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ABSTRACT

Hidden Markov Models (HMMs) are one of the most powerful speech recog-
nition tools available today. Even so, the inadequacies of HMMs as a
“correct” modeling framework for speech are well known. In that context, we
argue that the maximum mutual information estimation (MMIE) formulation
for training is more appropriate vis-a-vis maximum likelihood estimation
(MLE) for reducing the error rate. We also show how MMIE paves the way
for new iraining possibilities.

We introduce Corrective MMIE training, a very efficient new training algorithm
which uses a modified version of a discrete reestimation formula recently pro-
posed by Gopalakrishnan et al. We propose reestimation formulas for the
case of diagonal Gaussian densities, experimentally demonstrate their conver-
gence properties, and integrate them into our training algorithm. In a con-
nected digit recognition task, MMIE consistently improves the recognition
performance of our recognizer.



SOMMAIRE .

Les modéles de Markov (MM) sont un des plus puissants outils de reconnais-
sance de la parole actuellement disponibles. Il n’en demeure pas moins,
cependant, qu’ils sont loin d’offrir un cadre “correct” de modélisation de la
parole. Dans ce contexte, nous raisonnons qu’il est plus approprié d’aborder
P’apprentissage des MM de P’angle de Pinformation mutuelle maximale (IMM)
que de celui de la vraisemblence maximale. Cela est d’autant plus vrai que
IMM offre de nouvelles possibilités.

Nous introduisons un nouvel algorithme d’apprentissage trés efficace pour
IMM. Cet algorithme utilise une version modifiée d’une formule de
réestimation pour les MM discrets récemment proposée par Gopalakrishnan et
al. Nous proposons des nouvelles formules de réestimation pour les densités
gaussiennes i covariance diagonale, nous en démontrons expérimentalement la
convergence et nous les intégrons dans notre algorithme d’apprentissage. Ces
technigues nous ont permis de considérablement améliorer la performance de
notre systéme de reconnaissance de chiffres connectés.
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1. INTRODUCTION

Hidden Markov Models (HMMs) have been successfully used in speech recog-
nition for close to 20 years. Considering the nature of a HMM, this success is
somewhat surprising. Indeed, it is not intuitive how a model which assumes
that one centisecond of speech is statistically independent of the previous one
can be useful. Yet, not only do HMMs work, but they work very well. Over
this period, they have been applied to a wide variety of recognition applica-
tions and their performance has steadily improved, to the point that they now
often outperform all other recdgrﬁtion techniques.

It is now commeonplace to hear about HMM-based, large-vocabulary, speaker-
independent continuous speech recognition systems. Some examples are
BYBLOS, from BBN [CHOW 87, KUBA 88], SPHINX, from Carnegic Mel-
lon University (CMU) [LEEK 88], the Lincoln Labs system [PAUL 89],
DECYPHER, from the Stanford Research Institute (SRI) [WEIN 89], or the
AT&T system [LEEC 90a}. This was not the case a few years ago, even
though the basic concepts necessary to build such systems (phoneme-based
modeling, training and recognition algorithms) [JELI 76] have been known
since the very beginning of HMM-based speech recognition. During this
period, a large body of knowledge and practical experience has been acquired
so that these systems are now slowly becoming a reality.

1.1. Recent developments

As a general framework for doing speech recognition, HMMs are somewhat
paradoxical. On the one hand, experience shows that recognition based on
their speech modeling capabilities is very effective. On the other hand, from
the speech production point of view, HMMs are notoriously poor speech



models.! A question we might want to ask, then, is how important are the
modeling deficiencies of HMMs in the context of speech recognition? Using
the communication theory viewpoint of speech recognition [BAHL 83], this
question can be reformnlated as: given that a finite amount of training data is
available, how close is it possible to get to an optimal speech decoder (recog-
nizer) using HMMs?

It is extremely difficult to answer this question. Since the channel statistics
are unknown, the optimal decoder’s error rate cannot be determined. Of
course, human performance can be used as a good approximation, but even
this is difficult to evaluate. Within the HMM framework, how close we get to
an optimal decoder depends on a number of factors such as the speech
features used as input; the structure of the models; the type of output distri-
butions; the training and recognition techniques used; and, last but not least,
precisely how an optimal decoder is defined.

We will review some of the recent developments which have a]\lqr::c&"fHMMs
to produce constantly better speech recognizers. Clearly, much has been
done; on the other hand, comparing the best availabie systems with human
performance, it is also clear that there is still a long way to go.

1.1.1. Front end

The front-end system extracts from the speech signal the features which will
be used by the HMMs to model and recognize speech. As a general principle
the extracted features should contain as much information as possible about
the linguistic content of the acoustic signal, while being in a form that can be
used by the HMMs. Also to be considered is not only how much useful infor-
mation a particular feature contains, but how reliably it can be extracted from
the speech signal.

The front-end system has a considerable impact or the ultimate performance
of an HMM-based speech recognition system, and much effort has been spent
over the years to {ind new and better speech features. One important source

'First order HMMs are assumed throughout this thesis.



of inspiration has beenthe knowledge about the human auditory system.
Indeed, since human recognition is so good, it seems logical to imitate, up to
a point, the way the ear performs its own “feature extraction”. This has
proved to be a fruitful area of research. Nowadays, most systems integrate
some form of auditory modeling into their feature extraction, often in the
form of mel-scaled parameters [DAVI 80], through the use of a bilinear

transform [LEEK 88}, or by“uz,mg the output of a full-scale auditory model
[SENE 88, COHE 89].

Recently, techniques such as principai component analysis [BROW 87],
discriminant analysis [BROW 87, HUNT 89, DODD 89] and cepstral transfor-
mation,? by both decorrelating parameters and concentrating most of the use-

ful information into a small number of parameters, have also allowed better
recognition.

However, the most significant recent development in terms of feature extrac-
tion for speech recogaition is probably the introduction of “dynamic” parame-
ters? [FURU 86]. This development is important for several reasons. First, it
has aliowed substantial recognition improvements in most speech recognition
systems.* This confirms the importance of information about the dynamics of

speech. Now, most high-performance systems use dynamic features in one
form or another.

Second, this highlights a rﬁajor weakness of HMMs. Indeed, in most cases,
dynamic parameters are directly computed from parameters already used by
HMMs, and as such, do not contain any additional information. This shows
that it is not sufficient that the extracted parameters preserve all the important
linguistic information in the signal; this information has to be encoded in
such a way that HMMs can take advantage of it. In other words, the front-
end system and the HMM recognizer should not be considered as independent

*Cepstral transformation was in praciice found [HUNT 89] to be very close to a principal com-
ponent analysis.

3Dynamic parameters describe how, over a number of speech frames, other parameters are chang-
ing. They arc often referred to as “differences” or ‘“‘slopes'’, depending on how they are computed
[LEEK 88]. Recently, “second derivative” parameters have been introduced in some systems [GAUV
91], and they also seem to improve recognition performance.

“This is especially true for speaker-independent systems.
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entities,

1.1.2. Acoustic-phonetic modeling

The idea of acoustic-phonetic modeling is certainly not new. A language like
English has a very small number of phonemes (about 40), from which every
single word can be built. It is natural to think of the phoneme as the basic
unit to model and recognize. This would, for example, allow a system to
recognize words it had never heard before by simply knowing the word’s
phonetic pronunciation(s) (plus, possibly some phonological rules). Uzfor-
tunately, the phoneme is a very abstract linguistic unit, and its actual acoustic
realization is extremely variable. It depends on a number of factors such as
accent, speaking rate, intonation or phonetic context. -
Context-dependent phonetic HMMs were introduced specifically to deal with
within-word context dependencies [SCHW 85). The idea is to use different
models for the same phoneme, one for each of a number of different contexts

such as either the right or left phonetic context, or both.’

Context-dependent models are much more specific and thus better able to
make fine phonetic distinctions. The problem is that the more specific thec
models, the larger the total number of models, and the less data there is to
train them. This results in a number of specific but poorly trained models,
which is undesirable. In order to solve this problem, BBN smoothed triphone
models with the corresponding left and right context-dependent models, and
the corresponding phoneme models, using manually-tuned weights [SCHW
85]. The idea is to get models which are as specific as possible, while still
being reliably trained, or, as Lee puts it [LEEK 88], to get the best possible
compromise between “specificity” and “trainability”. For SPHINX [LEEK
88], Lee used the same technique, except that he also smoothed with models
having uniform distributions and, in his case, the weights were estimated
automatically using a technique called deleted interpolation [BAHL 83].

Phoneme models which depend on both the left and right phonetic contexts are usually called tri-

‘ phones,
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Context-dependent models are now used in most large-vocabulary systems
(e.g., BYBLOS, SPHINX, DECYPHER, the systems of SRI, Lincoln Labs,
AT&T, or the INRS large-vocabulary system [DENG 90]). In all cases, their
use has resulted in substantial recognition improvements.

Modeling within-word coarticulations can also be done implicitly with word
models. This may actually be a very powerful technique since word-dependent
context dependencies can be accurately modeled, something that cannot
always be done with triphone models.® Word models are especially useful for
small vocabulary applications. They have been successfully used for speaker-
independent applications such as connected digit rer'ogmtlon [RABI 890,

DODD §&9] or keyword spotting [WILP 90, ROHL 89].

The more accurate coarticulation modeling offered by word models inspired
the introduction of a totally different kind of sub-word unit {BAHL 88a).
Rather than being defined in terms of linguistic principles, this new unit,
called the fenone, is acoustically based. Thus, instead of uéing phonetic con-
cepts to determine a priori the baseform of a word in terms of the systems
basic units, the baseform is determined from acoustic realizations of that
word. This results in more precise word modeling and has improved recogni-
tion rates in isolated word recognition applications [BAHL 88a].

Some of the recognition problems encountered in practiE;c are specific to con-
tinuous speech recognition systems. One is the poor a;;’ticulation of function
words such as articles, prepositions or conjunctions, which results in a dispro-
portionate number of errors arising from those words [LEEK 88]. In order to
solve this problem, Lee [LEEK 88] introduced function-word dependent
phones and observed significant improvements from their use. On the other
hand, their use in the AT&T system [LEEC 90a] has only resulted in improve-

ments for the “no grammar” case (i.e., all vocabulary words arc cqually prob-
able at all times).

®Context dependencics can extend beyond the immediate phonetic neighbors. Note that it is also
possible to have word-dependent triphones [CHOW 86], which will perform very well on the specified
vacabulary with the additional advantage that they can be used to create good initial models for new
words. Note also that in several systems, particularly those using the DARPA resource munagement
corpus, triphone models are vocabulary-dependent, that is, they are trained and tested on the same vo-

cabulary., These models include vocabulary specific effects which may artificially enhance the systems
performance [HON 90].
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Another problem of continuous speech is between-word coarticulation. A
solution to this problem, recently (and simultaneously) proposed by CMU
[LEEK 89b], Lincoin Labs [PAUL 89] and SRI [WEIN 89}, is simply to use
context-dependent phone models for between-word coarticulation. This had
not been done before because it substantially increases the number of models
(from 2381 to 7057 triphones for the DARPA resource management task
[LEEK 89b]) and it also substantially complicates recognition.

1.1.3. Dealing with speaker variability

An impbrtant cause of speech’s acoustic variability is speaker variability.
Speaker-independent models have a problem reminiscent of context-
independent models. By averaging statistics over a number of speakers, they
loose specificity and, along with it, discriminating capabilities. One obvious
solution is to use speakef-dependent models. However, in order to get the
desired level of performance, this may require a large amount of training data
from everybody using the system. This is often undesirable, which is why
speaker adaptation techniques have been developed.

The idea of speaker adaptation is to start from well-trained models and to
adapt them to a new target speaker, using as little data as possible. Speaker
adaptation techniques are usually classified as supervised (using labeled
speech’ ), or unsupervised (using unlabeled speech). Unsupervised techniques
[COX 89, FURU 89] are attractive when it is desired to perform adaptation
transparently during system use. However, this is not as clear an advantage as
it appears: it is often possible to use supervised techniques to perform adapta-
tion on the confirmed correctly recognized speech, thus improving the system
performance as it is being used. Moreover, supervised techniques usually per-
form better.®

‘A different kind of speaker adaptation is used by systems which must be truly

Labeled speech means that the linguistic contents (e.g., words) of the speech is known. This is
different from “segmented speech”, which is not only labeled, but has marks indicating where the
boundaries of the linguistic units are in the signal.

See Chapter 3 for more details.
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speaker-independent, such as those used for telephone network applications
aimed at the general public (e.g. [WILP 90]). The technique, called HMM
clustering [RABI 838, LEEK 88, RABI 8%a, DODD 89], clusters the speakers
in the training set into a number of different speaker types, and creates as
many versions of every model as there are speaker clusters. This makes the

models more speaker-specific and generally results in a moderate improvement
in recognition performance.

1.1.4. Increasing robustness

The performance of a speech recognition system may be quite sensitive to
changes in background noise level and characteristics, microphone changes or
changes in the general acoustic environment. For example, using a stereo

database,’ in an experimert with SPHINX, Acero [ACER 90] found that sim-
ply using a different microphone during recognition than the one used for
training could decrease the system performance from 85.3% to 18.6% word
accuracy. How sensitive a particular system is to such changes will determine
its robustness. For most systems, the best performance is usually obtained
when training and recognition are performed under identical conditions. This,
however, need not necessarily be the case. Experiments have shown [GISH
90] that models trained under good conditions (and thus acoustically accurate)
may be adapted to perform better in noisy conditions than models trained in
the same noisy conditions. Because of this, and because it is not always pos-
sible to train and use the system in the same conditions, much work is
currently being done to increase the robustness of HMM-based systems.

Increasing robustness under noisy conditions with simple spectral subtraction
schemes [VANC 87} may give some improvement if noise conditions during
training and testing are not too different, although differences in residual noisc
may cause problems [VANC 89]. Noise adaptation via probabilistic spectral

. mapping techniques conditioned on the instantaneous signal to noise ratio
"(SNR) has proven effective in a wordspotting application [GISH 90]. Per-

forming adaptation to a new microphone using Codeword-Dependent Cepstral

A stereo database contains the same speech simultaneously recorded with two different micro-
phones.
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Normalization (CDCN), Acero [ACER 90] brought word accuracy back from
18.6% to 74.9%, which is essentizlly the rate obtained when both training and
recognition were performed with the second microphone.

1.1.5. Output distributions

I

Output distributions in HMM-based speech recognition systems are usually
classified as either discrete or continuous.!° For a long time there has been a
debate as to which of discrete or continuous distributions performed best.
While some researchers obtained better performance with discrete systems,
others obtained the exact opposite (see [LEEK 88] for a discussion on this
topic). In fact, fair comparisons were difficult to make. While discrete sys-
tems are rather straightforward to implement, continuous ones offer more
degrees of freedom (in terms of the number of mixture components [JUAN
85] or the restrictions on covariances matrices!* [BROW 87, LEEC 90a]) and
are more sensitive to parameter initialization.

It now seems that semi-continuous HMMs have solved that problem. Since it
is relatively trivial to convert a discrete system into a semi-continuous one, a
discrete system can be evaluated in both modes. Such evaluations tend to
show semi-continuous HMMs to be superior [HUAN 90], thus demonstrating
the usefulncss of continuous densities. Note that by combining the charac-
teristics of both discrete and continuous distributions, SCHMMs open a
number of interesting possibilities for speech recognition. For that reason, we
feel their use is bound to become widespread.

1.1.6. Discriminative training techniques

It is probably accurate to say that HMM-based speech recognition owes its

PA recently introduced compromise, “semi-continuous” HMMs (SCHMMs) [HUAN 89), use both
discrete distributions and continuous densities. There is a common codebook of continuous densities
used by all distributions to form mixture densities. The set of mixture weight associated to one of the
mixture distributions forms its discrete distribution. See Chapter 2 for more details,

""We have assumed that continuous distributions are made from Gaussian densities. Even though

there are-other possibilities (for example, Laplacian densities have been used), this thesis does not con-
sider them,
=
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popularity in great part to the powerful Baum-Welch algoﬁthm [BAUM 72] for
maximum likelihood estimation (MLE) training. This algorithm iteratively
increases the probability that the training data was generated by the
corresponding models. An approximate version of this algorithm, segmental .
k-means training, [LEEC 90a] was developed by researchers at AT&T anpdtr‘jﬁras
experimentally found to give comparable results at a lower computational cost
[RABI 89b]. Another training paradigm, minimum discrimination information
(MDI) training, was also recently proposed by researchers at AT&T [EPHR
87). Applied to the training of autoregressive HMMs [JUAN 85], MDI train-
ing attempts to find the HMM parameter set minimizing the discrimination
information measure with respect to all sources that could have produced the
set of partial covariances evaluated from the training data [EPHR 89).1% -

One problem with those training techniques is that they have no obvious rela-
tionship with the aim of minimizing the recognition error rate. Even though it
can be shown that, under certain assumptions, MLE will in fact produce the
best possible recognizer [NADA 83], this is not really satisfying since, in prac-
tice, the required assumptions are usually not met in speech recognition.

A few years ago, maximum mutual information estimation (MMIE) was pro-

posed as an alternative to MLE [BAHL 86]. MMIE training!3 attempts to find
the HMM parameter set maximizing the a posteriori probability that the train-
ing data was generated by the models corresponding to the spoken speech in

the data.!* This approach seems reasonable since recognition is usually per-
formed by finding the model with the greatest a posteriori probability of gen-
erating the spoken speech. Unfortunately, the expression to optimize is quite
complex and often has to be approximated [BROW 87, CHOW 90]. More-
over, since there is no equivalent of the Baum-Welch algorithm for MMIE,
the standard training procedure is based on gradient descent. Nonetheless,
MMIE looks like a promising technique. Several researchers have reported
improvements in recognition rate through the use of MMIE [BAHL 86,

2There are no published results of speech recoganition experiments using MDI training.

BNote that MMIE training can be given an MDI interpretation (EPHR 88]. However, the MDI
literature doesn’t develop that case.

“For example, if the training data contains spoken sentences, then the models corresponding to
the troining data will be sentence models. These are usually built from the models of the words in the
seatence, which are often themselves built from sub-word models.
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BROW 87, MERI 88, CARD 91].

Another training technique, designed specifically to reduce the error rate is
corrective training [BAHL 88b]. This is a heuristic technique which attempts
to improve the recognition rate on the training set by working only with sen-
tences in the training set that were either not recognized correctly, or were
correctly recognized, but with a very close second choice. In practice, correc-
tive training is similar to MMIE and it has also shown promising results
[APPL 89, LEEK 90].

Training techniques'such as MMIE or corrective training are called discrimina-
tive techniques because they specifically aim at improving the discriminating
capabilities of the models.

1.1.7. Search algorithms

In theory, speech recognition is done by finding the word sequence!® which
has the greatest probability of generating the given speech signal (observation
sequence). This probability is computed using both the a priori probability of
the word sequence (using a language model) and the a posteriori probability of
the input string given the model for the word sequence. In practice, however,
except in the simplest applications, there are just too many different word
sequences for this to be possible. This means that theoreticaily suboptimal
search algorithms have had to be developed. Most of these algorithms are
based on the idea of a dynamic programming search through a word network
[LEEC 8%)]. While most are frame-synchronous trellis searches, some, like
level building [MYER 81, RABI 85a] are word-synchronous, and others like
the stack algorithm [JELI 76] are of the type “best-first”, or A*.

Frame-synchronous algorithms are often the fastest, and they are quite ade-
quate for simple tasks such as connected digit recognition. It is, however, dif-
ficult, if not impossible, to integrate all but the simplest Janguage models into
such search procedures.

*This is meant in the general sense. For isolated word recognition, the word sequence is a single
word. For phoneme recognition experiments, the word sequence is actually a phoneme sequence.
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However, in this era of large vocabulary and continuous speech recognition, it
becomes increasingly difficult to obtain good performance based on acoustics
alone and the use of sophisticated language models becomes necessary in
order to make the difference between unacceptable and excellent perfor-
mance. The recent development of algorithms capable of generating the N
most acoustically probable word sequences [SCHW 90, SOON 90] offers the
possibility of implementing the language model as a post-processor. This
method, however, is both inefficient and approximate. Most language models
are best implemented within an A* search, which can take both the acoustic
and language models into account. An interesting possibility would be to per-
form such a search by taking advantage of the acoustic precomputations per-

formed in the tree-trellis search algorithm recently proposed by Soong and
Huang [SOON 90].

1.2. Revisiting the training problem

Much has been indeed accomplished since the first HMM-based speech recog-
nition systems were developed. With the same imperfect speech model, it has
been consistently possible to improve both the performance and the capabili-
ties of speech recognition systems. This is the result of several years of prac-
tical experience with HMMs, which have given us a much better understanding
of their strengths and weaknesses.

In this thesis, we will thoroughly review the theory and practice of HMMs, as
they relate to the speech recognition problem. This will provide the necessary
background for our analysis of MMIE, the core of this work.

The MMIE method has been known for over five years. During that period,
many researchers have explored it and experimented with it. Most have
observed recognition improvements, some substantial, some negligible. It
seems that, apart from one extensive study by Peter Brown [BROW 87],
experiments with MMIE have mostly been sporadic. Many researchers felt
that the potential improvements were probably not worth the introduction of

gradient descent in their training programs and the additional computational
load.
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This thesis will show that not only can MMIE result in substantial recognition
improvements, but that training can be done simply, efficiently and, in most
cases, without gradient descent. Using the more intuitive probabilistic
interpretation, we will review the theory of MMIE, including the latest
developments prior to this work. We will show how a new reestimation-like
‘formula recently proposed by Gopalakrishnan et al. {GOPA 89] for discrete
HMMs can be modified so that convergence is dramatically improved. We
will propose a similar formula for continuous HMMs and experimentally
demonstrate its convergence. We will describe how the MMIE formulation
offers new ways of improving the speech modeling and the discriminating
capabilities of HMMs. Connected digit recognition experimeiits will be used
to illustrate the benefits that MMIE can provide.

The outline of this thesis is as, ;tollows Chapter 2 describes the theory of
HMMs. Chapter 3 dlscussevpracncal considerations which are important
when implementing an HMM-based speech recognition system. Chapter 4
describes the theory of MMIE, including the contributions of this work to that
area. Chapter 5 describes the connected digit experiments and summarize the
results, Chapter 6 concludes.



2. HIDDEN MARKOV MODELS

_2.1. Introduction

This chapter introduces the concepts necessary to understand this thesis. It is
assumed that the reader already has some knowledge of HMMs and their use
in speech recognition. If not, there are excellent introductions available (see,

for example [RABI 86] or [RABI 89c]), and we encourage the reader to con-
sult one of them.

The speech recognition problem can be approached as a problem in communi-
cation theory [BAHL 83]. Using this point of view, we assume that a message
w (usually a word or a word sequence) is converted by an acoustic channel
into an observation sequence y. The goal of speech recognition is to decode _
the message from the observation sequence. 7

In practice, the message is converted by a speaker into acoustic pressure
waves (speech), which a microphone then transforms into an electric signal.
It is the sampled (digitized) version of this signal which is fed into the com-
puter for processing and recognition. For our purposes, this discrete-time sig-
nal will be referred to as the speech signal s.

The speech signal is blocked into frames (usually using fixed frame rate and
size), each of which is then analyzed in order to extract information relevant
to the recognition process. Typically, the analysis extracts information about
the power spectrum of the signal, usually through FFT or LPC-based tech-
niques. This analysis produces a small number of parameters (e.g., six cep-
stral coefficients) to which may be added other parameters deemed useful,

such as the signal zero-crossing rate or RMS power.! The result of this

't is now common practice 10 add so-called *dynamic” parameters, which describe how the men-
tioned paramelers vary over a short time around the given frame.

17
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analysis, applied to every signal frame, is a sequence ¥ of observation vectors.

Observation vectors are usually categorized as continuous or discrete. Con-
tinuous parameters are often the end result of the analysis. Discrete parame-
ters can only take a finite number of values from some symbol alphabet.
Discrete parameters usually result from the vector quantization (VQ) [GRAY
84, MAKH 85] of the continuous parameter vector. In this case, the discrete
alphabet contains as many 'Symbols as there are codewords in the VQ code-
book. If separate parts of the continuous parameter vectors are separately
quantized using different VQ codebooks [LEEK 88], then the result is a
discrete vector containing several discrete parameters. It is hoped that what-
ever parameters are extracted from each frame of speech contain as much
information about w as possible. y is simply the length-L, sequence of

observation vectors y,,yo, * * * .y,

2.1.1. The decoding problem

Speech decoding (recognition) is a transformation y — . If @ # w, then
~there was a decoding error. The performance of a decoder is usually deter-
mined by the probability of making such an error. It is well-known that the
optimum decoder in the sense of minimizing the probability of error is the
maximum g posteriori decoder (MAP), which chooses # such that

t = argmax Pwl|y) = argmax PG \w)Pw)

P(y)
- P(y|w)P(w)
_argglax E’P(’}'lw’)P(u") ’ (2_1)

where P(w |y) is the a posteriori probability of w, given y, P(w) is the a priori
probability of w (the language model) and P(y|w) is the probability of the
observation sequence, given the message. Unfortunately, these probabilities
are unknown so they must be somehow estimated. This is a typical statistical
pattern recognition problem [DEVI 82]. A common solution is to assume that
P(y|w) belongs to some family of functions Pg(y|w) where © is the family
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parameter vector that needs to be estimated. This estimation is done using an
amount of training data, which consists of a number of pairs (w,y), where y
is the observation sequence resulting from 0.2 Note that a given w can result

in very different y’s. The training data usually contains only a few (if any)
instances of all possible y’s for a given w.

The first problem is to find an appropriate family of functions. This should
be done using as much knowledge as possible about the process being
modeled. In our case, this problem is complicated by the inherent time varia-
bility of speech. Because of varying speaking rates, two observation
Sequences from the same word can have very different lengths (durations) and
be equally probable. Moreover, certain types of sounds can be stretched
much more than others. This is where HMMs come in. As probabilistic
models which provide a convenient framework for dealing with the time varia-
bility, HMMs are welil-suited to model the entire acoustic channel.

Another‘paroblem is to estimate the parameter vector © from the training data,
First, we have to find a function R(©) that will allow us to evaluate how well
our estimate approximates the “real” (and unknown) function. Second, once
such a function is determined, we must find the parameter vector © .that
optimizes it. This is also a difficult problem since, even in simple applica-

tions, © can contain several thousands of parameters. P

2.1.2. A simple illustration

We illustrate the above concepts involving HMMs in speech recognition with
the simple case where w is a single word. Figure 2.1 illustrates a typical word
HMM.3 With each transition is associated a transition probability and an out-
put distribution. The transition probability is the probability of taking the
transition, given that the process is in the departure state of the transition.
When a transition is taken, an observation vector is generated. The

*In practice, the training data usually consists of pairs (w,s), where # is the specch signal resulting
from a speaker saying w. The acouslic sequence y is obtained using a transformation & — y called
Jeature extraction. Within a given family of functions Pglyjw), how well it is possible to approximate
P(y|w) will depend to a large extent on this transformation.

3Throughout this thesis; the terms “model” and *HMM" will be used interchangeably.
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transition’s output distribution gives, for every possible observation vector y,
the probability of generating y when the transition is taken. Note that several
transitions can share the same output distribution. This is illustrated in Figure
2.1, in which the number above each tramsition refers to the number of the
output distribution associated with it.

Figure 2.1: Word model m,,

We want to be able to estimate P(y|w) for any y, using the word model in
Figure 2.1. Such a model can be used to compute the estimate Pg(y|m,,),
where m,, is the model corresponding to word w. We assume that any ¥y
resulting from w arises as the result of a path in the model m,,. Without loss

of generality, we also assume that any path in the model must start in state 0
and end in the last state.

Thus, the parameters to estimate in the word model are the transition proba-
bilities and the output distribution parameters. Intuitively, Pg(y|m,,) should
be high when ¥ is the result of w, and low otherwise. The optimization func-
tions used are generally based on that intuition.

2.1.3. Unit models

In HMM-based speech recognition applications, there has to be a model m,,
associated with every possible w in the application. Any model in this (possi-
bly very large) coliection of models is usually built from a limited set of small
models. Sentence models can be created by concatenating word models,
Similarly, word models are often made of the concatenation of sub-word unit
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models such as phoneme or syllable models. For example, suppose an
HMM-based speech recognition system uses the phoneme as its basic unit and
that all phoneme models have the structure in Figure 2.2.

Figure 2.2: Basic unit

Then, as illustrated in Figure 2.3, we can create the model for the word
“sauce” from the phoneme models for ““s” and “ao”.

There are two important observations to make about this example. First
observe the dotted tramsitions that are used to connect the models together,
They are special in one important respect: they don’t have an output distribu-
tion associated with them; in other words, there is no observation vector gen-
erated when these transitions are taken. For this reason, they are called
empty transitions. In practice, these transitions are very often needed. One
example is when it is desired to allow paths to start in states different from the
initial state, This can be done by having an empty transition from the initial

state to the desired states (see Chapter 3). Model concatenations such as in

Figure 2.3 can, however, be done more simply without empty transitions, as
illustrated in Figure 2.4.

The other observation is about transitions ¢ and ¢’ in Figure 2.3. Even though
they are two diffeent transitions in the word model, they both correspond to
the same transition within the model for phoneme *s” and we say that they
both correspond to the same transition component. What this means is that
not only do they have the same probability and output distribution, but, apart
from their different departure aﬁd arrival states, they can in fact be regarded

- as the same transition. A common terminology is to say that transitions ¢ and
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t' have tied parameters.*

t _ t
OuaOnr 2280 5V 02080 ©
“.s” l‘ao” s

Figure 2.3: Model for word “sauce” from models for “s” and “ao”

Figure 2.4: Model for word “sauce”, without empty transitions

When designing an HMM-based speech recognition application, one usually
has to first decide on a basic set of units. The models for these units will be
used as the building blocks for the whole application. The set of parameters
from these unit models (transition probabilities and output distribution param-
eters) is the complete parameter set for the whole application. Any model
built from the unit models inherits its parameters from these unit models.
This is more formally expl'ained in the following section.

‘We can also say that transitions ¢+ and ' are tied. Similarly, since each transition leaving state 0
in Figure 2.3 is tied to a transition Jeaving state §, we can also say that states 0 and 6 are tied.



2.2. Definitions

In an HMM-based speech recognition application, the set of unit models (or
unit HMMs) refers to a set of models which don’t share any parameter with
each other and from which any model for the application can be built. A unit
HMM is defined by a set of tramsitions connecting states, one of which is
defined as the initial state and one as the final state. Note that the final state
must usually be a “sink state”, that is, one with no transition leaving it,

A transition 7 in a unit model is called a unit transition. Within the unit
model, it is characterized by its departure (left) state I, and its arrival (right)
state r,, which serve to describe the model structure. It is also characterized
by its probability g, and by the output distribution b, associated with it (none,
if the transition is empty). States and distributions are usually designated by
numbers (we use -1 for the distribution associated with empty transitions),
even though these numbers are only meaningful within a given model. State
numbering, however, has great practical importance and we will come back to

it later. As an example, the model in Figure 2.2 can be defined by the transi-
tions in Table 2.1

I, r., ¢q, distribution
0 0 033 0
0 1 033 0
0 2 033 0
1 1 050 1
1 2 050 1

Table 2.1: Basic unit transitions

and by the corresponding two distributions. Note that in this case, transitions
from the same state have been assumed equiprobable. In all cases, however,
transition probabilities must satisfy the following constraint:

g.=1,
eisy | 2.2)

SR A
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where § is any state in the model except sink states. As a more elaborate
example, we can use the word model in Figure 2.3. This time, each transition
in the model has been individually identified using a number, as shown in
Table 2.2:

r|l, r, gq, |(distribution||r [I, r. g, distribution
110 0 033 0 10{4 4 050 3
2|0 1 033 0 1114 5 050 3
310 2 033 0 125 6 100 -1
411 1 050 1 1316 6 033 0
511t 2 050 1 416 7 033 0
62 3 100 -1 1516 8§ 033 0
713 3 033 2 16{7 7 050 1
813 4 033 2 1717 8 050 1
913 5 033 2

Table 2.2: Transitions for word in Figure 2.3

The transitions of a HMM determine all possible paths through the model.
We define a path #=t,,t5,...,f;, as a possible sequence of tramsitions
through an HMM. Note that a transition sequence uniquely specifies a state
sequence but, since there can be several transitions with the same departure
and arrival states, the opposite is not necessarily true. We will always assume
that the first transition ¢, of a path starts in state 0 and that the last transition
t;,, ends in the last state. ‘Also, the transitions in the path must satisfy

¥ = lfm’

1<i<L,;.

Let ¢, be the [th full transition in the transition sequence £. If ¢ generates an
output sequence y, then the /th observation vector y; in y is the result of #,.
Since, in practice, the observation sequence y usually results from a time-
synchronous analysis, we refer to the index I in y; as the time index. An
empty transition, with which no observation is associated, doesn’t produce

any time change; it happens at the same time as the previous transition. For
example, Table 2.3 uses transition numbers from Table 2.2 to illustrate the
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relationship between a tranmsition seque'nce and the corresponding output

sequence. Time 0 corresponds to empty transitions before the first observa-
tiony,.

time 0 1 2 3 4 5 6 7 8 9 10 11
transition(s) [ - 1 2 4 4 56 7 7 1 912 14 17
distribution [ - ¢ 0 1 1 1 2 2 2 2 0 0
observation | - y; Y2 ¥3 Y4 Y5 Y6 Y7 Y& Yo Yo Yu

Table 2.3: A transition sequence

We call ¢[I] the set of all transitions in ¢ occurring at time /. Using the exam-
ple in Table 2.3, ¢[4] = {4}, £[5] = {5,6} and ¢[0] = {}. We use n;(t) to desig-
nate the index in # of any transition ¢ in £[l]. For example, if =6 and /=S5,
then m(¢)=6. Note that there can be several empty transitions in #[!], but

there is exactly one full transition per £{/] (except #£[0], in which there is
none).

An output probability distribution is designated b(-), or simply b. The distri-
bution associated with a given transition ¢ is designated b,. Note that while g,

is uniquely associated with the transition component 7, it is often the case that
b, = b, even though r#7.

A distribution b must satisfy

3 b() =1, if y discrete;
y

y N
Jo@dy =1, if y continuous. (2.3)
Y

The complete parameter set © for a given application is the set of all transi-
tion probabilities g, and all parameters from all output distributions b from all
unit models. Any model m used in the application is built from those unit
models and inherits their parameters. For every transition ¢ in m there is a
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corresponding transition 7 in one of the unit models used to build m., We use
7(t) to designate that transition. All parameters associated to 7 (except the
departure and arrival states, which only make sense within a given model) are
inherited by t. So we have g, =g¢, and b; = b,, where we use = to signify
that they are identically equal (and not that they happen to have the same
value). -

At
A .
R
S

2.3. Probability computations with HMMS

2.3.1 Basic concepts

Given a HMM parameter set ©, a model m and a length-L, observed output
sequence y =y1,¥a, * * * ,)L,, several useful probabilities can be computed
using the HMM’s parameters. The probability that is most often computed is
Pg(y|m), the probability that the sequence ¥ was generated by the model m.
Pg(y|m) can be computed by summing over all possible paths ¢ in the model
m the probability Pg(y|2) of observing y given the path, times the path a
priori probability Pg(#|m). Note here that, in order for Pg(y|¢) to be dif-
ferent from zero, the number of full transitions in the path must equal L,, the
length of the output string. This means that Ly > L,. Thus, Pg(y|m) can
be expressed as

Polylm)= Y Pely,t|m)= 3 Po(t|m)Pg(y|t)

tem tem
L( L’
= % | 4s |[T16., @) (2.4)
tem | =l jm=l

where ¢, is the jth full transition in ¢, and where the notation }; is used to
tem
mean a summation over all paths in the model m. In practice, however, the

above expression cannot be used because the number of possible paths
increases exponentially with L,. Fortunately, the first-order Markov nature of
HMMSs makes it possible to devise a simple and efficient procedure that
allows easy computation of all necessary probabilities [BAUM 72]. Before
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showing this, we must first make the following definitions. Let

oy (i) =PQy, - - - y,.S=i|lm), (2.5)
Br@) =P, - - oy 15=im). (2.6)

The quantity o (f) is the probability that the model generates the output sub-
sequence y,, - * - ,y; using a transition sequence ending in state i{. The quan-
tity G;(i) is the probability that the model m generates the output sub-
sequence yry, * * * ,YL,» given that first transition in the generating transition
sequence starts from state i. It will always be clear from the context to what
model a;(i) and F;(i) refer, so the dependence on m is not made explicit.

Using these, we can now compute Pg(y|m) as Pgly|m) = or (F) = 5o(0),
where F is the final state.

2.3.2 Recursive computation of o; (i) and 5, (i)

The computation of o;({) and B, (i) is done by creating a trellis in which the
Ith column corresponds to time ! (and the Ith observation, except for the Oth
column) and the ith line corresponds to the ith state in the HMM, They are
computed recursively, column by column, (i) starting with column 0 and
B (i) starting with column L,.

Empty transitions make the computations somewhat morc difficult and we
have to make the assumption that there is no path from a state to itself that
only uses empty transitions. If this were not the case, there would be sitva-
tions where the values of some o (i) and G;(f) would be needed in order to
compute their own value. When the above assumption is true, it is always
possible to order the HMMs’ states in such a way that empty transitions
always reach a state with a number larger than the one they leave. This state
numbering is used by the algorithms to determine in what order computations

have to be performed. It will always be assumed that such a numbering is car-
ried out.
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For both o (i} and £ (i), the recursive computation is divided into a sum over
empty transitions and a sum over full transitions. For o;(i), the computation
is done in a forward manner. Each trellis element is computed, in increasing
order of column and state numbers, using the following algorithm:

a) Initialization: L,
) 1, ifi=0
i) = 0, if {0

b) Recursion:

a@)= 5 a()abb)+ P> olli)a, @7

(e |t full, rrmi) (t|t empty, |, <i,r=i)

where the notation E means a sum over all full transitions reaching
(' If fl.t“. r,-l‘)
state /. Note that, for empty transitions, we have used h to

(‘I‘ empty, lf<ilrl-i)
make explicit our assumption that the numbering, as described above, is

~ correct. Because computations are carried out in a forward manner, ¢ (i) is

usually referred to as the forward trellis.

For f,(i), the computation is done in a backward manner. Each trellis ele-
ment is computed, in decreasing order of column and state numbers, using the
following aigorithm:

a) Initialization:

., ifi=F
BL,() =10, it ixF



b) Recursion:

By (@) = Y Bra(re)ge by () + P Bi(re)q » (2.8)

(|1 full,l, =i) {¢|r empty,r, >i Jy=i)

where F is again the final state. Because computations are carried out in a
backward manner, 5 (i) is usually referred to as the backward trellis. Using
these algorithms, the forward and backward trellises can be computed in a
time which increases lim;arly \mth the sequence length L.

2.3.3 Probability computations using ¢; (i) and §; (i)

Let us define Pg;(t,y|m) as the probability that the observation sequence ¥
was generated by model m, using a transition sequence in which ¢ was taken
at time /. Remember that, for a given path #, ¢ taken at time ! means that

t €t[l]. In practice, a transition at time ! is a transition that reaches a node
in the /th trellis column.

In theory, Pg(t,y|m) can be computed as follows:

Poi(tylm)= 3>  Poly,t|m)
(tem |tet[i])

L, L,
= P H a H b‘ni(ll.) ’ 2.9)

(em[ret(l]) iml = ju=l

where the notation 3},  means a summation over all paths in m in which
(tem|rell))

transition ¢ is taken at time /. But again, this is prohibitively expensive. From
the definitions (2.5) and (2.6), it is not difficult to see, however, that
Pg(t,y|m) can be computed much more simply as
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{C!; (G )a B (), if ¢ empty (2.10)

Py (t.y|m) = oy_1(l g, b, ()G (r,), if ¢ full.

As we shall realize, Pg;(¢f,y|m) is a very important quantity in the theory
(and the practice) of HMMs., It is central to most computations involved in
the estimation of the HMM parameter set ©. The fact that (2.10) allows
Pg;(t,y|m) to be efficiently computed from the forward and backward trel-
lises is thus extremely important.

2.4. A survey of output distributions

So far, little has been said about the different forms that b(-) can take. Dif-
ferent forms arise as a result of the basic distinction between discrete and
continuous parameters. Even within these two categories, several different

forms arise. This section describes the forms most often encountered in prac-
tice.

1) Discrete (basic):

b(y)=py|b), y=y€{01, - ,K-1}. (2.11)

This is the simplest case. y is a discrete scalar which can only take one
of K different values. It is the form most often encountered in earlier
systems [JELI 76}, [RABI 83b}, and, for a long time, it was the form usu-
ally producing the best results,

2) Discrete with rriultiple codebooks [GUPT 87]:

NC
bQ) =TI PO b), (2.12)

cml

where NC is the number of codebooks, y, is tim cth component of y and
y. €{0,1, - - ,K.—1}, where K, is the size of the cth codebook. Multi-
ple codebooks are useful when the number of continuous parameters is
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large and it is desired to keep quantization distortion as small as possible
[LEEK 88]. The continnous parameters are separated into groups which
are independently vector quantized using different codebooks. All
discrete components are assumed independent and their probabilities are

simply multiplied. Note that the basic discrete distribution is a special
case of this distribution.

3) Continuous (Gaussian) [BROW 87]:

1
1 —5y=m) Ty —p)
by) = e 2-° == 2.13)
€ 1S, |12(2m)N 2 (

where N is the number of elements in y, and u;, and X, are, respectively,
the mean vector ;Ind covariance matrix of the distribution b. This is an

N-dimensional muiiivariate Gaussian distribution. We have the following -
special case:

4) Continuous (diagonal Gaussian);

—(i—m,i P

N 1 Mt
b)) =[] ———=e “ , (2.14)
v :11 Ub,q\/z_;r

where y; is the ith element of y, and p;, ; and g ',-2 are, respectively, the
corresponding mean and variance. This assumes that all parameters are
uncorrelated, which, in some circumstances, can be close to reality

[HUNT 891.

HMMs with continuous distributions are usually referred to as Continuous
Densities Hidden Markov Models (CDHMMs). Note that since the “true” dis- .
tributions often have complex shapes, a good approximation to such distribu-
tions will usually not be possible with a single Gaussian density. This is espe-
cially true when the “true” distribution is not unimodal. In order to obtain

better approximations, it is usually necessary to use mixtures of Gaussian den-
sities [RABI 85b]. '
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A mixture distribution is a weighted sum of distributions. Suppose, for exam-
ple, that we have K distributions P (), Xk =1, * - + , K, from which we want
to build a mixture distribution P,,; (y). Then, the expression for the mixture
distribution would be

P @) = é weB @), 2.15)

< v
where ] wp = 1. .In (2.15), the wy’s are called mixture weights and the indi-
kwl

vidual distributions Py (p) are called mixture components. The mixture com-
ponents can be any type of distribution; however, in practice, Gaussian distri-
butions are used most of the time. Nowadays, it is not uncommon to see sys-
tems using a large number of components per mixture, sometimes as many as
256 [LEEC 90a). Note that mixture distributions can be implemented by hav-
ing several parallel transitions between the same two states, each having one
of the mixture components as its output distribution. This is illustrated in Fig-
ure 2.5.

Py(y)

‘:mw — q: . o

Figure 2.5: Implementation of a mixture distribution using one mixture
component per transition

A special type of mixture distribution is:

f
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_‘:‘5) Semi-continuous [HUAN 89]:

b(y) =:Z_}: P(y|k)p(k|b), (2.16)

where P(y |k) is any continuous distribution (usvally Gaussian). HMMs
using distributions of this type are usually called Semi-Continuous Hidden
Markov Models (SCHMMs). Note that the K different continuous densi-
ties are shared by all output distributions in the application, This is why
HMMs of this type are sometimes referred to as Tied Mixtures HMMs
[BELL 89, BELL 90]. Note that the set of K continuous densities is -
often called the “codebook”. SCHMMs can be seen as an extesion of
discrete HMMs in the sense that, instead of only considering the closest
codeword in the codebook, every codeword (density) is taken into
account, each contributing with a weight proportional to its a posteriori

probability.
A generalization of semi-continuous distributions is:

6) Multiple codebooks semi-continuous:

K

NC K.-1
b)) =11 5_‘.0 P, (y. |k)p: (kD) , (2.17)

cul K

where K. is the size of the cth codebook and y. is the part of y
corresponding to the cth codebook. Again, codebooks are assumed
independent. Note that it is straightforward to convert from muitiple-
codebook discrete HMMs to multiple-codebook semi-continuous HMMs.
Indeed, the codebook probabilities p, (k |b) can be left unchanged, while

the parameters of the tied mixtures can be computed directly from the
codebook and the training data.



34
2.5. Maximum likelihood estimation of HMM parameters

We have seen, in the previous sections, how to compute probabilities using a
model m and the HMM parameter vector ©. Nothing, however, was said
about how © was obtained in the first place. Maximum likelihood estimation
(MLE), the most commonly used approach to estimate ©, is the topic of this
section. This estimation procedure is usually referred to as the Baum-Welch
algorithm [BAUM 72], also known as the forward-backward algorithm. Since,
in the literature, MLE training is usually synonymous with the Baum-Welch
algorithm, we will be using these three names interchangeably.

In MLE training, we try to find the HMM parameter set © which maximizes
the probability of the observed data, given the model corresponding to the
data. Assuming that the observed data is made of several independent obser-
vation sequences y', r=1,2, - - -+ , wé:try to find

0 = argpax]] Poly’|m,)
:

where m, =m, , w, being the word sequence correspondmg to the rth

observation y" in the training set, and where J] means a product over all
r

observation sequences in the training set. In general, it is not feasible to find
a globally optimal ©. Instead, the optimization technique used starts lrom an
initial value of © and converges to a local optimum in the parameter space Tt
does this iteratively, each iteration starting with a parameter vector © and find-
ing © such that

[1Ps0"Im,) 211 Pely"[m,). (2.18)

In order to see how t_his"'is done, first note that (2.18) is equivalent to

_——J“'
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G

I1 Pgly"|m,)

Pé(yr|mr)
log — =Y log ———— > (2.19)
T Pe0’Imy) 2 8 Polmy) =
r
This, in turn, is the same as
Pé(yr:tlmr)
Ylog 3 ; =
r tem, Pe(y Imr)
Po(y',t|lm,) Paly',t|m
Slog 5 oy"t|m,) Paly',t|m,) (2.20)

>0,
7 tém, Pol'lm,) Polyitlm,) =

where as before we assume that the sum is taken over all transition sequences
with L, =L, full transitions (all other sequences have zero probability), so
that we have L, > L,. But, since

Pe(yr’tlmr)

= Pgltly',m, ) =1
. te;n, Po(y"|m,) tezn"':, ot ly'sm.)

and because log is a concave function, we have

Pe(yrst lmr) Pé(yr’tlmr)
1
; °8 tgt, Peb’rlmr) Pe(yr:tlmr) 2

Poly"tlm,) Pelytim,)
g ) k) 2
r tem, Pe(yrlmr) PeL‘ff:tImr)

!

(2.21)

which means that making the right-hand side'fdt""-(2.21) positive automatically
. makes the left-hand side also positive. The advantage of the right-hand side,
however, is that it is much easier to work with. Indeed, if £€m,, then



log Pg(¥",t) =log H qr, H b,"‘(y_,) Z‘, log g, + 2 log b,ﬂ o),

iwm]

which means that (2.21) can be rewritten as

Le Po(y",t|m 1 4::

+
; tegl, :% Pe(‘&’rl r)
L, P9@’t|m,) :,,(2;)
- log (2.22)
? te%. El Pe(y"|m br,.,(!l)
This, in turn, can be written as
L, Poly" t|m )
E E 2 o I r Qr +
7T Glomn i=1 ey Poly"Im,)
L, Pe(yf,tlm,.) b(X,)
log >0, 2.23
; ?(:11?-1,) i=1 @¢ltym) Pol¥"|m,) TN (223)

where the notation )] means a sum over all transitions whose
(¢lr(e)mr)
corresponding unit transition is 7 and 3, means the summation over all
(t|b,mb)

transition whose corresponding output distribution (if any) is . From (2.23)
and (2.9), we obtain

L Pel(t’yrlm ) 41-

» r 1 ar )
Zr': ; (t[r%-r) lgl Pe(yrlmr) o8 q, +
L Pe.l(t’yrlmr) b(ZI)
DRIRNS i e LT L

\\

In (2.24), all transition probabilities g, as well as all output distributions b are
separated into different elements of a summation, which means that they can
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be individually optimized. We now describe how this is done.

2.5.1. Transition probabilities

In solving for transition probabilities, we are faced with a constrained optimi-
zation problem. The constraint is that the probabilities for all transitions leav-

ing the same state should sum to 1. Following the development in [LEVI 83], .

if we have a function F(Z) of the form

F(Z) =3 a; logz; , (2.25)
i

where the a;’s are all positive and the z;’s satisfy 1i}z:,- =1, then using
i
Lagrange multipliers to find the optimal values for the z;’s, we find that

2 ay ) (2.26)

Going back to the problem of transition probabilities estimation, we see from

'(2.24) that in order to make the first term positive for all ¢’s, we need to max-

imize

L PB.I(t:yrlm )
PHEDY —— - log ¢, ,
(Il 7 (lsnar) =1 Po(y'|m,)

(2.27)

in which we used the notation )] to mean a summation over all transi-
("“f"r) '

tions with the same left state as 7 (which means they belong to the same tran-

sition probability distritution). Using (2.26), this leads to
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L Pe,l(t:yrlmr)
v @l=n i1 Pe(y'|m,)
L, Pgi(ty |m,)
VDY —
il 7 ¢lin=r) i1 Pel¥'|m,)

4.= (2.28)

Note that if we defme

L, Pel(tsy,"mr)
¢, = : , (2.29)
; (: |,§=r) 1% Pg(y"|m,)

then (2.28) can be expressed as

Cf
=5 o, - (2.30)
(’Jlll"-lf)

As we will see, quantities similar to ¢, appear in thc MLE reestimation formu-
las for all HMM parameters. Since such quantities are computed by summing
a contribution from all time instants of all sequences in the training set, they
are usually referred to as counts.

2.5.2. Output distributions

Output distributions can be formed by the product of other distributions
(multiple-codebook discrete). They can also be formed by a weighted sum of
distributions (semi-continuous, mixture Gaussian), in which case we talk about
a mixture of distributions. And, of course, they can be both (multiple-
codebook semi-continuous). Individual distributions in a product are addi-
tively separated by the logarithm in (2.24), so they can be considered
separately. Mixtures, on the other hand, need special handling. This will be
considered later,
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iy 2.5.2.1. Discrete distributions

This section covers both basic discrete and multiple-codebook distributions.
From (2.24), we must for each b find the codebook probabilities pg(k |b) that

maximize

5w Po(t,y"|m,)
7 @|bmb) k (lyf~k) Pel@'Im,)

Using (2.26), this leads to

2 2 Pe.f (t,y’lm,.)
PE|B) = —T (t1bmb) (lyj=k) Pol¥"|m,)

log p(k|b) .

Pe,l (r:yrlmr) ’

£ 7 ¢lbmb) (lyi=k) Po® |m,)

2.5.2.2. Gaussian distributions

From (2.24), we must maximize

F(gy % )_'2 L, Poy(t:y"Im,)
»w=p )
” r (|bmb) (=1 Pe(¥"|m,)

1 1., —ipr s
—5108 185 | — S0 )" 5~ i) |-
Now, using the following matrix identities:

l l Ty-1 T 4-1
241 = 1414, RATY _gp-y, HAy

D

T
% v, e =yyp',

(2.31)

(2.32)

(2.33)

(2.34)

where ¥ is a column vector of dimension N and A is an NXN symmetric
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matrix, we can take the derivative of F(f,,%, ) with respect to fz, and £, :

OF (f1p 55 ) _5 L, Pg,(t.y"|m,)
Oy, r (\hsb)i=t Po(¥"|m,)

aF(Eb 92b) _
-l

SMy-m)  (239)

L. Pg,(t:y"|m,) {1 1
' =8, — =)o) |. (236
r (eloymb) lml Pg(y |m,) 2 b 2(2’ £t )¥i—fp) (2.36)

Setting the derivatives to zero, we obtain the following reestimation formulas:

L Pe,t (t:yrlmr) T,
By = ¢|b=b) i1 Pely'im,) 2.37)
L PBJ (tsyrlmr) .

7 (|bmb) im1  Poly"\m,)

o L, Pg;(t.y"|m,) _ .
$, = r Clhab) ini Po(y"|m,)
L, Pe,l(t:yrlmr)
7 ¢lb=b)i=t Po(¥ |m,)

-y 7 (2.38)

2.5.2.3. Diagonal Gaussian distributions

Since diagonal Gaussian distributions are products of one-dimensional Gaus-
sian distributions, each of these can be considered separately. Let us con-
sider the parameters y; and & of a diagonal Gaussian distribution b. From
(2.24), we must maximize
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L PG.I (t’yrlmr)

Gy=> 3 3 . O )
b (B:55:) —log & — —L P2}
Fp (4,0, r Glomb) =1 Po(¥'|m,) R 252

Setting the derivatives to zero, we obtain

OFy (,8) Lo Po,(t.y"Im,) Oi—i) 0

Oty F @ibmb) =1 Po(y"|m,) &2

an(pi"aa'i) =E L Pe';(t,y'lm,) [ 1 I()’{_i"fli)z =0
95; r (\bmb) im1  Po(y'|m.) l & &3 |

which leads to

L Po,(t.y"|m,)
. 7 albmbyi=1  Pe(y'|m,)
. L Poy(t.y |m,)
7 (t|bwmb) =1 Poly"|m,)

r

Yii

and

L. Po,(t.y"|m,) _,
.2 v Glomb)im1 Pely|m,) YL .
- L Po,(t.y |m,y "
r (‘lbrﬁb) Im] Peb‘rhnr)

il

S
e

2.5.2.4. Mixture distributions

™~

(2.39)

(2.40)

(2.41)

(2.42)

As mentioned ecarlier, mixture distributions can be implemented by having
several parallel transitions between the same two states, each with one of the
mixture components as its output distribution. In that case, both the mixture
weights (which, as illustrated in Figure 2.5, are the transition probabilities) and
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the parameters of the mixture components can be estimated in the usual way.

Such an implementation, however, may add unnecessary overhead through the
processing of a large number of transitions, which, in turn, may slow down
the program. Moreover, in some cases it may be preferable that output distri-
butions be full mixtures rather than simply one of their components. One
example is when it is desired to findi_‘\the most probable path (transition
sequence) in a given model. If mixtures are broken into their individual com-
ponents, then each component will be associated to a different path, which
may be undesirable.

We will thus consider the implementation of mixture distributions associated
to a single output distribution. This will be illustrated using the semi-
continuous output distribution (2.16). From (2.24), we must have

K-1 ,
. P(yfjk)p(k|b
L. Pou(t.y"|m,) & Ylpiv)
- log 7 >0, (2.43)
r (t]b,mb) I=1 Pe(y Imr) 2 P
k=0

W lkpk|b)
which is the same as

L Poy(y'lm,) ka1 P@lp(elb)  PoflkpkIb)
r (tlbmb) icl  Po(y'|m,) k=0 Kil P(}1k"p (K’ |b) PRflk)p(k|b)
k'=0

5 Poultylmy) | K3 PJ 1)k [b)
k -
> iy 5 PetTmy) 85 ¢ pompwny 20 @49
where we used
___P@lk)p(k]b)
“In (k |X) = Ep(zlk;)p(krlb) . (2.45)
g

From ¥ 4, (k|y) =1 and the concavity of the log function, we have that:
k
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L. Pg,(t.y"|m,) k-1 P(yf|k)p(k |b)
> i B Polrmy) o8 & b W) Sy 2

L k=1 Poi(t.9"\m,)  P(yjlk)p(k|b)
k _
zr: (:l!?-b) rg kz-:o % k1) Pe(y"|m,) og Pyilk)p(k|b)

(2.46)

Since the parameters in the second term in (2.46) are now separated by the
logarithm, we know how to maximize it; this will automatically maximize the
first.

2.6. Derivatives of probabilities

In several circumstances, it will be necessary to take the derivative of some
HMM-related probabilities with respect to the individual components of the
HMM parameter set ©. One example is when it desired to use gradient des-
cent to optimize some function of those probabilities. In order to compute
the gradient, it is necessary to be able to compute the derivative of certain
probabilities with respect to the MM parameters. Fortunately, such deriva-
tives are usually fairly easy to compute. The present section shows how.

We want to compute the partial derivative of Pg(y|m) with respect to the

components of ©, We will use Pg(y|m) as expressed in (2.4). First, let us
find the derivative with respect to g,

OPgly|m) L, L L,
—_— q H b : )
3q,- 1=l (t|r(t)mr) (tem |ret[l]) i=l i jm=l IJ(XJ
iy (1)
1 L, L( L,
= Z H ql’; II b‘n!(lj)

(t|r(e)mr) L=l (tEM [1EL{I]} iaml jml
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== 3 Z Poy(t,y|m). (2.47)
r (¢t|rt)mr) i=1

Now, let us consider the partial derivative of ?g(y |m) with respect to the out-
put probability b(y;).

6P9(y|m)
ab(!l) = 2 2 qui H fu,%)

(t]b,mb) (tem |1, mt) im=l j;l

"\

. S5 qu,H,,(zJ)

) (¢|bymb) (2EM |tymt) iwl

'é,— Eab Pg,(t.yim). (2.48)

Using this result, we can now compute the derivative with respect to any
parameter 6 of b(-), using, in effect, the chain rule, that is,

oPoly|m) 4 BPo(y|m) 8b(y,)

e i3 obly) &6
Ly 1 ab(Z;)
= =31 Pgylt, . 2.49

If 0 is a parameter that applies to all distributions in a certain group I' (which
may include all distribution), like the parameters of tied mixtures in semi-

continuous HMMs or global exponents (see Chapter 4), then the derivative
with respect to 8 becomes :

OPgly|m) -y Ly OPg(y|m) 0b(y;)
o0 perim ob(y) o9
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—i ) br(!l) Pet(f,ylm)

I=1 (t]b,EI‘

:(2:)_

(2.50)

Now, usfng (2.49) with the output distributions described previously, we

obtain:
1) Discrete (basic):

OPg(y|im) 1

BEIB) ~ PUIBY gty iy ™)

2) Discrete with multiple codebooks:

OPg(y|m) 1

%:k1b) " pc(kb) (llyE:-k) (:IE Pouliylm).

bymb)
3) Continuous (Gaussian):

OPgly|m) lf}
Aty [l (¢|bymb)

OPg(y|m)
oz, 1

P Pe:(f,ylm) _Eb_ (z;—gb)(z;—gb)r.

=1 (t|by=b) .

4) Continuous (diagonal Gaussian):

OPg(y|m) "ii ()'1,; -

PG 1 (t:y Im)
Oy f=1 (zlg-b)

> Peultylm) Tl — ),

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
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OPe(y|m) Ly { — 2
TS 3 Pe:(t,ylm)l s il Dl SRR
i [=1 (z|b,=b) ; -

5) Semi-continuous:

OPolym) 1 & PQy k)P (K |b)
apk|b) — p(k|b) l§ (:l!?-b) % P(y, |kf)p(k:|b)Pe,t(‘:J’|m)

"ok | ) ? Eﬂb Y (e ly) Pey(ty|m), | 2.57)

where we used -, (k|y) as expressed in (2.45). Now let o be a parameter
of the P(y |k), one of the tied continuous distributions. Then, since all
distributions are functions of P(y |k), we obtain

OPgly|lm) L, (2;1 )
_'3—— g rEu P(Zl Ik) b (k |21)P91(t:ylm) (258)

6) Multiple codebooks semi-continuous:

Pe(y|m) 1L Pyl k1D)
(1)~ 2kIB) 5 iy T e TR 240

1

Ly
=— k P, {t, , 2
P (k1b) ,_Z}(,“;Eb) U.c (131, oy (1.3 m) 2.59)

where y; . is the part of y; corresponding to the cth codebook and
where, this time, we used '

P, (y1c |kdp: (kD)
MATHL XADN (2.60)
-

Yo, klye) =
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Now, let o be a parameter of P(y; . |k). Then,

SPeyim) _
da -
LZ,: L klye) 3 Poy(t.ylm)
e c z,
B E Gk telklye) 3 Peit.y|m

OP(y; . |k)
O

(2.61)
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3. HMMS: FROM THEORY TO PRACTICE

3.1. Introduction

The previous chapter described the theoretical foundations of HMMs, Even
though the presentation was strongly oriented towards speech recognition
applications, there remains a big step from the theory as presented, to a high-
performance speech recognition system.

Indeed, there are a number of practical considerations-that the basic theory
does not address, but which are important when building a HMM-based sys-
tem. These range from simple implementation problems to the more difficult
question of how to get"\ ae most from a limited amount of training data.

This chapter addresses these issues. Our aim is to provide the reader Vi}/ﬂ.} not
only a clear understanding on how to implement the HMM theory, but also a
good idea of how to best apply the HMM framework in different speech
recognition applications.

3.2. Application censiderations

3.2.1. Initialization and training “

- Training HMMs consists of finding the parameter vector © which, as much as

possible, maximizes the chosen objective function. For MLE training, the
objective function is

R(6) =TT P’ m,) . ' (3.1)

o
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As mentioned in Chapter 2, it is very difficult to find a global maximum for
R(©). Instead, training is done through an iterative process which would
eventually converge to some local maximum. In practice, it is usually
observed that even though recognition rate on a test set initially increases with
each iteration, a maximum is quickly reached (often after as little as 3 or 4
iterations), after which the rate starts going down. This phenomenon is called
overtraining. It is caused in part by the differences between the training and
testing data sets and in part by the fact that MLE does not necessarily
decrease error rate. Because of this, training is usvally stopped after a fixed
number of iterations, typically between 2 and 10.

Since the “real” test set — the speech from actual system use — is unavailable
at training time, it is difficult to determine the optimal number of iterations.
It is a function of a number of factors, such as the amount of training data,
the type of output distributions used, the structure of the models, and the ini-
tial parameter vector ©. If a large quantity of training data is available, then
the differences between training and testing data sets will probably be small
and there will be a smaller possibility of overtraining to peculiarities in the

training set. Similarly, continuous or semi-continuous HMMs may require
more iterations than discrete HMMs.

Probably one of the most important practical considerations in HMM training
is the initial ©, Indeed, not only will the initial © influence the required
number of iterations to use but, more importantly, it will determine which
local maximum the procedure converges to. Qur experience, as well as that of
others [RABI 89¢c], has shown that the initial © has a very strong influcnce on
the system performance. '

Good initialization allows the Baum-Welch algorithm to properly align the
models with the desired speech segments. This results in both improved con-
vergence and better models. For simple small vocabulary, isolated word
recognition systems using endpoint detection {LAME 81] and word models,
alignment is self-evident and uniform or even random initialization will per-
form satisfactorily for discrete HMMs [RABI 83b]; however, more complex
tasks will usually require more sophisticated initialization schemes.

2

In general, initialization can reliably be done with hand-segmented data. The
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speech segments corresponding to each unit model are used to derive proper
initial distributions for the model. This is referred to as bootstraping the
models. For discrete HMMs, this can be done by starting with initial models
with uniform distributions and training them on the corresponding speech seg-
ments [SCHW 85] using the Baum-Welch algorithm. For example, the
SPHINX system uses the phonetically segmented TIMIT database [LAME 86]
to bootstrap the phone models, Note that this is also valid for semi-
continuous HMMSs, since the initial tied mixtures can be properly estimated
from the codebook(s) and the training data. For HMMs with Gaussian densi-
ties, there is no such thing as a uniform distribution and it may help to have
reasonable initial values for the mean and covariance parameters. These can
be obtained from the segmented data, using some clustering procedure.

One problem with the use of hand-segmented data is that the actual segmenta-
tion process is quite labor-intensive and, in some situations, it is just not pos-
sible to do. Some researchers have found that good resuits can be obtained
by linearly segmenting the training data into their corresponding state (or dis-
tribution) sequence and then using all frames corresponding to a given distri-
bution to estimate its initial parameters [LEEC 90a]. Our own experience,
however, clearly indicates that bootstraping with hand-segmented data pro-
duces better results. We feel that, even if it is not possible to segment the
training data used for a particular application, it is usually possible to take
advantage of segmented databases such as TIMIT to produce better initial
models than what could be obtained otherwise.

Following bootstraping, MLE training is done using labeled (but not seg-
mented) speech data. This means that for each training sentence,! the con-
tent of the sentence is known and the corresponding sentence model can be
built. This model is used to compute the forward and backward trellises,
which, in turn, are used to increment the counts from which the HMM rees-
timated parameters are computed.

'Here, sentence is used in a broad sense and can mean any type of speech utterance, from an iso-
lated word, to a full paragraph.

s
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3.2.2, Silence and optional models

The labeled data used for training usually contains speech signals preceded
and followed by silence (or background noise). Moreover, there may or may
not be pauses between words in the sentence. In general, the sentence labels

only indicate the words spoken. No information is given about the possible
presence of silences in the signal.

Suppose a 2-word sentence is used for training. Then, as described above,
training is done by building the sentence model from the two word models.
If, however, there is a pause between the two words, then it will be absorbed
by one (or both) models. If, on the other hand, we choose to use a pause
model between the words, and the words were spoken continuously, then the
pause model wiil end up modeling parts of words. Both of these outcomes

are undesirable. The problem comes from the ignorance of where the silences
are in the signal.

... __,,;
——

Figure 3.1: Optional model

An elegant solution to this problem is to use optivnal silence models. As
shown in Figure 3.1, an optional model has an empty transition from the first
to the last state, which basically allows the model to be jumped over. Thus,
suppose the distributions of an optional silence model are well-trained and this
model is used between two word models during MLE training. If there is
actually no silence between the words, tiien the paths going tirough the
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silence model will have very low probability and their effect on the distribu-
tions of the silence model will be negligible. If, on the other hand, there is a
silence between the words, then since the silence model’s distributions are
well trained, the paths going through the model will have higher probability
than the other ones.

This is a surprisingly effective technique and it works just as well for recogni-
tion as it does for training. Optional models can be used in any situation
where it is not possibie to say for sure from the speech labels whether or not a
given sound is present. For example, the “t” in the word “eight” may or may
not be pronounced, which suggests the use of an optional “t”. The technique
is, however, most effective with silences, for which it is relatively easy to
obtain good models. In our systems, use of optional silence models at the
beginning and end of sentences has completely eliminated the need for an
endpoint detector [LAME 81] and performs much better than an endpoint
detector.

3.2.3. Output distributions

If vector quantization (VQ) is applied to the feature vectors, then discrete dis-
tributions are used. This is attractive since, from the modeling point of view,
discrete distributions don’t make any (possibly erroneous) modeling assump-
tion. However, these are simply transferred to the vector quantizer, which
acts as an a priori classifier. Without VQ, continuous distributions are usad.
There has been much debate about which of discrete or continuous HMMs is
superior. For a long time, IBM found discrete parameter HMMs to give
better resuits than continuous ones. Brown [BROW 87] found that, for iso-
lated recognition of the e-set, continuous parameters gave better results. For

the SPHINX system, Lee [LEEK 88] chose discrete HMMs because of their

lack of modeling assumptions and their efficiency.

Now that semi-continuous HMMs are becoming widely used, this debate

seems to be finally resolved in favor of continuous distributions. Indecd,
 several state-of-the-art discrete systems such as SPHINX [HUAN 89),
BYBLOS [KUBA 91] and DECYPHER [MURYV 91] have recently been tried
in semi-continuous mode and results have generally shown improvements over
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the discrete systems.

Semi-continuous HMMs combine the simplicity of discrete HMMs with the
robustness of continuous distributions. The transition from discrete to semi-
continuous is easy to make: modifications to the HMM programs are rela-
tively straightforward and simple modifications to the codebook design pro-
gram will allow it to generate good initial mixture components. The resulting
system will usually perform better than the original (especially with sparse
training data), and the penalty in terms of increased computational complexity
is generally not as high as it appears from (2.16). This is because, in practice,
most implementations only use the M most probable mixture components for
a given frame (with, in general, M<10).? Most techniqués originally developed
for discrete HMMs (e.g., speaker adaptation techniques [SCHW 87] and pro-
bability smoothing [LEEK 88, SCHW 89]) can also be applied to semi-
continuous HMMs.

3.3. The training data problem

Among the practical problems faced by designers of speech recognition sys-
tems, one of the most challenging is certainly that of limited training data. If
unlimited data (and memory and CPU resources) were available, phone, syll-
able or word models could all be trained perfectly for all contexts, speaker
types and environments. Unfortunately, this is never possible in practice,
which means that ways have to be found to make the most of whatever data is
available.

3.3.1. Basic concepts

HiMMs are used as parametric speech models. Training them consists of
using the available speech samples (the training data) to learn the modecl
parameters. It is implicitly assumed that the training data is representative of
the process being modeled. This means that the speech encountered during

*Alternatively, some systems [MURYV 91] use all mixture components with a probability greater
than some fraction of the highest probability.
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recognition should be 'w&n-mcde}ed‘ by the HMMs trained on the training data.
This is, of course, never completéiy.r,:‘gp_ke:_ Whatever the size of the training
data, there will usually be some speech features observed during recognition
which could not have been learned from the training data. It is generally
observed in practice that performance steadily improves as the available
amount of training data increases, For ‘example, in a speaknr-mdependent sys-
tem, it is desirable to have speech samples from as many types. of speakers as
possible.

It is important to realize that the representativeness of a given training data set
is as much a function of the model used as it is of the data itself. Some
models will generahze much better than others from a given training set. This
can be illustrated with a simple example.’ Suppose a given random variable X
is normally distributed with unknown mean g and variance o°. We want to
model the distribution of X from a sample of 200 independent outcomes
X;, i=l1,...,200 of experiments corresponding to X. If we suppose that X is
normally distributed, then we can compute the estimates |

L1 W ~
k=250 E (3.2)
& = —},3 § (% — B (3.3)

In general, the estimates obtained will be very good so that we will be able to
say that the-training sample is representative of the process. This is illustrated
in Figure 3.2 where the true distribution is compared to the estimated distribu-
. tion obtained from a sample of 200 randomly generated numbers (using the
true di'stribution).

Note, however, that if X is not normally distributed, then the estimated distri-
bution may be quite inaccurate, regardless of the training data size. It may
thus seem preferable not to make any assumptions about the given distribu-
tions. This can always be done by estimating discrete probabilities using an
histogram. If the histogram has, say, 50 unit intervals, then 50 probabilities
will be computed using relative counts. So, instead of 2 parameters, we now
have 50 discrete probabilities to estimate. Because of the small sample size,

i
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most estimates will probably be very bad. Even worse, there will most likely
be intervals not represented in the training sample, thus resulting in probabil-
ity estimates of zero. This is illustrated in Figure 3.3, where the histogram is
computed from the same 200 numbers used in Figure 3.2. So in this case, the
training sample is clearly not representative.

......

Figure 3.2: True distribution (solid line). Estimate (dashed).

f\‘ .

In general, the more parameters there are to estimate, the more training data

iz required to estimate them. Discrete HMMs usually have a large number of
“'parameters and thus require larg”; amounts of training data. Continuous

HMMSs using single diagonal normal distributions (2.14) have much fewer
parameters. Unfortunately, simple distributions may be so different from the
“true” distributions that, no matter how much training data is available, per-
formance will always be poor. Mixtures of Gaussian distributions can produce
good approximations of complex distributions. However, the number of

parameters to estimate is usually proportional to the number of mixture com-
ponents.
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Figure 3.3: Histogram estimate, semi-continuous distribution created
from the histogram (dashed line), and the true Gaussian density (solid
line).

Once again, a compromise may be offered by semi-continuous HMMs. Let us
create a codebook of “tied” densities by associating a one-dimensional Gaus-
sian density to each of the 50 histogram bins, using the center of the bin as its
mean and width?/3 as its variance (width is the bin width). The variance was
determined by assuming a uniform distribution within each bin. Then, a
“semi-continuous’ mixture distribution can be created from these densities by
using as mixture weights the histogram heights normalized so that they sum to
unity. The distributicn, is illustrated in Figure 3.3, is a smoothed version of
the histogram estimate.

For both discrete and continuous distributions, insufficient training data will
create problems. They are considered in the next two sections.

3.3.2. Sparse training data and discrete HMMs

- Insufficient training data with discrete HMMs will of course result in poorly

cstimated probabilities. A more important problem, however, is that a code-
word probability may evaluate to zero, which can cause unrecoverable errors if
that codeword appears during recognition. A simple solution to this problem,
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called floor smoothing, is to constrain the discrete probabilities to be greater
than or equal to some small constant ¢ [RABI 83b]. This simple constraint
can dramatically improve recognition rates. Moreover, it has been found
[RABI 83b] that the performance obtained is not really sensitive to the actual
value of ¢ used within the range 107° < e <1073, Note that, as we might

expect, experiments have also shown [LEEK 89a] the technique to become
less useful as the training set size increases.

One problem with floor smoothing is that it doesn’t distinguish between code-

words which have a low probability because of a lack of training data and

codewords which actually are very improbable. One solution to this problem, .
proposed by Lee [LEEK 89a), is a different technique called co-occurrence

smoothing. The idea is to compute a co-occurrence probability matrix which,

for any pair of codewords (i, j), can be interpreted as the probability CP(i| j)

of generating codeword i if codeword j is generated by the same output distri-

bution. This matrix is computed during the standard Baum-Welch training as

i P . (tsyr m,
PUID 52 ilmnlz ))
CP(i|j) = — r (lbmb) (lyr=j) Lo .

- Pe,(l‘,yrlm,.) ?
k\|b -
kgo %ﬁ( | )¥(III§=IJ) Cly=j) PoO'|m,)

(3.4)

where K is the codebook size and p(k|b) is given by (2.32). The smoothed
probabilities g, (k |b) are then obtained from the unsmoothed ones using

PG5 = 52 PGNP 1B). (.5)

Co-occurrence smoothing may produce distributions so smoothed that they
have lost much of their discrimination capabilitics. To avoid this problem, it

may be advantageous to average the smoothed and unsmoothed probabilities
using

)

Pylk|b) =X plk|b) + (1-3 )ps (k |B) (3.6)
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where p;(k |b) is the final probability and ), , which is a function of the distri-
bution, may be estimated using deleted interpolation [LEEK 88]. In phoneme
recognition experiments, Lee [LEEK 89a] found co-occurrence smoothing to
be superior to floor smoothing. Also, once again, the smoothing usefulness
diminished as the training set size increased. )

3.3.3. Sparse training data and continnous HMMs

Experience shows that in most cases, the “true” continuous distributions are

quite different from single Gaussian densities.? In order to accurately model
these distributions, it thus becomes necessary to use mixtures of Gaussian
densities. It is not uncommon [DENG 90, LEEC 90a] to see mixtures with
more than 20 components. If there is i.sufficient data to train all Gaussian
“ densities, some of the variances may become very small or even go to zero,
which is undesirable. Some proposed solutions to this problem include con-
straining variances to be greater than a certain minimum value {(covariance
clipping) [LEEC 90a], tying of covariance matrices in order to provide more
training.‘ data per. matrix {DENG 90] or simply keeping the variances fixed, as
in Richter densities [BROW 87].

3.3.4.  Units

When designing an HMM-based speech recognition system, one of the first
things to do is to determine the set of units to use. The best set for a given
application depends on a number of factors such as the vocabulary size, the
target recognition rate, the amount of training data that will be available, the
availability of manually segmented data and so on.

LR
[

3.3.4.1.  Linguistically based units

In certain applications such as some systems for the telephone network
[WILP 90], where vocabularies are small, the environment is relatively uniform

*This is especially true for speaker-independent models,
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and speaker-independence is necessary, the best solution is probably to collect
as large a database as possible and to use word models. |

In several applications, however, this is not possible. For example, in large-
vocabulary systems, it is just not possible to create and train a different mode}
for each word, so subword models must usually be used. The first probleﬁifis
to find an appropriate speech unit [LEEK 88]. Most such systems use some
kind of phoneme-based units. This is a natural choice since there are only
around 40 phonemes in English, from which all words can be built. Collecting
enough data from one speaker:to train those 40 phonemes is usuaily not a
problem. The problem is that a phoneme is actually a very abstract unit and
its realization is highly variable, especially in different contexts. This means
that, to attain an acceptable level of performance, it is necessary to create dif-
ferent models for different contexts. A common context-dependent unit
model is the triphone [SCHW 85], which takes the left and right phonetic con-
texts into account. Unfortunately, there are a lot of triphones. For example,
the DARPA resource management task, which has a 997-word vocabulary,
has 2381 different within-word triphones [LEEK 88]. A very large quantity of
training data would be required to accurately train so many models.
3

In his discussion on units, Lee [LEEK 88] listed three important propertics
that can be atiributed to them. The first is sensitivity. It measures the level of
recognition performance that can be expected from a certain type of unit. For
example, context-dependent units, by vproviding finer modeling, have
inherently better discrimination capabilities than context-independent ones.
They are thus said‘io be more sensitive.

The second property is trainability. It measures how difficult it is to collect
enough data for accurate training of the units. For~example, context- '
independent units like phonemes are much more trainable than context-
dependent ones. The third property is sharability. It refers to one of the
common solutions to the problem of insufficient training data, namely the
smoothing of distributions. The rc;ugh idea is that since some units are-train-
able but not very sensitive, and other units are sensitive buiszot very trainable,
we might find a compromise by smoothing the two types of units. This is only
possible if the two units smoothed represent the same thing (as, for example,
is the case with a triphone model and the corresponding phoneme model) and
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if discrete distributions are used (this includes semi-continuous HMMs). This
is what sharability means.

3.3.4.2. Acoustically based units

So far, we have mostly talked about linguistically based units. However, as we
have discussed, -the acoustic realization of these units is often quite variable.
Even expert phoneticians often disagree about the phonemic identity of a
given sound. It may be argued that, in order to obtain better performance,
the units used should be based not on abstract and sub]ectwe linguistic con-
cepts, but, rather, on acoustical evidence.

One such acoustical unit that was recently proposed by the IBM group is
called the fenone [BAHL 88a). They proposed a way to automatically con-
struct the acoustic baseform of a word in terms of fenones. The idea is to
associate one fenone to each label in the VQ alphabet and to use a sequence
of VQ labels from the pronunciation of a word to determine the fenonic
baseform corresponding to that word. This fenonic baseform, determined
from only one repetition of a word is called a singleton baseform. Since dif-
ferent repetitions of a word usually result in different baseforms, the singleton
baseform of a word may not be the most optimal one for that word. The
solution they proposed for that problem is to first use singleton baseforms to
train the fenones and then, using several utterances of a word to determine
the best fenone sequence (or baseform) for that word. This can be done
using a search algorithm such as the Stack algorithm [JELI 76], but modified
to search over several observation sequences instead of one.

Their argument for introducing these units was based on their observation
that, if enough training data is available, word models usually outperform
phone-like units. They argued that word models provide much finer coarticu-

~lation modeling and they expressed doubts that phone-like units could be

made to perform as well. Isolated word, speaker-dependent recognition
experiments demonstrated substantial performance improvements over
phonetically based models. It is not clear, however, how fenones with word
baseforms would ﬁerform in continuous spe'ech. Indeed, even though fenones
undoubtedly provide fine within-word coarticulation modeling, it is not
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obvious how word baseforms could be made to take into account between-
word coarticulation efTzcts in continuous speech. A compromise between the

acoustical and phonetic approaches has:recently been proposed [BAHL 91] by
the IBM group as a possible solution to that problem.

3.3.5. Using less training data

The reqtﬁreménts of a particular application will usually dictate the choice of
unit and the training procedure. If speaker-independence is required, then
not only will collection of a large database be necessary, but there will be a

performance penalty over a speaker-dependent system.* However, any user
will afterward be able to use the system without any prior training. On the
other hand, some applications may require a speaker-dependent system in
order to obtain the desired level of recognition performance. In that case, the
user will have to train the system to his/her own voice prior to using it, which
may be a lengthy process. Since in general, there is never enough training
data, it is important to discuss some of the solutions that have been used to
circumvent that problem. ==

T
“..:\\
T ./

BN

3.3.5.1. Speaker adaptation

Speaker adaptation is a growing area of speech recognition. As.the name
implies, the purpose of speaker adaptation is to improve the xﬁccoghition per-
formance of a system by somehow adapting it to the particularitics of a
speaker. There are several ways in which this can be done. "

One of the techmques used is called HMM clustering. The idea is that, cven
though all speake.rs are different, it should be possible to separate them into a
number of groups (or clusters) of speakers sharing common charactcristics.
For each cluster, a complete set of {MMs is trained. Adaptation takes place
during recognition when the system determines which set of models (or clus-
ter) is the most appropriate to use with the given speaker. The clusters can

It is typical 1o sce error rates two to three times higher in speaker-independent systems than in
speaker dependent systems.

TEA T o
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be determined a priori (e.g., by separating male and female speakers [DODD
89]), or they can be determined by automatic techniques. Standard clustering
techniques, such as those used for designing vector quantization codebooks
{RABI 83a, GRAY 84] [MAKH 85, EQUI 89], are usually used. Some
[RABI 89a) start with one cluster, then apply a splitting technique until the
desired number of clusters is reached. Others {LEEK 88] start with as many
clusters as there are speakers and repeatedly merge them, also until the
desired number of clusters is reached. At reéognition time, determination of
the best cluster can be dome once, by finding the cluster resulting in the
highest likelihood on a known utterance [LEEK 88], or it can be determined
for every unknown utterance by trying every cluster and using the one result-
ing in the highest likelihood {DODD 89].

There is a different type of speaker adaptation which is more related to the
training data problem. The general idea is that if well-trained models for a
given application are availabte (either speaker-dependent or independent),
then it should be possible to adapt those models to a particular speaker using
much less training data than would be required to train the models from
~scratch. Adaptation can be supervised or unsupervised. Supervised adapta-
tion uses a small number of known words or sentences from the target
speaker, which makes it like regular training, but with less data. By adapting
on unknown sentences, unsupervised adaptation is a potennally more fle}i.ble
techmque, however, it is also much more difficult,

Supervised adaptation is the technique that has so far given the best results.
One of the early pioneers in this field is BBN. For a number of years, BBN’s

approach has beenito adapt discrete probabilities from the well-trained models
of one refcrencc speaker to a target speaker. The adaptatlon was done by
computing a probabilistic spectral mapping matrix that is used to transform the
reference models into the target models. This matrix was evaluated either
using maximum likelihood esiimation directly within the Baum-Welch algo-
rithm [SCHW 87] (in which case an initial estimate is necessary), or by using
DTW to align the adaptation speech to the same text spoken by the reference
speaker, and using this alignment to compute the mapping matrix {FENG 88].
This second technique is not oniy, supervised, but also text-dependent, that is,
the adaptﬂion script must be driwn from text also spoken by the reference

speaker. BBN reports that the second technique works better, even though
AN
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results vary significantly across speakers. Additional improvements were pro-_~
posed in [FENG 89]. These include using a phoneme-dependent transforma-
tion, silence modeling, duration normalization and spectral space normaliza-
tion. By applying those techniques to_the DARPA resource management
task, BBN has achieved recognitici’rates equivalent to the best speaker-
independent results. More recently [KUBA 90], they have proposed an adap-
tation scheme using a reference model trained on a number of speakers nor-
malized to a single prototype space.

AT&T has recently proposed a Bayesian framework for doing supervised
speaker adaptation of continuous density HMM parameters [LEEC 90b,
GAUYV 91]. This is an interesting idea because it is possible to get meaningful
prior distributions by either looking at a number of speaker-dependent models
or by using all the mixture components from a speaker-independent model,

"~ thus taking advantage of the information gained by observing how the parame-

ters vary across speakers.

Note that, in general, techniques developed for either discrete or continuous
distributions can also be applied to semi-continuous HMMs. - In fact, the
mixed nature of semi-continuous HMMs opens interesting new possibilities
[RTIS 89]. For example, their.discrete distributions (mixture weights) could

be used rs prior mformatlon in order to adapt the tied mixtures to a new
speaker. ' s

3.3.5.2. Noise adaptation/signal normalization

In order to get the best possible results, the conditions under which a speech
recognition system is used usually need to be as similar as possible 1o thosc
that existed during training. Changes in background noise characteristics, or
even a simple change of microphone, can result in substantially deteriorated
results. In some applications, this can be a rezl problem since it may not be
possible to have similar conditions during training and recognition. Onec
example is when the recognition environment changes constantly.

P

The term noise adaptation refers to the techniques that deal with changes in
background noise characteristics. Most of them use a silence/speech
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discriminator to identify the parts in the signal where no speech is present,
which are then used to determine the noise characteristics. Some techniques,
such as spectral subtraction [VANC 89, ACER 90] or probabilistic vector map-
ping [GISH 90], work directly at the signal processing level by transforming
the noisy feature vectors into approximately noise-free vectors. Others per-
form noise adaptation directly on the vector quantizer. One example is
[NADA 89), in which a maximum likelihood estimation of the noise-free
labels is performed. This last technique, however, only works if the parame-
ters used are filter-bank energies, and only if the background noise is relatively
constant.

The term signal normalization refers to the techniques that deal with changes
in the acoustical environment. Various factors such as room acoustics and
microphones can, by modifying the system’s overall transfer function, color
the speech’s power spectrum to the point where degraded recognition results.
Signal normalization thus attempts to estimate how the signal was modified
with respect to the training data in order to “undo” those modifications
[VANC 89, ACER 90]. .\ :

3.4. Speech decoding
It was mentioned in Chapter 2 that the optimum speech decoder in the sense

of minimizing the probability of error is the MAP decoder, which chooses @
such that

% = argmax Pw|y) . (3.7

Since P{w |y) is unknown, however, the HMM-based estimate must be used
instead, whic_h_ means that we must use the sub-optimal decoder

P'e(J’ |m )P (w)
P(y)

W = argmax Pe(in,‘, |y} = argmax
w {4}
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= argmax Pglylm)P(w) , (3.8)

where the last equality results because the maximization does not depend on

.. P(y). Assuming that the HMMs have been trained and that there exists a_
" language model that can compute P(w) for any w, then everything is available

to find the (sub-optimal) zb. Unfortunately, except in the simplest applica-
tions (such as small-vocabulary, isolated word recognition), even (3.8) cannot
really be used in practice. Consider, for example, even a simple application
such as connected digit recognition, which has an 11-word vocabulary (includ-
ing “oh” and “zero”). If we were to use (3.8) to find the most probable 7-
digit string, we would have to compute Pg(y|m,,) for a total of 19,487,171 dif-
ferent models m,, corresponding to all possible digit strings w.

It is clear, then, that approximations to (3.8) must be used in order to be able

to perform speech decoding much more efficiently. Such an approximation is
provided by the Viterbi algorithm.

3.4.1. . “The Viterbi algorithm

The Viterbi algorithm was introduced in 1967 as a maximum likelihood decod-
ing technique for convolutional codes [VITE 67]. It is a very gencral algo-
rithm which is used to find the lowest-cost path in a trellis, where the cost of
a path at a given trellis node n j can be computed as the sum of the cost at the
previous node n;_; and the cost incurred to get from node n;_; to node ;.
The idea of the algorithm is quite simple.

Let us define the cost C(¢|m) of a path £ in a IIMM as minus the a posteriori
log-likelihood of the path, that is, ]|]|
I

C(tm) = —log Po(¢|m )Py |t) . (3.9)

!

A
Let C; (i) be the cost of the lowest-cost path cndmgw slatc i at time [, Let
C (¢,1) be the cost of going from state /, to statc i at tinie {, using transition ¢
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(this assumes r, =i{). If r is empty, then it comes from time ! and
c(t,iy=-logg,. If ¢ is full, then it comes from time I[-1 and
¢ (¢.iy=—log q,b,(yy). (i) can be computed as

C; (f) = max {:Iglma;gy [CI () +cl ’l')] » max [Cl—l(lt) +e(t ,i)]}- (3.10)

The lowest-cost path is the one with highest probability and, using the Viterbi
algorithm, it can be found as :

max C(¢ |m) = max [-*log Po(t|m)Pg(y it)] =C. (F), (3.11)

where we have assumed Cg(0)=0. A trellis recursively computed with (3.10) is
callied a Viterbi trellis. Note that isolated word recognition systems often use
Cy,(F) instead of Pg(y|m) to find the best word. This is because in practice
it is faster to compu_té”"CL,(F ) and the recognition rate obtained is basically the
same.

However, the real advantage of the Viterbi algorithm for speech recognition
lies not in what it computes, but in its ability to find the best path in a model.
This can be done trivially by keeping, within the recursion (3.10), a “back-
pointer” B, (i) to the'transition that resulted in the best path and then, using
these backpointers to traceback the path from C; (F) to Co(0).

For cxample, il a word model is made from the concatenation of phoneme
models, then the best path in the. mgdel can be used to segment an utterance
of that word into its individual phonemes. Note that even thougl{ the path
used is the most likely path in the model, the phoneme sequence given by the
path may not be the most likely sequence. This is because the probability of a
phoneme sequence must be computed from the sum over all paths in the
model corresponding to the sequence (see (2.4)), and not only the most likely
path. In practice, however, this rarely makes a big difference.

Similiifiy, it is usually possible to build a compact general model mg,, such

T e
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that every path £ i every model m in the application is aiso a legal path in
M gen .5 If, conversely, every path in mg,, aiso corresponds to a path in a pos-
sible model m in the application, then mg., is said not to over-genéﬁte.
Using the Viterbi algorithm to find the best path in m gen cffectively segments
an acoustic sequence ¥ into a “recognized” word sequence. This technique is
called Viterbi decoding. For example, connected digit recognition is often

done using Viterbi decoding with a looped model such as the one in Figure
3.4. |

Zero

Figure 3.4: A looped model used for connected digit recognition

Once again, however, the most likely path will not necessarily produce the
most likely word sequence. This is especially true because there is an implicit
language modcl used in the recognition process and this model may be quite
different from the true P(w). Remember that the most likely word sequence
w is the one that maximizes Pg(y|m,,)P(w). Referring to the looped model
in Figure 3.4 and assuming that all transitions from the same node in the word
network are equiprobable, we have that P(w) = 0.5-(1/11)", where w is the
sequence found and n is the number of digits in w. Thus, in this implicit
language model, the a priori probability of a digit string decreases exponen-
tially with the number of digits. More generally, since the implicit language
model in a word network arises from word transition probabilities in the

*See Chapter 4 for more details.



network, it will be of the form
Pimp (w) = P(w1)P(walwy) - - PO, |Ws_y) (3.12)

where w; is the ith word in w and n is the number of words in w. Such a

language model is usually referred to as bigram language model.’ In practice,
the acoustic probabilities weigh so heavily in the determination of the best
path that the implicit language model has a very limited effect on the recogni-
tion process. This means that if the language model is to be useful’ its contri-

bution to the sentence log likelihood must be increased.? For simple applica-
tions such as connected digit recognition, a negligible contribution from
Py () is just as well since, in general, (3.12) will not provide a useful
approximation to the “true” language model. For larger applications, how-
ever, the use of a good language model becomes essential, which means that
more sophisticated search techniques will have to be used.

3.4.2. Viterbi search with partial backtrace

One problem with the Viterbi decoding technique described in the previous
section is that if it is applied to the recognition of a complete sentence, no
word can be recogniz.ed before the end of the sentence. For recognition of
short sentences, this may not be much of a problem. For some applications,
however, this can introduce unacceptable delays. For example, some HMM-
based wordspotting systems [ROHL 89, GISH 90, ROSE 90] use looped
models of the type illustrated in Figure 3.5 to recognized keywords in

SA special case of bigram language model is the word-pair model, in which all probabilities are ei-
ther 0 or 1. Clearly, the complex relationships between words in natural language cannot be reduced to
simple bigram probabilities. Nevertheless, bigram language models can be quite effective in many
simpler applications.

"The potentiol uscfulness of a language model is usually expressed in terms of the reduction in per-
plexity that it allows. The perplexity is a measure of perfurmancc of a language model on a given text
w [KUBN 90]. It is given by S(w) m P(w)“f" where n is the number of words in w. Roughly speak-
ing, if the perplexity of a language model is §, then the speech recognition task is as difficult as it

would be if, at any time, S words were equally probable.

For example, in the Lincoln Lab system [PAUL 91], the best recognition rate on the resource
management task is obtained when the contribution of the bigram language model to the log likelihood
is multiplied by a factor of around 5.
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unconstrained speech.’

keyword N

silence

alternative

Figure 3.5: Looped model for wordspotting.

If Viterbi decoding is used, then a keyword will be reported spotted when the
path goes through the corresponding keyword model. “The problem is that
wordspotting is often applied to non-stop signals which are often several
minutes in duration. It does not make much sense to wait unti! the end of the
input signal to start backtracing the best path in the Viterbi trellis; for-
tunately, this is usually not necessary.

Using a technique called partial backtrace [ROSE 90], it is possible to report
recognized words as the Viterbi trellis is being computed. The idea is that
when the Viterbi algorithm is applied to looped models such as the one in Fig-
ure 3.5, there will eventually be a time [ such that the paths backtraced from
all trellis nodes at that time converge to a common node somewhere in the
past. Thus, the path backtraced from that node is common to all active paths
at time [ and all words on that path can be reported. For wordspotting

*In the looped model, the altemative model is used to model any non-keyword speech.

f

b
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application, this partial backtrace resulted in recognition delays usually not
exceeding 2 or 3 seconds [ROSE 90].

3.4.3. Beam search

When computation time Is important, it is possible to make the Viterbi search
faster by restricting it to the trellis nodes having a likelihood greater than
some fraction of the maximum likelihood in the given column. This is called
a beam search. Each time a trellis column [ is computed, the value P** of
the highest log-likelihood of any node in the column is found. Then, only the
nodes with a loglikelihood greater than P™** — A will be kept in the list of

active nodes (the other nodes are pruned).® The value A is called the bearm
width. The smaller the width, the faster the program will run. In large voca-
bulary speech recognition experiments, Lee [LEEC 90a] observed that the

computation time increased almost linearly with the beam width A1

In practice, however, a narrow beam will cause good paths to be eliminated
because of poor local acoustic match, which will result in deteriorated recogni-
tion rates. As Lee points out, when the overall acoustic match is poor, a
larger beam width should be used in order to allow the confusion to be
resolved later on in the search. This suggests using a search algorithm with a
variable beam width, although it is not clear exactly how this should be done.

3.4.4. Language models and N-best algorithms

As today’s applications become more and more ambitious (very large vocabu-
laries, continuous speech), it becomes quite difficult to have good recognition
based on acoustic information alone. Examples of factors limiting recognition
include acoustically similar words (not to mention homonyms), and word dele-
tions and insertions in continuous speech (especially small words). Many of

®The pruning strategy causes the search 1o become suboptimal (the maximum likelihood path may
not be found) and we say that it is not admissible.

"This experimental result cannot be generalized to all applications. Other researchers have found
computation time 1o increase more nearly exponentially with A,
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the errors will result in recognized sentences which are either syntactically
incorrect (even for speech) or meaningless, both of which could be detected if
an appropriate language model were available.

If recognition is performed using a frame-synchronous search on a looped
model, it will not, in general, be possible to take advantage of such a language
model during the search. An alternative solution, however, is to geﬁi*;ratc the
N most acoustically probable sentences (word sequences}" and to }éh‘oose
among them using the language model. The number N should be chosen such
that the true word sequence will be among the first N choices with high pro_lffa-
bility.}2 What is needed, then, is an algorithm that can find these N best;'%rd
sequences (the Viterbi algorithm is not suited for this task).

Two such algorithms have been introduced recently. The first one [SCHW 90]
is an exact algorithm (it uses all paths corresponding to the given word
sequence) in which N has to be decided a priori. The second one {SOON 90,
called the tree-trellis search algorithm is more computationally efficient. It
uses a modified Viterbi algorithm to generate exact heuristics that will be used
in a backward A* algorithm. The number N doesn’t have to be decided a
priori; as many sentences as desired can be generated during the backward A*

pass; however, it only uses the most likely path in each word sequence, so it
is not an exact algorithm.

3.4.5. The A* search algorithm
i

The A* algorithm is a depth-first search algorithm borrowed from the field of
artificial intelligence. In speech recognition, the A* algorithm is often called
the stack algorithm [JELI 76]. It is becoming popular in spcech recognition
because it does not have the language model integration problems of most
frame-synchronous algorithms. However, it is more difficult 1o apply since
partial paths of different lengths must be compared, which means that a func-

2This is only necessary in applications, such as dictation, where it is important that afl words be
recognized correctly. For many applications, such as database querics or dialogue systems [ZUE 90), it
is only necessary 1o recognize a number of words sufficient to understand the whole sentence.
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tion estimating the cost until the end of the sentence must be available.!®* The
tree-trellis search algorithm uses an exact function that was pre~computed by a
modified Viterbi search.!* However, this only applies to the acoustics. A
search using a language mode! would still need an evaluation function for the
languzge model.

3.5. Implemenfation considerations

3.5.1. Underflow problems

Looking at equation (2.7) for the forward trellis computation, we realize that
oy (i) decreases geometrically as ! increases. The same is true for the back-
ward trellis computation §; (i) as I decreases. For any practical speech appli-
cation, this will eventually create underflow problems, that is, trellis values
will become smaller than the smallest floating point value on the given com-
puter. This problem is usually solved either by scaling or by representing pro-
babilities by their logarithm. '

3.5.1.1. Scaling

The scaling procedure [LEVI 83, RABI 89c] is applied as follows. Column-
by-column, the forward trellis is computed as described in (2.7). The result of .
this computation is denoted & (i), with &y(i) = ag(i). However, after compu-
tation of each column, a scaling factor ¢; for that column is computed as

= f: & (i) (3.13)

i=0

where F is the [inal state. Then, cach element of this column is divided by
the scaling factor, resulting in

BIf the estimated cost is always smaller than or equal to the real cost, then the A* search is ad-
missible.

“In that case, the Viterbi search is done forward and the A® search is done backward. The op-
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where o;(f) is the original unscaled trellis. The quaritity oy (i) can be inter-
preted as the a posteriori probability of being in state / at time l, given the

observation sequence. This probability may be useful in wordspotting applica-
tions [ROHL §9].

The same scaling is done with the backward trellis §; (f), but this time we use
the scaling coefficients z; calculated in the forward trellis. Using o (i) and
B, (@) instead of o (i) apdi’ £; (@) in (2.10), we obtain

¢ Co(l ﬁ_? 7 ), :
Poy(t.y|m) = 1_ (1 )y l(:)_ {ft empty (3.16)
o - Coy_q(l; )g, b; (91)B; (), 1f ¢ full,
where .
L oy (F P
C=Tl¢ = LF) _ Pelylm) (3.17)

o Gy (F) a (F) U

From (3.16) and (3.17), we can now compute Pg (t,y|m}/Pg(y|m) as

T

posite is also possible.
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( Cla[(lg)qtﬁl(rt) if ¢ empty
M ] aI_,,(F) _ (3. 18)
Pellm) — |3at)ab o)A@
\ aL,(F) . ’ .

This scaling process should bring the probabilities of a given column to within

‘the dynamic range of the computer. In practice, scalin: iieed not be done at

every time instant (or for every column). Computing time can therefore be
saved by performing scaling only when necessary, leaving the scaling coeffi-
cients for the unscaled columns to 1.0. Note, however, that since the back-
ward trellis uses the scaling coefficients from the forward trellis, it is possible
to have underflow problems in the backward trellis even if the forward trellis
is scaled properly. This means that scahng should be done more often than is

' required by the forward trellis.

i

3.5.1.2. Logarithmic probabilities

1

" In some cases, especially with continuous HMMs, the dynamic range of pro-

babilities w1thm a given trellis column can exceed the range of floating point

numbers in a given computer. This means that there will be underflow prob-
.lems, regardless of scaling. In that case, one solution [BROW 87] is to use

logarithmic probabilities throughout the trellis computations. One immediate
consequence is that multiplications become additions, which, if anything, is an
advantage. Handling additions is slightly more complicated. Let p, and p, be
probabilities, with p, > p, and let u be the logarithm base. The problem of

computing log, (p-+p5) from log, p; and log, pz can be solved with the follow-
ing expression:

log, (P14p2) = log, py + log, (1 18Pz o8Py (3.19)

- Note that if log, p> — log, p, goes. below a certain value (which depends on the
~ number of significant digits available), then 1'%8%2 = 198P1 pocomes negligible

r_:dinparcd to 1 and the expression becomes simply log, (p;4p2) = log, p1.
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In practice, logarithms are usually expressed as integers, which allows all com-
putations to be performed using integer arithmetic. Thus, if § is the integer
logarithmic representation of p, then

p= llogup +0.5J, _ (3.20)

I

where lx] means the greatest integer smaller than or equal to x. Since integer
representation rounds the logarithm value to the nearest integer, an error of at
most 0.5 is introduced, which, if © > 0, means a maximum relative error of
100(1%3 — 1) percent. In our experiments, we usually take 1 = 1.001, which

_gives 2 maximum relative error of around 0.05%, or about 3.5 significant

digits. Also, we use integer values from -134217727 (our value for log, 0, or

- —oo0) to 0, which gives a dynamic range of over 58000 orders of magnitude.

‘Integer arithmetic also allows the computation of log, (1 + u'°%F2~ 10821 4

be implemented as a table look-up, using log, p; — log, P> as index. Thus, the

computation of log, (p1+p5) from log, p; and log, p» can be implemented with
at most two comparisons, one integer subtraction, one table look-up and one
integer addition.

Logarithmic probabilities can offer a much increased dynamic range at the
cost of some lost precision; however, experience shows that with FHIMMs,
dynamic range is much more critical than precision. Moreover, for most

applications, the increased dynamic range completely climinates the need for

scaling.}® Since most of our programs are much faster with logarithm probabil-
ities, we are now using them exclusively.

il
3.5.2, In-place computation of the trellises

[

The term central to most HMM-related-'bomputations is Pg, (t.y" |bi:,). Tt
appears in all MLE reestimation formulas, in the probability derivative

“Some applications, which require the trellis computations to be done on very long input signals
may require scaling to be performed from time to time even with logarithmic probabilities. For exam-
ple, wordspotting systems often fall in that category.

i~
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computations, and in all MMIE-related computations in Chapter 4. Recall
~from Chapter 2 that Pg ;(¢,y"|m,)} is computed as

oy (4 )g, 6y (re ) if ¢+ empty

PG,I (!,y" Imr) = CY[_,I(I, )q‘ b‘ (X}r)ﬂ[ (’_l )’ if ¢ full. (3.21)

Thus, in order to compute Pg,(z,y"|m,), both the forward and backward
trellises are needed. This, however, may be a problem since the trellis
matrices are typically the largest data structures in an HMM-based system.
Suppose, for example, that the system can process a maximum of 5 seconds e
of speech at a time. At a frame period of 10 ms, this means a maximum of
500 frames of speech. Suppose, furthermore, that the largest model in a task
has 200 st;{tes. Then, a trellis for this system will have a maximum size of
200500, 6r 100,000 elements. This means that if 4 bytes are used per trellis
clement, then 400,000 bytes of memory will be required for each trellis.

Now, although in practice, the probabilities Pg ;(¢,y"|m,) are usually needed
for all I and all ¢, their values can be corhputed in any desired order. This
allows computations to be carried out using a single trellis matrix M. In order
to see this, first remember that backward trellis elements §; (i) are computed
recursively in decreasing order of column number / and, within one column,
in decreasing order of state number i.!¢ This is illustrated in Figure 3.6. The
idea is to first compute the forward trellis, storing oy (i) in M[l,{], and then to
compute both the backward trellis and Pg;(z,y"|m,) in the backward pass,
storing fB; (i) in M[l,i] in the process.

¥Remember [rom Chapter 2 the assumption that for any empty transition r, we must have/, <r,
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Figure 3.6: Order of evaluation of backward trellis elements.

Suppose that somewhere in the recursion, the backward trellis element §; (i) is
the next one to be computed. This means that all matrix locations M[I',i')

“such that either I'>! or I'=l and i'>i{, contain backward trellis elements and

all other locations (in particular, M[l,i]=cy({)) contain forward trellis ele-
ments. From (3.21), we see that all values of Pg,(t,y"|m,) computed with

oy (i) can be computed at this time, after which £ (i) can be computed and: .
stored in M[l,i], replacing o; (i) which will not be needed any more. Moving

to the next backward trellis element to evaluate, the process is repeated until
the last element is reached.

N

/



4. MAXIMUM MUTUAL INFORMATION
ESTIMATION OF HMM PARAMETERS

4.1. Introduction

In HMM-based speech recognition, the purpose of training is to find the
HMM parameter set © which will result in the decoder with the lowest possi-
ble recognition error rate. This is done by maximizing some objective func-
tion R(©).

There are two important and dutlcult problems to consider. The first is to
determine a meaningful obJectlve function. This function should be such that,
whenever R(©) > R(©), then & produces a better decoder than ©. Once a
ffuncnon R(©) has been chosen, the sev ond problem (the estimation problem)
!is to find the parameter set © which maximizes it. These two problems are

"mterrelated An objective function is useless if it makes the estimation prob-

lem impossible. Also.to be considered is the fact that a typical HMM param-
eter set usually has several thousands of parameters, which makes it very
unlikely that a globally optlmal © will be found. This means that even with a
good function, it is possible to have poor results if the estimation procedure
converges to a bad local maximum,

By far the most common HMM parameter estimation technique is MLE which
we described in Chapter 2. Its most obvious quality is the existence of a rees-
timation formula f(-) such that, if © = f(©), then we will have R(6) > R(©),
with equality only when © is a local maximum:{or, possibly, a saddle point) of
R(©). In practice, very few iterations are necessary to obtain the desired
results (usually under 5). - The existence of this reestimation formula is the
main reason for the introduction of HMMs in speech recognition, and it is
also largely responsible for their success and popularity. Recall from Chapter
2 that the objective function typically used in MLE is

78
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R(©) =[] Pe(y"|m,), 4.1)

where, as before, m, =m,, is the model corresponding to the rth observa-
tion sequence ¥". Thus, MLE tries to increase the a posteriori probability of
the training data, given the model corresponding to the data. The models not
corresponding *n the data are.never taken into account. It is not intuitively
obvious how (4 1) relates tc . ob]ectlve of reducing the error rate, A tenta-
tive explanation was offere ~y'Nédas [NADA 83], who has shown that, if
certain assumptions are met, (4.1} will, in fact, produce the best decoder. As
mentioned earlier, these assumptlons are, however, always violated in any
practical speech recognition application.

More recently, a different type of estimation, maximum mutual information

estimation (MMIE) has been proposed [BAHL 86]. The objective fuiction
used in MMIE is

PB@rlmr)P(mr)
3 Po” lmw)P(mm) (4.2)

R(©) = I'IPe(mrly’) H

where we have assumed that the language model P(w)=P(m,,) is available and

where ¥ means a sum over all possible word sequences in the application.
114

MMIE tries to increase the a posteriori probability of the model corresponding
to the training data, given the data. Since this is also the probability used in
MAP decoding, the relationship between MMIE and error rate is much more
intuitive than it is with MLE. Unfortunately, contrary to MLE, therc are no
known reestimation formulas with theoretically proven convergence, which
means that general purpose optimization techniques such as gradient descent
are usually used. This is a problem because convergence can be quite slow

and each iteration of gradient descent is at least as expensive as a standard
Baum-Welch iteration.

There have_been attempts at empirically justifying the use of MMIE, usually
using very simple experiments where all the parameters are known. Some of
them [BROW 87, NADA 88] demonstrate that, for certain types of estimation
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problems, MMIE will converge to the optimal decoder even if incorrect
modeling assumptions are made, while MLE will not. These experiments thus
tend to demonstrate that MMIE is more robust than MLE to incorrect model-
ing assumptions. Since most of HMMs’ modeling assumptions about speech
are plainly wrong, this seems to be an argument in favor of MMIE. It is,
however, also possible to build simple experiments [GOPA 88] in which nei-
ther MMIE nor MLE will converge to the optimal decoder, but another type
of estimator will.

It is not at all clear how the results of these simple experiments apply to prac-
tical speech recognition problems Optl.mzatlon algor\thms will not,: m geP-
eral, converge to the global optimum, and in any case, xt is probabty not pos-
sible to realize an HMM-based optimal decoder for speech: (ecogmtlon “In the
end, the most convincing justifications for MMIE are probabn, oomg to come
from experimental evidence. s

There have been a number of comparisons between MLE and MMIE over the

past few years. The IBM speech recognition group was the first to report
results with MMIE [BAHL 86]. In their case, MMIE allowed them to reduce
their error rate by 18% in a 2000-word speaker-dependent isolated word recog-
nition system. Shortly thereafter, Brown [BROW 87] reported improvements
from using MMIE for isolated word recognition of the e-set; however, he
found that MMIE actually degraded results with discrete HMMs. He
explained this apparent contradiction' by the fact that, since discrete distribu-
tions don’t make uny assumptions, there is nothing to be gained from MMIE.

Merialdo [MERI 88] successfully applied MMIE to speaker-dependent
phoneme recognition in continuous speech, using discrete HMMs. He
accelerated gradient descent convergence by biasing the gradient expression in
order to reduce emphasis from the low-valued discrete probabilities. In addi-
tion, by also using for training the looped model used for recognition, he
avoided having to approximate the denominator of (4.2) by a small number of.
terms, as is often done in practice [BAHL 86, BROW 87]. More recently,
Chow [CHOW 90] marginally improved the performancc of BBN’s BYBLOS
system on the DARPA resource management corpus by usmg MMIE to esti-
mate codebook exponents. '
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From this short history, it is not possible to draw definite conciusions regard-
ing the usefulness of MMIE. This thesis will demonstrate that, in some situa-
tions, there can be real benefits from MMIE. Before we do this, however,
this chapter will explain the MMIE theory and describe the estimation tech-
niques used in the experiments. 7

4.2. Basic concepts

Let W be a random variable designating the message (words, phonemes, etc.)
in some spoken speech and let Y be the random variable designating an obser-
vation sequence. Let w and y be possible outcomes of W and Y, respec-
tively. Using a communications theory viewpoint [BAHL 83], we can say that
a message w is encoded into y. A measure of the average amount of uncer-
tainty about W, given the knowledge of Y is H(W IY) the conditional entropy
of W given Y, is defined as

HW|Y) =~ 3 P(w,y)log P(w|y) =— Eflog P(w|y)] . (4.3)
w.y

In any speech application, the “true” P(w|y) is unknown. In our case, we
approximate it by an HMM-based parametric distribution Pg(m,, |y), where ©
is the HMM parameter vector and m,, is the model corresponding to w. Yf_e.
have

He(W 1Y) =- Ellog Po(my )] =— 3 P(w.ylog Pe(myly)
w0,y

Pg(m,|y)

= ;?j'y P(w,y)log “Pary) Ey P(w,y)log P(w |y)

Z—E,,P(w’ {—;((—%-)— }+H(W|Y) HWIY), (44

where we used the fact that log x <x—1, with equality only when x=1. Thus,
in (4.4), we have equality only when Pg(m,, |y) = P(w|y). This means that
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minimizing Hg(W |Y) attempts to make Pg(m,,|y) as similar as possible to
P(w |y). Since P(w,y) is unknown, Hg(W |Y) can only be estimated. This is
done by replacing the expectation in (4.4) by the sample average

. 1 XN 1 N
Ho(WI¥) =~ 3} log Pe(m, ly") =~ log I] Polrm, Iy, (45)
re=

rwl

where m, =m,,_ is the model corresponding to the rth sequence in the train-

ing set T ={(w,,y"),r=1, -+ ,N} and N is the number of Séquences in T.
~ For historical reasons. estimation of HMM parameters aimed at minimizing

He(W 1Y) above is called maximum mutual information estimation (MMIE),
To explain this, let us first define the average mutual information I(W;Y)
between the words spoken, W, and the corresponding observation sequence,
Y, as

) = Pw.y) _ P(w|y)
IW3Y) = 33 Plwisliog 53005 = 5 P yyog o8

=H(W)—-H(WI|Y), (4.6)

where H(W) =Y P(w)logP(w) is the entropy of W. Assuming that P(w)
w

(the language model) is known, replacing P(w |y) by its HMM estimate, and

using sample averages instead of expectations, we obtain '

To(W:Y) = >’fi log Pw,) — He(W |Y) ; @7

so that maximizing /o(W;Y) with respect to © is equivalent to minimizing

There is another interpretation of MMIE that is offered by (4.5). Assuming
that all pairs (w,y)ET are independent, MMIE aims at maximizing the a pos-
teriori probability of the “good models”, given their observation sequences.
This probability has to take all models into accoyt, which makes MMIE
much more coiplex than MLE. To derive ‘4" parametric cxpression for
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Pg(m,, |¥), we can use the probabilities as defined in Chapter 2 to obtain

Pe(ylmw)P(w)
5, Po|m ,)P(w’) * (4.8)

Po(m w |y) =

which, combined with (4.5), gives the objective function R(6) in (4.2).

It is important to realize here that, from the MMIE point of view, we are only
interested in Pg(m,|y), which, as expressed in (4.8), is really a parametric
family of probability distributions, with parameter vector ©. The functions
Pg(y|m,,) and P(w) are of interest only to the extent that they are used in
(4.8). In fact, they don’t even have to be distributions. This is going to be
important later on when modifications are introduced to the expression used

to compute Pg(y|m,,) which will result in it not retaining the propertics of a
distribution.

It has always been clear that, because of the frame independence assumption
inherent to the HMM formulation, Pg(y|m ) is a very bad approximation to

P(yjw). It is hoped that Pg(m,,|») in (4.8) may, in fact, be a much better
approximation to P(w |m).

4.3. MMIE in practice

For several reasons, using MMIE is much harder than using MLE. Let R(©)
be the criterion to maximize in MMIE. Then, from (4.5) and (4.8), we have

 Poylm,)P(m,)
RO =1l S5 G ma)Pme) (“.9)

’ \ !

One thing that makes MMIE harder is the sum over w in the denominator
which can have a very large (but always finite, in practice) number of terms.

Let us define a model m,, such that Pg(y|m,,) =3 Pe(y|m,)P(m,). It
w ’

Y
.
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is always theoretically possible to design such a model by having every possi-
ble model m in parallel, with an initial state from which an empty transition
goes to the first state of every model, and a final state to which an empty tran-
sition from the last state of every model goes. Setting the probability of the
empty transition from the initial state to every model m to P(m) results in the
desired model. Because of its sheer size, however, such a model will usually
be unwieldy to use in practice.

It may be possible to use graph reduction techniques which remove redundan-
cies to reduce the size of the model somewhat, aithough doing this without
modifying the language model probabilities will be very difficult. In some
applications (such as connected digit recognition) for whick the language
model is secondary, it may be possible to create a very compact model m,,

in which there is a path corresponding to every path in every possible model
m in the application. One example is the looped model used for connected
digit recognition (see Figure 3.4). In general, if recognition is done by apply-
ing a Viterbi search on some model m,,,, then the same model could be used
for the denominator of (4.9); however, such a model could be much too big
for a practical implementation of MMIE training.

If it is not possible to build a satisfactory m,., of a reasonable size, then the
denominator of (4.9) will usually be approximated by using a much smaller
number of models [BAHL 86, BROW 87, CHOW 90]. In this case, the sum
should be taken over the most probable models, which can be determined
using a so-called “N-best” algorithm [SCHW 90, SOON 90]. -

Another reason why MMIE is harder is that there are no reestimation formu-
las of the type derived in Section 3 for MLE. This may impose the use of
general optimization techniques such as gradient descent, in which the gra-
dient is computed as —

,,
i



dlog R(6) _
od -
' aPe@'lm) 1
5 1 OPg(y"|m,) E’P( ) (4.10)
2 | Po’im,) 90 EP(m)Pe(y'IM) K

#

where @ is one of the parameters in © and the expressions for the partial
derivatives can be obtained from Chapter 2. Using m,,, (4.10) reduces to

dlog R(©)
oo -
1 oPely’|m,) 1 OPoly |mgen)
- : 4.12
; Pe(yrlm") 90 Pe(yrlmgcn) o0 . ( )
4.3.1. A reestimation formula for discrete HMMs

- Traditionally, MMIE training haf?"been done using a gradient descent on
—logR(©), which, because of slow convergence, can be very time-consuming.
Recently how=ver, Gopalakrishnan et al. [GOPA 89] introduced the following

reestimation formula for rational ob]ectwe functlons (such as R(©)) associated
with discrete HMMs:

[810 Blog R(©) ]

(4.12)

Blog R(e) . D]

‘n‘ - N -
. where thb sum 1s taken over a‘“parameters belonging to the same distribution

" asf@and D is a Constant to be dctermmed Using (4.11) and (2.51), we have,
for discrete output probablhtles :

s
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dlo ag(e = %(CU —Csm) ’

(4.13)

where ¢, represents the standard MLE count for parameter § and c§** is the
corresponding count obtained using the general model. That is, if 8 is the

parameter corresponding to p(k |b), then

=% P (ty"|m,) ,

r Glbmb) (lyr=k) Pol|m,)

gt =3 Pe,l (r:yrlmgcu)
7 (tlbmb) Qyi=k) Po(|mgen)

Let us define a quantity ¥ ;(t,y") as

_ Pe,l(‘syrlmr) _ Pe,l(tsyrl,,'fg?en)

'Pe,z (t Y r) =

Then, from (4.12) and (4.13), we obtain

Yo, (£,9") + Dp(k|b)
r (t1b,=mb) (I|yfmk)

Pom) | Poly my)

pk|b) =
E '»be,t(f:yr) +D

k' \r (t)b,mb) (I|yi=mk")

(4.14)

(4.15)

'4,16)

What needs to be determined is the value of D. It is clear from (4.16) that
the greater D, the less p(k |b) will differ from p(k|b); thus, for fast conver-
gence, D needs to be as small as possible. Gopalakrishnan et al. have shown
that there is a value D(©) such that, for any D > D(©), (4.16) is guaranteed
to converge. However, as we shall see, D(©) is usually so large that using
D > D(©) renders (4.16) practically useless. For smaller D, there is no
theoretically proven convergence; however, Gopalakrishnan ef al. report that

using SR
A S
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D = max {— @%(Q)_’ 0}-!- €, 4.17)

where ¢ is a small positive constant, results in {ast convergence. Even though
our experiments using (4.16) with (4.17) also consistently demonstrated con-
vergence, we generally found that convergence was t0o slow to be useful. Fol-
lowing an argument of Merialdo [MERI 88], we conjectured that by removing
emphasis from the low-valued parameters in the gradient vector, convergence
could be improved. Merialdo had found that when a parameter 0 is very
small, the division by @ in (4.13) often causes the corresponding gradient coor-
dinate to have a large magnitude. The consequence is that search is often
concentrated on coordinates corresponding to very low-valued parameters, but
since those values are small, they are also unreliably estimated. Meriqldo
argues that the search should put more emphasis on better estimated, high-
valued parameters. |

In his gradient descent based MMIE training experiments,ﬂMerialdo improved
convergence by replacing (4.13) by

JogRO) , ¢ cf”
ae 3 cg N ’ (4.18)
Feb(0) ¥'eb(0) -

where the notation Y] means a summation over ail parameters ¢ belonging
&eb(d)

to the same distribution as §. We observed similar 1mprovemcnt in our own
MMIE training expenments Wlth gradient descent. We naturally thought that
(4.18) could also improve convergence when (4.16) is used instead of gradient
descent. This proved to be indeed the case. All our experiments demonstrate

that convergence, indeed, is dramatically improved.! We experimented with
different variants of (4.18) bascd on the same idea and observed similar con-

vergence behavior. In all cases, however, as R(©) gets near its optimum (1 0),
divergence is often observed.

[

See Chapter §
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4.3.2. The Corrective MMIE training algorithm

The Corrective MMIE training algorithm, based on the above results, is initial-
ized with the HMMs obtained after a pre-determined number of MLE itera-
tions. Subsequently, each iteration is a two-step process. First, recognition is
performed on the training set and then reestimation is done using only those

sentences that were incorrectly recognized. The set of incorrectly recognized
strings is called the reestimation set. The aim here is to correct as many errors

as possible from the training set, hoping that this will improve results on the

test set.,
i

'l
F

Note that for correctly recognized sentences, the two contributioris to the

counts in (4.14) will be similar so that their effect will tend to cancel out, leav-
ing most of the contribution with the incorrect ones. In practice, thé results
obtained by training only on errors are similar to the ones obtained b} training
on the full training set, but at 2 much lower computational cost. Reestimation
is done using (4.12), (4.17) and (4.18), and the HMM parameters obtained are
smoothed with the ones from the previous iteration using a weight that is
dependent on the number of errors in the training set.

4.3.3. Extension to Gaussian densities

The reestimation formula (4.12) only applies to discrete distributions.” It is
known [BROW 87], however, that MMIE can result in substantially improved
recognition results when continuous HMMs are used. It would thus be useful
to have an equivalent of (4.12) for continuous densities. This scction exam-
ines this problem for the case of diagonal covariance Gaussian densities.
These densitics can appear by themselves; as part of a Gaussian mixture in
CDHMMs; or they can appear as the tied continuous densities in SCHMMs.
For this section, we consider the simplest case, that of a single diagonal Gaus-
sian distribution. Application of the results to more complex Gaussian-based
distributions is relatively straightforward.

*This includes transition probabilities, as well as the weights used in mixture distributions.
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4.3.3.1. Looking for the fixed point

It is possible to gain insight into the reestimation problem by simply taking the
derivative log R(©) with respect to its parameters and setting them equal to
zero. Let y; and o; be parameters of a diagonal Gaussian distribution b.
From (4.11), (2.55) and (2.56), we have

FgRO) _ v 5 Sy ) LZE 4
Ay 7 (¢|bemb) im o

L, s )2
RO _ 5 53 B e+ LAY )

o; r (|bmb) f=l o; 0;3 ’

where yj; is the ith parameter from the /th observation vector in y". Setting
the derivatives to zero and solving fér 44 and a;%, we obtain: -

b
1

P Z Yo, (8,37 ¥

. r (¢|b,=b) l-l
THREE R (4.21)
E Yo (t:9")

i 7 (t|bieb) iml

A

PP 5ot O —uP
2 = ~¢o=b) N )
2 Yo,1 (£,5")

r (t]|bymb) iml

Since the unknowns appear on both sides of (4.21) and (4.22), these equations
don’t offer a solution to the estimation problem. They are, however, interest-
ing because they suggest a recursion that could be used in the estimation pro-
cess. Unfortunately, not only is there no proof of convergence, but, since
g, (£,¥") can be negative, there is not even a guarantee that the variance esti-
mate is positive.

4.
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4.3.3.2. A heuristic reestimation formula

A Gaussian density can be approximated with arbitrary precision by a discrete
distribution, Let b; = N(y,0;,4; ) be the ith one-dimensional Gaussian density
in the diagonal Gaussian density b. Partition the real axis (domain of the den-
sity) into  three  non-overlapping intervals I, = (—oo, i;—vg;),
I =[w;—vo;, p;+vo;] and I3 = (g +vo;, +00). Choose v such that all points
Ofilr=1,+ -, N)J=1,- -+, L.} in the training data fall in the second inter-
val I,. This is always possible since the training data is available and the
range of y[; is finite. Now, let us partition /5 into M non-overlapping sub-

intervals I, k=1, ...,M of width A =2po; /M. This construction is illus-
trated in Figure 4.1.

=
]
§
pl
=

. pevo
n I2 13

Figure 4.1: Construction described in the text.

Given a continuous random variable Y;, we can define a discrete distribution

by the M probabilities a; (k) = P(Y; € I, ) and we can set these probabilities
to

Ny .0 ,4)A

() =
% (k) %N(}Tksq'»ﬂi)A ’
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where ¥, is the mid-point of the interval I;. Each of these probabilities
corresponds to the surface of the corresponding bin in Figure 4.1. It is easy
to see that for any y€l, 51210 y =¥, and

im N ,05.8) = N0:54)  (422)
lim Sk_,‘ N ,0im)A=1, (4.23)
=00

which means that for any & and any y€l,,, we can find A and v such that
a; (k)/A approximates b; (y) = N(y,0;,u;) with any desired precision. Let the
par{itions be the same for all densities and let k(y) be a scalar quantizer map-
ping y to its partition, that is, if y€ly;, then k(y)=i. If, in Pg(y"|m) and
Pg,(t,y"|m), we replace Gaussian densities N(y,0;,4;) by a;(k(y)), we get
Pg,(¥"|m) and Pg, ;(¢,y"|m), where ©, is the parameter vector of a discrete
HMM. Observe that

Po,i{t:"Im)  APg(t.y"Im)  Po,(tyIm)

51-?52 Pe;(y"lm) a ALrPeb’rlm) Peorlm) , (4.24)
lim Po,(y"|m,)P(m,,) _ Po(y"|m,)P(m ) '
,‘,‘_",:,?,Z Po,(y" |m )P(m ) - 2' Po(y' |m)P(m ) (4.25)

This means that, in the limit, the MLE counts for the discrete HMMs are the
same as the counts for the continuous ones and that R(8;) = R(©).

Using these observations, we can make a heuristic extension of (4.12) to the
case of diagonal Gaussian densities. The idea is that, with (4.12), we can use
MMIE to obtain new discrete probability estimates d; (k), from which we can
get an estimate of the new mean and variance as

B = lim 5 4; (k)7 &%= lim 34 K)F - ).
—0 7 A—0 k

Vb OO V=00

' (4.26)
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Since it will usually not be the case that 4;(k) oc N(¥y ,&;,iy ) for any & and
i, it is difficult to determine exactly what (4.26) computes. In fact, what we
have is a discrete distribution obtained with MMIE, from which the parame-
ters of a Gaussian density are computed using MLE. Nothing guarantees that
this will in fact increase the MMIE function R(6). Nonetheless, it could lead -
to a useful expression. Observe that

EEO % a;(k)Wr =t (4.27)
: LNV 2 = 2 2
gl_% % a; (k)yk "+ . (428)
Y—oo
Using this with (4.16) and the fact that Aimo Yii =7, (4.26) gives
Ly
( Ibznb) 121 Yo, (6.¥") ¥ + Dy
r ()b, - i
B = (4.29)

L, -
S Y Y te,ty)+D
r {t|bmb) i=1 j

and

r'i“
Lr :’bq =
3D, veuto )i +0(a 4]
[0 - 2]
&%= » — . (4.30)
> N Yeulty”)+D

r (t)by=b) tml

{;
Several observations can be made here. First note that the reestimation for-

mulas do not depend on the actual value of A used in the approximation.
Note also that the variance estimate is not guaranteed to be positive so D
must be at least as large as the minimum value that guarantees a positive esti-
mate,

In our experiments, we start from the value for D that guarantees a positive
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denominator and we repeatedly double its value until all estimates (4.30) are
positive. The value we use is twice this last value. We observed fast conver-
gence in all our experiments with (4.29) and (4.30).

4.3.3.3. Revisiting the reestimation formula

Even though (4.29) and (4.30) experimentally exhibit good convergence pro-
perties, the heuristic derivation used in the last section is not really satisfying.
This section proposes a new derivation for Gopalakrishnan’s formula (4.12),
which will allow a formal extension to the continuous case.

For this section, new definitions are needed. We use £ to designate any
sequence of transition components, regardiess of whether or not the sequence
could have been generated by any model in the application. For example, if
there are a total of N transitions components in the application’s parameter
vector, then there are NZ such sequences of length L. We say that a
sequence ¢ is a possible sequence if it covld have been generated by one of the
models in the application. Otherwise it is called an impossible sequence.

We must also introduce the concept of a discrete distribution component,
which refers to one of the elements of one of the discrete distributions in the
application. If X is the size of the discrete alphabet, then a discrete distribu-
tion has X such components, each of which is associated with a different
alphabet symbol. Each component a belongs to one and only one discrete
distribution b, which we express as a€h. We use b(a) to the designate the
distribution to which a belongs and k(a) to designate the alphabet symbol &
associated with @. If there are B output distributions in the applications using
a size-K alphabet, then there are BK distribution components corresponding
to that alphabet. The probability associated to a is p, = p(k(a)|b(a)). For
any distribution b, component probabilities must respect the constraint

3 p, =1. We use a to designate any sequence of distributiori components.
a€b

To any sequence @ correspond not only a unique sequence of distributions,

but also a unique observation sequence y. Again, we can distinguish between
possible and impossible sequences.
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Finally, let:

L, be the length of ¥ (and also the minimum length of any transition
sequence having generated y")

L be the maximum length of any possible transition sequence having gen-

erated ¥~

"  be any transition sequence corresponding to ¥", possible or impossible.

Note that P(#"]Jm) will be zero if # is not a possible transition
sequence in m.

L, be the length of #', a transmon sequence having generated »". In what
follows, we assume that L, < L, <LP»=,

be any sequence of discrete distribution components corresponding to
¥" (This correspondence only affects the length of the sequence. Only
one such sequence is a possible sequence)

a; be the /th element of @

Let us assume that there are N repetitions, that is, r can take values from 1 to
N. We want to maximize

N Py |m,)/Pa mgen)
r=] Pe(y']mr)/Pe(qugm)

(4.31)

with respect to the parameters of ©. It is rclatwcly easy to sec that this is
equivalent to maximizing

F(©,0) = H Paly'|m,) — I’!I Pe(y"|m,)

r=1 r=1 Poly’ ]mgcn

) Pé@r Imgen) . (432)

This is a very complex expression. In order to be able to work with it, we will
have to express it differently. First, observe that since discrete_distributions
are normalized to unity, both }]¢,=3 4, and 3 p, =3 p, are constant

T a a

.
expressions; this means that
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Aot oo}

is also a constant. Maximizing an expression with a constant added to it is the
same as maximizing the expression itself. Hence, maximizing (4.32) is the
same as maximizing

F(6,8) = [T Pat"|m,) — 1] Pely'|m,)

_ Pa(y" |m + DA , 4.33). .~
r=1 rml Pe@rlmgen) 6 l gen) (

where D is a constant to be specified later. Now, note that A can be rewrit-
ten as

A= £ 3 an:,«npap L @

gloo o ¥ a’ v a¥ rul iwl

where the notation 2 means a sum over aIl p0551ble combinations of
rl .. tN

{tt-- - tV}. Let us define §(¢,a|m,y) to be 1 if # and @ are possible given
both model m and output sequence y, and 0 otherwise. Then, using (2.4), we
have e ‘k/"

[T Pe’Im,) = IT {E 2 it".a"|m,.y") H @, H p(w ]b:.)}

Pl r=1 jm]

P REEDIDIEED 1’1 &, ’lm,,y') H a, HPO:Ibr)

t! N a¥ r=1 iml
= 3 2 I'[tf(t’.a"lmny’)l‘Iq,i Hp(y:[b,,) (4.35) -

le. ‘N a r=1 i=1

This means that, using (4.34), (4.33) can:be written
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F'(e,e) = 2 2

t""t"a:"'GN
N ror r u Péb'rl ) r.r r T
[T 8,6 m, ) ~ T 520 b0 Imgen.9") + D 11 TH 4 TT o
real r=% S(y I gen) Fml im] lual
. N ‘ 5
= ¥ I Fritdel,0), (4.36)
t'...t"al-..aur'ul

where, in order to lighten the notation, we used t{v =t - t¥N and

a¥=a!---a", and where

Ft)al,6,6)=
. ; 1/N
T a7 im, o) — 1T 2220 07l ) +D} Tia Ti .
rm] ’ " re=1 Pe(y”imgeu) ’ gen o .:-l i af -

(4.37)

Note that

N
F(8)= ¥ ¥ IIF.tal66)= (4.38)
gree ¥ gl gV pal .

N
If we choose D >[I Pe(y"|m,)/Pe(y"|mg,), then F(reN,al,6,0) is

r=]
always positive and maximizing F'(6,0) becomes equivalent to maximizing

op F0.0) _ > > ﬁ F'irt).al,0,0) F(r ti,al,ee)
SF®8) T Fp St wa i FO8) F( 41.al,6,6)
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N F@tY.al6,0) N F('.t).al 6,0
?.. 2 2 (0.0 og H ' N
‘l...tu 8""0” r'm] - F( ’ ) el F(r ’tl ,al ,e e)

(4.39)

Using the fact that

N F'(r tl ya ,e e) N p F l" qgr

L,
lo - lo + log —
& I:Il F@t.al,6,6) r'z-31 :gi & Pa; r'z-;x ;Z-:l & ar’

equation (4.39) becomes

o F'(6,6) )
BFOO) =%

LI ;3

N §¢t,a"|m ,y’) L, L, Pag N Lr Gy
DA" H t.f].-.[paf 22108_+220g_'

rwll'=] al el i'=1 T4

rm]

5 5 N Po(y'|m,) &t .a"|mgen.y") L H . HP
e tVNal - gV r=l PG(yrlmgen) DA d of

im]

N L. p 41['

P=il'=l  Paf  pal ml 4

lL‘r L, N p l"' ér
+ 5% Lledie|S Seest s g 2L .

teothagleoig HSS| Iml Pel Pl af el 'l

(4.40)

Equation (4.40) is a three-part sum, in which every part is divided into a sum
over distribution components and a sum over transition probabilities, Distri-
bution components and transition probabilities can be optimized separately.
We will only consider distribution components, First, let us look at the first
part of (4.40). We have .

0
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Da N Lr N N‘s(tr:arlmr’yr) Le L,
Zlog— ' 9 a
LRI R et a7 et £ 9182

Py N 1 Poy(t.y"im,) n
=Slg -3 3 = I Pely'|m
Pe /21 plyf=k(a)) Glaeb) DA Po(y" |m,) 1:11 ob"lm,).
(4.41)

The development for the second part of (4.40) is similar and left to the
interested reader. Now, for the third part, observe that, in the case of distri-
bution components we have

NL:' p"

DY %an,;npafzzmgp

et glo. g¥ rml jml  lml rlel "=l

b~
A S

1 X 3
A R g T1 por log =
A rgl V=l ? #! .; N (Cl Hlaf"'a} I’I-Il ll:Il fig H af Pa
L &5 L. Pa
=IE 2 2 2 Hqu.HHPa'log_'
Pumlf'ml g gl gV (“ "Iaf-n) rei jel i Imi Pa
N pﬂ' pa
= L ] lo . |
rgl r g Pa’ & Da - (4.42)

This means that for discrete output probabilities, we want to have

Pa | N Por(ty l
Zlog — 2 P (yr mr)
Pa | F2t @lyfakta)) Glack)| Po®" |m r.Hl o0l

Pe.l'(t:yr,lmgen) N Pe(yrlmr)

- g Paoy"|m
Pe(y' Imgen) rml Pe(yrlmgen) e(‘y I gcn)




+ DA f; L, 22 lso. - (4.43)
r'ml Zpﬂ'

al

. N e
Then, dividing everywhere by the constant ] Pg(¥"|m,), and déiining a new

=l
constant D’ as i
N
DAY L,
[ r'=1
D' = N ’ (4.44)
' [2 pa’] H Pe(‘yrlmr)
a’ rm}
{4.43) reduces to

. p N . ‘ , ,
Elog-—a-{E 5 > Yeulty )+Dl’a}
a a  \r=1 (t]aed;) (I |yf=k(a))

1N
=Y 2 log — 13
b aeb

P { > >, %,x(t,y’)-i-D'pa}BO. (4.46)
a8 \rel (¢|b,mb) (¢ ]|yfwk(a))

Using the notation from Chapter 2 for discrete probabilities, (4.46) can be
expressed as

ZE‘%W[’) i S Y tYey(ty")+Dpk|b);>0
5 % pklb) | o 55y 4 2 (4.47)

=1 (t|bymb) (yf=k)

Using the constrained 0ptimiznti§11\1 technique used for the MLE case, we find
the following reestimation formula:

DINEDY Yo, (6,¥") + D'p(k|b)
rml (t|b,mb) (1]yfmk)

g{i PIEED) ¢9,,(t,y’)}+D'

F=1 (¢|bymb) (1|yf=k)

pk|b) = , (4.48)
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which is the Gopalakrishnan reestimation formula. Now, suppose as before
that p(k|b)/A = N ,0 .1 ), that is, p(k|b)/A is an approximation to a
Gaussian densityi-"' Then we know that as A —0 and v— oo, the discrete
counts in (4.47) become equal to the continuous ones. Suppose further that
we also want p(k |b)/A = NG, .04 ). As before, ¥ is the mid-point in the
kth interval. Using (4.47), we must maximize

F(fty .0y 18,05 ) = lim 3] {—log & — M
3_.";2 k 23‘52
{E > 3 Yeut.y)+Dplk Ib)} (4.49)
r=1 (t|b,=b) (I|yfek)

with respect to /i, and &,. Taking the derivatives with respect to 4, and &,
and setting them equal to zero, we have

aF(ﬂb :&b sy ,O'b)
Ofty
] N r (vk'_p' )
=}gm02{2 I ¢el(fsy)+DP(k|b)} b
A=0°%" [r=t (¢ |brmb) (11yfek) &, 2
(}’t—ﬂb) ty — 1y )
-3 ¥ 5 Vo (19") = wple =) (4.50)
r=1 (t)b;sb) | &,
aF(pb :&b 2 :a'b)
0y

=lim2{§: > % ¢e,t(f:3")+DﬂP(k|b)} ;:‘f"fﬂ”"

A—0 T {ral (1]b,mb) (!|yfek) b &

V=00
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5

1 yP=l +

N
= > e (ty") [—— + -
r=1 (s Ig;-b) ! Op 0‘53

/

3

1 + 0p 2+ 1y 2 = 2up fyy + P12

=0. (4.51)

Solving the above equations leads to

L
, IbEb) 121 Yo (t.¥" ) yi +D'uy
I 'E -
[y = — -, (4.52)

L
S Yt ty)+ D

r (t|b=b) i=1

L ) ' 5
S5 Sty + 00+
2 r (l[b;ﬁb) l=] 2

Oy = L, e ﬂb 3 (453)
Y Y Yt y)+D

(t1b;=b) =1

which is what we had obtained with the heuristic development.

4.3.3.4. On the value of D

Little has been said so far about the constant D' used in the derived reestima-

tion formulas. As we mentioned, for the previous development to be valid,
N

we must have D > [] Pg(y"|m,)/Pe(y" |me.,). It is, however, clear from
rel

(4.44) that this makes D’ an extremely large number. This, in turn, means

that using (4:18) within its theoretically proven convergence region will make it

practically useless. Moreover, in the development for Gaussian parameters,

as A=), D'—o0, which, in effect, means that convergence is only proven for

infinitesimal steps. Thus, the reestimation formulas are in fact very similar to

gradients,
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Nonetheless, even if we cannot theoretically say anything about (4.48), (4.52)
and (4.53) when D’ is small, these formulas may have great practical value. It
turns out that indeed they do. All our experiments using a biased gradient in

(4.48) resulted in very fast convergence. Similarly, (4.52) and (4.53) have con-
sistently exhibited good convergence in practice.

4.4. MMIE refinements

In order to make Pg(m,,|y) a better model of P(w|y) and thus, hopefully,
improve recognition, it is possible to introduce refinements into (4.8). The
most obvious refinements are those aimed at reducing the effect of some of
the known deficiencies of HMMs such as the diverse independence assump-
tions (frame independence, codebook independence, etc.). Modifications
introduced into the terms used in the computation of Pg(y|m) will leave (4.8)
a probability distribution. '

4.4.1. Global codebook exponents

One of the simplest possible refinements appears in HMMs using multiple
codebook output distributions. In those distributions, it is assumed that the
parameter sets quantized by each codebook are independent of one another
and their probabilities are simply multiplied. This assumption is usually neces-
sary in order to have a tractable number of parameters to estimate. There are
two important deficiencies with output distributions of this type. First, the
parameter sets are usually not independent (though they may be relatively
uncorrelated) and second, they may not carry the same amount of information

about the speech heing modeled and so, may not have the same importance
for recognition.

Apart from modeling the joint distribution, which is not practical, not much
can be done about the first problem. The second problem, however, can be

‘tackled by weighting the contribution of each parameter set using codebook
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exponents,? as follows:
b@) = [P (e 16)1* (4.54)

where P.(y;) is the distribution associated with the cth codebook and X, is
the corresponding codebook exponent. There is an additional advantage to
(4.54). 1t has generally been found that transition probabilities have negligible
effect on the overall recognition process. Because of that, some systems sim-
ply don’t use them at all. The main reason, however, why their effect is negli-
gible is that the dynamic range of transition probabilities is very small com-
pared to that of output probabilities.* Moreover, as output distributions
become more complex (in number of codebooks, number of parameters, etc),
this difference in dynamic ranges increases. The )\.s in (4.54) can optimize
the dynamic ranges difference in order to improve the model.

Since we don’t know of any reestimation formula for the exponents, gradient
descent will be used to estimate them. Let us derive the derivative expres-
sions for the two following cases:

1)  Discrete with muitiple codebooks:
NC xe i
b(y) = 1'I1 [pc 0 |16)1™ - (4.55)
fed

Using (2.49), we obtain

'The term “codebook” is sometimes used to designate the parameter set quantized by a given
codebook. In that comtext, “codebook cxponent“ means that the exponent is applied to the probabili-
ty of the parameter set corresponding to a given codebook.

~

*This is similar to the m:sm:g-h between acoustic probabilities :tlnd language model probabilities,
which requires that the language inodel contribution to the log likelihond be multiplied by a certain fac-

tor. ‘This factor is usually determined empirically. MM[E is again a lgood framework for determining
that factor automatically, J]
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3 Py |m,) M
D 0B) PRI ey iy

PS,I (t’yrlmr) ’ (4'56)

oP r L,
_e_(gx;li_)- Zzpet(l‘,y Im )logpc(ygclb), (4'57)

t I=1
where natural logarithms are assumed.

2)  Multiple codebooks semi-continuous:

b(y) = H ZP(zclk)pc(ka) (4.58)

c-l -

We now have

OPely |m,) X Ly _Pe@elklpekld) s )
e (k1b)  Pe(k|b) ¢bmp it 35 Pe e 6P (K'16) o4 \y Mr.

A
RAGR o1y i E Yo,c (k |31, YPo (03" m,) (4.59)

where the =, . (k |y . ) is the same as in (2.60), and

APgly" |m,) L, . K.-1
__eb’_l___ = E E Pe,l (¢,y Imr) log 2 P ()_'I,c Ik)pc (% Ib:) . (4.60)
OX sfalt =1 k=0

Let « be a parameter of P, (y; . |k), then

3Pe(‘?r |mr) _
Ao -



105

Ly A OP. (y;,c |k)
do )

r 4.6
(:1:?-5) E Pc(Xl,c Ik) Tb,c k IXI.c)PeJ &y lmr) (4.61)

4.4.2, Frame-dependent weighting

One of the weaknesses of HMMs as speech models is the fact that all speech
frames have the same weight in the computation of Pg(y" |m,). This clearly
cannot be correct; we know intuitively that linguistic information is not uni-
formly distributed across the speech signal. For example, there is much
redundancy in long vowel sounds and each frame from that vowel probably
carries less information than frames from, say, a plosive. In order to deter-
mine how much new information y; carries, however, previous observations
have to be taken into account.

Suppose we have a labeler «(y) which classifies a speech frame into a number
of categories, according to some criteria. This labeler could, for cxampie, be
based on prosodic information. In particular, information about stress might
especially useful. Indeed, it has been found [ZUE 85] that, in addition to
being more robust, acoustic observations around stressed syllables contain
more information about the words spoken than those around unstressed syll-
ables.

We can use that labeler to weigh the contribution of each speech frame y; in
the computation of Pg(y"|m,) according to the category (y;} to which it was
assigned. This could be done by expressing output distributions as

b(y) = b)Y, (4.62)

where i)_(x,) is any standard output distribution and A(k(y;)) is the weight
applied to EQ,). If Mx(y;)) =0, it is easy to see that the larger A(x(y;)) is,
the larger the contribution of y; to the final value of log Pg(y"|m,) will be.
As an extreme case, if AM(x(y;)) =0, then y; will not have any effect on
log Pg(y"|m,). From the communication theory viewpoint, the interpretation
would be that y; should not be considered for speech recognition. This, for
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example could happen if y; doesn’t carry any useful information about w that
is not already in the other observations.

MMIE can be used to learn X(x), where & is one of the frame categories. The
labeler itself, however, has to be determined a priori. MMIE will only be use-
ful if the category i(y;) of y; can somehow be correlated with the “usefulness”
of y; for speech recognition purposes. We assume that a good labeler is avail-

able and find the derivative expressions (using 2.49) with respect to Ak), the
weight of frame category k&, to be

OPe(y'|m,) 1

BE) MO 2 gy Y I 080G, 46D

and the derivative with respect to @, a parameter of b\ (), to be

5Py’ |m,) Ly M) ab(m
P = tleis) l§. b—(zl) 91( 2y Imr) .

(4.64)

As a generalization of both codebook exponents and frame-dependent weight-
ing, we can use an output distribution of the form

(ka(ve))
b = |II [P @ Ib)]*"("‘(’-"”]) : (4.65)

cm]

where #,(y;) is the frame labeler used to determine the frame-dependent code-
book exponents and sp(y;) is the labeler used to determine the frame-
dependent distribution exponent. The derivatives become

Feuime) Y X Me))Pe,ty |m.)logh (y.1b), (4.66)
e (k1) F (try ek AN e 08 e e

P Im,) 1 ,
D) ko) (”x:%;_kﬂ Pou(t.y Im,)logb, (), (4.67)
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and let @ be a parameter of P, (y, |b). Then

e ims) _
o -

Ly N (51(3p)) Me2(31)) ) 5. (. )
(r)bymb) El P, (y k) Po,(t,y"|m,) 5

(4.68)



5. CONNECTED DIGIT RECOGNITION
EXPERIMENTS

5.1. The TI/NIST connected digit task

5 11 Database description

The connected digit recognition experiments were performed using the adult
speaker portion of the TI/NIST connected digit database [LEON 84]. This
large database contains speech from a total of 326 speakers (111 men, 114
women and 101 children), coming from 21 geographical regions of the con-
tinental United States (approximately 5 men, 5 women and 5 childrer per
region). The database vocabulary is made of the digits ‘1’ to ‘9, plus ‘oh’ and
‘zero’, for a total of 11 words. Each speaker in the database provided two
repetitions of each digit in isolation and 55 digit strings, evenly distributed into
lengths 2, 3, 4, 5 and 7. This makes a total of 77 digit strings, or 253 digits
per speaker. Each string is stored in a separate signal file, with some silence
(or background noise) preceding and following the speech signal. Approxi-
mately haif the speakers have been assigned to:(he training set, the remammg
half being the testing set. u [

This is a clean database in the sense that it has high quality sound and high
signal to noise ratio (SNR). It was originally sampled at 20 kHz using a 16 bit
A/D and a 10 kHz antialiasing filter. It has subsequently been downsampled
by NIST to 10 kHz, the version we use.

Following the lead of other researchers [BOCC 86, BUSH 87, DODD 89,

- RABI 89a, RABI 89], we only use the adult portion of the database. This

“ reduces it to 225 speakers (111 men and 114 women), 112 of which (55 men,

- 57 women) are used for training and 113 (56 men, 57 women) for testing. This

is the staidard set used by most researchers, which makes result comparisons
fii
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" relatively meaningful. Out of a total of 17 325 signal files (there is one digit

string per signal file) in the database, 20 contained errors and could not be
used, Of these, 8 were in the training set and 12 in the testing set. As a
result, our training set contained 8616 digit strings (28 302 digits) and our test-
ing set contained 8689 digit strings (28 543 digits).

There are usually two types of recognition experiments performed with the
TI/NIST connected digit database. In the first type, known-length recogni-
tion, the number of digits in each digit string is assumed to be known a priori.
In this case, the number of errors is computed by comparing in sequence the
digits in the true and the recognized strings and counting the number of
mismatches. Thus, all recognition errors are assumed to be substitution
errors. In the second, more difficult type, unknown-length recognition, the
string length is assumed unknown. This means that the true and the recog-
nized strings do not necessarily contain the same number of digits. The
number of errors is computed by first doing an optimal dynamic programming
based alignment between the true and the recognized strings [PICO 86]. This
alignment produces three types of errors: insertions, deletions and substitu-
tions. In both cases, resuits are usually reported in terms of word and string

error rates (or recognition rates).!

In this work, only unknown length recognition experiments were performed.
The word error rate was computed using

insertions + deletions + substitutions

word error rate =
total number of words

¥ 100% ,

and the string error rate is simply

number of strings with one or more errors

string error rate = r
g : total number of strings

X 100% .

i !Note that our scoring algorithm was compared to the NIST scoring algorithm, and they were

" found to give identical results.
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5.1.2. Previous results

Digits — telephone numbers, prices, serial numbers, code numbers, etc. —
are an inherent part of our everyday life. The number of potential applica-
tions to digit recognition is almost limitless. It is not surprising, then, that the
problem of digit recognition has enjoyed a large popularity within the speech
recognition commurity. This is especially true since, thanks to the wide avai-
lability of the large TI/NIST connected digit database, it is possible to com-
pare the recognition rates obtained at different sites.

Results on the TI/NIST database have been reported in the literature ever
since its creation. In 1985, Kopec and Bush [KOPE 85] reported a 2% error
rate using only the isolated digits in the adult portion of the database. In
1986, Bush and Kopec [BUSH 86] reported results of connected digit recogni-
tion experiments using about half of the adult portion of the database.
Separating male and female talkers, they achieved 3.5% and 2.2% string error
rate for unknown length and known length recognition, respectively.

The next year, the same authors reported results obtained using the entire
adult portion of the database. Using separate models for male and female
talkers, they achieved a 4% string error rate (around 1.5% word crror rate).

In 1988, Rabiner et al. reported a 2.94% string error rate on the same task.
This result was obtained using 4 models per digit and Gaussian mixture distri-
butions. The next year, they improved their performance to 2.84% string
error rate by experimenting with different clustering procedures.

The best results reported so far in the literature are probably those of George
Doddington [DODD 89]. He obtained a 1.5% string (0.5% word) crror rate
using phonetically sensitive discriminants. His system uses an 18-clement
feature vector obtained from a 32-element feature vector via principal com-~
ponent analysis. He uses separate male and female models in which each

‘state corresponds, on average, to one frame of speech. For each state, a

linear discriminant transformation matrix is computed using “in-class data”
and “confusion data”. The resulting complexity is about equivalent to a single
full covariance density per state.
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5.2. Baseline system
5.2.1. Signal processing

The speech in our version of the TI/NIST connected digit database was sam-
pled at 10 kHz. This speech signal s(n) is first pre-emphasized using the

- difference equation §(n) =s(n) —0.95s(n—1). The effect of pre-emphasis is

to spectrally flatten the signal. The pre-emphasized signal is then blocked into
256-point frames, with 100 points separating the beginning of two consecutive
frames. The frame rate is thus 100 frames per second. No endpoint detection
is performed.

Each frame is énalyzed with a 256-point FFT, using a Hamming window. A
bank of 20 mel-scaled, triangular band-pass filters is applied to the FFT spec-
trum [DAVI 80] and the logarithm of the energy in each band is computed.

‘Then, cepstral coefficients C; are extracted by applylng a cosine transform to

the 20 log-energies, using the equation

2 X COS[I(IC'I'O 5) ] (5.1)
k=0 '

where X}, is the log-energy in the kth band. It was found [HUNT 89] that this
cepstral transformation is close to a principal component analysis and that the
resulting cepstral coefficients are nearly uncorrelated, with most of the useful
information in the first coefficients. In our system, only the 6 cepstral coeffi-
cients C thr ug_h Cg are used. The coefficient Cy, the total log-energy across
the channels, is not used. Instead, we use a different parameter E, which we

compute directly from the signal points §(n) in a frame (after both pre-
emphasis and windowing) using '

e

=10 1°g10[ N 2 [“"(ﬂ )5 (n)] ] (5.2)

- where N is the frame size (256 in our case), w(n) is the Hamming window,
‘and §(0) is the first point in the frame.



112

For each of these 7 *“static™ parameters, a correspending “dynamic” parame-
ter is computed. The dynamic parameter is used to describe how the static
parameter changes over time. It is defined as the slope of the linear regres-

sion of the static parameter, computed over a 5-frame window centered on the
current frame as

AP(l) = o.1k,§2 kP( +£) (5.3)

where P(l) is any of the static parameters at f};:ii’ne I, and AP(l) is the
corresponding dynamic parameter. Thus, in total;” 14 parameters are extracted
from each frame. ==

5.2.2. Vector quantization

Three VQ codebooks [LEEK 88] are created from the entire training set
(1509735 frames), using the binary-split VQ training algorithm [RABI 83a,
GRAY 84] with’a Euclidean distortion measure. The first codebook, of size
128, is used for the 6 cepstral coefficients C, through C4. The second, also of
size 128, is used for the 6 cepstral slopes AC, through AC4. The third, of
size 32, is used for both the log-energy E and its slope AE,

The VQ codebooks thus created have two different purposes. In the baseline
system, they are used to quantize the l4-dimensional continuous parameter
vectors into 3-dimensional discrete vectors. For semi-continuous HMMs, the
codebooks are used to compute an initial estimate for the mean and variance
vectors of the tied mixtures.

5.2.3. HMMs

The baseline system is a standard discrete HMM system with one model per
digit. The output distributions used are of the discrete with multiple code-
books type (see (2.12)), where in our case the number of codebooks is 3.
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The word models are built from a set of sub-word units, using the following

1 w-ax n-tail

2 t uw

3 th r-iy

4 f OW-T

5 f ay v5

6 -3 ih-k pau k-
7 s eh v7 ax n-tail
8 ey pau t8

9 n-head ay n-tail
oh ow

Zerc 2z iy-r-ow

Table 5.1: Digit lexicon

There are a total of 24 unit models, including the pause model (pau) and the
silence model (5il). For sub-word units, the HMM structure has been chosen
to allow precise temporal modeling of acoustic events. The basic HMM build-

ing blocks are the duration block (Figure 5.1) and the head/tail block (Figure
5.2). All transitions in any of these blocks share the same output distribution.

Each subword unit model is built from the concatenation of one head block, a
unit-dependent number of duration blocks (none, in some cases),_ and, if dura-
tion blocks are used, a tail block. This is shown in Table 5.2.

model head | duration | tail model head | duration | tail

w-ax ] 6 1 n-tail 1 3 1

t 1 3 ] uw ! 8 1

th 1 2 1 r-iy 1 5 1

f i 2 1 OW-r 1 11 1
ay 1 8 1 v-5 1

5 ] 3 1 jh-k ] 3 1

k-s 1 3 2 eh 1 4 1
ax 1 1 1 v-7 1
ey 1 7 1 t-8 ]

n-head [ 2 ] ow 1 8 1

z 1 2 1 iy-r-ow L 10 1

c

Table 5.2: Structure of unit models

-

The number of duration blocks in each unit is a function of the average time

duration of each unit. Note that duration blocks without a self-loop could

i\
I
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have been used; however, we did not want to constrain the duration of an
acoustic event to a given maximum (determined from the training set).

Silence and pause models, intended to model near-stationary processes that
camn, in principle be of any length, have a simpler structure (Figure 5.3). In
fact, in this case, a 2-state model such as the head/tail block would have done
just as well.

Figure 5.1: Duration block

This unit set is somewhat arbitrary and obviously task-specific. It was origi-
nally chosen because speech data from 13 speakers in the training set had pre-
viously been manually segmented according to these units. The set of manu-
ally segmented speech has now been extended to 78 speakers from the training
set.> We use these speakers with the corresponding labels to bootstrap the
unit models with 3 iterations of Maximum Likelihood Estimation (MLE) train-
ing. After bootstraping, the silence and pause models are converted into
optional models. This means that a new state is added at the beginning of the

models, with equiprobable empty transitions going to the previous first state
and to the last state (see Figure 3.1).

*Interestingly, even though our experience shows proper model bootstraping to be very important
in order to get good results, it doesn't seem necessary to use large amounts of data for that purpose,
We found basically no difference in our final results when the bootstraping set was increased from 13
lo 78 speakers.
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Figure 5.2: Head/tail blocks

Figure 5.3: Silence and pause models

Subsequently, three iterations of MLE training are performed on the entire
training set. In each iteration, a model corresponding to each digit string in
the training set is built such that it reflects the way the digit string would
appear in the looped model used for recognition. For example, the model
corresponding to the digit string 5-9-6 is shown in Figure 5.4, The Baum-
Welch algorithm is applied to this model, using the observation sequence from
the corresponding string. The unit models obtained after MLE training are
called the MLE models.

:sil:pau: 5 :pau:9 :pau: 6 :pau:sil:

Figure 5.4: Model used for digit string 5-9-6
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Unknown string length recognition is performed by applying the Viterbi algo-
rithm with the looped model (Figure 5.5). As described, the baseline system
has a word error rate of 1.40% and a string error rate of 4.01%. Table 5.3
shows the system’s recognition performance on the test set as the number of
MLE training iterations is increased. In this and the following tables, word
and string error rates are in percentage, while insertions (ins), deletions (del)
and substitutions (Sub) are given in absolute numbers.

Iterations || word { string ltins | del | sub |

140 | 4.01 55 | 107 | 237
140 ;| 404 }|54 | 110 | 236
139 | 4.01 52 | 112 | 232
136 3N 50 ) 110 | 227
1.37 396 |[[51 [ 112 ] 229
137 | 394 || 51 | 113 ) 227
136 | 3.90 [| S50 | 112 | 225

Table 5.3: Baseline system’s recognition performance on the test set as the
number of training iterations is increased.

oo b Ww

As seen from the table, after 3 iterations, the performance doesn’t really
change if the number of iterations is increased. It is also interesting to see
that performance on the training set, though somewhat better than on the test
set, also levels off very quickly. This is shown in Table 5.4. This, as MMIE
results will clearly show, illustrates the discrepancy between MLE training and
the objective of reducing the error rate.

[ lterations || word | strin
3 1.14 | 3.27
4 112 3.23
5 1.10 { 3.15
6 100 | 3.16
7 1.08 | 3.10
8 108 | 3.09
9 1.08 3.09

Table 5.4: Baseline system’s performance on the training set
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% bilities and the mixture parameters. Table 5.5 compares the two approaches.

s

Zero

Figure 5.5: Looped model.

5.3. Semi-continuous HMMs_

All SCHMM experiments reported assume diagonal covariance Gaussian den-
sities. Since, as mentioned earlier, the cepstral coefficients are relatively
uncorrelated, this assumption should not dramatically affect the system’s per-
formance; it will, however, substantially reduce both the number of parame-
ters to estimate and the computation time.

Trained models taken from a system using discrete with multiple codebook
distributions can trivially be converted into models for a multiple codebook
SCHMM system. In fact, the models can stay the same. Only the means and
variances of the tied mixture coq@jﬁonents need to be estimated. Using the
codebook used in the discrete case, initial estimates can be obtained by
assigning all frames from the training set to the closest codeword in the code-
book. Then, for each codeword, means and variances of the corresponding
mixture can be computed using all frames assigned to it.

It is usually better, however, to train semi-continuous HMMs following the
steps used in the discrete case. That is, start with initial models with uniform
distributions and initial mixtures components as described above, and perform
bootstraping followed by MLE training (using the same number of iterations),
This has the advantage of jointly optimizing (with MLE) the codebook proba-
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Unless specified otherwise, all semi-continuous experiments (training and
recognition) were performed by considering only the 3 most probable com-
ponents (densities) in the mixture., Thus, referring to equation (2.17), we
assume P, (y. |k)=0 if k is not one of the 3 most probable mixture com-

ponents, This may affect performance but it substantially reduces the execu-
tion time.

word | string [|ins | del | sub

discrete models 1.40 4,00 |['55 | 107 | 237

direct conversion to SCHMM [} :.44 4.14 5 1120 | 202
full SCHMM training 1.22 | 351 {147 | 99 | 202

Table 5.5: Semi-continuous recognition on the test set with 3 iterations of
MLE iraining.

5.4. MMIE experiments - -

There were two aims pursued in our MMIE experiments. The first aim was to
evaluate the effectiveness of the reestimation techniques proposed in Chapter

4, In our opinion, an effective reestimation formula should be such that in

most cases, it will produce a sizable improvement in the value of the function
being optimized. For example, in MLE training, the fact that the reestimation
formulas from the Baum-Welch algorithm are mathematically guaranteed not
to produce a degradation is very comforting. What is most important, how-
ever, is the experimental evidence showing that in practice, good parameter
values are usually obtained after a small number of iterations. That, of
course, is not to say that faster convergence cannot be obtained otherwise.? In
the case of the MMIE reestimation formulas proposed in this thesis, there is
no mathematical guarantee of convergence. What we are looking for, then, is

- to experimentally demonstrate their effectiveness,

The second aim was to evaluate the usefulness of MMIE training for speech
recognition. In both discrete and semi-continuous experiments, discrete dis-
tributions (codebook and transition probabilities) were reestimated using

Mn fact, it is not impossible that estimation techniques borrowed [rom the ficld of ncural net-
waorks, such as on-line estimation, could lead to faster convergence.

R



(4.12), with D computed using (4.17), as proposed by Gopalakrishnan et al.
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{GOPA 89].

In the connected digit case, the general modei m,., used for training (see
Chapter 4) is simply the looped model used for recognition (Figure 5.5). For
each digit string in the training set, a typical MMIE training iteration thus con-
sists of one pass of the Baum-Weich algorithm using the “correct” string

model, and one pass using the lodped model.

54.1.

The following experiment was aimed at evaluating the effect of biasing the gra-
dient expression, as proposed by Merialdo [MERI 88]. Using c, and ¢§*" as

defined in (4.14), the gradient expressions compared were:

1)

2

3)

4

Exact expression

o ag(e) = ";‘(Ca - 6‘5‘")

Weighted (1)

_ﬁ_l .%_ _cﬁtn) (Ca +c§en)

Weighted (2)

Convergence experiments for discrete distributions

_&l ~ L eny o+ C57)
= gles—cf™) —
S, (co +c§")

?'eb(0)
Merialdo
OlogR(©) Cy c§™

a0 T ¢y c§n
310 a'e%:(a)
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5) Modified Merialdo

logR(©) .,  (co—cf™)
% 5 (o +cf™)
o'eb()

For each of these five expressions, several full MMIE iterations* were per-
formed on a subset of the complete training set made from all the speech data
from 10 male and 10 female speakers. The value of the logarithm of the glo-
bal criterion R(8) (using a base of 1.001) was computed after each iteration.

The initial value of the criterion was -406055. The results are summarized in
the Table 5,6.

iy

Iteration Exact Weighted (1) | Weighted(2) | Merialdo | Mod, Merialdo |

1 -395443 | -314734 282458 127088 -141359

-386397 176154 -235354 -28792 -33944
3 377779 -263393 -183231 67025 -11027
4 -369426 104312 -136283 5152 -22813
5 -360547 -120408 -94958 -9710 -3690
6 -355778 -89411 75643 -105 -7231
7 -351413 -50689 -56996 4213 -85998
8 -347043 -29394 24143 -9391 -6242
9 342651 -28624 -29685 11360 41501
10 -338328 27232 -16629 -39859 3336
n -33407) -20965 -9322 96657 -351
12 -329960 -1529 -17517 -72 121
13 -325923 -39432 -22446 127 -35856
14 321776 -152421 -5506 -116314 -11779
15 317774 -12861 577 -78 533
16 -313603 -766 2177 -23295 120592
17 -309468 -97174 -2085 2775 -45407

Table 5.6: Convergence of gradient cxpressions

The convergence is graphically illustrated i in Figure 5.6 for the exact cxpres-
sion, the Merialdo expression, and the “wexghted (2)” expression.

ffr’
I

R

‘For these convergence experiments, MMIE training was done using all digit strmgs in the
described training set. This is in contrast with the corrective MMIE lrammg algorithm and it is what is
meant by “full MMIE iierations”.
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-100000

-200000 1

-300000

-400000 ~—o— exact
—g——  Marialdo

g  welghted (2)

0 10 20
iteration

Figure 5.6: Value of log; g5 R(©) as a function of the iteration number

However difficult it is to draw definite conclusions from these results, some
important trends'are noticeable. First, it seems clear that using the exact gra-
¢ dient expression results in hopelessly slow convergence. Second, with all
other expressions, we observe that as the criterion gets close to the optimum
value of zero, training becomes chaotic and divergence is often observed. In
fact, some iterations can result in large degradations, although results are
always substantially better than with the exact expression.

It is unclear at this point whether this behavior is caused by the modified gra-
dient expressions, which become inaccurate near the optimum, or whether it
is caused by the use of (4.17) to determine the value of D used in (4.12).
Remember that (4.12) is only proven to converge for a D probably much
larger than the one actually used. This, on the other hand, seems unlikely
since (4.21) and (4.22) show that at a fixed point of R(6) (any local optimum),
the value of D is zero. :
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In order to clarify this point, we performed an experiment using the exact gra-
dient expression, but starting with the models obtained after the 16th iteration
with the “Weighted (2)”’ formula. The initial vaive of log; oo; R(6) was -2177.
The value of log; go; R(©) after each iteration is shown in Table 5.7. As can
be seen, the value of R(8) stays much more stable near the optimum (the vari-
ations observed are consistent with the precision of the computations).

iteration || log gay R(6)

-85

-67

77
-102 -
-164
-247
-149

-84

NN B WN —~

Table 5.7: Convergence of exact expression near the optimum

The chaotic behavior of log; go; R(©) near the optimum seems, therefore, to
be caused by the use of a modified gradient expression. Even though this
behavior is clearly undesirable, it does not necessarily undermine the useful-
ness of the modified expressions. ‘Indeed, the initial reductions of
log; 001 R(©) are quite spectacular compared with those oblained with the
exact expression. The problem really seems to appear when © is already rela-
tively satisfactory. Note that since, in the MMIE corrective training algo-
rithm, only incorrectly recognized strings are used for training, then © is
always far from satisfactory (it in fact caused recognition errors for every sin-
gle digit string in the training set). It is thus quite possible that, in the context
of this algorithm, the modified expressions will perform as desired.

In order to verify this, we first decided to limit all further investigations to the
Merialdo gradient expression. Then in all our discrete HMM cxperiments
with corrective MMIE training, we looked at the value of log; oo R(©) before
and after reestimation for each iteration of the training algorithm. The results
obtained are given in the section on recognition experiments. They confimﬁﬁ )
our speculation that, in the context of corrective MMIE training, the moquied
reestimation formula is indeed very effective. !
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5.4.2. Convergence experiments with the Gaussian

reestimation formula

This experiment uses multiple codebooks semi-continuous HMMs to look at
the convergence of the reestimation formulas (4.52) and (4.53). The formulas
are used to reestimate the means and variances of each of the tied Gaussian
densities in the codebook. The models used in this experiment are discrete
HMMs obtained after 3 MLE iterations on the entire training set and the ini-
tial tied mixtures were computed from the codebook as explained before. The

training set is the same as the one used in the previous convergence experi-

ments (10 male and 10 female speakers).

In order to verify the effectiveness of the continuous reestimation formulas,

~only the parameters of the tied Gaussian densities were modified during train-

ing. A heuristic way of determining the constant D-in the formulas was used.
We started with the minimum value guaranteeing a positive denominator in
(4.53). We then repeatedly doubled its value until all new variance estimates

- were positive. The value of D used was double that final value. The initial

value of the optimization function logy gy R(6) was -302278. The experiment
is summarized in Table 5.8.

| lteration || log, oy R(6)
-169153
-98848
-70639
-57420
-39332
23169
=14225
-13184

Table 5.8: Convergence of continuous reestimation formulas

ONAWV L Wh —

As can be seen from the Table, the convergence is steady and relatively
impressive, considering that all discrete distribution parameters remained con-
stant. Again, it is probably possible to have a faster convergence using. gra-

dient descent but the technique proposed here offers both simplicity and con-
vergence within a small number of iterations.
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5.4.3. Recognition experiments with discrete HMMs

As is the case for all training techniques of an error-correcting nature [APPL
89, LEEK 90}, the corrective MMIE training algorithm has an important prob-
lem. As the number of errors on the training set becomes negligible, the algo-
rithm runs out of data to train on. The procedure must thus stop because of
a lack of training data.

There is another, closely related problem. Since the training set uséd for rees-
timation is in fact a very small fraction of the full training set, the parameters

learned may not be as globally uséful as if the whole training set were used for
estimation. |

In our experiments with the corrective MMIE training algorithm, we used a
simple solution to both the above problems. In each iteration, the new
models are: smoothed with those from the previous iteration, using a weight
for the old model that increases by increments of 0.1 from 0.0 to 0.8 (for a

total of 9 iterations). Thus, as used, the weights are not a function of the
reestimation set size.

5.4.3.1. Applying MMIE to the baseline system

This first experiment uses the models obtained after 3 MLE iterations and
applies 9 iterations of corrective MMIE training. Table 5.9 shows the rc.sults
obtamed on the test set after each iteration.

=2
o)

tion word= string_[|ins | del | sub

.16 | 3.38 || 51 | 88 | 191
105 | 3.0 ||46 | 76 | 178
.00 | 298 ||42 | 72 | 171
095 | 287 ||38 | 66 | 167
095 | 287 ||40 | 60 | 171
095 | 284 ||41 | 60 | 169
091 | 276 ||38 | 59 | 164
091 | 275 ||38 | 59 | 163
092 | 279 || 40 | 56 | 166

Table 5.9: Applymg MMIE to the baseline system. Error rate on the test set
after each iteration of correcuve MMIE training. <

tﬂOﬂ'\lO‘lm-wa—-l
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As can be seen from the table, straightforward ;application of corrective
MMIE training reduced the word error rate by around 32% from 1.36% to

0.92% and the string error rate by around 28% from 3.90% to 2.79%.°

L Table 5.10 shows the performance of the training algorithm on the training
L

set. The string recognition rate gives the percentage of the total number of
strings from the training set that was not used for reestimation. For example,
in the sixth iteration, the reestimation set contains only 0.2% of the number
of strings in the full training set. The last two columns show the value of
log; o1 R(O), computed on the reestimation set before and after reestimation.
They demonstrate the effectiveness of the modified reestimation formula.

Iteration Ervor log1.001 R(O)
- | word | string efore | after |
1 1.14 | 3.27 ||-5267094 | -2181203
2 0.58 1.73 ||-21580945 -905775
3 0.28 0.88 -909609 -388468
4 0.20 0.62 -447990 -161837
5 0.11 0.34 -167403 -60264
6 0.06 0.20 -60479 -18845
7 003 | 0.9 -18076 -11830
8 0.05 0.16 -26546 -8507
9 0.03 0.08 -8658 -6969

Table 5.10: Error rate on the training set during each iteration. Also shown
is the value of log; o) R(©), computed before and after reestimation on the
reestimation set.

, il
i

5.4.3.2. Global codebook exponents

As discussed in Chapter 4, each of the three sets of parameters may carry dif-
ferent amounts of useful (for recognition) information. It may be appropriate,
then, to weigh the contribution of each of the parameter sets using so-called
“codebook exponents”. This is a type of refinement that fits quite naturally
within the MMIE framework. We treat exponents as a set of parameters
separate from the other parameters.. Within the same iteration, each of the
two parameter sets is estimated independently, assuming the other set fixed.
Note that even though each estimate separately optimizes R(©), this may not

“$Comparisons are made with the best MLE results in Table 5.3.
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be true of the combined estimate. In order to avoid this problem, in our ori-
ginal experiments we estimated exponents in odd-numbered iterations and the
other parameters in even-numbered iterations. It turns out that in practice

this is unnecessary; the combined estimate works just as well and is twice as
fast.

Exponents are estimated using a simple line search in the gradient direction.
At each iteration, the initial step size is chosen so that no exponent changes
by more than 10% of its original value. If this doesn’t increase R(€), the step
size is slowly reduced until a value for the exponents is found such that R(©)
is greater than its original value,

The first experiment looks at the usefulness of global codebook exponents,
thus called because the same fixed exponents are applied to all frames and dis-
tributions. Such exponents are attractive since they add very little complexity
to the programs (they can be precomputed in the distributions).

5.4.3.2.1. First pass

Starting with the models obtained after 3 standard MLE iterations and code-

book exponents initialized at 1.0, we obtained the recognition results as shown
in Table 5.11.

Iteration_i| word string || ins | del sub

1.10 325 || 46 | 84 | 183
1.00 298 {142 1 70 | 174
0.92 276 {139 | 56 | 169
0.84 254 || 31 | 50 | 160
0.86 259 135 | 48 | 162
0.88 2.65 || 36 [ 49 | 167
0.86 260 |[|38 | 43 | 164
0.83 2.51 36 | 42 | 160
0.85 258 []38 | 42 | 163

Table 5.11: Error rate on the test set after each iteration of corrective MMIE
training (using global codebook exponents).

WSOV WN —

This is an encouraging:i"e.sult since it corresponds to a word (string) error rate
improvement of 8% (8%) over the previous result, and a 38% (34%) improve-
ment over standard MLE training.
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Table 5.12 shows the performance of the training algorithm on the training
set, as well as the codebook exponents obtained after each iteration. As
before, the value of log) oy R(6), computed on the reestimation set before
and after reestimation with (4.12) and (4.18),5 clearly demonstrates the effec-
tiveness of the formula. Also, from the exponent values obtained, it seems
clear that the second set of parameters (AC; through AC,) contains more use-
ful information than the other two sets.. This indicates the usefulness of
dynamic parameters.

lteration Error log1 ggy R(©) Exponents

word | string || before | after 1! 2 | 3 |

1 1.14 | 3.27 ||-5767094 | -2181207 || 0.9000 | 1.0146 | 0.9182

2 0.57 1.68 |[|-1984268 | -825008 |(0.8190 | 1.0184 | 0.8712

3 028 | 0.87 -764405 | -293995 {| 0.7535 | 1.0242 | 0.8573
4 0.17 | 0.53 -290326 -78038 |{ 0.7007 | 1.0600 | 0.8057

5 0.10 | 027 -80842 -33795 || 0.7356 | 1.0239 | 0.7574
6 007 | 022 -49859 -15936 || 0.6989 | 1.0338 | 0.7633
7 004 | 0.12 -19249 -3970 || 0.6864 | 1.0204 | 07938
8 004 | 0.08 -14746 -2004 || 0.7045 | 1.0203 | 0.7700
) 004 | 012 7311 - -4661 || 0.7072 | 1.0282 | 0.7577

Table 5.12: Error rate on the training set during each iteration (with global
codebook exponents). Also shown is the value of log; og1 R(6), computed

before and after reestimation on the reestimation set, as well as the exponents
obtained after each iteration.

5.4.3.2.2. Second pass

We have discussed in Chapter 3 the importance of initial values used when
training HMMSs. As can be seen from the last results, the exponent values
obtained at the end of training are quite different from the initial values. This

suggest that these initial values are probably not the best with which to start
training,

It may thus be interesting to repeat the whole training process (including
bootstraping and MLE training), -using, as initial exponent values, those
obtained at the end of the first pass. Even though bootstraping and MLE
training do not modify the exponent values, training will take the exponents
into account and the parameters learned will be different from those learned

SAssuming the exponents fixed.



128

without exponents.

Table 5.13 shows the resuits obtained on the test set in this second training
pass. The results confirm the importance of good initial exponents. The
word (string) error rate is now 12% (14%) better than in the first pass and
45% (43%) better than with standard MLE training. Note that even the
results after both bootstraping and standard MLE training are noticeably
better than those obtained without exponents.

Iteration wo_rg_: string || ins del | sub
boot 1.59 457 |1 71 | 92 | 290
MLE-3 1.21 3.48 50 | 89 | 207
0.96 280 |36 | 63 | 175
0.86 251 31 | 54 | 160
0.83 245 || 33 | 47 | 157
0.83 246 || 32 | 50 [ 155
0.80 238 ||32 ) 46 | 151
0.80 237 (|34 | 45 | 148
077 229 1132 | 45 | 143
075 2.23 36 | 39 | 139
0.75 2.23 36 | 38 | 140

OO~ b WhN —

Table 5.13; Error rate on the test set after each iteration (second training
pass with global codebook exponents).

Table 5.14 shows the performance of the training algorithm on the training
set, as well as the codebook exponents obtained after each iteration.

Error log) g1 R(O) i Exponents
Iteration 1" vord string || before after 1 2 3
1 098 | 2.83 ||-3761588 | -1493435 (| 0.6365 | 1.0091 | 0.7139
2 050 [ 1.49 ||-1401493 | -413552 (10,5792 | 0.9916 | 06832
3 022 | 065 -408220 | -121876 || 0.5329 | 0.9881 | 0.666]
4 0.13 | 039 -125959 -19131 11 0.4978 | 0.9840 | 0.6195
5 0.07 | 024 -41297 -2198 || 0.5277 | 0.9710 | 0.6092
6 003 | 0.09 -6452 -748 || 0.5013 | 0.9814 | 0.6263
7 003 ; 0.10 -15023 -881 |[0.4812 | 0.9756 | 0.6469
8 002 | 007 -2175 -106 ((0.4957 | 0.9754 | 0.6417
9 0.02 | 006 -7933 -2146 [10.4858 | 09719 | 0.6535 |-

Table 5.14: Error rate on the training set during each iteration (second train-
ing pass_with global. codebook exponents). Also shown is the value of
1081 001 R(©), computed before and after reestimation on the reestimation
set, as well as the exponents obtained after each iteration. ' ‘
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5.4.3.3. Frame-dependent codebook exponents

The previous results have shown what can be gained by weighting the contri-
bution of each parameter set in the probability computation. The exponents
obtained are values which, on average, lead to better discrimination than unity
exponents. It is not clear, however, that the same weighting is appropriate for
all types of sounds.

In order to verify whether different codebock exponents skould be used with
different types of sounds, we have used a recurrent neural network (RNN)
developed at CRIM to label the speech frames as one of three categories:
sonorant/nasal, silence/noise and fricative/plosive. Then, for each frame, the
exponents used were dependent on the category to which the frame was
assigned by the RNN.

5.4.3.3.1. First pass
This experiment is exactly the same as the first pass with global exponents,

except that now there are 3 sets of three codebook exponents to train. Table
5.15 shows the results obtained on the test set.

Iteration || word | string ||ins | del | sub

1.08 3.18 |[48 | 84 | 175
0.95 282 || 42 | 69 | 161
0.87 264 (|35 | 57 | 156
0.83 250 |35 | 48 | 154
0.83 0.50 (|38 | 45 | 154
0.81 245 || 34 | 46 | 152
0.81 242 |33 145 | 153
0.77 231 33 | 42 | 145
0.78 236 |[36 | 42 | 145
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Table 5.15: Error rate on the test set after each iteration (first training pass
with frame-dependent codebook exponents).

This is a word (string) error rate improvement of 8% (9%) over what was
obtained after the first pass with global codebook exponents. This is
encouraging, even though it may not be significant. Table 5.16 shows the per-
formance of the training algorithm on the training set.
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Iteration Error - log) ggy R(©)
word [ string before after |
1 1.14 2.27 -5267094 | -2181231
2 0.57 1.68 {|-2005903 -846674
3 0.26 0.82 -781706 -338863
4 0.17 0.52 -338471 -145867
5 0.12 0.34 -141112 67254
() 0.07 022 -75117 -25147
7 0.06 0.19 -31277 -9497
8 0.02 0.07 -9488 -5283
9 0.03 0.08 -6647 -3064

Table 5.16: Error rate on the training set during each iteration (first trainin
ass with frame-dependent codebook e

onents). Also shown is the valuc o
gy go1 R(©), computed before and after reestimation on the reestimation

Table 5.17 shows the exponents obtained at the end of the 9th iteration, for
each of the 3 categories. We can see that there are noticeable differences
between the categories. In particular, the silence/noise category puts almost
equal weights on all parameter sets, which is quite different from the globai
codebook exponents obtained in the previous experiment.

exponent

1 2 3

sonorant/nasal || 0.6679 { 1.0585 | 0.7903
silence/noise 0.9822 | 0.9794 | 1.0432

fricative/plosive [[0.8559 | 1.0814 | 0.8277

category

Table 5.17: Exponents obtained at the end of the first pass of training with
codebook-dependent exponent.

5.4.3.3.2. Second pass

The complete training process, (from bootstraping) is done all over again,
using the exponents from Table 5.17 as initial exponents. Table 5.18 shows
the results obtained on the test set. They show a word (string) crror rate
improvement of 6% (8%} over the results from the first pass, and of 3% (3%)

over the results obtained with global codebook exponents after the second
pass.
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Iteration (| word | string [lins | del | sub

bootstrap }; 1.50 430 64 | 86 | 279

MLE-3 1.14 3.22 46 | 81 197
0.91 265 39 | 61 160
0.80 2.37 36 | 50 | 143
0.77 2.26 37 | 44 | 138
0.76 2.23 31 45 | 141
0.76 2.21 39 | 42 | 136
0.77 2.29 42 | 41 138
0.73 2.14 32 | 41 134
0.73 2.16 36 | 42 | 130
0.73 2,16 37 | 40 | 132
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Table 5.18: Error rate on the test set after each iteration (second training
pass with frame-dependent codebook exponents).

Although this last improvement is quite marginal, we think the results are
nonetheless significant with regard to demonstrating the concept of frame-
dependent codebook weighting. Indeed, we could not expect to gain much
information from the classes determined by the RNN.? Yet, it seems clear,
both from the significant differences between the exponents for each category
(Tables 5.17 and 5.20) and from the small recognition improvement, that the
training algorithm was capable of learning how to usefully adapt codebook
weighting to the sound category.

Table 5.19 shows the perfgrmance of the training algorithm on the training
set.

Error log) 001 R(©)
Iteration word | string || before |_ after

] 0.98 2.82 ||-3747997 | -1477450

2 0.46 140 |{-1410572 -257900

3 0.19 0.59 -353049 -67140

4 0.08 0.28 -82773 -16484

5 0.05 0.15 -19463 -8912

6 003 | 009 || -26985 5812 .
7 0.03 0.09 -10384 8767t
8 0.02 0.07 -2987 7277

9 0.02 0.08 -8053 -850

Table 5.19: Error rate on the training set during each iteration (second train-
m{g pass with frame-dependent codebook exponents). Also shown is the value
of logy gg; R(O), computed before and after reestimation.

"Morcover, the RNN used is several years old and its accuracy is unknown.



bt

132

Table 5.20 shows the exponents obtained at the end of the 9th iteration, for
each of the 3 categories.

exponent
) 2 3
sonorant/nasal {10.5208 | 1.0067 | 0.6702

silence/noise 0.9283 | 0.9622 | 1.0102
fricative/plosive || 0.7448 | 1.1276 | 0.6955

category

Table 5.20: Exponents obtained at the end of the second pass of training with
codebook-dependent exponent.

5.4.3.4. Frame-dependent weighting W
This experiment attempts to verify the hypothesis that speech frames are not
equally useful for recognizing words. The first thing needed is an automatic
procedure that produces a frame labeling which somehow correlates with the
frame’s relative usefulness. If this is available, then MMIE can be used to
learn the weight that should be applied to each category.

Such a labeler could for example be based on the assumption that redundant
speech frames (those which are very similar to immediately preceding ‘rames)
are less useful than frames which are very different from those preceding it.
In other words, speech frames should be more important when the signal
changes rapidly. ‘We decided to categorize this using the output from the
second codeboo ,-which encodes the dynamic changes in the cepstral ccn ffl-
cient. Thl: thus results in 128 different categories. One advantage of thlé is”
that no addmoqgl signal processing is required. Instead, the same discrete
parameter is used in two different ways. Note that global (frame-indcpendent)
codebook exponents are also used.

5.4.3.4.1. First pass

/,f
This experiment is exactly the'fsame as the first pass with global exponents,
except that in addition tot} e 3 codebook exponents, a sct of 128 exponents is
also trained. The initial models used are the ones obtained after 3 iterations
of standard MLE training. All exponents are initialized at 1.0. Table 5.21
shows the results obtained on the test set.
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Iteration {{ word | string |}ins | del | sub

1.07 315 (|47 | 8] [ 178
0.98 287 ||43 | 68 | 168
0.92 275 || 41 | 59 | 164
0.82 245 || 30 | 47 | 157
0.81 247 131 | 46 | 155
0.80 244 || 27 | 47 | 155
0.82 250 ||30 | 47 | 156
0.83 254 (129 | 47 | 162
0.82 249 1131 [ 45 | 158
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Table 5.21: Error rate on the test set after each iteration (first training pass
with frame-dependent weighting).

Table 5.22 shows the performance of the training algorithm on the training
set.

Error logj ao1 R(O) Exponents
Iteration word | string before | after 1 _2 3
1 1.14 3.27 ||-5267094 | -2181219 || 0.9000 { 1.0146 | 0.9182
2 0.57 1.67 -1912998 -778350 || 0.8190 | 1.0186 | 0.8719
3 0.25 0.78 -674851 | -300591 || 0.7535 | 1.0284 | 0.8524
4 0.16 0.50 270240 -89697 || 0.7007 | 1.0528 | 0.8073
5 0.07 0.22 -77966 -17452 (| 0.7091 | 1.0496 | 0.7586
6 0.04 0.13 -16612 -9525 1|1 0.6775 | 1.0389 | 0.7968
7 0.06 0.20 -5494) -7735 [10.6852 | 1.0537 | 0.7649
8 0.02 0.06 -7851 -2288 |1 0.6885 | 1.0295 | 0.7879
9 0.02 0.07 -12809 -2693 || 0.6748 | 1.0313 | 0.7956

Table 5,22: Error rate on the training set during each iteration (first trainin
ass with frame-dependent weighting). Also shown is the value o
0g1.001 R(O), computed before and after reestimation on the reestimation

set, as well as the codebook exponents obtained after each iteration.

5.4.3.4.2. Second pass

The complete training process is started from bootstraping, using as initial
exponents those obtained at the end of the first pass. Table 5.23 shows the
results obtained on the test set.

MW - R 1%

-
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lteration |} word | string |jins | del | sub

boot 1.54 | 445 (|61 | 95 | 283
MLE-3 1.18 335 (|45 | 93 | 199
0.91 262 [[33 § 66 | 161
084 | 245 ||30 | 59 § 150
0.75 222 1127 | 48 | 139
0.79 236 {27 | 49 | 149
0.78 234 |33 | 48 | 142
079 | 236 || 28 | 52 | 145
080 | 237 || 34 | 48 | 145
0.81 241 37 | 47 | 147
0.83 249 (142 | 46 | 149

oSN L WM —

Table 5.23: Error rate on the test set after each iteration (second training
pass with frame-dependent weighting).

Table 5.24 shows the performance of the training algorithm on the training
set.

Error logy gg1 R(©) Exponents
Iteration word | string || before after ] 2 3
o~ ] 1,02 2.95 ]|-3326158 | -1073830 || 0.6073 | 1.0110 | 0.7359
il b 2 0.46 1.39 -992536 | -254541 || 0.5538 | 0.9681 | 0.6697
= 3 0.18 0.56 -259860 -45035 110.5095 | 0.9687 | 0.6538
4 0.08 0.27 -44383 -8218 1] 0.5452 | 09129 | 0.6172
5 0.04 0.14 -13243 -1082 {| 0.5657 | 0.9274 | 0.5802
6 0.07 0.22 -42068 -2021 11 0.5479 | 0.9208 | 0.6092
7 0.02 0.08 -4984 -1084 [| 0.5394 | 0.9375 | 0.5848
8 0.01 0.05 -4173 -891 |(0.5232 | 0.9386 | 0.5938
9 0.01 0.03 -2729 -55 |1 0.5337 | 0.9242 | 0.5850

Table 5.24: Error rate on the training set during each iteration (second train-
ing pass_with frame-dependent weighting). Also shown is the value of
log; go; R(©), computed before and after reestimation on the recstimation
set, as well as the codebook exponents obtained after cach iteration.

Clearly, as applied here, frame-dependent weighting is not useful at all. Note
that the training algorithm did just as well as before (even better) on the train-
ing set. This should not be surprising since the additional 128 paramecters sim-
ply provide additional degrees of freedom to the training algorithm. The prob-
lem js that whatever was learned has no generalization value. This seems clear
by Jooking at the 128 exponents which, after 18 iterations of training (2
passes), did not change much from their original values.

These results, however, do not necessarily undermine the concept of frame-
dependent weighting. The problem is probably one of finding an appropriate
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labeling criterion. As mentioned in the last chapter, an interesting possibility
might be to classify each speech frame in terms of how stressed the signal in
the frame is.

5.4.3.5. Increasing the amount of training data

As mentioned earlier, one problem with the corrective MMIE training algo-
rithmi-i§ that, as the recognition rate on the training set increases, the size of
the reéstimation set becomes very small (it may even completely vanish), One
proposed way [LEEK 90] to alleviate this problem is to attempt to generate
potential errors and then train on them.

Another possibility is to train not only on the incorrectly recognized strings in
the training set, but also on those which had a close second choice. This is
what we have chosen to do for this experiment. Using the N-best algorithm
from Soong and Huang [SOON 90], we generated the 2 most likely digit
strings for each string in the training set. All strings with an incorrect first
choice were automatically selected for training. We then computed the aver-
age difference between the likelihood of the first and second choices for all
the other strings, and added to the reestimation set all strings which had a
difference smaller than 20% of the average difference. This guaranteed that
the reestimation set was not reduced to a token number of strings.

Iteration || word |_string || ins | del [ sub

098 [ 287 (141 | 61 | 177
088 | 261 [|41 | 61 177
084 | 249 |[37 | 48 | 155
0.83 244 || 31 | 51 | 155
080 | 236 |{32 {51 | 145
0.84 | 249 (|32 | 52 | 155
083 | 245 |[34 ! 51 | 151
079 | 234 {|30 | 51 | 145
079 | 234 {130 { 51 } 145

Table 5.25: Error rate on the test set after each iteration of N-best training
with ‘i;lobul codebook exponents. The initial models used are the ones ob-
tained after 3 iterations of MLE training in the second pass of training with
global codebook exponents.

WOONAOAWVLAWN —

In order to save time, we started training with the MLE models obtained in
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the second pass of the experiment with global codebook exponents. The ini-
tial exponents for parameter sets 1, 2 and 3 were thus 0.7072, 1.0282 and

0.7577, respectively. The recognition results on the test set are shown in
Table 5.25.

The results are not quite as good as those obtained with the standard correc-
tive MMIE training algorithm, although the difference may not be significant.
One explanation, however, for this deterioration may be found in Table 5.26,
which describes the performance of the algorithm during training. Indeed,
note from the “before” and “after” columns that the modified reestimation
formula doesn’t seem as effective when correctly recognized strings are added
to the reestimation set. This is especially true for the two iterations which had
no incorrectly recognized strings as part of the reestimation set. These two
iterations resulted in substantial degradations in the value of log; oo R(©).

Error log 00y R(6)
lteration £1.00) fraction of
word_|_string before after training set |
1 0.98 2.84 |[-10299253 -5520558 0.054
2 0.47 1.42 -6167800 -3858200 0.036
3 0.19 0.58 -4497131 -3126228 0.033
4 0.09 0.29 -3893807 -1672855 0.030
5 0.03 0.10 -3557109 -2643450 0.028
6 0.01 0.03 -3498021 -2428867 0.027
7 0.00 0.00 -3407676 .| -91779282 0.026
8 0.00 0.00 -3274827 | 91779892 0.026
9 0.01 0.02 -2986947 -1568665 0.024

Table 5.26: Error rate on the training set during each iteration (N-best train-
ing with élobal codebook exponents). Also shown is the value of
log; 001 R(©), computed before and after reestimation on the reestimation
set, as well as the fraction of the total number of strings from the training set
that was used for reestimation.

5.4.4. Recognition experiments with semi-continuous HMMs

Earlier, we presented the results of a convergence experiment with the reesti-
mation formulas for continuous densities proposed in this thesis. This section

- now looks at whether their use can translate into better recognizers. This will

also be an opportunity to compare the performance of semi-continuous and
discrete HMMs. .,
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5.4.4.1. One model

This experiment starts with what has so far been called the “second pass™ of
training. We use codebook exponents obtained after an earlier MMIE training
experiment with semi-continuous HMMs as.our initial exponents. The initial
exponents are, in order, 0.6941, 1.0222 and 0.7287. Table 5.27 shows the
results obtained on the test set. The result at the end of training corresponds
to a word (string) error rate reduction of 46% (43%) compared to the results
obtained after 3 standard (i.e., no expgnents) MLE iterations (see Table 5.5).
It also corresponds to word (string)q'improvement of 12% (10%) over the
results obtained with discrete HMMs in the same conditions.

Iteration || word l strlng “ins | del ] sub

boot || 144 | 0.96 || 68 | 85 | 257
MLE3 ([ 096 | 285 [|37 | 70 | 168
071 | 215 ||26 | 62 | 126
072 | 214 |36 | 46 | 121
061 | 1.84 |24 | 39 { 112
061 | 185 |24 | 36 | 114
067 | 200 ({37 | 37 | 116
065 | 198 [{33 ]33] 120
063 | 190 {35 | 34| 110
064 | 196 |41 | 34 | 109
066 | 201 [[47 | 30 | 12

OoNRALWN —

Table 5.27: Error rate on the test set after each iteration using semi-
continuous HMMs with global codebook exponents. The initial models used
are the ones obtained after 3 iterations of MLE training in the second pass of
training with global codebook exponents.

Table 5.28 shows the performance of the training algorithm on the training
éet. For semi-continuous experiments, the value of log; ¢0; R(©) is computed
zifter reestimation of both the discrete and continuous parameters (with the
éh:poncnts unchanged). Observe that the error rate on the training set is
always lower than in the corresponding discrete case. This means that the size
of the reestimation set is also always smaller. The last training iteration was

done using 3 digit strings (out of 8616), which is probably not a reasonable
thing to do. ‘
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X Error log0g1 R(6) Exponents
Iteration word | string before after ) 2 3
1 0.89 2.56 -3278371 | -993317 || 0.624713 | 0.981255 | 0.680461
2 0.39 1.18 -623233 | -262261 |} 0.568489 | 0.965428 | 0.638151
3 0.15 0.49 -261732 | -42987 (| 0.523010 | 0.907878 | 0.627088
4 0.08 0.26 -65732 -5070 |} 0.559621 | 0.880285 | 0.617109
5 0.05 0.16 -20751 -834 || 0.535705 | 0.907287 | 0.580082
6 0.06 0.15 -15611 -556 || 0.535857 | 0.886985 | 0.609086
7 0.03 | 0.08 -10805 -579 |1 0518053 | 0.883373 | 0.633449
8 0.02 0.07 -5908 -394 ] 0.502511 | 0.888198 | 0.6479939
9 0.01 0.03 -1211 -669 110.512561 | 0.888812 | 0.637920

Table 5.28: Error rate on the training set during each iteration (semi-
continuous HMMs with global codebook exponents).

5.4.4.2. Separate male and female models

This last experiment looks at how to perform MMIE training when multiple
models per unit are used, and at how this can improve results. It also looks
at the effect of increasing the number of MLE iterations before MMIE train-
ing. This last point seemed relevant since our other experiences with semi-
continuous HMMs (in particular for wordspotting applications) tend to show
that SCHMMs require more MLE training iterations than do discrete HMMs.
The fact that the continuous mixture components are shared by all distribu-
tions may in part explain why this should be the case.

We use separate male and female models, which means that there are now
twice as mahy models as previously. Note, however, that the same tied mix-
tures are used for both male and female models. Since the information about
the sex of speakers is available in the database, it is relatively straightforward
to train models on speakers of the corresponding sex. This is what we do for
both bootstraping and MLE training. Table 5.29 shows how the error rate on
the test set changes as the number of MLE iterations is increased.
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| Iteration {| word | string {lins | del | sub |
075 | 236 [[39 |77 | 99
074 | 227 (|39 | 75| 96
070 | 218 [[38 |72 | 9
072 | 221 {[39 (72| 94
073 | 223 ||40 | 69 | 99
LB 071 | 216 |138 |69 | 95
"9  {lo72 { 219 {[38 | 67 | 100

Table 5.29: Error rate on the test set after additional MLE training iterations.

NV W

After seeing these results, we decided to perform two sets of MMIE training
experiments: one after 3 iterations of MLE training (as previously) and one
after 6 iterations.

It is not immediately clear how MMIE training should be done when several
models per unit are used, especially when, as is our case, the clusters (male &
female) are determined a priori and the information about each speaker’s clus-
ter is available from the database. The question is whether or not we should

. enforce the sex of speakers in the training process. If we did, it would, in

effect, add sex recognition to the problem of digit recognition. Since this is
not useful for our purpose, we decided not to use the information about sex
during MMIE training. Suppose one of the digit training sequences contains
w=59-6. Then the ‘“good” model used for training is the one illustrated in
Figure 5.7. In all cas_és, the model m,,, will be the one'illustrated in Figure
5.8.

Figure 5.7: Model m,, for w=5-9-6.
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Figure 5.8: Model m,, used for training with separate male and female
models.

Table 5.30 shows the recognition results on the test set after each iteration of
MMIE training. The initial models used were those obtained after 3 MLE
iterations. In order to determine if taking into account a larger number of
mixture components can improved results, we performed two sets of recogni-
tion experiments: One using the best 3 components and one using the best 6
components. In both cases, the models used are those trained using only the
best 3 components.
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| best 3 codewords best 6 codewords
*er {Tword string | ins | del | sub || word | string | ins [ del | sub
1 066 | 200 | 29 [ 62 | 8 (| 064 196 | 35 |62 ) 85
2 {|063 | 193 | 42 | 52 | 87 |{ 0.6] 1.86 | 37 | 51 | 85
3 []057 | 171 [ 39 |38 | 8 ||055 | 167 |39 | 41 | 76
4 0.59 1.80 | 43 | 39 | 87 || 0.56 1.74 | 43 | 36 | 82
5 0.56 173 | 45 | 29 | 86 |} 0.52 159 | 45 | 26 | 76
6 [f[o51 | 162 |37 (26| 83 [[049 | 153 | 38|23 | 79
7 033 165 | 47 | 22 | 82 || 0.57 .77 | 45 | 29 | 88
8 [|049 | 152 [ 41 |20 | 78 ||048 | 1.50 | 42 | 16 | 80
9 0.51 159 {45 {21 | 79 1] 049 1.51 45 | 16 | 78
Table 5.30: Error rate on the test after each MMIE training iteration (semi-
continuous HMMs with global codebook exponents, separate male and female

models). The initial models used are those obtained after 3 MLE iterations.

Table 5.31 shows the performance of the training algorithm on the training

set.
Error log o3 R(O) Exponents
Iteration
word | string || before | after ] _2 3
1 0.58 1.72 ||-3094683 | -1125788 || 0.907877 | 1.019112 | 0.900000
2 0.24 0.75 ||-1021651 -442032 |} 0.826168 | 1.018070 | 0.852678
3 . 0.12 038 -435294 | -199868 |{0.777467 | 1.030542 | 0.784464
4 0.10 0.30 -183330 -42012 || 0.746291 | 1.041456 | 0.729552
5 0.04 0.14 -46524 -8139 |[0.701514 | 1.009579 | 0.709844
. 6 004 | 0.13 -13680 -190 || 0.666438 | 0.987393 | 0.691150
7 0.01 0.03 -14427 -1 || 0.658413 | 1.026889 | 0.679909
8 0.03 0.09\ -10323 -184 |1 0.647485 | 1.020205 | 0.700306
9 0.01 0.03 -3838 -72 110.657150 | 1.040609 | 0.689485

Table 5.31:

Error rate on the

continuous HMMs with

models). The

initial mo

training set during each iteration (semi-

global codebook exponents, separate male and female
els used are those obtained after 3 MLE iterations.

Now, using as initial models those produced with 6 MLE iterations, we
obtained the results on the test set as shown in Table 5.32, and results on the
training set as shown in Table 5.33. In this case, training had to be stopped
after 7 iterations since, as the recognition on the training set was 100%, there
was not any data to use for training. Although it is difficult to determine
which combination works best, it is clear that the training algorithm performs
really well and the results obtained on the test set are very good.
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Iter best 3 codewords best 6 codewords

word_| string_| ins | del | sub |{word | string | ins | del { sub
1 0.62 1.92 35| 59 83 0.60 1.82 3] 56 83
2 0.53 165 31 45 75 0.49 1.54 25 | 41 75
3 0.53 1.63 37 | 34 79 0.48 1.47 36 | 30 70
4 0.52 1.62 35 | 35 77 0.44 1.39 27 | 30 70..
S 0.51 1.61 30 | 32 85 0.47 1.45 25 30 78
6 0.56 1.71 34 | 34 92 0.50 1.55 32 | 32 79
7 0.51 1.58 31 29 86 Q.50 1.55 35 | 289 78

Table 5.32: Error rate on the test after each MMIE training iteration (semi-

continuous HMMs with

obal codebook exponents, separate male and female
models). The initial models used are those obtained after 6 MLE iterations.

Iteration Error logy.ag1 R(O) Exponents

word | string || before | after 1 2 3
1 0.48 1.44 -2801591 | -928698 || 0.900765 | 1.018678 | 0.900000
2 0.20 0.63 -859489 | -326391 {|0.819696 | 1.027538 | 0.835109
3 010 0.33 -300554 -75060 []0.754120 ] 1.037853 | 0.774689
4 0.10 0.30 -120180 -13408 || 0.762586 | 1.026837 | 0.720461
5 0.04 0.12 -28092 -1275 |1 0.716821 | 1.027858 | 0.738279
6 0.01 0.02 9150 1 [[0.728267 | 0.985781 | 0.701365
7 0.02 0.06 -10359 -94 |1 0.720362 | 0.975759 | 0.729420
8 0.00 0.00 - - - - -

Table 5.33: Error rate on the training set during each iteration (semi-
continuous HMMs with global codebook exponents, separate male and female
models). The initial models used are those obtained after 6 MLE iterations.

5.5. Summary of results

Table 5.34 compares the results obtained in the different experiments in this
chapter. In all cases, we report the best result for a given type of experiment.
These result exhibit a clear superiority of semi-continuous HMMSs over
discrete HMMs. This merely confirms what several other rescarchers have
recently found out. It also confirms the usefulness of more specific models

(male and female in our case).

These results are only side-effects of our experiments, What we wanted to
verify was the usefulness of MMIE as a training framework for HMMs. There

seems to be little doubt about this.
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Experiment word | string iiins | del | sub |
Discrete MLE 1.36 3.90 50 | 112 | 225
Discrete MMIE 0.91 275 38 59 | 163
Discrate MMIE + exponents 0.75 2.23 36 38 | 140
Discrete MMIE + CD-exponents 0.73 2.16 37 40 | 132
SCHMM MLE 1.22 3.51 47 99 | 202
SCHMM MMIE 4+ exponents 0.61 1.84 24 39 | 112
SCHMM 2 models MLE 0.70 2.18 39 72 94
SCHMM 2 models MMIE + exponents || 0.44 1.39 27 30 70

Table 5.34: Summary of results
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6. CONCLUSION
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Looking back at everything that has been accomplished within such simple a
framework as HMMs, it is difficult not to be a little surprised. Yet, it is now
clear that the statistical approach to speech recognition, as implemented by
HMMs, is indeed very powerful. Some of the progress realized over the past
years with HMMs is, of course, the result of trial and error; however, much

of the success has resulted from a better understanding of their strengths and
weaknesses.

This thesis has thoroughly reviewed the theory and the practice of HMMs, as
they relate to the problem of speech recognition. Along the way, we
described some of the improvements which have helped to make HMMs such
a successful technology. We felt this was important in order to provide the
necessary insight into the problem.

As we have seen, there are many different ways of making HMMs work
better. For example, improving the front-end by finding better speech
features (or descriptors) to extract from the signal and by making it more
robust to changes in the acoustical environment; finding ways of quickly
adapting HMM parameters to changes in speaker or environmental charac-
teristics; improving language modeling at all levels (syntactic, semantic and
pragmatic) and integrating the language models into the scarch strategies (real-
izing that many applications do not require that every single word be corrcctly
recognized); finding better speech units; and improving training techniques.
Each of these constitutes an area of research in its own right and each prom-
ises to improve, yet again, the performance of HMM-based systems.

We have chosen to work on the training problem and, because we [clt it was
more intuitively aﬁpealing than MLE, to concentrate on the MMIE frame-
work. In the process, our hope was not to replace MLE with MMIE. After
all, as is the case for MLE, MMIE needs good initial models to perform well,
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and MLE seems to be a method well-suited to produce these models. In fact,
our hope was not even to establish MMIE as an indispensable part of
everybody’s training process (although for us, in many cases, it is). Instead,
what we wanted to do was to add tools to those already available to designers
of speech recognition systems and to demonstrate their effectiveness. We
especially hoped that this work would increase general understanding of
HMMSs and add further insight into the speech recognition problem.

6.1. Contributions

We have shown that using MMIE following MLE can resuilt in significantly
improved recognition rates, compared to MLE alone. In fact, using MMIE
with the techniques presented in this thesis has allowed us to obtain, with a
fairly simple system, recognition rates better than the best results published to
date on the TI/NIST connected digit task.

More significant, however, than the absolute recognition rates obtained, is the
general applicability of the techniques presented. It is quite probable that
better results could be obtaired using MLE alone in a more complex system
(full covariance densities, more specific models' second derivative parameters,
etc.); however, there is little doubt that, given enough training data, even
these MLE results could be substantially improved using the MMIE tech-
niques descrived in this thesis.

We have introduced an efficient new training algorithm, “Corrective MMIE
training”, which has allowed us to obtain these improvements with a small
number of iterations, each of which is usually faster than a standard MLE
training iteration.

This algorithm is the result of a modification that we introduced into a reesti-
mation formula for dlscrete distributions proposed by Gopalakrishnan et al.,
and of the idea of omy using errors in the training set for reestimating .the
HMM parameters. Taken separately, none of these ideas would have per-
formed very well; however, taken together they led to systematlcally fast con-
vergence in practice.
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We proposed a new derivation for the discrete reestimation formula. This
allowed us to derive new reestimation formulas for the case of Gaussian densi-
ties with diagonal covariance. We demonstrated convergence in practice and
also effectively used the procedures in a speech recognition system with semi-
continuous distributions. This resulted in a joint optimization of the code-

book of tied densities and of the discrete distributions of mixture weights and
transition probabilities.

We proposed a method for performing MMIE training with multiple model per
word and we demonstrated its effectiveness in practice. We proposed a way
of using an N-best search algorithm to generate more training data. This tech-
nique could also be used elsewhere, such as in corrective training. Moreover, \

this could also be used to generate a good approximation to the denominator
of the MMIE objective function.

We have shown how HMMs can be improved by the introduction of a small
number of additional parameters and how MMIE, contrary to MLE, can be
used to learn these new parameters. We have shown that this can be very
effective in 2 speech recognition system.

6.2. Discussion and future work

In many ways, the results reported are very encouraging. There are not many
experiments that we have made with MMIE which have not resulted in sub-
stantial improvements over MLE alone. Yet, in order to correctly assess their
real significance, it is important to take into account the characteristics of the
task that was used for the experiments.

One of the first characteristics that comes to mind is the very small vocabu-
lary. This is an important point because it allows the use of a very simple
looped model (m,, ) to represent all possible models in the task. A similar
model for, say, a triphone-based, large vocabulary continuous speech applica-
tion would either have to be extremely big or to grossly over-gencrate. Sup-
pose, for example, that we use for mg,, a big looped model with all triphones
in parallel. Then, even if the rules about the legal triphone transitions are

- observed, most of the paths in that looped model will not correspond to iegal
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English words (not to mention sentences). Moreover, those that do will not
use anything close to the “true” language model.

For the connected digit task, the language model was probably not an impor-

tant issue. The implicit language model in m,,, was obviously wrong, but not
dramatically so. Moreover, as some simple demonstrations have shown,
MMIE is probably robust to incorrect modeling assumptions such as this one.
There is no point, however, in training a system to make distinctions it will
never need to do, as would be the case with the triphone looped model. It is,
of course, possible to improve the model somewhat using bigram probabilities
for triphone transitions, but this is as far as it is possible to go with a looped
model. Training with such a model could probably improve recognition of
connected phones, but it is not clear that this would translate into better word
accuracy. .

For such applications, then, it may be better to approximate the denominator
of (4.9) with a summation over the word sequences which could most easily be
confused with the true sentence. These word sequences could be found using
one of the recently introduced “N-best” algorithms and the approximation
would probably be very good.

Another important characteristic of the connected digit task is the large size
of the database and the fact that the training set was designed to be “represen-
tative” of the entire task. This makes it more difficult for us to explain the
sizable differences between our results on the training and on testing sets.

Yet, since a large proportion of errors usually comes from a small number of
- “bad” speakers (such as HM, CS or LE), we believe the training set may still
not be “representative” enough. More training data, then, might be neces-
sary. This brings us back to the question of how much data is enough training
data. As we discussed in Chapter 3, the answer to that question depends to a

large extent on the characteristics of the model used; this is certainly as valid
for MMIE as it is for MLE.

Our experience shows that, if enough information is available in the training
data, MMIE will be very good at using that information in order to reduce the
error rate on the training set to almost nothing. This, however, do¢sn’t mean

that results will be similar on a different set. In fact, as many researchers
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have often found out, the opposite may very well happen. If it does, it can of
course result from mismatches between training and testing sets. In our task,
however, it is more likely that this would be the resuit of attempting to learn
parameters which just don’t have real global significance for the task. A case
in point is the frame-dependent weighting experiment that we performed: It
worked wonderfully on the training set, but degraded resuits on the test set.

In reality, some HMM parameters with global usefulness may not require a
large amount of training data to be well-estimated. Take, for instance, the
giobal codebook exponents that were used in most of our experiments. Ini-
tially, we trained them on a very small number of male speakers from the
training set., It turns out that the exponents obtained that way were guite simi-
lar to those we now obtain with our “integrated” training procedure. This, we
think, is because the values obtained really reflect the relative usefulness (for
our task) of the various sets of parameters, which applies similarly to all
speakers. These exponents, however useful we now know them to be, do not
fit weli-within the MLE framework and could not have been learned in it.

@ Codebook exponents are very similar to the factor that is often used to
increase the contribution of the language model to the log likelihood of a sen-
tence. They both arise because of incorrect modeling assumptions in HMMs,
So far, however, the language model factor has been determined empirically.
This could be done automatically with MMIE.

This brings us to a discussion of one of the ways in which MMIE could help-
us most to improve our speech recognizers. We discussed in Chapter 1 the
importance of tke front-end and how knowledge about HMMs should be used
in its design. The goal is, of course, to extract features which will allow
HMMs, as a speech recognition tool, to perform as well as possible. It is
quite possible that the best way of achieving this would be to not consider
feature extraction and HMMs a separate entities, but rather as two parts of an
integrated recognition tool.

After all, it is the HMMs themselves which are the most capable of determin-

ing what they need from the front-end in order to improve their rccog':ﬁitior';l

performance. This seems a natural application for MMIE training. The idea’
@ is as follows. Feature extraction is a mathematical transformation that takes
signal samples as input and produces features as output. Even though the

2
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commonly used transformations (FFT or LPC-based cepstral analysis, delta
parameters, etc.) perform reasonably well, they might be far from optimal for
speech recognition. It is possible, however, to implement feature extraction
using neural networks as function approximators. Then, integrating the neural
network within the HMMs, the gradient of the MMIE objective function with
respect to its parameters could be computed, thus allowing it to be optimized -
at the same time as the other HMM parameters.

=

There are two important points to make. First, as in most such optimization
problems, the initialization is very important. An obvious solution is to ini-
tialize the neural network in such a way that it approximates a type of feature
extraction which is known to perform well. Second, since many parameters
will be estimated, it is probable that a large amount of training data will be
required in order to obtain an optimum which can be generalized. Such
experiments, if done extensively, could substantially increase our knowledge
about the types of speech features which are most useful to HMMs. This,
indeed, would be a valuable result.

Our experience with MMIE training so far has been that there usually is some-
thing (often substantial) to be gained from its direct use in training. As a
result, corrective MMIE training is now well integrated into our HMM
§qfti.vare package and is part of our standard training procedure.

%
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