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ABSTRACT

Pyramidal finite elements can be used as “glue” to combine elements with triangular faces

(e.g. tetrahedra) and quadrilateral faces (e.g. hexahedra) in the same mesh. Existing

pyramidal finite elements are low order or unsuitable for mixed finite element formulations.

In this thesis, two separate families of pyramidal finite elements are constructed. The

elements are equipped with unisolvent degrees of freedom and shown to be compatible with

existing high order tetrahedral and hexahedral elements. Importantly, the elements are

shown to deliver high order approximations and to satisfy a “commuting diagram property”,

which ensures their suitability for problems whose mixed formulation lies in the spaces of

the de Rham complex. It is shown that all pyramidal elements must use non-polynomial

basis functions and that this means that the classical theory of finite elements is unable

to determine what quadrature methods should be used to assemble stiffness matrices when

using pyramids. This problem is resolved by extending the classical theory and a quadrature

scheme appropriate for high order pyramidal elements is recommended. Finally, some

numerical experiments using pyramidal elements are presented.
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ABRÉGÉ

Les éléments finis pyramidaux peuvent servir comme «colle» pour combiner des éléments

avec faces triangulaires (p. ex. tétraèdres) et avec faces quadrilaterales (p. ex. hexaè-

dres) dans un même maillage. Les éléments finis pyramidaux qui existent présentement

sont soit de bas-ordre ou ne sont pas convenables pour les formulations mixtes d’éléments

finis. Dans cette thèse, deux familles d’éléments finis pyramidaux sont construites. Les

éléments sont équipés de degrés de libertés unisolvents et on démontre qu’ils sont compat-

ibles avec les éléments pré-existantes triangulaires et quadrilaterales d’ordres élevés. On

démontre notamment que les éléments produisent des approximations d’ordres élevés et

satisfassent une «propriété de diagramme commutatif». Ceci assure que les éléments sont

convenables pour des problèmes avec formulation mixte dans les espaces du complexe de

Rham. On démontre que tous les éléments pyramidaux doivent utiliser des fonctions de base

non-polynômes et que conséquemment la théorie classique des éléments finis ne peut pas

déterminer quelles méthodes de quadrature devrait être employées pour assembler des ma-

trices de rigidité lorsque les pyramides sont utilisées. Le problème est résolu en élargissant

la théorie classique et une méthode de quadrature appropriée pour les éléments finis pyra-

midaux est suggérée. Finalement, des simulations numériques avec éléments pyramidaux

sont présentées.
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Preface

Outline

This thesis consists of an introduction plus four chapters, which are based on three manu-

scripts. Chapters 2 and 3 contain the text of the paper “High order finite elements on

pyramids, approximation spaces, unisolvency and exactness”. Although this paper was

eventually submitted to IMA Journal of Numerical Analysis as one work, it was originally

conceived in two parts, and that division has been maintained across the two chapters.

Chapter 4 consists of the paper “Numerical integration for high order pyramidal finite ele-

ments”, which has been submitted to ESAIM Mathematical Modelling and Numerical Anal-

ysis. The content of chapter 5 is unpublished, but it is intended that it will form the basis

for a longer paper exploring the numerical behaviour of pyramidal finite elements.

Contributions of authors

Chapters 2, 3 and 4 are based on papers which are co-authored with Nilima Nigam. Nilima

Nigam provided guidance and criticism throughout the development of results described

in these papers and was significantly involved in later revisions. However, the key ideas

in all three chapters, including the constructions of all the families of pyramidal elements;

the strategies for all the theorems and the proofs of all the results are due to Joel Phillips.

Chapter 5 is the sole work of Joel Phillips.

1



CHAPTER 1
Introduction

1.1 Background and Motivation

Much of the work detailed in this thesis was motivated by talks given at a workshop at the

Banff International Research Station in February 2006 and a C.I.M.E. summer school in

Cetraro, Italy in June 2006; in particular, the proposition of Leszek Demkowicz that:

“A successful three-dimensional Finite Element code for Maxwell equations must

include all four kinds of geometrical shapes: tets, hexas, prisms, and pyramids.

The theory of the exact sequence and higher order elements for the pyramid

element remains to be one of the most urgent research issues.”[13]

In this introduction we will provide some background for this statement. We will describe

the finite element method and explain the importance of the “exact sequence” and “higher

order elements”. Most significantly, for what follows in later chapters, we will show how

pyramidal elements can be useful, what work has already been done and what problems

remain.

Mathematicians and engineers have used finite elements to obtain approximate numerical

solutions to systems of partial differential equations for over forty years. Tens of thousands

of papers and hundreds of books have been written about their properties. Good introduc-

tions to the subject can be found in many of these, including [15, 40, 58, 71, 87, 17, 25].
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The finite element method is a technique for constructing a finite dimensional approxi-

mation to a space of functions (or distributions) V (Ω) where the domain, Ω, is an n-

dimensional manifold. Typically, Ω ⊂ Rn and n equals 1,2 or 3. A partition, or mesh,

T = {K1, . . . ,KM}, is defined such that Ω =
⋃M
i=1Ki. Associated with each Ki is an

approximation space, Vi, and a set of independent linear functionals, Σi ⊂ V (Ω)′, which

form a basis for the dual space, V ′i . The triple, (Ki, Vi,Σi), is known as a finite element

and the Σi are called the degrees of freedom.

When Ki ∩ Kj 6= ∅, it is often the case that the set, Σi ∩ Σj , is also non-empty. Any

members of Σi ∩Σj , are called external degrees of freedom (a degree which is not external

is a volume or internal degree). The approximation space, Vh ⊂ V (Ω), is defined as the set

of all functions, v, such that v|Ki ∈ Vi and for which all external degrees are well defined.

Conventionally, the addition of a subscript, h, is used to indicate that Vh is constructed

using a mesh T = Th where diamKi ≤ h for all Ki ∈ Th. The specification of the degrees

of freedom is equivalent to the definition of an interpolation operator, Πh : V (Ω) → Vh,

where Πhu is defined to be the unique uh ∈ V (Ω) such that σ(uh) = σ(u) for all degrees of

freedom, σ ∈
⋃M
i=1 Σi.

On each element, there is a unique basis, (vj), for Vi such that σk(vj) = δjk for all σk ∈ Σi.

The vj are known as shape functions. When Σi consists of point evaluations, i.e. each

σk(v) = v(xk) for some xk ∈ Ki, then (Ki, Vi,Σi) is described as a nodal finite element and

the vj are nodal shape functions.

1.2 Example: an elliptic problem

To use these spaces to approximate the solution of a system of partial differential equations,

we first cast the problem to be solved into variational form. For a simple example (which

loosely follows the presentation in [15]), suppose that Ω ⊂ Rn is a bounded domain and

3



that u ∈ C2(Ω)∩C0(Ω) is a solution to the second order elliptic problem with homogeneous

Dirichlet boundary conditions:

−
n∑

i,j=1

∂

∂xi
Aij(x)

∂

∂xj
u(x) = f(x) x ∈ Ω, (1.1)

u(x) = 0 x ∈ ∂Ω, (1.2)

for some function f ∈ C(Ω) and symmetric matrices A(x) which have entries, Aij ∈ C1(Ω).

By ellipticity we mean that the A are symmetric and uniformly positive definite, i.e. for

all x ∈ Ω, etA(x)e ≥ ε > 0 for any unit vector, e ∈ Rn, |e| = 1. If we formally multiply

(1.1) by a test function, v, and integrate by parts, it is easy to see that if u is a classical

solution of (1.1), it must satisfy the variational problem:

a(u, v) = 〈f, v〉 ∀v ∈ C2(Ω) ∩ C0(Ω), (1.3)

where the symmetric bilinear form, a(u, v) :=
∫

Ω∇v
tA∇udx and we have written 〈f, v〉 =∫

Ω fvdx. Any u which satisfies (1.3) will also be the (unique) minimiser of the func-

tional:

J(v) :=
1

2
a(v, v)− 〈f, v〉 dx (1.4)

over all functions v ∈ C2(Ω)∩C(Ω). There is, however, no guarantee that such a minimiser

exists. We can fix this by expanding our search to a weak solution of (1.3) over all functions,

v, in the Sobolev space1 H1
0 (Ω).

1 For a domain, Ω ⊂ Rn, define the semi-norm, |v|r,Ω =
(∑

|α|=r
∫

Ω(Dαv)2
)1/2

, where

the α are multi-indices. For an order k ∈ N the Sobolev spaces, Hk(Ω) and Hk
0 (Ω) are

the respective completions of C∞(Ω) and C∞0 (Ω) in the norm, ‖v‖k,Ω :=
(∑k

r=0 |v|
2
r,Ω

)1/2
.
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Since each Aij ∈ C1(Ω) ⊂ L1(Ω), the bilinear form, a : H1
0 (Ω) ×H1

0 (Ω) → R (defined by

completion) is continuous, i.e. there exists a constant, C such that:

|a(u, v)| ≤ C‖u‖1‖v‖1 ∀u, v ∈ H1
0 (Ω) (1.5)

We also specified that the coefficients, A, should be uniformly positive definite and so, after

using the homogeneous Dirichlet boundary conditions to apply the Poincaré-Friedrich’s

inequality, we obtain a coercivity constant, α, such that

a(u, u) ≥ α‖u‖21, ∀u ∈ H1
0 (Ω). (1.6)

By the Lax-Milgram theorem, J(v) has a unique minimiser u ∈ H1
0 (Ω) for any f ∈ H−1(Ω).

The minimiser will be a solution of the weak problem,

a(u, v) = 〈f, v〉 , ∀v ∈ H1
0 (Ω) (1.7)

and since α‖u‖21 ≤ a(u, u) = 〈f, u〉 ≤ ‖f‖−1‖u‖1, the solution, u, satisfies the bound:

‖u‖1 ≤
1

α
‖f‖−1. (1.8)

The original space, C2(Ω) ∩C0(Ω) is a dense subset of H1
0 (Ω) and C(Ω) ⊂ H−1(Ω) so any

classical solution will also solve (1.7).

Now suppose that by the procedure outlined in section 1.1, we know how to construct finite

element approximation spaces, Vh ⊂ H1
0 (Ω). The ellipticity condition will still be satisfied

Negative and fractional order Sobolev spaces can also be defined, in particular, if Ω is
Lipschitz then H−1(Ω) is the dual space of H1

0 (Ω). Details can be found in [71].
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and so the minimiser of (1.4) in Vh is characterised by

a(uh, vh) = 〈f, vh〉 , ∀vh ∈ Vh (1.9)

Given a basis {ei} for Vh, we can write uh =
∑

i Uiei. The vector of coefficients, Ui can

be found by (constructing and) solving the linear algebraic system: AU = F where A

is a matrix with components Aij = a(ei, ej) and F is a vector with components Fi =∫
Ω fei.

The obvious next question is, “how good is uh as an approximation to u?”. By subtracting

(1.9) from (1.7) we obtain

a(u− uh, v) = 0 ∀v ∈ Vh. (1.10)

Now, given any vh ∈ Vh,

α‖u− uh‖21 ≤ a(u− uh, u− uh) (1.11)

= a(u− uh, u− vh) + a(u− uh, vh − uh) (1.12)

≤ C‖u− uh‖1‖u− vh‖1. (1.13)

The first and third lines involve the constants of continuity and coercivity, C and α, which

were defined in (1.5) and (1.6). The term a(u− uh, vh − uh) is zero because vh − uh ∈ Vh

and so (1.10) applies. Dividing through by ‖u− uh‖1 on both sides of (1.2) and taking an

infimum over all vh ∈ Vh gives the result known as Céa’s lemma [22]:

‖u− uh‖1 ≤
C

α
inf

vh∈Vh
‖vh − u‖1, (1.14)

which bounds the error, ‖u − uh‖1 in terms of the best possible approximation to u in

Vh. Some insight is also provided by a slightly weaker result obtained by a duality argu-

ment:
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Lemma 1. Suppose that a(·, ·) satisfies (1.5) and (1.6) and let u and uh be the solutions

of (1.7) and (1.9), then:

‖u− uh‖1 ≤
(

1 +
C

α

)
inf

vh∈Vh
‖u− vh‖1. (1.15)

Proof. Consider the linear functional fvh ∈ V ′h defined as

〈fvh , wh〉 := a(uh − vh, wh) (1.16)

for all wh ∈ Vh. Following the same argument as for (1.8), ‖uh− vh‖1 ≤ 1
α‖fvh‖V ′h . Adding

(1.10) to (1.16), we see that 〈fvh , wh〉 = a(u−vh, wh) and so, by (1.5), ‖fvh‖V ′h ≤ C‖u−vh‖1.

Hence ‖uh−vh‖1 ≤ C
α ‖u−vh‖1 and equation (1.15) follows from the triangle inequality.

The difference here is that we have not used the ellipticity of a(·, ·) directly, merely the

continuity of the continuous operator and the existence of an inverse of the discrete operator

that is bounded by 1
α .

In either case, the key to estimating ‖u − uh‖1 is understanding the behaviour of the best

approximation error, infvh∈Vh‖vh − u‖1. We will show shortly how it can be controlled in

terms of properties of Vh. First, however, lets take a detour and look at some topics that

are not illustrated by our simple example problem.

1.3 Mixed formulations and the commuting diagram

The replacement of the continuous space by a discrete approximation in the weak for-

mulation, (1.9), is known as the Galerkin method (similarly, property (1.10) is known as

Galerkin orthogonality); in particular, since the bilinear form, a(·, ·) is symmetric and so

the problem can be characterised as a minimisation, it is the Ritz-Galerkin method. There

are many variations and extensions to this framework. The Rayleigh-Ritz method discre-

tises the variational form, (1.4), directly; Petrov-Galerkin schemes use different spaces for

7



the test and trial functions, vh and uh. The condition that Vh ⊂ U(Ω) is not necessary:

such methods are called non-conforming. An important class of non-conforming methods

are the Discontinuous Galerkin (DG) methods, where rather than using external degrees of

freedom to ensure continuity between elements, discontinuities are allowed, but penalised.

In our simple example, the discrete problem inherits the ellipticity, and hence unique solv-

ability, property directly from the underlying problem. Non-conformities typically mean

that more care must be taken to ensure unique solvability; often this can be handled using a

variational crimes framework [17]. Another kind of variational crime arises when (inexact)

numerical integration is used to construct A and F ; we examine a particular instance of

this problem in detail in Chapter 4.

It was the specification that the A are positive definite (and symmetric) which meant that

the variational form of our problem involved the search for a minimiser. More general

problems have an associated variational form that is a saddle-point problem. This occurs

when, for example, a Lagrange multiplier is used to introduce a constraint. Such a situation

arises when modelling many different physical phenomena; in chapter 5 we will see a specific

example when we ensure that our solution to Stokes’ problem is divergence free.

Finite element solution techniques for these problems are known as mixed methods. The

first general analysis of the convergence and stability properties of mixed methods was

given by Brezzi [18] which built on earlier work of Babuska, [7]. In this section we present

a summary of some of the results presented in the book by Brezzi and Fortin [40], which

should be consulted for proofs and more details.
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The prototypical mixed problem has the weak form: Let V and Q be Hilbert spaces; for

some f ∈ V ′ and g ∈ Q′, find u ∈ V, q ∈ Q such that

a(u, v) + b(v, p) = 〈f, v〉 ∀v ∈ V, (1.17)

b(u, q) = 〈g, q〉 ∀q ∈ Q.

If a(·, ·) is symmetric, then (1.17) characterises the solution of the saddle point prob-

lem

inf
v∈V

sup
q∈Q

{
1

2
a(v, v) + b(v, q)− 〈f, v〉 − 〈g, q〉

}
. (1.18)

The bilinear forms, a(·, ·) and b(·, ·) induce linear operators A : V → V ′ and B : V → Q′

defined as

〈Au, v〉 := a(u, v), 〈Bv, q〉 := b(v, q) ∀u, v ∈ V, ∀q ∈ Q. (1.19)

We will also require the adjoint operators, At : V → V ′ and Bt : Q → V ′, defined as〈
Atu, v

〉
:= a(v, u) and

〈
Btq, v

〉
:= b(v, q) for all u, v ∈ V and q ∈ Q.

Problem (1.17) has a solution for all f ∈ V ′ and g ∈ ImB ⊆ Q′ if and only if B has closed

range in Q′ and the restriction of A to the kernel of B, kerB, is invertible. The closed

range condition is equivalent to the “inf-sup” property that there exists some k0 > 0 such

that:

sup
v∈V

b(v, q)

‖v‖V
≥ k0‖q‖Q/ kerBt ∀q ∈ Q. (1.20)

The invertibility of A on kerB is implied by the existence of some α0 > 0 such that

‖Au‖(kerB)′ ≥ α0‖u‖V and ‖Atu‖(kerB)′ ≥ α0‖u‖V for all u ∈ kerB. If these properties

9



hold, we can obtain the bounds:

‖u‖V ≤
1

α0
‖f‖V ′ +

1

k0

(
1 +
‖A‖
α0

)
‖g‖Q′ , (1.21)

‖p‖Q/ kerBt ≤
1

k0

(
1 +
‖A‖
α0

)
‖f‖V ′ +

‖A‖
k2

0

(
1 +
‖A‖
α0

)
‖g‖Q′ . (1.22)

Given finite dimensional subspaces, Vh ⊂ V and Qh ⊂ Q, we can pose the discrete problem:

find uh ∈ Vu and ph ∈ Qh such that

a(uh, vh) + b(vh, ph) = 〈f, vh〉 ∀vh ∈ Vh (1.23)

b(uh, qh) = 〈g, qh〉 ∀qh ∈ Qh

As with the elliptic problem presented earlier, there are two important questions to answer:

“Is there a unique solution (uh, ph)?” and “What can we say about ‖u − uh‖v and ‖p −

ph‖Q?”.

Unlike the elliptic case, the discrete problem does not automatically inherit the solvability

properties of the continuous problem. Define the operators Ah : Vh → V ′h and Bh : Vh → Q′h

as

〈Ahuh, vh〉 = a(uh, vh) 〈Bhvh, qh〉 = b(vh, qh) ∀uh, vh ∈ Vh, ∀qh ∈ Qh

There are two issues. Firstly, sinceQh ⊂ Q, it is not necessarily the case that kerBh ⊆ kerB

and so the coercivity, for example, of A on kerB does not imply the coercivity of Ah on

kerBh. This must be addressed on a case by case basis; for example, sometimes A is

coercive on the whole of V which immediately implies the coercivity of Ah on kerBh ⊂ V .

Secondly, although ImBh is always closed (because Qh is finite dimensional) we must ensure

that g ∈ ImBh ⊂ Q′h. To make sense of this last statement, note that any projection,

10



PQh : Q→ Qh induces a projection PQ′h : Q′ → Q′h via

〈
PQ′hg, q

〉
= 〈g, PQhq〉 =

〈
P tQhg, q

〉
∀q ∈ Qh

and for a solution to exist, what we actually require is that PQ′hg ∈ ImBh. We want this

to be true for any g ∈ B and it was shown in [39] that two equivalent conditions are

• kerBt
h = kerBt ∩Qh ⊂ kerBt.

• For any u ∈ V , there exists a uh = Πhu ∈ Vh such that b(u−Πhu, qh) = 0, ∀qh ∈ Qh.

The second of these is known as Fortin’s criterion. It is nicely illustrated by the commuta-

tivity of the diagram,

V
B−−−−→ Q′

Πh

y yP ′Qh
Vh

Bh−−−−→ Q′h

(1.24)

Suppose that Fortin’s criterion is indeed satisfied and that there exists some αh > 0 such

that ‖Ahu‖(kerBh)′ ≥ αh‖u‖V and ‖Athu‖(kerBh)′ ≥ αh‖u‖V for all u ∈ kerBh. Since Bh is

closed, there exists a kh such that

sup
vh∈Vh

b(vh, qh)

‖vh‖V
≥ kh‖qh‖Q/ kerBth

∀qh ∈ Qh (1.25)

Following the same reasoning used to obtain the weaker form of Cea’s lemma (1.15) and

using the bounds, (1.21) and (1.22) applied to the discrete problem, (1.23), we can bound

the error in the approximate solution in terms of the best approximation error:

‖u− uh‖V + kh‖p− ph‖Q/ kerBt ≤
(

1 +
‖A‖
αh

)(
1 +
‖B‖
kh

)
(1 + ‖A‖) inf

vh∈Vh
‖u− vh‖V +(

kh + ‖B‖
(

1 +
1 + ‖A‖
αh

))
inf

qh∈Qh
‖p− qh‖Q.

(1.26)
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Individual (and slightly tighter) bounds for each of the terms on the left-hand side are given

in [40]. However, (1.26) is sufficient to illustrate that the error depends on the discrete inf-

sup parameter, kh. In particular, to achieve an optimal convergence rate as h → 0, it is

important that we can uniformly bound kh ≥ kh0 for some kh0 > 0.

Assume that Fortin’s criterion, (1.24), holds and that the Πh are uniformly continuous (in

h) with ‖Πhv‖ ≤ CV ‖v‖. Then we obtain, for any qh ∈ Qh:

sup
vh∈Vh

b(vh, qh)

‖vh‖V
= sup

v∈V

b(Πhv, qh)

‖Πhv‖V
(surjectivity of Πh)

≥ 1

CV
sup
v∈V

b(Πhv, qh)

‖v‖V
(uniform continuity of Πh)

=
1

CV
sup
v∈V

b(v, qh)

‖v‖V
(Fortin’s criterion)

≥ k0

CV
‖qh‖Q/ kerBt (the continuous inf-sup condition, (1.20)).

Now, qh = PQhqh and by (1.24), kerBt
h = PQh(kerBt), so, provided that there is a constant,

CQ, such that ‖PQh‖ ≤ CQ uniformly, we have

‖qh‖Q/ kerBth
= inf

rh∈kerBth

‖qh + rh‖Q

= inf
r∈kerBt

‖PQh(qh + r)‖Q

≤ CQ inf
r∈kerBt

‖qh + r‖Q = CQ‖qh‖Q/ kerBt ,

which establishes the uniform bound: kh ≥ k0
CQCV

.

The lesson here is that the existence of uniformly bounded interpolation operators that make

the diagram, (1.24), commute is a sufficient condition for the stability and approximability

(indeed, quasi-optimality) of discrete problem, (1.23).
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The commuting diagram property is also important in establishing the convergence of eigen-

value approximations. Arnold et al, [6], cast the operator B : V → Q as a chain map in

a Hilbert complex and Bh : Vh → Qh in a subcomplex. The commuting interpolation

operators, Πh and PQh are therefore cast as co-chain maps. They say:

“It has long been observed that for mixed finite element approximation of eigen-

value problems, stability and approximability alone, while sufficient for conver-

gence of approximations of the source problem, is not sufficient for convergence

of the eigenvalue problem. ... We prove eigenvalue convergence under the same

sort of assumptions we use to establish stability and convergence for the source

problem, namely subcomplexes, bounded cochain projections, and approxima-

bility. ... We believe that subcomplexes with bounded cochain projections

provide an appropriate framework for the analysis of the eigenvalue problem,

since, as far as we know, these properties hold in all examples where eigenvalue

convergence has been obtained by other methods.”

Our motivation was the finite element solution of Maxwell’s equations and, more generally,

any problems that can be expressed in terms of the operators, grad, curl and div. Our

Hilbert complex is therefore the de Rham complex and in chapters 2 and 3 we will seek

finite element approximation spaces, U (s)
h and (interpolation) operators, Π

(s)
h , that make

the following diagram commute:

H1(Ω)
∇−−−−→ H(curl,Ω)

∇×−−−−→ H(div,Ω)
∇·−−−−→ L2(Ω)

Π
(0)
h

y Π
(1)
h

y Π
(2)
h

y Π
(3)
h

y
U (0)
h (Ω)

∇−−−−→ U (1)
h (Ω)

∇×−−−−→ U (2)
h (Ω)

∇·−−−−→ U (3)
h (Ω).

(1.27)
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1.4 Best approximation and hp methods

Lets return to the simple example from section 1.2 and consider the best approximation

error, infvh∈Vh‖u − vh‖V that features in the error estimate, (1.14). We will work with

V = H1(Ω).

Lemma 2. Let Ω be a Lipschitz domain and suppose that Vh is an approximation space

based on a shape regular2 mesh Th for Ω which contains all members of H1(Ω) which are

element-wise polynomial of degree k − 1, i.e.

Vh ⊂
{
v ∈ H1(Ω) : v|Ki ∈ P k−1 ∀ Ki ∈ Th

}
, (1.28)

and that there exists a bounded interpolation operator Πh : Hk(Ω)→ Vh. Then

inf
v∈Vh
‖v − u‖1 ≤ Chk−1 |u|k ∀u ∈ Hk(Ω)

for some constant C = C(Ω, k) > 0.

Proofs of approximation results like this typically rely upon the following result from Bram-

ble and Hilbert, [16]:

Lemma 3 (Bramble Hilbert Lemma). Let Y be a normed space and let D ⊂ Rn be a

Lipschitz domain. Suppose that an operator, B : Hk(D)→ Y is bounded and that the kernel

of B contains P k−1, the space of polynomials of degree at most k−1. Then ‖Bv‖Y ≤ C |v|k

for some constant, C.

2 In section 1.5 we will see that the elements, Ki can be related to a reference element,
K by a map, φi : K̂ → Ki. Shape regularity means that the condition numbers of the
Jacobians of these maps, Dφi, are uniformly bounded for i = 1..M . The consequence is
that the elements cannot be arbitrarily thin or distorted.
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Sketch of proof of Lemma 2. We first build an element-wise estimate. By a Sobolev exten-

sion theorem, P k−1 ⊂ Vi = Vh|Ki . So, since Πh is a projection, P k−1 ⊂ ker (I −Πh)|Ki .

Hence by Lemma 3, ‖u−Πhu‖1,Ki ≤ C1 |u|k,Ki . We can apply a scaling argument to see that

‖u−Πhu‖1,Ki ≤ C2h
k−1 |u|k,Ki for h < 1, where C2 depends on C1 and the shape-regularity

of Ki. Summing over all elements gives ‖u−Πhu‖1,Ω ≤ C2h
k−1 |u|k,Ω.

Full details of the proof can be found in standard text-books, [17, 25]. A particularly simple

version is given for n = 2 in [15].

The process of producing successively better meshes, Thn where hn+1 < hn is known as

h-refinement. When the degree, p, of the largest complete space of polynomials present

in each Vi is fixed, the resulting method is the h-version of the finite element method.

An alternative way of achieving a better approximation is to keep the mesh fixed, but to

increase p. This is the p-version of the finite element method (when the mesh contains just

one element, it is also called the spectral method). Denoting such a family of approximation

spaces as Vp, it is possible to obtain estimates of the form:

inf
v∈Vp
‖v − u‖1 ≤ C(k)p−k‖u‖k+1. (1.29)

For smooth functions, the estimate has super-polynomial convergence; when u is analytic,

it is in fact exponential.

The tools of the h- and p-versions may be combined: increasing polynomial order of elements

where the function being approximated is smooth, and reducing h locally in the vicinity of

singularities. This is known as the hp-version of the finite element method. Babuska and

Guo showed that by using such an approach, exponential convergence can still be achieved

for functions which are only the solutions of elliptic problems with piecewise analytic data

[44]. The analysis required for the p- and hp- versions is similar; a thorough review is given
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in [8] and more details, including tighter estimates than (1.29), are contained in the book

by Schwab [71].

When the regularity of the solution can be determined beforehand, a series of appropriately

graded meshes can be constructed a priori. In general, however, the approximate solutions

themselves must be relied upon to provide information about what kind of refinements

to perform. A programme to develop a general method for applying the hp-method was

outlined in [33, 64, 66]. A summary of the work on hp-adapativity is given in [34] and more

details are given in [31]. We have already seen that both the stability and approximation

properties of a finite element method depend on the existence of interpolation operators with

specific properties; the hp-adaptivity approaches require concrete implementations. This

lead to the idea of projection-based interpolation, outlined in [32] and [29]. The projection-

based interpolation framework can be used to construct commuting interpolation operators

with quasi-optimal p-approximation behaviour on arbitrary finite element domains. In

chapter 3, we will make use of projection-based interpolation to construct the volume

degrees of freedom for our pyramidal elements.

1.5 Finite element approximation spaces for the de Rham complex

The characterisation of each finite element as a triple, (Ki, Vi,Σi), is due to Ciarlet, [25].

With this formalism, each element is constructed in terms of a reference element (K̂, V̂ , Σ̂)

and a (very) smooth bijection, φi : K̂ → Ki. The reference domain, K̂ ⊂ Rn, is usually a

simple shape, for example an n-simplex or n-cube. For the h-version of the finite element

method, a single reference element may suffice: all the differences between the elements

can be captured by the φi. For the p-method, or if T is a hybrid mesh, containing shapes

of different types (e.g. both rectangles and triangles), multiple reference elements are
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needed. For a scalar-valued approximation space, V (Ω) ⊂ H1(Ω) we define the element-

wise approximation spaces in terms of the reference element as Vi =
{
v̂ ◦ φ−1

i : v̂ ∈ V̂
}
.

Similarly we define each σ ∈ Σi in terms of a degree of freedom on the reference element,

σ̂ ∈ Σ̂ as σ(v) = σ̂(v ◦ φi) for any v ∈ V (Ω).

This is equivalent to saying that the reference degrees of freedom, σ̂ induce an interpolation

operator on the reference element, Π̂ and that Πi := Πh|Ki = Π̂ ◦ φ−1
i . But we have an

additional requirement: we want to construct approximation spaces, U (s)
h (Ω) and interpo-

lation operators, Π
(s)
h for s ∈ {0, 1, 2, 3} which satisfy the commuting diagram property,

(1.27). Suppose that we have constructed reference spaces, Û (s)(K̂) and operators Π̂(s)

which satisfy the diagram, then, for example, it may not be true that ∇ ◦ Π
(0)
i = Π̂

(1)
i ◦ ∇

(it is, in fact, only true when φi is a dilatation). There are several ways to conceptualise

the resolution of this issue:

1. The differential forms school, popularised in [46, 5, 6] casts the elements of the spaces

H1(Ω), H(curl,Ω), H(div,Ω) and L2(Ω) as proxies to differential s-forms belonging to

the spaces3 HΛ(s)(Ω) for s = 0, 1, 2, 3. The exterior derivatives, grad, curl and div are

then all instances of the chain map, d and φi : K̂ → Ki is a manifold diffeomorphism

which induces a pull-back mapping φ∗i : Λ(s)(Ki) → Λ(s)(K̂). Pull-backs commute

with d, so we can define U (s)
h (Ω) =

{
v ∈ HΛ(s)(Ω)|φ∗i v ∈ Û (s)(K̂) i = 1..M

}
and

Π
(s)
i = (φ−1

i )∗ ◦ Π̂(s) ◦ φ∗i .

2. The concrete instantiations of the differential form pull-backs in terms of the vector

proxies are easily calculable and their use precedes the more modern differential forms

3 See [5] for a precise definition of the Sobolev spaces of differential s-forms, HΛ(s)(Ω).
In chapter 4, we will use the slightly different notation, H(s)(Ω)
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abstraction. For example, if we define φ∗i v := v◦φi for v ∈ H1(Ω) then an application

of the chain rule to the commuting diagram condition that ∇φ∗v = φ∗∇v suggests

that we take the change of variables formula, φ∗E = Dφt[E ◦φ] for E ∈ H(curl,Ω). A

slightly more involved calculation reveals that the correct formula for F ∈ H(div,Ω)

is Piola’s transform, φ∗F = |Dφ|Dφ−1[F ◦ φ], [68].

In chapters 2 and 3 we follow a hybrid of these two approaches: taking advantage of the

notational convenience of the differential forms, but also providing explicit definitions using

vector calculus where appropriate.

3. In chapter 4 we take a slightly different view. Rather than thinking of K̂ as a separate

manifold, we treat it as a chart domain. Each φ−1
i : Ki → K̂ is now a chart map and

the differential forms are covariant tensors. The pull-backs are thus cast as covariant

changes of coordinates. This approach is, to the best my knowledge, novel within

the mathematical finite element community. It is perhaps closer in spirit to the

engineering practice of defining finite elements in terms of (barycentric) coordinate

systems.

When Ω ⊂ R3, the most common choices for the reference elements, K̂, are tetrahedra

(3-simplices) or cubes. It is common to let φi be an affine map (in which case the cubes

map to parallelepipeds). But sometimes more general choices are allowed. In particular, if

φi is trilinear then the cubes will map to general hexahedra. When the components of φi

are allowed to be polynomials of the same degree as the approximation space, the elements

are called isoparametric.

High order finite elements for each of the spaces in (1.27) on tetrahedral and hexahedral

domains were first introduced by Nedelec, [59]. A good description of the elements is given
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Figure 1–1: Partitioning of one tetrahedron into four hexahedra, one of which is highlighted
as an illustration.

in [58]. The elements’ degrees of freedom consist of integrals against spaces of test functions

on sub-complexes (i.e. vertices, edges, faces and the volumes) of their domains.

1.6 Hybrid meshes

The availability of these tools naturally prompts the question, “Which are best, tetrahedral

or hexahedral elements?” After all, Whitney showed that any (reasonable) 3-manifold may

be tesselated using tetrahedra [83] and since any tetrahedron may be divided into four

hexahedra (see figure 1–1), it is perfectly possible, and most likely simpler, to implement a

finite element method based on a mesh that contains just one type of shape. Unfortunately

(but fortunately for this work), there is not a clear answer. Each element type has dif-

ferent properties and their suitability depends on the characteristics of the problem being

solved.
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The product structure of the cube allows the construction of hexahedral shape functions as

a tensor product of three univariate functions. This allows for various optimisations. For

example, the naive per-element cost of a projection onto the space of shape functions on

a tetrahedron or hexahedron is O(p6): there are O(p3) shape functions, and evaluation at

O(p3) quadrature points is required for each inner product. For tetrahedra, this is the best

that can be done, but on the hexahedron, sum-factorisation can exploit the tensor product

structure to reduce this cost to O(p4) (subject to an O(p3) increase in storage costs) [72].

When the element is based on a parallelepiped, costs for some operations can be reduced

even further [71]. Another consequence of the hexahedral product construct is that we

can refine anisotropically, which can be useful for dealing with boundary layers. See, for

example, [69, 78, 37].

On the other hand, irregularities in a solution require h-refinement to achieve accurate

approximations. These irregularities are often localised (a classic example would be the

Fichera corner). Local h-refinement of tetrahedral meshes is straightforward, but for cuboid

or parallelepiped meshes, hanging nodes are required. A hanging node is a degree of free-

dom on the boundary of an element for which there is no corresponding degree on the

neighbouring element. See figure 1–2 for a simple example for rectangles in 2D. Hanging

nodes present particular problems for both the analysis and computation of finite element

methods. For example, it is no longer possible to build commuting interpolants element-

wise. An analysis of the stability and approximability of finite elements with hanging nodes

for the 2D de Rham complex is given in [70] and [2]. The 3D Stokes problem is consid-

ered in [78] but I am unaware of a general analysis in 3D. The effect of hanging nodes on

an hp algorithm which uses interpolation operators to make decisions about adaptivity is

discussed in [52].
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a degree of freedom associated with 
this vertex will be a hanging node

Figure 1–2: A hanging node

In an ideal world then, we might use a hybrid mesh containing tetrahedra to provide

localised h-refinement and computationally-efficient cuboids to fill large spaces in which

the solution is regular. This is the source of our motivation for considering pyramidal finite

elements: if hexahedra and tetrahedra are combined in one mesh (and hanging nodes are

to be avoided) then a layer of quadrilateral-based pyramids will be needed to “glue” the

triangular and quadrilateral faces of the tets and hexes. This situation is nicely illustrated

in [65]. Note that (triangularly) prismatic elements are also required; these turn out to be

relatively straightforward to construct and analyse [24].

Pyramidal elements also arise more explicitly when attempting to mesh thin three dimen-

sional structures using prismatic elements [54]. A practical example is mentioned in [41].

The authors build a finite element model of the inner ear, which contains several thin struc-

tures: the tympanic membrane, the oval window and the basilar membrane. A naive mesh

generator would typically fill these structures with an unfeasibly large number of small

elements. So, instead, they instruct the mesh generator to treat each structure as a two

dimensional surface that should be covered with triangles. Figure 1–3 shows how these
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Figure 1–3: When a membrane which is initially meshed as a surface is thickened, pyramids
arise in the surrounding transition layer

surfaces are then “thickened” into a cylinder of prismatic elements. The thickening process

means that a layer of tetrahedra and pyramids appears around the brim of the cylinder

where faces of elements which had touched the surface have been forced apart.

1.7 H1-conforming pyramidal elements

The first person to publish a construction of a H1-conforming pyramidal element appears

to have been Bedrosian, [11]. He demonstrates first and second order nodal shape functions

on the pyramid which will match neighbouring tetrahedra and hexahedra shape functions

exactly and makes the important observation that:

“... no finite polynomial shape functions would satisfy the C0 continuity re-

quirements ...”
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The insufficiency of polynomial basis functions for the construction of pyramidal finite ele-

ments has been observed by several different authors independently. Chatzi and Preparata

describe the construction of high order pyramidal basis functions [23]4 :

“The functions are ratios of polynomials, but reduce to polynomials on the

boundaries of the shape. We also prove that polynomial basis functions for

Lagrangian pyramids do not exist.”

Wieners proves the following as a theorem [84]:

“There exists no continuously differentiable conforming shape functions for the

pyramid which is linear resp. bilinear on the faces.”

Our own version of this result is Theorem 4 in chapter 2, where we demonstrate the existence

of a function whose restriction to each the face of the pyramid is polynomial, yet cannot

be interpolated by a polynomial.

The significance of these results is that attempting to construct a pyramidal finite element

using purely polynomial shape functions is not just sub-optimal, it is impossible. This may

come as something of a surprise! Whilst it is common for finite elements to include rational

functions (in fact, any non-affine element, for example, an irregular quadrilateral, does so),

these functions are still, in the words of Ciarlet, “almost polynomial”. Indeed, he writes

that the approximation space for an isoparametric element

4 It is asserted in [12] that the approximation spaces of Chatzi and Preparata do not
include polynomials so unfortunately their method is inconsistent.
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“... generally contains functions which are not polynomials ... However, this

complication is ignored in practical computation, inasmuch as all the computa-

tions are performed on [the reference element].”[25]

In contrast, the rational functions required for pyramidal elements are very much present

on the reference element and are in no sense “almost polynomial”: in chapter 4 we will see

that the approximation spaces on each element are not even contained in the Sobolev space

H3(K). This will mean that we need to take care over a particular application of Lemma

3 to the estimation of the quadrature error when using pyramidal elements.

Bedrosian refers to his basis functions as “rabbit functions”, an expression originally used

by Wachspress to describe functions which are “pulled out of a hat” [80]. Wachspress’s

book provides a construction of high order H1-conforming shape functions on very general

domains: simply connected regions of R2 and R3 bounded by a finite set of algebraic curves

or surfaces (subject to some additional permissibility constraints) which he describes as

polypols and polypoldra respectively. His shape functions are rational functions.

On shapes which are diffeomorphic to triangles, squares, tetrahedra and cubes, Wachspress’s

elements appear to be direct descriptions of isoparametric elements in mesh coordinates,

rather than the more conventional approach of using a reference element. The effort required

to deal with general polpols and polypoldra disguises what is arguably the more important

contribution: the construction of high order H1-conforming finite elements on arbitrary

convex polygons and many convex polyhedra. The construction does not cover all polyhedra

because he restricts his attention to shapes whose vertices are all order three; this means that

his construction is not applicable to pyramids, where the “top” vertex is order four.

The purpose of the restriction to vertices of order three is to keep all the roots of the denom-

inators of the rational shape functions outside the finite element domain. Interestingly, the
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constraint was unnecessary: twenty years later, Warren determined that the construction

still works for arbitrary convex polyhedra [81, 82, 79] and so the first pyramidal elements

could arguably be attributed to Wachspress. We shall see in chapter 2 that for the rational

functions in our pyramidal elements, the denominator is indeed zero on the boundary of

the domain but only at the top vertex and that this singularity is removable. Incidentally,

Warren also proved the uniqueness of a generalisation of barycentric coordinates on convex

polyhedra [3], which provides yet another proof of the necessity of rational functions on

pyramids.

High orderH1-conforming pyramidal approximation spaces were constructed independently

by Sherwin, Karniadakis and Warburton [72, 74]. This builds on earlier work to construct

orthogonal shape functions [73] and more details are given in their book [51]. Bergot et

al provide an excellent summary of continuous pyramidal finite elements [12] in which

they point out that Sherwin’s pyramids only contain complete spaces of polynomials under

affine transformations, not under more general transformations that transform the base

quadrilateral bilinearly.

Bergot et al also prove that a family of approximation spaces first suggested by Zaglmayr

[85] and described in [31] is in fact “optimal” for pyramids, in that the pth space is the

smallest space that contains the complete family of polynomials of degree p under a family of

transformations which allow the base to map to a general quadrilateral and that associated

external degrees are identical to those on the faces of tetrahedral and hexahedral elements.

They recognise that our original spaces, described in chapter 2, also satisfy these conditions,

although they are larger than Zaglmayr’s. The new families that we present in chapter 4

include the Bergot spaces as the H1-conforming case.
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Bergot et al come to some conclusions about the effect of numerical integration on H1-

conforming pyramidal finite elements. In chapter 4 we shall see that whilst these conclusions

are correct, the reasoning is insufficient because it fails to properly address the effect of the

non-polynomial shape functions. Our analysis redresses this problem and also extends the

result to the pyramidal finite elements for all the spaces of the de Rham complex.

1.8 Pyramidal elements for the de Rham complex

Zganski et al were the first to publish numerical experiments withH1-conforming pyramidal

elements [86]; they follow this up with first order H(curl)-conforming elements [28] that are

compatible with first and second order tetrahedral and hexahedral edge elements. Graglia

et al [43] provide their own (different) H(curl)-conforming elements along with the first

H(div)-conforming family at orders one and two. They also provide numerical evidence for

an absence of spurious modes, which suggests that their elements may satisfy a commuting

diagram property.

The first explicit treatment of the commutativity property on pyramids is given by Gradi-

naru and Hiptmair [42], who prove that their first order, “Whitney”, elements commute with

the de Rham complex. Bossavit shows that this construction is in some sense canonical,

in that it can be derived from a unified principle that also delivers the first order tetra-

hedral, hexahedral and prismatic elements, [14]. An attempt at a canonical construction

of high order elements is given in [35], but no consideration is given to the commutativity

property.

In parallel with our work for high order elements, Zaglmayr constructed a family of com-

muting pyramidal elements based on the theory of local exact sequences. She presents

the local exact sequence theory in her thesis, [85], but does not discuss the pyramid. A
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description of the approximation spaces for the elements is given in [31] but no analysis of

the commuting diagram property or approximability properties has been published.

Our own elements start on what we describe as the infinite pyramid, which is discussed

extensively in chapters 2 and 3. More conventionally, Zaglmayr works on cubes, which are

mapped to the pyramid using the “Duffy transformation” [36]:

F : (x, y, z) 7→ (x(1− z), y(1− z), z)

Finally, we observe that Duffy’s use of this mapping to tensorialise pyramidal quadratures

was predated by Stroud [76]. Stroud appears to have fallen victim to Stigler’s law [75],

perhaps because of the naming choices in [56].
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CHAPTER 2
High order finite elements on pyramids, part I: approximation spaces.

This chapter is part I of the paper “High order finite elements on pyramids”, submitted to

IMA Journal of Numerical Analysis. The two parts of the paper were eventually combined

into one part for submission but the natural division into two chapters is preserved here.

This chapter contains an introduction to the problem and constructions of the approxima-

tion spaces for the elements.

The references to this paper by two works which are cited elsewhere in this thesis, [12, 31],

were based on the draft placed on the arXiv in 2006 and substantially revised in 2007 and

2010 [62].

2.1 Introduction

High order conforming finite elements for H(curl) and H(div) spaces based on meshes

composed of tetrahedra and hexahedra were first presented by Nedelec, [59]. The demands

of the specific problem geometry (regions with complex features as inclusions) or efficient

calculation (design of unstructured hexahedral meshes) may necessitate the use of hybrid

meshes which include both tetrahedral and hexahedral elements, see e.g. [12]. If these

meshes are to avoid hanging nodes then they will, in general, contain pyramids. A hybrid

mesh may contain tetrahedra to provide localised h-refinement and computationally-efficient

cuboids to fill large spaces in which the solution is regular, and pyramids to glue these

together. This situation is nicely illustrated in [65]. Note that (triangularly) prismatic

elements are also required; these turn out to be relatively straightforward to construct and
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analyse, see e.g. [24]. Pyramidal elements also arise more explicitly when attempting to

mesh thin three dimensional structures using prismatic elements, see [54, 41].

Consider a contractible domain D ∈ R3 which is triangulated using a mesh containing

both tetrahedral and hexahedral elements. If one is to avoid hanging nodes or edges, the

triangulation must also, in general, include quadrilateral-based pyramids. In what follows,

we assume these pyramids can be mapped in an affine manner to a reference pyramid, Ω,

which has a square base and is defined as:

Ω = {ξ = (ξ, η, ζ) ∈ R3 | ξ, η, ζ ≥ 0, ξ ≤ 1− ζ, η ≤ 1− ζ}. (2.1)

It is our aim to construct high order finite elements on such a pyramid. Concretely, in this

paper we present finite element triples, (Ω,U (s),k(Ω),Σ(s),k), for positive integers k which are

unisolvent conforming finite elements for H1(Ω), H(curl,Ω), H(div,Ω) and L2(Ω) respec-

tively for s = 0, 1, 2, 3. Here U (s),k(Ω) are the kth order finite dimensional approximation

spaces and the sets Σ(s),k are the associated degrees of freedom. We seek finite elements

with the following properties P1-P3:

P1) Compatibility: Not only should the elements be conforming, but the restriction of

each element to its triangular and quadrilateral face(s) should match that of the

corresponding canonical tetrahedral and hexahedral finite element. This means that

both the spaces spanned by the traces and the external degrees of freedom on faces and

edges are the same as those of the usual tetrahedral/hexahedral elements. In other

words, the elements should satisfy the correct patching conditions on inter-element

boundaries, [42]. We will use [58] as our reference for the tetrahedral and hexahedral

spaces and external degrees of freedom, see Table 2–1.
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Table 2–1: Edge and face degrees of freedom for tetrahedral and hexahedral reference
elements.

Edge e Face f
tetrahedra tetrahedra hexahedra

& hexahedra
H1(Ω)

∫
e
pq ds

∫
f
pq dA

∫
f
pq dA

∀q ∈ P k−2(e) ∀q ∈ P k−3(f) ∀q ∈ Qk−2,k−2(f)

H(curl,Ω)
∫
e
u · tq ds

∫
f
u · q dA

∫
f
u× ν · q dA

∀q ∈ P k−1(e) ∀q ∈ P k−2(f),q · ν = 0 q ∈ Qk−2,k−1 ×Qk−1,k−2(f)

H(div,Ω) –
∫
f
u · νq dA

∫
f
u · νq dA

∀q ∈ P k−1(f) ∀q ∈ Qk−1,k−1(f)

The vertex degrees of freedom for the H1(Ω) elements on tetrahedra and hexahedra are
the same. There are no exterior degrees of freedom for the L2(Ω) approximants. t is the
unit tangent along an edge, and ν the unit outer normal to a face.

P2) Approximation: The discrete spaces U (s),k(Ω) should allow for high-order approxima-

tion to the spaces H1(Ω),H(curl,Ω), etc. In particular, given a positive integer p, it

should be possible to choose k such that all polynomials of degree p (we denote these

as P p) are contained in U (s),k(Ω).

P3) Stability: The elements satisfy a commuting diagram property:

Hr(Ω)
∇−−−−→ Hr−1(curl,Ω)

∇×−−−−→ Hr−1(div,Ω)
∇·−−−−→ Hr−1(Ω)

Π(0)

y Π(1)

y Π(2)

y Π(3)

y
U (0)(Ω)

∇−−−−→ U (1)(Ω)
∇×−−−−→ U (2)(Ω)

∇·−−−−→ U (3)(Ω)

(2.2)

Here Π(s), s=0,1,2,3, denote interpolation operators induced by the degrees of freedom,

Σ(s),k, and r is chosen so that the interpolation operators are well defined.

Gradinaru and Hiptmair [42] constructed “Whitney” elements satisfying properties P1 and

P3 and our family of elements includes these as the lowest order case, see Section 2.5. In

the engineering literature, Zgainski et al [28, 86] appear to have discovered the same first

order H(curl)-conforming element independently and also demonstrated a second order

element. In [12] the authors describe high-order finite elements for H1(Ω), but not the
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other spaces. Graglia et al [43] constructed H(curl) and H(div) elements of arbitrarily

high order. Similarly, Sherwin [72] demonstrated H1-conforming elements also satisfying

properties (1) and (2). These high order constructions provide an explicit scheme for

determining nodal basis functions; none of them address the commuting diagram property,

P3.

The mimetic finite difference method, originally presented in 1997 [49] and further developed

by several authors (e.g., [53, 21, 20, 19]) develops low-order approximations on polyhedral

meshes and hence includes pyramids as a special case.

Our starting point is an observation: that it is not always possible to extend polynomial data

on the faces of a pyramid using a polynomial within the pyramid. Indeed, it is impossible

to construct useful H1(Ω) pyramidal finite elements using only polynomial basis functions.

Specifically, in Theorem 4, we demonstrate an H1(Ω) function which has polynomial traces

on the faces of the pyramid, but which does not admit a polynomial representation in the

pyramid itself.

Theorem 4. Let Ω be the pyramid defined in (2.1). Consider the function u : Ω → R

defined by

u(ξ, η, ζ) =
ξζ(ξ + ζ − 1)(η + ζ − 1)

1− ζ
.

Then,

1. u ∈ H1(Ω),

2. u has polynomial traces on the pyramid faces,

3. u cannot be represented by any polynomial function on Ω which also satisfies property

(P1).
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Proof. It is straightforward to verify (1). It is easy to see u|η=0 = −ξζ(ξ+ ζ−1) and u = 0

on the other faces of the pyramid. This establishes (2).

We prove (3) by contradiction. Since Ω has Lipschitz boundary, we can extend u to a

function U ∈ H1(R3) (see, for example, [1]). Suppose that we could represent u = U |Ω by a

polynomial function p, in a manner consistent with property (P1). The traces of U on the

faces will then be interpolated exactly by the polynomial finite elements on the adjacent

neighbouring tetrahedra and hexahedra. Since an H1-conforming approximation must be

continuous across interelement faces, we must have p = U on each face of the pyramid.

Since U = u = 0 on four of the faces of the pyramid, we can factorise:

p(ξ, η, ζ) = ξζ(ξ + ζ − 1)(η + ζ − 1) [r(ξ, ζ) + ηs(ξ, η, ζ)] , (2.3)

where r and s are polynomial. Further, U = −ξζ(ξ + ζ − 1) on the face η = 0 and so:

p(ξ, 0, ζ) = ξζ(ξ + ζ − 1)(ζ − 1)r(ξ, ζ) = −ξζ(ξ + ζ − 1), (2.4)

which implies that (ζ − 1)r(ξ, ζ) = −1. This contradicts the polynomial nature of r.

A similar result is presented in [84], where it is claimed that, under the assumption that

shape functions must be polynomial, there exists no continuously differentiable conforming

shape functions for the pyramid which are linear / bilinear on the faces.

The insufficiency of polynomials can be seen in all previous successful attempts to con-

struct pyramidal finite elements. In addition to [42], finite element bases that include

rational functions are given by, e.g., [43, 72, 28, 86]. In [38, 65, 84, 55] the authors use

piecewise polynomial functions via a macro-element that divides the pyramid into two or

four tetrahedra. Interestingly, although [80] only applies his construction to a class of

polyhedra that does not include pyramids, this restriction appears to be unnecessary and
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the “rational finite elements” given therein appear to include the high order H1 pyramidal

elements as a special case.

The major contribution of this paper is a comprehensive development of high-order finite

elements on a pyramidal element. We will present candidate approximation spaces U (s),k(Ω)

for s = 0, 1, 2, 3 and k ∈ N, by first developing these on an infinite reference pyramid. We

also show that these spaces admit convenient Helmholtz-like decompositions, and that their

traces on faces and edges are consistent with traces from neighbouring elements. Hence

property P1 is satisfied by U (s),k(Ω). As a concrete example, we verify that our first order

elements agree with those presented in [42].

Next, we provide a description of the degrees of freedom, Σ(s),k and demonstrate unisol-

vency. The exterior degrees of freedom agree precisely with those specified by neighbouring

tetrahedral or hexahedral elements. Properties P2 and P3 are also established. We will

use the projection-based interpolation described in [29, 32] to solve the difficult problem of

defining the internal degrees of freedom on a pyramid. It is possible to use projection-based

interpolation for the external degrees too, and we believe that the hp framework of which it

is a part will also accommodate our element. However, this is not our immediate objective

and the external degrees described in [58] allow for a more explicit exposition.

In Section 3.2, we show that the discrete spaces U (s),k(Ω) form an exact subcomplex. of

the de Rham complex. That is, we show that dU (s),k(Ω) ⊂ U (s+1),k(Ω) for s = 0, 1, 2, and

that any discrete (s+ 1)–form which has a vanishing exterior derivative is derivable from a

discrete potential which is an s–form. These spaces, along with the interpolants which are

induced by the degrees of freedom, satisfy a “commuting diagram property” which is crucial

to the stable computation of mixed problems. Finally we show that these finite elements

are indeed high-order in the sense that they include high-degree polynomials. While the
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inclusion of high-degree polynomials is an important step towards approximability, we shall

show in a subsequent paper that the usual finite element arguments need modification in our

context. In particular, since the spaces U (s),k(Ω) contain rational functions, it is not true

that high derivatives evaluate to 0, in sharp contrast to the situation for polynomials.

The organization of the rest of this paper is as follows:

Section 2.2: The infinite reference element: some preliminaries

Section 2.3: The approximation spaces U (s),k(K∞) on the infinite pyramid

Section 2.4: The approximation spaces U (s),k(Ω) on the finite pyramid

Section 3.1: The degrees of freedom Σ(s),k and unisolvency

Section 3.2: Interpolation and exact sequence property

Section 3.3: Polynomial approximation property

Appendix 3.A: Shape functions

2.2 The infinite reference element: some preliminaries

To construct the finite elements, we shall make use of two reference elements: the finite

pyramid, Ω, already introduced in (2.1), and the infinite pyramid K∞. The infinite pyramid

is an unusual, but instructive domain; it possesses hexahedral symmetries which will allow

us to specify or study important properties for the approximation spaces. We will then

map these spaces to the finite pyramid.

We will typically use the symbols (x, y, z) as coordinates on the infinite pyramid and (ξ, η, ζ)

on the finite pyramid. The infinite reference pyramid is defined as

K∞ = {x = (x, y, z) ∈ R3 ∪∞ | x, y, z ≥ 0, x ≤ 1, y ≤ 1}. (2.5)
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Figure 2–1: Left: The infinite pyramid K∞. Right: The finite reference pyramid Ω

Figure 2–1 shows the two pyramids. The vertical faces of the infinite pyramid lie in the

planes y = 0, x = 1, y = 1, x = 0. We denote them as S1,K∞ , S2,K∞ , S3,K∞ , and S4,K∞

respectively, and the corresponding faces on the finite pyramid Si,Ω = φ(Si,K∞). Let BK∞

refer to the base face, z = 0, of the infinite pyramid and BΩ the base face of the finite

pyramid. The vertices of the finite pyramid are denoted vi, i = 1..5, with v5 the point

(0, 0, 1).

2.2.1 The infinite reference element: pullbacks

To associate the finite and infinite pyramids, define the bijection φ : K∞ → Ω

φ(x, y, z) =

(
x

1 + z
,

y

1 + z
,

z

1 + z

)
, φ(∞) = (0, 0, 1), (2.6)

which is a diffeomorphism if we restrict the domain to K∞\∞ (and the range to the finite

pyramid with its tip removed).

The infinite pyramid will serve as a tool for the construction of the function spaces for

the elements. We thus need to understand how to map functions between spaces on the

finite pyramid, U (s),k(Ω) and the infinite pyramid, U (s),k(K∞). A major consideration is
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for approximation spaces on the infinite pyramid to satisfy an exact sequence property. To

have this exact sequence property preserved on the finite pyramid, it is necessary that the

mappings between the spaces on the finite and infinite pyramids commute with the grad,

curl and div operators.

In the language of differential geometry, where the elements of each space can be considered

to be proxies for 0, 1, 2 and 3-forms, the mappings should be pullbacks. We shall use the

same notation for each map - the context will never be ambiguous. We point the reader

to [5] for an excellent treatment of the finite element exterior calculus. In this paper, we

will switch between referring to objects as forms or functions, depending on the context.

Formally (because we have not yet defined the appropriate Sobolev spaces on the infinite

pyramid):

∀u ∈ H1(Ω) φ∗u = u ◦ φ, (2.7a)

∀E ∈ H(curl,Ω) φ∗E = DφT · [E ◦ φ], (2.7b)

∀v ∈ H(div,Ω) φ∗v = |Dφ|Dφ−1 · [v ◦ φ], (2.7c)

∀q ∈ L2(Ω) φ∗q = |Dφ| [q ◦ φ], (2.7d)

where Dφ is the Jacobian matrix, 1
(z+1)2


z + 1 0 −x

0 z + 1 −y

0 0 1

.

The pullbacks are bijections and the inverse pullback, (φ∗)−1 is equal to (φ−1)∗. Since

z ≥ 0, DφTDφ is positive definite.

The infinite reference element is a convenient tool, since it possesses both rotational sym-

metries and the tensorial nature of regular hexahedral elements. This is particularly useful

while discussing traces onto the boundaries of the pyramid.
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2.2.2 The infinite reference element: Sobolev spaces

The infinite reference pyramid has obvious symmetries, which make it easier to specify and

analyze approximation spaces. However, it has semi-infinite extent along the z-direction,

and we must therefore take some care when identifying the images of H1(Ω), H(curl,Ω)

etc. under the pullbacks, φ∗. Not surprisingly, these Sobolev spaces will have weighted

norms.

Definition 5. Let Ω∞ be the infinite pyramid defined in (2.5), and φ : K∞ → Ω be the

pullback map. We define the following inner product spaces:

H1
w(Ω∞) is the closure of the set of smooth scalar-valued functions v : K∞ → R under the

norm induced by the inner product

(u, v)H1
w(K∞) :=

∫
K∞

uv

(1 + z)4
+ (∇u)TA∇vdx.

Here A = |Dφ|Dφ−1Dφ−1T is positive definite. Hw(curl,Ω∞) is the closure of the set of

smooth vector-valued functions (1-forms) F : K∞ → (R)3 under the norm induced by inner

product

(F,G)Hw(curl,K∞) :=

∫
K∞

(F )TA(G) + (curlF )TB(curlG)dx.

Here B = |Dφ−1|DφTDφ, and is positive definite. Hw(div,K∞) is the closure of the set of

smooth vector-valued functions (2-forms) F : K∞ → (R)3 with inner product

(F,G)Hw(div,K∞) :=

∫
K∞

(F )TB(G) + (divF )T (1 + z)4(divG)dx.

L2
w(K∞) is the closure of the set of smooth scalar-valued functions (3-forms) with inner

product,

(u, v)L2
w(K∞) :=

∫
K∞

(1 + z)4(uv)dx.
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Remark 6. We observe that the inner products on the infinite pyramid are weighted by

powers of 1
(1+z) . The subscript w is used to emphasize that these are weighted norms. The

weights are entirely specified by the projective mapping, φ, and the associated pull-backs for

the various forms. It is important to note, for example, that ‖u‖2L2
w(K∞) =

∫
K∞

u2

(1+z)4dx if

u is a zero form, while ‖u‖2L2
w(K∞) =

∫
K∞

u2(1 + z)4dx if u is a 3-form.

The following theorem relates these spaces to the more familiar Sobolev spaces on the finite

pyramid:

Lemma 7. It is easy to verify that the inner product spaces H1
w(K∞), Hw(curl,K∞),

Hw(div,K∞) and L2
w(K∞) in Definition 5 are Hilbert spaces. Morever, φ∗ : H1(Ω) →

H1
w(K∞) is an isometry. The analogous statements are true for Hw(curl,K∞), Hw(div,K∞)

and L2
w(K∞).

Proof. The pullbacks, φ∗ are formally bijections because φ : K∞ → Ω is a bijection. Sup-

pose ũ is a 0-form in H1(Ω) and let u = φ∗ũ. Then

‖ũ‖2L2(Ω) =

∫
K∞

|Dφ||u(x)|2dx =

∫
K∞

1

(1 + z)4
|u(x)|2dx.

Now, the gradient and pull-back operator commute. We can thus use the appropriate

pull-back to obtain

‖∇ũ‖2L2(Ω) =

∫
Ω
|∇ũ|2dξ =

∫
Ω
|Dφ−1T∇u ◦ φ−1|2dξ

=

∫
K∞

|Dφ||Dφ−1T∇u|2dx =

∫
K∞

∇uTA∇udx.

Hence ‖ũ‖2H1(Ω) = ‖ũ‖2L2(Ω) + ‖∇ũ‖2L2(Ω) = ‖u‖H1
w(K∞). The proofs for Hw(curl,K∞),

Hw(div,K∞) and L2
w(K∞) follow analogously.
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We collect here, for convenience, concrete instantiations of the inverse pullback map-

ping.

∀u ∈ H1
w(Ω∞), (φ−1)∗u = u ◦ φ−1, (2.8a)

∀E ∈ Hw curl,K∞), (φ−1)∗E = [(1 + z)


1 0 0

0 1 0

x y 1 + z

 · E] ◦ φ−1, (2.8b)

∀v ∈ Hw(div,K∞), (φ−1)∗v = [(1 + z)2


1 + z 0 −x

0 1 + z −y

0 0 1

 · v] ◦ φ−1, (2.8c)

∀q ∈ L2
w(K∞), (φ−1)∗q = [(1 + z)4q] ◦ φ−1. (2.8d)

2.2.3 Rotations and traces

Define RK∞ : K∞ → K∞ to be the affine mapping that sends the infinite pyramid to itself

and rotates it a quarter turn about the axis x = y = 1
2 , that is, the vertical face S1,K∞ is

mapped to S2,K∞ , the face S2,K∞ is mapped to S3,K∞ , etc. Explicitly,

RK∞ : (x, y, z) 7→ (1− y, x, z). (2.9)

We can also define a mapping that sends the finite pyramid to itself, rotating the faces,

R : Ω→ Ω by

R = φ ◦RK∞ ◦ φ−1, R : (ξ, η, ζ) 7→ (1− η − ζ, ξ, ζ).

It is clear that if an approximation space U (s),k(K∞) is invariant under the mapping RK∞ ,

its (inverse) pullback to the finite pyramid will be invariant under R. This property will
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prove convenient when we consider exterior shape functions and exterior degrees of free-

dom.

The trace map from a manifold to a submanifold is the pullback of the inclusion map for

differential forms (see, for example, [6], pg 41 ff.) and so we expect that zero trace data

will be preserved by the pullback mapping. The following lemma makes this explicit in our

concrete vector calculus formulation, where traces for 1-forms consist only of the tangential

components and for 2-forms the normal components. We suppose that SK∞ is a surface of

the infinite pyramid and let SΩ be its image under φ on the finite pyramid.

Lemma 8. • A vector proxy to a 1-form, u, is normal to SΩ at a point ξ = φ(x) if and

only if the pullback φ∗u is normal to SK∞ at x.

• A vector proxy to a 2-form, u, is tangent to SΩ at a point ξ = φ(x) if and only if the

pullback φ∗u is tangent to SK∞ at x.

Proof. Let SΩ be described (locally) by SΩ = {ξ : f(ξ) = 0}. Define g = f ◦ φ, then

SK∞ = {x : g(x) = 0}. To establish the first result, let u be a 1-form which is normal to

SΩ at ξ, then

u(ξ) = λ(ξ)∇f(ξ) (2.10)

for some scalar function λ. By the chain rule, and substituting (2.10)

∇g(x) = (Dφ)T (x) · (∇f)(φ(x)) = (Dφ)T (x) · u(φ(x))

λ(φ(x))
=

φ∗u

λ(φ(x))

⇒ λ(φ(x))∇g(x) = φ∗u(x).

Hence, φ∗u is normal to SK∞ at x if u is normal to SΩ at ξ. The converse statement follows

since φ is a bijection.
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To establish the second result, let u be a 2-form which is tangent to SΩ, meaning that

u · ∇f = 0. The chain rule gives us ∇g = (Dφ)T (∇f) ◦ φ and by definition of the pullback,

φ∗u = |Dφ|(Dφ)−1 · (u ◦ φ), hence:

φ∗u · ∇g = |Dφ|(u ◦ φ)T · (Dφ−1)T · (Dφ)T · [(∇f) ◦ φ]

= |Dφ|(uT · ∇f) ◦ φ = 0.

Hence φ∗u is tangent to SK∞ . Again, the proof of the converse follows by noting that φ is

a bijection.

Any construction of conforming finite elements must include consideration of the traces of

approximants onto inter-element boundaries. To this end, we introduce some notation for

the trace maps to the different faces of the reference pyramids. L2-conforming elements do

not require any external degrees of freeom so we need not define traces for U3,k(K∞).

Definition 9. Let Si,K∞ be a vertical face of K∞. For s = 0, 1, 2, k ∈ N and i = 1..4

define the trace map Γsi,K∞ on Us,k(K∞) as the pullback of the inclusion Si,K∞ ↪→ K∞. We

denote by Γsi,Ω the corresponding trace onto the triangular faces of the finite pyramid Ω. We

similarly define the trace maps onto the base faces, that is, ΓsB,K∞ and ΓsB,Ω are the trace

maps to BK∞ and BΩ respectively.

A useful consequence is that trace maps commute with φ∗, (e.g. Γsi,K∞ ◦ φ
∗ = φ∗ ◦ Γsi,Ω) so

results we establish on faces and edges of K∞ will carry over to the finite pyramid.

We can now describe the inter-element compatibility conditions to be satisfied by the traces

of our approximation spaces. From [58], we can concisely denote trace spaces on each face

of the kth order tetrahedral and hexahedral elements by the polynomial spaces τ (s),k and

σ(s),k respectively. On the triangular face S1,Ω and the base face BΩ, these spaces are

41



defined as

τ (0),k(ξ, ζ) = P k(ξ, ζ) σ(0),k(ξ, η) = Qk,k(ξ, η) (2.11a)

τ (1),k(ξ, ζ) = (P k−1(ξ, ζ))2 ⊕ Sk,2(ξ, ζ) σ(1),k(ξ, η) = Qk−1,k(ξ, η)×Qk,k−1(ξ, η) (2.11b)

τ (2),k(ξ, ζ) = P k−1(ξ, ζ) σ(2),k(ξ, η) = Qk−1,k−1(ξ, η) (2.11c)

where Sk,2(ξ, ζ) = {w(ξ, ζ) ∈ (P̃ k)2|(ξ− ξ0, ζ − ζ0) ·w = 0} for some fixed (ξ0, ζ0). In order

to satisfy the compatibility condition (P1), then, our approximation spaces will need to

satisfy the constraints

Γs1,K∞u ∈ τ
(s),k(ξ, ζ) ∀u ∈ U (s),k(Ω),∀s = 0, 1, 2 (2.12)

on the face S1,Ω. Analogous constraints will hold on all the other faces of the pyramid

Ω.

The discussions above suggest the face-wise constraints which must be satisfied by any

approximation spaces U (s),k(Ω). However, as was demonstrated by Theorem 4 the difficulty

of interpolation on a pyramid stems from the need to find an interpolant that match trace

data on all the faces simultaneously. This point will be discussed later.

2.3 The approximation spaces U (s),k(K∞) on the infinite pyramid

In this section we present the approximation spaces U (s),k(K∞) on the infinite pyramid.

These will be used, via the pullback map, to construct the approximation spaces U (s),k(Ω) on

the finite pyramid. As a preliminary step, we identify families of “rational polynomials” on

K∞ which will be used extensively. We want the spaces on the finite pyramid Ω to contain

all polynomials up to a specified degree. Consider the effect of the pullback mapping φ on
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a polynomial of degree k, p = ξαηβζγ ∈ H1(Ω), where α+ β + γ = k:

φ∗p =
xαyβzγ

(1 + z)k
. (2.13)

From Lemma 7, the pullback φ∗p ∈ H1
w(K∞). This motivates our next definition:

Definition 10. Let Ql,m,n(x, y, z) be the space of polynomials of maximum degree l,m, n

in x, y, z respectively. Define the space of k-weighted tensor product polynomials:

Ql,m,nk (x, y, z) =

{
u

(1 + z)k
: u ∈ Ql,m,n(x, y, z)

}
.

It will be helpful to remember the inclusion:

Ql,m,nk ⊂ Ql,m,n+1
k+1 . (2.14)

Let P n(x, z) be polynomials of maximum total degree n in (x, z) and define the space of

k-weighted polynomials of degree n

P n
k(x, z) =

{
u(x, z)

(1 + z)k
: u(x, z) ∈ P n(x, z)

}
. (2.15)

2.3.1 H1
w(K∞)-conforming approximation spaces

We recall from [58] that the finite element approximation space for the kth order hexahedral

element consists of polynomials of form p = ξαηβζγ ∈ Qk,k,k with 0 ≤ α, β, γ ≤ k. From

(2.13), we know that φ∗p = xαyβzγ

(1+z)r ∈ H1
w(K∞), where α + β + γ = r. We might there-

fore expect to base an approximation space for H1
w(K∞) on the k-weighted space, Qk,k,kk .

However, there are some elements of Qk,k,kk which, when pulled back to the finite pyramid,

become undefined at ξ0 = (0, 0, 1). The problem arises with elements of the form xaybzk

(1+z)k
on

the infinite pyramid. The following examples are illustrative.
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Example 11. Consider the monomial p1(x, y, z) = x on the infinite pyramid. The inverse

pull-back onto the finite pyramid is (φ−1)∗p = ξ
1−ζ . The limit limξ→ξ0

(φ−1)∗p depends on

the path by which we approach ξ0. Specifically, if we take the path αλ(t) = (λ(1 − t), 0, t)

then limt→1(φ−1)∗p(αλ(t)) = λ.

Example 12. Consider the function p2(x, y, z) = zk

(1+z)k
on the infinite pyramid. Pulled

back to the finite pyramid, (φ−1)∗p2 = ζk. We must therefore retain p2 in the approximation

space on the infinite pyramid.

Lemma 13. Let Ω∞ be the infinite pyramid described above, and k ≥ 1 be a fixed integer.

• Functions p(x, y, z) := xaybzc

(1+z)k
∈ Qk,k,k−1

k satisfy p ∈ H1
w(K∞).

• If p(x, y, z) = r(x,y)zk

(1+z)k
, r(x, y) ∈ Qk,k(x, y), then limξ→ξ0

(φ−1)∗(p) is only well-defined

if r(x, y) ≡ 1.

Proof. We can verify the first statement by using Definition 1. The second statement can

be proved by contradiction, as in Example 11.

This result and the examples suggest the basis functions to include in a finite-dimensional

approximation space for H1
w(K∞).

Definition 14. Let k be a positive integer. We define the underlying spaces U (0)(K∞)

U (0)(K∞) = Qk,k,k−1
k ⊕ span

{
zk

(1 + z)k

}
. (2.16)

Lemma 15. The rational polynomials
{
xaybzc

(1+z)k
, 0 ≤ a, b ≤ k, 0 ≤ c ≤ k − 1

}
and zk

(1+z)k
form

a basis for U (0)(K∞). Moreover, U (0)(K∞) can be represented as

U (0)(K∞) = {u ∈ Qk,k,kk : ∇u ∈ Qk−1,k,k−1
k ×Qk,k−1,k−1

k ×Qk,k,k−1
k+1 }. (2.17)
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Proof. The basis functions are determined by using the definition of U (0)(K∞) and Lemma

13. The gradients of rational functions of the form xaybzc

(1+z)k
are 1-forms in Qk−1,k,k−1

k ×

Qk,k−1,k−1
k × Qk,k,k−1

k+1 . Moreover, ∇ zk

(1+z)k
= (0, 0, kzk−1

(1+z)k+1 )T . The reverse inclusion fol-

lows readily by a similar calculation. This establishes the alternative characterization of

U (0)(K∞).

We must now constrain these spaces to obtain the approximation spaces which satisfy the

compatibility constraints P1. This follows the discussion in Section 2.2.3, and specifically

(2.12).

Definition 16. Let k be a positive integer. We define the kth order approximation spaces

U (0)(K∞):

U (0)(K∞) = {u ∈ U (0)(K∞) | Γ1,K∞ ∈ P kk [x, z], similarly on Si,K∞ , i = 2, 3, 4}. (2.18)

Since we will be working in the projection-based interpolation framework while specifying

internal degrees of freedom, we define a subspace U (0)
0 (K∞), consisting of functions in

U (0)(K∞) with zero trace on the boundary of K∞. Clearly, U (0)
0 (K∞) = {x(1 − x)y(1 −

y)zu, u ∈ Qk−2,k−2,k−2
k }.

In Appendix 3.A, we present the shape functions in U (0)(K∞) associated with the faces,

edges and vertices of K∞. These are linearly independent. Moreover, the number of

these functions associated with a given triangular or square face is exactly the same as the

dimension of trace spaces τ (0),k or σ(0),k respectively.
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2.3.2 Hw(curl,K∞)-conforming approximation spaces

We now present the construction of the approximation space, U (1)(K∞), of Hw(curl,K∞).

As before, this construction is motivated by the ultimate goal of constructing a finite element

approximation space for Hw(curl,Ω) which satisfies property (P1).

To satisfy the commuting diagram property we will need, at the very least, to have∇U (0)(K∞) ⊂

U (1)(K∞). The alternate characterization of U (0)(K∞) in Lemma 15 suggests that we might

consider the space Qk−1,k,k−1
k ×Qk,k−1,k−1

k ×Qk,k,k−1
k+1 as a candidate for an approximation

space for Hw(curl,K∞). However, this space includes functions that are undefined at the

point ξ0 = (0, 0, 1) on the finite pyramid. We must be careful here to identify what kind

of discontinuities we wish to exclude on the finite pyramid. Firstly, we are not interested

in point values of these functions, only their tangential components. Secondly, given a par-

ticular tangent direction, v on a face of the finite pyramid, it only makes sense to consider

limits taken along paths on faces tangent to v. The following examples illuminate these

points.

Example 17. Consider u =


y/(1 + z)

0

0

 ∈ Qk−1,k,k−1
k × Qk,k−1,k−1

k × Qk,k,k−1
k+1 . Its (in-

verse) pullback to the finite pyramid is, (φ−1)∗u =


η/(1− ζ)

0

ξη/(1− ζ)2

.

Let v = (0,−1, 1) and consider the path αλ(t) = (λ(1 − t), 1 − t, t). This path lies on the

face S3 for λ ∈ [0, 1], and S3 is tangent to v. The limit of the component of (φ−1)∗u tangent

to v at ξ0 along the path αλ is limt→1 u(αλ(t)) · v = λ. This limit therefore depends on the

path taken to approach ξ0.
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Example 18. Let u = zk−1

(1+z)k+1


rxz

ryz

−r

 , r ∈ Qk,k[x, y], rx := ∂r
∂x , ry := ∂r

∂y , be a 1-form

defined on the infinite pyramid. Note that we can write u = ∇( rzk

(1+z)k+1 ) −


0

0

(k+1)rzk−1

(1+z)k+2

,

from which it is apparent that u ∈ Hw(curl,K∞).

With these examples in hand, we are able to define approximation spaces forHw(curl,K∞).

Definition 19. Let k ≥ 1 be an integer. We define the underlying space for Hw(curl,K∞):

U (1)(K∞) := Qk−1,k,k−1
k+1 ×Qk,k−1,k−1

k+1 ×Qk,k,k−2
k+1

⊕


zk−1

(1 + z)k+1


rxz

ryz

−r

 , r ∈ Qk,k[x, y]

 . (2.19)

We have again used the notation rx := ∂r
∂x , ry := ∂r

∂y . An equivalent characterization of the

underlying space U (1)(K∞) is given as

U (1)(K∞) = {u ∈ Qk−1,k,k
k+1 ×Qk,k−1,k

k+1 ×Qk,k,k−1
k+1 :

∇× u ∈ Qk,k−1,k−1
k+2 ×Qk−1,k,k−1

k+2 ×Qk−1,k−1,k
k+2 }, (2.20)

We now add constraints on the tangential traces, analogous to (2.12), to get the full defini-

tion of the approximation space U (1)(K∞). Concretely, let ni be the (outward) normal to

the vertical faces Si,K∞ of K∞. Then Γ1
i,K∞

u := u× ni|Si,K∞ for u ∈ U (1)(K∞).
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Definition 20. Let k ≥ 1 be an integer. Define

U (1)(K∞) =
{
u ∈ U (1)(K∞)

∣∣∣∣ Γ1
1,K∞u ∈ (P k−1

k+1 [x, z])2 ⊕ P̃ k−1
k+1 [x, 1 + z]

1 + z

−x


and similarly on Si,K∞ , i = 2, 3, 4,

}
, (2.21)

where

P̃ k−1
k+1 [x, 1 + z] =

1

(1 + z)(k+1)
span

{
xa(1 + z)k−1−a, 0 ≤ a ≤ k − 1

}
.

We can also identify elements in U (1)(K∞) whose (tangential) traces vanish on ∂K∞. We

denote the set of these as U (1)
0 (K∞).

In Appendix 3.A we have tabulated the edge and face shape functions for U (1)(K∞). These

are linearly independent, and are consistent along shared edges. The same will be true of

the pull-backs onto the finite pyramid.

2.3.3 Hw(div,K∞) and L2
w(K∞)-conforming approximation spaces

Following a similar strategy to the previous sections, we construct approximation spaces

U (2)(K∞) for Hw(div,K∞), such that their pull-backs to the finite pyramid provide approx-

imation spaces for H(div,Ω). Again, we want curlu ∈ U (2)(K∞), ∀u ∈ U (1)(K∞). Now,

the curls of functions u ∈ U (1)(K∞) satisfy

∇× u ∈ Qk,k−1,k−1
k+2 ×Qk−1,k,k−1

k+2 ×Qk−1,k−1,k−1
k+1 .

Not all of these will have well-defined normal traces, and we must exclude these.
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Definition 21. The underlying space for the H(div)-conforming element is defined as:

U (2)(K∞) = Qk,k−1,k−2
k+2 ×Qk−1,k,k−2

k+2 ×Qk−1,k−1,k−1
k+2

⊕ zk−1

(1 + z)k+2


0

2s

sy(1 + z)

⊕ zk−1

(1 + z)k+2


2t

0

tx(1 + z)

 .
(2.22)

Here s(x, y) ∈ Qk−1,k[x, y], sy := ∂s
∂y , and t(x, y) ∈ Qk,k−1[x, y], tx := ∂t

∂x . An alternate

characterization of U (2)(K∞) is

U (2)(K∞) = {u ∈ Qk,k−1,k−1
k+2 × Qk−1,k,k−1

k+2 × Qk−1,k−1,k
k+2 : ∇ · u ∈ Qk−1,k−1,k−1

k+3 }. (2.23)

We equip this space with constraints on normal traces to obtain the full definition of the

approximation space U (2)(K∞) on the infinite pyramid:

Definition 22. The kth order approximation space for Hw(div,K∞) is

U (2)(K∞) = {u ∈ U (2) | Γ(2)
1,K∞

∈ P k−1
k+2 [x, z], similarly on Si,K∞ , i = 2, 3, 4}. (2.24)

Again, we can identify the 2-forms in U (2)(K∞) with vanishing normal traces on the faces

of K∞. We denote this set by U (2)
0 (K∞). In Appendix 3.A, we have written down a basis

for U (2)
0 (K∞), and augmented it with shape functions for the faces.

Since we want the divergence operator to be surjective as a map from U (2)(K∞) to the asso-

ciated approximation space of L2
w(K∞), the approximation space for L2(K∞) (considered

as the space of 3-forms) consists precisely of divU (2)(K∞). There is no longer any need to

define an underlying space.

Definition 23. We define the approximation space U (3)(K∞) for L2
w(K∞) as

U (3)(K∞) = Qk−1,k−1,k−1
k+3 . (2.25)
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2.4 The approximation spaces U (s),k(Ω) on the finite pyramid

We are now readily able to define the approximation spaces for the de Rham sequence on

the finite pyramid, based on the approximation spaces on the infinite pyramid K∞:

Definition 24. Let Ω be the finite reference pyramid as defined in (2.1). Then, the kth

order conforming subspaces on the finite pyramid Ω are

U (s),k(Ω) :=
{

(φ−1)∗u : u ∈ U (s),k(K∞)
}
, s = 0, 1, 2, 3. (2.26)

We also denote by

U (s),k(Ω) :=
{

(φ−1)∗u : u ∈ U (s),k(K∞)
}
, s = 0, 1, 2, 3. (2.27)

the underlying spaces.

Theorem 25. Let k be a positive integer. The finite dimensional spaces defined in (24)

satisfy:

U (0)(Ω) ⊂ H1(Ω), U (1)(Ω) ⊂ H(curl,Ω), (2.28)

U (2)(Ω) ⊂ H(div,Ω), U (3)(Ω) ⊂ L2(Ω). (2.29)

Proof. The proof follows from the definitions and properties of U (s),k(K∞), the pull-back

map φ, and Lemma 7.

In the following subsections, we shall establish several useful properties of these spaces. The

analysis will typically be performed for the approximation spaces on the infinite pyramid,

where the basis functions are tensorial in nature, and hexahedral symmetries can be used,

which allows for simple calculations in many cases. The properties of the pull-back operator

will allow us to demonstrate the results on the finite pyramid.
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2.4.1 H1(Ω)-conforming approximation spaces

In this subsection, we demonstrate that the grad operator is injective on U (0)
0 (Ω), the set

of bubble functions on the pyramid.

Lemma 26. Let U (0)
0 (Ω) be the subset of U (0)(Ω), consisting of functions whose trace onto

the faces and edges of Ω are zero. If some v ∈ U (0)
0 (Ω) satsifies ∇v = 0 then v ≡ 0 on Ω.

Proof. This follows from Poincaré’s inequality.

We can easily see that U (0)
0 (Ω) =

{
(φ−1)∗u : u ∈ U (0)

0 (K∞)
}
. From the remarks following

(2.18), it follows that dimU (0)
0 (Ω) = dimU (0)

0 (K∞) = (k−1)3. Note that from the definition

of U (0)
0 (K∞) and the discussion in Section 2.2.3, the face traces of functions in U (0)(Ω) are

compatible with those of neighbouring tetrahedral and hexahedral elements. Finally, the

shape functions in the Appendix 3.A show that the edge traces are well-defined, and that

edge traces can be specified in consistent manner.

2.4.2 H(curl,Ω)-conforming approximation spaces

We shall establish that the grad operator maps U (0)(Ω) into U (1)(Ω). This is an important

step towards showing exactness of the diagram in 2.2. We then show that the curl operator

is injective on a certain subspace of U (1)(Ω), which will be used in establishing unisolvency

of the edge elements on the pyramid. We will finally demonstrate a discrete Helmholtz

decomposition. Note that from the definition of U (1)
0 (K∞) and the discussion in Section

2.2.3, the face traces of functions in U (1)(Ω) are compatible with those of neighbouring

tetrahedral and hexahedral elements.

Lemma 27. The gradient operator is well defined as a map from U (0)(Ω) into U (1)(Ω).

Proof. It is easier to work on the infinite pyramid. Recall that a basis for U (0)(K∞) is

given by functions of the form ua,b,c = xaybzc

(1+z)k
, where a, b and c are integers and a ∈ [0, k],
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b ∈ [0, k] and c ∈ [0, k − 1] or ua,b,c = zk

(1+z)k
. We will show that the gradients of each of

these functions lie in U (1)(Ω). The result is trivial for c = 0. For c ≥ 1,

∇ua,b,c =
1

(1 + z)k+1


axa−1yb(zc+1 + zc)

bxayb−1(zc+1 + zc)

xayb((c− k)zc + czc−1)

 .

If c ≤ k − 2 then ∇ua,b,c ∈ Qk−1,k,k−1
k+1 × Qk,k−1,k−1

k+1 × Qk,k,k−2
k+1 . In the case c = k − 1, we

can let r = xayb in (2.19) and then the remainder

∇ua,b,c −
zk−1

(1 + z)k+1


rxz

ryz

−r

 =
1

(1 + z)k+1


axa−1ybzk−1

bxayb−1zk−1

cxaybzk−2

 , (2.30)

which is in Qk−1,k,k−1
k+1 ×Qk,k−1,k−1

k+1 ×Qk,k,k−2
k+1 . Finally, if c = k then choosing r = 1 in (2.19)

suffices. Now use the definition of U (s),k(Ω) in terms of the inverse pull-back of functions

in U (s),k(K∞), and the commutativity of the grad with the pull-backs, to conclude the

result.

Note that the previous result also follows immediately from the (unproven) equivalent char-

acterisations of the underlying spaces, (2.17) and (2.20). An important subset of U (1)(Ω)

is the functions with vanishing tangential traces.

Definition 28. Define U (1)
0 (Ω) to be the subspace of functions in U (1)(Ω) with zero tangen-

tial component on the boundary of Ω.

From Lemma 8, we know that if u ∈ U (1)(Ω) has zero tangential traces on a particular face

or edge of Ω, then its pullback to K∞ will have zero tangential traces on the associated

face or edge. This allows us to characterize U (1)
0 (Ω).
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Lemma 29. Functions in U (1)
0 (Ω) can be represented as (φ−1)∗(u), where u ∈ U (1)

0 (K∞)

have the form

u =


y(1− y)zq1

x(1− x)zq2

x(1− x)y(1− y)q3

+
zk−1

(1 + z)k+1


rxz

ryz

−r

 , (2.31)

where q ∈ Qk−1,k−2,k−2
k+1 × Qk−2,k−1,k−2

k+1 × Qk−2,k−2,k−2
k+1 and r = x(1 − x)y(1 − y)ρ, ρ ∈

Qk−2,k−2[x, y]. We have denoted rx := ∂r
∂x , ry := ∂r

∂y .

Proof. It is easily verified that the functions u in (2.31) have zero tangential traces on the

edges and faces of K∞, and therefore their inverse pullbacks (φ−1)∗(u) belong to U (1)
0 (Ω).

Note also that

dimU (1)
0 (Ω) = dimU (1)

0 (K∞) = k(k − 1)2 + k(k − 1)2 + (k − 1)3 + (k − 1)2 = 3k(k − 1)2.

The curl operator has a non-empty null space in U (1)
0 (Ω), consisting of gradients. We can

precisely characterize the complement of the gradients in U (1)
0 (Ω).

Definition 30. Define U (1)
0,curl(Ω) ⊂ U (1)

0 (Ω) as

U (1)
0,curl(Ω) :=

{
v|v = (φ−1)∗u, u ∈ U (1)

0,curl(K∞)
}
,

where U (1)
0,curl(K∞) ⊂ U (1)

0 (K∞) consists of functions u of the form

u =


y(1− y)zq1

x(1− x)zq2

x(1− x)y(1− y)ρ

 , (2.32)

with q1 ∈ Qk−1,k−2,k−2
k+1 , q2 ∈ Qk−2,k−1,k−2

k+1 , ρ ∈ Qk−2,k−2
k+1 [x, y].
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We now show that U (1)
0,curl(Ω) contains no gradients.

Lemma 31. Let U (1)
0,curl(Ω) be defined as above. Then U (1)

0,curl(Ω) ⊂ U (1)
0 (Ω), and the curl

operator is injective on U (1)
0,curl(Ω). In other words, gradU (0)

0 (Ω) ∩ U (1)
0,curl(Ω) = {0}.

Proof. The set inclusion U (1)
0,curl(Ω) ⊂ U (1)

0 (Ω) follows by the definitions of U (1)
0,curl(Ω) and

U (1)
0 (Ω). To see that the curl operator is injective on U (1)

0,curl(Ω), we first show that the curl

operator is injective on U (1)
0,curl(K∞). The argument proceeds by contradiction.

If k = 1 then U (1)
0,curl(K∞) is empty. Assume k ≥ 2 and let u ∈ U (1)

0,curl(K∞) be as in (2.32).

Let either ρ or q2 not equal to zero and write ρ = r(x,y)
(1+z)k+1 , r ∈ Qk−2,k−2(x, y). Suppose

that ∇× u = 0. From the x-component, we obtain

1

(1 + z)k+1

∂

∂y
(y(1− y)r)− ∂

∂z
(zq2) = 0.

There is no z-dependence in r so we can factorise q2 = f(z)g(x, y), where f ∈ P k−2(z)

satisfies

d

dz

zf(z)

(1 + z)k+1
=

1

(1 + z)k+1
.

This is impossible, and so ρ = q2 = 0. A similar consideration of the y-component shows

that q1 = 0. We have just established that the curl operator is injective on U (1)
0,curl(K∞).

Since the pullback and curl commute, the curl is injective on U (1)
0,curl(Ω).

We can now state a discrete Helmholtz decomposition for U (1)
0 (Ω):

Lemma 32. The discrete approximation space U (1)
0 (Ω) ⊂ H(curl,Ω) of functions with van-

ishing tangential traces on ∂Ω admits a Helmholtz decomposition. That is, if v ∈ U (1)
0 (Ω),

we can write v = ∇q + w with q ∈ U (0)
0 (Ω) and w ∈ U (1)

0,curl(Ω).
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Proof. If q ∈ U (0)
0 (Ω), it has zero trace on all the faces and edges of Ω. Therefore, the

tangential components of ∇q are also zero on the faces and edges. We already know that

grad maps U (0)(Ω) into U (1)(Ω) from Lemma 27, and so it is clear that grad maps U (0)
0 (Ω)

into U (1)
0 (Ω). Injectivity of this map follows from Lemma 26. Now we count dimensions.

From Section 2.4.1 we saw that dimU (0)
0 (Ω) = (k − 1)3, and from Lemma 31,

dimU (1)
0,curl(Ω) = dimU (1)

0,curl(K∞) = k(k − 1)2 + k(k − 1)2 + (k − 1)2 = (2k + 1)(k − 1)2.

From the same lemma, we know gradU (0)
0 (Ω)∩U (1)

0,curl(Ω) = 0. Both of these are subspaces

of U (1)
0 (Ω). So,

dim
{

gradU (0)
0 (Ω) ∪ U (1)

0,curl(Ω)
}

= (2k + 1)(k − 1)2 + (k − 1)3 = 3k(k − 1)2

which is the dimension of U (1)
0 (Ω). Hence U (1)

0 (Ω) = gradU (0)
0 (Ω)⊕ U (1)

0,curl(Ω).

2.4.3 H(div,Ω)-conforming approximation spaces

In this subsection we shall establish that curlU (1)(Ω) ⊂ U (2)(Ω). We then show that the

divergence operator is injective on a certain subspace of U (2)(Ω). We finally demonstrate a

decomposition of this discrete space.

Lemma 33. The curl operator maps elements of U (1)(Ω) into U (2)(Ω).

The proof of this lemma is a calculation similar to that for Lemma 27, and is omitted

here.

We now need to identify elements of U (2)(Ω) which have vanishing normal traces on the

faces of the finite pyramid. Denote these by U (2)
0 (Ω). From Lemma 8, we know that if

Γ2
i,Ωu = 0 for some u ∈ U (2)(Ω), then the pull-back Γ2

i,K∞
φ∗u = 0 on the associated face of

K∞. This allows us to characterize U (2)
0 (Ω) easily.
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Lemma 34. Functions in U (2)
0 (Ω) can be represented as (φ−1)∗(u), where u ∈ U (2)

0 (K∞)

have the form

zk−1

(1 + z)k+2


2t

2s

(1 + z) (sy + tx)

+


x(1− x)χ1

y(1− y)χ2

zχ3

 , (2.33)

where s = y(1 − y)σ, t = x(1 − x)τ, with χ1 ∈ Qk−2,k−1,k−2
k+2 , χ2 ∈ Qk−1,k−2,k−2

k+2 , χ3 ∈

Qk−1,k−1,k−2
k+2 , σ ∈ Qk−1,k−2(x, y), sy := ∂s

∂y , and τ ∈ Q
k−2,k−1(x, y), tx := ∂t

∂x .

Proof. It is easily verified that functions of the form (2.33) have vanishing normal com-

ponents on the faces Si,K∞ of the infinite pyramid; their (inverse) pullbacks to the finite

pyramid will thus have vanishing normal components on the faces Si,Ω of Ω.

We note also that

dimU (2)
0 (Ω) = dimU (2)

0 (K∞)

= k(k − 1)2 + k(k − 1)2 + k2(k − 1) + k(k − 1) + k(k − 1)

= 3k3 − 3k2.

We now present a subspace of U (2)
0 (Ω) on which the divergence operator will be injec-

tive.

Definition 35. Define U (2)
0,div(Ω) := {v|v = (φ−1)∗(u), u ∈ U (2)

0,div(K∞)} where

U (2)
0,div(K∞) := span{ zk−1

(1 + z)k+2


ry + 2t

rx + 2s

(1 + z)(rxy + sy + tx)

} ⊕ span{


0

0

zχ3

} (2.34)
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and where r(x, y) = x(1 − x)y(1 − y)p(x, y), p ∈ Qk−2,k−2, t = x(1 − x)t̃, t̃ ∈ P k−2(x),

s = y(1− y)s̃, s̃ ∈ P k−2(y), and χ3 ∈ Qk−1,k−1,k−2
k+2 .

Lemma 36. The divergence operator is injective on U (2)
0,div(Ω).

Proof. We shall first show that the divergence operator is injective on U (2)
0,div(K∞). Let u

be as in (2.34). If ∇ · u = 0, then

0 = ∇ · u =
(k − 1)zk−2

(1 + z)k+2
(rxy + tx + sy) +

∂

∂z
(zχ3).

We factorize χ3 =
∑k−2

i=0
zi

(1+z)k+2 qi(x, y) and compare coefficients of like powers of z. Since

r, t and s have no dependence on z, we obtain

0 =
(k − 1)zk−2(rxy + tx + sy)

(1 + z)k+2
+

d

dz

(
k−2∑
i=0

zi+1qi(x, y)

(1 + z)k+2

)

=
(k − 1)zk−2(rxy + tx + sy)

(1 + z)k+2
+

(
k−2∑
i=0

zi+1(i− k − 1) + (1 + i)zi

(1 + z)k+3
qi(x, y)

)
.

This is impossible, unless

(rxy + tx + sy) = 0, qi(x, y) = 0.

However, t only depends on x, and s only depends on y. From the form of r, it must be that

r ≡ 0 ≡ t ≡ s. Therefore, ∇u 6= 0 for any non-zero u ∈ U (2)
0,div(K∞). Using the properties

of the pullback operator, ∇ · v = 0 ⇒ v ≡ 0 for all v ∈ U (2)
0,div(Ω). The desired result on Ω

will follow by the properties of the pullback operator φ and the commutativity of φ with

the divergence.

It is easy to see that

dimU (2)
0,div(Ω) = dimU (2)

0,div(K∞) = (k − 1)2 + 2(k − 1) + k2(k − 1) = k3 − 1.
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Just as in the previous section, we can use Lemma (36) to exhibit a convenient decompo-

sition of the discrete approximation space.

Lemma 37. Any v ∈ U (2)
0 (Ω) can be decomposed as v = ∇×w1 +w2 with w1 ∈ U (1)

0,curl(Ω),

w2 ∈ U (2)
0,div(Ω).

Proof. Lemma 33 tells us that the curl operator maps U (1)(Ω) into U (2)(Ω). Observe that

if the tangential components of v are zero on some surface then the component of ∇ × v

that is normal to the surface will also be zero and so the curl operator maps U (1)
0,curl(Ω) into

U (2)
0 (Ω). By Lemma 31 we know that this mapping is injective.

By construction, U (2)
0,div(Ω) is a subset of U (2)

0 (Ω) and by lemma 36, ∇ · w 6= 0 for all

w ∈ U (2)
0,div(Ω). Hence U (2)

0,div(Ω) ∩ U (1)
0,curl(Ω) is empty. We now count dimensions. We

established in the proof of Lemma (36) that U (2)
0,div(Ω) has dimension k3 − 1 and from the

previous section we know U (1)
0,curl(Ω) has dimension 2k3 − 3k2 + 1. Thus,

dim(curlU (1)
0,curl(Ω) ∪ U (2)

0,div(Ω)) = 3k3 − 3k2 = dimU (2)
0 (Ω),

which shows that U (2)
0 (Ω) = curlU (1)

0,curl(Ω)⊕U (2)
0,div(Ω). This establishes the desired decom-

position.

2.4.4 L2(Ω)-conforming approximation spaces

We note that the dimension of U (3)(Ω) = dimU (3)(K∞) = dim(Qk−1,k−1,k−1
k+3 ) = k3. It is a

straightforward matter to determine that the divergence operator is well defined as a map

from U (2)(Ω) to U (3)(Ω). We record the result here in a lemma.

Lemma 38. The divergence operator maps elements of U (2)(Ω) into U (3)(Ω).

Lemma 39. Any element u ∈ U (3)(Ω) can be written uniquely as

u = ∇ · w + λ, w ∈ U (2)
0,div(Ω), λ ∈ R.
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Proof. From Lemma 38, we know that divU (2)
0,div(Ω) ⊂ U (3)(Ω). We also know that the

constants belong to U (3)(Ω). Now, dim(divU (2)
0,div(Ω)) = k3 − 1, which is one less than the

dimension of U (3)(Ω). Now, suppose we could find w ∈ divU (2)
0,div(Ω) so that ∇w = 1 on Ω.

By definition of U (2)
0,div(Ω), we know that w has zero normal components on the faces of Ω.

From the divergence theorem, this is impossible. Hence, we have shown that the constants

are not contained in divU (2)
0,div(Ω), and therefore divU (2)

0,div(Ω)⊕R = U (3)(Ω). This completes

the proof.

We finish this subsection with an important component of the proof that our elements

satisfy property P1.

Lemma 40. The spaces of traces of the approximation spaces, U (s),k(Ω) on the faces of the

pyramid are the same as those of the corresponding tetrahedral and hexahedral elements.

Specifically Γsi,ΩU (s),k(Ω) = τ (s),k and ΓsB,ΩU (s),k(Ω) = σ(s),k.

Proof. In Appendix 3.A, we collect shape functions in Tables 3–1, 3–2 and 3–3 of the ap-

proximation spaces U (s),k(Ω) for s = 0, 1 and 2 respectively. It can also be easily (though

tediously) verified that the traces of these shape functions on each face span the corre-

sponding trace space from the tetrahedral and hexahedral elements. This demonstrates

that Γsi,ΩU (s),k(Ω) ⊇ τ (s),k(Si,Ω) for i = 1, 2, 3, 4 and ΓsB,ΩU (s),k(Ω) ⊇ σ(s),k(B).

Set equality is seen by examining the infinite pyramid case. By construction, if u ∈

Us,k(K∞), then its trace Γ
(s)
1,K∞

u on the vertical face S1,K∞ lies in the space

P kk , (P k−1
k+1 [x, z])2 ⊕ P̃ k−1

k+1 [x, 1 + z]

1 + z

−x

 , P k−1
k+2
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for s = 0, 1, 2 respectively. This means that dim (Γ
(s)
1,ΩU (s),k(Ω) ≤ dim τ (s),k(Si,Ω), which

establishes that Γ
(s)
1,ΩU (s),k(Ω) = τ (s),k(S1,Ω). Also, elements of Γ

(s)
i,ΩUs,k(Ω) consist of the

pullbacks of functions in Γsi,K∞U
(s),k(K∞). Therefore, rotational symmetry means similar

statements hold for the other faces as well. Finally, the dimension of ΓsB,ΩU (s),k(Ω) is equal

to that of σ(s),k(B) and so ΓsB,ΩU (s),k(Ω) = σ(s),k(B)

The implication of Lemma 40 is important: the spaces U (s),k(Ω) allow for full compatibility

well-known tetrahedral and hexahedral finite elements across interelement boundaries. This

should allow for the seamless integration of pyramidal elements into a hybrid mesh consisting

of tetrahedra and hexahedra.

2.5 First order elements on the pyramid

The approximation spaces U (s),k(Ω) constructed above include the elements presented by

Gradinaru and Hiptmair [42] as the special case k = 1. To demonstrate this, we will map

the basis functions presented in that paper onto the infinite pyramid, and demonstrate that

these (pulled-back) elements belong to U (s),k(K∞). The properties of the pullback then

allow us to conclude the set inclusions on the finite pyramid. The reason for this indirect

approach is the tensorial nature of the approximation spaces on K∞, which makes it easier

to examine basis functions.

• The lowest-order H1(Ω) element: The basis functions for theH1(Ω) element given

in equation 3.2 of [42] are denoted πi, i = 1..5. Set π̃i = φ∗πi.

π̃1 =
(x− 1)(y − 1)

1 + z
, π̃2 =

x(y − 1)

1 + z
, π̃3 =

(x− 1)y

1 + z
, π̃4 =

xy

1 + z
,

π̃5 =
z

1 + z
.

It is clear that π̃i ∈ U (0),1(K∞).
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• The lowest-order H(curl,Ω) element: We proceed as in the H1(Ω) case. Set

γ̃i = φ∗γi where the γi, i = 1..8 are the basis functions for the curl-conforming

element in [42]1 :

γ̃1 =
1

(1 + z)2


1− y

0

0

 , γ̃2 =
1

(1 + z)2


0

x

0

 , γ̃3 =
1

(1 + z)2


y

0

0

 ,

γ̃4 =
1

(1 + z)2


0

1− x

0

 , γ̃5 =
1

(1 + z)2


z(1− y)

z(1− x)

(1− y)(1− x)

 , γ̃6 =
1

(1 + z)2


z(y − 1)

zx

x(1− y)

 ,

γ̃7 =
1

(1 + z)2


zy

z(x− 1)

y(1− x)

 , γ̃8 =
1

(1 + z)2


−zy

−zx

xy


(2.35)

These are also the pullbacks of the basis functions for the first order curl conforming

element given by Graglia et al. [43]. Note that these are all edge shape functions.

It is easy to see that γ̃i are shape functions specified in the previous section for

Hw(curl,K∞) with k = 1.

1 There are minor typographical errors in [42] for two of the one-forms. Based on the
preceding calculations in that paper, the correct expressions are

γ6 =

 −z + yz
1−z

xz
1−z

x− xy
1−z + xyz

(1−z)2

 , γ7 =


yz

1−z
−z + xz

1−z
y − xy

1−z + xyz
(1−z)2


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• The lowest-order H(div,Ω) element: Set ζ̃i = φ∗ζi, where ζi, i = 1..5 are the

divergence-conforming basis functions

ζ̃1 =
1

(1 + z)3


0

2(y − 1)

z

 , ζ̃2 =
1

(1 + z)3


2(x− 1)

0

z

 ,

ζ̃3 =
1

(1 + z)3


2x

0

z

 , ζ̃4 =
1

(1 + z)3


0

2y

z

 , ζ̃5 =
1

(1 + z)3


0

0

−1

 .

(2.36)

For completeness, we note that U (3),1(Ω) consists of the constants, which map to multiples

of 1
(1+z)4 on the infinite pyramid. The above collections of functions are consistent with the

definitions (2.16), (2.19), (2.22) and (2.25).
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CHAPTER 3
High order finite elements on pyramids, part II: unisolvency and exactness

This chapter is part II of the paper “High order finite elements on pyramids", submitted to

IMA Journal of Numerical Analysis. It contains a specification of the degrees of freedom

for the pyramidal elements and demonstrates that the degrees are unisolvent and induce

interpolation operators that satisfy a commuting diagram property.

3.1 The degrees of freedom Σ(s),k and unisolvency

We now define degrees of freedom Σ(s),k which are linearly independent and unisolvent

for the finite element approximation spaces U (s),k(Ω). Our construction is based on the

premise of “patching” as discussed in [42]: “the traces of discrete differential forms onto any

interelement boundary (a (n-1)-face) have to be unique and they have to be fixed by the

degrees of freedom associated with that face". This means the exterior degrees of freedom

for Ω must be identical with those of neighbouring tetrahedra or hexahedra. Thus, to satisfy

property P1, we insist that the degrees of freedom on interelement boundaries (vertices,

edges and faces) are the same as those from neighboring tetrahedra and hexahedra. Another

important consideration is locality. The authors in [42] correctly identify that: “expressions

for integrals on edges contained on a face Si,Ω should only depend on the degrees of freedom

on that face”; addressing this challenge reveals the difficulty of treating a pyramid as a

degenerate finite hexahedral element. In our case, the degrees are chosen to be local ab

initio, but the challenge is to prove unisolvency.

In this section we use the same exterior degrees of freedom as specified in [58]. We show

that these are indeed dual to the exterior shape functions specified in Appendix 3.A. We
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then have to specify degrees of freedom for the remaining objects in the approximation

space; for these we use the projection-based degrees of freedom as in Demkowicz [32]. We

finally show that the set of degrees of freedom are unisolvent. Throughout this and the

subsequent sections, if P is some finite-dimensional vector space, we will use the notation

B [P ] to denote an arbitrary basis.

3.1.1 H1-conforming element

In order to fully describe the H1−conforming finite element on a pyramid, we need to

specify 4 classes of functionals which form a dual set to the approximating basis functions:

vertex, edge, face and volume degrees of freedom. We call the set of these functionals Σ(0),k,

and then show that (Ω,U (0)(Ω),Σ(0),k) is a conforming and unisolvent element for H1(Ω).

We shall follow the presentation in Chapter 5 of [58].

Depending on k not all of the degrees of freedom will be needed. We explicitly design

the vertex, edge and face classes of these degrees of freedom to match those of tetrahedral

or hexahedral elements. In order that the function evaluations be well-defined, let p ∈

H3/2+ε(Ω) for some ε > 0.

1. Vertex degrees of freedom: let vi, i = 1..5 be the vertices of the finite pyramid. Then

MV is the set of vertex degrees of freedom mvi where

mvi(p) := p(vi), i = 1..5.

These are identical to the vertex degrees of freedom on tetrahedral or hexahedral

elements.

2. Edge degrees of freedom: these are given by the set ME of functionals of the form

me,q(p) :=

∫
e
pq ds, q ∈ B

[
P k−2(e)

]
, for each edge, e. (3.1a)
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There are k−1 linearly independent functionalsme,q for each of the eight edges e ∈ E.

The form of these degrees of freedom is the same for “vertical” edges, ei, and base

edges, bi. Again, these are identical to the edge degrees of freedom on tetrahedral or

hexahedral elements. If k < 2 these degrees of freedom are not used.

3. Face degrees of freedom: the degrees of freedom on the triangular faces,MS correspond

to those on the faces of tetrahedral elements. They have the form:

mSi,q(p) =

∫
Γi

pq dA, q ∈ B
[
P k−3(Si,Ω)

]
, i = 1..4. (3.1b)

There are (k − 1)(k − 2)/2 such degrees for each face.

The degrees of freedom on the base face, MB correspond to those for hexahedral

elements:

mB,l(p) =

∫
B
pq dA, q ∈ B

[
Qk−2,k−2(B)

]
. (3.1c)

There are (k− 1)2 such degrees. The face degrees of freedom are MF = MS ∪MB. If

k < 2 these degrees of freedom are not used.

4. Volume degrees of freedom: denote by U (0)
0 (Ω) the subset of U (0)(Ω) with zero bound-

ary traces. Then the volume degrees of freedom are given by

MΩ :=

{
p 7→

∫
Ω
∇p · ∇q dV, q ∈ B

[
U (0)

0 (Ω)
]}

. (3.1d)

The dimension of U (0)
0 (Ω) is (k− 1)3. If k < 2 these degrees of freedom are not used.

The set of all degrees of freedom for s = 0 is Σ(0),k := MV ∪ME ∪MF ∪MΩ. We can now

state the major conformance and unisolvency result:

Theorem 41. The element (Ω,U (0)(Ω),Σ(0),k) is H1-conforming and unisolvent.
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Proof. To show that this element is conforming, we need to establish that the vanishing of

the vertex, edge and face degrees of freedom on a face of the pyramid for some p ∈ U (0)(Ω)

implies that p ≡ 0 on that face. By Lemma 40 the trace Γ0
i,Ωp to the triangular face

Si,Ω lies in τ (0),k. The trace Γ0
B,Ωp lies in σ(0),k. Now, we have chosen the degrees of

freedom so that on each each face they are also identical to to those of the corresponding

(conforming) tetrahedral or hexahedral element. The vanishing of the external degrees of

freedom associated with a face therefore implies that p ≡ 0 on that face, see Lemmas 5.47

and 6.9 of [58]

For unisolvency we need to show that for any vector (ui) ∈ Rdim Σ(0),k , there exists a unique

element u ∈ U (0)(Ω) with mi(u) = ui ∀mi ∈ Σ(0),k. We first observe that dim Σ(0),k =

k3 + 3k+ 1 = dimU (0)(Ω) and so uniqueness implies existence, i.e. we need to show that if

all the degrees of freedom of p ∈ U (0)(Ω) vanish, then p ≡ 0 on Ω. We have just seen that

the vanishing of the external degrees of freedom implies p = 0 on ∂Ω and hence p ∈ U (0)
0 (Ω).

The vanishing of the volume degrees of freedom implies that∫
Ω
∇p · ∇q dV = 0, ∀q ∈ U (0)

0 (Ω).

Hence
∫

Ω |∇p|
2 dV = 0, from which we easily see that p ≡ 0.

3.1.2 H(curl)-conforming element

A curl-conforming pyramidal element is defined by the triple (Ω,U (1)(Ω),Σ(1),k) where the

degrees of freedom Σ(1),k are associated with the edges, faces, and volume of the pyramid.

Again, we follow the presentation of [58]: let t be a unit tangent vector along the edge e, ν

be the normal to a given face, and let u ∈ Hr(curl,Ω) be smooth enough that the following

functionals are well-defined:
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1. Edge degrees of freedom:

ME :=

{
u 7→

∫
e
u · tq ds, ∀q ∈ B

[
P k−1(ei)

]
∀e ∈ E

}
(3.2a)

2. Face degrees of freedom: here we must differentiate between the triangular and square

faces of the pyramid. On the triangular faces, we specify face degrees of freedom

which are identical to those for tetrahedral elements:

MS :=

{
u 7→

∫
Si,Ω

u · q dA, ∀q ∈ B [Ti] i = 1..4

}
(3.2b)

where Ti =
{
q ∈ (P k−2(Si,Ω)3 | q · ν = 0

}
On the base face, B, the degrees of freedom are identical to those for hexahedral

elements:

MB :=

{
u 7→

∫
B
u · q dA, ∀q ∈ B

[
Qk−2,k−1(B)×Qk−1,k−2(B)

]}
. (3.2c)

The class of face degrees of freedom is then MF = MS ∪MB.

3. Volume degrees of freedom: here we must specify the degrees of freedom associated

with “gradient bubbles” ∇U (0)
0 (Ω) and “curl bubbles” U (1)

0,curl(Ω).

Mgrad
Ω :=

{
u 7→

∫
Ω
u · ∇q dV, ∀q ∈ B

[
U (0)

0 (Ω)
]}

, (3.2d)

M curl
Ω :=

{
u 7→

∫
Ω
∇× u · ∇ × v dV, ∀v ∈ B

[
U (1)

0,curl(Ω)
]}

(3.2e)

The volume degrees are then MΩ := Mgrad
Ω ∪M curl

Ω

We must demonstrate that the finite element (Ω,U (1)(Ω),Σ(1),k) is indeed curl-conforming

and that specifying the degrees of freedom for a u ∈ U (1)(Ω) uniquely specifies u. This is

the content of the next theorem:

Theorem 42. The element (Ω,U (1)(Ω),Σ(1),k) is curl-conforming and unisolvent.
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Proof. By an analogous argument to that given for the s = 0 case in Theorem 41 we see

that the vanishing of the external degrees for any u ∈ U (1)(Ω) implies that u ∈ U (1)
0 (Ω) and

thus that the element is conforming. All that remains is to show that if u ∈ U (1)
0 (Ω) and

all the volume degrees also vanish, then u ≡ 0. From Lemma 32 we can write

u = ∇q′ + v′, q′ ∈ U (0)
0 (Ω), v′ ∈ U (1)

0,curl(Ω).

Since the gradient-bubble degrees of freedom, Mgrad
Ω (u) vanish, we have∫

Ω
(v′ +∇q′) · ∇q dV = 0, ∀q ∈ U (0)

0 (Ω),⇒
∫

Ω
|∇q′|2 = 0.

This allows us to conclude ∇q′ = 0. Moreover, since the curl-bubble degrees of freedom

M curl
Ω (u) also vanish, we have∫

Ω
∇× (v′ +∇q′) · ∇ × v dV = 0, ∀v ∈ U (1)

0,curl(Ω)⇒
∫

Ω
|∇ × v′|2 dV = 0.

Since the curl map was injective on U (1)
0,curl(Ω), we know that v′ = 0. This establishes

unisolvency.

3.1.3 H(div)-conforming element

By now the strategy of defining a conforming element using the space U (s),k is familiar: we

define exterior degrees of freedom to ensure conformancy, and use a Helmholtz-like decom-

position of the approximation space to ensure unisolvency. For the triple (Ω,U (2)(Ω),Σ(2),k),

we define the degrees of freedom by specifying the face and volume degrees:

1. Face degrees of freedom: we have to specify separate degrees of freedom on the tri-

angular and square faces. On the triangular faces Si,Ω, i = 1..4, we specify degrees

of freedom MS in terms of the basis functions q of (P k−1(Si,Ω). On the base face

B, we specify the face degrees of freedom MB in terms of the basis function q of

68



Figure 3–1: A representation of the curl degrees of freedom for k = 2. The degrees solely
associated with the two rear triangular faces have been omitted. Bold arrows indicate two
degrees of freedom. U (0),2

0 contributes one volume degree and U (1)
0,curl contributes four (two

pairs).

Qk−1,k−1(B).

MS :=

{
u 7→

∫
Si,Ω

u · νq dA, ∀q ∈ B
[
(P k−1(Si,Ω)

]
, i = 1..4

}
(3.3a)

MB :=

{
u 7→

∫
B
u · νq dA, ∀q ∈ B

[
Qk−1,k−1(B)

]}
. (3.3b)

The set of face degrees of freedom are then MF = MS ∪MB.

2. Volume degrees of freedom: MΩ := M curl
Ω ∪Mdiv

Ω where

M curl
Ω :=

{
u 7→

∫
Ω
u · ∇ × v dV, ∀v ∈ B

[
U (1)

0,curl(Ω)
]}

, (3.3c)

Mdiv
Ω :=

{
u 7→

∫
Ω
∇ · u∇ · v dV, ∀v ∈ B

[
U (2)

0,div(Ω)
]}

. (3.3d)

Again, Σ(2),k := MF ∪MΩ.

Theorem 43. The finite element triple (Ω,U (2)(Ω),Σ(2),k) is divergence-conforming and

unisolvent.

69



Proof. Conformance follows by an argument similar to that for Theorems 41 and 42. For

unisolvency, if all the degrees of freedom for a given u ∈ U (2)(Ω) vanish, then we must show

that u ≡ 0. Now, since the element is conforming, we know that vanishing face degrees of

freedom means u ∈ U (2)
0 (Ω).

From Lemma 37, u ∈ U (2)
0 (Ω) can be written as u = ∇ × w1 + w2 with w1 ∈ U (1)

0,curl(Ω),

w2 ∈ U (2)
0,div(Ω). The vanishing of the M curl

Ω (u) and Mdiv
Ω (u) degrees of freedom implies that

∇× w1 = 0, divw2 = 0. Now, the curl operator is injective on U (1)
0,curl(Ω) from Lemma 31,

and so w1 = 0. The divergence operator is injective on U (2)
0,div(Ω) from Lemma 36, and so

w2 = 0. This establishes the result.

3.1.4 L2-conforming element

Functions in L2(Ω) do not have well-defined traces on ∂Ω, so we only need to specify vol-

ume degrees of freedom to completely define the finite element triple (Ω,U (3)(Ω),Σ(3),k).

The volume degrees specify the contribution from the “divergence bubble” and the con-

stants

MΩ :=

{
p 7→

∫
Ω
p∇ · v dV, ∀v ∈ B

[
U (2)

0,div(Ω)
]}

, (3.4a)

M1(p) =

{
p 7→

∫
Ω
p dV

}
. (3.4b)

This specifies Σ(3),k := MΩ ∪ M1. Unisolvency follows immediately by using Lemma

39.

3.2 Interpolation and exact sequence property

During the process of construction of the approximation subspaces U (s),k forH1(Ω),H(curl,Ω),

H(div,Ω) and L2(Ω) we saw that dU (s),k
(Ω) ⊂ U (s+1),k

(Ω) for s = 0, 1, 2. The degrees of
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freedom presented in the previous section induce interpolation operators, Π(s). In this sec-

tion we show that these interpolation operators make the diagram, (2.2), commute. An

immediate corollary will be that the approximation spaces U (s),k(Ω) satisfy an exact se-

quence property. The degrees of freedom induce an interpolation operator on each element.

We have to be careful about choosing the spaces that we are able to interpolate; for ex-

ample, the vertex degrees for the H1-conforming element require us to take point values,

which are not defined for a general H1(Ω) function. Details of the regularity required for

the external degrees can be found in [58]. The problem is discussed for projection-based in-

terpolation in [29]. For our purposes it is enough to know that it is possible to choose r > 1

such that all the degrees of freedom are well defined on the spaces Hr(Ω), Hr−1(curl,Ω),

and Hr−1(div,Ω). The sets of degrees of freedom then induce interpolation operators in

the expected way.

Definition 44. Let k ∈ N be given and s ∈ {0, 1, 2, 3}. Let u be an s−form which is smooth

enough for m(u) to be well defined for every degree of freedom, m ∈ Σ(s),k(u). We define

the local interpolation operator Π(s) by requiring that Π(s)(u) ∈ U (s),k(Ω) and

m(u) = m(Π(s)u) ∀m ∈ Σ(s),k. (3.5)

The interpolation operator is well-defined, since the degrees of freedom, Σ(s),k, are unisol-

vent for the approximation space, U (s),k(Ω). It is local on the faces, edges and vertices of

Ω, and agrees with the choice for high-degree elements presented in [58]. Therefore, the

construction of a global interpolant on a mesh which includes pyramidal elements will be

simple. The volume degrees of freedom are reminiscent of, and inspired by, the projection-

based interpolation framework of [29]. Providing optimal hp estimates of the interpolation

error in this framework is technical, and relies on the use of a basis-preserving extension

operator. We leave this for future work.
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Equipped with these interpolation operators, the finite elements satisfy a commuting dia-

gram property:

Theorem 45. Let r > 0 be chosen so that the interpolation operators Π(s) are well-defined.

Then the diagram

Hr(Ω)
d−−−−→ Hr−1(curl,Ω)

d−−−−→ Hr−1(div,Ω)
d−−−−→ Hr−1(Ω)

Π(0)

y Π(1)

y Π(2)

y Π(3)

y
U (0)(Ω)

d−−−−→ U (1)(Ω)
d−−−−→ U (2)(Ω)

d−−−−→ U (3)(Ω)

(3.6)

commutes.

Proof. For each s = 0, 1, 2, we have to show that dΠsp = Πs+1dp for any s−form, p. This is

equivalent to showing that Π(s+1)d(p−Π(s)p) = 0, which, in turn is equivalent to showing

that

∀m ∈ Σ(s+1),k, m(d(p−Π(s)p) = 0, . (3.7)

We split the proof by considering the exterior degrees of freedom separately. For each

s = 0, 1, the external degrees of freedom are identical to those stated in [58]. Therefore

we can adopt components of the proofs of commutativity from [59, 58] to see that the

m(d(p − Π(s)p) = 0 for each exterior degree of freedom, m ∈ Σ(s+1),k, s = 0, 1. There are

no external degrees of freedom in Σ(3),k.

We still need to demonstrate (3.7) for the volume degrees of freedom in Σ(s+1),k. The

argument follows that of [29].

Let’s start with s = 0. There are two classes of volume degrees of freedom in Σ(1),k. The

first is given in (3.2d). Let mv ∈ M curl
Ω be a degree of freedom associated with the test
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function v ∈ U (1)
0,curl(Ω)

mv(d(p−Π(0)p)) =

∫
Ω
∇×∇(p−Π(0)∇p) · ∇ × v dV = 0.

The second type of volume degree is given in (3.2e). Let mq ∈ Mgrad
Ω be the degree of

freedom associated with some q ∈ U (0)
0 (Ω). Then

mq(d(p−Π(0)p)) =

∫
Ω
∇(p−Π(0)p) · ∇q dV = 0 (3.8)

because of the definition of the interpolation operator, (3.5) and the H1 volume degrees of

freedom, (3.1d). Here the important point is that the same space of test functions is used

in each of these sets of degrees of freedom.

The proof for s = 1 follows from a similar argument, this time using the equivalence of

(3.3c) and (3.2e) to deal with the homogenous divergence-free part.

For s = 2, the degrees, MΩ given in (3.4a) can be dealt with in the same fashion as (3.8).

For the final degree of freeom, M1, given in (3.4b), we note that∫
Ω
∇ · (p−Π(2)p) =

∫
∂Ω

(p−Π(2)p) · νdS = 0

because we have already established the commutativity of the external degrees and the test

functions used for the external degrees include constants on each face.

Theorem 46. The following sequence is exact

R −−−−→ U (0)(Ω)
∇−−−−→ U (1)(Ω)

∇×−−−−→ U (2)(Ω)
∇·−−−−→ U (3)(Ω) −−−−→ 0. (3.9)

Proof. We need to show the inclusions dU (s),k(Ω) ⊂ U (s+1),k(Ω) for s = 0, 1, 2 and the

property if u is an s+ 1 form with du = 0, then u = dv for some v ∈ U (s),k(Ω).
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By the definitions, (2.16), (2.19), (2.22) and (2.25), we see that dU (s),k(Ω) ⊂ U (s+1),k(Ω) for

s = 0, 1, 2. By Theorem 40 it follows that the face restrictions inherit the exact sequence

property for tetrahedral and hexahedral elements, so that dU (s),k(Ω) ⊂ U (s+1),k(Ω).

To show the second property, which is equivalent to demonstrating the existence of discrete

potentials, we shall use Theorem 45. First let s = 0, and suppose u ∈ U (1),k(Ω) satisfies

∇×u = 0. Then there is a continuous v ∈ H1(Ω) such that u = ∇v. Using the commuting

diagram property, u = Π(1)u = Π(1)∇v = ∇Π(0)v, and thus u is derivable from a discrete

potential. The argument for s = 1 and s = 2 is identical.

3.3 Polynomial approximation property

We now need to show that our approximation spaces U (s),k(Ω) allow for high-degree ap-

proximation. Concretely, given any desired degree q ∈ N, we need to demonstrate that we

can choose k so that polynomials of degree q are contained in U (s),k(Ω). We start with the

L2-conforming element.

Lemma 47. The L2-conforming element exactly interpolates all polynomials up to degree

k − 1. That is, P k−1(Ω) ⊂ U (3)(Ω).

Proof. A basis for P k−1(Ω) is given by functions of the form

u = ξaηb(1− ζ)c

where a, b, c are non-negative integers and a + b + c ≤ k − 1. Using the pullback formula,

we see that

φ∗u =
xayb(1 + z)k−1−(c+a+b)

(1 + z)k+3
,

which is in Qk−1,k−1,k−1
k+3 = U (3)(Ω).

74



Lemma 48. The H(div)-conforming element exactly interpolates all polynomials up to

degree k − 1. That is, P k−1 ⊂ U (2)(Ω).

Proof. A basis for P k−1 is given by functions of the form:
ξa1ηb1(1− ζ)c1

0

0

 ,


0

ξa2ηb2(1− ζ)c2

0

 ,


0

0

ξa3ηb3 .(1− ζ)c3

 (3.10)

where the ai, bi, ci are non-negative integers and ai+bi+ci ≤ k−1. Pullback these functions

to the infinite pyramid to get:
xa1yb1(1 + z)c1

(1 + z)k+2

0

0

 ,


0

xa2yb2(1 + z)c2

(1 + z)k+2

0

 ,
xa3yb3(1 + z)c3

(1 + z)k+2


x

y

1 + z

 . (3.11)

Here we have written ci = k−1−(ci+ai+bi). The constraint ai+bi+ci ≤ k−1 ensures that

if u is as in (3.10), then φ∗u ∈ Qk,k−1,k−1
k+2 ×Qk−1,k,k−1

k+2 ×Qk−1,k−1,k
k+2 . Moreover, divergence

commutes with pullback, so ∇ · φ∗u = φ∗∇ · u. Now u ∈ P k−1 ⇒ ∇ · u ∈ P k−2 and so

by Lemma 47, φ∗∇ · u ∈ Qk−1,k−1,k−1
k+3 . We have thus established that φ∗(u) ∈ U (2)(K∞),

where we used the characterization of the underlying space (2.19).

Now, since u is a polynomial 2-form, its normal trace onto a triangular face of Ω will be a

polynomial of the same or less degree, and hence the surface constraints in (2.24) will be

satisfied automatically. Hence φ∗u ∈ U (2)(K∞), which means that u ∈ U (2)(Ω).

The existence of polynomials in the H(curl)-conforming element may be proved in a similar

manner:

Lemma 49. The H(curl)-conforming element exactly interpolates all polynomials up to

degree k − 1. That is, P k−1 ⊂ U (1)(Ω)
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Proof. Take basis functions for P k−1 as in (3.10). The pullbacks of these 1-forms to the

infinite pyramid are:

xa1yb1(1 + z)c1

(1 + z)k+1


z + 1

0

−x

 ,
xa2yb2(1 + z)c2

(1 + z)k+1


0

z + 1

−y

 ,


0

0

xa3yb3(1 + z)c3

(1 + z)k+1

 . (3.12)

The constraint on the ai, bi, ci ensures that these functions are all members of Qk−1,k,k
k+1 ×

Qk,k−1,k
k+1 ×Qk,k,k−1

k+1 . We then use the commutativity of the curl operator with the pull-back,

the previous lemma, and the fact that the tangential traces Γ
(1)
i,Ωu for polynomial 1-forms

u satisfy the surface constraints of (20), shows that the functions in (3.12) are in fact in

U (1)(K∞).

For the H1-conforming element, we gain an extra polynomial degree (in fact, there are some

polynomials of degree k present in U (1)(Ω) and U (2)(Ω), but not all of them).

Lemma 50. The H1-conforming element exactly interpolates all polynomials up to degree

k. That is, P k ⊂ U (0)(Ω)

Proof. Let p = ξaηbζc, a, b, c be non-negative integers and a+ b+ c ≤ k.

φ∗p =
xaybzc(1 + z)k−(a+b+c)

(1 + z)k
, (3.13)

If a + b 6= 0 it is clear that φ∗p ∈ Qk,k,k−1
k . On the other hand, if a + b = 0, we obtain

φ∗p ∈ { zk

(1+z)k
}. Therefore, polynomial zero-forms p of the form (50) satisfy φ∗p ∈ Qk,k,k−1

k ⊕
zk

(1+z)k
= U (0)(Ω), as required. Arguments similar to the previous cases demonstrate the

inclusion φ∗p ∈ U (0)(K∞), and hence p ∈ U (0)(Ω).
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3.4 Conclusion

We have shown that the finite element approximation spaces Usk(Ω) equipped with the

external degrees of freedom from [58] and projection-based interpolation for the internal

degrees of freedom are unisolvent and satisfy a commuting diagram property. All the

kth order spaces include the complete family of polynomials of degree k − 1 and the H1-

conforming space includes all the degree k polynomials too.

These finite element spaces are based on rational basis functions. It is not surprising that

arguments which rely on the polynomial or highly differentiable nature of regular finite

element spaces will fail in the current situation. In upcoming work we present a careful

analysis of quadrature errors for these approximation spaces.
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3.A Appendix: Shape functions

In Tables 3–1, 3–2 and 3–3, we present shape functions for U (s),k(Ω) for each s = 0, 1, 2.

This is not a hierarchical construction, and no attention has been paid to the conditioning of

any resulting stiffness matrices. We make use of the auxiliary coordinates, αξ := (1− ζ− ξ)

and αη := (1− ζ − η).

Representative shape functions for 0-forms on a pyramid.
Infinite Pyramid Finite Pyramid Comments
(1− x)(1− y)

(1 + z)k
αξαη

(1− ζ)2−k Vertex function associated with vertex
v1.

zk

(1 + z)k
ζk Vertex function associated with vertex

v5.
(1− x)(1− y)za

(1 + z)k
αξαηζ

a

(1− ζ)2+a−k Edge functions associated with edge e1,
1 ≤ a ≤ k − 1.

(1− y)(1− x)xa

(1 + z)k
αξαηξ

a

(1− ζ)2+a−k Edge functions associated with base
edge b1, 1 ≤ a ≤ k − 1.

(1− x)(1− y)xazb

(1 + z)k
αξαηξ

aζb

(1− ζ)2+a+b−k Face shape functions associated with
triangular face S1,Ω, 1 ≤ a, b, a + b ≤
k − 1.

(1− x)(1− y)xayb

(1 + z)k
αξαηξ

aηb

(1− ζ)2+a+b−k Face shape functions associated with
base face B, 1 ≤ a, b ≤ k − 1.

x(1− x)y(1− y)zxaybzc

(1 + z)k
ξa+1ηb+1ζc+1αξαη
(1− ζ)5+a+b+c−k Volume shape functions, 0 ≤ a, b, c ≤

k − 2.

Table 3–1: Shape functions on a pyramid. Since the approximation space U (0),k(K∞) is
invariant under the rotation, R∞ : K∞ → K∞, it is only necessary to demonstrate shape
functions for a representative base vertex, vertical edge, base edge and vertical face. Then,
using (2.9) and the subsequent remarks, the inverse pullback of these to the finite pyramid
will also be invariant under the rotation R. Note that αξ := (1−ζ−ξ) and αη := (1−ζ−η).
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Representative shape functions for 1-forms on a pyramid.
Infinite Pyramid Finite Pyramid Comments 0

0
(x−1)(y−1)(1+z)c

(1+z)k+1

  0
0

αηαξ
(1−ζ)3+c−k

 Edge functions associated
with e1, 0 ≤ c ≤ k − 1.

1
(1+z)k+1

xc(1− y)
0
0

 ξcαη
(1−ζ)1+c−k

 1
0
ξ

1−ζ

 Edge functions associated
with base edge b1, 0 ≤ c ≤
k − 1.

z(1−y)
(1+z)k+1

xa(1 + z)c

0
0

 ζαηξ
a

(1−ζ)2+c+a−k

 1
0
ξ

1−ζ

 Face functions associated
with triangular face S1,Ω,
0 ≤ a, c, c+ a ≤ k − 2.

x(1−x)(1−y)
(1+z)k+1

 0
0

xazc


 0

0
ξ1+aαξαηζ

c

(1−ζ)4+a+c−k

 Face functions for S1,Ω,
0 ≤ c, a, c+ a ≤ k − 3.

(1−y)(1−x)xa(1+z)k−a−2

(1+z)k+1

 z
0
−x

  αηαξξ
aζ

0
−αηαξξa+1

 Face functions for S1,Ω,
0 ≤ a ≤ k − 2.

1
(1+z)k+1

y(1− y)xayb

0
0

 αηξ
aηb+1

(1−ζ)2+a+b−k

 η
0
ξ

1−ζ

 Face shape functions for
base face BΩ, a ≤ k −
1, b1 ≤ k − 2.

1
(1+z)k+1

 0
x(1− x)xayb

0

 αζξ
a+1ηb

(1−ζ)2+a+b−k

 0
ξ
η

1−ζ

 Face shape functions for
BΩ, a ≤ k − 2, b ≤ k − 1.

y(1−y)z xaybzc

(1+z)k+1

1
0
0

 αηξ
aηb+1ζ1+c

(1−ζ)3+a+b+c−k

 1
0
ξ

1−ζ

 Volume shape functions,
0 ≤ a ≤ k − 1, 0 ≤ b, c ≤
k − 2.

x(1−x)zxaybzc

(1+z)k+1

0
1
0

 ξa+1ηbζ1+cαξ
(1−ζ)3+a+b+c−k

 0
1
η

1−ζ

 Volume shape functions,
0 ≤ b ≤ k − 1, 0 ≤ a, c ≤
k − 2.

x(1−x)y(1−y)xaybzc

(1+z)k+1

0
0
1

 ξ1+aη1+bζcαξαη q̃
(1−ζ)3+a+b+c−k

 0
0
1

(1−ζ)2

 Volume shape functions,
0 ≤ a, b, c ≤ k − 2.

zk−1

(1 + z)k+1

 ∂r
∂x z
∂r
∂y z

−r

 ζk−1

 ζ ∂r̃∂ξ (1− ζ)

ζ ∂r̃∂η (1− ζ)

−r̃ + ζ(ξ ∂r̃∂ξ + η ∂r̃∂η )

 Volume shape functions,
0 ≤ a, b ≤ k − 2.

r = x(1− x)y(1− y)xayb, r̃ =
ξ1+aαξη

1+bαη
(1−ζ)a+b+4

Table 3–2: H(curl)-conforming shape functions on a pyramid. Since the approximation
space U (1),k(K∞) is invariant under the rotation, R∞ : K∞ → K∞, it is only necessary
to demonstrate shape functions for a representative base vertex, vertical edge, base edge
and vertical face. Then, using (2.9) and the subsequent remarks, the inverse pullback of
these to the finite pyramid will also be invariant under the rotation R. There are three
distinct types of shape functions for the vertical faces, two for the base face, and four for
the volume. Note that αξ := (1− ζ − ξ), αη := (1− ζ − η).
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Representative shape functions for 2-forms on a pyramid.
Infinite Pyramid Finite Pyramid Comments

1
(1+z)k+2

 0
2(1− y)xazb

−zk

 ζk

 ξ
1−ζ
η

(1−ζ)
−1

+

 0
2αηξ

aηb

(1−ζ)2+a+b−k

0

 Face shape functions as-
sociated with S1,Ω, a, b ≥
0, a+ b ≤ k − 1.

1
(1+z)k+2

 0
0

xayb

 (1− ζ)
k−a−b−1

ξ1+aηb

ξaηb+1

ξaηb

 Base face shape functions,
0 ≤ a, b ≤ k − 1.

zk−1

(1+z)k+2

 2t
0

(1 + z)(tx)

 ζk−1

2t̃
0
0

+ ζk−1t̃x

− ξ
1−ζ
−η
1−ζ
1

 Volume shape functions,
0 ≤ a ≤ k − 2, 0 ≤ b ≤
k − 1.t = x(1− x)xayb t̃ = ξ1+aαξη

b(1− ζ)−a−b−2

zk−1

(1+z)k+2

 0
2s

(1 + z)(sy)

 ζk−1

 0
2s̃
0

+ ζk−1s̃y

− ξ
1−ζ
−η
1−ζ
1

 Volume shape functions,
0 ≤ a ≤ k − 1, 0 ≤ b ≤
k − 2.s = y(1− y)xayb s̃ = ξaαηη

b+1(1− ζ)−a−b−2

xaybzc

(1 + z)k+2

x (1− x)
0
0

 ξaηbζc

(1−ζ)2+a+b+c−k

ξαξ0
0

 Volume shape functions,
0 ≤ a, c ≤ k − 2, 0 ≤ b ≤
k − 1.

xaybzc

(1 + z)k+2

 0
y (1− y)

0

 ξaηbζc

(1−ζ)2+a+b+c−k

 0
ηαη

0

 Volume shape functions,
0 ≤ b, c ≤ k − 2, 0 ≤ a ≤
k − 1.

xaybzc

(1 + z)k+2

0
0
z

 ξaηbζc+1

(1−ζ)2+a+b+c−k

 −ξ−η
1− ζ

 Volume shape functions,
0 ≤ a, b, c ≤ k − 2.

Table 3–3: H(div)-conforming shape functions on a pyramid. Since the approximation
space U (2)(K∞) is invariant under the rotation, R∞ : K∞ → K∞, it is only necessary
to demonstrate shape functions for a representative base vertex, vertical edge, base edge
and vertical face. Then, using (2.9) and the subsequent remarks, the inverse pullback
of these to the finite pyramid will also be invariant under the rotation R. Note that
αξ := (1− ζ − ξ), αη := (1− ζ − η).
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CHAPTER 4
Numerical integration for high order pyramidal finite elements

This chapter consists of the paper “Numerical integration for high order pyramidal finite ele-

ments”, submitted to ESAIM: Mathematical Modelling and Numerical Analysis. It presents

research that was a direct continuation of that presented in the previous chapters. The diffi-

culties of using numerical integration on pyramidal elements are described and a resolution

is found. In the process, a new family of pyramidal finite elements is presented and ex-

tensive use is made of the language of differential forms to unify arguments across all the

spaces of the de Rham complex.

Throughout this chapter, we make reference to prior work, [63], which is the paper whose

contents were presented in chapters 2 and 3.

4.1 Introduction

In prior work, [63], we presented a family of high-order finite element approximation spaces

on a pyramidal element. Pyramidal finite elements are used in applications as “glue” in

heterogeneous meshes containing hexahedra, tetrahedra and prisms. Various constructions

of high order pyramidal elements have been proposed [28, 86, 43, 42, 85, 63]. A useful

summary of the approaches taken for H1-conforming elements is given by Bergot et al.

[12], who also provide some motivating numerical results for the performance of methods

based on meshes containing pyramidal elements. If they are to be used to implement

stable mixed methods, such elements should also satisfy a commuting diagram property.

In addition to our work, elements satisfying this property were constructed by Zaglmayr

based on the theory of local exact sequences, [85], and are summarised in [31].
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Our aim here is to study the errors due to numerical integration on arbitrarily high order

pyramidal finite elements that approximate each of the spaces of the de Rham complex.

Numerical quadrature is an important component of matrix assembly, and work on the

use of quadrature schemes for finite element methods has been recently focussed on issues

of efficiency and fast implementation, see e.g. [57]. The classical analysis of the effect of

quadrature, see, e.g. [25, 17], has the lesser objective, nicely summed up in [25], of

“[giving] sufficient conditions on the quadrature scheme which insure that the

effect of the numerical integration does not decrease [the] order of convergence.”

The approximation spaces we presented in [63] were shown to include complete sets of

polynomials and so, at first glance, one might expect the classical arguments should hold

in the case of the pyramidal finite elements as well. Somewhat to our surprise, this was not

the case: see Example 58. Our exclusive focus in this paper, therefore, is a careful analysis

of the errors introduced by quadrature when pyramidal finite elements are used.

A prototypical (linear) problem associated with the weak form of a PDE is of the form:

For a : V × V → R and f ∈ V ′, find u ∈ V such that: a(u, v) = f(v) ∀ v ∈ V, (4.1)

where V is a normed space of functions on a domain, Ω ⊂ Rn, a(·, ·) is a bilinear form,

and f(·) is linear functional on V . One approximation strategy is then to partition Ω

using a triangulation, and replace V by a (finite dimensional) finite element approximation

subspace, Vh, where h is a parameter associated with the size of the mesh. One then obtains

a numerical approximation uh ∈ Vh to the true solution u ∈ V . A typical result is that the

approximate solution converges to the true solution at some rate, O(hk) where the order of

convergence, k, depends on the degree of largest complete space of polynomials used in the

finite element approximation space.
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In general, the bilinear form, a(·, ·) and the right hand side f(·) are evaluated using nu-

merical integration rules. These are additional sources of errors in the approximate solu-

tion.

In this paper we will show that the quadratures described as conical product formulae by

Stroud [76] are an appropriate choice for our pyramidal elements, in particular, that the nth

order quadrature rule can be used for the integration of bilinear forms involving nth order

elements without decreasing the order of covergence. The main challenge arises from the

fact that the classical theory is only applicable to finite elements with approximation spaces

consisting purely of polynomials, yet pyramidal elements necessarily include functions other

than polynomials, specifically rational functions with denominators which have roots on

the boundary of the pyramid [63, 84, 3]. In contrast to the claim in [12], we show that

the importance of these rational functions in constructing interpolants means that it is

not possible to achieve global estimates of the consistency error by summing element-wise

estimates that only deal with polynomials.

Section 4.2 introduces a framework that will allow us to unify our analysis for discrete ap-

proximations to each of the spaces of the de Rham complex. We also recall the definitions

of the approximation spaces for the elements in [63] and the quadrature rules given in [76].

In section 4.3 we show that the conical product formulae are exact for products of all pairs

of functions from the approximation spaces, including the non-polynomials. The intuition

from the classical theory would be that this is all that is required. However, as discussed, in

section 4.4 we show that the reasoning behind this intuition is insufficient when functions

other than polynomials are present. To overcome this, we derive a generalisation of the

standard Bramble-Hilbert argument. In section 4.5 we present new families of approxima-

tion spaces that allow us to take advantage of this generalisation (and which can be used

to construct new pyramidal finite elements in their own right). Finally, we pull everything
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together in section 4.6 and show that Stroud’s quadrature rules satisfy the desired property

for both the new and original families of elements.

4.2 Definitions

4.2.1 Differential forms

We will want to make general statements that apply to approximations to each of the spaces

of the de Rham complex. It is natural and increasingly popular to use differential forms and

the exterior calculus in such a discussion [5, 6]. However, we will be dealing with pyramids,

which are set firmly in three dimensions, and so will endeavour to keep things as concrete

as possible. Consequently, at the expense of a few extra preliminaries, we will be able to

keep much of the notation familiar to users of vector calculus.

Let Ω ⊂ Rn and define Λ(s)(Ω) as the space of differential s-forms on Ω. A point, x ∈ Ω, has

coordinates (xi)i=0...n and a given u ∈ Λ(s)(Ω) can be expressed in terms of its components,

u =
∑

α uαdx
α1 ∧ · · · ∧ dxαs where each uα ∈ C∞(Ω) and the multi-indices, α = α1 · · ·αs

run over the set, Υs, of all increasing sequences, {1...s} → {1...n}.

Define Θ(s)(Ω) to be the space of all (covariant) tensors, A : Λ(s)(Ω) × Λ(s)(Ω) → C∞(Ω)

that can be defined in terms of the pointwise representation,

A(u, v)(x) := Aαβ(x)uα(x)vβ(x) ∀u, v ∈ Λ(s)(Ω), (4.2)

where we are using the Einstein summation convention, Aαβuαvβ :=
∑

α,β∈Υs
Aαβuαvβ .

We will insist that Aαβ is anti-symmetric in the first s and second s components, which

makes the representation unique.
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A tensor, A ∈ Θ(s)(Ω) induces a bilinear form on Λ(s)(Ω):

(u, v)A,Ω :=

∫
Ω
Aαβ(x)uα(x)vβ(x)dx.

Let T be a partition of Ω where every K ∈ T is the image of a simple reference domain,

K̂ ⊂ Rn, under a diffeomorphism φK : K̂ → K. On each K, the reference coordinates,

x̂ = (xî)̂i=0...n of any point x ∈ K, are given by x̂ = φ−1
K (x). Given u ∈ Λ(s)(K), the

reference coordinate system induces a new set of components uα̂. Differential forms are

contravariant, so the components transform as:

uα̂ =
∑
α∈Υs

∂xα1

∂xα̂1
· · · ∂x

αs

∂xα̂s
uα. (4.3)

The components of a covariant tensor, A ∈ Θ(s)(Ω) transform as:

Aα̂β̂ =
∑

α,β∈Υs

∂xα̂1

∂xα1
· · · ∂x

α̂s

∂xαs
∂xβ̂1

∂xβ1
· · · ∂x

β̂s

∂xβs
Aαβ. (4.4)

Note that Aαβ(x)uα(x)vβ(x) = Aα̂β̂(x̂)uα̂(x̂)vβ̂(x̂) is just a 0-form and that we have the

change of variables formula on each element, K:

(u, v)A,K =

∫
K
Aαβuαvβdx =

∫
K̂
Aα̂β̂uα̂vβ̂ det(DφK)dx̂, (4.5)

where DφK is the Jacobian of φK and det(DφK) is the determinant of the Jacobian.

When n = 2 and n = 3, it is conventional to think of differential forms in terms of proxy

fields. The spaces Λ(0)(Ω) and Λ(n)(Ω) are always isomorphic to the scalar field, C∞(Ω).

When n = 3, the spaces Λ(1)(Ω) and Λ(2)(Ω) are isomorphic to the vector field, (C∞(Ω))3.

For u ∈ Λ(s)(Ω), we denote the components of the proxy field as ui for i ∈ Is =
{

1, . . . ,
(

3
s

)}
.
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The isomorphisms for the vector fields are given by

u ∈ Λ(1)(Ω) 7→


u1

u2

u3

 , u ∈ Λ(2)(Ω) 7→


u23

−u13

u12

 .

With these identifications, the exterior derivatives, d : Λ(s)(Ω) → Λ(s+1)(Ω) for s = 0, 1, 2

become the familiar grad, curl and div.

As with the differential forms, we will decorate the subscripts (and superscripts) of proxies

with symbols to indicate the coordinate system that is being used to determine the com-

ponents of the proxy fields. Given some u ∈ Λ(s)(Ω), ui′ is the ith component of its proxy

in the coordinate system x′ =
(
x1′ , x2′ , x3′

)
. We will also write u′ = (ui′)i∈Is to indicate

all the components of the vector (or scalar) field.

For a coordinate change, x = φ(x′), the weights appearing in the contravariant and covariant

transformation rules, (4.3) and (4.4), can be written in terms of the entries of a
(

3
s

)
×
(

3
s

)
matrix, w(s)

φ . We choose to let w(s)
φ to be the weight in the covariant transformation so

that, for u ∈ Λ(s)(Ω)

∑
i′∈Is

(
w

(s)
φ

)
i,i′
ui′ = ui ∀i ∈ Is. (4.6)

The weights can be calculated in terms of the Jacobian, Dφ:

w
(0)
φ = 1, w

(1)
φ = Dφ−1t, w

(2)
φ = det(Dφ−1)Dφ, w

(3)
φ = det(Dφ−1). (4.7)

The exterior derivative is an intrinsic property of any manifold. This means that it is

independent of coordinates; equivalently, the exterior derivative commutes with coordinate

transformation.
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The use of a reference coordinate system is a familiar concept. In the engineering literature,

shape functions for finite elements on simplices are often defined in terms of barycentric

coordinates. After thinking of a scalar or vector field as a proxy to a differential form, the

use of the reference coordinate system to study a shape function is analogous to mapping

the differential form to a reference element using a pullback.

4.2.2 Sobolev spaces

Let the Sobolev semi-norms |·|Wk,p(Ω) and |·|Hk(Ω) = |·|Wk,2(Ω) have their standard mean-

ings. Define semi-norms and norms for any u ∈ Λ(s)(Ω) as

|u|2k,Ω :=
∑
i∈Is

|ui|2Hk(Ω) , ‖u‖2k,Ω :=
k∑
r=0

|u|2r,Ω .

The Sobolev spaces, HrΛ(s)(Ω) and H(s),r(Ω) are then defined as the completion of Λ(s)(Ω)

in the norms ‖u‖r,Ω and ‖u‖H(s),r(Ω) := ‖u‖2r,Ω + ‖du‖2r,Ω respectively.

As a short-hand, we will writeH(s)(Ω) = H(s),0(Ω). The spaces of proxy fields corresponding

to H(0)(Ω), H(1)(Ω), H(2)(Ω) and H(3)(Ω) are the familiar H1(Ω), H(curl,Ω), H(div,Ω)

and L2(Ω).

Note1 that Hr+1Λ(s)(Ω) ⊆ H(s),r(Ω) and in particular H(0),r(Ω) = Hr+1Λ(0)(Ω) ∼=

Hr+1(Ω), and H(n),r(Ω) = HrΛ(n)(Ω) ∼= Hr(Ω).

For A ∈ Θ(s)(Ω), we similarly define

|A|2k,∞,Ω :=
∑
i,j∈Is

∣∣Aij∣∣2
Wk,∞(Ω)

, ‖A‖2k,∞,Ω :=
k∑
r=0

|A|2r,∞,Ω

and define W r,∞Θ(s)(Ω) to be the completion of Θ(s)(Ω) in ‖·‖r,∞,Ω.

1 When r = 0, this is the observation thatH1(Ω)3 ⊂ H(curl,Ω) andH1(Ω)3 ⊂ H(div,Ω).
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For a given K and u ∈ Λ(s)(K) and A ∈ Θ(s)(K), define the reference semi-norms.2

|u|k,K̂ :=
∑
î∈Is

∣∣uî∣∣Hk(K̂)
, |A|k,∞,K̂ :=

∑
î,ĵ∈Is

∣∣∣Aîĵ∣∣∣
Wk,∞(K̂)

.

Suppose that (Th)h>0 is a family of shape-regular partitions of Ω, where every K ∈ Th is

affine equivalent to K̂ and each φK satisfies

‖DφK‖ ≤ h and ‖Dφ−1
K ‖ ≤

ρ

h
(4.8)

for some ρ ≥ 1. For any u ∈ H(s),k(K) and A ∈ W k,∞Θ(s)(K), we have the inequali-

ties

1

Cρk+s

hk+s

det(DφK)1/2
|u|k,K ≤ |u|k,K̂ ≤ C

hk+s

det(DφK)1/2
|u|k,K (4.9)

1

Cρk
hk−2s |A|k,∞,K ≤ |A|k,∞,K̂ ≤ Cρ

2shk−2s |A|k,∞,K (4.10)

for some constant C = C(k, n) which is independent of h. These can be deduced from

the standard scaling argument for Sobolev semi-norms of functions (see, for example, [25])

combined with the transformation rules, (4.3) and (4.4) and the observation that (4.8)

implies that ∂xαi

∂x̂α̂j
≤ h and ∂x̂α̂j

∂xαi ≤
ρ
h for all i, j.

4.2.3 Pyramidal elements

From now on we will assume Ω ⊂ R3. To contain the proliferation of indices, we will use the

notation (ξ, η, ζ) for the reference coordinates (x1̂, x2̂, x3̂). The reference domain is defined

2 These are the norms induced by the metric in which the reference coordinates are
orthonormal. They are used in the scaling argument in section 4.6.
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as the pyramid:

K̂ = {(ξ, η, ζ) | 0 ≤ ζ ≤ 1, 0 ≤ ξ, η ≤ ζ}.

We have chosen to restrict our analysis to affine maps φK so each element of the mesh, K ∈

Th, will be a parallelogram-based pyramid. We will refer to a general such K, as an affine

pyramid. Note that this restriction is for the sake of exposition - in practice, the necessity

and utility of pyramidal elements is evident in meshes comprised of tetrahedral, prismatic

and hexahedral elements as well. In this case, a given element of the mesh is obtained via a

mapping from one of three different reference elements. Our accounting of quadrature errors

is based on local estimates, and the elements on the pyramid are conforming. Therefore,

the extension of the present arguments to mixed meshes is straightforward.

As in [63] we will also use the infinite pyramid,

K∞ = {(x, y, z) | 0 ≤ x, y ≤ 1, 0 ≤ z ≤ ∞},

as a tool to help analyse and define the pyramidal elements. The finite and infinite pyramids

may be identified using the projective mapping,

φ : K∞ → K̂ (4.11)

φ : (x, y, z) 7→
(

x

1 + z
,

y

1 + z
,

z

1 + z

)
, (4.12)

which can be thought of as a change of coordinates and so, for any element, K, induces

the infinite pyramid coordinate system3 defined as x̃ = φ−1x̂. We shall usually write

x̃ = (x, y, z).

3 so-called because z →∞ as (ξ, η, ζ)→ (0, 0, 1) at the top of the pyramid.
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The corresponding weights in the change of coordinates transformation rule can be calcu-

lated explicitly:

w
(0)
φ = 1, (4.13a)

w
(1)
φ = Dφ−1t = (1 + z)


1 0 0

0 1 0

x y 1 + z

 , (4.13b)

w
(2)
φ = det(Dφ−1)Dφ = (1 + z)2


1 + z 0 −x

0 1 + z −y

0 0 1

 , (4.13c)

w
(3)
φ = det(Dφ−1) = (1 + z)4. (4.13d)

The approximation spaces for the finite elements presented in [63] are defined on the infi-

nite pyramid using k-weighted tensor product polynomials, Ql,m,nk [x, y, z], which are tensor

product spaces of polynomials, Ql,m,n[x, y, z], multiplied by a weight
1

(1 + z)k
. That is,

Ql,m,nk is spanned by the set4{
xaybzc

(1 + z)k
, 0 ≤ a ≤ l, 0 ≤ b ≤ m, 0 ≤ c ≤ n

}
.

For each family of elements on the infinite pyramid, an underlying approximation space is

defined for each order, k ≥ 1.

• H1-conforming element underlying space:

U (0)
k = Qk,k,k−1

k ⊕ span

{
zk

(1 + z)k

}
. (4.14a)

4 If l, m or n is negative then Ql,m,n = {0}
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• H(curl)-conforming element underlying space:

U (1)
k = Qk−1,k,k−1

k+1 ×Qk,k−1,k−1
k+1 ×Qk,k,k−2

k+1

⊕


zk−1

(1 + z)k+1


z ∂r∂x

z ∂r∂y

−r

 , r ∈ Qk,k[x, y]

 .
(4.14b)

• H(div)-conforming element space:

U (2)
k = Qk,k−1,k−2

k+2 ×Qk−1,k,k−2
k+2 ×Qk−1,k−1,k−1

k+2

⊕ zk−1

(1 + z)k+2


0

2s

sy(1 + z)

⊕ zk−1

(1 + z)k+2


2t

0

tx(1 + z)

 ,
(4.14c)

where s(x, y) ∈ Qk−1,k[x, y], t(x, y) ∈ Qk,k−1[x, y].

• L2-conforming element underlying space:

U (3)
k = Qk−1,k−1,k−1

k+3 . (4.14d)

For an element defined on a pyramid, K, the underlying approximation space, U (s)
k (K) is

defined as the space containing all the s-forms whose components induced by the infinite

pyramid coordinate system lie in U (s)
k :5

U (s)
k (K) =

{
u ∈ Λ(s)(K) :

(
uĩ
)
ĩ∈Is ∈ U

(s)
k

}
. (4.15)

5 We are using coordinate transformations here, but in [63], we used the equivalent
approach of defining the underlying spaces as the pullbacks, U (s)

k (K̂) =
{

(φ−1)∗v : v ∈ U (s)
k

}
and U (s)

k (K) = {φ∗Kv : v ∈ U (s)
k (K̂)}.
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By inspection, it can be seen that the exterior derivative d : U (s)
k → U

(s+1)
k is well defined,

and so, since d is independent of coordinates, the exterior derivative on the spaces on each

element,

d : U (s)
k (K)→ U (s+1)

k (K) (4.16)

is also well defined.

A full explanation of these spaces is provided in [63]. Some motivation may be seen from

the following lemma.

Lemma 51. For a given K and s ∈ {0, 1, 2, 3} let u ∈ U (s)
k (K). Each component uî (where

î ∈ Is) of u in the reference coordinate system satisfies

uî ◦ φ ∈ Q
k,k,k
k . (4.17)

This means that

U (s)
k (K) ⊂ H(s)(K). (4.18)

Proof. The relationship between the representations of u in the reference and infinite pyra-

mid coordinate systems is given by equation (4.6): û ◦ φ = w
(s)
φ ũ, where the weights, w(s)

φ ,

are given by (4.13). To establish (4.17), each s ∈ {0, 1, 2, 3} needs to be dealt with as a

separate case.

When s = 0, the weight, w(0)
φ = 1 and it is clear from (4.14a) that U (0)

k ⊂ Qk,k,kk . When

s = 1, inspection of (4.14b) reveals that U (1)
k ⊂ Q

k−1,k,k
k+1 ×Qk,k−1,k

k+1 ×Qk,k,k−1
k+1 . The weight,

w
(1)
φ = (1 + z)


1 0 0

0 1 0

x y 1 + z

, so w(1)
φ ũ ∈ Qk,k,kk × Qk,k,kk × Qk,k,kk . The cases s = 2 and

s = 3 follow similarly.
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Since Qk,k,kk ⊂ L∞(K∞) each uî ◦φ is bounded on K∞, which means that uî is bounded on

K̂ and therefore ui is bounded on K. Hence ‖u‖0,K is finite. By (4.16), du ∈ U (s+1)
k (K),

so ‖du‖0,K is finite too and u ∈ H(s)(K).

In order to construct pyramidal elements that are compatible with neighbouring tetrahe-

dral (and hence polynomial) elements, subspaces of the underlying approximation spaces,

U (s)
k (K) are identified that contain only those functions whose traces on the triangular

faces of the pyramid are contained in the trace space of the corresponding tetrahedral el-

ement6 . These approximation spaces are denoted U (s)
k (K). We shall denote by U (s)

k,0(K)

the subspaces of U (s)
k (K) with zero boundary traces. We also recall a key result allowing a

Helmholtz decomposition of these spaces, which were proved in [63].

Theorem 52. Let U (s)
k,0(K) be as defined above. Then the following decompositions hold:

1. U (1)
0 (K) = gradU (0)

0 (K)⊕ U (1)
0,curl(K),

where U (1)
0,curl(K) :=

{
v|v = (φ−1)∗u, u ∈ U (1)

0,curl(K∞)
}
, and where U (1)

0,curl(K∞) ⊂ U (1)
0 (K∞)

consists of functions u of the form

u =


y(1− y)zq1

x(1− x)zq2

x(1− x)y(1− y)ρ

 , (4.19)

where q1 ∈ Qk−1,k−2,k−2
k+1 , q2 ∈ Qk−2,k−1,k−2

k+1 , ρ ∈ Qk−2,k−2
k+1 [x, y].

6 The trace spaces for the tetrahedral Lagrange, Nedelec edge and Nedelec face elements
are given in [58]. By construction, the traces of the underlying spaces on the quadrilateral
face of the pyramid already match those of the corresponding hexahedral elements
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2. U (2)
0 (K) = curlU (1)

0,curl(K)⊕ U (2)
0,div(K),

where U (2)
0,div(K) := {v|v = (φ−1)∗(u), u ∈ U (2)

0,div(K∞)} and where

U (2)
0,div(K∞) := span{ zk−1

(1 + z)k+2


ry + 2t

rx + 2s

(1 + z)(rxy + sy + tx)

} ⊕ span{


0

0

zχ3

} (4.20)

and where r(x, y) = x(1− x)y(1− y)p(x, y), p ∈ Qk−2,k−2, t = x(1− x)t̃, t̃ ∈ P k−2(x),

s = y(1− y)s̃, s̃ ∈ P k−2(y), and χ3 ∈ Qk−1,k−1,k−2
k+2 .

3. divU (2)
0,div(K)⊕ R = U (3)(K).

Each approximation space U (s)
k (K) is equipped with a set of degrees of freedom, Σ(s)(K),

that induce a linear interpolation operator,

Π
(s)
k,K : H(s),1/2+ε(K)→ U (s)

k (K), ε > 0, so that m(u) = m(Π
(s)
k,Ku) ∀m ∈ Σ(s)(K),

(4.21)

which completes the definition of the finite elements. The necessity of the extra 1/2 + ε

regularity can be seen as a consequence of taking point evaluations at the vertices of the

pyramid for the s = 0 elements. It is necessary for both the projection-based interpolants

of [29] and the more explicit construction given in [63].

We now need to define a global interpolant. Given a mesh comprised of pyramidal elements,

Th, for Ω, we can assemble a global approximation space for H(s)(Ω),

V(s)
h = {v ∈ H(s)(Ω) : v|K ∈ U (s)

k (K) ∀K ∈ Th}. (4.22)

Again, we stress that the restriction that all K ∈ Th be mapped from a reference pyramid

is for purposes of exposition. Indeed, the approximation spaces U (s)
k (K) and the degrees of

freedom Σ
(s)
k (K) were designed to ensure these elements are conforming in a mesh consisting
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of tetrahedral and hexahedral elements. The element-wise interpolation operators respect

traces on the boundary of the pyramid, i.e.

tru|∂K = 0⇒ tr Π
(s)
k,Ku|∂K = 0,

so we define a bounded global interpolation operator Π
(s)
h : H(s),1/2+ε(Ω) → V(s)

h by

(Π
(s)
h u)|K := Π

(s)
k,K(u|K) for all K ∈ Th.

4.2.4 Conical product rule

Quadrature rules on the pyramid can be deduced as special cases of the conical product

rule presented by Stroud [76, 45]. Stroud defines the quadrature scheme for any continuous

function, f ∈ C(K̂),

S(f) :=
∑
i,j,l

f(ξi(1− ζl), ξj(1− ζl), zl)λiλjµl. (4.23)

He shows that given n ≥ 0, a sufficient condition for S(p) =
∫
K̂ p dx̂ for any polynomial,

p ∈ Pn(x̂), is that the two one-dimensional quadrature schemes given by the points ξi and

ζl with respective weights λi and µl satisfy

∑
i

λig(ξi) =

∫ 1

0
g(x)dx ∀g ∈ Pn, (4.24)

∑
i

µih(ζi) =

∫ 1

0
(1− z)2h(z)dz ∀h ∈ Pn. (4.25)

The k + 1 point Gauss-Legendre quadrature rule can be used to generate ξi and λi that

make (4.24) exact for polynomials of degree 2k + 1. The k + 1 point Gauss-Jacobi scheme
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based on the shifted Jacobi polynomial7 , P (2,0)
k+1 , generates ζi and µi that make (4.25) exact

for polynomials of degree 2k + 1. We denote the quadrature scheme for K̂ based on (4.23)

that uses these points and weights as Sk,K̂ . The error,

Ek,K̂(f) := Sk,K̂(f)−
∫
K̂
f(x̂)dx̂.

will be zero when f ∈ P2k+1.

The one dimensional quadratures, (4.24) and (4.25) are based on Jacobi polynomials, so

their Lebesgue constants grow like O(n1/2) and O(n5/2) respectively [77, p. 336]. The

Lebesgue constant is based on a sup norm, so the mapping to the pyramid is irrelevant;

(4.23) behaves like a tensor product, so its Lebesgue constant grows like O(n7/2).

When f ∈ C(K), whereK is a pyramid equipped with a change of coordinates φK : K̂ → K,

we can define the quadrature and error functionals:

Sk,K(f) := Sk,K̂

(
|DφK | f̂

)
∼
∫
K
f(x)dx, (4.26)

Ek,K(f) := Ek,K̂

(
|DφK | f̂

)
= Sk,K(f)−

∫
K
f(x)dx, (4.27)

where f̂ = f ◦ φK , i.e. the expression of f in the reference coordinate system, x̂.

4.3 Pyramidal approximation spaces and quadrature

Now lets look at the effect of the conical product rules on our approximation spaces. If u

and v are polynomials of degree k then their product, uv ∈ P2k so from Stroud’s work, we

know that Sk,K̂(uv) =
∫
K̂ uv. In this section, we shall prove the stronger result:

7 The Jacobi polynomials, P (a,b)
n (s), n ≥ 0, are typically defined on the interval [−1, 1].

Under the change of variables, s = 2t − 1, they orthogonal with respect to the weight
(1− t)atb on the interval [0, 1].
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Theorem 53. Let K be an affine pyramid; fix k ≥ 1; let s ∈ {0, 1, 2, 3} and let A ∈ Θs(K)

be a constant tensor field. Then for any u, v ∈ U (s)
k (K), the quadrature scheme Sk,K exactly

evaluates the product, (u, v)A,K , i.e.

Sk,K(Aijuivj) = (u, v)A,K .

To do this, we first need to understand exactly which functions our quadrature scheme

integrates exactly.

Lemma 54. Suppose that f is a function defined on a pyramid, K, and that the repre-

sentation of f in the infinite pyramid coordinate system, f̃ = f ◦ φK ◦ φ, lies in the space

Q2k+1,2k+1,2k+1
2k+1 . Then the quadrature scheme, Sk,K is exact for f :

Sk,K(f) =

∫
K
fdx

Proof. It suffices to consider functions p with a representation in the infinite pyramid co-

ordinate system:

p̃(x, y, z) =
xayb

(1 + z)c
0 ≤ a, b, c ≤ 2k + 1,

since these monomials span the space Q2k+1,2k+1,2k+1
2k+1 . In finite reference coordinates, p has

the form p̂(ξ, η, ζ) = ξaηb(1− ζ)c−a−b, and so, using (4.23):

Sk,K(p) = Sk(det(DφK)p̂)

= det(DφK)
∑
i,j,l

ξai (1− ζl)aξbj(1− ζl)b(1− ζl)c−a−bλiλjµl

= det(DφK)
∑
i

λiξ
a
i

∑
j

λjξ
b
i

∑
l

µl(1− ζl)c

= det(DφK)

∫ 1

0
sads

∫ 1

0
tbdt

∫ 1

0
(1− ζ)c+2dζ.
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The last step is justified because each of the sums is a quadrature rule applied to a poly-

nomial of degree ≤ 2k + 1 and so we can apply (4.24) and (4.25). Apply the change of

variables ξ = (1− ζ)s and η = (1− ζ)t to obtain:

Sk,K(p) = det(DφK)

∫ 1

0

∫ 1−ζ

0

∫ 1−ζ

0
(1− ζ)c−a−bξaηb dξdηdζ

= det(DφK)

∫
K̂
p̂(ξ, η, ζ)dx̂

=

∫
K
pdx.

We can now prove Theorem 53 where, in fact, we will only need Lemma 54 to be true for

f̃ ∈ Q2k,2k,2k
2k , which is a subspace of Q2k+1,2k+1,2k+1

2k+1 .

Proof of Theorem 53. Let u, v ∈ U (s)
k (K). A ∈ Θ(s)(K) is a constant and so, by the first

part of Lemma 51, in infinite reference coordinates, the function A(u, v) satisfies:

Aĩj̃uj̃vĩ ∈ Q
2k,2k,2k
2k .

Hence by Lemma 54,

Sk,K
(
Aijujvi

)
=

∫
K
Aijujvi = (u, v)A,K .

Observe that for the spaces U (3)
k (K), the integrand, Aĩj̃uj̃vĩ ∈ Q

2k−2,2k−2,2k−2
2k−2 , so we could

in fact use the scheme Sk−1.

4.4 Numerical integration and convergence

In this section, we will demonstrate that the classical theory of the effect of quadrature

breaks down for pyramid elements and derive a generalisation of the Bramble Hilbert

Lemma that we will use to resolve the problem.
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Let a : H(s)(Ω)×H(s)(Ω)→ R be an elliptic bilinear form and let V ⊂ H(s)(Ω) be chosen

so that the problem of finding u ∈ V such that

a(u, v) = f(v) ∀v ∈ V (4.28)

has a unique solution for any linear functional, f ∈ V ′. A discrete version of this problem

is to find uh ∈ Vh such that

ah(uh, v) = f(v) ∀v ∈ Vh, (4.29)

where Vh is an approximating subspace of V and ah approximates a using numerical in-

tegration.8 When Vh is assembled using polynomial elements of degree k, the analysis

of the effect of the numerical integration is classical; good expositions may be found in

[25, 17].

For an example, take an elliptic bilinear form a : H1
0 (Ω)×H1

0 (Ω)→ R, defined as

a(u, v) =

∫
Ω
A(du, dv) dx (4.30)

where A ∈W k,∞Θ(1)(Ω) and is uniformly positive definite.

Assume that Vh ⊂ H1
0 (Ω) is some approximation space assembled using kth order poly-

nomial finite elements and that there exists a numerical integration rule, Sh,k,Ω(·), which

satisfies Sh,k,Ω(∂iu∂jv) =
∫

Ω(∂iu∂jv) for any i and j and all pairs of functions u, v ∈ Vh.

Let ah(u, v) = Sh,k,Ω(A(du, dv)). It is shown in [25, page 179] that the solution of (4.29)

8 We choose not to consider the effect of approximating f(·) by some fh(·) using numerical
integration because it is no different on the pyramid than for other elements. Error estimates
may be obtained by applying the standard argument and using Theorem 53.
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will satisfy the error estimate:

‖u− uh‖1 ≤ Chk(|u|k+1 + ‖A‖k,∞‖u‖k+1).

This result is contingent on an estimate of the consistency error:

sup
wh∈Vh

|a(Πhu,wh)− ah(Πhu,wh)|
‖wh‖1

≤ Chk‖A‖k,∞‖u‖k+1, (4.31)

where Πh : H1
0 (Ω) → Vh is an interpolation operator. The constant C = C(Ω, k) is

independent of h.

More generally, an analysis for mixed problems can be found in [40]. The conclusion is the

same: in order to preserve an O(hk) approximation error, each bilinear form must satisfy

an O(hk) consistency error estimate.

The key ingredient in the proof of the consistency error estimate, (4.31) is a local esti-

mate:

Theorem 55 (See [25], Theorem 4.1.2). Given a simplex, K ∈ Th, assume that the quadra-

ture rule is exact for P 2k−2. That is, for any polynomial ψ ∈ P2k−2(K), the quadrature

error, EK(ψ) = 0. Then there exists a constant C independent of K and h such that

∀A ∈W k,∞(K), ∀p, q ∈ Pk(K)

|EK(A(dp, dq))| ≤ Chk‖A‖k,∞,K‖dp‖k−1,K |dq|0,K

This theorem is proved by combining a scaling argument with the following famous result

from [16].

Theorem 56 (Bramble-Hilbert Lemma). Let Ω ⊂ Rn be open with Lipschitz-continuous

boundary. For some integer k ≥ 0 and p ∈ [0,∞] let the linear functional, f : W k+1,p(Ω)→
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R have the property that ∀ψ ∈ Pk(Ω), f(ψ) = 0. Then there exists a constant C(Ω) such

that

∀v ∈W k+1,p(Ω), |f(v)| ≤ C(Ω)‖f‖Wk+1,p(Ω)′ |v|k+1,p,Ω

where ‖·‖Wk+1,p(Ω)′ is the operator norm.

In our more general framework, we may conjecture that an analogous statement to Theorem

55 is

Conjecture 57. Let K ∈ Th be a pyramid. Let s ∈ {0, 1, 2, 3} and A ∈ W k,∞Θ(s)(K).

Then

∀v, w ∈ U (s)
k (K) (4.32)

|EK,k(A(v, w))| ≤ Chk‖A‖k,∞,K‖v‖k−1,K‖w‖0,K (4.33)

This conjecture is true, but useless. The problem is that, unlike the situation for purely

polynomial spaces, we cannot differentiate basis functions arbitrarily. We do not have the

inclusion, U (s)
k (K) ⊂ H(s),k−1(K) for k ≥ 3. The following example is illustrative:

Example 58. Take the U (0)
k (K̂) shape function associated with the base vertex, (1, 1, 0):

v(ξ, η, ζ) =
ξη

1− ζ
. (4.34)

The L2 norm of its third partial ζ-derivative,∫
K̂

(
∂3v

∂ζ3

)2

dx̂ =

∫ 1

0

∫ 1−ζ

0

∫ 1−ζ

0

(
−6ξη

(1− ζ)4

)2

dξdηdζ (4.35)

=

∫ 1

0

9

(1− ζ)2
dζ, (4.36)

is infinite.
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This means that a direct application of the argument in [25, section 4.1] would fail when

we attempt to use the Bramble-Hilbert lemma (Theorem 56) to obtain the estimate∣∣∣Π(s)

k,K̂
u
∣∣∣
r,K̂
≤ C |u|r,K̂ ∀r ∈ {0, . . . , k}. (4.37)

An attempt is made to avoid this problem in [12] by using the additional projector πr :

Hr+1(K)→ Pr satisfying

∀p ∈ Pr(K) πrp = p

on each element, K. This allows element-wise estimates to be established. Unfortunately,

there is no conforming interpolant onto element-wise polynomials for pyramidal elements

(see [63] or [84]). In particular, there will be discontinuities at the element boundaries,

which means that ‖u − πru‖1,Ω cannot be bounded. The alternative interpretation of πr

as a global projection onto polynomials would not allow the element-wise estimates to be

obtained.

Our solution starts with the observation that not all of the members of each U (s)
k (K) behave

as badly as the function v defined in (4.34). There are subspaces of polynomials and of

rational functions that can be differentiated more times before blowing up. For example, we

will see in the proof of Lemma 67 that v(ξ, η, ζ)ξr ∈ Hr+2(K̂). So, we start by developing

an analogue of (4.37) that, loosely speaking, allows us to retain as much regularity as

possible.

Theorem 59. Let Ω ⊂ Rn be an open set with Lipschitz boundary. Fix α ≥ 0 and let k ≥ α

be an integer. Suppose that:

• Rk ⊂ Hα(Ω) is a finite dimensional space which includes all polynomials of degree k;

• Π : Hα(Ω)→ Rk is a bounded linear projection;
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• There exist Vr ⊂ Hr(Ω) for each r ∈ {0, . . . , k} such that we can decompose

Rk = V0 ⊕ · · · ⊕ Vk.

Meaning that for a given u ∈ Hk(Ω), the interpolant, Πu ∈ Rk, may be decomposed into

unique functions, vr ∈ Vr,

Πu = v0 + · · ·+ vk.

Then we have the following estimates for some of the functions, vr:

• For each r satisfying α ≤ r ≤ k:

|vr|r ≤ C |u|r . (4.38)

• If, additionally, P̃r ⊂ Vr, where the space P̃r consists of polynomials of homogeneous

degree, r, then for each r satisfying α ≤ r + 1 ≤ k:

|vr|r ≤ C |u|r+1 + |u|r . (4.39)

Proof. For a given r ≥ α, writeWr = Vr∪Pr−1. It follows from the definitions thatWr ⊂ Rk

so we can let Ψr : Rk →Wr be any surjective linear projection. Ψr is a linear map between

finite spaces, so the operator (I −Ψr ◦Π) : Hr(Ω)→Wr ⊂ Hr(Ω) is bounded. Also, since

both Ψr and Π are projections, and Pr−1 ⊂ Pk ⊂ Rk we see that Pr−1 ⊂ ker(I − Ψr ◦ Π).

The Bramble-Hilbert lemma gives

‖(I −Ψr ◦Π)u‖r ≤ C |u|r .
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By the definition of Wr, we have (Ψr ◦Π)u = vr + p for some p ∈ Pr−1. So |u− vr − p|r ≤

C |u|r, which implies

|vr|r ≤ C |u|r + |u|r + |p|r = (C + 1) |u|r .

The proof of (4.39) follows a similar argument. The operator (I − Ψr ◦ Π) : Hr+1(Ω) →

Wr ⊂ Hr(Ω) is bounded because r+ 1 ≤ k. The additional condition, P̃r ⊂ Vr, means that

Pr ⊂Wr and so Pr ⊂ ker(I −Ψr ◦Π).

4.5 A new family of pyramidal approximation spaces

As identified in [12], the space U (0)
k is sub-optimal in that there exist smaller spaces which

contain the same complete space of polynomials and which are compatible with neighbour-

ing tetrahedral and hexahedral elements. Here we will identify subspaces, R(s)
k (K), of each

of the original approximation spaces, U (s)
k (K) that can be used to construct finite elements

with the same approximation and compatibility properties and that still satisfy a commut-

ing diagram property. This would be an interesting exercise in its own right but within the

context of this paper we shall see that the importance of these spaces is that they support

a decomposition in the manner of Theorem 59 into subspaces that still have enough “room”

for us to apply a Bramble-Hilbert type argument in Lemma 69.

We start the construction of these spaces in the infinite pyramid coordinate system using

spaces of k-weighted polynomials, Q[l,m]
k , which we define in terms of basis functions xayb

(1+z)c

where a,b and c are non-negative integers.

Q
[l,m]
k = span

{
xayb

(1 + z)c
: c ≤ k, a ≤ c+ l − k, b ≤ c+m− k

}
. (4.40)
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These spaces can be characterised via a decomposition into spaces of exactly r-weighted

polynomials,

Q
[l,m]
k =

k⊕
r=0

Qr+l−k,r+m−k,0r . (4.41)

It is also helpful to observe that xayb

(1+z)c 7→ ξaηb(1−ζ)c−a−b under the coordinate transforma-

tion, (η, ξ, ζ) = φ(x, y, z) given by (4.11). So if the representation in the infinite pyramid

coordinate system of some polynomial f(x̂) is f̃ ∈ Q
[l,m]
k then f is at most degree k in

(ξ, η, ζ) and at most degree l and m in (ξ, ζ) and (η, ζ) respectively.

Now define the spaces R(s)
k as

R(0)
k = Q

[k,k]
k , (4.42a)

R(1)
k =

(
Q

[k−1,k]
k+1 ×Q[k,k−1]

k+1 × {0}
)
⊕ {∇u : u ∈ Q[k,k]

k }, (4.42b)

R(2)
k =

(
{0} × {0} ×Q[k−1,k−1]

k+2

)
⊕
{
∇× u : u ∈

(
Q

[k−1,k]
k+1 ×Q[k,k−1]

k+1 × {0}
)}

, (4.42c)

R(3)
k = Q

[k−1,k−1]
k+3 . (4.42d)

The decomposition in the definitions means that with the identification made as in Sec-

tion 4.2.1, the exterior derivatives, d : R(s)
k → R(s+1)

k (precisely, the grad, curl and div

operators) are well defined. The gradient is injective on Q[k,k]/R; the curl is injective on(
Q

[k−1,k]
k+1 ×Q[k,k−1]

k+1 × {0}
)
and the divergence is a bijection from

(
{0} × {0} ×Q[k−1,k−1]

k+2

)
to Q[k−1,k−1]

k+3 , so the sequence,

R // R(0)
k

∇ // R(1)
k

∇×
// R(2)

k

∇· // R(3)
k

// 0

is exact. The following three lemmas relate these spaces to the U (s)
k spaces. To avoid the

proofs distracting from our main argument we have postponed them to Appendix 4.A.

105



Lemma 60. The spaces R(s)
k are subspaces of the U (s)

k :

R(s)
k ⊆ U

(s)
k ∀s ∈ {0, 1, 2, 3}.

In fact, for k ≥ 2 the R(s)
k are strict subsets of the U (s)

k .

Definition 61. For a given s ∈ {0, 1, 2, 3} and k ≥ 0, we define the approximation space9

on a pyramid, K, as those differential forms whose infinite coordinate representation lie in

R(s)
k :

R(s)
k (K) =

{
u ∈ Λ(s)(K) :

(
uĩ
)
∈ R(s)

k

}
. (4.43)

These spaces still contain all the polynomials that were shown to be present in the spaces

U (s)
k (K) in [63]. Specifically:

Lemma 62. If K is an affine (i.e. parallelogram-based) pyramid then, for k ≥ 1,

Pk ⊂ R(0)
k (K)(

Pk−1
)(3

s) ⊂ R(s)
k (K) s ∈ {1, 2, 3}

Just as with the original spaces, U (s)
k (K), the new spaces are compatible with Nedelec’s

elements, which were first outlined in [59]:

Lemma 63. Let K be a pyramid. For each s ∈ {0, 1, 2} there is a trace operator that takes

elements of H(s)(K) to some distribution on the boundary, ∂K. The image of R(s)
k (K)

9 c.f. the original approximation spaces, (4.15)
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under this operator consists of all traces of elements of H(s)(K) whose restriction to each

triangular or quadrilateral face of K is the trace of a corresponding kth order Lagrange,

edge and face approximation function on a neighbouring tetrahedron or hexahedron.

Note that the original approximation spaces, U (s)
k (K) were defined by explicitly identifying

the subsets of underlying spaces, U (s)
k (K) which had such polynomial trace spaces. For

the R(s)
k (K), the polynomial trace property is inherent and this additional step is not

required.

It is the demand that we can match polynomial traces on all faces simultanously in Lemma

63 which creates the need for rational functions in our spaces. For example, there is no

polynomial whose trace is the lowest order bubble on one triangular face and zero on all

other faces.

From Lemmas 60 and 63 we see that:

Corollary 64. The new approximation spaces are subspaces of the original approximation

spaces.

R(s)
k ⊆ U

(s)
k . s ∈ {0, 1, 2, 3}

We can reuse the interpolation operators from the old spaces, (4.21), to create interpolation

operators for the new spaces. Since the trace spaces of R(s)
k are the same as U (s)

k , we just

need to define projections Ξ
(s)
k,K : U (s)

k (K) → R(s)
k (K) that do not change the trace data.

We denote the subspace of all shape-functions in R(s)
k (K) with zero trace as R(s)

k,0(K).

Definition 65. For u ∈ U (s)
k (K), define Ξ

(s)
k,K : U (s)

k (K)→ R(s)
k (K) as

Ξ
(s)
k,Ku := vu + wu
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where vu ∈ R(s)
k (K) is some function satisfying vu|∂K = u|∂K and wu ∈ R(s)

k,0(K) is the

minimizer of the functional v → ‖d(u− vu − v)‖0 over the admissible set A(s)
k,K , defined as:

A(0)
k,K := R(0)

k,0(K) (4.44)

A(s)
k,K :=

{
v ∈ R(s)

k,0(K) : (v, dw) = 0 ∀w ∈ R(s−1)
k,0 (K)

}
, s = 1, 2, 3. (4.45)

Lemma 63 means that the trace spaces of R(s)
k (K) and U (s)

k (K) are identical, so it is always

possible to find an extension, vu. The spaces A(s)
k,K are non-empty because they always

contain the zero-element so there always exists a minimiser, wu. The uniqueness of wu (for

a given choice of vu) can be established using a Friedrichs-type inequality and it is then

clear that Ξ
(s)
k,Ku is independent of the choice of vu.

In fact, the operators Ξ
(s)
k,Ku are just the projection-based interpolants of U (s)

k (K) onto

R(s)
k (K). More details of projection-based interpolation can be found in [29], which also

establishes the important commutativity property: Ξ
(s+1)
k,K ◦ d = d ◦ Ξ

(s)
k,K .

Now define the maps Φ
(s)
k,K : H(s),1/2+ε(K)→ R(s)

k (K) as

Φ
(s)
k,K = Ξ

(s)
k,K ◦Π

(s)
k,K . (4.46)

Since both Ξ
(s)
k,K and Π

(s)
k,K commute with d, so does Φ

(s)
k,K . Note that if Π

(s)
k,K were a

projection based interpolant, then Φ
(s)
k,K would be too.

Of course, defining an interpolation operator is equivalent to defining degrees of freedom.

The above construction implies that the internal degrees for the new elements, R(s)
k are

analogous to those defined for U (s)
k in [63]. Whereas the old elements used bases for

Helmholtz decompositions of U (s)
k,0(K) as test functions for the degrees; the new elements

require Helmholtz decompositions of R(s)
k,0(K) which can be readily determined from the
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full-space Helmholtz decomposition implied in the definitions, (4.42). The external degrees

of freedom for both sets of elements are identical.

As with (4.22), for a given k, we can assemble a global approximation space,

S(s)
h = {v ∈ Hs(Ω) : v|K ∈ R(s)

k (K) ∀K ∈ Th} (4.47)

and define a global bounded interpolation operator Φ
(s)
h : H(s),1/2+ε(Ω)→ S(s)

h by (Φ
(s)
h u)|K =

Φ
(s)
k,K(u|K) for all K ∈ Th.

Now that we have defined the new elements, we shall present a decomposition that is

compatible with Theorem 59.

Definition 66. Given a pyramid, K and s ∈ {0, 1, 2, 3} define, for each r ≥ 0, the subspace

of all the s-forms in R(s)
k (K) whose components are exactly r-weighted when composed with

φ : K∞ → K̂.

X (s)
r,k (K) =

{
v ∈ R(s)

k (K) : vî ◦ φ ∈ Q
r+1,r+1,0
r

}
.

Note that although the domain of vî ◦ φ is K∞, the condition is on the components in the

reference coordinate system, vî, rather than the infinite pyramid coordinate system vĩ. In

effect, what we are saying is that each X (s)
r,k (K) is spanned by s-forms whose components

have the form

e(ξ, η, ζ) = ξaηb(1− ζ)r−a−b (4.48)

where a, b ≤ r + 1.

Lemma 67. For an affine pyramid, K and for each s ∈ {0, 1, 2, 3} and k ≥ 1, each of the

spaces X (s)
r,k (K) satisfy the criterion for Vr from Theorem 59. In fact,

X (s)
r,k (K) ⊂ Hr+1Λ(s)(K).
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Additionally, the semi-norm |·|r,K is actually a norm on each space X (s)
r,k (K).

Proof. Let u ∈ X (s)
r,k (K). Each uî can be written in terms of functions, e(ξ, η, ζ) = ξaηb(1−

ζ)r−a−b. When a+ b > r, these will be rational functions with a singularity at ζ = 1. We

need to understand their differentiability on the finite pyramid. Let γ = (γ1, γ2, γ3) be a

multi-index. The partial derivative,

∂γe

∂x̂γ
= Cξa−γ1ηb−γ2(1− ζ)r−b−a−γ3

where C = C(γ, a, b, r) is a (possibly zero) constant dependent only on γ, a, b and r. Hence∫
K̂

(
∂γe

∂x̂γ

)2

= C

∫ 1

0

∫ 1−ζ

0

∫ 1−ζ

0
ξ2a−2γ1η2b−2γ2(1− ζ)2r−2b−2a−2γ3dξdηdζ (4.49)

= C

∫ 1

0
(1− ζ)2(r+1−γ1−γ2−γ3)dζ (4.50)

This integral is finite if r + 1− |γ| > −1/2, so e ∈ Hbr+3/2−εc(K̂). By affine equivalence of

K and K̂, u ∈ Hbr+3/2−εc(K) ⊂ Hr+1(K).

Finally, (4.48) shows that each e(ξ, η, ζ) is either a rational function, or a polynomial of

degree exactly r, so |e|r,K̂ 6= 0. Hence |u|r,K 6= 0 and |·|r,K is a semi-norm on X (s)
r,k (K).

Lemma 68. For an affine pyramid, K and for each s ∈ {0, 1, 2, 3} and k ≥ 1, each of the

spaces R(s)
k (K) may be decomposed:

R(s)
k (K) = X (s)

0,k (K)⊕ · · · ⊕ X (s)
k,k(K)

Proof. The decomposition (4.41) makes the claim look plausible. The details are left to

Appendix 4.A.
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4.6 The effect of numerical integration on the pyramid

We are now ready to assemble all this machinery to prove a version of Theorem 55 for

pyramidal finite elements. The first step is to establish an error estimate for each of the

spaces in the decompositions in terms of the reference norms. Recall that in (4.26) we

defined Sk,K(·) as the quadrature scheme which is exact for functions in P 2k+1 on the

pyramid, K, and that we call the error functional for this scheme Ek,K(·). We will also use

the pointwise representation, A(u, v) = Aijuivj given in (4.2).

Lemma 69. For any s ∈ {0, 1, 2, 3} and an affine pyramid, K, let v ∈ X (s)
r,k (K), w ∈

R(s)
k (K) and A ∈ W k+1,∞Θ(s)(K). Then the error in the evaluation of the bilinear form,

(v, w)A,K using the scheme Sk,K(·) can be bounded in terms of the reference (semi-)norms

|Ek,K(A(v, w))| ≤ C det(DφK) |A|k−r+1,∞,K̂ |v̂|r,K̂ ‖ŵ‖0,K̂ (4.51)

where C = C(k) is a constant that depends only on k.

Proof. We can transform the error functional onto the reference pyramid using (4.27).

Ek,K(A(v, w)) = Ek,K
(
Aijviwj

)
= Ek,K̂

(
det(DφK)Aîĵvîwĵ

)
= det(DφK)Ek,K̂

(
Aîĵvîwĵ

)
.

(4.52)

We are able to take det(DφK) outside the integral because φK is affine. Define the linear

functional G ∈W k−r+1,∞Θ(s)(K̂)′ as

G(B) = Ek,K̂

(
B îĵvîwĵ

)
∀B ∈W k−r+1,∞Θ(s)(K̂). (4.53)

Since Sk(·) takes point values of its argument,

|G(B)| ≤ C‖B îĵvîwĵ‖∞,K̂ ≤ C‖B‖k−r+1,∞,K̂‖v̂‖∞,K̂‖ŵ‖∞,K̂ .
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Furthermore, all norms are equivalent on the finite dimensional spaces, X (s)
r,k (K̂) andR(s)

k (K̂),

and, by the last part of Lemma 67, |·|r,K̂ is a norm for X (s)
r,k . So G is continuous and

‖G‖ ≤ C |v̂|r,K̂ ‖ŵ‖0,K̂ . All of the equivalences of norms are done on the reference pyramid,

so the constant, C depends only on k (in particular, it does not depend on K).

From the definition of X (s)
r,k , we know that each vî ◦ φ ∈ Q

r+1,r+1,0
r and by Lemma 51 and

Corollary 64, wĵ ◦ φ ∈ Q
k,k,k
k for each ĵ ∈ Is. Now suppose that B is polynomial of degree

k − r, i.e. each component, B îĵ ∈ Pk−r for each î, ĵ ∈ Is. Then B îĵ ◦ φ ∈ Q[k−r,k−r]
k−r . We

can assemble these facts to see that

(
B îĵvîwĵ

)
◦ φ =

(
B îĵ ◦ φ

) (
vî ◦ φ

) (
wĵ ◦ φ

)
∈ Q2k+1,2k+1,2k+1

2k+1 .

So, by Lemma 54, the quadrature error, Ek,K̂
(
B îĵvîwĵ

)
= 0. Therefore, Pk−r ⊂ kerG and

we can apply Theorem 56 (the Bramble-Hilbert Lemma) to obtain

|G(A)| ≤ C |A|k−r+1,∞,K̂ |v|r,K̂ ‖w‖0,K̂ ∀A ∈W k−r+1,∞Θ(s)(K̂)

For some constant C = C(k). Substituting (4.53) and (4.52) gives the desired result.

We can now apply a scaling argument to get an element-wise estimate on the quadrature

error. Recall that we defined the interpolation operator, Φ
(s)
K : H(s),1/2+ε(K)→ R(s)

k (K) in

(4.46).

Lemma 70. Let K be an affine pyramid satisfying the shape-regularity condition, (4.8), for

some ρ ≥ 1. Fix s ∈ {0, 1, 2, 3} and take k ≥ 2. Then

∀u ∈ HkΛ(s)(K), w ∈ R(s)
k (K) and A ∈W k+1,∞Θ(s)(K) (4.54)∣∣∣Ek,K(A(Φ

(s)
k,Ku,w))

∣∣∣ ≤ (Chk+1)
)
‖A‖k+1,∞,K‖u‖k,K‖w‖0,K (4.55)

where C = C(k) a constant dependent only on k, and 0 < h < C.
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Proof. Use the decomposition given in Lemma 68 to write

Φ
(s)
k,Ku = v0 + · · ·+ vk where vr ∈ X (s)

r,k (K).

By Lemma 69, we know that for each r ∈ {0 . . . k},

|Ek,K(A(vr, w))| ≤ C |DφK | |A|k−r+1,∞,K̂ |vr|r,K̂ ‖w‖0,K̂ . (4.56)

The interpolation operator is bounded on H(s),1/2+ε(K) which is a subset of H3/2+εΛ(s)(K)

so Theorem 59 is applicable with α > 3/2. Pick some α ∈ (3/2, 2] so that when r ≥ 2 we

can use the first estimate, (4.38), to obtain:

|Ek,K(A(vr, w))| ≤ C |DφK | |A|k−r+1,∞,K̂ |u|r,K̂ ‖ŵ‖0,K̂ . (4.57)

Now apply the inequalities (4.9) and (4.10) to the semi-norms (and norm) on the right-hand

side to obtain

|Ek,K(A(vr, w))| ≤ C |DφK |hk−r+1−2sρ2s |A|k−r+1,∞,K
hr+s

|DφK |1/2
|u|r,K

hs

|DφK |1/2
‖ŵ‖0,K

= Chk+1 |A|k−r+1,∞,K |u|r,K ‖w‖0,K ,

where the generic constant, C still depends only on k.

When r = 1, we can similarly apply the second estimate from Theorem 59 given in (4.39)

to obtain:

|Ek,K(A(v1, w))| ≤ Chk+1 |A|k,∞,K
(
|u|1,K + h |u|2,K

)
‖w‖0,K . (4.58)

For r = 0, note that ‖v0‖0,K̂ ≤ C‖u‖3/2+ε,K̂ ≤ C
(
|u|0,K̂ + |u|1,K + |u|2,K̂

)
, so

|Ek,K(A(v0, w))| ≤ Chk+1 |A|k+1,∞,K

(
|u|0,K + h |u|1,K + h2 |u|2,K

)
‖w‖0,K (4.59)
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Summing over the vr, we obtain (4.55).

Summing these errors over each element gives an estimate for the global consistency error

due to the numerical integration (we shall ignore the O(hk+2) terms). Recall that in (4.47)

we defined the global approximation space, S(s)
h ⊂ H

(s)(Ω).

Theorem 71. Let s ∈ {0, 1, 2, 3}, k ≥ 2 and assume that S(s)
h is constructed using a shape

regular mesh, Th and finite elements, R(s)
k (K) for each K ∈ Th. Let A ∈ W k+1,∞Θ(s)(Ω)

and u ∈ H(s),k(Ω). Then the interpolant Φ
(s)
h u ∈ S(s)

h satisifies

sup
wh∈S

(s)
h

∣∣∣(Φ(s)
h u,wh)A,Ω − (Φ

(s)
h u,wh)A,h,k,Ω

∣∣∣
‖wh‖0

≤ Chk+1‖A‖k+1,∞,Ω‖u‖k,Ω

where we define (v, w)A,h,k,Ω :=
∑

K∈Th SK,k (A(v, w)). Here C > 0 is a constant which

only depends on k, and 0 < h < C.

Proof. Let wh ∈ S
(s)
h .∣∣∣(Φ(s)

h u,wh)A,Ω − (Φ
(s)
h u,wh)A,h,k,Ω

∣∣∣ ≤ C ∑
K∈Th

Ek,K(A(Φ
(s)
k,Ku,wh))

≤ Chk+1
∑
K∈Th

‖A‖k+1,∞,K‖u‖k,K‖wh‖0,K

≤ Chk+1‖A‖k+1,∞,Ω

∑
K∈Th

‖u‖2k,K

1/2∑
K∈Th

‖wh‖20,K

1/2

≤ Chk+1‖A‖k+1,∞,Ω‖u‖k,Ω‖wh‖0,Ω

Dividing through by ‖wh‖0,Ω gives the result.

In the proof of Lemma 69, the important condition for w was that wĵ ◦ φ ∈ Q
k,k,k
k . So, by

Lemma 51, we could equally well have taken w ∈ U (s)
k (K). Furthermore, S(s)

h ⊂ V
(s)
h means
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that Φ
(s)
h u ∈ V(s)

h . Hence we have a consistency error estimate for the global approximation

spaces V(s)
h based on the original elements:

Corollary 72. Under the same assumptions as Theorem 71, let V(s)
h be constructed using

finite elements based on the approximation spaces, U (s)
k (K). Then the interpolant Φ

(s)
h u

satisifies

sup
wh∈V

(s)
h

∣∣∣(Φ(s)
h u,wh)A,Ω − (Φ

(s)
h u,wh)A,h,k,Ω

∣∣∣
‖wh‖0

≤ Chk+1‖A‖k+1,∞,Ω‖u‖k,Ω.

The error estimate may be applied to more general bilinear forms because of the commu-

tativity d ◦ Π
(s)
h = Π

(s+1)
h ◦ d. For example, the consistency error for the elliptic bilinear

form, (4.28), is

sup
v∈S(0)

h

∣∣∣a(Φ
(0)
h u, v)− ah(Φ

(0)
h u, v)

∣∣∣
‖v‖1

≤ sup
v∈S(0)

h

(dΦ
(0)
h u, dv)A,Ω − (dΦ

(0)
h u, dv)A,h,k,Ω

‖dv‖0

≤ sup
w∈S(1)

h

(Φ
(1)
h du,w)A,Ω − (Φ

(1)
h du,w)A,h,k,Ω

‖w‖0

≤ Chk+1‖A‖k+1,∞,Ω‖du‖k,Ω

< Chk+1‖A‖k+1,∞,Ω‖u‖k+1,Ω.

A final note: as with the classical theory, the error estimates decay like O(hk+1) but these

are emphatically not hp-estimates. The degree, k enters into the constants in several places,

which is to be expected from arguments that rely on the Bramble-Hilbert Lemma.

4.7 Conclusion

The conventional finite element wisdom is that a kth order method requires a kth order

quadrature scheme. We have shown that this is still true for some high order pyramidal
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finite elements, but that the non-polynomial nature of pyramidal elements requires some

unconventional reasoning to justify the wisdom.

In the process, we have demonstrated new descriptions of families of high order finite

elements for the de Rham complex that satisfy an exact sequence property. We will examine

these elements in more detail in future work, but a couple of notes are worth recording

here.

• The approximation spaces for the first family in the sequence, R(0)
k (K) are the same

as Zaglmayr’s elements, as described in [31], and which [12] describes as optimal with

respect to their dimension and compatibility with neighbouring elements.

• Lemma 62 shows that the R(s)
k (K) spaces contain polynomials corresponding to the

tetrahedron of the first type. Zaglmayr has constructed pyramidal elements containing

polynomials corresponding to both types of tetrahedron, but only those corresponding

to the second type are presented in [31]. It would, clearly, be interesting to compare

our R(s)
k (K) spaces with the construction for the first type.
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4.A Properties of the new approximation spaces, R(s)
k

In this appendix, we have collected proofs of various Lemmas in section 4.5.

Proof of Lemma 60. The inclusions

Q[l,m]
n ⊆

(
Ql,m,min{l,m}−1
n +Q0,0,min{l,m}

n

)
⊆ Ql,m,min{l,m}

n . (4.60)

can be verified from the definition, (4.40). By the first inclusion, Q[k,k]
k ⊆ Qk,k,k−1

k +Q0,0,k
k ,

which gives the s = 0 case: R(0)
k ⊆ U

(0)
k .

The s = 0 result implies∇R(0)
k ⊆ ∇U

(0)
k . Thus, since∇U (0)

k ⊂ U
(1)
k , we have∇Q[k,k]

k ⊂ U (1)
k ,

which establishes the result for the second space in the decomposition for R(1)
k , given in

(4.42b). To deal with the first space in this decomposition, apply (4.60) and the definition

of U (1)
k given in (2.19), to obtain

(
Q

[k−1,k]
k+1 ×Q[k,k−1]

k+1 × {0}
)
⊆
(
Qk−1,k,k−1
k+1 ×Qk,k−1,k−1

k+1 × {0}
)
⊂ U (1)

k .

The s = 2 case may be established similarly. The space R(2)
k is defined via a decomposition

into two spaces, (4.42c). The second space in this decomposition can be seen to be a subset

of U (2)
k by taking curls of the s = 1 result. The first space is dealt with by applying (4.60)

directly to the definitions.

Another application of (4.60) gives R(3)
k = Q

[k−1,k−1]
k+3 ⊆ Qk−1,k−1,k−1

k+3 = U (3)
k .

Proof of Lemma 62. Since Pk is preserved by affine transformation, we can work in the

reference coordinate system, x̂. Recall the components of the proxy representation of some

u ∈ Λ(s)(K) in this coordinate system are denoted uî, where î ∈ Is. We will need to show

that if all the components, uî ∈ Pk (or, for s = 1, 2, 3, Pk−1) then u ∈ R(s)
k (K). This

is equivalent to showing ũ ∈ R(s)
k , which we will do using the transformation rule, (4.6),
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along with the explicit weights associated with the coordinate change φ : K∞ → K̂ given

in (4.13a)-(4.13d).

We start with the case s = 0. Let û ∈ Λ(0)(K) be any polynomial, û(ξ, η, ζ) = ξaηb(1− ζ)c

where a+ b+ c ≤ k. Then

ũ =
(
w

(0)
φ

)−1
û ◦ φ =

xayb

(1 + z)a+b+c
∈ Q[k,k]

k = R(0)
k .

Similarly, for s = 3, take û ∈ Λ(3)(K) as û(ξ, η, ζ) = ξaηb(1 − ζ)c for a + b + c ≤ k − 1.

Then

ũ =
xayb

(1 + z)a+b+c+4
∈ Q[k−1,k−1]

k+3 = R(3)
k .

The s = 1 case involves a little more work. Let u ∈ Λ(1)(K) have polynomial components,

uî ∈ Pk−1. We can find q ∈ Λ(0)(K) with representation q̂ ∈ Pk such that v = u−∇q has

third component (in reference coordinates), v3̂ = 0. By the result for s = 0, q ∈ R(0)
k (K),

and so (by (4.42b)) ∇q ∈ R(1)
k (K). We need to show that v ∈ R(1)

k (K̂). Both v1̂ and v2̂

are in P k−1. Suppose first that v1̂ = ξaηb(1− ζ)c where m := a+ b+ c ≤ k− 1 and v2̂ = 0.

ṽ =
(
w

(1)
φ

)−1
v̂ ◦ φ =

1

(1 + z)2


1 + z 0 0

0 1 + z 0

−x −y 1




xayb

(1+z)m

0

0



=


xayb

(1+z)m+1

0

− xa+1yb

(1+z)m+2

 =
1

(1 + z)m+1


(

1− a+1
m+1

)
xayb

− b
m+1x

a+1yb−1

0

+ 1
m+1∇

xa+1yb

(1 + z)m+1
.

Compare this last expression with the definition, (4.42b), to determine that ṽ ∈ R(1)
k . Note

that when a = m (which includes the case a = k−1), the first term vanishes, because b = 0
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and 1− a+1
m+1 = 0.10 An identical calculation establishes the same result when v1̂ = 0 and

v2̂ = ξaηb(1− ζ)c.

For s = 2, the change of coordinates formula for u ∈ Λ(2)(K) is

ũ =
(
w

(2)
φ

)−1
û ◦ φ =

1

(1 + z)3


1 0 x

0 1 y

0 0 1 + z



u1̂

u2̂

u3̂

 ◦ φ (4.61)

Suppose that u1̂ = ξaηb(1− ζ)c with m := a+ b+ c ≤ k − 1. Apply (4.61) to see that the

contribution to ũ is
(

xayb

(1+z)m+3 , 0, 0
)t
. Let p = 1

m+2
xayb

(1+z)m+2 ∈ Q
[k−1,k−1]
k+1 and observe that

xayb

(1+z)m+3 = −∂p
∂z and ∂p

∂x = a
m+2

xa−1yb

(1+z)m+2 ∈ Q
[k−1,k−1]
k+2 (the case b = m implies that a = 0

and therefore ∂p
∂x = 0, so the final inequality in (4.40) is not violated). Hence

(
w

(2)
φ

)−1


ξaηb(1− ζ)c

0

0

 ◦ φ = ∇×


0

p

0

−


0

0

∂p
∂x

 ∈ R(2)
k

Polynomials in the second component can be dealt with similarly. When u3̂ = ξaηb(1− ζ)c,

the contribution to ũ is
(

xa+1yb

(1+z)m+3 ,
xayb+1

(1+z)m+3 ,
xayb

(1+z)m+2

)t
. Hence

(
w

(2)
φ

)−1


0

0

ξaηb(1− ζ)c

 ◦ φ = ∇× 1

m+ 2


− xayb+1

(1+z)m+2

xa+1yb

(1+z)m+2

0

+


0

0(
1− a+b+2

m+2

)
xayb

(1+z)m+2

 ∈ R(2)
k .

10 In other words, (ξa, 0, 0)t is an exact 1-form.
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Note that xayb

(1+z)m+2 ∈ Q
[k−1,k−1]
k unless a = m or b = m, but in these cases,

(
1− a+b+2

m+2

)
=

0.11

Proof of Lemma 63. An alternative, but less self-contained, way of stating this Lemma

would be to claim that the trace spaces of the R(s)
k (K) elements are identical to those

of the original U (s)
k (K) elements, which satisfy exactly the same compatibility property.

Consequently, the strategy and tools of Lemma 40 may be reapplied in an identical fashion.

We will therefore just provide a sketch of how this may be done.

First we need to show that the restrictions of the traces of the R(s)
k (K) functions to each

face lie in the trace spaces of the corresponding tetrahedral or hexahedal approximation

spaces. Secondly we need to show that any valid trace can be achieved by some member of

R(s)
k (K).

For the first step, convenient definitions of the tetrahedral and hexahedral spaces may be

found in [58] and the traces of these spaces are identified explicitly in (2.11). It is just a

matter of exhaustive checking to determine that the inclusion holds. As an illustration,

observe that members of the R(0)
k which are non-zero on the face y = 0 of the infinite

pyramid can be expressed in terms of monomials xa

(1+z)c , where a + c ≤ k, which map to

ξaζk−a−c, which will span all polynomials of degree k on the face η = 0 of the finite pyramid,

which is precisely the trace space of the kth order Lagrange tetrahedron.

The second step is equivalent to requiring that the combined external degrees of freedom

inherited from the tetrahedra and hexahedra across all the vertices, edges and faces of the

pyramid be dual to the trace spaces on the pyramid. So it can be proved by demonstrating a

11 Just as earth-shattering, this is the observation that (0, 0, ξa)t and (0, 0, ηb)t are exact
2-forms.
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linearly independent set of pyramidal shape functions with non-zero traces that is the same

size as the set of external degrees of freedom. This task can be made more manageable by

instead showing that it is possible to achieve the lowest order bubble on each face, edge and

vertex of the pyramid that is zero on every other face, edge or vertex, respectively. (N.B.

For completeness, in appendix 3.A, we actually presented an example of all the bubbles, not

just the lowest order). Happily, the shape functions associated with the external degrees of

freedom presented for the U (s)
k (K) in tables 3–1, 3–2 and 3–3 also suffice for the R(s)

k (K).

Proof of Lemma 68. Each X (s)
r,k is a subset of R(s)

k , so

X (s)
0,k (K)⊕ · · · ⊕ X (s)

k,k(K) ⊂ R(s)
k (K)

For the reverse inclusion, we will deal with each s ∈ {0, 1, 2, 3}, in turn. For every s ∈

{0, 1, 2, 3}, the transformation rule, (4.6), gives û ◦ φ = w
(s)
φ ũ.

For 0-forms, the weight in the change of coordinates formula w
(0)
φ is equal to 1 so any

u ∈ R(s)
k (K) satisfies û ◦ φ = ũ ∈ R(0)

k = Q
[k,k]
k . The decomposition, (4.41) gives

Q
[k,k]
k = Q0,0,0

0 ⊕ · · · ⊕Qk,k,0k

which is a subset of Q1,1,0
0 ⊕ · · ·Qk+1,k+1,0

0 so u ∈ X (0)
0,k (K)⊕ · · · ⊕ X (s)

k,k(K).

For the cases s = 1 and s = 2, we will consider a basis for R(1)
k (K) and show that each

element, u, of the basis is a member of X (1)
r,k (K) for some r ∈ {0 . . . k}, which amounts to

showing that each uî ◦ φ ∈ Q
r+1,r+1,0
r .

From the definition given in (4.42c) it’s natural to consider three cases for an element of a

basis for R(1)
k (K). First suppose that ũ ∈

(
Q

[k−1,k]
k+1 × 0× 0

)
with u1̃ = xayb

(1+z)c . From the
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definition of Q[k−1,k]
k+1 we see that 0 ≤ a ≤ c − 2 and 0 ≤ b ≤ c − 1 and so 2 ≤ c ≤ k + 1.

Then w(1)
φ ũ =

(
xayb

(1+z)c−1 , 0,
xa+1yb

(1+z)c−1

)t
and so each uî ∈ Q

a+1,b,0
c−1 ⊂ Qr,r,0r where r = c− 1 ∈

{1 . . . k}. The second case is when ũ ∈
(

0×Q[k,k−1]
k+1 × 0

)
and the reasoning is identical to

the first. Finally suppose that ũ = ∇p where p = xayb

(1+z)c ∈ Q
[k,k]
k . When c = 0, p = 1 and

∇p = 0. So we can take c ≥ 1 and see that each entry of

w
(1)
φ ũ =


a xa−1yb

(1+z)c−1

b xayb−1

(1+z)c−1

(a+ b− c) xayb

(1+z)c−1


is in Qr+1,r+1,0

r for some r ∈ {0 . . . k}.

When u ∈ R(2)
k (K), lets start with the case ũ ∈

(
0× 0×Q[k−1,k−1]

k+2

)
and write u3̃ = xayb

(1+z)c .

Again, it is simple to check that each of the entries in the vector w(2)
φ ũ =

(
− xa+1yb

(1+z)c−2 ,− xayb+1

(1+z)c−2 ,
xayb

(1+z)c−2

)t
is inQr+1,r+1,0

r for some r ∈ {0 . . . k}. Now suppose that ũ = ∇×ṽ where ṽ ∈
(
Q

[k−1,k]
k+1 × 0× 0

)
with v1̃ = xayb

(1+z)c . From the s = 1 case, we know that c ≥ 2 and so its straightforward to

verify that each of the entries in

w
(2)
φ ũ = (1 + z)2


1 + z 0 −x

0 1 + z −y

0 0 1




0

−cxayb
(1+z)c+1

bxayb−1

(1+z)c

 =


−bxa+1yb

(1+z)c−2

−cxayb
(1+z)c−2 + −bxayb

(1+z)c−2

bxayb−1

(1+z)c−2


are inQr+1,r+1,0

r for some r ∈ {0 . . . k}. The argument for ũ = ∇×ṽ with ṽ ∈
(

0×Q[k,k−1]
k+1 × 0

)
is the same.

Finally, u ∈ R(3)
k (K) means that ũ ∈ Q

[k−1,k−1]
k+3 . The weight w(3)

φ = 1
(1+z)4 so û ◦ φ =

1
(1+z)4 ũ ∈ Q

[k−1,k−1]
k−1 and the reasoning is the same as the 0-form case.
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CHAPTER 5
Some numerical experiments using pyramidal elements

5.1 Introduction

Several previous works have reported the results of numerical experiments using pyrami-

dal elements. High order H1-conforming elements were used to compute solutions of the

Helmholtz equation in [12, 74]; low order H(curl)-conforming elements were used to com-

pute solutions to magnetostatics and Maxwell eigenvalue problems in [43, 28].

In this chapter we will compute a solution to Stokes problem using high order H(curl)-,

H(div)- and L2-conforming pyramidal elements. The calculations will use PyPyramid, a

software library that implements the pyramidal elements based on the approximation spaces

R(s)
k described in chapter 4. The software is not being submitted for consideration as part

of this thesis, but it is available from a public repository located at http://github.com/

joelphillips/pypyramid. The README at the top level of the repository explains how

to reproduce all the results that we will present below.

The library is written in Python and makes extensive use of the NumPy and SciPy toolkits

[50]. Matplotlib and MayaVi are used for visualisation [48, 67]. Python is already available

on many desktop computers and all the libraries are freely downloadable. Alternatively,

Enthought, the makers of MayaVi, provide a convenient Python install with all these li-

braries (and many more) already installed, which is freely available to academic users,

http://www.enthought.com/products/edudownload.php.
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At the time of writing, PyPyramid is capable of calculating approximations to mixed prob-

lems on arbitrary unstructured pyramidal meshes using uniform p-refinement, although the

meshes that we will use here will be structured. Enhancing the code to support variable

p and hp-refinement would not be difficult, nor would including tetrahedral, hexahedral

or prismatic elements. However, since there are several good quality open source finite

element software libraries that already support all of these (and many more) features (e.g.

deal.II, FEniCS and DUNE, [9, 47, 10]) a more sensible approach to the dissemination of

the pyramidal elements would be to implement them within one of these existing projects;

hopefully PyPyramid will be a useful reference implementation for this process.

The previous paragraph begs the question: why bother to write PyPyramid from scratch,

rather than work within one of these existing frameworks? There was some value in the

experience gained by writing all of the components of a 3D finite element code, but the

main reason is that while adding a new element type for an existing shape (tetrahedron,

hexahedron, etc.) to any of the libraries is relatively straightforward, adding a new shape

appears to be significantly more difficult.

5.2 Stokes flow

In this section we will compute the solution to Stokes problem using H(curl)-, H(div)-

and L2-conforming pyramidal elements. We seek a velocity field, u, and pressure, p, in a
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simply-connected Lipschitz domain, Ω, with boundary, Γ = ∂Ω, satisfying:

−4u+∇p = f in Ω, (5.1a)

∇ · u = 0 in Ω, (5.1b)

uT = gT on Γ, (5.1c)

uN = gN on ΓN , (5.1d)

p = φ on ΓP , (5.1e)

where Γ = ΓN ∪ ΓP , uN = u · n and uT = u− nu · n.

Stokes problem describes the flow of a highly viscous incompressible fluid subject to a

forcing, f . We specify the tangential components of the velocity, uT , everywhere on the

boundary, but, as we shall see, we must choose to specify either the normal component of

the velocity, uN , or the pressure. We label the (disjoint) subsets of the boundary on which

we specify uN as ΓN and the pressure as ΓP .

To solve problem (5.1) using finite elements, we first need to write down a weak formulation.

We will broadly follow the approach in [26], which is similar in spirit to that used to

demonstrate the high order hexahedral and tetrahedral edge and face elements in [60,

61].

We can use the identity, −4u = ∇×∇× u−∇∇ · u, and introduce the vorticity,

w = ∇× u (5.2)

to rewrite (5.1a) as

∇× w +∇p = f (5.3)
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Now we multiply (5.2), (5.3) and (5.1b) by test functions to obtain

(w, τ)Ω − (∇× u, τ)Ω = 0 (5.4a)

(∇× w, v)Ω + (∇p, v)Ω = (f, v)Ω (5.4b)

(∇ · u, q)Ω = 0 (5.4c)

After a couple of formal integrations-by-parts, we obtain:

(w, τ)Ω − (u,∇× τ)Ω = (uT , n× τ)Γ (5.5a)

(∇× w, v)Ω − (p,∇ · v)Ω = (f, v)Ω − (p, v · n)Γ (5.5b)

(∇ · u, q)Ω = 0 (5.5c)

Using the notation of section 4.2.2, it is now clear that we should take w, τ ∈ H(1)(Ω) =

H(curl,Ω); u, v ∈ H(2)(Ω) = H(div,Ω) and p, q ∈ H(3)(Ω) = L2(Ω). In this formula-

tion, the pressure boundary condition, (5.1e), is natural, but the normal velocity boundary

condition, (5.1d), must be built into to the function spaces. Write

H(2)(Ω; b) =
{
v ∈ H(2)(Ω) : v · n|ΓN = b

}
(5.6)

Our full problem is now to find w ∈ H(1)(Ω), u ∈ H(2)(Ω; gN ) and p ∈ H(3)(Ω) such that:

(w, τ)Ω − (u,∇× τ)Ω = (gT , n× τ)Γ ∀w ∈ H(1)(Ω) (5.7a)

−(∇× w, v)Ω + (p,∇ · v)Ω = (φ, v · n)ΓP − (f, v)Ω ∀v ∈ H(2)(Ω; 0) (5.7b)

(∇ · u, q)Ω = 0 ∀q ∈ H(3)(Ω) (5.7c)
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This is a mixed problem of the form
A Bt 0

B 0 Ct

0 C 0



w

u

p

 =


G

Φ− F

0

 (5.8)

where A = I, B = curl and C = div. The theory of mixed problems from section 1.3 can

be applied in two steps: first we must show that the operator, C =

[
0 C

]
, has closed

range and that the operator, A =

 A Bt

B 0

, is invertible on kerC. To show that A is

invertible, we require that B has closed range and that A is invertible on kerB. All these

conditions follow immediately from the exactness of the de Rham complex, which enables

us to construct a Helmholtz decomposition for each space. We should expect, therefore,

that an approximate solution based on a discretisation of these spaces using finite elements

that satisfy a commuting diagram property should exist and be stable and should satisfy a

quasi-optimal error estimate.

For our model problem, we will consider a fluid travelling through a square pipe under the

influence of a pressure gradient. The relevant parameters for problem (5.1) are illustrated

in Figure 5–1.

Specifically, let Ω = [0, 1]3, the unit cube. The “open” boundary, ΓP , consists of the

faces, ΓPα = {(x, y, z) ∈ Γ : x = α}, for α = 0, 1, over which we will prescribe the external

pressures, p = α on ΓPα . ΓN = Γ \ ΓP consists of the “closed” faces, y = 0, y = 1, z =

0, z = 1, on which we prescribe gN = 0. We will assume no-slip boundary conditions on

the pipe and no externally imposed velocity at the entrance and exit to the pipe, so gT = 0

everywhere. We also take the forcing, f = 0.
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Figure 5–1: Domain for stokes flow experiment

5.3 Reference solution

It is easy to verify that a (and hence the unique) solution to the model problem is the

flow

u(x, y, z) = (w(y, z), 0, 0) (5.9)

p(x, y, z) = x (5.10)

where w solves Poisson’s equation on the unit square:

4w = 1 in S = [0, 1]2 (5.11a)

w = 0 on ∂S (5.11b)
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There are many ways to calculate w accurately. We will use a spectral element method,

where H1
0 (S) is approximated using the tensor product space,

Vp = {x(1− x)y(1− y)v(x, y) : v ∈ Qp,p} . (5.12)

A natural choice for a basis for Vp is the set, {vij(x, y) = φi(x)φj(y) : 0 ≤ i, j ≤ p}, where

φn(t) = t(1− t)J1,1
n (2t− 1) and J1,1

n is the nth (1,1)-Jacobi polynomial. The functions, φn,

are known as (shifted) integrated Legendre polynomials because their derivatives, d
dtφn(t) =

−1
(n+1)Ln+1(2t− 1), where Ln is the nth Legendre polynomial. With this choice, the entries

of the stiffness matrix associated with (5.11) are

Mij,i′j′ :=

∫
S
∇vij · ∇vi′j′ =

1

(i+ 1)(i′ + 1)
Λi+1,i′+1Φj,j′ +

1

(j + 1)(j′ + 1)
Λj+1,j′+1Φi,i′

where Λm,n =
∫ 1

0 Lm(t)Ln(t)dt and Φm,n =
∫ 1

0 φm(t)φn(t)dt. The orthogonality of the

Legendre polynomials means that Λm,n = 1
2n+1δmn and the orthogonality of the Jacobi

polynomials, J1,1
n , with respect to the weight, (1− t2) means that Φm,n = 0 if |m− n| > 2.

Consequently, Mij,i′j′ is highly sparse.

From figure 5–2, we can see that this method appears to converge fast. We will use a

calculation with p > 100 as the reference solution with which we will compare our pyramidal

finite element approximations. Note that the convergence is not exponential; this is because

the higher derivatives of the solution, w, are not bounded near the corners of the square.

Exponential convergence could be achieved using an hp-method [44], but we have no need

of that additional complication here. As a consequence of this lack of regularity, we should

also expect limits on the p-convergence of any sequence of approximations to the model

problem.

129



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0
.0

7
0

-0
.0

6
0

-0.050

-0.040

-0.030

-0.020
-0.010

0 10 20 30 40 50 60
polynomial degree

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

re
la

ti
v
e
 e

rr
o
r

Figure 5–2: Left: approximate solution of problem (5.11) using V40 ⊂ H1
0 (S). Right:

relative L2 error of the approximate solution, using V120 as the true solution.

Figure 5–3: Pyramidal-cubic meshes for N = 1 and N = 3
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5.4 Pyramidal finite element formulation

We generate a structured pyramidal mesh, TM , for the cube, [0, 1]3 by first dividing it

into M3 sub-cubes of side 1/M and then dividing each of these cubes into 6 pyramids.

Figure 5–3 illustrates this process for M = 1 and M = 3. Clearly, dim(TM ) = 6M3. To

approximate the spaces, H(s)(Ω), s = 1, 2, 3, from problem (5.7) we fix some k ≥ 1 and

use the approximation spaces, R(s)
k (K), from (4.43), on each element, K ∈ TM . Following,

(4.47), we will call the resulting global approximation spaces,

S(s)
M = {v ∈ Hs(Ω) : v|K ∈ R(s)

k (K) ∀K ∈ TM}. (5.13)

To build a discrete approximation to (5.6) it is tempting to write S(2)
M (b) = S(2)

M ∩H(2)(Ω; b),

but this definition would mean that S(2)
M (b) would be empty if b were not in tr(2)(S(2)

M ), where

tr(2) : H(2)(Ω)→ H(2)(ΓN ) is the trace operator. To resolve this, we will take

S(2)
M (b) = S(2)

M ∩H
(2)(Ω; tr(2) Φ

(2)
h Ext(2) b),

where Φ
(2)
h : H2(Ω)→ S(2)

M is the interpolation operator associated with the finite element

approximation and Ext(2) : H(2)(ΓN ) → H(2)(Ω) is an extension operator (i.e. a right

inverse to the trace).

To approximate the solution to problem (5.7), we will find wh ∈ S
(1)
M , uh ∈ S

(2)
M (gM ) and

ph ∈ S
(3)
M such that:

(wh, τh)Ω − (uh,∇× τh)Ω = (gT , n× τh)Γ ∀wh ∈ S
(1)
M (5.14a)

−(∇× wh, vh)Ω + (ph,∇ · vh)Ω = (φ, vh · n)ΓP − (f, vh)Ω ∀vh ∈ S
(2)
M (0) (5.14b)

(∇ · uh, qh)Ω = 0 ∀qh ∈ S
(3)
M (5.14c)
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Figure 5–4: Solution to problem (5.14) using 4th-order elements
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Figure 5–4 shows the velocity, uh, of the solution of problem (5.14) with the model boundary

conditions given in figure 5–1. For this image, we chose k = 4 and M = 2 to generate the

finite element spaces. In figure 5–5 we take a cross-section at x = 0.3 and show the x-

component of uh; the error in the x-component of uh (compared to the reference solution,

u, computed using the spectral element method given in section 5.3) and the pressure ph.

Note that by (5.10), the exact solution for the pressure at x = 0.3 is p = 0.3 uniformly in

y and z.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0
.0

7
0

-0
.0

6
0

-0.050

-0.040

-0.030

-0.020
-0.010

0.000

0.000

0.000

0.000

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00060

0.00045

0.00030

0.00015

0.00000

0.00015

0.00030

0.00045

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.29935

0.29950

0.29965

0.29980

0.29995

0.30010

0.30025

0.30040

0.30055

Figure 5–5: The solution of the discrete problem (5.14) on the slice x = 0.3 using a mesh
composed of forty-eight 4th-order elements (M = 2, k = 4). Left: x-component of the
velocity, uh; Centre: pointwise error of the velocity, u− uh; Right: pressure, ph.

5.5 Convergence

Finally, we will analyse the performance of the method as we vary k and M . In each case,

we solve the linear system arising from the discrete problem, (5.14), using the sparse direct

solver provided by UMFPACK. This places a practical limit on the size of the system of

around 30000 degrees of freedom. An iterative method (e.g. BiCGStab) applied to the

Schur complement would allow us to solve much bigger problems. Table 5–1 shows the size

of the linear system, (5.8), for various choices of k and M .

133



Table 5–1: Number of degrees of freedom for the approximation of the model Stokes prob-
lem, using kth order elements on a mesh of M ×M ×M cubes, each containing 6 pyramids

M
k 1 2 3 4 5 6

2 282 1468 4230 9240 17170 28692
3 918 4842 14040 30780
4 2140 11352 33012
5 4140 22030
6 7110 37908
7 11242 60018
8 16728
9 23760
10 32530
11 43230

Table 5–2: Error in the velocity of the solution to the model Stokes problem, ‖u−uh‖L2(Ω),
using kth order elements on a mesh of M ×M ×M cubes, each containing 6 pyramids

M
k 1 2 3 4 5 6

2 0.4856 0.1160 0.01215 0.001769 3.933× 10−4 1.331× 10−4

3 0.3490 0.05561 0.004352 5.476× 10−4

4 0.2635 0.03092 0.001866
5 0.2154 0.01989
6 0.1790 0.01395
7 0.1600 0.01149
8 0.1411
9 0.1180
10 0.09727
11 0.1037
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In table 5–2 we record the error in the approximate velocity uh. The reference solution, u,

is calculated using V200, the spectral approximation space with polynomials of degree 200

in each direction.

Figure 5–6: h- and p-convergence for problem (5.14). The error on each chart is ‖u −
uh‖L2(Ω), where uh is the solution computed with the k-order elements on the mesh TM
and u is the reference solution computed using V200
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Table 5–3: Implied order of convergence, m =
log(eM/eM+1)
log((M+1)/M) for eM = ‖u− uh‖L2(Ω), where

uh is calculated using kth order elements on a mesh of M ×M ×M cubes

k
M 2 3 4 5 6 7 8 9 10

1 0.815 0.976 0.904 1.013 0.727 0.941 1.517 1.837 -0.672
2 1.813 2.040 1.978 1.945 1.258
3 2.533 2.944

The charts in figure 5–6 show behaviour of the error as we vary h = 1/M and k. For

k = 1, 2, 3, table 5–3 collects the implied orders of convergence, m, assuming that ‖u −

uh‖0 = Chm. We have not measured the error of ∇ × uh, so we cannot make a direct

comparison with any analogy of Lemma 2. However, by Lemma 62, the kth order elements
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contain only the complete spaces of polynomials of degree k − 1, so Lemma 2 would not

lead us to expect anything better than:

‖u− uh‖0 = C(k)hk. (5.15)

There is some suggestion from the data in table 5–3 that it may be the case that ‖u−uh‖0 =

O(hk). Note that log(e7/e11)
log(11/7) = 0.960, so the growth for k = 1 atM = 10 does not necessarily

reflect a lack of convergence. The departure from the trend at k = 2, M = 6 is less easy to

explain and needs further investigation.

The p-convergence is, again, at least consistent with the exponential convergence predicted

by (1.29); although, as noted above, we have no reason to expect that ‖u‖k is bounded for

all k so we should not expect asymptotic exponential convergence. A final advert for p-

and hp-methods is the observation that whilst the combination M = 3, k = 4 has 30780

degrees of freedom, the error is 25 times smaller than the error for M = 6, k = 2, with

37908 degrees of freedom.
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CHAPTER 6
Summary and outlook

Pyramidal finite elements have been a topic of active research for nearly twenty years. The

main contributions to the subject presented in this thesis are:

• the construction of high order pyramidal approximation spaces that are compatible

with existing high order tetrahedral and hexahedral approximation spaces for each of

the spaces of the de Rham complex (Definitions 24 and 61).

• the equipping of these approximation spaces with degrees of freedom that induce

interpolation operators that satisfy a commuting diagram property, ensuring that the

resulting finite elements can be used to build stable approximations to mixed problems

(Section 3.1, equation (4.46) and Theorem 45);

• a proof that Stroud’s conical product rules can be used to construct numerical in-

tegration formulae for pyramidal finite elements which do not decrease the order of

convergence (Theorem 71);

• the use of these pyramidal finite elements to construct high order approximations

to the solution of a mixed PDE and some preliminary numerical convergence results

(Chapter 5).

Many of the ancillary results and techniques that we have used are interesting in their own

right. Some of the highlights are:

• a proof of the necessity of non-polynomial basis functions on pyramids (Theorem 4);
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• the introduction of the infinite pyramid as a tool for analysing pyramidal approxima-

tion spaces (Section 2.2);

• explicit constructions of shape functions for pyramidal elements (Tables 3–1, 3–2 and

3–3);

• a concise definition of a family of pyramidal approximation spaces (equations (4.42));

• the idea of constructing finite elements based on a reference coordinate system, rather

than a reference element (Section 4.2.3);

• a generalisation of the Bramble Hilbert Lemma (Theorem 59);

The main contributions listed above, along with the unpublished work of Zaglmayr, have

enabled authors of generic mixed hp-finite element libraries to begin to offer pyramidal

elements as part of their standard toolkits [31]. However, there are still some outstanding

questions and some un-investigated implications of our work. We detail some of these

below.

The infinite pyramid

The pyramidal quadrature rule introduced in section 4.2.4 is commonly interpreted as the

consequence of using a Duffy transformation to map the pyramid to a cube and then

constructing a tensor product quadrature rule that incorporates the weight (1 − ζ)2 that

comes from the determinant of the Jacobian of the transformation. It is natural to ask:

shouldn’t we also construct the pyramidal approximation spaces on a cube, rather than

the infinite pyramid? The naive approach of taking the Nedelec hexahedral elements and

pulling them back to the pyramid is shown to fail in [42], so let us go in the other direction

and see what our approximation spaces look like when pulled back to the cube. It is easy

to see what these spaces look like for the second family of elements. Let C = [0, 1]3 ⊂ R3
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be the cube. We will parametrise the cube using the coordinates (x, y, ζ) and define the

map φC : K∞ → C as φC : (x, y, z) 7→ (x, y, z/1 + z). This means that φC ◦ φ−1 is the

Duffy transformation. Using φC to pull-back (or change coordinates) for the expressions in

(4.42), we obtain:

R(0)
k (C) = P

[k,k]
k ,

R(1)
k (C) =

(
P

[k−1,k]
k+1 × P [k,k−1]

k+1 × {0}
)
⊕ {∇u : u ∈ P [k,k]

k },

R(2)
k (C) =

(
{0} × {0} × P [k−1,k−1]

k+2

)
⊕
{
∇× u : u ∈

(
P

[k−1,k]
k+1 × P [k,k−1]

k+1 × {0}
)}

,

R(3)
k (C) =

1

(1− ζ)2
P

[k−1,k−1]
k+3 = P

[k−1,k−1]
k+1 ,

where

P
[l,m]
k := span

{
xayb(1− ζ)c : c ≤ k; a ≤ c+ l − k; b ≤ c+m− k; a, b, c ≥ 0

}
.

Our reason for using the infinite pyramid is partly historical: it is the tool that we started

with and it works. A more aesthetically pleasing justification arises from the observation

that we can view the infinite pyramid, combined with its point at infinite, as a submanifold

of projective 3-space; it is then topologically the same as the as the finite reference pyramid,

Ω. In this framework, the projective map, φ, is a diffeomorphism, whereas the Duffy

transformation is not a bijection: the entire top face of the cube maps to the tip of the

pyramid. It is not clear, however, whether that has any significant consequences. It would

be interesting to examine what happens to our arguments, for example Lemma 51 and

Definition 66 under Duffy coordinates.

In fact, the spaces could be defined directly on the finite reference pyramid and, in some

sense, the presentation of the shape functions in section 3.A does exactly that. However, the

pullback introduces dependencies between components of the vector-valued spaces, which
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makes the indirect definitions given via the cube or the infinite pyramid much easier to

work with.

Non-affine transformations

The pyramidal approximation spaces contain the complete space of polynomials of a given

degree and so any pyramid that can be mapped to the reference pyramid using an affine

transformation will also contain this polynomial space However, it is common in finite

element implementations to use more general transformations, in particular, quadrilaterals

and hexahedra may be transformed bi- and tri-linearly. Bedrosian introduced a pyramidal

transformation that is bilinear in the ξ, η coordinates, but is affine in any plane that passes

through the top of the pyramid, [11]. It is shown in [12] that the tensor product structure of

the H1-conforming element means that pyramidal elements that are related to the reference

domain by a Bedrosian transformation ought not to lose approximability. Based on the work

in [4], we might expect that the situation is less straightforward for H(curl)- and H(div)-

conforming elements.

Orthogonal bases

An L2-orthogonal basis for R(0)
k (K) is constructed in [12] using Jacobi polynomials (the

technique is very similar to that given in [72]). We did not use this basis for PyPyramid

because the generalisation to the spaces R(s)
k (K), s = 1, 2 is not obvious. However, it ought

to be possible and would likely have benefits for either the conditioning of the resulting

stiffness matrix or the inversion of the local Vandermonde matrix used in the stiffness

matrix assembly.
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Anisotropy

One of the advantages of hexahedral elements is that they allow anisotropic p-refinement.

The tensor product structure of the pyramidal approximation spaces suggests that this

should be also possible for pyramids in the ξ, η plane. In particular, the definition of the

R(s)
k family in terms of the k-weighted polynomials given in (4.40) looks like it would allow

this to be implemented easily.

Non-conformity

Underlying this work has been the assumption that conforming methods are desirable.

Non-conforming methods, for example Discontinuous Galerkin or Mortar methods, provide

another technique for patching tetrahedra to hexahedra. In some circumstances, non-

conforming methods are inappropriate: it is likely to be easier to insert a conforming

pyramid element into a code that currently uses conforming tetrahedral or hexahedral

elements than to introduce an entirely new paradigm. However, in other situations, non-

conforming methods may be a valid alternative. It would be interesting to compare the

different approaches. Is it simpler to use non-conforming elements to support hanging

nodes, or does the extra flexibility provided by pyramids make conforming elements on

hybrid meshes more competitive? Which approach performs better?

More numerics

The numerical example in chapter 5 is rudimentary and leaves many questions unanswered.

I hope soon to be able to include pyramidal elements in a more robust finite element

package, which supports tetrahedra and hexahedra. It will then be possible to properly

examine the effect of hybrid meshes, including the conditioning of the resulting global

stiffness matrices.
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Extension operators

To fit fully within the projection-based interpolation framework (in particular, to obtain

quasi-optimal bounds on the interpolation error), it is necessary to postulate the existence

of bounded commuting polynomial-preserving extension operators [29]. In this context, an

extension operator is a right inverse of the trace; “polynomial preserving” means that the

extension of the trace of a function belonging to a particular finite element approximation

space should also belong to that space; and commuting means that the extensions should

commute with the exterior derivative.

These operators have been constructed for tetrahedral and hexahedral elements [27, 30]

but the approaches used for each type are quite different, which makes it difficult to just

treat the pyramid as a hybrid of the two. Nevertheless, some promising, but inconclusive,

investigation leads me to believe that this will be possible. Note that by Theorem 4, it

is clear that if we seek analogues for pyramidal elements, we must stretch the meaning

of “polynomial-preserving” to allow our rational approximation functions to appear in the

volume.

Conjecture 73. For a pyramid, K and s ∈ {0, 1, 2}, denote the trace space of H(s)(K) as

X(s)(∂K) and the trace operator tr(s) : H(s)(K)→ X(s)(∂K).

There exist continuous operators, E(s)
k : X(s)(∂K)→ H(s)(K) for k ≥ 1 such that:

• Extension property: tr(s) E(s)
k v = v for all v ∈ X(s)(∂K);

• Commutativity: dE(s)
k v = E(s+1)

k dv for all v ∈ X(s)(∂K);

• “Polynomial” preservation: If v ∈ R(s)
k (K) then E(s)

k tr(s) v ∈ R(s)
k (K).
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