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Reflective Subcategories

Reflective subcategories correspond to solutions
of some universal mapping problems. In the category of
topological spaces, the most famous example is the re-
flective subcategory of compact Hausdorff spaces whichA
corresponds to the Stone-Cech compactification [1]. some
work has been dvne on characterizing reflective and core-
flective subcategories. Freyd [2] gives a necessary condi-
tion for a subcategory of a well-powered, complete category
to be reflective. Isbell [5] generalizes this using bica-
tegorical structures. Kennison [3] gives mnecessary and suf-
ficient conditions for coreflective subcategories and three
types of reflective subcategory of the category of topolo-
gical spaces. In this thesis, necessary and sufficient
conditions are given for a full subcategory of a cowell
powered category with products to be reflective with
epi-reflection map. It is then shown that every reflective
subcategory of such a category is an epi-reflective subca-
tegory of an epi-reflective subcategory, epi being with
respect to the respective containing category. Putting
these two theorems together yields necessary and sufficient
conditions for a full, cowell powered subcategory to be
reflective. A corollary involving the concept of extremal
subobject is a generalization of Kennison's theorem and a

special case of the Freyd-Isbell theorem. These resuits are




applied to the problems of generation and intersection
of reflective subcategories.

The author claims originality for theorems 3y 4, 5,
6.1-2, 6.4, 6.7, 7.1~3, 8, 9.1-2, and the concepts of

ger subcategory and intermediate subcategory.

It was discovered after the typing of this thesis
that a remark of Isbell [5, p.9] implies 6.6, and that
all well powered, left complete categories are factorable.
Thus in 6.7, 6.8, 7.1, 8, 9.1 and 9.2, it is not necessary

to assume factorability.



1. - PFundamental definitions

For definitions of category, subcategory, full,
mono, epi, product, coproduct, object, subobject, quo-
tient object, functor, and natural transformation, see
Freyd [2]. We shall follow the convention of prefixing
these terms by the name of the relevant category,

wherever there is a chance of confusion.

1.1 - Let4ve a full, replete subcategory of a
category, B; B, a H-object ; R (B), an#4 -object ;

and rg : B --= R (B)e R (B) is called a reflection

of B.:and rg a reflection map if for every map .

f : B-—» A where A is an 4 -object, there is a
unigue R (f) : R (B) === A such that £ = R (f) o r.
If every B - object has a reflection in4, than 4 is

said to be a reflective subcategory.

Remarks : (1) In the work of some authors, a reflec-
tive subcategory is not necessarily

( full or replete.

(2) All reflections of a given object in
a given subcategory are isomorphic,
and all reflection maps from a given

object differ only by an isomorphism.




To

1.2 - A category is said to be (co)well powered

if every object has a representative set of
sub(quotient) objects. Let4<B. Bis said to be
4 (co)well-powered if for every object of &,

there is a representative set of the class of

those sub(quotient) objects that are # -objects.

1.3 - A full subcategory 4 of a category { is

said to be gquasi-epi-reflective (qer)if for any

map £ ¢ B—s=A, with B, an object of &, A, an
object of 4 , there is an object A' ofs and maps
fl ¢t B—sA', f2 ¢ A'——=. A such that fl is epi,

f2 is mono and f = f2°f1°

1.4 - A category is factorable, if every map

may be factored into an epi followed by a mono.

1.5 - A reflective subcategory is said to be epi(mono)

reflective if every object of the containing category

has an epi (monc) reflection map.

1.6 - f is said to distinguish a pair of maps g1 # 85
whose domain is the range of f, if gyof # gpof.




1.7 - A diagram in a category, £ , is a functor from

a small category to T .

1.8 -~ A functor F :.4 . is said to be a constant
functor if F maps all A’—objects to the same B-object
and all 4 -maps to the identity map of that & -object.

We will sometimes identify a constant functor with its

image.

1.9 = TLet F : 2 -7 be a diagram and L : Do (R: &_..26)
be a constant functor with a natural transformation

M: L—=P (4 : F_.R). If for any natural transformation,
s M JF (¢ F__o ') where M (Mf) is any constant
functor, there is a unique map m : M__oL (m'" : R__M")
such that ¥ =Mom (¢' = m'o M') then (L, 4#) [(R, )] is
said to be a left-root (right root) of the diagram, F.

1.10 - If every diagram in a category, Z, has a left
(right) root, then T is said to be left (right) complete.

\+‘\
1.11 -~ The left root of 2 is said to be the kernel
__;,..-—» ————————
. . R o= .
pair of f ; the right . root of *"\"‘?’”‘ is said to be the

|
cokernel pair of f.




2. Preliminary results

We shall present those results that will be needed
in the sequel. Most of these are proved elsewhere, but

they are collected here for convenient reference.

2.1 ~ IfA€G and the B -left root of some 4 —diagram

has a réflection in 4, then its reflection map is an

isomorphism,.

Proof : Let (L,A) be the B -left root of a diagram,
Pi:dlsd. Let a : Di"——”Dj be any @ -map.

Then A (Dj) == F(d)oﬂ(Di). Let R(L) and r. be the

L
reflection and reflection map, respectively, of L.

Then there are unique maps R [ﬂ(Di) ] :R (L)—F (Di)
and R [ 4 (Dj) ] :R (L)—F (Dj)' By this uniqueness,

R [/«I(Dj) 1 =7 (d)oR [/((Di) J. Thus we have a natural
transformation, ¢ : R(L)-—=F, such that rL’(Di) = R[/{(Dii)],
Since (L, 4 ) is the & -left root of P, there is a map

m : R(L)——=L such that @ = Aem.

R(L)___ R(M(Dj)) now femeny, = ey, =M = Ay
\1:\(/4(1)1) Since there is unique factor-

BN . .
m [r,] F(D;1) *‘MF(D.) ization through a left root,

-?
HM(D.
d

Left-multiplying by Ty, We obtain TreMery = I'p which gives

us the following commutative diagram :

RSPy
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R (1) /‘A’\*R (1) Since R(rL) must be unique
A .3:\\—/7 Tpem = 1R(L) _ -l a
R(L) =7 y M = rL an
r
L r; is an isomorphism.
‘L
L
Corollary 1 - A reflective subcategory contains all

existing left roots of its diagrams,

Corollary 2 ~ A reflective subcategory of a left

complete category is left complete.

2.2 —~ If 4 is a full subcategory of & , then any

A —object that is a & -left (right) root of an

A ~diagram is an 4 -left (right) root.

Proof : Let (L, ) be a B -left root of P :I—s 4 <B,

L an 4 -object. Since A4 is full,#: L—=FlL4, where F1. 4
is F with range restricted to4. If M :P—»A4 is any
constant functor with 7 : M—s=Fid4- y, We have a unique
@’—map, m : M—_L such that T = Moem. However, since A4 is
full, it follows that m is an 4 -map and (L, 4 ) is an

A ~left root of F1 4 . Similarly with right roots. [

2.3 - If Py, P, :U—>#4 are diagrams, « : F—sT,, &

natural transformation, and for any $~object, D, Fl(D)

1s a subobject of FZ(D) with subob;iec‘t wap - < (DY, then
the left root of Fl is a subobject of the left root of F2.
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Proof : Suppose that (Ll, /‘fl) and (112P /42) are the

left roots of Fl and F2, respectively. Then there is a
unique map m : Ly——sL, such that rfa/(l =/‘42 o Mo

Suppose fl’ f2 s A_.>Ll, such that mof1 = m.of2° Then
g (Dadomafy = (Dy) o mofy and ¢ (D) o (Dn)efy =

@ (Da) o/‘{l(D;l)of2o Sincer@ (D,) is mono, M (Da)ofl =

My (Dﬁ)ofgo These maps define a natural transformation
from the constant functor with image A to the diagram F
and therefore the map from A.__>Ll must be unique.

Hence fl = f2 y m is mono, and Ly is a subobject of Lzeﬂ

"f';—Fl(Dm_h) DY) 7,(D,)
ﬁ(?)ﬁ' / B /(2

fl /7,(])») //({Z(Dh)

—
: \fﬁ;———//"’Ll - > Ly
2.4 - If 4 is a reflective subcategory of @& , then the

A4 -left root of an 4 ~diagram is a b -left root.

Proof : Let F :f»4 be a diagram and (L, A ), its 4 -left
root. Suppose M :J—=BH is a constant functor and - : M—=T
a natural transformation. Let R (M) and Ty be respectively
the reflection and reflection map of M. Then R(¥) :R(M)—sF
is an 4 -natural ~l:bramsfo:r'ma“b'ion énd there is a unique .4 -map,
m: R (M)._..>.L such that fom = R (4). By reflection property
T=R (a:)orM and Mmory _ 4/

R(n) /w(D»)
/ IfHon =, for some map
R (M) RLT(D, )] v, (D) n : M—s1L,then/R(n) = R(< ).
Then R(n) = m and n = meTy
Ty .
7Z(D,) Thus mery, is unique. Thus L

M : is a B -left root of F.J
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2.5 — A morphism is a mono iff it has a kernel pair
which is the identity of its domain. A morphism is epi
iff it has a cokernel pair which is the identity of its
range.

Proof :_sTetm : A__, B be a mono. Certainly,

molA = molA. If mof = mog where f,g : C—= A, then f = g .

Thus there is a unique map f : C—= A such that 1Aof = f
T N
£~  \

and 1,of = gl ¢-.5,4 . B
A 9
\\E% .
€ A
=

<= Let m : A —>B be a morphism whose kernel pair is

(1y, 1,). Suppose mof = mog where f,g5 : C—s A. Then there
AY A

m:st he a unique map h : C—s=A such that leh = f and

1th =g Thus f = g and m is mono. [

The proof of the second part is similar.

Corollary 1 - If4is a reflective subdategory of &, then

any.4-mono is a B-mono.

Corollary 2 - A reflective subcategory of a well powered

category is well powered.

Corollary 3 — If 4 is a full subcategory of &, then any

&-mono (epi) between 4 -objects is an

4 —mono (epi).
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2.6 - Let.4 ve a full subcategory of (7 such that evefy
% -object is a B -éwlbobject of an object of 4 . Then any
B -map, £ : B~ A (where A is an .4 -object) which dis-
tinguishes all distinet pairs of 4 -maps with domain A,

Proof : Let hy, h, : A__-.B', where B' is a & -object,
satisfy hla:f‘ = hyof. But B' is a subobject of some. 4 -object,
A' ; let m be the subobject map. Thus mohlaf = mohzaf, But
by hypothesis, since mohl and m..-:h2 are A -maps, this implies

mohl = moh?. Also m is mono and hl = h2., Thus f is & —epi. |

Corollary - All 4 -cpis are B -epis.
2.7 - fog epi implies f epi ; fog mono implies g mono [2].

2.8 - f,g epi implies fog epi ; f,g mono implies fog

mono [2].

2.9 - If B is a full subcategory of a factorable category &
and if $ contains all C-subobjects of its objects, then

(1) & is factorable and (2)B is ger subcategory of &.

Proof : Consider any G-map, f : C_ B where B is aﬁ—object .
Then since & is factorable f = moe where e : C—=B' is epi
and m : B''_5 B is mono. By hypothesis,B' is a & -object.

Thus we have (2).(1) follows when we let C be a@B-object, and
f any $ -map in view of Corollary 3 of 2.5.
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Fundamental Lemma

Let 4be a full, replete subcategory of & , and
(E';' be an 4 ~cowell powered category with products.
,4 is a (@’—epi-reflective subcategory of & iff :

(1) 4 contains all® -products of .4 -objects
(2) 4 is qer.

Proof..~.(1) This follows from Corollary 1 of 2.l
(2) Since Ais epi~reflective, a map from
any % -object, B, to an 4 -object, A,
may be factored through R (B) via the
epi reflection map,ﬂ
«Z== Consider an object, B, of @ . Because & isA4 cowell-
powered, the class of quotient objects of B that are
also objects of A’has a representative set, {Bh} o
B is an object of # . We have an evaluation map,
e : B.._.),.frf B,. Because 4 is ger, e = foI‘B where
rg : B—R (B) is epi, and R (B) is an object of 4.
We maintain that R (B) is a reflection of B with
reflection map rge Let f : B—= A where A is an object
of,/].. Since 4 is ger, f may be factored through a Ba ;

thus through 4 Ba by the evaluation map ; thus through
R (B) by rpye
R(f)
r/"———_——_\s\-
R(B) s 7 Br—su By A




The map from R {B) to A will be called R (f). It is
unique because T is epi. Thus every object of & has
a reflection indand 4 is a # -epi reflective subca-

tegory of B. |

15,
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Theorem

If 4 is a reflective subcategory of ¥ , and T is
a factorable,cowell-powered category with products,
then the full subcategory, & , of subobjects of objects
of 4 is a C —epi-reflective subcategory of (& and Ais
a P -epi-reflective subcategory of & .
Proof :,4 contains all G-products of its objects
(Corollary 1 of 2.1) ; hence, since the product of
subobjects is a subobject of the product (2.3),8 contains

all ?:-products of its objects.

Suppose f : C——-.B where B is an object of & ,
Since € is factorable, f may be factored through a
subobject of B which is a quotient object of C. However,
@ is closed under subobjects and f is thus factored
through an object of (> that is a quotient object of C ;

therefore, # is a ger subcategory of & . By the Lemma,

& is an epi-reflective subcategory of .

Since every object of & has a reflection in .4,

~certainly every object of % has and A4is a reflective

subcategory of & . We would like to show that for each

i -object B, the reflection map ry is 6 -epl., Since for
any map f : B—sA, A, an & —object, R (f) is unique, it
follows that, if gy, g, : R (B) —2-A are any 4 -maps such
that 81oTp = EpeTps then g, = &+ Thus by 2.6, rp is

& —-epi and A is a # ~epi~reflective subcategory of ® ,ﬂ
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Note that B is the subobject of some zi—object,
A', and the subobject map may be factored through Ty
by the properties of reflection. By 2.7, rg is ¥ -mono
(by 2.5 Corollary 3, (3 -mono as well) and 4 is a mono-

@ -epi-reflective subcategory of 3.
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Principal theorem

If 4 is a full, replete subcategory of &, a
factorable, cowell-powered category with pfoduc’cs,
then : A is a cowell-powered, reflective subcategory
of € iff :

(1) the category,® , of € -subobjects of objects of 4
is 4 -cowell powered,
(2) /4 contains each,(f—product of/4 -objects, and

(3) 4 is a ger subcategory of .

Proof : —=2= By Corollary 1 of 2.1, we have (2).

By 4, we know that #ig a Ig’-epi—reflective subcate-
gory of (% . Hence by 3., we have (3). Next, if an
Zb-object, A, is a &-quotient object of a @—object,

B, with quotient map f, then R(f) : R(B)—>A is also

G -epi by 2.7, since f = R(f)ory. By 2.5, Corollary 3,
R(f) is A{'-—epi and A is an # —-quotient object of R(B).
Thus every & -quotient object of B. that is an A4 -object is
an A -quotient object of R(B). Since 4 is cowell powered,
there can be only a representative set of the class of

& -quotient objects of B that are alsoﬁt—objects, i.e.
¢ is A -cowell powered which is (1).

<Z==— By (2), & contains every G -product of 4 -objects.

Thus by 2.2, any @—product of .4—objects is the
G -product. Thus 4 contains each B-product of.d—objects .
This, together with (1), (3) and 3.,shows that 4 is an

epi-reflective subcategory of & .
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By 2.3 and (2), 4 contains each & -product of & -objects.
Since & is factorable, any £ : C——=B with C, a & -object
and B, a @—object, can be factored as moe, where m is
mono and e is epi. The intermediate object is a subobject
of B, hence a & -object. Thus & is a ger subcategory of &,
Also & is cowell powered, hence (3 -cowell powered. Thus
by 3., & is a reflective subcategory of €. Since the
composition of two reflections is a reflection, 4 is a

reflective subcategory of & .

By Corollary of 2.6, every .J—epi is a & —-epi and thus
every .J—quotient object is a @‘—quotient object. Therefore

A is cowell powered. |
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Extremal and regular monos

Definition — A monom ¢+ A—- B is said to be extremal

if in any factorization m = mye e, where nmq is mono and

e epi, e must be iso. (A,m) (and loosely A) is said to be

an extremal subobject of B.

6.1 - In a factorable category, if an extremal mono, m,

is factored as foe, where e is epi, then e is iso.

Proof - Suppose m : A . B ig factored as f. e where
et A—»Cand f : C—=3B, e epi. Factor f ag m'oe'

where m' : D—B is mono and e' : C——=D is epi. Then
m =m'e(e'se) which is an epi (28) followed by a mono.
Thus since m is extremal, e'se is iso. Let g = (e'oe)"l.

Thus (goe')oe Also, eo(goe')oe = e and since e is

= 1A0

epi, eo('goe')

thus goe' = e~ and e is isgo.ll

6.2 - A ger subcategory, .4, of a factorable category, &,

contains all E-extremal subobjects of its objects.

Proof - Let (B,m) be a®B -extremal subobject of an .

d;object, A. Since4is ger, m may be factored as foe where

e : B A' is epi; A',an4-object. By 6.1, e is iso and

A* is an isomorphic copy of B,
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Definition : Amono f : A___B is said to be regular if
for some ¢ and morphisms &1 8o ¢ B__..C, f is the diffe-
rence kernel of the pair(gl, gQ,

6.3 = All regular subobjects are extremal.

Proof : Let (A,m) be a regular subobject of B and m,

the difference kernel of f ;g : B—=.C. Suppose m is
factored as ml°el where ml : DB ig mono and e A_.D,
epi . Thus m, may be factored through m ; say my = moh where
h : D—=A = ker (flg)u Thus m; = mjoeph and since my is
~mono, 1ﬁ= ejoh j also m = mohoe, and 1, = hoe since m is

mono. Thus e is iso and (A,m) is extremal.l

AB B i
B

A 7
h \:N‘E///}n g
D 4

6.4 - If two functors Fy, P, : D __ 4, whereod is small
and 4 is well powered and left complete, have & natural trans-
formation M: Fy—»F, such that for every o0 —object, D, 4 (D)
is an extremal mono, then the induced morphism, f, mapping
the left root of Fl to the left root of F2 is an extremal

mono.

Proof : By 2.3, f is mono. Let (L, #;) and (L,, #,) be

the left roots of F1 and FZ’ regpectively. Now suppose

f = moe, where e : LI__4>C ig epl and m C_._.._;,L2 is mono.

For each a, let (Co, m» ) be the intersection of all those
subobjects of T, (D ) through which both # (DA ) and fé’l (D) )om

factor.
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AM(Dy)
F. (D,) . > Py (Da)
7 & W /
SN
,{!7.1 (Da) C,\,\\g:\\ @, (D,)
0 _I,;;T.\g".\\v Ep
/4/—'——\\
Ll/ e = C m — )
_ =7
f
\\\\\ﬁﬁmkhmhmn=w$g§$”4m////

Suppose g,, &', ¢ C,—=E,such that gee,= 8% o €.
Then e, and henceM (D,) factor through the difference
kernel (X,, k, ) of (g», g'5)- Also Bao€noP) (D,) =

. 3 ¢ . . .
g'maeh¢;¢ﬁ (D,) and gpompoe = g4 om, o €. Since e is epi,

it follows that ghomi\ = g;oxf;. Thus mt. and hencegk(g)om
factor through (K,, k, ). Thus m, may be factored

through m,ok, , say m, = m,ok,ok', . Since m, is mono

Kpok'y = 1g 5 also kpelthoky = kp and khoka = 1y
gsince k, is mono. Thus k, is an isomorphism, g, = g',

and e, is epi. Since M(D, ) is extremal and m , is mono,it
follows that e, is iso. Thus mi‘ : O Fy (Dp). Thus there
is a unique h : C—s=Ly, such that @& (D, )oh = nﬁ&.

Also M(D p) emwe =H(Da )o@y (Dad and maoe = @) (D,),
Thus ¢; (Dn)ehoe = maoe =@; (D) and hee = 1. . Also

1
eohoe = e and eoh = 10. Thus f is extremal.ﬂ

Corollary 1 - The product of extremal subobjects of a set

of objects is an extremal subobject of the product of the

set.

Corollary 2 - The intersection of a family of extremal sub-

objects of a given object is again an extremal subobject.

(5, ».8].
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Pifoof — The subobject maps define a natural transformation
from the diagram determined by the family of extremal sup-
objects to the constant diagram consisting of the object.
Since the left root of a constant diagram is itself and
the left root of the first diagram is the intersection of
the extremal subobjects, there must be an extremal mono

Brom the intersection to the containing object. (I

6.5 - In a well-powered, left complete category, if
mq A___B and My 3 B—= C are extremal monos, then

myomy ¢ A—5C is an extremal mono. [5, p.8].

Proof. Suppose myem, = myee where e : A—D is epi
and my D—=C is mono. Let (E{m4) be the intersection
of all those subobjects of C through which both my and
my factor. By the definition of intersection, both factor
through m, say m, = m4af and m3 = m4og,;thus m4ofbm1 =
Myogoe and since m, is mono, fom1 = goe. Now suppose

hy, hy : E—F such that hyef = h,,f. Let (G,m5) be the
difference kernel of (hl’ h2). hyofomy = hyofemy and
hiogoe = h2ogoe. Since evis epi, hlog = hzog. By the
definition of a difference kernel f and g factor through
mg, say f = m5ofl, g = Mgogy Then m, = m4om5ofl and
my = Mo Mg o8y (i.e. m, and my factor through m4om5) and
by the definition of intersection,m4 must factor through

m4om5, say m4 = m4om50m6.
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Since m, is mono, lE = Mgollge Also Mg = m50m6om5 and
gince mg is mono, 1G = TMgollg and Mg is iso. Thus hl = h2°
Therefore f is epi. Since mo ig extremal, f is iso. Thus
m3 factors through mz; Since my is extremal, e is iso.

Thus myem is extremal. |

my

A

6.6 — In a well-powered, left complete category, any
mono may be factored as an epi followed by an extremal
mono.

Proof : Let m : A—.B be mono. Let (C, m') be the
intersection of those extremal subobjects of B containing
A. By corollary 2 to 6.4, m' is extremal. Suppose
m=m'se ; we will show that e is epi. Suppose

f1, f5 : C—»D such thet fioe = fy0e. Let (K,k) be the
difference kernel of (fl, f2)° e may be factored through
k because it equalizes fl and f2. However, k is extremal
by 6.3 and m'eck is extremal by 6.5. Thus m' may be facto-
red through m'ek uniquely, from which we may show that k
is iso. Thus fl = f2 and fl

. . D
e is epi. 7

e 71l m
A~/———"-“cKm e
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6.7 - In a factorable, left complete, well powered
category 3,if 4is a full subcategory that contains the
extremal subobjects of each of its objects then 4 is

a ger subcategory of &,

Proof - Let f : B~ A, where B is a & —object and

A is an 4 —object. SinceBis Factorable, f = moe where

e : B——B' is epi and m : B~ A is mono. Now by

6.6, m = m'oe' where e' : B! __A' is epi and m' : A'__ A
is extremal mono. Thus A' is an4 -object. Also, f = moe =
m'se'oe where e'ee ¢ B—=A' is epi, and m' : A _._. A

is mono. ThusA4is a ger subcategory of @G.

Corollary 1 - A full, replete subcategory of a factorable,

left complete, well-powered category is a ger subcategory
iff it contains the extremal subobjects of each of its

objects.

Corollary 2 - A full, replete subcategory, 4, of a factora-

ble, left complete, well powered,x4—cowell powered category,
&, is an epi-reflective subcategory iff it contains all

& -products and @-extremal subobjects of its objects.

Proof : This follows from 3. and Corollary 1.
Remark : This is a special case of the Freyd-Isbell theorem

[6, p.1276].

6.8 — A ger subcategory of a well-powered, left complete,

factorable category is factorable.
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Proof : Let 4 be a ger subcategory ofB,a well powered,

left complete, factorable category, and f : A__ A"
an)4-map, f may be factored in 8as moe where m : B A"
is mono and e : A——B is epi. B is a subobject of A' and
m =m'ee' where e' : B__~C is epi and m's C—=A"' is ex-
tremal mono (6.6). Thus f = m'e(e'se). C is ind by 6.2.
Thus f may be factored indas an epi followed by a mono

and 4 is factorable. ]
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Intermediate categories

Definition — If 4 is a reflective subcategory of T
G, a ©-epi-reflective subcategory of £; and 4, =
B—-epi-reflective subcategory of (15, then B-is said to

be an intermediate category of the pair (4, T).

Thus 4. states that if § is a factorable, cowell
powered category with products and 4 is any reflective
subcategory of T , then the category of subobjects of A
is an intermediate category of (.4, &). The following
theorem shows that under certain conditions on C,there

is a minimum intermediate category.

7.1. - If 4 is a reflective subcategory of a factorable,
left complete, well powered, cowell powered category
with products then the full subcategory B of all

% —extremal subobjects of objects of 4 is a minimum
intermediate category of (4,G).

Proof : Dy the seme argument as in 4., Ais a
Hr—epi-reflective subcategory of &' .(Note that, as in

4.,,4 ig a mono -§'~-epi-reflective subcabégory of @’).

Also, ,éfv contains all T-products of its objects by
corollary 1 to 2.1. Since by Corollary 1 to 6.4, the
product of extremal subobjects of a set of objects is an
extremal subobject of the product of the set, & contains

all Tg—producte of its objects.
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By 6.5, a G —extremal subobject of aZf-—extremal subobject
of an,A( -object A, is again a © -extremal subobject of A,
Thus & ' contains all of the? —extremal subobjects of its
objects. Thus by 6.7, Corollary 2, &' is a E-epi-reflective
subcategory of ¥ . Thus @#' is an intermediate category.
Since any intermediate category must contain 4 ana by
Corollary 2 to 6.7, must contain all G —extremal subobjects

of its objects, ' is minimal.

7.2 - Let $be a full subcategory of ¢, a factorable,
cowell powered category with products and let % be a
subclass of the class of & -maps. We define a full subca-
tegory, B" of ¥ as follows : B" is a " —object iff any
pair of maps from a & ~object, B, to B" is distinguished

by every,% -mep into B. 2 " is a G’—epi—reflective gubcate-

gory of C.
Proof : We show that£" is closed under formation of § -

subobjects. Let B be a B"-pbject and C a G —subobject of

B. Suppose there are@—objects, A, A', an %—map X ¢ A—= A
two maps Y19¥o 3 A'—=C such that JioX = YpoX. Then if m

is the gubobject map of C, we»have two maps Moy sMoYy 3 A B
such that meyjoXx = moyyox. But B is a & " -object ; thus
Moy, = Mo¥ye Since m isg meno, ¥y = Yo and thus C is a

G —object. By 2.9,B" is a ger subcategory of T .

Similarly, we show that $® is closed under & -products.
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Let {,Bn} be ‘a set of B"-objects. Suppose there are
@V—objects, A, A', an % -map x 3 A——=A' and two maps
Y19 Vo ¢ A'— 1B, such that YyeX = ypox. For any

Ny Ppo¥eX = Ppo¥ooX where p, is the »—projection map.
Since B, is @"-object, P,o¥y = Pao¥,. Since this is true
for any » and the evaluation map is unique, it follows that

¥ = ¥o @nd T B,is a Bv-object.

By 3., £B" is a C-epi-reflective subcategory of .1

Te3 — Let 4Dbe a reflective subcategory of &, a factorable,
cowell-powered category with products, and & be the full
category of subobjects of objects of &4 . Let £" be defined
as in 7.2 with £ the class of % -epis. Then ®" is an inter-

mediate category.

Proof : By 7.2,6" is a C-epi-reflective subcategory of
€. Every f"-object, B", has a reflection in 4, say R(B").

We must show that the reflection map rg is B-r-epi. Since &

is factorable, Tpe = Moe where e ¢ B"_5.B is (f-epi

(thus B"—epi) and m : B—R(B") is & -mono. Thus B is a
f—-subobject of R(B") and therefore a @—object. Suppose

811 8 R{B)—sA, A any 4 -object, such that g1°M = gyom.

Then g oTrpe = 8porpn. Bubt R (glorB,,) is unique ; hence

g, = 8,- Thus m distinguishes all distinct pairs of A —maps

whose domain is R(B") and by 2.6 is G -epi.
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Since me¢ %, it distinguishes alls" -maps whose domain
is R (B) and is thus @" -epi. Ige = Moe is B —epi
by 2.8. Thus 4 is a @‘“—epi subcategory of & " and

&n is an intermediate categoryou

Definition - If A4is a full subcategory of © , we

define a potential intermediate category (pic) of ( 4 ) <)

to be one of the following full subcategories of [ :

(1) @ , whose objects are the & —subobjects of ;4

}
(2) 7] , whose objects are the G —extremal subobjects of A
(3) @', whose objects are those ¢ -objects, B", such that

each B ~epl distinguishes every pair of distinct

maps to B".




31

- Theorem

If ¢ is a factorable, left complete, well powered,
cowell powered category ; 4 , a full,replete subcategory
of Tand B , a pic of (4 ,%) then : 4 is a cowell
powered reflective subcategory of ¢ iff (1), 4 contains
all G ~products and & —extremal subobjects of its objects
ahd (2) b is,# —cowell powered.

Proof.«z—— Since 4 contains all €-products of its object
so does( by 2.3, 6.4 Corollary 1, and 7.2. (% contains
all € -extremal subobjects of its objects by 2.8, 6.5,

and 7.2. Thus by Corollary 2 of 6.7, (% is G epi-reflective.
By 6.8, (5 is factorable. By corollary 2 of 2.1, H is left
complete. By corollary 2 of 2.5, @ ig well powered. Thus
by (1) and Corollary 2 of 6.7, since all & -products are
£ -products, 4 is a ( -epi-reflective subcategory of & .
By Corollary of 2.6 or definition of third type of pic,
all /f —-epis are & -epis ; thus, ,4 is cowell powered. By
composition of reflections,/l/ ig a cowell powered reflec-
tive subcategory of .1

==2= By Corollary 1 of 2.1, A contains all T —products
of 4 -objects. By 4, T.1 or 7.3, G is an intermediate
category. By 3 and 6.8, & is factorable. We can now apply
3,and 6.2 to see that A4 contains a copy of all ( —extremal
subobjects of its objects. @ is A —-cowell powered as in

the proof of S.H




32.

Generation and Intersection of reflective subcategories

This chapter partially solves a problem posed by
Isbell [4, p.33,problem8].

9.1 - Let & be a factorable, left complete, well
powered, cowell powered cabegory and S, a class of
t -objects,

(1) = The full subcategory, B', of & -extrémalm'

[

" subobjoets of predusts of elonents of 8 is the Si‘s}.;lllegl{

>

. Il LI I R N pre e ] ‘(g Aoy kS ..‘,0.1,1,5.,-‘ .'i 1,‘{.3 S
L oplereflcetivo subcategoly OF chat conkalns we

(2) - If#' is cowell powered, the full subecategory,
A s of @ '-egxtremal subobjects of products of elcments
of S is the smallest reflective subcategory

of & that contains S.

Proof :

(1). By 6.5 and Corollary 1 of 6.4, &' contains
all ¢ -extremal subobjects and Z -products of its
objects. Thus by Corollary 2 of 6.7%8' is a
3 —-epi-reflective subcategory of ¢ . By 6.2,
any qer subcategory and thus any epi-reflective

subcategory containing S must contain &'.|

(2). &' is factorable by 6.8, left complete by 2.1,
Corollary 2, well powered by 2.5, Corollary 2

and cowell powered by hypothesis. Thus by the

same reasoning as in (1), 4 is a & '-epi-reflective!

subcategory of #', and a reflective subcategory

of %'.
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Now suppose 4' is a reflective subcategory of & and
SCA' o Let 2" be the full subcategory offwhose
objects are the © —extremal subobjects of .4'. It

follows that @'_c_g*., By 2.5, Corollary 3, every

@* -epi between B' -objects is aéi' ~-epi ; every&*mono
Between $B' —-objects is a B' -mono. Let T be an.4 -object,
gay (T,f) is a #' -extremal subobject of ﬁéS. Factor f
into moe, where e is 8" -epi, m is A" -mono. But by above,
e ig B' -epi, m is B' -mono. Thus e is iso and f is

@ —extremal mono. (2.5, Corollary 1 is used to show
that £ is mono ; since #' is a reflective subcategory

of & it is 2lso a reflective subcategory of é?»*.). Thus

by 7.1 and 6.2, T is an 4*' -object. Thus#is the smallest

reflective subcategory of C that containg S. [

9.2 - Let ¢satisfy the conditiomsof 9.1, and let ,41 .

and ;42 be two reflective subcategories of Z.

(1). If/fl a.nd/4—2 are epi-reflective subcategories,
then so isAln,éf—z.

(2). If (4.,%) and (4,0 ) have a common intermediate
category that is cowell powered, then,dlﬂ/42 is
reflective.

(3). Ifzg—i is an intermediate category of (/:ﬂ:_, 5)
i=1, 2, and if @lﬂ @2 is cowell powered, then
41”/1/2 is a reflective subcategory with 61/)&2‘
an intermediate category of (;41(‘,4*2, z ). /




Proof

(1) -

(2) -

(3) -

Remark
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By 6.7, Corollary 2,/4'1, and,llzz contaia all
ﬁf-products and € —extremal subobjects of their
objects. Therefore T -products and € -extremal
subobjects of 4 lﬂ4—2 -objects are in bothzﬁl,
and 4 ,, thus in4 0 4,. Again by 6.7, Corollary 2,

A4-0 4, is an epi-reflective subcategory. ll
1 2

If & is the common intermediate category, then
by (1) and the same reasoning as in 9.1 (2),
,41(],42 is a 3 -epi-reflective subcategory of &

and a reflective subcategory of Z .l

By (1), /B»lﬂ @2 is an epi-reflective subcategory
of & . It satisfiés the appropriate conditions
as in 9.1 (2).,4_1(]42 contains all of its@l and
ﬁz ~products and -extremal subobjects, thus

certainly all of its 91” (8,2 —~products and

—extremal subobjects. Therefore by 6.7,Corollary 2,

/41(),4,2 s an epi-reflective subcatégory of o&lnﬁz
and a reflective category of . 61[) (5’»2 i3 an

intermediate category of (,41() /4,2, 2).]

: This theorem may be generalized to intersections

of arbitrary sets of reflective subcategories.

B )
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