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Abstract 

This dissertation is in the fonn of three essays on the topic of component and 

long memory GARCH models. The unifying feature of the thesis is the focus on 

investigating European index option evaluation using these models. 

The first essay presents a new model for the valuation of European options. In 

this model, the volatility of returns consists of two components. One of these 

components is a long-mn component that can be modeled as fully persistent. The 

other component is short-run and has zero mean. The model can be viewed as an 

affine version of Engle and Lee (1999), allowing for easy valuation of European 

options. The model substantially outperforms a benchmark single-component 

volatility model that is weil established in the literature. It also fits options better 

than a model that combines conditional heteroskedasticity and Poisson normal 

jumps. While the improvement in the component model's performance is partly due 

ta its improved ability to capture the structure of the smirk and the path of spot 

volatility, its most distinctive feature is its ability ta model the term structure. This 

feature enables the component model to jointly model long-maturity and short­

maturity options. 

The second essay derives two new GARCH variance component models with 

non-nonnal innovations. One of these models has an affine structure and leads to a 

closed-fonn option valuation formula. The other model has a non-affine structure 

and hence, option valuation is carried out using Monte Carlo simulation. We 

provide an cmpirical comparison of these two new component models and the 

respective special cases with normal innovations. We also compare the four 
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component models against GARCH(l, 1) models which they nest. All eight models 

are estimated using MLE on S&P500 returns. The likelihood criterion strongly 

favors the component models as weIl as non-normal innovations. The properties of 

the non-affine models differ significantly from those of the affine models. 

Evaluating the performance of component variance specifications for option 

valuation using parameter estimates from returns data also provides strong support 

for component models. However, support for non-normal innovations and non­

affine structure is less convincing for option valuation. 

The third essay ai ms to investigate the impact of long memory in volatility on 

European option valuation. We mainly compare two groups of GARCH models that 

allow for long memory in volatility. They are the component Heston-Nandi 

GARCH model developed in the first essay, in which the volatility of returns 

consists of a long-run and a short-mn component, and a fractionally integrated 

Heston-Nandi GARCH (FIHNGARCH) mode! based on Bollers!ev and Mikkelsen 

(1999). We investigate the performance of the models using S&PSOO index retums 

and cross-sections of European options data. The component GARCH mode! 

slightly outperforms the FIGARCH in fitting return data but signifieantly dominates 

the FIHNGARCH in capturing option priees. The findings are mainly due to the 

shorter memory of the FIHNGARCH model, whieh may be attributed to an 

artificially prolonged leverage effect that results from fractional integration and the 

limitations of the affine structure. 
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Abstract 

La dissertation ci-dessous comporte trois essais consacrés aux modèles GARCH et 

à l'évaluation européenne du prix d'option. Ces trois parties ont en commun d'étudier les 

techniques européennes d'évaluation du prix d'option en utilisant les modèles GARCH. 

La première partie présente un nouveau modèle pour l'évaluation des options 

européennes. Dans notre modèle, la volatilité du rendement se compose de deux attributs. 

Le premier est une composante de longue durée qui peut être modelée de manière 

persistante. L'autre composante est à court terme et a une moyenne de zéro. Notre modèle 

a l'ambition de préciser la version mise au point par Engle et Lee (1999) en facilitant 

l'évaluation des options européennes. Ce modèle surpasse considérablement le modèle 

établi de volatilité à composante simple. Les options s'adaptent mieux que dans un 

modèle qui combine l'hétéroskedasticité conditionnelle et la composante saut de poisson. 

L'amélioration du modèle est partiellement due à son identification de la structure 

ascendante et de la volatilité du marché ponctuel. Son dispositif le plus distinctif réside 

en sa capacité de modeler la structure de limite. Ce dispositif permet de modeler 

conjointement des options avec un délai de remboursement à longue terme et à court 

terme. 

Dans le deuxième essai, nous dérivons deux nouveaux modèles GARCH à 

composante aléatoire et aux innovations inédites ou anormales. Un de ces modèles a une 

structure d'affinage et aboutit à une formule d'évaluation d'option close. L'autre modèle a 

un non-affinage dynamique. Son évaluation du prix d'option doit être faite par 

l'intermédiaire de la simulation de Monte Carlo. Nous procédons une comparaison 

empirique de ces deux nouveaux modèles et de leurs cas spéciaux respectifs avec les 
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innovations nonnales. Nous comparons également les quatre modèles à ceux de GARCH 

(1.1), qu'ils emboîtent. Chacun des huit modèles est évalué en utilisant l'estimateur 

maximum de vraisemblance (MLE) sur les retours de S&P500. Le critère de probabilité 

favorise fortement les modèles composants et les innovations anonnales. Les propriétés 

des modèles sans affinage diffèrent significativement de celles des modèles d'affinage. En 

projetant les paramètres pour évaluer les prix d'option, nous aboutissons encore à des 

résultats en faveur des composantes alâtoires, mais les résultats des innovations 

anonnales et des structures de non-affinage sont moins convaincants. 

Le troisième essai étudie l'impact de la volatilité mémoire longue sur l'évaluation 

européenne du prix d'option en utilisant différents modèles. Nous comparons 

principalement deux groupes de modèles GARCH pennettant la volatilité mémoire 

longue. Il s'agit premièrement du composant Heston-Nandi du modèle GARCH 

développé par Christoffersen, Jacobs, et Wang (2005), dont la volatilité du rendement est 

à court et long tenne ; il s'agit ensuite du modèle GARCH partiellement intégré de 

Heston-Nandi basé sur Baillie, Bollerslev et Mikkelsen (1996). Nous étudions les 

modèles au travers des retours d'indice S&P 500 et des données sur les options 

européennes basées sur une coupe statistique. Les données de rendement du modèle 

GARCH surpassent légèrement le FIGARCH, mais c'est dans l'évaluation des pnx 

d'option que GARCH domine de manière significative le FIGARCH. La supériorité du 

modèle GARCH est due à la mémoire plus courte du modèle FIGARCH. qui poulTait être 

attribuée à l'effet de levier artificellement prolongé par l'intégration et la limitation 

partielles de la structure d'affinage. 
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General Introduction 

The seminal work of Black and Scholes (1973) and Merton (1973) on option pric­

ing theory, commonly known as the Black-Scholes model, has not only spawned a huge 

literature on derivative contracts but also transforrned the tinancial industry. However, this 

influential option pricing model has several shortcomings. Many empirical studies, inc1ud­

ing the empirical work in Black and Scholes (1972), have shown that the Black-Scholes 

model exhibits systematic pricing biases. It tends to overprice call options with high strike 

priees, and underprice caB options with low strike priees. Recent empirical studies typi­

cally focus on the pricing biases in terrns of implied volatilities, and the bias phenomenon 

is referred to as the "volatility smile" or the "volatility smirk". The "volatility smirk" refers 

to the phenomenon that the Black-Scholes implied volatilities for stock call options of· 

ten exhibit a downward-sloping, convex pattern when plotted against their exercise priees. 

This persistent feature of option data contradicts the prediction of the Black-Scholes model, 

which implies constant implied volatility. 

It has been documented in the existing literature that the volatility smirk is partly due 

to the unrealistic assumption of nonnally distributed returns in the Black-Scholes mode!. 

Empirical evidence suggcsts that the return distribution has fatter tails, and that the distrib­

ution implicit in option priees is substantially negatively skewed after the 1987 crash. lt is 

therefore necessary to build in skewness and excess kurtosis in the return process. This can 

be done in several ways. 
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Heston (1993) proposes a continuous-time stochastic volatili ty model that allows for 

correlation between volatility and spot asset retums. ln the discrete-time Iiterature, the 

NGARCH(l, 1) option valuation model proposed by Duan (1995) allows for time variation 

in the conditional variance as weil as a leverage ef'fect that generates skewness in retums. 

However, the discrete time model of Duan does not provide a closed forrn solution for op­

tion valuation. Heston and Nandi (2000) proposed a closely related GARCH option pricing 

model that provides a cIosed forrn solution (up to a numerical integration) for European op­

tion valuation. 

Another approach is to assume distributions other th an Gaussian for the retum in­

novations. Candidate distributions should contain more shape parameters than the nonnal 

distribution in order to accommoda te tàtter tails, for example the GED distribution, and/or 

skewness, for example the Inverse Gaussian distribution. Christoffersen, Heston and Ja­

cobs develop a new discrete-time dynamic model of stock retums with Inverse Gaussian 

innovation. The model allows for conditional skewness as weil as heteroskedasticity and a 

leverage effec!' and gives a closed-fûrrn solution. Their empirical results suggest that the 

model improves the pricing of out-of-money put options. 

A large number of papers have added jump components to the dynamics of retums or 

to both returns and volatility. In stochastic volatility models, the volatility smile decreases 

\Vith maturity. This contradicts the stylized fact that shorter maturity options have a more 

pronounced smile. FUl1hermore, diffusive stochastic volatility ean only increase gradually 

by a sequence of small. normally distributed inerements. However, while jumps in returns 

can generate large movements and more skewness during short time intervals, the impact 
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of a jump is transient. The general consensus is that both jumps and stochastic volatility 

are needed. Jumps generate retum non-normality over the short term while a persistent 

stochastic volatility process slows down the convergence of the retum to normality as the 

maturity increases. 

In summary, while stochastic volatility models, jump processes and non-normal in­

novations improve on the Black-Scholes model in a qualitative sense, they are still biased 

in a quantitative sense, because the strength of the effects is insufficient. To furthcr im­

prove on these existing models, we need models that possess the same qualitative feature 

but contain stronger quantitative effects. 

This dissertation attempts to provide such models by focusing on the strong evi­

dence of long memory in retum volatility. The variance is highly persistent over long 

horizons (see Ding, Granger, and Engle (1993) and Andersen, Bollerslev, Diebold and 

Labys (2003). Various long-memory models have been developed to capture this st yl­

ized fact. Engle and Lee (1999) introduced a component GARCH model to capture the 

long memory in volatility. Baillie, Bollerslev and Mikkelsen (1996) and Bollerslev and 

Mikkelsen (1999) incorporate the idea of long-memory fractional ditferencing into the 

GARCH mode!. Comte, Coutin and Renault (2001) propose an extension of Heston 's 

(1993) model to capture the long-run dependencies in volatility. This model can disentan-

gle short and long-memory properties in the resulting option priees. Despite the appeal of 

these models, empirical work that applies long-memory models to option pricing is quite 

Iimited. No empirical research has ever been can'ied out to compare the performance of 

long-memory models with that of other popular benchmarks. This dissel1ation aims to de-
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velop novel long-memory volatility models that allows for easier and improved European 

option evaluation. 

To model the variance, we can either use a continuous-time stochastic volatility 

model or a discrete-time GARCH mode!. The advantages of the continuous-time mod­

els lie in their mathematical elegance, and that they sometimes lead to closed-form option 

pricing formulas. However, GARCH models may offer distinct advantages over stochas­

tic volatility models from an estimation perspective. Continuous-time stochastie volatility 

models are diffieult to implement beeause, with diserete observations on the underlying 

asset priee process, the volatility is not readily identifiable. We therefore use a GARCH 

framework. The dissertation takes the form of three essays on the topic of eomponent 

GARCH models. The unifying feature of the entire thesis is the foeus on investigating 

European index option valuation with eomponent GARCH models. 

There are two eomerstones in the first dissertation essay. One is the component 

GARCH model of Engle and Lee (1993) and the other is an affine GARCH( 1,1) model pro­

posed by Heston and Nandi (2000). Building on these two papers. the fir5t essay presents 

a new component GARCH model that allows for easy valuation of European options. In 

the modeL the volatility of returns consists of two components. One of these components 

is a long-run component that can be modeled as fully persistent. The other component is 

short-run and has zero mean. Due to the flexibility in variance tenn structure and the flex-

ibility in generating more higher moments, the model can forecast the conditional density 

functions of 7-day to 360-day returns weIl. lt therefore generates more accurate Euro­

pean option priees. This model substantially outperforms a benehmark single-component 
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volatility model that is well established in the literature. It also tits options better than a 

model that combines conditional heteroskedasticity and Poisson normal jumps. 

In the tirst essay, sorne very fundamental assumptions are imposed, namely normally 

distributed retum innovations and an affine structure. The second essay relaxes these as­

sumptions and derives two new component GARCH models with non-normal innovations. 

One of these models has an affine structure with Inverse Gaussian retum innovations and 

leads to a c1osed-form option valuation formula. The other model has a non-affine struc­

ture with GED retum innovations. Since non-affine models do not lead to c10sed form 

solutions, we use Monte Carlo simulations for option valuation. An empirical comparison 

of these two new component models and the respective special cases with nOlmal innova­

tions is provided. An four component models are also compared with the GARCH(1,l) 

models which they ne st. AIl eight models are estimated using MLE on S&P500 retums. 

The likelihood criterion strongly favors the component models as weil as non-normal in­

novations. The properties of the non-affine models differ significantly from those of the 

affine models. Evaluating the performance of component variance specifications for op­

tion valuation using parameter estimates from returns data also provides strong support for 

component models. However, support for non-normal innovations and non-affine structure 

is Jess convincing. 

The component GARCH mode! is not the on!y GARCH mode! to capture long mem­

ory in volatility. Bollerslev and Mikkelsen (1999) developed a fractionally integrated 

GARCH model or a FIGARCH. in which a shock to variance decays at a hyperbolic rate. 

The third essay compares the performance of the compone nt GARCH from the tirst essay 
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and a fractionally integrated Heston-Nandi GARCH model (FIHNGARCH) in terms offit­

ting option data. We investigate the performance of the models using S&P500 index retums 

and cross-sectional European options data. The component Heston-Nandi GARCH model 

slightly outperforms the FIHNGARCH in fitting retums data, but significantly dominates 

the FIHNGARCH in capturing option priees. These results are mainly due to the shorter 

memory of the FIHNGARCH model, which can be attributed to the artificially prolonged 

leverage effect and the limitation of the affine structure. 



Chapter 1 
Option Valuation with Long-run and 

Short-run Volatility Components 

Peter Christoffersen Kris Jacobs Yintian Wang 

Abstract 

This paper presents a new model for the valuation of European options. In our mode!, 
the volatility of retums consists of two components. One of these components is a 
long-run component and it can be modeled as fully persistent. The other component 
is short-run and has a zero mean. Our model can be viewed as an affine version of 
Engle and Lee (1999), allowing for easy valuation of European options. The model 
substantially outperforms a benchmarks single-component volatility model that is 
weil established in the literature, and it fits options better than a mode! that combines 
conditional heteroskedasticity and Poisson normal jumps .The improvement in the 
component model's performance is partly due to its improved ability to capture the 
structure of the smirk and the pa th of spot volatility, it its most distinctive feature is 
its ability to model the term structure. This feature enables the component model to 
jointly mode long-maturity and shüt1-maturity options. 

JEL Classification: G 12 
Keywords: Volatility term structure: GARCH; Out-of-sample 
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1.1 Introduction 

There is a consensus in the equity options literature that combining time-variation in the 

conditional variance of asset retums (Engle (1982), Bollerslev (1986» with a leverage ef-

fect (Black (1976» constitutes a potential solution to well-known biases associated with 

the Black-Scholes (1973) model, such as the implied volatility smirk. These asymmetric 

dynamic volatility models generate negative skewness in the distribution of asset retums 

which in tum generates higher priees for out-of-the-money put options as compared to 

the Black-Scholes formula. In the continuous-time option valuation literature, the Heston 

(1993) model addresses sorne ofthese biases. This model contains a leverage eifect as weil 

as stochastic volatility.! In the discrete-time literature, the NGARCH(l, 1) option valu-

ation model proposed by Duan (] 995) contains time-variation in the conditional variance 

as weIl as a leverage effect. The model by Heston and Nandi (2000) is closely related to 

Duan's model. 

Many existing empirical studies have eonfirmed the importance oftime-varying volatil-

ity, the leveragc em~ct and negative skewness in continuous-time and discretc-time setups, 

using pm'ametrie as well as non-parametrie techniques. è However, it has beeome e\car 

that while these models help explain the biases of the Blaek-Seholes model in a qualitative 

sense, they come up short in a quantitative sense. Using parameters estimated from retums 

or options data, these models reduce the biases of the 81ack-Scholes modeJ, but the mag-

! The imponancc of stoehastie volatility is also studied in Hull and White (1987), Mclino and TlIrnbull 
(1990). Scott ( 1987) and Wiggins (1987). 

2 See for example Ait-Sahalia and Lo ( 1 Y911), Amin and Ng (J 993), Hakshi, Cao and Chen (1997), Bates 
(2000), Benzoni (19911), Bollerslc\ and Mikkclscn ( 1(99). Chcmov and Ghyscls (2000), Duan, Ritchkcn and 
Sun (2005. 2006), Englc and Mustaül (1992), Erakcr (2004), Heston and Nandi (2000), Jones (2003). Nandi 
(1998) and Pan (2002). 
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nitude of the effects is insufficient to completely resolve the biases. The resulting pricing 

errors have the same sign as the Black-Scholes pricing errors, but are smaller in magni-

tude. We therefore need models that possess the same qualitative features as the models in 

Heston (1993) and Duan (1995), but that contain stronger quantitative effects. These mod-

els need to generate more flexible skewness and volatility ofvolatility dynamics in order to 

fit observed option priees. Existing studies have attempted to address this by combing sto-

chastic volatility specifications with jump processes, or by using non-normal innovations 

in heteroskedastic models. 3 

The shortcomings of existing models in modeling the moneyness dimension are com-

pounded by their shortcomings in modeling the term structure of volatility, as weil as the 

path of spot volatility. lt has been observed using a variety of diagnostics that it is difficult 

to fit the dynamics of retum volatility using a benchmark model such as a GARCH( LI). 

A similar observation applies to stochastic volatility models such as Heston (1993). The 

main problem is that volatility autocorrelations are too high at longer lags to be explained 

by a GARCH( 1. 1), unless the process is extremely persistent. This extreme persistence 

may impact negatively on other aspects of option valuation, such as the valuation of short-

maturity options. 

ln tàct. it has been observed in the literature that volatility may be better modeled 

using a fractionally intcgratcd process, rather than a stationary GARCH process. 4 Ander-

sen, Bollerslev, Diebold and Labys (2003) confirm this finding using realized volatiIity. 

3 Sec for example l3akshi, Cao and Chen (1997), Bates (2000), Broadic. Cherno\ and Johannes (2004), 
Chrisloffcrsen, Heston and Jacobs (2006), Frakcr. Johannes and PoIson (2003). t'raker (2004). Huang and 
Wu (2004) and Pan (2002). 

4 Sec 13aillie. 130llcrslcv and Mikkelscn (1996). 
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Bollerslev and Mikkelsen (1996, 1999) and Comte, Coutin and Renault (2001) investigate 

and diseuss sorne of the implications of long memory for option valuation. Using frac­

tional integration models for option valuation is somewhat cumbersome. Optimization is 

time-intensive and certain ad-hoc choices have to be made regarding implementation. 

This paper attempts to remedy remaining option biases by modeling richer volatil­

ity dynamics. We use a model that is relatively easy to implement and that captures the 

stylized faets addressed by long-memory models at horizons relevant for option valuation. 

The model builds on Heston and Nandi (2000) and Engle and Lee (1999). In our model, the 

volatility of retums consists of two components. One of these components is a long-run 

component, and it can be modeled as (fully) persistent. The other component is short-run 

and mean zero. We study two models: one where the long-run component is constrained to 

be fully persistent and one where it is not. We refer to these models as the persistent com­

ponent model and the component model respectively. These models are able to generate 

autocolTelations that are richer th an those ofa GARCH(l.l) model while usingjust a few 

additional parameters. 

Unobserved component or factor models are very popular in the finance literature. 

See fama and french (1988), Poterba and Summers (1988) and Summcrs (1986) for ap­

plications to stock priees. In the option pricing literature, Bates (2000) and Taylor and Xu 

(1994) investigate two-fàctor stochastlc volatility models Duffie. Pan and ~ingleton (2000) 

provide a general continuous-time framework for the valuation of contingent claims using 

mllitifactor affine models. Eraker (2004) suggests the usefulness ofa mllitifactor approach 

based on his empirical results. Alizadeh, Brandt and Oiebold (2002) uncover two factors 
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in stochastic volatility models of exchange rates using range-based estimation. Bollerslev 

and Zhou (2002), Brandt and Jones (2006), Chacko and Viceira (2003), Chernov, Gal-

lant, Ghysels and Tauchen (2003), and Maheu (2002) also find that two-factor stochastic 

volatility models outperform single factor models when mode1ing daily asset return volatil-

ity. Adrian and Rosenberg (2005) investigate the relevance of a two-component volatility 

model for pricing the cross-section of stock returns. Unobserved component models are 

also very popular in the term structure literature, although in this literature the models are 

more commonly referred to as multifactor models. 5 There are very interesting parallels 

between our approach and results and stylized facts in the term structure literature. In 

the tenn structure literature, it is customary to model shOli-nm fluctuations around a time-

varying long-run mean of the short rate. In our framework we model short-run fluctuations 

around a time-varying long-run volatility. 

Dynamic factor and component models can be implemented in continuous or discrete 

time.6 We choose a discrete-time approach because of the ease of implcmentation. ln 

patiicular, our model is relatcd to the GARCH class of pro cesses, and therefore volatility 

filtering and forecasting are relatively straightforward, which is critically important for 

option valuation.7 An additional advantage of our mode] is parsimony: the most gencral 

5 Sec for example Dai and Singleton (2000), Dutfee (1999), Duffic and Singleton ( 1999) and Pearson and 
Sun (1994). 

(, Duffie, Pan and Singleton (2000) suggest a multifactor continuOlls-time model that captures the spirit of 
our approaeh. but do not investigate the model cmpirically. 

7 Recause the filtering problem is extremely simple in the GARCH framework. Il c arc able to analyze an 
extensive option sample. Sec also Beston and Nandi (2000). Sec among others Bates (2000. 2006), Chernov 
and Ghysels (2000), Eraker (2004) and Pan (2002) for other empirical studies that estimate modcl parameters 
using options data. 
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model we investigate has seven parameters. We speculate that parsimony may help our 

model's out-of-sample perfolmance. 

Because our component model is a generalization of the GARCH (l, 1) model, and 

because its implementation uses similar techniques, the GARCH(L 1) is a natural bench­

mark. Moreover, Christoffersen, Jacobs and Mimouni (2005) find that the perfonnance 

of the GARCH (l, 1) model is similar to that of the Heston (1993) model, which is the 

most commonly used benchmark in the literature. Heston and Nandi (2000) find that 

the GARCH(1, 1) slightly outperforms the ad-hoc implied volatility benchmark model in 

Dumas, Fleming and Whaley (1998). Finally, because there is substantial evidence that 

Poisson-normal jump processes can alleviate sorne of the biases associated with the He­

ston (1993) model and the GARCH(l.l) model, we also include a GARCH(L 1) model 

augmented with Poisson-normal jumps in our analysis. 

We provide two ditIerent analyses of the component mode!. We tirst estimate the 

physical model parameters by maximum likelihood estimation (MLE) on historical S&P 

retums for 1962-2001. We compare the component model and the persistent component 

model to the GARCH(L 1) benchmark as weIl as to the more general GARCH(1, 1)­

lump model. Based on the log-likelihood criterion, the GARCH( 1.1)-lump model per­

forms the best, followed by the component mode!. the persistent component model and the 

GARCH(1. 1) mode!. However, wh en we compare the models based on option fit using 

MLE parameters, the best fit is obtained using the component and persistent component 

model, followed by the GARCH(1.1)-Jump mode!. The GARCH(1. 1) model is again the 

worst performer. We also use the MLE parameters to emphasize differences in important 
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model features, such as the conditional volatility of variance, the correlation between re­

turns and condition al variance, the term structure of conditional skewness and kurtosis, the 

volatilîty smirk and the volatility term structure. The improvement in the model 's perfor­

mance is due to its richer dynamics, which result in different modeling of the term struc­

ture, and which enable the component model to capture patterns in long-maturity as weIl 

as short-maturity options. 

In a second empirical investigation, we estimate the models using options data, while 

filtering the latent volatility from the underlying returns data. Wh en the persistence of the 

long-run component is freely estimated, it is very close to one. The performance of the 

component model is impressive when compared with a benchmark GARCH( 1, 1) mode!. 

When using aIl available option data, the dollar RMSE of the component model is 11.3-

22.7% lower than that of the benchmark GARCH model in-sample and 21.8-23.3% out­

of-sample. Our out-of-sample results strongly suggest that these results are not simply due 

to spurious in-sample overfitting. The persistent component model perfonns better than 

the benchmark GARCH (1. 1) mode!. but in contra st to the results obtained using MLE 

parameters, it is clearly inferior to the component model both in- and out-of-sample. 

The paper proceeds as follows. Section 2 introduces the mode!. Section 3 discusses 

the volatility tenu stmcture and Section 4 discusses option valuation. Sections 5 and 6 

present the two empiricaI investigations. and Section 7 concludes. 
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1.2 Return Dynamics with Volatility Components 

ln this section we tirst present the Heston-Nandi GARCH(l, 1) model which will serve as 

the benchmark model throughout the paper. We th en construct the component model as a 

natural extension of a rearranged version of the GARCH(l, 1) mode!. We tinally present 

the persistent component model as a special case of the component mode!. 

1.2.1 The Heston and Nandi GARCH(l,l) Model 

Heston and Nandi (2000) propose a c1ass ofGARCH models that allow for a c1osed-form 

solution for the price of a European caIl option. They present an empirical analysis of the 

GARCH(l.l) version ofthis model, which is given by 

( 1.1 ) 

where St f 1 denotes the underlying asset price, r the risk free rate, ). the price of risk and 

hl-r l the daily variance on day t -+ 1 which is known at the end of day t. The 2t+ 1 shock is 

assumed to be i.i.d .. \"(0.1). The Heston-Nandi model captures time variation in the con-

ditional variance as in Engle (1982) and Bollerslev (1986),H and the parame ter (" captures 

the leverage etfect. The leverage effect captures the negative relationship between shocks 

to retums and volatility (Black (1976). which results in a negatively skewed distribution of 

retums.9 Note that the GARCH (1. 1) dynamic in (1.1) is slightly different from the more 

x For an carly application nI' GA RCH to stock rcturns. sec French, Schwcrt and Stambaugh (19R7). 

9 lts importance for option valuation has bcen cmphasizcd among others by Benzoni (1998), Chemov 
and Ghysels (2000), Christoffcrsen and Jacobs (2004). Erakcr (2004), Eraker, Johannes and PoIson (2003), 
Heston (1993), Heston and ~andi (2000) and Nandi (1998). 
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conventional NGARCH model used by Engle and Ng (1993) and Hentschel (1995), which 

is used for option valuation in Duan (1995). The reason is that the dynamic in (1.1) is engi-

neered to yield a c1osed-form solution for option valuation, whereas a c1osed-form solution 

does not obtain for the more conventional GARCH dynamic. Hsieh and Ritchken (2000) 

provide evidence that the more traditional GARCH model may actually slightly dominate 

the fit of (1.1). Our main point can be demonstrated using either dynamic. Because of the 

convenience of the closed-form solution provided by dynamics such as (1.1), we use this as 

a benchmark in our empirical analysis and we model the richer component structure within 

the Heston-Nandi framework. 'o 

To better appreciate the workings of the component models presented below, note 

that by using the expression for the unconditional variance 

w+a E:h j- 2 l 1+1 = a = 1 _ b _ ae2 

to substitute out '11', the variance process can be rewritten as 

1.2.2 Building a Component Volatility Model 

( 1.2) 

The expression for the GARCH( 1.1) variance process in (1.2) highlights the role of the 

parameter a 2 as the constant unconditional mean of the conditional variance process. A 

natural generalization is th en to specify a 2 as time-varying. Denoting this time-varying 

JO See Bollerslcv and Mikkeben (1996), Engle and Mustafa (1992), ChlistotTersen and Jacobs (2004). and 
Hsieh and Ritchken (2000) for other empirical studies of European option valuation using GARCH dynamics. 
Ritchken and Trevor (1999) discusses the pricing of American options with GARCH proccsses. 
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component by qt+ l, the expression for the variance in (1.2) can be generalized to 

This model is similar in spirit to the component model of Engle and Lee (1999). 

The difference between our model and Engle and Lee (1999) is that the functional form of 

the GARCH dynamic (1.3) allows for a closed-form solution for European option priees. 

This is similar to the difference between the Heston-Nandi (2000) GARCH(l, 1) dynamic 

and the more traditional NGARCH(1, 1) dynamic discussed in the previous subsection. ln 

specification (1.3), the conditional volatility ht+! can most usefully be thought of as having 

two components. Following Engle and Lee (1999), we refer to the component (]ft 1 as the 

long-run component, and to ht+l - qt+l as the short-run component. We will discuss this 

tenninology in sorne more detail below. Note that by construction the unconditional mean 

of the short-run component ht+l - qt+l is zero. 

The model can also be written as 

h" 1 (]/ Il + (w,i + j)) (ht - qt) -+- Cl (C::t - ~IJ ..ji;;)2 - (1 + ~:~ht)) 

({tll + T3 (h t - (]t) -+- Cl! ((Zt -- ~:l ~)2 - (1 + ",·iht)) 

where :)-- wf + .-J. This representation is use fui because we can think of 

2 

(Zt-Î'l..ji;;) -(l+~iiht) 

(z; - 1) - 2~ .. 1 jJ,; 2/ 

as a mean-zero innovation. 

(1.4) 

( 1.5) 
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The model is completed by specifying the functional form of the long-mn volatility 

component. ln a first step, we assume that qt+1 follows the process 

(1.6) 

Note that E [qt+1l = E [ht+d = (52 = ~ as long as p < 1. We can therefore write the 
I-p 

eomponent volatility model as 

(1.7) 

with 

( 1.8) 

and Et ·1 ['l'ul = 0, i = 1,2. A!so note that in addition to the priee of risk, À, the mode! 

contains seven parameters: Q, (3, 1'1, ~12' c....:, P and y. 

1.2.3 A FuUy Persistent Special Case 

In our empirical work, we also investigate a special case of the mode! in (1.7). Notice that 

in (1.7) the long-mn component of volatility will be a me an reverting process for fJ < 1. 

We also estimate a version of the model which imposes p = 1. The resulting process is 

"If 1 
(It+1 + ,ô (1/ 1 -- lIt) 1- ()('u ( 1.9) 

and l'i.l' i =c: 1.2 are as in (] .8). ln addition to the priee of risk, /\, the model now contains 

six parameters: o. i:J. ~ll·12, Lv' and '-P. 
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In this case the process for long-run volatility contains a unit root and shocks to 

the long-run volatility never die out: they have a "permanent" effect. Recall that following 

Engle and Lee (1999) in (l.7) we refer to qt+l as the long-run component and to ht+-l - qt+l 

as the short-run component. In the special case (l.9) we can also refer to qt+! as the 

"pennanent" component, because innovations to qt+l are truly "pennanent" and do not die 

out. It is then customary to refer to ht+l - qt+l as the "transitory" component, which 

reverts to zero. It is in fact this pennanent-effects version of the model that is most c10sely 

related to models which have been studied more extensively in the finance and economics 

literature, rather than the more general model in (l. 7).11 We will refer to this model as the 

persistent component mode!. 

It is c1ear that (1.9) is nested by (1.7). lt is therefore to be expected that the in-

sample fit of (1.7) is superior. However, out-of-sample this may not necessarily be the 

case. lt is often the case that more parsimonious models pelform bener out-of-sample if 

the restliction imposed by the mode! is a sufticiently adequate represcntation ofrea!ity. The 

persistent component mode! may also be better able to capture structural breaks in volatility 

out-of-sample, because a unit root in the process allows it to adjust to a structural break, 

which not possible for a mean-reverting process. lt will thercfore be of interest to verify 

how close p is to one when estimating the more general model (1.7). 

Il Sec Fama and French (1988), Potcrba and Sllmmers (1988) and Sllmmcrs ( 1986) for arpl ications to stock 
priees. See Beveridge and Nelson (1981) for an application to macroeconomies_ 
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1.3 Variance Term Structures 

To intuitively understand the shortcomings of existing models such as the GARCH(l, 1) 

model in (1.1) and the improvements provided by our model (1.7), it is instructive to graph-

ically illustrate sorne of the models' statistical properties that are key for option valuation. 

In this section we therefore illustrate the models' variance tenn structures and impulse re-

sponse functions. 

1.3.1 The Variance Term Structure for the GARCH(l,l) Model 

Following the logic used for the component model in (1.7), we can rewrite the GARCH(l, 1) 

variance dynamic in (1.2). We have 

( 1.10) 

where b = b + (le2 and where the innovation tenn has a zero conditional mean. From ( 1.1 0) 

the multi-step forecast of the conditional variance is 

where the conditional expectation is takcn at the end of day t. Notice that b is directly 

interpretable as the variance persistence in this representation of the mode!. 

We can now define a convenient measure of the variance tenn structure for maturity 

J( as 

_ ILl( r . lLF 
" -, I/F(h 2) , '" l (f . 2) .__ 2 - Of j 1 - (J hnl:t tK = L- Et [ht i Al == T.- (J +- b' Itt 1 - (J ... (J + .' 

n. I\ 1-(; 1\. 
A=l A=l 
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This variance term structure measure succinctly captures important information about the 

model's potential for explaining the variation of option values across maturities. 12 To 

compare different models, it is convenient to set the current variance, htH, to a siIl)ple rn 

multiple of the long run variance. In this case the variance term structure relative to the 

unconditional variance is given by 

2 _ 1 - bK (rn - 1) 
htH:t+K/O' = 1 + - K . 

1- b 

The dash-dot lines in the top panels of Figures 1 and 2 show the term structure of variance 

for the GARCH (l, 1) model for a low and high initial conditional variance respectively. We 

use parameter values estimated via MLE on daily S&P500 retums (the estimation details 

are in Table 1 and willbe discussed further below). We set m = ~ in Figure 1 and rn = 2 

in Figure 2. The figures present the variance term structure for up to 250 days, which 

corresponds approximately to the number of trading days in a year and therefore captures 

the empirically relevant tenn structure for option valuation. lt can be clearly se en from 

Figures 1 and 2 that for the GARCH( 1. 1) mode!. the conditional variance converges to the 

long-run variance rather Ü1St. 

We can also leam about the dynamics of the variance term stmcture though impulse 

response functions. For the GARCH( 1. 1) modeL the effect of a shock at time t, :::" on the 

expectecl k-day ahead variance is 

12 Notice that due to the price ofrisk tCJ1l1 in the conditional mean ofretums. the term structure ofvariancc 
as defined here is not exactly equal tll the conditional variance of cumulative retums over l\ days. 
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and thus the effect on the variance term stmcture is 

The bottom-left panels of Figures 3 and 4 plot the impulse responses to the term structure 

of variance for ht = (12 and Zt = 2 and Zt = - 2 respectively, again using the parameter 

estimates from Table 1. The impulse responses are normalized by the unconditional vari-

ance. Notice that the effect of a shock dies out rather quickly for the GARCH(l, 1) model. 

Comparing across Figures 3 and 4 we see the asymmetric response of the variance term 

stmcture from a positive versus negative shock to retums. This can be thought of as the 

term structure of the leverage effect. Due to the presence of a positive c, a positive shock 

has less impact than a negative shock along the entire term structure of variance. 

1.3.2 The Variance Term Structure for the Component Model 

In the component model we have 

The multi-day forecast of the two components are 

The simplicity ofthese multi-day forecasts is a key advantage of the component mode!. The 

multi-day variance forecast is a simple sum of two exponential components. Notice that 
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~ and p correspond directly to the persistence of the short-run and long-run components 

respectively. 

We can now calculate the variance term structure in the component model for matu-

rit y K as 

If we set ql f 1 and ht+ 1 equal to ml and m2 multiples of the long run variance respectively, 

then we get the variance term structure relative to the unconditional variance simply as 

(1.11) 

The solid lines in the top panels in Figures 1 and 2 show the term structure of variance 

for the component mode] using parameters estimated via MLE on daily S&P500 retums 

from Table 1. We set m] = 1. lf/2 = ~ in Figure 1 and m] = i. 1112 = 2 in Figure 2. 

By picking /f/2 equal to the III used for the GARCH(L 1) mode!. we ensure comparabil-

ity across models within each figure because the spot variances relative to their long-mn 

variances are identicaI. J
< The main conclusion from Figures 1 and 2 is that compared to 

the dash-dot GARCH (L 1), the conditional variance converges more slowly to the uncon-

ditional vatiance in the component mode!. This is particularly so on days \Vith a high spot 

J 3 Note that wc nccd IIIl -je 111:} in this numerical experiment ta gcnerate a "shOrl-term" ciTect in (1.11). 
Changing ml will change the picture but the main conclusions stay the same. 
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variance. The middle and bottom panels show the contribution to the total variance from 

each component. Notice the strong persistence in the long-run component. 

We can also calculate impulse response functions in the component mode!. The 

effects of a shock at time t, Zt on the expected k-day ahead variance components are 

/3 ct l - ~ll V ht / Zt 
-k--l ( IL) 

j3 0: l - 'h V ht! Zt + P- 'P l - ''12 V ht! Zt . 
-, k-l ( IL) k 1 ( IL) 

Notice again the simplicity due to the component structure. The impulse response on the 

term structure of variance is then 

The top-left panels of Figures 3 and 4 plot the impulse responses to the term structure 

of variance for ht = 0'2 and Zt = 2 and ;:'t = - 2 respectively. The figures reinforce 

the message from Figures 1 and 2 that using parametrization estimated from the data, the 

component mode! is quite different from the GARCH( 1. 1) mode!. The eŒ~cts of shocks 

are much longer lasting in the component model using estimated parameter values because 

of the parameterization of the long-run component. Comparing across Figures 3 and 4 it is 

also clear that the tem) structure of the lcverage efrect is more flexible. As a result CUITent 

shocks and the current state of the economy potentially have a much more profound impact 

on the Plicing of options across maturities in the component mode!. 

It has been argued in the ]iterature that the hyperbolic rate of decay displayed by long 

memory processes may be a more adequate representation for the conditional variance of 
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returns. 14 We do not disagree with these findings. Instead, we argue that Figures 1 through 

4 demonstrate that in the component model the combination of two variance components 

with exponential decay gives rise to a slower decay pattern that sufficiently adequately 

captures the hyperbolic decay pattern of long memory processes for the horizons relevant 

for option valuation. This is of interest because although the long-memory model may be 

a more adequate representation of the data, it is harder to imp1ement. 

1.4 Option Valuation 

We now turn to the ultimate purpose ofthis paper, namely the valuation of derivatives on an 

underlying asset with dynamic variance components. For the purpose of option valuation 

we first derive the eonditional moment generating function for the return process and then 

present the risk-neutral return dynamics. 

1.4.1 The Moment Generating Function 

For the return dynamies in this paper we ean eharaeterize the moment generating function 

(MGF) of the log stock price with a set of difference equations using the techniques in 

Heston and Nandi (2000). Appendix A demonstrates that for the component GARCH 

model we have that the MGF defined by 

f(t,T:o)::::::: Edexp(Oln(ST))] 

14 See Rollcrslcv and Mikkclscn (1996,1999). Raillic. Bollcrsb and Mikkclsen (1996) and Ding, Grangcr 
and Engle (1993). 
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can be written 

( 1.12) 

with coefficients 

and tenninal conditions 

Ar = El.T = B 2,T = o. 

For the moment generating function in the GARCH(l. 1) case we refer to Heston and Nandi 

(2000). 

In Figures 1 and 2 we illustrated differences across models in tenns of variance term 

structures that are key for option valuation. Following Das and Sundaram (1999), we can 

use the moment generating function in (1.12) to further investigate the conditional tenn 

structure of higher moments. Specifically, we can derive conditional skewness and exccss 

kurtosis for maturity T using the logarithm of the conditional moment gcncrating function 

as füllows 

where 

D4 111 f(t. T: ô)/iJ()41<p~c() 
1\IITtosis(t, T) = --------'---­

Var(t, TF 

Fr/rU, T) = (J'21n f(t, T: o)/Do2 1<p=o. 
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We compute these moments by taking numerica1 derivatives of the log of the moment 

generating function in (1.12). 

In Figure 5 we plot the term structure of skewness and kurtosis in the three GARCH 

models. The initial volatility is set to its long run value in the GARCH(1: 1) and com­

ponent GARCH models. In the persistent component model the initial volatility is set to 

the unconditional volatility from the component mode!. The parame ter estimates are again 

taken from Table 1 

Figure 5 reveals important differences between the term structures ofthese moments 

for the GARCH( 1. 1) model, the component model and the persistent component model. 

While the tem1 structures of skewness and kurtosis are hump-shaped for the GARCH (1, 1) 

model over the maturities relevant for pricing the options in our sample, they are downward 

sloping and upward sJoping respectively for the skewness and kurtosis of the persistent 

component mode!. For the component model, the minimum and the maximum respec­

tively for the conditional skewness and kurtosis occur for options with approximately a 

six month maturity. but the skewness and kurtosis for longer maturities are very close to 

these extrema. These fundamental differences in higher moment term structures may have 

important implications for the option valuation properties across models. 
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1.4.2 The Risk-Neutral GARCH(l,l) Dynamic 

The risk-neutral dynamics for the GARCH(l, 1) model are given in Heston and Nandi 

(2000)15 as 

(1.13) 

with c* = c + À + 0.5 and z; rv N(O, 1). 

1.4.3 The Risk-Neutral Component GARCH Dynamic 

Appendix B demonstrates that the risk-neutral component GARCH dynamic is given by 

hf-Il {jt+l + 73* (ht - qt) + Cl' ( (z; - r~J14r -(1 + ~i72"t)) ( 1.14) 

(jlll = ~ + p*(jt + cp ( (z; -1,;vfhtr - (1 + ~i;2ht)) 

where the risk neutral parameters are defined as follows 

~ + () (~,*2 _ ~,2) + (,') (~ *2 _ ~2) 
fJ . Il Il T 12 :2 

,~ = Îi + À + 0.5. i = 1. 2. 

The moment generating function for the risk-neutral component GARCH proccss is tbere-

fore equal to the one for the physieal component GARCH process, sctting /\ -- - ()!) and 

-* using the risk neutral parameters ri, 1;. p*.;3 as weIl as w. 0 and y. 

15 For the underlying theOl)' on risk neutral distributions in discretc time option valuation sec Rubinstein 
( 1976), Brcnnan (1979), Amin and Ng (1993), Duan (1995), Camara (2003). and Schroder (2004). 



1.5 Empirical Results 28 

1.4.4 The Option Valuation Formula 

Given the moment generating function and the risk-neutral dynamies, and option valuation 

is relatively straightforward. We use the result ofHeston and Nandi (2000) that at time t, a 

European eall option with strike priee K that expires at time T is worth 

Call Priee = e~r(T~t) EnA! ax(ST - K, 0)] (15) 

where 1* (i, T: ici» is the conditional characteristic function of the logarithm of the spot 

price under the risk neutral measure. 

1.5 Empirical Results 

This section presents the core of our empirieal results. We tirst study the models estimated 

using a long time series of S&P500 index retums. We then repOli the ditferenees between 

the models when used for option valuation and compare the models to a GARCH(1.1) 

model allowing for jumps in retums. Finally, we analyze the option valuation differences 

along various dimensions. 

1.5.1 Properties of the Physical Return Process 

Table 1 presents maximum likelihood estimates (MLE) of the physical model parameters 

obtained using retums data for 1962-2001. We use a long sample of retull1s on the S&P 

500 because it is well-known that it is difficult to estimate GARCH parameters precisely 



] .5 Empirical Results 29 

using relatively short samples of retum data. We compare the models using goodness­

of-fit statistics, and we discuss differences in model properties. We present results for 

three models: the GARCH(l, 1) model (1.1), the component model (1.7) and the persistent 

component model (1.9). Almost aIl parameters are estimated significantly different from 

zero at conventional significance levels. 16 The price of risk, À, is marginally significant in 

the case of the GARCH(l, 1) and not significant in the persistent component models. The 

log likelihood values indicate that the fit of the component model is much better than that 

of the persistent component model, which in tum fits much better than the GARCH(l, 1) 

model. 

The dynamic variance models can be compared by assessing their persistence prop­

erties. The variance persistence in the GARCH(l. 1) model is defined by b =, b + ac2 from 

(1. 10). In the component model, the total variance persistence is a confluence of the per­

sistence in the two factors. If we substitute out ql 1- 1 and !JI from the fi l ,1 equation in (1.7), 

then persistence can be computed as the as the sum of the coefficients on hl and ht 1. This 

way, the component persistence fonnula can be derived to be p + j (1 - p). 

The improvement in fit for the component GARCH model over the persistent com­

ponent GARCH model is perhaps somewhat surprising when inspecting the persistence of 

the component GARCH mode!. The persistence is equal to 0.9963. It therefore would ap-

pear that equating this persistence ta 1, as is donc in the persistent component mode!, is an 

interesting hypothesis, but apparently modeling these small differences from one is impor­

tant. It must of course be noted that while the persistence of the long-run component (p) is 

16 The standard errors arc eomputed using the outer product of the gradient at the optimal parameter values. 
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0.9896 for the component model as opposed to 1 for the persistent component model, the 

persistence of the short-mn component «(3) is 0.6437 versus 0.8822 and this may account 

for the differences in likelihood. Note that the persistence of the GARCH(l, 1) model is 

estimated at 0.9553, which is consistent with earlier literature. It is slightly lower than the 

estimate in Christoffersen, Heston and Jacobs (2006) and a bit higher than the average of 

the estimates in Heston and Nandi (2000). 

Figures 6 and 7 further analyze the component models' improvement in performance 

over the benchmark GARCH(l, 1) mode!. These figures present the 1990-1995 sample 

path for the spot variance in the GARCH(L 1) model, the component model and the per-

sistent component model, as well as the sample path for volatility components for the com-

ponent and persistent component models. '7 ln each figure, the sample path is obtained by 

using the parameter estimates in Table 1 to iterate on the variance dynamic starting from the 

unconditional volatility 500 days before the first volatility included in the figure, as is done 

in estimation. Initial conditions are therefore unlikcly to affect model comparisons. Figure 

6 contains the results for the component mode!. The overall conclusion seems to be that 

the mean zero short run component in the top-right panel adds short-horizon noise around 

the long-run component in the bottom-right panel. This reslllts in a volatility dynamic for 

the component model in the top-Ieft panel that is more noisy than the volatility dynamic for 

the GARCH(L 1) model in the bottom-left panel. This more noisy sample path suggests a 

higher value for the variance of variance in the component mode!. The results for the per-

sistent component model in Figure 7 suggest similar conclusions, even though the sample 

17 We plot results for the 1990- J 995 subsamp1c hcre because it will be used for option valuation subsc­
quently. 
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paths for the components in Figure 7 are somewhat different from those in Figure 6. Table 

1 gives the average annual volatility (standard deviation) for 1990-1995 in the three models 

as 12.06% (GARCH(l, 1)), 11.74% (component) and 12.39% (persistent component). 

We now investigate in more detail differences between the models in the modeling of 

the standard deviation of the conditional variance, as weil as differences in the modeling of 

the covariance and correlation between retums and variance. For option valuation, the con-

ditional versions of these quantities and their variation through time are just as important 

as the unconditional versions. The conditional versions of retum-variance covariance and 

variance of variance are computed as follows. For the GARCH(l, 1) model the conditional 

variance of variance is 

( 1.16) 

and for the component and persistent component models, the conditional variance of vari-

ance lS 

( 1.17) 

In Figure 8 we use the parameters from Table 1 to plot the standard deviation of 

variance in the three GARCH models. Notice that the standard deviation of variance in 

the component model is in general much higher than in the GARCH(l.l) model and it 

is also more volatile. The average level of the conditional standard deviation of variance 

in the persistent component is in between that of the other two models. Table l gives the 

average volatility of variance during 1990-1995 in the row labeled "Average Vol of Var". 
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If we think of the option priee as being a function of the spot variance, then we can view 

variation in the option priees as being driven by the volatility of variance. The volatility 

of variance is also related to kurtosis. Figure 8 shows that the component model is able 

to generate richer time-varying kurtosis dynamics than the GARCH(l, 1) mode! and thus 

potentially richer option priee dynamics. 

The conditional covariance between retum and variance in the GARCH(l, 1) model 

is given by 

( 1.18) 

= -2acht -H · 

Conditional correlation is easier to interpret th an conditional covariance. The conditional 

correlation in the GARCH(L 1) model is 

( 1.19) 

where we have used the eonditional variance of variance from (1.16). 

The conditional covariance in the component model is 

( 1.20) 

and the conditional correlation in the component model is thus given by 

, -2 ("'il 0 + ~i2<P) JTI;;; 
C Of Tt (R t ,l, ht t 2) = ---;============== J 2 (n + cç) 

2 + 4 hl n + ~(2 cç ) 
2 

h t+ l 

(l.21 ) 

Figure 9 plots the conditional covariance (left panels) and correlation (right panels) 

for the three models. The conditional covariance and correlation is clearly more negative 
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in the component models than in the GARCH(l, 1) model, and furthennore the component 

covariance paths are much more volatile. Table 1 gives the average correlations during 

1990-1995 as -79.40% (GARCH(l, 1), -88.49% (component), and -90.14% (persistent 

component). 

For the component and persistent component models, we can also compute the con-

ditional correlations between the retum and each volatility component separately 

-2'YI~ 
}2 + 4'Yyht+l 

-2'Y2vr:;:; 

}2 + 4'Y~ht+l 

( 1.22) 

Figure 10 indicates that for both component models, the conditional correlation of the 

retum with the short-run variance component is on average more negative th an the condi-

tional correlation between the retum and the long-run variance component. This difference 

can be traced to Table 1 where 'YI > ~(2 in both models. The correlations with the long-run 

factor are relatively more negative in the persistent component model whereas the correla-

tions \Vith the short-run factor are relatively more negative in the component mode!. This 

can also be traced back to Table 1 where ~il is larger in the component model than in the 

persistent component model; whereas /2 is largest in the persistent component mode!. 

Figure Il shows the correlation between returns and variances trom a ditferent per-

spective. We plot the correlations from (1.19) and (1.21) against levels of the conditional 

variance expressed in annual standard deviations. Notice that for ail three models the re-

lationship between the level of volatility and the correlation is negative. This is shown by 

Jones (2003) to be a desirable feature for option valuation and it is a feature missing in the 
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standard Heston (1993) SV model where the correlation is constant. lnterestingly, the He­

st on and Nandi (2000) GARCH(1, 1) model do es have this negative relationship as Figure 

Il shows. Figure Il also shows that when fitted on the more general component model, 

the return data wants a correlation which is more negative than the simple GARCH (l, 1) 

model for al! levels of volatility. The differences in correlation are quite large for the most 

common levels of volatility. 

We conclude from Figures 8-11 that the more flexible component model is capable 

of generating not only more flexible term structures of variance, but also more flexible 

dynamics for the conditional correlation between returns and variance, and the conditional 

variance of variance. These dynamics are critically important for skewness and kurtosis 

dynamics which in tum are key for explaining the variation in index options priees. This is 

the topic to which we now tum. 

1.5.2 Option Valuation Performance 

We use a sample of six years of data on S&P 500 eall options, for the period 1990-1995. 

Following Bakshi, Cao and Chen (1997), we apply standard filters to the data. We only use 

Wednesday options data. Wednesday is the day of the week least likely to he a holiday. It 

is also Jess likely than other da ys sueh as Monday and Friday to be aftècted by day-of-the­

weck em~cts. For those weeks where Wednesday is a holiday, wc use the next trading day. 

The decision to pick one day every week is to sorne extent motivated by computational 

constraints. Using only Wednesday data allows us to study a fairly long time-series, whieh 

is useful considering the highly persistent volatility proeesses. An addition al motivation for 
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using Wednesday data is that following the work of Dumas, Fleming and Whaley (1998), 

severa! studies have used this setup.18 

Table 2 presents descriptive statistics for the options data for 1990-1995 by money-

ness and maturity. Panels A and B indicate that the data are standard. We can observe the 

volatility smirk from Panel C and it is clear that the slope of the smirk differs across ma-

turities. Descriptive statistics for different sub-periods (not reported here) demonstrate that 

the slope changes over time, but that the smirk is present throughout the sample. The top 

panel of Figure 12 gives sorne indication of the pattern of implied volatility over time. For 

the 312 days of options data used in the empirical analysis, we present the average implied 

volatility of the options on that day. lt is evident from Figure 12 that there is substantial 

clustering in implied volatilities. It can also be seen that volatility is higher in the early 

part of the sample. The bottom panel of Figure 12 presents a time series for the 30-day 

at-the-money volatility (VIX) index from the CBOE for our sample period. A comparison 

with the top panel clearly indicates that the options data in our samp1e are representative 

of market conditions, although the time series based on our sample is of course a bit more 

noisy due ta the presence of options with different moneyness and maturities. 

The last row of Table 1 compares the performance of the four models for option val-

uation. We use the MLE parameter estimates in Table 1 to compute root mean squared 

errors (RMSEs) for the 1990-1995 option sample described ahove and varions subsam-

ples.l~ The most imp011ant conclusion is that the models' ranking is similar ta the ranking 

18 See for instance Beston and Nandi (2000). 

19 As the priee of risk parameter, /\, is poorly estimated in Table l, and in order Lo kcep the persistcnce at 
llnity under both measures in the persistent modcJ, wc simply set À = -O .. ) across models. This way the 
other parameters are identieal under the lwo meaSlln..:s. 
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based on the log likelihood. The GARCH(l, 1) model is the worst performer based on 

the RMSE, as is the case using the log Iikelihood criterion, but the persistent component 

model achieves the lowest RMSE, followed by the component model~although the differ­

ences between the component and persistent models is much smaller in RMSE terms, than 

it were in log Iikelihood terms. 

Table 3 provides additional evidence on the option fit of the three models. We re­

port option RMSE by moneyness and maturity. The top panel reports the RMSE for the 

GARCH(l, 1) model, while the two other panels report the ratio of the RMSE for the two 

othermodels to that of the GARCH(l, 1) The improvements of the component models over 

the GARCH(1, 1) model are fairly robust across maturity and moneyness. Importantly, the 

component models are never much worse th an the GARCH (l, 1) model and they fail to im­

prove on the GARCH(l. 1) model only for shOI1 tenn deep-in-the-money caIl options. This 

fin ding leads us to consider jumps in returns which by way of adding non-nonnality to the 

conditional density may lead to improvements in the valuation of shol1-tenn options. 

1.5.3 Comparing ~ith a GARCH(1,l)-Jump Model 

The Heston-Nandi GARCH( 1.1) model is a useful tirst benchmark, but it has well-known 

empirical biases. These biases are similar to thosc displayed by the Heston (1993) mode!. 

The continuous-time literature has attcmpted to improve the performance of the Heston 

(1993) model by adding to it (potentially correlated) jumps in returns and volatility, and 

this strategy has been partly successful. Poisson-normal jumps in returns and volatility 

improve option valuation when parameters are estimated using historical time series of re-



1.5 Empirical Results 37 

tums. When model parameters are estimated using the cross-section of option priees, Pois-

son jumps usually do not lead to improved model fit, but Broadie, Chemov and Johannes 

(2004) find evidenee of the importance of jumps for option pricing when imposing consis-

teney between the physieal and risk-neutral parameters.20 CaIT and Wu (2004) and Huang 

and Wu (2004) analyze Levy proeesses and find that they are better able to fit options. 

In the diserete-time literature, sorne studies have attempted to address these model 

biases by combining conditional heteroskedasticity with non-normal innovations. This 

strategy may seem very different from inc1uding jumps in the retum process, but both ap-

proaches essentially introduce conditional non-normalities in the retum distribution. How-

ever, Christoffersen, Heston and Jacobs (2006) find that inverse Gaussian innovations do 

not improve out-of-sample model fit. We therefore use the approach proposed by Duan, 

Ritchken and Sun (2005, 2006), which combines the GARCH(l, 1) dynamic with a Poisson 

jump process similar to the one used in the continuous-time option valuation literature.2t 

We refer to the resulting model as the GARCH(1.1)-Jump mode!. The retum dy-

namics can be written 

( ( ~ hl~lT2)) ~ 
7"+)..11'111+:\ l-cxp Vlil'lll+ 2 +Vht~lJtl-t ( 1.23) 

-/J' + bh t + (J (JI - c;h;) "2 

where the variance dynamic ht j 1 has the affine structure from Heston and Nandi (2000), 

and JI is a standard normal random variable plus a Poisson random sum of normal random 

ZO For cvidence on the importance of PoissoJl-normal jumps, sce for example Andersen, Henzoni and Lund 
(2002), Bakshi, Cao and Chen (1997), BaIes (1996. 2000), Chernov, Callant Ghysels and Tauchcn (2003), 
Eraker, Johannes and PoIson (2003), Eraker (2004) and Pan (2002) 

21 See also Maheu and McCurdy (2004). 
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Nt 

Jt = Xt(O) + LX?) 
j=l 
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and Nt is the Poisson random variable with constant intensity X. When X = 0, Jt is a 

standard normal variable. 

Duan, Ritchken and Sun (2005, 2006) formulate sufficient conditions to derive a risk-

neutral process for the GARCH(l, l)-Jump model that takes the same form as (1.23), and 

that has the following parameterization À * = -0.5, Jt = Jt + ~ -/'ht + À-/'ht, c* = c+ ~ + À. 

Unfortunately, no closed-form solution exists for the GARCH(1, l)-Jump model so that 

option priees must be computed by Monte Carlo simulation. 

Table 4 reports the empirical results for the GARCH(l, l)-Jump mode!. Panel A 

reports the parameter estimates from maximum likelihood estimation on the sample of 

daily S&P500 retums used in Table 1. Again, a11 the parameters except for À are significant. 

Notice that the log IikeIihood value is considerably larger than for the three models in Table 

1. The GARCH( l. l)-Jump model thus gives a good description of the conditional density 

for daily S&P500 retums. Notice howeveL that the Option RMSE for the GARCH (1. 1)-

Jump model is S2.J 38 which is only marginally better th an the $2.236 for GARCH (l. 1) 

in Table l, and much worse than the $1.706 and $1.705 for the component model and 

persistent model respcctively. 

Panel B in Tablc 4 shows the ratio of the RMSE of the GARCH(l. l)-Jump to the 

GARCH(l. 1) mode!. The Jump model in general performs close to the GARCH(1.1) 
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across moneyness and maturity. The best relative performances is for short term in-the­

money caUs (0.897) and the worst is for long term deep in-the-money caUs (1.043). Some­

what surprisingly, the GARCH(l, l)-Jump model outperforms the GARCH(l, 1) model by 

a smaUer margin for shorter maturities in general than for longer maturities. 

The lack of improvement offered by the jump model is surprising. We suspect that 

any of the following reasons could be the culprit. First, Poisson jumps may be quanti ta­

tively more important for short maturity options when combined with a continuous-time 

stochastic volatility model than a discrete-time GARCH mode l, because of the continuous 

sample path. Second, Eraker (2004) finds that adding jumps do not improve the out-of­

sample option valuation performance of a standard SV mode!. The jump parameters may 

simply be difficult to estimate reliably-perhaps because they are changing over time. Third, 

jumps may improve the likelihood function for daily retums without improving much the 

conditional density function for 7-365 day retums that is relevant for option valuation. 

Fourth, other specifications of conditional normality may work better than the jump speci­

fication chosen here, but a full investigation of non-normal innovations in GARCH models 

is beyond the scope of this paper. Panel B of Table 4 shows strong similarities between 

the pricing error patterns of the GARCH(l, 1) and GARCH(L l)-Jump models. we will 

therefore restrict attention to the conditional normal models in the analysis below. 

1.5.4 Analyzing the Option Valuation Performance 

It must be emphasized that the component models' performance is remarkable and to somc 

extent surprising. First, the GARCH(L 1) model is a good benchmark which itself has 
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a very solid empirical performance (see Heston and Nandi (2000)). The model captures 

important stylized facts about option prices such as volatility clustering and the leverage 

effect (or equivalently negative skewness). When estimating models from option prices, 

Christoffersen and Jacobs (2004) find that GARCH models with richer news impact para­

metrization do not improve the model fit out-of-sample. Christoffersen, Heston and Ja­

cobs (2006) find that a GARCH model with non-normal innovations improves the model's 

fit in-sample and for short out-of-sample horizons, but not for long out-of-sample hori­

zons. Although we do not report the results in the paper, we have also compared the 

performance of the GARCH(l, 1) model with the implied Black-Scholes model in Du­

mas, Fleming and Whaley (1998). We confirm the finding of Heston and Nandi (2000) 

that the GARCH(L 1) model outperforms the implied Black-Scholes model out-of-sample. 

Furthermore, the analysis in Tables 3 and 4 demonstrates that the component model also 

provides a better option fit than the GARCH(l, 1) model augmented with Poisson-normal 

jumps. 

We now providc sorne more insight behind the improved perfOimance of the com­

ponent mode1s by analyzing the differences across models along three critical dimensions: 

the (spot) volatility leveL the volatility term structure and the modeling of the smirk. First, 

component models may better match the volatility patterns over time. We investigate this 

by comparing the differences in the time paths between implied volatilities f"om the data 

and the models. Second, it may be the case that the component models more adequately 

capture the tenn structure of volatility th an the GARCH (L 1) mode!. We investigate this 

by comparing the models' term structures of implied volatility for at-the-money options. 
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Third, it may be the case that the component models better capture the implied volatility 

smirk at various maturities. We study the differences between the models in this dimension 

for different initial1evels of volatility. 

Figure 13 presents the average week1y implied vo1atility bias (average observed mar­

ket implied vo1atility less average model implied vo1ati1ity) over the 1990-1995 option sam­

pIe, using the MLE estimates from Table 1. C1early the component mode1s outperfonn the 

GARCH(l, 1) model in this dimension: The GARCH(l, 1) model shows significant under­

pricing (positive bias) during the high volatility episode in 1990-1991 and extended periods 

of overpricing (negative bias) during the low volatility period in 1993-1995. In comparison, 

the component mode1 has smaller (positive) bias in 1990-1991 and also smaller (negative) 

bias in 1993-1995, suggesting that it is much better able to capture the dynamics of market 

volatility. The persistent model has the smallest (positive) bias in late 1990 but instead has 

significant (negative) bias in early 1990 and in late 1991. 

Figure 14 studies the implied volati1ity term structure for at-the-money options in the 

three models. For each model, we use three different levels of initial spot volatility: we 

set spot volatility to 1/2, 1 or 2 times the unconditiona1 volatility respectively. We again 

use the MLE parameters from Table 1 to compute option priees. The ditferences between 

the models are very pronounced. The critical difference between the models in the term 

structure dimension is that in the component model, the initial volatility is much more 

important for the valuation of longer maturity options than in the GARO-} (1. 1) mode1, 

and even more so in the persistent component mode!. Put differently, in the GARCH(1.l) 

mode!, today's level ofvolatility has virtually no impact on the implied volatility for l-year 
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to maturity options. For the component model, the initial volatility has an effect on the 

implied volatility for l-year maturity options, and in the fully persistent model the effect 

of initial volatility is as large at the l-year maturity as it is at short maturities. The three 

models are thus fundamentally different along this dimension. 

Figure 15 analyzes a third source of differences in fit between the models. For each 

of the models, we plot moneyness smirks at three different maturities: 30,90 and 365 days 

to maturity (DTM). Following the exposition in Figure 14, we repeat the analysis for three 

different levels of initial volatility. Figure 15 indicates that there are sorne differences be­

tween the models with respect to their ability to generate steep si opes in the smirk. The 

smirk for a one-year option is steeper for the persistent component model than it is for the 

GARCH(I, 1) mode!. However, the evidence suggests that the model differences in the 

moneyness dimension may be less important than the model differences in the term struc­

ture dimension. In the case of the GARCH(l. 1) model, the smirk is nearly identical for 

a one-year option, regardless of the level of initial volatility. For the persistent component 

model, the initial volatility level impacts on the level of the smirk, but does not greatly 

impact on the slope. The component model falls between these two cases. 

We conclude that there are important differences between the GARCH( 1. 1), com­

ponent and persistent component model in terms of the path of spot volatility and the term 

structure of volatility, but all three models seem to be able to generate volatility smirks at 

different maturities. The differences between the models in this dimension seem quanti ta­

tively less important tha11 differences in the models' volatility term structures. 
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1.6 Estimation Using Option Priee Information 

So far we have used the option price infonnation only to evaluate the different models. 

However, it stands to reason that the observed option prices should be helpful in estimating 

the models as weil. In this section we therefore implement the GARCH(l, 1), compone nt, 

and persistent component model by minimizing the mean squared option valuation error 

rather than maximizing the daily retum likelihood as we did in Table 1. 

To be specific, we obtain parameters by minimizing the dollar mean squared error 

$MSE = _1 ~ (CD _ C:~1)2 
NT ~ ~,t l,t 

(1.24) 
Li 

where Cn is the market priee of option i at time t, cN is the model priee, and NT , , 

T 

L Nt· T is the total number of days inc1uded in the sample and Nt the number of options 
t=l 

inc1uded in the sample at date t. The variance dynamic is used to update the variance from 

one Wednesday to the next using daily returns and the option valuation fonnula in (1.15) 

is used to compute the model prices on each Wednesday. The volatility updating rule is 

applied to the 500 days predating the Wednesday used in the estimation exercise, and it is 

initialized at the model 's unconditional variance. 

Needless to say, this nonlinear least squares (NLS) estimation techniques is much 

more computationally intensive th an the simple MLE on returns in Table]. For each func-

tion evaluation perfonned by the numerieal optimizeL thousands of option priees must be 

calculated. The optimizer perfonns many function evaluations for each parameter update 

and consequently it is cmcia] to be able to compute option priees quickly and reliably. The 

pricing fonnula in (1.] 5) makes this estimation technique feasible. As we unfortunately 
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do not have a closed-form pricing formula for the GARCH(l, l)-Jump model we do not 

consider that model in this section. 

Table 5 presents parameter estimates obtained using the 1990-1992 options data and 

in-sample RMSEs for the 1990-1992 data, as weIl as out-of-sample RMSEs using the 1993 

data. Note that the shortest maturity is seven days because options with very short maturi-

ties were filtered out. Table 6 presents parameter estimates obtained using options data for 

1992-1994, as weIl as 1992-1994 in-sample and 1995 out-of-sample option RMSEs. Ta-

bles 7-10 present RMSE results by moneyness and maturity for the two in-sample and two 

out-of-sample periods.22 

ln Table 5 we present results for the 1990-1992 period (in-sample) and the 1993 pe-

riod (out-of-sample). The standard errors indieate that almost aIl parameters are estimated 

significantly different from zero.23 There are sorne interesting differences with the para-

meters estimated from retums in Table 1, but the parameters are mostly of the same order 

of magnitude. This is also true for critieal determinants of the models' performance, such 

as average annual volatility, average volatility of variance and average retum correlation. 

Note also that the persistence of the short-run components and the long-run components 

is not dramatically different from Table 1. The persistence of the GARCH(L 1) process is 

higher th an in Table 1 though. In facL it is interesting to note that the persistence of the 

GARCH(l. 1) model and the component GARCH modcl 1s close to one. This of course 

motivates the use of the persistent eomponent model, where the persistenee is restricted to 

22 Notice from the risk-neutral dynamies (1.13) and (1.14) that the parameter .À is not separatcly identified 
using option priees. We therefore simply set .À = -0.5 and we do not report /\ in Tables 5-6. 

23 The standard elTors are again computed using the outer product of the gradient at the optimum. 
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be one. Note also that the average correlation between retum and volatility is now close to 

minus one in aIl three models. 

Table 5 con tains two sets of RMSEs. The RMSEs in the leftmost columns (NLS) 

are obtained using the parameter values in the Table. In the rightmost column, we report 

RMSEs based on parameter values obtained from MLE in Table 1. First consider the RM­

SEs obtained using NLS. ln the in-sample 1990-1992 period, the RMSE of the component 

model is 89.7% ofthat of the benchmark GARCH(I, 1) mode!. For the out-of-sample 1993 

period, the ratio cif the RMSEs is 76.5%. For the persistent component model, the ratios 

are 94.8% and 93.3% respectively. Using the MLE estimates, the relative RMSEs are sim­

ilar for the component mode!: 84.9% in 1990-1992 and 71.0% in 93. Using the MLE 

estimates the persistent models performs relatively worse in 1990-1992 with 113 .0% but 

better in 1993 with 56.5% of the RMSE for the GARCH(1, 1). Naturally, wh en compar­

ing across MLE and NLS estimates the RMSEs from NLS are typically much smaller than 

those from MLE. The information in option priees is clearly very valuable for estimating 

the models. Interestingly, the only example where the RMSE from MLE is close to that of 

the NLS counterpart is for the persistent model in the 1993 out-of-sample period. 

Table 6 presents the results for the 1992-1994 period (in-sample) and the 1995 period 

(out-of-sample). The results 131·gely confirm those obtained in Table 5. The most important 

difference is that the in-sample and out-of-sample perfonnance of the component mode! is 

even better relative tO the benchmark, as compared with the results in Table 5. When using 

NLS estimates component modcl's RMSE is 77.3% ofthat of the GARCH(l.l) model for 

the 1992-1994 in-sample period, and for the 1993 out-of-sample period the ratio is 79.2%. 
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For the persistent model the ratios are 95.6% and 95.7%. When using MLE estimates the 

non-normal model is 76.2% of the GARCH(l, 1) in 1992-1994 and 69.2% in 1995. The 

persistent model performs very weIl relative to the GARCH(l, 1) MLE generating a 70.1 % 

relative RMSE for 1992-1994 and 45.0% in 1995. 

Comparing RMSEs across NLS and MLE parameters, we again find that the option 

prices add important information and drive the NLS RMSEs down from their MLE levels. 

Interestingly, the only case where the RMSE from MLE cornes close to that from NLS is 

for the out-of-sample persistent mode!. Other interesting differences with Table 5 are that 

the persistence of the short-mn non-normal is much higher, and that the persistence of the 

GARCH (1, 1) process in Table 6 is lower than in Table 5 but in line with the MLE estimate 

in Table 1. 

Tables 7-10 provide a more detailed analysis of moneyness and maturity effects by 

presenting RMSE results by moneyness and maturity, using the parameter estimates from 

Tables 5 and 6. ln each table, Panel A contains the RMSE for the GARCH(L 1) mode!. 

To facilitate the interpretation of the table, panels Band C contain RMSEs that are normal­

ized by the corresponding RMSE for the GARCH(l, 1) mode!. It is clear that an overall 

RMSE which is not too different across the three models in Tables 5 and 6 can mask large 

differences in the models' performance for a given moneyness/matUlity cell. Inspection of 

the out-of-sample results in Tables 8 and lOis especially instructive. We conclude that the 

improved out-of-sample performance of the non-normal models is due to the improved val­

uation oflong-maturity options. This is an interesting affirmation of the intuition obtained 
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previously in Figures 1-5 and 14. The richer volatility dynamics in the non-normal model 

enables richer explanations of variations in long-term option prices. 

Overall, we conclude that based on the parameter values obtained using NLS, the 

performance of the component GARCH model is very impressive. Its RMSE is between 

76.5% and 89.7% of the RMSE of the benchmark GARCH(1, 1) model. The performance 

of the persistent component model is less impressive, both in-samp1e and out-of-sample. 

However the persistent component model performs relatively weIl in the out-of-sample 

experiments when MLE parameters are used. This suggests that the persistent component 

model may be valuable for option valuation in cases where no option price information is 

available. 

1.7 Conclusion and Directions for Future Work 

This paper presents a new option valuation model based on the work by Engle and Lee 

(1999) and Heston and Nandi (2000). The empirical peIformance of the new variance 

component model is significantly better th an that of the benchmark GARCH( LI) model, 

in-sample as weil as out-of-sample, and regardless of the information used in estimation. 

This is an important finding because the literature has demonstrated that it is difficult to find 

empirical models that improve on the GARCH(l. 1) model or the Heston (1993) model. 

We a!50 compare the component model to a GARCH( 1. 1 )-Jump mode!, which combines 

conditional heteroskedasticity with Poisson-normal jumps. The GARCH (1. 1 )-Jump mode! 

achieves a better statistical fit than the component model in-sample, but the component 

model performs far better when using the parameter estimates to fit options. 
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An important aspect of the model 's improved performance is that its ri cher parame­

terization allows for improved joint modeling of long-maturity and short-maturity options. 

The model captures the stylized fact that shocks to current conditional volatility impact on 

the conditional variance forecast up to a year in the future, which results in a very different 

implied volatility term structure for at-the-money options. The component model also re­

sults in a different path for spot volatility compared to the GARCH(l, 1) model, but in the 

moneyness dimension the differences with the GARCH(l, 1) model seem relatively less 

important. The component model is also characterized by term structures of skewness and 

kurtosis that are very different from those of the GARCH (L 1) model. 

Because the estimated persistence of the model is close to one, we a!so investigate a 

special case of our model in which shocks to the variance never die out. When estimating 

mode! parameters by maximum !ikelihood using a historica! time series of retums, the 

persistent component mode! is somewhat inferior to the eomponent mode! when judged by 

the likelihood eriterion. When the MLE parameters are used to priee options, the persistent 

eomponent model performs simi!arly to the eomponent mode! in terms of overall fit. When 

model parameters are estimated from option priees, the eomponent mode! significantly 

outperforms the other models both in and out-of-samp!e. We a!so find that for a given 

mode! the parameters obtained from historieal retum data always !ead to higher RMSEs 

th an the parameters directly estimated from option data. 

Given the suecess of the proposed component models, a number offurther extensions 

to this work are warranted. F irst, the empirieal performance of the mode! shou!d of course 

be validated using other datasets. In particular, it would be interesting to test the model us-
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ing LEAPS data, because the model may excel at modeling long-maturity LEAPS options. 

In this regard a direct comparison between component and fractionally integrated volatil­

ity models may be interesting. lt could also be useful to combine the stylized features of 

the model with other modeling components that improve option valuation. One interesting 

experiment could be to replace the jump innovations considered in this paper by a another 

non-Gaussian distribution. Combining the model in this paper with the inverse Gaussian 

shock model in Christoffersen, Heston and Jacobs (2006) may be a viable approach. Fi­

nally, in this paper we have proposed a component model that gives a closed form solution 

using results from Heston and Nandi (2000) who rely on an affine GARCH model. We be­

lieve that this is a logical first step, but the affine structure of the model may be restrictive in 

ways that are not immediately apparent. It may therefore prove worthwhile to investigate 

non-affine variance component models. 
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1.8 Appendix 

1.8.1 MGF of the Component GARCH mode} 

This Appendix derives the moment generating function for the component GARCH process. 

The component GARCH process is given by 

ht+l qt+l + /3 (h t - qt) + 0: ((Zt -Il fot)2 - (1 + ,iht)) 

qt+1 w + pqt + (jJ ((Zt - 12 fot)2 - (1 + ,~ht)) . 

Let Xt = 1n(5t ). For convenience we will den ote the time t conditional generating function 

of ST (or equivalently the conditional moment generating function (MGF) of .'CT) by ft 

instead of the more cumbersome f(i: T. 0). By definition 

We shall guess that the moment generating function has the log-linear form. We again use 

the more parsimonious notation At to indicate A (t: T. 6). 

( 1.26) 

We have the terminal condition AT = BI.T = o. Applying the law of iterated expectations 

to ft we get 
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Substituting the dynamics of Xt gives 

Using the result 

1 
E [exp(x(z + y)2)] = exp( -21n(1 - 2x) + xy2/(1 - 2:r)) 

we get 

( 1.27) 

Matching tenus in (1.27) and (1.26) gives 

At = At-Cl + re) - (oEl.t t 1 + cpB2t Il) - 1/21n (1 - 2CtBUt1 - 2cpB 2.ttl) + B 2.tt1 W 
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1.8.2 Risk Neutralization of the Component GARHC model 

The physical Compone nt GARCH dynamic is given by 

ht+l gt+l + Ï3 (ht - gt) + Qi ( (Zt - Il-lht) 2 - (1 + liht)) (1.28) 

gi-t-l = Lv' + pgt + cp ( (Zt - 12-1htr - (1 + I~ht)) (1.29) 

Under the risk neutral measure, we need E* [St+d Stl = exp(r), which requires that 

This implies in tum that 

( 1.30) 

We also need to ensure that 

In order to have the same conditional variances under the two measures, we need to have 

the same variance innovations under the two measures. Thus we need 

i = 1. 2 

which can be achieved by defining a new risk neutral parameter 

,; = Îi + À + 0.5,'Î ~c= 1. 2. 

Consider the following candidate for the risk-neutral Component GARCH dynamic 

htl1 

I]t+ 1 

(It il + ,::;* (h t - (Jt) + Qi ( (2; - ~I~jh;r -(1 + ~;,~2ht)) 

~' + {J*(it + cp ( (z; - Î;V"htr - (1 + ~1;2ht) ) 

( 1.31 ) 

( 1.32) 
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where z; rv N(O, 1) and the risk neutral parameters are defined as follows 

0.33) 

For this candidate risk-neutral dynamic to be valid, we have to verify that it is consistent 

with (1.28) and (1.29). Using (1.30), (1.33) and (1.32) in (1.31) we get 

ht+l = w + pqt + tp ( (Zt -,2-1htr - (1 + l~ht)) + h (ht - (]t) + '" 

Lt ((Zt -,l-lhtr - (1 + liht)) 

which is identical to what we get using the physica1 component GARCH dynamic (1.28) 

and (1.29). 
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1.9 Figures and Tables 

Figure 1. Tenn Structure of Variance with Low Initial Variance, Component Model Versus 
GARCH(l,I). Nonnalized by Unconditional Variance 
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Notes to Figure: ln the top panel we plot the variance tenn structure implied by 
the component GARCH and GARCH(l, 1) models for 1 through 250 days. In the 
second and third panel we plot the tenn structure of the individual components tor 
the component mode!. The parameter values are obtained from MLf estimation on 
retums in Table 1. The initial value of qt+l is set to O.75cr2 and the initial value of 
ht Il is set to 0.5cr2 . The initial value for ht : 1 in the GARCH(l. 1) is set to O.5cr 2 as 
weil. AlI values are nonnalized by the unconditional variance cr2

. 
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Figure 2. Terrn Structure of Variance with High Initial Variance, Component Model 
Versus GARCH( 1,1). Norrnalized by Unconditional Variance 

Term Structure of Compone nt h and GARCH(l,l) 
2~,----------'-----------'----------'--------~~==========~ 

1.5 

50 100 150 

Term Structure of q 

--Component h 
. _. - GARCH(l.l) 

200 250 

2,----------,-----------,----------,-----------,----------, 

1.5~--___ _J 

50 100 150 200 250 

Term Structure of h-q 

0.2 

)~ 

-0.2 

50 100 150 200 250 
Days 

Notes to Figure: In the top panel we plot the variance terrn structure implied by 
the component GARCH and GARCH(L 1) models for 1 through 250 days. ln the 
second and third panel we plot the tem1 structure of the individual components for 
the component mode!. The parameter values are obtained from MLE estimation on 
retums in Table 1. The initial value of fit 1 l is set to 1. ï5(TL and the initial value of 
ht-f-1 is set to 20"2. The initial value for IIt+1 in the GARCH(l.l) is set to 20"2 as weil. 
Ali values are norrnalized by the unconditional variance 0"2. 
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Figure 3. Term Structure Impulse Response to Positive Retum Shock (Zt = 2), 
Component Model Versus GARCH(I,I). Normalized by Unconditional Variance 
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Notes to Figure: In the left-hand panels we plot the variance term structure response 
to a Zt = 2 shock to the return in the component and GARCH(l, 1) models. For the 
component model, the right-hand panels show the response of the individual com­
ponents. The parameter values are obtained from the MLE estimation on returns in 
Table 1. The CUITent variance is set equal to the unconditional value. Ail values are 
normalized by the unconditional variance. 
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Figure 4. Tenn Structure Impulse Response to Negative Retum Shock (Zt = -2), 
Component Model Versus GARCH(l,l). Nonnalized by Unconditional Variance 

Impulse on Component h for z=-2 Impulse on h-q for z=-2 
0.1 0.06 

0.08 
0.04 

0.06 
0.02 

0.04 

0.02 
0 

0 -0.02 
50 100 ISO 200 250 50 100 150 200 250 

Impulse on GARCH( 1.1) for z=-2 Impulse on q for z=-2 
0.1 0.1 

0.08 0.08 

0.06 0.06 

0.04 0.04 

0.02 0.02 

0 0 
50 100 ISO 200 250 50 100 150 200 250 

Days Days 

Notes to Figure: In the left-hand panels we plot the variance tenn structure response 
to a Zt = -2 shock to the retum in the component and GARCH(l, 1) models. For 
the component model, the right-hand panels show the response of the individual corn­
ponents. The parameter values are obtained from the MLE estimation on retums in 
Table 1. The CUITent variance is set equal to the unconditional value. Ali values are 
nonnalized by the unconditional variance. 
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Figure 5: Term Structure ofSkewness and Kurtosis 
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Notes to Figure: We use the numerical derivatives of the log conditional moment gen­
erating function to compute the term structure of skewness and kurtosis in the three 
GARCH models. The initial volatility is set to its long run value in the GARCH(L 1) 
and component GARCH models. In the persistent component model the initial volatil­
ity is set to the unconditional volatility from the component mode!. The parameter 
values are obtained from the MLE estimates on returns in Table 1. 
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Figure 6. Spot Variance ofComponent GARCH versus GARCH(l,l) 
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Notes to Figure: The left-hand panels plot the variance paths from the component 
and GARCH(L 1) models. The right-hand panels plot the individual components. 
The parameter values are obtained from MLE estimation on retums in Table 1. 
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Figure 7. Spot Variance of Persistent Component Model versus GARCH( 1,1) 
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Notesto Figure: The left-hand panels plot the variance paths from the persistent com­
ponent (p = 1) and GARCH(l, 1) models. The right-hand panels plot the individual 
components. The parameter values are obtained from MLE estimation on returns in 
Table 1. 

60 



1.9 Figures and Tables 

Figure 8: Conditional Variance of Variance Paths 
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Notes to Figure: We plot the conditional variance ofnext day's variance as implied by 
the GARCH models. The top panel shows the GARCH (1. 1) model, the middle panel 
shows the component model and the bottom panel shows the persistent component 
mode!. The scales are identical across panels to facilitate comparison across models. 
The parameter values are obtained trom the MLE estimates on retums in Table 1. 
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Figure 9. Conditional Covariance and Correlation 
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Notes to Figure: In the left panels we plot the conditional covariance between retum 
and next-day variance as implied by the GARCH models and in the right panels we 
plot the corresponding conditional correlations. The scales are identical across top 
and bottom panels in order to facilitate comparison across models. The parameter 
values are obtained from the MLE estimates on retums in Table 1. 
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Figure 10. Conditional Correlations between Retums and Volatility Components 
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Notes to Figure: In the top row we plot the conditional correlation between retum and 
the short-run volatility component. In the middle row we plot the conditional corre­
lation between retum and the long-run volatility component. In the bottom row we 
plot conditional correlation between the short-run and the long-run volatility compo­
nents. The left column shows the component GARCH model and the right column 
shows the persistent component mode!. The parameter estimates are from Table 1. 
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Figure Il: Correlation Between Retum and Variance as a Function of Volatility Level 
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Notes to Figure: The figure shows the conditional correlation between the retum 
on the underlying index and the daily variance. This conditional correlation is plot­
ted against the level of volatility annualized. The dashed !ine corresponds to the 
GARCH(l, 1), the solid line to the component model and the dash-dots to the persis­
tent component mode!. The parameter estimates are from Table 1 
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Figure 12: Sample Average Weeklylmplied Volatility and VIX 
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Notes to Figure: The top panel plots the average weekly implied Black-Scholes 
volatility for the S&P500 cali options in our sample. The bottom panel plots the 
VIX index from the CBOE for comparison. 
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Figure 13: Weekly Implied Volatility Bias for At-the-Money Options 
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Notes to Figure: Eaeh Wednesday we compute the Blaek-Seholes implied volatility 
for eaeh at-the-money option eontraet. Options with moneyness (index value over 
strike priee) between 0.975 and 1.025 are eonsidered at-the-money. The implied 
volatility is eomputed both for the market priee and for eaeh model priee. We plot the 
weekly average difference between the market and model implied volatility. The top 
panel shows the GARCH(L 1) model, the middle panel shows the component model 
and the bottom panel shows the persistent eomponent mode!. The MLE estimates 
from Table 1 are used. 
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Figure 14: Implied Volatility Term Structures for At-the-Money Options 
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Notes to Figure: We compute option priees and th en implied annualized Black­
Scholes volatilities from the three GARCH models for at-the-money options. The 
time to maturity is on the horizontal axis, and the three !ines in each panel corre­
sponds to an initial volatility half the unconditional (bottom line), equal the uncon­
ditional (middle line), and twice the unconditional (top !ine) volatility. The MLE 
estimates from Table 1 are used. 
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Figure 15: 1mplied Volatility Smirks for Various Maturities 
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Notes to Figure: We compute option prices and then implied annualized Black­
Scholes volatilities from the three GARCH models for various moneyness, maturity 
and initial volatility. The moneyness is on the horizontal axis, each row of panels cor­
responds to a different maturity, and the three lines in each panel correspond to an 
initial volatility half the unconditional (bottom line), equai the unconditional (mid­
dIe line), and twice the unconditional (top line) volatility. The MLE estimates from 
Table 1 are used. 
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Table 1: MLE Estimates and Properties 

Estimation Sample: Daily Returns, 1962-2001 

GARCH(l,t)-Normal Component GARCH Persistent Component 

Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter Estimate Std. Error 

le 2.231 E+OO 1.123E+00 le 2.092E+00 7.729E-Ol le 2.017E-07 4.316E-Ol 

w 2.101 E-17 1.120E-07 /3 6.437E-OI 2.759E-02 /3 8.822E-Ol 9.93 1 E-03 

b 9.012E-Ol 4.678E-03 a 1.580E-06 2.430E-07 a 2.057E-06 1.539E-07 

a 3.3 1 7E-06 1.380E-07 YI 4.151 E+02 6.341E+Ol YI 2.5 1 6E+02 2.237E+OI 

c 1.276E+02 8.347E+00 Y2 6.324E+OI 5.300E+00 Y2 1.187E+02 1.1 26E+0 1 

w 8.208E-07 7.620E-08 w 1.187E-07 1.393E-08 

cp 2.480E-06 1.160E-07 cp 7.966E-07 4.599E-08 

P 9.896E-01 9.630E-04 P 1.000E+00 

Ln Likclihood 33,955 Ln Likelihood 34,102 Ln Likelihood 34,005 

Persistenee 0.9553 Persistcncc 0.9963 Persistenee 1.0000 

Average Annual Vol 0.1206 Average Alll1Ual Vol 0.1174 Average Annual Vol 0.1239 

Average Vol orVar 7.997E-06 Average Vol of Var 1.341 E-05 Average Vol of Var 1.044E-05 

A verage Correlation -0.7940 A verage Correlation -0.8849 A vcrage Correlation -0.9014 

Option RMSE 2.236 Option RMSE 1.706 Option RMSE 1.705 

Nonnalized 1.000 Nonnalized 0.763 Normalized 0.763 

Notes to Table: We use daily total retums from July 1, 1962 to December 31,2001 on the S&P500 index to estimate the four models using Maximum 
Likelihood. Robust standard errors are ca1culated from the outer product of the gradient at the optimum parameter values. Persistence refers to the persistencc 
of the conditional variance as defined in the text. Average Annual Vol refers to the average annualized standard deviation during 1990-95. Average Vol of Var 
refers to the average standard deviation of the conditional variance during 1990-95. Average Correlation refers to the average correlation between the retum 
and the conditional variance during 1990-95. Ln Likclihood refers to the 10garithm ofthe likelihood at the optimal parameter values. Option RMSE refers to 
the fit of the models on option priees observed during 1990-95. 



Table 2: S&P 500 Index CalI Option Data (1990-1995) 

Panel A. Number of CalI Option Contracts 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AlI 

S/X<0.975 101 1,884 1,931 1,769 5,685 
0.975<S/X<1.00 283 1,272 706 477 2,738 
1.00<S/X <1.025 300 1,212 726 526 2,764 
1.025<S/X <1.05 261 1,167 654 409 2,491 
1.05<S/X<1.075 245 1,039 582 390 2,256 

1.075<S/X 549 2,345 1,679 1,245 5,818 
AlI 1,739 8,919 6,278 4,816 21,752 

Panel B. Average CalI Priee 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AlI 

S/X<0.975 0.88 2.30 6.25 Il.94 6.62 
0.975<S/X<I.00 2.29 6.83 15.19 27.50 12.12 
1.00<S/X<1.025 8.35 13.60 22.48 34.41 19.32 
1.025<S/X <1.05 17.57 22.00 30.11 42.14 26.97 
1.05<S/X<1.075 27.11 30.84 38.14 48.83 35.43 

1.075<S/X 50.67 52.79 58.99 68.34 57.70 
AlI 24.32 23.66 28.68 36.07 27.91 

Panel C. Average Implied Vo]atility from Cali Options 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 Ali 

S/X<0.975 0.1625 0.1269 0.1350 0.1394 0.1342 
0.975<S/X<I.00 0.1308 0.1296 0.1449 0.1562 0.1383 
1.00<S/X<I.025 0.1527 0.1459 0.1558 0.1606 0.1520 
1.025<S/X<1.05 0.1915 0.1647 0.1665 0.1656 0.1681 
1.05<S/X<I.075 0.2433 0.1828 0.1775 0.1739 0.1865 

1.075<S/X 0.3897 0.2356 0.1961 0.1868 0.2283 
Ali 0.2434 0.1703 0.1622 0.1607 0.1717 

Notes to Table: We use European cali options on the S&P500 index. The priees are taken from 
quotes within 30 minutes from closing on each Wednesday during the January 1, 1990 to 
December 31, 1995 period. The moneyness and maturity filters used by Bakshi, Cao and Chen 
(1997) are applied here as weIl. The implied volatilities are calculated using the Black-Scholes 
formula. 



Table 3: 1990-1995 RMSE and Ratio RMSE by Moneyness and Maturity 
Parameters Estimated from Daily Returns 1962-2001 

Panel A. GARCH(1,1) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 

S/X<0.975 0.454 1.778 3.032 4.155 
.0.975<S/X<I.00 0.671 2.116 3.087 3.548 
1.00<S/X <1.025 0.638 1.650 2.574 2.955 
1.025<S/X <1.05 0.595 1.204 2.099 2.487 
1.05<S/X<1.075 0.735 LOB 1.879 2.227 

1.075<S/X 0.759 1.024 1.424 1.917 
AlI 0.683 1.503 2.448 3.228 

Panel B. Ratio of Component GARCH to GARCH(1,1) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 

S/X<0.975 0.782 0.684 0.712 0.782 
0.975<S/X<1.00 0.788 0.631 0.657 0.739 
1.00<S/X <1.025 0.870 0.655 0.669 0.733 . 
1.025<S/X < 1.05 0.968 0.832 0.744 0.755 
1.05<S/X<1.075 1.043 1.000 0.849 0.800 

1.075<S/X 1.000 1.037 0.974 0.907 
AB 0.949 0.750 0.735 0.784 

Panel C. Ratio of Persistent Component to GARCH(1,1) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 

SIX<0.975 0.985 0.726 0.774 0.842 
0.975<S/X <1.00 0.978 0.640 0.635 0.722 
1.00<S/X < 1.025 0.982 0.672 0.600 0.681 
1.025<S/X<1.05 0.947 0.773 0.613 0.660 
1.05<S/X <1.075 LOlO 0.909 0.663 0.718 

1.075<S/X 1.002 0.981 0.836 0.784 
AB 0.990 0.746 0.719 0.796 

Ali 
3.090 
2.603 
2.154 
1.700 
1.516 
1.360 
2.236 

AB 
0.749 
0.678 
0.691 
0.773 
0.870 
0.962 
0.763 

AB 
0.808 
0.669 
0.653 
0.675 
0.750 
0.856 
0.763 

Notes to Table: We use the MLE estimates from Table 1 to compute the root me an squared 
option valuation error (RMSE) for various moneyness and maturity bins during 1990-1995. 
Panel A shows the RMSEs for the GARCH( l, 1) mode!. Panels Band C show the ratio of the 
RMSEs of the Component and Persistent Componènt models over the RMSE of the 
GARCH(l, 1) mode!. 



Table 4: GARCH(l,l)-Jump Model 

Estimation Sample: Daily Returns, 1962-2001 

Panel A. GARCH(l,l)-Jump Parameter ML Estimates 

Parameter Estimate Std. Error 

À 4.431E-01 1.425E+00 

w 9.727E-11 2.l79E-10 

b 9.082E-01 7.158E-03 

a 2.345E-08 5.090E-09 

c 1.472E+03 2.1 75E+02 

X 5.790E+00 2.922E-Ol 

f.l 2.208E-03 3.449E-04 

T 1.330E+00 1.202E-01 

Ln Likelihood 34,153 

Option RMSE 2.138 

Panel B. Ratio of the GARCH(l,l)-Jump to GARCH(l,l) RMSE 

DTM<20 20<DTM<80 80<DTM<180 DTM>180 

S/X<0.975 1.001 0.941 0.946 0.940 

0.975<S/X<1.00 0.978 0.931 0.940 0.937 

1.00<S/X < 1.025 0.993 0.928 0.950 0.945 

1.025<S/X < 1.05 1.055 0.965 0.974 0.962 

1.05<S/X<1.075 0.897 1.015 1.013 1.0 Il 

1.075<S/X 1.003 1.023 1.036 1.043 

AH 0.987 0.953 0.960 0.954 

AlI 

0.942 

0.936 

0.943 

0.968 

1.010 

1.035 

0.956 

Notes ta Table: In Panel A We use daily total returns from July l, 1962 to December 31,2001 on the 
S&P500 index to estimate the GARCH( 1,1 )-Jump models using Maximum Likelihood. Robust 
standard errors are calculated from the outer product of the gradient at the optimum parameter values. 
In Pabel B we compute the ratio of the option root me an squared error (RMSE) from the 
GARCH(l,I)-Jump model ta the RMSE of the GARCH(l,I) in Table 3 Panel A. 



GARCH(1,1) 

Parameter Estimate Std. Error 

w 3.891E-14 3.560E-12 

b 6.801 E-OI 3.211 E-03 

a 2.666E-07 6.IIOE-09 

e 1.090E+03 5.432E+0 1 

Persistenee 0.9970 

Average Annual Vol 0.1347 

Average Vol of Var 4.283E-06 

A veragc Correlation -0.9967 

NLS MLE 

RMSE (90-92) 1.038 1.896 

Normalized 1.000 1.000 

RMSE (93) 1.284 2.229 

Norrnalized 1.000 1.000 

Table 5: NLS Estimates and Properties 

Sample: 1990-1992 (in-sam pIe ) 1993 (out-of-sample). 

Component GARCH Persistent Component 

Parameter Estimate Std. Error Parameter Estimate 

J3 7.050E-01 2.565E-01 J3 7.201E-01 

a 1.770E-06 3.444E-07 a 1.597E-06 

YI 5.617E+02 1.494E+02 YI 7.48IE+02 

Y2 5.638E+02 1.555E+02 Y2 4.767E+02 

CD 2.424E-07 1.212E-07 CD 5.343E-08 

cp 5.249E-07 3.525E-07 cp 5.123E-07 

P 9.98IE-OI 3.5 1 9E-03 P 1.000E+00 

Persistenee 0.9994 Persistenee 1.0000 

Average Annual Vol 0.1405 Average Annual Vol 0.1431 

Average Vol of Var 1.962E-05 Average Vol of Var 2.197E-05 

A verage Correlation -0.9876 Average Correlation -0.9914 

NLS MLE NLS 

RMSE (90-92) 0.931 1.609 RMSE (90-92) 0.984 

Normalized 0.897 0.849 Norrnalized 0.948 

RMSE (93) 0.983 1.584 RMSE (93) 1.198 

Normalized 0.765 0.710 Norrnalized 0.933 

Std. Error 

1.021 E-01 

2.279E-06 

8.974E+0 1 

1.246E+02 

1.345E-08 

1.285E-07 

MLE 

2.143 

1.130 

1.260 

0.565 

Notes to Table: We use Wednesday option priees from from January 1, 1990 to December 31, 1992 on the S&P500 index to estimate the three GARCH 

models using Non linear Least Squares on the valuation errors. Robust standard errors are calculated from the outer product of the gradient at the optimum 
paramcter values. RMSE refers to the square root of the mean-squared valuation errors. RMSE(in) refers to 1990-1992 and RMSE( out) to 1993. NLS refers 
to the model estimated using option data and MLE refers to the model estimated using retums only. Norrnalized values are divided by the respective RMSE 
from GARCH(I,I). 



Table 6: NLS Estimates and Properties 

Sample: 1992-1994 (in-sample) 1995 (out-of-sample) 

GARCH(1,1) Component GARCR Persistent Component 

Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter Estimate Std. Error 

w 7.521E-lt1 3.498E-09 P 9.297E-Ol 3.346E-02 P 9.587E-Ol 3.821E-05 

b 4.694E-Ol 1.251 E-O 1 a 1.808E-06 1.320E-07 a 1.943E-06 1.614E-06 

a 1.936E-0t1 3.986E-07 YI 5.854E+02 2.362E+02 YI 2.589E+02 8.383E+OI 

c 5.061 E+02 1.041 E+02 Y2 5.749E+02 4.025E+02 Y2 2.254E+02 5.063E+02 

CD 2.204E-07 3.470E-08 CD 6.927E-08 1.262E-08 

cp 2.835E-07 1.586E-07 cp 6.97IE-07 1.253E-08 

P 9.966E-OI 1.277E-03 P 1.000E+00 

Persistence 0.9654 Persistence 0.9998 Persistence 1.0000 

Average Annual Vol 0.1074 Average Annual Vol 0.1129 Average Annual Vol 0.1082 

Average Vol of Var 1.423E-05 Average Vol of Var 1.838E-05 Average Vol of Var 1.085E-05 

Average Correlation -0.9701 A verage Correlation -0.9781 A verage Correlation -0.9095 

NLS MLE NLS MLE NLS MLE 

RMSE (92-94) 1.107 2.000 RMSE (92-94) 0.855 1.524 RMSE (92-94) 1.058 1.402 

Normalized 1.000 1.000 Normalized 0.773 0.762 Normalized 0.956 0.701 

RMSE (95) 1.227 2.775 RMSE (95) 0.972 1.920 RMSE (95) 1.174 1.249 

Nonllalized 1.000 1.000 Nonnalized 0.792 0.692 Normalized 0.957 0.450 

Notes to Table: See notes ta Table 5. RMSE(in) now rcfers to 1992-1994 and RMSE(out) ta 1995. 



Table 7: 1990-1992 (in-sample) RMSE and Ratio RMSE by Moneyness and Maturity 

Panel A. GARCH(I,I) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 An 

S/X<0.975 0.437 0.889 1.098 1.276 1.078 
0.975<S/X<1.00 0.664 1.054 1.123 1.139 1.054 
1.00<S/X<1.025 0.575 0.956 1.049 0.993 0.956 
1.025<S/X<I.05 0.556 0.907 1.030 0.949 0.919 
1.05<S/X <1.075 0.687 0.989 1.166 1.112 1.032 

1.075<S/X 0.642 1.075 1.229 1.022 1.079 
AlI 0.610 0.976 1.124 1.151 1.038 

Panel B. Ratio of Component GARCH to GARCH(I,I) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 Ali 

S/X<0.975 0.939 0.816 0.847 0.925 0.873 
0.975<S/X<I.00 0.895 0.872 0.923 1.049 0.927 
1.00<S/X <1.025 0.923 0.916 0.955 1.000 0.947 
1.025<S/X<1.05 0.872 0.881 0.956 1.063 0.936 
1.05<S/X<1.075 0.902 0.849 0.906 1.003 0.902 

1.075<S/X 0.971 0.877 0.848 0.949 0.883 
Ali 0.923 0.865 0.883 0.960 0.897 

Panel C. Ratio of Persistent Component to GARCH(I,I) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 Ail 

SIX<0.975 0.845 0.802 0.898 1.145 0.987 
0.975<S/X<1.00 0.833 0.887 0.959 1.194 0.977 
] .OO<S/X < 1.025 0.952 0.927 0.965 1.211 1.003 
1.025<S/X <1.05 0.863 0.876 0.932 1.163 0.941 
1.05<S/X<1.075 0.878 0.837 0.859 1.061 0.891 

1.075<S/X 0.964 0.855 0.810 0.951 0.861 
Ail 0.903 0.859 0.891 1.]21 0.948 

Notes to Table: We use the NLS estimates from Table 5 to compute the root mean squared 
option valuation error (RMSE) for various moneyness and maturity bins during 1990- 1 992. 
Panel A shows the RMSEs for the GARCH{l, 1) mode!. Panel B shows the ratio of the 
component GARCH RMSEs to the GARCH{l,I) RMSEs from Panel A. Panel C shows the 
ratio of the persistence component GARCH RMSEs to the GARCH( 1,1) RMSEs. 



Table 8: 1993 (out-of-sample) RMSE and Ratio RMSE by Moneyness and Maturity 

Panel A. GARCH(I,I) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 All 

S/X<0.975 0.289 1.157 1.328 1.944 1.461 
0.975<S/X <1.00 0.579 1.511 1.800 2.434 1.631 
1.00<S/X<1.025 0.498 1.147 1.460 2.290 1.356 
1.025<S/X<1.05 0.593 0.724 1.144 2.014 1.008 
1.05<S/X<1.075 0.650 0.654 0.834 1.580 0.860 

1.075<S/X 1.147 1.160 0.991 1.402 1.166 

AIl 0.813 1.124 1.258 1.822 1.284 

Panel B. Ratio of Component GARCH to GARCH(I,I) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 All 

S/X<0.975 0.717 0.609 0.583 0.509 0.556 

0.975<S/X<I.00 0.799 0.673 0.658 0.533 0.644 

1.00<S/X <1.025 1.087 0.844 0.754 0.589 0.749 

1.025<S/X<1.05 0.966 1.076 0.871 0.689 0.883 
1.05<S/X<1.075 1.121 1.037 1.039 0.621 0.902 

1.075<S/X 0.991 0.971 1.044 0.928 0.977 
AIl 0.994 0.828 0.778 0.652 0.765 

Panel C. Ratio of Persistent Component to GARCH(I,l) RMSE 
DTM<20 20<DTM<80 80<DTM< 180 DTM>180 AIl 

S/X<0.975 0.626 0.547 0.822 1.293 1.028 
0.975<S/X<1.00 0.786 0.579 0.678 0.832 0.671 
1.00<S/X<1.025 1.060 0.709 0.815 0.754 0.763 
1.025<S/X<1.05 0.918 0.995 0.933 0.681 0.876 
1.05<S/X<1.075 1.163 1.012 1.252 0.977 1.071 

1.075<S/X 0.994 0.994 1.228 1.070 1.068 
AIl 0.994 0.782 0.914 1.079 0.933 

Notes to Table: See Table 7. We use the NLS estimates from Table 5 to compute the out-of­
samp1e root mean squared option valuation error (RMSE) for various moneyness and 
maturity bins during 1993. 



Table 9: 1992-1994 (in-sample) RMSE and Ratio RMSE by Moneyness and Maturity 

Panel A. GARCH(I,I) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AIl 

S/X<0.975 0.482 0.929 1.095 1.364 1.122 
0.975<S/X <1.00 0.988 1.283 1.293 1.398 1.275 
1.00<S/X <1.025 0.904 1.212 1.184 1.499 1.228 
1.025<S/X<1.05 0.589 0.953 0.999 1.348 1.002 
1.05<S/X<1.075 0.786 0.804 0.886 1.549 0.991 

1.075<S/X 0.922 0.866 0.857 1.447 1.032 
AIl 0.857 1.009 1.045 1.422 1.107 

Panel B. Ratio of Component GARCH to GARCH(I,I) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AIl 

S/X<0.975 0.813 0.641 0.609 0.577 0.604 
0.975<S/X<1.00 0.773 0.770 0.728 0.692 0.747 
1.00<S/X<1.025 0.866 0.824 0.727 0.628 0.760 
1.025<S/X<1.05 0.960 0.818 0.715 0.787 0.790 
1.05<S/X<1.075 0.919 0.840 0.716 0.751 0.785 

1.075<S/X 0.996 0.952 0.859 0.911 0.919 

AIl 0.909 0.808 0.717 0.744 0.773 

Panel C. Ratio of Persistent Component to GARCH(l,l) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AIl 

S/X<0.975 0.835 0.920 1.036 1.041 1.010 
0.975<S/X<1.00 0.757 0.924 1.054 1.005 0.964 

1.00<S/X<1.025 0.791 0.867 0.973 0.981 0.918 
1.025<S/X<1.05 0.943 0.855 0.949 0.920 0.900 
1.05<S/X<1.075 0.994 0.898 0.903 0.774 0.856 

1.075<S/X 0.993 1.046 0.964 0.917 0.969 
AIl 0.899 0.927 1.000 0.959 0.956 

Notes to Table: See Table 7. We use the NLS estimates from Table 6 to compute the fOot mean 
squared option valuation error (RMSE) for various moneyness and maturity bins during 1992-
1994. 



Table 10: 1995 (out-of-sample) RMSE and Ratio RMSE by Moneyness and Maturity 

Panel A. GARCH(1,1) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 All 

S/X<0.975 0.387 0.863 1.456 2.456 1.771 
0.975<S/X<1.00 0.995 1.175 1.719 2.093 1.546 
1.00<S/X < 1.025 0.752 1.065 1.514 1.872 1.389 
1.025<S/X<1.05 0.538 0.909 1.265 1.450 l.110 
1.05<S/X<1.075 0.903 0.617 0.867 1.401 0.896 

1.075<S/X 0.644 0.617 0.571 0.964 0.681 
AlI 0.744 0.846 1.187 1.848 1.227 

Panel B. Ratio of Component GARCH to GARCH(1,1) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AlI 

S/X<0.975 1.304 1.185 0.973 0.615 0.757 
0.975<S/X<1.00 0.994 0.903 0.755 0.693 0.783 
1.00<S/X<1.025 0.839 0.750 0.737 0.651 0.708 
1.025<S/X<1.05 1.036 0.748 0.657 0.682 0.705 
1.05<S/X<1.075 0.979 0.831 0.767 0.741 0.796 

1.075<S/X 1.008 1.077 1.091 0.933 1.026 
AIl 0.978 0.929 0.847 0.670 0.792 

Panel C. Ratio of Persistent Component to GARCH(1,1) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AlI 

S/X<0.975 0.674 1.093 0.947 0.683 0.781 
0.975<S/X<I.00 0.895 1.072 0.903 0.992 0.985 
1.00<S/X<1.025 0.938 0.967 0.961 0.933 0.950 
1.025<S/X<I.05 1.105 1.080 0.928 1.040 1.021 
1.05<S/X<1.075 1.042 1.325 1.222 0.882 1.092 

1.075<S/X 0.903 1.342 1.548 1.140 1.286 
Ail 0.952 1.129 1.016 0.848 0.957 

Notes to Table: See Table 7. We use the NLS estimates from Table 6 to compute the out-of­
sample fOot mean squared option valuation error (RMSE) for various moneyness and 
maturity bins during 1995. 



Chapter 2 
Volatility Components: Affine Restrictions 

and Non-normal Innovations 

Peter Christoffersen Kris Jacobs Yintian Wang 

Abstract 

We derive two new GARCH variance component models with non-normal innova­
tions. One of these models has an affine structure and leads to a closed form option 
valuation formula. The other model has a non-affine dynamic and option valuation 
must be done via Monte Carlo simulation. We provide an empirical comparison of 
these two new component models and the respective special cases with normal inno­
vations. We a!so compare the four component models with the GARCH( 1,1) models 
which they nest. Ail eight models are estimated using MLE on S&P500 returns. The 
Iikelihood criterion strongly favors the component models, and favors the non-normal 
innovations. The properties of the non-affine models differ significantly from those 
of the affine models. When using the estimated parameters for option valuation, we 
again find strong support for the component valiance specifications, but the support 
for the non-normal innovations and the non-affine structures is less convincing. 

JEL Classification: G22 G 13 
Keywords: Volatility. GARCH, Component Model, Affine, Long memory, Option 
valuation, Nonna! 
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2.1 Introduction 

Following the path-breaking work ofEngle (1982) and Bollerslev (1986), GARCH models 

have become an ubiquitous toolkit in empirical finance. In this paper we derive and empir­

ically implement two new conditional non-normal GARCH variance component models. 

The first model builds on Engle and Lee (1999), who use a non-affine variance component 

dynamic. We modify the model of Engle and Lee (1999) by modeling the retum innova­

tion using a Generalized Error Distribution (GED). This innovation is more general than 

the more traditional normal innovation, and therefore this new model has the ability to bet­

ter fit the retum distribution. Option valuation in this model must be done via Monte Carlo 

simulation. The second new component model follows an affine variance dynamic, and as­

sumes a conditional inverse Gaussian shock distribution as in Christoffersen, Heston and 

Jacobs (2004). We derive a closed form option valuation formula for this mode!. We com­

pare the empirical performance of these two new non-normal component models with the 

corresponding special cases characterized by normal innovations. These models are dis­

cussed in Engle and Lee (1999) and Christoffersen, Jacobs and Wang (2005) respectively. 

These four component models are also compared with the four GARCH( 1,1) models that 

they nest. For each of the component models, we provide two-way parameter mappings 

between the component models and their respective GARCH(2,2) counterparts. 

We estimate these eight models using MLE on S&P500 retums. This empirical 

comparison allows us to compare the importance of three types of modeling assumptions: 

first, the importance of the component structure versus the simpler and more parsimonious 

GARCH( 1,1) structure; second, the importance of non-normal retum innovations; third, 
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the importance of the affine structure. The likelihood criterion strongly favors the com­

ponent models in aIl cases, as well as the non-normal retum innovations. Using the MLE 

estimates, we characterize key properties of each model, including autoeorrelation fune­

tions for the squared innovations and conditional leverage and variance of variance paths. 

We find important differences between affine and non-affine models, as weIl as between 

GARCH( 1,1) and component models and between models with normal and non-normal in­

novations. These results suggest that non-normal innovations and the non-affine structure 

provide more flexibility in a parsimonious fashion. 

When we use the estimated model parameters for option valuation, we again find 

strong support for the component variance specifications, but less support for the non­

normal retum innovations and non-affine specifications. These findings are of interest be­

cause they provide a perspective that differs from the available GARCH literature. Many 

papers in the literature compare volatility models via mean-squared-error type comparisons 

computed from volatility point forecasts and sorne measure of realized volatility. For a re­

cent example see Hansen and Lunde (2005) and the references therein. Such papers often 

find that it is difficult to outperform the simple GARCH( 1,1) specification from Bollerslev 

(1986). While those studies are c1early important and useful, we proeeed instead by com­

paring the suggested volatility models based on their ability to fit observed option priees. 

Such a comparison is arguably richer in that it makes use of each model 's entire (risk neu-

tral) conditional density forecast at many horizons corresponding to the maturity of eaeh 

option. We believe that the ri cher model evaluation criterion at least in part explains our 

novel empirical findings. 
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The literature on GARCH variance component models is rapidly expanding. Compo­

nent GARCH models can be viewed as a convenient way of incorporating long-memory­

like features into a short-memory model, at least for the horizons relevant for option val­

uation. Bollerslev and Mikkelsen (1999) find support for a long-memory GARCH option 

valuation model applied to long maturity LEAPs options. We consider options with up to 

one-year maturity where the component models are likely to provide good approximations 

to true long-memory processes. Maheu (2002) presents Monte-Carlo evidence that a com­

ponent model similar to the ones in this paper can capture long-range volatility dynamics. 

Adrian and Rosenberg (2005) demonstrate the relevance of the component volatiIity struc­

ture for cross-sectional asset pricing. GARCH component variance models are also related 

to the stochastic volatility component models which have received empirical support (see 

for example Alizadeh, Brandt and Diebold (2002), Chemov, Gallant, Ghysels and Tauchen 

(2003), and Taylor and Xu (1994)). 

The remainder ofthe paper is structured as follows. ln Sections 2 and 3 we introduce 

two new GARCH component models. Section 2 introduces a non-affine conditional non­

normal GARCH component model, derives a number of its properties, and discusses option 

valuation for this component dynamic. Section 3 introduces a new affine conditional in­

verse Gaussian component model and derives the cOITesponding option valuation fonnula. 

The special cases of conditional normality for these two new models are discusscd at the 

end of each section. Section 4 presents empirical model comparisons based on maximum 

likelihood estimation of retums and root mean squared CITors [rom valuing options on the 

S&P500 index. Section 5 concludes. 
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2.2 A Non-affine, Non-normal GARCH Component Model 

In this section, we build on the work of Engle and Lee (1999) and Duan (1999) to construct 

a conditionally non-nonnal, non-affine component GARCH model that can be used for 

option valuation. The non-affine models considered in this section are somewhat more 

cumbersome to use in option valuation than the affine models considered in Section 3 

below, because they do not allow for a closed-fonn solution for option priees. However, 

non-affine GARCH models may provide a better fit to the option data. 

2.2.1 Return Dynamics 

We first introduce the benchmark model NGARCH( 1,1) option valuation model of Engle 

and Ng (1993) used for option valuation by Duan (1995). 

where St+ 1 denotes the underlying asset priee, r the risk free rate. /\ the price of risk, Zt the 

i.i.d. retum innovation with zero mean and unit variance, and litt 1 the daily variance on day 

t + 1 which is known at the end of day t. Note that we use the risk'premium specification of 

Heston and Nandi (2000) rather th an that of Duan (1995) in order to facilitate comparison 

with the affine models in Section 3. Using the unconditional variance equation 

2_ tu 
(J = E(h t+1 ) = 2) 

1 - b] - 0] (1 + (;1 

we can rewrite the conditional variance as 
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The component NGARCH model is obtained by replacing the constant (J"2 with a 

time-varying long-run component qt+l. The conditional variance ht+l now varies around a 

long-run component which itselfis autoregressive of the tirst order. Using Greek letters for 

component model parameters, we write 

where Vi,t = (z; - 1) - 2~(iZt for i = 1,2 can be viewed as zero-mean innovations to 

the volatility components. Henceforth, we denote the component NGARCH model as 

NGARCH(C). 

Following Duan (1999), we will assume that the i .i.d. retum innovation Zt follows 

the Generalized Error Distribution (GED) which, after normalizing to get a zero mean and 

unit variance, is given by24 

for 0 < '/! ~ CX) 

1 

where r (.) is the gamma function and f) = (Tr~(l~ \n) 2. The parameter '/J detennines 

the thickness of the density tails. For /.' < 2, the density function has a tail fatter th an the 

normal distribution and vice versa. The innovation ::, has a skewness of zero and a kurtosis 

24 See Hamilton (1994) and Nelson (1991) on the properties of the GED. 
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We now derive a number of properties of the NGARCH(C)-GED and NGARCH( 1,1)-

GED models that are key for understanding their performance in capturing the salient fea-

tures of speculative retums and in fitting option priees. 

2.2.2 Conditional Leverage and Variance of Variance 

In order to assess the asymmetric response of volatility to positive versus negative retum 

shocks, we derive the conditional covariance, COVt (RHl' ht+2 ), and refer to it as the con-

ditionalleverage effect. For the NGARCH(1,l)-GED model the conditionalleverage effect 

is given by 

For the NGARCH(C)-GED model we get 

Notice that in neither case does the conditionalleverage effect depend on the GED distrib-

ution's tail parameter 1'. 

We define the conditional variance of variance as Vart (h H2 ), which in the NGARCH(l, l)-

GED is given by 

where fî(V) = I\?;)(P. In the NGARCH(C)-GED model we get 
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2.2.3 The Autocorrelation Function for the Squared Innovations 

The condition al autocorrelation function (ACF) of the squared GARCH innovation defined 

as E;+l = Z;+l ht+1 parsimoniously captures the models' volatility memory properties. The 

ACF is defined as 

For the NGARCH(l,l)-GED wehave 

k 

3 L (bk-i )2 ai (r,;(v) - 1 + 4cî) Et (h;+i-1) + ... 
i=2 

with the expected future variance given by 

The ACF for the NGARCH(C)-GED model can be obtained using 

( 2 ) (() ) (1.'-2 k-2) 2 Cm:t E(11' httk = r;· 7J - 1 f3 Q: + P ip ht+l 
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k 

V ( 2) 3' (( () 1) (pk-i k-i)2 4 (pl.:-i k--i )2) El 2 art Et+k = < ~ K V - P lX + P cp + P CQ1 + P 912 t 1t+i -'l 

;=2 

+ (K(V) -1) ((j2 (1-l-1) + pk-lqt+1 + (3k-1(ht+1 - qt+d)2 

where the expected fl1ture variance is now given by 

2.2.4 GARCH(2,2) Mappings 

Engle and Lee (1999) demonstrate that component GARCH models can be rewritten as 

GARCH(2,2) models. ln order to better understand the component GARCH model, we 

investigate this relationship in more detail. The component model can be mapped ioto a 

GARCH(2,2) as folJows 

where 

- " (0:'-1'1 + rpl'2)2 
bl = P + .3 - n - 9 - al = Q + rp 

Q+rp 
(peril + 3cp~12)2 B Ci ( 

b2 = ,- p, + po: + /Jlp a2 = - prv +Bcp) 
pn +3rp 

andu' = (1 - p) (j2(l - (1). 

This mapping was provided in Engle and Lee (1999). We also provide the reverse 

mapping where the component parameters are solved as a function of the GARCH(2,2) 

parameters, as folJows 

;3 =, ~ (b l - JA) 
p = ~ (h1 + JA) 

~!l = 
-(3..pC2 - npC2 - /3i.pc] -- n,:Jr. 1 

n(p - /;) 
opc} + prpe] + !3rpC2 + Q(JC2 

12 = ..p(p - ;3) 
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where A = -bi - 4bz. Notice that f3 and p are the inverse of the roots of 

which implies that by imposing f3 < 1 and p < 1, the necessary conditions for stationarity 

and non-negativity are imposed. 

The relationship between the component GARCH model and the GARCH(2,2) model 

deserves further discussion. The mappings ab ove imply that the component model can be 

viewed as a GARCH(2,2) model with nonlinear parameter restrictions. These restrictions 

yield the component structure, which enables interpretation of the model as having a po­

tentially persistent long-run component and a rapidly mean-reverting short-mn component. 

In our empirical work we will demonstrate that the component model significantly 

outperfonns the GARCH(l, 1) mode!. Given the relationship between the component 

model and the GARCH(2,2) model, one may wonder about this result, because it is well­

known that it is difficult to outperfonn a GARCH( 1,1) model in standard volatility forecast­

ing comparisons (see for instance the results in Hansen and Lunde (2005) and the references 

therein). However, our main metric of comparison is option valuation, which makes use of 

the entire (risk neutral) conditional distribution (at many horizons) implied by the GARCH 

model and not just the conditional variance. Component models may thus produce condi­

tional risk neutral density forecasts that are superior to the GARCH( 1,1) model even if the 

conditional variance forecasts are rather similar. 

There are also sorne rather subtle but potentially important explanations for why the 

empirical perfonnance of the component model might differ from that of a GARCH(2,2) 

mode!. In the GARCH(2,2) model, the stationarity requirements are quite complicated, but 
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in the component model we simp1y need j3 < 1 and p < 1. The component structure a1so 

restricts the roots in the implied GARCH(2,2) model to be real, which turns out to be one 

of the necessary conditions for non-negativity, as illustrated in Nelson and Cao (1992). The 

component mode1 structure is therefore mu ch easier to imp1ement from the point of view of 

fin ding reasonable starting values and enforcing stationarity and non-negativity ofvariance 

in estimation. This may result in better performance of the component mode!. Another 

(re1ated) explanation can be seen by thinking of the component model as a GARCH(2,2) 

mode1 with nonlinear parameter restrictions. It is well-known that such restrictions may 

improve the performance out-of-samp1e if they describe salient features of the data. 

2.2.5 Risk Neutralization and Option Valuation 

Given the mappings between the component model and GARCH(2,2) model, the most 

straightforward approach to risk neutralization and option valuation is to use the risk neu-

tralization for the GARCH(2,2) mode!. Duan (1999) delives a Generalized Local Risk 

Neutral Valuation Relationship, under which the risk-neutral NGARCH(2,2) process can 

be written as 

ln Stll 

where Z;+1 is a standard normal random variable under the risk neutral measure, G- 1 [.; 11] 

is the inverse CDF of the GED distribution, and cI> is the standard nonnal CDF. This risk 

neutralization involves a slight approximation which is suggested by Duan (1999) to speed 

up the computation. See Duan (1999) for the details. 
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The European call option price is calculated by Monte Carlo, simulating the ab ove 

risk-neutral process and computing the sample analogue of the discounted risk neutral ex-

pectation 

2.2.6 The Conditional Normal Special Case 

In the empirical section below, we also consider the special case of the standard normal 

distribution, which corresponds to v = 2, which gives r(;(;)\~) = 3. In this case the 

conditional variance of variance in the GARCH(l, 1) case simplifies to 

We refer to this model as the NGARCH(l,I)-N. We refer to the component model with a 

normal innovation as NGARCH(C)-N, and we get 

In the normal case the risk neutral dynamics are 

htl1 'Il' + hlht + h2ht 1 + (Jlh l ('1*- ('] - (À +~) A) 2 + .. , 

a2ht-1 (Z;_l - C2 _ (À + ~) ~) 2 

Notice that in the normal case there is a simple mapping from physical to risk neutral 

innovations: z; = Zt + (À + 0.5) ..jh;. Such a simple relationship is not available in the 
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GED case above. See Duan (1995) for the details of risk neutralization in the conditional 

normal GARCH mode].25 

2.3 An Affine, Non-Normal GARCH Component Model 

The affine Inverse Gaussian GARCH(l,I) model (henceforth AGARCH(1,I)-IG) was first 

proposed by Christoffersen, Heston and Jacobs (2005) (henceforth CHJ). The model allows 

for conditional skewness as well as conditional heteroskedasticity and a leverage effect, 

which provides ftexibility to capture moneyness effects for short-term as well as long-

term options. We now develop an affine component AGARCH(C)-IG model and derive a 

number ofuseful properties ofthe model including a closed-form option valuation formula. 

2.3.1 Return Dynamics 

The AGARCH(l,I)-IG model can be written as 

r + Àht +] + '::t j} jh;;;, 

- . hi 
li' + b}ht + ('lYtT 0]­

Yt 

where 

and 

2 ( 2) ( ht) (hZ 2 4) (J + hl ht - (J + (.} Yt - 2" + a} - - ht'TJ - rI 
. rI Yt 

. h b -b C} 2 d 2 11' -+- o'1
Î7

4 
Th· . h 1 G· Wlt 1 = 1 + 2" + al17 an (J = . e mnovatIOn YI as an nverse ausslan 

TI 1 - b] 

distribution with degrees of freedom parameter I5 t = h~ and the variance innovation term 
1) 

25 See also Amin and Ng (1993). Sec Brennan (1979), Camara (2003), Rubinstein (1976) and Schroder 
(2004) for option valuation in discrete time for the constant volatility case. 
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Cl (Yt - $ ) + al (~ - htrP - fl4) has a conditional mean equal to zero. If fi is nega-

tive then stock retums display negative conditional skewness. We refer to CH] for further 

discussion of the Inverse Gaussian process. 

Employing a similar reparameterization as in the NGARCH(C)-GED model and gen-

eralizing (J2 to qt+l, the component AGARCH(C)-IG is defined as 

2.3.2 Condition al Leverage and Variance of Variance 

The conditional variance of variance and the conditionalleverage effect for the AGARCH( 1,1)-

IG model can be derived as 

The conditional variance of variance and the conditionalleverage effect for the AGARCH( C)-

IG are 

(Cl + cp) 2 2f18 + ... 

((0 + rpff7
6 + hl + 1'2)2 1~2 - 2 (n + 'P) ('"1'1 + Î2) 11"2) ht Il 

(hl +~:2)~ - (0 + y) 17
3) hti1 
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2.3.3 The Autocorrelation Function for the Squared Innovations 

We now provide results related to the autocorrelation function (2.34) for the AGARCH( 1,1)-

IG and AGARCH(C)-IG models. For the AGARCH(1 ,l)-IG model we can derive 

and the expected future variance is 

For the AGARCH(C)-IG we have 

(3 k--2 (3 4) 1 k-2 (3· ..4))1 Î 1 - CK11 ~t f 1 + P ~I 2 - ;::11 1 t 1 1 

and the expected future variance is 

However, due to the fact that Yt appears in the denominator in the variance dynamics, a 

closed form solution for the conditional variance of the k-period-ahead squared innovation 

is not available. We therefore compute Vart (E; ~k) for k > 1 by simulation in both models. 

2.3.4 GARCH(2,2) Mappings 

The AGARCH(C)-IG model can be mapped into the AGARCH(2,2)-IG 
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where 

and w = (1 - p) (J2 (1 - (3) + (pa + (3zp - a - zp) TJ4. The reverse mapping is 

(3 = ~ (b l - VA) 
P = ~ (b l + VA) 

where A = bl ± Jbi + 4b2 • Therefore, (3 and p are the inverse of the roots of 
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which again implies that by restricting ,3 < 1 and p < 1, the necessary conditions for 

stationarity and non-negativity are imposed. 

2.3.5 Risk Neutralization and Option Valuation 

Relying on the mappings above, we once again limit ourselvcs to discussing risk neutral-

ization and option valuation for the AGARCH(2,2)-IG model, from which evcrything eIse 

follows as a special case. Under the risk neutral measure, the AGARCH(2,2)-IG dynamic 

is given by 

In(St) + r + À*h;11 + ::;11 ~ 

h*2 h*2 
* -b h* -b h* *. *. * t * t- 1 

11: + l t + 2 t 1 +C1Yt +C2Ytl +° 1-.-. +°2-*-
Yt Yt ··1 
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Given the risk-neutral dynamies, option valuation is relatively straightforward. We 

use the result of Heston and Nandi (2000) that at time i, a European eall option with strike 

priee K that expires at time T is worth 

where 1* (t, T; icjJ) is the eonditional eharacteristic funetion of the logarithm of the spot 

price under the risk neutral measure. Christoffersen, Heston, and Jacobs (2004) provide 

the moment generating function for the AGARCH( 1.1 )-IG model; here we provide the 

result for the higher order mode!. 

First, let ft ((j)) den ote the eonditionaI generating function of the asset priee ft (4)) = 

Et [Sc:], which is aIso the moment generating function of the logarithm of 8/,. In Appendix 

A we show that the generating function for the AGARCH(2,2)-IG model takes the fonn 
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where Xt = ln (St). The coefficients {At, Bt, Ct, DI,t, D2,t} depend on the parameters of 

the mode!. Appendix A shows that the coefficients in the moment generating functions are 

Ct (1):\ + Bt+I + Ct+I!)I) + ... 

(r/- 2 + 1) Jw 4 - 2 (CHIa} + D2.t+I) VI - 2 (1)r/ + CHICl + D1,t+l) 

where À = À - 7]1 and where we have the tenninal conditions AT = BT = CT = Dl.T = 

D 2 .T = o. 

2.3.6 The Conditional Normal Limiting Case 

Christoffersen, Heston and Jacobs (2004) show that as 1/ approaches zero, the AGARCH( 1,1)-

IG model converges to the conditionally normal affine GARCH(l, 1) model in Heston and 

Nandi (2000). We refer to the latter model as AGARCH(l,I)-N in this paper. We now 

derive a corresponding result for the component IG mode! derived above, showing that it 

converges to the conditionally nonnal affine component GARCH mode! in Chapter 1 as '/ 

approaches zero. We refer to the latter mode1 as AGARCH(C)-N. 
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We fust write ~ as (1 ) and then do a Taylor expansion of the tenu ~t -1 
Yt 6t 'Jl.i - 1 + 1 Ut 

Ot 

around zero. This changes the short-mn and long-mn components into 

Th b · Yt Zt 5: ht d . h dl' en we su stItute T - 1 = ff' Ut = 2' an we reparametenze t e mo e usmg 
Ut V 8t rJ 

where superscript N denotes the parameter from the conditional normal component mode!. 

This gives a quadratic function of Zt that exactly matches the AGARCH(C)-N component 

model in Chapter 1 

ht+ 1 (Jt f 1 + S (h t - (jt) + Cl ( (zl - 1) - 2, 1 jh; Zt ) 

(lftl (j2 + P (rit - (j2) + 'P ((2; - 1) - 2~f2VhtZt) 

plus two cubic remainder terrns 

and 

For a fixed hf, these remainders vanish as 1] approaches zero. Thus the AGARCH(C)-IG 

converges to the affine normal component mode!. By letting rJ go to zero, the skewness dis-
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appears and the affine Inverse Gaussian component model converges to the affine Normal 

component model. 

2.3.7 Properties of the Affine Normal Component Model 

Many useful properties of the AGARCH(C)-N and AGARCH(1,l)-N models are derived 

in Chapter 1 and Heston and Nandi (2000). Here we briefl.y report the autocorrelation 

function and GARCH(2,2) mappings. The ACF (2.34) can be computed using 

2h;+1 

3 t, Mi)' a;(2 + '!c;E, (h,+,,)) + 2 ( 
1 bk-1 )2 

(CJ2 (1-b1)+Od. ;--L + ... 
bk 11 

1 / l ' 1 

and where the expccted future variance is 

The AGARCH(C)-N has the followingACF 

C ( ? 1) 2( '.Jk-2 k--2)1 07JtEÎ'1·lttk,j o+p Y 11+1 

VUl't(E;tl) 211,;11 
k 

\lm·dE;, le) -- 3 ~ (2 (.jk in + (/iy / + 4 (ijkiC1:11 + l 'y~!'2) 2 Edltt. id) 
,~2 

+2 (CJ 2 (1_p"-I) + p"-l{]t+l + /jk-l(ht+l - {]t+d)'2 

where the expected future variance is 

E (1 ) 2 0k -2(h ) k--2 ( 2) t /'f ~k-l = Cf +,j 1+1 - {]t+1 + P qt+1 - Cf 
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The AGARCH(C)-N can be mapped into an AGARCH(2,2)-N as follows 

0,2 = -(pû + (3i.{J) 

rl Û + r2i.{J 
Cl = 

al 

PlIÛ + i.{Jr2(3 
C2 = - '---=--------"'-

0,2 

and w = (w - i.{J) (1 - (3) - Û (1 - p). The reverse mapping is 

f3 = ~ (b l - JA) 
p = ~ (b l + JA) 
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where A = bî + 4hz. Notice again that the solutions for (3 and p above are the roots of the 

polynomial y2 - bl Y - b2 . Therefore, (3 < 1 and p < 1 are required for the variance to be 

stationary in the GARCH(2,2). 

Option valuation can be done as in the AGARCH-IG model. The MGF for the 

AGARCH(2,2)-N model is shown in Appendix B, which corrects sorne typos in Heston 

and Nandi (2000). 

2.4 Empirical Results 

This section presents the empirical results. We use MLE on a long time series of S&P500 

retum data to estimate the eight models discussed above: NGARCH( 1,1 )-GED, NGARCH(C)-

GED, NGARCH(I,l)-N, NGARCH(C)-N, AGARCH(l,I)-IG, AGARCH(C)-lG. AGARCH(1,I)-

N and AGARCH(C)-N. We discuss the parameter estimates and their implications for the 

salient properties of the models. The eight models allow us to make three types of com-

parisons: component models versus GARCH(l, 1) models; affine models versus non-affine 

models; and non-normal innovations versus normal innovations. Subsequently we intro-
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duce the options data. We use each of our eight models to priee the option contracts and we 

compare model and market priees for various maturities, strike priees, and sample years. 

2.4.1 Parameter Estimates on Daily Return Data 

Table 1 presents the Maximum Likelihood estimation results obtained using daily retums 

data from July 1, 1962 through December 31, 2001. The retums data were obtained from 

CRSP. Standard errors are calculated from the outer product of the gradient and are given 

in parentheses. Table 1 reports the physical conditional variance parameters as weIl as the 

priee of risk, À. We use variance targeting for aIl models, we use variance targeting, forcing 

the annualized retum standard deviation to be 14.7%. This technique fixes the parameter w 

in each model, and we therefore do not report on 71) in Table 1. 

We first note from Table 1 that the price of risk, /\. is positive and significant in aIl 

models-although only marginally so in the case of AGARCH( 1,1 )-N. Next. notice that b], 

the variance persistence in the GARCH( 1,1) models, is close to one in al! four models. 

The fourth row from the bottom reports the overall variance persistence in the component 

models, p + (3 (1 - p), as weil as b] for the GARCH(1,l) models. Notice that while the 

GARCH( 1,1) models have high persistence, for each corresponding component model the 

persistence is even higher. The very large component variance persistence is driven by a 

large long-run component persistence p, plus the contribution from (( 1 - p) times) the less 

persistent short-run component 13. 

In the GARCH( 1,1) mode! the conditionalleverage is driven by ("]" which as expected 

is significantly positive in a11 cases. In the component models, the conditional leverage 
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effect is driven by a combination of Il and 12' which are both significantly positive in 

aIl four component models. Thus, both the long-run and short-run components contribute 

to the overall leverage effect with the expected sign. The unconditional leverage effects 

are reported in the second row from the bottom. They are all negative, as expected. The 

results show that for each set of models, the component model displays a more pronounced 

leverage effect than the corresponding GARCH( 1,1). 

The variance of variance is driven mainly by the al parameter in the GARCH( 1,1) 

models and by the 0: and <p parameters in the component models. The overall unconditional 

variance ofvariance is reported in the third row from the bortom. Notice again that in each 

case the component model displays a larger variance of variance than its GARCH(l,l) 

counterpart. Thus three important empirical regularities emerge when comparing compo­

nent models to their GARCH( 1,1) counterparts: The component models allow us to (si­

multaneously) capture a larger variance persistence, a larger leverage em~ct, and a larger 

variance of variance th an their GARCH( 1,1) counterpm1s. Finally, Table 1 also presents 

standard likelihood ratio tests of the component model versus the corresponding nested 

GARCH( 1,1) mode!. As the reported p-values show, each GARCH( 1,1) model is strongly 

rejected in favor of the corresponding component model in ail cases. 

2.4.2 Dynamic Model Properties 

In order to explore the models fUl1her, Figure 1 plots the conditional variances for the 

period 1989-2001. This period includes the dates for the option valuation exercise we 

present in Section 4.4. Recall that each mode! is cstimated forcing the annual standard 
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deviation to be 14.7%, corresponding to an unconditional variance per day of 8.5750E -

005. Notice that the conditional variance patterns across the four GARCH(1,I) models in 

the left column and the corresponding four component models in the right column display 

some similarities. The models all capture the low variance during the equity market run-up 

in 1993-1998, preceded by higher volatility during the first Gulf war and the 1990-1991 

recession. The LTCM and Russia debac1es in the faU of 1998 are evident, as is the higher 

volatility during the dot -corn bust in the later part of the sample. 

However, Figure 1 also reveals sorne important differences between models. The 

non-affine models (in the two top rows) appear to display much more variation in the 

conditional variance during the more recent period than do the two affine models (in the 

bottom two rows). This difference is also evident in Figure 2 which plots the long-fUn 

variance component, {jt fI (left column) and sh0l1-run variance component, hi-fI - (jt+l 

(right-column) for the four component models. The non-affine components appear to be 

more variable than the affine components, both in the case of the long-ron and short-ron 

components. This is again particularly evident during the 1998-2001 period. 

We plot the conditional variance of variance path, \I,U'! (h tt2 ) for each of the eight 

models in Figure 3. Figure 3 confirms the findings in Figures 1 and 2. The non-affine 

models in the two top rows of Figure 3 display a much Im'ger variance of variance th an the 

two affine models in the bottom two panels. This is truc for both thc GARCH( 1,1) models 

in the left column and the component models in the right column. 

Figure 4 plots the conditional leverage path, C(){'t (R t f 1. hl +2 ) for each of the eight 

models we consider. The left-hand column contains the single component GARCH(1, 1) 
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models and the right-hand column contains the component models. Notice that in each case 

the component model has a larger (more negative) and more variable leverage effect th an 

the corresponding GARCH( 1,1) model. This is particularly true for the two affine models 

and the NGARCH-GED, and less so for the NGARCH model. The large discrepancy in 

the leverage effect between the NGARCH(l,I)-GED and the NGARCH(1,I)-N may seem 

puzzling. It is however confirmed by the much larger Cl parameter in the latter model in 

Table 1. 

While Figures 1-4 depict various aspects of the dynamics of the one-day ahead condi­

tional distribution, Figure 5 captures the properties of the variance dynamics across longer 

horizons. We plot the conditional autocorrelation function of the squared innovations, 

COrrt(E;+l.E;lk) across k = 1, .... 250 days for each of the eight models we con si der. 

The top-Ieft panel contains the non-affine GARCH model with GED shocks, the top-right 

panel depicts the non-affine GARCH model with normal innovations, the bottom-left panel 

represents the affine GARCH with inverse Gaussian shocks and the bottom-right panel con­

tains the affine GARCH model with nonnal shocks. Each panel contains the component 

GARCH (solid !ine) and the GARCH(l,I) (dashed line) mode!. The conditional variance 

is set equal to the unconditional sample variance for al! models, and the parameters are the 

MLE estimates reported in Table 1. 

For each of the four pairwise comparisons, the autocorrelation function for the com-

ponent model is below that of the GARCH( 1,1) model for short horizons but above it for 

longer horizons. In this sense, the component model displays long-memory like features. 

While both the GARCH(l,I) and the component models are truly short-memory exponen-
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tially decaying models, the dynamic properties of the component models are similar to 

those of long-memory models for the horizons we care about for option valuation, namely 

1-250 trading days. Another interesting observation from Figure 5 is that the non-affine 

models in the top two panels have larger autocorrelations than the two affine models in the 

bottom row. This difference may have important implications for the valuation of long­

maturity options. We now tum to an option valuation exercise to investigate this further. 

2.4.3 Option Data and Valuation Methodology 

We use six years of S&P 500 call option data covering the period 1990-1995. Starting 

from the raw data from the Berkeley Option data base, we apply standard filters following 

Bakshi, Cao and Chen (1997). We only use options with more th an seven days to maturity. 

We also only use Wednesday options data. Wednesday is the day of the week least likely 

to be a holiday. It is also less likely than other days such as Monday and Friday to be 

affected by day-of-the-week effects. If Wednesday is a holiday, we use the next trading 

day. Using only Wednesday data allows us to study a fairly long time-series, which is 

useful eonsidering the highly persistent volatility processes. 

Table 2 presents descriptive statistics for the options data for 1990-1995 by money­

ness and maturity. Panel A reports the number of contracts available after filtering. Our 

sample consists of 2 1,752 options with a wide range of moneyness and maturity. Panel B 

shows the average call priee in each of the bins in Panel A. Quite predictably, the average 

priee inereases significantly as the moneyness inereases (moving down the rows) and as 

maturity increases (moving from left to right). The average overall priee is $27.91. 
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In Panel C of Table 2 we report the average Black-Scholes implied volatility for the 

option contracts in each bin. Panel C clearly documents the volatility smirk evident in 

quoted equity index option priees. The average implied volatility tends to increase as we 

move down the rows in each column of Panel C. The effect is most dramatic for the short 

maturities in the left-hand columns. This empirical regularity iBustrates that the Black-

Scholes option valuation formula, which assumes a constant per period volatility across 

time, maturity and strike priees, will result in systematic pricing errors, which motivates 

the use of stochastic volatility and GARCH models for option valuation. 

When calculating option priees according to the eight GARCH models, we use the 

MLE parameters in Table 1 transformed to the risk neutral measure. These risk-neutral 

parameters as weB as the conditional variance paths trom Figure 1 are used as inputs into 

the option pricing formula. ln the case of the non-affine models, the formula requires Monte 

Carlo simulation to calculate the priee, whereas in the case of the affine models numerical 

integration is used. 

2.4.4 Option Valuation ResuUs 

The overall Ri'.! SEs for the eight GARCH model are reported in the last row of Table 1. 

The RAl S E is computed as 

R1\fSE = 1 .. 1 "'\----- (C'.\I1\··1' ~ C(;··\JWlf)2 

\ 
.'\1 L. ·I.t 1.1 

1.1 . 

where N is equal to 21,752, the total number of option con tracts in the sample. 

The results in Table 1 allow us to make three types of comparisons. We first fo-

eus on the performance of the component models versus the GARCH( 1,1) models. Most 
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importantly, note that the best overall model (i.e. the one with the lowest RNI S E) is the 

NGARCH(C)-GED. Moreover, for each of the four pairwise comparisons, the RNISE of 

the component model is much lower than the RJvl SE of the corresponding GARCH( 1,1) 

mode!. The differences are large, ranging from a 21% improvement in the AGARCH-IG 

case (1.705 versus 2.162) to a 38% improvement in the NGARCH-N case (1.466 versus 

2.356). 

The second comparison is between models with normal and non-normal innovations. 

In this case, the differences are smaller but systematic. The NGARCH-GED improves on 

the NGARCH-N model by 13% in the GARCH(l,l) case and by 1% in the component 

case. The AGARCH-IG improves on the AGARCH-N by 7% in the GARCH( 1,1) case and 

6% in the component case. 

The third comparison is between affine and non-affine models. 26 The RM SE of the 

best non-affine model (the component NGARCH-GED) is 14% lower than that of the best 

affine model (the component AGARCH-IG). When conducting pairwise comparisons, the 

non-affine models generally have lower R.USEs than their affine counterparts. The only 

exception is the NGARCH( 1,1 )-N which has a slightly larger RAIS Ethan the correspond-

ing AGARCH(l,l)-N. 

Table 3 provides more detail on the option valuation results. In Panel A we report 

the R 1\ r 8 E for each of six moneyness bins. where the R M cS' Po has been divided by the 

average market option price for that bin (from Table 2, Panel B). Looking across the rows 

of Panel A, we see that in each row but one, the best model is a component mode!. The only 

26 Hsieh and Ritchken (2000) compare the fit of affine and non-affine single component conditional Gaussian 
models. Our main focus of course is on two-componcnt, non-Gaussian models. 
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exception is for deep-in-the-money options where the AGARCH(1,l)-IG is best. We also 

see that the overall best model, namely the component NGARCH-GED is best or near-best 

in every row. Interestingly, the non-affine models tend to do weil for the out-of-the-money 

options in the top rows, whereas the affine models do weil for the in-the-money options in 

the bottom rows. 

In Panel B of Table 3, we report the RM SE for each of four moneyness bins, where 

the RJ\,1 S E again has been divided by the average market option priee for that bin. In eaeh 

of the four rows, a component model is the best performer. The component NGARCH­

GED is once again best or near-best in every row. Finally, Panel C reports the normalized 

RM SE for each of the years in the option sample. A component model perfonns the best 

in ail but one year, namely 1991, when the AGARCH(l, 1)-1 G is the top performer. 

2.4.5 Discussion 

We have considered eight GARCH models that differ along three important dimensions. 

Four of the models have non-affine dynamics while four have affine dynamics, four models 

are of the GARCH( 1,1) type while the other four are component volatility models, and we 

have four models each with normal and non-normal innovations. 

The most important empirical regularity we observe is that component models are 

strongly favored by the data over GARCH( 1,1) models. This is the case when we use 

likelihood values based on retums data, but also when we use RAI SEs based on options 

data (judging from RJ\!SEs). When using retums data, non-affine models display very 

different properties than affine models, and non-normal innovations outperform normal 
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innovations. However, differences in option fit are much less signifieant for these types of 

compansons. 

The RN! S E criterion is clearly different from the likelihood-based eriterion, and 

this in itself ean explain the results. However, it is important to note that the Rl\1 S E­

based eomparison also differs from the likelihood-based eomparison in a methodological 

sense. The eomparisons based on option priees are of an out-of-sample nature, while this 

is not the case for the likelihood-based comparison. While the option sample time period is 

part of the sample period used for ML estimation, the GARCH model parameters are esti­

mated on retums only. Our finding regarding the performance of the eomponent models is 

therefore much more robust than the findings regarding non-normal innovations and affine 

restrictions, because these results are not as strongly supported out-of-sample. Moreover, 

because the option valuation results are out-of-sample, the finding that the more richly pa­

rameterized component GARCH models are outperforming more parsimonious models is 

completely non-trivial. 

It is also important to note that other studies have documented that the benchmark 

NGARCH(l, 1 )-N and AGARCH( 1,1 )-N work very weIl. Christoffersen and Jacobs (2004) 

find that the NGARCH( 1,1 )-N model is almost impossible to improve upon by changing the 

news impact specification of the GARCH(l, 1) model. Heston and Nandi (2000) find that 

the AGARCH(1 ,1 )-N mode! perfonns weIl relative ta the standard model-free benchmark 

in Dumas, Fleming and Whaley (1998). 
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2.5 Conclusion and Directions for Future Work 

This paper presents two new conditional non-normal GARCH variance component models. 

The first model allows for GED innovations to the variance dynamic. Because the model 

is characterized by a more traditional non-affine GARCH variance dynamic, option valu­

ation must be done by Monte Carlo simulation. The second model is characterized by a 

conditional inverse Gaussian innovation and by affine variance dynamics. A c1osed-form 

option valuation formula is derived for this mode!. The two new non-normal component 

models are compared with the corresponding special cases with normal innovations, and 

the resulting four component models are compared with the GARCH(l,I) models which 

they nest. AlI eight models are estimated using MLE on a long time series of S&P500 re­

tums. The likelihood criterion strongly favors the component models in aIl cases, and it 

also favors non-nOlmal innovations. Non-affine models and affine models differ along sev­

eral critical dimensions, such as conditional leverage and variance of variance. Wh en we 

use the models' parameter estimates for option valuation, we find very strong support for 

the component variance specifications. The support for non-normal innovations and for the 

non-affine structure is less strong. 

The empirical results leave a few questions unanswered. First, it remains to be seen 

if the differences in performance between models are confirmed when using model para­

meters estimated from option priees, or wh en using an integrated analysis that uses option 

priees as weIl as underlying retums (see Bates (2000), Chemov and Ghysels (2000), Eraker 

(2004) and Pan (2002). Second, it would be usefùl to reconcile the relationship between 

the superior option valuation performance of the component models we find here and the 
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less than superior performance of GARCH(2,2) models in traditional volatility forecasting 

studies. Comparing the density forecasts implied by the different models could be an av­

enue to explore. Finally, looking fOlward, it would be interesting to compare the range of 

discrete-time GARCH models considered here with the continuous-time stochastic volatil­

ity models that are popular in the finance literature. Bakshi, Cao and Chen (1997), Bates 

(1996), and Eraker (2004) study stochastic volatility models with Poisson jumps, and Bates 

(2000) analyses models with Poisson jumps and multiple volatility factors. Recently, Carr 

and Wu (2004) and Huang and Wu (2004) have considered Levy processes with infinitely 

many jumps. The relationships between the continuous-time and discrete-time models are 

very interesting, and comparing the models for the purpose of option valuation may provide 

more insight into the strengths and weaknesses of the component models. 
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2.6 Appendix 

2.6.1 The AGARCH(2,2)-IG MGF 

Let Xt = In(St) and let ft be the conditional generating function of ST, or equivalently the 

conditional moment generating function (MGF) of XT, i.e. 

We shaH guess that the moment generating function takes the log-linear form 

Since XT is known at time T, we have the terminal condition 

Applying the law of iterated expectations to .fi we get, 

We tirst rewrite the return dynamic as 

(
Stt!) -ln T = r -+- Àht ~ 1 -+- TIYI , 1 
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where:\ = À - 1.. Substituting in the dynamics of Xt+l and ht+2 yields 
'T] 
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where we have applied the general result for an IG(l5) variable, y, and constants, a and b, 

Solving this expectation and equating coefficients demonstrates 

cp(Xt + T) + At+l + CH1W + (cp).. + BH1 + CHlbl ) hHl + 

Ct+ l b2ht + Ct+1C2Yt + Cttln/'z + ln ( 1 2 -4. h
t
_J'i/-

2 

2 + ht+lTf 2+ 
YI yhl_t-I'T] -2(Ct+1<ll+D2.t+I)ht + 1 

~----~--~------=---~~ 
jh;+lrr- 4 

- 2 (Ct-tIal + DUt 1) h;H 1 - 2 (<P77 + Ct+1Cl + DI,tH) 

Et exp 

CD(Xt + r) + Att l + Ct-tlW + (<1>).. + BH1 + CH1bl ) htt-1 + 

C -b 1 C' C h; l ( 1)-2 Hl 2/'1+ HIC2Yt+ t+1(].2-+ III 
YI Y ry-4·-2(CI-j-l<ll f- D 2.t.,.I) 

Et exp 

(TJ-2 + 1) IIH1 jr-T,----:---4 ---2~(C=/t-t-l(-/l---t--:D=-2-.I-+-"'-1) 1 - 2 (cp(/ + Ct-t lC1 + Dl/Id 

Therefore 

AHl + 91' + Ctr11L' + ln ( 1/2 ) 
JTJi - 2 (C! 1 (JI + DUt]) 

( 6).. + En] + Cff l!J I) + '--

(r/2 + 1) J Tf- 4 - 2 (Ct n (J 1 + D2.t 1 1 ) JI - 2 (1J17 + Ct Il Cl + Du t-l ) 

\ 

) 
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2.6.2 The AGARCH(2,2)-N MGF 

We shaH guess that the MGF takes the log-linear form 

where Xt = ln (St). We have 

(2.40) 

Since XT is known at time T, we require the terminal condition 

Substituting the dynamics of .Lt+ 1 into (2.40) and rewriting we get 

ft = Et exp 

9(.1:t + r) + (BUtlal + Cft-1) (Zt+l - (Ct+l - 2(BI,t+I:I+Ct-H))~) 2 + 
At+l + BJ.t f 111' + B U l- 1b2ht + Bu fla2(Zt - C2\/h;)2+ 

( 
dJÀ + BUn!)l + BVf1 + (<,')(;t+l - 4(B . cf? +c ))+) h l,h-IQI t+1 t+l 
(B1,t~lalCi + Ctl lC~) - (;tl-l (BU+1alcl + Ct+lC2) 

(2.41) 

where 

and we have used 

( (i) 
+Zt f lq..jh;;; + --0(-, f 1 + _ (B C) htl- l 

4 l,t f IUl +ttl 
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Using the general result for a standard normal variable, z, and constants, a and b, 

1 
E [exp(a(z + b?)] = exp( -"21n(1 - 2a) + ab2 /(1- 2a)) 

in (2.41) we get 

where we have used the fact that 
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Figure 1. Conditional Variance Paths 
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1990 1992 1994 1996 1998 2000 2002 1990 1992 1994 1996 1998 2000 2002 
Year Year 

Notes to Figure: We plot the conditional variance path, htt-b for each of the eight 
models we consider. The left-hand column contains the single component GARCH( 1,1) 
models and the right-hand column contains the two-component mode!s. Rows 1 and 
2 contain the non-affine GARCH modèls with GED shocks and Nonna! shocks. fo!­
lowed by the affine GARCH models with IG and NOlma! shocks in rows 3 and 4. 
The parameter values from the underlying GARCH models are obtained from MLE 
estimation on S&P500 retums as reported in Table 1. 
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Figure 2. Variance Component Paths 
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Notes to Figure: We plot the two variance components for the four component models 
we consider. For each model, the left-hand column contains the long-run component, 
qt Il and the right-hand panel contains the short-run component, ht+l - qt+l. Rows 1 
and 2 contain the non-affine GARCH models with GED shocks and Normal shocks, 
followed by the affine GARCH models with IG and Nonnal shocks in rows 3 and 4. 
The parameter values from the underlying GARCH models are obtained from MLE 
estimation on S&P500 retums as reported in Table 1. 
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Figure 3. Conditional Variance of Variance Paths 

GARCH(1,1) Component GARCH 

Year Year 

Notes to Figure: We plot the conditional variance of variance path, VaT't (ht+2) , for 
each of the eight models we consider. The left-hand column contains the single com­
ponent GARCH(l, 1) models and the right-hand column contains the two-component 
models. Rows 1 and 2 contain the non-affine GARCH models with GED shocks and 
Normal shocks, followed by the affine GARCH models with IG and Normal shocks 
in rows 3 and 4. The parameter values from the underlying GARCH models are 
obtained from MLE estimation on S&P500 retums as reported in Table 1. 
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Figure 4. Conditional Leverage Paths 
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Notes to Figure: We plot the conditional leverage path, Cm:t (Rt f 1. htt2 ) for each 
of the eight models we consider. The left-hand column contains the single compo­
nent GARCH( 1,1) models and the right-hand column contains the two-component 
models. Rows 1 and 2 contain the non-affine GARCH models with GED shocks and 
Normal shocks, followed by the affine GARCH models with IG and Normal shocks 
in rows 3 and 4. The parameter values from the underlying GARCH models are 
obtained [rom MLE estimation on S&P500 retums as reported in Table 1. 
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Figure 5. Autocorrelation Function ofComponent GARCH and GARCH(I,l) 
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Notes to Figure: We plot the conditional autocorrelation function of the squared in­
novations, CorTt(E;+l: E;tk)' for each of the eight models we consider. The top-Ieft 
panel contains the non-affine GARCH model with GED shocks, the top-right panel 
contains has normal shocks, the bottom-Ieft panel contains the affine GARCH with 
inverse Gaussian shocks and the bottom-right panel has normal shocks. Each panel 
con tains a component GARCH (solid line) and a GARCH(l,I) (dashed line) model. 
The conditional variance is set to the unconditional sample variance in each mode!. 
The parameter values from the underlying GARCH models are obtained from MLE 
estimation on S&P500 returns as repolted in Table 1. The Impact of Volatility Long 
Memory on Option Valuation: component GARCH versus FIGARCH 



Table 1: Parameter Estimates and Model Properties 
NGARCH-GED NGARCH-N AGARCH-IG AGARCH-N 

Parameter GARCHel,l) Com12onent GARCHel,l) Com12onent GARCH(l,I) Com12onent GARCH(l,l) Corn12onent 
À 5.00E+OO 2.74E+OO 2.37E+00 2.48E+00 2.50E-OI 9.41E-Ol 7.26E-Ol 1.06E+00 

(1.03E+OO) (1.31 E+OO) (7.03E-OI) (6.IOE-OI) (6.75E-03) (3.44E-03) (4.57E-0l) (1.67E-Ol) 

b 1 ' ~ 9.88E-OI 9.24E-OI 9.92E-01 9.08E-OI 9.88E-OI 8.93E-Ol 9.80E-Ol 7.47E-Ol 

(5.04E-03) (5.06E-02) (2.30E-03) (8.87E-03) (1.33E+00) (4.7 1 E-02) (1.59E-02) (2.22E-02) 
al, a 6.04E-02 3.01 E-02 6.26E-02 3.70E-02 3.52E+07 5.56E+07 3.01E-06 2.13E-06 

(6.09E-03) (8.41 E-03) (2.09E-03) (4.05E-03) (4.9 1 E+06) (8.76E+06) (1.67E-06) (2.78E-07) 
CI, YI 5.08E-02 1.85E+00 5.92E-01 1.66E+00 2.58E-06 1.66E-06 1.01E+02 2.98E+02 

( 1. 12E-02) (5.00E-Ol) (4.51 E-02) (1.98E-Ol) (1.16E-09) (2.36E-07) (6.55E+OI) (4.15E+OI) 

P 9.98E-01 9.98E-OI 9.93E-Ol 9.92E-0 1 
(7.84E-04) (4. 13E-04) (1.43E-03) (8.41 E-04) 

([l 3.28E-02 3.23E-02 5.83E+07 1.77E-06 
(9.17E-03) (2.23E-03) ( 1.13E+07) (l.28E-07) 

Y2 3.04E-0 1 3.10E-Ol 1.49E-06 7.07E+Ol 

(1.1 OE-O 1 ) (7.44E-02) (3.05E-07) (8.06E+00) 

v ,11 1.23E+-00 1.45E+00 -5.05E-04 -3.94E-04 
( 1.57E-(2) (9.12E-03) (1.72E-05) (5.37E-06) 

Properties 
LogLikelihood 34,2 1 5 34,384 34,124 34,196 34,105 34,159 34,029 34,126 

LR Test 0.000 0.000 0.000 0.000 
SR Persistence 0.9244 0.9080 0.8928 0.7470 
LR Persistence 0.9982 0.9980 0.9933 0.9915 

Variance Persistencc 0.9877 0.9999 0.9920 0.9998 0.9880 0.9993 0.9800 0.9979 
Variance or Variance 9.609E- 1 1 2.087E- 1 0 9.696E-II 2.176E-l0 3.771 E-II 9.594E-09 4.979E-II l.678E-l0 

Leverage -4.834E-09 -1.035E-07 -5.838E-08 -1.123E-07 -4.812E-08 -8.549E-08 -5.20IE-08 -1.296E-07 

Option RMSE 2.060 1.458 2.356 1.466 2.162 1.705 2.316 1.813 

Notes to Table: Wc use daily total retums from July l, 1962 to December 3 l, 1995 on the S&P500 index to estimate the GARCH models using Maximum 
Likelihood. Robust standard crrors are calculated from the outer product of the gradient at the optimum parameter values. Variance Persistence refers to the 
persistcnce of the conditional variance in eaeh model. For the eomponent models, SR Persistencc refers to the persistencc of the short-run component and LR 
Pcrsistcncc refcrs to the pcrsistcncc of the long-run componcnt. Variance of Variance refers to the uneonditional variance of the conditional variance in each 
model. Leverage refers to the unconditional covariance between the retum and the conditional variance. LogLikelihood refers to the logarithm of the likelihood 
at the optimal parameter values, and LR test refers to the likelihood ratio test of the component model versus the corresponding nested GARCH( 1,1) mode!. 
Option RMSE refers to the dollar root mean squared option valuation error (RMSE) ealculated using the risk-neutralized MLE parameters. 



Table 2: S&P 500 Index Cali Option Data (1990-1995) 

Panel A. Number of Cali Option Contraets 

DTM<20 20<DTM<80 80<DTM<180 DTM>180 Ail 
S/X<0.975 101 1,884 1,931 1,769 5,685 

0.975<S/X<1.00 283 1,272 706 477 2,738 
1.00<S/X<1.025 300 1,212 726 526 2,764 
1.025<S/X<1.05 261 1,167 654 409 2,491 

1.05<SIX<1.075 245 1,039 582 390 2,256 

1.075<SIX 549 2,345 1,679 1,245 5,818 

Ail 1,739 8,919 6,278 4,816 21,752 

Panel B. Average Cali Priee 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 All 

S/X<0.975 0.88 2.30 6.25 11.94 6.62 
0.975<S/X<1.00 2.29 6.83 15.19 27.50 12.12 
1.00<S/X<1.025 8.35 13.60 22.48 34.41 19.32 
1.025<S/X<1.05 17.57 22.00 30.11 42.14 26.97 
1.05<S/X<1.075 27.11 30.84 38.14 48.83 35.43 

1.075<S/X 50.67 52.78 58.98 68.34 57.70 

AlI 24.32 23.66 28.68 36.07 27.91 

Panel C. Average Implied Volatility from Cali Options 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AlI 

S/X<0.975 0.1625 0.1269 0.1350 0.1394 0.1342 
0.975<S/X<1.00 0.1308 0.1296 0.1448 0.1562 0.1383 
1.00<S/X<1.025 0.1527 0.1459 0.1558 0.1605 0.1520 
1.025<S/X<1.05 0.1915 0.1647 0.1665 0.1656 0.1681 
1.05<S/X<1.075 0.2433 0.1828 0.1775 0.1739 0.1865 

1.075<SIX 0.3897 0.2356 0.1961 0.1868 0.2283 

Ali 0.2434 0.1703 0.1622 0.1607 0.1717 

Notes to Table: We use European call options on the S&P500 index. The priees are taken 
from quotcs within 30 minutes from closing on cach Wednesday during the January l, 1990 
to December 31, 1995 period. We use the moneyness and maturity filters used by Bakshi, 
Cao and Chen (1997). The implied volatilities are calculated using the Black-Scholes 
formula. 



Table 3: Root Mean Squared Error (RMSE) over Average Cali Priee 
Panel A: RMSE over Average Cali Priee for Options with Various Moneyness 

NGARCH-GED NGARCH-N AGARCH-IG AGARCH-N 
GARCH(I,J} ComI1onent GARCH(I,I) ComI1onent GARCH(1,I) ComQonent GARCH(1,I) ComI1onent 

S/X<0.975 0.3236 0.2690 OAn9 0.1976 OA690 0.3649 0.5039 0.3996 
0.975<S/X < 1.00 0.1391 0.1080 0.2014 0.1096 0.2025 0.1462 0.2205 0.1604 
1.00<S/X < 1.025 0.0965 0.0695 0.1170 0.0792 0.1070 0.0746 0.1146 0.0809 
1.025<S/X < 1.05 0.0779 0.0504 0.0746 0.0588 0.0608 0.0452 0.0638 0.0476 
1.05<S/X<I.075 0.0643 0.0386 0.0511 0.0459 0.0380 0.0339 0.0400 0.0338 

1.075<S/X 0.0368 0.0224 0.02R6 0.0264 0.0202 0.0213 0.0209 0.0211 
Ali 0.0738 0.0523 0.0844 0.0525 0.0775 0.0611 0.0830 0.0654 

Panel B: RMS~ over Average Cali Price for Options with Various Maturities 
NGARCH-CiED NGARCH-N AGARCH-IG AGARCH-N 

GARCH(I,I} COI1112onent GARCH(I,I } Com12onent GARCH(1,1} Com12onent GARCH(I,I) Com12onent 
DTM<20 0.0301 0.0262 0.02n 0.0264 0.0268 0.0260 0.0277 0.0263 

20<DTM<80 0.0567 0.0428 0.0467 0.0434 0.0510 0.0461 0.0584 0.0473 
80<DTM<180 0.0776 0.0534 0.0657 0.0557 0.0726 0.0612 0.0828 0.0653 

DTM>180 0.0841 0.0588 0.1177 0.0574 0.0985 0.0721 0.1006 0.0785 
Ali 0.0738 0.0523 0.0844 0.0525 0.0775 0.0611 0.0830 0.0654 

Panel C: RMSE over Average Cali Price for Various Sample Years 
NGARCH-GED NGARCH-N AGARCH-IG AGARCH-N 

GARCH(l,I) Com12onent GARCH(l,I) ComQonent GARCH(l,I) Com12onent GARCH(l,I) ComQonent 
1990 0.1256 0.0658 0.0874 0.0725 0.0672 0.0812 0.0850 0.0803 
1991 0.1115 0.0910 0.0925 0.0798 0.0660 0.0705 0.0714 0.0735 
1992 0.0809 0.0510 0.0612 0.0570 0.0534 0.0469 0.0561 0.0501 
1993 0.0610 0.0486 0.0835 0.0483 0.0838 0.0613 0.0899 0.0662 
1994 0.0672 0.0499 0.1020 0.0519 0.0896 0.0612 0.0911 0.0685 
1995 0.0465 0.0352 0.0717 0.0355 0.0731 0.0533 0.0786 0.0572 
Ali 0.0738 0.0523 0.0844 0.0525 0.0775 0.0611 0.0830 0.0654 

Notes to Table: We use the MLE estimates from Table 1 to compute the dollar fOot mean squared option valuation error 
(RMSE) divided by the average cali priee. In Panel A, we show the RMSEs according to moneyness bins. In Panel B, 
we show the RM SEs according to maturity bins. In Panel C, we show the RMSEs on a year- by-year basis. 



Chapter 3 
The Impact of Volatility Long Memory on 
Option Valuation: Component GARCH 

versus FIGARCH 

Yin tian Wang 

Abstract 

This paper aims to investigate the impact of volatility long memory on European 
option valuation. We compare two groups of GARCH models that allow for long 
memory: the component Heston-Nandi GARCH model developedin the first chap­
ter, in which the volatility of retums consists of a long-run and a short-mn component; 
and a fractionally integrated Heston-Nandi GARCH model based on Baillie, Boller­
slev and Mikkelsen (1996). We empirically investigate the models using S&P 500 
index returns and cross-sectional European options data. The component GARCH 
model slightly outperforms the FIHNGARCH in fitting retum data but significantly 
dominates the FIHNGARCH in capturing option priees. This is due to the shorter 
memory of the FIHNGARCH model, which, in tum, is attributable to the artificially 
prolonged leverage effect resulting from fractional integration and limitations of the 
affine structure. 
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3.1 Introduction 

It has been widely reported that many financial and macroeconomic time series have a 

highly persistent volatility. See, for example, Briedt, Crato and de Lima (1998), Ding, 

Granger, and Engle (1993), and Harvey (1993). Andersen, Bollerslev, Diebold and Labys 

(2003) confirmed this finding using realized volatility. One approach to model persis­

tent volatility, proposed by Baillie, Bollerslev and Mikkelsen (1996) and Bollerslev and 

Mikkelsen (1996) is to incorporate long-memory fractional differencing into the GARCH 

mode!. The ensuing model is called the fractionally integrated GARCH model or the FI­

GARCH mode!. Comte and Renault (1998) developed a fractionally integrated stochastic 

volatility mode!. The main characteristic of a FIGARCH model is that conditional vari­

ances exhibit not only short-run dynamics of the ARMA type, as in the standard GARCH 

model, but also long-run persistence that decays slowly at hyperbolic rates. 

The literature on GARCH variance component models is rapidly expanding. Com­

ponent GARCH models, which where first proposed by Engle and Lee (1993), consti­

tute a convenient method of incorporating long-memory-like features into a short-memory 

model, at least for the horizons relevant for option valuation. Maheu (2002) presented 

Monte Carlo evidence that a component model can capture long-range volatility dynamics. 

Adrian and Rosenberg (2005) demonstrated the relevance of the component volatility struc­

ture for cross-sectional asset pricing. The fact that GARCH component variance models 

are also related to stochastic volatility component models has received empirical support; 

see Alizadeh, Brandt and Diebold (2002), Chemov, Gallant, Ghysels and Tauchen (2003), 

and Taylor and Xu (1994) for examples. 
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Given the empirical support for these volatility long-memory models in fitting S&P 

500 index retums, it is natural to apply them to derivative pricing. Bollerslev and Mikkelsen 

(1996, 1999) and Comte, Coutin and Renault (2001) investigated and discussed the impli­

cations of fractionally integrated volatility for option valuation. While they use Monte 

Carlo simulation to illustrate the differences in European option priees for five alternative 

volatility dynamics, no empirica1 evidence was presented regarding the performance of a 

FIGARCH model in fitting option priees. The first Chapter found the component models 

significantly superior to the GARCH( 1,1) model in capturing European option priees even 

if the latter model tums in a very solid empirical performance. Since both the FIGARCH 

model and the component GARCH model are designed to capture the long memory of 

volatility, it is of interest to compare both models theoretically and empirically. 

ln this paper, we develop a fractionally integrated Heston-Nandi GARCH model 

which allows for easier valuation of European options. We derive an approximate closed 

form option valuation formula and investigate the impact of long memory for option pric­

ing. In addition, we characterize key properties of the model, including the conditional term 

structure across maturities, and conditional leverage and variance of variance paths. We 

discem important differences between the fractionally integrated Heston-Nandi GARCH 

model and the component Heston-Nandi GARCH model developed in Chapter 1. Please 

note that we refer to the fractionally integrated Heston-Nandi GARCH model as FIHN­

GARCH, and refer to the component Heston-Nandi GARCH as component GARCH. Both 

models are estimated using maximum Iikelihood estimation on S&P 500 retums, and their 

empirical performance is compared in terms offitting historical retums and cross-sectional 
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option data. Specifically, we compare two structures that capture the long memory of 

volatility: hyperbolic decay and exponential decay. Our results show that both the likeli­

hood criterion and the option pricing errors strongly favor the component models. 

The remainder ofthe paper is structured as follows. In Sections 2 and 3 we introduce 

the new FIHNGARCH model as well as the GARCH component models. Section 2 gives 

a brief review of the component mode! in Chapter 1 and its related properties. Section 

3 introduces the fractionally integrated Heston-Nandi GARCH mode l, derives a number 

Of its properties, and discusses option valuation for this component dynamic. Section 4 

presents empirical model comparisons based on both the maximum likelihood estimation 

of returns and the root mean squared errors from valuing options on the S&P 500 index. 

Finally, Section 5 concludes. 

3.2 The Component Heston-Nandi GARCH Model 

3.2.1 Return Dynamics 

The component GARCH model is an extension of a Heston-Nandi GARCH (1,1) mode!. 

The Heston-Nandi (2000) model is designed with option valuation in mind. Like the Heston 

(1993) model, it contains a leverage effect, allows for volatility clustering, and leads to a 

closed-form solution due to its affine structure. Heston and Nandi (2000) demonstrated 

how their model performs satisfactorily relative to ad-hoc benchmarks for the pUl-pose of 
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option valuation. This paper uses their model as an initial starting point. The model is 

5t+1 r,:--
Rt+l ln T = r + Àht+l + V ht+1 Zt+l (3.42) 

ht+ 1 = W + bht + a (Zt - c~) 2 

where 5t+ 1 denotes the underlying asset priee, r the risk -free rate, À the priee of risk, Zt the 

i.i.d. retum innovation with zero mean and unit variance, and ht+l the daily variance on 

day t + 1 which is known at the end of day t. 

The unconditional variance is 

2_ ) w+a 
(J = E (ht+ 1 = b 2 1- - ac 

We can rewrite the conditiona! variance as 

(3.43) 

The component GARCH mode! is obtained by rep!acing the constant (J2 with a time-

varying long-run component fJt+l' The conditional variance hlfI now varies around a long-

run component which is, itself, autoregressive of the tirst order. Using Greek letters for 

component mode! parameters, we wlite 

(3.44) 

(]t+ l =: :.c,' + (){lt + '-,?htL'2.t 

where Vi,t = (z; - 1) - 2'iZt.;h; for i = 1. 2 can be viewed as zero-me an innovations to 

the volatility components. 

We will assume that the i.i .d. retum innovation ZI. follows the standard normal dis-

tribution. We also derive a number of propelties; these are key for understanding both 
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Heston-Nandi GARCH(l,l) and the component counterpart's ability to capture the salient 

features of speculative retums and to fit option priees. To save space, we only illustrate the 

properties for the component GARCH model. Please see Chapter 1 for more details. 

3.2.2 Variance Term Structures 

Following Chapter l, we define two measures of the variance term structure. One con-

venient measure denotes a cumulative k-days ahead forecast of variances divided by the 

unconditional variance. 

(3.45) 

where (J2 is the unconditional variance. This measure succinctly captures important infor-

mation about the model 's potential to explain the variation of option values across maturi-

ties. We can also leam about the dynamics of the variance term structure through impulse 

response functions, which are defined as 

(3.46) 

The latter equation measures the effect of a shock at time t, Zt on the expected k-days ahead 

variance. Both measures estimate the persistence of variances. 

3.2.3 Condition al Leverage and Variance of Variance 

To assess the asymmetric response of volatility to positive versus negative retum shocks, 

we derive the conditional covariance, COI!t (RI f 1. ht j 2), and refer to it as the conditional 
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leverage effect. For the component model, the conditionalleverage effect is given by 

(3.47) 

We define the conditional variance of variance as Vart (h t+2 ), which is given by 

(3.48) 

Given the simple structure of the component model, it is easy to see that the magnitudes of 

both the conditionalleverage and variance of variance are positively related to the leverage 

parameters Il' 1'2 and c. The relationship suggests that the leverage effect built in the model 

not only introduces negative skewness but also a more volatile variance dynamic. 

3.3 An Affine FIGARCH Model 

3.3.1 Return Dynamics 

Just like fractionally integrated ARFIMA models generalize the standard ARIMA models, 

Baillie, Bollerslev and Mikkelsen (1996) introduced a new class of fractionally integrated 

GARCH models that generalize GARCH models. Analogous to the ARFIMA class of 

models for the conditional mean, a shock to the conditional variance in the FlGARCH 

model is transitory, in the sense that the influence on the forecast of the future conditional 

variance reeedes at a slow hyperbolie rate of deeay. The authors further extended the basie 

FIGARCH model to FIEGARCH to allow for the leverage effect. However, neither of the 

two models yields an analytieal form for European option priees. To simplify the valuation 
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of European options, we develop a new FIHNGARCH model based on the Heston-Nandi 

structure, which accommodates approximate closed formulae for European options. 

First, we rewrite the Heston-Nandi GARCH(1,l) 

St+1 ~ 
Rt+1 ln T = r + 7Jht+1 + V ht+1 Zt+1 

ht+l Wl + f31ht + QI (Zt -11 Ar 
into 

(3.49) 

where Vt = (Zt - Il A) 2 - (1 + li ht) and <Pl = f31 + li QI. Please note that, to avoid no-

tational confusion, we use 7J to represent the risk price in the fractional integration GARCH 

mode!. Equation (3.49) is readily interpreted as an ARMA model for (Zt -II yffï;)2. Anal-

ogously to the ARFIMA(k,d,l) process, a FIHNGARCH(p,d,q) process is naturally defined 

by 

(3.50) 

An alternative representation is 

(3.51) 

The fractional differencing operator is defined by its Maclaurin series expansion. ln or-

der to better comprehend the statistical properties of this model, we rewrite the FIHN-

GARCH(p,d,q) model in terms of the observationally equivalent infinite ARCH represen-
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tation, 

(3.52) 

where w = 1~~1' À (L) = À1L + À2 L2 + .... Please note that, in this model, 11 is not 

only the leverage parameter, but also appears in the denominator of the infinite ARCH 

coefficients that adjusts the magnitude of innovations impacting on conditional variance. 

The ARCH parameters in the lag polynomial À (L) can be written as 

(3.53) 

where 

d (3.54) 

CX) 

(1 - (1 -r11!:fL/f ) evaluated at L = 1 equals zero, so that L Ài = 1. The second mo-
i=l 

ment of the unconditional distribution in the FIHNGARCH(p,d,q) model, therefore does 

not exist in the case of a positive w, and RH1 is not covariance-stationary. This fea-

ture is shared by an integrated GARCH (IGARCH) model when cf = l. Neither (3.52) 

nor an IGARCH mode! satisfy the sufficient conditions deve!oped by Giraitis, Kokoszka 

and Leipus (2000) for covariance stationarity. However, Nelson (1990) showed that the 

IGARCH(l, 1), which was extended to the generallGARCH(p,q) by Bougerol and Picard 

(1992), is strict!y stationary and ergodic. Baillie, Bollerslev and Mikkelsen (1996) posited 
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that the high-order lag coefficients in the infinite ARCH representation of any FIGARCH 

model may be dominated in an absolute value sense by the corresponding IGARCH coeffi-

cients. Therefore, a direct extension of the proofs for the IGARCH case can reveals that the 

FIGARCH(p,d,q) and FIHNGARCH models in our case are strictly stationary and ergodic 

for 0 ::; d ::; 1. Please see Nelson (1990) for more details. 

In the ARFIMA c1ass ofmodels, the short-ron behavior of the time series is captured 

by the conventional ARMA parameters, while the long-run dependence is conveniently 

modeled through the fractional differencing parameter d. A similar result may weil ho Id 

wh en mode!ing conditional variances. A shock to the optimal forecast of the future con-

ditional variance decays at an exponential rate for the covariance-stationary GARCH(p,q) 

model, and remains important for forecasts of all horizons for the IGARCH(p,q) model. In 

contrast, in the FIGARCH(p,d,q) mode!, the effect of a shock to the forecast of the future 

conditiona! variance will die out at a slow hyperbolic rate. The fractional differencing pa-

rameter is therefore identifiable by the decay rate of a shock to the conditional variance, 

and not by the ultimate impact on the forecast for the long-run conditional variance. 

3.3.2 Variance Term Structures 

We again define the variance term structure 

K 
htll:tlk_~~'L'(f ) 

2 - K 2 ~ Dt l'HA-
(J (J 

k=l 

(3.55) 

where 



3.3 An Affine FIGARCH Model 

and the impulse response functions are 

oEtht+k 
oz; 

oEtht+l 
oz; 

3.3.3 Conditional Leverage and Variance of Variance 

120 

(3.56) 

For the FIHNGARCH model, the conditional variance of variance and the conditional 

leverage effect are given by 

(3.57) 

ln contrast to the component GARCH model, the magnitudes of the conditional leverage 

and the variance of variance are both nonlinear in the leverage parameter Î 1 . 

3.3.4 The Autocorrelation Function for the Squared Innovation 

We also provide the ACF of squared innovations for the FIHNGARCH mode!. ln essence, 

this measure recounts the same story as the variance term structures about volatility persis-
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tenee. 

(3.59) 

where 

(3.60) 

and 

3.3.5 Risk Neutralization and Option Valuation 

As in Chapter 1, we assume Duan (1995)'s Loeally Risk-Neutral Valuation Relationship 

assumption. In the risk-neutral world, the asset priee St follows 

(3.61) 

where z; is standard normally distributed in a risk-neutral world, and ~i7 -cc 1 j + D.S + 

1]. Given the risk-neutral dynamies, option valuation is straightforward. A European cali 

option with strike priee ]( that expires at time T. is worth 

Call Priee = e-r(T-t) E;[Alo:r(ST - ](,0)] 
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1 e-r(T-t) 100 [K-i<Pj*(t, T; icp + 1)] 
-St + Re 'cp dcp ... 
2 7r 0 1, 

(3.62) 

-K e-r(T-t) (~+ ~ 1°C Re [K-i<P j*i~' T; iCP)] dCP) 

where ft (CP) = Et [st] is the generating function, which is also the moment -generating 

function of the logarithm of ST' Let ft (cp) denote the conditional-generating function of 

the asset price in the risk-neutral world, In the Appendix, we show that the generating 

function takes the form 

Et exp (CP ln (ST)) (3.63) 

exp (CPXt + At + Btht+1 + At (L) (Zt+1 - 11~) 2) 

where Xt = ln (St) . The coefficients {At. Bt, Au, A 1.2 , At.3, ... } depend on the pararneters 

of the mode!. Appendix A displays that the coefficients in the moment-generating function 

are 

(3.64) 

where ::\i = ~, and n go es to infinity. The tenninal conditions are 

AT = Br == AT. 1 = 0 
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One important feature is that the MGF can also be Wfitten as an infinite-weighted combi-

nation of shocks. In the evaluation of European options, a truncation of 1000 is employed 

as in the maximum likelihood estimation. 

3.4 Empirical Results 

This section presents the empirical results. While a formaI proof of consistency and as-

ymptotic normality of the MLE estimates of the FIGARCH process remains an out stand-

ing issue, Baillie, Bollerslev and Mikkelsen (1996) assessed the practical applicability and 

small sample performance ofthe MLE procedure for the estimation ofFIGARCH processes 

through a detailed simulation study. The simulations indicate that MLE is reasonably ac-

curate. 27 Although no numerical or analytical investigation has been undertaken on FI-

GARCH models with leverage effects, it is still worthwhile attempting maximum likeli-

hood estimation in our settings. To better understand the performance of FIHNGARCH, 

we add one additional benchmark, the Heston Nandi GARCH( 1,1) model, for purpose of 

comparison.28 We carry out maximum likelihood estimation for the three models on a long 

time series of S&P 500 retum data. Then, we discuss the parameter estimates and their 

implications for the salient properties of the models. 

27 The accuracy is evaluated through the simulated bias, root mean squared error, average estimated standard 
error of the QMLE, and the simulated rejection frequencies for the t-tests across 500 replications. 

28 For related properties of the Heston-Nandi GARCH(l,I) model, please see Chapter 1. 
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3.4.1 Parameter Estimates from Daily Return Data 

Panel A of Table 2 presents the maximum likelihood estimation results obtained using daily 

retum data from June 1966 through December 31, 2001. The retum data are obtained from 

CRSP. Standard errors are calculated from the outer product of the gradient and are given 

in parentheses. Since the fractional differencing operator is designed to capture the long­

memory features of the process, truncating at too Iowa lag may destroy important long-run 

dependencies. For the estimation results reported here, we fixed the truncation lag at 1000, 

about four years' observations. 

First, almost ail parameters are estimated significantly different from zero at conven­

tional significance levels. In terms offit, the log likelihood values indicate that the fit of the 

component model is slightly superior to that of the FIHNGARCH model, which in tum fits 

better than the GARCH( 1,1) mode!. We compute the test statistics in Vuong (1989), which 

are designed to compare the goodness of fit of models when neither competing model is 

nested into the other. ln our case, the standard normal statistic of 0.522 suggests that the 

component GARCH does not significantly dominate FIHNGARCH. 

ln the FlHNGARCH model, the estimate of /31 is 0.664, lower than the 0.766 mea­

sured in the component mode!. This lower BI) in tum, induces a lower short-run persistence 

<Pl = (Jl + noî = 0.5355. We know that the short-run parameter 0 1 measures the persis­

tence of the shocks over a relative short horizon, while the parameter d govems the long 

memory of shocks. Therefore, it is intuitive that with the introduction of the fractional dif­

ferencing parameter ri, volatility persistence is mostly govemed by the long-run persistence 

parameter and, hence, the short-run persistence need not be as high as before. This find-
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ing is consistent with the previous literature. In contrast, the d value given by the model is 

lower than the estimates obtained in earlier research which are usually over 0.4. 

Another interesting feature is that the estimate of al is -1.240E - 05. Although a 

positive al is sufficient to guarantee the non-negativity of the conditional variance, this is 

not necessary the case when the parameters Ài are positive for aIl i. 

Panel A of Table 2 also presents unconditional summary statistics for different mod­

els. For the component model, the unconditional variance of variance is computed using 

the estimate for the unconditional variance in the expressions for the conditional moments 

(3.48). For the FIHNGARCH model, the unconditional volatility and the unconditional 

volatility of variance are undefined. To facilitate a comparison, we take the average of the 

conditional variance and then compute the standard deviation of variance based on the con­

ditional moment in (3.57). To allow a comparison of the unconditionalleverage for models, 

we report the moments in (3.47) and (3.58) divided by ht+l' Overall, the leverage and the 

volatility of variance of the component GARCH model are greater in absolute value th an 

those of the GARCH(l, 1) model, while the FIHNGARCH model generates more leverage 

and more volatile variance than the component mode!. 

3.4.2 Dynamic Model Properties 

Figure 1 plots the conditional variances for the period 1990-1996. This period includes the 

dates for the option valuation exercise that are presented in Section 4.3. Notice that the con­

ditional variance patterns across the three GARCH models display numerous similarities; 

the models ail capture the low variances during the equity market mn-up in 1993-1996, pre-
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ceded by higher volatility during the first Gulf War and the 1990-1991 recession. However, 

Figure 1 also reveals differences between the models. The FIHNGARCH model appears to 

display slightly more variation in the conditional variance in the more recent past. We plot 

the conditional variance of variance path, Vart (htI2 ) for each model. Figure 2 confirms 

the findings in Figures 1. The FIHNGARCH model displays a larger variance of variance 

than the component GARCH and the GARCH(l,l). Figure 3 plots the conditionallever­

age path, COVt (RHl' hH2 ) for each model under consideration. Note that the FIGARCH 

model has a larger (more negative) and more volatile leverage effect than the other two 

models. This is consistent with the higher unconditionallevels presented in Table 2. 

Figures 4a and Figure 4b plot the impulse responses to the term structure of vari­

ance for ht = (J2 and Zt = 2 and Zt = -2, respectively, as defined in (3.46). The figures 

present the variance term structure for up to 250 days, which corresponds approximately 

to the number of trading days in a year, and, therefore, captures the empirically relevant 

term structure for option valuation. In both figures, the effects of shocks prove signifi­

cantly more persistent in the component model th an in either the FIHNGARCH model or 

the GARCH(1,I) model. However, although a negative shock in the FIHNGARCH model 

persists longer th an in the GARCH(1,I) model, the FIHNGARCH mode! does not suffi­

ciently distinguish itself from the GARCH( 1,1) following a positive shock. Comparing 

across Figures 4a and Figure 4b, it is also clear that the term stmcture of the leverage of 

the component model is more flexible. As a resu!t, current shocks and the current state of 

the economy potentially have a more profound impact on the pricing of options across ma­

turities in the component mode! than in the FIHNGARCH and the GARCH(l,l). To save 
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space, we do not plot the autocorrelation functions of squared innovations which confirm 

the patterns in Figure 4. 

These findings differ somewhat from those contained in the existing literature. Ma­

heu (2002) found that the simple FIGARCH model generates a decay pattern for the auto­

correlation function of the absolute value of return series for S&P 500 data, similar to that 

of a component mode!. Both auto correlation functions diminish to zero around 2000. This 

shorter memory is reflected by a relative low fractional differencing parameter d. As doc­

umented by Bollerslev and Mikkelsen (1996), d is estimated at 0.447 for S&P 500 index 

returns from January 2, 1953 through December 31, 1990. We get d = 0.2032. To see how 

closely the d value relates to memory, we present Figure 5, which is an altered Figure 4a 

with d varying from 0.1 to 0.4, while keeping ail other estimates fixed. It is evident that the 

impulse response of the variance term structure to a positive shock tends to decay slowly 

with an increasing d, while it tends to decay fast with a decreasing d. The same thing is 

true for a negative shock. 

One possible explanation is the leverage etfect, as imposed to the long lags, in this 

mode!. Fractional integration imposes hyperbolic decay pattern for shocks while, at the 

same time, it extends the memory for the leverage effect. Moreover, the squared innova­

tions tend to put higher weights on large negative shocks, hence enhancing the leverage 

effect. It is widely documented that the leverage effect introduced by Black (1976) and 

Christie (1982) merely comprises temporary behavior for the S&P 500 index.29 From an 

economic point of view, the debt-equity ratio may be hard to adjust in the short run, but 

29 Engle and Lee (1992), Gallant, Rossi, and Tallchen (1993), and Giraitis, LeiplIs, and Robinson (2003). 



3.4 Empirical Results 128 

there is no reason that a firm will not be able to adjust its capital structure over time in order 

to correct the overly strong leverage effect. Generally, this side effect is inevitable for many 

fractionally integrated models that allows for leverage effect, such as the fractionally inte­

grated EGARCH, fractionally integrated TGARCH or fractionally integrated NGARCH. 

In contrast, the component GARCH separates the variance into two components: long-run 

and short-run, each ofwhich has its own leverage effect govemed by the level of 1'1 and 1'2 

respectively. That the leverage eftèct is modeled more flexibly as two parts, helps to avoid 

the dilemma of fractional integration. 

Overall, understanding ail implication of the affine structure tums out to be more 

complicated than expected. Affine models are convenient because they lead to closed­

form solutions for prices of European options. Chapter 1 and Christoffersen, Jacobs, and 

Mimouni (2005) documented the limitations of the affine structure in terms of fitting re­

tums as well as fitting European options. In order to address the limitations of the affine 

structure, the Heston (1993) mode l, which is a continuous-time limit of the Heston-Nandi 

GARCH(l, 1) model, is often combined with models of jumps in retums and volatility. 

However, relatively little is known about the empirical biases that result from imposing the 

affine structure. However, the faimess of the comparison in our context is not compromised 

as long as the affine structure is also employed for the component mode!. 

To shed more light on the driving forces behind the shorter memory or lower ri value, 

we estimate another two models by maximum likelihood. One is a simple FIGARCH 
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model which is free from leverage effects 

w ( (1-~L)(l-L)d) 2 

ht 1 _ (3 + 1 - (1 _ (3 L ) ft 

ht W + À (L) f; 

Our aim is to ascertain whether in the absence of a leverage effect, we obtain longer mem-

ory than that obtained in the benchmark FIGARCH mode!. The other model that we de-

velop is a fractionally integrated nonlinear GARCH model with leverage effect (NGARCH) 

(
1 _ (l-<PL)(l-L)d) 

W (l-f3L) 2 
--(3 + 2 ht(Zt - Î) 
1- l+Î 

W + À (L) h (z _ ~y)2 
1 + Î2 t t 

By switching to a nonlinear structure with leverage effect, we wish to establish the impact 

of the affine structure on memory. In both cases, À (L) has the same structure as in the 

FIHNGARCH model. Table 3 presents the MLE and the log likelihood function values for 

these two models. dis the parameter most directly related to memory. For the FIGARCH 

model, cf = 0.442; in the case of the FIHNGARCH model, cf = 0.480. Figure 6 illustrates 

impulse responses for a positive shock 2 for ail three models. Consistent with the estimated 

values of d, the non-affine model yields the slowest decay or the highest memory, while the 

affine model yields the fastest decay. The simple FIGARCH model lies somewhere in 

between. To sorne extent, this confirms our conjecture that both the Jeverage etTeet and 

the affine structure reduce the model's memory and that the affine structure constitutes the 

dominant determinant. 

The propeliies illustrated in the above section are interesting. They suggest that, on 

the one hand, the leverage effect in the model restrains the long memory, which mitigates 
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the model's ability in fitting derivatives priees; On the other hand, incorporating a leverage 

parameter Il helps to generate more volatile higher moments. lt is undeniable that under 

our settings, a lower Il generates more negative skewness as weIl as higher variance of 

variance by taking the derivatives of (3.58) and (3.57) with respect to Il. We know that 

higher moments sueh as skewness and kurtosis play important roI es in determining option 

priees. Consequently, the model's ability to capture higher moments determines the ability 

of the FIHNGARCH model in fitting European option data. 

3.4.3 Out-of-Sample Performance with Option Data 

We use six years of S&P 500 call option data covering the period 1990-1995. Starting 

from the raw data from the Berkeley Option data base, we apply standard filters following 

Bakshi, Cao and Chen (1997). We only use options with more than seven days to maturity. 

Also, we only use Wednesday options data because Wednesday is the day of the week Ieast 

likely to be a holiday. It is also less Iikely than other days (such as Monday and Friday) to 

be affected by day-of-the-week effects. If Wednesday is a holiday, we use the next trading 

day. Using only Wednesday data allows us to study a fairly long time selies. which is usefuI 

in considering the highly persistent volatility processes. 

Table 1 presents descriptive statistics for the options data for 1990-1995 by money­

ness and maturity. Panel A reports the number of contracts available after filtering. Our 

sample consists of21 ,752 options that span a wide range of moneyness and maturity. Panel 

B shows the average call price in each of the bins in Panel A. Quite predictably, the aver-
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age priee inereases signifieantly as the moneyness inereases (moving down the rows) and 

as maturity inereases (moving from left to right). The average overall priee is $27.91. 

In Panel C of Table 1, we report the average Black-Scholes implied volatility for 

the option contracts in each bin. Panel C clearly documents the volatility smirk evident in 

quoted equity index option priees. The average implied volatility tends to increase as we 

move down the rows in each colunm of Panel C, the effect being most dramatic for the short 

maturities in the left-hand columns. This empirical regularity illustrates that the Black-

Scholes option valuation formula, which assumes a constant per-period volatility aeross 

time, maturity and strike priees, will generate systematic pricing errors. This motivates the 

use of stochastic volatility and GARCH models for option valuation. 

When calculating option priees, we risk neutralize the MLE estimates in Table 1. The 

risk-neutral parameters are used to compute the conditional variance based on the structure 

of (3.61). Variances on Wednesday are then selected, together with other inputs such as 

strike, maturity, interest rate, and equity priee, to compute the European option priees. As 

illustrated in the previous section, the variance has the analytical form of (3 .62). 

Panel B of Table 2 reports the RMSEs for the two GARCH models from 1990 to 

1995. The RMSE is computed as 

m\lSE = _1_ " (CIl!. KT _ C(;AR(,H)2 
1VT L 1.f 1.1 

(3.65) 
i.t 

where CNKT is the market priee of option i at time t, Cr~·\RCH is the model priee, and 
T 

NT = ~ Nt. T is the total number of days included in the sample, and Nt the number of 
t=l 

options included in the sample at date t. 
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We present the absolute values of the RMSEs as weIl as the normalized RMSEs, 

defined as the ratio of RMSEs of the component GARCH and the FIHNGARCH model, 

devided by the GARCH(l, 1) RMSEs. It is discemible that the FIHNGARCH model yields 

the highest RMSEs ranging from 1.801 to 3.583. While the component model generates 

the lowest RMSEs ranging from 1.263 to 2.559, the GARCH(1,I) modellies in between 

with RMSEs ranging from 1.608 to 3.239. We also display the RMSEs by moneyness and 

maturity in Table 4. ln general, the component GARCH model performs the best across 

moneyness and maturity, but especially for options with maturities between 20 days and 

180 days. In addition, slightly longer memory for the FIHNGARCH model cannot guaran­

tee the superiority of i ts out-of-sample performance over that of the GARCH(l, 1) mode!. 

In fact, the FIHNGARCH framework may boost the likelihood function for daily retums 

without improving much the condition al density function for retums that are relevant for 

option valuation. To confirm this, we compute option priees of the FIHNGARCH model 

by Mont Carlo simulation and derive similar RMSEs. 

Figure 7 presents the average weekly biases from 1990 to 1995. The biases seem to 

be highly related across the three models: aIl give negative biases from 1990 through 1991, 

and positive biases from 1992 through 1995. We plot the CBOE volatility index (VIX) 

in Figure 8b. Since the VIX shows the expected market volatility for a 30 day horizon 

in Figure 8a, we plot the cumulative 30-day ahead forecasted conditional variance for aU 

three models as defined in 3.45. When comparing Figures 8a and 8b, we observe that, 

during the entire peri ad of 1990 to 1995, the variances from the three models are much 
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flatter than that of the VIX. 30 For the 1990 and 1991 recessions, the modeled variances are 

considerably lower than the implied variances and, therefore, aIl models generate much 

Iower option priees than the real priees. On the other hand, since 1992, the market started 

to recover and became increasingly less volatile through 1992 to 1995. Although Figure 8a 

illustrates that the models can capture this trend in sample, the out-of-sample performances 

are poorer; the models cannot fully forecast the downward trend of volatility, and, hence, 

generate higher option priees. Nevertheless, the component GARCH yields better forecasts 

of future volatility than do the GARCH( 1,1) and the FIHNGARCH, and, consequently, 

achieves the best out-of-sample performance. We also plot the average weekly RMSE over 

the same period in Figure 9. One important conclusion which may be drawn from Figure 

9 is that the improved performance of the component GARCH do es not stem from any 

particular subsample. 

Another point W0l1h of mention is that the RMSEs are computed from the maxi-

mum likelihood estimates. So far, the theoretical property of the maximum likelihood 

estimations of any FIGARCH model have not been established. Baillie, Bollerslev and 

Mikkelsen (1996) justified the usage of the approximate maximum likelihood procedure 

for a simple FIGARCH model by Mont Carlo simulations. The consistency and other as-

ymptotic properties of the MLE estimates of other fractionally integrated GARCH models 

including FIEGARCH remain unverified. In Figure 10, we simulate the log-likelihood 

function and the RMSEs by varying 1 and cl in reasonable ranges, whiIe leaving other para-

meters unchanged as MLEs. It appears that RMSE reaches its minimum when Î = 120 and 

30 Please note that, undcr Duan's Locally Risk-Neutral Valuation Relationship assumption, the risk-neutralizcd 
variance is supposcd to be identical to the physical variance. 
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d = 0.35, compared to the maximum of the likelihood function at"( = 100 and d = 0.20. 

The change of"( is trivial, while the larger d from the minimum of RMSEs confirms that a 

longer memory will enrich the volatility dynamic and, therefore, better capture the option 

prices. The goodness-of-fit of the FIHNGARCH model could clearly be improved by using 

NLS to yield a larger d. The discrepancy existing in the optimal estimates between MLE 

and NLS sheds light on the latent inconsistency between the MLE estimates and nonlinear 

least square estimates. 

3.5 Conclusion 

Bollerslev and Mikkelsen (1996, 1999) and Comte, Coutin and Renault (2001) investigated 

and discussed sorne of the implications of long memory for option valuation. However, 

their work merely illustrated the implication of long memory on European option priees 

through Monte Carlo simulations, and little empirieal work in fitting options data has been 

done. 

This paper compares two groups of GARCH models that allow for long memory 

in volatility: the component Heston-Nandi GARCH model developed by Chapter l, and 

the fractionally integrated Heston-Nandi GARCH model based on Baillie, Bollerslev and 

Mikkelsen (1996). We investigate the models using S&P 500 index retums and cross­

sectional European options data. The component GARCH model is slightly better than 

FIHNGARCH in fitting S&P 500 retums, and significantly outperforms FIHNGARCH in 

fitting the option prices. In retum, the FIHNGARCH model dominates the GARCH( 1,1) in 

terms of log-likelihood funetion while yielding higher option price RMSEs than does the 



3.5 Conclusion 135 

GARCH(l, 1) model. This superiority is mainly due to the shorter memory of the FIHN­

GARCH mode l, which, in tum, can be attributed to either an artificially prolonged leverage 

effect created during the procedure of fractional integration or an undesired property of the 

affine structure. Although FIGARCH models are not qui te uncommon in the literature, our 

findings are novel. 

Our paper inspires many directions for further research. To avoid the affine structure, 

we could develop a fractionally integrated nonlinear GARCH model (NGARCH), intro­

duced by Engle and Ng (1993), and compare it to a component NGARCH mode!. The 

better performance of the NGARCH model is reported widely in the existing literature, 

su ch as Christoffersen, Jacobs, and Mimouni (2005), and Duan (1995). The downside is 

that no analytical form of option pricing formula exists and one has to use Monte Carlo 

simulations. 

Figure 10 shows potential to improve the memory of FIHNGARCH by doing NLS 

estimation. Accordingly, we compare models using information contained in options data. 

Moreover, we avoid the latent inconsistency between approximate MLE estimates and NLS 

estimates. 

This paper focuses on discrete-time models. Another approach would be to use 

continuous-time models that allow for long memory, such as the model proposed by Comte, 

Coutin and Renault (2001), and the continuous-time variance component model of Duffie, 

Pan and Singleton (1999). It would be an interesting experiment to investigate and compare 

the abilities of this model to generate long memory with that of the component GARCH 

model. 
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3.6 Appendix 

3.6.1 The FIHNGARCH MGF 

Define::\ (L) = ::\lL+-:\2L2+ ... and -:\i = ~,we guess that the moment-generating function 
'YI 

has the log-linear form31 

ft = Et exp (cPln (ST)) = exp (cPXt +At+Btht+l + AdL) (Zt+l -Il\/ht+lr) 

and At (L) = At,IL + At,2L2 + ... + At,nLn 

We have the terminal condition AT = BT = AT; = 0, i = 1,2,3 ... 1000. Applying 

the law of iterated expectations to ft;T,<p,we obtain 

Substituting the dynamics of Xt gives 

cjJ(Xt + r) - O.5cjJhtH + <Py'h;;;Znl + At+l+ 

= Et exp Bt+1 (W+'\(L)(Zt+2-ilJht+2)2) + 

AHI (L) (Zt+2 - Il jh;;;r 

( 

cjJ(Xt + r) - O.5cjJht+1 + cjJ~Zt+1 + AHd-o 

= Et exp Bt+I (w, +:1, (2,+1 - 71 y'1~+l r,+ :I,L (Zlll - 71 ~~ '1) 

At+1.l (Zt+1 - ~fJ~) + Aff 1.2 L (Zft 1 - i'1~) + ... 

31 Please note that the MGF developed here is for the physical process. A risk neutralized MGF can be 
developed in a similar way by risk neutralizing correspondent parameters first. 
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</y(Xt + r) - 0.5</yhH1 + AH1 + Bt+1w 

= Et exp 

(BH1"X1 +1\t+1,1) (ZH1- Ch - 2(Bt+l-À~~Ahll)) ~)2 + ... 

( 
p2) 

</Y'l - ( ) ht+l + ... 
4 Bt+lÀl+At+I,1 

(Bt+l"X2 + 1\t+l,2) L (ZH1 - 11 Jht+1) 2 + .. . 

(BH1"X3 + 1\t+1,3) L2 (ZH1 -'l J ht+1r + .. . 

= Et exp 

</y(Xt + r) + At+1 + B t+1w - ~ ln (1 - 2 (Bt+1"X1 + 1\t+1,1)) 

( 

(Bt+IAI+At+I,I) (,1-- ( 10 ))2 ) 
</Y ( 0 5 + ) + 2 Dt~I)'1 +AI-,-I,1 <p2 

} 

-. 11 1-2(Bt+I Àd At+u) - 4(Bt+I Àl+At+I,I) ~t+1 

+ (Bt+1"X2 + 1\t+1,2) L (Zt+l _ "Yl~) 2 + .. . 

(Bt+l"X3 + 1\t+1,3) L2 (Zt+1 - ll\/Ih~r + .. . 
where we apply 

( 
1 ab

2 
) E[exp(a(z+b)2)] = exp --ln(1-2a)+ . 

2 1 - 20 
(A2) 

Therefore, equating two sides of (A2), we have 

At = </Yr + At+l + Bt+1w -}ln (1 - 2 (BI+1"X1 + 1\ttl.l)) 

B -'+'(-05 ,) (BHl"Xl+1\t'1.l)~li+i2-cr!1 
t - 'f/ . + 'h + -'--------'------=----

1- 2 (BtH )'! + AIILl) 

Au = BH 1"X2 + At_1 1,2; Au = Btt 1 "X:3 -+- Att u· ...... 
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3.7 Figures and Tables 

Figure 1. Conditional Variance 
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Note to Figure: In Figure l, we plot the variance paths from the GARCH(I, 1), 
the component GARCH, and the FIHNGARCH mode!. The parameters are obtained 
from the MLE estirnates on returns in Table 2. 
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Figure 2. Conditional Variance of Variance 
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Note to Figure: In Figure 2, we plot the conditional variance of next day's vari­
ance as implied by the GARCH( 1,1), the component GARCH and the FIHNGARCH 
models. The scales are identical across panels to facilitate comparison across models. 
The parameters are obtained from the MLE estimates on retums in Table 2. 
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Figure 3. Conditional Leverage Effeet 
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Note to Figure: In Figure 3, we plot the eonditional leverage between the retum 
and the next-day variance as implied by the eomponent GARCH, and FIHNGARCH 
models and refer to it as conditional leverage. The scales are identical across panels 
to facilitate comparison across models. The parameters are obtained from the MLE 
estimates on retums in Table 2. 
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Figure 4a. Term Structure Impulse Response to a Positive Retum Shock (Zt = 2) 
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Note to Figure: ln Figure 4a, we plot the variance term structure response to a Zt = 
2 shock in the GARCH( 1,1), the component GARCH model and the FIHNGARCH 
mode!. The parameters are obtained from the MLE estimates in Table 2. The CUITent 
variance is set equal to its unconditional value. AlI values are normalized by the 
unconditional variance. 
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Figure 4b. Terrn Structure Impulse Response to A Negative Return Shock (Zt = -2) 
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Note to Figure: In the Figure 4b, we plot the variance term structure response 
to a Zt = - 2 shock in the component GARCH model, and in the FIHNGARCH 
mode!. The parameters are obtained from the MLE estimates in Table 2. The CUITent 
variance is set equal to the unconditional value. Ali values are normalized by the 
unconditional variance. 
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Figure 5. Term Structure Impulse Response to a Positive Return Shock (Zt = 2) under 
Different Values of d 
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Figure 6. Term Structure Impulse Response to a Positive Return Shock (Zt = 2) for 
Different Models 
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Note to Figure: In Figure 5. we plot the variance term structure impulse response 
to a shock Zt = 2 in the FIHNGARCH model by varying d, while keeping aIl other 
MLE parameters unchanged as in Table 2. In Figure 6. we plot the variance term 
structure impulse response to a shock Zt = 2 for three different GARCH models. Ali 
values are normalized by the unconditional variance. The parameters are obtained 
from the MLE estimates in Table 2. The CUITent variance is set equal to the uncondi­
tional value. Ail values are normalized by the unconditional variance. 
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Figure 7. Weekly Average Dollar Bias 
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Note to Figure: We plot the average weekly RMSE (modeled priees less market 
priees) for the GARCH(l,I), the eomponent GARCH, and the FIHNGARCH during 
the option data sample (1990-1995). The parameters are obtained from the MLE 
estimates on retums in Table 2. 
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Figure 8a. The Cumulative 30-day Ahead Forecasted Conditional Variance 
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Figure 8b. VIX 
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Note to Figure: In panel a, we plot the cumulative 30-day ahead forecasted vari­
ance paths from the GARCH(l,I), the component GARCH and the FIHNGARCH 
model. The parameters are obtained from the MLE estimates on retums in Table 2. 
ln Panel b, we plot the VIX index from the CBOE for comparison. The scales are 
identical across panels to facilitate compmison across models. 
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Figure 9. Weekly Average Dollar RMSE 
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Note to Figure: We plot the average weekly bias (modeled priees less market 
priees) for the eomponent GARCH and FIHNGARCH during the option data sample 
(1990-1995). The parameters are obtained from the MLE estimates on retums in 
Table 2. 
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Figure 10. Surfaces ofRMSEs 
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Note to Figure: We plot the RMSE surface for the FIHNGARCH model for vary­
ing ri and i'. keeping other MLE estimates unchanged as in Table 2 



Table 1: S&P 500 Index Cali Option Data (1990-1995) 

Panel A. Number of Cali Option Contraets 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 Ail 

S/X<0.975 101 1,884 1,931 1,769 5,685 
0.975<S/X<1.00 283 1,272 706 477 2,738 
1.00<S/X <1.025 300 1,212 726 526 2,764 
1.025<S/X<1.05 261 1,167 654 409 2,491 
1.05<S/X < 1.075 245 1,039 582 390 2,256 

1.075<S/X 549 2,345 1,679 1,245 5,818 
Ali 1,739 8,919 6,278 4,816 21,752 

Panel B. Average Cali Priee 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 Ali 

S/X<0.975 0.88 2.30 6.25 11.94 6.62 
0.975<S/X<I.00 2.29 6.83 15.19 27.50 12.12 
1.00<S/X <1.025 8.35 13.60 22.48 34.41 19.32 
1.025<S/X < 1.05 l7.57 22.00 30.11 42.14 26.97 
1.05<S/X < 1.075 27.11 30.84 38.14 48.83 35.43 

1.075<S/X 50.67 52.79 58.99 68.34 57.70 
Ali 24.32 23.66 28.68 36.07 27.91 

Panel C. Average Implied Volatility from Cali Options 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 Ali 

S/X<0.975 0.1625 0.1269 0.1350 0.1394 0.1342 
0.975<S/X<1.00 0.1308 0.1296 0.1449 0.1562 0.1383 
1.00<S/X <1.025 0.1527 0.1459 0.1558 0.1606 0.1520 
1.025<S/X < 1.05 0.1915 0.1647 0.1665 0.1656 0.1681 
1.05<S/X < 1.075 0.2433 0.1828 0.1775 0.1739 0.1865 

1.075<S/X 0.3897 0.2356 0.1961 0.1868 0.2283 
Ali 0.2434 0.1703 0.1622 0.1607 0.1717 

Notes to Table: We use European cali options on the S&P 500 index. The priees are taken from 
quotes within 30 minutes from elosing on eaeh Wednesday during the January 1, 1990 to 
Deeember 31, 1995 period. The moneyness and maturity filters used by Bakshi, Cao and Chen 
(1997) are applied here as weIl. The implied volatilities are eaIculated using the Blaek-Seholes 
formula. 



Tablc 2 Pancl A. MLE Estimatcs and Properties 
Samplc: Daily Returns, 1966-2001 

GARCH(1,1) Componcnt GARCH FIHNGARCH 

Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter Estimate Std. Error 

b 0.977 0.012 j 0.766 0.163 /31 0.664 3.414E-07 

a 3.210E-06 2.810E-06 a 1.770E-06 1.l1OE-06 d 0.203 5.778E-04 

c 88.192 15.623 y, 312.880 108.430 Y1 10 1.594 1.430E-02 
À, 1.815 0.224 y 2 59.043 30.196 !P1 0.536 7.147E-04 

0.054 rp 0.000 0.000 T/ 1.945 3.358E-03 

P 0.989 0.002 
À, 1.809 0.526 

Annual Vol 0.147 Annual Vol 0.145 Annual Vol 0.145 

Vol of Var 4.574E-06 Vol of Var 1.329E-05 Vol of Var 1.700E-05 

Levcragc -5.662E-04 Leveragc -1.339E-03 Leverage -1.481E-03 

Ln Likclihood 30059.800 Ln Likelihood 30112.480 Ln Likelihood 30104.500 

Notes to Table: We use daily total returns from July l, 1966 to Dceember 31,2001 on the S&P 500 index to estimate the three GARCH 
modcls using Maximum Likelihood. Robust standard crrors arc ca1culatcd from the outer product of the gradient at the optimum parameter 
values. Annual Vol refcrs to the annualized unconditional standard deviation as implied by the parameters in each mode!. Vol of Var refers to 
the unconditional standard deviation of the conditional variance in eaeh mode!. For FIGARCH models where the uneonditional varainee does 
not ex ist, we use the average of thc conditional variance. Leverage rcfcrs to the unconditional covariance between the retum and the 
conditional variance. Ln Likelihood refcrs to the logarithm of the likelihood at the optimal parameter values. 



Table 2 Panel B. RMSE of MLE Estimates 
Sample: Option Data, 1990-1995 

GARCH(I,l) Component GARCH FIHNGARCH 
RMSE(90-95) 2.461 RMSE(90-95) 2.040 RMSE(90-95) 2.787 

Normalized Norma1ized 0.829 Normalized 1.133 
RMSE(90) 1.920 RMSE(90) 1.859 RMSE(90) 2.804 
Normalized Norma1ized 0.968 Normalized 1.461 

RMSE(91) 1.608 RMSE (91) 1.630 RMSE(91) 1.871 

Normalized 1 Normalized 1.014 Normalized 1.164 
RMSE (92) 1.433 RMSE (92) 1.263 RMSE (92) 1.801 

Normalized Normalized 0.881 Nom1alized 1.256 
RMSE (93) 2.584 RMSE (93) 2.045 RMSE (93) 2.891 

Normalized 1 Normalized 0.791 Normalized 1.119 
RMSE (94) 2.786 RMSE (94) 2.245 RMSE (94) 2.852 
Normalized Normalized 0.806 Normalized 1.024 
RMSE (95) 3.239 RMSE (95) 2.559 RMSE (95) 3.583 
Normalized Normalized 0.790 Normalized 1.106 

Notes to Table: Option RMSE refers to the fit of the models on the 21,752 
contracts quoted from 1990 to 1995 in Table 1. The RMSEs are computed at the 
MLE estimates in Panel A of Table 2. 



Table 3: MLE Estimates 
Sample: Daily Returns, 1966-2001 

FIGARCH FINGARCH 
Parameter Estimate Std. Error Parameter Estimate Std. Error 

fi 0.673 0.100 fi 0.720 0.018 
d 0.442 0.056 d 0.481 0.018 
rp 0.349 0.090 r 0.585 0.028 

4.961 0.979 rp 0.380 0.021 
(jJ 6.491 E-06 8.192E-07 le 4.352 0.163 

(jJ 1.23E-12 1.16E-12 

Ln Likelihood 30093.000 Ln Likelihood 30143.9 

Notes to Table: We use daily total retums from luly l, 1966 to December 31, 
2001 on the S&P 500 index to estimate the two GARCH mode1s using Maximum 
Likelihood. Robust standard errors are calculated from the outer product of the 
gradient at the optimum parameter values. Ln Likelihood refers to the logarithm 
of the likelihood at the optimal parameter values. 



Table 4: RMSE and Ratio RMSE by Moneyness and Maturity 
Panel A. GARCH(l,l) 

DTM<20 20<DTM<80 80<DTM<180 DTM>180 AlI 
S/X<0.975 0.438 1.825 3.305 5.060 3.310 

0.975<S/X<1.00 0.661 2.059 3.289 4.363 2.633 
1.00<S/X<1.025 0.597 1.549 2.648 3.676 2.139 
1.025<S/X<1.05 0.580 1.102 2.043 3.071 1.618 
1.05<S/X<1.075 0.744 0.931 1.663 2.354 1.346 

1.075<S/X 0.758 0.988 1.211 1.697 1.182 
AlI 0.674 1.467 2.544 3.842 2.240 

Panel B. Ratio of Component to GARCH(l,l) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AlI 

S/X<0.975 0.766 0.808 0.824 0.849 0.833 
0.975<S/X<1.00 0.789 0.784 0.771 0.786 0.781 
1.00<S/X<1.025 0.898 0.774 0.747 0.758 0.764 
1.025<S/X <1.05 0.977 0.861 0.774 0.744 0.800 
1.05<S/X<1.075 0.995 1.012 0.881 0.772 0.896 

1.075<S/X 0.999 1.046 1.048 0.930 1.008 
AlI 0.947 0.843 0.820 0.829 0.833 

Panel C. Ratio of FIHNGARCH to GARCH(l,l) RMSE 
DTM<20 20<DTM<80 80<DTM<180 DTM>180 AlI 

S/X<0.975 1.370 1.449 1.180 1.003 1.145 
0.975<S/X<1.00 1.750 1.458 1.157 0.958 1.224 
1.00<S/X < 1.025 1.483 1.431 1.169 0.914 1.178 
1.025<S/X < 1.05 1.076 1.342 1.198 0.962 1.166 
1.05<S/X<1.075 0.921 1.269 1.283 1.069 1.192 

1.075<S/X 1.011 1.163 1.391 1.329 1.272 
Ali 1.228 1.402 1.194 1.008 1.180 

Notes to Table: We use the MLE estimates from Table 2 to compute the root 
mean squared option valuation error (RMSE) for various moneyness and 
maturity bins during 1990-1995. Panel A shows the RMSEs for the 
GARCH(1,l) mode!. Panel B shows the ratio of the Component GARCH MSEs 
to the GARCH(l,l) RMSEs from Panel A. Panel C shows the ratio of the 
FIHNGARCH RMSEs to the GARCH( 1,1) RMSEs. 



Chapter 4 
Conclusion and Future Work 

This dissertation is in the fonn of three essays on the topic of component GARCH 

models. The unifying feature that penneates the entire thesis is the focus on investigating 

European option evaluation with component GARCH models. 

The dissertation presents a new option valuation model based on the work by En-

gle and Lee (1999) and Heston and Nandi (2000). The empirical performance of the new 

variance component model is significantly better than that of the benchmark GARCH(l, 1) 

model, in-sample as weil as out-of-sample, and regardless of the information used in es-

timation. This is an important finding because the literature has demonstrated that it is 

difficult to find empirical models that improve on the GARCH(L 1) model or the Heston 

(1993) mode!. The component GARCH model is also compared to a GARCH(L l)-Jump 

model, which combines conditional heteroskedasticity with Poisson-nonnal jumps. The 

GARCH(L l)-Jump model achieves a better statistical fit th an the component mode! in-

sample, but the component model perfonns far better when using the parameter estimates 

to fit options. 

Two extensions have been made to this novel component GARCH model to allow 

non-normal innovations as weil as non-affine structures. One extended model allows for 

GED innovations to the variance dynamic. The second model is characterized by a condi-

tionai inverse Gaussian innovation and by affine variance dynamics. A closed-fonn option 

valuation fonnula is derived for this mode!. The two new non-normal component mod-

148 
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els are compared with the cOITesponding special cases with normal innovations, and the 

resulting four component models are compared with the GARCH( 1,1) models which they 

nest. AlI eight models are estimated using MLE on a long time series of S&P500 retums. 

The likelihood criterion strongly favors the component models in aIl cases, and it also fa­

vors non-normal innovations. When the models' parameters are used for option valuation, 

there is very strong support for the component variance specifications. The support for 

non-normal innovations and for the non-affine structure is less strong. 

Overall, an important aspect of the component GARCH model 's improved perfor­

mance is that its richer parameterization allows for improved joint modeling of long­

maturity and short-maturity options. The model captures the stylized fact that shocks to 

CUITent conditiona! volatility impact on the conditional variance forecast up to a year in the 

future, which results in a very different implied volatility term stmcture for at-the-money 

options. The component model also results in a different path for spot volatility com­

pared to the GARCH(l.l) model, but in the moneyness dimension the differences with the 

GARCH(l. 1) model seem relatively less important. The eomponent mode! is also eharac­

terized by term stmetures of skewness and kurtosis that are very different from those of the 

GARCH(l.l) mode!. 

In the dissertation, the affine component GARCH model is also compared with a frae­

tionally integrated affine GARCH model that allows forvolatility long memory. The disser­

tation investigates the models through S&P 500 index retums and eross-sectional European 

options data. The component GARCH model is slightly better than the FIGARCH in fit­

ting S&P 500 retums, and signifieantly outperforms FIGARCH in fitting option priees. In 
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retum, the FIGARCH model dominates the GARCH(1,I) in terms oflog-likelihood func­

tion while yielding higher RMSE of option pricing than does the GARCH( 1,1) mode!. This 

superiority is mainly due to the shorter memory of the FIGARCH model, which, in tum, 

can be attributed to either an artificially prolonged leverage effect created during the pro­

cedure of fractional integration or an undesired property of the affine structure. Although 

FIGARCH models have been investigated in previous literature, this fin ding is nove!. 

Given the success of the proposed volatility component models, a number of further 

extensions to this work are warranted. First, the empirical performance of the model should 

of course be validated using other datasets. In particular, it would be interesting to test the 

model using LEAPS data, because the model may excel at modeling long-maturity LEAPS 

options. Second, it remains to be seen if the ditferences in performance between the models 

are confirmed when using model parameters estimated from option priees, or when using 

an integrated analysis that uses option prices as weIl as underlying retums. Third, it would 

be use fui to reconcile the relationship between the superior option valuation perfonnance 

of the component models and the less than superior performance of GARCH(2,2) models 

in traditional volatility forecasting studies. Comparing the density forecasts implied by 

the ditferent models could be an avenue to explore. FinaIly, looking forward, it would be 

interesting to compare the range of discrete-time GARCH models considered here with the 

continuous-time stochastic volatility models that are popular in the finance literature. 
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