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Résumé

Ce mémoire résume mes travaux de recherche sur la déterminization de

transducteurs pondérés de chaînes de caractères vers une chaîne de caractères. Ce

document débute par une définition formelle des transducteurs pondérés de chaînes de

caractères vers une chaîne de caractères. Par la suite, trois algorithmes de déterminization

sont développés: algorithme SSW_determinization pour la déterminization complète de

transducteurs détermînizables (c'est une reproduction couronnée de succès de la fonction

non-documentée fsmdeterminize d'AT&T), l'algorithme de déterminization partielle de

transducteurs non déterminizables, PSSW_determinization et, finalement, l'algorithme de

déterminization sur demande, DSSW_determinization. Ces algorithmes ont été implantés

et des tests fonctionnels incluant des tests de reconnaissance de la parole ont été faits.

Les avantages et désavantages de ces algorithmes sont discutés et analysés. Une

attention particulière a été portée à la DSSW_detenninization. Cet algorithme peut

s'appliquer autant pour les transducteurs non déterminizables que ceux déterminizables

tout en utilisant un coût de mémoire très petit comparativement aux autres algorithmes.

vii
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Abstract

This thesis has carried on a systematic research on the determinization of the

string-to-string/weight transducers. It begins from the formal definitions of the string-to­

string/weight transducers. Theo y three determinizatioo algorithms have been developed. It

incIudes SSW_determinization algorithm only for the complete determinization of the

determinîzable transducers (AT&T determinization software fsmdeterminize has been

successfully reproduced by this algorithm), the partial determinization algorithm

PSSW_determinization for the determinization of the non-detenninizable transducers y and

DSSW_determinization algorithm for the determinization on the demand. These

algorithms has been implementedy and a functional test (incIuding ASR test) of these

determinization programs has also been carried 00.

The advantages and disadvantages of these algorithms have been discussed and

analyzed. Special attention has been paid to the DSSW_determinization. The

DSSW_determinization can be applied to the determinization of both determinizable and

non-determinizable transducers y and it has a very low memory cost compared with that of

the SSW_determinization and PSSW_determinization.
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Chapter 1

Introduction

Speech Recognition. aIso known as Automatic Speech Recognition (ASR). is a

wide research area of Computer Science. It is very exciting and chaIlenging. Speech

Recognition systems generally assume that the speech signal is a realization of sorne

message encoded as a sequence of one or more symbols [1]. To recognize the underlying

symbol sequence given a spoken utterance. the continuous speech waveform is first

converted to a sequence of equally spaced discrete parameter vectors. These speech

vectors are then transduced ioto messages by several stages [1,2]. NonnaJly. a

transduction stage is modeled by a finite-state device, which is a string-to-string (like the

dictionary). string-to-weight (like the language mode!). or string-to-string/weight

transducer (like the hidden Markov models).

The application of string-to-string/weight transducer in natura! language and

speech processing is a new research area [3]. This area is attracting a great deal of

attention in the research of Speech Recognition because that sorne models in ASR cao

only he represented by full string-to-string/weight transducers (for example, the hidden

Markov models). Therefore. a detailed and systematic research on the string-to­

string/weight transducers is necessary.

One important research topic on the string-to-string/weight transducers is their

determinization algorithms. The determinization algorithms try to construet an equivalent

sequential transducer of a string-to-string/weight transducer. Instead of the original non­

sequentiaJ transducer this sequentiaJ transducer dramatieaJly increases the searching

speed in the Speeeh Recognition process. The running time of sequentiaJ transducers for

specifie input depends linearly. only on the size of the input. In most cases the

determinization of transducer not only increase time efficiency but also space efficieney.

The purpose of this thesis is to research of the determinization algorithms for the

string-to-string/weight transducers. At present, only an executable determinization

software fsmdeterminize from AT&T is available in our ASR research. This software can

l
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only he applied for the complete determinization~ which is to get the whole resulting

sequential transducer of a determinizable string-to-string/weight transducer. However~ a

goal of the research carried here is to reproduce the AT&T work~ and therefore the

determinization result obtained from fsmdetenninize is considered as a standard to

evaIuate our newly developed determinization algorithms. In this thesis~ besides the

complete determinization algorithm other two aIgorithms~ the partial detenninization

algorithm and the determinization on the demand algorithm are aIso developed. The

thesis is organized as follows:

First~ in Chapter 2~ we give a review on the Finite-State Transducers and Speech

Recognition. Since few publications about string-to-string/weight transducers can be

found, this chapter introduces the definitions and properties of automata~ of string-to­

string transducers~ and of string-to-weight transducers. The information from this chapter

is very helpfuJ to define the string-to-string/weight transducers and to develop the

detenninization algorithms for them.

In Chapter 3~ we define the string-to-string/weight and sequential string-to­

string/weight transducers. Then~ based on the determinization algorithm of the string-to­

weight transducers an algorithm named SSW_determinization is developed for the

determinization of the determinizable string-to-string/weight transducers.

In Chapter 4, we discuss the determinizability of the transducers, and then develop

an algorithm PSSW_determinization for the partial determinization of the non­

determinizable string-to-string/weight transducers.

In Chapter 5, we develop the determinization on the demand algorithm~ which is

named DSSW_detenninization. This aJgorithm has specific characteristics compared with

that of SSW_detenninization and PSSW_determinization. For example, it can he applied

to both determinizable and non-determinizable transducers.

In Chapter 6, we systematically describe the implementation of these newly

developed detenninization algorithms.

In Chapter 7~ we design and present a functional test on these determinization

programs.

FinaJly~ in Chapter 8~ we summarize the whole thesis with conclusions and future

work.

2
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Chapter 2

Review of the Finite-State Transducers

and Speech Recognition

2..1 Introduction

Since the emergence of Computer Science finite-state devices~ such as finite-state

automat~ graphs~ and finîte-state transducers, have been studied and are extensively used

in areas such as program compilation, hardware modeling, and database management.

Although finite-state devices have been known for sorne time in computationaJ

linguistics, more powerful formaJisms such as context-free grammars or unification

grammars have typically been preferred. However. the latest mathematical and

algorithmic advances in the field of finite-state technology have had a great impact on the

representation of electronic dictionaries and on naturai language and speech processing.

As a result. significant developments have been made in Many related research areas

[8.16,17.19].

Sorne of the most interesting applications of finite-state machines are concemed

with computational linguistics [4,20,21,23,24]. We cao describe these applications from

two different views. LinguisticaIly, finite automata are convenient since they aIlow us to

describe easily Most of the relevant local phenomena encountered in the empirical study

of language by compact representations [S]. Parsing context-free grammars can also be

dealt with using finite-state machines. the underlying mechanisms in most of the methods

used in parsing are related to automata [6]. From the view of the cornputationai point, the

use of finite-state machines is mainly motivated by considerations of time and space

efficiency. We know that both time and space concerns are very important in modem

computer science development. For examples, in multimedia database management

system the size of data is dramatically increased compared to traditional database systems

[7]. Similarly in language and speech recognition, a small string-to-string/weight

transducer has more than 3S00K nodes with SOM arcs. The characteristics in language

processing from large-scale dictionaries in morphology to large lexical grammars in

syntax need sorne lexical approaches {underlying are sequentiaVsubsequential transducers

3
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mechanism) to increase processing time and decrease storage space (memory and second

storage). Actually~ the effect of the size increase on time and space efficiency is the main

computational problem not only in language and speech processing but also in modem

Computer Science. In language and speech processing~ time efficiency is achieved by

using detenninistic (or sequential) automata. In general, the running time of deterministic

finite-state machines for specific input depends linearly, only on the size of the input.

Space efficiency is achieved with classical minimization algorithms for deterministic

automata. This minimization treatment process is not needed when each transition of the

detenninistic finite-state machine is only handling symbols but strings. Applications such

as compiler construction have shown deterministic finite automata to he very efficient [9].

At present~ we cannot find a single university in the world with a Computer Science

department without a cIass to introducing the theory of finite automata.

Recently, much progress has been made in the applications of finite automata in

natural language processing which rang from the construction of lexical analyzers, and

the compilation of morphological and phonological cules to speech processing [3]. Here,

speech recognition is a large field. The transducers we discuss in this thesis are necessary

devices for the speech recognition technology. To get the best transducer is one goal in

speech processing.

Sequential finite-state transducers are very important devices in natural language

and speech processing [1,3~11,14,15]. Sequential finite-state transducers, simply

sequential transducers are also called deterministic transducers. This concept is an

extension from deterministic automata to transducers with deterministic inputs. That is a

machine which outputs a string or/and weights in addition to accepting (deterministic)

inputs.

Even though sequential finite-state transducers are now used in ail areas of

computationaI linguistics, the recent work in tbis field is not yet described in Computer

Science textbooks. At present, research on the application of transducers on speech

recognition is carried on mainly by AT&T~ CRIM and Carnegie Mellon University.

In this chapter we are going to give a detailed description of the related finite-state

devices used for language processing and speech recognition. As basic concepts we first

give an introduction on the definitions and properties of finite-state automata and finite-

4
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state transducers. Then we consider the case of string-to-string transducers, which have

been successfully used in the representation of large-scale dictionaries, computational

morphology, and local grammars and syntax. Considered next are sequential string-to­

weight transducers. These transducers are very useful in speech processing. Language

models, phonerne lattices and word lattices are among the objects that can he represented

by these transducers. The related algorithms used for these devices are other focuses of

this chapter, and we will also give an introduction on speech recognition systems.

Another goal of this chapter is that by reviewing the representative publications in

language and speech processing, to develop and implement (in the following chapters) the

detenninization aIgorithms of string-to-string/weight transducers for the speech

recognition systems.

2.2 Finite-State Automata

Finite-State-Automata (FSA) can be seen as defining a class of graphs and aIse as

defining languages. The following is a simple description on the definitions of FSA and

sorne closure properties. Other information, such as deterministic FSA (sequential FSA),

decidability properties and space & time efficiency discussion are available from

references [7,20,21,23,25].

2.2.1 Definitions

Definition 2.2.1 (FSAl:

A finite-state automaton A is a 5-tuple (~, Q, i, F, E),

where:

• ~ is a finite set called the alphabet

• Q is a finite set of states

• i E Q is the initial state

• F ~ Q is the set of final states

• E ~Q x (1: U (E}) x Q is the set of edges

By this definition FSAs can be seen as a class of graphs.

5



• Definition 2.2.2 (extended set of edges>:

The set of strings built on an alphabet 1: is aIso called the free monoid 1:*. The fonnal

definition of the star * operation can be found in reference [29]. The extended set of
A

edges E c Q x 1:* x Q is the smallest set such that
J\

(i) 't/q E Q, (q, E, q) E E
A

(ii) 't/w E r* and \fa E 1: U {E}, if (q" w, ql) E E and (ql, a, ql) E E then (q"
1\

w-a, ql) E E

Definition 2.2.3 (extended transition function):

The transition function d of a FSA is a mapping from Q x (r U (E}) to 2Q, and satisfies
J\

d(q', a) = {q E QI3(q', a, q) E E}. The extended transition function d, mapping from Q x

1:* onto 2Q, is that function such that
J\

(i) 't/q E Q, d(q, E) ={q}

(H)

•

Now, a language L(A) can be defined on finîte-state automaton A:

"L(A)={WE 1:*Id(i,w)nF;f:0}

A language is said to be regular or recognizable if it can he defined by a FSA.

2.2.2 Closure Properties

The set of recognizable language is closed under the following operations:

( 1) Union. If A, and Al are two FSAs, it is possible to compute a FSA AI U A2

such that L(A, u A2) =L(AI) U L(Al ).

(2) Concatenation. If Al and A2 are two FSAs, it is possible to compute a FSA

A,-Al such that L(A,-Al ) =L(Ad-L(Al ).

(3) Intersection. If A, = (1:, QI, il, F" El) and A2 = (1:, Q2, il, Fl , El) are two

FSAs, it is possible to compute a FSA denoted A, (l A2 such that L(A, (l A2) =
L(A,) (l L(A2). Such an automaton can be constructed as follows:

A, (l A2 =(!, Q, x Q2, (i" il), FI X Fl , E) with

6
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E = U(q/.a.r,)EE/. (q;:.a.r;z)eE;z {«QI,Q2),a,(r/,r2»}.

(4) Complementation. If A is a FSA, il is possible to compute a FSA - A such

that L(-A) = 1:* - L(A).

(5) Kleene Star. IfA is a FSA, it is possible ta compute a FSA A * such that L(A*)

= L(A)*.

2.3 Finite-8tate Transducers

Finite-State Transducer (FST) is an extension of a FSA. Each arc in a FST is

labeled by a pair of symbols rather than by a single sYmbol.

2.3.1 Definitions

Definition 2.3.1 (FST):

A Finite-State transducer is a 6-tuple (1:1, 1:2, Q, i, F, E),

where:

• Il is the input alphabet among a finite set

• I 2 is the output alphabet among a finite set

• Q is a finite set of states

• i E Q is the initial state

• F c Q is the set of final states

• E c Q X Il x 1:2 X Q is the set of edges

Definition 2.3.2 (path):

If a FST T =(I., 1:2, Q, i, F, E), a path of T is a sequence «p;,a;,b;,qi»i=I.n of edges E 5uch

that Q; =p;+/ for i =1 to n- L Where, (p;,a;,b;,q;) is an edge, q; is astate which can be

reached from state p; with an input symbol a; and an output symbol hi.

Definition 2.3.3 (successful path):

Given a FST T =(Ir, I2, Q, f, F, E), a successful path «p;,a;,b;,q;»ï=I.n of T is a path of T

such that PI = i and qn E F.

7
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These definitions only are part of the important definitions on Finite-State

transducers. The concepts defined by these definitions will be frequenùy used in the

following sections. Other definitions and closure properties (for example Union~

Inversion~ Letter transducer including E-free transducer and Composition) on FSTs can be

found from the literature [12~25].

2.4 Sequential String-to-String Transducers

Sequential string-to-string transducers are the most useful transducers used in

natura! language and speech processing. Many works have been done on this topic

(3~ 12~22~25].

2.4.1 Sequential Transducers

In language and speech processing~ sequential transducers are defined as

transducers with a detenninistic input (string or just a symbol). At any state of such

transducers~ at most one outgoing arc is labeled with a given element of the alphabet.

This means the input is distinct. The output label might be a string (or a single symbol)~

including the empty string E. Of course, the output of a sequential transducer is not

necessarily deterministic. The formal definition of a sequential string-to-string transducer

is as follows:

A sequential string-to-string transducer is a 7-tuple (Q, i, F. 1:, Â ~ m~ where:

• Q is the set of states

• i tE Q is the initial state

• F tE Q, the set of final states

• r and ~, finite sets corresponding respectively to the input and output

alphabets of the transducer

• 8, the state transition function which maps Q x 1: to Q

• 0; the output function which maps Q x 1: to ~*

8 and (j are partial functions (a state q E Q does not necessarily admit outgoing

transitions labeled on the input side with ail elements of the alphabet). These functions

can he extended to mappings from Q x 1:* by the following c1assical recurrence relations:

8
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'Vs E Q, 'v'W E l:*, 'Va E l:, lX.s, e) =s, lX.s, wa) =~~s, w). a);

o(s, e) =e. o(s, wa) =o(s, w)a(~s; w). a).

Thus, a string w E l:* is accepted by T iff ~i, w) E F, and in that case the output of the

transducer is a(i, w).

2.4.2 Subsequential andp-Subsequential Transducers

Subsequential transducers are an extension of sequential transducers. By

introducing the possibility of generating an additional output string at the final states the

application of the transducer to a string can then possibly finish with the concatenation of

such an additional output string to the usual output. Such extended sequential transducers

with an additional output string at final states are called subsequential transducers.

Language processing often requires a more general extension. Indeed, the

ambiguities encountered in language (for example ambiguity of grammars, ambiguityof

morphological analyzers, or ambiguity of pronunciation dictionaries) cannot he handled

by sequential or subsequential transducers because these devices only have a single

output to a given input. Since we cannot find any reasonable case in language in which

the number of ambiguities would be infinite, we cao efficiently introduce p-subsequential

transducers, namely transducers provided with at most p final output strings at each final

state to deal with linguistic ambiguities. However, the number of ambiguities could be

very large in sorne cases. Notice that l-subsequential transducers are exactly the

subsequential transducers.

Composition operations are very useful since they allow the construction of more

complex transducers from simpler ones [301. Considering the relationships reflected by

these transducers are mappings from strings to strings. So, the composition operation

defined for mappings can be used by these transducers. For example. if we have two

sequentiallp-subsequential transducers TI and Tl the result of an application of T2 0 TI to a

string w cao he cornputed by first considering ail output strings associated with the input

w in the traosducer TI. then applying T2 to all these strings. The output strings obtained

after this application represent the result (T2 0 TI )(w). In fact, instead of waiting for the

result of the application of TI to he completely given, one cao graduaIly apply T2 to the
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output strings of TI yet to be completed. This is the basic idea of the composition

algorithm7 wmch allows one to construct directIy the transducer Tl 0 TI given TI and Tl.

A very important concept here is the sequentiaVp-subsequential function.

Similarly, we define sequentiaIlp-subsequential functions to he those functions that can he

represented by sequentiallp-subsequential transducers. The following theorems give a

brief introduction on the characterizations and properties of subsequential and p­

subsequential fonctions (of course7 aIso that of sequential and p-subsequential

transducers). Here, the expression p-subsequential means two things, the first is that a

finite number of ambiguities is admitted7 the second indicates that tms number equals

exactly p.

Theorem 2.4.1 (composition):

Let f: 1:* -7 A* be a sequentiaIlp-subsequential and g : A* -7 Q* be a sequentiaVq­

subsequential fonction, then go fis sequential/pq-subsequential.

Theorem 2.4.2 <union):

Let f: 1:* -7 A* he a sequentiallp-subsequential and g : A* -7 Q* be a sequential Iq­

subsequential function, then g +f is 2-subsequetial/(p + q)-subsequential.

The !inear complexity of their use makes sequential or p-subsequential transducers

bath mathematically and computationally of particular interest. However, not all

transducers, even when they realize functions (rational functions), admit an equivalent

sequential or subsequential transducer. More generally, sequential functions cao be

characterlzed among rational fonctions by the following theorem.

Theorem 2.4.3 (characterization of sequential function):

Let f he a rational fonction mapping 1:* to A*. f is sequential iff there exists a positive

integer K such that:

'Vu E 1:*, 'Va E ~, 3w E â*, Iwl ~ K:f(ua) = f(u)w

10
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That is y for any string u and any element ayJtua) is equal toJtu) concatenated with

sorne bounded stringy Notice that this implies that j{u) is always a prefix of j{ua)y and

more generally that if/is sequential then it preserves prefixes.

The fact that not aIl rational functions are sequential could reduce the interest of

sequential transducers. The following theorem shows however that transducers are

exactly compositions of left and right sequential transducers.

Theorem 2.4.4 (composition of left and right seguential transducers):

Let f be a partial function mapping L* to /1*. / is rational iff these exist a left sequential

function 1: 1:* ~ n* and a right sequential function r.. n* ~ /1* such that!= r li l.

Left sequential functions or transducers are those we previously defined. Their

application to a string proceeds from left to right. Right sequential functions apply to

strings from right to left. According to the theoremy considering a new sufficiently large

alphabet n allows one to define two sequential functions l and r decomposing a rational

functionf This result considerably increases the importance of sequential functions in the

theory of finite-state machines as weIl as in the practical use of transducers.

Sequential transducers offer other theoretical advantages. In particulary while

several important tests such as the equivalence are undecidable with generaI transducersy

sequential transducers have the foIlowing decidability property.

Theorem 2.4.5 (decidability):

Let Tbe a transducer mapping L* to /1*. It is decidable whether Tis sequential.

The foIlowing theorems describe the characterizations of subsequential and p­

subsequential functions.

Theorem 2.4.6 (characterization of subseguential function):

Let/he a partial function mapping 1:* to /1*. Fis subsequential iff:

( 1) /has bounded variation

(2) for any rational subset Yof A*y/-/(Y) is rational

Il
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Theorem 2.4.7 (characterization ofp-subseguential fonction):

Let f = (fI, ..., /p) he a partial function mapping D 0 m(j) c I:* to (~*,/,. f is p­

subsequentia! iff:

(1) f has bounded variation

(2) for all i (l~ i ~p) and any rational subset fof ~*,f;-/(Y) is rational

Theorem 2.4.8 (characterization ofp-subseguential function):

Let f be a rational function mapping I:* to (~*f. f is p-subsequential iff il has bounded

variation.

2.5 String-to-Weight Transducers [3,10]

2.5.1 String-to-Weight Transducers

String-to-weight transducers are transducers with input strings and output weights.

Normally the weights are interpreted as (negative) logarithms of probabilities. String-to­

weight transducers are very usefui and widely used in various domains such as language

modeling, representation of word or phonetic lattices. In most applications to natura!

language processing string-to-weight transducers are used in the following way: start

from the initial state, read and follow a path corresponding to a given input string and

output a number obtained by adding the weights up along this path. If the transducer is

not sequential, that is when it does not have a detenninistic input, we have to proceed in

the same way for ail the paths corresponding to the input string. In natural language

processing, specifically in speech processing, we keep the path with minimum of the

weights associated to these paths. This corresponds to the Viterbi approximation in

speech recognition or in other related areas in which hidden Markov model (HMMs) are

used. In all such applications, we choose the path with the minimum weight as the best

path. The formal definition of a string-to-weight transducer is as follows:

A string-to-weight transducer T is defined by T = (Q, I:, l, F, E, À., pl, where:

• Q is a finite set of states

• r the input alphabet

12
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• 1c Q is the set of initial states

• F c Q, the set of final states

• E c Q x 1: x 14 x Q a finite set of transitions, where R+ is the set of output

weights

• Â. the initial weight function mapping 1 to R+

• P the final weight function mapping F to~

Compared to the definition of a string-to-string transducer, we can define for T a

partial transition function 6 mapping Q x 1: to 2Q by:

\:I(q, a) E Q x E. lJ...q, a) = {q'fu E R+: (q, a, x, q') E E},

and an output function CT mapping E to R+ by:

\:Il =(p, a, x, q) E E, o(t) =x.

The following concepts and extensions are very important for string-to-weight

transducers. Although we have defined sorne of them in section 3 in general, more details

based on string-to-weight transducer are introduced.

A path 1t in T from q E Q to q' E Q is a set of successive transitions from q to q':

tr=«qo. ao. Xo. qJ), ... , (qm-J, am." Xm-J" qm», with 'if i E [0, m-l], qi+J E 8 (qi, ai). We cao

extend the definition of 010 paths by: o(1t) =XOXI ••• Xm-I.

The 1t E q - q' 1w refers to the set of paths from q to q' labeled with the input

string w. The definition of 8 cao be extended to Q x I:* by:

\:I(q,W)E QxI:*,l(q,w)= {q':3path1tinT,1tE q-q'lw} andt02Q xI:*,by:

The minimum of the outputs of all paths from q to q' labeled with w is defined

as:

9(q, w, q) = nnolre (q-q)l w O'(1t).

A successful path in T is a path from an initial state to a final state. A string w E

1:* is accepted by T iff there exists a successful path labeled with w: W E 8..1, w) (') F. The

output corresponding to an accepted string w is then obtained by taking the minimum of

the outputs of all successful paths with input label w:
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mIn(i.J)e IxF:je ai.w) (À.(l) + 8(i, w,j) + p(f) .

A transducer T is said to be trim if ail states of T belong to a successful path.

String-to-weight transducers clearly realize functions mapping 1:* to R+. Since the

operations we need to consider are addition and min, and since (/4 U {co}, min, +, co, 0)

is a semiring (this semiring is aIso called a tropical semiring, and is widely used in

language and speech processing), we caU these functions formaI power series. They

have the following characterizations which we imported from formal language theory

(24,25]:

1) (S, w) is the image of a string w by a fonnaI power series S . (S, w) is called

the coefficient of w in S,

2) by the coefficients, S =1:w e}:. (S, w)w can be used to define a power series.

3) the support ofS is the language defined by:

supp(S) ={w E 1:* : (S, w) *co}.

A formal power series S is rational iff it is reaIizable by a string-to-weight

transducer (recognizable).

A string-to-weight transducer T is said to be unambiguous if for any given string

w there exists at most one successful path labeled with w.

2.5.2 String-ta-Weight Sequential Transducers

Recall that a transducer is said to be sequentiaI if its input is deterministic, that is,

if at any state there exists at most one outgoing transition labeled with a given e[ement of

the input alphabet 1:. SequentiaI string-to-weight transducers have many advantages over

non-sequential string-to-weight transducers, such as time and space efficiency. But not

each string-to-weight transducer has an equivalent sequential string-to-weight transducer.

The formaI definition of a sequential string-to-weight transducer is follows:

Definition 2.5. [ (seguential transducer):

A string-to-weight sequential transducer T = (Q, i. F,1:, Ô, (T, ~ p) is an 8-tuple,

where:

• Q is the set of its states
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• i E Q its initial state

• F c Q the set of final states

• l the input alphabet

• S the transition function mapping Q x t to Q~ g can be extended as in the

string case to map Q x ~* to Q

• (j the output function wrnch maps Q x 1: to R+.. where R+ is the set of

output weights.. <1 can aIso he extended to Q x 1:*

• À. E R+ the initial weight

• p the final weight function mapping F to R+

A string W E I* is accepted by a sequential transducer Tif there exists f E F such

that 8..;, w) =f. Then the output associated to w is: À. + o(i~ w) + p(j).

Considering the benefits of time and space efficiency the sequential transducer is

preferred in language and speech processing. But.. like we mentioned before, not all

transducers are sequentiaI transducers. The process used to transfer a non-sequential

transducer to an equivaIent sequentiaI transducer is called determinization. Unfortunately~

not ail transducers have an equivalent sequential transducer~ which aIso means that not all

transducers cao be determinized. The following definition cao he used to determine

whether a transducer can admit determinization.

Definition 2.5.2 (determinization):

Two states q and q' of a string-to-weight transducer T =(Q~ l~ F~ I~ Â (1, ~ pl, not

necessarily sequential~ are said to be twins if:

'V(u~ v) E (I*)2, «( q, q'} c ~l~ u)~ q E ~q .. v), q' E ~q', v» :) 9,.q~ v.. q) =9,.q', v, q).

If sorne two states q and q' of a string-to-weight transducer T are twins we say T has

twins property. If a string-to-weight transducer has twins property it is determinizable.

Notice that according to the definition~ two states that do not have cycles with the

same string v are twins. In particular~ two states that do not belong to any cycle are

necessarily twins. Thus~ an acyclic transducer has the twins property.
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The sequential power series in the tropical semiring, namely functions that cao be

realized by sequential string-to-weight transducers. Many rational power series defined

on the tropical semiring considered in practice are sequential, in particular acyclic

traosducers represent subsequential power series.

The following theorem gives an intrinsic characterization of sequential power

series:

Threorem 2.5.1 (characterization of seguential power series):

Let S be a rational power series defined on the tropical semiring. S is sequential iff it has

bounded variation.

The proof on tbis theorem is based on twins property (3].

2.6 Determinization Algorithm for Power Series

In speech recognition systems the tropical semiring IS widely used. The

detenninization algorithm will be frequently applied to the power series defined on

tropical semiring. Therefore, the following algorithm is presented in the case of a tropical

semiring (R+ u {oo}, min, +, 00, 0) on which the transducer is defined. This algorithm is

easily changed to fit other semirings by replacing min and + by their own binary

operations.

The following determinization algorithm constructs an equivalent string-to-weight

sequential transducer Tl = (Ql, il, Fz, r, ~, 02, À,2, Pl) to a given non-sequential one TI =

(QI, r, II, Fb El, À.I , PI) defined on tropical semiring [3,10,22].

PowerSeriesDeterminization(TI , Tl)

F2~0

.
2 À,2 ~mtnie /, À1(1)

4
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whileQ*0

do qz E- head[Q]

if (there exists (q, x) e qz such that q e F,)

then Fz E- Fz U (q2}

.
P2(qz) E- nunqeF/o (q..t)eq!

10 for each a such that r(q2, a) *0

12 ~(q2t a) E- U q'e Y(qz, a)
.

{(q', ffiln(q. x. ne ;<q!.a). n,(I) =q'

•

13 if (~(q2t a) is a new state)

14 then ENQUEUE(Q, ~(qz, a»

15 DEQUEUE(Q)

The key points in tbis algorithm are further explained as follows:

1. Line 2 and !ine 3 tell us that the initial weight À,z of ti is the minimum of aIl the

initial weights of TI. The initial state iz is a subset made of pairs (i, x), where i is an initial

state of T" and x =À,,(l) - À,z . We use a queue Q to maintain the set of subsets ql to be

examined. Initially, Q contains only the subset i2. The subsets qz are the states of the

resulting transducer. Q2 is a final state of Tz iff it contains at least one pair (q, x), with q a

final state of T, (line 7-8). The final output associated to qz is then the minimum of the

final outputs of all the final states in qz combined with their respective residual weight

(1ine 9).

2. For each input label a such that there exists at least one state q of the subset qz

admitting an outgoing transition labeled with a, one outgoing transition leaving q2 with

the input label a is constructed (line 10-(4). The output C12(Qz, a) of this transition is the

minimum of the outputs of all the transitions with input label a that leave a state in the

subset Q2, when combined with the residual weight associated to that state (line Il).
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3. The destination ~(q2, a) of the transition leaving qz is a subset made of pairs

(q', x). where q' is a state of T/ that cao be reached by a transition labeled with Q, and x'

the corresponding residual weight (line (2). x' is computed by taking the minimum of all

the transitions with input label a that leave astate q of q2 and reach q', when combined

with the residual weight of q minus the output weight 0i(q2, a). Finally, bz(q2, a) is

enqueued in Q iff it is a new subset.

4. n/(t) is the destination state of a transition tE E/. Hence, n/(t) =q', if t =(q, a,

x, q) E E/. The sets r(qz, a), J{q2, a) and 1{qz, a) used in the algorithm are defined by:

r(qz, a) ={(q, x) E qz : 3t =(q, a, cY/(t), n/(t» E El}

J{qz, a) ={(q, x, t) E q2 X E/ : t =(q, Q, CTI(t), nl(t» E El}

\f(qz, a) = {(q': 3(q, x) E q2 : 3t =(q, a, CT/(t), q) E El}

r(q2, a) denotes the set of pairs (q, x), elements of the subset q2, having transitions labeled

with the input a. 'J{q], a) denotes the set of triples (q, x, t) where (q, x) is a pair in q2 such

that q admits a transition with input label a . \.(q2, a) is the set of states q' that cao he

reached by transitions labeled with a from the states of the subset q2.

Notice that several transitions might reach the same state with different residual

weights. Since we are only interested in the best path, namely the path corresponding to

the minimum weight, we cao keep the minimum of these weights for a given state

element of astate (line Il of the algorithm).

The complexity (both space and time) of this power series determinization

algorithm is exponential. However, in sorne cases in which the degree of nondeterminism

of the initial transducer is high, the determinization algorithm tums out to be fast and the

resulting transducer has less states. For example, in the speech recognition research group

of CRIM we use a revised power series determinization algorithm (developed in Chapter

3) to determinize a string-to-string/weight transducer with 1.5M states and 24.7M arcs,

the resulting sequential transducer only has I.DM states and 4.6M arcs. This a1gorithm is

very efficient in practice.

It has been proved that if the determinization algorithm terminates, then the

resulting transducer T2 is equivalent to TI [8] .
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This power series detenninization algorithm is applied to a tropical semiring~ that

is the string-to-weight transducer. In our speech recognition research group we use string­

to-string/weight transducers. Actually, it is possible to develop other detenninization

algorithms for different semirings based on this PowerSeriesDetenninization algorithm.

For weighted string-to-string transducers, subsets in the algorithm are made of triples (q~

w~ x) where q is a state of the original transducer, w is a residual string and x is a residual

weight. So~ we have ta consider the pair (w, x) as output in the detenninization of string­

to-string/weight transducers. AIso sorne special cases have to he handled. In fact, based

on this general algorithm an efficient detenninization algorithrn has been developed to

deal with the string-to-string/weight transducers. Details about tbis developed algorithm

and its implementation will be shawn in the following chapter of this thesis.

2.7 Determinizable Transducers

The detenninizable transducers cao be simple defined as those transducers with

which the determinization algorithm terminates. If a transducer is not deterrninizable the

algorithm will keep running until resources are used up.

It bas been declared early in this paper that the complexity of the application of

sequential transducers is linear in the size of the string to which it applies. This property

makes it worthwhile to use the power series determinization in arder to speed up the

application of transducers. Unfortunately, not all transducers can he determinized using

the power series determinization because determinization does not apply to all

transducers. Therefore it is important to be able to test the determinizability of a

transducer.

We have known (definition 2.5.2) that if a transducer defined on the tropical

semiring has the twins property then it is determinizable. There are transducers that do

oot have the twins property and that still determinizable. Normally it is not a easy job to

characterize such transducers because we need more complex conditions [3].

Actually~ if we wish to construct the result of the determinization of transducer T

for a given input string w~ we do not need to expand the whole result of the

determinization, but ooly the necessary part of the determinized transducer. Wbeo

restricted to a finite set the function realized by any transducer is sequentiable since it has
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bounded variation. Acyclic transducers have the twins propertyy so they are

determinizable. Therefore, it is always possible to expand the result of the determinization

algorithm for a finite set of input strings, even if Tis not determinizahle [5].

2.8 Minimization of Transducers

Nonnallyy the minimization operation is applied to a sequential transducer, to

reduce its size for the space efficiency [13,18,26]. We aIready have a successful

minimization algorithm for sequential power series defined on the tropical semiring.

Howevery when we are handling a transducer where the inputs of its transitions are only

symbolsy this sort of minimization algorithm is not applic~.;·:le because the minimization

result will generate string input.

In our research group we use string-to-string/weight transducers with onIy

symbols as the inputs of their transitions, thus we do not need this sort of minimization

algorithm. However, one of the most interesting and most important aspects of our

research is that can we reduce the size of a transducer if the original transducer is not

determinizable (to improve time and space efficiency). Therefore, the concept of

minimization in our research is defined as the aIgorithm used to partially determinize

non-determinizable string-to-string/weight transducers. The details about this algorithm

are described in chapter 4 of this thesis.

2.9 Introduction to Speech Recognition

Speech recognition systems generally assume that the speech signal is a

reaIization of sorne message encoded as a sequence of one or more symbols (see Figure

2.1 [1». To recognize the underlying symbol sequence given a spoken utterance, the

continuous speech waveform is first converted to a sequence of equally spaced discrete

parameter vectors. This sequence of parameter vectors is assumed to fonn an exact

representation of the speech waveform on the basis that for the duration covered by a

single vector (around 10 ms), the speech wavefonn cao be reasonably regarded as being

quasi-stationary [1].
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Figure 2.1 Message Encoding/Decoding

The recognizer is the most important part of speech recognition~ its role is to

figure out what is the underlyinJ symbol sequence from a sequence of speech vectors.

Thus~ the main aspect of current speech processing can be simply described as : given an

observation sequence 0 (or speech vectors), find which intended message w is most likely

to generate that observation sequence by maximizing [Il]:

P(w, 0) =P(olw)P(w)

Where, P{olw) refers to the probability of the transduction between intended

messages and observations, and P(w) is the frequency of the message being spoken. More

generally, the transduction between messages and observations may involve severaI

stages relating successive Ievels of representation :
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peso, sJ =P(SklsO)P(so)

P(SklsO) =rsJ, ...,St.1 P(Sklsk-') .•. P(s,Iso) (1)

Each Sj is a sequence of units of an appropriate representation~ for instance

phonemes or syllables in speech recognition. We know that at any intermediate level :

For computational reasons~ fonnulation (1) can be approximated as following:

...,... ..,... ""'"
peSo, Sk) =P(SklsO) + peso)
...... ""
P(SklsO) =: mios l •••••St-I ~/Sj5k P(S)Sj_/)

~

Where~ P =-logP. Therefore~ if the approximation is reasonable, the most likely
V'

message So is the one minimizing P(so, Sk).

Normally, a transduction stage is modeled by a finite-state device. For example a

hidden Markov models (HMMs). Sorne of these finite-state devices are string-to-weight

transducers, which are widely used at severa! stages of speech recognition. Phoneme

lanices, language models, and word lanices are typicaIly represented by such transducers.

In fact~ the transducers and algorithms we discussed in the previous sections apply to

speech recognition. A speech recognizer is just a composition of transducers with

different functions outputting weights, or both strings and weights.

Recall that a speech recognizer~ namely the domain of the speech recognition

systems above signal processing, can he composited by transducers as following [1~3,11]:

MoDoCoAoO

where language 0 represents the acoustic observation sequences, A is a transduction from

acoustic observation sequences to context-dependent phoneme sequences, C the context­

dependency mode1 mapping sequences of context-dependent phonemes to context-
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• independent phones, D a pronunciation dictionary mapping phoneme sequences to word

sequences, Mis a weighted language speeifying the language model (mapping sequences

of words to sentences). Mis aIso called an acceptor [28].

...~
(a)

Oi:e/PII(l)

(h)

dx:e/O.8

ay:e/O.6

(e)

t:e/O.2

•

Figure 2.2 Models as Automata

The aeoustie observation automaton 0 for a given utterance has the fonn shown

on Figure 2.2(a). Each state represents a fixed point in time li, and each transition has a

label, Di, drawn from a finite alphabet that quantifies the aeoustic signal between adjacent

time points and is assigned probability 1.0.

The transdueer A from acoustie observation sequences to phoneme sequences is

built from phoneme models. A phoneme model is a transducer from sequences of acoustic

observation labels to a specifie phoneme that assigns to eaeh acoustie observation

sequence the likelihood that the specified phoneme produced it. Thus, different paths

through a phoneme model correspond to different acoustic realizations of the phoneme.
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Figure 2.2(b) shows a common topology for phoneme models. A is then defined as the

closure of the sum of the phoneme models.

The transducer D from phoneme sequences to word sequences is built similarly to

A. A word model is a transducer from phoneme sequences to the specified word that

assigns to each phoneme sequence the likelihood that the specified word produced it.

Thus different paths through a word model correspond to different phonetic realizations

of the word. Figure 2.2(c) shows a typical topology for a word morle!. D is then defined

as the closure of the sum of the word models.

So far, our recognizer has ooly used context-independent phoneme morlels. In

other words, the likelihood assigned by a phoneme model in A is assumed conditionally

independent of neighboring phonemes. SimiIarly, the pronunciation of each word in D is

assumed independent of neighboring words. Therefore, each of the transducers has a

particular simple form, that of the closure of the sum of (inverse) substitutions. That is,

each symbol in a string on the output side replaces a language on the input side. This

replacement of a symbol from one alphabet (for example, a word) by the automaton that

represents its substituted language from a over a finer-grained alphabet (for example,

phonemes) is the usual stage-combination operation for speech recognizers.

However, it has been shown that context-dependent phoneme models, which

mode1 a phoneme in the context of its adjacent phonemes, provide substantial

improvements in recognition accuracy compared to context-independent phoneme

models. Further, the pronunciation of a word will he affected by its neighboring words,

inducing context dependencies across word boundaries.

Sorne strategies have been tried to solve the context-dependency problem, such as

triphone models. Among these strategies the best is by interposing a new transducer C

between A and D that convert between context-dependent and context-independent units.

Of course, the size of originally constructed context-dependency transducer is large.

Fortunately, transducer determinization and minimization techniques cao be used to make

context-dependency transducers as compact as possible.

FinaIly, the acceptor M encodes the language model, for instance an n-gram

mode!. Combining those automata, we obtain 1t2(0 0 A 0 DoC 0 M), which assigns a
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probability to each word sequences. The highest-probability path through that automaton

estimates the most likely word sequence for the given utterance.

In general~ considering space limitation and size of these automat~ this cascade of

compositions cannot he explicitly expanded. We need an approximation method to search

it. Very often a beam pruning is used: only paths with weights within the beam (the

difference of the weights from the minimum weights so far is less than a certain

predefined threshold) are kept during the expansion of the cascade of composition.

Furthermore~ one is only interested in the best path or a set of paths of the cascade of

transducers with the lowest weights.

A set of paths with the lowest weights cao be represented by an acyc1ic string-to­

weight traosducer. Each path of that transducer corresponds to a sentence. The weight of

the path cao be interpreted as a negative log of the probability of that sentence given the

sequence of acoustic observations (utterance). Such acyclic string-to-weight transducers

are called word lattices. Of course~ these acyclic transducers can be efficiently

determinized and minimized because the sequential property with them.

Speech recognition is a wide research area of Computer Science~ it is very

exciting and challenging. The above is just a glimpse at speech recognition system. More

details can be found from the references listed at the end of this thesis~ such as from the

reference [27].

In tbis chapter~ we have made a review on the results of the research on Finite

State Machine and Finite State Transducers (string-to-string and string-to-weight

transducers). These results are very helpful for us to carry on the research on the

determinization of the string-to-string/weight transducers in the following chapters.
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Chapter3

String-to-StringIWeight Transducers and

the SSW_determinization Algorithm

Chapter 2 has introduced the string-to-string transducers and the string-to-weight

traosducers. The string-to-string transducers are widely used in language processing

[2,3,7,24], such as the representation of very large dictionaries, the compilation of

morphological and phonological cules and the syntax. Similarly. the string-to-weight

transducers are found at several stages of speech recognition [3,7.11]. Phone lattices.

language models, and word lattices are typically represented by the string-to-weight

transducers. Weights in these graphs correspond to negative logarithms of probabilities.

They are added along a path. For a giveo string there might he many different paths in a

transducer. The minimum of the total weights of these paths is ooly considered as a

relevant information.

Automatic Speech Recognition is a new research area in Computer Science.

Recently. much research has been carried on the string-to-weight or string-to­

string/weight transducers because the domain of the speech recognition systems above

signal processing cao be represented by a composition of finite-state transducers

outputting weights, or both strings and weights. In current Automatic Speech Recognition

(ASR) system one important research topic is on the determinization of the string-to­

string/weight transducers because sorne models used in the ASR systems cao only be

represented by string-to-string/weight transducers such as the HMMs (hidden Markov

models) in our research.

This chapter gives a systematic introduction on the string-to-string/weight

transducers. It includes the definitions and aIso a developed determinization aIgorithm

used for the determînizable string-to-string/weight transducers.

3.1 String-to-8tring/Weight Transducers

The string-to-string/weight transducers are also called weighted string-to-string

transducers. The definition of string-to-string/weight transducers is similar to the
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defmition of string-to-string transducers or string-tO-weight transducers. The only

difference is that the output of a string-to-string/weight transducer is a pair composed by a

string and a weight.

3.1.1 General String-to-String/Weight Transducers

Figure 3./ A typical string-to-string/weight transducer

Figure 3.1 is a typical string-to-string/weight transducer. A fonnal definition of

the string-to-string/weight transducers is given as the following.

A string-to-string/weight transducer T is defined by T =(Q, L, L\, l, F, E, À., p),

where:

• Q is a finite set of states

• L and L\, finite sets corresponding respectively to the input and output

alphabets of the transducer

• 1c Q is the set of initial states

• F c Q, the set of final states

• E c Qx ~ x L\ X R+ X Q a finite set of transitions

• Â. the initial weight function mapping 1 to R+

• P the final weight function mapping F to R+

the set E can be extended to include transitions Qx ~* x L\* X R+ X Q, where their

input and output cao he strings.
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Without extension of Er tbis definition defines the string-to-string/weight

transducers used in our ASR research. Each arc of these transducers has a feature that ils

input and output are symbols like in Figure 3.2. The symbol refers to a string with a

length equals to 1 or 0 (an empty string e).

Figure 3.2 A string-to-string/weight transducer used in our ASR research

3.1.2 Sequential String-to...String/Weight Transducers

As it is known that the sequential property of a transducer is desired in the

Automatic Speech Recognition process. The sequential transducers described here are

transducers with a deterministic input. At any state of such transducers, at most one

outgoing arc is labeled with a given element of the alphabet. Figure 3.3 gives an example

of a sequential string-to-string/weight transducer.

A string-to-string/weight sequential transducer T =(Q, i, F, 1:, d, 8, cr, À., p),

where:

• Q is the set of its states

• i E Q its initial state

• F c Q the set of final states

• 1: and d., finite sets corresponding respectively to the input and output

alphabets of the transducer

• 8 the transition function mapping Q x 1: to Q

• CTthe output function which maps Q x l to ~ X R+
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• À. E R+ the initial weight

• p the final weight function mapping F to R+

the transition function bcan be extended as in the string case to map Q x 1:* to Q,

and the output function (jcan aIso he extended to Q x 1:* to A* X R+.

Figure 3.3 A sequential string-to-string/weight transducer

If the extensions of b and (j are not allowed., the defined sequential string-to­

string/weight transducers will have only symbols as input and output of their arcs like in

Figure 3.4. This type sequential string-to-string/weight transducers are widely used in

current ASR researches.

Figure 3.4 A sequential string-to-string/weight transducer used in our ASR research
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Even though the sequential property is expected. not all string-to-string/weight

transdueers are sequential. In faet. in most cases the original transducer is not sequential.

Therefore a detenninization algorithm is needed. In the next section an algorithm used to

determinize the determinizable string-to-string/weight transdueers has been developed.

3.2 SSW_determinization Aigorithm

Chapter 2 has introduced a general PowerSeriesDeterminization aIgorithm. whieh

is applied to a tropical semiring such as a string-to-weight transdueer. This algorithm can

be aIso used to develop deterrninization algorithms for other semirings.

The semiring defined Oft (1:* U {oo}. 1\. -. 00, E) is called string semiring (here, 00 a

new element). The cross product of two semirings defines a semiring. The general

algorithrn also applies when the semiring is the cross product of (1:* U {oo}, 1\, -, 00, E)

and (R+ u {oo}. min, +. 00, 0). This allows us to determinize transducers outputting pairs

of strings and weights - the string-to-string/weight transducers.

For the string-to-string/weight transducers, subsets in the algorithrn are made of

triples (q. w, x) E Q x 1:* u {oo} X R+ U {oo} where q is a state of the original transducer,

w is a residual string and x is a residual weight. So. we have to consider the pair (w, x) as

output in the detenninization of string-to-string/weight transducers. AIso, considering this

PowerSeriesDeterminization aIgorithm is general sorne special cases have to be handied.

Based on the general algorithm and the features of the string-to-string/weight

transducers a new determinization algorithrn used for the string-to-string/weight

transducers has been developed. This algorithm is named SSW_determinization.

Figure 3.5 gives the detailed pseudocode of SSW_determinization algorithme This

algorithm constructs a sequential string-to-string/weight transducer T2 =(Q2, i2, F2, 1:, l\,

bi, 02, À.2, />1) equivalent to a given determinizable string-to-string/weight transducer TI =

(QI, 1:, A, II, FI, El, À.I , PI).

SSW_determinization(TI , T2)

1 F2~0

2
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Q~ {hl

whileQ-;I;0

do qz ~ head[Q]

if(q '# -2 and for any (q, w, x) E qz)

if(there exists (q, E, x) E qz sucb that q E FIor q = -1)

then F:z ~ F1 U {qz}

.
P2(Ql) ~ rntDqeF/u-,.(q,t:X)eql,p,(-I)=O x+ p,(q)

if(there exists (q, w, x) E q2 sucb that w"* E, q E F, or q = -1)

then qz' f- U(q, 1I:,.r)eql. qeF, u -l, p,(.I)=l), lI:~c(q, W, x + p,(q»

w' ~ U(q, w,.r)e ql'firstSymbol(w)

for each symbol s E W'

.
do CTZ(Q2, E) f- (s, IDID(q. w,x) E 'Il" firstSymbo/(lI:) =s [x + P,(q»)

(0'1(q2, eHrr ' + x + p,(q»

ü(42(q2, e) is a new state)

then ENQUEUE(Q, ~(q2, e»
for each a sucb tbat r(ql, a) -;1; 0

. .
rrnn(q, "", .t)e nql. a) [x + mInt=<q. a. C7i(t), n.(t))E El CTI (t)Ix) )

+ CTI (t)IxD }
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if(0'2 '(Q2, a)l"" is not a symbol and also not a empty string)

w" f- Oi '(Q2, a)l....

Oi(Qz, a) f- (firstSymbol(w' '), Oi '(q2, aHt)

w' , f- removeFirstSymbol(w ' ')

~(q2, a) f- (-2~ w", 0) U ~ '(q2~ a)

if(~(q2,a) is a new state)

then ENQUEUE(Q, ~(q2, a»
else Uz(Q2, a) ~ Uz '(Q2, a)

~(Q2, a) f- ~ '(Ql, a)

if (~(Q2, a) is a new state)

then ENQUEUE(Q, ~(q2, a»
else if(q = -2)

Gi(q2, e) f- (firstSymbol(w''), 0)

W"f- removeFirstSymbol(w")

if(w"= e)

then ~(Q2, E) ~ 8 Z(q2, a)

else ~(ql, E) ~ (-2, w", 0) U 82(ql~ a)

if(~(q2, e) is a new state)

then ENQUEUE(Q, ~(q2, E»

DEQUEUE(Q)

•

Figure 3.5 Algorithm for the determinization ofa string-to-string/weight tralZsducer TI

defined on the semiring (L U {oo}, /\, ., 00, E:) X (R+ U {oo}, min, +, 00,0).

This algorithm considers two basic requirements on the resulting transducer Tz.

First, the original transducer TI used in our ASR research has its each arc with a fonnal

symbol:symbol/weight. Second, each final state of the original transducer TI has only

accepting weight (or output weight). These two characteristics are kept in the resulting

transducer Tl,
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In this aIgorithm~ n,(r) is defined as the destination state of a transition tEE,.

Hence~ n,Ct) =q', if t =(q, a~ w~ x~ q) E E,. The sets r(q2~ a)~ J{q], a) and J,(q]~ a) used in

the algorithm are defined by:

r(q2~ a) = {(q, W, x) E q2 : 3t = (q, a~ oHt)~ n/(t» E E/}

'}(q], a) ={(q~ w, x, t) E q2 xE, : t =(q, a, (1',(t), n,(t» E E,}

v(q]~ a) = {(q': 3(q, w~ x) E q] : 3t = (q, a, (1',(r), q) E E,}

f(q] , a) denotes the set of triples (q~ w, x), elements of the subset q], having

transitions labeled with the input a. J(q2, a) denotes the set of quadruples (q, w, x, t)

where (q, w, x) is a triple in q2 such that q admits a transition with input label a . v(Q2, a)

is the set of states q' that can be reached by transitions labeled with a from the states of

the subset q2.

Notice that the state number q could take value -/ or -2 (for example in Line 7 and

Line 8). We know that q is state number of the old transducer~ q can never he a negative

value. In fact, these states with a negative state number are generated and used to handle

the special cases met during the determinization process. For easy understanding on this

algorithm a detailed introduction is as follows.

1. Line 1 refers that the initial final state set of Tl is empty.

2. Line 2 and Line 3 indicate that the initiai weight À2 of Tl is the minimum of ail

the initial weights of T/. The initial state i] is a subset made of pairs (i, x), where i is an

initial state of T/, and x =À/(i) - À2• Fortunately, each transducer used in our automatic

speech recognition research has only one initial statc. This makes an easy implementation

of line 2 and Hne 3. The next step is to put this initial state i] iUlO an empty queue Q.

Here, Q is used to maintain the set of subset q2 not yet be extended (or determinized).

Each subset in Q corresponds to one state of Q2 for the new transducer Tl. Initially, Q

contains only the subset i] (line 4).

3. F2 is the set of the final states of the sequential transducer Tl. q2 represents a

final state iff it contains al least one triple (q, E., x), where q is a final state of T/ or equals

to -1 (see Hne 8 - 9), E refers to an empty residual string, x is residual weight. This type
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triple is namedfinal triple. The final output weight associated to qz is then the minimum

output weight of ail the final triples in q2 (line 10).

4. When q equals to -1 refers a final state without outgoing arcs. This state does

not exist. It is designed and assumed to be one special state of the old transducer during

the determinization.

Line 11 meets the special case 1. In this case subset qz contains triple (q7 w, x)

such tbat w ~ ~ q E F, or q equals -/. This type triple is named sub-final triple. When

sub-final triple appears in qz means that a final state with accepting output (w, x) has been

reached. According to the basic requirements if each final state of the original transducer

only bas accepting weight the resulting transducer7s final states cannot have accepting

output composed by string and weight. Accepting output of any final state of the resulting

transducer has to be a weight.

How can this be handled? Firstly a new subset qZ' has to he constructed with the

triples (q. w, x) such that w ~ ~ q E F, or q equals -/ in qz. This qz' is considered as part

of q2. Next is to construct the set of outgoing output symbols w' from the set of w in qz'

Oine 12. line 13). Line 14 to line 19 are used to finish the expanding based on w'. Each

output sYmbol s in w' corresponds to an outgoing arc from qz, the input symbol of this arc

is E, the weight is the minimum weight of all sub-final triples witb same s in qz' (line 14,

line 15). The destination of this arc is a subset Ô2(q2, E) formed by triples in q2' with same

s. Ô2(q27 E) contains triples that q equals -/. The residual string of each triple in Ô2(q2, E) is

the string by removing s from the residual string w of the corresponding triple in Q2'. The

weight of each triple in Ô2(Q2, E) is the result of that the sum of the corresponding triple's

residual weight x and its extra accepting cost in qz' (if q equals -/ its accepting cost is

zero) minuses the output weight of the newly constructed outgoing arc. If Ô2(Q2, E) is a

new subset then put it into queue Q (line 18, line 19). Continue this loop until each

sYmbol in w' has been checked.

Therefore, q equals -1 means that q is considered as a special final state in the

original transducer without outgoing arc and witb a final weight zero. It is special because

tbat state -/ does not exist in QI. State -1 is needed during the determinization when

subset q2 has at least one sub-final triple.
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5. For each input symbol a such that there exists at least one state q of the subset

q2 admitting an outgoing transition labeled with a? one temporary outgoing transition

leaving q2 with the input symbol a is constructed (line 20 -line21). The output ai '(q2? a)

of tbis temporary transition is composed by two parts. One is residual string which is the

largest common prefix of the output strings of all the transitions with input symbol a that

leave a state in the subset q2? when concatenated al the end with the residual string

associated to that state. Another part is residual weight wbich is the minimum of the

output weights of ail the transitions with input symbol a that leave a state in the subset q2,

when combined with the residual weight associated to that state.

The temporary destination state ~ '(q2, a) of the transition leaving q2 is a subset

made of triples (q', w', x'), where q' is a state of T, that cao he reached by a transition

labeled with a? w' is the corresponding residual string? x' is the corresponding residual

weight. It is possible that ~ '(q2' a) has triples with same q' but different residual strings.

Each residual string w' is constructed by removing the output string 0"2 '(Q2? aHw from the

head of a string which is a concatenation of two strings. One of these two strings is the

residual string w of the corresponding triple (q, w? x) in subset qb where q' can be reached

from q by the transition O",(t) with input symbol a. Another string is just the output string

0",(t)1,,". x is computed by taking the minimum of output weights of ail the transitions with

input symbol a that leave astate q in the subset q2 and reach the same state q' with the

same residual string w', when combined with the residual weight of q minus the output

weight (1'1 '(q2, a)L~·

6. If Oi '(Q2, a)lw is a symbol or an empty string this temporary transition CTl '(q2, a)

is a transition leaving q2 with the input symbol a named (1'2(Q2, a)? and the destination

state for tbis transition is ~ '(q2' a) named 8z(q2' a} (line 30 - 31). If 0i(Q2? a) is a new

state then put it into queue Q.

Otherwise? if G2 '(q2, a)lw is a string with a length larger than 1 tbis temporary

transition Oi '(Q2? a) has to be handled as a special case because of the basic requirements.

This special case is defined as special case 2.

Review that according to the basic requirements during the determinization if the

output of an outgoing arc A of a new state is string (at Ieast two symbols) A has to he
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transferred to symbol:symbol/weight fonnat as same as the arc fonnat of the original

transducer. In SSW_detemlinization this special case is handled by the following:

(1) Assign the string part Di '(qz, a)Iw to w"(line 24).

(2) Make a transition from qz with input symbol a, output symbol is the first

symbol of w", and ils output weight is 02 '(q2, a)k (line 25). Then, remove the

first symbol of w".

(3) The destination state ~(qz, a) in line 27 is an union of a new triple and ~ '(q2,

a). The new triple (-2, w", 0), where -2 is a special value of q' not existed in

QI, it means that the state Ôz(qz, a) is an expanding state of the string Oi '{qz,

a)lw, w" is the residual string, and the residual weight is zero. Here, temporary

state ~ '(qz, a) is used to refer that the final expanding state of this string is

bz '(qz, a). If state Ôz(qz, a) is a new state, then enqueue it ioto queue Q (line

28,29).

7. If the special case 2 described in the last paragraph has happened. Eventually a

subset (-2, w", 0) u 8'z(qz, a) will be assigned to qz. Line 34 meets this condition. In line

35 a transition is made from qz with input symbol e, output symbol is the first symbol of

w", and its output weight is zero. Then, remove the first symbol of w". If w" is an empty

string assign the state ~ '(qz, a) to Ôz(qz, a). Otherwise, construct a destination state Ôz(qz,

a) by the union of a new triple (-2 as q " w" as residual string, zero as residual weight) and

the state bz '(qz, a). Next step is to check whether state bz(qz, a) is a new state. lf bz(qz, a)

is a new state then put it into queue Q.

8. In line 42 the first elemeot of Q is removed, and the algorithm retums to line 5.

The algorithm will continue until the Q is an empty queue. Finally when this algorithm is

terrninated a sequential string-to-string/weigh transducer Tz is retumed with the same

functions of the non-sequential transducer TI.

9. The examples of this algorithm are shown in Figure 3.6 and Figure 3.7. Notice

that an input string ac admits severa! outputs in TI of Figure 3.6: {(BD, 6), (BD, Il)}.

Ooly one of these outputs «BD, 6), with the smallest output weight) is kept in the

resulting sequential transducer T2 sioce it is only interested in the output with the

minimum output weight for any given string.

36



•

(a)

state 0 state 1 state 2
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(b)

Figure 3.6 (a) a non-sequential string-to-string/weight transducer Tl
(b) a sequential string-to-string/weight transducer Tl obtained

from the SSW_detenninization of TI

In Figure 3.6, after the determinization both state nurnber and arc number are

reduced. However, in sorne special case the state number or both state nurnber and arc

number is/are increased after the determinization such as in Figure 3.7. This is also a

successful determinization resuIt because the resulting transducer is sequentiai. The

sequential transducer will dramatically increase the searching speed when il is applied to

the ASR process instead of the equivalent non-sequentiai one [3].

Notice that severa! transitions might reach the same state with a same residua!

string but a priori different residual weights. Since only the best path is interested, namely

the path corresponding to the minimum weight, the algorithm keeps only the minimum of
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• these weights for a given state element of a subset (line 22). This case cao he observed in

the final determinization step of TI in Figure 3.6.

c:C/I.O

a:B/3.0

b:B/2.0

a:NO.O

(a)

b:B/2.0

c:C/I.O

a:NO.O

a:A/O.O

(b)

•
Figure 3.7 (a) a non sequential string-to-string/weight transducer TI

(h) sequential transducer T2 ohtainedfrom the determinization
ofTI
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3.3 A Proof of the SSW_determinization Aigorithm

It is very important to prove that if the determinization algorithm terminates then

the resulting sequential transducer Tz is equivalent to TI.

Here, we emphasis the termination of the determinization algorithm is because

that there are transducers with which determinization does not haIt. It then generates an

infinite number of subsets. We define determinizable transducers as those transducers

with which the aIgorithm terminates. The detaiIs about the non-determinizable

transducers will he discussed in Chapter 4.

Assume that the determinization algorithm terminates, then the resulting

transducer Tz is equivalent to TI. The following is the proof.

We denote by Ol(q, w, q: w) the output with the minimum weight of ail paths

from q to q' with a same output string w'. By construction we have:
.

À,z = mIn ite 1, À-,(i1)

We define the residuaI output string s(q, w) and the residual output weight

associated to q in the subset ~(i2, w) as the weight c(q, w) associated to the triple

containing q in ~(iz, w). By induction on Iwf we show that the subsets canstructed by the

aIgarithm are the sets ~(iz, w), W E 1:*, such that:

'v'W E 1:*, ~(i2, w) = Uqe 6,(/,. w) {(q, s(q, w), c(q, w) } (1)

A pair (q, s(q, w» belongs at most to one triple of a subset since for ail paths

reaching q with a same residual string s(q, w), only the minimum of the residual autput

weight is kept. If s(q, w) equals ta an empty string the output string of C1i(Îz, w) is w'.

Notice also that, by definition of min, in any subset there exists at least one state q with a

residual output weight c(q, w) equal to O.

A string w is accepted by T, iff there exists q E FI such that q E ~(/I, w). And its

output string is w'. Using the equation (1), it is accepted iff 6z(/z, w) contains a triple (q,
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s(q, w), c(q, w» with q E FI and s(q, w) equals to an empty string. This is exactly the

definition of the final states F2 (line 8). So TI and Tl accept the same set of strings.

Therefore, Tl and TI are equivalent.

3.4 Space and Complexity of the SSW_determinization Aigorithm

Both space and lime complexity of the determinization algorithm for the

determinizable string-to-string/weight transducers are exponential to the size of the

original transducer TI. However, in sorne cases in which the degree of non-determinism

of the initial transducer is high, the determinization aIgorithm tums out to be fast because

the resulting transducer has much less states than the initiai one.

The proof on the space and time complexity of the SSW_determinization is same

as that of the determinization of automata or string-to-weight transducers. It cao be found

in reference [14].

ln this chapter, the definitions of the string-to-string/weight transducers have been

addressed. And the SSW_determinization algorithm for the determinization of the

determinizable string-to-string/weight transducers has been provided.

Since the SSW_determinization retums the whole resulting transducer a large

amount of memory is needed for the determinization, especiaIly when the size of the

resulting transducer is large.

In fact, sorne non-determinizable string-to-string/weight transducers may be

applied in the ASR systems. Therefore, it is also very important to reduce the non­

determinism degree of the non-determînizable string-to-string/weight transducers. The

transducers' determinizability and the determinization algorithm used for the noo­

determînizable string-to-string/weight transducers will be discussed in the next chapter.
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Chapter4

Determinizability and Partial Determinization of

the String-to-String/Weight Transducers

In Chapter 3, it is mentioned that even a large set of transdueers admits

determinization there are transdueers with whieh determinization does not hait. We define

these transdueers as non-determinizable transdueer. On the other hand we define

determinizable transdueers as the transdueers with whieh determinization terminates

sueeessfully. Beeause the determinization of non-determinizable transdueers will generate

an infinite number of subsets until the resourees are used up it is always desired to predict

whether a transdueer is determinizable before the determinization process is carried on.

Therefore to predict whether a transducer is determinizable before determinization is a

useful topie in the determinization researeh area. This topie is called the determinizability

test [8]. Many research results on tbis topie are available for the string-to-weight

transducers. These research resu]ts have formed a group of theorems used to determine

the determinizability of a string-to-weight transdueer. These theorems are introdueed in

the ficst section of this chapter. Considering the similarity between string-to-string/weight

transducers and string-to-weight transducers these theorems cao aIso be dieectly applied

to the string-to-string/weight transducers.

[n this chapter another important topic is the partial determinization algorithm. If a

transducer is non-detenninizable this algorithm ean be used to do partial determinization

on it. This algorithm is named PSSW_determinization.

4.1 Theorems Used tu Predict the Determinizability

Befoee using SSW_determinization to do detenninization on a string-to­

string/weight transducer TI, it is always desired to know whether TI is determînizable

because the non determinizable transducer will eventually take aIl memory resource by

generating an infinite number of subsets.
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The following theorems are the research results on the determinizability of the

string-to-weight transducers [8]. These theorems cao also be used for the string-to­

string/weight transducers.

Theorem4.1

Let Tl =(QI. ~. h9 Fb El9 À-19 PI) he a string-tO-weight transducer defined on the tropical

semiring. IfTl has the twins propeny then it is determînizable.

Actually9 the twins property is not a necessary condition for a transducer to he

deterrninizable. Sorne transducers are determinizable even they do not have twins

property. UnfortunatelY9 it is complicated to specify the conditions for these transducers.

However9 in the case of trim unambiguous transducers9 the twins property provides a

characterization of determinizable transducers. See Theorem 4.2.

Theorem 4.2

Let Tl = <Qb ~9 Il, FI, El, À-I, PI) he a trim unambiguous string-to-weight transducer

defined on the tropical semiring. Then TI is determinizable if and only if it has the twins

property.

This theorem directly leads to Theorem 4.3, and the definition of an algorithm for

testing the determinizability of trim unambiguous transducers.

Theorem 4.3

Let Tl = (Q19 ~9 Il, FI, El, À,I, PI) he a trim unambiguous string-to-weight transducer

defined on the tropical semiring. There exists an algorithm to test the determinizability of

TI.

According to the theorem 4.3, testing the determinizability of TI is equivalent to

testing for the twins property. Mohri (8] gives an algorithm used to test the twins property

of a transducer Tl. This algorithrn is close to that of Weber and Klemm for testing the

sequentiability of string-to-string transducer. It is based on the construction of an

automaton A =(Q9 19F, E) similar to the cross product of Tl with itself. This algorithm
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takes polynomial time with respect to the size of A. The determinizability test algorithm

used for an unambiguous trim transducer can he simply described as the following:

1. Compute the transitive cIosure of 1: T(!).

2. Determine the set of pairs (q/, q2) of T(!) with distinct states q/ ~ q2.

3. For each such {ql, q2} compute the transitive cIosure of (ql, q2, 0) in A. If it

contains (ql, q2, c) with c '* 0, then TI does not have the twins property.

This algorithm is very usefuI when we know mat TI is unamhiguous. In many

practical cases, the transducer one wishes to determinize is ambiguous. It is always

possible to construct an unambiguous transducer T' from T. This will increase the lime

complexity of the determinizability test to be exponentiaI in the worst case [8,17].

Because the definitions of twins property and trim unambiguous aIso can he

applied to the string-to-string/weight transducers (See Chapter 2) these theorems can be

used to the string-to-string/weight transducers directly. Of course, the testing

determinizability algorithm can aIso be implemented by aware of the characteristic of the

string-to-string/weight transducers.

Now, there are two ways to test the determinizability of a string-to-string/weight

transducer. When a transducer is equivalent to a trim unamhiguous transducer the testing

determinizability aIgorithm introduced above can be used. Another way is to see whether

the SSW_determinization on the transducer can terminates successfully. Once a string-to­

string/weight transducer has been determined as a non-detenninizable transducer a partial

determinization algorithm developed in the following section can he applied to this

transducer to reduce its non-determinism degree.

4.2 PSSW_determinization Aigorithm

The purpose to determinize a transducer is to reduce its non-determinism degree

hecause the non-deterrninism property will always slow down the searching speed in the

Speech Processing. The best result is to get its equivalent sequential transducer. The

complexity of the application of sequential transducers is linear in the size of the string to

which it applies.

If a transducer is non-determinizable its equivalent sequential transducer does not

existe However, it is still possible to reduce its non-determinism degree. There are many
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(a)

e:b/O.O

•

(b)

Figure 4. J (a) a typical state can he directly determinized
(h) a subset with multiple triples

strategies cao be used for this purpose. The basic idea is called local determinization

[3,8], which the determinization is limited in severallocal areas to avoid getting in a non

determinizable cycle.

Therefore, based on the SSW_detenninization and the local determinization idea

by changing the determinization strategy it may be possible to develop ao algorithm for a

non-determinizable transducer to reduce its non-determinism degree. The new ideas about

this algorithm are diagramed in Figure 4.1.

Figure 4.1 (a) represents a subset has only one triple with an empty residual string

and zero residual weight. Only this type subset is designed to he determinized by using

the same way as in SSW_determinization. Figure 4.1 (b) represents a subset with multiple

triples. This type subset has to he expanded into severa! subsets by using the strategy

diagramed in Figure 4.1 (b). The resulting subsets have the same fonnat as in Figure 4.1

(a). Therefore, only the subset with the fonnat in Figure 4.1 (a) needs to be determinized.

Because the number of this type subset less than IQII this algorithm will eventually
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• terminates. This algorithm is named PSSW_determinization 7 which is a partial

determinization algorithm compared with SSW_determinization.

Figure 4.2 gives the detailed pseudocode of PSSW_detenninization aIgorithm.

This algorithm constructs a string-to-string/weight transducer T:z equivalent to a given

non-determinizable transducer TI =(Qb 1:7 ~ 117 FI, EI7 ÀI , PI).

PSSW_determinization(TI7 T:z)

F:z~fZJ

.
2 A.l ~ mIDie/, À,(l)

4 Q~ {i2}

5 while Q ;t: fZJ

6 do q2 ~ head[Q]

7 if(there exists (q, ~ x) E q2 such thatq E Fr>
8 then F:z ~ F:z u {q2}

.
9 /J2(q2) ~ nunqeF,. (q. E. x)eq1. X + p,(q)

10 if(q2 has ooly one triple with an empty residual string, (q7 ~ x»
Il for each a such that r(q27 a) * fZJ

. .
Inlncq. t:x)enQ1.a) [x + ffilDl=(q.a. 0i(t).nl(l)eE1 ai(t)~t] )

13

minCq. t:x. f)E J(Ql. a). w ="'u. o;CI)I.. = w,.n,(t) =q' [(Oi(q:z, ant)-I + x

•
14

15

if (~(q2, a) is a new state)

then ENQUEUE(Q, bz(Q2, a»
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• 16 else

17 for each triple (q, w, x) E qz

18 if(w= E)

19 Oi(qz, E) ~ (0, x)

20 else

21 Oi(q:z, E) ~ (firstSymbol{w), x)

22 W~ removeFirstSymbol{w)

23 ~(q2, e) ~ (q, w, 0)

24 if(~(qz, E) is a new state)

25 then ENQUEUE(Q, ~(qz, E»

26 DEQUEUE(Q)

Figure 4.2 Aigorithmfor the partial delerminization ofa non-determinizable

string-to-string/weight transducer TI defined on the semiring

(1: u {oo}, 1\, ., 00, E) X (R+ U {oo}, min, +,00,0).

•

Notice that the result of this algorithm is useful only when the original transducer

TI is non determinizable. We do not use this PSSW_detennillization when the transducer

is determinizable.

Because this algorithm is based on the SSW_determinization, the transducer's

basic requirements (see Chapter 3, page 32) have been kept. And the resulting transducer

is an equivalent transducer that accepts and outputs same strings with the original

transducer, but not sequential. However, the degree of non-determinism of the resulting

transducer has been reduced, which is very important in the application of the Speech

Processing.

Figure 4.3 is a typical non-determinizable string-to-string/weight transducer T,.

There is a cycle from its state 0 to state /. By using the theorems in section 4.1 the

determinizability of T, can be predicted:

1. TI is trim. By definition (see Chapter 2, page 15), a transducer T is said to he

trim if aIl states of T belong to a successful path. It is obvious that state 0 and

state / belong to the successful path 0~ /.
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2. Also Tl is unambiguous. Because Tl has only two states and one of them is an

accept state. It is very easy to prove that for any given string w there exists at

most one successful path labeled with w, which means Tl is unambiguous (see

Chapter 2, page 15).

3. TI has no twins property. By the definition (see Chapter 2, page 16), two states

q and q' are twins if, when they can be reached from the initial state by the

same string u, the minimum outputs of loops at q and q' labeled with any

string v are identical . T has twins property when any two states q and q' of T

are twins. It is obvious that the transducer Tl in Figure 4.3 does not satisfy the

requirements to have twins property.

Therefore, TI is a trim unambiguous string-to-string/weight transducer without

twins property. According to the theorem 4.2 in section 4.1 Tl is non-determinizable.

a:E/l.O

a:E/2.0

Figure 4.3 A typical non-determinizable string-to-string/weight transducer TI
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• Figure 4.4 is the determinization of TI by SSW_detenninization. It can he seen that

the determinization will generate infinite number subsets~ which also means that TI is

non-determinizable.

state 0

state 1

Figure 4.4 The determinization of TI by SSW_determinization

.,
........

state 2

a:ëll.O

a:El1.0

1--------18
E:B/O.O

•
Figure 4.5 The partial determinization result of the transducer TI in Figure 4.3

Figure 4.5 is the result of the partial determinization on TI_ Compared with the

original transducer the partial determinization is successful.
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In this chapter, the determinizability of the string-to-stringlweight transducers has

been discussed. Based on the SSW_determinization and the local determinization idea a

partial determinization algorithm used for the non-determinizable transducers has been

developed. However, a weak point for this algorithm is that the resulting transducer is not

sequential even though its non-detenninism degree has been reduced compared with that

of the original transducer. Besides tbis disadvantage the PSSW_determinization aIso

suffers the same problem with the SSW_determinization, which the memory resource may

be not enough for the deterrninization if the transducer is too large.

In the next chapter, an algorithm called determinization on the demand will he

discussed. This algorithm can avoid the disadvantage of the PSSW_determinization and

SSW_determinization. Such as it cao be applied to construct the result of the

determinization of any string-to-string/weight transducer T for a given input string w

whenever the transducer T is determinizable or non-determinizable.
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Chapter 5

Determinization of the Striog-to-String/Weight Transducers

00 the Demand

Determinization on the demand or determinization on the fly is a very important

technique in Automatic Speech Recognition [8]. One disadvantage of the complete

SSW_detenninization is that the memory required may exceed the limitation of the

resource when the size of the transducer is tao large. Also~ the partial determinization

PSSW_detenninization cannat satisfy the sequential requirement. Fortunately as it is

known that if one wishes ta construct the result of the determinization of a transducer T

for a given input string w~ one does not need to expand the whole result of the

determinization, but only the necessary part of the determinized transducer. When

restricted to a finite set the function realized by any transducer is sequential since it has

bounded variation (see Chapter 2~ page 13~ Theorem 2.4.8). Therefore~ it is always

possible to expand the result of the determinization algorithm for finite set of input

strings~ even if T is not determinizable. Determinization on the demand is an algorithm

used to determinize astate only when it is ordered. This algorithm can construct the result

of the determinization of any string-to-string/weight transducer T for a given input string

w.

In this chapter a determinization algorithm named DSSW_detenninization is

developed based on the determinization algorithm SSW_detenninization. And~ for easier

understanding a detailed example analysis is provided to see the special features of this

algorithme

5.1 DSSW_determinization Algorithm

One characteristic of the determinization on the demand is that this algorithm is a

dyoamic detenninization method. This means the detenninization is always in the waiting

state. It waits for astate to he ordered by the user. This ordered state is not determinized

before it is ordered. Another characteristic is that the determinization on the demand only

keeps necessary information related to the newly determinized state for the further
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• determinization. Hence~ determinization on the demand will take the 10west memory

compared with other determinization algoritms (see Chapter 7).

The determinization on the demand algorithm is named DSSW_determinization. It

is based on the determinization algorithm SSW_determinization.

Figure 5.1 gives the detailed pseudocode of DSSW_determinization algorithme

This algorithm returns ail determinized states one by one for the determinization of a

transducer TI = (Q/~ 1:~.â~ ~ .. II, FJ~ El, À-I , PI) for a given input string.

.
do 0i(Q2, e) f- (s~ II11D(q. W,x) e q1" firstSymbo/(w) =$ [x + PI(q»)

W t f- UCq, w.:c) e q1' firstSymbol(w)

then Q2' f- UCq. w.x)eq:.qeF, u-l.p,C-I)=O. W~E(q~ w~ x +PI(q»

if(there exists (q, w, x) E q2 such that w ~ E, q E Fior q = -/)

.
P2(q2) ~mtnqeF,u-I,(q.e..t)eq2.p,c-I)=O x+ PI(q)

for each symbol s E w'

q2 ~ {il}

else find the subset qz for the ordered state s from HashTable

if qz is not exist

RETURN "state s cannat be reached"

fresh HashTable

if(q ~ -2 and for any (q~ w, x) E qz)

if(there exists (q, E, x) E ql such that q E Fior q = -1)

then F2 f- F2 U {q2}

DSSW_determinization(TI .. s)

if the ordered state number s =0

Fl~02

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

• 18
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• 19

20

21

22

insert t5z(Q2.. e) ioto HashTable

for each a such that r(Q2.. a):#; f2J

23 do Qi '(Q2.. a) ~ (I\(q. w. x)enq!. a) [w-(Oi(t)I"')],

24

•

+ oHtntJ)}

25 if{CT2 '(q2, a)l"' is not a symbol and aIso not a empty string)

26 w" f- Qi '(Q2, a)l"'

27 0i{q2, a) f- (firstSymbo/(w"), 02 '(Q2.. aHt)

28 w" f- removeFirstSymbol(w")

29 ~(q2 .. a) ~ (-2, w' " 0) u t5z '(q2 .. a)

30 insert t5z(Q2, a) inta HashTable

31 else (q = -2)

32 CT2(Ql, e) f- (firstSymbo/{w'), 0)

33 W"f- removeFirstSymbo/(w')

34 if(w" = e)

35 then ~(q2, e) f- S2(Q2.. a)

36 else bz(Q2, E) f- (-2, w", 0) u 6 2(Q2, a)

37 insert bz(Q2, E) into HashTable

38 RETURN state s

Figure 5.1 A19orithm for the determinization on the demand ofa string-to-string/weight

transducer TI defined on the semiring (1: u {oo}, /\, ., 00, E) X (R+ U {oo} .. min, +, 00, 0).
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Most lines of this algorithm are same as the SSW_determinization. The new

charaeteristics are deseribed as the follows:

1. The first ordered state is considered as state zero. In this algorithm the flfSt

ordered state is supposed ta be the initial state of the resulting transducer Tl.

Aetually, this is not necessary. The determinization cao he started from any state

of the original transdueer TI. If the first ordered state is not the initial state of the

resulting transdueer Tl one has to provide a state of the original transducer TI,

which is taken as the starting point of the determinization for a given string. In

faet, the starting point of the determinization is always from the request of the

initial state of the resulting transdueer Tl.

2. AlI expanded subsets from subset ql are put into a hash table. Any expanded

subset is eansidered as a new subset carrespanding to a new state in the resulting

transducer Tl but not determinized yet. These subsets are kept and wait for the

next ordered state. If the subset ql for the ordered state cannat be found in the

hash table the algorithm will retum an error message beeause that this means the

ordered state eannot be reached from the last ordered state which has been

determinized. If the subset is found. Then fresh the hash table waiting for the new

expanded subsets during the determinization (line 9).

3. Because the hash table only keeps the expanded subsets from the latest

determinized state, the memory used for the determinization on the demand is

very Iow compared with SSW_determinization and PSSW_determinization.

4. In faet, it is aIso possible to introduce a buffer ta this aIgorithm. The buffer can

keep sorne determinized states. If the ordered state eao be found from these states

it will be retumed immediately without computing it again. When the buffer size

is large enough the whole transducer cao be kept. If a buffer is implemented the

hash table should keep ail subsets related to the buffered determinized states (see

Chapter 6).

5. The total number of the ordered state for an input string w equals to IwJ.
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S.2 An Example for Determinization on the Demand

A simple non-sequential string-to-string/weight transducer TI used for the

example analysis of the DSSW_detenninization a1gorithm is shown in Figure 5.2.

1. Suppose a user needs to pass through a sequential transducer of TI for a given

string "ac". Since DSSW_determinization is used the flfSt ordered state, which

is the initial state of the sequential transducer is shown in Figure 5.3.

Figure 5.2 A string-to-string/weight transducer TI usedfor the example analysis

2. The user gets state zero with three output arcs as shown in Figure 5.3. The

subsets l, 2 and 3 are stored in a hash table.

2

3

Figure 5.3 The initial state
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• 3. Since the string is "ac" the frrst input symbol is "ait. The user will choose state

1 as the next ordered state. Then the subset 1 is picked up from the hash table

and the hash table is refresh to store the subsets when determinizing subset 1.

The result is shown in Figure 5.4. The subset 4 is stored in the hash table.

4. Similarly~ the next ordered state is state 4.

Figure 5.4 The second ordered state

4

o a:NI.O

(a)

~c_:AJ_3_.0_"8

•
(b)

Figure 5.5 (a) a sequential transducer ofTI for a given string "ac"
(h) the whole sequential transducer of TI

55



•

•

5. In step 4 the user needs to order state 4 because the input symbol is "c". There

is no reason to choose other states. But, if for sorne mistake the user decides to

order state 2 and if no buffer implemented in DSSW_determinization. The

user will receive an error message Ilstate 2 cannot he reached". This is because

the subset 2 cannot he found in the hash table that has been cleaned up in step

3. If there is buffer implemented the user will possibly get the determinized

state 2 (also see Chapter 6), which is only useful when the user try to get the

whole sequential transducer of TI. Therefore, when a string is given the user

should order the state only according to this given string to avoid error or

mistake.

6. When the determinization terminates from the view of the user the passed

sequential transducer of TI for the given string "ae" is a transducer shown in

Figure 5.5 (a), which is a part of the whole sequential transducer of T,. See

Figure 5.5.

So far, three determinization algorithms for the string-to-string/weight transducers

have been developed. These three algorithrns are similar. However, they have distinct

features and cao be used for different purposes. The most useful and most interesting one

among them is the determinization on the demand algorithm described in this chapter

because the low memory cost (aiso see Chapter 7), and aIso this algorithm can he applied

to any string-to-string/weight transducer whenever the transducer is determinizable or

non-determinizable,

The introduction on the implementation of these three determinization algorithms

is followed in the next chapter.
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Chapter6

Implementation of the Determinization Algorithms

Three determinization algorithms are available for the determinization of the

string-to-string/weight transducers. They are the complete determinization algorithm

SSW_determinization used for the determinizable transducers~ the partial detenninization

algorithm PSSW_determinization used for the non determinizable transducers~ and the

determinization on the demand algorithm DSSW_determinization. This chapter will

discuss the implementation of these algorithms.

Automatic Speech Recognition is a big research area consisting of different parts

[2~3~8]. For example the composition of the transducers is another important part besides

the determinization. ASR systems are a rapidly developed research project where

implementation needs ta be frequently improved according to the latest research results.

Therefore, it is very important for the implementation of the determinization to keep the

consistency among different parts.

In this chapter the related implementation characteristics in our ASR research

group are introduced first. Following this are the new data structures used for the

determinization~ such as the data structure for the subsets. The introduction on the

implementation is focused on the determinization on demand algorithm because it

includes the most implementation characteristics. Other special implementatian

characteristics of the SSW_determinization and the PSSW_determinization are also

included.

6..1 Related Implementation Characteristics in Our ASR Research Group

The following implementation characteristics are going to be kept ID the

implementation of the determinization algorithms.

1. The string-ta-string/weight transducer is stored on disc as a text file in the

format shown in Figure 6.1. The text file has to be transferred to a binary file before the

transducer is loaded inta the memory by using a method called ReadFSM. The 'software

used for this transfer isfsmcompile from AT&T (available from WEB page [27]).
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0 1 1 2 1.0
0 1 2 4 3.0
0 2 1 3 1.0
1 3 2 5 2.0
2 3 1 2 2.0
2 3 3 3 3.0
3 2.0

(a)

(b)

Figure 6./ A string-to-string/weight transducer.
(a) the textfile, (h) the corresponding transducer

•

2. The design of the data structure for a string-to-suing/weight finite state

transducer is very important. This data structure should keep the memory as low as

possible and includes all the information. The sketch diagram of the FST Data structure

used in the ASR research is shown in Figure 6.2. The FST data structure can be divided

into two parts. The first part bas five fields including the necessary infonnation for most

important applications on the transducer sucb as the deterrninization and the composition.

The second part is named other fields used to describe the transducer's characteristic and

performance.
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• In the frrst part of the FST data structure the first field arcs is a pointer to an array

of arc pointer that each element points to a Jstarc structure. The Jstarc structure is

composed of five fields shown in Figure 6.2:

• fis the from state

• t is the destination state

• i refers to the input symbol

• 0 represents the output sYmbol

• c is the cost for this transition

Where~ c is float nllmber~ others are integers. Arc pointer array is sorted by from

state and input symboI.

Jstarc

arcs

numArcs

states

numStates

start

other fields

•

Jststate

Figure 6.2 F5T Data Structure

The second field numArcs is an integer that refers to the total number of the arcs.

The third field states is a pointer to an array of state pointer that each element points to a

Jststate data structure. The Jststate structure includes the foIIowing three fields:

• ac indicates the accept cost. If ac is legs than a very large number the state is

an accept state. Otherwise the state is a non-accept state. ac is a fioal number
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• na is the number of arcs of the state. na is an integer

• fa is a pointer to one element of the arc pointer array. The pointed element

points to the first arc of the state

The fourth field numStates is the total number of states in the FST. The fifth field

start is also a pointer that points to one element of the state pointer array. This element

points to the start state of the Finite State Transducer. Normallyy this state is pointed by

the first element of the state pointer array.

3. ANS[ C is the programming language used in the ASR system.

6.2 New Data Structures Used in the Implementation

A new data type in the determinization algorithms is the subset. Be aware of the

characteristics of the subsets three basic data structures are designed to represent them.

See Figure 6.3.

newStateNumber _subState

subnext .. _rOutSym.. s

next 10utSym
.. outSym..

c next

•next

" +
Figure 6.3 The data stnlctllre of the subsets

The _state data structure has three fields:

• newStateNumber is an integer. According to the algorithms each subset

corresponds to one state in the resulting transducer Tl. The state number is

assigned to newStateNumber during the determinization

• subnext is a pointer to a list of data structure called _subState

• next is a pointer to the next _stare.
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The subSlate data structure is used to describe the triple (q', w', x). It includes four

fields that can he described as the following:

• s is an integer. It is an old state number in the original transducer Tl. It

represents q'

• loulSym is a pointer to a list of _rOulSym data structure. It is the residual string

composed of zero or many symbols

• c is the residual weight. It represents x'

• next is a pointer to the next _subState structure

The _rOutSym data structure is used to describe the residual string w' in a triple (q '.

w', x). It consists the following two elements:

• outSym is an integer used to represent a symbol in w'

• next is a pointer to the next _rOutSym structure. A list of _rOutSym structure

represents a residual string w •

inSym

loutSym .. outSym....

c next

next +
+

Figure 6.4 The _newArc data structure

Another new data type is the intermediate arc. The intermediate arc represents the

intermediate (or temporary) transition Qi' (see Chapter 3, page 31). When special case 2

happened the intennediate arc has the format symbol:string/weight. The _newArc data

structure used to describe the intennediate arcs is shown in Figure 6.4. It incIudes the

following elements:

• inSYln is an integer that represents the input symbol

• loutSym is the output string. It is a pointer to a list of _rOutSym data structure
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• • c is the cost of the transition

• next is a pointer to the next _newArc structure

6.3 Implementation of the DSSW_determinization Algorithm

As it has been mentioned that the most interested deteriminization algorithm is the

determinization on the demande The implementation of this a1gorithm a1so has the mast

characteristics among three determinization a1gorithms.

In tbis section the implementation of the DSSW_determinization a1gorithm has

been introduced by viewing its design of implementation~ data flow and function calI

sequence. More information about the implementation is available in the Appendix~ from

the source files.

6.3.1 Module Design

For easier implementation and maintenance a module design strategy is used in

the implementation. The following picture describes the module design of the program

DSSW_determinization.

fstdeterState

fstdetersubState

fstdeterrOutSym fstdetemewArc

fstdeterFSTState

fstdeterFSTArc

fstdeterstateHashTable

•
Figure 6.5 Module design o/the SSW_determinization
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1. Module Cstdeterlib

It is designed to be an interface that contains aU methods can be used directly by

the user. The fstdeterlib includes the following methods:

• InitFSTDeter

This method has to be called before the detenninization. It initiates the hash

table and the global variables used for the detenninization.

• GetFSTStartState

This method has to be called after the method InitFSTDeter. It finds out the

start state(s) of the original transducer TI? and then creates a subset

representing the start state of the resulting transducer Tl- This subset will then

he passed to module fstdeter for the further determinization processing. The

method GetFSTStanState retums a pointer to the stan state of the resulting

transducer Tl- If an errar happened it retums a NULL pointer.

The GetFSTStartState method attributes

Argument Type Description

retum value FSTState A pointer ta a FST state

fst FST A pointer to a FST transducer

• GetFSTStateByNum

The GetFSTStateByNum method attributes

Argument Type Description

retum value FSTState A pointer to a FST state

fst FST A pointer to a FST transducer

s int The ordered state number

This methad is used when astate is ordered. If the ordered state has been

determinized and kept il relurns the ardered stale immediately. Otherwise it

picks up the subset representing the ordered state from the hash table, and pass

the subset to module fstdeter for further determinization processing. When the
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method GetFSTStateByNllm is called the number of the ordered state has to be

provided by the user and the ordered state has to be reachable from the last

ordered state. If an error happened~ such as the ordered state cannot be reached

from the last ordered state a NULL pointer is returned.

• GetFSTStateAcceptCostByNum

This method does the same as that of the method GetFSTStateByNum except

that it returns the accept cost of a FST state. If an error happened such as if the

ordered state cannot be reached from the last ordered state a float number -1 is

returned.

The GetFSTStateAcceptCostByNum method attributes

Argument Type Description

return value float The accept cost of a F5T state

fst F5T A pointer to a F5T transducer

s int The ordered state number

• GetFSTStateNumArcsByNum

This method does the same as that of the method GetFSTStateByNum except

that it retums the number of total arcs of a F5T state. If an error happened such

as if the ordered state cannot be reached from the last ordered state an integer

-1 is retumed.

The GetFSTStateNumArcsByNum method attributes

Argument Type Description

retum value int The number of arc belonging to astate

fst F5T A pointer to a F5T transducer

s int The ordered state number

• GetFSTStateFirstArcByNum

This method does the same as that of the method GetFSTStateByNum except

that it retums a pointer tbat points to one element of the arc pointer array. This
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element then points to the frrst arc of a fST state. If an error happened such as

if the ordered state cannot he reached from the last ordered state a NULL

pointer is returned.

The GetFSTStateFirstArcByNum method attributes

Argument Type Description

return value FSTArc A pointer to the arc pointer array

fst FST A pointer to a fST transducer

s int The ordered state number

• SetCompValue

This method is very important. It sets the value used to compare whether the

residual weights of two triples in two different subsets are equal.

The SetCompValue method attributes

Argument Type Description

value float A value used for comparison

• SetFSTButTerSize

This method is used to define the size of the buffer in the determinization. The

default value is 300000. If the buffer size equals to zero no determinized state

is kept in the buffer.

The SetFSTButTerSize method attributes

Argument Type Description

number int An integer used for the buffer size

• GetDeterFST

It gets the whole resulting sequential transducer T2 if the buffer size is large

enough. This function put the whole transducer into a text file.

• ViewNewFSTState
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This function is used for the debugging purpose. [t prints all information of a

FST state of the resulting transducer Tl.

The ViewNewFSTState method attributes

Argument Type Description

state FSTState A pointer to a FST state

More details about the module fstdeterlib are available in the Appendix7 from

fstdeterlib.h andfstdeterlib.c.

2. Module fstdeter

This module provides the services used by the fstdeterlib module. These services

are used to determinize the subset passed from the fstdeterlib and transfer the subset to a

FST state of the resulting transducer Tl, Also during the determinization all special cases

(special case 1 and special case 29 see Chapter 3 page) are handled in this module.

3. Module fstdeterstate

The module fstdeterstate contains the definition of the structure _state and

provides its utility methods such as the method MakeState that creates a _state data.

4. Module fstdetersubState

This module contains the definition of the structure _subState and provides its

utility methods.

5. Module fstdeterrOutSym

This module contains the definition of the structure _rOutSym and provides its

utility methods.

6. Module fstdeternewArc

This module contains the definition of the structure _newArc and provides its

utility methods.

7. Module fstdeterFSTState

This module defines two variables and provides their utility methods. These two

variables are the following:

• fstStates. ft is a state pointer array that each element points to a Jststate data

structure. The fstStates is designed as a buffer to keep the detenninized states.
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The default buffer size is 300000. This size can he changed by the method

SetBufferSize from the module fstdeterlib.

• fstStatesl. It is aJso a state pointer array which only keeps the just

determinized state in its first element fstStates1[0]. The!stStates1 is used when

the buffer size is zero or the buffer is fulL

8. Module fstdeterFSTArc

This module defines two variables and provides their utility methods. These two

variables are the following:

• fstArcs. It is an arc pointer array that each element points to a Jstarc data

structure. This variable keeps ail arcs of the determinized states in the buffer.

• fstArcsl. It is aIso an arc pointer array which ooly keeps the arcs belonging to

the just determinized state kept by fstStatesl[O].

9. Module fstdeterstateHashTable

This module defines two hash tables and provides their utility methods. These two

hash tables are the following:

• stateHashTable. This variable is used to keep ail subsets expanded from the

determinized states in the buffer.

• stateHashTablel. It only keeps the subsets expanded from the just

detenninized state kept by!stStatesl[O].

More details on each module can be found ln the Appendix, from its

corresponding source file(s).

6.3.2 Data Flow and Function Cali Sequence

The data flow and function cali is started when one method in module fstdeterlib

is invoked. Suppose that the state ordered by the user is not determinized yet and can be

reached from the last ordered state. Then the data flow and function cali sequence is

diagrammed in Figure 6.6.
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newArcs =GC:lNc:wArcS( f2. fsu
GdNumArcs<nc:wArcs. &numArcs)
GdFSTSlalc:Handlc:SpeCÎaICast:1(... )
newSl3lc: = GelNewSlales(fsl. f2. newArcs) GdFSTSl:lIc:HandleSpeCÎaICast:1(..• )

yes

InscnSralc:HashTablt:( ... )
[nscnFSTArcs(nc:wFslArC)

return GetFSTStales(FROMSTATE)

no

[nsc:nSl:ueHashTablc:1(. •• )
(nSL-nFSTAccs1(ncwFSlArC)

yc:s

no

no

relUrn GdFSTSl3lc:sI(O)

•
Figure 6.6 The data flow andfunction call sequence
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In Figure 6.6 as an example the method GetFSTStateByNum is called by the user.

Similar results can be obtained if other method in module fstdeterlib such as the method

GetFSTStateAcceptCostByNlIm. GetFSTStateNlImArcsByNum, or GetFSTStartState, or

GetFSTStateFirstArcByNum is caIled.

The variable F1 is a subset corresponding to the ordered state. Fz is transferred to a

state of Tl by the method GetFSTStateHandleSpeciaLCase1.

The variable newState is a list of subsets expanded from the subset Fl (or the

ordered state). If the buffer size is not zero these subsets need to be checked hefore they

are put into the hash table.

The variable newArcs is a list of intermediate arcs of the ordered state. Each

element of newArcs will he transferred to an arc of the ordered state.

The varible newFstArc is used to create one arc of the ordered state.

More details about the methods in Figure 6.6 can be found in the Appendix. The

methods DeterFST. GetNewArcs, GetNumArcs, GetFSTStateHandleSpecialCasel,

GetNewStates, HandieSpecialCase2 are from module fstdeter. The lnsertStatehashTable

method is from module fstdeterstateHashTable. The method lnsenFSTArcs is from

modulefstdeterFSTArc. The method GetFSTStates is from module!stdeterFSTState. The

methods CopyState and FreeState are defined in modulefstdeterstate.

ln Figure 6.6 there are 5 conditions to he tested. Condition 1 asks that if subset F1

is generated by special case 1 or special case 2 (see Chapter 3. page 34, 35). Condition 2

asks that if the output of an intermediate arc of the ordered state is symbol. Condition 3

asks that if a subset expanded from the ordered state is a new subset. Condition 4 asks

that whether the buffer is full. Condition 5 tests whether the buffer is used.

6.4 Implementation of the SSW_determinization Aigorithm

The implementation of the SSW_determinization is similar as that of the

DSSW_determinization. The differences cao he seen from the following two points:

1. There is no buffer implemented in the SSW_determinization program. AlI

determinized states are kept. The resulting sequential transducer T2 is always

saved to the disk when the determinization terminates.
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2. A queue is implemented in the program. This queue is used to keep all subsets

not yet he expanded. The frrst element of the queue is always the subset that

should he expanded at the next. Therefore, no search is required to find out the

next expanding subset.

Compared with the DSSW-determinization program the speed of the

SSW_detenninization program is faster because the implementation of the queue.

However, the SSW_determinization program always takes more memory because it keeps

all the detenninized states.

6.5 Implementation of the PSSW_determinization Algorithm

The implementation of the PSSW_determinization is similar as that of the

SSW_determinization. The special case l and special case 2 are not considered for the

implementation because they have never happened in the partial determinization. See

Chapter 4. the Figure 4.1.

In this chapter the implementation of the determinization algorithms for the string­

to-string/weight transducers has been introduced. As it is expected the functional test on

these programs and the result analysis are carried on in the next chapter.
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Chapter7

Functional Test

Although there is a program used for the determinization of the determinizable

string-to-string/weight transducers from the AT&Ty no detailed algorithm for the

determinization of the string-to-string/weight transducers has been published. In order to

check the feasibility of the determinization aIgorithm SSW_determinization y

PSSW_detenninizationy and DSSW_detenninization the functional test on them has to he

carried on.

Among these three determinization algorithms the most interesting one is the

determinization on the demand because that it can be used for both determinizable and

non-determinizable transducers y and it takes little memory during the determinization.

Thereforey the functional test introduced in this chapter is mainly focused on the

determinization on the demand. Considering the similarity of these three algorithms the

functional test results in this chapter can also be used to estimate other two algorithms.

The functional test includes the correctness y the cost of time and space. and other

characteristics of the determinization. The correctness is analyzed by comparing the

determinization resulting transducer with the transducer obtained from the AT&T

determinization program.

AIso, in this chapter an application of the Automatic Speech Recognition on a

large set of input strings has been designed to further test the determinization results.

7.1 Correctness

The correctness of the determinization algorithms is evaluated by using the

DSSW_determinization and a commercial software fsmdeterminize. The fsmdetenninize is

provided by AT&T y and is applicable ooly for the complete determinization of the

determinizable string-to-string/weight transducers. To get the whole resulting transducer

by DSSW_determinization the default buffer and the Breadth First Traversai algorithm are

used.
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After detenninization the resulting transducers are analyzed by applying an AT&T

software fsminfo. The software fsminfo goes through a transducer and collects important

information listed in Table 7.1, which the information can he used to analyze and

compare the determinization results obtained from the DSSW_detenninization and

fsmdeterminize.

Transducer and its property Tl Tl' Tl"

number of states 115959 30637 20005

number of arcs 189800 113962 387284

initial state 0 0 0

number of final states 2 37 1

number of i10 e 3 37 0

number of input e 4 51985

number of output ê 128603 59128

number of accessible states 115959 30637 20005

number of coaccessible states 115959 30637 20005

number of connected states 115959 30637 20005

number of slrongly conn componenlS 1 826 4

Table 7.1 String-to-string/weight transducers used for the test

Table 7.1 lists three determinizable string-to-string/weight transducers Tl, Tl' and

Tl" for the test. Specially, Tl" is sequential. The determinization resulting transducers of

TI, Tl' and T/' are named Tl, Tl' and T/' respectively. The analysis results on these

transducers obtained from the fsmdeterminize and DSSW_determillizatiolZ are shown in

Table 7.2 and Table 7.3. The only difference between Table 7.2 and Table 7.3 is on T2•

The DSSW_determinization result has 3 less arcs and 35 more empty input symbols than

the fsmdeterminize result. This is because the special cases (see Chapter 3, page 34, 35)

handled in these two aIgorithms is different. However, the two results are equivaIent

because they are both equivalent to the original transducer T2• Because TI" is sequential,

therefore its determinization result is same as itself. See Tl" in Table 7.2 and 7.3.
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Transducer and its property Tl Tl' Tl"

number of states 33984 4493 20005

number of arcs 79781 16111 387284

initial state 0 0 0

number of final states 4 260 1

number of ilo E 3 II27 0

number of input E 8926 2586

number of output E 39623 9609

number of accessible states 33984 4493 20005

number of coaccessible states 33984 4493 20005

number of connected states 33984 4493 20005

number of slrongly conn components 2 116 4

Table 7.2 The determinization results ofAT&Tfsmdeterminize

Transducer and its property T2 Tl' Tl"

number of states 33984 4493 20005

number of arcs 79778 16111 387284

initial state 0 0 0

number of final states 4 260 1

number of ilo E 3 1127 0

number of input E 8961 2586

number of output E 39623 9609

number of accessible states 33984 4493 20005

number of coaccessible states 33984 4493 20005

number of connected states 33984 4493 20005

number of strongly conn components 2 116 4

Table 7.3 The detenninization results ofDSSW_detenninization
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Table 7.4 shows the size ofeach transducer before and after the determinization.

One can be seen from this table is that the efficiency of determinization is based on the

degree of non-determinism of the original transducer. For example Tl · has a significant

reduction on it size~ which is up to 85.8%. On the other hand~ there is no size reduction if

the original transducer is sequential such as Tl".

Transducer Tl Tl' Tl"

before determinization 4.89MB 2.19 MB 6.4MB

after determinization 1.68 MB 0.31 MB 604MB

Percentage (%) 65.5 85.8 0

Table 7.4 Sizes ofthe transducers in Table 7.2 before and after the determinization

The analysis results of fsminfo on the resulting transducers tell us that the

determinization results obtained from DSSW_determinization and fsmdetenninize are

equivalent. The following section gives a further test on the equivalency of the resulting

transducers by applying these determinization programs to a true ASR process.

7.1.1 Automatic Speech Recognition Test

To further test the determinization resuIts the following ASR procedures are used

in the test.

1. Get the distribution-to-phonemes transducer

2. Deterrninize the transducer

3. Get the complete distributions-to-words recognition transducer

4. Get the compacted recognition transducer

5. Convert the compacted transducer into format required by Viterbi decoder

6. Run recognition (Viterbi decoder) on 300 files

The step 2 needs a determinization program. By changing this program the final

recognition results based on DSSW_determinization and fsmdeterminize are compared.

The recognition results on 300 files are same (evaluated by the recognition scores) when

DSSW_determinization is used instead of fsmdeterminize. This means that the resulting
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transducers obtained from DSSW_detenninization and fsmdetenninize are equivalent. A

typical recognition scores analysis of the recognition result is shown in Figure 7.1.

======================= HTK Results Analysis =======================
Date: Fri May 5 19:45:52 2000
Ref: Imisc/speech_data26/aupelf/train/adapt/bref-total-words.mlf
Rec: vite_qiu_300t2_t160-p-5_s10.mlf

------------------------- averall Results -------------------------­
SENT: %Correct=5.00 [H=15, 5=285, N=300)
waRD: %Corr=70.93, Acc=63.39 (H=3220, D=263, 5=1057, I=342, N=4540)
====================================================================

Figure 7./ A typical analysis of the recognition result

ln conclusion, as a result of these tests that the AT&T work can be reproduced by

using our detenninization algorithms.

7.2 Comparison Parameter

In Chapter 6, it is mentioned that the method SetCompV in module fstdeterlib is

used to change the comparison parameter compV. The comparison parameter compV is a

float number that is used to decide the equivalence of two residual weights in two triples.

Suppose, there are two triples (q/, WI', XI') and (Q1', W1', Xl '). If lt/' - x2'1 ~

compV then XI' equals to X2'. The value of compV is very important. It dramatically

influences the size of the resulting transducer since each expanding subset during the

determinization has to be checked to see if this subset is a new subset (each unique subset

represents a state in the resulting transducer). The default value of compV is 0.0003,

which is obtained according to the test result of a large number of transducers applied in

our ASR research. The transducers in Table 7.3 are the results by using the default value

in the deterrninization.

Figure 7.2 is a typical test result obtained from the determinization of TI with

different comparison values. It cao he seen from this figure that if the value is less than

o.{)()()() l the number of arcs or states of the resulting transducer is increased dramatically.

Figure 7.3 is another obtained from the determinization of a large transducer with 6M

arcs and 20K states. The number of arcs or states of the resulting transducer in Figure 7.3

is increasing with the decreasing of the comparison value. When the comparison value is

0.0003 the determinization result equals to the result of the fsmdeterminize.
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7.3 Time and Space

Another important property should he tested for the determinization programs is

the requirement of the time and space during the determinization.

To test the time and space a large transducer shown in Table 7.5 is used. The size

ofthis transducer is 90MB. To load it 130MB memory is needed. Table 7.5 also gives the

determinization result by DSSW_determinization andfsmdeterminize. It is interesting that

the resulting transducer has more states than the original transducer. But the original

transducer has more arcs~ which is the reason that the size of the original transducer is

larger than (almost 2 times) the resulting transducer because transducer is stored only by

its arcs and a few accept states (see Figure 6.1 in Chapter 6).

Transducer and its property Tl Tz T2

(AT&T) (CRIM, 0.01)

number of states 192632 275069 269715

number of arcs 5423636 2865945 2849516

initial state 0 0 0

number of final states 1 1 1

number of i10 e 9562 9374 9373

number of input e 17223 34783 32828

number of output e 3078013 2327666 2326223

number of accessible states 192632 275069 269715

number of coaccessible states 192632 275069 269784

number of connected states 192632 275069 269784

number of strongly conn components 2175 4508 7578

transducer size 90MB 49MB 47MB

Table 7.5 A large string-to-string/weight transducer and its determinization results

Figure 7.4 shows the time - memory curves of the determinization on tbis

transducer by using different determinization programs. The memory displayed in Figure
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7.4 is only the memory required for the determinization since it has been revised by a

deduction for the loading.

In Figure 7.4 curve 1, the DSSW_determinization needs 116MB memory and 76

seconds. The jsmdeterminize (curve 2) needs 90MB and 50 seconds. The reason that

DSSW_determinization takes more memory is because when the DSSW_determinization

is used ta get the whole resulting transducer it canstructs and keeps both ail the states and

ail the arcs during the determinizatian. In fact, most states are not needed for the resulting
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transducer because the arcs have included all the information for the states and the

transducer is stored by the arcs and the information on a few accept states. And also the

determinization needs only subset but state. Curve 3 is the result obtained from the

SSW_determinization which only constructs and keeps the accept states during the

determinization. It takes 95MB~ which is very close to the result offsmdeterminize.

Notice that il is slightly different al the start point and on the shape of curves l~ 2~

and 3. For example~ the DSSW_detenninization with the default buffer needs 15MB to

declare the state pointer array and the arc pointer array. These differences mean that the

memory allocation strategy between our determinization programs and the

fsmdeterminize is sIightly different.

The most interesting information in Figure 7.4 is from curve 4 and curve 5

(overlapped). These two curves are the results of the DSSW_detenninization without

buffer. When the DSSW_detenninization without buffer is used the determinization

retums the ordered state, and only keeps the just detenninized (or retumed) state with

sorne related information (such as the arcs and the expanding subsets of this state) for the

further detenninization. At the start point the memory allocated for the state pointer array

and the arc pointer array is 2MB. The memory aIlocated during the determinization is

1MB. The total memory cost is only 3MB. See Figure 7.4 curve 4 and curve 5, which are

corresponding to two determinization paths.

Notice that this 1MB memory is allocated only once when the detenninization

starts, it is supposed to hold all the information for the ordered state. If 1MB memory is

not enough for a determinized state during the detenninization another 1MB will be

added. However. this case never happens because that 1MB allows a determinized state to

have 1000 different expands (in an optimal situation [31]), which means that 1MB should

he enough for any determinized state of any string-to-string/weight transducer.

Therefore, based on the results in Figure 7.4 it can be concluded that our

SSW_detenninization program takes similar time and memory as the AT&T

fsmdeterminize does. The DSSW_determinization (without buffer is the normal usage of

this program) takes the lowest memory among ail the determinization programs during

the determinization.
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7.4 Partial Determinization of the Non Determinizable Transducers

Transducer and its property Tl Tl'

Number of states 1444 2198713

Number of arcs 53428 5822490

initial state 0 0

number of final states 37 12

number of i10 E 37 681763

number of input E 37 1402275

number of output E 37 4505275

number of accessible states 1444 2198713

number of coaccessible states 1444 2198713

number of connected states 1444 2198713

number of strongly conn components 76 84137

Table 7.6 String-to-string/weight transducers usedfor the partial determinization test

Transducer and its property T2 T2'

number of states 1681 2590222

number of arcs 13167 5931825

initial state 0 0

number of final states 93 12

number of i10 E 2509 1252837

number of input E 2509 2045142

number of output E 2509 4876264

number of accessible states 1681 2590222

number of coaccessible states 1681 2590222

number of connected states 1681 2590222

number of strongly conn componenlS 109 123527

Table 7.7 Results ofpartial determinization ofthe transducers in Table 7.6
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Although there is no tool available for the comparison on the result of the

PSSW_determinization., the test on PSSW_determinization is carried on by using the oon­

determinizable transducers. TI and TI' in Table 7.6 are two typical non-determinizabIe

transducers. Their partial determinization results are Tl and Tl· respectively shown in

Table 7.7.

The size of TI is D.88MB. After the determinization the number of the arcs of Tl is

reduced from 53K to 13K. As it is expected that the size of Tl is only D.23MB. The

deduction is up to 74%., which means the partial determinization program is very

efficient.

Similarly as the SSW_determinization (see Chapter 3. Figure 3.5)., the partial

determinization of TI' tells a different story. After the determinization the size of Tl' is

slightly increased from 5.8M to 5.9M. However., the advantage is that Tl' is doser to a

sequential transducer. This will dramatically increase the searching speed when Tl' is

applied to the ASR process instead of TI'.

In conclusion, tbis chapter has carried a successfuI functional test on the

determinization algorithms. The results are interesting and exciting. The

DSSW_determinization ooly needs 3MB for the determioization.

The final conclusions on the research of the determinization algorithms of the

string-to-string transducers in this paper are made in the next chapter.
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Chapter8

Conclusion and Future Work

The purpose of the research carried in this thesis is to develop the determinization

algoritbms for the string-to-string/weight transducers. The conclusion of this research and

the future work can be summarized as follows:

1. The formal definitions of the string-to-string/weight transducers and the

sequential string-to-string/weight transducers have been made. These definitions are

successfuIly used to define the transducers concemed in the determinization algorithms.

As a result of this research three determinization algorithms have been developed

for the different requirements of the different string-to-string/weight transducers.

The implementation of the detenninization algorithms has been introduced. And,

the functional test on these determinization programs has been carried 00.

By analyzing and compariog the results of our determinization programs with that

of AT&T fsmdetenninize il cao be concluded that these newly developed determinization

algorithms and their implementation are successfuI. AT&T work has been reproduced in

this research.

2. The first developed determinization algorithm is a complete determinization

algorithm. It is named SSW_determinization. This algorithm can only be used to

determinize the determinizable string-to-string/weight transducers (same as AT&T

software fsmdetenninize). Both time complexity and space complexity of the

SSW_detenninization are exponential to the size of the original transducer.

3. To reduce the degree of non-determinism of the non-determinzable string-to­

string/weight transducers. A partial determinization algorithm PSSW_determinization is

developed. This algorithm cao be used to get the whole resulting traosducer with much

low non-determinism degree compared with that of the original non-detenninizable

transducer. Notice that does not apply this algorithm to the determinizable traosducers.

4. The determinization on the demand algorithm DSSW_determinization is the last

determinization algorithm developed in this thesis. The characteristic of this algorithms is

that it ooly determinizes astate when tbis state is ordered, and it (without buffer) only
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keeps the information for the just detenninized state. The next ordered state must he

reachable from the last ordered state.

The DSSW_determinization has two advantages over the SSW_determinization

and PSSW_detenninization. One is that it can be applied to both the determinizable and

non-determinizable string-to-stringlweight transducers. Another advaotage is the very low

memory cost during the determinization. For example, in our current implementation

DSSW_determinization only needs 3MB. Compared with that in sorne cases the

SSW_determinization, PSSW_determinization or AT&T fsmdeterminize needs more than

1000MB memory for the determinization, the DSSW_determinization is very useful when

memory is scarce.

With a buffer the DSSW_determinization cao keep sorne determinized states (of

course, with a rnernory cost). If the buffer size is large enough the whole resulting

transducer are kept (normally, a big memory cost). Re-computation cao be avoided if the

ordered state is kept in the buffer. AIso, the size of the buffer can he chaoged to lirnit the

size of the memory used in the determinization.

5. In most cases both time efficiency and space efficiency (up to 85.8% in our

test) are increased after the determinization. However, the space efficiency is slightly

decreased (such as 1.0%) in sorne determinization cases.

6. Future work should focus on two aspects. The first is the algorithm and its

implementation for the prediction of the determinizability of the string-to-string/weight

transducers. Although we have discussed the principles of the prediction. more details

need to he considered for the string-to-string/weight transducers, like the special cases in

the determinization algorithms. The second is the optimization of the implementation of

the determinization algorithms. Such as the memory allocation strategy, the data

structures used for the detenninization, and the data structure of the transducer (fST data

structure).

83



•

•

References

1. "The HTK Book" (for HTK Version 2.1). Cambridge University~ 1997.

2. Graham~ S. L.~ M. A. Harrison~ and W.L. Ruzzo. 'tAn Improved Context-Free

Recognizer". ACM Transactions on Prograrnming Languages and Systems~ 2~ 1980.

3. Mohri~ Mehryar. "On the Use of Sequential Transducers in Natural Language

Processing". Finite-State Language Processing, edited by Emmanuel Roche and Yves

Schabes. A Bradford Book~ The MIT Press~ Cambridge~ Massachusetts. London

England. 1997.

4. Kaplan, Ronald M. and Martin Kay. ItRegular Models ofPhonological Rule Systems".

Computational Linguistics~ 20, 1994.

5. Mohri, Mehryar. "Compact Representations by Finite-State Transducers".

Proceedings of the 320d Meeting of the Association for Computational Linguistics

(ACL 94)~ Las Cruces, New Mexico. ACL.1994.

6. Kimmo Koskenniemi. "Finite-State Parsing and Disambiguation". In proceedings of

the 13lh International Conference on Computational Linguistics. COLING-90, Vol. 2.

Helsinki, Finland. 1992.

7. S. Khoshanfian and B. A. Baker. ItMultimedia and Imaging Databases". Morgan

Kaufmann Publishers~ San Francisco~Calif. 1996.

8. Mohri~ Mehryar. "Finite-State Transducers in Language and Speech Processing".

Computational Linguistics~ 23, 1997.

9. Kimmo Koskenniemi~ Pasi Tapanainen and Atro Voutilainen. "Compiling and Using

Finite-State Syntactic Rules". In proceedings of the 15lh International Conference on

Computational Linguistics. COLING-92, Vol. L Nantes, France. 1992.

10. Mohri, Mehryar and Michael Riley. ··Weighted Determinization and Minimization for

Large Vocabulary Speech Recognition". In Proceedings of the Eurospeech '97~

Rhodes, Greece, 1997.

Il. Fernando C. N. Pereira and Michael D. Riley. "Speech Recognition by Composition

of Weighted Finite Automata". Finite-State Language Processing, edited by

Emmanuel Roche and Yves Schabes. A Bradford Book, The MIT Press, Cambridge,

Massachusetts. London England. 1997.

84



•

•

12. Emmanuel Roche and Yves Schabes. "Finite-State Language Processing". A Bradford

Book~ The MIT Press~ Cambridge, Massachusetts. London England. 1997.

13. Bauer~ W. "On Minimizing Finite Automata". SATACS Bulletin~ 35~ 1988.

14. Mohri, Mehryar. http://www.cs.columbia.edul-rnohrilnotes.html

15. Gibbon~ Dafydd. http://corel.liILunibielefeld.de/Classes/Winter97

16. Abo, Alfred V.~ Ravi Sethi, and Jeffrey D. Ullman. "Compilers~ Principles~

Techniques and Taols". Addison Wesley: Reading~ MA. 1986.

17. Abo~ Alfred V., John E. Hopcroft, and Jeffrey D. Ullman. "The Design and Analysis

of Computer Algorithms". Addison Weley: Reading, MA. 1974.

18. Dominique Revuz. "Minimisation of Acyclic Detenninistic Automata in Linear

Time". Theoreticai Computer Science~ 92, 1992.

19. KIeene, Stephen C. "Representation of Events in Nerve Nets and Finite Automata". In

C. E. Shannon and J. McCarthy, editors, Automata Studies. Princeton University

Press. 1956.

20. Eilenberg, Samuel. "Automata, Languages, and Machines". Volume A. Academic

Press, New York. 1974.

21. Eilenberg, Samuel. "Automata, Languages~ and Machines". Volume B. Academic

Press, New York. 1976.

22. Mehryar Mohri. "On Sorne Applications of Finite-State Automata Theory to Naturai

language Processing". Naturai Language Engineering, 2~ 1996.

23. Perrin, Dominique. "Finite automata". Handbook of Theoreticai Computer Science,

1990.

24. SaIomaa~ A. "Formai Languages". Academie Press, New York, NY. 1973.

25. Michael Siper. "Introduction to the Theory of Computation". PWS Publishing

Company, 20 Park Plaza. Boston, MA 02116. 1997.

26. Mohri, Mehryar. "Minimization Algorithms for Sequential Transducers". Theoretical

Computer Science, 1998.

27. AT&T Labs-Research. http://www.research.att.com

28. Robert M. Keller. http://www.cs.hrnc.edul-kelIer/courses/cs60/slides/Acceptors.html

29. Berstel~ Jean. "Transductions and Context-Free Languages". B. G. Teubner Stuttgart~

1979.

85



•

•

30. Riley~ Pereira and Mohri~ Mehryar. "Transducer Composition for Context-Dependent

Network Expansion". In Proceedings of the Eurospeech '97. Rhodes, Greece, 1997.

31. Qiu~ Jun. Technical Report~ CRIM:, Jan. 2000.

86



•

•

AppendŒ
/**********************************************************************/
/* */
/* Copyright (c) 2000 Centre de recherche informatique de Montreal */
/* */
/**********************************************************************/

/**** FILE HEADING ****************************************************
* fatdeterlib.h -- Declaration of the interface methods that can be
* used directly by the user. See the next page on the detailed
* description of these methods (in fstdeterlib.c) .
*/

#ifndef __FSTDETERLIB_H__
#define __FSTDETERLIB_H__

#include <stdio.h>
#include <math.h>
#include "fst.h"
#include "fststate.h"
#include "fstarc.h"

extern void InitFSTDeter();

extern FSTState *GetFSTStartState(FST *fst);

extern FSTState *GetFSTStateByNum(FST *fst, int s);

extern float GetFSTStateAcceptCostByNum(FST *fst, int s);

extern int GetFSTStateNumArcsByNum(FST *fst, int s);

extern FSTArc **GetFSTStateFirstArcByNum(FST *fst, int s);

extern void ViewNewFSTState(FSTState *state);

extern void GetDeterFST();

extern void SetCompA(float value) ;

extern void SetFSTBufferSize(int number);

lendif /* __FSTDETERLIB_H__ */
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f******-********************************************** *****************/• f*
f* Copyright (c) 2000 Centre de recherche informatique de Montreal
f*

*/
*/
*/

•

f**********************************************************************f

f**** FILE HEADING ****************************************************
* fstdeter11b.c -- The Implementation of the interface of the
* determinization algorithm.
*/

#include <stdio.h>
#include "fstdeterlib.h"
#include "fstdeter.h"
#include "fstdeterstate.h"
#include "fstdetersubState.h"
#include "fstdeterrOutSym.h"
#include "fstdeterFSTState.h"
#include "fstdeterFSTArc.h"
#include "fstdeterstateHashTable.h"

/***** FUNCTION HEADING ***********************************************

*
* NAME: InitFSTDeter()

*
* PURPOSE:
* Initiate the hash tables, and the global variables. This method
* has to be called before the determinization.
*
* AUTHOR / MAINTAINED BY:
* JUN QIU
**********************************************************************/

void
InitFSTDeter()
(

InitStateHashTable();
InitStateHashTablel();

/***** FUNCTION READING ***********************************************

*
* NAME: GetFSTStartState(FST *fst)

*
* PURPOSE:
* Return a pointer to the first state (_fststate) of a
* determinized FST. This method has to be called after the method
* InitFSTOeter() .

*
* AUTHOR f MAINTAlNED BY:
* JUN QIU
**********************************************************************/

FSTState *
GetFSTStartState(FST *Est)
{

int start;
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LROUTSYM templ = NULL i

LSOBSTATE temp2 = NULLi
LSTATE FO = NULLi
FSTState *fstStatei

1* get the start state number of the original transducer Tl *1
start GetStartFST{fst)i

ternpl = MakeROutSym{O)i
ternp2 MakeSubState{start, ternpl, 0, NULL)i
FO = MakeState{O, temp2}i

if{GetFSTBufferSize{) > 0)
(

InsertStateHashTable{FO, 0);
}

fstState: DeterFSTState(fst, FO);

return fstStatei

f***************************************************** ******************
* NAME: GetFSTStateByNum(FST *fst, int s)
*
* PURPOSE:
* Return a pointer ta a FST state (_fststate) fram
* the determinized FST.
*
* AUTHOR 1 MAINTAINED BY:
* JUN QIU f JUN QIU
****************************************************** *****************f

FSTState *
GetFSTStateByNum{FST *fst, int 5)
(

int index;
FSTState *fstStatei
LSTATE state, statel = NULLi

f* if the ardered state number is larger than the FROM state
number, and the FROM state number equals ta TO state number,
the determinizatian finished *1

if«s > GetFROMSTATE{» && (GetFROMSTATE() == GetTOSTATE(}»
{

printf("\ndeterminization finished!\n")i
return NULLi

}

1* if the ordered state number is larger than the TO state number
this state is not reachable *1

if(s> (GetTOSTATE()})
(

printf("\nstate %i cannat be reached naw! \n lt
, 5);

exit(O)i
}
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else
(

/* if the buffer is not full or the information on the ordered
state can be found from the buffer */

if(s <= GetFSTBufferToStateNum() Il
GetFSTBufferToStateNum() == -1)

(

fstState = GetFSTStates(s)i
if(fstState->acceptCost > -0.5)

(

return fstState;
}

state = GetStateHashTable(fstState->numArcs, s);

/* if the buffer is full */
if (GetFSTBufferToStateNum() != -1)

(

FreshStateHashTable1();
ResetFstArcslndex1() ;
ResetFstStatelndexl() i

}

}

else if(s <= GetBeforeOldTOSTATE(»
(

printf("\nstate %i cannot be reached!\n", 5);

exit (0) ;
}

/* the information on the ordered state must be in state pointer
array fstStatesl */

else
(

fstState = GetFSTStatesl(s - GetBeforeOldTOSTATE(»;

state1 = GetStateHashTable1{fstState->numArcs,
(5 - GetBeforeOldTOSTATE(»);

FreshStateHashTablel() ;
ResetFstArcslndexl();
ResetFstStatelndex1();

/* reset the FROM state number to the ordered state number */
SetFROMSTATE(s) ;

if(statel != NULL)
(

fstState = DeterFSTState(fst, state1);
FreeState(&state1);

}

else
(

fstState = DeterFSTState(fst, state);
}

}

return fstState;
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/***********************************************************************
* NAME: GetFSTStateAcceptCostByNum(FST *fst; int s)
*
* PURPOSE:
* Get the acceptCost of a FST state from the determinized FST.
*
* AUTHOR / MAINTAlNED BY:
* JUN QIU / JUN QIU
***********************************************************************/

float
GetFSTStateAcceptCostByNum(FST *fst, int s)
{

FSTState *fstStatei

fstState = GetFSTStateByNum(fst, s)

return(fstState->acceptCost)i

/***********************************************************************
* NAME: GetFSTStateFirstArcByNum(FST *fst, int s)
*
* PURPOSE:
* Get the pointer to the first arc of a FST state from the
* determinized FST.
*
* AUTHOR / MAINTAINED BY:
* JUN QIU / JUN QIU
***********************************************************************/

FSTArc **
GetFSTStateFirstArcByNum{FST *fst, int s)
{

FSTState *fstStatei

fstState = GetFSTStateByNurn{fst, S)i

return (fstState->firstArc)i
}

/***********************************************************************
* NAME: GetFSTStateNumArcsByNum{FST *fst, int s)
*
* PURPOSE:
* Get the number of the total arcs of a FST state from the
* deterrninized FST.
*
* AUTHOR / MAINTAINED BY:
* JUN QIU / JUN QIU
***********************************************************************/

int
GetFSTStateNumArcsByNum(FST *fst; int s)
(
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FSTState *fstState;

fstState = GetFSTStateByNum(fst, S)i

return (fstState->numArcs)i

/***********************************************************************
* NAME: ViewNewFSTState(FSTState *state)

*
* PURPOSE:
* View a FST state.

*
* AUTHOR / MAINTAlNED BY:
* JUN QIU / JUN QIU
***********************************************************************/

void
ViewNewFSTState(FSTState *state)
(

int i = 0;
FSTArc **fstArc;

if(state == NULL)
{

printf (" \n state is empty~ \n lf
) ;

return;
}

printf("\n acceptCost = %f\n", state->acceptCost);
printf("\n nurnArcs = %i\n", state->numArcs);
fstArc = state->firstArc;
while(i < state->numArcs)

{

printf(n\n %i\t%i\t%i\t%i\t%f\n", fstArc[i]->from,
fstArc[i]->to,fstArc[i]->sym[ISYM}, fstArc[i]->syrn(OSYM},
fstArc[i}->cost);

i++;

/***********************************************************************
* NAME: GetDeterFST()
*
* PURPOSE:
* Get the text file of the resulting transducer T2 •

*
* AUTHOR / MAINTAlNED BY:
* JUN QIU / JUN QIU
***********************************************************************/

void
GetDeterFST(char * fsmout)
(

int i = 0, j = 0, countl = 0, count2 = 0;
FILE * f = stdouti
FSTArc **allFstArcs = GetAIIFstArcS()i
FSTState **allFstState = GetAllFstStates();

92



•

•

ifC fsmout != NULL && *fsmout != '-')
{

f = fopenCfsmout, "w");
}

count2 = GetFstArcslndex();
while(j < count2)

{
fprintf(f, "%i\t%i\t%i\t%i\t%f\n", allFstArcs[j]->from,

allFstArcs[j]->to, allFstArcs[j]->sym[O],
allFstArcs[j]->sym[l], allFstArcs[j]->cost);

j++;
}

countl = GetTOSTATE{);
whileCi <= countl)

(
if(aIIFstState[i]->acceptCost < WORSTCOST)
fprintfCf, "%i\t%f\n", i, allFstState[i]->acceptCost);
i++;

}
printf("\n total states and arcs:, %i\t%i\n", i, j);
fclose(f);

f***************************************************** ******************
* NAME: SetCompACint value)
*
* PURPOSE:
* Set the comparison value.
*
* AUTHOR f MAINTAlNED BY:
* JUN QIU f JUN QIU
****************************************************** *****************f

void
SetCompA(float value)
{

SetMyCompA(value);
return;

f***************************************************** ******************
* NAME: SetFSTBufferSize(int number)
*
* PURPOSE:
* Set the buffer size, the default size is 300000.
*
* AUTHOR f MAINTAlNED BY:
* JUN QIU f JUN QIU
***********************************************************************f

void
SetFSTBufferSize(int number)
{

SetMyFSTBufferSize(number);
}

/* end of file fstdeterlib.c *f
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/**********************************************************************/• /*
/* Copyright (c) 2000 Centre de recherche informatique de Montreal
/*

*/
*/

*/

•

/**********************************************************************/

/**** FILE HEADING ****************************************************
* fstdeter.h -- Declaration of the methods used for the
* determinization.
*/

#ifndef __FSTDETER_H__
#define __FSTDETER_H__

#include <stdio.h>
#include "fst.h"
#include "fstdeterstate.h"
#include "fstdetersubState.h"
#include "fstdeterrOutSym.h"
#include "fstdeternewArc.h"
#include "fstdeterFSTState.h"
#include "fstdeterFSTArc.h"
#include "fstdeterstateHashTable.h"

/* determinize a finite state of the string-to-string/weight transducer
Tl */

extern FSTState *DeterFSTState(FST *fst, LSTATE state);

/* get the TO state number */
extern int GetTOSTATE();

/* get the FROM state number */
extern int GetFROMSTATE();

/* update the FROM state number */

extern void SetFROMSTATE(int number);

/* set the buffer size, the default size is 300000 */

extern void SetMyFSTBufferSize(int number);

/* get the buffer size */
extern int GetFSTBufferSize();

/* get the TO state number when the buffer is full */
extern int GetFSTBufferToStateNum();

extern int GetBeforeOldTOSTATE();

#endif /* __FSTDETER_H__ */
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/**********************************************************************/• /*
/* Copyright (c) 2000 Centre de recherche informatique de Montreal
/*

*/
*/
*/

•

/**********************************************************************/

/**** FILE HEADING ****************************************************
* fst4etersubState.h -- Definition of the _substate data structure and
* declaration of the utility methods. The _substate data structure is
* used to represent the subsets.
*/

#ifndef __FSTDETERSUBSTATE_H__
#define __FSTDETERSUBSTATE_H__

#include <stdio.h>
#include "fstdeterrOutSym.h"

typedef struct _subState SUBSTATE, *LSUBSTATEi

struct _subState (
int Si /* astate number in the original transducer Tl */
float Ci /* residual weight */
LROUTSYM loutSym; /* residual string */
LSUBSTATE next;

} ;

/* set the initial _subState pool size, the default size is 1000 */
extern void SetSubStateNumber(int number)i

/* get a _subState data structure fram the _subState pool.
If the pool is empty, create a new pool */

extern LSUBSTATE MakeSubState(int St LROUTSYM loutSym, float Ct

LSUBSTATE next) i

extern LSUBSTATE CopySubState(LSUBSTATE subState);

/* return a _subState to the _subState pool */
extern void FreeSubState(LSUBSTATE * subState)i

#endif /* __FSTDETERSUBSTATE_H__ */
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/**********************************************************************/• /*
/* Copyright (c) 2000 Centre de recherche informatique de Montreal
/*

*/
*/
*/

•

/**********************************************************************/

/**** FILE READING ****************************************************
* fstdeterrOutS,y.a.h -- Definition of the _rOutSym data structure and
* declaration of the utility methods. the _rOutSym data structure is
* used to describe the residual string.
*/

iifndef __FSTDETERROUTSYM_H__
idefine __FSTDETERROUTSYM_H__

iinclude <stdio.h>

typedef struct _rOutSym ROUTSYM, *LROUTSYM;

struct _rOutSym (
int outSymi /* represent a symbol in the residual string */
LROUTSYM next;

} i

/* set the initial _rOutSym pool size, the default size is 1000 */
extern void SetROutSymNumber(int number)i

/* get a _rOutSym from the _rOutSym pool. If the pool is empty,
create a new pool */

extern LROUTSYM MakeROutSym(int outSym) i

extern LROUTSYM CopyOutSym(LROUTSYM rOutSym) i

/* append rOutSym2 to rOutSyml */
extern LROUTSYM OutSymPlus(LROUTSYM rOutSyrnl, LROUTSYM rOutSym2)i

/* remove rOutSym2 from the head of rOutSyml */
extern LROUTSYM OutSymSubstract(LROUTSYM rOutSyml, LROUTSYM rOutSym2)i

/* compare whether rOutSyml and rOutSym2 are equivalent */
extern int CompareOutSym(LROUTSYM rOutS~, LROUTSYM rOutSym2)i

/* get the common prefix of rOutSyml and rOutSym2 */
extern LROOTSYM GetPrefix(L~OUTSYM rOutSyml, LROUTSYM rOutSym2) i

/* return a _rOutSym to the _rOutSym pool */
extern void FreeROutSym(LROUTSYM *rOutSym)i

#endif /* __FSTDETERROUTSYM_H__ */
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1**********************************************************************1• 1*
1* Copyright (c) 2000 Centre de recherche informatique de Montreal
1*

*1
*1
*1

•

1**********************************************************************1

1**** FILE HEADING ****************************************************
* fst4eternewArc.h -- Definition of the _newArc data structure and
* declaration of the utility methods. The _newArc data structure is
* used to represent the intermediate arcs during the determinization.
*1

#ifndef __FSTDETERNEWARC_H__
#define __FSTDETERNEWARC_H__

#include <stdio.h>
#include "fstdeterrOutSyrn.h R

typedef struct _newArc NEWARC, *LNEWARC i

struct newArc {
int inSyrn; 1* the input symbol *1
float cost; 1* the cost of the transition *1
LROUTSYM loutSymi 1* the output string *1
LNEWARC next;

} ;

1* set the initial _newArc pool size, the default size is 1000 *1
extern void SetNewArcNumber(int number);

1* get a _newArc from the _newArc pool. If the pool is ernpty,
create a new pool *1

extern LNEWARC MakeNewArc(int inSyrn, LROUTSYM loutSym, float cast);

1* insert a _newArc into a _newArc list *1
extern void InsertNewArc(LNEWARC *newArcs, LNEWARC newArc);

1* return a -newArc to the _newArc pool *1
extern void FreeNewArc(LNEWARC *newArc);

#endif 1* __FSTDETERNEWARC_H__ *1
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f***************************************************** *****************/• f*
f* Copyright (cl 2000 Centre de recherche informatique de Montreal
/*

*/

*/
*f

•

/***************************************************** *****************f

/**** FILE READING ****************************************************
* fatdatarFSTState.h -- Declaration of the utility methods used for the
* _fststate data structure. The _fststate data structure represents the
* states of the string-to-string/weight Finite-State Transducers.
*f

#ifndef -...FSTDETERFSTSTATE_H-...
#define -...FSTDETERFST5TATE_H-...

#include <stdio.h>
#include "fststate.hn

#include nfstarc.hn

/* get a _fststate from the _fststate pool. If the pool is ernpty,
create a new pool */

extern FSTState *MakeFSTState(float AccepCost, int numArcs,
FSTArc **firstArc);

extern void UpdateFSTStates(int stateNurnber, int index);

extern void UpdateFSTStatesl{int stateNurnber, int index);

extern void InsertFSTStates{float acceptCost, int nurnArcs,
FSTArc **firstArc, int flag, int stateNumber);

extern void InsertFSTStatesl(float acceptCost, int nurnArcs,
FSTArc **firstArc, int flag, int stateNumber);

/* find a _fststate in the state pointer array fstStates, and return
a pointer to it */

extern FSTState *GetFST5tates(int stateNurnber);

/* find a _fststate in the state pointer array fstStatesl, and return
a pointer to it */

extern FSTState *GetFSTStatesl{int stateNurnber)

f* return the pointer ta fstStates *f
extern FSTState **GetAllFstStates{);

/* let the _fststate pool can he reused */

extern void ResetFstStateIndexl();

#endif /* -...FSTDETERFSTSTATE_H__ */
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/**********************************************************************/• /*
/* Copyright (c) 2000 Centre de recherche informatique de Montreal
/*

*/
*/
*/

•

/**********************************************************************/

/**** FILE HEADING ****************************************************
* fstdeterPSTArc.h -- Declaration of utility methods used for _fstarc
* data structure. The _fstarc data structure represents the arcs of the
* string-to-string/weight Finite-State Transducers.
*/

#ifndef __FSTDETERFSTARC_H__
#define __FSTDETERFSTARC_H__

#include <stdio.h>
#include "fstarc.h"

/* get a fstarc from the _fstarc pool. If the pool is empty,
create a new pool */

extern FSTArc * MakeFSTArc(int inSym, int outSym, int from, int ta,
float cast);

/* insert a _fstarc into the arc pointer array fs~cs */
extern void InsertFSTArcs(FSTArc *fstArc);

/* insert a fstarc into the arc pointer array fstArcsl */
extern void InsertFSTArcsl(FSTArc *fstArc);

/* get the pointer ta the pointer (in the arc pointer array fstArcs) of
the first arc of a fststate */

extern FSTArc **GetFirstArc(int index);

/* get the pointer ta the pointer (in the arc pointer array fstAresl) of
the first arc of a fststate */

extern FSTArc **GetFirstArcl(int index);

/* return the pointer ta fs~cs */
extern FSTArc **GetAIIFstArcs()i

/* this index is used ta save a new _fstarc in fstArcs */
extern int GetFstArcslndex();

/* this index is used ta save a new _fstarc in fstArcsl */
extern int GetFstArcslndexl()i

/* let fstArcsl and the fstarc pool can be reused */
extern void ResetFstArcslndexl()i

#endif /* __FSTDETERFSTARC_H__ */
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/**********************************************************************/

1*
/* Copyright (cl 2000 Centre de recherche informatique de Montreal
1*
1***************************************************** *****************/

1**** FILE HEADING ****************************************************
* fatd.t.r.t.t....hTab1••h -- Declaration of the methods used for the
* hash tables of the _state data structure. These hash tables are used
* to keep the subsets.
*/

#ifndef __FSTDETERSTATEHASHTABLE_H__
#define __FSTDETERSTATEHASHTABLE_H__

tinclude <stdio.h>
#include -fstdeterstate.h n

1* initiate hash table stateHashTable, which is used to keep aIl subsets
expanded from the determinized states in the buffer */

extern void InitStateHashTable();

/* initiate hash table stateHashTablel, which is used to keep aIl
subsets

expanded from the just determinized kept by fstStatesl[O} */

extern void InitStateHashTablel{);

1* insert a _state into stateHashTable */

extern void InsertStateHashTable(LSTATE state, int stateNumber);

extern void InsertStateHashTablel(LSTATE state, int stateNumber};

1* check whether a _state exists in stateHashTable. If it exists, return
its new state number in the resulting transducer T2 */

extern int FindStateHashTable(LSTATE state};

/* find a _state from stateHashTable */
extern LSTATE GetStateHashTable(int index, int stateNumber);

/* find and return a copy of astate from stateHashTablel */
extern LSTATE GetStateHashTablel(int index, int stateNumber);

/* set the number of buckets for stateHashTable */
extern void SetBuckets(int number);

/* set the number of buckets for stateHashTablel */
extern void SetBucketsl(int number);

/* set the comparison value, the default value is 0.0003 */
extern void SetMyCompA(float value);

/* reinitiate hash table statehashTablel */
extern void FreshStateHashTablel()i

tendif 1* __FSTDETERSTATEHASHTABLE_H__ *1
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