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ABSTRACT 

 
Background: Motor deficits observed during aging have been shown to be linked with 

changes in brain structure and functional organization. To date, univariate mapping of 

functional activity during upper limb movement has mainly focused on changes in the 

primary motor cortex. However, debate lingers as to how alterations in whole-brain 

connectivity relate to motor decline observed in elderly subjects. Identification of large-

scale connectivity features characterizing the functional reorganization underlying healthy 

aging could provide insights into understanding residual motor functioning and recovery 

processes in chronic stroke patients with persistent motor disabilities.   

Purpose: Our overarching goal was to investigate the reorganization of functionally-

connected networks at rest and during execution of hand movements in aging and stroke 

individuals. 

Methods: The following three experiments are included in this thesis: (1) using a 

combination of principal component analysis (PCA) and Granger causality on 

magnetoencephalographic (MEG) data to investigate age-dependent alterations in 

functional connectivity in whole-brain networks underlying the production of unimanual 

and bimanual visually-guided isometric hang grips, (2) comparing the effects of 

performing hand movement on resting-state functional connectivity in young and elderly 

healthy individuals using envelope correlation on MEG source-reconstructed time series, 

and (3) assessing functional magnetic resonance imaging (fMRI) connectivity in shared 

whole-brain networks underlying the production of visually-paced isometric hand grips in 

individuals with chronic stroke and healthy controls through a combination of multivariate 

multiple regression and PCA.   

Results: Brain reorganization during hand movement in elderly individuals was 

characterized by overall increased activity in task-specific networks and greater 

information flow to the left primary motor cortex. Contrastingly, chronic stroke patients 

with partial hand motor recovery were characterized with overall decreased connectivity 



 

 vi 

within a large-scale motor network. Alterations in this network appeared to be driven by 

reduced activity in ipsilesional sensorimotor (M1/S1) regions. The degree of activity 

within ipsilesional M1/S1 also correlated with motor performance in the stroke group.  

Significance: Our findings expanded upon previous research by contributing to the 

understanding of network-wide brain reorganization during hand movement as well as 

providing novel insights into motor-task induced connectivity changes in young and 

healthy elderly individuals. We also showed that elderly individuals employ various 

compensatory mechanisms during a hand task possibly in an attempt to counteract known 

structural and neurobiological changes associated with aging by recruiting additional 

neural resources. Moreover, multivariate task-based network analyses carried out on 

chronic stroke patients revealed that rehabilitation treatments should target secondary 

motor areas in order to support residual activity in M1/S1. Collectively, the results 

reported in this thesis provided useful insights into the neural organization of hand motor 

control occurring during aging and motor-impaired populations.  
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RÉSUMÉ 

 
Contexte. La détérioration des performances motrices chez l’humain a été grandement 

étudiée cependant les changements liés au vieillissement en matière de connectivité 

fonctionnelle visant les réseaux neuronaux incluant plusieurs régions cérébrales restent 

jusqu’ici méconnus. En effet, de nombreuses recherches concernant le rôle des aires 

motrices primaires et secondaires ont été effectuées durant l’exécution des mouvements 

de la main. Par contre, une meilleure identification des caractéristiques de connectivité 

fonctionnelle sur l’ensemble des régions du cerveau définissant la réorganisation sous-

jacente au vieillissement pourrait favoriser la compréhension des mécanismes résiduels 

ainsi que de la récupération motrice chez les patients atteints d’accident vasculaire 

cérébrale (AVC) souffrant d'incapacités motrices chroniques.     

Objectif. Dans ce contexte, l’objectif principal des études incluses dans ce mémoire était 

de comparer la connectivité dynamique reliée à la performance motrice auprès de 

personnes saines jeunes et âgées ainsi que de personnes ayant soufferts d’un AVC 

lorsqu’ils sont au repos et lorsqu’ils exécutent des mouvements de la main. 

Méthodes. Ce mémoire inclus les trois devis suivants : (1) utilisation de l'analyse en 

composantes principales (ACP) et de la causalité de Granger sur des données de 

magnétoencéphalographie (MEG) pour étudier les changements en matière de 

connectivité fonctionnelle dans les réseaux neuronaux reliés au vieillissement et sous-

jacents à la production d’une contraction isométrique d’une ou des deux mains, (2) 

comparaison de la connectivité fonctionnelle du cerveau au repos suite à l’exécution des 

mouvements de la main mesurée chez de jeunes adultes et des personnes âgés en bonne 

santé grâce à l’utilisation de la technique d’enveloppe de corrélation des signaux 

provenant de la MEG et (3) comparaison de la connectivité fonctionnelle dans des réseaux 

neuronaux sous-jacents à la production de contractions isométriques de la main chez des 

individus ayant soufferts d’un AVC ainsi que des sujets contrôles sains à l’aide d’une 
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combinaison de régression multiple multivarié et d’ACP employée sur des données 

d’imagerie par résonance magnétique fonctionnelle (IRMf). 

Résultats. La réorganisation cérébrale associée au vieillissement lors de la production de 

mouvements de la main est caractérisée par une augmentation globale de l’activité dans 

les réseaux spécifiques impliqués dans la tâche ainsi que d’une plus grande afférence vers 

le cortex moteur primaire de l’hémisphère gauche. En revanche, les réseaux sous-jacents 

aux mouvements de la main chez patients atteints d'un AVC et présentant une récupération 

motrice partielle de la main étaient caractérisés par une diminution générale de la 

connectivité principalement dans les aires motrices primaires et secondaires. Les 

changements observés dans ce réseau semblent être influencés spécifiquement par une 

activité réduite dans les régions motrices et sensorielles primaires (M1/S1). De plus, une 

corrélation négative entre le degré d'activité au sein de ces régions et la performance du 

comportement moteur dans le groupe d'AVC a été observée. 

Significativité. Cette recherche contribue à l’avancement des connaissances sur la 

flexibilité et la réorganisation fonctionnelle des réseaux neuronaux du système moteur 

humain lors du vieillissement ou en présence de dommages cérébraux qui surviennent lors 

d’un AVC. Les résultats découlant de ce projet pourront ainsi contribuer au 

développement d’interventions thérapeutiques individualisées pouvant aider au bien-être 

de personnes désirant maintenir ou améliorer leurs performances motrices.   
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ORIGINAL CONTRIBUTIONS 

 
Experiment 1 – This study investigates age-dependent alterations in functional 

connectivity in whole-brain networks underlying the production of unimanual and 

bimanual visually-guided isometric hang grips. A combination of principal component 

analysis and multivariate autoregressive modeling (Granger causality analysis) was used 

for the first time in this context to assess the direction of information flow within task-

based, data-driven functional networks. 

 

Experiment 2 – The effects of performing hand movement on resting-state functional 

connectivity in healthy young adults and healthy elderly individuals have been largely 

underexplored. As such, this study uses envelope correlation analyses on resting-state data 

before and after two different motor tasks to determine whether aging subjects 

demonstrate different reorganization mechanisms as compared to young adults. 

 

Experiment 3 – This study compares functional connectivity in shared whole-brain 

networks underlying the production of visually-paced isometric hand grips in individuals 

with chronic stroke and healthy controls through a unique combination of multivariate 

multiple regression, principal component analysis, and data-driven, within-network 

analyses. Moreover, this study assesses the relationship between regional activity levels 

and motor impairment to derive biomarkers of motor recovery in chronic stroke survivors.   
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PART I | INTRODUCTION 



 

 

CHAPTER 1 
INTRODUCTION 
 

Advancing age has been associated with motor performance decline in humans1, 2. 

The consequences of such motor decreases have been reported to affect skills that are 

necessary to perform many tasks of daily life, as for instance, hand motor control (e.g., 

reaching and grasping objects), bimanual coordination (e.g., tying shoelaces), as well as 

gait and balance (e.g., walking)2, 3. There is evidence that these age-related movement 

deficits are associated with neurochemical and structural changes affecting brain structure 

and function2. While the bulk of the current literature has been focused on investigating 

functional activity changes in individual primary or secondary motor areas, debate lingers 

as to how alterations in whole-brain connectivity relate to motor decline observed in 

elderly subjects. This is likely in part due to the lack of large-scale connectivity features 

that characterize the neural processes underlying aging, which may in turn explain the 

highly diverse findings reported in literature on motor control and aging2, 4, 5. As such, 

investigation of whole-brain motor connectivity to identify biological markers associated 

with motor performance decline appears warranted. 

 

Advances in neuroimaging research, particularly with regards to whole-brain 

functional connectivity, offer new ways to investigate network-wide consequences of 

motor performance decline in healthy and diseased populations. The novelty of such 

approach motivates a shift away from typical connectivity analysis techniques (e.g., region 

of interest-based approach), and places greater emphasis on multivariate analysis methods 

which have the ability to capture spatial and temporal task-related and resting-state 

changes in networks of interconnected brain regions. From a clinical perspective, age is 

considered to be the most important risk factor for stroke6. Gaining a deeper anatomical 

and functional understanding of the dynamic processes involved in unimanual and 
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bimanual movements in older adults thus appears crucial in order to improve motor 

recovery and develop new therapeutic strategies for these patients.  

 

The overarching goal of this thesis was thus to investigate the relation between 

functional connectivity at rest and during execution of unimanual and bimanual motor 

control tasks in aging and stroke individuals. Specifically, the objective was threefold: (1) 

to assess the effects of healthy aging on functional brain networks underlying the 

production of unimanual and bimanual hand grips, (2) to investigate task-induced 

connectivity changes on resting brain activity in young and aging individuals, and (3) to 

identify the impact of chronic stroke on motor network connectivity during a unimanual 

hand grip task. Altogether, this effort was intended to contribute to the ongoing debate on 

the neural mechanisms underlying motor connectivity changes during normal aging and 

to better understand how these changes are associated with motor function decline 

observed in these individuals. The work presented in this thesis also aimed to provide 

valuable insights into the mechanisms by which residual motor performance is governed 

in chronic stroke patients. 

3



 

 

CHAPTER 2 
BACKGROUND 
 

Age-related neurochemical and structural changes 

During normal aging, neurochemical-related changes are diffusely significant in many 

areas of the human brain, with changes in the dopaminergic system being the most widely 

studied7. Specifically, depletion of the neurotransmitter dopamine and its receptors in the 

basal ganglia has been evidenced in both post-mortem (i.e., histological staining) and 

molecular imaging (i.e., positron emission tomography) studies7, 8. Furthermore, positive 

correlations between dopamine transmission levels and fine motor control skills have been 

previously reported in older adults9, 10. Consequently, it has been proposed that reduction 

in dopamine release during aging may in fact be caused by alterations in the interaction of 

dopamine with other neurotransmitters such as glutamate and gamma-aminoutyric acid 

(GABA)11. In addition to neurochemical changes, gray and white matter brain atrophies 

are also commonly reported features in aging2, 12, 13. Gray matter volume reduction in 

primary motor and sensory cortices (M1/S1), for instance, has been consistently 

associated with normal aging14-16. Clear age differences in white matter integrity across 

key motor control structures such as the corpus callosum17 and the posterior limb of the 

internal capsule have also been reported18. Whereas the latter contains a motor pathway 

known as the corticospinal tract; the former plays a key role in bimanual coordination by 

allowing both hemispheres to communicate between them19, in addition to inhibiting input 

from the ipsilateral motor cortex during unimanual movements20. Many of these studies 

have also found a positive correlation between the integrity of gray and white matter 

structures and motor task performance in older adults13, 21, 22. Based on this concept, it has 

been theorized that age-related atrophy of motor cortical regions is compensated for by 

functional activity increases in structurally intact regions23, 24. From a functional 

standpoint, it seems likely that many of these age-related neurobiological and structural 

changes also have profound effects on whole-brain motor connectivity. Indeed, the neural 
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mechanisms by which these functional brain changes occur are not fully understood, and 

may in fact influence the ability of an individual to maintain motor functions.  

 

Age-related neurofunctional mechanisms: two classical theories 
Current findings in the literature have paved the way for two prominent theories 

which aim to explain the nature of the observed age-related changes in the brain. There is 

on one hand the compensation view which states that, relative to young adults, elderly 

individuals are able to recruit higher levels of activity across brain regions that are engaged 

during a specific task, and that this hyperactivity is positively correlated with task 

performance25. On the other hand, the dedifferentiation hypothesis posits that additional 

brain regions are recruited in a non-selective fashion, and thus indicates a loss of 

functional specificity during the performance of a motor task26. Although these theoretical 

accounts have greatly advanced our understanding of normal aging, it remains largely 

unknown which of these theories could most closely explain network-wide changes 

associated with age-related motor decline. 

 

The aging brain at rest: insights from quantitative neuroimaging  
Neuroimaging studies on aging have been widely used to investigate the link 

between age-related motor decline and underlying brain activity. It has been increasingly 

recognized that decreased motor and cognitive functions in aging may extend beyond 

activity changes in individual brain regions, and more toward alterations in interconnected 

networks of multiple motor and non-motor areas27. The advent of graph theory, a branch 

of mathematics whereby brain networks are represented as a set of nodes (i.e., brain 

regions) connected by edges (i.e., connections), has been introduced as a novel analysis 

method for network-level functional connectivity. This whole-brain approach provides a 

powerful way to quantify important topological properties of brain connectivity28, and as 

a result can offer new insights into the neural basis of age-related motor decline. Previous 

resting-state functional magnetic resonance imaging (fMRI) studies using graph theory 

have shown that network specificity is reduced in elderly29, 30. Consistent with these 
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results, Geerligs and colleagues27 reported an increase in internetwork connectivity in 

older individuals, whereas younger adults showed the opposite pattern of connectivity 

(i.e., high within-network connectivity with few between-network connections). When 

focusing only on within-network findings, it has been suggested that functional 

connectivity in older adults is decreased in networks supporting higher-order functions31, 

32, whereas it is increased in primary sensory networks which are involved in the 

processing of afferent visual, auditory, and sensorimotor inputs32, 33. In line with this 

finding of enhanced connectivity, several studies have provided compelling evidence that 

aging is associated with a decrease in interhemispheric cortico-cortical inhibitory 

influence, notably between premotor and primary motor areas34-36. Interestingly, a recent 

multimodal transcranial direct current stimulation (tDCS), magnetic resonance 

spectroscopy (MRS), and resting-state fMRI study has shown that anodal tDCS (atDCS), 

which has the ability to modulate neural activity, can induce reduction of GABA levels 

within the motor system in older adults37. This was associated with concurrent decreases 

in resting-state functional coupling during atDCS, including significant M1-M1 

interhemispheric decoupling, thereby revealing increased efficiency in brain network 

functioning due to the stimulation37.  

 

Motor decline in aging: advances and inconsistencies from task-based 

neuroimaging 

Task-based studies are often used to reliably activate a specific brain region or a 

network of regions associated with a particular cognitive or motor function. Findings from 

motor task-related studies, however, are highly inconsistent due to the various paradigms 

and methodological approaches being used. For instance, Noble and colleagues used a 

voxelwise whole-brain approach to investigate differences in activation related to changes 

in grip force magnitude in young and older adults38. This study revealed age-related 

activity increases in several regions, including ventral premotor cortex (PMv), putamen, 

thalamus, cerebellum, as well as in various areas involved in visuospatial and executive 

processing38. Conversely, a study investigating the underlying neural correlates of 
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isometric hand grips using voxelwise metrics reported significant activity increases solely 

in M1 ipsilateral to the moving hand in elderly subjects5. According to the authors, this 

increase in magnitude of activity was attributable to an age-related inability to dampen 

interhemispheric inhibition from contralateral to ipsilateral M15. More recently, Park and 

colleagues used graph theory to study the effects of age on the characteristics of functional 

brain networks during dominant and nondominant hand grips39. Interestingly, they found 

that global efficiency in older subjects was diminished only when the task was carried out 

with their nondominant hand, whereas efficiency of parietal-occipital-cerebellar networks 

increased with age when the dominant hand was used. These findings likely reflect a 

compensatory mechanism whereby connectivity within specific networks must be 

increased in order to maintain overall global efficiency when grasping with the dominant 

hand. In spite of unravelling marked alterations in individual regions as well as in the 

topology of whole-brain networks during aging, these task-based studies were limited to 

a static picture of brain organization. There is a growing body of evidence pointing toward 

functional connectivity as a highly dynamic process40, however this aspect has not yet 

been fully explored in the context of aging. Investigation of multivariate functional 

connectivity in network analysis thus appears to be crucial in order to gain a better 

understanding of the neural underpinnings of aging. As opposed to univariate metrics 

(which look at activation of single voxels or regions) or bivariate metrics (which compute 

relationships between pairs of voxels or regions), multivariate analysis methods have the 

ability to detect networks of interconnected brain areas as well as to provide insights into 

the dynamics of these interactions in a single model41. 

 

Electrophysiological changes in aging: evidence from MEG and EEG studies 
Magnetoencephalography (MEG) has emerged as a powerful tool to investigate 

task-related and resting-state dynamic cortical networks in a millisecond time-scale, and 

as a result may help explain the complex functional changes involved in healthy aging. 

Notably, MEG captures real-time neuronal activity by measuring extracranial 

neuromagnetic fields, and as opposed to the similar and most widely used 
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electroencephalography (EEG), MEG is less sensitive to spatial distortions caused by the 

brain, skull, and scalp42. Using this technique, an increasing number of studies have shown 

great promise in mapping the spatiotemporal characteristics in the context of aging. For 

instance, resting-state MEG studies have reported reduced slow oscillatory activity (< 8 

Hz) but an increase in faster oscillations (8–30 Hz) in older adults43-45. These findings are 

in line with previous work which suggests a speeding of electrophysiological activity 

among cortical regions in the brain of elderly individuals46. With respect to the two 

competing theories of age-related changes described earlier—the compensation view and 

the dedifferentiation hypothesis—the speeding of the frequency spectrum may hint toward 

the presence of a compensatory mechanism that counteracts the decreased nerve 

conduction velocity due to white matter atrophy present during aging processes43.  

 

One caveat of the current MEG literature is that most of the studies performed until 

now have solely measured the amplitude and frequency of power, and consequently have 

failed to examine how the brain integrates information across multiple regions. In fact, 

studies assessing event-related or resting-state functional connectivity of the whole brain 

using MEG are relatively sparse. While great efforts have been put towards using 

multivariate functional connectivity techniques in MEG data analyses of healthy and 

diseased populations47, 48, to our knowledge these methods have never been employed to 

study network-wide connectivity patterns underlying the execution of hand movement in 

aging individuals.  

 

Clinical applications: motor recovery in chronic stroke 

Gaining a better understanding of brain reorganization underlying motor 

performance decline in healthy aging is essential in clinical research. This becomes 

particularly evident when considering that stroke is the leading cause of long-term 

disability among older adults worldwide49, with persistent hand deficit being one of the 

key features associated with this condition2, 50. Up to now, the consequences of stroke on 

brain reorganization have mainly been assessed using univariate seed-based functional 
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connectivity and consequently remain highly controversial. For instance, this technique 

has provided evidence for enhanced functional activity in ipsilesional dorsal premotor 

cortex (PMd)51, supplementary motor area (SMA)52, ipsi- and contralesional M1/S152, 53, 

as well as decreased activity in contralesional M1/S154, and anterior cerebellar lobules55 

have all been reported. Of the few studies that attempted to link blood oxygen level-

dependent (BOLD) fMRI alterations to deterioration in motor performance, increases in 

activity in ipsilesional M1 seemed to be linked to improvements in behavioral 

performance56, while enhanced BOLD activity in contralesional M1 have been shown to 

have a detrimental effect on hand function57, 58. In line with the latter finding, some authors 

have postulated that patients with poor recovery were more likely to show greater 

activation in contralesional motor-related regions relative to control subjects49, 52, 59. These 

studies have provided ample evidence of functional remapping of the brain after a stroke 

but have failed to provide a precise association between different patterns of activity and 

residual motor performance observed in these patients60. At the heart of the problem could 

be the lack of correlation between functional connectivity changes (e.g., increased or 

decreased activity) and motor performance. In order to identify accurate biological 

markers that can predict or improve motor recovery in at-risk populations, it is important 

to gain a deeper understanding of the network-wide mechanisms involved in ubiquitous 

movements, and how these mechanisms are affected by normal aging or the presence of a 

stroke. Our research effort predominantly aims at gaining a better understanding of the 

reorganization of brain networks underlying motor control in individuals with motor 

function decline. Ultimately, our findings may lead to the development of personalized 

treatment strategies using rehabilitation training and/or stimulation protocols (e.g., tDCS) 

in order to maintain or maximize motor functions in aging or movement-impaired 

populations. 
 

*  *  * 
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CHAPTER 3 
TASK-RELATED MOTOR CONNECTIVITY IN AGING 
 

Preface 
Until recently, researchers have attempted to map brain functions to discrete brain 

regions. In the past few years, however, efforts have been made to link motor performance 

decline observed during healthy aging to changes in distributed networks of functionally 

interconnected brain structures. Consequently, there is a growing interest to better 

understand how brain reorganization at the network-level takes place during aging in order 

to support residual motor functions. 

 

Task-activation paradigms have proved to be highly useful to investigate functional 

networks that are specifically related to hand movements. Notably, numerous studies have 

shown that performance of isometric hand grips consistently and reliably activates well-

characterized brain networks which include primary sensorimotor and visuospatial 

regions5, 35, 61. Although these studies have provided valuable information, they often lack 

information regarding the temporal profile of the networks’ engagement. Recent advances 

in non-invasive neuroimaging techniques, particularly with regard to MEG, can provide 

spatiotemporal dynamics of brain networks, and thus appears to be particularly suitable to 

capture fast changes in neural information from cortical functional networks. The 

development and application of multivariate connectivity methods for the analysis of task-

related MEG data is however warranted. For instance, quantification of resting-state MEG 

connectivity using dynamic and spectral resolution could provide new and biologically 

meaningful ways to assess network-wide changes in healthy and aging populations. 

 

In this study, we applied principal component analysis and multivariate 

autoregressive Granger causality on MEG data to compare the organization of functional 
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brain networks underlying the production of unimanual and bimanual hand grips in elderly 

individuals to that of young adults. We hypothesized that elderly individuals, relative to 

young adults, will show hyperactivity in motor networks underlying hand movement. This 

would reflect a potential compensatory mechanism by which the aging brain counteracts 

neurobiological changes by recruiting additional neural resources. 
 

*  *  * 

  

12



CHAPTER 3. TASK-RELATED MOTOR CONNECTIVITY IN AGING 

 

3.1 Abstract1 
Objective: Motor deficits observed during aging have been shown to be linked with 

changes in brain structure and function, however, the precise neural reorganization 

associated with these changes remains widely debated. This study sought to address this 

gap in the literature by quantifying the organization of brain network connectivity in 

elderly individuals (n = 11; mean age = 67.5 years), as compared to young adults (n = 12; 

mean age = 23.7 years), while they performed visually-guided unimanual and bimanual 

hand grips inside the MEG scanner. 

Methods: We combined principal component analysis (PCA) to identify task-specific 

functional brain networks and multivariate autoregressive Granger causality to explore the 

direction of information flow within these networks. 

Results: Our PCA analysis revealed four brain networks in which elderly individuals had 

significantly higher activity levels than young adults: a ventral frontoparietal network and 

a left-dominant motor network engaged during the unimanual task, as well as a left-

dominant motor network and a bilateral motor network engaged during the bimanual task. 

Moreover, our Granger causality analysis demonstrated that elderly individuals, but not 

young adults, had increased effective connectivity to the left primary motor cortex (M1) 

during unimanual hand grips. On the other hand, the left temporal pole appeared to play a 

key role in coordinating bilateral M1s during bimanual hand movement in the young 

group by receiving cortical information from several parietal regions, however this pattern 

of connectivity was largely absent in the elderly group.  

Conclusions: Maintenance of motor performance and task accuracy in elderly 

individuals was achieved by a relative hyperactivation of the task-specific motor 

networks. Network-wide brain reorganization therefore occurs and may reflect a 

compensatory mechanism by which the aging brain counteracts neurobiological changes 

by recruiting additional neural resources.    

                                                
This work is to be submitted as: 
Larivière S, Xifra-Porxas A, Niso G, Kassinopoulos M, Mitsis GD, Boudrias MH. Functional and effective 
reorganization of the aging brain during unimanual and bimanual hand movements. 
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3.2 Introduction 
Aging is commonly associated with progressive cognitive and motor functions 

decline1, 2. Brain reorganization is thought to occur during aging in order to maintain motor 

performance despite gray and white matter volume loss11, 13. Prior studies looking at 

thinning of the cerebral cortex in aging have reported that gray matter atrophy occurs 

predominantly in M1 and calcarine sulcus14. Interestingly, Glasser and Van Essen62 

recently proposed a new method for mapping myelin content to a cortical surface and 

reported that regions of heavy myelination include mainly M1 and the occipital lobe62, 

which coincide with those areas of marked gray matter volume loss in healthy aging14. 

One of the major theoretical accounts aiming to explain these age-related changes 

proposes that activity levels within a given motor-related area will be increased in an 

attempt to compensate for neuronal loss and myelin deterioration25. Alternatively, it is 

possible that such compensatory mechanisms may be reflected as a shift in the topological 

organization of whole-brain residual brain networks. Few studies to date, however, have 

delved into network-wide changes of functional or effective connectivity in the context of 

aging. Indeed, previous neuroimaging studies have provided an unclear picture of the 

network-wide mechanisms by which the brain adapts to these structural, 

myeloarchitectural, and neurochemical changes. One way to address this gap in the aging 

literature is to probe activity in whole-brain networks that are specifically related to hand 

movement and to treat the identified connectivity patterns as intrinsically directed (e.g., 

include information about direction flow among cortical areas in the interpretation of 

findings).  

 

fMRI techniques, though popular, cannot reliably estimate causal connections at the 

millisecond time scale due to its slow temporal resolution. On the other hand, MEG has 

been increasingly recognized as a neuroimaging research tool that has the potential to 

capture the richness and complexity of brain activation patterns with millisecond temporal 

resolution. As such, MEG can provide valuable insights into the patterns of effective 

connectivity among cortical regions involved during the production of hand movements. 
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Notably, Granger causality analysis performed on MEG time series has rapidly emerged 

as a powerful approach to examine data-driven effective connectivity. For instance, Gao 

and colleagues recently utilized a time-varying Granger causality analysis technique to 

explore the fast changing information flow among somatosensory regions of healthy 

adults63. Importantly, the authors reported high consistency between their results and well-

established anatomical connectivity models of sensorimotor regions, thus providing 

empirical validation of the Granger causality method63.  

 

In this study, we applied PCA and multivariate autoregressive Granger causality on 

MEG data to characterize the organization of functional brain networks involved in 

unimanual and bimanual visually-paced isometric hand grips in healthy young and elderly 

adults. We hypothesized that functional brain networks in elderly relative to young adults 

will exhibit reduced global efficiency as indexed by non-optimal levels of connectivity 

(i.e., hyperactivity). The overly-connected brain networks underlying hand motor control 

in elderly individuals would possibly reflect a compensatory mechanism by which the 

aging brain counteracts neurobiological changes by recruiting additional neural resources. 

We further expected to observe an increase in interhemispheric connectivity in elderly 

subjects, predominantly in primary and secondary motor, as well as parietal regions 

identified in the task-based networks. This would suggest that the aging brain is 

characterized by a decreased lateralization, which is in line with a prevalent theory 

claiming a loss of hemispheric asymmetry during normal aging64-66. 

 

3.3 Methods 
Participants 

We collected MEG data from twelve healthy young adults (mean age = 23.7 years) 

and eleven healthy elderly individuals (mean age = 67.4 years). Details regarding 

demographic information and behavioral performance are presented in Table 3.1; both 

groups were matched on gender and education. Inclusion criteria for all participants were 

as follow: (1) no present or previous history of a psychiatric condition, (2) aged between 
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18 to 30 years (young group) and 60 to 75 years (elderly group), and (3) right-handed 

according to the Edinburgh Handedness Inventory67. Exclusion criteria included: (1) 

contraindications for MRI, or other limitations that would interfere with MRI or MEG 

data acquisition (e.g., claustrophobia, metal implants), and (2) a Mini-Mental State 

Examination (MMSE) score ≤ 24. Written informed consent was obtained from all 

participants. The study was approved by the Research Ethics Board of the Montreal 

Neurological Institute and Hospital, McGill University.  

 

 

Variable 

Young 

Subjects 

Elderly 

Subjects 

Sex (male/female) 8/4 8/3 

Handedness (right/left) 12/0 11/0 

Age (years)a 23.7 (2.9) 67.4 (3.9) 

BBT (right)b 67.5 (5.5) 57.1 (4.2) 

BBT (left) b 66.7 (5.5) 56.8 (4.8) 

NHPT (right) b 0.58 (0.1) 0.44 (0.04) 

NHPT (left) c 0.52 (0.1) 0.41 (0.06) 

Grip strength (right) 46.2 (15.1) 39.1 (9.3) 

Grip strength (left) 44.1 (16.1) 34.8 (7.9) 
 

Table 3.1: Participants’ demographic information and behavioral scores. Standard 
deviations are in parentheses. BBT, Box and Block Test; NHPT, Nine-Hole Peg Test.  
a = Elderly > Young, p < 0.0001; b = Young > Elderly, p < 0.0005; c = Young > Elderly, 
p < 0.01.  

 
 Experiment protocol 

As detailed in Appendix A, motor performance of both hands was assessed for each 

participant via measurements of (1) hand grip strength, (2) fine manual dexterity (nine 

hole peg test; NHPT), and (3) unilateral gross manual dexterity (box and block test; BBT). 

Motor performance scores for the dominant hand (right hand) and non-dominant hand 

(left hand) were used in our group comparison. 

16



CHAPTER 3. TASK-RELATED MOTOR CONNECTIVITY IN AGING 

 

As depicted in Figure 3.1, all participants underwent three separate 5 min resting-

state sessions, interspersed with two isometric hand grip tasks. The first task consisted of 

50 unimanual, visually-paced, isometric right-hand grips, in which subjects had to apply 

force to track a ramp target. Prior to scanning, each subject was asked to grip the 

manipulandum with maximum force in order to generate their maximum voluntary 

contraction (MVC). These values were then used to set the subject-specific target forces 

of 15% and 30% of MVC. In each trial, participants had to maintain a steady force at 15% 

of MVC for 3 s, followed by a linear increase of 3 s to reach and maintain a steady force 

at 30% of MVC for 3 s. The second motor task consisted of 50 bimanual, visually-paced, 

isometric hand grips performed at 15% of MVC (6 s each). 

 

Figure 3.1: Schematic overview of the experiment protocol carried out in the MEG. 
Subjects performed two hand motor control tasks (unimanual, bimanual) interspersed 
with three 5 min resting-state sessions. Each motor task consisted of 50 trials with 
variable interstimulus intervals. 

 
Functional connectivity analysis 

Details regarding data acquisition and preprocessing are described in Appendix A. 

A schematic of the subsequent data analysis pipeline is provided in Figure 3.2. For every 

participant, the task-related data was down-sampled to 160 Hz and epoched offline with a 

poststimulus time window of 9000 ms (unimanual task) and 6000 ms (bimanual task) with 

the first time point (time = 0) corresponding to stimulus onset. A linearly-constrained 

minimum variance (LCMV) beamformer spatial filtering approach68 was then used on the 

subject-specific task-averaged epoched data to reconstruct a single time series for each of 

the 148 cortical brain regions defined by the Destrieux sulcogyral-based atlas69. For each 

pre-defined source location (i.e., brain region), activity was estimated at each vertex and 

subsequently averaged to produce a single time series per brain region. The use of this 
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brain atlas aids in interpretation and comparison with other modalities while allowing 

computational power for greater temporal accuracy, the latter being a crucial aspect of 

functional connectivity that varies as a function of task-timing. Time-frequency 

decomposition of source time series was then performed using Morlet wavelets70 for four 

frequency bands of interest: theta (5–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma 

(31–80 Hz). Frequency-specific source time series of every subject were combined to 

create four data matrices (one per frequency band), each with columns corresponding to 

brain regions and rows corresponding to poststimulus time points × subjects. Singular 

value decomposition (SVD), of which PCA is a special case, was performed on each of 

the four standardized data matrices. For every component extracted, the resulting 

decomposition yielded (1) a spatial pattern (i.e., network of interconnected brain regions) 

accounting for part of the pattern of covariances between spectral power at each brain 

region, and (2) component scores (i.e., a time series) providing an estimate of the 

network’s engagement at each poststimulus time points. The network-level connectivity 

analyses of oscillatory power described above were performed separately for each motor 

task (i.e., unimanual and bimanual). 
 

Figure 3.2: Schematic overview of the analysis pipeline used for the task-related MEG 
data. 
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An advantage of the proposed method is that it allowed non-static characterization 

of functional networks that are specifically related to unimanual or bimanual hand grips. 

This in turn provided new ways to describe brain connectivity underlying ubiquitous 

motor tasks and thus allowing us to assess how normal aging affects integration of 

information.  

 

Statistical analysis 

To investigate group differences in the activation level of each functional brain 

network we carried out statistical analyses on the envelope of the component score time 

series. This was achieved by using the Hilbert transform to extract the amplitude of each 

network’s associated time series. For every unimanual network identified, the Hilbert 

transform values at each time points and for each subject were submitted to a 1441 × 2 

mixed-model analysis of variance (ANOVA), with the within-subjects factor of 

Poststimulus Time (1441 time points were estimated after stimulus onset), and between-

subjects factor of Group (elderly individuals and young adults). Similarly, for the 

identified bimanual networks, these Hilbert transform values for every subject were 

submitted to a 962 × 2 mixed-model ANOVA, with the within-subjects factor of 

Poststimulus Time (962 time points), and between-subjects factor of Group.  

 

Granger causality analysis 
Granger causality has been increasingly used to identify the presence of directional 

interactions (or causal relations) in physiological systems71. This approach relies on the 

concept that a causal influence from a source region to a target region can be assumed if 

past information about the source region (e.g., a time series) improves the prediction of 

future values of the target region. In other words, Granger causality can provide 

information as to how information travels from one brain region to another. Here, the 

Granger causality connectivity analysis was conducted on the task-specific, PCA-derived 

functional brain networks (i.e., constrained to the dominant 15% of interconnected brain 

regions within each identified task-based networks) and consisted of two main steps. First, 
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Granger causality was performed on each subject individually, and binary outcomes were 

coded 0 for non-significant causal relations (p > 0.05) and 1 for significant causal relations 

(p < 0.05). The model order parameter of our multivariate autoregressive model was 

optimized with Minimum Description Length (MDL) criterion and statistical significance 

of every pairwise causal relation was detected using an F-test. Secondly, significant 

group-level causality maps (constrained to the significant, subject-level causal relations) 

were detected using binomial p-value computation for testing proportions. Specifically, 

for a given causal link, the binomial test uses the mean of all coded binary outcomes within 

a group (i.e., 0s and 1s) to compute the number of subjects with this significant causal link 

that is required for this link to be significant at the group-level. As such, the resulting task-

based Granger causality maps (Figure 3.9) display the dominant patterns of cortical 

information flow that were significant both at the subject- and group-levels for every task-

specific brain network. 

 

As opposed to neuroimaging modalities with lower temporal resolutions such as 

fMRI, MEG can resolve neuronal events with millisecond time precision and can thus be 

used to reliably investigate effective connectivity using Granger causality. In light of this, 

our primary functional connectivity analysis was complemented by information about the 

dominant direction of information flow within the identified data-driven brain networks. 

Taken together, this approach provided a more complete picture of the organization of 

brain networks during aging.  

 

3.4 Results 
Behavioral results 

As displayed in Table 3.1, the behavioral scores for each hand were entered into 

two-sample t tests to compare motor performance between young and elderly individuals. 

For both hands, young adults performed significantly better than elderly individuals on 

the BBT and NHPT (ps < 0.01), whereas grip strength did not differ between groups (ps 
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> 0.09). A significant age difference was also observed between the young group and the 

elderly group (p < 0.0001).  

 

Here, we defined task accuracy as the difference between the grip force applied and 

the position of the ramp target; higher accuracy is achieved when participants closely 

matched the target force (i.e., defined by the middle of the target ramp). We computed the 

mean accuracy of all trials for every participant (within each task independently), and 

subsequently tested for significant differences between young and elderly individuals on 

each task by entering the accuracy values into two-sample t tests. Both groups were 

matched on task accuracy during the unimanual task (using the dominant right hand; p > 

0.3) as well as during the bimanual task (using the dominant right hand and the non-

dominant left hand; ps > 0.1).  

 

Functional connectivity results 

Inspection of the scree plot of singular values was carried out for each frequency 

band (theta, alpha, beta, gamma) of the two motor tasks (unimanual, bimanual). Visual 

inspection of every component (i.e., network) extracted from our task-based analysis was 

performed. Brain networks which included regions that appeared randomly scattered or 

that were not clustered into well-documented networks were excluded from the analysis 

and are not discussed below. This led to the inclusion of three unimanual networks (all in 

beta) and three bimanual networks (two in beta, one in alpha). The brain regions and 

estimated time series associated with each network are displayed in Figures 3.3-3.9 and 

described below.  

 

Functional networks underlying unimanual hand grips 
Ventral Frontoparietal Network. This network was the first component extracted 

from the beta frequency and accounted for 18.3% of task-related variance. Activation in 

this network was largely lateralized to the right hemisphere and specifically included the 

temporoparietal cortex, anterior cingulate cortex, occipital cortex, as well as bilateral 
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anterior inferior frontal cortex (Figure 3.3A). This spatial pattern is highly consistent with 

that of a frontoparietal attention network known to play a role in detecting behaviorally 

relevant stimuli and mediating bottom-up processing72, 73. This network was therefore 

identified as the ventral frontoparietal network. The Hilbert transform values (i.e., 

envelope) of the network’s associated time series were entered into a mixed-model 

ANOVA, and a significant main effect of Poststimulus Time was observed, F1440,30240 = 

1.16, p < 0.001. The Poststimulus Time × Group interaction was also significant, F1440,30240 

= 1.19, p < 0.001, and was caused by increased activity in the elderly group during the 

sustained hand grip periods (i.e., 0-3 s and 6-9 s; Figure 3.3B). 

Figure 3.3: The first principal component extracted from the beta frequency (13–30 
Hz) for the unimanual task, labelled Ventral Frontoparietal Network. (A) Dominant 
15% of loadings for this component are displayed, representing a network of strongly 
interconnected brain regions (B) The estimated time series (i.e., component scores) 
associated with this network, representing the network’s engagement at each 
poststimulus time points. Shaded regions represent the standard error of the group 
mean. Contralateral and ipsilateral with respect to the moving (right) hand. 

 

Default-Mode Network. This network was the second component extracted from the 

beta frequency and accounted for 8.4% of task-related variance. As displayed in Figure 

3.4A, activations in this network were found in core regions of the default-mode network 

such as right anterior cingulate cortex, precuneus, inferior temporal cortex, as well as 

bilateral ventromedial prefrontal and lateral parietal cortices. Although activation of the 

default-mode network has been predominantly observed under task-free or “resting-state” 

conditions, recent studies have reported significant deactivation of this network during 
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attentionally demanding tasks74. A known limitation of MEG functional connectivity, 

however, lies in its inability to distinguish between excitatory and inhibitory 

connections75; it is therefore possible that the default-mode network identified in the 

current study underlies task-related deactivations. The Hilbert transform values associated 

with this network were entered into a mixed-model ANOVA; main effects of Poststimulus 

Time and Group, as well as the interaction, were all not significant (ps > 0.2), suggesting 

that activity within this network did not differ across time or between groups (Figure 

3.4B).  

 

Figure 3.4: The second principal component extracted from the beta frequency (13–
30 Hz) for the unimanual task, labelled Default-Mode Network. (A) Dominant 15% of 
loadings for this component are displayed, representing a network of strongly 
interconnected brain regions (B) The estimated time series (i.e., component scores) 
associated with this network, representing the network’s engagement at each 
poststimulus time points. Shaded regions represent the standard error of the group 
mean. Contralateral and ipsilateral with respect to the moving (right) hand. 

 

Motor Network. This network was the third component extracted from the beta 

frequency and accounted for 5.1% of task-related variance. Activity in this network was 

observed predominantly in left motor-related regions, notably M1, primary and secondary 

sensory cortices (S1, S2), and superior frontal gyrus extending into supplementary motor 

area (SMA). This network also included activation in right S1 as well as superior and 

inferior parietal lobules. Based on this spatial pattern (Figure 3.5A) this network was 

labeled the motor network. This network showed a significant main effect of Group, 
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F1,30240 = 4.12, p = 0.05, but also a significant Poststimulus Time × Group interaction, 

F1440,30240 = 1.26, p < 0.001. As can be seen from Figure 3.5B, both groups showed similar 

levels of activity, however, relative to the young group, the time series of elderly 

individuals were characterized by distinct sharp activation peaks which may underlie the 

significant interaction. 

  

Figure 3.5: The third principal component extracted from the beta frequency (13–30 
Hz) for the unimanual task, labelled Motor Network. (A) Dominant 15% of loadings 
for this component are displayed, representing a network of strongly interconnected 
brain regions (B) The estimated time series (i.e., component scores) associated with 
this network, representing the network’s engagement at each poststimulus time points. 
Shaded regions represent the standard error of the group mean. Contralateral and 
ipsilateral with respect to the moving (right) hand. 
 
 

Functional networks underlying bimanual hand grips 
Left-Dominant Motor Network. This network was the first component extracted 

from the beta frequency and accounted for 19.4% of task-related variance. Activations in 

this network was mostly lateralized to the left hemisphere, and included M1 extending 

anteriorly into PMd and PMv, S1, inferior parietal lobule, and bilateral occipital cortex 

(Figure 3.6A). This component was therefore labelled the Left-Dominant Motor Network. 

As evidenced in Figure 3.6B and by a significant Poststimulus Time × Group interaction, 

F961,22125 = 1.10, p < 0.05, elderly individuals exhibited distinctly higher levels of activity 

throughout the whole sustained bimanual hand grip relative to young adults. 
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Figure 3.6: The first principal component extracted from the beta frequency (13–30 
Hz) for the bimanual task, labelled Left-Dominant Motor Network. (A) Dominant 15% 
of loadings for this component are displayed, representing a network of strongly 
interconnected brain regions (B) The estimated time series (i.e., component scores) 
associated with this network, representing the network’s engagement at each 
poststimulus time points. Shaded regions represent the standard error of the group 
mean. Contralateral and ipsilateral with respect to the dominant (right) hand. 

 

Bilateral Motor Network. This network was the second component extracted from 

the beta frequency and accounted for 7.8% of task-related variance. The spatial pattern of 

interconnected brain regions in this network was characterized by bilateral M1 activations 

(extending anteriorly into PMd) as well as left S1 and anterolateral parietal cortex (Figure 

3.7A). This component was thus identified as the Bilateral Motor Network. A mixed-

model ANOVA carried out on the Hilbert transform values of the network’s associated 

time series revealed significant main effects of Poststimulus Time, F961,20181 = 1.16, p < 

0.0005, and Group, F1,20181 = 7.17, p < 0.05, as well as a significant Poststimulus Time × 

Group interaction, F961,22125 = 1.15, p < 0.005. As can be seen from Figure 3.7B, this 

interaction appears to be caused by an increase in activity levels in the elderly group later 

in the trial (from 3 to 6 s), whereas young adults exhibit constant levels of activity 

throughout the entire bimanual hand grip.  

 

Right-Dominant Motor Network. This network was the first component extracted 

from the alpha frequency and accounted for 25.6% of task-related variance. This 

component was characterized by a functional network that included activations in and 
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around right M1, specifically extending anteriorly into PMd and posteriorly into the 

central sulcus, left inferior parietal cortex, and bilateral occipital cortex (Figure 3.8A). 

Based on the spatial distribution of the network, this component was labelled the Right-

Dominant Motor Network. The main effects of Poststimulus Time and Group, as well as 

the interaction, were all not significant (ps > 0.4), suggesting that activity within this 

network did not differ across time or between groups (Figure 3.8B).  

 
Granger causality mapping 

We investigated the direction of information flow from and to every brain region 

derived from all six task-based networks extracted from the functional connectivity 

analysis. Binomial statistics revealed that causal links were significant at the group-level 

if the links were significant at the individual-level in at least 7 subjects (i.e., 7/12 for the 

young group and 7/11 for the elderly group), that is: p-value = P(X ≥ 7 | p = µgroup) < 0.05. 

Here we used a multivariate autoregressive model of order 3, meaning that the time lag 

between interacting neuronal ensembles was 18.75 ms (i.e., 3/160). Granger causality 

maps for the unimanual and bimanual networks and for each group are depicted in Figure 

3.9A–C and Figure 3.9D–F, respectively. 

 

3.5 Discussion 
In the present study, we compared functional brain activity underlying the 

production of unimanual and bimanual isometric hand grips in young and elderly 

individuals. Notably, we employed a combination of functional and effectivity 

multivariate connectivity analyses to derive task-specific brain networks and assess the 

direction of information flow among cortical areas. The production of unimanual right-

hand grips revealed three distinct functional networks extracted from the beta frequency 

band: a ventral frontoparietal network, a default-mode network, and a motor network. 
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Figure 3.7: The second principal component extracted from the beta frequency (13–
30 Hz) for the bimanual task, labelled Bilateral Motor Network. (A) Dominant 15% of 
loadings for this component are displayed, representing a network of strongly 
interconnected brain regions (B) The estimated time series (i.e., component scores) 
associated with this network, representing the network’s engagement at each 
poststimulus time points. Shaded regions represent the standard error of the group 
mean. Contralateral and ipsilateral with respect to the dominant (right) hand. 
 
 
 
 
 

Figure 3.8: The first principal component extracted from the alpha frequency (8–12 
Hz) for the bimanual task, labelled Right-Dominant Motor Network. (A) Dominant 
15% of loadings for this component are displayed, representing a network of strongly 
interconnected brain regions (B) The estimated time series (i.e., component scores) 
associated with this network, representing the network’s engagement at each 
poststimulus time points. Shaded regions represent the standard error of the group 
mean. Contralateral and ipsilateral with respect to the dominant (right) hand. 
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Figure 3.9: Group-specific Granger Causality maps for the unimanual and bimanual 
task-based brain networks are displayed in (A–C) and (D–F), respectively. Arrows 
depict the direction of information flow from one cortical region to another that 
reached statistical significance both at the individual-level and group-level (p < 0.05). 
Surface brains with blue nodes represent causal maps for the young group and surface 
brains with red nodes represent causal maps for the elderly group. Abbreviations: 
angular gyrus (AG), anterior cingulate cortex (ACC), anterior inferior temporal gyrus 
(aITG), anterior superior temporal gyrus (aSTG), calcarine cortex (Cal), central sulcus 
(CS), cuneus (Cun), frontal pole (FrP), frontal pole gyrus (FpG), inferior frontal gyrus 
(IFG), inferior frontal sulcus (IFS), intraparietal sulcus (IPS), inferior temporal sulcus 
(ITS), insula (Ins), lateral occipital cortex (LOcC), lingual gyrus (LG), medial 
prefrontal cortex (mPFC), middle frontal sulcus (MFS), middle occipital gyrus 
(MOcG), occipital pole (OcP), orbitofrontal cortex (OFC), posterior parietal cortex 
(PCC), precuneus (PCu), primary motor cortex (M1), primary sensory cortex (S1), 
secondary sensory cortex (S2), suborbital sulcus (SoS), superior frontal 
gyrus/supplementary motor area (SFG/SMA), superior parietal lobule (SPL), 
supramarginal gyrus (SMG), temporal pole (TmP), temporooccipital fusiform gyrus 
(TOFus), temporooccipital lobe (TOcL),ventral premotor (PMv). 
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Relative to young adults, elderly individuals demonstrated hyperactivity in the ventral 

frontoparietal and motor networks, whereas activity levels within the default-mode 

network did not differ between groups. Interestingly, our Granger causality analysis 

performed on the unimanual task-specific networks demonstrated that elderly individuals 

had increased input to M1 during unimanual hand grips, which was not observed in young 

adults. As for the bimanual task, two beta motor networks and one alpha motor network 

were identified: a left-dominant motor network (beta), a bilateral motor network (beta), 

and a right-dominant motor network (alpha). As with the unimanual task, elderly showed 

activity increases in both networks extracted from the beta band during production of 

bimanual hand grips, however, similar levels of activity were observed on the right-

dominant alpha motor network. Altogether, these findings seem to favor the compensatory 

view of aging, whereby both groups engage similar networks of interconnected brain 

regions but, as opposed to younger adults, elderly exhibited a greater magnitude of activity 

in those networks in order to complete the motor tasks with similar accuracy. 

 

Connectivity patterns underlying unimanual right-hand grips 
Regions of the ventral frontoparietal network identified in this study have been 

observed previously in healthy adults, with temporoparietal cortex, anterior cingulate 

cortex, occipital cortex, as well as bilateral anterior inferior frontal cortex implicated in 

goal-directed attention processing72, 73. Tasks that demand externalized attention to a 

visually presented stimulus have been shown to reliably activate regions within the 

frontoparietal network72, 76, with older adults showing higher activity increases in 

prefrontal and parietal cortex25, 77. Our findings revealed a similar pattern of connectivity 

during the isometric hand grip periods (i.e., from 0 to 3s and from 6 to 9s), however, 

activity levels within this network during the ramp period (i.e., from 3 to 6s) were similar 

between both young and elderly subjects. This could indicate that attentional demands are 

significantly increased when subjects are required to maintain an isometric hand grip at a 

specific force level. Accordingly, the greater cortical activation observed in older adults 

in the ventral frontoparietal network could be interpreted as a mechanism of attentional 
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control employed by elderly individuals in an attempt to dampen the processing of task-

irrelevant stimuli78.  

 

Comparing elderly individuals to young adults on the unimanual motor network, we 

observed a similar group difference in activity levels to that of the ventral frontoparietal 

network, with elderly individuals exhibiting activation increases relative to young adults. 

This motor network was extracted from the beta frequency band and mainly included left 

pre- and postcentral gyri, occipital cortex, superior frontal gyrus (extending into SMA), 

as well as right inferior frontal gyrus, inferior and superior parietal lobules. Unlike the 

attention network in which increased activation was depicted by overall higher oscillatory 

amplitude, enhanced activity in the motor network was indexed by sharp beta peaks in 

elderly individuals. According to a computational modelling study on transient neocortical 

beta rhythms, these sharp beta oscillations reflect greater temporal synchrony in synaptic 

input on cortical pyramidal neurons79. In line with this finding, our Granger causality 

analysis of the unimanual motor network provides additional evidence for an association 

between greater synchrony inputs and sharper beta oscillations (i.e., larger amplitude). 

More specifically, we found that greater cortical information flow to M1 was only present 

in the elderly group, which notably, was characterized with distinctly higher beta peaks. 

Combined, these results may therefore be reflective of a compensatory mechanism of the 

aging brain whereby greater synchrony of excitatory input currents are required in order 

to counteract structural changes such as myelin reductions in M1. Accordingly, since age-

related myelin deterioration is associated with a slowing of electrical activity80, 81, it could 

be speculated that sharp beta oscillatory features constitute a neurophysiological 

mechanism by which activity within the motor network is increased, consequently 

allowing elderly individuals to achieve similar levels of task accuracy to those of young 

adults. Future task-based studies may therefore wish to relate network connectivity levels 

to myelin content and investigate whether a relationship exists between beta oscillatory 

rhythms and myelin in healthy adults as well as in neurodegenerative disorders or aging 

populations. Furthermore, the finding of enhanced interhemispheric information flow 
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between left primary and secondary sensorimotor regions and right parietal regions in 

elderly subjects observed during the unimanual task in the current study is in agreement 

with an influential theory of brain reorganization suggesting a loss of asymmetry in 

connectivity patterns in older adults64-66. 

 

Connectivity patterns underlying bimanual hand grips 

Our whole-brain multivariate PCA analysis on the bimanual task data revealed three 

functional networks of interest: a left-dominant, a right-dominant, as well as a bilateral 

motor network. Interestingly, movement of each hand independently activated a motor 

network in its respective dominant hemisphere (e.g., movement of right hand was 

controlled by a left-dominant motor network, and vice-versa). On the other hand, 

interhemispheric coordination between these two motor networks appeared to be 

modulated by a bilateral motor network which included left and right M1 as well as 

temporofrontal regions. As with the unimanual motor network described earlier, elderly 

subjects showed significant activity increases relative to young adults on the left-dominant 

motor network, which suggests an increase in the generation of postsynaptic currents 

during the performance of bimanual hand grips82. A similar pattern of activity was 

observed on the bilateral motor network, however, significant activity increases in the 

elderly group were only observed during the second half of the trial. Again, this finding 

may reflect a compensatory mechanism whereby augmented neuronal activity is recruited 

in older adults which enable them to sustain an isometric bimanual hand grip for the 

overall duration of the trial (6 s). The current findings therefore expand upon previous 

work supporting the view that the dominant hemisphere, as opposed to each contralateral 

hemisphere independently, controls the organization of bimanual hand movements83 (for 

a review, see Maes et al.3). Notably, our data suggest a role for a whole-brain, bilateral 

motor network in the modulation of each lateralized hemisphere’s motor network, with 

the temporal pole acting as an integrative hub for coordination of cortical information 

flow. 
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Interestingly, the effective connectivity maps for the bimanual task-based networks 

revealed that young adults rely more on prefrontal regions, such as the frontal pole (FrP), 

suborbital sulcus (SoS), orbitofrontal cortex (OFC), and medial prefrontal cortex (mPFC). 

This pattern of strongly interconnected frontal regions was largely absent in the elderly 

group, which is in agreement with previous cognitive studies reporting age-related activity 

decreases in prefrontal regions25, 84. Another striking difference in connectivity patterns 

between young and older adults lies in the importance of the left temporal pole region in 

the bilateral motor network. Based on our Granger causality analysis, this brain area 

appears highly integrated within the network in the young group as it receives cortical 

information from several parietal and frontal regions (including left M1), but also has a 

causal influence on the posterior cingulate cortex (PCC) which in turn sends information 

back to the left M1 (see Figure 3.9E). While the neural organization of the bilateral motor 

network in young adults seems to be driven by the dominant (left) hemisphere, as 

previously reported83, bimanual movements in elderly individuals rather appear to be 

controlled from each contralateral hemisphere independently, with minimal 

interhemispheric connectivity. This lack of coordination between hemispheres could be 

attributable to altered white matter integrity of the corpus callosum in older adults, which 

plays a key role in allowing both hemispheres to communicate during bimanual 

movements17, 19. Indeed, previous monkey research investigating the interhemispheric 

connections of the temporal lobes has revealed that the corpus callosum receives extensive 

fibers from the temporal pole85. We thus speculate the left temporal pole to be an important 

substrate for coordination of both hands during bimanual movements and further propose 

this region to be a central hub responsible for mediating information flow between the two 

hemispheres. Partly due to their long-distance connectivity and topological centrality 

supporting integration of multiple regions, cortical hubs are known to be highly 

biologically costly and as a consequence become highly vulnerable in aging86.  
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Limitations 
Multivariate network connectivity analysis techniques for MEG data are sparse and 

relatively novel hence it is important to note some limitations of the methods used in the 

current study. First, the low number of participants in each group (nyoung=12, nold=11) 

limited the statistical power of the study, which may have led to an overestimation of the 

effect size and consequently to increased chances of a Type II error. Reproducibility of 

these findings should be assessed in a similar, but larger, sample of young and elderly 

individuals. Second, we investigated group differences in activity levels of commonly 

shared task-based brain networks which in turn precluded us from determining whether, 

and how, spatial reorganization occurs during healthy aging. Lastly, the Granger causality 

approach employed in the current study did not take into account instantaneous or time-

varying directional effects which may consequently provide an incomplete description of 

the causal relations between cortical brain regions in the identified task-based networks71. 

 

Conclusions 
In conclusion, this work illustrates that despite matching levels of task accuracy, 

elderly individuals were characterized with higher levels of activity in functional brain 

networks underlying the performance of unimanual and bimanual hand movements. A 

possible large-scale compensatory mechanism in elderly subjects was observed in the 

unimanual motor network Granger causality map, in that M1 received input from several 

parietal regions possibly in an attempt to support residual motor function within this 

primary motor region. Moreover, findings from the current study suggest a role for a 

whole-brain, bilateral motor network in the modulation of each lateralized hemisphere’s 

motor network. We further suggested that the left temporal pole region within this network 

acts as an integrative hub for coordinating cortical information flow from both 

hemispheres in young adults, but was impaired in elderly individuals. Collectively, these 

findings suggest that despite functional brain reorganization, elderly individuals have 

overly activated and disintegrated task-specific motor networks. Taking into account the 
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high dynamicity of cortical brain networks, an interesting research avenue would be to 

repeat similar analyses using a time-varying (dynamic) approach.  
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CHAPTER 4 
MOTOR TASK-INDUCED CHANGES IN RESTING-STATE 

NETWORKS IN AGING 
 

Preface 
A promising paradigm in human neuroimaging research is the study of intrinsically 

activated brain networks, which can be observed in the absence of external stimuli or 

explicit tasks. Historically, Biswal and colleagues87 were the first to detect the 

manifestation of spontaneous low-frequency fluctuations in the BOLD signal and 

successfully identified functional connectivity in the motor network at rest. Over the past 

years, this so-called resting-state approach has become increasingly popular to investigate 

alterations in the synchronization of neuronal activity and their relevance to various 

healthy and diseased populations.  

 

In this project, we collected MEG data at rest before and after two different motor 

tasks. We then employed envelope correlation to investigate whether resting-state 

connectivity is modulated by the performance of visually-paced hand grips and whether 

it affects resting brain activity differently in aging individuals relative to young adults. We 

hypothesized that an increase in task-related activity, as observed in elderly individuals in 

our experiments described in previous chapters, would lead to an increase in resting-state 

connectivity.  

 

The recent advent of resting-state MEG analysis has drawn much attention mainly 

due to its capability to derive dynamic and spectral information, which is a limitation of 

fMRI studies. As of now, the analysis methods used for stationary estimation of MEG 

resting-state connectivity are novel and underdeveloped. This challenge was addressed in 

a study that compared consistency and reproducibility of several whole-brain network 
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connectivity metrics on resting-state MEG data88. The authors concluded that simple 

envelope correlation ranks among the most consistent analysis methods as it was found to 

have good test-retest reliability as well as to minimize spatial leakage artifacts88.  
 

*  *  * 
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4.1 Abstract2 
Objective: Resting-state functional connectivity provides a unique way to explore the 

underlying brain changes associated with aging.  

Methods: Using MEG measurements of brain activity acquired from three separate 

resting-state sessions interspersed with two motor tasks, we studied whether executing 

unimanual and bimanual hand grips would affect subsequent resting-state functional 

connectivity patterns differently in aging subjects when compared to young adults. MEG 

data were collected from twelve young (mean age = 23.7 ± 2.9 years) and eleven elderly 

subjects (mean age = 67.5 ± 3.9 years). Beamformer-based time series were reconstructed 

for 148 brain regions and the Hilbert transform was used to extract the instantaneous 

power from multiple frequency bands. Functional connectivity analysis was then 

performed by systematically computing pairwise envelope correlations between the 

source-reconstructed brain regions.  

Results: For both groups, we observed enhanced beta connectivity from the first to the 

second resting-state run (i.e., a unimanual task was performed between the two runs). This 

connectivity increase was present in networks that govern core attentional, visuospatial, 

and sensorimotor processes. Furthermore, elderly subjects demonstrated a strong delta 

connectivity increase at rest following the performance of a unimanual task, which 

correlated positively with activity of the task-based ventral frontoparietal attention 

network derived from the unimanual task. 

Conclusions: Our findings suggest that elderly individuals maintain the capacity for 

modulating network-wide brain activity in the beta frequency (13–30 Hz) when switching 

from an active motor state to a resting-state period. In contrast, elderly individuals show 

altered slow (1–4 Hz) oscillatory connectivity when attentional demands are high, 

possibly indicating a marker of healthy neurocognitive aging. 

 

                                                
This work is to be submitted as: 
Larivière S, Xifra-Porxas A, Niso G, Kassinopoulos M, Mitsis GD, Boudrias MH. Motor-task induced 
changes in resting-state MEG networks in aging. 
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4.2 Introduction 
Resting-state (i.e., task-free) acquisitions of spontaneous oscillatory neuronal 

activity are becoming increasingly used to study brain networks in healthy and diseased 

populations. Notably, resting-state functional connectivity offers a multitude of 

advantages over task-evoked paradigms, as for instance, better signal to noise ratio89, fast 

and easy implementation, as well as the possibility of studying broader samples of 

participants with limited cognitive or motor abilities. Furthermore, previous analyses of 

resting-state data collected from healthy adults have consistently revealed strong 

congruence between brain networks derived from resting-state and those from task-related 

studies, as well as with different modalities such as fMRI and MEG90-93.  

 

As the world rapidly ages, a growing interest is being paid to the relationship 

between alterations in distributed brain networks and progressive motor or cognitive 

function declines observed during aging31-33. Whereas previous fMRI and MEG resting-

state studies have consistently documented a link between hyperactivity of the 

sensorimotor network and increasing age32, 94-96, age-related cognitive deficits have often 

been attributed to connectivity decreases in networks encompassing frontal, parietal, and 

temporal regions, such as the dorsal attention network and the default-mode network31, 97. 

Here distinctly, we were interested in studying whether functional connectivity patterns 

associated with performing a series of hand grips are reflected differently in elderly as 

compared to young adults. To do so, every participant performed a combination of two 

different visually-guided motor tasks interspersed with three resting-state periods (see 

Figure 3.1 for a schematic overview of the experiment protocol). Consequently, this 

allowed us to characterize how the aging brain at rest alters its functional connectivity 

after performing a hand motor task and accordingly determine whether elderly individuals 

retain the capacity to modulate network-wide activity influenced by an increase in task 

demands. 
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A number of neuroimaging studies have examined alterations in brain functioning 

in healthy and diseased populations by employing a combination of resting-state and task-

activation paradigms (rest before task98-100; task before rest101, 102). It is commonly 

assumed that the order of task-evoked and resting-state acquisitions in an experiment 

protocol has negligible effects on data subsequently acquired. Carrying out a task 

experiment may however induce connectivity changes on subsequently acquired resting-

state data and consequently lead to erroneous interpretation of findings (e.g., attribute 

task-induced connectivity changes to an underlying pathology). In light of such 

possibility, it is important to go beyond understanding intrinsically organized brain 

networks at rest, and investigate the effects of performing a task on subsequent resting-

state connectivity. Waites and colleagues103 specifically addressed this issue by comparing 

resting-state functional connectivity before and after a language task and reported 

enhanced connectivity in frontal and parietal regions after the task, therefore suggesting 

that resting-state functional connectivity may in fact depend on the prior cognitive state. 

Similarly, other research groups have studied the modulatory effect of intensive motor 

learning practice on subsequent resting-state periods, and consistently reported enhanced 

connectivity in sensorimotor, visual, and cerebellar areas104-106. Whether performing a 

ubiquitous hand motor control task can lead to similar functional connectivity changes in 

MEG resting-state networks, and whether it would affect resting-state connectivity 

differently in elderly individuals as compared to young adults, represent important 

questions that remain largely unexplored. Accordingly, resting-state functional 

connectivity provides a unique way to explore brain rewiring and reorganization 

mechanisms underlying aging processes such as gray and white matter loss. A better 

understanding of these mechanisms could therefore provide beneficial insights for the 

development of novel and individualized rehabilitative treatments. Ultimately, this 

research avenue could help optimize motor recovery functions in movement-impaired 

populations such as stroke survivors. 
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This study sought to assess whether performing unimanual and bimanual hand 

movements would affect connectivity within large-scale resting-state MEG networks 

differently in elderly relative to young adults. In other words, we compared resting-state 

connectivity before (baseline) and after each motor task (unimanual and bimanual) to 

investigate functional connectivity changes in response to performing a series of visually-

paced isometric hand grips. Partially consistent with prior findings32, 33, we expected to 

observe increased connectivity at baseline (i.e., initial resting-state) in aging individuals 

relative to young adults across previously documented resting-state networks92, which 

could suggest reduced inhibitory control of cortical input in elderly subjects107. We further 

expected that an increase in task-related activity, as observed in elderly individuals (see 

Chapter 3), would lead to an increase in resting-state connectivity immediately subsequent 

to the task. This would provide evidence that undergoing a motor task can lead to age-

specific functional changes in the brain, thus hinting at a potential for different 

mechanisms by which the older brain adapts to task demands. 

 

4.3 Methods 
Details on participants as well as data acquisition and preprocessing are described 

in Chapter 3 and Appendix A, respectively. All participants underwent three separate 5-

minute resting-state sessions (interspersed with the two motor tasks as described in 

Chapter 3 and Figure 3.1) and were instructed to keep their eyes open and fixate on a 

cross. 

 

Data analysis and functional connectivity 

The functional connectivity analyses described below were performed separately 

for each of the three resting-state sessions. A schematic of the subsequent data analysis 

pipeline is provided in Figure 4.1. For every participant, the resting-state MEG data were 

down-sampled to 300 Hz and epoched offline in 10 s windows. Epochs in which 

significant signal artifacts were observed were rejected (see Appendix A) and the 

remaining “clean” 10 s windows were concatenated across time. The LCMV beamformer  
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Figure 4.1: Schematic overview of the analysis pipeline used for the resting-state 
MEG data. 

 

spatial filtering approach68 was then used on the subject-specific, concatenated data to 

reconstruct a single time series for all of the 148 cortical brain regions defined by the 

Destrieux atlas69. Each time series was corrected for signal leakage effects (i.e., spurious 

correlations between the inferred cortical sources) using a symmetric, multivariate 

correction method intended for all-to-all functional connectivity analysis108. The Hilbert 

transform was subsequently used to extract the instantaneous power and phase from six 

frequency bands of interest: delta (1–4 Hz), theta (5–7 Hz), alpha (8–12 Hz), beta (13–30 

Hz), gamma ‘low’ (31–80 Hz), and gamma ‘high’ (81–150 Hz). Functional connectivity 

analysis was performed on each of the six frequency bands by systematically computing 

pairwise envelope correlations between all 148 source-reconstructed brain regions. The 

resulting all-to-all connectivity matrices (one per frequency band) were sorted by 

functional networks according to the recently proposed 7-network brain cortical 

parcellation estimated by intrinsic functional connectivity using resting-state fMRI data 

from 1000 healthy adults92. This network parcellation provided spatial consistency across 

all subjects as well as between resting runs, thereby making direct comparison of 

functional network connectivity possible. Here, functional connectivity was defined as the 
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mean connectivity strength (i.e., the mean of all pairwise correlations) within each of the 

pre-defined seven resting-state networks. Differences between groups (young vs. elderly), 

runs (resting-state 1, 2, and 3), and mean connectivity strength for each of the seven 

resting-state networks were identified by carrying out six 7 × 3 × 2 mixed-model 

ANOVAs (one per frequency band). Tests of sphericity were carried out for all ANOVAs 

and Greenhouse-Geisser adjusted degrees of freedom were checked. Original degrees of 

freedom are reported as any violations of sphericity did not affect the results.   

  
4.4 Results 

A significant main effect of Run was observed in two frequency bands, specifically 

delta (F2,42 = 11.1, p < 0.005) and beta (F2,42 = 4.7, p < 0.05), whereas a significant main 

effect of Network was found in all frequency bands: delta (F6,126 = 14.3, p < 0.001), theta 

(F6,126 = 14.3, p < 0.001), alpha (F6,126 = 56.3, p < 0.001), beta (F6,126 = 14.3, p < 0.001), 

gamma ‘low’ (F6,126 = 8.8, p < 0.001), and gamma ‘high’ (F6,126 = 8.0, p < 0.001). 

Significant interactions involving Network, Run, or Group were solely observed in the 

delta and beta frequency bands and are described below. 

 

Task-induced connectivity changes in the delta frequency band  

Slow oscillatory connectivity (1–4 Hz) differed between young and elderly subjects 

across different resting-state sessions as evidenced by a significant Run ×  Group 

interaction, F2,42 = 5.61, p < .05, η2
p = 0.21. Within-subjects contrasts yielded significant 

group differences from the first to second resting-state run (p < 0.005), and from the 

second to the third run (p < 0.05). As can be seen from Figure 4.2A, this interaction was 

caused by elderly subjects exhibiting a large increase in delta connectivity in the second 

resting-state run (i.e., after the unimanual task) relative to young adults. 

 

Task-induced connectivity changes in the beta frequency band 
The beta frequency (13–30 Hz) showed a significant Run ×  Network interaction, 

F12,252 = 2.76, p < .05, η2
p = 0.12, indicating that resting-state network connectivity varies 
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as a function of time (i.e., resting-state run). As can be seen from Figure 4.3A, this 

interaction can be interpreted by enhanced connectivity from the first to the second resting 

run (i.e., increased connectivity after the unimanual task), notably in the visual, dorsal 

attention, and sensorimotor networks. A significant Network × Group interaction was also 

observed, F6,126 = 3.43, p < .05, η2
p = 0.14, suggesting that elderly subjects demonstrate 

slightly higher beta oscillatory connectivity than young adults in all resting-state networks 

(non-significant, ps > 0.36) with the exception of the visual network (p < 0.05; Figure 

4.3B). 

 

Correlation with task-based results 

In order to relate the delta resting-state findings to the two motor tasks (unimanual, 

bimanual), we computed correlations between the levels of coordinated activity in each 

task-related network (Figures 3.3-3.8), and the mean resting-state delta connectivity (z 

scores averaged across all networks, for each subject). As displayed in Figure 4.2B, an 

increase in task-related activity in the ventral frontoparietal network (derived from the 

unimanual task) was positively correlated with larger delta oscillatory connectivity in the 

subsequent resting-state (second resting run) in older adults only (relderly = 0.49, p = 0.05). 

Young adults, however, showed the opposite pattern whereby stronger levels of ventral 

frontoparietal activity was associated with lower delta connectivity in the following 

resting-state period (ryoung = –0.60, p < 0.05). The between-group difference in correlation 

coefficients reached statistical significance (p < 0.01). The analogous correlations 

involving the default-mode network and the motor network (unimanual task), as well as 

the left-dominant, right-dominant, and bilateral motor networks (bimanual task) were not 

significant. 

 

43



CHAPTER 4. MOTOR-TASK-INDUCED CHANGES IN RESTING-STATE NETWORKS IN AGING 

 

 
Figure 4.2: (A) Group difference in mean resting-state delta connectivity, averaged 
across all networks and plotted as a function of resting-state run. (B) Correlation 
coefficients between the mean beta time series of the ventral frontoparietal network 
(derived from the unimanual task) and the mean resting-state delta connectivity of the 
second resting-state run (averaged across all networks). The values on the y-axis 
represent component scores derived from the task-based PCA (see Chapter 3), whereas 
the x-axis values represent Pearson’s correlation coefficient. 
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4.5 Discussion 
To our knowledge, this is the first MEG study to focus on changes in resting-state 

functional connectivity in response to performing hand motor tasks. Specifically, we 

investigated whether performing visually-guided unimanual and bimanual hand grips 

would affect whole-brain resting-state networks differently in aging subjects as compared 

to young adults. First, irrespective of age, we observed an increase in beta connectivity 

immediately following a unimanual motor task. This increase from the first to the second 

resting-state session was mainly observed in networks that govern core attentional, 

visuospatial, and sensorimotor processes, and which include regions that were strongly 

activated during unimanual hand grips (see Chapter 3). Group differences were observed 

in a slower frequency band; relative to young adults, older individuals exhibited a strong 

increase in delta connectivity following the unimanual task. We further demonstrated that 

enhanced delta activity was positively correlated with activity within a task-related ventral 

frontoparietal network in elderly. Taken together, these results suggest that elderly 

individuals maintain the capacity to adapt to task demands via network-wide connectivity 

increases in the beta frequency (13–30 Hz), but have altered slow (1–4 Hz) oscillatory 

connectivity which could be caused by an increase in attentional demands.  

 

Isometric right-hand grips modulate network-wide beta connectivity 

increases  
In agreement with previous fMRI studies investigating the effects of intensive motor 

learning on subsequent resting-state brain activity in healthy adults105, 106, significant 

connectivity increases were observed following the unimanual task relative to baseline 

(i.e., the first resting-state session). This enhanced connectivity pattern was present in both 

young and elderly groups, and was particularly noticeable in resting-state cortical 

networks that include regions previously engaged during the unimanual task (e.g., visual, 

dorsal attention, sensorimotor, default-mode networks). Neuromodulation studies using 

non-invasive brain stimulation protocols such as transcranial magnetic resonance (TMS)  
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Figure 4.3: (A) Mean beta connectivity differences between resting-state networks, 
averaged across both groups and plotted as a function of resting-state run. (B) Group 
differences in mean beta connectivity, averaged across resting-state runs and plotted 
as a function of resting-state networks. Abbreviations: visual network (VN), 
sensorimotor network (SMN), dorsal attention network (DAN), ventral attention 
network (VAN), limbic network (LMBC), frontoparietal network (FPN), default-mode 
network (DMN). * = p < 0.05.  

* 
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or tDCS have demonstrated that neuronal flexibility, or any short- or long-term sustained 

changes in cortical properties, is importantly mediated by GABA receptors109, 110. 

Interestingly, despite previously reported neurochemical-related alterations between 

dopamine and GABA neurotransmitters in older adults11, these individuals exhibited 

sustained changes in cortical connectivity in response to performing a series of visually-

guided isometric hand grips. Moreover, our current data suggest that ubiquitous hand 

movements can induce similar neuronal flexibility, observed here as an increase in resting 

brain connectivity, even in the absence of external stimulation or intensive motor learning. 

Given the evidence reported herein, we suggest that healthy adults, irrespective of age, 

retain the capacity for task-induced connectivity changes at a systems level. Specifically, 

this was evidenced by a significant increase in beta functional connectivity within whole-

brain networks subserving functions necessary for the production of unimanual hand 

grips, as for instance, visuospatial, attentional, and sensorimotor processes. Interestingly, 

these connectivity changes were not sustained throughout the third resting-state session 

(i.e., after the bimanual task), which could be explained by the fact that execution of 

bimanual hand grips activated a combination of beta and alpha motor networks, whereas 

the unimanual task networks were all identified in the beta frequency. An important 

consideration for future studies that wish to employ a similar experiment protocol, 

however, would be to counterbalance the order of the unimanual and bimanual tasks. This 

would allow for a relationship between connectivity changes and performance of a 

specific task to be reliably established.  

  

Altered slow oscillatory connectivity in aging relates to attentional demands 
Previous studies looking at the role of slow frequencies during healthy aging (e.g., 

delta; 1–4 Hz or theta 5–8Hz) have been highly inconsistent, reporting increased111, 112 

and decreased113, 114 slow oscillatory power. In this context, our finding of age-related 

increases in slow wave oscillatory connectivity may expand upon this debate by instead 

demonstrating that enhanced delta connectivity in fact plays a role in modulating 
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attentional or cognitive resources in older adults. This interpretation is in line with 

evidence from cognitive studies which looked at the association between aberrant delta 

oscillatory activity and healthy aging44, 115. In one such study, Maurits and colleagues115 

employed an auditory oddball paradigm to assess the association between EEG coherence 

and cognitive ability. Partially consistent with our findings, the authors provided evidence 

that elderly subjects have enhanced interhemispheric delta coherence during a simple 

cognitive task115. Here distinctly, delta oscillatory connectivity increases were not directly 

associated with ongoing cognitive processes, but rather represented sustained connectivity 

likely induced or enhanced by the unimanual task. Alternatively, another study has 

recently suggested that the phase of slow delta oscillations modulates higher gamma 

power during attentional reorienting116. The authors further proposed a role for delta-

gamma phase-amplitude coupling as a neurophysiological mechanism underlying 

coordination among frontoparietal regions during attentionally demanding tasks116. 

Although phase-amplitude coupling analysis was not carried out on the current data, we 

found a significant correlation between intensity levels of the ventral frontoparietal 

network (extracted from the beta frequency during the unimanual task; see Chapter 3) and 

the mean delta connectivity strength over the whole brain during the second resting-state 

session (i.e., following the unimanual task) in the elderly group. Considered alongside 

cognitive studies in aging112, 117, and in addition to its association to the ventral 

frontoparietal cortex reported here, the large increase in delta connectivity following the 

unimanual task could be considered a marker of healthy neurocognitive aging. 

 

Limitations 

The large amounts of data generated by MEG recordings often limit large-scale 

analyses to one high resolution dimension. Temporal accuracy (i.e., high sampling rate), 

for instance, will be preserved at the cost of spatial accuracy (use of parcels instead of 

voxels), which in turn may result in a lower ability to localize effects. This limitation was 

overcome in the current study by using a brain parcellation with 30 or more parcels to 

reconstruct the source time series, thus allowing higher sensitivity106. Additionally, one 
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key assumption of using Yeo et al.’s92 atlas-based network parcellation is that the surface 

registration has accurately aligned individual subjects to the group parcellation map, such 

that no residual individual differences remain in terms of cortical area locations. Future 

analyses of the current data could overcome these limitations by (1) repeating the same 

pairwise envelope correlation on the source-reconstructed MEG time series using a series 

of different cortical and network parcellation atlases, or (2) identifying cortical areas using 

a machine learning approach that accounts for individual variability (e.g., areal 

classifier118).  

 

Conclusions 

In summary, this study explored whether performing unimanual and bimanual 

motor control tasks would affect subsequent resting-state functional connectivity 

differently in elderly subjects as compared to young adults. Resting-state networks 

including brain regions that were highly activated during the unimanual task in the beta 

frequency (e.g., visual, motor, and attention networks) showed enhanced beta oscillatory 

connectivity after the task in all subjects. Contrastingly, we found that elderly subjects, 

relative to young adults, had a significant increase in delta connectivity following the 

unimanual task which was not sustained throughout the third resting run (i.e., after the 

bimanual task). This large delta connectivity increase was positively correlated with 

activity of the task-based ventral frontoparietal attention network (derived from the 

unimanual task), thus suggesting a role for slow oscillations in modulating task-related 

attentional demands. Collectively, our findings demonstrate that performing hand 

movements can enhance functional connectivity in the resting brain, specifically in 

regions that were activated by the task. This work should prompt further studies to assess 

resting-state connectivity changes induced by a task in motor-impaired populations. The 

challenge remains to exploit the potential benefits of combined task-related and resting-

state protocols to provide a valuable tool for future research and possible rehabilitation 

strategies aiming to enhance neural flexibility by means of exercise programs targeting 

hand movement.  
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CHAPTER 5 
TASK-RELATED MOTOR CONNECTIVITY IN CHRONIC 

STROKE 
 

Preface 
Topics described in previous chapters contribute to our understanding of the 

underlying neural reorganization and possible compensation mechanisms involved during 

healthy aging. Notably, we showed that elderly individuals exhibit higher levels of brain 

activity relative to young adults during hand movement, differ in the underlying effective 

connectivity patterns (Chapter 3), but nevertheless retain the capacity for neuronal 

flexibility (Chapter 4). Studies aiming to further our understanding of the brain processes 

involved during healthy aging are fundamental for stroke research for two main reasons: 

(1) increasing age ranks among the most common risk factors for ischaemic stroke49, and 

(2) the global population is rapidly aging119. 

 

Despite a high variability in functional motor recovery across different stroke patient 

subpopulations, rehabilitation strategies continue to employ a ‘one size fits all’ 

approach120. One reason for this may be that we lack a clear understanding of the 

biological factors that actively promote poststroke plasticity and recovery. Indeed, 

according to the International Partnership of Stroke Recovery and Rehabilitation121, there 

is an urgent need for better insights into the neural mechanisms guiding stroke recovery. 

Another pressing issue in stroke research lies in the identification of robust biomarkers of 

motor recovery, which would allow rehabilitation interventions to target the appropriate 

brain regions and eventually move towards individually-tailored treatments60, 121.  

 

In this chapter, we compared activity levels of functional brain networks involved 

during hand movement in chronic stroke patients to those of healthy controls. Notably, we 
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assessed whether alterations within task-specific networks would lead to the identification 

of recovery biomarkers in the stroke group. Based on prior findings showing reduced 

activity in sensorimotor regions of the affected and unaffected hemisphere, we 

hypothesized that chronic stroke patients would exhibit network-wide decreases in 

functional connectivity relative to healthy controls. Consequently, we also hypothesized 

that greater motor impairment would be associated with disruptions within these 

sensorimotor regions. 
 

*  *  *  
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5.1 Abstract3 
Objective: Studies mapping the patterns of activation in functional brain networks 

during upper limb recovery after stroke have mainly focused on specific areas such as the 

ipsi- and contralesional primary motor cortices. Consequently, the contribution of other 

motor and non-motor areas remains poorly understood. This study sought to identify 

differences in functional connectivity patterns in whole-brain networks. We wished to 

expand our knowledge of the brain activity underlying hand motor control in chronic 

stroke patients in comparison to that of healthy controls.  

Methods: Twenty-four healthy control subjects and 17 chronic stroke patients underwent 

fMRI and performed a series of isometric hand grips with their dominant hand (control 

subjects) or affected hand (stroke patients). We used task-based multivariate functional 

connectivity to derive whole-brain networks that underlie hand movement. Permutation 

testing was then used to identify activity differences within these task-specific networks. 

Results: Our whole-brain analysis revealed group differences on two networks: (1) a 

motor network, in which stroke patients showed overall reduced activation, and (2) a 

default-mode network, in which healthy subjects demonstrated increased deactivation. 

Moreover, our within-network analysis showed decreased regional activity in 

contralateral (to the moving hand) M1/S1, which was specific to the stroke group. With 

respect to behavioral impairment, we found an association between ipsilesional M1/S1 

activity and motor performance in stroke patients. 

Conclusions: Following brain damage due to stroke, connectivity within a large-scale 

motor network was disrupted and appeared to be driven by reduced activity in ipsilesional 

sensorimotor regions. These findings support the notion that rehabilitation treatments for 

chronically impaired patients should target secondary motor areas in order to support 

residual activity in M1/S1. 

                                                
This work is to be submitted as: 
Larivière S, Ward NS, Boudrias MH. Reduced functional connectivity of the motor network in chronic 
stroke. 
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5.2 Introduction 
Ischemic stroke is a cerebrovascular injury which often results in sensorimotor and 

cognitive impairments due to brain damage50, 122. Whereas some patients achieve good 

motor recovery, up to 40% of stroke survivors are left with permanent motor 

disabilities119, with the majority presenting residual hand deficit50. This in turn has 

dramatic consequences on their daily life activities123 and represents a major economic 

burden (estimated at $2.8 billion a year in Canada for new and chronic stroke patients)124. 

Clinical trials focusing on the manipulation of poststroke plasticity (i.e., changes in spatial 

distribution or functional brain activation) via stem cell therapy125, 126 and 

pharmacotherapy127 have so far been unsuccessful in improving motor control in humans. 

On the other hand, brain imaging studies offer promising avenues in providing more 

detailed and accurate information about residual motor function than clinical assessment 

alone60, 128. As a result, they have the potential to help establishing plausible biological 

targets for rehabilitation and clinical research120. However, the identification of stroke 

recovery biomarkers, which are defined as characteristics that can have indicative and 

predictive value for disease state or motor outcome129, is still lacking121 and thus remains 

an area of active research in neuroimaging60, 128. 

 

Previous event-related fMRI studies have provided ample evidence for cortical 

reorganization during recovery of motor function after stroke (for comprehensive reviews, 

see Lake et al.49 and Grefkes and Fink130). For instance, Rehme and colleagues128 found 

that enhanced activity in ipsilesional primary motor cortex (M1) during movement of the 

paretic hand in the acute stage (< 1 week) can accurately predict motor outcome at 4-6 

months poststroke. Similarly, another study from Carey et al.131 looked at the relationship 

between simple hand movement and cerebral activation. The authors reported that well-

recovered chronic stroke patients activated the ipsilesional primary sensorimotor cortex 

to levels similar to those observed in healthy controls, whereas worse-off patients 

demonstrated persistent activation decreases in this area131. On the other hand, reduced 

functional coupling from ipsilesional SMA and PMd to M1 appear to be characteristics of 

53



CHAPTER 5. TASK-RELATED MOTOR CONNECTIVITY IN CHRONIC STROKE 

 

worse-off patients132. Taken together, these studies suggest that activity levels within the 

ipsilesional M1 alone is positively correlated with the degree of motor recovery observed 

after stroke56, 133, 134. Despite a substantial amount of research regarding functional 

recovery after stroke, current findings are mostly limited to M1.  

 

Recent neuroimaging studies in healthy adults in fact demonstrated that seemingly 

simple hand movement engages a distributed network of regions which includes, but is 

not limited to, M139, 135. Secondary motor areas, particularly PMv, PMd, and SMA, as 

well as the parietal cortex are also recruited during hand movement136, 137 and may in turn 

be highly relevant to stroke rehabilitation research. Notably, these regions contain 

corticospinal neurons138 and as a consequence have the potential of acting on motoneurons 

which innervate muscles. Secondary motor regions could therefore be ideal biological 

targets in the context of neurorehabilitation using stimulation protocols, as for instance 

tDCS. Such treatment strategy could facilitate output to upper limb motoneurons via 

stimulation of anatomically intact corticospinal regions and accordingly benefit the 

recovery of some motor function in the affected hand after stroke. The functional 

capability of the premotor areas to support residual motor function after an infarct, as well 

as their contribution within large-scale motor networks, however remain unclear. 

 

Despite these alterations in motor connectivity, it is now believed that whole-brain 

network assessments, as opposed to typically used region of interest (ROI) analyses, can 

enhance the interpretation of lesion-induced connectivity disruptions following stroke139. 

In light of this, the default-mode network (DMN) has been consistently observed in 

resting-state studies of stroke patients140-142. Originally thought to be predominantly 

associated with self-generated thoughts and mind wandering143, 144, it was recently 

proposed that the DMN also acts as a global integrator, in that it has the ability to integrate 

information from multiple sources in order for cognitive and motor tasks to be 

performed145, 146. Similarly, some authors have theorized the existence of a cognitive-to-

motor functional gradient, such that involvement of higher-order brain areas precedes 

54



CHAPTER 5. TASK-RELATED MOTOR CONNECTIVITY IN CHRONIC STROKE 

 

activation of motor-related regions during purposeful movements147, 148. Whether task-

related DMN hyperactivity in stroke patients149 plays a supportive role during movement 

of the affected hand, however, has not yet been investigated. Combining a data-driven 

network method with patient-specific clinical measures of motor impairment could 

therefore provide a valuable approach to identify robust recovery biomarkers in chronic 

stroke survivors.  

 

The goal of this study was to compare functional connectivity in whole-brain 

networks underlying the production of isometric, visually-paced hand grips in individuals 

with chronic stroke and healthy controls. To derive multiple distinct, simultaneously 

active task-based functional brain networks with unique hemodynamic response (HDR) 

shapes, we used a method based on multivariate multiple regression analysis and principal 

component analysis (Constrained Principal Component Analysis for fMRI or fMRI-

CPCA)150, 151. As opposed to univariate analysis techniques, fMRI-CPCA identifies brain 

networks that are (1) specifically underlying the task (viz., motor control), and (2) shared 

across all subjects to allow identification of network-wide functional connectivity 

differences between chronic stroke patients and controls. We further used a nonparametric 

statistical approach to investigate within-network regional brain activity changes between 

the two groups. Evidence of activity differences in individual brain regions was examined 

within the data-driven task-specific brain networks thus avoiding potential bias that may 

have arisen from choosing a priori regions of interest. To our knowledge, this is the first 

study to use this approach to examine possible network-wide connectivity alterations 

during isometric hand movement after stroke. Based on prior findings showing reduced 

activity in sensorimotor regions of the affected and unaffected hemisphere53, 54, 149, we 

hypothesized network-wide decreases in functional connectivity across networks 

involving default-mode as well as primary and secondary motor regions in chronic stroke 

patients relative to healthy controls. Such connectivity differences would indicate a 

disruption of neuronal function both at the lesion site and in remote regions. We further 
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hypothesized that reductions in regional brain activity would be associated with poorer 

motor performance in chronic stroke patients.  

 

5.3 Methods 
Participants 

A total of 17 chronic stroke patients and 24 healthy control subjects were included 

in this study. All patients had suffered from first ischemic stroke. Full written consent was 

obtained from all subjects in accordance with the Declaration of Helsinki. The study was 

approved by the Joint Ethics Committee of the Institute of Neurology, UCL and NHNN, 

UCL Hospitals NHS Foundation Trust, London.  

 
 

Variable 

Control 

Subjects 

Stroke 

Patients 

Sex (male/female) 14/10 14/3 

Handedness (right/left) 23/1 17/0 

Age (years) 46.7 (17.5) 53.2 (12.3) 

Time since stroke (months) – 44.9 (56.6) 

Lesion side (right/left) – 11/6 

Hand affected (right/left) – 6/11 

BBT % of unaffected – 52.1 (26.6) 

NHPT % of unaffected – 40.8 (35.5) 

Grip strength % of unaffected – 56.0 (33.7) 
 

Table 5.1: Participants’ demographic information and behavioral scores. Standard 
deviations are in parentheses. BBT, Box and Block Test; NHPT, Nine-Hole Peg Test. 

 
Experiment protocol 

Behavioral assessment. Motor impairment was assessed in stroke patients via 

measurements of (1) hand grip strength, (2) finger dexterity (NHPT), and (3) unilateral 

gross manual dexterity (BBT). As depicted in Table 5.1, all three measurements were 
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corrected within subject as a percentage of their score obtained for the unimpaired hand152. 

These motor scores were then entered into a PCA and the first component was used as a 

single impairment score per patient, with higher motor score values corresponding to 

greater motor impairment. 

 

Motor task. While undergoing fMRI, all participants performed a series of 50 

visually cued dynamic isometric hand grips, using an MRI compatible manipulandum as 

described elsewhere64. Healthy controls carried out the task with their dominant hand 

while stroke patients performed the task with their affected (i.e., contralesional) hand. 

Prior to scanning, each subject gripped the manipulandum with maximum force in order 

to generate their MVC. These values were then used to set the subject-specific target 

forces of 10% and 30% of MVC. Throughout the scanning session, each subject 

performed a total of 50 isometric hand grips, in a randomized order, at a target pressure 

of 10% or 30% of their MVC. Each hand grip was sustained for 3 s and was followed by 

a variable interstimulus interval between 3 and 7 s.  

 

Data analysis and functional connectivity 
Details regarding data acquisition and preprocessing are described in Appendix B. 

To allow for direct comparison between groups, images from the right-sided stroke 

patients were flipped about the midsagittal plane so that the lesioned hemisphere 

corresponded to the left hemisphere (i.e., contralateral to the hand used). Data from the 

left-handed control subject were also flipped so to conform to the rest of the control group 

(i.e., a left-dominant hemisphere).  

 

The data was analyzed using fMRI-CPCA using orthogonal rotation150, 151. Briefly, 

fMRI-CPCA integrates multivariate multiple regression analysis and principal component 

analysis into a unified framework. This type of analysis required the preparation of two 

matrices: a 5084 × 259,423 data matrix, with rows corresponding to scans (41 subjects × 

124 volumes) and columns corresponding to voxels, and a 5084 × 492 design matrix, with 
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rows corresponding to scans and columns corresponding to combinations of conditions 

(10%, 30%) and poststimulus time points (six time points) for every subject (i.e., 41 

subjects × 2 conditions × 6 poststimulus time points). Here, a finite impulse response 

(FIR) model was used as the design matrix in which binary values were coded 1 in cells 

where the HDR signal is to be estimated and 0 otherwise, creating mini-boxcar functions. 

For the current analysis, we modeled six poststimulus time points corresponding to the 1st 

to 6th full brain scans following stimulus presentation. Multivariate multiple regression of 

the data matrix onto the design matrix was subsequently performed in order to partition 

the overall variance into task-related and task-unrelated fluctuations. In the current study, 

we regressed out the rigid-body parameters prior to regressing other task-unrelated 

variance. Brain networks were then isolated by performing a principal component analysis 

on the task-related variance in brain activity, which resulted in independent sources of 

variance reflecting task-specific brain networks. This method therefore enables derivation 

of brain networks from variations of the task-related BOLD signal, while also allowing 

for identification of functional brain networks that vary as a function of task-timing. As 

opposed to univariate methods, in which BOLD responses in each brain voxel are 

analyzed independently, fMRI-CPCA allows for the analysis of functionally connected 

networks of brain regions, and identification of their role in specific cognitive and motor 

processes as they occur over poststimulus time for different groups. 

 

Statistical analysis 
The cognitive and motor functions of each brain network are interpreted by 

analyzing predictor weights that produce subject- and condition-specific estimated HDR 

shapes. Specifically, these predictor weights are the weights that were applied to the FIR 

model used in the current analysis. The resulting functional brain networks can then be 

interpreted spatially by examining the dominant patterns of intercorrelated voxels, and 

temporally by looking at their associated HDR shapes. The repetition time (TR) for these 

data was 3.25 s, which resulted in an estimated BOLD signal over a 19.5 s time period, 

with the first time point (time = 0) corresponding to stimulus onset. Statistical analyses on 

58



CHAPTER 5. TASK-RELATED MOTOR CONNECTIVITY IN CHRONIC STROKE 

 

the HDR shapes (i.e., predictor weights) were carried out to test whether each functional 

network reflected a reliable hemodynamic response as well as to test differences in 

activation of each functional network between conditions and between groups. These 

analyses were carried out as four 6 ×  2 ×  2 mixed-model ANOVAs (four components 

extracted; see section 5.4), with the within-subjects factors of Poststimulus Time (6 

poststimulus time points) and Force (10%, 30%), and the between-subjects factor of 

Group (healthy controls, stroke patients). Tests of sphericity were carried out for all 

ANOVAs and Greenhouse-Geisser adjusted degrees of freedom were checked. Original 

degrees of freedom are reported as any violations of sphericity did not affect the results. 

 

Within-network analysis 

We used a nonparametric statistical method (e.g., FSL’s Randomise permutation-

testing tool, run with 5,000 permutations) to investigate group differences within the 

identified task-dependent functional brain networks. Activity differences between 

controls and stroke patients were constrained to the most extreme 10% of voxels (i.e., 

highest component loadings) for each shared functional network from the fMRI-CPCA 

output. As such, differences in activation of individual brain regions were examined 

within the data-driven, task-based brain networks, thus avoiding potential bias that may 

arise from choosing a priori regions of interest. Significant group differences were 

identified using threshold-free cluster enhancement (TFCE) and were corrected for 

multiple comparisons using family-wise error (FWE), p < .05153. 

 

5.4 Results 
Lesion overlap 

The brain lesions of all 17 stroke patients are displayed in Figure 5.1, with purple 

(superimposed on the brain image) representing voxels damaged in one patient and shades 

of red indicating areas of greater lesion overlap. The majority of the lesion overlap was 

found along the corticospinal tract and affected the insula, parietal and central operculum 
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cortices, precentral gyrus, temporal pole, inferior frontal gyrus, as well as supramarginal 

gyrus.   

 
Figure 5.1: Lesion locations in all stroke patients. The heatmap represents the degree 
of overlap, with the purple end of the spectrum indicating voxels damaged in one 
patient, and shades of red indicating voxels damaged in a larger number of patients.  

 

Behavioral results 
For the stroke group, the percentage of variance of the three motor scores for the 

first principal component was 82.2%, and so was used as the representative motor 

impairment score. A higher principal component score represents greater motor 

impairment. Comparison of control subjects and stroke patients in raw motor performance 

scores can be found in the Appendix B (Table B1). 

 

Functional connectivity 
The scree plot of singular values revealed four predominant components accounting 

for task-related variance in brain activity. The percentages of task-related variance 

accounted for by each rotated component were 12.1%, 6.7%, 6.3%, and 4.5% for 

Components 1–4, respectively. The brain regions associated with Components 1, 2, 3, and 

4 are displayed in Figures 5.2–5.5, respectively, with estimated HDR shape of each 

functional network represented by predictor weights plotted as a function of poststimulus 

time. Anatomical descriptions for each component are presented in Tables B2–B5. 
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Component 1: Dorsal Attention Network. The first component was characterized by 

a functional network of bilateral activations in frontal regions (inferior frontal gyrus, pars 

opercularis), parietal regions (anterior intraparietal sulcus, inferior and superior parietal 

lobules), as well as temporal regions (inferior and middle temporal gyri). Activity 

increases were also observed in the anterior cingulate cortex and cerebellum. Relating 

Component 1 to the recently proposed 7-network brain parcellation derived from resting 

state data,92 the frontal, parietal, and temporal activation peaks were all located on the 

dorsal attention network. Predictor weights reflecting the estimated HDR for Component 

1 were submitted to a mixed-model ANOVA. A significant main effect of Poststimulus 

Time emerged, F5,195 = 9.31, p < 0.001, η2
p = 0.19, indicating that this component reflects 

a reliable HDR shape as opposed to varying randomly around zero. A significant Force × 

Poststimulus Time interaction was also observed, F5,195 = 2.49, p < 0.05, η2
p = 0.06, and 

a follow up analysis of simple main effects revealed that more attentional resources were 

allocated to increasing hand grip force, as indexed by a distinctly higher peak (at 4.9 and 

8.1 s; all ps < .05) in the 30% relative to the 10% condition (Figure 5.2B). No significant 

main effects or interactions involving Group emerged (all ps > 0.10). 

 

Component 2: Visual Network. The second component was characterized by a 

functional network including bilateral activations in primary visual network and extending 

laterally into the secondary visual network, extrastriate cortex, as well as ventrally into 

the inferior temporal cortex. Predictor weights reflecting the estimated HDR for 

Component 2 were submitted to a mixed-model ANOVA. As with the Dorsal Attention 

Network (Component 1), this component showed a significant main effect of Poststimulus 

Time, F5,195 = 15.54, p < 0.001, η2
p = 0.28, as well as a significant Force × Poststimulus 

Time interaction, F5,195 = 5.77, p < 0.001, η2
p = 0.13. A subsequent analysis of simple 

main effects indicated that this interaction was significant at 1.6, 4.9, 11.4, and 17.9 s (all 

ps < 0.05), reflecting a slightly earlier and higher HDR shape in the 30% condition relative 

to the 10% condition (Figure 5.3B). No significant main effects or interactions involving 

Group was observed (all ps > 0.55). 
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Figure 5.2: (A) Dominant 5% of component loadings for the Dorsal Attention Network 
(Component 1); positive loadings in red, threshold = 0.20, max = 0.28, no negative 
loadings. MNI Z-axis coordinates are displayed. (B) Mean FIR-based predictor weights 
averaged across groups, plotted as a function of poststimulus time. Error bars are standard 
errors. a = 30% > 10%. * = p < 0.05; ** = p < 0.01. 

Figure 5.3: (A) Dominant 5% of component loadings for the Visual Network (Component 
2); positive loadings in red, threshold = 0.17, max = 0.31, no negative loadings. MNI Z-
axis coordinates are displayed. (B) Mean FIR-based predictor weights averaged across 
groups, plotted as a function of poststimulus time. Error bars are standard errors. a = 30% 
> 10%; b = 10% > 30%. * = p < 0.05.  
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Component 3: Motor Network. The third component was largely dominated by left-

lateralized activations in motor regions, specifically M1, SMA, posterior parietal cortex 

(PPC), as well as PMd and PMv. The spatial distribution of this network is reflective of 

sensorimotor response processes involved in isometric right-hand grips. This component 

also included BOLD signal decreases bilaterally in primary visual cortex. Predictor 

weights reflecting the estimated HDR for Component 3 were entered into a mixed-model 

ANOVA, and a significant main effect of Poststimulus Time, F5,195 = 39.61, p < 0.001, 

η2
p = 0.50, as well as significant Force × Poststimulus Time, F5,195 = 6.68, p < 0.001, η2

p 

= 0.15, and Force × Group, F5,195 = 5.13, p < 0.05, η2
p = 0.12, interactions were observed. 

Follow up analyses of simple main effects detected a non-significant trend towards a 

decrease in functional connectivity in regions encompassing the motor network in chronic 

stroke patients relative to control subjects in the 30% force condition (p = 0.09; Figure 

5.4B and C). This indicates that the brain network underlying performance of hand motor 

movements in stroke patients is characterized by a BOLD response with lower peak 

magnitude and greater poststimulus undershoot than in controls.  

 

Component 4: Default-Mode Network. The fourth component primarily included 

BOLD signal decreases in regions associated with the well-documented DMN,154, 155 

notably in posterior cingulate cortex, precuneus, and medial prefrontal cortex. Statistical 

analysis of the predictor weights for Component 4 was carried out as a mixed-model 

ANOVA, and a significant main effect of Poststimulus Time, F5,195 = 12.43, p < 0.001, 

η2
p = 0.24, as well as a significant Poststimulus Time × Group interaction, F5,195 = 7.53, p 

< 0.001, η2
p = 0.16, emerged. A subsequent analysis of simple main effects revealed that 

this interaction was strongest at 8.1 s (p < 0.005), reflecting a significantly higher 

deactivation peak in the control group relative to the stroke group (Figure 5.5B). 
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Figure 5.4: (A) Dominant 5% of component loadings for the Motor Network (Component 
3); positive loadings in red, negative loadings in blue, threshold = ±0.17, min = –0.22, 
max = 0.40. MNI Z-axis coordinates are displayed. (B) Mean FIR-based predictor weights 
averaged across all time points, plotted as a function of condition. (C) Mean FIR-based 
predictor weights for each combination of group and condition, plotted as a function of 
poststimulus time. a = 30% > 10%; b = 10% > 30%. * = p < 0.05; ** = p < 0.01; **** = p < 
0.001. Error bars are standard errors. 

Figure 5.5: (A) Dominant 5% of component loadings for the Default-Mode Network 
(Component 4); negative loadings in blue, threshold = –0.14, min = –0.20, no positive 
loadings. MNI Z-axis coordinates are displayed. (B) Mean FIR-based predictor 
weights averaged across conditions, plotted as a function of poststimulus time. c = 
Control > Stroke; d = Stroke > Control. * = p < 0.05; *** = p < 0.005. Error bars are 
standard errors. 
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Within-network activity differences 
Activation differences between groups within the task-based brain networks derived 

from fMRI-CPCA were assessed using nonparametric permutation testing. This analysis 

yielded two distinct clusters of voxels that showed significant activation (or deactivation) 

increases in control subjects relative to stroke patients: (1) when masked for the motor 

network (Component 3), a left sensorimotor cluster emerged (i.e., left pre-and postcentral 

gyri; Figure 5.6A; pcorr < 0.01); and (2) when masked for the DMN (Component 4), a 

bilateral precuneus cluster emerged (Figure B1; p < 0.05). In other words, voxels within 

these regions showed greater intensity (i.e., increased activations and/or increased 

deactivations) in the control group relative to the stroke group. 

 

 
Figure 5.6: (A) The within-network analysis masked for the dominant 10% of 
component loadings for the Motor Network (Component 3) revealed significantly 
reduced activity in left sensorimotor regions (pre- and postcentral gyri) in stroke 
patients relative to control subjects (pcorr < 0.01). (B) Negative relationship between 
left sensorimotor regions and motor impairment scores in stroke patients (p = 0.06).     

 

Relationship between regional activity and motor performance 

The relationship between regional brain activity and motor performance in stroke 

patients was assessed by computing correlations between the predictor weights of the 

within-network clusters (ipsilesional pre- and postcentral gyri, precuneus) and the PCA 

motor impairment scores. There was a moderately strong but non-significant trend for a 
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negative relationship between ipsilesional pre- and postcentral gyri activation and motor 

impairment scores, r = –0.46, p = 0.06 (Figure 5.6B). Since higher principal component 

scores equate greater motor impairment, increased brain activity within this sensorimotor 

cluster appears to be associated with better motor performance. The analogous 

correlations between motor performance and precuneus deactivations, as well as with 

functional connectivity within each whole-brain network, age, post-stroke duration, and 

lesion size were not significant (ps > 0.15). 

 

5.5 Discussion 
This study investigated functional connectivity alterations in brain networks 

underlying visually-paced isometric hand grips in chronic stroke patients relative to 

control subjects. Of the four functional brain networks identified, group differences were 

only observed on the motor network and the DMN, in which stroke patients revealed 

decreased functional connectivity relative to control subjects. A secondary analysis 

investigating group differences in activation of individual brain regions within these 

networks showed reduced activity intensity in ipsilesional (contralateral to the hand) pre- 

and postcentral gyri, which was characteristic of chronic stroke patients and which also 

appeared to be associated with motor performance. Groups did not differ on the remaining 

two networks (dorsal attention and visual networks), however increased activity in these 

networks was associated with production of higher force levels in all participants. 

Collectively, these findings suggest that reduced regional brain activity in ipsilesional 

sensorimotor regions may impair the integrity of the motor network in individuals with 

stroke, and consequently appears to be an important biological marker of the motor state 

in chronic stroke patients.  

 

Consistent with existing findings showing regional activity reductions in various 

motor-related regions53, 54, 156, we observed significant activity decreases in a whole-brain, 

left-dominant motor network in stroke patients relative to control subjects. Notably, with 

regard to behavioral performance we found that activity intensity within the ipsilesional 
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M1/S1 cluster of the task-specific motor network was positively correlated with lower 

levels of motor impairment, thus hinting at a potential biomarker of the motor state in 

chronic stroke patients. Interestingly, Borich and colleagues157 discovered that a certain 

amount of residual corticospinal tract integrity must be preserved in chronic stroke 

patients in order to observe meaningful behavioral motor performance changes following 

motor learning training after stroke. In line with this research, our within-network finding 

of reduced M1/S1 activity in patients with greater impairment may in fact reflect damage 

to corticospinal tract fibers originating from the ipsilesional M1. Combined, these findings 

bear important implications for stroke recovery rehabilitation; the currently employed 

‘one size fits all’ treatment approach may not be beneficial for a substantial proportion of 

patients characterized with high degree of M1/S1 alterations or corticospinal tract damage. 

Moreover, our findings suggest that secondary motor areas, notably bilateral SMA, PMv, 

and PMd, have strong contributions to the task-specific motor network (as indexed by the 

lighter shades of red/white superimposed on the brain image in Figure 5.4A). Given that 

the within-network analysis did not reveal any significant group differences in these 

secondary motor regions, it could indicate that these areas are relatively spared by the 

infarct and still contain vast amounts of corticospinal motoneurons. In other words, 

secondary motor areas, alongside bilateral parietal cortices, may represent a brain circuit 

that becomes critically important in order to support residual motor function and 

consequently allow chronic stroke patients to perform hand movements.  

 

The association between motor performance and underlying brain activity in the 

motor network may also provide insights into long-term neurovascular alterations present 

in chronic stroke patients. In fact, increases in the BOLD response, commonly interpreted 

as an indirect measure of neural activity, are driven by simultaneous changes in three 

factors, namely: cerebral blood flow (CBF), cerebral blood volume (CBV), and metabolic 

rate of oxygen consumption (CMRO2)158, 159. Interestingly, combined MEG and fMRI 

studies of chronic stroke patients with good recovery of sensorimotor hand control have 

previously shown that absent or reduced BOLD activity may not necessarily indicate an 
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absence of neuronal activity but may instead reflect altered cerebral hemodynamics, as for 

instance significantly decreased CBF160, 161. Another possible explanation for the lack of 

concordance between the two modalities could be due to the use of a standard voxelwise 

fMRI analysis which in itself may not be sensitive enough to detect task-specific BOLD 

alterations162. Here distinctly, we estimated the BOLD impulse response underlying hand 

movement using a FIR model which, unlike typical hemodynamic response function 

models, does not require any a priori assumption concerning the shape of the HDR163. 

Consequently, this allowed us to quantify the primary BOLD response as well as the 

poststimulus undershoot. Whereas the former is classically characterized as neural 

activity, it has been hypothesized that poststimulus undershoots reflect concurrent 

reductions in neural activity, CBF, and possibly changes in CBV164. Although there were 

no significant differences between patients and controls at peak (i.e., primary BOLD 

response) in the motor network, stroke patients demonstrated a larger and wider 

poststimulus undershoot in the highest force level condition. Using pulsed arterial spin 

labeling (PASL), Brumm et al.165 found that CBF was significantly reduced in 

anatomically intact regions in chronic stroke survivors. In line with this finding, we can 

speculate that modulation of grip force in chronically impaired patients targets suboptimal 

neurophysiological mechanisms. Quantification of motor connectivity using a model-free 

approach (e.g., FIR) may therefore help to reveal underlying diffuse cerebral vascular 

dysregulations in the ischemic brain54. Further investigation of the effects of stroke on the 

biological basis of the BOLD signal as well as the long-term neurovascular consequences 

of an ischemic lesion could become instrumental in neuroimaging research of 

cerebrovascular patients.   

 

Increasing evidence suggests that localized brain lesions also disrupt connectivity 

in large-scale networks subserving higher-order functioning141, 149, 166. One such network, 

the dorsal attention network, has been consistently shown to activate during attention-

demanding tasks72, 167. A longitudinal study on stroke patients manifesting attentional 

deficits (i.e., visuospatial neglect168) showed that functional connectivity within the dorsal 
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attention network was highly disrupted during the acute stage but was fully recovered by 

the chronic stage94. Similarly, when compared to controls, we found no breakdown of 

functional connectivity in the dorsal attention network in our chronic stroke group, 

suggesting that such network alterations may be specific to the pathophysiology of neglect 

during the acute stage. Despite significant impairments in motor performance and motor 

connectivity, chronic stroke patients in our study maintained the ability to regulate activity 

of the attention network with increasing levels of grip force. Distinct from the externally-

oriented dorsal attention network is the well-documented DMN154, 155. In an elegant paper, 

Margulies and colleagues146 described the hierarchical organization of large-scale 

connectivity in healthy adults by means of connectivity gradients which reflect the 

dominant differences of connectivity patterns146, 169. The authors concluded that the DMN 

and the primary sensory networks (e.g., sensorimotor, visual, and auditory) were anchored 

on opposite ends of a connectivity gradient spectrum, thus providing evidence that the 

DMN may play a functional role during tasks that require the integration of information 

from multiple sensory systems146. In line with this theory, the inability of stroke patients 

to deactivate the DMN, as observed in the current study and elsewhere140-142, may reflect 

specific disruptions within this connectivity gradient. One hypothesis is that the DMN, 

being located at the top of a representational hierarchy, recognizes hypoactivity of the 

motor network and consequently engages its main hubs (e.g., precuneus, medial prefrontal 

cortex) in an attempt to support residual motor function. Alternatively, DMN 

hyperactivity, along with the finding of reduced activity in the motor network, may 

provide evidence that the boundaries between functional systems in the brain become less 

precise in chronically impaired stroke patients than in healthy adults. In favor of the latter 

hypothesis, we did not find an association between DMN activity (or precuneus activity 

alone) with motor performance, therefore suggesting that DMN hyperactivity seen in 

stroke patients possibly reflects higher-order cognitive impairments. Future studies are 

needed to characterize the connectivity gradients in stroke, as well as their relation to 

motor and cognitive performance outcomes, in order to yield additional insights into 

reorganization of brain networks during recovery.  
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The four brain networks derived from our multivariate functional connectivity 

analysis accounted for 30% of task-related variance. It is therefore possible that the 

remaining sources of variance include subject-specific biomarkers of functional recovery, 

which our group-level analysis was unable to detect due to the inter-subject variability in 

brain activation patterns in the stroke group. Arguably, the specificity of our findings to 

the chronic stroke population could be hampered by the large variability in post-stroke 

recovery phase (i.e., time after stroke), however excluding the subacute patients (< 4 

months) from our analysis did not alter the results. Despite that, we cannot absolutely 

exclude the influence ‘time after stroke’ on functional connectivity alterations. In view of 

these limitations, further studies may wish to track the neural mechanisms underlying 

ischemic stroke progression longitudinally, from acute to chronic stages. 

 

In summary, the ability to regulate activity of the motor network, notably within 

ipsilesional sensorimotor regions, appears to play a crucial role in successful hand motor 

recovery in stroke patients. In other words, the overall motor network connectivity 

decrease observed in stroke patients may be driven by significant alterations in ipsilesional 

M1/S1 and possibly underlying corticospinal tract damage. We further proposed that 

rehabilitation treatments targeting SMA, PMv, and/or PMd may be beneficial in patients 

with highly impaired ipsilesional M1/S1 as these secondary motor areas seem to be 

functionally intact and as a result can support residual motor function after and infarct. In 

addition to quantifying the brain’s functional networks involved in hand movement, our 

whole-brain, task-based functional connectivity analysis lends a foundation that could 

allow future multimodal studies to integrate non-static properties of brain networks with 

changes in vascular health in at-risk populations. Taken together, our study establishes the 

ipsilesional sensorimotor regions as a biomarker of the motor state in chronic stroke 

patients, which in turn may open up new avenues for maximizing meaningful outcomes 

by promoting tailored neurorehabilitation approaches for individual patients. 
 

*  *  * 
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CHAPTER 6 
KEY FINDINGS AND SIGNIFICANCE 
 

The work presented in this thesis includes a combination of MEG and fMRI studies 

carried out on healthy young and elderly individuals, as well as chronic stroke patients. 

As opposed to previous research using typical univariate analysis techniques, here we 

employed a variety of multivariate functional and effective connectivity methods to 

investigate resting-state and task-specific brain networks in healthy and motor-impaired 

populations. Our main goal was thus to study the reorganization of functionally-connected 

brain networks at rest and during execution of hand movements in aging and stroke 

individuals.  

 

In the first experiment (Chapter 3), we investigated age-dependent alterations in 

functional connectivity in whole-brain MEG networks underlying the production of 

unimanual and bimanual visually-guided isometric hang grips using multivariate 

functional connectivity and Granger causality analysis. Brain network reorganization was 

observed in elderly individuals in order to maintain motor performance and task accuracy. 

This pattern was evidenced by overall hyperactivity in task-specific motor network in 

addition to increased neuronal input to the left primary motor cortex, which likely 

reflected compensatory mechanisms employed by older adults in order to support residual 

motor functions.    

 

In the second experiment (Chapter 4), we compared the effects of performing hand 

movement on resting-state functional connectivity in healthy young and elderly 

individuals. Envelope correlation analyses were carried out on resting-state MEG data 

before and after each motor task to study whether aging subjects demonstrate different 

reorganization mechanisms relative to young adults. We reported beta connectivity 

increases from the first to the second resting-state session (i.e., after a unimanual task) in 
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both groups. This connectivity increase was predominantly found in networks that govern 

core attentional, visuospatial, and sensorimotor processes. Moreover, we demonstrated 

that elderly subjects were characterized by a strong delta connectivity increase after the 

unimanual task, which correlated positively with activity of the task-based ventral 

frontoparietal attention network (derived from the unimanual task). These data suggested 

that elderly individuals maintain the capacity for task-induced network-wide neuronal 

flexibility in the beta frequency (13–30 Hz), but have altered slow (1–4 Hz) oscillatory 

connectivity when attentional demands are high. 

 

In the third experiment (Chapter 5), we compared functional connectivity in shared 

whole-brain networks underlying the production of visually-paced isometric hand grips in 

individuals with chronic stroke and healthy controls through a combination of multivariate 

multiple regression and principal component analysis. We observed overall motor 

network connectivity decrease in stroke patients which appeared to be driven by 

significant alterations in ipsilesional M1/S1 and possibly concurrent corticospinal tract 

damage. As opposed to healthy elderly individuals (in Chapter 3), where greater motor 

network activity was observed and interpreted as a compensatory mechanism, motor 

connectivity decreases observed in this experiment suggested that brain damage due to an 

infarct significantly alters the compensatory mechanisms observed during healthy aging. 

We therefore reported that stroke patients must instead rely on a residual brain circuit in 

order to perform a motor task. With respect to behavioral impairment, we also found a 

negative correlation between activity levels in ipsilesional M1/S1 activity and greater 

motor impairments in stroke patients. In light of these data, we proposed that rehabilitation 

treatments targeting SMA, PMv, and/or PMd may be beneficial in patients with highly 

impaired ipsilesional M1/S1 as these secondary motor areas seemed to be functionally 

intact and can therefore support residual motor function after and infarct. 

 

These experiments provided valuable insights into the neural mechanisms 

underlying motor performance decline in both aging and stroke populations. By 
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combining task-related and resting-state network-level connectivity, our neuroimaging 

study led to the identification of neural hallmarks of motor aging. Our findings also 

expanded upon previous research by contributing to the understanding of motor-task 

induced connectivity changes in young and healthy elderly individuals. This in turn 

provides an important framework for novel therapeutic interventions that wish to take 

advantage of context-dependent functional adaptability (e.g., performing a hand motor 

control task to enhance connectivity). Ultimately, the investigation of motor connectivity 

contributes to the development of more efficient treatment of other seemingly related 

neurodegenerative disorders that share similar underlying pathogenesis to that of normal 

aging or chronic stroke. 
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CHAPTER 7 
FUTURE RESEARCH 
 

MEG proved to be an excellent tool for measuring neural interactions at millisecond 

time scales, however its use was restricted to the study of cortical activity with limited 

spatial resolution and therefore precluded the investigation of subcortical structures. 

Fortunately, the recent emergence of multimodal neuroimaging can lead to increasingly 

accurate representations of the human brain. Notably, the simultaneous integration of 

millisecond temporal resolution from EEG and millimeter spatial resolution from fMRI 

can provide more detailed information about brain connectivity patterns that is 

unachievable by either modality alone. In light of this, our research team will also collect 

simultaneous EEG-fMRI data on the same sample of subjects (see Chapter 3) while they 

undergo two resting-state sessions interspersed with a dynamic visually-paced right-hand 

grip task.  

 

The rich experimental data that will be provided by our ongoing multimodal study 

(MEG, simultaneous EEG-fMRI) brings to the fore the importance of advanced 

connectivity analysis methods that are able to integrate these data in a meaningful manner, 

including a more accurate characterization of time-varying connectivity. These research 

efforts will result in obtaining more accurate connectivity-based biomarkers associated 

with the decrease of performance observed in the aging population. 
 

*  *  * 
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PART V | APPENDIX



 

 

APPENDIX A 
 

Behavioral data acquisition 

Grip strength was measured using a hand-held dynamometer, and the maximum 

value of three trials was taken as the maximum grip strength for each hand. Fine motor 

skills were measured using the NHPT; we calculated the time it took to place all the pegs 

into the nine holes and subsequently remove them (scores were recorded as pegs per 

second for each hand). Unilateral gross manual dexterity was assessed using the BBT 

which measures the number of blocks transferred from one side of the box to the other in 

60 s (scores were recorded for each hand separately). 

 

Data acquisition and preprocessing 
Prior to the MEG data acquisition, three head position indicator (HPI) coils were 

placed on each participant’s head and three anatomical fiducials were recorded at the 

nasion and preauricular points. Fiducial points, HPI coils, and scalp points defining each 

subject’s head shape were acquired using a 3D digitiser (Polhemus Inc., Vermont). MEG 

data were continuously acquired using a 275 channel CTF system at a sampling rate of 

2400 Hz. Head movement within the scanner was continuously measured throughout the 

recordings by periodically energising the HPI coils.  

 

Following the MEG recording, all participants underwent a whole-brain structural 

MRI scan acquired using a 1.5T Siemens Sonata (spoiled gradient recalled sequence: 8-

channel coil; repetition time = 27 ms; echo time = 9.2 ms; 1 x 1 x 1 mm voxels; flip angle 

= 30°; field of view = 256 x 240 mm). Coregistration of the MEG data to the MRI 

structural images was achieved by registering the three reference fiducial points and the 

digitized head surface to the head surface extracted from the MRI scan.  
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The MEG data recordings were applied a third-order synthetic gradient, band-pass 

filtered offline (1–80 Hz for task-related MEG data and 1–150 Hz for resting-state MEG 

data), included a notch filter at 60 Hz and 120 Hz, and down sampled to 160 Hz (task) and 

300 Hz (rest). Visual inspection of each recording was performed and segments of data 

containing an excessive amount of artifacts (e.g., muscle movement) were discarded. 

Signal-space projection was subsequently used to remove heartbeat and eye-blink artifacts 

identified using electrocardiogram and electrooculogram data. 
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APPENDIX B 
 

Data acquisition and preprocessing 

Imaging was performed on a 3T TRIO scanner (Siemens, Erlangen, Germany) using 

a 12-channel head coil. All subjects underwent a single scanning session during which all 

functional images were collected using a T2*-weighted MRI transverse echo-planar 

images (EPI) with the following parameters: 130 functional volumes consisting of 48 axial 

slices; thickness/gap = 2.5 mm; matrix = 64 × 64; repetition time (TR) = 3250 ms; echo 

time (TE) = 30 ms; voxel size = 3 × 3 × 3 mm; flip angle (FA) = 90°; field of view (FOV) 

= 192 mm. The first six volumes were discarded to allow for T1 equilibrium effects, and 

data from the remaining 124 volumes were used in the analysis. A high resolution T1-

weighted anatomical image (176 partitions; matrix = 256 ×  240; TR = 7.92ms; TE = 

2.48ms; 1.3 × 1.3 × 1.3 mm voxels; FA = 16°; FOV = 256 × 240 mm) and a field map 

(TE1 = 10 ms and TE2 = 12.46 ms, 3 × 3 × 2 mm resolution, 1 mm gap) were also acquired. 

The data were preprocessed using Statistical Parametric Mapping 8 (SPM8; 

Wellcome Trust Centre for Neuroimaging, UK). For each subject, all functional images 

were realigned and unwarped to account for movement artefacts, co-registered to the 

subject’s structural image, normalized to the Montreal Neurological Institute echo planar 

imaging template (voxel size = 2 × 2 × 2 mm), and spatially smoothed using an 8 × 8 × 8 

mm full width at half maximum Gaussian filter. No participants included in the current 

study showed motion correction that exceeded 4 mm or degrees on any axis. 
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Figure B1: The within-network analysis masked for the dominant 10% of 
component loadings for the Default-Mode Network (Component 4) revealed 
significantly reduced deactivity in bilateral precuneus in stroke patients relative to 
control subjects (pcorr < 0.05). 

 
 

 

 

  

97



APPENDIX B 

 

 

 

 
Test 

Control 
Subjects 

Stroke 
Patients 

BBTa 63.75 (11.5) 27.06 (16.8) 
NHPTa 0.74 (0.1) 0.26 (0.24) 
Grip strengtha 82.87 (25.6) 36.98 (29.4) 

 
Table B1: Behavioral results. Standard deviations in parentheses. BBT, Box and 
Block Test (number of blocks transferred in a minute); NHPT, Nine Hole Peg Test 
(pegs/s); grip strength (kg). aControl > Stroke, p < 0.001. 
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Cortical regions                 

Cluster volume BAs for 
peak 

locations 

Peak MNI coordinates  

(mm3) (voxels) x y z 

Positive loadings     

    Cluster 1: bilateral 
Precuneus  
Superior parietal lobule 
Anterior intraparietal sulcus 
Cingulate gyrus, posterior division 
Cingulate gyrus, anterior division 
Postcentral gyrus 
Central opercular cortex  
Inferior frontal gyrus, pars opercularis     

 Cluster 1: right hemisphere 
Lateral occipital cortex, superior division 

79,464  9933  
7 
7 
7 
23 
24 
2  
43 
44 
 
39 

         
      0 
  –30 
  –34 
      0 
      2 
  –54 
  –58 
    56 
 
    28 

 
   –46 
   –48 
   –40 
   –20 
     12 
   –22 
   –20 
     10 
 
   –74 

 
     60 
     60 
     44 
     44 
     38 
     40 
     18 
       4 
 
     34 

    Cluster 2: left hemisphere 
Lateral occipital cortex, inferior division 

    Cerebellum – Lobule VI 

10,672  1334  
37 
n/a 

  
  –44 
  –26 

                
   –70 
   –60 

 
       2 
   –20 

    Cluster 3: right hemisphere 
    Cerebellum – Lobule VI  

4736  592  
n/a 

 
    28 

                               
   –60 

 
   –20 

    Cluster 4: left hemisphere 
    Lateral occipital cortex, superior division 

4144  518  
39 

 
  –22 

                               
   –76 

 
     32 

    Cluster 5: right hemisphere 
         Putamen 

1640  205  
n/a 

 
    26 

                               
       0 

 
   –10 

    Cluster 6: right hemisphere 
         Thalamus 

760  95  
n/a 

 
    10 

                               
   –16 

 
       6 

    Cluster 7: left hemisphere 
    Primary visual cortex 

512  64  
17 

 
  –14 

                               
   –72 

 
     10 

 
Table B2. Cluster volumes for the most extreme 5% of Component 1 loadings, 
Montreal Neurological Institute (MNI) coordinates, and Brodmann area (BA) for the 
peak locations within each cluster. 
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Cortical regions                 

Cluster volume BAs for 
peak 

locations 

Peak MNI coordinates  

(mm3) (voxels) x y z 

Positive loadings     

    Cluster 1: right hemisphere 
Lateral occipital cortex, superior division  
Lateral occipital cortex, inferior division 
Occipital fusiform gyrus 
Primary visual cortex 
Inferior temporal gyrus, temporooccipital part 
Temporal occipital fusiform cortex 

30,552  3819  
19 
18 
18 
17 
19 
19 

         
    36 
    44 
    28 
    24 
    48 
    30 

 
   –84 
   –84 
   –86 
 –100 
   –56 
   –54 

 
     16 
       0 
   –10 
   –10 
   –16 
   –12 

    Cluster 2: left hemisphere 
Lateral occipital cortex, superior division 

    Lateral occipital cortex, inferior division 
Occipital fusiform gyrus 
Primary visual cortex 
Inferior temporal gyrus, temporooccipital part 
Temporal occipital fusiform cortex 

25,080  3135  
19 
18 
18 
17 
19 
19 

  
  –30 
  –42 
  –28 
  –16 
  –52 
  –44 

                
   –88 
   –88 
   –86 
   –98 
   –60 
   –60 

 
     12 
     –4 
   –14 
   –14 
   –12 
   –14 

    Cluster 3: left hemisphere 
Middle frontal gyrus 
Superior parietal lobule 
Postcentral gyrus  

18,624  2328  
6 
7 
1 

 
  –36 
  –36 
  –46 

                               
     –2 
   –42 
   –28 

 
     64 
     64 
     64 

    Cluster 4: right hemisphere 
Inferior temporal gyrus, posterior division 
Inferior temporal gyrus, anterior division 

14,328  1791  
37 
20 

 
    52 
    52 

                               
   –28 
    –4 

 
   –20 
   –40 

    Cluster 5: left hemisphere 
Inferior temporal gyrus, posterior division 
Inferior temporal gyrus, anterior division 
Temporal fusiform cortex 

5792  724  
37 
20 
37 

 
  –50 
  –50 
  –36 

                               
   –28 
   –10 
   –20 

 
   –16 
   –38 
   –28 

    Cluster 6: right hemisphere 
Cerebellum – Lobule VI 
Cerebellum – Lobule V 

4032  504  
n/a 
n/a 

 
    26 
      8 

                               
   –54 
   –54 

 
   –26 
   –14 

    Cluster 7: right hemisphere 
Superior parietal lobule 

1856  232  
7 

 
    36 

                               
   –44 

 
     66 

    Cluster 8: right hemisphere 
Precentral gyrus 

1408  176  
6 

 
    36 

                               
     –4 

 
     66 

 
Table B3. Cluster volumes for the most extreme 5% of Component 2 loadings, 
Montreal Neurological Institute (MNI) coordinates, and Brodmann area (BA) for the 
peak locations within each cluster. 
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Cortical regions                 

Cluster volume BAs for 
peak 

locations 

Peak MNI coordinates  

(mm3) (voxels) x y z 

Positive loadings     

    Cluster 1: bilateral 
Supplementary motor cortex  
Precentral gyrus 
Precentral gyrus 
Superior frontal gyrus 

 

Cluster 1: left hemisphere 
Postcentral gyrus 
Postcentral gyrus 
Postcentral gyrus 
Superior parietal lobule 

 

Cluster 1: right hemisphere 
Precentral gyrus 

66,528  8316  
6 
6 
4 
6 
 
1 
2 
3 
7 
 
 
6 

         
      0 
  –30 
    –2 
    18 
    
  –42 
  –40 
  –28 
  –34 
 
     
    52 

 
     –6 
   –10 
   –22 
     –6 
 
   –24 
   –38 
   –32 
   –48 
 
      
       4 

 
     62 
     62 
     52 
     68 
   
     58 
     56 
     56 
     58 
 
    
     38 

    Cluster 2: right hemisphere 
Superior parietal lobule 
Lateral occipital cortex, superior division 
Postcentral gyrus 

8392  1049  
7 
7 
2 

  
    36 
    24 
    52 

                
   –38 
   –58 
   –20 

 
     52 
     52 
     42 

    Cluster 3: left hemisphere 
Precentral gyrus 
Precentral gyrus  

2760  345  
6 
44 

 
  –54 
  –54 

                               
       2 
       6 

 
     38 
     24 

Negative loadings        

    Cluster 1: bilateral 
Visual cortex 
Primary visual cortex 
Cerebellum – Crus I 
Cerebellum – Vermis VI 

26,032  3254  
18 
17 
n/a 
n/a 

 
      4 
      4 
    34 
      2 

                               
   –84 
   –90 
   –64 
   –78 

 
     22 
       2 
   –26 
   –26 

 
Table B4. Cluster volumes for the most extreme 5% of Component 3 loadings, 
Montreal Neurological Institute (MNI) coordinates, and Brodmann area (BA) for the 
peak locations within each cluster. 
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Cortical regions                 

Cluster volume BAs for 
peak 

locations 

Peak MNI coordinates  

(mm3) (voxels) x y z 

Negative loadings     

    Cluster 1: bilateral 
Superior frontal gyrus 
Dorsomedial prefrontal cortex 
Ventromedial prefrontal cortex 
Orbitofrontal cortex 

54,256  6782  
9 
9 
10 
11 

         
  –10 
    –4 
      0 
      0 

 
     38 
     58 
     54 
     44 

 
     54 
     28 
       6 
   –14 

    Cluster 2: bilateral 
Precuneus 
Cingulate gyrus, posterior division 

17,400  2175  
7 
23 

  
      2 
      2 

                
   –56 
   –40 

 
     38 
     30 

    Cluster 3: right hemisphere 
Middle temporal gyrus, posterior division 
Middle temporal gyrus, anterior division  

6488  811  
21 
38 

 
    56 
    56 

                               
   –16 
       4 

 
   –14 
   –30 

    Cluster 4: right hemisphere 
Lateral occipital cortex, superior division 

5632  704  
7 

 
    56 

                               
   –62 

 
     30 

    Cluster 5: left hemisphere 
Lateral occipital cortex, superior division 

4264  533  
7 

 
  –48 

                               
   –66 

 
     30 

    Cluster 6: left hemisphere 
Middle temporal gyrus, posterior division 
Middle temporal gyrus, anterior division 

4024  503  
21 
38 

 
  –54 
  –54 

                               
   –30 
     –6 

 
   –10 
   –22 

    Cluster 7: right hemisphere 
Orbitofrontal cortex 

3248  406  
47 

 
    38 

                               
     38 

 
   –16 

    Cluster 8: left hemisphere 
Hippocampus 

2368  296  
n/a 

 
  –26 

                               
   –18 

 
   –18 

    Cluster 9: right hemisphere 
Hippocampus 

2176  272  
n/a 

 
    28 

                               
   –18 

 
   –18 

    Cluster 10: left hemisphere 
Orbitofrontal cortex 

2024  253  
47 

 
  –36 

                               
     32 

 
   –16 

 
Table B5. Cluster volumes for the most extreme 5% of Component 4 loadings, Montreal 
Neurological Institute (MNI) coordinates, and Brodmann area (BA) for the peak locations 
within each cluster. 
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