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ABSTRACT

The thesis is about a class of nonlinear partial differential equations and their appli-

cations in differential geometry. The main threads consist of three parts.

The first part is about the Ricci flow starting from an embedded closed convex sur-

face in R3. This considers the Ricci flow with initial value an embedded closed convex

surface in R3 without regularity assumption. We prove the convergence in metric

and uniqueness of the flow. We hope this can be used as the first step to give a PDE

proof of Pogorelov’s rigidity theorem about convex surfaces.

The second part is about the flows by powers of the Gauss curvature in space forms.

We prove that the Gauss curvature type flow Xt = −Kαν in an n + 1 dimensional

simply connected space form Nn+1(κ) of constant curvature (κ = ±1) converges to

a point in finite time T ∗ > 0 for any initial strictly convex smooth hypersurface and

α > 0. Moreover, we prove the convergence to a geodesic sphere after rescaling for

α > 1
n+2

. This is the complete analogue of the corresponding results in Euclidean

space.

The last part consists of some partial results about the Weyl’s embedding problem.

It includes a new proof of the closedness of Weyl’s embedding problem and some

discussions of the variational problem.
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ABRÉGÉ

La thèse porte sur une classe d’équations aux dérivées partielles non linéaires et leurs

applications en géométrie différentielle. Les fils principaux se composent de trois par-

ties.

Le première partie concerne le flux de Ricci à partir d’une surface convexe fermée

plongée dans R3. Ceci considère le flux de Ricci avec pour valeur initiale une surface

convexe fermée plongée dans R3 sans hypothèse de régularité. Nous prouvons la con-

vergence en métrique et l’unicité du flux. Nous espérons que cela pourra être utilisé

comme première étape pour fournir une preuve du théorème de rigidité de Pogorelov

sur les surfaces convexes en utilisant des EDP.

La deuxième partie concerne les écoulements des puissances de la courbure de Gauss

dans les formes spatiales. Nous montrons que la courbure de Gauss de type de flux

Xt = −Kαν dans une forme spatiale Nn+1(κ) simplement connexe de dimension n+1

de courbure constante (κ = ±1) converge vers un point en temps fini T ∗ > 0 pour

une hypersurface lisse strictement convexe initiale et α > 0. De plus, nous prouvons

la convergence vers une sphère géodésique après redimensionnement pour α > 1
n+2

.

C’est l’analogue complet des résultats correspondants dans l’espace euclidien.

La dernière partie consiste de quelques résultats partiels sur le problème de plonge-

ment de Weyl. Cela inclut une nouvelle preuve du problème de la fermeture de

plongement de Weyl et quelques discussions sur le problème variationnel.
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CHAPTER 1
Introduction

The thesis is about a class of nonlinear PDEs and their applications in differential

geometry. This is a topic of long history. Basically speaking, there are two kinds of

PDEs that are most often used in differential geometry: the elliptic PDEs and the

parabolic ones. The early applications are mainly about elliptic PDEs. For instance,

by solving Monge-Ampère type PDEs, Nirenberg [48], Cheng-Yau [18] solved the

Minkowski problem, and Yau [69] solved the Calabi’s conjecture. In the last four

decades, the parabolic PDEs has began to play more important roles. A typical

example is the crucial use of Ricci flow in the solution of the Poincaré conjecture

[36, 50, 51] and the differentiable sphere theorem [13].

In this thesis, I will use both the elliptic and parabolic PDEs to study the

problems in differential geometry. This consists of three parts. The first part is

based on a joint work with Jiawei Liu [40], and the second part is based on a joint

work with Min Chen [17]. These two parts are about parabolic PDEs. Finally, the

third part is related to an elliptic PDE [39] . I will introduce all these three parts in

each of the following sections and introduce the notations in Riemannian geometry

which will be used in the thesis in the last section of this chapter.
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1.1 Ricci flow starting from an embedded closed convex surface in R3

The Ricci flow is the parabolic system

∂gij
∂t

= −2Rij, (1.1.1)

where gij(t) is a family of Riemannian metrics on a fixed smooth manifold M , and

Rij is the Ricci curvature of the metric gij. It was first introduced by Hamilton [36]

in 1982 and has many applications in differential geometry and topology since its

birth. For example, Perelman [50, 51] gave the solution of Poincaré conjecture, and

Brendle-Schoen [13] proved the differentiable sphere theorem via Ricci flow.

The reason that Ricci flow is so powerful for studying geometric objects is that

the parabolic PDE has many good properties. One of them is its smoothing effect

which will evolve the geometric objects into more regular ones as time evolves. It

looks that this effect is far from being fully utilized. Recently, Simon [64, 65] studied

Ricci flow admitting a class of irregular metric spaces of dimension two or three as

metric initial condition. This can be seen as an approximation of irregular spaces

by Ricci flow since the Ricci flow will converge to the irregular initial condition as

t → 0+. In particular Simon got the following result

Theorem 1.1.1 ([65] Theorem 7.1). Let (M, g0) be a complete smooth surface with-

out boundary such that

(a) Ricci(g0) ! k;

(b) vol(g0B1(x)) ! v0 > 0 for all x ∈ M ;

(c) sup
M

|Riem(g0)| < ∞.

(1.1.2)
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Then there are constants c1 = c1(v0, k) > 0, c2 = c2(v0, k) > 0, S = S(v0, k) > 0 and

K = K(v0, k) and a solution (M, g(t))t∈[0,T ) to Ricci flow which satisfies T ! S, and

(at) Ricci(g(t)) ! −K2;

(bt) vol(
gtB1(x)) !

v0
2

> 0 for all x ∈ M and t ∈ (0, T );

(ct) sup
M

|Riem(g(t))| " K2

t
for all t ∈ (0, T );

(dt) d(p, q, s)− c2(
√
t−

√
s) " d(p, q, t) " ec1(t−s)d(p, q, s),

for all 0 < s " t < T and p, q ∈ M.

(1.1.3)

(Note that the estimates are trivial for t = 0.)

Based on Simon’s work, Richard [58] studied the existence and uniqueness of

Ricci flow whose metric initial condition is a closed Alexandrov surface with curvature

bounded from below. This provides a canonical approximation for an Alexandrov

surface with curvature bounded from below.

Theorem 1.1.2 ([65] Theorem 1.11 and [58] Theorem 0.5). Let (Mi, gi) be a sequence

of smooth surfaces satisfying (a), (b) and (c) in (1.1.2) with uniform constants k

and v0 for all i and let (X, d) be a Gromov-Hausdorff limit of this sequence. Let

(Mi, gi(t))t∈[0,T ) be the solutions to Ricci flows starting from (Mi, gi) in Theorem

1.1.1. Then (after taking a subsequence if necessary) there exists smooth Ricci flow

(M, g(t))t∈(0,T ) := lim
i→∞

(Mi, gi(t))t∈(0,T ) satisfying (at), (bt), (ct), (dt) in (1.1.3) and

(M, dg(t)) converge to (X, d) in Gromov-Hausdorff sense as t → 0.

If (N, ĝ(t))t∈(0,T ) is another smooth Ricci flow starting from (X, d) in the same

sense as (M, g(t))t∈(0,T ) above, then there is a diffeomorphism ϕ : M → N such that

g(t) = ϕ∗ĝ(t).
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We note that the Ricci flow (M, g(t))t∈(0,T ) converge uniformly to (X, d) up to

an isometry in Theorem 1.1.2. A natural question is when such a Ricci flow will

converge to the initial metric in classical sense (without isometry), and what kind

of uniqueness one can claim. In chapter 2, when the metric initial condition (X, d)

is an embedded closed convex surface in R3, by using smooth approximation, we

prove that there is a Ricci flow on X such that the induced distance along this flow

converge uniformly to d as t → 0 and that such flows keep the isometries between

their metric initial conditions.

We remark that the convex surface in chapter 2 is in the sense of Alexandrov

(see section 2.1) and that both the C∞-topology and the induced metric d of X

as an embedded surface in R3 in our situation are induced by the radial graph

parameterization from the unit sphere (S2, δ) there, where δ is the standard metric

on S2. Also, throughout the construction of the smooth approximation of (X, d), we

fix this radial graph parameterization (see the proof of Lemma 2.2.1 for details).

Our first result about the Ricci flow starting from an embedded closed convex

surface in R3 is the following existence theorem.

Theorem 1.1.3 ([40] Theorem 1.3). If (X, d) is an embedded closed convex surface

in R3, then there exists a T > 0 and a smooth Ricci flow (X, g(t))t∈(0,T ) such that

the distance functions dg(t) induced by g(t) converge uniformly to d as t → 0, that is,

lim
t→0

max
p,q∈X

|dg(t)(p, q)− d(p, q)| = 0. (1.1.4)

The difference between Theorem 1.1.3 and Theorem 1.1.2 is that we remove the

isometry coming from the Gromov-Hausdorff convergence in Theorem 1.1.2 when
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the metric initial condition (X, d) is an embedded closed convex surface in R3. This

is due to that we can construct a sequence of smooth convex surfaces that approx-

imate (X, d) in Hausdorff sense (Lemma 2.2.1) instead of the Gromov-Hausdorff

approximation in Theorem 1.1.2. Since the Hausdorff convergence is stronger than

Gromov-Hausdorff convergence, we can prove some stronger results. In fact, remov-

ing the isometry is crucial for proving the uniqueness of such Ricci flow. Moreover,

we hope this improved smooth approximation to the metric initial condition can be

used to study the rigidity problem of closed convex surfaces in R3 (see section 2.3).

In the following, unless otherwise specified, by saying that (X, g(t))t∈(0,T ) is a

Ricci flow admitting an embedded closed convex surface (X, d) in R3 as metric initial

condition, we mean that it is a Ricci flow in the sense of Theorem 1.1.3.

The second result of chapter 2 is the following uniqueness theorem.

Theorem 1.1.4 ([40] Theorem 1.5). Assume that (X1, d1) and (X2, d2) are two non-

degenerate embedded closed convex surfaces in R3 and f : (X1, d1) → (X2, d2) is an

isometry. Let (X1, g1(t))t∈(0,T ) and (X2, g2(t))t∈(0,T ) be Ricci flows admitting (X1, d1)

and (X2, d2) as metric initial conditions respectively. Then g1(t) = f ∗g2(t).

In Theorem 1.1.2, if we assume that (M, dg(t)) and (N, dĝ(t)) converge uniformly

as t → 0 to metric spaces (M, d̃) and (N, d̂) respectively. Then from the existence

part of Theorem 1.1.2, both (M, d̃) and (N, d̂) are isometric to (X, d), and so there is

an isometry φ between (M, d̃) and (N, d̂). But φ may not be differentiable, so it may

not be the diffeomorphism ϕ between M and N in Theorem 1.1.2. Here, when the

metric initial conditions are embedded closed convex surfaces in R3, Theorem 1.1.4

means that the Ricci flows obtained in Theorem 1.1.3 keep the isometries between
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their metric initial conditions, which implies that ϕ = φ in this case. The main step

is to prove that the isometry between the two metric initial conditions in this case is

differentiable (Lemma 2.2.8). Therefore, the pull back metrics under this isometry

still satisfy Ricci flow equation. Then Theorem 1.1.4 follows from a uniqueness of

Ricci flow.

The motivation we consider the Ricci flow starting from embedded closed convex

surfaces is to use the Ricci flow to study rigidity of the convex surfaces in the sense

of Alexandrov. Pogorelov’s famous rigidity theorem [52] says that any two isometric

convex surfaces embedded in R3 are congruent. This is the generalization of Cohn-

Vesson’s classical rigidity result [23] about smooth convex surfaces to Alexandrov

sense. Since there is no regularity assumption on such surfaces, Pogorelov’s theorem

is highly non-trivial. Pogorelov [55] gave a proof of the theorem by using his theory

of convex surfaces, but it is still inaccessible to many geometers. We hope to use the

results here to give a new proof of Pogorelov’s rigidity theorem from the PDE point

in the future.

1.2 Flow by powers of the Gauss curvature in space forms

Ricci flow is a kind of intrinsic flow since its description only needs the intrinsic

geometric quantities of the manifold. Another kind of parabolic flows in geometric

analysis is the extrinsic flows which describes the evolutions of an embedding of a

manifold into an ambient space. When the codimension of the submanifold in the

ambient space is one, the extrinsic flow is called a hypersurface flow. One important

hypersurface flow is the flow by Gauss curvature.
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Gauss curvature flow was first introduced by Firey [27] to model the erosion of

strictly convex stones as they tumble on a beach. To obtain the model, Firey assumed

that the stones were of uniform density, that their wear was isotropic, and that the

number of collisions in a region was proportional to the set of normal directions of

the region. In this case the rate of wear is proportional to the density per unit surface

area of contact directions, which is the Gauss curvature. If we denote X the position

vector of the stones, K the Gauss curvature of the boundary surface, and ν the unit

outer normal of the boundary surface. Then the mathematical formulation of the

problem is

Xτ (x, τ) = −K(x, τ)ν(x, τ)

This is the original Gauss curvature flow.

More generally, we consider the flow of convex hypersurfacesX(·, τ) : M → Rn+1

by powers of Gauss curvature:

Xτ (x, τ) = −Kα(x, τ)ν(x, τ), α > 0, (1.2.1)

with a strictly convex initial hypersurface, where X is the position vector of the

hypersurface, ν(x, τ) is the unit outer normal at Mτ = X(x, τ) and K(x, τ) is the

Gauss curvature at X(x, τ).

It was proved in [66] for α = 1, and in [21] for any α > 0 that the flow shrinks to

a point in finite time T ∗ > 0 for any smooth strictly convex initial hypersurfaces M .

A Harnack type inequality for Gauss curvature flow of compact convex hypersurfaces

for all α > 0, and an entropy estimate for α = 1 were proved in [22]. Hamilton [37]

used these results to get the sharp upper bound of Gauss curvature and the diameter.
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The main interest is to understand the asymptotic behavior of the flows (1.2.1) as

the time τ approaches the singular time T ∗.

When n = 1,α = 1, (1.2.1) is the curve shortening flow, convergence to circle

was proved by Gage-Hamilton [28] for initial convex curve, and Grayson [31] for

general initial curve. Convergence to a circle was proved for n = 1 and α > 1 in

[4], for n = 1 and 1
3
< α < 1 in [6] with convex initial curve. For general n > 1,

Chow [21] analyzed the case α = 1
n
and proved that solutions of the normalized flow

converge to the unit sphere as t → ∞. The convergence to sphere when n = 2,α = 1

was established by Andrews in [2], see also [7] for the case n = 2 and 1
2
< α < 1.

The exponent α = 1
n+2

is critical as it’s the affine curvature flow. In this case,

the convergence to ellipsoids was established by Andrews in [5] (see also [59] for

n = 1). Convergence to solitons was established for α ∈ ( 1
n+2

, 1
n
) in [3] for a family of

anisotropic Gauss curvature flows (more general situation). For the normalized flow

of (1.2.1) with strictly convex initial hypersurfaces in Rn+1, ∀n ≥ 1, the convergence

to solitons (self-similar solutions) was established for the case α = 1 by Guan-Ni

[32], and by Andrews-Guan-Ni [9] for ∀α > 1
n+2

. In [9], the uniqueness of soliton

(round sphere) was proved when it is centrally symmetric. The final resolution of

the uniqueness of solitons of the normalized flow of (1.2.1) was obtained by Choi-

Daskalopoulos in [19] ( 1
n
< α < 1 + 1

n
) and by Brendle-Choi-Daskalopoulos [12] for

all α > 1
n+2

.

Parabolic flows for hypersurfaces in general Remannian manifolds were also

considered by many authors. Generalization of flows by mean curvature in Eu-

clidean space to general Riemannian manifold [41] was a fundamental contribution
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by Huisken. More recently, a new type of mean curvature flow in space forms was

introduced by Guan and Li [33]. Gerhardt [30] demonstrated a correspondence be-

tween contracting and expanding flows of hypersurfaces in the sphere. Andrews,

Han, Li and Wei [10] generalized Andrew’s noncollapsing estimates for curvature

flows in Euclidean space to fully nonlinear curvature flows in space forms.

It is natural to consider flows by powers of Gauss curvature in more general

ambient spaces. Very little is known except for the case α = 1, n = 2 or α = 1,

n ≥ 3 and initial hypersurfaces are axially symmetric [47].

In the second part of the thesis (chapter 3), we establish complete analogous

results of the flow by power of Gauss curvature in space forms:

!
"#

"$

X̃τ (x, τ) = −K̃α(x, τ)ν(x, τ),

X̃(0) = X̃0,

(1.2.2)

where ν(x, τ) is the unit outer normal at X̃(x, τ) and K̃(x, τ) is the Gauss curvature

of M̃τ , Nn+1(κ) is the (n + 1) dimensional simply connected space form of constant

sectional curvature κ = ±1 (the tildes distinguish these from the normalized coun-

terparts introduced later). Below is our main theorem.

Theorem 1.2.1 ([17] Theorem 1.1). If X̃0 represents a strictly convex smooth hy-

persurface in Nn+1(κ), then for any α > 0, the initial value problem (1.2.2) has a

unique solution on a maximum finite time interval [0, T ∗) such that the M̃τ converges

to a point as τ → T ∗. Moreover, for α > 1
n+2

, M̃τ converges to a geodesic sphere in

Nn+1(κ) in the C∞-topology after re-scaling.
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The theorem generalizes the known results in Euclidean space to space forms.

The first statement is a generalization of [66, 21]. The second statement extends

results in [32, 9, 12].

Our approach to flow (1.2.2) is to reduce it to a flow in the Euclidean space by

proper projections. Choosing the projection πp (see details in section 3.1), the Gauss

curvature of the image satisfies (3.1.6). It suffices to consider the following type of

flow (the image of projection) in Euclidean space:

ˆ̃Xτ (x, τ) = −(1 + κ| ˆ̃X|2)n+2
2

α+ 1
2 (1 + κ〈 ˆ̃X, ν̂〉2)−n+2

2
α+ 1

2
ˆ̃Kα, (1.2.3)

where κ = 1 when X̃(x, τ) is the flow of convex hypersurfaces in Sn+1 and where

κ = −1 when X̃(x, τ) is the flow of convex hypersurfaces in Hn+1 (the hat distinguish

these from the counterparts before the projection). It is well known that any strictly

convex hypersurfaces ˆ̃M in Rn+1 can be recovered completely from the support func-

tion u by ˆ̃M = {∇ˆ̃u+ ˆ̃ux, x ∈ Sn}, see e.g. [60]. Then the support function satisfies

equation

ˆ̃uτ (x, τ) =− (1 + κ(ˆ̃u2 + |∇ˆ̃u|2))
n+2
2

α+ 1
2 (1 + κˆ̃u2)−

n+2
2

α+ 1
2det−α(∇2 ˆ̃u+ ˆ̃uI).

(1.2.4)

For flow (1.2.4), we obtain the estimates of the lower bound of principal curvatures

and the upper bound of the Gauss curvature and pinching estimate of the inner and

outer radii.

The key in the proof is an almost monotonicity formula for associated entropies

considered in [32, 9]. In this respect, the normalized flow (3.3.6) of (1.2.4) will be

used in section 3.3. A crucial observation is the decay estimate (3.3.11) in section 3.3.
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It allows us to obtain a monotone quantity Eα(Ω̂t) + C(n,α, X̃0)e
− 2(n+1)

2n+1
t along the

normalized flow (3.3.6) by modifying the monotone quantity used in [32, 9]. From

this, we can use the methods in [32, 9] to obtain a uniformly lower and upper bound

of support function. This in turn implies a uniform C2-estimate, and to conclude

that the normalized flow for any smooth initial convex body converges smoothly as

t → ∞ to a uniformly convex soliton. By the soliton classification result in [12],

we obtain that the limit is a round sphere. This implies the convergence of the

normalized flow in Nn+1(κ) for α > 1
n+2

.

1.3 A warped product metric and the Weyl problem

The Weyl problem is an isometric embedding problem in differential geometry.

It was introduced by Weyl [68] in 1916. The problem concerns the realization of a

closed surface (S2, g) with positive Gauss curvature as a convex surface in R3. More

precisely, suppose we have a closed surface M = (S2, g) whose metric g has positive

Gauss curvature Kg > 0, can we embed M into R3 with induced metric exactly g

? The problem was solved by Nirenberg [48] and Pogorelov [53] independently for

smooth g. Before that, Levi [45] solved the problem when the metric g is analytic.

The problem also makes sense for more general ambient spaces. The problem in

hyperbolic space was considered by Pogorelov [54] for Kg > −1, he also considered

the embedding into general 3−dimensional Riemannian manifolds [55]. The problem

has attracted renewed attention recently due to its relation to the definition of quasi-

local mass in general relativity [67].

In the third part of the thesis (chapter 4), we first give a new proof of the

closedness of Weyl problem by using the warped product metric introduced in [42].
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Theorem 1.3.1 ([39] Theorem 1). Suppose M = (S2, g) is a smooth closed surface

with positive Gauss curvature K, then I is closed, where I is defined in (4.2.15).

In [42], Izmestiev also showed that the Euclidean embedding of (S2, g) is the

critical point of the Hilbert-Einstein (HE) functional (see (4.0.2) for the definition

of HE) in the warped product metric class related to the metric g. We will discuss

the variation and the stability of the HE functional at the critical point there. In

particular, we get the following result

Theorem 1.3.2 ([39] Theorem 2). Let δ be the standard metric on S2,
%

2ρ(0) ≡ 1

(be the radial function of the embedding of (S2, δ) into R3 with origin at the center of

the embedding). Let η(x) be a smooth function on (S2, δ) s.t.
&
S2 η(x)dδ = 0, ε > 0

small, Aη = {ρ(t, x) = ρ(0) + tη(x) admissible|t ∈ (−ε, ε), x ∈ (S2, δ)}, then ρ(0) is

a local maximum of HE in Aη.

The motivation for this part is that I hope the study of the warped product

metric there can develop some new insights into the quantitive rigidity and openness

of the Weyl problem. More precisely, the quantitive rigidity problem (or the stability

problem) concerns how much will two embedded convex surfaces differ in R3 if their

intrinsic metric differ by ε ? This is a natural question in Weyl’s embedding problem.

On the other hand, Li-Wang [46] recently established the openness of the isometric

embedding into a warped product space. This combined with Guan-Lu’s result [34]

of closedness provided the isometric embedding of (S2, g) into (N3, ḡ) which contains

no horizon. It is not clear if Li-Wang’s proof can be applied to the case when the

embedding contains a horizon, since their proof needs the path of the embedding

to keep the system elliptic when using method of continuity, while such a path is
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not known yet in this case. This forms a barrier for its wide applications in general

relativity. I hope the research here can shed some lights for the openness of the

embedding when the embedding contains a horizon.

1.4 Notations and conventions

We conclude the introduction by introducing our conventions for notations in

Riemannian geometry which will be used throughout the thesis. The notations and

preliminaries used in each chapter will be introduced at the beginning of that chapter.

Let (M, g) be a smooth Riemannian manifold with metric g, ∇ be the unique

Levi-Civita connection associated to g. For any smooth vector fields X, Y, Z on M ,

we use the definition

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (1.4.1)

for the Riemannian curvature tensor.

Let (e1, . . . , en) be a local frame for the tangent bundle TM , we use the conven-

tion

R(ei, ej)ek = Rl
ijkel (1.4.2)

and

Rijkl = 〈R(ei, ej)ek, el〉g = Rm
ijkgml (1.4.3)

for the index of curvature tensor.

We define the Ricci curvature and scalar curvature by

Rij = gklRiklj

R = gijRij

(1.4.4)
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Moreover, let f be a smooth function on M , we use the notation

fij = ∇ej∇eif = ej(eif), fijk = ∇ek∇ej∇eif = ek(ej(eif)), etc. (1.4.5)

for the higher covariant derivatives of f . In particular, we have the following Ricci

identity

fijk − fikl = Rl
jkifl

fijkl − fijlk = Rm
klifmj +Rm

kljfim

(1.4.6)

The organization of this thesis is as follows. In Chapter 2, we prove the existence

and uniqueness of the Ricci flow starting from an embedded closed convex surface

in R3. We give a short discussion of our plan to apply the result there to give a

PDE proof of Pogorelov’s rigidity theorem. In Chapter 3, we give the convergence

of the flow by α− th power of Gauss curvature to a point for α > 0 and convergence

to a geodesic sphere after rescaling for α > 1
n+2

with initial smooth strictly convex

hypersurface in the sphere and hyperbolic space. In Chapter 4, we give a new proof

of the closedness of Weyl problem and discuss the corresponding variational problem.
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CHAPTER 2
Ricci flow starting from an embedded closed convex surface in R3

In this chapter, we prove the results on Ricci flow starting from an embedded

closed convex surface in R3. In section 2.1, we recall some basic facts about convex

surfaces in the sense of Alexandrov. Then, in the second section, we first prove the

existence result by constructing a sequence of smooth convex surfaces that approx-

imate the metric initial condition in Hausdorff distance (Lemma 2.2.1) and using

Theorem 1.1.1. Then we prove the uniqueness of such Ricci flow by giving an exact

expression of the initial metric (Theorem 2.2.7). Finally, in section 2.3, we introduce

our plan which aims to study the rigidity of convex surfaces by using Ricci flow.

2.1 Preliminaries

In this section, we recall some basic results about convex surfaces in the sense

of Alexandrov. These are mainly taken from [1, 55], see also the Appendix of [58].

Let (X, d) be a metric space, it is called a geodesic metric space if any two

points a and b in X can be connected by a continuous path of shortest length on X.

Suppose (X1, d1) and (X2, d2) are two metric spaces, an isometry between X1 and

X2 is a bijection f : X1 → X2 such that

d2(f(a), f(b)) = d1(a, b), for all a, b ∈ X1.

Let a, b and c be three different points in a geodesic metric space (X, d), we

define the comparison angle ∠̃acb as the angle at ã of the triangle ãb̃c̃ in S0 whose
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sides have length d0(ã, b̃) = d(a, b), d0(ã, c̃) = d(a, c) and d0(b̃, c̃) = d(b, c), where S0

is the Euclidean space, and d0 is the standard distance in S0.

Definition 2.1.1. Let (X, d) be a geodesic metric space, it is said to satisfy the

convexity condition if for any point a ∈ X, and any two shortest paths (γ1(s))s∈[0,T ]

and (γ2(s))s∈[0,T ] in X parameterized by arc length issuing from a, the comparison

angle ∠̃aγ2(t)γ1(s)
is an non-increasing function of s and t.

Definition 2.1.2. Let (X, d) be a geodesic metric space, it is called a closed convex

surface in the sense of Alexandrov, if it is at the same time a compact topological

surface without boundary, and satisfies the convexity condition.

We also have the following equivalent definition.

Definition 2.1.3. A closed convex surface in the sense of Alexandrov is a geodesic

metric space (X, d) which is at the same time a compact topological surface without

boundary and a metric space with non-negative curvature in the sense of Alexandrov.

A geodesic metric space has non-negative curvature in the sense of Alexandrov

if its geodesic triangles are bigger than the geodesic triangles in S0. To be more

precise, a geodesic metric space (X, d) has non-negative curvature in the sense of

Alexandrov if and only if the following condition is satisfied:

Let a, b and c be any three points in (X, d), and m be any point on a shortest path

from b to c. Let ã, b̃ and c̃ be points in S0 such that d0(ã, b̃) = d(a, b), d0(ã, c̃) = d(a, c)

and d0(b̃, c̃) = d(b, c). If m̃ is a point on b̃c̃ such that d0(b̃, m̃) = d(b,m). Then

d(a,m) ! d0(ã, m̃).

In the following of this chapter, we call a closed convex surface in the sense of

Alexandrov a closed convex surface if there is no confusion. By Toponogov’s theorem,
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every closed smooth surface with non-negative Gauss curvature is a closed convex

surface. The boundary of a convex set with the induced metric in R3 is also a closed

convex surface (Theorem 10.2.6 in [14]). Alexandrov proved the following isometric

embeding theorem.

Theorem 2.1.4. (Page 269 in [1]) Any closed convex surface (X, d) can be isomet-

rically embedded into R3 as the boundary of a (possibly degenerate) convex body.

The following lemma will be used in the proof of Theorem 1.1.3. Its geometric

meaning is that the Hausdorff distance of two convex surfaces in R3 controls their

intrinsic distance functions.

Lemma 2.1.5. (Theorem 2 in Chapter 3 of [1]) For every closed convex surface F

and for every ε > 0, there exists a δ > 0 such that whenever the deviation of a closed

convex surface S from F is less than δ and the distance of some points X and Y on

F from some points A and B on S are also less than δ, we have

|dF (X, Y )− dS(A,B)| < ε,

where dF and dS are the distance functions on F and S respectively.

2.2 Existence and Uniqueness of Ricci flow

In this section, assuming that (X, d) is an embedded closed convex surface in

R3, we prove the existence and uniqueness of the Ricci flow that admits (X, d) as a

metric initial condition. As an embedded closed convex surface in R3, the smooth

topology of X and metric d are induced by the radial graph parameterization from

the unit sphere (S2, δ), and the smooth approximation we construct are also from

this fixed parameterization.
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2.2.1 Existence of the Ricci flow

In this subsection, we prove the existence of Ricci flow (X, g(t))t∈(0,T ) that admits

(X, d) as metric initial condition. First, we have the following lemma.

Lemma 2.2.1. Let (X, d) be an embedded closed convex surface in R3. Then there

exists a sequence of closed smooth convex surfaces {(Xi, g̃i)}∞i=1 and bijections fi :

X → Xi such that di(x, y) converges to d(x, y) uniformly for x, y ∈ X as i → ∞,

where di(x, y) = d̃i(fi(x), fi(y)), and d̃i is the distance on Xi induced by g̃i.

The proof depends on Lemma 2.1.5 and the following lemma, which is about

approximating a convex body by smooth convex bodies in Hausdorff sense in R3.

Lemma 2.2.2. (Theorem 3.4.1 in [60]) Let ε > 0 and let ϕ : [0,∞) → [0,∞) be a

function of class C∞ with support in [ ε
2
, ε] and with

'

R3

ϕ(|z|)dz = 1.

If f : R3 → R is a support function, then the function defined by

f̃(x) :=

'

R3

f(x+ |x|z)ϕ(|z|)dz for x ∈ R3

is a support function of class C∞ on R3 \ {0} and satisfies

dH(K, K̃) " Rε,

where K and K̃ are convex bodies corresponding to support functions f and f̃ re-

spectively, R > 0 is a constant satisfying that K ⊂ B(0, R) ⊂ R3, and dH is the

Hausdorff distance in R3.

We now prove Lemma 2.2.1.
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Proof of Lemma 2.2.1. Since (X, d) is closed, it is contained in a ball B(O,R) ⊆

R3 for some R > 0.

Case 1. (X, d) is non-degenerate. Let K be the convex body enclosed by X,

then K is non-degenerate, there is a ball B of radius 1
R
contained inside K (enlarge

R if necessary). Take the origin to be the center of B and consider the dual body

K∗ of K. Then K∗ will stay inside the ball B(O,R). Let ρ : (S2, δ) → X, x /→ x̃

be the radial function of X. With an abuse of nation, we also use ρ to denote

ρ(x) = |x|. Then 1
ρ
will be the support function of K∗. By applying Lemma 2.2.2

to f = 1
ρ
with εi =

1
2iR

(i = 1, 2, . . . , ), we obtaining a sequence of convex bodies K̃∗
i ,

such that dH(K̃
∗
i , K

∗) ≤ 1
2i
. Let K∗

i = K̃∗
i + B(O, 1

2i
) be the Minkowski sum of K̃∗

i

and B(O, 1
2i
). We see that K∗

i is strictly convex and smooth, and dH(K
∗
i , K

∗) ≤ 1
i
.

Denote the support function of K∗
i by 1

iρ
, then 1

iρ
is smooth,

1

2R
≤ 1

iρ
≤ 2R (2.2.1)

for i large, and

| 1
iρ(x)

− 1

ρ(x)
| ≤ dH(K

∗
i , K

∗) ≤ 1

i
, ∀x ∈ (S2, δ). (2.2.2)

Denote Ki := (K∗
i )

∗ be the dual body of K∗
i , then ρi(x) will be the radial function

of Ki, and by (2.2.2) and (2.2.1), we have

|iρ(x)− ρ(x)| ≤ 2R2

i
, ∀x ∈ (S2, δ). (2.2.3)
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We denote the boundary of Ki with induced metric in R3 by (Xi, g̃i). Then this

implies that (Xi, g̃i) are smooth convex surfaces and that

dH(X,Xi) "
2R2

i
. (2.2.4)

Moreover, let fi := ρi ◦ ρ−1 : X → Xi, x̃ /→ x̃i, then (2.2.3) implies that

‖x̃x̃i‖ ≤ 2R2

i
, for all x̃ ∈ X, (2.2.5)

where ‖ · ‖ denotes the distance in R3.

Let d̃i be the distance function of Xi defined by g̃i. From Lemma 2.1.5, for every

ε > 0, there exists δ > 0 such that

|d̃i(x̃i, ỹi)− d(x̃, ỹ)| < ε. (2.2.6)

for all x̃, ỹ ∈ X and x̃i, ỹi ∈ Xi s.t. ‖x̃x̃i‖ < δ, ‖ỹỹi‖ < δ and dH(Xi, X) < δ.

For such δ, there exists N such that for i > N , 2R2

i
< δ, and (2.2.6) holds by

(2.2.4) and (2.2.5). Since di(x̃, ỹ) = d̃i(fi(x̃), fi(ỹ)) = d̃i(x̃i, ỹi),

|di(x̃, ỹ)− d(x̃, ỹ)| < ε for all x̃, ỹ ∈ X, i > N. (2.2.7)

Case 2. (X, d) is degenerate, that is, it is a doubly-covered convex domain in a

plane. Suppose X lies in the xOy plane and the origin O is in the interior of X. Then

there is r > 0 such that the disk B(O, r) ⊂ R2 is contained in X. Connecting the

point Ni = (0, 0, 1
i
), Si = (0, 0,−1

i
) with the boundary points of X, we get a sequence

of two-sided cones Vi with height 2
i
. Since Vi are non-degenerate. By the arguments

in Case 1, there are smooth convex surfaces (Xi, d̃i) and bijections hi : Vi → Xi
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satisfying

|d̃i(hi(x̃), hi(ỹ))− dVi
(x̃, ỹ)| < 1

i
for all x̃, ỹ ∈ Vi. (2.2.8)

Let P : R3 → R2 be the projection onto the xOy plane. Then

d(x̃, ỹ) " dVi
(P−1(x̃), P−1(ỹ)) " d(x̃, ỹ)

cos θi
for all x, y ∈ X, (2.2.9)

where θi is the largest angle between xOy plane and the segments connecting Ni, Si

and the boundary points of X. Since B(O, r) is contained in X, tan θi " 1
ir
and then

1
cos θi

"
√
1+i2r2

ir
. Thus for x̃, ỹ ∈ X and i large enough,

|dVi
((P−1(x̃), P−1(ỹ)))−d(x̃, ỹ)| " (

√
1 + i2r2

ir
−1)d(x̃, ỹ) " (

√
1 + i2r2

ir
−1)diam(X).

Let fi = hi ◦ P−1 : X → Xi, then for all x̃, ỹ ∈ X,

|d̃i(fi(x̃), fi(ỹ))− d(x̃, ỹ)|

≤|d̃i(hi(P
−1(x̃)), hi(P

−1(ỹ)))− dVi
(P−1(x̃), P−1(ỹ))|

+ |dVi
(P−1(x̃), P−1(ỹ))− d(x̃, ỹ)|

≤1

i
+ (

√
1 + i2r2

ir
− 1)diam(X).

Since the last terms go to 0, d̃i(fi(x̃), fi(ỹ)) converge to d(x̃, ỹ) uniformly for all

x̃, ỹ ∈ X as i → ∞. We complete the proof of Lemma 2.2.1. □

Now we prove Theorem 1.1.3 by using Lemma 2.2.1.

Proof of Theorem 1.1.3. First, for a sequence of subsets in the same metric

space, Gromov-Hausdorff distance by definition is not greater than Hausdorff dis-

tance. Thus the Hausdorff convergence of (Xi, g̃i) to (X, d) in Lemma 2.2.1 implies
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the Gromov-Hausdorff convergence of (Xi, g̃i) to (X, d). Suppose

diam(X, d) " D and vol(X) ! ν̃0 > 0 (2.2.10)

for some positive constants D and ν̃0. Since the diameter and volume are continuous

with respect to Gromov-Hausdorff convergence with curvature bounded from below

( see Exercise 7.3.14 and Theorem 10.10.10 of [14] ), and all the surfaces (Xi, g̃i) and

(X, d) are convex, we have

diam(Xi, g̃i) " 2D and g̃ivol(Xi) !
ν̃0
2

> 0 (2.2.11)

for (Xi, g̃i) with large i. By Bishop-Gromov comparison theorem, we get

vol(g̃iB1(x))

vol(B1(x))
! vol(g̃iB2D(x))

vol(B2D(x))
=

g̃ivol(Xi)

vol(B2D(x))
! ν̃0

2vol(B2D(x))
, (2.2.12)

which implies that

vol(g̃iB1(x)) ! ν̃0
vol(B1(x))

2vol(B2D(x))
:= ν0 > 0. (2.2.13)

Due to Theorem 1.1.1, we know that there are smooth Ricci flows (Xi, gi(t))t∈[0,T )

with gi(0) = g̃i satisfying

(a′t) Ricci(gi(t)) ! 0 for all t ∈ [0, T );

(b′t) vol(
gi(t)B1(x)) !

ν0
2

> 0, for all x ∈ X and t ∈ [0, T );

(c′t) sup
Xi

|Riem(gi(t))| "
K

t
for all t ∈ [0, T );

(d′t) dgi(s)(p, q)− c2(
√
t−

√
s) " dgi(t)(p, q) " ec1(t−s)dgi(s)(p, q),

for all 0 " s " t ∈ [0, T ) and p, q ∈ Xi,
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where K = K(ν0), c1 = c1(ν0), c2 = c2(ν0) and T = T (ν0) are constants independent

of i. Combining (c′t) and Shi’s higher derivative estimates [61, 62] with Arzelà-Ascoli

theorem, there exists a subsequence (which we also denote by gi(t)) converge to a

metric g(t) on X, and (X, g(t))t∈(0,T ) is a smooth Ricci flow. Let s → 0 in (d′t), for

all t ∈ (0, T ) and p, q ∈ X, we have

d̃i(fi(p), fi(q))− c2
√
t " dgi(t)(fi(p), fi(q)) " ec1td̃i(fi(p), fi(q)). (2.2.14)

Since Xi converge to X in Hausdorff distance and gi(t) converge to g(t) in local

smooth sense of (0, T ), by letting i → ∞ and using Lemma 2.2.1, we have

d(p, q)− c2
√
t " dg(t)(p, q) " ec1td(p, q). (2.2.15)

The uniform convergence of dg(t) to d follows by letting t → 0 in (2.2.15). □

2.2.2 Uniqueness

In this subsection, we prove the uniqueness of Ricci flow that admits a non-

degenerate embedded closed convex surface (X, d) in R3 as a metric initial condition.

In this case, up to a translation, we can always assume that the origin is in the

interior of the region enclosed by the surface. Hence the radial function of (X, d) is

bounded from below and above by positive constants. The main step is to give an

exact expression of the initial metric d (Theorem 2.2.7), which is used to improve

the regularity of the isometry between the initial conditions by Lemma 2.2.8.

Let (X, g(t))t∈(0,T ) be the Ricci flow obtained in subsection 2.2.1. It is easy

to see that its Gauss curvature Kg(t) is positive. In fact, the non-negativity of the

Gauss curvature Kg̃i of the smooth convex surfaces (Xi, g̃i) implies that the Gauss
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curvature Kgi(t) along Ricci flow (Xi, gi(t))t∈[0,T ) is also non-negative by applying

maximum principle to the evolution equation of Kgi(t),

∂

∂t
Kgi(t) = ∆gi(t)Kgi(t) + |Ricgi(t)|2gi(t). (2.2.16)

From Gauss-Bonnet theorem for gi(t) and the fact that gi(t) converges to g(t)

smoothly, for t ∈ (0, T ), Kg(t) is non-negative and satisfies

'

X

Kg(t)dVg(t) = 4π. (2.2.17)

Hence there must be a point x0 such that Kg(t) is positive at x0. Then the strong

maximum principle implies that Kg(t) is positive everywhere.

Fix t0 ∈ (0, T ) and denote (X, g(t0)) = (X, gt0). By the Uniformization theorem,

there is a conformal equivalence (holomorphic isomorphism) Φ : (S2, h̃) → (X, gt0),

where h̃ is a smooth metric of positive constant curvature, i.e. Φ∗(gt0) = eũ(t0,x)h̃(x)

for some smooth function ũ(t0, x) on S2. On the other hand, the 2-dimensional Ricci

flow can be written as

∂

∂t
g(t) = −Rg(t)g(t). (2.2.18)

Hence we can write g(t) = e
−

! t
t0

Rg(s)dsgt0 := ω̃(t, x)gt0 , which implies that

g(t) = ω̃(t, x)(Φ−1)∗(eũ(t0,x)h̃(x)) = ω̃(t, x)eũ(t0,Φ
−1(x))h̃(Φ−1(x)) := e2u(t,x)h(x).

where h(x) := h̃(Φ−1(x)) and u(t, x) := ln(ω̃(t,x))+ũ(t0,Φ−1(x))
2

. We call u(t) := u(t, x)

the conformal potential along Ricci flow (X, g(t))t∈(0,T ). Since g(t) = e2u(t,x)h(x) and

metric h(x) is fixed, Ricci flow (X, g(t))t∈(0,T ) keeps the conformal class. Here we

obtain u(t) and h(x) from the limiting Ricci flow (X, g(t))t∈(0,T ) directly. They are not
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the limits of ui(t) and hi(x) along the smooth approximation flows (Xi, gi(t))t∈[0,T )

as i → ∞.

From (2.2.18), the evolution equation of u(t) reads

∂u(t)

∂t
= e−2u(t)(∆hu(t)−Kh) = −Kg(t). (2.2.19)

Since Kg(t) is positive, u(t) increases as t decreases to 0, and then u(t) ! u(T ) for

t ∈ (0, T ]. It is proved in Lemma 2.2 of [58] that u(t) is bounded in L1-sense and

converges to an integrable function u0(x) in L1-sense. Here, we prove that u(t) is

bounded for t ∈ (0, T ] in the classical sense, so u0(x) is also bounded in the classical

sense.

Before starting the proof, we remark that due to Proposition 0.6 in [58], every

Ricci flow (X, g(t))t∈(0,T ) admitting (X, d) as metric initial condition can be obtained

through the process in subsection 2.2.1. Hence we only need to consider the unique-

ness for the Ricci flow obtained in subsection 2.2.1.

Lemma 2.2.3. Assume that (X, d) is a non-degenerate embedded closed convex sur-

face in R3. Let (X, g(t))t∈(0,T ] be a Ricci flow admitting (X, d) as metric initial con-

dition. Then the conformal potential u(t) along (X, g(t))t∈(0,T ] is uniformly bounded.

Thereby u0(x) is bounded on X.

To prove this lemma, we first show the uniform equivalence of the smooth ap-

proximating metrics g̃i obtained in Lemma 2.2.1.

Let (X, g) be a smooth embedded closed convex surface in R3 and ρ be the radial

function of (X, g). Then the induced metric g and the second fundamental form II

with respect to the radial graph parameterization from the unit sphere (S2, δ) can
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be written as

gij = ρ2δij + ρiρj,

IIij =
1%

ρ2 + |∇ρ|2
(ρ2δij + 2ρiρj − ρρij)

=
ρ3%

ρ2 + |∇ρ|2
(vij + vδij),

(2.2.20)

where v = 1
ρ
, the derivatives are taken with respect to the connection of (S2, δ).

Since (Xi, g̃i) have the same radial parameterizations from (S2, δ) as (X, d), g̃i can

be written as the form in (2.2.20). Now we prove that g̃i are uniformly equivalent to

δ in Lemma 3.3.

Lemma 2.2.4. There is a uniform positive constant C such that

1

C
δ " g̃i " Cδ for large i. (2.2.21)

Proof. Let iρ be the radial function of (Xi, g̃i) and
iv = 1

iρ
. We claim that

max
S2

(|∇ iv|2 + iv2) " max
S2

iv2. (2.2.22)

Define f = |∇ iv|2 + (1 + η) iv2 for η > 0. At the maximum point of f ,

0 = ∇lf = ∇l(|∇ iv|2 + (1 + η) iv2) = 2 ivj(
ivlj + (1 + η) ivδlj). (2.2.23)

Since (Xi, g̃i) is convex, ( iIIlj) ! 0 and thus (ivlj +
ivδlj) ! 0. Then we have

(ivlj + (1 + η) ivδlj) > 0. Hence ∇v = 0 at the maximum point of f , which implies

max
S2

(|∇ iv|2 + (1 + η) iv2) " (1 + η)max
S2

iv2. (2.2.24)

Let η → 0, we complete the proof of the claim.
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Since the origin is in the interior of the region enclosed by (X, d) by assumption

and (Xi, g̃i) converges to (X, d) in Hausdorff sense, there exists a constant C such

that for large i,

1

C
" iρ " C. (2.2.25)

From the claim, |∇ iρ|2 are also uniformly bounded for large i. Taking trace with

respect to δ on both sides of (g̃i)lj =
iρ2δlj +

iρl
iρj, we conclude that there exists

a uniform constant C such that

trδg̃i " C and trδg̃i !
1

C
> 0 for large i. (2.2.26)

Therefore, there is a uniform constant C such that

1

C
δ " g̃i " Cδ (2.2.27)

for large i.

Next, we extend this equivalence to Ricci flow.

Lemma 2.2.5. Let (X, g(t))t∈[0,T ] be a 2-dimensional smooth Ricci flow with initial

metric g0, then we have

g(t) " eL1T g0 and trg(t)g0 " L2(
dVg0

dVg(T )

)2, (2.2.28)

where −L1 is the lower bound of Rg0, and L2 is a positive constant which depends

on L1, T .
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Proof. Applying maximum principle to the evolution equation of the scalar curvature

Rg(t)

∂

∂t
Rg(t) = ∆g(t)Rg(t) + 2|Ricg(t)|2g(t), (2.2.29)

we get

Rg(t) ! Rg0 ! −L1. (2.2.30)

In dimension 2, Ricci flow can be written as

∂

∂t
g(t) = −Rg(t)g(t) " L1g(t). (2.2.31)

Hence we have g(t) " eL1tg0 and get the first estimate in (2.2.28).

For the second estimates, we need the following inequality.

n
(detg1
detg2

) 1
n " trg2g1 " n

(detg1
detg2

)
(trg1g2)

n−1, (2.2.32)

where g1 and g2 are any two smooth n-dimensional metrics. In our case,

trg(t)g0 " 2
( detg0
detg(t)

)
(trg0g(t)) = 2

( dVg0

dVg(t)

)2

(trg0g(t)). (2.2.33)

Hence we only need to prove that dVg(t) is bounded from below uniformly. The

volume form evolves as

∂

∂t
dVg(t) = −RdVg(t) " L1dVg(t), (2.2.34)

which implies that e−L1tdVg(t) decrease and then dVg(t) ! e−L1(T−t)dVg(T ) ! e−L1TdVg(T ).

So we have

trg(t)g0 " 4
( dVg0

e−L1TdVg(T )

)2

eL1T . (2.2.35)
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Let L2 = 4e3L1T , we complete this Lemma.

For the sequence of smooth Ricci flow (Xi, gi(t))t∈[0,T ] with g̃i as initial condition,

we have by Lemma 2.2.4 and Lemma 2.2.5, that

gi(t) " Cδ and trgi(t)δ " 4C3(
dVδ

dVgi(T )

)2, (2.2.36)

where C is the constant in Lemma 2.2.4. Letting i → ∞ gives

g(t) " Cδ and trg(t)δ " 4C3(
dVδ

dVg(T )

)2 for t ∈ (0, T ], (2.2.37)

which is equivalent to

1

A
δ " g(t) " Cδ for t ∈ (0, T ], (2.2.38)

where A depends on C and T . In fact, we proved the following Lemma.

Lemma 2.2.6. Assume that (X, d) is a non-degenerate embedded closed convex sur-

face in R3. Let (X, g(t))t∈(0,T ] be a Ricci flow admitting (X, d) as a metric initial

condition. Then there exists a positive constant C such that

1

C
δ " g(t) " Cδ for t ∈ (0, T ]. (2.2.39)

Now Lemma 2.2.3 follows immediately.

Proof of Lemma 2.2.3. Since g(t) = e2u(t)h(x) is uniform equivalent to δ for

t ∈ (0, T ], u(t) is uniformly bounded. Since u(t) increases to u0 as t decreases to 0,

u0 is also bounded. □
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Next, for an L1-function u and a smooth Riemannian metric h on M , there is a

metric dh,u defined as

dh,u(x, y) = inf
γ∈Γ(x,y)

' 1

0

eu(γ(τ))|γ̇(τ)|hdτ, (2.2.40)

where Γ(x, y) is the space of C1 paths γ from [0, 1] to M with γ(0) = x and γ(1) = y.

This metric was studied by Reshetnyak [56]. For more details, please see the appendix

of [58].

In [58], when (X, d) is a compact Alexandrov surface with curvature bounded

from below, the metric dg(t) induced by g(t) (here, g(t) is a Ricci flow on M with

metric initial condition (X, d) in the sense of Theorem 1.1.2) converges to dh,u0 uni-

formly, where u0 is the L1-limit of the conformal potential u(t) along Ricci flow

(M, g(t))t∈(0,T ] as t → 0 in [58]. But d may not be dh,u0 there. In fact, we can only

conclude that (M, dh,u0) is isometric to (X, d) from the Lemma 2.4 in [58]. In our

case when (X, d) is a non-degenerate embedded closed convex surface in R3, we can

prove that indeed d = dh,u0 .

Theorem 2.2.7. Assume that (X, d) is a non-degenerate embedded closed convex

surface in R3. Let (X, g(t))t∈(0,T ] be the Ricci flow admitting (X, d) as a metric

initial condition and u(t) be the conformal potential along (X, g(t))t∈(0,T ]. Then

d = dh,u0 , (2.2.41)

where u0(x) is the pointwise limit of u(t, x) as t → 0.
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Proof. By definition (2.2.40), and the definition of conformal potential g(t) = e2u(t,x)h(x),

we have

dh,u(t)(x, y) = inf
γ∈Γ(x,y)

' 1

0

eu(t,γ(τ))|γ̇(τ)|hdτ

= inf
γ∈Γ(x,y)

' 1

0

|γ̇(τ)|gt(τ)dτ = dg(t)(x, y).

(2.2.42)

From the proof of Lemma 2.4 in [58], dh,u(t) converges to dh,u0 uniformly as t → 0.

Since dg(t) converges to d uniformly as t → 0 on X, then (2.2.41) follows by letting

t → 0 on both sides of (2.2.42).

We now prove a regularity lemma for the isometry between the metric spaces

(X1, e
2u1h1) and (X2, e

2u2h2), where u1 and u2 are two bounded functions, and h1

and h2 are pull back metrics of two metrics on S2 with constant Gauss curvature.

Lemma 2.2.8. Assume that F : (X1, e
2u1h1) → (X2, e

2u2h2) is an isometry. Then

F is differentiable, where u1 and u2 are two bounded functions, and h1 and h2 are

two pull back metrics of the metrics on S2 with constant Gauss curvature.

Proof. Since F is an isometry and u1, u2 are bounded, F is bi-Lipschitz with respect

to h1, h2. Then F is differentiable almost everywhere. Write locally h1 = λ1(du
2 +

dv2) and h2 = λ2(dx
2 + dy2) for some positive functions λ1 and λ2. At differentiable

points of F , we have

e2u1λ1(du
2 + dv2) = e2u1h1 = F ∗(e2u2h2) = e2u2◦F (λ2 ◦ F )F ∗h2

= e2u2◦F (λ2 ◦ F )
*
(xudu+ xvdv)

2 + (yudu+ yvdv)
2
+

= e2u2◦F (λ2 ◦ F )
*
(x2

u + y2u)du
2 + (x2

v + y2v)dv
2

+ 2(xuxv + yuyv)dudv
+
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Since u1 and u2 are bounded functions, we have

xuxv + yuyv = 0 and x2
u + y2u = x2

v + y2v , (2.2.43)

which is equivalent to the fact that

xu = −yv and xv = yu or xu = yv and xv = −yu. (2.2.44)

In the former case det

,

-.
xu, xv

yu, yv

/

01 = −x2
u − x2

v ≤ 0 at differentiable points and F

is orientation-reversing, while in the later case det

,

-.
xu, xv

yu, yv

/

01 = x2
u + x2

v ≥ 0 at

differentiable points and F is orientation-preserving. Since X1 and X2 are both

orientable ( since they are both topologically S2 ), thus only one case can happen in

a small open coordinate chart U . Without loss of generality, we may assume F is

orientation-preserving, so that xu = yv and xv = −yu almost everywhere in U . Then

we know that F is differentiable everywhere in U by the analytic extension theorem

in [11]. Since U is arbitrary, we know F is differentiable everywhere.

Since u(t) increases to u0 and both of them are bounded, by using (2.2.42)

and Lebesgue’s monotone convergence theorem, we conclude that d equals to dh,u0

which is the metric induced by e2u0h. Now we can apply Lemma 3.7 to the isometry

between the initial conditions.

Proof of Theorem 1.1.4. By Lemma 2.2.7, di = dhi,ui
(i = 1, 2) is the met-

ric induced by e2uihi, where ui = lim
t→0

ui(t), ui(t) is the conformal potential along
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(Xi, gi(t))t∈(0,T ] and hi is the pull back metric of a metric on S2 with constant Gaus-

sian curvature.

From Lemma 2.2.8, the isometry f is differentiable. Then (X1, f
∗g2(t))t∈(0,T ) is

also a Ricci flow admitting (X1, d1) as metric initial condition in the sense that the

distance function induced by f ∗g2(t) converges uniformly to d1 as t → 0. By using

Proposition 0.6 in [58], we have g1(t) = f ∗g2(t). □

2.3 Further discussions

In this section, we introduce our plan which aims to study Pogorelov’s uniqueness

theorem by Ricci flow.

Pogorelov’s uniqueness theorem [52] states that any two closed isometric convex

surfaces in R3 are congruent. It is a generalization of the classical Cohn-Vesson’s

rigidity theorem [23].

Our basic idea to study this theorem is to use Ricci flow to construct two families

of smooth convex surfaces approximating the two isometric closed convex surfaces in

Pogorelov’s theorem. We then apply Cohn-Vesson’s rigidity theorem to the smooth

surfaces and take a limit as t → 0 to see if “the limit of Cohn-Vesson’s rigidity

theorem will imply Pogorelov’s rigid theorem”. More precisely, given two isometric

embedded closed convex surfaces (X1, d1) and (X2, d2) in R3, Theorem 1.1.3 im-

plies that there are two Ricci flows (X1, g1(t))t∈(0,T ) and (X2, g2(t))t∈(0,T ) admitting

(X1, d1) and (X2, d2) as metric initial conditions. Then for every positive time t,

we embed the Ricci flow (X1, g1(t)) and (X2, g2(t)) smoothly and isometrically into

R3 as (X t
1, G1(t)) and (X t

2, G2(t)) respectively. The validity for these embeddings is

due to the fact that (X1, g1(t)) and (X2, g2(t)) are smooth strictly convex surfaces
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and the solvability of Weyl’s problem proved by Nirenberg [48]. By Theorem 1.1.4,

(X t
1, G1(t)) and (X t

2, G2(t)) are isometric. Then Cohn-Vesson’s rigidity theorem im-

plies that there is a congruence F (t) ∈ O(3) between them. We hope to investigate

the limits of (X t
1, G1(t)) and (X t

2, G2(t)) as t → 0. If (X t
1, G1(t)) and (X t

2, G2(t))

converge to (X1, d1) and (X2, d2) in Hausdorff distance up to an isometry in O(3)

respectively, the compactness of O(3) will imply the congruence between (X1, d1)

and (X2, d2).
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CHAPTER 3
Flow by powers of the Gauss curvature in space forms

In this chapter, we show our result about the flow by powers of the Gauss

curvature in space forms. In section 3.1, we will recall some basic facts which will

be used later in this chapter. In section 3.2, we prove the flow (3.2.1) converges

to a point in finite time T ∗ > 0 for α > 0. As a corollary, we prove that the flow

(1.2.2) converges to a point at finite time T ∗ for α > 0. In section 3.3, we obtain the

modified monotone quantity and the a priori estimates of the normalized flow. In

section 3.4, we prove the normalized flow in Nn+1(κ) converges to a geodesic sphere

centered at the extinct point q0 for α > 1
n+2

.

3.1 Preliminaries

In this section, we present some basic facts about space forms and the stereo-

graphic type projections which will be used later.

Recall that Nn+1(κ) is the n + 1 dimensional simply connected space form of

constant sectional curvature κ = ±1. In the geodesic polar coordinates, the metric

of Nn+1(κ) can be denoted as

ḡ = dρ2 + φ2(ρ)dz2, (3.1.1)

where φ(ρ) = sin(ρ), ρ ∈ [0, π) when κ = 1; and φ(ρ) = sinh(ρ) when κ = −1; and

dz2 is the standard induced metric on Sn in Euclidean space.
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Let Ω be a convex body in Nn+1(κ). Suppose M = ∂Ω is smooth and strictly

convex, denote the metric and the unit outer normal of M by gij, and ν respectively.

Let hij be the second fundamental form of M with respect to ν and u = 〈φ ∂
∂ρ
, ν〉

the support function of M. Suppose q ∈ M and, there is an open subset N of M

containing q such that 〈 ∂
∂ρ
, ν〉 is strictly positive or negative ( doesn’t change sign )

in N , then N can be represented as a radial graph locally. As a local radial graph,

it is well-known (see e.g. [33]) that in N

gij = ρiρj + φ2δij,

ν =
σ

ω
(
∂

∂ρ
− ∇ρ

φ2
),

hij = σ(
%

φ2 + |∇ρ|2)−1(−φρij + 2φ′ρiρj + φ2φ′δij),

(3.1.2)

where ρi = ∇iρ and ∇ is the covariant derivative on Sn with respect to an orthonor-

mal frame, ω =

√
φ2+|∇ρ|2

φ
, σ = 1 when 〈 ∂

∂ρ
, ν〉 > 0, and σ = −1 when 〈 ∂

∂ρ
, ν〉 < 0.

Therefore, the Gauss curvature of N is given by

K =
dethij

det gij
=

σn det(−φρij + 2φ′ρiρj + φ2φ′δij)

(φ2 + |∇ρ|2)n+2
2 φ2n−2

. (3.1.3)

To investigate the flow (1.2.2) in Nn+1(κ), we project it to the tangent plane

of Nn+1(κ) at a certain point. The sterographic projection can be found in many

references, see e.g. [29, 35]. Here we describe it briefly for completeness.

When κ = 1, Nn+1(κ) = Sn+1. For any p ∈ Sn+1, denote H(p) = {z ∈ Sn+1 :

dSn+1(p, z) < π
2
} the open hemisphere centered at p. We consider the projection πp
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of H(p) onto the tangent plane Lp of Sn+1 ⊂ Rn+2 at p, defined by

πp : z ∈ H(p) /→ z

〈z, p〉 ∈ Lp, (3.1.4)

where 〈·, ·〉 denotes the inner product in Rn+2. For a strictly convex hypersurface

M ⊂ Sn+1, it must enclose a convex body and is contained in a hemisphere H, see,

for example [26]. SupposeH = H(p) is centered at p, we can use the above projection

πp to project M onto Lp.

When κ = −1, Nn+1(κ) = Hn+1 is the hyperbolic space. For any point p ∈ Hn+1,

we can consider Hn+1 as a submanifold of Rn+2 with vertex p,

Hn+1 = {(x1, . . . , xn+1, xn+2) ∈ Rn+2|x2
n+2 −

n+12

i=1

x2
i = 1, xn+2 > 0},

and

p = (0, . . . , 0, 1).

Let Lp be the tangent plane of Hn+1 at p, we define πp as

πp : z ∈ Hn+1 /→ z

〈z, p〉 ∈ Lp. (3.1.5)

Note that if z = (x1, . . . , xn+1, xn+2) ∈ Hn+1, then πp(z) = ( x1

xn+2
, . . . , xn+1

xn+2
, 1). Thus,

πp(Hn+1) is contained in the unit ball Bn+1(p, 1) of Lp centered at p.

Lemma 3.1.1. Let M be a closed smooth strictly convex hypersurface in N n+1(κ),

Ω be the set enclosed by M. Let π := πp be defined as above and Ω̂ = π(Ω) ⊂ Lp

be the image of Ω under the projection, û : Sn → R, x /→ sup{〈y, x〉 : y ∈ Ω̂} be the
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support function of Ω̂, and K̂ be the Gauss curvature of M̂ := ∂Ω̂. Then

K(q) =
(1 + κ(û2 + |∇û|2)

1 + κû2

)n+2
2
K̂(π(q)), ∀q ∈ M. (3.1.6)

where x ∈ Sn is the unique point such that π(q) = ∇u+ ux.

Proof. For the case κ = 1, [35] gives a detailed proof. We give a proof for the general

case of space forms.

We identify the tangent plane Lp with Rn+1 and choose p as the origin of Rn+1.

Recall that ρ(q) is the geodesic distance from q to the origin, let r be the Euclidean

distance from the origin. It is easy to see that

r =
φ

φ′ =

!
"#

"$

tan(ρ), κ = 1;

tanh(ρ), κ = −1.

(3.1.7)

Since M is strictly convex, we claim that the co-dimension of the set Z = {q′ ∈

M|u(q′) = 0} is at least one. In fact, let ∇g denote the gradient of M, Φ(ρ) =
& ρ

0
φ(s)ds, then ∇g

iu = hj
i∇

g
jΦ (see e.g. [33]). If ∇gu = 0, then ∇gΦ = 0. On the

other hand, u2 + |∇gΦ|2 = φ2, so {q′ ∈ Z|∇gu(q′) = 0} = {q′ ∈ M|φ(q′) = 0}, i.e.

a single point. If ∇gu ∕= 0, then the set {q′ ∈ Z|∇gu(q′) ∕= 0} is co-dimension one

by the implicit function theorem. Thus the claim is true. For q ∈ M\Z, there is a

neighbourhood N of q in M such that u > 0 (< 0) in N , and N can be represented

as local radial graph. Moreover, û > 0 (< 0) in N̂ = π(N ) if and only if u > 0 (< 0)

in N , and N̂ can be represented as a radial graph in the polar coordinates of Rn+1

with origin p.
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Similar to (3.1.2) and (3.1.3), we have in N̂ that

ĝij = rirj + r2δij,

ν̂ =
σr%

r2 + |∇r|2
(
∂

∂r
− ∇r

r2
),

ĥij = σ(
%

r2 + |∇r|2)−1(−rrij + 2rirj + r2δij),

(3.1.8)

K̂ =
det ĥij

det ĝij
=

σn det(−rrij + 2rirj + r2δij)

(r2 + |∇r|2)n+2
2 r2n−2

, (3.1.9)

where ĝij, ν̂, ĥij and K̂ are the metric, the unit outer normal, the second fundamental

form, and the Gauss curvature of M̂ respectively.

On the other hand, by (3.1.7) and the fact that φ′2 − φφ′′ = 1, we get

K =
σn det(−rrij + 2rirj + r2δij)

r2n−2(r2 + φ′2|∇r|2)n+2
2

. (3.1.10)

Moreover, since φ(ρ) = sinh(ρ) for κ = −1, φ(ρ) = sin(ρ) for κ = 1, thus r2 = φ2

φ′2 =

κ( 1
φ′2 − 1), i.e.

φ′2 =
1

1 + κr2
. (3.1.11)

Comparing this to (3.1.9), we get

K

K̂
=

(r2 + |∇r|2

r2 + |∇r|2
1+κr2

)n+2
2
. (3.1.12)

It is well known that for x ∈ Sn, x is an unit outer normal of hypersurface defined

by ∇û+ ûx ∈ N̂ , thus

r2 = û2 + |∇û|2, (3.1.13)

û(x) = 〈r ∂

∂r
, ν̂〉 = σr2%

r2 + |∇r|2
. (3.1.14)
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Plugging the above two equations into (3.1.12), we get

K

K̂
=

(1 + κ(û2 + |∇û|2)
1 + κû2

)n+2
2
. (3.1.15)

This proves (3.1.6) for q ∈ M \ Z. Since M \ Z is dense in M, (3.1.6) holds for

q ∈ M.

Let X̃(τ) be a family of hypersurfaces evolving by the flow (1.2.2). Suppose we

can represent X̃(τ) as {(ρ̃(z, t)z, z)} as a radial graph locally over Sn in the polar

coordinates with center p, then we obtain the scalar curvature flow equation (locally)

ρ̃t = −K̃αω̃, (3.1.16)

where ω̃ =

√
φ(ρ̃)2+|∇ρ̃|2

φ(ρ̃)
.

Suppose that (1.2.2) exists on [0, T ∗). Then we can project X̃(τ) into Lp0

through the projection πp0 , where p0 is the outer center of X̃(0).

Lemma 3.1.2. The image ˆ̃X(τ) := πp0(X̃(τ)) evolves by

ˆ̃Xτ = −(1+κ| ˆ̃X|2)
n+2
2

α+ 1
2 (1+κ〈 ˆ̃X, ν̂〉2)−

n+2
2

α+ 1
2
ˆ̃Kα(x, τ)ν̂, τ ∈ [0, T ∗), (3.1.17)

where ˆ̃K and ν̂ are the Gauss curvature and the unit outer normal of ˆ̃X(τ) respec-

tively. The support function satisfies

ˆ̃uτ (x, τ) =− (1 + κ(ˆ̃u2 + |∇ˆ̃u|2))
n+2
2

α+ 1
2 (1 + κˆ̃u2)−

n+2
2

α+ 1
2
ˆ̃Kα(x, τ), τ ∈ [0, T ∗).

(3.1.18)

Proof. Since X̃0 is strictly convex, X̃(τ) will stay strictly convex on a short time

interval [0, δ). Thus, there is a set Z(τ) ⊂ X̃(τ) of measure zero, such that X̃(τ)
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can be represented as local radial graph and (3.1.16) holds on X̃(τ)\Z(τ). Plugging

(3.1.7) into (3.1.16), we get the evolution equation of r̃

r̃τ = −
3

(1 + κr̃2)2 +
|∇r̃|2
r̃2

(1 + κr̃2)K̃α (3.1.19)

holds in X̃(τ) \ Z(τ) for τ ∈ [0, δ).

Note that
ˆ̃u(x,τ)τ

ˆ̃u
= r̃(z,τ)τ

r̃
, by Lemma 3.1.1, we obtain

ˆ̃uτ (x, τ) =− (1 + κ(ˆ̃u2 + |∇ˆ̃u|2))
n+2
2

α+ 1
2 (1 + κˆ̃u2)−

n+2
2

α+ 1
2
ˆ̃Kα(x, τ)

holds in X̃(τ) \ Z(τ) for τ ∈ [0, δ). This is the evolution equation of the support

funtion when the hypersurfaces evolve by (3.1.17). By applying Lemma 3.2.3 with

T = δ, we obtain that the principal curvatures of ˆ̃X have a uniform positive lower

bound ε0 depending only on n,α, X̃0. This implies that X̃(τ) is uniformly convex

on [0, δ]. Then repeating this process, (3.1.17) and (3.1.18) hold on X̃(τ) \ Z(τ) for

any τ ∈ [0, T ∗). Since Z(τ) is of measure zero for any fixed τ ∈ [0, T ∗), this finishes

the proof.

3.2 Convergence to a point

In this section, we prove that the flow (1.2.2) converges to a point in finite time

T ∗ > 0. This is proved by proving the image flow of its projection in Rn+1 converges

to a point at T ∗. More generally, we prove the following theorem.

Theorem 3.2.1. Suppose { ˆ̃X(τ)} ⊂ Rn+1 is a family of hypersurfaces in Rn+1

evolving by

ˆ̃Xτ = −ψ(〈 ˆ̃X, ν̂〉, ν̂,∇〈 ˆ̃X, ν̂〉) ˆ̃Kα( ˆ̃X, τ)ν̂, (3.2.1)
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with ˆ̃X(0) = ˆ̃X0 strictly convex, where ˆ̃K, ν̂ are the Gauss curvature, and unit outer

normal of ˆ̃X respectively, α > 0 is a positive constant, ψ : (R × TSn) → R is a

smooth function satisfying
1

A
≤ ψ ≤ A,

‖ψ‖C2 ≤ A,

(3.2.2)

for some positive constant A > 0 as long as the flow (3.2.1) exists. Then the flow

(3.2.1) converges to a point in finite time T ∗ > 0 with T ∗ depending only on n,α, ˆ̃X0

and A.

When we consider the flow (3.1.17), ψ = (1+κ| ˆ̃X|2)n+2
2

α+ 1
2 (1+κ〈 ˆ̃X, ν̂〉2)−n+2

2
α+ 1

2

is uniformly bounded from below, since the flow is contracting.

Corollary 3.2.2. The flow (1.2.2) converges to a point in finite time T ∗ with T ∗

depending only on X̃0, n,α.

Proof. Let p0 be the outer center of X̃0, we consider the projection πp0 of X̃(τ) into

Lp0 on [0, T ∗). By Lemma 3.1.2, the image ˆ̃X(τ) = πp0(X̃(τ)) will evolve by (3.1.17),

which is a special case of (3.2.1) with ψ = (1 + κ| ˆ̃X|2)n+2
2

α+ 1
2 (1 + κ〈 ˆ̃X, ν̂〉2)−n+2

2
α+ 1

2 .

We can check that ˆ̃X0 is strictly convex and ψ satisfies (3.2.2). By Theorem 3.2.1,

ˆ̃X(τ) converges to a point q̂ in finite time T ∗ > 0. Thus, π−1
p0
( ˆ̃X(τ)) converges to the

point π−1
p0
(q).

Next, we prove Theorem 3.2.1. Note that under the flow (3.2.1), the support

function ˆ̃u evolves by

ˆ̃uτ = −ψ(ˆ̃u, x,∇ˆ̃u) ˆ̃Kα(x, τ). (3.2.3)
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Lemma 3.2.3. Suppose ψ satisfies (3.2.2), then under the flow (3.2.1), there exists a

constant ε0 = ε0(n,α, A,
ˆ̃X0) > 0 such that the principal curvatures ˆ̃κi of

ˆ̃X satisfies

ˆ̃κi ≥ ε0, τ ∈ [0, T ], (3.2.4)

for any T < T ∗ fixed, where T ∗ is the maximal existence time of (3.2.1).

Proof. In the following of the proof, we omitˆand˜and use t instead of τ for simplicity.

Let (Wij) = (uij + uδij) be the inverse of the Weingarten matrix of X, whose

eigenvalues (λ1, . . . ,λn) are the principal radii of curvature of X. To prove the lower

bound of κi, it suffices to prove the upper bound of λ(x, t) := maxi=1,...,n λi(x, t).

We consider the function Ḡ(x, t) := log λ + L
2
r2, where L > 0 is a large constant

to be determined. Suppose the maximum of Ḡ on Sn × [0, T ] is attained at (x0, t0),

we choose a local orthonormal frame e1, . . . , en around x0 such that {Wij(x, t)} is

diagonal at (x0, t0) and W11(x0, t0) = λ1(x0, t0) = λ(x0, t0). Then the function

G(x, t) := logW11(x, t) +
L

2
r2 (3.2.5)

also attains its maximum at (x0, t0). Let (W ij) = (Wij)
−1 be the inverse of (Wij),

F pq := αψKαW pq, then at (x0, t0)

W11,t =(u11 + u)t

=−Kα[ψ + ψuu11 + ψui
ui11 + ψx1x1 + ψuuu

2
1 + ψu1u1u

2
11 + 2ψx1uu1

+ 2ψx1u1u11 + 2ψuu1u11u1 − 2αW iiWii1(ψx1 + ψuu1 + ψu1u11)

+ α2ψ(W iiWii1)
2 + αψW iiW jjW 2

ij1 − αψW iiWii,11].
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Using the formula for commutating covariant derivatives on Sn, we have at (x0, t0),

Wi11 = W11i,

Wii,11 = W11,ii +Wii −W11,

Thus

W11,t − F ppW11,pp

=−Kα[ψ + ψuW11 − ψuu+ ψui
W11i − ψu1u1 + ψx1x1 + ψuuu

2
1 + ψu1u1W

2
11

− 2ψu1u1W11u+ ψu1u1u
2 + 2ψx1uu1 + 2ψx1u1W11 − 2ψx1u1u

+ 2ψuu1W11u1 − 2ψuu1uu1 − 2αW iiWii1(ψx1 + ψuu1 + ψu1W11

− ψu1u) + α2ψ(W iiWii1)
2 + αψW iiW jjW 2

ij1 + αψW ii(W11 −Wii)].

(3.2.6)

On the other hand, we have at (x0, t0)

r2t = 2uut + 2uiuit = −2Kα[uψ + ψxi
ui + ψu|∇u|2 + ψui

uiiui − αψW ppWppiui],

(r2)pp = 2(Wpiui)p = 2Wppiui + 2W 2
pp − 2uWpp,

which implies

r2t − F pp(r2)pp

=− 2Kα[uψ + ψxi
ui + ψu|∇u|2 + ψui

uiiui + αψW pp(W 2
pp − uWpp)]

=− 2Kα[(−nα + 1)uψ + ψxi
ui + ψu|∇u|2 + ψui

uiiui + αψWpp].

(3.2.7)

By maximum principle, at (x0, t0), we have

W11i = −L

2
W11(r

2)i = −LW11Wiiui, (3.2.8)
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and

0 ≤Gt − F ppGpp

=
W11t − F ppW11,pp

W11

+ F pp
W 2

11p

W 2
11

+
L

2
(r2t − F pp(r2)pp)

=−Kα[ψu1u1W11 + ψui

W11i

W11

+ ψu − 2ψu1u1u+ 2ψx1u1 + 2ψuu1u1

+
1

W11

(ψ − ψuu− ψu1u1 + ψx1x1 + ψuuu
2
1 + ψu1u1u

2 + 2ψx1uu1 − 2ψx1u1u− 2ψuu1uu1)

− 2αW iiWii1(ψu1 +
ψx1 + ψuu1 − ψu1u

W11

) + α2ψ(W
iiWii1)

2

W11

+ α
ψW iiW jjW 2

ij1

W11

+ αψW ii(1− Wii

W11

)− αψW pp
W 2

11p

W 2
11

+ (1− nα)Luψ + Lψxi
ui + Lψu|∇u|2

+ Lψui
Wiiui − Lψui

uui + αLψWpp]

≤−Kα[−C(n,α, A, L,X0) + ψu1u1W11 − Lψui
Wiiui − 2αW iiWii1(ψu1 +

ψx1 + ψuu1 − ψu1u

W11

)

+ α2ψ(W
iiWii1)

2

W11

+ α
ψW iiW jjW 2

ij1

W11

+ αψW ii(1− Wii

W11

)− αψW pp
W 2

11p

W 2
11

+ Lψui
Wiiui + αLψWpp]
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where we used (3.2.8), (3.2.2) and the fact that u2 ≤ u2 + |∇u|2 ≤ C(X0) in the last

step since the flow is contracting. By Cauchy-Schwarz inequality,

Gt − F ppGpp

≤−Kα[−C(n,α, A, L,X0) + (ψu1u1 − C(n,α, A,X0))W11

+ α
ψW iiW jjW 2

ij1

W11

− αψW pp
W 2

11p

W 2
11

+ αLψWpp]

≤−Kα[−C(n,α, A, L,X0) + (ψu1u1 − C(n,α, A,X0))W11

+ α
ψW iiW 11W 2

11i

W11

− αψW pp
W 2

11p

W 2
11

+ αLψWpp]

≤−Kα[−C(n,α, A, L,X0)− C(n,α, A,X0)W11 + αLψW11].

(3.2.9)

Since ψ ≥ 1
A
> 0 is bounded from below by (3.2.2), we can take L ≥ C1(n,α, A,X0)

sufficiently large such that W11 ≤ C2(n,α, A,X0). This implies that

λ(x, t) ≤ C2(n,α, A,X0). (3.2.10)

Lemma 3.2.4. Suppose ψ satisfies the condition (3.2.2), and the inner radius r−(
ˆ̃Ω(τ))

and outer radius r+(
ˆ̃Ω(τ)) satisfies 0 < r0 ≤ r−(

ˆ̃Ω(τ)) ≤ r+(
ˆ̃Ω(τ)) ≤ r1 for τ ∈ [0, T ],

then there is a constant C(n,α, ˆ̃X0, A) s.t.

ψ ˆ̃Kα(x, τ) ≤ C(n,α, ˆ̃X0, A)
r1
r0

max{ 1

rnα0
,max

τ=0
ψKα} (3.2.11)

for (x, τ) ∈ Sn × [0, T ].

Proof. In the following of the proof, we omit ˜ and ,̂ and use t instead of τ for

simplicity.
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First, by the definition of inner radius, there is a point z0 ∈ Ω(T ) s.t. uz0(x, T ) :=

u(x, T )− 〈z0, x〉 ≥ r0, ∀x ∈ Sn. Since X is a contracting flow, we also have

uz0(x, t) = u(x, t)− 〈z0, x〉 ≥ r0, (x, t) ∈ Sn × [0, T ]. (3.2.12)

Consider the function Q = −ut

uz0−
r0
2

on (x, t) ∈ Sn × [0, T ]. Suppose that Q attains

its maximum on Sn × [0, T ] at (x0, t0), then logQ will also attains its maximum at

(x0, t0). If t0 = 0, then we are done. Suppose t0 > 0. A direct computation shows

(logQ)t =
(−ut)t
−ut

− ut

uz0 − r0
2

,

(logQ)i =
(−ut)i
−ut

− uz0,i

uz0 − r0
2

,

(logQ)ij =
(−ut)ij
−ut

− (−ut)i(−ut)j
(−ut)2

− uz0,ij

uz0 − r0
2

+
uz0,iuz0,j

(uz0 − r0
2
)2
.

Let F ij := αψKαW ij, where Wij = uij + uδij and (W ij) = (Wij)
−1 as before. Then

we have by maximum principle that at (x0, t0)

uti =
utuz0,i

uz0 − r0
2

(3.2.13)

and

0 ≤ (logQ)t − F ij(logQ)ij =
(−ut)t − F ij(−ut)ij

−ut

− ut − F ijuz0,ij

uz0 − r0
2

. (3.2.14)

Let σk(1 ≤ k ≤ n) be the k − th elementary symmetric function, σij
n :=

∂σn(Wij)

∂Wij
,

then σn(Wij) = K−1, F ij = αψσ−α−1
n σij

n , and

−utt =(ψσ−α
n )t = ψtσ

−α
n − αψσ−α−1

n σij
n (utij + utδij)

=σ−α
n (ψuut + ψui

uit − αψW ijutij − αψ
σn−1

σn

ut).
(3.2.15)
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Moreover, we have

F ijuz0,ij =F ij(uij + 〈z0, x〉δij) = F ij(uij + uδij − uz0δij)

=nαψσ−α
n − αψσ−α

n

σn−1

σn

uz0

=− αut(n− σn−1

σn

uz0).

(3.2.16)

Plugging the above two equations into (3.2.14), and using (3.2.13), we get at (x0, t0)

0 ≤σ−α
n (−ψu −

ψui
uz0,i

uz0 − r0
2

+ αψ
σn−1

σn

)−
(nα + 1)− αuz0

σn−1

σn

uz0 − r0
2

ut

=Q[−ψu

ψ
(uz0 −

r0
2
)− ψui

uz0,i

ψ
+ α

σn−1

σn

(uz0 −
r0
2
) + (nα + 1)− αuz0

σn−1

σn

]

≤Q[C(n,α, X0, A)− α
r0
2

σn−1

σn

],

(3.2.17)

where we used (3.2.2) and the fact that X is contracting and strictly convex, which

implies that |∇uz0 |C0 ≤ |uz0 |C0 ≤ C(X0) in the last inequality. Note that

σn−1

σn

≥ C(n)σ
− 1

n
n = C(n)

(Q(uz0 − r0
2
)

ψ

) 1
nα ≥ C(n,α, A)r

1
nα
0 Q

1
nα . (3.2.18)

Plugging this into (3.2.17), we get

Q(x0, t0) ≤
C(n,α, X0, A)

rnα+1
0

, (3.2.19)

and

ψKα(x, t) ≤ (uz0(x, t)−
r0
2
) max
(x,t)∈Sn×[0,T ]

Q(x, t) ≤ C(n,α, X0, A)
r1
r0

max{ 1

rnα0
,max

t=0
ψKα}

for (x, t) ∈ Sn × [0, T ].
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Proof of Theorem 3.2.1. Since ˆ̃X(τ) is a contracting flow, |ˆ̃u|C0 ≤ C( ˆ̃X0). Since ˆ̃X

is strictly convex, the C0 estimate implies the C1 estimate of ˆ̃u. By the definition of

T ∗, r+ ≥ ε > 0 on [0, T ] for any T < T ∗. On the other hand, due to Lemma 2.2 in

[20] and Lemma 3.2.3, we have

r2+ ≤ C(n,α, A, ˆ̃X0)r−, (3.2.20)

as long as the flow exists. By (3.2.20), Lemma 3.2.3 and Lemma 3.2.4

‖ˆ̃u(x, τ)‖C2(Sn×[0,T ]) ≤ C(n,α, A, ˆ̃X0, ε). (3.2.21)

Since equation (3.2.3) is a concave parabolic equation, by Krylov-Safanov’s theorem

and the standard theory on parabolic equations, this implies that ˆ̃X(τ) is smooth

on [0, T ]. Thus, limτ→T ∗ r− = limτ→T ∗ r+ = 0. That is, ˆ̃X(τ) converges to a point q̂

as τ → T ∗. Set the initial value of the flow (3.2.1) to be the boundary of the outer

ball of ˆ̃X0, then the solution will be a family of geodesic spheres with radii {r̃(τ)}

satisfying the ODE

∂r̃

∂τ
= − ψ

r̃nα
≤ − 1

Ar̃nα
, (3.2.22)

which converges to zero in finite time. By comparison principle, ˆ̃X(τ) will converge

to a point in finite time as well.

3.3 The rescaled flow

The un-normalized flow (1.2.2) converges to a point q0 ∈ Nn+1(κ) as τ → T ∗

by Corollary 3.2.2. For κ = 1 and sufficiently small δ1, X̃(τ) is contained in the

open hemi-sphere H(q0) when τ ∈ [T ∗ − δ1, T
∗]. We consider a new geodesic polar

coordinate centered at q0 and use the new projection πq0 of X̃(τ) for τ ∈ [T ∗−δ1, T
∗]
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onto the hyperplane of Rn+2 which is tangent to Nn+1(κ) at q0. We re-scale ˆ̃X(τ) to

keep the enclosed volume fixed. Let X̂(x, t) = et ˆ̃X(x, τ), we have

X̂t(x, t) =X̂(x, t) + et ˆ̃Xτ (x, τ)τ
′(t)

=X̂(x, t)− e(nα+1)tτ ′(t)(1 + κ| ˆ̃X|2)n+2
2

α+ 1
2 (1 + κ|〈 ˆ̃X, ν̂〉|2)−n+2

2
α+ 1

2 K̂α

=X̂(x, t)− e(nα+1)tτ ′(t)(1 + κ
|X̂|2
e2t

)
n+2
2

α+ 1
2 (1 + κ

|〈X̂, ν̂〉|2
e2t

)−
n+2
2

α+ 1
2 K̂α,

(3.3.1)

and the corresponding support function evolves by

ût = û− e(nα+1)tτ ′(t)(1 + κ
r̂2

e2t
)
n+2
2

α+ 1
2 (1 + κ

û2

e2t
)−

n+2
2

α+ 1
2 K̂α. (3.3.2)

Since

0 =
dVol(Ω̂)

dt
=

'

Sn
ûtσndθ

=

'

Sn
ûσndθ − τ ′(t)e(nα+1)t

'

Sn
(1 + κ

r̂2

e2t
)
n+2
2

α+ 1
2 (1 + κ

û2

e2t
)−

n+2
2

α+ 1
2 K̂α−1dθ.

We have

τ ′(t) =

&
Sn ûσndθ

e(nα+1)t
&
Sn(1 + κ r̂2

e2t
)
n+2
2

α+ 1
2 (1 + κ û2

e2t
)−

n+2
2

α+ 1
2 K̂α−1dθ

=
(n+ 1)| ˆ̃Ω(τ)|

d| ˆ̃Ω(τ)|
dτ

,

(3.3.3)

that is

t =
1

n+ 1
log

( |B(1)|

| ˆ̃Ω(τ)|

)
, (3.3.4)

where B(1) denotes the unit ball in Rn+1. Note that | ˆ̃Ω(τ)| approaches zero as τ

approaches T ∗, and consequently t approaches infinity as τ approaches T ∗ and the
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solution X̂(x, t) exists for all positive time. We get

X̂t(x, t) =X̂(x, t)−
(1 + κ |X̂|2

e2t
)
n+2
2

α+ 1
2 (1 + κ 〈X̂,ν̂〉2

e2t
)−

n+2
2

α+ 1
2 K̂α

−
&
Sn(1 + κ |X̂|2

e2t
)
n+2
2

α+ 1
2 (1 + κ 〈X̂,ν̂〉2

e2t
)−

n+2
2

α+ 1
2 K̂α−1dθ

ν̂, (3.3.5)

with initial value X̂0 =
(

B(1)

| ˆ̃Ω(T ∗−δ1)|

) 1
n+1

πq0(X̃T ∗−δ1). The support function satisfies

ût = û−
(1 + κ r̂2

e2t
)
n+2
2

α+ 1
2 (1 + κ û2

e2t
)−

n+2
2

α+ 1
2 K̂α

−
&
Sn(1 + κ r̂2

e2t
)
n+2
2

α+ 1
2 (1 + κ û2

e2t
)−

n+2
2

α+ 1
2 K̂α−1dθ

= û− ψK̂α

−
&
Sn ψK̂

α−1dθ
,

(3.3.6)

with initial value û0 = 〈X̂0, ν̂〉, ψ = (1 + κ r̂2

e2t
)
n+2
2

α+ 1
2 (1 + κ û2

e2t
)−

n+2
2

α+ 1
2 .

3.3.1 Entropy and monotonicity

Recall for a convex body Ω ⊂ Rn+1, z0 ∈ Ω [9] defined the entropy

Eα(Ω, z0) =

!
""#

""$

α

α− 1
(log−

'

Sn
u
1− 1

α
z0 dθ), α ∕= 1;

−
'

Sn
log uz0dθ, α = 1;

(3.3.7)

and the entropy

Eα(Ω) := sup
z0∈Ω

Eα(Ω, z0), (3.3.8)

where uz0(x) := supz∈Ω〈z − z0, x〉 = u(x)− 〈z0, x〉. We know from Lemma 2.5 of [9]

that there is a unique point ze ∈ Int(Ω) ( Int(Ω) denotes the interior of Ω ) for the

convex body Ω with non-empty interior such that Eα(Ω) = Eα(Ω, ze), ze is called the

’entropy point’ of Ω. Moreover, Eα(Ω) ≥ 0 for Ω with |Ω| = |B(1)| and α > 1
n+2

by

Corollary 2.2 of [9].
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In the following, we denote Ω̂(t) and ˆ̃Ω(τ) by Ω̂t and
ˆ̃Ωτ respectively. We remark

that for any z0 ∈ ˆ̃Ωτ , the entropy of Ω̂ and ˆ̃Ω is related by

Eα(Ω̂t, e
tz0) = Eα( ˆ̃Ωτ(t), z0)−

1

n+ 1
log

( | ˆ̃Ωτ(t)|
|B(1)|

)
. (3.3.9)

Therefore, ze ∈ ˆ̃Ωτ is the entropy point of ˆ̃Ωτ if and only if etz0 ∈ Ω̂t(τ) is the en-

tropy point of Ω̂t(τ). We have the following key monotonicity property for Eα(Ω̂t) +

C(n,α, X̃0)e
− 2(n+1)

2n+1
t, where C(n,α, X̃0) is a positive constant depending only on

n,α, X̃0.

Theorem 3.3.1. There exists a positive constant C(n,α, X̃0) > 0 depending only on

n,α, X̃0 such that Eα(Ω̂t)+C(n,α, X̃0)e
− 2(n+1)

2n+1
t is none-increasing along the normal-

ized flow (3.3.6) for α ≥ 1
n+2

when t ≥ T0(n,α, X̃0) ≥ t(T ∗ − δ1). In particular, the

entropy Eα(Ω̂t) is bounded from above for α ≥ 1
n+2

.

Proof. Let τ0 ≥ T ∗ − δ1 to be determined and τ1 ≥ τ0. Let ti = t(τi) (i = 0, 1)

, z1 ∈ Int( ˆ̃Ωτ1) be the unique entropy point of ˆ̃Ωτ1 , then et1z1 ∈ Int(Ω̂t1) will be

the entropy point of Ω̂t1 . Since ˆ̃X is contracting, ˆ̃Ωτ ⊃ ˆ̃Ωτ1 ∋ z1 for any τ ≤ τ1.

Therefore, Ω̂t ⊃ Ω̂t1 ∋ etz1, ûetz1(x, t) > 0 for every t ≤ t1. Denote r+ = r+(
ˆ̃Ωt) and

r− = r−(
ˆ̃Ωt) the outer and inner radius of ˆ̃Ωt respectively, we have by (3.2.20) that

C(n,α, X̃0)r
2n+1
+ ≤ C(n)rn−r+ ≤ Vol( ˆ̃Ω) = e−(n+1)t ≤ C(n)r−r

n
+ ≤ C(n,α, X̃0)r

1+n
2

− .

(3.3.10)

Thus

C(n,α, X̃0)e
− 2(n+1)

n+2
t ≤ r− ≤ r+ ≤ C(n,α, X̃0)e

− n+1
2n+1

t. (3.3.11)
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Therefore,

1 ≥ 1

ψ
≥ (1 + ˆ̃r2+)

−n+2
2

α− 1
2 ≥ 1− (

n+ 2

2
α +

1

2
)C(n,α, X̃0)e

− 2(n+1)
2n+1

t, if κ = 1;

1 ≥ ψ ≥ (1− ˆ̃r2)
n+2
2

α+ 1
2 ≥ 1− (

n+ 2

2
α +

1

2
)C(n,α, X̃0)e

− 2(n+1)
2n+1

t, if κ = −1.

(3.3.12)

This implies the following inequalities for Eα(Ω̂t).

Case 1: α ∕= 1.

Eα(Ω̂t1) =Eα(Ω̂t1 , e
t1z1)

=Eα(Ω̂t0 , e
t0z1) +

' t1

t0

α
α−1

d log
(
−
&
Sn û

1− 1
α

etz1
dθ
)

dt
dt

=Eα(Ω̂t0 , e
t0z1) +

' t1

t0

−
&
Sn û

− 1
α

etz1
(ûetz1 − ψK̂α

−
!
Sn ψK̂α−1dθ

)dθ

−
&
Sn û

1− 1
α

etz1
dθ

dt

=Eα(Ω̂t0 , e
t0z1) +

' t1

t0

1−
−
&
Sn ψû

− 1
α

etz1
K̂αdθ

−
&
Sn û

1− 1
α

etz1
dθ−
&
Sn ψK̂

α−1dθ
dt

≤Eα(Ω̂t0 , e
t0z1) +

' t1

t0

1− [1− C(n,α, X̃0)e
− 2(n+1)

2n+1
t]

−
&
Sn û

− 1
α

etz1
K̂αdθ

−
&
Sn û

1− 1
α

etz1
dθ−
&
Sn K̂

α−1dθ
dt

≤Eα(Ω̂t0 , e
t0z1) +

' t1

t0

(
1−

−
&
Sn û

− 1
α

etz1
K̂αdθ

−
&
Sn û

1− 1
α

etz1
dθ−
&
Sn K̂

α−1dθ

)
[1− C(n,α, X̃0)e

− 2(n+1)
2n+1

t]dt

+ C(n,α, X̃0)

' t1

t0

e−
2(n+1)
2n+1

tdt

=Eα(Ω̂t0 , e
t0z1) +

' t1

t0

(
1−

−
&
Sn û

− 1
α
−1

etz1
K̂α+1dθ̃−

&
Sn dθ̃

−
&
Sn û

− 1
α

etz1
K̂dθ̃−

&
Sn û

−1
etz1

K̂αdθ̃

)
[1− C(n,α, X̃0)e

− 2(n+1)
2n+1

t]dt

+ C(n,α, X̃0)

' t1

t0

e−
2(n+1)
2n+1

tdt
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≤Eα(Ω̂t0 , e
t0z1) + C(n,α, X̃0)

' t1

t0

e−
2(n+1)
2n+1

tdt

≤Eα(Ω̂t0) + C(n,α, X̃0)(e
− 2(n+1)

2n+1
t0 − e−

2(n+1)
2n+1

t1)

for t0 ≥ T0(n,α, X̃0) ≥ t(T ∗−δ1) large such that 1−C(n,α, X̃0)e
− 2(n+1)

2n+1
T0 ≥ 0, where

dθ̃ :=
ûetz1

K̂
dθ and we used (3.3.12) in the first inequality and the fact −

&
Sn

ûetz1

K̂
dθ =

Vol(Ω̂t) ≡ 1 with Hölder inequality in the second to the last inequality. That is,

Eα(Ω̂t1) + C(n,α, X̃0)e
− 2(n+1)

2n+1
t1 ≤ Eα(Ω̂t0) + C(n,α, X̃0)e

− 2(n+1)
2n+1

t0 . (3.3.13)

Case 2: α = 1.

E1(Ω̂t1) =E1(Ω̂t1 , e
t1z1)

=E1(Ω̂t0 , e
t0z1) +

' t1

t0

d
(
−
&
Sn log ûetz1dθ

)

dt
dt

=E1(Ω̂t0 , e
t0z1) +

' t1

t0

−
'

Sn

ûetz1 − ψK̂
−
!
Sn ψdθ

ûetz1

dt

=E1(Ω̂t0 , e
t0z1) +

' t1

t0

1−
−
&
Sn ψû

−1
etz1

K̂dθ

−
&
Sn ψdθ

dt

≤E1(Ω̂t0 , e
t0z1) +

' t1

t0

1− [1− C(n, X̃0)e
−2 n+1

2n+1
t]−
'

Sn
û−1
etz1

K̂dθdt

≤E1(Ω̂t0 , e
t0z1)−

' t1

t0

[1− C(n, X̃0)e
− 2(n+1)

2n+1
t]−
'

Sn

(3 ûetz1

K̂
−

4
K̂

ûetz1

)2

dθdt

+ C(n, X̃0)

' t1

t0

e−
2(n+1)
2n+1

tdt

≤E1(Ω̂t0 , e
t0z1) + C(n, X̃0)

' t1

t0

e−
2(n+1)
2n+1

tdt

≤E1(Ω̂t0) + C(n, X̃0)(e
− 2(n+1)

2n+1
t0 − e−

2(n+1)
2n+1

t1)
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for t0 ≥ T0(n,α, X̃0) ≥ t(T ∗ − δ1) large such that 1− C(n, X̃0)e
− 2(n+1)

2n+1
T0 ≥ 0, where

we used (3.3.12) in the first inequality and the fact that −
&
Sn

ûetz1

K̂
dθ = Vol(Ω̂t) ≡ 1 in

the second inequality. That is,

E1(Ω̂t1) + C(n, X̃0)e
− 2(n+1)

2n+1
t1 ≤ E1(Ω̂t0) + C(n, X̃0)e

− 2(n+1)
2n+1

t0 . (3.3.14)

This completes the proof of the Theorem since t1 ≥ t0 ≥ T0(n,α, X̃0) are arbitrary.

Remark 3.3.2. The method to modify the ”standard entropy” by adding a correc-

tion term here to obtain a proper monotone entropy follows the argument in [16],

where in-homogeneous Gauss curvature type flows was treated.

Corollary 3.3.3. Let M̂t = ∂Ω̂t be a solution to the normalized flow (3.3.6) with

|Ω̂t| = |B(1)| and α > 1
n+2

. Then there exists C(n,α, X̃0) such that

max{w+(Ω̂t), r+(Ω̂t)} ≤ C, min{w−(Ω̂t), r−(Ω̂t)} ≥ 1

C
(3.3.15)

for all t ≥ T0(n,α, X̃0), where w−(Ω̂t), w+(Ω̂t) are the minimum and maximum of

the width function w(Ω̂t)(x) := û(x, t) + û(−x, t), x ∈ Sn respectively.

Proof. Since |Ω̂t| = |B(1)|, by Proposition 2.7 of [9], there exist positive constants β

and C depending only on n,α such that

max{r+(Ω̂t), w+(Ω̂t)} ≤ CenβEα(Ω̂t) (3.3.16)

and

min{r−(Ω̂t), w−(Ω̂t)} ≥ C−1e−βEα(Ω̂t). (3.3.17)

55



By Theorem 3.3.1, Eα(Ω̂t) + C(n,α, X̃0)e
− 2(n+1)

2n+1
t is non-increasing and Eα(Ω̂t) is

bounded from above for t ≥ T0(n,α, X̃0). The corollary follows directly from (3.3.16)

and (3.3.17).

3.3.2 C0 estimates

Next, we derive the uniform C0 bound for û(x, t) along the normalized flow

(3.3.6) with |Ω̂t| = |B(1)|. The main effort is to derive the uniform lower bound for

û(x, t) since the upper bound of û(x, t) follows directly from Corollary 3.3.3.

Define Eα,∞ := limt→∞ Eα(Ω̂t) = limt→∞ Eα(Ω̂t) + C(n,α, X̃0)e
− 2(n+1)

2n+1
t, where

C(n,α, X̃0) is the constant in Theorem 3.3.1. From the monotonicity property in

Theorem 3.3.1 and the fact that Eα(Ω̂t) ≥ 0 since |Ω̂t| = |B(1)| ( see Corollary 2.2

of [9] ), we know the limit Eα,∞ exists and is finite. Now we derive a relation of Eα,∞

and Eα(Ω̂t, 0).

Lemma 3.3.4. Let û(x, t) be the unique positive solution of (3.3.6) with |Ω̂0| =

|B(1)|. Let T0(n,α, X̃0) and C(n,α, X̃0) be the constants in Theorem 3.3.1, then for

any t ≥ T0, we have

(1) For α ∕= 1, α ≥ 1
n+2

.

Eα(Ω̂t, 0)− Eα,∞

≥
' ∞

t

( −
&
Sn û

− 1
α (x, s)K̂α(x, s)dθ

−
&
Sn û

1− 1
α (x, s)dθ−

&
Sn K̂

α−1(x, s)dθ
− 1

)
[1− C(n,α, X̃0)e

− 2(n+1)
2n+1

s]ds− C(n,α, X̃0)e
− 2(n+1)

2n+1
t.

(3.3.18)
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(2) For α = 1.

E1(Ω̂t, 0)− E1,∞

≥
' ∞

t

[1− C(n, X̃0)e
− 2(n+1)

2n+1
s]−
'

Sn

(4 û(x, s)

K̂(x, s)
−

4
K̂(x, s)

û(x, s)

)2

dθds −C(n, X̃0)e
− 2(n+1)

2n+1
t.

(3.3.19)

Proof. We adopt the arguments in [32]. Let T0 be the positive constant in Theorem

3.3.1, for each t̄ ≥ t0 ≥ T0 fixed, pick t1 > t̄. Let et1z1 = at1 = (at11 , . . . , a
t1
n+1) be the

entropy point of Ω̂t1 , where z1 = e−t1at1 ∈ ˆ̃Ωt1 . Note that since both the origin and

the entropy point at1 are in Int(Ω̂t1),

|at1 | ≤ 2r+(Ω̂t1) ≤ C(n,α, X̃0) (3.3.20)

by corollary 3.3.3.

Set ûetz1(x, t) = û(x, t)− et〈z1, x〉, then from of the proof of Theorem 3.3.1, we

have

For α ∕= 1.

Eα(Ω̂t1) ≤Eα(Ω̂t0 , e
t0z1) +

' t1

t0

(
1−

−
&
Sn û

− 1
α

etz1
K̂αdθ

−
&
Sn û

1− 1
α

etz1
dθ−
&
Sn K̂

α−1dθ

)
[1− C(n,α, X̃0)e

− 2(n+1)
2n+1

t]dt

+ C(n,α, X̃0)

' t1

t0

e−
2(n+1)
2n+1

tdt

=
α

α− 1
log−

'

Sn
û
1− 1

α

et0z1
dθ +

' t1

t0

(
1−

−
&
Sn û

− 1
α

etz1
K̂αdθ

−
&
Sn û

1− 1
α

etz1
dθ−
&
Sn K̂

α−1dθ

)
[1− C(n,α, X̃0)e

− 2(n+1)
2n+1

t]dt

+ C(n,α, X̃0)(e
− 2(n+1)

2n+1
t0 − e−

2(n+1)
2n+1

t1)

≤ α

α− 1
log−

'

Sn
û
1− 1

α

et0z1
dθ +

' t̄

t0

(
1−

−
&
Sn û

− 1
α

etz1
K̂αdθ

−
&
Sn û

1− 1
α

etz1
dθ−
&
Sn K̂

α−1dθ

)
[1− C(n,α, X̃0)e

− 2(n+1)
2n+1

t]dt

57



+ C(n,α, X̃0)(e
− 2(n+1)

2n+1
t0 − e−

2(n+1)
2n+1

t1).

For α = 1.

E1(Ω̂t1) ≤E1(Ω̂t0 , e
t0z1)−

' t1

t0

[1− C(n, X̃0)e
− 2(n+1)

2n+1
t]−
'

Sn

(3 ûetz1

K̂
−

4
K̂

ûetz1

)2

dθdt

+ C(n, X̃0)

' t1

t0

e−
2(n+1)
2n+1

tdt

=−
'

Sn
log ûet0z1dθ +

' t1

t0

−[1− C(n, X̃0)e
− 2(n+1)

2n+1
t]−
'

Sn

(3 ûetz1

K̂
−

4
K̂

ûetz1

)2

dθdt

+ C(n, X̃0)(e
− 2(n+1)

2n+1
t0 − e−

2(n+1)
2n+1

t1)

≤−
'

Sn
log ûet0z1dθ +

' t̄

t0

−[1− C(n, X̃0)e
− 2(n+1)

2n+1
t]−
'

Sn

(3 ûetz1

K̂
−

4
K̂

ûetz1

)2

dθdt

+ C(n, X̃0)(e
− 2(n+1)

2n+1
t0 − e−

2(n+1)
2n+1

t1)

since t̄ ≤ t1 and the integrand is non-positive (same reasoning as the proof of Theorem

3.3.1).

On the other hand

ûetz1(x, t) = û(x, t)− et〈z1, x〉 = û(x, t)− et−t1〈at1 , x〉 (3.3.21)

converges to û(x, t) uniformly for t0 ≤ t ≤ t̄, x ∈ Sn as t1 → ∞ .

Letting t1 → ∞, we get from the two inequalities above that
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For α ∕= 1.

Eα,∞ ≤ α

α− 1
log−

'

Sn
û(x, t0)

1− 1
αdθ +

' t̄

t0

(
1−

−
&
Sn û

− 1
α (x, t)K̂α(x, t)dθ

−
&
Sn û

1− 1
α (x, t)dθ−

&
Sn K̂

α−1(x, t)dθ

)

[1− C(n,α, X̃0)e
− 2(n+1)

2n+1
t]dt+ C(n,α, X̃0)e

− 2(n+1)
2n+1

t0 ,

(3.3.22)

and

For α = 1.

E1,∞ ≤−
'

Sn
log û(x, t0)dθ −

' t̄

t0

[1− C(n, X̃0)e
− 2(n+1)

2n+1
t]−
'

Sn

(4 û(x, t)

K̂(x, t)
−

4
K̂(x, t)

û(x, t)

)2

dθdt

+ C(n, X̃0)e
− 2(n+1)

2n+1
t0 .

(3.3.23)

This proves (3.3.18) and (3.3.19) for t = t0 since t̄ ≥ t0 is arbitrary. Since t0 ≥

T0(n,α, X̃0) is also arbitray, we obtain (3.3.18) and (3.3.19) for all t ≥ T0(n,α, X̃0).

Define for each ρ ∈ (0, 1) the following collection of convex bodies:

Γρ := {Ω ⊂ Rn+1 compact, convex |{r+(Ω), r−(Ω)} ⊂ [ρ,
1

ρ
]} (3.3.24)

Theorem 3.3.5. Suppose α > 1
n+2

and û(x, t) > 0 is the solution of (3.3.6) with

initial data û0, where û0 is the support function of a convex body Ω̂0 with |Ω̂0| =

|B(1)|, then there exists ε(n,α, X̃0) > 0 and T1(n,α, X̃0) ≥ T0, such that for t ≥ T1

and x ∈ Sn,

û(x, t) ≥ ε. (3.3.25)
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Proof. Note that under (3.3.6), we have for all t ≥ T0 that |Ω̂t| = |B(1)|, and by

Corollary 3.3.3, there exists ρ > 0 such that Ω̂t ∈ Γρ for every t ≥ T0.

By Lemma 3.3.4

Eα,∞ − Eα(Ω̂t) ≤ Eα,∞ − Eα(Ω̂t, 0) ≤ C(n,α, X̃0)e
− 2(n+1)

2n+1
t, t ≥ T0. (3.3.26)

This implies that limt→∞ Eα(Ω̂t, 0) = Eα,∞ and limt→∞(Eα(Ω̂t, 0)− Eα(Ω̂t)) = 0. Let

ze(Ω̂t) be the entropy point of Ω̂t. By Lemma 4.2 of [9], there is a positive constant

D > 0 such that when Eα(Ω̂t, 0) > Eα(Ω̂t)− 1,

|ze(Ω̂t)− 0|2 ≤ 1

D
|Eα(Ω̂t, 0)− Eα(Ω̂t)| (3.3.27)

which approaches to zero as t → ∞. The claimed result then follows from Lemma

4.4 of [9].

Corollary 3.3.6. Let α > 1
n+2

and û(x, t) be as in Theorem 3.3.5. Then there exists

Λ(n,α, X̃0) such that

1

Λ
≤ û(x, t) ≤ Λ (3.3.28)

for all (x, t) ∈ Sn×[T0,∞), where T0 = T0(n,α, X̃0) ≥ t(T ∗−δ1) is the T0 in Theorem

3.3.1.

Proof. The upper bound is immediate since the diameter of Ω̂t is bounded by Corol-

lary 3.3.3 and the fact that origin is in Ω̂t for t ≥ T0. The lower bound for t ≥ T1

is proved by Theorem 3.3.5. For the time T0 ≤ t < T1, we use the fact that

ˆ̃u(x, τ) = û(x, t)e−t is non-increasing in τ hence in t, so we have

û(x, t) ≥ et−T1û(x, T1) ≥ εe−T1 .

60



3.3.3 C2-estimates

Theorem 3.3.7. Suppose α > 1
n+2

and û(x, t) > 0 is the solution of (3.3.6) with

initial data û0, where û0 is the support function of the convex body Ω̂0 with |Ω̂0| =

|B(1)|. Then there exists a constant K̄ = K̄(n,α, X̃0) > 0 such that

K̂(x, t) ≤ K̄ (3.3.29)

for t ≥ T0.

Proof. This is immediate by re-scaling the upper bound of ˆ̃K obtained in Lemma

3.2.4 and Corollary 3.3.3.

Theorem 3.3.8. Suppose α > 1
n+2

and û(x, t) > 0 is the solution of (3.3.6) with

initial data û0, where û0 is the support function of the convex body Ω̂0 with |Ω̂0| =

|B(1)|. Then there exists a constant K = K(n,α, X̃0) > 0 such that

K̂(x, t) ≥ K (3.3.30)

for t ≥ t1(n,α, X̃0) ≥ T0.

Proof. It follows the same lines of the alternate proof of Theorem 5.2 in [9]. Let

f = ψK̂α = (û− ût)η,
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where η = −
&
Sn ψK̂

α−1dθ. Let Ŵ = (ûij + ûδij), and L := ∂t− αψσ−α−1
n

η
σij
n ∇i∇j. Then

ft =(ψK̂α)t

=ψtK̂
α − αψσ−α−1

n σij
n (ûij −

fij
η

+ ûδij −
f

η
δij)

=ψtK̂
α − nαf +

αψσ−α−1
n

η
σij
n fij +

αfσ−1
n σn−1

η
f.

(3.3.31)

Since

Lû =û− f

η
− αψσ−α−1

n

η
σij
n (ûij + ûδij) + û

αψσ−α−1
n

η
σij
n δij

=û− (nα + 1)f

η
+

αfσ−1
n σn−1

η
û,

(3.3.32)

thus

L(log(fûl)) ≥Lf
f

+ l
Lû
û

=(
ψt

ψ
− nα + l)− l(nα + 1)f

ûη
+ (l + 1)

αfσ−1
n σn−1

η
.

(3.3.33)

Since at the minimum point of log(ful), we have

fi
f
+ l

ûi

û
= 0. (3.3.34)

Thus

ûti = (1 +
lf

ûη
)ûi, (3.3.35)

and

ψt =
1

et
[ψˆ̃u(ût − û) + ψˆ̃ui

(ûit − ûi)]

=
1

et
[ψˆ̃u(û− f

η
− û) + ψˆ̃ui

((1 +
lf

ûη
)ûi − ûi)]

=
1

et
[−ûψˆ̃u + lψˆ̃ui

ûi]
f

ûη
.

(3.3.36)
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Let 0 < ε < 1 small, note that

|ψˆ̃u| =2κψ|[(n+ 2

2
α +

1

2
)(1 + κ

r̂2

e2t
)−1 + (−n+ 2

2
α +

1

2
)(1 + κ

û2

e2t
)−1]| û

et
≤ εψ,

|ψˆ̃ui
| =|2κψ(n+ 2

2
α +

1

2
)(1 + κ

r̂2

e2t
)−1 ûi

et
| ≤ εψ

(3.3.37)

for t > T̄ (n,α, X̃0) ≥ T0 large enough since û
et

= ˆ̃u, |ûi|
et

≤ r̂
et

= ˆ̃r → 0 as t → ∞.

Thus

ψt ≥ −ψf

ûη
(3.3.38)

for t > T2(n,α, X̃0) ≥ T̄ large enough, which implies that

L(log(fûl)) ≥(l − nα)− l(nα + 2)f

ûη
. (3.3.39)

Since η = −
&
Sn ψK̂

α−1dθ ≥ 1
2
−
&
Sn K̂

α−1dθ for t large and (−
&
Sn K̂

α−1)
1

α−1 ≥ eEα(Ω̂t) by

Lemma 5.4 of [9]. Thus η ≥ 1
2
e(α−1)Eα(Ω̂t) ≥ 1

2
for α ≥ 1 and η ≥ 1

2
Λα−1 for α < 1.

Let λ = 100
(nα+2)2Λ(n−1)α+4 , take Λ large enough such that mint=0(fû

l) ≥ 2λ. Then we

claim that min(fûl) ≥ λ > 0 for all t > 0. In fact, suppose t′ is the first time when

min(fûl) = fûl(x′, t′) touch λ, take l = nα + 2, then at (x′, t′), we have

0 ≥ 2− (nα + 2)2
f

ûη
= 2− (nα + 2)2

fûl

ηûl+1
≥ 2− 2(nα + 2)2

fûl

Λα−l−2
, (3.3.40)

where we used the fact that û ≥ 1
Λ
in the last inequality. Thus fûl(x′, t′) ≤ Λα−2−l

(nα+2)2
=

1
(nα+2)2Λ(n−1)α+4 = 1

100
λ which is a contradiction since fûl(x′, t′) = λ. Thus the claim

is true and K̂ ≥ ( λ
ûl )

1
α ≥ K > 0.

Theorem 3.3.9. Suppose α > 1
n+2

and û(x, t) > 0 is the solution of (3.3.6) with

initial data û0, where û0 is the support function of the convex body Ω̂0 with |Ω̂0| =

63



|B(1)|. Then there exist constants C1, C2 depending only on n,α, X̃0 > 0 such that

C1I ≤ Ŵij = ûij + ûδij ≤ C2I. (3.3.41)

for t ≥ t1(n,α, X̃0) ≥ T0.

Proof. Since we already have the upper and lower bound of K̂, it suffices to prove

an upper bound of the eigenvalues of (Ŵij). Similar to the proof of Lemma 3.2.3,

let (λ1, . . . ,λn) be the eigenvalues of (Ŵij), λ(x, t) := maxi=1,...,n λi(x, t). For any

T > 0, suppose λ attains its maximum on Sn × [0, T ] at (x′, t′). We take a local

orthonormal frame {e1, . . . , en} on Sn around x′, such that (Ŵij(x
′, t′)) is diagonal

and λ(x′, t′) = λ1(x
′, t′) = Ŵ11(x

′, t′). Then Ŵ11(x, t) also attains its maximum at

(x′, t′). If t′ = 0, λ(x, t) ≤ λ(x′, 0), we are done. Assume that t′ > 0, by (3.2.6), we

have

Ŵ11,t(x, t) =(et ˆ̃W11(x, τ))t = Ŵ11(x, t) + et ˆ̃W11,τ (x, τ)τ
′(t)

=Ŵ11(x, t) +
e−nαt

η
ˆ̃W11,τ (x, τ)

=Ŵ11 −
1

η
K̂α[ψ + ψˆ̃u

ˆ̃W11 − ψˆ̃u
ˆ̃u+ ψˆ̃ui

ˆ̃W11i − ψˆ̃u1
ˆ̃u1

+ ψˆ̃uˆ̃u
ˆ̃u2
1 + ψˆ̃u1

ˆ̃u1

ˆ̃W 2
11 − 2ψˆ̃u1

ˆ̃u1

ˆ̃W11
ˆ̃u+ ψˆ̃u1

ˆ̃u1
ˆ̃u2 + 2ψˆ̃uˆ̃u1

ˆ̃W11
ˆ̃u1

− 2ψˆ̃uˆ̃u1
ˆ̃uˆ̃u1 − 2α ˆ̃W ii ˆ̃Wii1(ψˆ̃u

ˆ̃u1 + ψˆ̃u1

ˆ̃W11 − ψˆ̃u1
ˆ̃u) + α2ψ( ˆ̃W ii ˆ̃Wii1)

2

+ αψ ˆ̃W ii ˆ̃W jj ˆ̃W 2
ij1 + αψŴ ii(Ŵ11 − Ŵii)− αψŴ iiŴ11,ii],
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since ˆ̃W ii( ˆ̃W11 − ˆ̃Wii) and ˆ̃W ii ˆ̃W11,ii are scaling invariant. Since we already proved

that ˆ̃W11 ≤ C(n,α, X̃0) in Lemma 3.2.3, and by maximum principle at (x′, t′)

ˆ̃W11i = 0, (3.3.42)

thus,

LŴ11 ≤ Ŵ11 −
1

η
K̂α[−2α ˆ̃W ii ˆ̃Wii1(ψˆ̃u

ˆ̃u1 + ψˆ̃u1

ˆ̃W11 − ψˆ̃u1
ˆ̃u) + α2ψ( ˆ̃W ii ˆ̃Wii1)

2

+ αψ ˆ̃W ii ˆ̃W jj ˆ̃W 2
ij1 + αψŴ ii(Ŵ11 − Ŵii)− C(n,α, X̃0)]

≤ Ŵ11 −
1

η
K̂α[−C(n,α, X̃0)| ˆ̃W ii ˆ̃Wii1|+ α2ψ( ˆ̃W ii ˆ̃Wii1)

2 + αψŴ11Ŵ
ii

− C(n,α, X̃0)]

≤ Ŵ11 −
1

η
K̂α[αψŴ11

2

i

Ŵ ii − C(n,α, X̃0)]

≤ Ŵ11 − C(n,α, X̃0, K̄,K)Ŵ11

2

i

Ŵ ii + C(n,α, X̃0, K̄,K)

= Ŵ11 − C(n,α, X̃0, K̄,K)Ŵ11
σn−1

σn

+ C(n,α, X̃0, K̄,K),

where we used the Cauchy-Schwartz inequality in the third step, and η = −
&
Sn ψK̂

α−1dθ ≤

C(n,α, X̃0, K̄,K). By Newton ’s inequality

σn−1

n
≥ (

σ1

n
)

1
n−1σ

n−2
n−1
n , (3.3.43)

we get

LŴ11 ≤ Ŵ11 − C(n,α, X̃0, K̄,K)Ŵ
n

n−1

11 + C(n,α, X̃0, K̄,K). (3.3.44)
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This implies that

Ŵ11(x0, t0) ≤ C(n,α, X̃0), (3.3.45)

since K̄ and K only depend on n,α, X̃0.

Combining Corollary 3.3.6, Theorem 3.3.9, we conclude that there exists a pos-

itive constant C depending only on n,α, X̃0 such that for the unique solution to

(3.3.6)

‖û(·, t)‖C2 ≤ C. (3.3.46)

3.4 Convergence to a sphere

Since (3.3.6) is a concave parabolic equation, by Krylov’s theorem and the stan-

dard theory of parabolic equations, the estimates (3.3.46) and (3.3.41) imply bounds

on all derivatives of û(x, t). More precisely, for any k ≥ 3, there exists Ck ≥ 0,

depending only on n,α, X̃0 such that for t ≥ t1(n,α, X̃0),

‖û(·, t)‖Ck(Sn) ≤ Ck. (3.4.1)

Proposition 3.4.1. Let X̂(t) be the solution of (3.3.5) with α > 1
n+2

, then X̂(x, t)

converges in C∞-topology to a round sphere as t → ∞.

Proof. First, given a sequence tj → ∞ and T > 0, define ûj(x, t) = û(x, t + tj).

Since by (3.4.1), ûj are uniformly bounded in Ck(Sn × [0, T ]), for every k ∈ N. By

Arzelà-Ascoli theorem, ûj has a subsequence converging in C∞-topology to a limit

û∞ on Sn × [0, T ] and û∞ is a solution of

û(x, t)∞,t = û∞(x, t)− K̂α
∞(x, t)

−
&
Sn û∞K̂α−1

∞ dθ
(3.4.2)
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on Sn × [0, T ].

We claim that û∞(x, t) is a soliton, i.e.

λ(t)û∞(x, t) = K̂α
∞(x, t), (3.4.3)

for some λ(t) > 0. In fact, otherwise, there is (x′, t′) ∈ Sn× [0, T ], a sequence jk → ∞

and positive constants ε, δ > 0 independent of jk such that

(4 û(x, t)

K̂(x, t)
−

4
K̂(x, t)

û(x, t)

)2

> δ, (α = 1);

or

1−
−
&
Sn(û)

− 1
α K̂αdθ

−
&
Sn(û)

1− 1
α K̂α−1dθ · −

&
Sn(û)

1− 1
αdθ

> δ, (α ∕= 1)

(3.4.4)

on B(x′, ε)× [t′ + tjk − ε, t′ + tjk + ε] by (3.4.1). This implies that

' ∞

T0

−
'

Sn

(4 û(x, t)

K̂(x, t)
−

4
K̂(x, t)

û(x, t)

)2(
1− C(n, X̃0)e

− 2(n+1)
2n+1

t
)
dθdt = ∞, (α = 1);

or

' ∞

T0

*
1−

−
&
Sn(û)

− 1
α K̂αdθ

−
&
Sn(û)

1− 1
α K̂α−1dθ · −

&
Sn(û)

1− 1
αdθ

+
(1− C(n,α, X̃0)e

− 2(n+1)
2n+1

t)dt = ∞, (α ∕= 1),

which is a contradiction to (3.3.19) and (3.3.18). Thus (3.4.3) is true. Multiplying

K̂−1(x, t) on both side of (3.4.3) and integrating on Sn, we get λ(t) = −
&
Sn K̂

α−1
∞ dθ.

Plugging this into (3.4.2), we get û∞,t = 0, λ(t) ≡ −
&
Sn K̂

α−1
∞ dθ is a constant. By

Theorem 1 of [12], the solution of (3.4.3) is a round sphere.

Next, we claim that {û(x, t)} converges in C∞-topology to û∞ itself as t → ∞.

In fact, otherwise, there is k ∈ N, a positive constant γ > 0 and a sequence {tl} → ∞
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such that

sup
x∈Sn

|û(k)(x, tl)− û(k)
∞ (x, tl)| ≥ γ, ∀ l ≥ 1. (3.4.5)

On the other hand, applying the above argument to {ûl(x, t) := û(x, tl + t)}, we

can find a subsequence {û(x, tlj + t)} of {û(x, tl + t)} converging to û∞(x, t) in C∞-

topology on Sn× {0} as j → ∞, i.e. ûtj(x, 0) converges in C∞-topology to û∞(x) on

Sn, which is a contradiction to (3.4.5).

Recall that q0 is the extinct point of M̃τ as τ → T ∗.

Theorem 3.4.2. M̃τ converges to a geodesic sphere centered at q0 in Nn+1(κ) as

τ → T ∗ after the rescaling.

By Corollary 3.2.2 and Theorem 3.4.2, we finish the proof of Theorem 1.2.1.
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CHAPTER 4
A warped product metric and the Weyl problem

In this chapter, we present the result about a warped product metric and the

Weyl problem.

Suppose M := (S2, g) is a compact smooth surface with Riemannian metric g,

let r be a positive function defined on M , satisfying 1− |∇r|2 > 0. In [42], Izmestiev

considered the manifold R+ × S2 = {(l, x)|l ∈ R+, x ∈ S2} with the warped product

metric

g̃ = dl2 + l2
g − dr ⊗ dr

r2
= dl2 + l2ĝ, (4.0.1)

where ĝ = g−dr⊗dr
r2

. Since 1 − |∇r|2 > 0, g̃ is indeed a warped product Riemannian

metric on R+ × S2. In [42], Izmestiev used the metric g̃ and the Hilbert-Einstein

(HE) functional

HE(g̃) =
1

2

'

P

Rg̃dvol +

'

M

Hdarea (4.0.2)

to reprove the infinitesimal rigidity of the Weyl’s isometric embedding problem. Here

P = {(ρ, x) ∈ R+ × S2|0 < ρ ≤ r(x)}, Rg̃ is the scalar curvature of g̃, H is the mean

curvature of boundary ∂P (the trace of the second fundamental form of ∂P ). In this

chapter, we will use the warped product metric g̃ to give a new proof of the closedness

of Weyl’s embedding problem and study the stability of HE near the critical point.

First, we recall some known results from [42].
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4.1 Reduction of Weyl’s embedding problem to a single equation

In this section, we recall some known results in [42].

In the following, we will denote the Riemannian manifold (R+ × S2, g̃) by N . It

is easy to see that the map f : M = (S2, g) → N = (R+ × S2, g̃), x /→ (r(x), x) is

an isometric embedding. This was mentioned by Izmestiev in [42], we give a short

proof here for completeness.

Lemma 4.1.1. Given a metric g on S2, a positive function r on S2 s.t. 1−|∇r|2 > 0,

then for the metric g̃ = dl2 + l2 g−dr⊗dr
r2

on R+ × S2, the map

f : (S2, g) → (R+ × S2, g̃), x /→ (r(x), x) (4.1.1)

is an isometric embedding.

Proof. In general, for a smooth manifold Mm, a Riemannian manifold (Nn, g̃), and

a map f : M → N , the pull-back metric on M in local coordinates (x1, . . . , xm) of

M and (y1, . . . , yn) of N can be expressed as

f ∗(g̃)ij =
n2

l,m=1

∂f l

∂xi

∂fm

∂xj
g̃lm.

Here, take local coordinates (x1, x2) on S2, then (l, x1, x2) will be local coordinates

on R+ × S2, and under these coordinates

g̃ij =

,

----.

1 0 0

0
l2(g11−r21)

r2
l2(g12−r1r2)

r2

0 l2(g21−r2r1)
r2

l2(g22−r22)

r2

/

00001
,
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and f takes the form

f : (x1, x2) /→ (r(x1, x2), x1, x2).

Thus the pullback metric is

f ∗(g̃)ij =
32

l,m=1

∂f l

∂xi

∂fm

∂xj
g̃ij = rirj +

32

l,m=2

δliδmj
r2(glm − rlrm)

r2
= gij. (4.1.2)

That is f ∗(g̃) = g, f is an isometric embedding.

One key feature of the warped product metric g̃ is that there is a simple relation

between the sectional curvatures of different sectional 2-planes of (N, g̃). In [42],

Izmestiev showed that for any two sectional plane π ⊂ T(l,x)N , the sectional curvature

of N along π is

sec(l,x)(π) = cos2 ϕ sec(l,x)(∂l
⊥) = cos2 ϕ

r(x)2

l2
sec(r(x),x)(∂l

⊥) =
cos2 ϕ

cos2 α

r(x)2

l2
sec(r(x),x),

(4.1.3)

where ∂l⊥ ∈ T(l,x)N is the 2-plane perpendicular to ∂l, ϕ is the angle between π and

∂l⊥, sec(x,r(x)) is the sectional curvature of the tangent plane Σ of f(M) = ∂P at

((x, r(x)), and α is the angle between Σ and ∂l(r(x),x) ( see B.1.3 and B.1.4 in [42]).

This means that the sectional curvature of the tangent planes of ∂P determines the

sectional curvature of (N, g̃) in all directions.

On the other hand, by Gauss equation, we have

sec(r(x),x) = K − det(B), (4.1.4)
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where K is the Gauss curvature of M , and B is the Weingarten tensor of ∂P with

respect to the unit outer normal ν at (r(x), x) (the eigenvalues of B are the principal

curvatures of ∂P ).

Let ρ(x) = 1
2
r2(x), then it was shown in Lemma 4.2.3 of [42] that

B =
Id−Hess(ρ)

(2ρ− |∇ρ|2) 1
2

. (4.1.5)

Combining (4.1.3), (4.1.4), and (4.1.5), we have

sec(l,x)(π) =
cos2 ϕ

cos2 α

r(x)2

l2
(K − det(Id−Hess(ρ)

2ρ− |∇ρ|2 ) (4.1.6)

for any (l, x) ∈ N and any π ∈ T(l,x)N . In particular, if we can show that there is a

function r on (S2, g) s.t.

K ≡ det(Id−Hess(ρ)

2ρ− |∇ρ|2 . (4.1.7)

Then, N will have constant sectional curvature zero, and thus will be locally isometric

to R3, since N is simply connected and g̃ is complete. Suppose Φ : N → R3 is this

isometry, then f̃ := Φ ◦ f will be an isometric embedding of M into R3. Thus, in

order to give an isometric embedding of M into R3, we only need to find a positive

solution r of (4.1.7) s.t. 1− |∇r|2 > 0.

4.2 C2 estimate and closedness

In the following, we only consider the metric g on S2 with positive Gauss cur-

vature K > 0. Taking a local frame on M = (S2, g), we can write equation (4.1.7)

as

K(2ρ− |∇ρ|2) det(g) = det(ρij − gij) (4.2.1)

for a function ρ > 0 defined on M .
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Definition 4.2.1. A function ρ > 0 on M is called an admissible solution of (4.2.1)

if 2ρ− |∇ρ|2 > 0 and (gij − ρij) > 0 is strictly positive definite on M .

Theorem 4.2.2. (C2 estimate) Suppose that ρ is an admissible solution of (4.2.1)

satisfying

c1 ≤ ρ ≤ c2 (4.2.2)

for some positive constants c1, c2. Then there exists positive constants c, C > 0

depending only on g, c1, c2 such that

0 < c ≤ 2ρ− |∇ρ|2 (4.2.3)

and

‖ρ‖C2(M) ≤ C (4.2.4)

Proof. C1 estimate: First, since ρ is an admissible solution, we have 2ρ− |∇ρ|2 > 0,

thus

|∇ρ| ≤
%

2ρ ≤
√
2c2 (4.2.5)

by (4.2.2). This gives the upper bound of |∇ρ|.

Moreover, suppose 2ρ − |∇ρ|2 attains its minimum at x0 ∈ M . Take a local

orthonormal frame on M near x0, by maximum principle, we have at x0

0 = (2ρ− |∇ρ|2)i = 2(δki − ρki)ρk, i = 1, 2. (4.2.6)

Since the matrix (δij − ρij) > 0 is strictly positive definite, we have ρk = 0 for

k = 1, 2. That is

(2ρ− |∇ρ|2)(x) ≥ (2ρ− |∇ρ|2)(x0) = 2ρ(x0) ≥ 2ρmin ≥ 2c1 > 0 (4.2.7)
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by (4.2.2) for any x ∈ M . This gives the lower bound of 2ρ− |∇ρ|2.

C2 estimate: let

F (ρ,∇ρ,∇2ρ) = K(2ρ− |∇ρ|2) det(g)− det(ρij − gij). (4.2.8)

To estimate ‖ρij‖C0 , we only need to estimate ρ11 − g11, ρ22 − g22 since (ρij − gij) is

negative definite. Without loss of generality, we may assume ρ11 − g11 ≤ ρ22 − g22.

Consider the function

G = (ρ11 − 1)f(ρ), (4.2.9)

where f > 0 is a function to be determined.

Suppose G attains its minimum at x0. We take a local orthonormal frame of

(S2, g) around x0, such that (ρij) is diagonal at x0. Then gij = δij around x0, the

equation (4.2.1) can be written as

K(2ρ− |∇ρ|2) = det(ρij − δij) (4.2.10)

around x0. Moreover, (ρij − gij) will also be diagonal at x0 and we have

Gi = ρ11if + (ρ11 − 1)f ′ρi,

Gij = ρ11ijf + ρ11if
′ρj + ρ11jf

′ρi + (ρ11 − 1)f ′′ρiρj + (ρ11 − 1)f ′ρij.

(4.2.11)

Let F ij = ∂F
∂ρij

= −Aij > 0 and Aij,kl =
∂ det(ρij−δij)

∂ρkl∂ρij
, where (Aij) = (

∂ det(ρij−δij)

∂ρij
) =,

-.
ρ22 − 1 −ρ21

−ρ12 ρ11 − 1

/

01. By maximum principle, we have at x0

ρ11i = −f ′

f
(ρ11 − 1)ρi (4.2.12)
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and

0 ≤F ijGij = −Aij(ρ11ijf + 2ρ11if
′ρj + (ρ11 − 1)f ′′ρiρj + (ρ11 − 1)f ′ρij)

=− fAiiρ11ii − Aij(−
2f ′2

f
(ρ11 − 1)ρiρj + f ′′(ρ11 − 1)ρiρj + (ρ11 − 1)f ′ρij)

=− f [Aiiρii11 + A22(R1221,1ρ1 + 2R1221ρ11 + 2R1212ρ22 +R1212,2ρ2)]

− Aij(ρ11 − 1)((−2f ′2

f
+ f ′′)ρiρj + f ′(ρij − δij + δij))

=f [Aij,klρij1ρkl1 −K11(2ρ− |∇ρ|2)− 2K1(2ρ1 − 2ρkρk1)−K(2ρ11 − 2ρk1ρk1 − 2ρkρk11)]

+ f(1− ρ11)(K1ρ1 −K2ρ2 + 2K(ρ11 − ρ22))− Aij(ρ11 − 1)(−2f ′2

f
+ f ′′)ρiρj

+ f ′(1− ρ11)(2 det+
2

i

Aii),

(4.2.13)

where we used the equation (4.2.10) and the fact that K = R1221 in the last equality.

On the other hand, by differentiating (4.2.10) once with respect to the first

variable and using (4.2.12), we have at x0

ρ111ρ221 =− f ′

f
ρ1(ρ11 − 1)ρ221 =

f ′

f
ρ1(−K1(2ρ− |∇ρ|2)− 2Kρ1(1− ρ11) + (ρ22 − 1)ρ111)

=
f ′

f
ρ1(−K1(2ρ− |∇ρ|2)− 2Kρ1(1− ρ11)−

f ′

f
ρ1(ρ22 − 1)(ρ11 − 1)),

ρ2121 =(ρ112 +R2112ρ2)
2 = ρ22(−

f ′

f
(ρ11 − 1) +K)2,

Thus

Aij,klρij1ρkl1 =2ρ111ρ221 − 2ρ2121

=− 2f ′

f
ρ1K1(2ρ− |∇ρ|2)− 4K

f ′

f
ρ21(1− ρ11)−

2f ′2

f 2
ρ21 det−

2f ′2

f 2
ρ22(ρ11 − 1)2+

4f ′

f
ρ22K(ρ11 − 1)− 2K2ρ22
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=− 4K
f ′

f
(1− ρ11)|∇ρ|2 − 2f ′2

f 2
ρ22(ρ11 − 1)2 − 2f ′

f
ρ1K1(2ρ− |∇ρ|2)−

2f ′2

f 2
ρ21K(2ρ− |∇ρ|2)− 2K2ρ22.

Moreover

2ρ11 − 2ρk1ρk1 =2ρ11 − 2ρ211 = 2(1− ρ11)− 2(1− ρ11)
2,

ρkρk11 =ρkρ1k1 = ρk(ρ11k +Rk112ρ2) = ρk(−
f ′

f
ρk(ρ11 − 1) + δk2Kρ2)

=− f ′

f
(ρ11 − 1)|∇ρ|2 +Kρ22.

Plugging the above equations into (4.2.13), we get

0 ≤− 4Kf ′(1− ρ11)|∇ρ|2 − 2f ′2

f
ρ22(ρ11 − 1)2 − 2f ′ρ1K1(2ρ− |∇ρ|2)− 2f ′2

f
ρ21K(2ρ− |∇ρ|2)

− 2K2fρ22 −K11f(2ρ− |∇ρ|2)− 4fK1ρ1(1− ρ11)− 2fK((1− ρ11)− (1− ρ11)
2)+

2Kf(−f ′

f
(ρ11 − 1)|∇ρ|2 +Kρ22) + f(1− ρ11)(K1ρ1 −K2ρ2)− 2Kf(1− ρ11)

2 + 2Kf det

− (−2f ′2

f
+ f ′′)(det ρ21 + (ρ11 − 1)2ρ22) + f ′(1− ρ11)(2 det+

2

i

Aii)

=− 4Kf ′(1− ρ11)|∇ρ|2 − 2f ′ρ1K1(2ρ− |∇ρ|2)− 2K2fρ22 −K11f(2ρ− |∇ρ|2)

− 4fK1ρ1(1− ρ11)− 2fK(1− ρ11) + 2Kf ′(1− ρ11)|∇ρ|2 + 2fK2ρ22 + f(1− ρ11)(K1ρ1 −K2ρ2)

+ 2fK det−f ′′(ρ21 det+(ρ11 − 1)2ρ22) + f ′(1− ρ11)(2 det+
2

i

Aii)

≤f ′(1− ρ11)(2 det+
2

i

Aii)− 2Kf ′(1− ρ11)|∇ρ|2 − 4fK1ρ1(1− ρ11)−

2fK(1− ρ11) + f(1− ρ11)(K1ρ1 −K2ρ2)− f ′′(ρ21 det+(ρ11 − 1)2ρ22) + 2fK det+C

≤(−f ′ − f ′′ρ22)(1− ρ11)
2 + C(1 + |f |+ |f ′′|+ |f ′|)(1− ρ11) + C

(4.2.14)
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for some constant C depending only on ‖K‖C2 , ‖ρ‖C1 , since det = K(2ρ− |∇ρ|2).

If we take f(ρ) = 1 + ρ, (4.2.14) implies that (1 − ρ11)(x0) ≤ C, for some C

depending only on ‖K‖C2 , ‖ρ‖C1 . Thus

(1− ρ11)(x) ≤
(1− ρ11)(1 + ρ)(x0)

1 + ρ(x)
≤ (1 + ρ(x0))C ≤ C(‖K‖C2 , ‖ρ‖C1), ∀x ∈ S2.

This gives the uniform C2 estimate for ρ.

Next, we give a short proof of the closedness in the method of continuity to

prove Weyl embedding problem by using the warped product metric g̃ and Theorem

4.2.2.

Recall the method of continuity to prove the Weyl embedding problem: Sup-

pose M = (S2, g) is a smooth closed surface with positive Gauss curvature K. By

uniformization theorem, g is conformal to δ, where δ is the standard metric on S2.

That is, there is a smooth function φ on S2 such that g = e2φδ. Define gt = e2tφδ,

0 ≤ t ≤ 1. This is a smooth metric on S2 for any t ∈ [0, 1]. Define the set

I = {t ∈ [0, 1]|(S2, gt) can be isometrically embedded into R3 smoothly}. (4.2.15)

The method of continuity is to prove that I = [0, 1] by proving that I is non-empty,

open and closed. I is non-empty since when t = 0, (S2, g0) = (S2, δ) is the standard

sphere and can be embedded into R3 as the unit sphere. Thus 0 ∈ I. The fact that

I is open ie proved by Nirenberg [48] (see also Theorem 9.2.1 in [38]).

Proof of Theorem 1.3.1. We note that

0 < ε ≤ Kgt = e−2tφ(Kδ−t∆δφ) = e−2tφ(te2φKg+(1−t)Kδ) ≤
1

ε
t ∈ [0, 1]. (4.2.16)
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for some ε > 0 depending on g and independent of k.

Suppose tk ∈ I, and tk → t ∈ [0, 1], we need prove that t ∈ I. Since tk ∈

I, (S2, gtk) can be isometrically embedded into R3. Let Xtk be the image of the

embedding and rtk be the radial function ofXtk , then ρtk := 1
2
r2tk will be an admissible

solution of the equation

Ktk(2ρtk − |∇ρtk |2gtk ) det(gtk) = det(ρtk,ij − gtk,ij). (4.2.17)

Moreover, by Lemma 9.1.1 in [38] and (4.2.16), there is a ball of radius R inside the

embeddings of (S2, gtk), where R only depends on 1
maxKgtk

(≥ ε > 0). We can choose

the origin to be the center of the ball so that

ρtk ≥ 1

2
R2 ≥ c1(g) > 0. (4.2.18)

On the other hand, for any point p ∈ Xtk , the line through the origin and p will

intersect Xtk at another point q. Then by Bonnet-Myers Theorem and (4.2.16)

ρtk(p) ≤
1

2
(p̄q)2 ≤ 1

2
dist(S2,gtk )(p, q)

2 ≤ 1

2
diam(S2, gtk)

2 ≤ C0

minKgtk

≤ c2(g),

(4.2.19)

where C0 is a universal constant and c2 depends only on g. By the uniform C2

estimate (4.2.4), we have

‖ρtk‖C2 ≤ C(g),

where C is independent of k.

78



By Nirenberg’s theory for 2-dimensional elliptic equations (see [49] Theorem I,

see also [38] Lemma 9.3.4), this implies that

‖ρtk‖C2,α(S2) ≤ C(g)

for some α ∈ (0, 1), where C is independent of k. Thus ρtk → ρt for some ρt ∈ C2(S2)

up to a sub-sequence and ρt satisfies the equation

Kgt(2ρt − |∇ρt|2gt) det(gt) = det(ρt,ij − gt,ij). (4.2.20)

Moreover, by the uniform lower bound estimate (4.2.3), we have

2ρt − |∇ρt|2gt ≥ c(g) > 0. (4.2.21)

Then (4.2.20) implies that det(ρt,ij − gt,ij) > 0, and ρt,ij − gt,ij is negative definite.

Thus, ρt is an admissible solution of (4.2.20). By using Nirenberg’s theory again and

the Schauder theory for elliptic equations, we see ρt is smooth.

By the discussions in section 4.1, this implies that all the sectional curvatures

of (R+ × S2, g̃) are zero and (S2, g) can be isometrically embedded into R3 smoothly

by the map Φ ◦ f , where f is defined by (4.1.1) with r =
√
2ρt, and Φ is an isometry

Φ : (R+ × S2, g̃) → R3. Thus t ∈ I, I is closed.

4.3 The stability of HE at critical points

In this section, we discuss the stability of HE at the critical points by calculating

the second variation of HE. Izmestiev [42] calculated the first variation of HE(r),

and the second variation in the special case r(t) = r(0) + trt. Here we give a short

79



simple different calculation of the first variation by using integration by parts and

then use it to derive the second variation.

We choose a local orthonormal frame of M = (S2, g) so that gij = δij, det(g) = 1

and calculate under this frame. Moreover, we use lower index to denote differentiation

with respect to the connection on (S2, g) for briefness.

First, note that if we let Aij =
∂ det(ρij−δij)

∂ρij
,

(cij) :=

,

-.
ρ22−1

(2ρ−|∇ρ|2)α − ρ21
(2ρ−|∇ρ|2)α

− ρ12
(2ρ−|∇ρ|2)α

ρ11−1
(2ρ−|∇ρ|2)α

/

01 =
( Aij

(2ρ− |∇ρ|2)α
)
, (4.3.1)

where α is a constant, then

ci1,i =
ρ221

(2ρ− |∇ρ|2)α − 2α(ρ22 − 1)(ρ1 − ρ1ρ11 − ρ2ρ21)

(2ρ− |∇ρ|2)α+1
− ρ212

(2ρ− |∇ρ|2)α

+
2αρ21(ρ2 − ρ1ρ12 − ρ2ρ22)

(2ρ− |∇ρ|2)α+1

=
−Kρ1

(2ρ− |∇ρ|2)α +
2αρ1 det(ρij − δij)

(2ρ− |∇ρ|2)α+1

=
−ρ1

(2ρ− |∇ρ|2)α (K − 2α det(B)).

The same calculation shows

ci2,i =
−ρ2

(2ρ− |∇ρ|2)α (K − 2α det(B)).

In summary, we have

cij,i = − ρj
(2ρ− |∇ρ|2)α (K − 2α det(B)), j = 1, 2. (4.3.2)
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Now, suppose we have a family of smooth functions {ρ(t)}t≥0 defined on M = (S2, g)

satisfying 2ρ− |∇ρ|2 > 0 on M . By [42] Theorem 4.3.3

HE =

'

M

h(K + det(B))darea =

'

M

r cosα(K + det(B))darea

=

'

M

%
2ρ− |∇ρ|2(K + det(B))darea,

(4.3.3)

where h = r cosα, r =
√
2ρ, α is the angle between ν and ∂l.

By using integration by parts and (4.3.2), we have

˙HE =
dHE(ρ(t))

dt

=

'

M

(2ρ− |∇ρ|2)− 1
2 (ρt − ρiρit)(K + det(B))

+

'

M

(2ρ− |∇ρ|2)− 1
2Aijρijt − 2(2ρ− |∇ρ|2)− 1

2 det(B)(ρt − ρiρit)darea

=

'

M

(2ρ− |∇ρ|2)− 1
2 (ρt − ρiρit)(K − det(B)) + (2ρ− |∇ρ|2)− 1

2 (K − det(B))ρjρjtdarea

=

'

M

(2ρ− |∇ρ|2)− 1
2ρt(K − det(B))darea.

(4.3.4)

This shows that ˙HE = 0 if

K = det(B) =
det(ρij − gij)

(2ρ− |∇ρ|2) det(g) ,

i.e. r =
√
2ρ is the radial function of an isometric embedding of(S2, g) into R3.

Equivalently, the Euclidean isometric embedding is the critical point of HE in

{g̃| g̃ is of the form (4.0.1)}.
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Next, we calculate the second variation of HE. Differentiating (4.3.4) once more

shows

ḦE =

'

M

ρtt(2ρ− |∇ρ|2)− 1
2 (K − det(B))− ρt(2ρ− |∇ρ|2)− 3

2 (ρt − ρiρit)(K − det(B))

− ρt(2ρ− |∇ρ|2)− 3
2Aijρijt + 2ρt(2ρ− |∇ρ|2)− 3

2 det(B)(ρt − ρiρit)darea

=

'

M

ρtt(2ρ− |∇ρ|2)− 1
2 (K − det(B)) + ρt(2ρ− |∇ρ|2)− 3

2 (ρt − ρiρit)(−K + 3det(B))

+ (2ρ− |∇ρ|2)− 3
2Aijρtiρtj − ρt(2ρ− |∇ρ|2)− 3

2ρjρjt(K − 3 det(B))darea

=

'

M

ρtt(2ρ− |∇ρ|2)− 1
2 (K − det(B)) + ρ2t (2ρ− |∇ρ|2)− 3

2 (−K + 3det(B))

+ (2ρ− |∇ρ|2)− 3
2Aijρtiρtjdarea.

(4.3.5)

If
%

2ρ(0) is the radial function of an isometric embedding of (S2, g) into R3, then

det(B(0)) =
det(ρ(0)ij−gij)

(2ρ(0)−|∇ρ(0)|2) det(g) = K, the first term in ḦE vanishes. Write ρt(x, 0) =

η(x), we have

ḦE(0) =

'

M

2η2(2ρ− |∇ρ|2)− 3
2K − (2ρ− |∇ρ|2)−1KBijηiηjdarea

=

'

M

(2ρ− |∇ρ|2)−1K(2η2(2ρ− |∇ρ|2)− 1
2 − Bijηiηj)darea.

(4.3.6)

at the critical points.

In the special case when (S2, g) = (S2, δ) is the unit sphere, where δ is the

standard metric on S2, then 2ρ− |∇ρ|2 ≡ 1, K ≡ 1, Bij = δij, we get

ḦE(0) =

'

S2
2η2 − |∇η|2darea =

'

S2
2η2 + η∆δηdarea ≤ 0 (4.3.7)

if
&
S2 ηdarea = 0 since the maximal nonzero eigenvalue of ∆δ is −2. Thus, for the

unit sphere (S2, δ), the isometric embedding of (S2, δ) into R3 is a local maximum of
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HE for variations s.t.
&
S2 ηdarea = 0. In particular, we get the following stability

result of HE at the sphere.

Theorem 4.3.1 (Theorem 1.3.2). Let δ be the standard metric on S2,
%

2ρ(0) ≡ 1

(be the radial function of the embedding of (S2, δ) into R3 with origin at the center of

the embedding). Let η(x) be a smooth function on (S2, δ) s.t.
&
S2 η(x)dδ = 0, ε > 0

small, Aη = {ρ(t, x) = ρ(0) + tη(x) admissible|t ∈ (−ε, ε), x ∈ (S2, δ)}, then ρ(0) is

a local maximum of HE in Aη.

On the other hand, if ρt(x, t) is a constant, i.e. when ρ(t) = ρ0 + tC, and

ρ0 = ρ(0) satisfying (4.2.1), we have

HE(t) =

'

M

%
2ρ0 − |∇ρ0|2 + 2tC(K +

det(ρ0ij − gij)

(2ρ0 − |∇ρ0|2 + 2tC) det(g)
)darea

=

'

M

(2ρ0 − |∇ρ0|2 + 2tC)
1
2K +

det(ρ0ij − gij)

det(g)(2ρ0 − |∇ρ0|2 + 2tC)
1
2

darea

≥
'

M

2K(2ρ0 − |∇ρ0|2)
1
2darea

=HE(0),

(4.3.8)

where ” = ” holds if and only if (2ρ0 − |∇ρ0|2 + 2tC)
1
2K =

det(ρ0ij−gij)

det(g)(2ρ0−|∇ρ0|2+2tC)
1
2
, i.e.

t = 0. This means that the Euclidean embedding is the minimum of HE along the

variation when ρt(x, t) = constant.

Having this in mind, we conjecture that for any metric g with K > 0, the

isometric embedding of (S2, g) into R3 is also a local maximum of HE for variations

s.t. 〈η, 1〉B = 0, where 〈·, ·〉B means the inner product is taken with respect to B.
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