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Abstract

This dissertation is in the form of three essays on the topic of component and
long memory GARCH models. The unifying feature of the thesis 1s the focus on
investigating European index option evaluation using these models.

The first essay presents a new model for the valuation of European options. In
this model, the volatility of returns consists of two components. One of these
components is a long-run component that can be modeled as fully persistent. The
other component is short-run and has zero mean. The model can be viewed as an
affine version of Engle and Lee (1999), allowing for easy valuation of European
options. The model substantially outperforms a benchmark single-component
volatility model that is well established in the literature. It also fits options better
than a model that combines conditional heteroskedasticity and Poisson normal
jumps. While the improvement in the component model's performance 1s partly due
to its improved ability to capture the structure of the smirk and the path of spot
volatility, its most distinctive feature is its ability to model the term structure. This
feature enables the component model to jointly model long-maturity and short-
maturity options.

The second essay derives two new GARCH variance component models with
non-normal innovations. One of these models has an aftine structure and leads to a
closed-tform option valuation formula. The other model has a non-atfine structure
and hence, option valuation is carried out using Monte Carlo simulation. We
provide an empirical comparison of these two new component models and the

respective special cases with normal innovations. We also compare the four



component models against GARCH(!,1) models which they nest. All eight models
are estimated using MLE on S&P500 returns. The likelihood criterion strongly
favors the component models as well as non-normal innovations. The properties of
the non-affine models differ significantly from those of the affine models.
Evaluating the performance of component variance specifications for option
valuation using parameter estimates from returns data also provides strong support
for component models. However, support for non-normal innovations and non-
affine structure is less convincing for option valuation.

The third essay aims to investigate the impact of long memory in volatility on
European option valuation. We mainly compare two groups of GARCH models that
allow for long memory in volatility. They are the component Heston-Nandi
GARCH model developed in the first essay, in which the volatility of returns
consists of a long-run and a short-run component, and a fractionally integrated
Heston-Nandi GARCH (FIHNGARCH) model based on Bollerslev and Mikkelsen
(1999). We investigate the performance of the models using S&P500 index returns
and cross-sections of European options data. The component GARCH model
slightly outperforms the FIGARCH in fitting return data but significantly dominates
the FIHNGARCH in capturing option prices. The findings are mainly due to the
shorter memory of the FIHNGARCH model, which may be attributed to an
artificially prolonged leverage effect that results from fractional ntegration and the

limitations of the affine structure.



Abstract

La dissertation ci-dessous comporte trois essais consacrés aux modeles GARCH et
4 I'évaluation européenne du prix d'option. Ces trois parties ont en commun d’étudier les
techniques européennes d’évaluation du prix d'option en utilisant les modeéles GARCH.

La premiére partie présente un nouveau modele pour l'évaluation des options
européennes. Dans notre modele, la volatilité du rendement se compose de deux attributs.
Le premier est une composante de longue durée qui peut étre modelée de maniere
persistante. L'autre composante est a court terme et a une moyenne de zéro. Notre modele
a ’ambition de préciser la version mise au point par Engle et Lee (1999) en facilitant
I'évaluation des options européennes. Ce modele surpasse considérablement le modele
établi de volatilit¢é a composante simple. Les options s’adaptent mieux que dans un
modele qui combine ’hétéroskedasticité conditionnelle et la composante saut de poisson.
L'amélioration du modéle est partiellement due a son identification de la structure
ascendante et de la volatilité du marché ponctuel. Son dispositif le plus distinctif réside
en sa capacité de modeler la structure de limite. Ce dispositif permet de modeler
conjointement des options avec un délai de remboursement a longue terme et a court
terme.

Dans le deuxiéme essai, nous dérivons deux nouveaux modéles GARCH a
composante aléatoire et aux innovations inédites ou anormales. Un de ces modéles a une
structure d'affinage et aboutit a une formule d'évaluation d'option close. L'autre modéle a
un non-affinage dynamique. Son évaluation du prix d'option doit étre faite par
I'intermédiaire de la simulation de Monte Carlo. Nous procédons une comparaison

empirique de ces deux nouveaux modeles et de leurs cas spéciaux respectifs avec les



innovations normales. Nous comparons également les quatre modeles a ceux de GARCH
(1.1), qu'ils emboitent. Chacun des huit modeles est évalué en utilisant I’estimateur
maximum de vraisemblance (MLE) sur les retours de S&P500. Le critére de probabilité
favorise fortement les modéles composants et les innovations anormales. Les propriétés
des modeles sans affinage différent significativement de celles des modeles d'affinage. En
projetant les parameétres pour évaluer les prix d'option, nous aboutissons encore a des
résultats en faveur des composantes aldtoires, mais les résultats des innovations
anormales et des structures de non-affinage sont moins convaincants.

Le troisieme essai étudie I'impact de la volatilit¢é mémoire longue sur I'évaluation
européenne du prix d'option en utilisant différents modéles. Nous comparons
principalement deux groupes de modéles GARCH permettant la volatilit¢é mémoire
longue. Il s’agit premiérement du composant Heston-Nandi du modele GARCH
développé par Christoffersen, Jacobs, et Wang (2005), dont la volatilité¢ du rendement est
a court et long terme ; il s’agit ensuite du modele GARCH partiellement intégré de
Heston-Nandi basé sur Baillie, Bollerslev et Mikkelsen (1996). Nous étudions les
mod‘éles au travers des retours d’indice S&P 500 et des données sur les options
européennes basces sur une coupe statistique. Les données de rendement du modele
GARCH surpassent légérement le FIGARCH, mais c’est dans I’évaluation des prix
d’option que GARCH domine de maniere significative le FIGARCH. La supériorité¢ du

modele GARCH est due a la mémoire plus courte du modele FIGARCH. qui pourrait €tre

attribuée a l'effet de levier artificellement prolongé par l'intégration et la limitation

partielles de la structure d'affinage.
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General Introduction

The seminal work of Black and .Scholes (1973) and Merton (1973) on option pric-
ing theory, commonly known as the Black-Scholes model, has not only spawned a huge
literature on derivative contracts but also transformed the financial industry. However, this
influential option pricing model has several shortcomings. Many empirical studies, includ-
ing the empirical work in Black and Scholes (1972), have shown that the Black-Scholes
model exhibits systematic pricing biases. It tends to overprice call options with high strike
prices, and underprice call options with low strike prices. Recent empirical studies typi-
cally focus on the pricing biases 1n terms of implied volatilities, and the bias phenomenon
is referred to as the "volatility smile" or the "volatility smirk". The "volatility smirk" refers
to the phenomenon that the Black-Scholes implied volatilities for stock call options of-
ten exhibit a downward-sloping, convex pattern when plotted against their exercise prices.
This persistent feature of option data contradicts the prediction of the Black-Scholes model,
which implies constant implied volatility.

It has been documented in the existing literature that the volatility smirk is partly due‘
to the unrealistic assumption of normally distributed returns in the Black-Scholes model.
Empirical evidence suggests that the return distribution has fatter tails, and that the distrib-
ution implicit in option prices is substantially negatively skewed after the 1987 crash. It is
therefore necessary to build in skewness and excess kurtosis in the return process. This can

be done 1n several ways.



General Introduction 2

Heston (1993) proposes a continuous-time stochastic volatility model that allows for
correlation between volatility and spot asset returns. In the discrete-time literature, the
NGARCH(1,1) option valuation model proposed by Duan (1995) allows for time variation
in the conditional variance as well as a leverage effect that generates skewness in returns.
However, the discrete time model of Duan does not provide a closed form solution for op-
tion valuation. Heston and Nandi (2000) proposed a closely related GARCH option pricing
model that provides a closed form solution (up to a numerical integration) for European op-
tion valuation.

Another approach is to assume distributions other than Gaussian for the return in-
novations. Candidate distributions should contajn more shape parameters than the normal
distribution in order to accommodate fatter tails, for example the GED distribution, and/or
skewness, for example the Inverse Gaussian distribution. Christoffersen, Heston and Ja-
cobs develop a new discrete-time dynamic model of stock returns with Inverse Gaussian
innovation. The model allows for conditional skewness as well as heteroskedasticity and a
leverage effect, and gives a closed-form solution. Their empirical results suggest that the
model improves the pricing of out-of-money put options.

A large number of papers have added jump components to the dynamics of returns or
to both returns and volatility. In stochastic volatility models, the volatility smile decreases
with maturity. This contradicts the stylized fact that shorter maturity options have a more
pronounced smile. Furthermore, diffusive stochastic volatility can only increase gradually
by a sequence of small. normally distributed increments. However, while jumps in returns

can generate large movements and more skewness during short time intervals, the impact
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of a jump is transient. The general consensus is that both jumps and stochastic volatility
are needed. Jumps generate return non-normality over the short term while a persistent
stochastic volatility process slows down the convergence of the return to normality as the
maturity increases.

In summary, while stochastic volatility models, jump processes and non-normal 1n-
novations improve on the Black-Scholes model in a qualitative sense, they are still biased
in a quantitative sense, because the strength of the effects is insufficient. To further im-
prove on these existing models, we need models that possess the same qualitative feature
but contain stronger quantitative effects.

This dissertation attempts to provide such models by focusing on the strong evi-
dence of long memory in return volatility. The variance is highly persistent over long
horizons (see Ding. Granger, and Engle (1993) and Andersen, Bollerslev, Diebold and
Labys (2003)). Various long-memory models have been developed to capture this styl-
ized fact. Engle and Lee (1999) introduced a component GARCH model to capture the
long memory in volatility. Baillie, Bollerslev and Mikkelsen (1996) and Bollersiev and
Mikkelsen (1999) incorporate the idea of long-memory fractional differencing into the
GARCH model. Comte, Coutin and Renault (2001) propose an extension of Heston’s
(1993) model to capture the long-run dependencies in volatility. This model can disentan-
gle short and long-memory properties in the resulting option prices. Despite the appeal of
these models, empirical work that applies long-memory models to option pricing is quite
limited. No empirical research has ever been carried out to compare the performance of

long-memory models with that of other popular benchmarks. This dissertation aims to de-
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velop novel long-memory volatility models that allows for easier and improved European
option evaluation.

To model the variance, we can either use a continuous-time stochastic volatility
model or a discrete-time GARCH model. The advantages of the continuous-time mod-
els lie in their mathematical elegance, and that they sometimes lead to closed-form option
pricing formulas. However, GARCH models may offer distinct advantages over stochas-
tic volatility models from an estimation perspective. Continuous-time stochastic volatility
models are difficult to implement because, with discrete observations on the underlying
asset price process, the volatility is not readily identifiable. We therefore use a GARCH
framework. The dissertation takes the form of three essays on the topic of component
GARCH models. The unifying feature of the entire thesis is the focus on investigating
European index option valuation with component GARCH models.

There are two cornerstones in the first dissertation essay. One is the component
GARCH model of Engle and Lee (1993) and the other is an affine GARCH(1.1) model pro-
posed by Heston and Nandi (2000). Building on these two papers, the first essay presents
a new component GARCH model that allows for easy valuation of European options. In
the model. the volatility of returns consists of two components. One of these components
is a long-run component that can be modeled as fully persistent. The other component is
short-run and has zero mean. Due to the flexibility in variance term structure and the flex-
ibility in generating more higher moments, the model can forecast the conditional density
functions of 7-day to 360-day returns well. It therefore generates more accurate Euro-

pean option prices. This model substantially outpertorms a benchmark single-component
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volatility model that is well established in the literature. It also fits options better than a
model that combines conditional heteroskedasticity and Poisson normal jumps.

In the first essay, some very fundamental assumptions are imposed, namely normally
distributed return innovations and an affine structure. The second essay relaxes these as-
sumptions and derives two new component GARCH models with non-normal innovations.
One of these models has an affine structure with Inverse Gaussian return innovations and
leads to a closed-form option valuation formula. The other model has a non-affine struc-
ture with GED return innovations. Since non-affine models do not lead to closed form
solutions, we use Monte Carlo simulations for option valuation. An empirical comparison
of these two new component models and the respective special cases with normal innova-
tions is provided. All four component models are also compared with the GARCH(1,1)
models which they nest. All eight models are estimated using MLE on S&P500 returns.
The likelihood criterion strongly favors the component models as well as non-normal in-
novations. The properties of the non-affine models differ significantly from those of the
affine models. Evaluating the performance of component variance specifications for op-
tion valuation using parameter estimates from returns data also provides strong support for
component models. However, support for non-normal innovations and non-atfine structure
1s less convincing.

The component GARCH model is not the only GARCH model to capture long mem-
ory in volatility. Bollerslev and Mikkelsen (1999) developed a fractionally integrated
GARCH model or a FIGARCH, in which a shock to variance decays at a hyperbolic rate.

The third essay compares the performance of the component GARCH from the first essay
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and a fractionally integrated Heston-Nandi GARCH model (FIHNGARCH) in terms of fit-
ting option data. We investigate the performance of the models using S&P500 index returns
and cross-sectional European options data. The component Heston-Nandi GARCH model
slightly outperforms the FIHNGARCH in fitting returns data, but significantly dominates
the FIHNGARCH in capturing option prices. These results are mainly due to the shorter.
memory of the FIHNGARCH model, which can be attributéd to the artificially prolonged

leverage effect and the limitation of the affine structure.



Chapter 1
Option Valuation with Long-run and
Short-run Volatility Components

Peter Christoffersen Kris Jacobs Yintian Wang

Abstract

This paper presents a new model for the valuation of European options. In our model,
the volatility of returns consists of two components. One of these components is a
long-run component and it can be modeled as fully persistent. The other component
is short-run and has a zero mean. Our model can be viewed as an affine version of
Engle and Lee (1999). allowing for easy valuation of European options. The model
substantially outperforms a benchmarks single-component volatility model that 1s
well established in the literature, and it fits options better than a model that combines
conditional heteroskedasticity and Poisson normal jumps .The improvement in the
component model’s performance is partly due to its improved ability to capture the
structure of the smirk and the path of spot volatility, it its most distinctive feature 1s
its ability to model the term structure. This feature enables the component model to
jointly mode long-maturity and short-maturity options.

JEL Classification: G12
Keywords: Volatility term structure; GARCH; Out-of-sample
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1.1 Introduction

There is a consensus in the equity options literature that combining time-variation in the
conditional variance of asset returns (Engle (1982), Bollerslev (1986)) with a leverage ef-
fect (Black (1976)) constitutes a potential solution to well-known biases associated with
the Black-Scholes (1973) model, such as the implied volatility smirk. These asymmetric
dynamic volatility models generate negative skewness in the distribution of asset returns
which in turn generates higher prices for out-of-the-money put options as compared to
the Black-Scholes formula. In the continuous-time option valuation literature, the Heston
(1993) model addresses some of these biases. This model contains a leverage effect as well
as stochastic volatility.! In the discrete-time literature, the NGARCH(1, 1) option valu-
ation model proposed by Duan (1995) contains time-variation in the conditional variance
as well as a leverage effect. The model by Heston and Nandi (2000) is closely related to
Duan’s model.

Many existing empirical studies have confirmed the importance of time-varying volatil-
ity. the leverage effect and negative skewness in continuous-time and discrete-time setups,
using parametric as well as non-parametric techniques.” However, it has become clear
that while these models help explain the biases of the Black-Scholes model in a qualitative
sense, they come up short in a quantitative sense. Using parameters estimated from returns

or options data, these models reduce the biases of the Black-Scholes model, but the mag-

' The importance of stochastic volatility is also studied in Hull and White (1987), Melino and Turnbull

(1990). Scott (1987) and Wiggins (1987).

2 See for example Ait-Sahalia and Lo (1998), Amin and Ng (1993), Bakshi, Cao and Chen (1997), Bates
(2000), Benzoni (1998), Bollerslev and Mikkelsen (1999). Chernov and Ghysels (2000), Duan, Ritchken and
Sun (2005, 2006), Engle and Mustafa (1992), Eraker (2004), Heston and Nandi (2000), Jones (2003). Nandi
(1998) and Pan (2002).
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nitude of the effects is insufficient to completely resolve the biases. The resulting pricing
errors have the same sign as the Black-Scholes pricing errors, but are smaller in magni-
tude. We therefore need models that possess the same qualitative features as the models in
Heston (1993) and Duan (1995), but that contain stronger quantitative effects. These mod-
els need to generate more flexible skewness and volatility of volatility dynamics in order to
fit observed option prices. Existing studies have attempted to address this by combing sto-
chastic volatility specifications with jump processes, or by using non-normal innovations
in heteroskedastic models.*

The shortcomings of existing models in modeling the moneyness dimension are com-
pounded by their shortcomings in modeling the term structure of volatility, as well as the
path of spot volatility. It has been observed using a variety of diagnostics that it is difficult
to fit the dynamics of return volatility using a benchmark model such as a GARCH(1. 1).
A similar observation applies to stochastic volatility models such as Heston (1993). The
main problem is that volatility autocorrelations are too high at longer lags to be explained
by a GARCH(1.1), unless the process is extremely persistent. This extreme persistence
may impact negatively on other aspects of option valuation, such as the valuation of short-
marturity options.

In fact. it has been observed in the literature that volatility may be better modecled

using a fractionally integrated process, rather than a stationary GARCH process.” Ander-

sen, Bollerslev, Diebold and Labys (2003) confirm this finding using realized volatility.

Sec for cxample Bakshi, Cao and Chen (1997), Bates (2000), Broadie, Chernov and Johannes (2004).
Christoffersen, Heston and Jacobs (2006), Eraker. Johannes and Polson (2003), Eraker (2004). Huang and
Wu (2004) and Pan (2002).

4 See Baillie, Bollerslev and Mikkelsen (1996).
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Bollerslev and Mikkelsen (1996, 1999) and Comte, Coutin and Renault (2001) investigate
and discuss some of the implications of long memory for option valuation. Using frac-
- tional integration models for option valuation is somewhat cumbersome. Optimization 1s
time-intensive and certain ad-hoc choices have to be made regarding implementation.

This paper attempts to remedy remaining option biases by modeling richer volatil-
ity dynamics. We use a model that is relatively easy to implement and that captures the
stylized facts addressed by long-memory models at horizons relevant for option valuation. .
The model builds on Heston and Nandi (2000) and Engle and Lee (1999). In our model, the
volatility of returns consists of two components. One of these components is a long-run
component, and it can be modeled as (fully) persistent. The other component is short-run
and mean zero. We study two models: one where the long-run component is constrained to
be fully persistent and one where it is not. We refer to these models as the persistent com-
ponent model and the component model respectively. These models are able to generate
autocorrelations that are richer than those of a GARCH(1. 1) model while using just a few
additional parameters.

Unobserved component or factor models are very popular in the finance literature.
See Fama and French (1988), Poterba and Summers (1988) and Summers (1986) for ap-
plications to stock prices. In the option pricing literature, Bates (2000) and Taylor and Xu
(1994) investigate two-factor stochastic volatility models. Duffie, Pan and Singleton (2000)
provide a general continuous-time framework for the valuation of contingent claims using
multifactor affine models. Eraker (2004) suggests the usefulness of a multifactor approach

based on his empirical results. Alizadeh, Brandt and Diebold (2002) uncover two factors
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in stochastic volatility models of exchange rates using range-based estimation. Bollerslev
and Zhou (2002), Brandt and Jones (2006), Chacko and Viceira (2003), Chernov, Gal-
lant, Ghysels and Tauchen (2003), and Maheu (2002) also find that two-factor stochastic
volatility models outperform single factor models when modeling daily asset return volatil-
ity. Adrian and Rosenberg (2005) investigate the relevance of a two-component volatility
model for pricing the cross-section of stock returns. Unobserved component models are
also very popular in the term structure literature, although in this literature the models are
more commonly referred to as multifactor models.” There are very interesting parallels
between our approach and results and stylized facts in the term structure literature. In
the term structure literature, it is customary to model short-run fluctuations around a time-
varying long-run mean of the short rate. In our framework we model short-run fluctuations
around a time-varying long-run volatility.

Dynamic factor and component models can be implemented in continuous or discrete
time.® We choose a discrete-time approach because of the ease of implementation. In
particular, our model is related to the GARCH class of processes, and therefore volatility
filtering and forecasting are relatively straightforward, which is critically important for

option valuation.” An additional advantage of our model 1 parsimony: the most general

3 See for example Dai and Singleton (2000), Duffee (1999), Duttic and Singleton (1999) and Pcarson and
Sun (1994).

¢ Dufhe, Pan and Singleton (2000) suggest a multifactor continuous-time model that captures the spirit of

our approach, but do not investigate the model empirically.
7 Because the filtering problem is extremely simple in the GARCH framework. we are able 1o analyze an
extensive option sample. Sec also Heston and Nandi (2000). See among others Bates (2000. 2006), Chernov
and Ghysels (2000), Eraker (2004) and Pan (2002) for other empirical studies that estimate model parameters

using options data.
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model we investigate has seven parameters. We speculate that parsimony may help our
model’s out-of-sample performance.

Because our component model is a generalization of the GARCH(1, 1) model, and
because its implementation uses similar techniques, the GARCH(1, 1) is a natural bench-
mark. Moreover, Christoffersen, Jacobs and Mimouni (2005) find that the performance
of the GARCH(1, 1) model is similar to that of the Heston (1993) model, which is the
most commonly used benchmark in the literature. Heston and Nandi (2000) find that
the GARCH(1, 1) slightly outperforms the ad-hoc implied volatility benchmark model in
Dumas, Fleming and Whaley (1998). Finally, because there is substantial evidence that
Poisson-normal jump processes can alleviate some of the biases associated with the He-
ston (1993) model and the GARCH(1.1) model, we also include a GARCH(1, 1) model
augmented with Poisson-normal jumps in our analysis.

We provide two different analyses of the component model. We first estimate the
physical model parameters by maximum likelihood estimation (MLE) on historical S&P
returns for 1962-2001. We compare the component model and the persistent component
model to the GARCH(1.1) benchmark as well as to the more general GARCH(1,1)-
Jump model. Based on the log-likelihood criterion, the GARCH(1. 1)-Jump model per-
forms the best, followed by the component model. the persistent component model and the
GARCH(1.1) model. However, when we compare the models based on option fit using
MLE parameters, the best fit is obtained using the component and persistent component
model, followed by the GARCH(1. 1)-Jump model. The GARCH(1. 1) model is again the

worst performer. We also use the MLE parameters to emphasize differences in important
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mode] features, such as the conditional volatility of variance, the correlation between re-
turns and conditional variance, the term structure of conditional skewness and kurtosis, the
volatility smirk and the volatility term structure. The improvement in the model’s perfor-
mance is due to its richer dynamics, which result in different modeling of the term struc-
ture, and which enable the component model to capture patterns in long-maturity as well
as short-maturity options.

In a second empirical investigation, we estimate the models using options data, while
filtering the latent volatility from the underlying returns data. When the persistence of the
long-run component is freely estimated, it is very close to one. The performance of the
component model is impressive when compared with a benchmark GARCH(1, 1) model.
When using all available option data, the dollar RMSE of the component model 1s 11.3-
22.7% lower than that of the benchmark GARCH model in-sample and 21.8-23.3% out-
of-sample. Our out-of-sample results strongly suggest that these results are not simply due
to spurious in-sample overfitting. The persistent component model performs better than
the benchmark GARCH(1.1) model. but in contrast to the results obtained using MLE
parameters, it is clearly inferior to the component model both in- and out-of-sample.

The paper proceeds as follows. Section 2 introduces the model. Section 3 discusses
the volatility term structure and Section 4 discusses option valuation. Sections 5 and 6

present the two empirical investigations. and Section 7 concludes.
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1.2 Return Dynamics with Volatility Components

In this section we first present the Heston-Nandi GARCH(1, 1) model which will serve as
the benchmark model throughout the paper. We then construct the component model as a
natural extension of a rearranged version of the GARCH(1, 1) model. We finally present

the persistent component model as a special case of the component model.

1.2.1 The Heston and Nandi GARCH(1,1) Model

Heston and Nandi (2000) propose a class of GARCH models that allow for a closed-form
solution for the price of a European call option. They present an empirical analysis of the

GARCH(1. 1) version of this model, which is given by

Rt S lll(SHl/St) =71+ /\hH—l + 4/ ht+1£t+1 (11)

w+ bhy + a(z — P\/Tl;y

>
=
=

|

where S; ., denotes the underlying asset price, 7 the risk free rate, A the price of risk and
h¢.,1 the daily variance on day 7 + 1 which is known at the end of day ¢. The 2, shock is
assumed to be 1.i.d. N(0.1). The Heston-Nandi model captures time variation in the con-
ditional variance as in Engle (1982) and Bollerslev (1986),* and the parameter ¢ captures
the leverage effect. The leverage eftect captures the negative relationship between shocks
to returns and volatility (Black (1976)). which results in a negatively skewed distribution of

returns.” Note that the GARCH(1. 1) dynamic in (1.1) is slightly different from the more

¥ For an carly application of GARCH 10 stock returns, see French, Schwert and Stambaugh (1987).

® lts importance for option valuation has been emphasized among others by Benzoni (1998), Chernov

and Ghysels (2000), Christoffersen and Jacobs (2004), Eraker (2004), Eraker, Johannes and Polson (2003),
Heston (1993), Heston and Nandi (2000) and Nandi (1998).
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conventional NGARCH model used by Engle and Ng (1993) and Hentschel (1995), which
is used for option valuation in Duan (1995). The reason is that the dynamic in (1.1) 1s engi-
neered to yield a closed-form solution for option valuation, whereas a closed-form solution
does not obtain for the more conventional GARCH dynamic. Hsieh and Ritchken (2000)
provide evidence that the more traditional GARCH model may actually slightly dominate
the fit of (1.1). Our main point can be demonstrated using either dynamic. Because of the
convenience of the closed-form solution provided by dynamics such as (1.1), we use this as
a benchmark in our empirical analysis and we model the richer component structure within
the Heston-Nandi framework.'?

To better appreciate the workings of the component models presented below, note

that by using the expression for the unconditional variance

w+a
1—5b—ac?

‘ — 2
E 'Lht+l] =T
to substitute out w, the variance process can be rewritten as

ey = 0>+ b (]1, — 02) +a <(»?z —cvh)? - (1 + ("2(72)) . (1.2)

1.2.2 Building a Component Volatility Model

The expression for the GARCH(1. 1) variance process in (1.2) highlights the role of the
parameter o as the constant unconditional mean of the conditional variance process. A

natural generalization is then to specify o2 as time-varying. Denoting this time-varying

10 See Bollerslev and Mikkelsen (1996), Engle and Mustafa (1992), Christoffersen and Jacobs (2004). and
Hsieh and Ritchken (2000) for other empirical studies of European option valuation using GARCH dynamics.
Ritchken and Trevor (1999) discusses the pricing of American options with GARCH processes.
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component by ¢;,1, the expression for the variance in (1.2) can be generalized to

hiy1 = Qo1 + 8 (ht - (Jt) +a ((Zt - %\/h—/t)2 —(1+ ”z%%)) . (1.3)

This model is similar in spirit to the component model of Engle and Lee (1999).
The difference between our model and Engle and Lee (1999) is that the functional form of
the GARCH dynamic (1.3) allows for a closed-form solution for European option prices.
This is similar to the difference between the Heston-Nandi (2000) GARCH(1, 1) dynamic
and the more traditional NGARCH(1, 1) dynamic discussed in the previous subsection. In
specification (1.3), the conditional volatility ., can most usefully be thought of as having
two components. Following Engle and Lee (1999), we refer to the component ¢, as the
long-run component, and to h;,; — g1 as the short-run component. We will discuss this
terminology in some more detail below. Note that by construction the unconditional mean
of the short-run component 7ty ; — g4, 1 1S ZeT0.

The model can also be written as

Iy ‘1 = Gyt (”"f'? +8) (hi —a) + a ((31 - ”/‘1\/Ff)2 ~(1+ 7%171))
= g1+ B (he — q) + o ((Zt 7 \/E)z —(1+ ”;’?hr,)) (1.4)

where 3 = a~% + 3. This representation is useful because we can think of

2 &
e = (m=yVi) - (i) (1.5)

- (23 - 1) — 27V Iy

as a mean-zero innovation.
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The model is completed by specifying the functional form of the long-run volatility

component. In a first step, we assume that ¢, follows the process

o1 = w+ pg + @ ((Zt2 -1) - 27’2ﬁ2f) : (1.6)

Note that E [g;11] = E [hyy1] = 0% = . d

as long as p < 1. We can therefore write the

component volatility model as

hpr = Qe+ B (he = q¢) + vy (L.7)
Gy = Wt PG+ ©uag
= 0%+ plgs — 0%) + Pz
with
Vig = (zf — 1) — 271-\/Ez,. forv = 1.2. (1.8)

and E; ; [v;] = 0,7 = 1,2. Also note that in addition to the price of risk, A, the model

p

contains seven parameters: o, 3, ;. yq, w. p and .

1.2.3 A Fully Persistent Special Case

In our empirical work, we also investigate a special case of the model in (1.7). Notice that

in (1.7) the long-run component of volatility will be a mean reverting process for p < 1.

We also estimate a version of the model which imposes p = 1. The resulting process 1s
hesr = G+ 20U — q) 4 oty (1.9)
Qo1 = WG+ gy

and v;,. 7 == 1.2 are as in (1.8). In addition to the price ot risk, A, the model now contains

SiX parameters: «v. 3. 7. Vo, w and .
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In this case the process for long-run volatility contains a unit root and shocks to
the long-run volatility never die out: they have a "permanent” effect. Recall that following
Engle and Lee (1999) in (1.7) we refer to g, 1 as the long-run component and to h; 1 — @i 41
as the short-run component. In the special case (1.9) we can also refer to ¢, as the
"permanent” component, because innovations to ¢, are truly "permanent” and do not die
out. It is then customary to refer to iy — g;41 as the "transitory” component, which
reverts to zero. It is in fact this permanent-eftects version of the mode] that is most closely
related to models which have been studied more extensively in the finance and economics
literature, rather than the more general model in (1.7)."" We will refer to this model as the
persistent component model.

It is clear that (1.9) is nested by (1.7). It is therefore to be expected that the in-
sample fit of (1.7) is superior. However, out-of-sample this may not necessarily be the
case. It is often the case that more parsimonious models perform better out-of-sample if
the restriction imposed by the model is a sufficiently adequate representation of reality. The
persistent component model may also be better able to capture structural breaks in volatility
out-of-sample, because a unit root in the process allows it to adjust to a structural break,
which not possible for a mean-reverting process. 1t will therefore be of interest to verify

how close p is to one when estimating the more general model (1.7).

T See Fama and French (1988), Poterba and Summers (1988) and Summers (1986) for applications to stock

prices. See Beveridge and Nelson (1981) for an application to macrocconomics.
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1.3 Variance Term Structures

To intuitively understand the shortcomings of existing models such as the GARCH(1, 1)
model in (1.1) and the improvements provided by our model (1.7), it is instructive to graph-
ically illustrate some of the models’ statistical properties that are key for option valuation.
In this section we therefore illustrate the models’ variance term structures and impulse re-

sponse functions.

1.3.1 The Variance Term Structure for the GARCH(1,1) Model

Following the logic used for the component model in (1.7), we can rewrite the GARCH(1, 1)

variance dynamic in (1.2). We have

hivi =0 + b (h, — (72) +a ((2,2 -1) - 2(,‘\/h',tz,> (1.10)

where b = b+ ac? and where the innovation term has a zero conditional mean. From (1.10)

the multi-step forecast of the conditional variance is
Eifhis = o+ 0y — 0°)

where the conditional expectation is taken at the end of day #. Notice that b is directly
interpretable as the variance persistence in this representation of the model.
We can now define a convenient measure of the variance term structure for maturity

K as

K K = .

1 o1 . ‘ ,  L=b5(hy) — 0?)

hepriov = — Z Eilhyox] = — Z o2 b Y =0t =0t 4 s .
A k=1 A =1 1= K
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This variance term structure measure succinctly captures important information about the
model’s potential for explaining the variation of option values across maturities.'>  To
compare different models, it is convenient to set the current variance, h;,1, to a simple m
multiple of the long run variance. In this case the variance term structure relative to the

unconditional variance is given by

1—b5 (m—1
ht'—H:tA'}~K/U2 =1+ 1—?) ( K )

The dash-dot lines in the top panels of Figures 1 and 2 show the term structure of variance
for the GARCH(1, 1) model for a low and high initial conditional variance respectively. We
use parameter values estimated via MLE on daily S&P500 returns (the estimation details
are in Table 1 and will be discussed further below). We set m = % in Figure 1 and m = 2
in Figure 2. The figures present the variance term structure for up to 250 days, which
corresponds approximately to the number of trading days in a year and therefore captures
the empirically relevant term structure for option valuation. It can be clearly seen from
Figures 1 and 2 that for the GARCH(1. 1) model. the conditional variance converges to the
long-run variance rather fast.

We can also learn about the dynamics of the variance term structure though impulse
response functions. For the GARCH(1. 1) model. the effect of a shock at time ¢, z;, on the

expected k-day ahead variance 1s

OE; hey))/0:F = Wl (1 — f\/E/%)

12 Notice that duc to the price of risk term in the conditional mean of returns. the term structure of variance

as defined here is not exactly equal to the conditional variance of cumulative returns over A days.
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and thus the effect on the variance term structure 1s

1-b% a
aEt [h’t:t+}(] /823 = 1 —5 ?‘ (]. - C\/E/Zt) .

The bottom-left panels of Figures 3 and 4 plot the impulse responses to the term structure
of variance for h; = 0% and z; = 2 and 2, = —2 respectively, again using the parameter
estimates from Table 1. The impulse responses are normalized by the unconditional vari-
ance. Notice that the effect of a shock dies out rather quickly for the GARCH(1, 1) model.
Comparing across Figures 3 and 4 we see the asymmetric response of the variance term
structure from a positive versus negative shock to returns. This can be thought of as the
term structure of the leverage effect. Due to the presence of a positive ¢, a positive shock

has less impact than a negative shock along the entire term structure of variance.

1.3.2 The Variance Term Structure for the Component Model

In the component model we have

hfl i o= (]Y i1 ’Jr ,j (h-f - qt) + (‘l’l./‘l_t

g = 0t plg — o) + Qug,.

The multi-day forecast of the two components are

. N ~h -1
Ech —aqod — 3 (heoy — aeiy)

Elgusl = o® 4 p"0 (‘YH—l - (’2) :

The simplicity of these multi-day forecasts is a key advantage of the component model. The

multi-day variance forecast is a simple sum of two exponential components. Notice that
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j3 and p correspond directly to the persistence of the short-run and long-run components
respectively.
We can now calculate the variance term structure in the component model for matu-

rity K as

K
1
hijrevx = I%e E E; [grek] + Bt (Pek — Gr)
k=1

K
1 _ k-1
= % E 0%+ ! ((]t+1 - 02) + 3 (her = qe41)
k=1

~ K
o l—qut+1-U2 1= hyy — g
= O + , + p: 7 '
I—p K 1-4 K

If we set ¢;, 1 and h;,; equal to m; and m, multiples of the long run variance respectively,

then we get the variance term structure relative to the unconditional variance simply as

~K
1~me1—1+1~,3 moy — 1M
1-p K 1—3 K

hf;]:H,](/O'Q:l“‘}" (111)

The solid lines in the top panels in Figures 1 and 2 show the term structure of variance

for the component model using parameters estimated via MLE on daily S&P500 returns

from Table 1. We set m; = 2. my = 3 in Figure 1 and m; =

5 .y = 2 in Figure 2.

(=1

By picking 115 equal to the m used for the GARCH(1. 1) model. we ensure comparabil-
ity across models within each figure because the spot variances relative to their long-run
variances are identical.”” The main conclusion from Figures 1 and 2 is that compared to
the dash-dot GARCH(1. 1), the conditional variance converges more slowly to the uncon-

ditional variance in the component model. This is particularly so on days with a high spot

13 Note that we need my s - in this numerical experiment to gencrate a “short-term” effect in (1.11).

Changing my will change the picture but the main conclusions stay the same.
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variance. The middle and bottom panels show the contribution to the total variance from
each component. Notice the strong persistence in the long-run component.
We can also calculate impulse response functions in the component model. The

effects of a shock at time t, z; on the expected k-day ahead variance components are

OB () /022 = 770 (1= 13/ hif 1)
aEt {ht+k e (]t+k} /823 - /Bkml(l’ <_|. - T \/E/Zf)

OF: [y k] /(“)zf = Bkﬁa <1 - 7’1\/’?/%) +o (1 - 72\/f7t/zt) :

Notice again the simplicity due to the component structure. The impulse response on the

term structure of variance is then

. 1—53 o 1—p
OE: [hay i) [02] = -3 K (1 o \/h—t/;’) Fs P

K

]i; (1 - 7‘2\/E/Zt) .
The top-left panels of Figures 3 and 4 plot the impulse responses to the term structure
of variance for h; = o2 and z; = 2 and z; = —2 respectively. The figures reinforce
the message from Figures 1 and 2 that using parametrization estimated from the data, the
component model is quite different from the GARCH(1. 1) model. The eftects of shocks
are much longer lasting in the component model using estimated parameter values because
of the parameterization of the long-run component. Comparing across Figures 3 and 4 it 1s
also clear that the term structure of the leverage eftect is more flexible. As a result current
shocks and the current state of the economy potentially have a much more profound impact
on the pricing of options across maturities in the component model.

It has been argued in the literature that the hyperbolic rate of decay displayed by long

memory processes may be a more adequate representation for the conditional variance of
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returns.!* We do not disagree with these findings. Instead, we argue that Figures 1 through
4 demonstrate that in the component model the combination of two variance components
with exponential decay gives rise to a slower decay pattern that sufficiently adequately
captures the hyperbolic decay pattern of long memory processes for the horizons relevant
for option valuation. This is of interest because although the long-memory model may be

a more adequate representation of the data, it is harder to implement.

1.4 Option Valuation

We now turn to the ultimate purpose of this paper, namely the valuation of derivatives on an
underlying asset with dynamic variance components. For the purpose of option valuation
we first derive the conditional moment generating function for the return process and then

present the risk-neutral return dynamics.

1.4.1 The Moment Generating Function

For the return dynamics in this paper we can characterize the moment generating function
(MGF) of the log stock price with a set of difference equations using the techniques in
Heston and Nandi (2000). Appendix A demonstrates that for the component GARCH

mode] we have that the MGF defined by

f(t.T:0) = E;lexp (oIn (S1))]

14 GQee Bollerslev and Mikkelsen (1996,1999). Baillie. Bollerslev and Mikkelsen (1996) and Ding, Granger
and Engle (1993).
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can be written

@, T;¢) = S;b exp[A; + Bii(hiy1 — Gea) + Boigria] (1.12)

with coefficients

At = At+1 + 7'([) - (&Bl7t+1 + (,OBQ,t+1) — 1/2 In (1 - 2aB1,t+1 — 2¢B2,t+1) + B2_t+1w
(a’\l/lBl,t—l—l + (1072B2,t+1 - 05¢)2
1—2aBy 11 — 20Bay11

(07, Big1 + 972 B2ei1 — 0.5¢)°
1 —2aBy1 — 20Basa

By = Bl,t-HB + Ao+ 2

Byy = Boryip+ A+ 2

and terminal conditions
/4/ = Blfj‘ — BQTT = 0

For the moment generating function in the GARCH(1. 1) case we refer to Heston and Nandi
(2000).

In Figures 1 and 2 we illustrated differences across models in terms of variance term
structures that are key for option valuation. Following Das and Sundaram (1999). we can
use the moment generating function in (1.12) to further investigate the conditional term
structure of higher moments. Specifically, we can derive conditional skewness and excess
kurtosis for maturity 7 using the logarithm of the conditional moment generating function
as follows

Pl f(r. T (,"1)/(’)(,)3} -0 Mn f(¢.T: (b)/(‘)cﬂ
- Kurtosis(t.T) = :
Viar(t. TY32 vurtosis(t.T) Var(t. T)?

$=0

Skeuncss(t. T) =
where

Var(t,T) = 0 In f(t. T:0)/ 967

o=0"
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We compute these moments by taking numerical derivatives of the log of the moment
generating function in (1.12).

In Figure 5 we plot the term structure of skewness and kurtosis in the three GARCH
models. The initial volatility is set to its long run value in the GARCH(1,1) and com-
ponent GARCH models. In the persistent component model the initial volatility is set to
the unconditional volatility from the component model. The parameter estimates are again
taken from Table 1

Figure S reveals important differences between the term structures of these moments
for the GARCH(1, 1) model, the component model and the persistent component model.
While the term structures of skewness and kurtosis are hump-shaped for the GARCH(1, 1)
model over the maturities relevant for pricing the options in our sample, they are downward
sloping and upward sloping respectively for the skewness and kurtosis of the persistent
component model. For the component model, the minimum and the maximum respec-
tively for the conditional skewness and kurtosis occur for options with approximately a
six month maturity. but the skewness and kurtosis for longer maturities are very close to
these extrema. These fundamental differences in higher moment term structures may have

important implications for the option valuation properties across models.
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1.4.2 The Risk-Neutral GARCH(1,1) Dynamic

The risk-neutral dynamics for the GARCH(1, 1) model are given in Heston and Nandi

(2000)'S as

Ryyy = 17— %ht+1 + v he12{ (1.13)

heyr = w+bhy + a(z — ¢*/hy)?

with¢* = ¢+ A+ 0.5 and 27 ~ N(0,1).

1.4.3 The Risk-Neutral Component GARCH Dynamic
Appendix B demonstrates that the risk-neutral component GARCH dynamic is given by
. 2 >
b = g+ B (e —q) +a ((Zt* - “/T\/E> - (1 + 7 hl)) (1.14)
2
G = wtpqte <(Zt* _W;\/E) - (1 +";*2hr)>

where the risk neutral parameters are defined as follows

¥ o= Bra( ) e (8- )
po= pto (07 =) e (08 - )

ST = A+ 05 = 1.2

The moment generating function for the risk-neutral component GARCH process 1s there-
fore equal to the one for the physical component GARCH process, setting A — - 0.5 and

. . ¥
using the risk neutral parameters v, ~%. p*. 3 as well as w. o and .
1: 72 had

15

For the underlying theory on risk neutral distributions in discrete time option valuation see Rubinstein
(1976), Brennan (1979), Amin and Ng (1993). Duan (1995), Camara (2003). and Schroder (2004).
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1.4.4 The Option Valuation Formula

Given the moment generating function and the risk-neutral dynamics, and option valuation
is relatively straightforward. We use the result of Heston and Nandi (2000) that at time ¢, a

European call option with strike price K that expires at time 7" is worth

Call Price = ¢ """V E; [Max(Sy — K, 0)] (15)

B 1 1 [ K@ (t.Tiip +1)] |
“si(grs [ e[| )

o0 —igp £ .
__Ke—r(T—t) (}_ + l/ Re {K f .(ttT’ mj)} dé)
0

2 0w 10

where f*(t,T;i¢) is the conditional characteristic function of the logarithm of the spot

price under the risk neutral measure.

1.5 Empirical Results

This section presents the core of our empirical results. We first study the models estimated
using a long time series of S&P500 index returns. We then report the difterences between
the models when used for option valuation and compare the models to a GARCH(1.1)
model allowing for jumps in returns. Finally, we analyze the option valuation differences

along various dimensions.

1.5.1 Properties of the Physical Return Process

Table 1 presents maximum likelihood estimates (MLE) of the physical model parameters
obtained using returns data for 1962-2001. We use a long sample of returns on the S&P

500 because it is well-known that it 1s difficult to estimate GARCH parameters precisely
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using relatively short samples of return data. We compare the models using goodness-
of-fit statistics, and we discuss differences in model properties. We present results for
three models: the GARCH(1, 1) model (1.1), the component model (1.7) and the persistent
component model (1.9). Almost all parameters are estimated significantly different from
zero at conventional significance levels.! The price of risk, A, is marginally significant in
the case of the GARCH(1, 1) and not significant in the persistent component models. The
log likelihood values indicate that the fit of the component model is much better than that
of the persistent component model, which in turn fits much better than the GARCH(1, 1)
model.

The dynamic variance models can be compared by assessing their persistence prop-
erties. The variance persistence in the GARCH(1. 1) model is defined by b = b+ ac? from
(1.10). In the component model, the total variance persistence 1s a confluence of the per-
sistence in the two factors. If we substitute out ¢,,; and ¢, from the h, | equation in (1.7),
then persistence can be computed as the as the sum of the coefficients on £, and h,..;. This
way, the component persistence formula can be derived to be p + 3(1 - p).

The improvement in fit for the component GARCH model over the persistent com-
ponent GARCH model is perhaps somewhat surprising when inspecting the persistence of
the component GARCH model. The persistence is equal to 0.9963. It therefore would ap-
pear that equating this persistence to 1, as is done in the persistent component model, is an
interesting hypothesis, but apparently modeling these small differences from one is impor-

tant. It must of course be noted that while the persistence of the long-run component (p) 1s

16 The standard errors are computed using the outer product of the gradient at the optimal parameter values.
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0.9896 for the component model as opposed to 1 for the persistent component model, the
persistence of the short-run component (B) is 0.6437 versus 6.8822 and this may account
for the differences in likelihood. Note that the persistence of the GARCH(1, 1) model is
estimated at 0.9553, which is consistent with earlier literature. It is slightly lower than the
estimate in Christoffersen, Heston and Jacobs (2006) and a bit higher than the average of
the estimates in Heston and Nandi (2000).

Figures 6 and 7 further analyze the component models’ improvement in performance
over the benchmark GARCH(1, 1) model. These figures present the 1990-1995 sample
path for the spot variance in the GARCH(1, 1) model, the component model and the per-
sistent component model, as well as the sample path for volatility components for the com-
ponent and persistent component models.'” In each figure, the sample path is obtained by
using the parameter estimates in Table 1 to iterate on the variance dynamic starting from the
unconditional volatility 500 days before the first volatility included in the figure, as is done
in estimation. Initial conditions are therefore unlikely to affect model comparisons. Figure
6 contains the results for the component model. The overall conclusion seems to be that
the mean zero short run component in the top-right panel adds short-horizon noise around
the long-run component in the bottom-right panel. This results in a volatility dynamic for
the component model in the top-left panel that is more noisy than the volatility dynamic for
the GARCH(1. 1) model in the bottom-left panel. This more noisy sample path suggests a
higher value for the variance of variance in the component model. The results for the per-

sistent component model in Figure 7 suggest similar conclusions, even though the sample

17" We plot results for the 1990-1995 subsample here because it will be used for option valuation subse-

quently.
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paths for the components in Figure 7 are somewhat different from those in Figure 6. Table
1 gives the average annual volatility (standard deviation) for 1990-1995 in the three models
as 12.06% (GARCH(1, 1)), 11.74% (component) and 12.39% (persistent component).

We now investigate in more detail differences between the models in the modeling of
the standard deviation of the conditional variance, as well as differences in the modeling of
the covariance and correlation between returns and variance. For option valuation, the con-
ditional versions of these quantities and their variation through time are just as important
as the unconditional versions. The conditional versions of return-variance covariance and
variance of variance are computed as follows. For the GARCH(1, 1) model the conditional

variance of variance is

1‘/(1‘7't(/7,1+2) = Ef Ulf,JFQ - Ei [th;,QHQ ( 1.1 6)

= 2a% + 4d°Phyyy

and for the component and persistent component models, the conditional variance of vari-

ance 18
Vardhie) = 2(a + ) 4430 +759) heir. (1.17)

In Figure 8 we use the parameters from Table | to plot the standard deviation of
variance in the three GARCH models. Notice that the standard deviation of variance in
the component model is in general much higher than in the GARCH(1. 1) model and it
is also more volatile. The average level of the conditional standard deviation of variance
in the persistent component is in between that of the other two models. Table 1 gives the

average volatility of variance during 1990-1995 in the row labeled "Average Vol of Var".
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If we think of the option price as being a function of the spot variance, then we can view
variation in the option prices as being driven by the volatility of variance. The volatility
of variance is also related to kurtosis. Figure 8 shows that the component model is able
to generate richer time-varying kurtosis dynamics than the GARCH(1, 1) model and thus
potentially richer option price dynamics.

The conditional covariance between return and variance in the GARCH(1, 1) model

is given by
CO'IJL‘(Rt'H- ht+2) = E [(Rt»kl - By [Rt+1}) (ht+2 — FE; [ht—n])] (1.18)
= k {\/ hip12i41 (GZ?.H — 20¢zep1\/ hey1 — 0)]
= —2achy.

Conditional correlation is easier to interpret than conditional covariance. The conditional

correlation in the GARCH(1. 1) model is

—2e\/h
Corr(Ryoy. iy o) = —eoe¥ 0L (1.19)
\/ 2 + 4(:2ht+l

where we have used the conditional variance of variance from (1.16).

The conditional covariance in the component model is
Cove( Ry higa) = =2 (710 + v99) Ry (1.20)

and the conditional correlation in the component model 1s thus given by
=2 (i + o2 v/ Fres
Corri(Reov, hy o) = O 127 A )
2 2
'\/2 (ot )"+ 4 (0 +79) i

Figure 9 plots the conditional covariance (left panels) and correlation (right panels)

(1.21)

for the three models. The conditional covariance and correlation is clearly more negative
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in the component models than in the GARCH(1, 1) model, and furthermore the component
covariance paths are much more volatile. Table 1 gives the average correlations during
1990-1995 as -79.40% (GARCH(1, 1)), -88.49% (component), and -90.14% (persistent
component).

For the component and persistent component models, we can also compute the con-

ditional correlations between the return and each volatility component separately

=29,/ h
Corry(Ros1, heyo — @ri2) = Wy e (1.22)

V2 +4yThe

' —299v/ e 1
COTTt(Rt—HaQtJrQ) = —2—2H1
V2 +4v5hin

Figure 10 indicates that for both component models, the conditional correlation of the
return with the short-run variance component is on average more negative than the condi-
tional correlation between the return and the long-run variance component. This difference
can be traced to Table I where v, > v, in both models. The correlations with the long-run
factor are relatively more negative in the persistent component mode} whereas the correla-
tions with the short-run factor are relatively more negative in the component model. This
can also be traced back to Table 1 where ~, is larger in the component model than in the
persistent component model; whereas 7, is largest in the persistent component model.

Figure 11 shows the correlation between returns and variances from a ditferent per-
spective. We plot the correlations from (1.19) and (1.21) against levels of the conditional
variance expressed in annual standard deviations. Notice that for all three models the re-
lationship between the level of volatility and the correlation is negative. This is shown by

Jones (2003) to be a desirable feature for option valuation and it is a feature missing in the
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standard Heston (1993) SV model where the correlation is constant. Interestingly, the He-
ston and Nandi (2000) GARCH(1, 1)} model does have this negative relationship as Figure
11 shows. Figure 11 also shows that when fitted on the more general component model,
the return data wants a correlation which is more negative than the simple GARCH(1, 1)
model for all levels of volatility. The differences in correlation are quite large for the most
common levels of volatility.

We conclude from Figures 8-11 that the more flexible component model is capable
of generating not only more flexible term structures of variance, but also more flexible
dynamics for the conditional correlation between returns and variance, and the conditional
variance of variance. These dynamics are critically important for skewness and kurtosis
dynamics which in turn are key for explaining the variation in index options prices. This is

the topic to which we now turn.

1.5.2 Option Valuation Performance

We use a sample of six years of data on S&P 500 call options, for the period 1990-1995.
Following Bakshi, Cao and Chen (1997), we apply standard filters to the data. We only use
Wednesday options data. Wednesday is the day of the week least likely to be a holiday. It
1S also less likely than other days such as Monday and Friday to be affected by day-of-the-
week effects. For those weeks where Wednesday is a holiday, we use the next trading day.
The decision to pick one day every week is to some extent motivated by computational
constraints. Using only Wednesday data allows us to study a fairly long time-series, which

is useful considering the highly persistent volatility processes. An additional motivation for
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using Wednesday data is that following the work of Dumas, Fleming and Whaley (1998),
several studies have used this setup.'®

Table 2 presents descriptive statistics for the options data for 1990-1995 by money-
ness and maturity. Panels A and B indicate that the data are standard. We can observe the
volatility smirk from Panel C and it is clear that the slope of the smirk differs across ma-
turities. Descriptive statistics for different sub-periods (not reported here) demonstrate that
the slope changes over time, but that the smirk is present throughout the sample. The top
panel of Figure 12 gives some indication of the pattern of implied volatility over time. For
the 312 days of options data used in the empirical analysis, we present the average implied
volatility of the options on that day. It is evident from Figure 12 that there is substantial
clustering in implied volatilities. It can also be seen that volatility is higher in the early
part of the sample. The bottom panel of Figure 12 presents a time series for the 30-day
at-the-money volatility (VIX) index from the CBOE for our sample period. A comparison
with the top panel clearly indicates that the options data in our sample are representative
of market conditions, although the time series based on our sample is of course a bit more
noisy due to the presence of options with different moneyness and maturities.

The last row of Table | compares the performance of the four models for option val-
uation. We use the MLE parameter estimates in Table | to compute root mean squared
errors (RMSEs) for the 1990-1995 option sample described above and various subsam-

ples.” The most important conclusion is that the models’ ranking is similar to the ranking

18 See for instance Heston and Nandi {2000).
19 As the pricc of risk parameter, A, is poorly estimated in Table I, and in order to keep the persistence at
unity under both measures in the persistent model, we simply sct A = —0.5 across models. This way the
other parameters are identical under the two mcasures.
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based on the log likelihood. The GARCH(1, 1) model is the worst performer based on
the RMSE, as is the case using the log likelihood criterion, but the persistent component
model achieves the lowest RMSE, followed by the component model-although the differ-
ences between the component and persistent models is much smaller in RMSE terms, than
it were in log likelihood terms.

Table 3 provides additional evidence on the option fit of the three models. We re-
port option RMSE by moneyness and maturity. The top panel reports the RMSE for the
GARCH(1, 1) model, while the two other panels report the ratio of the RMSE for the two
other models to that of the GARCH(1, 1) The improvements of the component models over
the GARCH(1, 1) model are fairly robust across maturity and moneyness. Importantly, the
component models are never much worse than the GARCH(1, 1) model and they fail to im-
prove on the GARCH(1, 1) model only for short term deep-in-the-money call options. This
finding leads us to consider jumps in returns which by way of adding non-normality to the

conditional density may lead to improvements in the valuation of short-term options.

1.5.3 Comparing with a GARCH(1,1)-Jump Model

The Heston-Nandi GARCH(1. 1) model is a useful first benchmark, but it has well-known
empirical biases. These biases are similar to those displayed by the Heston (1993) model.
The continuous-time literature has attempted to unprove the performance of the Heston
(1993) model by adding to it (potentially correlated) jumps in returns and volatility, and
this strategy has been partly successful. Poisson-normal jumps in returns and volatility

improve option valuation when parameters are estimated using historical time series of re-
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turns. When model parameters are estimated using the cross-section of option prices, Pois-
son jumps usually do not lead to improved model fit, but Broadie, Chernov and Johannes
(2004) find evidence of the importance of jumps for option pricing when imposing consis-
tency between the physical and risk-neutral parameters.”® Carr and Wu (2004) and Huang
and Wu (2004) analyze Levy processes and find that they are better able to fit options.

In the discrete-time literature, some studies have attempted to address these model
biases by combining conditional heteroskedasticity with non-normal innovations. This
strategy may seem very different from including jumps in the return process, but both ap-
proaches essentially introduce conditional non-normalities in the return distribution. How-
ever, Christoffersen, Heston and Jacobs (2006) find that inverse Gaussian innovations do
not improve out-of-sample model fit. We therefore use the approach proposed by Duan,
Ritchken and Sun (2005, 2006), which combines the GARCH(1, 1) dynamic with a Poisson
jump process similar to the one used in the continuous-time option valuation literature.?'

We refer to the resulting model as the GARCH(1. 1)-Jump model. The return dy-

namics can be written

hy o 72
Rigy = 7+ Mg+ <Ikoxp<\//1,;.1//+ 7”21 ))—F\/hul.]”_l (1.23)

2
iy = w+bhy+a (J,, —C h,)

where the variance dynamic ), ,, has the atfine structure from Heston and Nandi (2000),

and J; is a standard normal random variable plus a Poisson random sum of normal random

20 For evidence on the importance of Poisson-normal jumps, see for example Andersen, Benzoni and Lund

(2002), Bakshi, Cao and Chen (1997), Bates (1996, 2000), Chernov. Gallant, Ghysels and Tauchen (2003),
Eraker, Johannes and Polson (2003), Eraker (2004) and Pan (2002).

21 See also Maheu and McCurdy (2004).
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variables. In particular,
Ny
Jo=X0+> X7
j=1
with
X~ N(©0,1) and X ~ N (g,7%) forj=1,2,.., N,.

and NV, is the Poisson random variable with constant intensity x. When y = 0, J; is a
standard normal variable.

Duan, Ritchken and Sun (2005, 2006) formulate sufficient conditions to derive a risk-
neutral process for the GARCH(1, 1)-Jump model that takes the same form as (1.23), and
that has the following parameterization A* = —0.5, J; = J,+ %\/h_ﬁ- M hi, ¢ =c+ % + A
Unfortunately, no closed-form solution exists for the GARCH(1, 1)-Jump model so that
option prices must be computed by Monte Carlo simulation.

Table 4 reports the empirical results for the GARCH(1, 1)-Jump model. Panel A
reports the parameter estimates from maximum likelihood estimation on the sample of
daily S&P500 returns used in Table 1. Again, all the parameters except for A are significant.
Notice that the log likelihood value is considerably larger than for the three models in Table
1. The GARCH(1. 1)-Jump model thus gives a good description of the conditional density
for daily S&P500 returns. Notice however, that the Option RMSE for the GARCH(1. 1)-
Jump model is $2.138 which is only marginally better than the $2.236 for GARCH(1. 1)
in Table 1, and much worse than the $1.706 and $1.705 for the component model and
persistent model respectively.

Panel B in Table 4 shows the ratio of the RMSE ot the GARCH(1. 1)-Jump to the

GARCH(1.1) model. The Jump model in general performs close to the GARCH(1.1)
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across moneyness and maturity. The best relative performances is for short term in-the-
money calls (0.897) and the worst is for long term deep in-the-money calls (1.043). Some-
what surprisingly, the GARCH(1, 1)-Jump model outperforms the GARCH(1, 1) model by
a smaller margin for shorter maturities in general than for longer maturities.

The lack of improvement offered by the jump model is surprising. We suspect that
any of the following reasons could be the culprit. First, Poisson jumps may be quantita-
tively more important for short maturity options when combined with a continuous-time
stochastic volatility model than a discrete-time GARCH model, because of the continuous
sample path. Second, Eraker (2004) finds that adding jumps do not improve the out-of-
sample option valuation performance of a standard SV model. The jump parameters may
simply be difficult to estimate reliably—perhaps because they are changing over time. Third,
jumps may improve the likelihood function for daily returns without improving much the
conditional density function for 7-365 day returns that is relevant for option valuation.
Fourth, other specifications of conditional normality may work better than the jump speci-
fication chosen here, but a full investigation of non-normal innovations in GARCH models
is beyond the scope of this paper. Panel B of Table 4 shows strong similarities between
the pricing error patterns of the GARCH(1, 1) and GARCH(1. 1)-Jump models. we will

therefore restrict attention to the conditional normal models in the analysis below.

1.5.4 Analyzing the Option Valuation Performance

It must be emphasized that the component models’ performance is remarkable and to some

extent surprising. First, the GARCH(1, 1) model is a good benchmark which itself has
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a very solid empirical performance (see Heston and Nandi (2000)). The model captures
important stylized facts about option prices such as volatility clustering and the leverage
effect (or equivalently negative skewness). When estimating models from option prices,
Christoffersen and Jacobs (2004) find that GARCH models with richer news impact para-
metrization do not improve the model fit out-of-sample. Christoffersen, Heston and Ja-
cobs (2006) find that a GARCH model with non-normal innovations improves the model’s
fit in-sample and for short out-of-sample horizons, but not for long out-of-sample hori-
zons. Although we do not report the results in the paper, we have also compared the
performance of the GARCH(1, 1) model with the implied Black-Scholes model in Du-
mas, Fleming and Whaley (1998). We confirm the finding of Heston and Nandi (2000)
that the GARCH(1, 1) model outperforms the implied Black-Scholes model out-of-sample.
Furthermore, the analysis in Tables 3 and 4 demonstrates that the component mode] also
provides a better option fit than the GARCH(1, 1) model augmented with Poisson-normal
jumps.

We now provide some more insight behind the improved performance of the com-
ponent models by analyzing the differences across models along three critical dimensions:
the (spot) volatility level, the volatility term structure and the modeling of the smirk. First,
component models may better match the volatility patterns over time. We investigate this
by comparing the differences in the time paths between implied volatilities from the data
and the models. Second, it may be the case that the component models more adequately
capture the term structure of volatility than the GARCH(1. 1) model. We investigate this

by comparing the models’ term structures of implied volatility for at-the-money options.
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Third, it may be the case that the component models better capture the implied volatility
smirk at various maturities. We study the differences between the models in this dimension
for different initial levels of volatility.

Figure 13 presents the average weekly implied volatility bias (average observed mar-
ket implied volatility less average model implied volatility) over the 1990-1995 option sam-
ple, using the MLE estimates from Table 1. Clearly the component models outperform the
GARCH(1, 1) model in this dimension: The GARCH(1, 1) model shows significant under-
pricing (positive bias) during the high volatility episode in 1990-1991 and extended periods
of overpricing (negative bias) during the low volatility period in 1993-1995. In comparison,
the component model has smaller (positive) bias in 1990-1991 and also smaller (negative)
bias in 1993-1995, suggesting that it is much better able to capture the dynamics of market
volatility. The persistent model has the smallest (positive) bias in late 1990 but instead has
significant (negative) bias in early 1990 and in late 1991.

Figure 14 studies the implied volatility term structure for at-the-money options in the
three models. For each model, we use three different levels of initial spot volatility: we
set spot volatility to 1/2, 1 or 2 times the unconditional volatility respectively. We again
use the MLE parameters from Table 1 to compute option prices. The differences between
the models are very pronounced. The critical difference between the models in the term
structure dimension is that in the component model, the initial volatility is much more
important for the valuation of longer maturity options than in the GARCH(1.1) model,
and even more so in the persistent component model. Put differently, in the GARCH(1.1)

model, today’s level of volatility has virtually no impact on the implied volatility for 1-year
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to maturity options. For the component model, the initial volatility has an effect on the
implied volatility for 1-year maturity options, and in the fully persistent model the effect
of initial volatility is as large at the 1-year maturity as it is at short maturities. The three
models are thus fundamentally different along this dimension.

Figure 15 analyzes a third source of differences in fit between the models. For each
of the models, we plot moneyness smirks at three different maturities: 30, 90 and 365 days
to maturity (DTM). Following the exposition in Figure 14, we repeat the analysis for three
different levels of initial volatility. Figure 15 indicates that there are some differences be-
tween the models with respect to their ability to generate steep slopes in the smirk. The
smirk for a one-year option is steeper for the persistent component model than it is for the
GARCH(1,1) model. However, the evidence suggests that the model differences in the
moneyness dimension may be less important than the model differences in the term struc-
ture dimension. In the case of the GARCH(1. 1) model, the smirk is nearly identical for
a one-year option, regardless of the level of initial volatility. For the persistent component
model, the initial volatility level impacts on the level of the smirk, but does not greatly
impact on the slope. The component model falls between these two cases.

We conclude that there are important differences between the GARCH(1. 1), com-
ponent and persistent component model in terms of the path of spot volatility and the term
structure of volatility, but all three models seem to be able to generate volatility smirks at
different maturities. The differences between the models in this dimension seem quantita-

tively less important than differences in the models’ volatility term structures.
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1.6 Estimation Using Option Price Information

So far we have used the option price information only to evaluate the different models.
However, it stands to reason that the observed option prices should be helpful in estimating
the models as well. In this section we therefore implement the GARCH(1, 1), component,
and persistent component model by minimizing the mean squared option valuation error
rather than maximizing the daily return likelihood as we did in Table 1.

To be specific, we obtain parameters by minimizing the dollar mean squared error
1
SMSE = — > (Ch - cMy? | (1.24)
t.i

where CJ, is the market price of option i at time ¢, C}}/ is the model price, and N* =
i N;. T is the total number of days included in the sample and /V; the number of options
t=1

included in the sample at date ¢. The variance dynamic is used to update the variance from
one Wednesday to the next using daily returns and the option valuation formula in (1.15)
is used to compute the model prices on each Wednesday. The volatility updating rule is
applied to the 500 days predating the Wednesday used in the estimation exercise, and it is
initialized at the model’s unconditional variance.

Needless to say, this nonlinear least squares (NLS) estimation techniques is much
more computationally intensive than the simple MLE on returns in Table 1. For each func-
tion evaluation performed by the numerical optimizer. thousands of option prices must be
calculated. The optimizer performs many function evaluations for each parameter update

and consequently it is crucial to be able to compute option prices quickly and reliably. The

pricing formula in (1.15) makes this estimation technique feasible. As we unfortunately
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do not have a closed-form pricing formula for the GARCH(1, 1)-Jump model we do not
consider that model in this section.

Table 5 presents parameter estimates obtained using the 1990-1992 options data and
in-sample RMSEs for the 1990-1992 data, as well as out-of-sample RMSEs using the 1993
data. Note that the shortest maturity is seven days because options with very short maturi-
ties were filtered out. Table 6 presents parameter estimates obtained using options data for
1992-1994, as well as 1992-1994 in-sample and 1995 out-of-sample option RMSEs. Ta-
bles 7-10 present RMSE results by moneyness and maturity for the two in-sample and two
out-of-sample periods.*

In Table 5 we present results for the 1990-1992 period (in-sample) and the 1993 pe-
riod (out-of-sample). The standard errors indicate that almost all parameters are estimated

23

significantly different from zero.”* There are some interesting differences with the para-
meters estimated from returns in Table 1, but the parameters are mostly of the same order
of magnitude. This is also true for critical determinants of the models’ performance, such
as average annual volatility, average volatility of variance and average return correlation.
Note also that the persistence of the short-run components and the long-run components
is not dramatically different from Table 1. The persistence of the GARCH(1, 1) process is
higher than in Table 1 though. In fact. it is interesting to note that the persistence of the

GARCH(1.1) model and the component GARCH model 1s close to one. This of course

motivates the use of the persistent component model, where the persistence is restricted to

22 Notice from the risk-neutral dynamics (1.13)and (1.14) that the parameter X is not separately identified
using option prices. We therefore simply set A = —0.5 and we do not report A in Tables 5-6.

23 The standard errors are again computed using the outer product of the gradient at the optimum.
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be one. Note also that the average correlation between return and volatility is now close to
minus one in all three models.

Table 5 contains two sets of RMSEs. The RMSEs in the leftmost columns (NLS)
are obtained using the parameter values in the Table. In the rightmost column, we report
RMSEs based on parameter values obtained from MLE in Table 1. First consider the RM-
SEs obtained using NLS. In the in-sample 1990-1992 period, the RMSE of the component
model is 89.7% of that of the benchmark GARCH(1, 1) model. For the out-of-sample 1993
period, the ratio of the RMSEs is 76.5%. For the persistent component model, the ratios
are 94.8% and 93.3% respectively. Using the MLE estimates, the relative RMSESs are sim-
ilar for the component model: 84.9% in 1990-1992 and 71.0% in 93. Using the MLE
estimates the persistent models performs relatively worse in 1990-1992 with 113.0% but
better in 1993 with 56.5% of the RMSE for the GARCH(1, 1). Naturally, when compar-
ing across MLE and NLS estimates the RMSEs from NLS are typically much smaller than
those from MLE. The information in option prices is clearly very valuable for estimating
the models. Interestingly, the only example where the RMSE from MLE is close to that of
the NLS counterpart is for the persistent model in the 1993 out-of-sample period.

Table 6 presents the results for the 1992-1994 period (in-sample) and the 1995 period
(out-of-sample). The results largely confirm those obtained in Table 5. The most important
difference is that the in-sample and out-of-sample performance of the component model is
even better relative to the benchmark, as compared with the results in Table 5. When using
NLS estimates component model’s RMSE is 77.3% of that of the GARCH(1. 1) model for

the 1992-1994 in-sample period, and for the 1993 out-of-sample period the ratio 1s 79.2%.
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For the persistent model the ratios are 95.6% and 95.7%. When using MLE estimates the
non-normal model is 76.2% of the GARCH(1, 1) in 1992-1994 and 69.2% in 1995. The
persistent model performs very well relative to the GARCH(1, 1) MLE generating a 70.1%
relative RMSE for 1992-1994 and 45.0% in 1995.

Comparing RMSEs across NLS and MLE parameters, we again find that the option
prices add important information and drive the NLS RMSEs down from their MLE levels.
Interestingly, the only case where the RMSE from MLE comes close to that from NLS is
for the out-of-sample persistent model. Other interesting differences with Table 5 are that
the persistence of the short-run non-normal is much higher, and that the persistence of the
GARCH(1, 1) process in Table 6 is lower than in Table 5 but in line with the MLE estimate
in Table 1.

Tables 7-10 provide a more detailed analysis of moneyness and maturity effects by
presenting RMSE results by moneyness and maturity, using the parameter estimates from
Tables 5 and 6. In each table, Panel A contains the RMSE for the GARCH(1. 1) model.
To facilitate the interpretation of the table, panels B and C contain RMSESs that are normal-
ized by the corresponding RMSE for the GARCH(1, 1) model. It is clear that an overall
RMSE which is not too different across the three models in Tables 5 and 6 can mask large
differences in the models’ performance for a given moneyness/maturity cell. Inspection of
the out-of-sample results in Tables 8 and 10 is especially instructive. We conclude that the
improved out-of-sample performance of the non-normal models is due to the improved val-

uation of long-maturity options. This is an interesting atfirmation of the intuition obtamed
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previously in Figures 1-5 and 14. The richer volatility dynamicé in the non-normal model
enables richer explanations of variations in long-term option prices.

Overall, we conclude that based on the parameter values obtained using NLS, the
performance of the component GARCH model is very impressive. Its RMSE is between
76.5% and 89.7% of the RMSE of the benchmark GARCH(1, 1) model. The performance
of the persistent component model is less impressive, both in-sample and out-of-sample.
However the persistent component model performs relatively well in the out-of-sample
experiments when MLE parameters are used. This suggests that the persistent component
model may be valuable for option valuation in cases where no option price information is

available.

1.7 Conclusion and Directions for Future Work

This paper presents a new option valuation model based on the work by Engle and Lee
(1999) and Heston and Nandi (2000). The empirical performance of the new variance
component model is significantly better than that of the benchmark GARCH(1. 1) model,
in-sample as well as out-of-sample, and regardless of the information used in estimation.
This is an important finding because the literature has demonstrated that it is difficult to find
empirical models that improve on the GARCH(1. 1) model or the Heston (1993) model.
We also compare the component model to a GARCH(1. 1)-Jump model, which combines
conditional heteroskedasticity with Poisson-normal jumps. The GARCH(1. 1)-Jump model
achieves a better statistical fit than the component model in-sample, but the component

model performs far better when using the parameter estimates to fit options.
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An important aspect of the model’s improved performance is that 1ts richer parame-
terization allows for improved joint modeling of long-maturity and short-maturity options.
The model captures the stylized fact that shocks to current conditional volatility impact on
the conditional variance forecast up to a year in the fﬁture, which results in a very different
implied volatility term structure for at-the-money options. The component model also re-
sults in a different path for spot volatility compared to the GARCH(1, 1) model, but in the
moneyness dimension the differences with the GARCH(1, 1) model seem relatively less
important. The component model is also characterized by term structures of skewness and
kurtosis that are very different from those of the GARCH(1. 1) model.

Because the estimated persistence of the model is close to one, we also investigate a
special case of our model in which shocksAto the variance never die out. When estimating
model parameters by maximum likelihood using a historical time series of returns, the
persistent component model is somewhat inferior to the component model when judged by
the likelihood criterion. When ihe MLE parameters are used to price options, the persistent
component model performs similarly to the component model in terms of overall fit. When
model parameters are estimated from option prices, the component model significantly
outperforms the other models both in and out-of-sample. We also find that for a given
model the parameters obtained from historical return data always lead to higher RMSEs
than the parameters directly estimated from option data.

Given the success of the proposed component models, a number of further extensions
to this work are warranted. First, the empirical performance of the model should of course

be validated using other datasets. In particular, it would be interesting to test the model us-
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ing LEAPS data, because the model may excel at modeling long-maturity LEAPS options.
In this regard a direct comparison between component and fractionally integrated volatil-
ity models may be interesting. It could also be useful to combine tﬁe stylized features of
the model with other modeling components that improve option valuation. One interesting
experiment could be to replace the jump innovations considered in this paper by a another
non-Gaussian distribution. Combining the model in this paper with the inverse Gaussian
shock model in Christoffersen, Heston and Jacobs (2006) may be a viable approach. Fi-
nally, in this paper we have proposed a component model that gives a closed form solution
using results from Heston and Nandi (2000) who rely on an affine GARCH model. We be-
lieve that this is a logical first step, but the affine structure of the model may be restrictive in
ways that are not immediately apparent. It may therefore prove worthwhile to investigate

non-affine variance component models.
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1.8 Appendix

1.8.1 MGF of the Component GARCH model

This Appendix derives the moment generating function for the component GARCH process.

The component GARCH process is given by

hoor = G+ B —aq)+a ((Zt - “/1\/E)2 —(1+ ’Y%ht))

i1 = WwHpg+e <(Zt - ’)’2\/F’t)2 -1+ 7§ht)) .

Let z; = In(S;). For convenience we will denote the time ¢ conditional generating function
of St (or equivalently the conditional moment generating function (MGF) of z7) by f;

instead of the more cumbersome f(¢: 7. ¢). By definition
fo = Exlexp(ozr)].

We shall guess that the moment generating function has the log-linear form. We again use

the more parsimonious notation A, to indicate A(t;T. ®).
fr = exp (ox; + Ay + Brahigr = Gen) + BaaGeyr) - (1.26)

We have the terminal condition A, = B, = 0. Applying the law of iterated expectations

to f; we get

fi=E/[fii] = Evexp(oryq + Ay + By pp1(heo — Grio) + BQ,t—HQHQ) .



1.8 Appendix 51

Substituting the dynamics of x; gives

f, = E,exp < (e + 1) + dAhir + Oy herrzen + Avr + B (B2 — gri2)+ )

Bz,t-HQt+2
d(xs +7) + AR + O Mgz + At
= FBexp| Brin (5 (htt1 = Ger1) + o ((zt+1 ~71vhe)? — (1 + 71ht+1

Bt (W + pGep1 + @ <(Zt+1 — Yo/ hev1)? — (14 ’Yzhtﬂ

(e + 1) + pAhy + Ay + By t+15 (hH-l - Qt+1
By ti1(w + pgesr) — (@Brgr1 + @Baia)

. , av1B1t+1+9y9B2.t+1—0.5¢
<aB1’t+1 ™ k‘OBQ"t‘H) <2t+1 N (aBit+1+9B2,¢41)

{01 B1,t+1+973 B2t +1—0.5¢)2
(aB1,t+1+9B2 141) t+1

= E,exp

hH 1

Using the result
1
E [exp(a(z +y)*)] = exp(—§ In(1 — 2z) + 2y?/(1 — 2x))

we get

Oy + 1) + Appr — (@Buagr + ©Bagir)
—1/2In(1 = 20:B1 441 — 20By441) + Bagaw+
Bigi18 (e — Grr) + BQtHPQt+1+

o Brizi 49y Br i1 -0.5¢)°
</\0+ 2 1-2aBy,i+1-29B2.111 ht 1

fi = FEyexp (1.27)

Matching terms in (1.27) and (1.26) gives

At At b1+ rTO — ((}BLh] + L;‘BQ:,_‘,H) — 1/2 In (1 - 2(1317t,+v1 — 2'&,982_};1) + Bgﬂlw
(v, Byti1 + @y Boti1 — ()-5¢)2
1= 2aB) 41 — 20B 141

(o, Bisi1 + @Yo Bori1 — 0.5¢)°
1 - Q(IB]“t,!»] — 2@B2,t+1

Byt = By 3+ Ao+ 2

Boy = DBayiip+ Ao+ 2
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1.8.2 Risk Neutralization of the Component GARHC model

The physical Component GARCH dynamic is given by

1n<5t+1) = ln(St) + 7+ )\ht+1 + 4/ ht~|—lzt+1
~ 2
hit = G+ Bk —a) +a ((z -yvh) - (1 +v?ht)) (1.28)

2
Gtv1 = W+PQt+80<(Zt—’Y2\/7L;) —(14'7%}%)) (1.29)

Under the risk neutral measure, we need E* [S;,1/S;] = exp(r), which requires that

h’l(St,H) = ln(St) +r— 0.5h,t+1 + v/ ht+12:+1-
This implies in turn that

Z:Jrl = Zt41 + (>\ + 05) v ht+1. (130)

We also need to ensure that
Va'l"t (Rt+]) = V(I/I": (Rt—l—l) .

In order to have the same conditional variances under the two measures, we need to have

the same variance innovations under the two measures. Thus we need

2

2
(z, - Y, ht) = (z;k — 'y;"\/h,t) i=1,2
which can be achieved by defining a new risk neutral parameter
Y=y +A+057=12.
Consider the following candidate for the risk-neutral Component GARCH dynamic
¥ . 2 92
hiot = qgua+3 (hh—q)+ao <(;t" -] h,) — (1 +1 /z,)) (1.31)

2
G = wtpgte ((Z: ~ 73 ht) - (1+ 7’32]l1)> (1.32)
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where 2} ~ N(0,1) and the risk neutral parameters are defined as follows

-k

= B+a(i -2+ (3 -73) (1.33)
pro= pra(iP =) +te (-1

For this candidate risk-neutral dynamic to be valid, we have to verify that it is consistent

with (1.28) and (1.29). Using (1.30), (1.33) and (1.32) in (1.31) we get
hipi = w+pg+¢ ((zt - 72\/5)2 —(1+ vght)) + B (hs— @) + ..
« ((zt — 71\/h_t)2 - (1 + ﬁht)>
which is identical to what we get using the physical component GARCH dynamic (1.28)

and (1.29).
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1.9 Figures and Tables

Figure 1. Term Structure of Variance with Low Initial Variance, Component Model Versus
GARCH(1,1). Normalized by Unconditional Variance
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Notes to Figure: In the top panel we plot the variance term structure implied by
the component GARCH and GARCH(1, 1) models for | through 250 days. In the
second and third panel we plot the term structure of the individual components for
the component model. The parameter values are obtained from MLE estimation on
returns in Table 1. The initial value of ¢, is set to 0.750% and the initial value of
hy . is set to 0.502. The initial value for h,.; in the GARCH(1.1) is set to 0.507 as
well. All values are normalized by the unconditional variance 2.
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Figure 2. Term Structure of Variance with High Initial Variance, Component Model
Versus GARCH(1,1). Normalized by Unconditional Variance
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Notes to Figure: In the top panel we plot the variance term structure implied by
the component GARCH and GARCH(1, 1) models for 1 through 250 days. In the
second and third panel we plot the term structure of the individual components for
the component model. The parameter values are obtained from MLE estimation on
returns in Table 1. The initial value of ¢, is set to 1.754° and the initial value of
hyy1 is set to 202, The initial value for /1, in the GARCH(1.1) is set to 202 as well.
All values are normalized by the unconditional variance o?.
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Figure 3. Term Structure Impulse Response to Positive Return Shock (z; = 2),
Component Model Versus GARCH(1,1). Normalized by Unconditional Variance
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Notes to Figure: In the left-hand panels we plot the variance term structure response
toa 2, = 2 shock to the return in the component and GARCH(1, 1) models. For the
component model, the right-hand panels show the response of the individual com-
ponents. The parameter values are obtained from the MLE estimation on returns in
Table 1. The current variance is set equal to the unconditional value. All values are
normalized by the unconditional variance.
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Figure 4. Term Structure Impulse Response to Negative Return Shock (z; = —2),
Component Model Versus GARCH(1,1). Normalized by Unconditional Variance
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Notes to Figure: In the left-hand panels we plot the variance term structure response
toa z, = —2 shock to the return in the component and GARCH(1, 1) models. For
the component model, the right-hand panels show the response of the individual com-
ponents. The parameter values are obtained from the MLE estimation on returns in
Table 1. The current variance is set equal to the unconditional value. All values are

normalized by the unconditional variance.
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Figure 5: Term Structure of Skewness and Kurtosis
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Notes to Figure: We use the numerical derivatives of the log conditional moment gen-
erating function to compute the term structure of skewness and kurtosis in the three
GARCH models. The initial volatility is set to its long run value in the GARCH(1, 1)
and component GARCH models. In the persistent component model the initial volatil-
ity is set to the unconditional volatility from the component model. The parameter
values are obtained from the MLE estimates on returns in Table 1.
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Figure 6. Spot Variance of Component GARCH versus GARCH(1,1)
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Notes to Figure: The left-hand panels plot the variance paths from the component
and GARCH(1.1) models. The right-hand panels plot the individual components.
The parameter values are obtained from MLE estimation on returns in Table 1.
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Figure 7. Spot Variance of Persistent Component Model versus GARCH(1,1)
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Notes to Figure: The left-hand panels plot the variance paths from the persistent com-
ponent (p = 1) and GARCH(1, 1) models. The right-hand panels plot the individual
components. The parameter values are obtained from MLE estimation on returns n
Table 1.
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Figure 8: Conditional Variance of Variance Paths
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Notes to Figure: We plot the conditional variance of next day’s variance as implied by
the GARCH models. The top panel shows the GARCH(1. 1) model, the middle panel
shows the component model and the bottom panel shows the persistent component
model. The scales are identical across panels to facilitate comparison across models.
The parameter values are obtained from the MLE estimates on returns 1n Table 1.
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Figure 9. Conditional Covariance and Correlation
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Notes to Figure: In the left panels we plot the conditional covariance between return
and next-day variance as implied by the GARCH models and in the right panels we
plot the corresponding conditional correlations. The scales are identical across top
and bottom panels in order to facilitate comparison across models. The parameter
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values are obtained from the MLE estimates on returns in Table 1.
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Figure 10. Conditional Correlations between Returns and Volatility Components
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Notes to Figure: In the top row we plot the conditional correlation between return and
the short-run volatility component. In the middle row we plot the conditional corre-
lation between return and the long-run volatility component. In the bottom row we
plot conditional correlation between the short-run and the long-run volatility compo-
nents. The left column shows the component GARCH model and the right column
shows the persistent component model. The parameter estimates are from Table 1.
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Figure 11: Correlation Between Return and Variance as a Function of Volatility Level
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Notes to Figure: The figure shows the conditional correlation between the return
on the underlying index and the daily variance. This conditional correlation is plot-
ted against the level of volatility annualized. The dashed line corresponds to the
GARCH(1, 1), the solid line to the component model and the dash-dots to the persis-
tent component model. The parameter estimates are from Table 1
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Figure 12: Sample Average Weekly Implied Volatility and VIX
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Notes to Figure: The top panel plots the average weekly implied Black-Scholes
volatility for the S&P500 call options in our sample. The bottom panel plots the
VIiX index from the CBOE for comparison.
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Figure 13: Weekly Implied Volatility Bias for At-the-Money Options
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Notes to Figure: Each Wednesday we compute the Black-Scholes implied volatility
for each at-the-money option contract. Options with moneyness (index value over
strike price) between 0.975 and 1.025 are considered at-the-money. The implied
volatility is computed both for the market price and for each model price. We plot the
weekly average difference between the market and model implied volatility. The top
panel shows the GARCH(1. 1) model, the middle panel shows the component model
and the bottom panel shows the persistent component model. The MLE estimates
from Table 1 are used.
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Figure 14: Implied Volatility Term Structures for At-the-Money Options
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Notes to Figure: We compute option prices and then implied annualized Black-
Scholes volatilities from the three GARCH models for at-the-money options. The
time to maturity is on the horizontal axis, and the three lines in each panel corre-
sponds to an initial volatility half the unconditional (bottom line), equal the uncon-
ditional (middle line), and twice the unconditional (top line) volatility. The MLE
estimates from Table 1 are used.
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Figure 15: Implied Volatility Smirks for Various Maturities
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Notes to Figure: We compute option prices and then implied annualized Black-
Scholes volatilities from the three GARCH models for various moneyness, maturity
and initial volatility. The moneyness is on the horizontal axis, each row of panels cor-
responds to a different maturity, and the three lines in each panel correspond to an
initial volatility half the unconditional (bottom line), equal the unconditional (mid-
dle line), and twice the unconditional (top line) volatility. The MLE estimates from
Table 1 are used.
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Parameter
A

w
b
a

o

Ln Likelihood

Pcrsistence

Avcrage Annual Vol
Average Vol of Var

Avcrage Correlation

Option RMSE

Normalized

GARCH(1,1)-Normal

Estimate
2.231E+00
2.101E-17
9.012E-01
3.317E-06
1.276E+02

33,955
(0.9553

0.1206
7.997E-06
-0.7940

2.236
1.000

Std. Error
1.123E+00
1.120E-07
4.678E-03
1.380E-07
8.347E+00

Table 1: MLE Estimates and Properties
Estimation Sample: Daily Returns, 1962-2001

Parameter
A

—

Ln Likelihood

Persistence

Avcrage Annual Vol
Avcrage Vol of Var

Avcrage Correlation

Option RMSE

Normalized

Component GARCH
Estimate Std. Error
2.092E+00 7.729E-01
6.437E-01 2.759E-02
1.580E-06 2.430E-07
4. 151E+02 6.341E+01
6.324E+01 5.300E+00
8.208E-07  7.620E-08
' 2.480E-06  1.160E-07
9.896E-01 9.630E-04
34,102
0.9963
0.1174
1.341E-05
-(.8849
1.706
0.763

Parameter
A

——

a
Y1
Y2

(€}

Ln Likelihood

Persistence

Average Annual Vol
Average Vol of Var

Average Correlation

Option RMSE

Normalized

Persistent Component

Estimate Std. Error
2.017E-07 4316E-01
8.822E-01 9.931E-03
2.057E-06 1.539E-07
2.516E+02 2.237E+01
1.187E+02 1.126E+01
1.187E-07 1.393E-08
7.966E-07 4.599E-08
1.000E+00

34,005

1.0000

0.1239
1.044E-05

-0.9014

1.705
0.763

Notes to Table: We use daily total returns from July 1, 1962 to December 31, 2001 on the S&P500 index to estimate the four models using Maximum
Likelihood. Robust standard errors are calculated from the outer product of the gradient at the optimum parameter values. Persistence refers to the persistence
of the conditional variance as defined in the text. Average Annual Vol refers to the average annualized standard deviation during 1990-95. Average Vol of Var
refers to the average standard deviation of the conditional variance during 1990-95. Average Correlation refers to the average correlation between the return
and the conditional variance during 1990-95. Ln Likelihood refers to the logarithm of the likelihood at the optimal parameter values. Option RMSE refers to
the fit of the models on option prices observed during 1990-95.



Table 2: S&P 500 Index Call Option Data (1990-1995)

Panel A. Number of Call Option Contracts

DTM<20  20<DTM<80 80<DTM<i80 DTM>180 All

S/X<0.975 101 1,884 1,931 1,769 5,685
0.975<5/X<1.00 283 1,272 706 477 2,738
1.00<S/X<1.025 300 1,212 726 526 2,764
1.025<S/X<1.05 261 1,167 654 409 2,491
1.05<S/X<1.075 245 1,039 582 390 2,256
1.075<S/X 549 2,345 1.679 1.245 5,818
All 1,739 8,919 6,278 4,816 21,752

Panel B. Average Call Price

DTM<20  20<DTM<80 80<DTM<180 DTM>180 All

S$/X<0.975 0.88 2.30 6.25 11.94 6.62
0.975<S8/X<1.00 2.29 6.83 15.19 2750 . 1212
1.00<8/X<1.025 8.35 13.60 22.48 34.41 19.32
1.025<S/X<1.05 17.57 22.00 30.11 42.14 26.97
1.05<8/X<1.075 27.11 30.84 38.14 48.83 35.43
1.075<8/X 50.67 32.79 28.99 68.34 37.70
All 24.32 23.66 28.68 36.07 2791

Panel C. Average Implied Volatility from Call Options

DTM<20  20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.1625 0.1269 0.1350 0.1394 0.1342
0.975<S/X<1.00 0.1308 0.1296 0.1449 0.1562 0.1383
1.00<S/X<1.025 0.1527 0.1459 0.1558 0.1606 0.1520
1.025<S5/X<1.05 0.1915 0.1647 0.1665 0.1656 0.1681
1.05<S/X<1.075 0.2433 0.1828 0.1775 0.1739 0.1865
1.075<S/X 0.3897 0.2356 0.1961 0.1868 0.2283
All 0.2434 0.1703 0.1622 0.1607 0.1717

Notes to Table: We use European call options on the S&P500 index. The prices are taken from
quotes within 30 minutes from closing on each Wednesday during the January 1, 1990 to

December 31, 1995 period. The moneyness and maturity filters used by Bakshi, Cao and Chen
(1997) are applied here as well. The implied volatilities are calculated using the Black-Scholes

formula.



Table 3: 1990-1995 RMSE and Ratio RMSE by Moneyness and Maturity
Parameters Estimated from Daily Returns 1962-2001

- Panel A. GARCH(1,1) RMSE

DTM<20 20<DTM=<80 80<DTM<180 DTM>180 All
S/X<0.975 0.454 1.778 3.032 4.155 3.090
0.975<8§/X<1.00  0.671 2.116 - 3.087 3.548 2.603
1.00<S/X<1.025  0.638 1.650 2.574 2.955 2.154
1.025<S§/X<1.05  0.595 1.204 2.099 2.487 1.700
1.05<8/X<1.075  0.735 1.013 1.879 2.227 1.516
1.075<8/X 0.759 1.024 1.424 1.917 1.360
All 0.683 1.503 2.448 3.228 2.236

Panel B. Ratio of Component GARCH to GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM=>180 All

S/X<0.975 0.782 0.684 0.712 - 0.782 0.749
0.975<5/X<1.00 0.788 0.631 0.657 0.739 0.678
1.00<8/X<1.025 0.870 0.655 0.669 0.733 0.691
1.025<5/X<1.05 0.968 0.832 0.744 0.755 0.773
1.05<S/X<1.075 1.043 1.000 0.849 0.800 0.870
1.075<8/X 1.000 1.037 0.974 0.907 0.962
All 0.949 0.750 0.735 0.784 0.763

Panel C. Ratio of Persistent Component to GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.985 0.726 0.774 0.842 0.808
0.975<S/X<1.00 0.978 0.640 0.635 0.722 0.669
1.00<5/X<1.025 0.982 0.672 0.600 0.681 0.653
1.025<5/X<1.05 0.947 0.773 0.613 0.660 0.675
1.05<S5/X<1.075 1.010 0.909 0.663 0.718 0.750
1.075<8/X 1.002 0.981 0.836 0.784 0.856
All 0.990 0.746 0.719 0.796 0.763

Notes to Table: We use the MLE estimates from Table 1 to compute the root mean squared
option valuation error (RMSE) for various moneyness and maturity bins during 1990-1995.
Panel A shows the RMSEs for the GARCH(1,1) model. Panels B and C show the ratio of the
RMSEs of the Component and Persistent Componént models over the RMSE of the
GARCH(1,1) model.



Table 4: GARCH(1,1)-Jump Model
Estimation Sample: Daily Returns, 1962-2001

Panel A. GARCH(1,1)-Jump Parameter ML Estimates

Parameter Estimate Std. Error
A 4.431E-01 1.425E+00
w 9.727E-11 2.179E-10
b 9.082E-01 7.158E-03
a 2.345E-08 5.090E-09
c 1.472E+03 2.175E+02
X 5.790E+00 2.922E-01
i 2.208E-03 3.449E-04
T 1.330E+00 1.202E-01

Ln Likelihood 34,153

Option RMSE 2.138

Panel B. Ratio of the GARCH(1,1)-Jump to GARCH(1,1) RMSE

DTM<20  20<DTM<80 80<DTM<i80 DTM>180 All

S/X<0.975 1.001 0.941 0.946 0.940 0.942
0.975<S/X<1.00 0.978 0.931 0.940 0.937 0.936
1.00<S/X<1.025 0.993 0.928 0.950 0.945 0.943
1.025<5/X<1.05 1.055 0.965 0.974 0.962 0.968
1.05<S/X<1.075 0.897 1.015 1.013 1.011 1.010
1.075<S/X 1.003 1.023 1.036 1.043 1.035
All 0.987 0.953 0.960 0.954 0.956

Notes to Table: In Panel A We use daily total returns from July 1, 1962 to December 31, 2001 on the
S&P500 index to estimate the GARCH(1,1)-Jump models using Maximum Likelihood. Robust
standard errors are calculated from the outer product of the gradient at the optimum parameter values.
In Pabel B we compute the ratio of the option root mean squared error (RMSE) from the
GARCH(1,1)-Jump model to the RMSE of the GARCH(1,1) in Table 3 Panel A.



Table 5: NLS Estimates and Properties
Sample: 1990-1992 (in-sample) 1993 (out-of-sample).

GARCH(1,1) Component GARCH Persistent Component
Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter Estimate Std. Error
w 3.891E-14 3.560E-12 B 7.050E-01 2.565E-01 E 7.201E-01 1.021E-01
b 6.801E-01 3.211E-03 o} 1.770E-06 3.444E-07 ol 1.597E-06 2.279E-06
a 2.666E-07 6.110E-09 Y 5.617E+02 1.494E+02 4 7.481E+02 8.974E+01
c 1.090E+03 5.432E+01 Y2 5.638E+02 1.555E+02 Ya 4.767E+02 1.246E+02
2,424E-07 1.212E-07 o) 5.343E-08 1.345E-08
5.249E-07 3.525E-07 (0] 5.123E-07 1.285E-07
o 9.981E-01 3.519E-03 p 1.000E+00
Persistence 0.9970 Persistence 0.9994 Persistence 1.0000
Average Annual Vol 0.1347 Average Annual Vol 0.1405 Average Annual Vol 0.1431
Average Vol of Var  4.283E-06 Average Vol of Var ~ 1.962E-05 Average Vol of Var  2.197E-05
Average Correlation -0.9967 Average Correlation -0.9876 Average Correlation -0.9914
RMSE (90-92) 1.038 1.896 RMSE (90-92) 0.931 1.609 RMSE (90-92) 0.984 2.143
Normalized 1.000 1.000 Normalized 0.897 0.849 Normalized 0.948 1.130
RMSE (93) 1.284 2.229 RMSE (93) 0.983 1.584 RMSE (93) 1.198 1.260
Normalized 1.000 1.000 Normalized 0.765 0.710 Normalized 0.933 0.565

Notes to Table: We use Wednesday option prices from from January 1, 1990 to December 31, 1992 on the S&P500 index to estimate the three GARCH
models using Nonlincar Least Squares on the valuation errors. Robust standard errors are calculated from the outer product of the gradient at the optimum
parameter values. RMSE refers to the square root of the mean-squared valuation errors. RMSE(in) refers to 1990-1992 and RMSE(out) to 1993. NLS refers
to the model estimated using option data and MLE refers to the model estimated using returns only. Normalized values are divided by the respective RMSE
from GARCH(1,1).



GARCH(L,1)
Parameter Estimate
w 7.521E-16
b 4.694E-01
a 1.936E-06
c S.061E+02
Persistence 0.9654
Average Annual Vol 0.1074
Average Vol of Var  1.423E-05
Average Correlation -0.9701
NLS
RMSE (92-94) 1.107
Normalized 1.000
RMSE (95) 1.227
Normalized 1.000

Std. Error
3.498E-09

1.251E-01
3.986E-07

1.041E+02

MLE
2.000
1.000
2.775
1.000

Table 6: NLS Estimates and Properties
Sample: 1992-1994 (in-sample) 1995 (out-of-sample)

Component GARCH
Parameter Estimate
B 9.297E-01
o 1.808E-06
¥ 5.854E+02
Ya 5.749E+02
® 2.204E-07
0) 2.835E-07
p 9.966E-01
Persistence 0.9998
Average Annual Vol 0.1129
Average Vol of Var  1.838E-05
Average Correlation -0.9781
NLS
RMSE (92-94) 0.855
Normalized 0.773
RMSE (95) 0.972
Normalized 0.792

Std. Error
3.346E-02
1.320E-07

- 2.362E+02

4.025E+02
3.470E-08
1.586E-07
1.277E-03

MLE
1.524
0.762
1.920
0.692

Notes to Table: See notes 1o Table 5. RMSE(in) now refers to 1992-1994 and RMSE(out) to 1995.

Persistent Component

Parameter
(03
Y
Y2

Persistence
Average Annual Vol
Average Vol of Var

Average Correlation

RMSE (92-94)
Normalized
RMSE (95)

Normalized

Estimate Std. Error
9.587E-01 3.821E-05
1.943E-06 1.614E-06
2.589E+02 8.383E+01
2.254E+02 S.063E+02
6.927E-08 1.262E-08
6.971E-07 1.253E-08
1.000E+00

1.0000

0.1082

1.085E-05

-0.9095
NLS MLE
1.058 1.402
0.956 0.701
1.174 1.249
0.957 0.450



Table 7: 1990-1992 (in-sample) RMSE and Ratio RMSE by Moneyness and Maturity

Panel A. GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.437 0.889 1.098 1.276 1.078
0.975<8/X<1.00 0.664 1.054 1.123 1.139 1.054
1.00<S5/X<1.025 0.575 0.956 1.049 0.993 0.956
1.025<5/X<1.05 0.556 0.907 1.030 0.949 0.919
1.05<5/X<1.075 0.687 0.989 1.166 1.112 1.032
1.075<S8/X 0.642 1.075 1.229 1.022 1.079
All 0.610 0.976 1.124 1.151 1.038

Panel B. Ratio of Component GARCH to GARCH(I,I) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

$/X<0.975 0.939 0.816 0.847 0.925 0.873
0.975<S/X<1.00  0.895 0.872 0.923 1.049 0.927
1.00<S$/X<1.025  0.923 0.916 0.955 1.000 0.947
1.025<S/X<1.05  0.872 0.881 0.956 1.063 0.936
1.05<§/X<1.075  0.902 0.849 0.906 1.003 0.902
1.075<5/X 0.971 0.877 0.848 0.949 0.883
All 0.923 0.865 0.883 0.960 0.897

Panel C. Ratio of Persistent Component to GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 - 0.845 0.802 0.898 1.145 0.987
0.975<S/X<1.00  0.833 0.887 0.959 1.194 0.977
1.00<S/X<1.025  0.952 0.927 0.965 1.211 1.003
1.025<S/X<1.05  0.863 0.876 0.932 1.163 0.941
1.05<S/X<1.075  0.878 0.837 0.859 1.061 0.891
1.075<S/X 0.964 0.855 0.810 0951 0.861
All 0.903 0.859 0.891 1.121 0.948

Notes to Table: We use the NLS estimates from Table 5 to compute the root mean squared
option valuation error (RMSE) for various moneyness and maturity bins during 1990-1992.
Panel A shows the RMSEs for the GARCH(1,1) model. Panel B shows the ratio of the
component GARCH RMSEs to the GARCH(1,1) RMSEs from Panel A. Panel C shows the
ratio of the persistence component GARCH RMSEs to the GARCH(1,1) RMSEs.



Table 8: 1993 (out-of-sample) RMSE and Ratio RMSE by Moneyness and Maturity

Panel A. GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM=>180 All

S$/X<0.975 0.289 1.157 1.328 1.944 1.461
0.975<S/X<1.00  0.579 1.511 1.800 2.434 1.631
1.00<8/X<1.025  0.498 1.147 1.460 2.290 1.356
1.025<8/X<1.05  0.593 0.724 1.144 2.014 1.008
1.05<8/X<1.075  0.650 0.654 . 0.834 1.580 0.860
1.075<S8/X 1.147 1.160 0.991 1.402 1.166
All 0.813 1.124 1.258 1.822 1.284

Panel B. Ratio of Component GARCH to GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.717 0.609 0.583 0.509 0.556
0.975<8/X<1.00  0.799 0.673 0.658 0.533 0.644
1.00<8/X<1.025 1.087 0.844 0.754 . 0.589 0.749
1.025<8/X<1.05  0.966 1.076 0.871 0.689 0.883
1.05<8/X<1.075 1.121 1.037 1.039 0.621 0.902
1.075<S/X 0.991 0.971 1.044 0.928 0.977
All 0.994 0.828 0.778 0.652 0.765

Panel C. Ratio of Persistent Component to GARCH(1,1) RMSE

DTM<20  20<DTM<80 80<DTM<180 DTM>180 All

$/X<0.975 0.626 0.547 0.822 1.293 1.028
0.975<S/X<1.00  0.786 0.579 0.678 0.832 0.671
1.00<S/X<1.025 1.060 0.709 0.815 0.754 0.763
1.025<8/X<1.05  0.918 0.995 0.933 0.681 0.876
1.05<8/X<1.075 1.163 1.012 1.252 0.977 1.071
1.075<S/X 0.994 0.994 1.228 1.070 1.068
All 0.994 0.782 0.914 1.079 0.933

Notes to Table: See Table 7. We use the NLS estimates from Table 5 to compute the out-of-
sample root mean squared option valuation error (RMSE) for various moneyness and
maturity bins during 1993.



Table 9: 1992-1994 (in-sample) RMSE and Ratio RMSE by Moneyness and Maturity

Panel A. GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.482 - 0.929 1.095 1.364 1.122
0.975<5/X<1.00 0.988 1.283 1.293 1.398 1.275
1.00<5/X<1.025 0.904 1.212 1.184 1.499 1.228
1.025<5/X<1.05 0.589 0.953 0.999 1.348 1.002
1.05<58/X<1.075 0.786 0.804 0.886 1.549 0.991
1.075<8/X 0.922 0.866 0.857 1.447 1.032
All 0.857 1.009 1.045 1.422 1.107

Panel B. Ratio of Component GARCH to GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S$/X<0.975 0.813 0.641 0.609 0.577 0.604
0.975<S/X<1.00  0.773 0.770 0.728 0.692 0.747
1.00<S/X<1.025  0.866 0.824 0.727 0.628 0.760
1.025<8/X<1.05  0.960 0.818 0.715 0.787 0.790
1.05<8/X<1.075  0.919 0.840 0.716 0.751 0.785
1.075<S/X 0.996 0.952 0.859 0911 0919
All 0.909 0.808 0.717 0.744 0.773

Panel C. Ratio of Persistent Component to GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<I80 DTM=>180 All

S$/X<0.975 0.835 0.920 1.036 1.041 1.010
0.975<8/X<1.00  0.757 0.924 1.054 1.005 0.964
1.00<S/X<1.025  0.791 0.867 0973 0.981 0.918
1.025<8/X<1.05  0.943 0.855 0.949 0.920 0.900
1.05<S/X<1.075  0.994 0.898 0.903 0.774 0.856
1.075<S/X 0.993 1.046 0.964 0.917 0.969
All 0.899 0.927 1.000 0.959 0.956

Notes to Table: See Table 7. We use the NLS estimates from Table 6 to compute the root mean

squared option valuation error (RMSE) for various moneyness and maturity bins during 1992-
1994.



Table 10: 1995 (out-of-sample) RMSE and Ratio RMSE by Moneyness and Maturity

Panel A. GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.387 0.863 1.456 2.456 1.771
0.975<S/X<1.00 0.995 1.175 1.719 2.093 1.546
1.00<S/X<1.025 0.752 1.065 1.514 1.872 1.389
1.025<5/X<1.05 0.538 0.909 1.265 1.450 1.110
1.05<S/X<1.075 0.903 0.617 0.867 1.401 0.896
1.075<S/X 0.644 0.617 0.571 0.964 0.681
All 0.744 0.846 1.187 1.848 1.227

Panel B. Ratio of Component GARCH to GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 1.304 1.185 0.973 0.615 0.757
0.975<5/X<1.00 0.994 0.903 0.755 0.693 0.783
1.00<8/X<1.025 0.839 0.750 0.737 0.651 0.708
1.025<S/X<1.05 1.036 0.748 0.657 0.682 0.705
1.05<S/X<1.075 0.979 0.831 0.767 0.741 0.796
1.075<S/X 1.008 1.077 1.091 0.933 1.026
All 0.978 0.929 0.847 0.670 0.792

Panel C. Ratio of Persistent Component to GARCH(1,1) RMSE

DTM<20 20<DTM<80 80<DTM<180 DTM=>180 All

S/X<0.975 0.674 1.093 0.947 0.683 0.781
0.975<S/X<1.00  0.895 1.072 0.903 0.992 0.985
1.00<S/X<1.025  0.938 0.967 0.961 0.933 0.950
1.025<8/X<1.05  1.105 1.080 0.928 1.040 1.021
1.05<§/X<1.075  1.042 1.325 1.222 0.882 1.092
1.075<8/X 0.903 1.342 1.548 1.140 1.286
All 0.952 1.129 1.016 0.848 0.957

Notes to Table: See Table 7. We use the NLS estimates from Table 6 to compute the out-of-
sample root mean squared option valuation error (RMSE) for various moneyness and
maturity bins during 1995.



Chapter 2
Volatility Components: Affine Restrictions
and Non-normal Innovations

Peter Christoffersen Kris Jacobs Yintian Wang

Abstract

We derive two new GARCH variance component models with non-normal innova-
tions. One of these models has an affine structure and leads to a closed form option
valuation formula. The other model has a non-affine dynamic and option valuation
must be done via Monte Carlo simulation. We provide an empirical comparison of
these two new component models and the respective special cases with normal inno-
vations. We also compare the four component models with the GARCH(1,!) models
which they nest. All eight models are estimated using MLE on S&P500 returns. The
likelihood criterion strongly favors the component models, and favors the non-normal
innovations. The properties of the non-affine models differ significantly from those
of the affine models. When using the estimated parameters for option valuation, we
again find strong support for the component variance specifications, but the support
for the non-normal innovations and the non-affine structures is less convincing.

JEL Classification: G22 G13
Keywords: Volatility, GARCH, Component Model, Affine, Long memory, Option
valuation, Normal
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2.1 Introduction

Following the path-breaking work of Engle (1982) and Bollerslev (1986), GARCH models
have become an ubiquitous toolkit in empirical finance. In this paper we derive and empir-
ically implement two new conditional non-normal GARCH variance combonent models.
The first model builds on Engle and Lee (1999), who use a non-affine variance component
dynamic. We modify the model of Engle and Lee (1999) by modeling the return innova-
tion using a Generalized Error Distribution (GED). This innovation is more general than
the more traditional nom;al innovation, and therefore this new model has the ability to bet-
ter fit the return distribution. Option valuation in this model must be done via Monte Carlo
stmulation. The second new component model follows an affine variance dynamic, and as-
sumes a conditional inverse Gaussian shock distribution as in Christoffersen, Heston and
Jacobs (2004). We derive a closed form option valuation formula for this model. We com-
pare the empirical performance of these two new non-normal component models with the
corresponding special cases characterized by normal innovations. These models are dis-
cussed in Engle and Lee (1999) and Christoffersen, Jacobs and Wang (2005) respectively.
These four component models are also compared with the four GARCH(1,1) models that
they nest. For each of the‘compOnent models, we provide two-way parameter mappings
between the component models and their respective GARCH(2,2) counterparts.

We estimate these eight models using MLE on S&P500 returns. This empirical
comparison allows us to compare the importance of three types of modeling assumptions:
first, the importance of the component structure versus the simpler and more parsimonious

GARCH(1,1) structure; second, the importance of non-normal return innovations; third,
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the importance of the affine structure. The likelihood criterion strongly favors the com-
ponent models in all cases, as well as the non-normal return innovations. Using the MLE
estimates, we characterize key properties of each model, including autocorrelation func-
tions for the squared innovations and conditional leverage and variance of variance paths.
We find important differences between affine and non-affine models, as well as between
GARCH(1,1) and component models and between models with normal and non-normal in-
novations. These results suggest that non-normal innovations and the non-affine structure
provide more flexibility in a parsimonious fashion.

When we use the estimated model parameters for option valuation, we again find
strong support for the component variance specifications, but less support for the non-
normal return innovations and non-affine specifications. These findings are of interest be-
cause they provide a perspective that differs from the available GARCH literature. Many
papers in the literature compare volatility models via mean-squared-error type comparisons
computed from volatility point forecasts and some measure of realized volatility. For a re-
cent example see Hansen and Lunde (2005) and the references therein. Such papers often
find that it is difficult to outperform the simple GARCH(1,1) specification from Bollerslev
(1986). While those studies are clearly important and useful, we proceed instead by com-
paring the suggested volatility models based on their ability to fit observed option prices.
Such a comparison is arguably richer in that it makes use of each model’s entire (risk neu-
tral) conditional density forecast at many horizons corresponding to the maturity of each
option. We believe that the richer model evaluation criterion at least in part explains our

novel empirical findings.
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The literature on GARCH variance component models is rapidly expanding. Compo-
nent GARCH models can be viewed as a convenient way of incorporating long-memory-
like features into a short-memory model, at least for the horizons relevant for option val-
uation. Bollerslev and Mikkelsen (1999) find support for a long-memory GARCH option
valuation model applied to long maturity LEAPs options. We consider options with up to
one-year maturity where the component models are likely to provide good approximations
to true long-memory processes. Maheu (2002) presents Monte-Carlo evidence that a com-
ponent model similar to the ones in this paper can capture long-range volatility dynamics.
Adrian and Rosenberg (2005) demonstrate the relevance of the component volatility struc-
ture for cross-sectional asset pricing. GARCH component vartance models are also related
to the stochastic volatility component models which have received empirical support (see
for example Alizadeh, Brandt and Diebold (2002), Chernov, Gallant, Ghysels and Tauchen
(2003), and Taylor and Xu (1994)).

The remainder of the paper is structured as follows. In Sections 2 and 3 we introduce
two new GARCH component models. Section 2 introduces a non-affine conditional non-
normal GARCH component model, derives a number of its properties, and discusses option
valuation for this component dynamic. Section 3 introduces a new affine conditional in-
verse Gaussian component model and derives the corresponding option valuation formula.
The special cases of conditional normality for these two new models are discussed at the
end of each section. Section 4 presents empirical model comparisons based on maximum
likelthood estimation of returns and root mean squared errors from valuing options on the

S&P500 index. Section 5 concludes.
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2.2 A Non-affine, Non-normal GARCH Component Model

In this section, we build on the work of Engle and Lee (1999) and Duan (1999) to construct
a conditionally non-normal, non-affine component GARCH model that can be used for
option valuation. The non-affine models considered in this section are somewhat more
cumbersome to use in option valuation than the affine models considered in Section 3
below, because they do not allow for a closed-form solution for option prices. However,

non-affine GARCH models may provide a better fit to the option data.

2.2.1 Return Dynamics

We first introduce the benchmark model NGARCH(1,1) option valuation model of Engle

and Ng (1993) used for option valuation by Duan (1995).

S.
R1+1 - ]n é+l =T ‘i“ Ah(,;,.] + \/ ]lt+lzt+l
4

ht+l = w+ Blflt + (llht (Zt - (31)2

where Sy, 1 denotes the underlying asset price, r the risk free rate. A the price of risk, 2, the
1.1.d. return innovation with zero mean and unit variance, and &, , ; the daily variance on day
t+1 which is known at the end of day ¢. Note that we use the risk premium specification of
Heston and Nandi (2000) rather than that of Duan (1995) in order to facilitate comparison

with the affine models in Section 3. Using the unconditional variance equation

w
1“‘?)1 — (3 (1+(%)

2 _
o°=FE (ht-H) -
we can rewrite the conditional variance as

hy1 = o+ b (ht - 02) + ah; ((zf -1) = 2(’1zt)
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where by = by + a1 (1 +c2).

The component NGARCH model is obtained by replacing the constant o2 with a
time-varying long-run component ¢;41. The conditional variance h;,1 now varies around a
long-run component which itself is autoregressive of the first order. Using Greek letters for

component model parameters, we write

hivi = G+ B(he — q0) + ahgvry

Q1 = 02 +p ((It - 0'2) + ©hyva

where v;; = (2 — 1) — 27,2 for i = 1,2 can be viewed as zero-mean innovations to
the volatility components. Henceforth, we denote the component NGARCH model as
NGARCH(C).

Following Duan (1999), we will assume that the 7.7.d. return innovation z; follows
the Generalized Error Distribution (GED) which, after normalizing to get a zero mean and

unit variance, is given by**

v 1,z
j(z;v) = —F———¢€ —=—|=" for0 < v <
g(z;v) SEEy B exp ( QIF)I ) or v < oo

2 %0 (1)

1
where I (.) is the gamma function and ¢ = <—[—(—_,7~> . The parameter v determines

the thickness of the density tails. For » < 2, the density function has a tail fatter than the

normal distribution and vice versa. The innovation z, has a skewness of zero and a kurtosis

of F(r%( ;)(%) A

24 See Hamilton (1994) and Nelson (1991) on the properties of the GED.
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We now derive a number of properties of the NGARCH(C)-GED and NGARCH(1,1)-
GED models that are key for understanding their performance in capturing the salient fea-

tures of speculative returns and in fitting option prices.

2.2.2 Conditional Leverage and Variance of Variance

In order to assess the asymmetric response of volatility to positive versus negative return
shocks, we derive the conditional covariance, Cov; (R, 1, hi,2), and refer to it as the con-
ditional leverage effect. For the NGARCH(1,1)-GED model the conditional leverage effect
is given by

Cov, (Rt—{-ly ht+2) = —2(1101/1?421

For the NGARCH(C)-GED model we get
3/2
C()’Uf (Rf,,H . h/f },2) = -2 ((}i"y'l -+ 99"/"2) h’t+1

Notice that in neither case does the conditional leverage effect depend on the GED distrib-
ution’s tail parameter v.
We define the conditional variance of variance as Var; (hy, o), which in the NGARCH(1,1)-
GED is given by
Var (hey2) = (k(v) = 1+ 4c3) alhl,

where x(v) = %ﬁ%—z In the NGARCH(C)-GED model we get

Var, (hes) = ((5(0) = 1) (0 + )% + 4 (07 +¢7,)°) by
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2.2.3 The Autocorrelation Function for the Squared Innovations

The conditional autocorrelation function (ACF) of the squared GARCH innovation defined
ase?, | = 27, hyy1 parsimoniously captures the models’ volatility memory properties. The

ACEF is defined as

COTTt 5tk17€t(~k =

B \/Vart 5t+1 \/Van EHk) \/Vart (Efﬂ)\/\/art (e2x)

(2.34)

Couy(ef, 1,68,k _ Covy(efy1; herr)

For the NGARCH(1,1)-GED we have

Cov(e2, 1. hipx) = (r(v) = 1) b 2ah?, |, fork > 2
Var, (e7,) = (k(v) — 1) b7,

k
V(”"f 5 Z bk 1 “1 )_1+4(1) Ey (ht2+1 1)

(k (: ) =1 (0 (T—0571) + blfflhtﬂ)?
with the expected future variance given by
Ei(hyyp 1) = o2+ 02 (heyy — 07)
The ACF for the NGARCH(C)-GED model can be obtained using

Cove(el, 1 he k) = (k(v) = 1) (B P+ pF 20)R7,

Var, (5?“) = (k(v) = 1) by
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i c—1 2 —1 -1 2
Var, (ef,4) = 3 __>_ ( (v) = 1) 3k a+pf ) +4 ([31‘ ayy + ot ©72) ) Ehiii
- - _ 2
+ "9(7/') —- 1) ((7 (1 - Pk 1) + Pk 1Qt+1 + /3k l(hl‘-H - Qt+1))

where the expected future variance is now given by

Ey (hevio1) = 0 + B2 (huyt = qe1) + 0572 (gea — 0°)

2.2.4 GARCH(2,2) Mappings

Engle and Lee (1999) demonstrate that component GARCH models can be rewritten as
GARCH(2,2) models. In order to better understand the component GARCH model, we
investigate this relationship in more detail. The component model can be mapped into a

GARCH(2,2) as follows

h1+1 - u -+ B]ht + thtﬁl + alht (Zt — (31)2 + a2ht7—1 (Z,,l — C2)2

where
2
. . ayy + @y aq+¢7
b1:/)+j-n—t,9——_—< ik +9/ 2 ay = +¢ (71:—1+Y2
o %) Q 9
= (pary + 3oy - ﬂma:- P22
by = —pBtpat Bp ay=—(pa+Bp) =0T

pov -k 3 pa+ Fe
and w = (1 — p)o?(1 — 3).

This mapping was provided in Engle and Lee (1999). We also provide the reverse

mapping where the component parameters are solved as a function of the GARCH(2,2)

parameters, as follows

—~ as + a3 ~Bgey — apey — Beep — a e
B+ p alp r 3)
1 ag + ayp apcy + ppey + Beca + apey
p:~<b +\/A) P= gy =
P st+p ’ e(p—53)
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where A = —b? — 4b,. Notice that 8 and p are the inverse of the roots of
1—bL—bL*

which implies that by imposing 3 < 1 and p < 1, the necessary conditions for stationarity
and non-negativity are imposed.

The relationship between the component GARCH model and the GARCH(2,2) model
deserves further discussion. The mappings above imply that the component model can be
viewed as a GARCH(2,2) model with nonlinear parameter restrictions. These restrictions
yield the component structure, which enables interpretation of the model as having a po-
tentially persistent long-run component and a rapidly mean-reverting short-run component.

In our empirical work we will demonstrate that the component model significantly
outperforms the GARCH(1,1) model. Given the relationship between the component
mode] and the GARCH(2,2) model, one may wonder about this result, because it is well-
known that it is difficult to outperform a GARCH(1,1) model in standard volatility forecast-
ing comparisons (see for instance the results in Hansen and Lunde (2005) and the references
therein). However, our main metric of comparison is option valuation, which makes use of
the entire (risk neutral) conditional distribution (at many horizons) implied by the GARCH
model and not just the conditional variance. Component models may thus produce condi-
tional risk neutral density forecasts that are superior to the GARCH(1.1) model even 1f the
conditional variance forecasts are rather similar.

There are also some rather subtle but potentially important explanations for why the
empirical performance of the component model might differ from that of a GARCH(2,2)

model. In the GARCH(2,2) model, the stationarity requirements are quite complicated, but
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in the component model we simply need 8 < 1 and p < 1. The component structure also
restricts the roots in the implied GARCH(2,2) model to be real, which turns out to be one
of the necessary conditions for non-negativity, as illustrated in Nelson and Cao (1992). The
component mode] structure is therefore much easier to implement from the point of view of
finding reasonable starting values and enforcing stationarity and non-negativity of variance
in estimation. This may result in better performance of the component model. Another
(related) explanation can be seen by thinking of the component model as a GARCH(2,2)
model with nonlinear parameter restrictions. It is well-known that such restrictions may

improve the performance out-of-sample if they describe salient features of the data.

2.2.5 Risk Neutralization and Option Valuation

Given the mappings between the component model and GARCH(2,2) model, the most
straightforward approach to risk neutralization and option valuation is to use the risk neu-
tralization for the GARCH(2,2) model. Duan (1999) derives a Generalized Local Risk
Neutral Valuation Relationship, under which the risk-neutral NGARCH(2,2) process can

be written as

nS;: = InS;+r—1In {E: (exp <\/h,,HG'1 {(I) (zf*,l) z}))} +V/hinG ! [<I> (z,f,},l) ;71]

hevi = w+ brhy + bahy 1 + arhy (G @ (2)) ] ('1)2 + ol 4 (G’" ! [CD (:fl) ;’U] - (32)2

where z;,, is a standard normal random variable under the risk neutral measure, G~ [.; v]
is the inverse CDF of the GED distribution, and ® is the standard normal CDF. This risk
neutralization involves a slight approximation which is suggested by Duan (1999) to speed

up the computation. See Duan (1999) for the details.
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The European call option price is calculated by Monte Carlo, simulating the above
risk-neutral process and computing the sample analogue of the discounted risk neutral ex-

pectation

C = e "I IEMax(Sy — K,0)]

2.2.6 The Conditional Normal Special Case

In the empirical section below, we also consider the special case of the standard normal
o . (32 :
distribution, which corresponds to v = 2, which gives ;(3)2“ = 3. In this case the

conditional variance of variance in the GARCHY(1,1) case simplifies to
Var, (hyy2) = (2+4c7) athi,,

We refer to this model as the NGARCH(1,1)-N. We refer to the component model with a

normal innovation as NGARCH(C)-N, and we get

Var, (hi2) = (2 (o + 99)2 +4 (ay, + 9972)2) h?—rl
Cov (Rey1,hey2) = =2(a7y + 9732) }1;‘/121

In the normal case the risk neutral dynamics are
' 1 .
hlS[Jr,l :hlSi—FTA 5]?,*] + 4/ ]‘IH,IZ;;’I
_ _ 1 2
heyy = w+bihy +bohy |+ ah, (*,‘ — ¢ - </\ + E) \/h,> + ...
1 2
Gth,] <Z:w1 — Cy — ()\ + 5) \/ llf..])

Notice that in the normal case there is a simple mapping from physical to risk neutral

innovations: z; = z, + (A + 0.5) v/h;. Such a simple relationship is not available in the
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GED case above. See Duan (1995) for the details of risk neutralization in the conditional

normal GARCH model.?

2.3 An Affine, Non-Normal GARCH Component Model

The affine Inverse Gaussian GARCH(1,1) model (hencetforth AGARCH(1,1)-1G) was first
proposed by Christoffersen, Heston and Jacobs (2005) (henceforth CHIJ). The model allows
for conditional skewness as well as conditional heteroskedasticity and a leverage effect,
which provides flexibility to capture moneyness effects for short-term as well as long-.
term options. We now develop an affine component AGARCH(C)-1G model and derive a

number of useful properties of the model including a closed-form option valuation formula.

2.3.1 Return Dynamics

The AGARCH(1,1)-1G model can be written as

St
ln< él) = r+ Mg+ vV, where
t

=

Zt —, Yt ~ 1G ((5,‘) and
Vhe/n
- h?
hegr = w-+bihy + gy + ag—
Ut
9 5 hy hf 9 4
= o’ 4 b (h—0%) +a yo—— | ta | ——hn -7
' n Yi
w+ an?

. . c . . .
with b; = b + —; +an’and 0% = . The innovation ¥, has an Inverse Gaussian
7

1“])1

distribution with degrees of freedom parameter §, = Z¢ and the variance innovation term

= 2

25 See also Amin and Ng (1993). See Brennan (1979), Camara (2003), Rubinstein (1976) and Schroder
(2004) for option valuation in discrete time for the constant volatility case.
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< Yt — %) + a3 (j h? —n > has a conditional mean equal to zero. If n is nega-

tive then stock returns display negative conditional skewness. We refer to CHJ for further
discussion of the Inverse Gaussian process.
Employing a similar reparameterization as in the NGARCH(C)-GED model and gen-

eralizing 02 to q,.,1, the component AGARCH(C)-IG is defined as
hisi = Q1+ Blhe — @) +v1s
g1 = 0"+ p (@ —0%) + vy

where vy ; = ¥, (yf - %)Jra ( —hn? -7 ) and vy ; = 7, <yt — %) +¢ <’li — he? — 7;4) )

n Yt

2.3.2 Conditional Leverage and Variance of Variance

The conditional variance of variance and the conditional leverage effect for the AGARCH(1,1)-

1G model can be derived as
2
Vary (hye) = 2a27}8 + (—; - 2772(1,101 + afns) Riya
Covy (Rt-rl;htw) = <‘“ -7 (11> hi 1

The conditional variance of variance and the conditional leverage effect for the AGARCH(C)-
1G are
Vary (he) = (a+@) 2%+
2 6 2 1 )
(a+@) "+ (v +72) 7_]‘2‘ =2{a+¢) (11 )0 ) b

C()/{,‘f (RHVI- /lf ,,2) = (('}1 + ";2) ;} - ((l + L,?) 7]3) h‘H*l
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2.3.3 The Autocorrelation Function for the Squared Innovations

We now provide results related to the autocorrelation function (2.34) for the AGARCH(1,1)-

1G and AGARCH(C)-IG models. For the AGARCH(1,1)-1G model we can derive

Covt(EfH, hepe) = b2 (301 — am“) hiy1

2
Var, (e2,,) = ((15 7 +3> —1) h2,,

hea

and the expected future variance is
Et [hH—k‘—l] = (72 + blf;Q(hH#l — 0'2)
For the AGARCH(C)-IG we have

Covi(el, 1, hepr) = 2 (37, - a774) By + pF2 (37, — ;,:774))h, i

2
vari(e) = ( (157 +3) -1) 2,

and the expected future variance 1s

Ei (heyker) = 0%+ By = qry) + 082 (41 - 0'2)

However, due to the fact that y, appears in the denominator in the variance dynamics, a
closed form solution for the conditional variance of the A-period-ahead squared innovation

is not available. We therefore compute Var, (E?HC) for £ > 1 by simulation in both models.

2.3.4 GARCH(2,2) Mappings

The AGARCH(C)-IG model can be mapped into the AGARCH(2,2)-1G

- - h? h?
hiv1 = w -+ bihy + bohyy + iy + a1 + caypo1 + ap— .
Yt Y1
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where
- 7 +fy
by=p 6__1_._.2_(a+(p)2772 a; =oa+ e C1 =71+ 7

P11t B, B%

—pB+———=+(ap+B)n* ax=—pa—Lp cr=—py, — By

andw = (1 — p)o? (1 — B) + (pa + By — a — @) n*. The reverse mapping is

B _axt a3 B co+ 18
B=3(n-VA) o= s

ag + a1p Co+1p
p:%<b1+\/Z) =g ; 72:—ﬁ

where A = by + 1/b? + 4b,. Therefore, 3 and p are the inverse of the roots of
1= b L~ bL?

which again implies that by restricting 3 < 1 and p < 1, the necessary conditions for

stationarity and non-negativity are imposed.

2.3.5 Risk Neutralization and Option Valuation

Relying on the mappings above, we once again limit ourselves to discussing risk neutral-
ization and option valuation for the AGARCH(2,2)-1G model, from which everything else
follows as a special case. Under the risk neutral measure, the AGARCH(2,2)-1G dynamic

is given by

ln(StH) = In(S)+r+Xhi+ 20V

3
* - -2
Zf — 4fH 4

hiy, = 7+ byhy + bohy. Ay oy T ad— +ay
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where 02 = 0?2 w* = 02 (1= by — by) — (a +a3) 0%, by = RIIPZ, yr =
yll L, ot = T2, 0 = 0117572, ¢ = el1%2, af = aolI™%2 X" = MI7%2 5" =
X (14 0.53%%) ", and TT = ().

Given the risk-neutral dynamics, option valuation is relatively straightforward. We
use the result of Heston and Nandi (2000) that at time ¢, a European call option with strike

price K that expires at time 7" is worth

C = e " T VENMax(Sr — K, 0)]
1 et e K@t Trio + 1
= St<—+F - / RQ{‘ f( 2@+ )]d¢)>_
0

2 10
> K@t T
Ke 11 <1 + l/ Re {K / ,(2" 1 )} (1@5)
2 i

where f*(t,T;1¢) is the conditional characteristic function of the logarithm of the spot
price under the risk neutral measure. Christoftersen. Heston, and Jacobs (2004) provide
the moment generating function for the AGARCH(1.1)-1G model; here we provide the
result for the higher order model.

First, let f; (¢) denote the conditional generating function of the asset price f; (¢) =
E, {S‘f} , which is also the moment generating function of the logarithm of S7.. In Appendix

A we show that the generating function for the AGARCH(2,2)-1G model takes the form

h2
fi (¢) = exp (Q-Tt + Ay + Bihy + Crhypy + Dy + D2.t—f>

Yt
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where z; = In (S;). The coefficients { A;, B;, Ct, D14, D2, } depend on the parameters of

the model. Appendix A shows that the coefficients in the moment generating functions are

2
, 7
Ay =Aq +or + Copqw +1In
' " V1t = 2(Craar + Dagpr)

C, = <¢X + Byt + CtHBl) .

(7172 + 1) \/7'}‘ 4 —2(Cyray + th»+1)\/1 = 2(¢n + Cprc1 + Digsa)

B, = Cii1bo Dl,t =}y +1C2 D?,t = Ct-+—1(12

where A = \ — n~! and where we have the terminal conditions Ay = By = Cr = Dy 1 =

Dog = 0.

2.3.6 The Conditional Normal Limiting Case

Christoffersen, Heston and Jacobs (2004) show that as 7) approaches zero, the AGARCH(1,1)-
1G model converges to the conditionally normal affine GARCH(1,1) model in Heston and
Nandi (2000). We refer to the latter model as AGARCH(1,1)-N in this paper. We now
derive a corresponding result for the component IG model derived above, showing that it
converges to the conditionally normal affine component GARCH model in Chapter 1 as 7

approaches zero. We refer to the latter model as AGARCH(C)-N.
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1 . 1 .
We first write — as and then do a Taylor expansion of the term %1

ve 5t<§5&—1+1) 8¢
around zero. This changes the short-run and long-run components into

h
hey1 = ¢+ Bhi+7 (yt - #)

hi Yt Yt 2 Yt ’
i1 E -1 -1 O+ -1 — by —
({1 () () v (1) )
2
y 1—(%—1)+(g—;—1) +
Gr1 = 0+ p(q—0%) +7, <yt_;)+99 8 O(.&ﬂ_l)g
| | ’“ht772-7l4

. h . )
Then we substitute Y _ 1= —,0, = —;, and we reparameterize the model using
n

g Vo,

where superscript N denotes the parameter from the conditional normal component model.
This gives a quadratic function of 2, that exactly matches the AGARCH(C)-N component

model in Chapter |

hvr = o+ 3 —q)+a ((33 - 1) - 271@%)

Gri1 = o’ + P (q, — 02) + ((2,2 - 1) — 27, h,,zt)

plus two cubic remainder terms

ahy z an : ohy 23 N .
— 0|25 | = O (z} d oL ) =ZLo(:}
7 (5;*/"-’) 0 G SO\ Gn ) = a0 )

For a fixed h,, these remainders vanish as n approaches zero. Thus the AGARCH(C)-1G

converges to the affine normal component model. By letting 17 go to zero, the skewness dis-
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appears and the affine Inverse Gaussian component model converges to the affine Normal

component model.

2.3.7 Properties of the Affine Normal Component Model

Many useful properties of the AGARCH(C)-N and AGARCH(1,1)-N models are derived
in Chapter 1 and Heston and Nandi (2000). Here we briefly report the autocorrelation

function and GARCH(2,2) mappings. The ACF (2.34) can be computed using

C'ovt(sfH, hek) = 205 2a1he
Var (5t2,+1) = 2h‘t2+1
k ) 2(1 _ ¢ 1-pf ! ’
Var, (e2,) = %Z (077) 632 + 4T By (Ruyioa)) + 2 ( ("1~ )lb)kﬁ;ll) 6 T >
i=2 1

and where the expected future variance 1s
Ey(hiyx1) = 02 + b5 2 (hygy — o)
The AGARCH(C)-N has the following ACF

Covy(e}, 1 hisy) = 2055 20 + pF 2oV hy gy

Var, (EfQ{l> = 2}"12471

—

Var, (s7,,) = 3 <‘2 (3 o+ pf 'Qp)Q +4 (85 ay, + o ’9072)2 Ey (I 1))

]

2

7

+ (02 (1 - Pkiil) + /)k;l(ItAH + /3k*l(/lt+1 - f11,+1))‘2

where the expected future variance is

Er(hergen) = 02 4 35 2 (higy — quer) + 077 (g — 07)
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The AGARCH(C)-N can be mapped into an AGARCH(2,2)-N as follows

I ayy -+ 2 a + Yo
blz(p+ﬁ)_<’71a¢72) 4=t clzvlawf
1 1
= ay, + a+
py — (P01 + Bey) CpB = —(potBp) o= - ary
[22)] Q9
and w = (w — ) (1 — B) — a(1 — p) . The reverse mapping is
b2 +4darb, 2 b — afic; — Pec
,Bz%(bl—\/Z) a:al—al 1 T 4aby 202 + 410y %Zﬂcpcfrapcg afic; — PBocy
2 2bA 2b\/Z afp _35)
+4a1be 209+ a1by apey + pecy — Becs — apes
=1 (b +\/Z) = = + =
P=3 ( : v 24 2v/A 2 )

where A = b? + 4b,. Notice again that the solutions for 5 and p above are the roots of the
polynomial Y2 — b)Y — by. Therefore, 8 < 1 and p < 1 are required for the variance to be
stationary in the GARCH(2,2).

Option valuation can be done as in kthe AGARCH-1G model. The MGF for the
AGARCH(2,2)-N model is shown in Appendix B, which corrects some typos in Heston

and Nandi (2000).

2.4 Empirical Results

This section presents the empirical results. We use MLE on a long time series of S&P500

return data to estimate the eight models discussed above: NGARCH(1.1)-GED, NGARCH(C)-
GED, NGARCH(1,1)-N, NGARCH(C)-N, AGARCH(1,1)-1G, AGARCH(C)-1G. AGARCH(1,1)-
N and AGARCH(C)-N. We discuss the parameter estimates and their implications for the
salient properties of the models. The eight models allow us to make three types of com-
parisons: component models versus GARCH(1,1) models;_ affine models versus non-affine

models; and non-normal innovations versus normal innovations. Subsequently we intro-
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duce the options data. We use each of our eight models to price the option contracts and we

compare model and market prices for various maturities, strike prices, and sample years.

2.4.1 Parameter Estimates on Daily Return Data

Table 1 presents the Maximum Likelihood estimation results obtained using daily returns
data from July 1, 1962 through December 31, 2001. The returns data were obtained from
CRSP. Standard errors are calculated from the outer product of the gradient and are given
in parentheses. Table 1 reports the physical conditional variance parameters as well as the
price of risk, A. We use variance targeting for all models, we use variance targeting, forcing
the annualized return standard deviation to be 14.7%. This technique fixes the parameter w
in each model, and we therefore do not report on w in Table 1.

We first note from Table 1 that the price of risk, A. is positive and significant in all
models-although only marginally so in the case of AGARCH(1,1)-N. Next. notice that by,
the variance persistence in the GARCH(1,1) models, is close to one in all four models.
The fourth row from the bottom reports the overall variance persistence in the component
models, p + 3 (1 — p), as well as b; for the GARCH(1,1) models. Notice that while the
GARCH(1,1) models have high persistence, for each corresponding component model the
persistence is even higher. The very large component variance persistence is driven by a
large long-run component persistence p, plus the contribution from ((1 — p) times) the less
persistent short-run component f3.

In the GARCH(1,1) model the conditional leverage is driven by ;. which as expected

is significantly positive in all cases. In the component models, the conditional leverage
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effect is driven by a combination of -y, and -y,, which are both significantly positive in
all four component models. Thus, both the long-run and short-run components contribute
to the overall leverage effect with the expected sign. The unconditional leverage effects
are reported in the second row from the bottom. They are all negative, as expected. The
results show that for each set of models, the component model displays a more pronounced
leverage effect than the corresponding GARCH(1,1).

The variance of variance is driven mainly by the a; parameter in the GARCH(1,1)
models and by the o and ¢ parameters in the component models. The overall unconditional
variance of variance is reported in the third row from the bottom. Notice again that in each
case the component model displays a larger variance of variance than its GARCH(1,1)
counterpart. Thus three important empirical regularities emerge when comparing compo-
nent models to their GARCH(1,1) counterparts: The component models allow us to (si-
multaneously) capture a larger variance persistence, a larger leverage effect, and a larger
variance of variance than their GARCH(1,1) counterparts. Finally, Table I also presents
standard likelihood ratio tests of the component model versus the corresponding nested
GARCH(1,1) model. As the reported p-values show, each GARCH(1,1) model 1s strongly

rejected in favor of the corresponding component model in all cases.

2.4.2 Dynamic Model Properties

In order to explore the models further, Figure | plots the conditional variances for the
period 1989-2001. This period includes the dates for the option valuation exercise we

present in Section 4.4. Recall that each model is estimated forcing the annual standard
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deviation to be 14.7%, corresponding to an unconditional variance per day of 8.5750E —
005. Notice that the conditional variance patterns across the four GARCH(1,1) models in
the left column and the corresponding four component models in the right column display
some similarities. The models all capture the low variance during the equity market run-up
in 1993-1998, preceded by higher volatility during the first Gulf war and the 1990-1991
recession. The LTCM and Russia debacles in the fall of 1998 are evident, as is the higher
volatility during the dot-com bust in the later part of the sample.

However, Figure 1 also reveals some important differences between models. The
non-affine models (in the two top rows) appear to display much more variation in the
conditional variance during the more recent period than do the two affine models (in the
bottom two rows). This difference is also evident in Figure 2 which plots the long-run
variance component, ¢;,1 (left column) and short-run variance component, hepy — Gepa
(right-column) for the four component models. The non-affine components appear to be
more variable than the affine components, both in the case of the long-run and short-run
components. This is again particularly evident during the 1998-2001 period.

We plot the conditional variance of variance path, Var, (h;») for each of the eight
models in Figure 3. Figure 3 confirms the findings in Figures 1 and 2. The non-affine
models in the two top rows of Figure 3 display a much larger variance of variance than the
two affine models in the bottom two panels. This is true for both the GARCH(1,1) models
in the left column and the component models in the right column.

Figure 4 plots the conditional leverage path. C'or, (17, 1. h¢ o) for each of the eight

models we consider. The left-hand column contains the single component GARCH(1,1)
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models and the right-hand column contains the component models. Notice that in each case
the component model has a larger (more negative) and more variable leverage effect than
the corresponding GARCH(1,1) model. This is particularly true for the two affine models
and the NGARCH-GED, and less so for the NGARCH model. The large discrepancy in
the leverage effect between the NGARCH(1,1)-GED and the NGARCH(1,1)-N may seem
puzzling. It is however confirmed by the much larger ¢; parameter in the latter model in
Table 1.

While Figures 1-4 depict various aspects of the dynamics of the one-day ahead condi-
tional distribution, Figure 5 captures the properties of the variance dynamics across longer
horizons. We plot the conditional autocorrelation function of the squared innovations,
Corry(e?,1.€2,,) across k = 1,....250 days for each of the eight models we consider.
The top-left panel contains the non-affine GARCH model with GED shocks, the top-right
panel depicts the non-affine GARCH model with normal innovations, the bottom-left panel
represents the affine GARCH with inverse Gaussian shocks and the bottom-right panel con-
tains the affine GARCH model with normal shocks. Each panel contains the component
GARCH (solid line) and the GARCH(1,1) (dashed line) model. The conditional variance
is set equal to the unconditional sample variance for all models, and the parameters are the
MLE estimates reported in Table 1.

For each of the four pairwise comparisons, the autocorrelation function for the com-
ponent model is below that of the GARCH(1,1) model for short horizons but above it for
longer horizons. In this sense, the component model displays long-memory like features.

While both the GARCH(1,1) and the component models are truly short-memory exponen-
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tially decaying models, the dynamic properties of the component models are similar to
those of long-memory models for the horizons we care about for option valuation, namely
1-250 trading days. Another interesting observation from Figure 5 is that the non-affine
models in the top two panels have larger autocorrelations than the two affine models in the
bottom row. This difference may have important implications for the valuation of long-

maturity options. We now turn to an option valuation exercise to investigate this further.

2.4.3 Option Data and Valuation Methodology

We use six years of S&P 500 call option data covering the period 1990-1995. Starting
from the raw data from the Berkeley Option data base, we apply standard filters following
Bakshi, Cao and Chen (1997). We only use options with more than seven days to maturity.
We also only use Wednesday options data. Wednesday is the day of the week least likely
to be a holiday. It is also less likely than other days such as Monday and Friday to be
affected by day-of-the-week effects. If Wednesday is a holiday, we use the next trading
day. Using only Wednesday data allows us to study a fairly long time-series, which is
useful considering the highly persistent volatility processes.

Table 2 presents descriptive statistics for the options data for 1990-1995 by money-
ness and maturity. Panel A reports the number of contracts available after filtering. Our
sample consists of 21,752 options with a wide range of moneyness and maturity. Panel B
shows the average call price in each of the bins in Panel A. Quite predictably, the average
price increases significantly as the moneyness increases (moving down the rows) and as

maturity increases (moving from left to right). The average overall price is $27.91.



2.4 Empirical Results 95

In Panel C of Table 2 we report the average Black-Scholes implied volatility for the
option contracts in each bin. Panel C clearly documents the volatility smirk evident in
quoted equity index option prices. The average implied volatility tends to increase as we
move down the rows in each column of Panel C. The effect is most dramatic for the short
maturities in the lefti-hand columns. This empirical regularity illustrates that the Black-
Scholes option valuation formula, which assumes a constant per period volatility across
time, maturity and strike prices, will result in systematic pricing errors, which motivates
the use of stochastic volatility and GARCH models for option valuation.

When calculating option prices according to the eight GARCH models, we use the
MLE parameters in Table 1 transformed to the risk neutral measure. These risk-neutral
parameters as well as the conditional variance paths from Figure 1 are used as inputs into
the option pricing formula. In the case of the non-affine models, the formula requires Monte
Carlo simulation to calculate the price, whereas in the case of the affine models numerical

integration is used.

2.4.4 Option Valuation Results

The overall RM SE's for the eight GARCH model are reported in the last row of Table 1.

The RMSE is computed as

_ I «— N
e - [L T @y
Tt :
where N is equal to 21,752, the total number of option contracts in the sample.

The results in Table 1 allow us to make three types of comparisons. We first fo-

cus on the performance of the component models versus the GARCH(1,1) models. Most
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importantly, note that the best overall model (i.e. the one with the lowest RMSE) is the
NGARCH(C)-GED. Moreover, for each of the four pairwise comparisons, the RMSE of
the component model is much lower than the RM SE of the corresponding GARCH(1,1)
model. The differences are large, ranging from a 21% improvement in the AGARCH-IG
case (1.705 versus 2.162) to a 38% improvement in the NGARCH-N case (1.466 versus
2.356).

The second comparison is between models with normal and non-normal innovations.
In this case, the differences are smaller but systematic. The NGARCH-GED improves on
the NGARCH-N model by 13% in the GARCH(1,1) case and by 1% in the component
case. The AGARCH-IG improves on the AGARCH-N by 7% in the GARCH(1,1) case and
6% 1n the component case.

The third comparison is between affine and non-affine models.”® The RMSE of the
best non-affine model (the component NGARCH-GED) is 14% lower than that of the best
affine model (the component AGARCH-IG). When conducting pairwise comparisons, the
non-affine models generally have lower M SE's than their affine counterparts. The only
exception is the NGARCH(1,1)-N which has a slightly larger A/ SE than the correspond-
ing AGARCH(1,1)-N.

Table 3 provides more detail on the option valuation results. In Panel A we report
the RATSE for each of six moneyness bins, where the A/ SE has been divided by the
average market option price for that bin (from Table 2, Panel B). Looking across the rows

of Panel A, we see that in each row but one, the best model is a component model. The only

26 'Hsieh and Ritchken (2000) compare the fit of affine and non-affine single component conditional Gaussian
models. Our main focus of course is on two-component, non-Gaussian models.
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exception is for deep-in-the-money options where the AGARCH(1,1)-IG is best. We also
see that the overall best model, namely the component NGARCH-GED is best or near-best
in every row. Interestingly, the non-affine models tend to do well for the out-of-the-money
optioﬁs in the top rows, whereas the affine models do well for the in-the-money options in
the bottom rows.

In Panel B of Table 3, we report the RM S E for each of four moneyness bins, where
the RM SE again has been divided by the average market option price for that bin. In each
of the four rows, a component mbdel is the best performer. The component NGARCH-
GED is once again best or near-best in every row. Finally, Panel C reports the normalized
RM SE for each of the years in the option sample. A component model performs the best

in all but one year, namely 1991, when the AGARCH(1,1)-1G is the top performer.

2.4.5 Discussion

We have considered eight GARCH models that differ along three important dimensions.
Four of the models have non-affine dynamics while four have affine dynamics, four models
are of the GARCH(1,1) type while the other four are component volatility models, and we
have four models ecach with normal and non-normal innovations.

The most important empirical regularity we observe is that component models are
strongly favored by the data over GARCH(1,1) models. This is the case when we use
likelihood values based on returns data, but also when we use RM S E's based on options
data (judging from RA/SEs). When using returns data, non-affine models display very

different properties than affine models, and non-normal innovations outperform normal
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innovations. However, differences in option fit are much less significant for these types of
comparisons.

The RMSE criterion is clearly different from the likelihood-based criterion, and
this in itself can explain the results. However, it is important to note that the RMSE-
based comparison also differs from the likelihood-based comparison in a methodological
sense. The comparisons based on option prices are of an out-of-sample nature, while this
is_ not the case for the likelihood-based comparison. While the option sample time period is
part of the sample period used for ML estimation, the GARCH model parameters are esti-
mated on returns only. Our ﬁndiﬂg regarding the performance of the component models is
therefore much more robust than the findings regarding non-normal innovations and affine
restrictions, because these results are not as strongly supported out-of-sample. Moreover,
because the option valuation results are out-of-sample, the finding that the more richly pa-
rameterized component GARCH models are outperforming more parsimonious models 1s
completely non-trivial.

It is also important to note that other studies have documented that the benchmark
NGARCH(1,1)-N and AGARCH(1,1)-N work very well. Christoffersen and Jacobs (2004)
find that the NGARCH(1,1)-N model is almost impossible to improve upon by changing the
news impact specification of the GARCH(1,1) model. Heston and Nandi (2000) find that
the AGARCH(1,1)-N model performs well relative to.the standard model-free benchmark

in Dumas, Fleming and Whaley (1998).
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2.5 Conclusion and Directions for Future Work

This paper presents two new conditional non-normal GARCH variance component models.
The first model allows for GED innovations to the variance dynamic. Because the model
is characterized by a more traditional non-affine GARCH variance dynamic, option valu-
ation must be done by Monte Carlo simulation. The second model is characterized by a
conditional inverse Gaussian innovation and by affine variance dynamics. A closed-form
option valuation formula is derived for this model. The two new non-normal component
models are compared with the corresponding special cases with normal innovations, and
the resulting four component models are compared with the GARCH(1,1) models which
they nest. All eight models are estimated using MLE on a long time series of S&P500 re-
turns. The likelihood criterion strongly favors the component models in all cases, and it
also favors non-normal innovations. Non-affine models and affine models differ along sev-
eral critical dimensions, such as conditional leverage and variance of variance. When we
use the models’ parameter estimates for option valuation, we find very strong support for
the component variance specifications. The support for non-normal innovations and for the
non-affine structure is less strong.

The empirical results leave a few questions unanswered. First, it remains to be seen
if the differences in performance between models are confirmed when using model para-
meters estimated from option prices, or when using an integrated analysis that uses option
prices as well as underlying returns (see Bates (2000), Chernov and Ghysels (2000), Eraker
(2004) and Pan (2002)). Second, it would be usetul to reconcile the relationship between

the superior option valuation performance of the component models we find here and the
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less than superior performance of GARCH(2,2) models in traditional volatility forecasting
studies. Comparing the density forecasts implied by the different models could be an av-
enue to explore. Finally, looking forward, it would be interesting to compare the range of
discrete-time GARCH models considered here with the continuous-time stochastic volatil-
ity models that are popular in the finance literature. Bakshi, Cao and Chen (1997), Bates
(1996), and Eraker (2004) study stochastic volatility models with Poisson jumps, and Bates
(2000) analyses models with Poisson jumps and multiple volatility factors. Recently, Carr
and Wu (2004) and Huang and Wu (2004) have considered Levy processes with infinitely
many jumps. The relationships between the continuous-time and discrete-time models are
very interesting, and comparing the models for the purpose of option valuation may provide

more insight into the strengths and weaknesses of the component models.
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2.6 Appendix

2.6.1 The AGARCH(2,2)-1G MGF

Let z, = In(S;) and let f, be the conditional generating function of Sr, or equivalently the

conditional moment generating function (MGF) of z7, i.e.

[t = Eilexp(dxr)]

We shall guess that the moment generating function takes the log-linear form

Jt = exp <¢-Tt + Ay + Bihy + Cihyr + Dy + D?,t%?‘)
Since 7 is known at time 7', we have the terminal condition
Ap=Br=Cp=Dy7 =Dy =10
Applying the law of iterated expectations to f; we get,
: : , hi iy
ft = Ey[fer] = Evexp <(,D-77f+1 + A+ Behior + Conheo + Do + Do ” H)

We first rewrite the return dynamic as

S, -
In < Hl) =74+ My + a0

~t
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where X = ) — % Substituting in the dynamics of x;,, and h,, 5 yields

¢z +7) + 65/\ht+1 + Y1 + Aser + Bt+1ht+1 + ..
ft = Eiexp

Cii1hesa + Dip1Yeer + Do, t+1

yt+1
dlae+ 1)+ ¢>\ht+1 + ONYis1 + At+1 + Bipihypa+
2
= Eyexp| Cin (’UJ + bihysr + bahy + et + - P + ey, + 2 ) + ..

Yr+1
2

B2
Dy iv1yepr + Do 72

yl+l
dlzy +7) + At+1 + Cpw + <¢>)\ + Byy1 + Ct+151> his1 + Cepabohit
2
Cii1C2ys + Ct+102 + (¢n + Cry101 + Dig1) Ye1 + (Copr01 + Dapyr) o s

Yi+1

= FE,exp

where we have applied the general result for an IG(J) variable, y, and constants, a and b,

Elexp(ay +b/y)] = T\/%—Qzexp <5 - \/(52 —2b) (1 - 2a)>

Solving this expectation and equating coefficients demonstrates

6(x0 +7) + Ay + me + (634 Byoy + Cuabr ) B+

prey hy- -2 2

Ji Eiexp | Cyybohy + Cryprcoys + CtH”? g (\/hm i 2((‘:1](11+Dz,z+1)h?+1) + hean “+
\/hwﬂ) 2(Cyy1a +D2u1 ht{»l\/l 2(¢n + Cry1cr + Digaa)
e+ 1)+ Ay + Crqw + <<.9)\ + By + CH—II_)I) heyi+
— n v H -2
= Fyexp Cyiibohy + Criqcayr + Cr,ﬂ(l,?%:— +1In <\/n‘4~2(C:7+m1 -
(77772 + 1) llt+1 \/7]"4 -2 (Czur](ll + DQ.HVI)\/l -2 (OT} + CH i1+ Dl,frl-l)

Therefore

ﬁ'4 —2(Criqay + Dayyr)
Cy = (OX + By + Ct-;l{_h) + o

2
At = AH—l + @7' + Ct—‘rl'u—’ -} h] ( 7] )

7/ 41 \/77 2(Crivay+ Doyiv) \/1—2 om+Criier+ Digia)

B, = C'H—lb'zf Dl,t = Cii10p. Doy = Cyraas
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2.6.2 The AGARCH(2,2)-N MGF

We shall guess that the MGF takes the log-linear form

Ji = exp (¢$t + At + Bihep + Boghy + Cyze — 02\/;;)2)

where x; = In (S;). We have

ft = Ei[fi1] = E [QXP <¢~”Et+1 + Api1 + Bigpihere + Bopyihepr + Cepi (2041 — c2/ ht~}-1)2>]
(2.40)

Since xr is known at time T, we require the terminal condition
Ar=B;7 =Cr =

Substituting the dynamics of ;. ; into (2.40) and rewriting we get

2
oz + 1) + (Brenar + Cria) <2t+1 — (Cry1 — mflﬁ‘@;—))\/ htu) +
A1+ By + Bribohy + Brias(z — cov/he)?+

ft = Eyexp - 2
; T - A
OA+ Brppaby + Doy + (@ 4(31,t+101+ct+1))+ hiya
(Bryy1a1c2 4 Cri163) = G (Brgpiarcr + Cypic2)
(2.41)

where

~ Biaier + Crae
By a4+ Cry

Cy 1

and we have used

2
0]
(Birar + Cyiy) <3m1 — (T — ))\/ hul)

2(Bip1ar + Cen

= Birai(zi1 — a1y }"Hl)g + Cri1(2e41 — C2v/ ht-H)Q
_ o°
20190V ey + (“OHH + 1 )> hia

Bl,l‘ 10 -+ Gt.+1

2 2 = ,
- (Bl.H]alC] + Cy F1Cs = Crp (Briiac + CHJCQ)) Ryt
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Using the general result for a standard normal variable, 2, and constants, a and b,
1
E [exp(a(z +b)?)] = exp(—é In(1 — 2a) +ab*/(1 - 2a))

in (2.41) we get
(zy + 1) + Apyr + Brgaw — %ln(l — 2By 44101 — 2Cy1)+
- (B, +Cer1)Eer1 ~grp—rare )
By gy1bohy + Bygpa02(2 — covhe)? + S R o1 i

fi = exp 1-2B1 13101-2C111) Pipa+
, T —— 2
PA + Blvt+1b1 + BQ~,t+12+ (¢ict+1 4(Bl,t+1a1+Ct+1)) + .. hesr
(Brar1a163 + Cy163) — g1 (Big10101 + Ciyica)

Matching terms gives

1
At B AHl + (257' + BLH_ﬂU - -2“ ln(l - ZBl,t—i—lal - 2Ct+1)

Biy = @A+ Bieiibi + Bagyr + (Bl,t+1a10§ + Ct+1(3§)

+1/2¢2 + 2(Byriarcy + Cpa62) (Bygsiarcr + Cipica — ¢)
1-2Bi01 — 2C1 1

By: = Bisiibo. Cy = By 41102

where we have used the fact that

C'DQ

4By 101 + Chin)
(Brii101 + Cop1)(Crpq — 2(8—“_7(3}??}:_))
1=2B) 0 — 2C 44
1/20° + 2(Byy1a1¢1 + Crprca) (Brgpiaicy + Copacz — 0)
1= 2B 101 — 20,

OCpyy — — T (Bigpiarcr + Cryrcz)

2
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2.7 Figures and Tables

Figure 1. Conditional Variance Paths
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Notes to Figure: We plot the conditional variance path, h, 1, for each of the eight
models we consider. The left-hand column contains the single component GARCH(1,1)
models and the right-hand column contains the two-component models. Rows | and

2 contain the non-affine GARCH models with GED shocks and Normal shocks. fol-
lowed by the affine GARCH models with IG and Normal shocks in rows 3 and 4.
The parameter values from the underlying GARCH models are obtained from MLE
estimation on S&P500 returns as reported in Table 1.
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Figure 2. Variance Component Paths

x 107 Long—-Run Component x 10~ Short-Run Component
o ! 10—
1]
?
I B
5 05 5
o
=z 0 N A N N O 2 ) L A rl

- x10™

X 10

NGARCH-N
[=]
o 2
=) o

Iy

-3 4

x 10 x 10
1 10
O
0
T
5
g 0.5
<
0 - acan) 0
x107° x10™
1 10
T
T
€ os 5 1
3
< /—W«:—\MM 0 Jaashnadtiv A (TORPE TRV .‘411 an:._nhL J:AIY._].
0
1990 1992 1994 1996 1998 2000 2002 1990 1992 1994 1996 1998 2000 2002
Year Year

Notes to Figure: We plot the two variance components for the four component models
we consider. For each model, the left-hand column contains the long-run component,
¢ +1 and the right-hand panel contains the short-run component, 21441 — g4.1. Rows 1
and 2 contain the non-affine GARCH models with GED shocks and Normal shocks,
followed by the affine GARCH models with IG and Normal shocks in rows 3 and 4.
The parameter values from the underlying GARCH models are obtained from MLE
estimation on S&P500 returns as reported in Table 1.
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Figure 3. Conditional Variance of Variance Paths
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Notes to Figure: We plot the conditional variance of variance path, Var, (hy,) , for
each of the eight models we consider. The left-hand column contains the single com-
ponent GARCH(1,1) models and the right-hand column contains the two-component
models. Rows 1 and 2 contain the non-affine GARCH models with GED shocks and
Normal shocks, followed by the affine GARCH models with 1G and Normal shocks
in rows 3 and 4. The parameter values from the underlying GARCH models are
obtained from MLE estimation on S&P500 returns as reported in Table 1.
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Figure 4. Conditional Leverage Paths
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Notes to Figure: We plot the conditional leverage path, C'ovy (1, .1. hy.o) for each
of the eight models we consider. The left-hand column contains the single compo-
nent GARCH(1,1) models and the right-hand column contains the two-component
models. Rows 1 and 2 contain the non-affine GARCH models with GED shocks and
Normal shocks, followed by the affine GARCH models with IG and Normal shocks
in rows 3 and 4. The parameter values from the underlying GARCH models are
obtained from MLE estimation on S&P500 returns as reported in Table 1.
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Figure 5. Autocorrelation Function of Component GARCH and GARCH(1,1)
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Notes to Figure: We plot the conditional autocorrelation function of the squared in-
novations, Corr(e?, 1, €2, ), for each of the eight models we consider. The top-left
panel contains the non-affine GARCH model with GED shocks, the top-right panel
contains has normal shocks, the bottom-left panel contains the affine GARCH with
inverse Gaussian shocks and the bottom-right panel has normal shocks. Each panel
contains a component GARCH (solid line) and a GARCH(1,1) (dashed line) model.
The conditional variance is set to the unconditional sample variance in each model.
The parameter values from the underlying GARCH models are obtained from MLE
estimation on S&P500 returns as reported in Table 1.The Impact of Volatility Long
Memory on Option Valuation: component GARCH versus FIGARCH



Parameter

A

b, B
a;,a

c1sY

v.n

Properties
LogLikelihood
LR Test
SR Persistence
LR Persistence
Variance Persistence
Variance of Variance
Leverage

Option RMSE

Table 1: Parameter Estimates and Model Properties

NGARCH-GED
GARCH(1,1) Component
5.00E+00 2.74E+00
(1.03E+00)  (1.31E+00)
9.88E-01 9.24E-01
(5.04E-03)  (5.06E-02)
6.04E-02 3.01E-02
(6.09E-03)  (8.41E-03)
5.08E-02 1.85E+00
(1.12E-02)  (5.00E-01)

9.98E-01
(7.84E-04)
3.28E-02
(9.17E-03)
3.04E-01
(1.10E-01)
1.23E+00 1.45E+00
(1.37E-02)  (9.12E-03)
34215 34,384
0.000
0.9244
0.9982
0.9877 0.9999
9.609E-11 2.087E-10
-4.834E-09  -1.035E-07
2.060 1.458

NGARCH-N
GARCH(1,1) Component
2.37E+00 2.48E+00
(7.03E-01)  (6.10E-01)
9.92E-01 9.08E-01
(2.30E-03)  (8.87E-03)
6.26E-02 3.70E-02
(2.09E-03)  (4.05E-03)
5.92E-0] 1.66E+00
(4.51E-02)  (1.98E-01)

9.98E-01
(4.13E-04)

3.23E-02
(2.23E-03)

3.10E-01
(7.44E-02)

34,124 34,196

0.000

0.9080

0.9980

0.9920 0.9998
9.696E-11 2.176E-10
-5.838E-08  -1.123E-07

2.356 1.466

AGARCH-IG
GARCH(1.1) Component
2.50E-01 ~ 941E-01
(6.75E-03)  (3.44E-03)
9.88E-01 8.93E-01
(1.33B+00)  (4.71E-02)
3.52E+07 5.56E+07
(4.91E+06)  (8.76E+06)
2.58E-06 1.66E-06
(1.16E-09) (2.36E-07)

9.93E-01
(1.43E-03)
5.83E+07
(1.13E+07)
1.49E-06
(3.05E-07)
-5.05E-04 -3.94E-04
(1.72B-05)  (5.37E-06)
34,105 34,159
0.000
0.8928
0.9933
0.9880 0.9993
3.771E-11 9.594E-09
-4 812E-08  -8.549E-08
2.162 1.705

AGARCH-N
GARCH(1.1) Component
7.26E-01 1.06E+00
(4.57E-01)  (L.67E-01)
9.80E-01 7.47E-01
(1.59E-02)  (2.22E-02)
3.01E-06 2.13E-06
(1.67E-06)  (2.78E-07)
1.01E+02 2.98E+02
(6.55E+01) (4.15E+01)
9.92E-01
(8.41E-04)
1.77E-06
(1.28E-07)
7.07E+01
(8.06E+00)
34,029 34,126
0.000
0.7470
0.9915
0.9800 0.9979
4979E-11 1.678E-10
-5.201E-08 -1.296E-07
2.316 1.813

Notes to Table: We use daily total returns from July 1, 1962 to December 31, 1995 on the S&P500 index to estimate the GARCH models using Maximum
Likelihood. Robust standard crrors are calculated from the outer product of the gradient at the optimum parameter values. Variance Persistence refers to the
persistence of the conditional variance in each model. For the component models, SR Persistence refers to the persistence of the short-run component and LR
Persistence refers to the persistence of the fong-run component. Variance of Variance refers to the unconditional variance of the conditional variance in cach
model. Leverage refers to the unconditional covariance between the return and the conditional variance. LogLikelihood refers to the logarithm of the likelihood
at the optimal parameter values, and LR test refers to the likelihood ratio test of the component model versus the corresponding nested GARCH(1,1) model.
Option RMSE refers to the dollar root mean squared option valuation error (RMSE) calculated using the risk-neutralized MLE parameters.



Table 2: S&P 500 Index Call Option Data (1990-1995)

Panel A. Number of Call Option Contracts

DTM<20  20<DTM<80 80<DTM<180 DTM>180 All

S$/X<0.975 101 1,884 1,931 1,769 5,685
0.975<S/X<1.00 283 1,272 706 477 2,738
1.00<S/X<1.025 300 1,212 726 526 2,764
1.025<8/X<1.05 261 1,167 654 409 2,491
1.05<8/X<1.075 245 1,039 582 390 2,256
1.075<8/X 549 2,345 1679 1,245 2,818
All 1,739 8,919 6,278 4,816 21,752

Panel B. Average Call Price

DTM<20  20<DTM<80 80<DTM<180 DTM>180 All

S$/X<0.975 0.88 2.30 6.25 11.94 6.62
0.975<5/X<1.00 2.29 6.83 15.19 27.50 12.12
1.00<5/X<1.025 8.35 13.60 22.48 34.41 19.32
1.025<5/X<1.05 17.57 22.00 30.11 42.14 26.97
1.05<S/X<1.075 27.11 30.84 38.14 48.83 3543
1.075<S/X 50.67 52.78 38.98 68.34 57.70
All 2432 23.66 28.68 36.07 2791

Panel C. Average Implied Volatility from Call Options

DTM<20  20<DTM<80 80<DTM<i80 DTM>180 All

S/X<0.975 0.1625 0.1269 0.1350 0.1394 0.1342
0.975<5/X<1.00 0.1308 0.1296 0.1448 0.1562 0.1383
1.00<5/X<1.025 0.1527 0.1459 0.1558 0.1605 0.1520
1.025<5/X<1.05 0.1915 0.1647 0.1665 0.1656 0.1681
1.05<S/X<1.075 0.2433 0.1828 0.1775 0.1739 0.1865
1.075<§/X 0.3897 0.2356 0.1961 0.1868 0.2283
All 0.2434 0.1703 0.1622 0.1607 0.1717

Notes to Table: We use European call options on the S&P500 index. The prices are taken
from quotes within 30 minutes from closing on cach Wednesday during the January 1, 1990
to December 31, 1995 period. We use the moneyness and maturity filters used by Bakshi,
Cao and Chen (1997). The implied volatilities are calculated using the Black-Scholes
formula.



Table 3: Root Mean Squared Error (RMSE) over Average Call Price
Panel A: RMSE over Average Call Price for Options with Various Moneyness

NGARCH-GED NGARCH-N AGARCH-IG AGARCH-N
GARCH(1.1) Component GARCH(.1) Component GARCH(1.1) Component GARCH(1,1) Component

S/X<0.975 0.3236 0.2690 0.4789 0.1976 0.4690 0.3649 0.5039 0.3996
0.975<S/X<1.00 0.1391 0.1080 0.2014 0.1096 0.2025 0.1462 0.2205 0.1604
1.00<S/X<1.025 0.0965 0.0695 0.1170 0.0792 0.1070 0.0746 0.1146 0.0809
1.025<S/X<1.05 0.0779 0.0504 0.0746 0.0588 0.0608 0.0452 0.0638 0.0476
1.05<8/X<1.075 0.0643 0.0386 0.0511 0.0459 0.0380 0.0339 0.0400 0.0338
1.075<S/X 0.0368 0.0224 0.0286 0.0264 0.0202 0.0213 0.0209 0.0211
All 0.0738 0.0523 0.0844 0.0525 0.0775 0.0611 0.0830 0.0654

Panel B: RMSE over Average Call Price for Options with Various Maturities

NGARCH-GED NGARCH-N AGARCH-IG AGARCH-N
GARCH(.1) Component GARCH(1.1) Component GARCH(1,1) Component GARCH(1.1) Component
DTM<20 0.0301 0.0262 0.0278 0.0264 0.0268 0.0260 0.0277 0.0263
20<DTM<80 0.0567 0.0428 0.0467 0.0434 0.0510 0.0461 0.0584 0.0473
80<DTM<180 0.0776 0.0534 0.0657 0.0557 0.0726 0.0612 0.0828 0.0653
DTM>180 0.0841 0.0588 0,1177 0.0574 0.0985 0.0721 0.1006 0.0785
All 0.0738 0.0523 0.0844 0.0525 0.0775 0.0611 0.0830 0.0654

Panel C: RMSE over Average Call Price for Various Sample Years

NGARCH-GED NGARCH-N AGARCH-IG AGARCH-N
GARCH(1.1) Component GARCH(1,1) Component GARCH(1.1) Component GARCH(1,1) Component
1990 0.1256 0.0658 0.0874 0.0725 0.0672 0.0812 0.0850 0.0803
1991 0.1115 0.0910 0.0925 0.0798 0.0660 0.0705 0.0714 0.0735
1992 0.0809 0.0510 0.0612 0.0570 0.0534 0.0469 0.0561 0.0501
1993 0.0610 0.0486 0.0835 0.0483 0.0838 0.0613 0.0899 0.0662
1994 0.0672 0.0499 0.1020 0.0519 0.0896 0.0612 0.0911 0.0685
1995 0.0465 0.0352 0.0717 0.0355 0.0731 0.0533 0.0786 0.0572
All 0.0738 0.0523 0.0844 0.0525 0.0775 0.0611 0.0830 0.0654

Notes to Table: We use the MLE estimates {rom Table 1 to compute the dollar root mean squared option valuation error
(RMSE) divided by the average call price. In Panel A, we show the RMSEs according to moneyness bins. In Panel B,
we show the RMSEs according to maturity bins. In Panel C, we show the RMSEs on a year- by-year basis.



Chapter 3
The Impact of Volatility LLong Memory on
Option Valuation: Component GARCH
versus FIGARCH

Yintian Wang

Abstract

This paper aims to investigate the impact of volatility long memory on European
option valuation. We compare two groups of GARCH models that allow for long
memory: the component Heston-Nandi GARCH model developed in the first chap-
ter, in which the volatility of returns consists of a long-run and a short-run component;
and a fractionally integrated Heston-Nandi GARCH model based on Baillie, Boller-
slev and Mikkelsen (1996). We empirically investigate the models using S&P 500
index returns and cross-sectional European options data. The component GARCH
model slightly outperforms the FIHNGARCH in fitting return data but significantly
dominates the FIHNGARCH in capturing option prices. This is due to the shorter
memory of the FIHNGARCH model, which, in turn, is attributable to the artificially
prolonged leverage effect resulting from fractional integration and limitations of the
atfine structure.
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3.1 Introduction

It has been widely reported that many financial and macroeconomic time series have a
highly persistent volatility. See, for example, Briedt, Crato and de Lima (1998), Ding,
Granger, and Engle (1993), and Harvey (1993). Andersen, Bollerslev, Diebold and Labys
(2003) confirmed this finding using realized volatility. One approach to model persis-
tent volatility, proposed by Baillie, Bollerslev and Mikkelsen (1996) and Bollerslev and
Mikkelsen (1996) is to incorporate long-memory fractional differencing into thé GARCH
model. The ensuing model is called the fractionally integrated GARCH model or the FI-
GARCH model. Comte and Renault (1998) developed a fractionally integrated stochastic
volatility model. The main characteristic of a FIGARCH model is that conditional vari-
ances exhibit not only short-run dynamics of the ARMA type, as in the standard GARCH
model, but also long-run persistence that decays slowly at hyperbolic rates.

The literature on GARCH variance component models is rapidly expanding. Com-
ponent GARCH models, which where first proposed by Engle and Lee (1993), consti-
tute a convenient method of incorporating long-memory-like features into a short-memory
model, at least for the horizons relevant for option valuation. Maheu (2002) presented
Monte Carlo evidence that a component model can capture long-range volatility dynamics.
Adrian and Rosenberg (2005) demonstrated the relevance of the component volatility struc-
ture for cross-sectional asset pricing. The fact that GARCH component variance models
are also related to stochastic volatility component models has received empirical support,
see Alizadeh, Brandt and Diebold (2002), Chernov, Gallant, Ghysels and Tauchen (2003),

and Taylor and Xu (1994) for examples.
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Given the empirical support for these volatility long-memory models in fitting S&P
500 index returns, it is natural to apply them to derivative pricing. Bollerslev and Mikkelsen
(1996, 1999) and Comte, Coutin and Renault (2001) investigated and discussed the impli-
cations of fractionally integrated volatility for option valuation. While they use Monte
Carlo simulation to illustrate the differences in European option prices for five alternative
volatility dynamics, no empirical evidence was presented regarding the performance of a
FIGARCH model in fitting option prices. The first Chapter found the component models
significantly superior to the GARCH(1,1) model in capturing European option prices even
if the latter model turns in a very solid empirical performance. Since both the FIGARCH
model and the component GARCH model are designed to capture the long memory of
volatility, it is of interest to compare both models theoretically and empirically.

In this paper, we develop a fractionally integrated Heston-Nandi GARCH model
which allows for easier valuation of European options. We derive an approximate closed
form option valuation formula and investigate the impact of long memory for option pric-
ing. In addition, we characterize key properties of the model, including the conditional term
structure across maturities, and conditional leverage and variance of variance paths. We
discern important differences between the fractionally integrated Heston-Nandi GARCH
mode] and the component Heston-Nandi GARCH model developed in Chapter 1. Please
note that we refer to the fractionally integrated Heston-Nandi GARCH model as FIHN-
GARCH, and refer to the component Heston-Nandi GARCH as component GARCH. Both
models are estimated using maximum likelihood estimation on S&P 500 returns, and their

empirical performance is compared in terms of fitting historical returns and cross-sectional
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option data. Specifically, we compare two structures that capture the long memory of
volatility: hyperbolic decay aﬁd exponential decay. Our results show that both the likeli-
hood criterion and the option pricing errors strongly favor the component models.

The remainder of the paper is structured as follows. In Sections 2 and 3 we introduce
the new FIHNGARCH model as well as the GARCH component models. Section 2 gives
a brief review of the component model in Chapter 1 and its related properties. Section
3 introduces the fractionally integrated Heston-Nandi GARCH model, derives a number
of its properties, and discusses option valuation for this component dynamic. Section 4
presents empirical model comparisons based on both the maximum likelihood estimation
of returns and the root mean squared errors from valuing options on the S&P 500 index.

Finally, Section 5 concludes.
3.2 The Component Heston-Nandi GARCH Model

3.2.1 Return Dynamics

The component GARCH model is an extension of a Heston-Nandi GARCH (1,1) model.
The Heston-Nandi (2000) model is designed with option valuation in mind. Like the Heston
(1993) model, it contains a leverage effect, allows for volatility clustering, and leads to a
closed-form solution due to its affine structure. Heston and Nandi (2000) demonstrated

how their model performs satisfactorily relative to ad-hoc benchmarks for the purpose of
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option valuation. This paper uses their model as an initial starting point. The model 1s

S
Repw = In ;“ =7+ Myt + Vs 21 (3.42)
i

ht+1 = w-+ bht +a (Zt - (3\/f71.‘)2

where S;,; denotes the underlying asset price,  the risk-free rate, A the price of risk, 2, the
1.1.d. return innovation with zero mean and unit variance, and h;;; the daily variance on
day ¢ + 1 which is known at the end of day ¢.

The unconditional variance is

w+a
=Bt =T
We can rewrite the conditional variance as
heor =0 +b (ht - 02) +a ((zt - c\/hit)2 - (1 + (3202)> (3.43)

The component GARCH model is obtained by replacing the constant o2 with a time-
varying long-run component ¢; ;. The conditional variance h;.;, now varies around a long-
run component which is, itself, autoregressive of the first order. Using Greek letters for

component model parameters, we write
hivi = @+ Nf( he = qi) + alyvr 4 (3.44)
i1 = W+ pq -+ ohvg,
where v;; = (zt2 —-1) - 27[2,\/5; for 7 = 1.2 can be viewed as zero-mean innovations to
the volatility components.

We will assume that the 4.7.d. return innovation z, follows the standard normal dis-

tribution. We also derive a number of properties; these are key for understanding both
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Heston-Nandi GARCH(1,1) and the component counterpart’s ability to capture the salient
features of speculative returns and to fit option prices. To save space, we only illustrate the

properties for the component GARCH model. Please see Chapter 1 for more details.

3.2.2 Variance Term Structures

Following Chapter 1, we define two measures of the variance term structure. One con-
venient measure denotes a cumulative k-days ahead forecast of variances divided by the
unconditional variance.

K
; [he4x]
K E Ei \hesk . » b P
Peq 144k k=1 s 232_1 —11— pt ‘10211:+1 1-3

o? o? K 1-p K 1-8

(3.45)

i

where o2 is the unconditional variance. This measure succinctly captures important infor-
mation about the model’s potential to explain the variation of option values across maturi-
ties. We can also learn about the dynamics of the variance term structure through impulse

response functions, which are defined as

OE, [ht:t—H(] /azf = (3.46)

a (L= Vl/2) 1= 3" o (1= 9Vhi/z) L= p¥
v p

K 1—3 K 1-

The latter equation measures the effect of a shock at time t, 2, on the expected k-days ahead

variance. Both measures estimate the persistence of variances.

3.2.3 Conditional Leverage and Variance of Variance

To assess the asymmetric response of volatility to positive versus negative return shocks,

we derive the conditional covariance, Cov; (R ,1.hs,2), and refer to it as the conditional
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leverage effect. For the component model, the conditional leverage effect is given by
Cov (Rt_H,’th) = —2(ayy + ©¥q) her1 (3.47)
We define the conditional variance of variance as Var; (hey2), which is given by
Vary (hisa) = 2(a+ 0)" +4(ma+759)" e (3.48)

Given the simple structure of the component model, it is easy to see that the magnitudes of
both the conditional leverage and variance of variance are positively related to the leverage
parameters ;, v, and ¢. The relationship suggests that the leverage effect built in the model

not only introduces negative skewness but also a more volatile variance dynamic.

3.3 An Affine FIGARCH Model

3.3.1 Return Dynamics

Just like fractionally integrated ARFIMA models generalize the standard ARIMA models,
Baillie, Bollerslev and Mikkelsen (1996) introduced a new class of fractionally integrated
GARCH models that generalize GARCH models. Analogous to the ARFIMA class of

models for the conditional mean, a shock to the conditional variance in the FIGARCH

model is transitory, in the sense that the influence on the forecast of the future conditional
variance recedes at a slow hyperbolic rate of decay. The authors further extended the basic
FIGARCH model to FIEGARCH to allow for the leverage effect. However, neither of the

two models yields an analytical form for European option prices. To simplify the valuation
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of European options, we develop a new FIHNGARCH model based on the Heston-Nandi
structure, which accommodates approximate closed formulae for European options.

First, we rewrite the Heston-Nandi GARCH(1,1)

S,
Ry = In grl =7+ 0k + vV he12ea

t

2
hepr = wi + Brh + oy (Zt —-—MN \/h—t)
into
(2¢ — ,flm)Q (1—¢ L) =1+~%w; — B, + (1 =B L)y, (3.49)

where v; = (2 — ﬁ/l\/ﬁ;)Z — (1 +~2%h;) and ¢, = B; + 72 Please note that, to avoid no-
tational confusion, we use 7 to represent the risk price in the fractional integration GARCH
model. Equation (3.49) is readily interpreted as an ARMA model for (2, — v, v/h)?. Anal-
ogously to the ARFIMA(k,d,l) process, a FIHNGARCH(p,d,q) process is naturally defined

by
(2o — 1 V) (1= 2 L) (1 = L) = 1472w, — B, + (1 - By L) v, (3.50)
An alternative representation is

(1-8,L) (L+7%h) = (1+35wri—8)) + . (3.5
+ (1 B L - (1= L)(1 - L)") (20— 3,/ Tn)?
The fractional differencing operator is defined by its Maclaurin series expansion. In or-

der to better comprehend the statistical properties of this model, we rewrite the FIHN-

GARCH(p,d,q) model in terms of the observationally equivalent infinite ARCH represen-
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tation,
N 1 — (1~(¢;1L[)3(1~)L)"
h _ 1 1-8.L o h 2
t =5 + 7 (2t =11V e)
AL
= W+ 7(2)(% — 7V he)? (3.52)
1

where W = 1331’ A(L) = ML + AL? + .... Please note that, in this model, v, is not
only the leverage parameter, but also appears in the denominator of the infinite ARCH

coefficients that adjusts the magnitude of innovations impacting on conditional variance.

The ARCH parameters in the lag polynomial A (L) can be written as

Moo= (¢ B +d)=ani+d

/\k = »81/\k-—1 + ((k —1-— d) k)_l - 901) 5d,k~l for k 2 2 (353)
where

Og1 = d (3.54)

Ogr = (5d.k—1k7'1 (/f -1 d) fork > 2

. ' d o
(1 - (_1_%_%%)1_)> evaluated at L = 1 equals zero, so that Z A; = 1. The second mo-

=1

ment of the unconditional distribution in the FIHNGARCH(p,d,q) model, therefore does

not exist in the case of a positive @, and R;,; is not covariance-stationary. This fea-
ture is shared by an integrated GARCH (IGARCH) model when ¢ = 1. Neither (3.52)

nor an IGARCH model satisfy the sufficient conditions developed by Giraitis, Kokoszka
and Leipus (2000) for covariance stationarity. However, Nelson (1990) showed that the
IGARCH(1,1), which was extended to the general IGARCH(p,q) by Bougerol and Picard

(1992), is strictly stationary and ergodic. Baillie, Bollerslev and Mikkelsen (1996) posited
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that the high-order lag coefficients in the infinite ARCH representation of any FIGARCH
model may be dominated in an absolute value sense by the corresponding IGARCH coeffi-
cients. Therefore, a direct extension of the proofs for the IGARCH case can reveals that the .
FIGARCH(p,d,q) and FIHNGARCH models in our case are strictly stationary and ergodic
for 0 < d < 1. Please see Nelson (1990) for more details.

In the ARFIMA class of models, the short-run behavior of the time series is captured
by the conventional ARMA parameters, while the long-run dependence is conveniently
modeled through the fracﬁonal differencing parameter d. A similar result may well hold
when modeling conditional variances. A shock to the optimal forecast of the future con-
ditional variance decays at an exponential rate for the covariance-stationary GARCH(p,q)
model, and remains important for forecasts of all horizons for the IGARCH(p,q) model. In
contrast, in the FIGARCH(p,d,q) model, the effect of a shock to the forecast of the future
conditional variance will die out at a slow hyperbolic rate. The fractional differencing pa-
rameter is therefore identifiable by the decay rate of a shock to the conditional vartance,

and not by the ultimate impact on the forecast for the long-run conditional variance.

3.3.2 Variance Term Structures

We again define the variance term structure

K

heas 11 .
e = s 2 B - (3.55)
k=1
where
k--1 A\ 00 s 9
Ehye =@+ 7; (1 + W?Ethwk»i) + Z A—; (Zr-« itk T Y1V hni—pk)
i=1 '1 i=k 1
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and the impulse response functions are

K

OEhy
OE, [ht;t+K}/azt2 = Z atz2t+ (3.56)
i=1 t
OBy _ N~ M OB i N (| Ve
022 R A

OEhs A ( Vi )

9z

3.3.3 Conditional Leverage and Variance of Variance
For the FIHNGARCH model, the conditional variance of variance and the conditional
leverage effect are given by

Vary(hyo) = Eylheo — E (hiyo])? ’ (3.57)

/\2
= (2 + 4’Y§ht+1) —i‘
1

Cov(In(Siy1)  heye) = B[ (Sern) — Ee [In(Sp11)]) (hesz = Ev [hei2])] (3.58)

A
= Et [\/ ht,Hz,HfT; <ZTQH - 2”}']Zf.-r1\/ hHl - 1)]
i1

= —2—hn
1

In contrast to the component GARCH model, the magnitudes of the conditional leverage

and the variance of variance are both nonlinear in the leverage parameter ~ .

3.3.4 The Autocorrelation Function for the Squared Innovation

We also provide the ACF of squared innovations for the FIHNGARCH model. In essence,

this measure recounts the same story as the variance term structures about volatility persis-
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tence.
C i h
Corry(e2,,,62,,) = (i i) (3.59)
\/Vart EH_I \/Vart Hk
where
2
Covylefy1, heik) = 7" R (3.60)
1
Var, [e],,] = 2k},
A% + QAZ—% (1 + ¥ Ethesr—i) + -
Varifees] = 2] 4,
‘ Z ‘% (4 + 8YiEvhik-i + ’Y%Eth?%,,l)
and

1 . 2
A=T+ ;2" (}\kLk + >\k+1Lk+1 + ) (Zt—{»k — MV ht+k>
1

3.3.5 Risk Neutralization and Option Valuation

As in Chapter 1, we assume Duan (1995)’s Locally Risk-Neutral Valuation Relationship

assumption. In the risk-neutral world, the asset price S; follows

In(Si1) = In(Sy) +7 =05k 1+ Vhe2), (3.61)
— /\ (L) * *
he = T+ —5( — 71\/5)2
i1
where z¥ is standard normally distributed in a risk-neutral world, and v7 = ~, + 0.5 +

1. Given the risk-neutral dynamics, option valuation is straightforward. A European call

option with strike price K that expires at time 7. 1s worth

Call Price = ¢ "T"YE! [Max(Sr — K.0)]
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—r(T-t) [e%e] —i¢ £* .
lo oo™ / Re [K 6 Thig 1)} do... (3.62)
2 T 0 ’Kb
Ko™ (} N l/"c Re {K""’f"’(fﬁ,T; icb)} d¢)
2 7y 10

where f; (¢) = E, [S?] is the generating function, which is also the moment-generating

function of the logarithm of Sz . Let f; (¢) denote the conditional-generating function of

the asset price in the risk-neutral world, In the Appendix, we show that the generating

function takes the form

i

E;exp (¢ 1n (S7)) (3.63)

2
exXp <(/5$t + At + Bihgyr + A (L) (Ztﬂ — MV ht+l> )

where 7, = In (S;) . The coefficients { A;. By, At1. Ay2. As 3. ...} depend on the parameters

of the model. Appendix A displays that the coefficients in the moment-generating function

are

Ay

B,

Ara

Ao

At,n
where \; = 2
"

- "05 ‘*‘7’1 +

1 —
¢T + A“,] + Bf,HI - 5 In (1 -2 (Bt»{-l)\l -+ Af’l’l,l)) (364)

By 2
1-2 (BTH)‘I + AHM)

== BtJr-l—XZ + AH 1.2
= BH—IX-’& + AH 1.3

= B + A

+. and n goes to infinity. The terminal conditions are

447‘ = BT = AT.'I =0
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One important feature is that the MGF can also be written as an infinite-weighted combi-
nation of shocks. In the evaluation of European options, a truncation of 1000 is employed

as in the maximum likelihood estimation.

3.4 Empirical Results

This section presents the empirical results. While a formal proof of consistency and as-
ymptotic normality of the MLE estimates of the FIGARCH process remains an outstand-
ing issue, Baillie, Bollerslev and Mikkelsen (1996) assessed the practical applicability and
small sample performance of the MLE procedure for the estimation of FIGARCH processes
through a detailed simulation study. The simulations indicate that MLE is reasonably ac-
curate.”’” Although no numerical or analytical investigation has been undertaken on FI-
GARCH models with leverage effects, it is still worthwhile attempting maximum likeli-
hood estimation in our settings. To better understand the performance of FIHNGARCH,
we add one additional benchmark, the Heston Nandi GARCH(1,1) model, for purpose of
comparison.”® We carry out maximum likelihood estimation for the three models on a long
time series of S&P 500 return data. Then, we discuss the parameter estimates and their

implications for the salient properties of the models.

27 The accuracy is evaluated through the simulated bias, root mean squared error, average estimated standard

error of the QMLE, and the simulated rejection frequencies for the t-tests across 500 replications.

28 For related properties of the Heston-Nandi GARCH(1,1) model, please sce Chapter 1.
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3.4.1 Parameter Estimates from Daily Return Data

Panel A of Table 2 presents the maximum likelihood estimation results obtained using daily
return data from June 1966 through December 31, 2001. The return data are obtained from
CRSP. Standard errors are calculated from the outer product of the gradient and are given
in parentheses. Since the fractional differencing operator is designed to capture the long-
memory features of the process, truncating at too low a lag may destroy important long-run
dependencies. For the estimation results reported here, we fixed the truncation lag at 1000,
about four years’ observations.

First, almost all parameters are estimated significantly different from zero at conven-
tional significance levels. In terms of fit, the log likelihood values indicate that the fit of the
component model is slightly superior to that of the FIHNGARCH model, which in turn fits
better than the GARCH(1,1) model. We compute the test statistics in Vuong (1989), which
are designed to compare the goodness of fit of models when neither competing model 1s
nested into the other. In our case, the standard normal statistic of 0.522 suggests that the
component GARCH does not significantly dominate FIHNGARCH.

In the FIHNGARCH model, the estimate of 3, is 0.664, lower than the 0.766 mea-
sured in the component model. This lower 3, in turn, induces a lower short-run persistence
o, = 3, + a;y? = 0.5355. We know that the short-run parameter ¢, measures the persis-
tence of the shocks over a relative short horizon, while the parameter d governs the long
memory of shocks. Therefore, it is intuitive that with the introduction of the fractional dif-
ferencing parameter , volatility persistence is mostly governed by the long-run persistence

parameter and, hence, the short-run persistence need not be as high as before. This find-
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ing is consistent with the previous literature. In contrast, the d value given by the model is
lower than the estimates obtained in earlier research which are usually over 0.4.

Another interesting feature is that the estimate of «; is —1.240F — 05. Although a
positive o, is sufficient to guarantee the non-negativity of the conditional variance, this is
not necessary the case when the parameters ); are positive for all .

Panel A of Table 2 also presents unconditional summary statistics for different mod-
els. For the component model, the unconditional variance of variance is computed using
the estimate for the unconditional variance in the expressions for the conditional moments
(3.48). For the FIHNGARCH model, the unconditional volatility and the unconditional
volatility of variance are undefined. To facilitate a comparison, we take the average of the
conditional variance and then compute the standard deviation of variance based on the con-
ditional moment in (3.57). To allow a comparison of the unconditional leverage for models,
we report the moments in (3.47) and (3.58) divided by h;,. Overall, the leverage and the
volatility of variance of the component GARCH model are greater in absolute value than
those of the GARCHY(1,1) model, while the FIHNGARCH model generates more leverage

and more volatile variance than the component model.

3.4.2 Dynamic Model Properties

Figure 1 plots the conditional variances for the period 1990-1996. This period includes the
dates for the option valuation exercise that are presented in Section 4.3. Notice that the con-
ditional variance patterns across the three GARCH models display numerous similarities;

the models all capture the low variances during the equity market run-up in 1993-1996, pre-
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ceded by higher volatility during the first Gulf War and the 1990-1991 recession. However,
Figure 1 also reveals differences between the models. The FIHNGARCH model appears to
display slightly more variation in the conditional variance in the more recent past. We plot
the conditional variance of variance path, Var, (h;,2) for each model. Figure 2 confirms
the findings in Figures 1. The FIHNGARCH model displays a larger variance of variance
than the component GARCH and the GARCH(1,1). Figure 3 plots the conditional lever-
age path, Cov; (Ryy1, hey2) for each model under consideration. Note that the FIGARCH
model has a larger (more negative) and more volatile leverage effect than the other two
models. This is consistent with the higher unconditional levels presented in Table 2.
Figures 4a and Figure 4b plot the impulse responses to the term structure of vari-
ance for h, = 0 and 2z, = 2 and z, = —2, respectively, as defined in (3.46). The figures
present the variance term structure for up to 250 days, which corresponds approximately
to the number of trading days iﬁ a year, and, therefore, captures the empirically relevant
term structure for option valuation. In both figures, the effects of shocks prove signifi-
cantly more persistent in the component model than in either the FIHNGARCH model or
the GARCH(1,1) model. However, although a negative shock in the FIHNGARCH model
persists longer than in the GARCH(1,1) model, the FIHNGARCH model does not suffi-
ciently distinguish itself from the GARCH(1,1) following a positive shock. Comparing
across Figures 4a and Figure 4b, it is also clear that the term structure of the leverage of
the component model is more flexible. As a result, current shocks and the current state of
the economy potentially have a more profound impact on the pricing of options across ma-

turities in the component model than in the FIHNGARCH and the GARCH(1,1). To save
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space, we do not plot the autocorrelation functions of squared innovations which confirm
the patterns in Figure 4.

These findings differ somewhat from those contained in the existing literature. Ma-
heu (2002) found that the simple FIGARCH model generates a decay pattern for the auto-
correlation function of the absolute value of return series for S&P 500 data, similar to that
of a component model. Both autocorrelation functions diminish to zero around 2000. This
shorter memory is reflected by a relative low fractional differencing parameter d. As doc-
umented by Bollerslev and Mikkelsen (1996), d is estimated at 0.447 for S&P 500 index
returns from January 2, 1953 through December 31, 1990. We get d = 0.2032. To see how
closely the d value relates to memory, we present Figure 5, which is an altered Figure 4a
with d varying from 0.1 to 0.4, while keeping all other estimates fixed. It is evident that the
impulse response of the variance term structure to a positive shock tends to decay slowly
with an increasing d, while it tends to decay fast with a decreasing . The same thing is
true for a negative shock.

One possible explanation is the leverage effect, as imposed to the long lags, in this
model. Fractional integration imposes hyperbolic decay pattern for shocks while, at the
same time, it extends the memory for the leverage efféct. Moreover, the squared innova-
tions tend to put higher weights on large negative shocks, hence enhancing the leverage
effect. It is widely documented that the leverage effect introduced by Black (1976) and
Christie (1982) merely comprises temporary behavior for the S&P 500 index.”” From an

economic point of view, the debt-equity ratio may be hard to adjust in the short run, but

29 Engle and Lee (1992), Gallant, Rossi, and Tauchen (1993), and Giraitis, Leipus, and Robinson (2003).
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there is no reason that a firm will not be able to adjust its capital structure over time in order
to correct the overly strong leverage effect. Generally, this side effect is inevitable for many
fractionally integrated models that allows for leverage effect, such as the fractionally inte-
grated EGARCH, fractionally integrated TGARCH or fractionally integrated NGARCH.
In contrast, the component GARCH separates the variance into two components: long-run
and short-run, each of which has its own leverage effect governed by the level of y; and 7,
respectively. That the leverage effect is modeled more flexibly as two parts, helps to avoid
the dilemma of fractional integration.

Overall, understanding all implication of the affine structure turns out to be more
complicated than expected. Affine models are convenient because they lead to closed-
form solutions for prices of European options. Chapter 1 and Christoffersen, Jacobs, and
Mimouni (2005) documented the limitations of the affine structure in terms of fitting re-
turns as well as fitting European options. In order to address the limitations of the affine
structure, the Heston (1993) model, which is a continuous-time limit of the Heston-Nandi
GARCH(1,1) model, is often combined with models of jumps in returns and volatility.
However, relatively little is known about the empirical biases that result from imposing the
affine structure. However, the fairness of the comparison in our context is not compromised
as long as the affine structure is also employed for the component model.

To shed more light on the driving forces behind the shorter memory or lower d value,

we estimate another two models by maximum likelihood. One is a simple FIGARCH
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model which is free from leverage effects
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Our aim is to ascertain whether in the absence of a leverage effect, we obtain longer mem-
ory than that obtained in the benchmark FIGARCH model. The other model that we de-

velop is a fractionally integrated nonlinear GARCH model with leverage effect (NGARCH)
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By switching to a nonlinear structure with leverage effect, we wish to establish the impact
of the affine structure on memory. In both cases, A (L) has the same structure as in the
FIHNGARCH model. Table 3 presents the MLE and the log likelihood function values for
these two models. d is the parameter most directly related to memory. For the FIGARCH
model, d = 0.442; in the case of the FIHNGARCH model, d = 0.480. Figure 6 illustrates
impulse responses for a positive shock 2 for all three models. Consistent with the estimated
values of d, the non-affine model yields the slowest decay or the highest memory, while the
affine model yields the fastest decay. The simple FIGARCH model lies somewhere in
between. To some extent, this confirms our conjecture that both the leverage effect and
the affine structure reduce the model’s memory and that the affine structure constitutes the
dominant determinant.

The properties illustrated in the above section are interesting. They suggest that, on

the one hand, the leverage effect in the model restrains the long memory, which mitigates
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the model’s ability in fitting derivatives prices; On the other hand, incorporating a leverage
parameter -y, helps to generate more volatile higher moments. It is undeniable that under
our settings, a lower y; generates more negative skewness as well as higher variance of
variance by taking the derivatives of (3.58) and (3.57) with respect to y,. We know that
higher moments such as skewness and kurtosis play important roles in determining option
prices. Consequently, the model’s ability to capture higher moments determines the ability

of the FIHNGARCH model in fitting European option data.

3.4.3 Out-of-Sample Performance with Option Data

We use six years of S&P 500 call option data covering the period 1990-1995. Starting
from the raw data from the Berkeley Option data base, we apply standard filters following
Bakshi, Cao and Chen (1997). We only use options with more than seven days to maturity.
Also, we only use Wednesday options data because Wednesday is the day of the week least
likely to be a holiday. 1t is also less likely than other days (such as Monday and Friday) to
be affected by day-of-the-week effects. If Wednesday is a holiday, we use the next trading
| day. Using only Wednesday data allows us to study a fairly long time series, which is useful
in considering the highly persistent volatility processes.
Table 1 presents descriptive statistics for the options data for 1990-1995 by money-
ness and maturity. Panel A reports the number of contracts available after filtering. Our
sample consists of 21,752 options that span a wide range of moneyness and maturity. Panel

B shows the average call price in each of the bins in Panel A. Quite predictably, the aver-
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age price increases significantly as the moneyness increases (moving down the rows) and
as maturity increases (moving from left to right). The average overall price is $27.91.

In Panel C of Table 1, we report the average Black-Scholes implied volatility for
the option contracts in each bin. Panel C clearly documents the volatility smirk evident in
quoted equity index option prices. The average implied volatility tends to increase as we
move down the rows in each column of Panel C, the effect being most dramatic for the short
maturities in the left-hand columns. This empirical regularity illustrates that the Black-
Scholes option valuation formula, which assumes a constant per-period volatility across
time, maturity and strike prices, will generate systematic pricing errors. This motivates the
use of stochastic volatility and GARCH models for option valuation.

When calculating option prices, we risk neutralize the MLE estimates in Table 1. The
risk-neutral parameters are used to compute the conditional variance based on the structure
of (3.61). Variances on Wednesday are then selected, together with other inputs such as
strike, maturity, interest rate, and equity price, to compute the European option prices. As
illustrated in the previous section, the variance has the analytical form of (3.62).

Panel B of Table 2 reports the RMSEs for the two GARCH models from 1990 to

1995. The RMSE is computed as

] o oanc
RMSE = [ 9 (CHNT — Coprcny? (3.65)
B it

CMKT CEARCH §s the model price, and

where C7 1s the market price of option 7 at time ¢,
T

NT = Z N,. T is the total number of days included in the sample, and [V, the number of
t=1

options included in the sample at date ¢.
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We present the absolute values of the RMSEs as well as the normalized RMSEs,
defined as the ratio of RMSEs of the component GARCH and the FIHNGARCH model,
devided by the GARCH(1,1) RMSEs. It is discernible that the FIHNGARCH model yields
the highest RMSEs ranging from 1.801 to 3.583. While the component model generates
the lowest RMSEs ranging from 1.263 to 2.559, the GARCH(1,1) model lies in between
with RMSEs ranging from 1.608 to 3.239. We also display the RMSEs by moneyness and
maturity in Table 4. In general, the component GARCH model performs the best across
moneyness and maturity, but especially for options with maturities between 20 days and
180 days. In addition, slightly longer memory for the FIHNGARCH model cannot guaran-
tee the superiority of its out-of-sample performance over that of the GARCH(1,1) model.
In fact, the FIHNGARCH framework may boost the likelihood function for daily returns
without improving much the conditional density function for returns that are relevant for
option valuation. To confirm this, we compute option prices of the FIHNGARCH model
by Mont Carlo simulation and derive similar RMSEs.

Figure 7 presents the average weekly biases from 1990 to 1995. The biases seem to
be highly related across the three models: all give negative biases from 1990 through 1991,
and positive biases from 1992 through 1995. We plot the CBOE volatility index (VIX)
in Figure 8b. Since the VIX shows the expected market volatility for a 30 day horizon
in Figure 8a, we plot the cumulative 30-day ahead forecasted conditional variance for all
three models as defined in 3.45. When comparing Figures 8a and 8b, we observe that,

during the entire period of 1990 to 1995, the variances from the three models are much
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flatter than that of the VIX.*® For the 1990 and 1991 recessions, the modeled variances are
considerably lower than the implied variances and, therefore, all models generate much
lower option prices than the real prices. On the other hand, since 1992, the market started
to recover and became increasingly less volatile through 1992 to 1995. Although Figure 8a
illustrates that the models can capture this trend in sample, the out-of-sample performances
are poorer; the models cannot fully forecast the downward trend of volatility, and, hence,
generate higher option prices. Nevertheless, the component GARCH yields better forecasts
of future volatility than do the GARCH(1,1) and the FIHNGARCH, and, consequently,
achieves the best out-of-sample performance. We also plot the average weekly RMSE over
the same period in Figure 9. One important conclusion which may be drawn from Figure
9 is that the improved performance of the component GARCH does not stem from any
particular subsample.

Another point worth of mention is that the RMSEs are computed from the maxi-
mum likelihood estimates. So far, the theoretical property of the maximum likelithood
estimations of any FIGARCH model have not been established. Baillie, Bollerslev and
Mikkelsen (1996) justified the usage of the approximate maximum likelihood procedure
for a simple FIGARCH model by Mont Carlo simulations. The consistency and other as-
ymptotic properties of the MLE estimates of other fractionally integrated GARCH models
including FIEGARCH ren.qainv unverified. In Figure 10, we simulate the log-likelihood
function and the RMSEs by varying ~ and d in reasonable ranges, while leaving other para-

meters unchanged as MLEs. It appears that RMSE reaches its minimum when v = 120 and

30 Please note that, under Duan’s Locally Risk-Neutral Valuation Relationship assumption, the risk-neutralized
variance is supposed to be identical to the physical variance.
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d = 0.35, compared to the maximum of the likelthood function at v = 100 and d = 0.20.
The change of -y is trivial, while the larger d from the minimum of RMSEs confirms that a
longer memory will enrich the volatility dynamic and, therefore, better capture the option
prices. The goodness-of-fit of the FIHNGARCH model could clearly be improved by using
NLS to yield a larger d. The discrepancy existing in the optimal estimates between MLE
and NLS sheds light on the latent inconsistency between the MLE estimates and nonlinear

least square estimates.

3.5 Conclusion

Bollerslev and Mikkelsen (1996, 1999) and Comte, Coutin and Renault (2001) investigated
and discussed some of the implications of long memory for option valuation. However,
their work merely illustrated the implication of long memory on European option prices
through Monte Carlo simulations, and little empirical work in fitting options data has been
done.

This paper compares two groups of GARCH models that allow for long memory
in volatility: the component Heston-Nandi GARCH model developed by Chapter 1, and
the fractionally integrated Heston-Nandi GARCH model based on Baillie, Bollerslev and
Mikkelsen (1996). We investigaté the models using S&P 500 index returns and cross-
sectional European options data. The component GARCH model is slightly better than
FIHNGARCH in fitting S&P 500 returns, and significantly outperforms FIHNGARCH 1n
fitting the option prices. In return, the FIHNGARCH model dominates the GARCH(1,1) in

terms of log-likelihood function while yielding higher option price RMSEs than does the
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GARCH(1,1) model. This superiority is mainly due to the shorter memory of the FIHN-
GARCH model, which, in turn, can be attributed to either an artificially prolonged leverage
effect created during the procedure of fractional integration or an undesired property of the
affine structure. Although FIGARCH models are not quite uncommon in the literature, our
findings are novel.

Our paper inspires many directions for further research. To avoid the affine structure,
we could develop a fractionally integrated nonlinear GARCH model (NGARCH), intro-
duced by Engle and Ng (1993), and compare it to a component NGARCH model. The
better performance of the NGARCH model is reported widely in the existing literaturé,
such as Christoffersen, Jacobs, and Mimouni (2005), and Duan (1995). The downside is
that no analytical form of option pricing formula éxists and one has to use Monte Carlo
simulations.

Figure 10 shows potential to improve the memory of FIHNGARCH by doing NLS
estimation. Accordingly, we compare models using information contained in options data.
Moreover, we avoid the latent inconsistency between approximate MLE estimates and NLS
estimates.

This paper focuses on discrete-time models. Another approach would be to use
continuous-time models that allow for long memory, such as the model proposed by Comte,
Coutin and Renault (2001), and the continuous-time variance component model of Duffie,
Pan and Singleton (1999). It would be an interesting experiment to investigate and compare
the abilities of this model to generate long memory with that of the component GARCH

model.
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3.6 Appendix

3.6.1 The FIHNGARCH MGF

Define A (L) = A L+AzL?+...and \; = 2%, we guess that the moment-generating function
has the log-linear form’!

ft = Evexp(¢In(Sr)) = exp <¢)$t + Ay + Bihyy1 + A (L) <Zt+1 RV ht+1)2)

and Ay (L) = AL+ Ao LP 4 .o+ Ay L7

We have the terminal condition A7 = Br = Ap; = 0,7 = 1,2,3...1000. Applying

the law of iterated expectations to f.1,4,we obtain

9
fi = Exlfiy1] = Evexp <<Z5l’t+1 + Agy1 + Bipihips + Ay (L) (Zt+2 — 1V ht+2> )

Substituting the dynamics of x; gives

H(r + x) — 0.5¢hi 11 + Oy hep12e00 + Avpr + Byl t )

= E :
ft t €XP ( Atvfl (L) (Zp}.? - f‘)l\/m)

Oz + 1) = 0.50hes1 + O/ her1ze01 + A+
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31 Pplease note that the MGF developed here is for the physical process. A risk neutralized MGF can be
developed in a similar way by risk neutralizing correspondent parameters first.
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Therefore, equating two sides of (A2), we have
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Figure 1. Conditional Variance
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Note to Figure: In Figure 1, we plot the variance paths from the GARCH(1,1),
the component GARCH, and the FIHNGARCH model. The parameters are obtained
from the MLE estimates on returns in Table 2.
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Figure 2. Conditional Variance of Variance
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Note to Figure: In Figure 2, we plot the conditional variance of next day’s vari-
ance as implied by the GARCH(1,1), the component GARCH and the FIHNGARCH
models. The scales are identical across panels to facilitate comparison across models.

The parameters are obtained from the MLE estimates on returns in Table 2.
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Figure 3. Conditional Leverage Effect
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Note to Figure: In Figure 3, we plot the conditional leverage between the return
and the next-day variance as implied by the component GARCH, and FIHNGARCH
models and refer to it as conditional leverage. The scales are identical across panels
to facilitate comparison across models. The parameters are obtained from the MLE
estimates on returns in Table 2.
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Figure 4a. Term Structure Impulse Response to a Positive Return Shock (z; = 2)
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Note to Figure: In Figure 4a, we plot the variance term structure response to a z; =
2 shock in the GARCH(1,1), the component GARCH model and the FIHNGARCH
model. The parameters are obtained from the MLE estimates in Table 2. The current
variance is set equal to its unconditional value. All values are normalized by the

unconditional variance.
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Figure 4b. Term Structure Impulse Response to A Negative Return Shock (z, = —2)
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Note to Figure: In the Figure 4b, we plot the variance term structure response
to a z; = —2 shock in the component GARCH model, and in the FIHNGARCH
model. The parameters are obtained from the MLE estimates in Table 2. The current
variance is set equal to the unconditional value. All values are normalized by the
unconditional variance.
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Figure 5. Term Structure Impulse Response to a Positive Return Shock (z; = 2) under
Different Values of d
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Figure 6. Term Structure Impulse Response to a Positive Return Shock (z; = 2) for
Different Models
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Note to Figure: In Figure 5. we plot the variance term structure impulse response
to a shock z; = 2 in the FIHNGARCH model by varying . while keeping all other
MLE parameters unchanged as in Table 2. In Figure 6. we plot the variance term
structure impulse response to a shock z; = 2 for three different GARCH models. All
values are normalized by the unconditional variance. The parameters are obtained
from the MLE estimates in Table 2. The current variance is set equal to the uncondi-
tional value. All values are normalized by the unconditional variance.
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Figure 7. Weekly Average Dollar Bias
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Note to Figure: We plot the average weekly RMSE (modeled prices less market
prices) for the GARCH(1,1), the component GARCH, and the FIHNGARCH during
the option data sample (1990-1995). The parameters are obtained from the MLE
estimates on returns in Table 2
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Figure 8a. The Cumulative 30-day Ahead Forecasted Conditional Variance
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Note to Figure: In panel a, we plot the cumulative 30-day ahead forecasted vari-
ance paths from the GARCH(1,1), the component GARCH and the FIHNGARCH
model. The parameters are obtained from the MLE estimates on returns in Table 2.
In Panel b, we plot the VIX index from the CBOE for comparison. The scales are
identical across panels to facilitate comparison across models.
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Figure 9. Weekly Average Dollar RMSE
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Note to Figure: We plot the average weekly bias (modeled prices less market
prices) for the component GARCH and FIHNGARCH during the option data sample
(1990-1995). The parameters are obtained from the MLE estimates on returns in

Table 2.
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Figure 10. Surfaces of RMSEs
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Note to Figure: We plot the RMSE surface for the FIHNGARCH model for vary-
ing d and ~y. keeping other MLE estimates unchanged as in Table 2



Table 1: S&P 500 Index Call Option Data (1990-1995)

Panel A. Number of Call Option Contracts

DTM<20  20<DTM<80 80<DTM<I80 DTM>180 All

$/X<0.975 101 1,884 1,931 1,769 5,685
0.975<S/X<1.00 283 1,272 706 471 2,738
1.00<S/X<1.025 300 1,212 726 526 2,764
1.025<8/X<1.05 261 1,167 654 409 2,491
1.05<8/X<1.075 245 1,039 582 390 2,256
1.075<8/X 549 2345 1679 1.245 2.818
All 1,739 8,919 6,278 4,816 - 21,752

Panel B. Average Call Price

DTM<20  20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.88 2.30 6.25 11.94 6.62
0.975<S/X<1.00 2.29 6.83 15.19 27.50 12.12
1.00<S/X<1.025 8.35 13.60 22.48 34.4] 19.32
1.025<S/X<1.05 17.57 22.00 30.11 42.14 26.97
1.05<8/X<1.075 27.11 30.84 38.14 48.83 35.43
1.O75<S/X 50.67 52.79 58.99 68.34 37.70
All 24.32 23.66 28.68 36.07 27.91

Panel C. Average Implied Volatility from Call Options

DTM<20  20<DTM<80 80<DTM<i80 DTM>180 All

§/X<0.975 0.1625 0.1269 0.1350 0.1394 0.1342
0.975<5/X<1.00 0.1308 0.1296 0.1449 0.1562 0.1383
1.00<S8/X<1.025 0.1527 0.1459 0.1558 0.1606 0.1520
1.025<S8/X<1.05 0.1915 0.1647 0.1665 0.1656 0.1681
1.05<S8/X<1.075 0.2433 0.1828 0.1775 0.1739 0.1865
1.075<85/X 0.3897 0.2356 0.1961 0.1868 0.2283
All 0.2434 0.1703 0.1622 0.1607 0.1717

Notes to Table: We use European call options on the S&P 500 index. The prices are taken from
quotes within 30 minutes from closing on each Wednesday during the January 1, 1990 to
December 31, 1995 period. The moneyness and maturity filters used by Bakshi, Cao and Chen
(1997) are applied here as well. The implied volatilities are calculated using the Black-Scholes
formula.



Table 2 Pancl A. MLE Estimates and Properties
Sample: Daily Returns, 1966-2001

GARCH(1,1) Component GARCH FIHNGARCH
Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter Estimate  Std. Error
b 0.977 0.012 Vil 0.766 0.163 B 0.664 3.414E-07
a 3.210E-06 2.810E-06 a 1.770E-06 1.110E-06 d 0.203 5.778E-04
c 88.192 15.623 7 312.880 108.430 Y 101.594 1.430E-02
A 1.815 0.224 7, 59.043 30.196 9, 0.536 7.147E-04
0.054 @ 0.000 0.000 n 1.945 3.358E-03
0 0.989 0.002
A 1.809 0.526
Annual Vol 0.147 Annual Vol 0.145 Annual Vol 0.145
Vol of Var 4.574E-06 Vol of Var 1.329E-05 Vol of Var 1.700E-05
Leverage -5.662E-04 Leverage -1.339E-03 Leverage -1.481E-03
Ln Likclihood 30059.800 Ln Likelihood 30112.480 Ln Likelihood  30104.500

Notes to Table: We usce daily total returns from July 1, 1966 to December 31, 2001 on the S&P 500 index to estimate the three GARCH
models using Maximum Likelihood. Robust standard errors arc calculated from the outer product of the gradient at the optimum parameter
values. Annual Vol rcfers to the annualized unconditional standard deviation as implied by the parameters in each modcl. Vol of Var refers to
the unconditional standard deviation of the conditional variance in cach model. For FIGARCH models where the unconditional varaince does
not exist, we usc the average of the conditional variance. Leverage refers to the unconditional covariance between the return and the
conditional variance. Ln Likelihood refers to the logarithm of the likelihood at the optimal parameter values.



Table 2 Panel B. RMSE of MLE Estimates
Sample: Option Data, 1990-1995

GARCH(1,1) Component GARCH FIHNGARCH
RMSE(90-95) 2.461 RMSE(90-95) 2.040 RMSE(90-95) 2.787
Normalized 1 Normalized 0.829  Normalized 1.133
RMSE®©0) 1.920 RMSE(90) 1.859  RMSE(90) 2.804
Normalized 1 Normalized 0.968 Normalized 1.461
RMSE (91) 1.608 RMSE (91) 1.630  RMSE (91) 1.871
Normalized ] Normalized 1.014 Normalized 1.164
RMSE (92) 1.433 - RMSE (92) 1.263  RMSE (92) 1.801
Normalized ] Normalized 0.881 Normalized 1.256
RMSE (93) 2.584 RMSE (93) 2.045 RMSE(93) 2.891
Normalized ] Normalized 0.791 Normalized 1.119
RMSE (94) 2.786 RMSE (94) 2.245 RMSE (94) 2.852
Normalized 1 Normalized 0.806  Normalized 1.024
RMSE (95) 3.239 RMSE (95) 2.559 RMSE(95) 3.583
Normalized ] Normalized 0.790  Normalized 1.106

Notes to Table: Option RMSE refers to the fit of the models on the 21,752
contracts quoted from 1990 to 1995 in Table 1. The RMSEs are computed at the
MLE estimates in Panel A of Table 2.



Table 3: MLE Estimates
Sample: Daily Returns, 1966-2001

FIGARCH FINGARCH
Parameter Estimate  Std. Error  Parameter Estimate  Std. Error
B 0.673 0.100 B 0.720 0.018
d 0.442 0.056 d 0.481 0.018
0 0.349 0.090 Y 0.585 0.028
/ 4,961 0.979 Q 0.380 0.021
w 6.491E-06 8.192E-07 A 4352 0.163
w 1.23E-12  1.16E-12

Ln Likelihood 30093.000 Ln Likelthood  30143.9

Notes to Table: We use daily total returns from July 1, 1966 to December 31,
2001 on the S&P 500 index to estimate the two GARCH models using Maximum
Likelihood. Robust standard errors are calculated from the outer product of the
gradient at the optimum parameter values. Ln Likelihood refers to the logarithm
of the likelihood at the optimal parameter values.



Table 4: RMSE and Ratio RMSE by Moneyness and Maturity

S/X<0.975
0.975<5/X<1.00
1.00<S/X<1.025
1.025<5/X<1.05
1.05<8/X<1.075

1.075<S/X

All

Panel A. GARCH(1,1)
DTM<20 20<DTM<80 80<DTM<180 DTM>180 Al

0.438
0.661
0.597
0.580
0.744
0.758
0.674

1.825
2.059
1.549
1.102
0.931
0.988
1.467

3.305
3.289
2.648
2.043
1.663
1.211
2.544

5.060
4.363
3.676
3.071
2.354
1.697
3.842

Panel B. Ratio of Component to GARCH(1,1) RMSE

S/X<0.975
0.975<5/X<1.00
1.00<S/X<1.025
1.025<5/X<1.05
1.05<S/X<1.075

1.075<S/X

All

DTM<20 20<DTM<80 80<DTM<180 DTM>180

0.766
0.789
0.898
0.977
0.995
0.999
0.947

0.808
0.784
0.774
0.861
1.012
1.046
0.843

0.824
0.771
0.747
0.774
0.881
1.048
0.820

0.849
0.786
0.758
0.744
0.772
0.930
0.829

Panel C. Ratio of FIHNGARCH to GARCH(1,1) RMSE

S/X<0.975
0.975<S/X<1.00
1.00<8/X<1.025
1.025<8/X<1.05
1.05<S/X<1.075

1.075<S/X

All

DTM<20 20<DTM<80 80<DTM<180 DTM=>180

1.370
1.750
1.483
1.076
0.921
1.011
1.228

1.449
1.458
1.431
1.342
1.269
1.163
1.402

1.180
1.157
1.169
1.198
1.283
1.391
1.194

1.003
0.958
0914
0.962
1.069
1.329
1.008

3.310
2.633
2.139
1.618
1.346
1.182
2.240

All
0.833
0.781
0.764
0.800
0.896
1.008
0.833

All
1.145
1.224
1.178
1.166
1.192
1.272
1.180

Notes to Table: We use the MLE estimates from Table 2 to compute the root

mean squared option valuation error (RMSE) for various moneyness and

maturity bins during 1990-1995. Panel A shows the RMSEs for the
GARCH(1,1) model. Panel B shows the ratio of the Component GARCH MSEs

to the GARCH(1,1) RMSEs from Panel A. Panel C shows the ratio of the

FIHNGARCH RMSEs to the GARCH(1,1) RMSEs.



Chapter 4
Conclusion and Future Work

This dissertation is in the form of three essays on the topic of component GARCH
models. The unifying feature that permeates the entire thesis is the focus on investigating
European option evaluation with component GARCH models.

The dissertation presents a new option valuation model based on the work by En-
gle and Lee (1999) and Heston and Nandi (2000). The empirical performance of the new
variance component model is significantly better than that of the benchmark GARCH(1, 1)
model, in-sample as well as out-of-sample, and regardless of the information used in es-
timation. This is an important finding because the literature has demonstrated that it is
difficult to find empirical models that improve on the GARCH(1. 1) model or the Heston
(1993) model. The component GARCH model is also compared to a GARCH(1. 1)-Jump
model, which combines conditional heteroskedasticity with Poisson-normal jumps. The
GARCH(1. 1)-Jump model achieves a better statistical fit than the component model in-
sample, but the component model performs far better when using the parameter estimates
to fit options.

Two extensions have been made to this novel component GARCH model to allow
non-normal innovations as well as non-affine structures. One extended model allows for
GED innovations to the variance dynamic. The second model is characterized by a condi-
tional inverse Gaussian innovation and by affine variance dynamics. A closed-form option

valuation formula is derived for this model. The two new non-normal component mod-
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els are compared with the corresponding special cases with normal innovations, and the
resulting four component models are compared with the GARCH(1,1) models which they
nest. All eight models are estimated using MLE on a long time series of S&P500 returns.
The likelihood criterion strongly favors the component models in all cases, and it also fa-
vors non-normal innovations. When the models’ parameters are used for option valuation,
there is very strong support for the component variance specifications. The support for
non-normal innovations and for the non-affine structure is less strong.

Overall, an important aspect of the component GARCH model’s improved perfor-
mance is that its richer parameterization allows for improved joint modeling of long-
maturity and short-maturity options. The model captures the stylized fact that shocks to
current conditional volatility impact on the conditional variance forecast up to a year in the
future, which results in a very different implied volatility term structure for at-the-money
options. The component model also results in a different path for spot volatility com-
pared to the GARCH(1. 1) model, but in the moneyness dimension the differences with the
GARCH(1. 1) model seem relatively less important. The component model is also charac-
terized by term structures of skewness and kurtosis that are very different from those of the
GARCH(1.1) model.

In the dissertation, the affine component GARCH model is also compared with a frac-
tionally integrated affine GARCH model that allows for volatility long memory. The disser-
tation investigates the models through S&P 500 index returns and cross-sectional European
options data. The component GARCH model is slightly better than the FIGARCH in fit-

ting S&P 500 returns, and significantly outperforms FIGARCH in fitting option prices. In
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return, the FIGARCH model dominates the GARCH(1,1) in terms of log-likelihood func-
tion while yielding higher RMSE of option pricing than does the GARCH(1,1) model. This
superiority is mainly due to the shorter memory of the FIGARCH model, which, in turn,
can be attributed to either an artificially prolonged leverage effect created during the pro-
cedure of fractional integration or an undesired property of the affine structure. Although
FIGARCH models have been investigated in previous literature, this finding is novel.
Given the success of the proposed volatility component models, a number of further
extensions to this work are warranted. First, the empirical performance of the model should
of course be validated using other datasets. In particular, it would be interesting to test the
model using LEAPS data, because the model may excel at modeling long-maturity LEAPS
options. Second, it remains to be seen if the differences in performance between the models
are confirmed when using model parameters estimated from option prices, or when using
an integrated analysis that uses option prices as well as underlying returns. Third, it would
be useful to reconcile the relationship between the superior option valuation performance
of the component models and the less than superior performance of GARCH(2,2) models
in traditional volatility forecasting studies. Comparing the density forecasts implied by
the different models could be an avenue to explore. Finally, looking forward, it would be
interesting to compare the range of discrete-time GARCH models considered here with the

continuous-time stochastic volatility models that are popular in the finance literature.
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