 + k(p − 1), k − 1)-polynomial. Since degree

and depth are invariant under affine transformations, it suffices to show that Q := |x1|p−|x1|
pk+1

mod 1 is a (k(p − 1), k − 1)-polynomial. By Fermat’s little theorem pkQ = 0, and thus Q

is of depth k − 1. Furthermore, the identity |x1|(|x1|−1) . . . (|x1|−p + 1) = 0 allows us to

replace |x1|p with a polynomial of degree p − 1. This shows that Q is of degree at most

(p− 1) + (p− 1)(k − 1) = k(p− 1). �

It follows from Lemma 5.12 that in Theorem 3.18, (1 + k(p − 1), k)-polynomials can

be avoided in the polynomials defining the factor B. Consequently, every d-convergent

sequence converges to a d-limit object φ : Gd → [0, 1] such that φ does not depend on the

coordinates that correspond to (1 + k(p− 1), k)-polynomials. Next we will show that there

are no other values of (d, k) that behave similarly, that is, for which every (d, k)-polynomial

can be expressed as a function of a constant number of polynomials of either degree d and

depth < k, or degree < d. To do this, we need the following theorem of [TZ12], whose

proof we omit.

Theorem 5.13. Let d > p be an integer, and ε > 0. There exists a ρ = ρ5.13(ε, d) such

that the following holds for sufficiently large n. If P : Fn → T is a polynomial of degree d

with ‖e (P )‖Ud > ε, then pP : Fn → T is a polynomial of degree 6 d− p+ 1 that satisfies

‖e (pP )‖Ud−p+1 > ρ.
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Now, the next lemma implies that unless d and k are as in Lemma 5.12, the following

holds. For every constant C, there exists a (d, k)-polynomial that cannot be expressed as

a function of C polynomials, each of either degree d and depth < k, or of degree < d.

Lemma 5.14. Let m > 2 be an integer, and ε > 0. Then for every k > 0, defining

d = m+ k(p− 1), there exists a degree (d, k)-polynomial Q such that

|〈e (Q), e (R1 +R2)〉|< ε, (5.3)

for any polynomial R1 of degree at most d and depth less than k, and any polynomial R2

of degree at most d− 1.

Proof. Let

P =

bn/mc−1∑
i=0

|xim+1|. . . |xim+m|.

Set εk = ε, and for every 0 6 i 6 k, let εi ∈ (0, ε) be constants satisfying

εi < ε2.14(ρ5.13(εi+1, d), d).

We show by induction on i that if n is sufficiently large, then the (m+i(p−1), i)-polynomial

Q = P
pi+1 mod 1 satisfies the desired property with parameter εi in (5.3) instead of ε.

We first look at the classical case i = 0. Notice that in this case by taking n to be

sufficiently large, we can guarantee that ‖e (Q)‖Ud is sufficiently small, and this implies

that the correlation of Q with any polynomial of degree lower than m + i(p − 1) = m is

smaller than ε0.

Now let us consider the case i > 0. Assume for the sake of a contradiction that

|〈e
(

P
pi+1

)
, e (R1 +R2)〉|> εi for a polynomial R1 of degree at most di = m + i(p − 1)

and depth < k, and a polynomial R2 of degree 6 di − 1. This in particular implies

‖e
(

P
pi+1 −R1 −R2

)
‖Udi > εi. Note that P

pi+1 − R1 − R2 mod 1 has degree di > p, and

thus we can apply Theorem 5.13 to conclude that

‖e
(
p(P/pi+1 −R1 −R2)

)
‖Udi−p+1 > ρ

(
‖e
(
P/pi+1 −R1 −R2

)
‖Udi

)
> ρ5.13(εi, di).
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Therefore by Theorem 2.14 there exists a polynomial R′ of degree at most di− p such that

∣∣〈e (p(P/pi −R1 −R2)
)
, e (R′)

〉∣∣ > ε2.14(ρ5.13(εi, di), di − p) > ε2.14(ρ5.13(εi, di), di) > εi−1.

It follows that |〈e (P/pi), e (pR1 + pR2 +R′)〉| > εi−1, which contradicts our induction hy-

pothesis. �

Although we have seen that these lemmas do have implications for d-limit objects,

Lemma 5.12 and Lemma 5.14 are results that are interesting in their own right, and may

be useful even outside the scope of this thesis.
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Chapter 6

Concluding Remarks

We would like to wrap up by looking at an interesting direction in which to continue this

line of work. So far we have seen that d-limit objects correctly capture the notion of d-

convergence in the sense that every d-convergent sequence converges to a d-limit object

and every d-limit object is the limit of some d-convergent sequence. What is still missing

from this picture is to study in what sense d-limit objects are unique. To see how powerful

a characterization of uniqueness can be, let us again appeal to the graph limits example.

Two graphons U,W : [0, 1]2 → [0, 1] are called weakly isomorphic if tind(F,U) =

tind(F,W ) for every simple graph F . Recall that a transformation σ : [0, 1] → [0, 1] is

called measure preserving if λ(σ−1(A)) = λ(A) for every measurable A ⊆ [0, 1]. If W is a

graphon, and σ is measure preserving, then we can define another graphon W σ by writing

W σ(x, y) = W (σ(x), σ(y)). It follows from the definition of being measure preserving that

W is always weakly isomorphic to W σ.

The direct converse to this is false: There exist weakly isomorphic graphons W1,W2

such that neither can be obtained from the other by composing with a measure preserving

map. It is not far from being true, however. In [BCL10], the authors prove that if W1,W2

are weakly isomorphic graphons, then there exists a third graphon W and two measure

preserving maps σ1, σ2 such that W = W σ1
1 and W = W σ2

2 almost everywhere. With a bit

of effort, this characterization can be used to show that the space of graphons modulo weak

isomorphism is in fact a compact metric space. This is an extremely useful fact which has

been (and still is) used to prove many new results in the field.

In our setting, we would like to see what can be said about d-limit objects satisfying

2014/08/11
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tL(Γ1) = tL(Γ2) for every affine system of linear forms L of true complexity at most d. Let

us borrow terminology and call Γ1 and Γ2 d-weakly isomorphic (or just weakly isomorphic

when this is not ambiguous) in such a case. This is an interesting problem because, together

Theorem 5.8, it would imply something about the types of functions from {Fn → {0, 1}}
which be distinguished by sampling densities. As before, there is an easy way to generate

weakly isomorphic limit objects: If f = Γ(P1, . . . , PC) where each deg(Pi) 6 d, then by

taking the rank of the collection {P1, . . . , PC} to infinity, we obtain a d-limit object in the

obvious way (recall the proof of Lemma 5.11). Replacing each Pi by any Qi of the same

degree and depth and letting the rank of {Q1, . . . , QC} go to infinity, we obtain a new

d-limit object which will be weakly isomorphic to the original. This follows directly from

Theorem 4.12.

There is more that can go wrong, however. It may be that in the subspace spanned

by P1 and P2, Γ is only supported on, say, P1 + P2. In this case, we can write f as

Γ′(P1 + P2, P3, . . . , PC) for some Γ′. As the rank goes to infinity, we will again obtain two

weakly isomorphic limit objects, where here we have used Theorem 4.10. For 1-convergence,

where all the polynomials are linear, this appears to be a complete characterization. We

can prove that if f = Γ1(P1, . . . , PC1) and g = Γ2(Q1, . . . , QC2) are weakly isomorphic,

where the Pi and Qi are all non-constant and linear (hence, classical as well), then there

exists a third function Γ and two linear transformations T1 : TC1 → TC and T2 : TC2 → TC

such that

Γ1(P1, . . . , PC1) ≡ Γ(T1(P1, . . . , PC1))

and

Γ2(Q1, . . . , QC2) ≡ Γ(T2(Q1, . . . , QC2)).

Regrettably, this result does not appear to generalize to the higher degree cases. Even for

2-convergence, there are more subtle issues than those incurred by linear transformations.

Indeed, consider taking deg(Q) = 2 and deg(P1) = deg(P2) = 1. Then suppose f =

Γ(Q,P1, P2) is such that we can write f as Γ′(Q+P1 ·P2) for some Γ′. Letting the rank of

{Q,P1, P2} go to infinity, we obtain two limit objects (call them Γ and Γ′ in a minor abuse

of notation) that are clearly not linearly related.

Now, the rank condition implies that tL(Γ) = tL(f) for every L of complexity at most

2. For Γ′, note that since the rank of P1 · P2 is low (it is rank 1), the rank of Q + P1 · P2

is essentially that of Q. So it follows that tL(Γ′) = tL(f) as well, and we have weak



6 Concluding Remarks 63

isomorphism.

We can push this example further, and show that d-weak isomorphism cannot be char-

acterized by lower degree relations. Let f = Γ(P1, . . . , PC) for some high rank collection

{P1, . . . , PC} of degree 6 d. Then suppose we can find a Γ′ and degree 6 d polynomials

Q1, . . . , QC′ satisfying Γ(P1, . . . , PC) ≡ Γ′(R(Q1, . . . , QC′)), where R : TC′ → TC is a degree

6 d polynomial in each coordinate (of TC) such that the degree and depth sequences of

P1, . . . , PC and R(Q1, . . . , QC′) are the same. Passing to the limit we will obtain weakly

isomorphic d-limit objects. It seems possible that we can characterize weakly isomorphic

d-limit objects this way, i.e., by the existence of a third limit object and two degree 6 d

polynomials mapping to the same degree and depth sequence, but there may yet be other

ways to generate weakly isormophic limit objects that we do not know of.
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functions and the uniqueness of graph limits. Geom. Funct. Anal., 19(6):1597–
1619, 2010. 61

[BFH+13] Arnab Bhattacharyya, Eldar Fische, Hamed Hatami, Pooya Hatami, and
Shachar Lovett. Every locally characterized afine-invariant property is testable.
In Proc. 45th Annual ACM Symposium on the Theory of Computing, 2013. Full
version at arXiv:1212.3849. 44, 45

[BFL13] Arnab Bhattacharyya, Eldar Fischer, and Shachar Lovett. Testing low com-
plexity affine-invariant properties. In Proc. 23rd ACM-SIAM Symposium on
Discrete Algorithms, 2013. 22, 32, 36, 37

[BTZ10] Vitaly Bergelson, Terence Tao, and Tamar Ziegler. An inverse theorem for the
uniformity seminorms associated with the action of Fω. Geom. Funct. Anal.,
19(6):1539–1596, 2010. 20

[Gow01] William T. Gowers. A new proof of Szeméredi’s theorem. Geometric and Func-
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bound for r4(N). In Analytic number theory, pages 180–204. Cambridge Univ.
Press, Cambridge, 2009. 28

[GT10] Benjamin Green and Terence Tao. Linear equations in primes. Ann. of Math.
(2), 171(3):1753–1850, 2010. 39, 40



References 65

[GW10] William T. Gowers and Joseph A. Wolf. The true complexity of a system of
linear equations. Proc. Lond. Math. Soc. (3), 100(1):155–176, 2010. 39

[HHH14] Hamed Hatami, Pooya Hatami, and James Hirst. Limits of boolean functions
on Fnp . 2014. http://arxiv.org/abs/1308.4108. 8

[HHL14] Hamed Hatami, Pooya Hatami, and Shachar Lovett. General systems of linear
forms: equidistribution and true complexity. May 2014. http://arxiv.org/

abs/1403.7703. 39, 44

[LMS08] Shachar Lovett, Roy Meshulam, and Alex Samorodnitsky. Inverse conjecture
for the Gowers norm is false. In Proc. 40th Annual ACM Symposium on the
Theory of Computing, pages 547–556, New York, NY, USA, 2008. ACM. 20
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