
1"'1 National Library
of Canada

Bibliothèque nationale
du Canada

Canadian Theses Service Service des thèses canadiennes

Ottawa. Canada
K1AON4

NOTICE AVIS

Thequalttyof this microform is heavilydependentupon the
qualtty of the original thesis submilled for microlilming.
Every ellort hasbeen made to ensure the highest quality of
reproduction possible.

If pages are misslng, contact the universtty which granted
thedegree.

;';,

Some pages may have indistinct print especlally il the',':
original pages Wl"re typed with a poor typewriter ribbon or
il the umverstty sent us an inferior photocopy.

Reproduction in full or in part of this microform is govemed
by the Canadian Copyright Act. R.S.C. 1970. c. C·30. and
subsequent amendments.

La qualtté de celle microforme dépend grandement de la
qualtté de la thèse soumise au microlilmage. Nous avons
tout fait pour assurer une qualtté supérieure de reproduc·
tion.

S'il manque des pages, veunlez communiquer avec
l'université qui a conféré le grade. .

La qualité d'impression de certaines pages peut laisser à
.~ désirer. surtout si les pages originales ont été dactylogra­

phiées à raide d'un ruban usé ou si runiversM nous a lail
parvenir une photocopie de qualné in!érieure.

La reproduction. méme partielle, de celle microfonne est
soumise à la Loi canadienne sur le dron d'auteur. SRC
1970. c. C-30, et ses amendements subséquents.

HL·Ui (1.88IOClc

1:,

Canada

Hidden Markov Models,

Maximum Mutuallnfonnation Estimation,

and the Speech Recognition Problem

Yves Normandin

Department of Electrical Engineering
McGill University, Montreal

March 1991

A Thesis submitted to the Faculty of Graduate Studies and Research
c, in partial fuifillment of the requirements for the degree of

Doctor of Philosophy.

copyright © 1991 Yves Normandin

1)

1+1 National Library
of canada

Bibliothèque nalionale
du Caroada

canadian Theses service service des thèses canadiennes

Ottawa. Canada
KIA ONe

<:::=..:..:. .•..:::~:-'

;f,

The author has grantecl an Irrevocable non·
exclusive licence a1lowing the National Llbrary
of canada to reproduce, Ioan, distn1lute or sen
copies of hlslher thesls by any means and ln
any form or format, making thIs thesls avas1able
to Interested persons.

The author retains ownership of the copyright
ln his/her thesls. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced WithOllt hislher pero
mission.

L'auteur a accordé une licence Irrévocable et
non exclusive pennetlant à la Bibliothèque
nationale du Canada de reproduire, prêter,
distnbuer ou vendre des copies de sa thèse·
de quelque manière et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thèse à la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protège sa thèse. Ni la thèse ni des extr<s
substantiels de celle-ci ne doivent être
imprimés ou autrement reproduits sans son
autorisation.

Canada
,~

ISBN 0-315-67472-5

o

c

rï."'-2'

TABLE OF CONTENTS

ABSTRACT ..••.•.•••..•..••.•..•.•...•..........•.........•...•.....•..••.............•....•...........•. 1
SOMMAIRE ••......••..•..•••........••.•.....•.•.....•....•..••.........••...•..•.•....•.....•••.•...••.. 2
ACKNOWLEDGEMENTS ..•.....••••..•••..•.••••.•.•..•..•.•...••.•.•....:;;'....................... 3
1. INTRODUCTION •.•....•..•••••...•••.•••••..•.•••.•...•...••••..••...•...•.......•..•..••....••.... 5

1.1. Recent developments •....•....••...•...•.•....••••....•............••...•...••....••.... 5
1.1.1. Front end ..•.•..•....•...•........••..••..............•.....•....•......•..•....• 6
1.1.2. Acoustic-phonetic modeling •............•.•....•..............~........... 8
1.1.3. Dealing with speaker variability 10
1.1.4. Increasing robustness 11
1.1.5. Output distributions 12
1.1.6. Discriminative training techniques 12
1.1.7. Search algorithms " 14

1.2. Revisiting the training problem :................. 15
2. HIDDEN MARKOV MODELS 17

2.1. Introduction ·17
2.1.1. The decoding problem 18
2.1.2. A simple illustration :...... 19
2.1.3. Unit models 20

2.2. Definitions ,........... 23
2.3. Probability computations with HMMS 26

2.3.1 Basic concepts 26
2.3.2 Recursive computation of the trellises 27
2.3.3 Probability computations using the trellises 29

2.4. A survey of output distributions 30
2.5. Maximum likelihood estimation of HMM parameters 34

2.5.1. Transition probabilities 37
2.5.2. Output distributions 38

2.5.2.1. Discrete distributions 39
2.5.2.2. Gaussian distributions 39
2.5.2.3. Diagonal Gaussian distributions 40 .
2.5.2.4. Mixture distributions 41

2.6. Derivatives of probabilities 43
3. HMMS: FROM THEORY TO PRACTICE 48

(\
3.1. Introduction 48
3.2. Application considerations 48

o

ii

3.2.1. Initialization and training•. 48
3.2.2. Silence and optional models ...••.•....•..............•..............•.... 51
3.2.3. Output distributions .•••.......•...••••..... 52

3.3. The training data problem •.....••.......•....•....... 53
3.3.1. Basic concepts 53
3.3.2. Sparse training data and discrete HMMs•..•........•.....•.... 56
3.3.3. Sparse training data and continuous HMMs•..............••... 58
3.3.4. Units 58

3.3.4.1. Linguistically based units 58
3.3.4.2. Acoustically based units 60

3.3.5. Using less training data 61
3.3.5.1. Speaker adaptation 61
3.3.5.2. Noise adaptation/signal normalization•••... 63

3.4. Speech decoding ;.......................................•....•.....•......•.. 64
3.4.1. The Viterbi algorithm•..••...................... 65
3.4.2. Viterbi search with partial backtrace ...•..............•.. 68
3.4.3. Beam search •....••..•.• .•......•..........................•. 70
3.4.4. Language models and N-best algorithms•.....•.......... 70
3.4.5. The A· search algorithm ...•...........•.............•................••... 71

3.5. Implementation considerations 72
3.5.1. Underflow problems 72

,\1 " .

3.5.1.1. Scaling·:.. 72
3.5.1.2. Logarithmic probabilities 74

3.5.2. In-place computation of the trellises 75
4. MAXIMUM MUTUAL INFORMATION ESTIMATION OF HMM

PARAMETERS 78
4.1. Inlioduction 78
4.2. Basic concepts 81
4.3. MMIE in practice 83

4.3.1. A reestimation formula for discrete HMMs 85
4.3.2. The Corrective MMIE training algorithm 88
4.3.3. Extension to Gaussian densities 88

4.3.3.1. Looking for the fixed point 89
4.3.3.2. A heuristic reestimalion formula 90
4.3.3.3. Revisiling the reestimalion formula 93
4.3.3.4. On the value of D 101

4.4. MMIE refinements 102
4.4.1. Global codebook exponenls 102
4.4.2. Frame-dependent weighting 105

S. CONNECTED DIGIT RECOGNITION EXPERIMENTS 108
5.1. The TIINIST connecled digit lask 108

c

c

c

üi

5.1.1. Database description 108
5.1.2. Previous results 110

5.2. Baseline system ...•....•.•..........•..•.....•••••••...••••••••.•••••••.........•.........• 111
5.2.1. Signal processing 111
5.2.2. Vector quantization 112
5.2.3. HMMs ..•...•••...•....•.••.••....•.....••••.•.•.•...••.•.••.•....•.•.••..•.•.•••. 112

5.3. Semi-continuous HMMs 117
5.4. MMIE experiments••.••...•...•.••.••.•.•••••..•••••.•..•.•.•...•.•.••.•.•.•.•.•.••. 118

5.4.1. Convergence experiments for discrete distributions•.•.••. 119
5.4.2. Convergence with the Gaussian reestimation formula ...•.•.•.••. 123
5.4.3. Recognition experiments with discrete HMMs •...•....•...•...•.••. 124

5.4.3.1. Applying MMIE to the baseline system .:•..•.......•.••. 124
5.4.3.2. Global codebook exponents 125

5.4.3.2.1. First pass 126
5.4.3.2.2. Second pass 127

5.4.3.3. Frame-dependent codebook exponents ..•.•..•.•...•.•... 129
5.4.3.3.1. First pass 129
5.4.3.3.2. Second pass ••••.••...••••..•.••.....•........•.....••• 130

5.4.3.4. Frame-dependent weighting 132
5.4.3.4.1. First pass 132
5.4.3.4.2. Second pass 133

5.4.3.5. Increasing the amount of training data•..............• 135
5.4.4. Recognition experiments with semi-continuous HMMs•. 136

5.4.4.1. One model 137
5.4.4.2. Separate male and female models 138

S.S. Summary of results ;';;;~:.':.~, 142
6. CONCLUSION ; :·; 144

6.1. Contributions 145
6.2. Discussion and future work 146

REFERENCES 150

fr

o

LIST OF FIGURES

Figure 2.1: Ward model •....•....•.•..•.•••.......•..••..•..•.•.•.•••.••........•..•••.•....••....•••. 20
Figure 2.2: Basic unit ••.•••...•..•.•.••.•.••••.........••.•.. .•.•.•.••••••••..•...........•.•... .•.•...• 21
Figure 2.3: Madel for ward "sauce" from models for "s" and "ao" .•...••••...•....•.. 22
Figure 2.4: Madel for ward "sauce", without empty transitions ••.••••.•.•..••• ,;;~:.: ••• :.~.2

,1

Figure 2.1: Implementation of a mixture distribution using one mixture (çom-
panent per transition ••..••••...•••..••...••.•.••..•.......•.•...•..••.••..•.•.•.•...•..:;-;:;;;;;:" 32

: Figure 3.1: Optional model .••••.•.•..•.••.•...••..•.•.•...••......•...•..••.••.•.•••..••.•........••• 51
Figure 3.2: True distribution (solid line). Estimate (dashed).•..•.••••......•...•. 55
Figure 3.3: Histogram estimate, semi-continuous distribution created from the

histogram (dashed line), and the true Gaussian density (solid line). ...••.•...•.. 56
Figure 3.4: A looped model used for connected digit recognition •...........•..•..••••• 67
Figure 3.5: Looped model for wordspotting. 69
Figure 3.6: Order of evaluation of backward trellis elements. 77
Figure 4.1: Construction described in the text. 90
Figure 5.1: Duration black 114
Figure 5.2: Head/tail blacks 115
Figure 5.3: Silence and pause models 115
Figure 5.4: Madel used for digit string 5-9-6 115
Figure 5.5: Looped model. 117
Figure 5.6: Value of logl.OOt R(e) as a function of the iteration number 121
Figure 5.7: Madel m U1 for W -5-9-6. . 139
Figure 5.8: Madel m gtn used for training with separate male and female

models. .. 140

iv

c

c

LIST OF TABLES

Table 2.1: Basic unit transitions ..••••..••••.•• .•....••....•.•••..••••...••.....•••••••...•..••.•.... 23
Table 2.2: Transitions for word in Figure 2;3 24
Table 2.3: A transition sequence ••.••••••:... 25
Table 5.1: Digit lexicon ..•.•.••••.•.••..•....•••.•••••••.••••••••.•••.•.•.••....•••••.••••••.••••.•••.• 113
Table 5.2: Structure of unit models 113
Table 5.3: Baseline system's recognition performance on the test set as the

number of training iterations is increased. ...••;; 116
Table 5.4: Baseline system's performance on the training set 116
Table 5.5: Semi~ontinuous recognition on the test set 118
Table 5.6: Convergence of gradient expressions 120
Table 5.7: Convergence of exact expression near the optimum 122
Table 5.8: Convergence of continuous reestimation formulas ...•••••.•••..••••••.••••.••• 123
Table 5.9: Applying MMIE to the baseline system. Error rate on the test set

after each iteration of corrective MMIE training. • 125
Table 5.10: Error rate on the training set during each iteration. Aiso shown is

the value of logl.OOl R(e), computed before and after reestimation on the
reestimation set. . '" 125

Table 5.11: Error rate on the test set after each iteration of corrective MMIE
training (using global codebook exponents). .. 126

Table 5.12: Error rate on the training set during ench iteration (with global
codebook exponents). Also shown is the value of logl.OOl R(e), computed
before and after reestimation on the reestimation set, as weIl as the ex-
ponents obtained after each Ïteration. .. 127

Table 5.13: Error rate on the test set after each iteration (second training pass
with global codebook exponents). • 128

Table 5.14: Error rate on the training set during each iteration (second training
pass with global codebook exponents). Aiso shown is the value of
log1.001 R(e), computed before and after reestimation on the reestimntion
set, as weil as the exponents obtained after each iteration. .. 128

Table 5.15: Error rate on the test set after each iterntion (first training pass
with frnme-dependent codebook exponents). .. 129

Table 5.16: Error rate on the training set during ench iterntion (first training
pass with frnme-dependent codebook exponents). Also shown is,the value
of logl.OOl R(e), computed before and after reestimation on the féestimn-
tion set. . 130

Table 5.17: Exponents obtained at the end of the first pass of training with
codebook-dependent exponent. . ; 130

v

o

o

vi

Table 5.18: Error rate on the test set after each iteration (second training pass
with framcxlependent codebook exponents). . 131

Table 5.19: Error rate on the training set during each iteration (second training
pass with framcxlependent codebook exponents). Also shown is the value
of logl.OOI R(6), computed before and after reestimation. set. ••...••..••....... 132

Table 5.20: Exponents obtained at the end of the second pass of training with
codebook-dependent exponent. ..•......••••..•.•......••••..•...................••.••........ 132

Table 5.21: Error rate on the test set after each iteration (fust training pass
with framcxlepencient weighting). . 133

Table S.22: Errer rate on the training set during each iteration (first training
pass with frame-dependent weighting). Also shown is the value of
logl.OOI R (6), computed before and after reestimation on the reestimation
set, as weil as the codebook exponents obtained after each iteration.•...... 133

Table 5.23: Error rate on the test set after each iteration (second training pass
with frame-dependent weighting). • 134

Table 5.24: Error rate on the training set during e,:iéhcïterlition (second training
pass with frame-dependent weighting). ~.lso shown is the value of
logl.OOI R(6), computèd before and after reestimation on the reestimation
set, as weil as the coddl:)ok exponents obtained after each iteiation. ...•....... 134

'"Table 5.25: Error rate on the tèst set after each iteration of N-hest trnining with
global codebook exponents. The initial models used are the ones obtained
after 3 iterations of MLE training in the second pass of training with global
codebook exponents. . 135

Table 5.26: Error rate on the training set during each iteration (N-hest training
with global codebook exponents). Aiso shown is the value of
logl 00lR(6), computed before and after reestimation on the reestimation
set, 'as weil ~; the fr~ction of the total number of strings from the training

h "d'f" .. 136set t at was use ". cr reestimaUon. • .
Table 5.27: Error rate OD the test set after each iteration using semi-continuous

HMMs with global codebook exponents. The initial models used are the
ones obtained after 3 iterations of MLE training in the second pass of train-
ing with global codebook exponents.•...................•................... ;...... 137

Ta'ble 5.28: Error rate on the training set during each iteration (semi-continuous
, HMMs with global codebook exponents) 138

Table 5.29: Error rate on the test set after additional MLE training iterations.
.••....••••...•..............................••...•••.•••......•.. 139

Table 5.30: Error rate on the test after each MMIE training iteration (semi­
continuous HMMs with global codebook exponents, separate male and Ce­
male models). The initial models used are those obtained aCter 3 MLE
iterations. ...•...................••....•...•....•.......•... 141

Table 5.31: Error rate on the training set during eaeh iteration (semi-continuous
HMMs with global codebook exponents, sepllrate male and Cemale
models). The initial models used are those obtained aCter 3 MLE itera-
tions. . 141

Table 5.32: Error rate on, the test after each MMIE training iterntion (semi-
"

c

vii

continuous HMMs with global codebook exponents, separate male and fe­
male models). The initial models used are those obtained after 6 MLE
iterations. ..••........•.••••.•..••••..••..•••..•..•••.••...•.••••..••..•....•........•...•.....•..•... 142

Table 5.33: Error rate on the training set during each iteration (semi-continuous
HMMs with global codebook exponents, separate male and female
models). The initial models used are those obtained after 6 MLE itera-
tions. . 142

Table 5.34: Summary of results••....•••..•....••..•...••...•••....•••...••........••..... 143

"

o

ABSTRACT

Hidden Markov Models (HMMs) are one of the most powerful speech recog­
nition tools available today. Even so, the inadequacies of HMMs as a
"correct" modeling framework for speech are weIl Î>nown. In that context, we
argue that the maximum mutual information estimation (MMIE) formulation
for training is more appropriate vis-a-vis maximum likelihood estimation
(MLE) for reducing the error rate. We also show how MMIE paves the way
for new training possibilities.

We introduce Corrective MMIE training, a very efficient new training algorithm
which uses a modified version of a discrete reestimation formula recently pro­
posed by Gopalakrishnan et al. We propose reestimation formulas for the
case of diagonal Gaussian densities, experimentally demonstrate their conver­
gence properties, and integrate them into our training algorithm. In a con­
nected digit recognition task, MMIE consistently iniproves the recognition
performance of our recognizer.

1

c

(}

"

SOMMAIRE

'..

Les modèles de Markov (MM) sont un des plus puissants outils de reconnais­
sance de la parole actuellement disponibles. TI n'en demeure pas moins,
cependant, qu'ils sont loin d'offrir un cadre "correct" de modélisation de la
parole. Dans ce contexte, nous raisonnons qu'il est plus approprié d'aborder
l'apprentissage des MM de l'angle de l'information mutuelle maximale'(IMM)
que de celui de la vraisemblence maximale. Cela est d'autant plus vrai que
IMM offre de nouvelles possibilités.

Nous introduisons un nouvel algorithme d'apprentissage très efficace pour
IMM. Cet algorithme utilise une version modifiée d'une fbrmule de
réestimation pour les MM discrets récemment proposée par Gopalakrishnan et
al. Nous proposons des nouvelles formules de réestimation pour les densités
gaussiennes à covariance diagonale, nous en démontrons expérimentalement la
convergence et nous les intégrons dans notre algorithme d'apprentissage. Ces
techniques nous ont permis de considérablement améliorer la performance de
notre système de reconnaissance de chiffres connectés.

2

o

ACKNOWLEDGEMENTS

CRIM is a very young organization and the Speech Group within CRIM is
even younger. Much~of what we now have had to be built from scratch and
doing this while, at the same time, working on a Ph.D. has not always been
easy. Our group has, however, enjoyed constant support from CRIM and for
this 1 am very grateful.

1 would first like to thank Salvatore Morgera, my thesis supervisor, for his
unwavering confidence in my capabilities, especially at times when my own
confidence was getting dangerously low. 1 would also like to thank Renato De
Mori who, as the "spiritual father" of the Speech Group at CRIM, has always
been a source of inspiration for us. His inexhaustible ~nowledge about speech
recognition and artificial intelligence has proved to be one of our group's
greatest assets.

1 would also like to thank the other members of our group, especially Louis
Vroomen, Régis Cardin, Charles Snow and Hong Minh Cung. Louis has
been there almost since the beginning, and the group can always rely on him
when new software needs to be developed quickly. Régis has worked very
hard with me on the connected digit task and, if we are doing weIl now, he
certainly deserves a lot of credit for it. Charles who, unfortunately for him,
knows Unix and C so weIl, has never hesitated to take sorne time off his more
important tasks to help me out with sorne of the bugs 1 had. Minh has had
the patience to go through several versions of sorne of the mathematical parts
in my thesis and has helped me remove several errors in them.

Ji

1 would ~rticularly like to thank my parents for everything they have done for
me. They gave me constant support, always rewarded my taste for knowledge
and encouraged me to do the best 1 cano 1 understand the value of this and'I
realize that 1 am truly privileged to have beenraised in such an environment.

C Much of what 1 am today, 1 owe it to them.

3

(

#';:.
~

4

Finally, 1 would like to thank Sylvie for her support and understanding over
the past few years. This thesis has not only meant long work hours; it has
also meant many canceled or postponed projects. She has accepted ail of
this, patiently, without complaining. 1 hope that, somehow, 1 can make it up
to her.

O,

1. INTRODUCTION

Hidden Markov Models (HMMs) have been successfully used in speech recog­
nition for close to 20 years. Considering the nature of a HMM, this success is
somewhat surprising. Indeed, it is not intuitive how a model which assumes
that one centisecond of speech is statistically independent of the previous one
can be useful. Yet, not only do HMMs work, but they work very weIl. Over
this period, they have been applied to a wide variety of recognition applica­
tions and their performance has steadily improved, to the point that they now,.,
often outperform all other recognition techniques.

It is now commonplace to hear about HMM-based, large-vocabulary, speaker­
independent continuous speech recognition systems. Some examples are
BYBLOS, from BBN [CHOW 87, KUBA 88], SPHINX, from Carnegie Mel­
Ion University (CMU) [LEEK 88], the Lincoln Labs system [pAUL 89],
DECYPHER, from the Stanford Research Institute (SRI) [WEIN 89], or the
AT&T system [LEEC 9Oa]. This was not the case a few years ago, even
though the basic concepts necessary to build such systems (phoneme-based
modeling, training and recognition algorithms) [JEU 76] have been known
since the very beginning of HMM-based speech recognition. During this
period, a large body of knowledge and practical experience has been acquired
so that these systems are now slowly becoming a reality.

1.1. Recent developments

As a general framework for doing speech recognition, HMMs are somewhat
paradoxical. On the one hand, e""perience shows that recognition based on
their speech modeling capabilities is very effective. On the other hand, from
the speech production point of view, HMMs are notoriously poor speech

5

6

models.1 A question we might want to ask, then, is how important are the
modeling deficiencies of HMMs in the context of speech recognition? Using
the communication theory viewpoint of speech recognition [BAHL 83], this
question can be reformulated as: given that a finite amount of training data is
available, how close is it possible !o get to an optimal speech decoder (recog­
nizer) using HMMs?

It is extremely difficult to answer this question. Since the channel statistics
are unknown, the optimal decoder's error rate cannot be determined. Of
course, human performance can be used as a good approximation, but even
this is difficult to evaluate. Within the HMM framework, how close we get to
an optimal decoder depends on a number of factors such as the speech
features used as input; the structure of the models; the type of output distri­
butions; the training and recognition techniques used; and, last but not least,
precisely how an optimal decoder is defined.

We will review some of the recent developments which have allo,wcà'HMMs
to produce constantly better speech recognizers. Clearly, m~ch__,has been
done; on the other hand, comparing the best available systems with human
performance, it is also clear that there is still a long way to go.

1.1.1. Front end

rf,',
~:'

The front-end system extracts from the speech signal the features which will
be used by the HMMs to model and recognize speech. As a general principle
the extracted features should contain as much information as possible about
the Iinguistic content of the acoustic signal, while being in a form that can be
used by the HMMs. Aiso to be considered is not only how much useful infor­
mation a particular feature contains, but how reliably it can be extracted from
the speech signal.

The front-end system has a considerable impact on the ultimate performance
of an HMM-based speech recognition system, and much effort has been spent
over the years to find new and better speech features. One important source

'First order HMMs are assumed tbrougboutlbis tbesis.

,,1t;.
~

o

o

7

of inspiration has beenc:the knowledge about the human auditory system.
Indeed, since human recognition is so good, it seems logical to imitate, up to
a point, the way the ear performs its own "feature extraction". This has
proved to be a fruitful area of research. Nowadays, most systems integrate
sorne form of auditory modeling into their feature extraction, often in the
form of mel-scaled parame\~rs [DAVI 80], through the use ofa bilinear
transform [LEEK 88], or by'~lising the output of a full-scale auditory model
[SENE 88, COHE 89].

Recently, techniques such as principal component analysis [BROW 87],
discriminant analysis [BROW 87, HUNT 89, DODD 89] and cepstral transfor­

mation,2 by both decorrelating parameters and concentrating most of the use­
ful information into a small number of parameters, have also allowed better
recognition.

However, the most significant recent development in terms of feature extrac­
tion for speech recognition is probably the introduction of "dynamic" parame­

ters3 [FURU 86]. This development is important for several reasons. First, it
has allowed substantial recognition improvements in most speech recognition

systems.4 This confirms the importance of information about the dynamics of
speech. Now, most high-performance systems use dynamic features in one
form or another.

Second, this highlights a major weakness of HMMs. Indeed, in most cases,
dynamie parameters are direetly eomputed from parameters already used by
HMMs, and as such, do not contain any additional information. This shows
that it is not suffieient that the extracted parameters preserve ail the important
linguistie information in the signal; this information has to be encoded in
such a way that HMMs can take advantage of it. In other words, the front­
end system and the HMM recognizer should not be considered as independent

'cepstral transformation was in praclice found [HUNT 89] ta be very close la a principal com­
panent analysls.

3Dynamic parameters descnoc how, over a Dumber of speech Crames, other paromctcrs arc chang­
iug. They are oCten referred to DS UdiCferences" or "slopes". depending on how thcy arc computed
[LEEK 88). Recenlly, "second derivative" parameters bave been introduced in sorne systcms [GAUV
91]. and Ibey also seem la improve recognition performance.

<nis is especi~jjy lrue for speakcr-Indepcndent systcms.

8

entities.

1.1.2. Acoustic-phonetic modeling

The idea of acoustic-phonetic modeling is certainly not new. A language like
English has a very small number of phonemes (about 40), from which every
single word can be built. It is natural to think of the phoneme as the basic
unit to model and recognize. This would, for example, allow a system to
recognize words it had never heard before by simply knowing theword's
phonetic pronunciation(s) (plus, possibly some phonological rules). Unfor­
tunately, the phoneme is a very abstract linguistic unit, and its actual acoustic
realization is extremely variable. It depends on a number of factors such as
accent, speaking rate, intonation or phonetic context. .:)

Context-dependent phonetic HMMs were introduced specifically to deal with
within-wo.d context dependencies [SCHW 85]. The idea is to use different
models for the same phoneme, one for each of a number of different contexts

such as either the right or left phonetic context, or both.S

Context-dependent models are much more specific and thus better able to
make fine phonetic distinctions. The problem is that the more specific the s

models, the larger the total number of models, and the less data there is to
train them. This results in a number of specific but poorly trained models,
which is undesirable. In order to solve this problem, BBN smoothed triphone
models with the corresponding left and right context-dependent models, and
the corresponding phoneme models, using manUally-tuned weights [SCHW
85]. The idea is to get models which are as specific as possible, while still
being reliably trained, or, as Lee puts it [LEEK 88], to get the best possible
compromise between "specificity" and "trainability". For SPHINX [LEEK
88], Lee used the same technique, except that he also smoothed with models
having uniform distributions and, in his case, the weights were estimated
automatically using a technique called deleted interpolation [BAHL 83].

'Phoneme models whieh depead on bolh lhe lefl and righl phonelie conlexIs are usuoUy coUed lri·
.phon••.

o

9

Context-dependent models are now used in most large-vocabulary systems
(e.g., BYBLOS, SPHINX, DECYPHER, the systems of SRI, Lincoln Labs,
AT&T, or the INRS large-vocabulary system [DENG 90]). In ail cases, their
use has'resulted in substantial recognition improvements.

Modeling within-word coarticulations can also be done implicitly with word
models. This may actually be a very powerful technique since word-dependent
context dependencies can be accurately modeled, something that cannot

always be done with triphone models.6 Word models are especially useful for
smaIl vocabulary applications. They have been successfully used for speaker­
independent applications such as connected digit rer"gnition [RABI 89b,
DODD &9] or keyword spotting [WILP 90, ROHL 89(" >

The more accurate coarticulation modeling offered by word models inspired
the introduction of a totaIly different kind of sub-word unit [BAHL 88a].
Rather than being defined in terms of linguistic principles, this new unit,
caIled the fenone, is acoustically based. Thus, instead of using phonetic con­
cepts to determine a priori the baseform of a word in terms of the systems
basic units, the baseform is determined from acoustic realizations of that
word. This results in more precise word modeling and has improved recogni­
tion rates in isolated word recognition applications [BAHL 88a].

Some of the recognition problems encountered in practi9f are specific to con­
tinuous speech recognition systems. One is the poor articulation of function
words such as articles, prepositions or conjunctions, which resuits in a dispro­
portionate number of errors arising from those words [LEEK 88]. In order to
solve this problem, Lee [LEEK 88] introduced function'I'/ord dependent
phones and observed significant improvements from their use. On the other
hand, their use in the AT&T system [LEEC 9Oa] has only resulted in improve­
ments for the "no grammar" case (i.e., aIl vocabulary words arc cqually prob­
able at aIl times).

·Context dependeneies ean extend bcyond the immedinte phonetie neighbors. Note thnt il is nlso
possible to hnve word.dependenr triphones [CHOW 86). which will perCorm very weil on the, speciCicd
vocnbulnry with the ndditionnl advnntage that they cnn b. used to crente gnod initinl modcls Cor new
wnrds. Note nlso thnt in s.v.ral systems. pnrticulnrly thos. nsing the DARPA resOUrc. mnnngement
corpus, triphouc models arc vocabulary-dtptndent, that is, tbey arc traincd and lcstcd on the same va..
enbulary. These models include vocabulary.speciCic crCecls which may artiCicially enhance th. systems
perCormance [HON 90).

10

Another problem of continuous speech is between-word coarticulation. A
solution to this problem, recently (and simultaneously) proposed by CMU
[LEEK 89b], Lincoln Labs [pAUL 89] and SRI [WEIN 89], is simply to use
context-dependent phone models for between-word coarticulation. This had
not been done before because it substantially increases the number of models
(from 2381 to 7057 triphones for the DARPA resource management task
[LEEK 89b]) and it also substantially complicates recognition.

1.1.3. Dealing with speaker variability

Il
il

~t

An important cause of speech's acoustic variability is speaker variability.
Speaker-independent models have a problem reminiscent of context­
independent models. By averaging statistics over a number of speakers, they
loose specliicity and, along with it, discriminating capabilities. One obvious
solution is to use speakei-dependent models. However, in order to get the
desired level of performance, this may require a large amount of training data
from everybody using the system. This is often undesirable, which is why
speaker adaptation techniques have been developed.

The idea of speaker adaptation is to start from well-trained models and to
adapt them to a new target speaker, using as little data as possible. Speaker
adaptation techniques are usually classüied as supervised· (using labeled

speech?), or unsupervised (using unlabeled speech). Unsupervised techniques
[COX 89, FURU 89] are attractive when it is desired to perform adaptation
transparently during system use. However, this is not as clear an advantage as
it appears: it is often possible to use supervised techniques to perform adapta­
tion on the confirmed correctly recognized speech, thus improving the system
performance as it is being used. Moreover, supervised techniques usually per­

form better.8

.A difÎerent kind of speaker adaptation is used by systems which must be truly

'Labeled speech meaas that the linguistic coatent~ (e.g., words) of the speech is known. This is
direerent from "segmented speech", which is not only labeled, but has marks indicating where the
boundaries of the linguistic units arc in the signal.

·Sec Chapter 3 for more detans.

-'l i."iU

11

speaker-independent, such as those used for telephone network applications
aimed at the general public (e.g. [WILP 90]). The technique, called HMM
clustering [RABI 88, LEEK 88, RABI 89a, DODO 89], clusters the speakers
in the training set into a number of different speaker types, and creates as
many versions of every model as there are speaker clusters. This makes the
models more speaker-specific and generally results in a moderate improvement
in recognition performance.

1.1.4. Increasing robustness

o

o

The performance of a speech recognition system may be quite sensitive to
changes in background noise level and characteristics, microphone changes or
changes in the general acoustic environment. For example, using a stereo

database,9 in an experimel"twith SPHINX, Acero [ACER 90] found that sim­
ply using a different microphone during recognition than the one used for
training could decrease the system performance from 85.3% to 18.6% word
accuracy. How sensitive a particular system is to such changes will determine
its robustness. For most systems, the best performance is usually obtained
when training and recognition are performed under identical conditions. This,
however, need not necessarily be the case. Experiments have shown [GISH
90] that models trained under good conditions (and thus acoustically accurate)
may be adapted to perform better in noisy conditions than modcls trained in
the same noisy conditions. Because of this, and because it is not always pos­
sible to train and use the system in the same conditions, much work is
currently being done to increase the robustness of HMM-based systems.

Increasing robustness under noisy conditions with simple spectral subtraction
schemes [VANC 87] may give sorne improvement if n6ise conditions during
training and testing are not too different, although differences in residual noise
may cause problems [VANC 89]. Noise adaptation via probabilistic spectral
mapping techniques conditioned on the instantaneous signal to noise ratio

. (SNR) has proven effective in a wordspotting application [GISH 90]. Per­
forming adaptation to a new microphone using Codeword-Dependent Cepstral

'A stereo database contains the same spcech simultancDusly recorded with two dirrerent micro­
phones.

12

Normalization (CDCN), Acero [ACER 90] brought word accuracy back from
18.6% to 74.9%, which is essentially the rate obtained when both training and
recognition were performed with the second microphone.

1.1.5. Output distributions

Output distributions in HMM-based speech recognition systems are usually

classified as either discrete or continuous.10 For a long time there has been a
debate as to which of discrete or continuous distributions performed best.
While some researchers obtained better performance with discrete systems,
others obtained the exact opposite (see [LEEK 88] for a discussion on this
topic). In fact, fair comparisons were difficult to make. While discrete sys­
tems are rather straightforward to implement, continuous ones offer more
degrees of freedom (in terms of the number of mixture components [JUAN

85] or the restrictions on covariances matricesll [BROW 87, LEEC 9Oa]) and
are more sensitive to parameter initialization.

It now seems that semi-<:ontinuous HMMs have solved that problem. Since it
is relatively trivial to convert a discrete system into a semi-<:ontinuous one, a
discrete system can be evaluated in both modes. Such evaluations tend to
show semi-<:ontinuous HMMs to be superior [liUAN 90], thus demonstrating .
the us~fulncss of continuous densities. Note that by combining the charac­
teristics of both discrete and continuous distributions, SCHMMs open a
number of interesting possibilities for speech recognition. For that reason, we
feel their use is bound to become widespread.

1.1.6. Discriminative training techniques

(}

It is probably accurate to say that HMM-based speech recognition owes its

'PA reeently introduced compromise, "semi-eontinuous" HMMs (SCHMMs) (HUAN 89]. use bath
discrctc distributions Bnd continuous densitics. There is a cammon codebook of continuous densities
used by ail distributioos ta form mixture densities. The set of mixture weight nssocinted ta one of the
mixture distributions forms ils diserete distribution. See Chopter 2 for more detnils.

1tWe have assumed thot continuous distributions arc made Crom Gaussian densities. Even tbough
there orc·other possibilities (for exnmple. Loplncion densities have been uscd), this thesis docs not con·
sider them.

('.:.

o

o

13

popularity in great part to the powerful Baum-Welch algorithm [BAUM 72] for
maximum likelihood estimation (MLE) training. This algorithm iteratively
increases the probability that the training data was generated by the
corresponding models. An approximate version of this algorithm, segmental
k-means training, [LEEC 9Oa] was developed by researchers at AT&T an~'lwas

experimentally found to give comparable results at a lower computational cost
[RABI 89b]. Another training paradigm, minimum discrimination information
(MDI) training, was also recently proposed by researchers at AT&T [EPHR
87]. Applied to the training of autoregressive HMMs [JUAN 85], MDI train­
ing attempts to find the HMM parameter set minimizing the discrimination
information measure with respect to all sources that could have produced the

set of partial covariances evaluated from the training data [EPHR 89].12

One problem with those training techniques is that they have no obvious rela­
tionship with the aim of minimizing the recognition error rate. Even though it
can be shown that, under certain assumptions, MLE will in fact produce the
best possible recognizer [NADA 83], this is not really satisfying since, in prac­
tice, the required assumptions are usually not met in speech recognition.

A few years ago, maximum mutual information estimation (MMIE) was pro­

posed as an alternative to MLE [BAHL 86]. MMIE trainingl3 attempts to find
the HMM parameter set meximizing the a posteriori probability that the train­
ing data was generated by the models corresponding to the spoken speech in

the data.14 This approach seems reasonable since recognition is usually per­
formed by finding the model with the greatest a posteriori probability of gen­
erating the spoken speech. Unfortunately, the expression to optimize is quite
complex nnd oCten hns to be npproximnted [BROW 87, CHOW 90]. More­
over, since there is no equivalent of the Baum-Welch algorithm for MMIE,
the standard training procedure is based on gradient descent. Nonetheless,
MMIE looks like a promising technique. Several researchers have reporled
improvements in recognition rate through the use of MMIE [BAHL 86,

''There are no published results of speech recognition expcriments using MDI troining.

"Note that MMIE training can be gi.en an MDI interpretation (EPHR 88). Bowe.cr. Ihe MDI
Iiterature doesn't develop that case.

14For example, if the training data cantoins spokcn sentences, thcn the models corrcsponding to
Ihe training data will be sentence models. These are usually buitt frnm the models of the words in the
sentence, whicb Drc orten tbcmsclves buitt Crom sub·word models.

14

BROW 87, MERl 88, CARD 91].

Another training technique, designed specifically to reduce the error rate is
corrective training (BAHL 88b]. This is a heuristic technique which attempts
to improve the recognition rate on the training set by working only with sen­
tences in the training set that were either not recognized correctly, or were
correctly recognized, but with a very close second choice. In practice, correc­
tive training is similar to MMIE and it has also shown promising results
[APPL 89, LEEK 90].

Training techniques·such as MMIE or corrective training are called discrimina­
tive techniques because they specifically aim at improving the discriminating
capabilities of the models.

1.1.7. Search algorithms

ln theory, speech recognition is done by finding the word sequence1S which
has the greatest probability of generating the given speech signal (observation
sequence). This probability is computed using both the a priori probability of
the word sequence (using a language model) and the a posteriori probability of
the input string given the model for the word sequence. In practice, however,
except in the simplest applications, there are just too many different word
sequences for this to be possible. This means that theoretically suboptimal
search algorithms have had to be developed. Most of these algorithms are
based on the idea of a dynamic programming search through a wordnetwork
[LEEC 89b]. While most are frame-synchronous trellis searches, some, like
level building [MYER 81, RABI 8Sa] are word-synchronous, and others like
the stack algorithm [JEU 76] are of the type "best-first", or A·.

Frame-synchronous algorithms are often the fastest, and they are quite ade­
quate for simple tasks such as connected digit recognition. It is, however, dif­
ficult, if not impossible, to integrate all but the simplest language models into
such search procedures.

''This is meant in the general seose. For isolated ward recognitioD,the ward sequence is n single
word. For phoncme recognitinn expcrimcnls, lhe word sequence is aclually a phoneme sequence.

o

15

However, in this era of large vocabulary and continuous speech recognition, it
becomes increasingiy difficult to obtain good performance based on acoustics
alone and the use of sophisticated language models becomes necessary in
order to make the difference between unacceptable and excellent perfor­
mance. The recent development of algorithms capable of generating the N
most acoustically probable word sequences [SCHW 90, SOON 90] offers the
possibility of implementing the language model as a post-processor. This
method, however, is both inefficient and approximate. Most language models
are best implemented within an A· search, which can take both the acoustic
and language models into account. An interesting possibility woull! be to per­
form such a search by taking advantage of the acoustic precomputations per­
formed in the tree-trellis search algorithm recently proposed by Soong and
Huang [SOON 90]."

1.2. Revisiting the training problem

Much has been indeed accomplished since the first HMM-based speech recog­
nition systems \Vere developed. With the same imperfect speech model, it has
been consistently possible to improve both the performance and the capabili­
ties of speech recognition systems. This is the result of several years of prac­
tical experience with HMMs, which have given us a much better understanding
of their strengths and weaknesses.

In this thesis, we will thoroughly review the theory and practice of HMMs, as
they relate to the speech recognition problem. This will provide the necessary
background for our analysis of MMIE, the core of this work.

The MMIE method has been known for over fivc ycars. During that period,
many researchers have explored it and experimented with it. Most have
observed recognition improvements, sorne substantial, sorne negligible. It
seems that, apart from one extensive study by Peter Brown [BROW 87],
experiments with MMIE have mostly been sporadic. Many researchers felt
that the potential improvements were probably not worth the introduction of
gradient descent in their training programs and the additional computational
lond.

(

()

16

This thesis will show that not only can MMIE result in substantial recognition
improvements, but that training can be done simply, efficiently and, in most
cases, without gradient descent. Using the more intuitive probabilistic
interpretation, we will review the theory of MMIE, including the latest
developments prior to this work. We will show how a new reestimation-like

.formula recently proposed by Gopalakrishnan et al. [GOPA 89] for discrete
HMMs can be modified so that convergence is dramatically improved. We
will propose a similar formula for continuous HMMs and experimentally
demonstrate its convergence. We will describe how the MMIE formulation
offers new ways of improving the speech modeling and the discriminating
capabilities of HMMs. Connected digit recognition experiments will be used
to illustrate the benefits that MMIE can provide.

ff
The outline of this thesis is as ;iollows: Chapter 2 describes the theory of
HMMs. Chapter 3 discus~~;:p~actical considerations which are important
when implementing an HMM-based speech recognition system. Chapter 4
describes the theory of MMIE, including the contributions of this work to that
area. Chapter S describes the connected digit experiments and summarize the
results. Chapter 6 concludes.

',1

o

2. IDDDEN MARKOV MODELS

2.1. Introduction

This chaptër introduces the concepts necessary to understand this thesis. It is
assumed that the reader already has some knowledge of HMMs and their use
in speech recognition. If not, there are excellent introductions availablc (see,
for example [RABI 86] or [RABI 89cD, and we encourage the reader to con­
suIt one of them.

The speech recognition problem can be approached as a problem in communi­
cation theory [BAHL 83]. Using this point of view, we assume that a message
w (usually a word or a word sequence) is converted by an acoustic channel
into an observation sequence 'Y. The goal of speech recognition is to decode
the message from the observation sequence.

In practice, the message is converted by a sp,eaker into acoustic pressure
waves (speech), which a microphone th,m transforms into an electric signal.
It is the sampled (digitized) version of this signal which is fed into the com­
puter for processing and recognition. For our purposes, this discrete-time sig­
nal will be referred to as the speech signal s.

The speech signal is blocked into frames (usually using fixed frame rate and
size), each of which is then analyzed in order to extract information relevant
to the recognition process. Typically, the analysis extracts information about
the power spectrum of the signal, usually through FFT or LPC-based tech­
niques. This analysis produces a small number of parameters (e.g., six ccp­
stral coefficients) to which may be added other parameters deemed useful,

such as the signal zero-crossing rate or RMS power.1 The result of this

'It is now common prnctice to ndd so-enUed "dynnmic" pnrnmcters. which dcscribe how tbe men­
tioned parameters vary over a short time around the given Crame.

17

(
18

analysis, applied to every signal frame, is a sequence y of observation vectors.

Observation vectors are usually categorized as continuous or discrete. Con­
tinuous parameters are often the end result of the analysis. Discrete parame­
ters can only take a finite number of values from some symbol alphabet.
Discrete parameters usually result from the vector quantization (VQ) [GRAY
84, MAKH 85] of the continuous parameter vector. In this case, the discrete
alphabet contains as many symbols as there are codewords in the VQ code­
book. If separate parts of the continuous parameter vectors are separately
quantized using different VQ codebooks [LEEK 88], then the result is a
discrete vector containing several discrete parameters. It is hoped that what­
ever parameters are extracted from each frame of speech contain as much
information about w as possible. y is simply the length-Ly sequence of

observation vectors !1,!2, .. , ,~,'

......

',-" .

2.1.1. The decoding problem

Speech decoding (recognition) is a transformation y -+ ÛI. If ÛI ." w, then
there was a decoding error. The performance of a decoder is usually deter­
mined by the probability of making such an error. It is well-known that the
optimum decoder in the sense of minimizing the probability of error is the
maximum a posten'ori decoder (MAP), which chooses ÛI such that

ÛI = argmax P(w Iy) = argmax P(y 1w)P(w)
ID I~ P(y)

= argmax P(y 'W)P(w)
I~ ~ P(y Iw')P(w') ,

ID'

(2.1)

r,-:.

where P(w Iy) is the a posteriori probability of w, given y, P(w) is the a priori
probability of w (the language mode!) and P(y 1w) is the probability of the
observation sequence, given the message. Unfortunately, these probabilities
are unknown so they must be somehow estimated. This is a typical statistical
pattern recognition problem [DEVI 82]. A common solution is to assume that
P(y 1w) belongs to some family of functions Pe(y 1w) where e is the family

19

parameter vector that needs to be estimated. This estimation is done using an
amount of training data, which consists of a number of pairs (w,y), where y

is the observation sequence resulting from w.2 Note that a given w can result
in very different y's. The training data usually contains only a few (if any)
instances of ail possible y's for a given w.

"The first problem is to find an appropriate family of functions. This should
be done using as much knowledge as possible about the process being
modeled. In our case, this problem is complicated by the inherent time varia­
bility of speech. Because of varying speaking rates, two observation
sequences from the same word can have very different lengtrs (durations) and
be equally probable. Moreover, certain types of sounds can be stretched
much more than others. This is where HMMs come in. As probabilistic
models which provide a convenient framework for dealing with the time varia­
bility, HMMs are well-suited to model the entire acoustic channel.

Another p!oblem is to estimate the parameter vector e from the training data.
First, we have to find a function R(e) that will allow us to evaluate how weil
our estimate approximates the "real" (and unknown) function. Second, once
such a function is determined, we must find the parameter vector e Jhat
optimizes it. This is also a difficult problem since, even in simple applica­
tions, e can contain several thousands of parameters.--

" j

2.1.2. A simple illustration

o

We illustrate the above concepts involving HMMs in speech recognition with
the simple case where w is a single word. Figure 2.1 illustrates a typical word

HMM.3 With each transition is associated a transition probability and an out­
put distribution. The transition probability is the probability of taking the
transition, given that the process is in the departure state of the transition.
When a transition is taken, an observation vector is generated. The

:!.In proctice, the training data usually consists of pairs (ID,.), whcrc. is the speech signal rcsulting
from a speaker saying ID. The acouslic sequence y is obtained using a transformation • _ y callcd
I••tur. CJCtr.ction. Within a given family of functions PeCYIID), how weil it is possihle ta approximale
P(YIID) will depend ta a large extent on this transformation.

3Tbroughout this thesis~ the terms "model" and uHMM" will be used intcrchangcably.

:/

20

transition's output distribution gives, for every possible observation vector l,
the probability of generating l when the transition is taken. Note that several
transitions can share the same output distribution. This is illustrated in Figure
2.1, in which the number above each transition refers to the number of the
output distribution associated with it.

Figure 2.1: Ward model m",

We want to be able to estimate PCY 1w) for any y, using the word model in
Figure 2.1. Such a model can be used to compute the estimate PeCY lm",),
where m", is the model corresponding to word w. We assume that any y

resulting from w arises as the result of a path in the model m",. Without loss
of generality, we also assume that any path in the model must start in state 0
and end in the last state.

Thus, t!J.e parameters to estimate in the word model are the transition proba­
bilities and the output distribution parameters. Intuitively, PeCY \m'D) should
be high when y is the result of w, and low otherwise. The optimization func­
tions used are generally based on that intuition.

2.1.3. Unit models

In HMM-based speech recognition applications, there has to be a model m'D
associated with every possible w in the application. Any model in this (possi­
bly very large) collection of models is usually built from a limited set of s~all

(, .~

models. Sentence models can be creàted by concatenating word models.
Similarly, word models are often ~ade of the concatenation of sub-word unit

.~
'"~'

21

models such as phoneme or syllable models. For example, suppose an
HMM-based speech recognition system uses the phoneme as its basic unit and
that ail phoneme models have the structure in Figure 2.2.

o 1

o

Figure 2.2: Basic unit

Then, as illustrated in Figure 2.3, we can create the model for the word
"sauce" from the phoneme models for "s" and "ao".

There are two important observations to make about this example. First
observe the dotted transitions that are used to connect the models together.
They are special in one important respect: they don't have an output distribu­
tion associated with them; in other words, there is no observation vector gen­
erated when these transitions are taken. For this reason, they are called
empty transitions. In practice, these transitions are very often needed. One
example is when it is desired to aIlow paths to start in states different from the
initial state. This can be done by having an empty transition from the initial
state to the desired states (see Chapter 3).. Model concatenations such as in
Figure 2.3 can, however, be done more simply without empty transitions, as
illustrated in Figure 2.4.

The other observation is about transitions t and t ' in Figure 2.3. Even though
they are two diffei'ent transitions in the word,model, they both correspond to
the same transition within the model for phoneme "s" and we say that they
both correspond to the same transition component. ,What this means is that-,
not oniy do they have the same probability and output distribution, but, apart
from their different departure a1èl arrivai states, they can in fact be regarded

cc as the same transition., A common terminology is to say that transitions t and

22

l' have lied parameters.4

t t'

"s" "aon "s"

ri,:'

Figure 2.3: Model for word "sauce" from models for "s" and "ao"

Figure 2.4: Model for word "sauce", without empty transitions

When designing an HMM-based speech recognition application, one usually
has to first decide on a basic set of units. The models for these units will be
used as the building blocks for the whole application. The set of parameters
from these unit models (transition probabilities and output distribution param­
eters) is the complete parameter set for the whole application. Any model
built from the unit models inherits its parameters from these unit models.
This is more formally explained in the following section..

4We can also say that transitions t and " are lied. Similarly, siDce each transition tenviag slote 0
in Figure 2.3 is lied ln a lransilinn leaving slale 6, ",e enn a1sn say lhal slales 0 and 6 are lied.

U
~·,

o

23

2.2. Definitions

In an HMM-based speech recognition application, the set of unit modeLs (or
unit HMMs) refers to a set of models which don't share any parameter with
each other and from which any model for the application can be built. A unit
HMM is defined by a set of transitions connecting states, one of which is
defined as the initial state and one as the final state. Note that the final state
must usually be a "sink state", that is, one with no transition leaving it.

A transition T in a unit model is called a unit transition. Within the unit
model, it is characterized by its departure (left) state 1T and its arrivai (right)
state r T' wbich serve to describe the model structure. It is also characterized
by its probability q T and by the output distribution b T associated with it (none.
if the transition is empty). States and distributions are usually designated by
numbers (we use -1 for the distribution associated with empty transitions),
even though these numbers are only meaningful within a given model. State
numbering, however, has great practical importance and we will come back to
it later. As an example, the model in Figure 2.2 can be defined by the transi­
tions in Table 2.1

..
IT rT qT distribution

0 0 0.33 0
0 1 0.33 0
0 2 0.33 0
1 1 0.50 1
1 2 0.50 1

Table 2.1: Basic unit transitions

and by the corresponding two distributions. Note that in this case, transitions
from the same state have been assumed equiprobable. In ail cases, however,
transition probabilities must satisfy the following constraint:

o (2.2)

24

where S is any state in the. model except sink states. As a more elaborate
example, we can use the word model in Figure 2.3. This time, each transition
in the model has been individually identified using a number, as shown in
Table 2.2:

T IT TT qT distribution T I T TT qT distribution

1 0 0 0.33 0 10 4 4 0.50 3
2 0 1 0.33 0 11 4 5 0.50 3
3 0 2 0.33 0 12 5 6 1.00 -1
4 1 1 0.50 1 13 6 6 0.33 0
5 1 2 0.50 1 14 6 7 0.33 0
6 2 3 1.00 -1 15 6 8 0.33 0
7 3 3 0.33 2 16 7 7 0.50 1
8 3 4 0.33 2 17 7 8 0.50 1
9 3 5 0.33 2

Table 2.2: Transitions for ward in Figure 2.3

The transitions of a HMM determine ail possible paths through the mode!.
We define a path t=t l,t2> ' •• ,tL, as a possible sequence of transitions

through an HMM. Note that a transition sequence uniquely specifies astate
sequence but, since there can be severa! transitions with the same departure
and arrivai states, the opposite is not necessarily true. We will a!ways assume
that the first transition t 1 of a path starts in state 0 and that the last transition
tL, ends in the last state. Also, the transitions in the path must satisfy

Let tnl be the Ith full transition in the transition sequence t. If t generates an

output sequence :y, then the Ith observation vector J!J in:y is the result of tn"
Since, in practice, the observation sequence :Y usually results from a time­
synchronous analysis, we refer to the index 1 in J!J as the time index. An
empty transition, with which no observation is associated, doesn't produce
any time change; it happens at the same time as the previous transition. For
example, Table 2.3 uses transition numbers from Table 2.2 to illustrate the

T.1ii..
~

25

relationship between a transition sequence and the corresponding output
sequence. Time 0 corresponds to empty transitions before the first observa­

tion ll'

time 0 1 2 3 4 5 6 7 8 9 10 11
transition(s) - 1 2 4 4 5,6 7 7 7 9,12 14 17

distribution - 0 0 1 1 1 2 2 2 2 0 0
observation - II lz l3 l4 ls l6 l7 ls 19 l10 lu

.

Table 2.3: A transition sequence

We caU t[I) the set of aU transitions in t occurring at time 1. Using the exam­
pie in Table 2.3, t[4] = {4}, t[5] = {S,6} and t[O] = n. We use n, (t) to desig­
nate the index in t of any transition t in t[I]. For example, if t=6 and l S,
then n, (t)=6. Note that there can be severa! empty transitions in 't[I], but
there is exactly one full transition per t[l] (except t[O], in which there is
none).

An output probability distribution is designated b (0), or simply b. The distri­
bution associated with a given transition t is designated b,. Note that while q r

is uniquely associated with the transition component T, it is often the case that
br = b" even though r=/=1' 0

A distribution b must satisfy

~ b(r) = l,
l

Jb (r)dl = 1,
l

if l discrete;

if l continuous.
(2.3)

o
The complete parameter set e for a given application is the set of ail transi­
tion probabilities qr and ail parameters from ail output distributions b from ail
unit models. Any model m used in the application is built from those unit
models and inherits their parameters. For every transition t in m there is a

(

26

corresponding transition T in one of the unit models used to build m. We use
r(t) to designate that transition. AlI parameters associated to T (except the
departure and arrivaI states, which only make sense within a given model) are
inherited by t. So we have qt= q T and bt = b,., where we use = to signify
that they are identically equaI (and not that they happen to have the same
vaIue).

,';"',l

<~'-..;-,-

2.3. Probability computations with HMMS

2.3.1 Basic concepts

Given a HMM parameter set e, a model m and a length-Ly observed output

sequence y = llol2' ... ,!L" severa! useful probabilities can be computed

using the HMM's parameters. The probability that is most often computed is
PeCY lm), the probability that the sequence y was generated by the model m.
PeCY 1m) can be computed by summing over all possible paths t in the model
m the probability PeCY 1t) of observing y given the path, times the path a
priori probability pe(tlm). Note here that, in order for PeCY\t) to be dif­
furent from zero, the number of full transitions in the path must equal L y , the
length of the output string. This means that L t > L Y' Thus, PeCY 1m) can

be expressed as

PeCY lm) = ~ PeCY,tlm) = ~ pe(tlm)PeCYlt)
tEm tEm

(2.4)

where tn! is the jth full transition in t, and where the notation ~ is used to
tEm

mean a summation over a11 paths in the model m. In practice, however, the
above expression cannot be used because the number of possible paths
increases exponentia11y with L y • Fortunately, the first-order Markov nature of
HMMs makes it possible to devise a simple and efficient procedure that
a110ws ea:;y computation of a11 necessary probabilities [BAUM 72]. Before

t•
27

showing this, we must first make the following definitions. Let

Cli (i) = P~l' ,li ,S,=i lm) ,

{J,(i) =PQJ+l' ,~.IS,=i,m).

(2.5)

(2.6)

o

The quantity cr, (i) is the probability that the model generates the output sub­
sequence lol' . . . ,li using a transition sequence ending in state i. The quan­
tity {J, (i) is the probability that the model m generates the output sub­
sequence lI+l' ... ,~., given that first transition in the generating transition

sequence ~tarts from state i. It will always be clear from the context to what
model Cli (i) and {J, (i) refer, so the dependence on m is not made explicit.

Using these, we can now compute Pe<Ylm) as Pe<Ylm) = CldF) = {Jo(O),
whe.re F is the final state.

2.3.2 Recursive computation of Cil (i) and f31 (i)

The computation of Cli (i) and {J, (i) is done by creating a treUis in which the
Ith column corresponds to time 1 (and the Ith observation, except for the Oth
column) and the ith line corresponds to the ith state in the HMM. They are
computed recursively, column by column, Cli (i) starting with column 0 and
{J, (i) starting with column L Y'

Empty transitions make the computations somewhat more difficult and we
have to make the assumption that there is no path from astate to itself that
only uses empty transitions. If this were not the case, there would be situa­
tions where the values of sorne Cli (i) and P, (i) would be needed in order to
compute their own value. When the above assumption is true, it is always
possible to order the HMMs' states in such a way that emply transitions
always reach astate with a number larger than the one they leave. This state
numbering is used by the algorithms to determine in what order computations
have to be performed.. It will always be assumed that such a numbering is car­
ried out.

28

For both €:rI (i) and f31 (i), the recursive computation is divided into a sum over
empty transitions and a sum over full transitions. For 011 (i), the computation
is done in a forward manner. Each trellis element is computed, in increasing
order of column and state numbers, using the following algorithm:

a) Initialization:

b) Recursion:

f1,
OIo(i) = lO,

ifi=O
ifi40

where the notation L: means a sum over all full transitions reaching
(1 Il full, T, -1)

state i. Note that, for empty transitions, we have used L: to
(tlt cmpty, 1, <i,T,-i)

make explicit our assumption that the numbering, as described above, is
correct. Because comput<ltions are carried out in a forward manner, 01, (i) is
usually referred to as the fonvard trellis.

For f31 (i), the computation is done in a backward manner. Each trellis ele­
ment is computed, in decreasing order of column and state numbers, using the
following algorithm:

a) Initialization:

{

l,
f3L.(i) = 0,

iCi F
if i=FF

')

o

29

b) Recul'sion:

where Fis again the final state. Because computations are carried out in a
backward manner, {3, (i) is usually referred to as the backward trellis. Using
these algorithms, ~~ef0I'V\'ardand backward trellises can be computed in a
time which increases lin,}arly.);I1Îth the sequence length L y •

2.3.3 Probability computations using al (i) and Pl (i)

Let us define Pe.l (t,y 1m) as the probability that the observation sequence 'Y

was generated by model m, using a transition sequence in which t was taken
at time 1. Remember that, for a given path t, t taken at time 1 means that
t E t[l]. In practice, a transition at time 1 is a transition that reaches anode
in the lth trellis column.

In theory, Pe.l (t,y lm) can be computed as follows:

! Pe.l(t,y\m) = E Pe(y,tlm)
(tEm IIEtll])

(2.9)

o

where the notation E means a summation over ail paths in m in which
(tEm IIEtll])

transition t is taken at time 1. But again, this is prohibitively expensive. From
the definitions (2.5) and (2.6), it is not difficult to see, however, that
Pe,l (t ,y lm) can be computed much more simply as

30

{
cr, (l,)q, p, (r,),

Pb" (t,y lm) = a/_l(l,)q,b, ~)p, (r,),
if t empty
if t full.

(2.10)

As we shaH realize, Pe,,(t,ylm) is a very important quantity in the theory
(and the practice) of HMMs. It is central to most computations involved in
the estimation of the HMM parameter set e. The fact that (2.10) allows
Pe,/ (t,y 1m) to be efficiently computed from the forward and backward trel­
lises is thus extremely important.

2.4. A survey of output distributions

So far, !ittle has been said about the different forros that b(') can take. Dif­
ferent forros arise as a result of the basic distinction between discrete and
continuous parameters. Even within these two categories, several different
forms arise. This section describes the forros most often encountered in prac­
tice.

1) Discrete (basic):

ber) =p(Ylb), l. =y E{O,l,'" ,K-1}. (2.11)

This is the simplest case. l. is a discrete scalar which can only take one
of K different values. It is the form most often encountered in earlier
systems [JEU 76], [RABI 83b], and, for a long time, it was the form usu­
ally producing the best results.

2) Discrete with multiple codebooks [GUPT 87]:

Ne
ber) = II Pe(ye lb),

e-l
(2.12)

'f.
,~

,
where Ne is the number of codebooks, Ye is the cth component of l. and
Ye E {O,l, ' .. ,Ke-l}, where Ke is the size of the cth codebook. Multi­
ple codebooks are useful when the number of continuous parameters is

)
31

large and it is desired to keep quantizaEon distortion as small as possible
[LEEK 88]. The continuous parameters are separated into groups which
are independently vector quantized using different codebooks. All
discrete components are assumed independent and their probabilities are
simply multiplied. Note that the basic discrete distribution is a special
case of this distribution.

3) Continuous (Gaussian) [BROW 87]:

(2.13)

o
4)

where N is the number of elements in l, and /lb and ~b are, respectively,
the mean vector iibd covariance matrix of the distribution b. This is an
N-dimensional mfuiivariate Gaussian distribution. We have the following
special case:

Continuous (diagonal Gaussian):

(2.14)

o

where Yi is the ith element of l, and /lb,i and Ub/ are, respectively, the
corresponding mean and variance. This assumes that ail parameters are
uncorrelated, which, in some circumstances, can be close to reality
[HUNT 89].

"

",',,-

HMMs with continuous distributions are usually referred to as Continllolls
Densities Hidden Markov Models (CDHMMs). Note that since the "true" dis- .
tributions oftenhave complex shapes, a good approximation to such distribu­
tions will usually not be possible with a single Gaussian density. This is cspe­
cially true when the "true" distribution is not unimodal. In order to obtain
better approximations, it is usually neccssary to use mixtltres of Gaussian den­
sities [RABI 85b].

(
32

A mixture distribution is a weighted sum of distributions. Suppose, for exam­
pie, that we have K distributions Pk <V, k = 1, . . . , K, from which we want
to build a mixture distribution Pmi>< <V. Then, the expression for the mixture

distribution would be

(2.15)

K
where :E wk = l.1n (2.15), the wk 's are called mixture weights and the indi-

k-l

vidua! distributions Pk <l) are called mixture components. The mixture com­
ponents can be any type of distribution; however, in practice, Gaussian distri­
butions are used most of the time. Nowadays, it is not uncommon to see sys­
tems using a large number of components per mixture, sometimes as many as
256 [LEEC 9Oa]. Note that mixture distributions can be implemented by hav­
ing severa! parallel transitions between the same two states, each having one
of the mixture components as its output distribution. This is illustrated in Fig­
ure 2.5.

Figure 2.5: Implementation of a mixture distribution using one mixture
component per transition

A special type of mixture distribution is:

33

·5) Semi-continuous [HUAN 89]:

K-l
b~)= ~ P<llk)p(klb) ,

k-O
(2.16)

o

where P<llk) is any continuous distribution (usually Gaussian). HMMs
using distributions of this type are usually called Semi-Continuous Hidden
Markov Models (SCHMMs). Note that the K different continuous densi­
ties are shared by ail output distributions in the application. This is why
HMMs of this type are sometimes referred to as Tied Mixtures HMMs
[BELL ~~9, BELL 90]. Note that the set of K continuous densities is
often called the "codebook". SCHMMs can be seen as an extr-'sion of

'-~

discrete HMMs in the sense that, instead of only considering the closest
codeword in the codebook, every codeword (density) is taken into
account, each contributing with a weight proportional to its a posteriori
probability.

A generalization of semi-continuous distributions is:

6) Multiple codebooks semi-continuous:

(2.17)

o

where Kc is the size of the eth codebook and ~ is the part of l
corresponding to the eth codebo6k. Again, codebooks are assumed
independent. Note that it is straightforward to convert from multiple­
codebook discrete HMMs to multiple-codebook semi-continuous HMMs.
Indeed, the codebook probabilities Pc (k 1b) can be (eft unchanged, while
the parameters of the tied mixtures can be computed directly from the
codebook and the training data.

(

<:

34

2.5. Maximum Iikelihood estimation of HMM parameters

We have seen, in the previous sections, how to compute probabilities using a
model m and the HMM parameter vector e. Nothing, however, was said
about how e was obtained in the first place. Maximum likelihood estimation
(MLE), the most commonly used approach to estimate e, is the topic of this
section. This estimation procedure is usually referred to as the Baum-Welch
algorithm [BAUM 72], also known as the forward-backward algorithm. Since,
in the literature, MLE training is usually synonymous with the Baum-Welch
algorithm, we will be using these three names interchangeably.

In MLE training, we try to find the HMM parameter set e which maximizes
the probability of the observed data, given the model corresponding to the
data. Assuming that the observed data is made of several independent obser­
vation sequénces yr, r=1,2, ... , wê=try to find

where m r == m.D., w r being the word sequence corresponding to the rth

observation yr in the training set, and where Il means a product over all
r

observation sequences in the training set. In general, it is not feasible to find, ,
a globally optimal e. Instead, the optimization technique used starts l'~om an,;;>

"-'- ---~

initial value of e and converges to a local optimum in the parameter spaèè-;=rt
does this iteratively, each iteration starting with a parameter vector e and find­
ing ê such that

(.

Il pë(yrlmr) > Il Pe(yrl mr)·
r r

In order to see how this'ls done, first note that (2.18) is equivalent to

(2.18)

"

­~ 'il'
'?J

3S

(2.19)

This, in tum, is the same as

(2.20)

where as before we assume that the sum is taken over aU transition sequences
with Lr = Ly ' full transitions (all other sequences h~ve zero probability), so
that we have L t > L r • But, since

Pe0Jr,t Im r)

t~, Pe0Jr\mr)
= E Pe(t Iyr,m r) = 1

tem,

and because log is a concave function, we have

Pe0Jr,t\mr) J'ë0Jr,t\mr)
E E P f ••r,) log, r \)'r tem, ev m r Pelv, ,t m r

(2.21)

o

which means that making the right-hand side<ôf (2.21) positive automatically
makes the left-hand side also positive. The advantage of the right-hand side,
however, is that it is much easier to work with. Indeed, if tEm r , then

36

L, L, L, L,
log Pe(y' ,t) = log II q" II b,. Q';) = :E log q" + :E log b,. Q';) ,

i-1 1-1 1 i-1 1-1 '

which means that (2.21) can be rewritten as

L, Pe(y',t lm,) 4"
:E :E:E , ·log-+
, tEm, i-1 PeCy lm,) q"

c

This, in turn, can be written as

L, P ""tlm) 6'''-):E:E :E :E:E ev ~ 'log \lJ > 0 ,
, b ('Ib,u) /-1 (tl',,") PeCy lm,) bQ';)

(2.22)

(2.23)

where the notation :E means a sum over aIl transitions whose
(, 1r{t)-,)

corresponding unit transition iST and :E means the summation over aIl
(, Ib,u)

transition w!t<)se corresponding output distribution (if any) is b. From (2.23)
and (2.9), we obtain

. "~(2~24)
~,

"'''

c In (2.24), aIl transi1ion probabilities q T> as weIl as aIl output distributions b are
separated into different clements of a summation, which means that they can

.:::}

.~
V

37

be individually optimized. We now describe how this is done.

2.5.1. Transition probabilities

In solving for transition probabilities, we are faced with a constrained optimi­
zation problem. The constraint is that the probabilities for all transitions leav­
ing the same state should sum to 1. Following the development in [LEVI 83],
if we have a function F(Z) of the form

F(Z) = ~ ai log Xi ,
i

.;,

(2.25)

-tJ

o

-::',
where the ai 's are all positive and the Xi 's satisfy ~ Xi = 1, then using

i

Lagrange multipliers to find the optimal values for the Xi 's, we find that

(2.26)

Going back to the problem of transition probabilities estimation, we see from
. (2.24) that in order to ma.lce the first term positive for all q's, we need to max­
imize

in which we used the notation ~ to mean a summation over ail transi­
(1'l/f-I,)

tions with the same left state as T (which means they belong to the same tran­
sition probability distf-l:iution). Using (2.26), this leads to

". /

38

(2.28)

Note that if we dl';fine

then (2.28) can be expressed as

Cr
qr = -~=-'-c,,-

("11,-1,)

(2.29)

(2.30)

As we will see, quantities similar to Cr appear in the MLE reestimation formu­
las for aIJ HMM parameters. Since such quantities are computed by summing
a contribution from a1l time instants of aIJ sequences in the training set, they
are usuaIJy referred to as COl/nts.

2.5.2. Output distributions

(

Output distributions can be formed by the product of other distributions
(multiple-codebook discrete). They can also be formed by a weighted sum of
distributions (semi-continuous, mixture Gaussian), in which case we talk about
a mixture of distributions. And, of course, they can be both (multiple­
codebook semi-continuous). Individual distributions in a product are addi­
tively separated by the logarithm in (2.24), so they can be considered
separately. Mixtures, on the other hand, need special handling. This will be
considered later.

39

2.5.2.1. Discrete distributions

This section covers both basic discrete and multiple-codebook distributions.
From (2.24), we must for each b find the codebook probabilities p(k lb) that. .maXlID1Ze

1: 1: 1: 1: Pe./(t,;r lmr) logp(klb). (2.31)
r (tlb,&b) k (/Iyr-k) Pe(y Imr)

Using (2.26), this leads to

2.5.2.2. Gaussian distributions

From (2.24), we must maximize

L, P /(t ",rlm)
F<f:t, ,tb) = 1: 1: 1: e, '; r

.. r (rlb,.b) 1-1 Pe(y Imr)

(; log Itb 1- ; <lJ-&)Ttb -1<lJ-&»).

Now, using the following matrix identities:

(2.32)

(2.33)

..

~=-IAIA
8A-1 '

!>..TA-1
..:v~J:.-=-=.\!. = 2A -l.\!.,

&?
(2.34)

()
where .\!. is a column vector of dimension N and A is an NXN symmetric

t
40

matrix, we can take the derivative of F(f!:p ,tb) with respect to f!:p and t b :

8F(r•. ,tb) L, Pe/(t,y'lm,) ~ 1
_=t::P-..:...;.. = E E E " ~b Q1-f!:p) (2.35)

8f!:p , (t1b,ab) /-1 Pe(y lm,)

8F(f!:p ,tb)
-8tb -1

E E ~ Pe./(t';'lm,) (ltb - ;Q1-f!:p)Q1-f!:pl). (2.36)
, (rlb.sb) /-1 Pe(y lm,) 2 -

Setting the derivatives to zero, we obtain the following reestimation formulas:

f!:p= (2.37)

2.5.2.3. Diagonal Gaussian distributions

(2.38)

Since diagonal Gaussian distributions are products of one-dimensional Gaus­
sian distributions, each of these can be considered separately. Let us con­
sider the parameters J.Lj and êr; of a diagonal Gaussian distribution b. From
(2.24), we must maximize

41

Setting the derivatives to zero, we obtain

(2.39)

8Fb (P..,&;) L, Pa/(t,y'lm,)
--=-~:..:...=~ ~ ~ . ,

8êri , (rlb,l!Ibl/-1 PaCy lm,)

which leads to

[
--!. J (y[r~f] = 0

• • 3 'q CT;
(2.40)

o " " ~ Pa./ (t,y' lm,) '.
LJ LJ LJ P f"'1) YI. I
, (rlb,l!Ibl/-1 aV' m,

P.i = -....:...:.....:........:....---=-=---:----:::-:---:-.,.--
~ ~ ~ Pa./(t,y'lm,)
, (rlb,sbll-1 PaCy' lm,)

and

" " ~ Pa,l(t,y'lm,) ,.2
LJ LJ LJ P f ••' 1) YI.I

• ~ , (tlb,-bl /-1 aV' m, . 2
U; - = -....:....-...;....---:.,.---=---;-~:-;----=- - Ili •

~ ~ ~ Pa,l(t,y'lm,)
, (tlb,sbl/-1 PaCy'\m,)

(2.41)

(2.42)

2.5.2.4. Mixture distributions

o
As mentioned earlier, mh,:ture· distributions can be implemented by having
several parallel transitions between the same two states, each with one of t11e
mixture components as its output distribution. In that case, both the mixture
weights (which, as illustrated in Figure 2.5, are the transition probabilities) and

c
~ ,. -

42

the parameters of the mixture components can be estimated in the usual way.

Such an implementation, however, may add unnecessary overhead through the
processing of a large number of transitions, which, in turn, may slow down
the program. Moreover, in some cases it may be preferable that output distri­
butions be full mixtures rather than sÏpply one of their components. One
example is when it is desired to find: the most probable path (transition

'\

sequence) in a given mode!. If mixtures are broken into their individual com-
ponents, then each component will be associated to a different path, which
may be undesirable.

We will thus consider the implementation of mixture distributions associated
to a single output distribution. This will be illustrated using the semi­
continuous output distribution (2.16). From (2.24), we must have

K-l

L, P (t ,'lm) :E .PQ1lk)p(k lb)
:E :E :E a,/ ~'I ; log ;-~ > 0,
, (tlb,oob) /-1 Pa m, :E PQ1lk)p(k lb)

k-O

which is the same as

(2.43)

" " ~ Pa,/(t,y'lmr) K~1 PQ1lk)p(klb) PQ1lk)p(klb)
~ ~ ~ r log ~ K 1 =
, (tlb,,",,) /-1 Pa<Y lm,) k-o ~ PQ1lk')p(k'lb) PQ1lk)p(k lb)

k'-O

where we used

_ P(v Ik)p(k Ill­
'"Yb (k Il) - :E P~.Ik')p(k'lb) ,

k'
(2.45)

From :E '"Yb (k l!l') = 1 and the concavity of the log function, we have that:
k

43

L r Pe,l(t,yrlmr) K-l PQ1lk)p(k\b)
L: L: L: r log L: 1b (k I~D >
r (rlb,Bb) 1-1 PeCy Imr) k-O PQ1lk)p(k lb)

(2.46)

o

Since the parameters in the second term in (2.46) are now separated by the
logarithm, we know how to maximize it; tbis will automatically maximize the
first.

2.6. Derivatives of probabilities

In severa! circumstances, it will be necessary to take the derivative of some
HMM-related probabilities with respect to the individual components of the
HMM parameter set e. One example is when it desired to use gradient des­
cent to optimize some function of those probabilities. In order to compute
the gradient, it is necessary to be able to compute the derivative of certain
probabilities with respect to the HMM parameters. Fortunately, such deriva­
tives are usually fairly easy to compute. The present section shows how.

We want to compute the partial derivative of PeCy lm) with respect to the
components of e. We will use PeCy lm) as expressed in (2.4). First, let us
find the derivative with respect to q r

c
44

(2.47)

Now, let us consider the partial derivative of '?e6' lm) with respect to the out­

put probability bCxJ).

(2.48)

Using this result, we can now compute the derivative with respect to any
parameter eof b (.), using, in effect, the chain roIe, that is,

_8P....;e:..-;:6'~lm---'-) L, 8Pe6'lm) 8bCxJ)
= E ~~---:::':~

8e 1-1 8bCxJ) ae

L, 1 8bCxJ)
= E bl".) 8e ..'-1::. Pe,l(t,ylm).

1-1 \lJ (rlb,É)
(2.49)

=r,
'-1'"

If () is a parameter that applies to ail distributions in a certain group r (which
may include ail distribution), like the parameters of tied mixtures in semi­
continuous HMMs or global exponents (see Chapter 4), then the derivative
with respect to ebecomes

1/

8Pe6'lm) L, 8Pe6'lm) 8bCxJ)
-~- = E E ~~~--....;:;~

8e ber 1-1 8bCxJ) 8e

45

~ 1 8bt~)
= l..J L:: b

t
tu,) Pa,l (t ,y lm) 80

1-1 (t Ib,er) \[J

(2.50)

Now, using (2.49) with the output distributions described previously, we
obtain:

1) Discrete (basic):

8PaCY\m) 1
= (1) L:: L:: Pal(t,ylm). (2.51)

8p(k lb) pk b (lill-k) (tlb,.b) ,

2) D.iscrete with multiple codebooks:

8PaCYlm) 1
= (1) L:: L:: Pa,l(t,ylm).

8pc(klb) Pc k b (11Yt..-k) (tlb,sb)

3) Continuous (Gaussian):

(2.52)

8PaCYlm) L, 1

8 =L:: L:: Pa,I(t,ylm)4,-Qj-Hb), (2.53)
'Hl> 1_1 (tlb,.b)

o

4) Continuous (diagonal Gaussian):

8PaCYlm)_~ ~ P (t 1)0'1,/-11/)
8 - l..J LJ a,l ,y m ~,

Jl/ 1-1 (tlb, ..b) u/~

(2.54)

(2.55)

46

8Pe<Ylm) L. lr 1 (YI' -1l.)2]
801 = ~ ~ Pe,l(t,ylm) - + " 3 1 •

i 1-1 (t Ib,E!» U; O'i

5) Semi-eontinuous:

8Pe<Ylm) 1 L. PQj Ik)p(klb)

8p(klb) = p(klb) 1~(tlff?Bb) ~PQjlk')p(k'lb/e,l(t,Ylm)
k'

(2.56)

1 L.
- p(klb) ~ ~ 'Ib(klll)Pe,l(t,ylm) , (2.57)

1-1 (t Ib,sb)

where we used 'lb (k Il) as expressed in (2.45). Now let a be a parameter
of the P<l.1 k), one of the tied continuous distribution~. Then, since ail
distributions are functions of P<l.1 k), we obtain

8Pe<Y lm) L. 1 8PQj Ik)
801 = ~ ~ Pt"'lk) 'Idk 11I)Pe,l (t ,y lm) 8a (2.58)

1-1 truU \ZJ

6) Multiple codebooks semi-eontinuous:

8Pe<Y lm) 1 L. Pc Qj,c Ik)pc (k lb)

a (lb) = ~ ~ Pe,l(t,ylm)
'Pc k Pc(klb) /-l(tlb,e/» ~PcQj.clk')Pc(k'lb)

k'

1 L.
= P (klb) ~ ~ 'Ib,c(klll,c)Pe,l(t,ylm) , (2.59)

c 1-1 (t Ib,ab)

where lI,c is the part of li corresponding to the eth codebook and
where, this time, we used

(2.60)

o

47

Now, let ex be a parameter of P{lJ,c Ik), Then,

8PeC.Ylm)
8ex

L, 1 8P{lJ c Ik)
I: P (... Ik) ')'b,c(kl~,c) I: Pe,/(t,y\m) 8' (2.61)
/-1 c \lJ.c rfull ex

c

(

3. HMMS: FROM THEORY TO PRACTICE

3.1. Introduction

The previous chapter described the theoretical foundations of HMMs. Even
though the presentation was strongly oriented towards speech recognition
applications, there remains a big step from the theory as presented, to a high­
performance speech recognition system.

lndeed, there are a number of practical consideration~Jthat the basic theory
does not address, but which are important when building a HMM-based sys­
tem. These range from simple implementation problems to the more difficult
question of how to get" ;,e most from a limited amount of training data.

;,

This chapter addresses these issues. Our aim is to provide the reader wit)l not
•• #

only a clear understandmg on how to Implement the HMM theory, but also a
good idea of how to best apply the HMM framework in different speech
recognition applications.

3.2. Application c~nsiderations

3.2.1. Initialization and training

Training HMMs consists of finding,the parameter vector e which, as much as
possible, maximizes the chosen objective function. For MLE training, the
objective function is

R(e) = Il Pe(yrl mr).
r

48

(3.1)

o

o

49

As mentioned in Chapter 2, it is very difficult to find a global maximum for
R(e). Instead, training is done through an iterative process which would
eventually converge to some local maximum. In practice, it is usually
observed that even though recognition rate on a test set initially increases with
each iteration, a maximum is quickly reached (often after as little as 3 or 4
iterations), after which the rate starts going down. This phenomenon is called
overtraining. It is caused in part by the differences between the training and
testing data sets and in part by the fact that MLE does not necessarily
decrease error rate. Because of this, training is usually stopped after a fixed
number of iterations, typically between 2 and 10.

Since the "real" test set - the speech from actual system use - is unavailable
at training time, it is difficult to determine the optimal number of iterations.
It is a function of a number of factors, such as the amount of training data,
the type of output distributions used, the structure of the models, and the ini­
tial parameter vector e. If a large quantity of training data is available, then
the differences between training and testing data sets will probably be small
and there will be a smaller possibility of overtraining to peculiarities in the
training set. Similarly, continuous or semi-continuous HMMs may require
more iterations than discrete HMMs.

Probably one of the most important practical considerations in HMM training
is the initial e. Indeed, not only will the initial e influence the required
number of iterations to use but, more importantly, it will determine which
local maximum the procedure converges to. Our experience, as weil as that of
others [RABI 89c], has shown that the initial e has a very strong influence on
the system performance.

Good initiaiization allows the Baum-Welch algorithm to properly align the
models with the desired speech segments. This results in both improved con­
vergence and better models. For simple small vocabulary, isolated word
recognition systems using endpoint detection [LAME 81] and word models,
alignment is self-evident and uniform or even random initialization will per­
form satisfactorily for discrete HMMs [RABI 83b]; however, more complex
tasks will usually require more sophisticated initialization schemes.

ln general, initialization can reliably be done with hand-segmented data. The

v

c
50

speech segments corresponding to each unit model are used to derive proper
initial distributions for the model. This is referred to as bootstraping the
models. For discrete HMMs, this can be done by starting with initial models
with uniform distributions and training them on the corresponding speech seg­
ments [SCHW 8S] using the Baum-Welch algorithm. For example, the
SPHINX system uses the phonetically segmented TIMIT database [LAME 86]
to bootstrap the phone models. Note that this is also valid forsemi­
continuous HMMs, since the initial tied mixtures can be properly estimated
from the codebook(s) and the training data. For HMMs with Gaussian densi­
ties, there is no such thing as a uniform distribution and it may help to have
reasonable initial values for the mean and covariance parameters. These can
be obtained from the s~gmented data, using some clustering procedure.

One problem with the use of hand-segmented data is that the actual segmenta­
tion process is quite labor-intensive and, in some situations, it is just not pos­
sible to do. Some researchers have found that good results can be obtained
by linearly segmenting the training data into their corresponding state (or dis­
tribution) sequence and then using all frames corresponding to a given distri­
bution to estimate its initial parameters [LEEC 9Oa]. Our own experience,
however, clearly indicates that bootstraping with hand-segmented data pro­
duces better results. We feel that, even if it is not possible to segment the
training data used for a particular application, it is usually possible to take
advantage of segmented databases such as TIMIT to produce better initial
models than what could be obtained otherwise.

Following bootstraping, MLE training is done using labeled (but not seg­

mented) speech data. This means that for each training sentence, l the con­
tent of the sentence is known and the corresponding sentence model can be
built. This model is used to compute the forward and backward trellises,
which, in turn, are used to increment the counts from which the HMM rees­
timated parameters are computed.

'Here, sentence is uscd in a broad sense and can menD nDY type of speech utterance, from an Îso­
I.led ward, 10 a full par.gr.ph.

. ','

3.2.2.

51

Silence and optional models

o

The labeled data used for training usually contains speech signals preceded
and followed by silence (or background noise). Moreover, there May or May
not be pauses between words in the sentence. In general, the sentence labels
only indicate the words spoken. No information is given about the possible
preserice of silences in the signal.

Suppose a 2-word sentence is used for training. Then, as described above,
training is done by building the sentence model from the two word models.
If, however, there is a pause between the two words, then it will be absorbed
by one (or both) models. If, on the other hand, we choose to use a pause
model between the words, and the words were spoken continuously, then the
pause model will end up modeling parts of words. Both of these outcomes
are undesirable. The problem cornes from the ignorance of where the silences
are in the signal.

'---- _...----------

Figure 3.1: Optionlll model

An elegant solution to this problem is to use optional silence models. As
shawn in Figure 3.1, an optional model has an empty transition (rom the (irst
ta the last state, which basically allows the model to be jumped over. Thus,
suppose the distributions of an optional silence model are well-trained and this
model is used between two ward models during MLE training. If there is
actually no silence between the words, tllen the paths going tilrough the

c
52

silence model will have very low probability and their effect on the distribu­
tions of the silence model will be negligible. If, on the other hand, there is a
silence between the words, then since the silence model's distributions are
weil trained, the paths going through the model will have higher probability
than the other ones. _

This is a surprisingiy effective technique and it works just as weil for recogni­
tion as it does for training. Optional models can be used in any situation
where it is not possible to say for sure from the_speech labels whether or not a
given sound is present. For example, the "t" in the word "eight" may or may
not be pronounced, which suggests the use of an optional "t". The technique
is, however, most effective with silences, for which it is relatively easy to
obtain good models. In our systems, use of optional silence models at the
beginning and end of sentences has completely eliminated the need for an
endpoint detector [LAME 81] and performs much better than an endpoint
detector.

(
3.2.3. Output distributions

If vector quantization (VQ) is applied to the feature vectors, then discrete dis­
tributions are used. This is attractive since, from the modeling point of view,
discrete distributions don't make any (possibly erroneous) modeling assump­
tion. However, these are simply transferred to the "ector quantizer, which
acts as an a priori classifier. Without VQ, continuous distributions are us~d.

There has been much debate about which of discrete or continuous HMMs is
superior. For a long time, IBM found discrete parameter HMMs to give
better results than continuous ones. Brown [BRüW 87] found that, for iso­
lated recognition of the e-set, continuous parameters gave better results. For
the SPHINX system, Lee [LEEK 88] chose discrete HMMs because of their
lack of modeling assumptions and their efficiency.

Now that semi-continuous HMMs are becoming widely used, this debate
seems to be finally resolved in favor of continuous distributions. Indecd,

f" several state-of-the-art discrete systems such as SPHINX [HUAN 89],
BYBLOS [KUBA 91] and DECYPHER [MURV 91] have recently been tried
in semi-continuous mode and results have generally shown improvements over

53

the discrete systems.

Semi-eontinuous HMMs combine the simplicity of discrete HMMs with the
robustness of continuous distributions. The transition from discrete to semi­
continuous is easy to make: modifications to the HMM programs are re1a­
tively ~traightforward and simple modifications to the codebook design pro­
gram will allow it to generate good initial mixture components. The resulting
system will usually perform better than the original (especially with sparse
training data), and the penalty in terms of increased computational complexity
is generally not as high as it appears from (2.16). This is because, in practice,
most implementations only use the M most probable mixture components for

a given frame (with, in general, M<1O).3 Most techniques originally developed
for discrete HMMs (e.g., speaker adaptation techniques [SCHW 87) and pro­
bability smoothing [LEEK 88, SCHW 89)) can also be applied to semi­
continuous HMMs.

3.3. The training data problem

Among the practical problems faced by designers of speech recognition sys­
tems, one of the most challenging is certainly that of limited training data. If
unlimited data (and memory and CPU resources) were available, phone,syll- .
able or word models could ail be trained perfectly for ail contexts, speaker
types and environments. Unfortunately, this is never possible in practicc,
which means that ways have to be found to make the most of whatever data is
available.

3.3.1. Basic concepts

HIv1Ms are u~ed as parametric speech models. Training them consists of
using the available speech samples (the training data) to learn the model
parameters. It is implicitly assumed that the training data is representative of
the process being modeled. This means that the speech encountered during

:Alternntively. some systems [MURV 91) use ail mixture components with a probability greater
than some frnction of the highest probability

t

c

54

-

recognition should be welHx:.od"leti, by the HMMs trained on the training data.
This is, of course, never completeiY!I1!e. Whatever the size of the training
data, there will usually be some speech features observed during recognition
which could not have been learned from the training data. It is generally
observed in practice that performance steadily improves as the available
amount of training data increases. For 'example, in a speaker-i,ndependent sys­
tem, it is desirable to have speech samples from as many types?f speakers as
possible.

It is important to realize that thê representativeness of a given training data set
is as much a function of the model used as it is of the data itself. Some

---::
models will generalize much better than others from a given training set. This
can be illustrated with a simple example.' Suppose agiven random variable X

is normally distributed with unknown mean IL and variance"z. We want to
model the distribution of X from a sample of 200 independent outcomes
Xj, i=1, ...,200 of experiments corresponding to X. If we suppose that X is
normally distributed, then we can compute the estimates

(3.2)

(3.3)

In general, the estimates obtained will be very good so that we will be able to
say that the training sample is representative of the process. This is illustrated
in Figure 3.2 where the true distribution is compared to the estimated distribu­
tion obtained from a sample of 200 randomly generated numbers (using the
true distribution).

Note, however, that if X is not normally distributed, then the estimated distri­
bution may be quite inaccurate, regardless of the training data size. It may
thus secm preferable not to make any assumptions about the given distribu­
tions. This can always be done by estimating discrete probabilities using an
histogram. If the histogram has, say, 50 unit intervals, then 50 probabilities
will be computed using relative counts. So, instead of 2 parameters, we now
have' 50 discrcte probilbilities to estimate. Because of the small sampie size,

o

55

most estimates will probably be very bad. Even worse, there will most likely
be intervals not represented in the training sample, thus resulting in probabil­
ity estimates of zero. This is illustrated in Figure 3.3, where the histogram is
computed from the same 200 numbers used in Figure 3.2. So in this case, the
training sample is clearly not representative.

.... Î"
/ ~..'

_.

/

Figure 3.2: True distribution (solid line). Estimate (dnshed).

In ge.l!eral, the more 'parameters there are to estimate, the more training data
// -,

i$.' required to estimate them. Discrete HMMs usually have a large number of
~'parameters and thus require larr:) amounts of training data. Continuous

HMMs using single diagonal normal distributions (2.14) have much fewer
parameters. Unfortunately, simple distributions may be so different from the
"true" distributions that, no matter how much training data is available, per­
formance will always be poor. Mixtures of Gaussian distributions can produce
good approximations of complex distributions. However, the number of
parameters to estimate is usually proportional to the number of mixture com­
ponents.

c
S6

\ r

j, !
. . ~

(

Figure 3.3: Histog.ram estimate, semi-continuous distribution created
from the histog.ram (dashed line), and the true Gaussian density (solid
line).

Once again, a compromise may be offered by semi-i:ontinuous HMMs. Let us
create a codebook of "tied" densities by associating a one-dimensional Gaus­
sian density to each of the SO bistogram bins, using the center of the bin as its
mean and width2/3 as its variance (width is the bin width). The variance was
determined .. by assuming a uniform distribution within each bin. Then, il
"semi-i:ontinuous" mixture distribution can be created from these densities by
using as mixture weights the histogram heights normalized so that they sum to
unity. The distribution, is illustrated in Figure 3.3, is a smoothed version of
the histogram estimate.

For both discrete and continuous distributions, insufficient training data will
create problems. They are considered in the next two sections.

3.3.2. Sparse training data and discrete HMMs --;.'
,'~~,

':,

(}
Insufficient training data with discrete HMMs will of course result in poorly
estimated probabilities. A more important problem, however, is that a code­
word probability may evaluate to zero, which can cause unrecoverable errors if
that codeword appears during recognition. A simple solution tothis problem,

57

called [loor smoothing, is to constrain the discrete probabilities to be greater
than or equal to some small constant f [RABI 83b]. This simple constraint
can dramatically improve recognition rates. Moreover, it has been found
[RABI 83b] that the performance obtained is not really sensitive to the actual
value of f used within the range 10-10 < f < 10-3• Note that, as we might
expect, experiments have also shown [LEEK 89a] the technique to become
less usefui as the training set size increases.

One problem with fioor smoothing is that it doesn't distinguish between code­
words which have a low probability because of a lack of training data and
codewords which actually are very improbable. One solution to this problem,
proposed by Lee [LEEK 89a], is a different technique called co-occurrence
smoothing. The idea is to compute a co-occurrence probability matrix which,
for any pair of codewords (i, j), can be interpreted as the probability CP(i 1j)
of generating codeword i if codeword j is generated by the same output distri­
bution. This matrix is computed during the standard Baum-Welch training as

(3.4)

Pa,l (t "r Im r)

pa(yrlmr)

Pa,l (t"r Im r) ,

pa(yrlmr)

~fl(i1b) ~ ~ ~
CP(ilj)= b r (tlb,Eb) (1Iy,-j)

K-l
~ ~fl(klb) ~ ~ ~

k-O b r (tlb,.b) (lly,-j)

where K is the codebook size and fl(k lb) is given by (2.32). The smoothed
probabilities fl. (k 1b) are then obtnined from the unsmoothed ones using

K-l
fl.(klb) = ~ CP(klk')fl(k'lb).

k'-O
(3.5)

o

Co-occurrence smoothing may produce distributions so smoothedthat they
have lost much of their discrimination capabilities. To avoid this problem, it
may be advanlageous to average the smoothed and unsmoolhcd probabililics
using

(3.6)

58

where ftf (k 1b) is the final probability and >." , which is a function of the distri­
bution, may be estimated using deleted interpolation [LEEK 88]. In phoneme
recognition experiments, Lee [LEEK 89a] found co-occurrence smoothing to
be superior to floor smoothing. AIso, once again, the smoothing usefulness
diminished as the training set size increased.

3.3.3. Sparse training data and continuous HMMs

Experience shows that in most cases, the "true" continuous distributions are

quite different from single Gaussian densities.3 In order to accurately model
these distributions, it thus becomes necessary to use mixtures of Gaussian
densities. It is not uncommon [DENG ?O, LEEC 9Oa] to see mixtures with
more than 20 components. If there is Lsufficient data to train aIl Gaussian
densities, sorne of the variances may become very small or even go to zero,
which is undesirable. Sorne proposed solutions to this problem include con­
straining variances to be greater than a certain minimum value (covariance
clipping) [LEEC 9Oa], tying of covariance matrices in order to provide more
training' data per,matrix [DENG 90] or simply keeping the variances fixed, as
in Richter densities [BROW 87].

3.3.4. Dnits

When designing an HMM-based speech recognition system, one of the first
things to do is to determine the set of units to use. The best set for a given
application depends on a number of factors such as the vocabulary size, the
target recognition rate, the amount of training data that will be available, the
availability of manually segmented data and so on.

-:;
" ,~

3.3.4.1. Linguistically based units

In certain applications such as sorne systems for the telephone network
[WILP 90], where vocabularies are smal1, the environment is relatively uniform

'1nis is cspcciaUy truc Cor speakcr-indcpcndcnl models.

)

o

59

and speaker-independence is necessary, the best solution is probably to collect
as large a database as possible and to use word models.

In severa! applications, however, this is not possible. For example, in large­
vocabulary systems, it is just not possible to create and train a different model
for each word, so subword models must usually be used. The first probleii{is
to find an appropriate speech unit [LEEK 88]. Most such systems use some
kind of phoneme-based units. This is a natura! choice since there are only
around 40 phonemes in English, from whieh all words ean be built. Collecting
enough data from one speakercto train those 40 phoneme~, is usually not a
problem. The problem is that a phoneme is actually a very abstraet unit and
its realization is highly variable, especially in different eontexts. This means
that, to attain an acceptable level of performance, it is necessary to create dif­
ferent models for different contexts. A common eontext-dependent unit
model is the triphone [SCHW 85], whichtakes the left and right phonetic eon­
texts into aecount. Unfortunately, there are a lot of triphones. For example,
the DARPA resource management task, which has a 997-word vocabulary,
has 2381 different within-word triphones [LEEK 88]. A very large quantity of
training data would be required to accurately train so many models.

l1

In his discussion on units, Lee [LEEK 88] listed three important properties
that can be attributed to them. The first is sensitivity. It measures the level of
recognition performane,e thli.t can be expected from a certain type of unit. For
example, context-dep-endent units, by providing finer modeling, have
inherently better discrimination capabilities than context-independent ones.

1,

They are thus said '1.0 be more sensitive.

The second property is trainability. It measures how difficult it isto collect
enough data for aecurate training of the units. For-" cxample, context··'
independent units like phonemes are much more trainable than context­
dependent ones. The third property is sharability. It refers to one of the
common solutions to the problem of insufficient training data, namely the
smoothing of distributions. Tha rôugh idea is that sine,,", sorne units arectrain-

. ."
able but not very sensitive, and other units are sensitive biih~ot very trainable,
we might find a compromise by smoothing the two types of units. This is orily
possible if the two ùnits smoothed represent the same thing (as, forexample,
is the case with a triphone model and the corresponding phoneme model) and

c
60

if discrete distributions are used (tbis includes semi-continuous HMMs). Tbis
is what sharability means.

3.3.4.2. Acoustically based uoits

(

So far, we have mostly talked about linguistically based units. However, as we
have discussed, the aëoustic realization of these units is often quite variable.
Even expert phoneticians often disagree about the phonemic identity of a
given sound. Itniay be argued that, in order to obtain better performance,
the units used should be based not on abstract and subjective linguistic con­
cepts, but, rather, on acoustical evidence.

One such acoustical unit that was recently proposed by the IBM group is
called the fenone [BAHL 88a]. They proposed a way to automatically con­
struct the acoustic baseform of a word in terms of fenones. The idea is to
associate one fenone to each label in the VQ alphabet and to use a sequence
of VQ labels from the pronunciation of a word to determine the fenonic
baseform corresponding to that word. This fenonic baseform, determined
from only one repetition of a word is called a singleton basefarm. Since dif­
ferent repetitions of a word usually result in different baseforms, the singleton
baseform of a word may not be the most optimal one for that word. The
solution they proposed for that problem is to first use singleton baseforms to
train the fenones and then, using several utterances of a ward ta determine
the best fenone sequence (or baseform) for that word. Tbis can be done
using a search algorithm such as the Stack algorithm [JEL! 76], but modified
to search over several observation sequences instead of one.

Thcir argument for introducing these units was based on their observation
that, if enough training data is available, word moJels usually outperform
phone-like units. They argued that word m'odels providfl:,much finer coarticu-

:c.>lation modeling and they expressed doubts that phone-like units could be
made to p'erform as weIl. Isolated word, speaker-dependent recognition
experiments demonstrated substantial performance improvements over
phonetically based models. It is not clear, howevcr, how fenones with word
baseforms would perform in continuous speech. Indeed, even though fenones
undoubtedly provide fine within-word coarticulation modeling, it is not

61

obvious how word basefonns could be made to take into account between­
word coarticulation ~ftzcts in continuous speech. A compromise between the
acoustical and phonetic approaches hasrecently been proposed [BAHL 91] by
the IBM group as a possible solution to that problem.

3.3.5. Using Jess training data

The requirements of a particular application will usually dictate the choice of
unit and the training procedure. If speaker-independence is required, then
not only will collection of a large database be necessary, but there will be a

performance penalty over a speaker-dep,~ndent system.4 However, any user
will afterward be able to use the system'without any prior training. On the
other hand, some applications may require a speaker-dependent system in
order to obtain the desired level of recognition performance. In that case, the
user will have to train the system to his/her own voice prior to using it, which
may be a lengthy process. Since in general, there is never enough training
data, it is important to discuss some of the solutions that have been used to
circumvent that problem. ~____

..........,'>

3.3.5.1. Speaker adaptation

o

Speaker adaptation is a growing area of speech recognition. A~,;t!le name
implies, the purpose of speaker adaptation is to improve the recognition per­
formance of a system by somehow adapting it to the particularities of a
speaker. There are several ways in which this can be done.

One of the techniques used is called HMM clllstering. The idea is that, evcn
i~\

though aIl speakers are different, it should be possible to separate them into a
number of groups (or c1usters) of speakers sharing common characteristics.
For each c1uster, a complete set 0!cJ:1MMs is trained. Adaptation takes place
during recognition when the system determines which set of models (or clus­
ter) is the most appropriate to use with the given speaker. The clusters can

41t is typical to sec error rates \\\'0 to three limes higher in spcakcr~indcpcndcnt s)'stcms than in
speaker dependent systems.

(

c

62

be determined a priori (e.g., by separating male and female speakers [DODD
89]), or they can be determined by automatic techniques. Standard clustering
techniques, such as those used for designing vector quantization codebooks
[RABI 83a, GRAY 84] [MAKH 85, EQUI 89], are usually used. Some
[RABI 89a] st!lrt with one cluster, then apply a splitting technique until the
desired number of clusters is reached. Others [LEEK 88] start with as many
clusters as there are speakers and repeatedly merge them, also until the
desired number of clusters is reached. At recognition time, determinatibn of
the bestcluster can be done once, by finding the cluster resulting in the
bighest likelihood on a known utterance [LEEK 88], or it can be determined
for every unknown utterance by trying every cluster and using the one result­
ing in the bighest likelihood [DODD 89].,

There is a different type of speaker adaptation which is more related to the
training data problem. The general idea is that ü well-trained models for a
given application are availal,le (either speaker-dependent or inùependent),
then it should be possible to adapt those models to a particular speaker using
much less training data than would be required to train the models from

. scratch. Adaptation can be supervised or unsupervised. Supervised adapta­
tion uses a small number of known words or sentences from the target
speaker, which makes it like regular training, but with less data. By adapting
on unknown sentences, unsupervised adaptation is a potentially more fle,[Jble
technique; however, it is also much more düficult.

Supervised adaptation is the technique that has so far given the best results.
One of the early pioneers in this field is BBN. For a number of years, BBN's
approach has b~pnè.!R adapt discrete probabilities from the well-trained models

l ,. '_

of one reference speaker to a target speaker. The adaptation was done by
computing a probabilistic spectral mapping matrix that is used to transform the
reference models into the target models. This matrix was evaluated either
using maximum likelihood estimation directly within the Baum-Welch algo­
rithm [SCHW 87] (in which case an initial estimate is necessary), or by using

"
DTW to align the adaptation speech to the same text spoken by the reference
speaker, and using tbis alignment to compute the mapping matrix [FENG 88].
This seco~ techn~que is not onl~\ supervised, but also text-dependent, that is,
the adaptalton scnpt must be drawn from text also spoken by the reference
speaker. BBN reports that the second technique works better, even though

l.;~"

63

results vary significantly across speakers. AdditionaLimprovements were pro->
posed in [FENG 89]. These inc1ude using a phoneme-dependent transforma­
tion, silence modeling, duration normalization and spectral space normaliza­
tion. By applying those techniques to,Jhe DARPA resource management
task, BBN has achieved recognitiv'~(ratesequivalent to the best speaker­
independent results. More recently [KUBA 90], they have proposed an adap­
tation scheme using a reference model trained o~ a number of speakers nor­
malized to a single prototype space.

AT&T has recently proposed a Bayesian framework for doing supervised
speaker adaptation of continuous density HMM parameters [LEEC 9Ob,
GAUV 91]. This is an interesting idea because it is possible to get meaningful
prior distributions by either looking at a number of speaker-dependent models

, .

or by using ail the mixture eomponents from a speaker-independent model,
'" ~ thus taking advantage of the information gained by observing how the parame­

ters vary across speakers.

Note that, in general, techniques developed for either discrete or continuous
distributions can also he applied to semi-continuous HMMs. In fact, thc
mixed nature of semi-continuous HMMs opens interesting new possibilities
[RTIS 89]. For example, th~;rAiscrete distributions (mixture weights) could
be used :'~ prior information in order to adapt the tied mi~tures to a new
speaker.

3.3.5.2. Noise adaptation/signal normalization

o

In order to get the best possible results, the conditions undcr which a speech
recognition system is used usually need to be as similar as possible to those
that existed during training. Changes in background noise characteristics, or
even a simple change of microphone, can result in substantially deterioratcd
results. In sorne applications, this can be a rer.! problem since it may not be
possible to have similar conditions during training and recognition. One
example is when the recognition environment changes constantly.

The term noise adaptation refers to the techniques that deal with changes in
background noise characteristics. Most of them use a silence/speech

(

(

(

64

discriminator to identify the parts in the signal where no speech is present,
which are then used to determine the noise characteristics. Some techniques,
such as spectral subtraction [VANC 89, ACER 90) or probabilistic vector map­
ping [GISH 90), work directly at the signal processing level by transforming
the noisy feature vectors into approximately noise-free vectors. Others per­
form noise adaptation directly on the vector quantizer. One exam.ple is
[NADA 89), in which a maximum Iikelihood estimation of the noise-Cree
labels is performed. This last technique, however, only works if the parame­
ters used are filter-bank energies, p.nd only if the background noise is relatively
constant.

The term signal normaüzation refers to the techniques that deal with changes
in the acoustical environment. Various factors such as room acoustics and
microphones can, by modifying the system's overall transfer function, color
the speech's power spe\:trum to the point where degraded recognition results.
Signal normalization thus attempts to estimate how the signal was modified
with respect to the training data in order to "undo" those modifications
[VANC 89, ACER 90). .'\

3.4. Speech decoding

It was mentioned in Chapter 2 that the optimum speech decoder in the sense
of minimizing the probability of error is the MAP decoder, which chooses ÛI

such that

ÛI = argmax P(w Iy) .
ID

Since P(w Iy) is unknown, however, the HMM-based estimate must be used
instcad, which means that we must use the sub-optimal decoder

• Pe6'lm ID)P(w)
w = argmax Pe(m lD Iy) = argmax 6')

ID ID P

6S

(3.8)

where the last equality results because the maximization does not depend on
PCy). Assuming that the HMMs have been trained and that there exists a
language model that can compute P(w) for any w, then everything is available
to find the (sub-optimai) lb. Unfortunately, except in the simplest applica­
tions (such as small-vocabulary, isolated word recognition), even (3.8) cannot
really be used in practice. Consider, for example, even a simple application
such as connected digit recognition, which has an ll-word vocabulary (includ­
ing "oh" and "zero"). If we were to use (3.8) to find the most probable 7­
digit string, we would have to compute PeCy lm,.) for a total of 19,487,171 dif­
ferent models m,. corresponding to aIl possible digit strings w.

It is clear, then, that approximations to (3.8) must be used in order to be able
to perform speech deeoding mueh more efficiently. Such an approximation is
provided by the Viterbi algorithm.

3.4.1. The Viterbi algorithm

o

The Viterbi algorithm was introduced in 1967 as a maximum likelihood decod­
ing technique for convolutional codes [VITE 67]. It is a very general algo­
rithm which is used to find the lowest-eost path in a trellis, where the cost of
a path at a given trellis node 11 j can be eomputed as the sum of the cost at the
previous node 11 j-l and the cost incurred to get from node 11 j-l to node 11 j'

The idea of the algorithm is quite simple.

Let us define the cost C(t lm) of a path t in a HMM as minus the a posteriori

log-likelihood of the path, that iS,I'"
i,1
"

C(t lm) = -log Pe(t lm)Pe(-f1t) . (3.9)
Il
,'l_

Let CI (i) be the cost of the lowest-eost path endingci~,Jtate i at time l. Let
Ct(t,i) be the cost of going from state l, to state i at tirri~ l, usingtransition t

(

66

(this assumes r, = il. If t is empty, then it cornes from time 1 and
cI (t,i)=-Iog q,. If t is full, then it cornes from time 1-1 and
CI (t ,i)- log q, b, Ù:J). q (i) can be computed as

CI (i) = max f max (CI (1,) + cI (t ,i») , max (CI_1(4) + CI (t'i»)}.
~ emply , full

(3.10)

The lowest-eost path is the one ~th highest pr~bability and, using thi: Viterbi
algorithm, it can be foundas'

max CCt lm) = max (-lOg Pe(t Im)PeL'V it») = CL (F) ,
t t '

(3.11)

(

(

where we have assumed CoCO)=<>. A trellis recursively computed with (3.10) is
called a Viterbi trellis. Note that isolated word recognition systems often use
CL,(F) instead of Pecy\m) to find the best word. This is because in practice

it is faster to compute CL (F) and the recognition rate obtained is basically the,
same.

However, the real advantage of the Viterbi aigorithm for speech recognition
lies not in what it computes, but in its ability to find the best path in a mode!.
This can be done trivially by keeping, within the recursion (3.10), a "back­
pointer" BI (i) to the"transition that resuited in the best path and then, using
these backpointers to traceback the path from CL (F) to CoCO).,

For cxample, ir a word model is made from the concatenation of phoneme
models, then the best path in the mc:>del can be used to segment anutterance
or that word into its individual phonemes. Note that even though the path
used is the most likely path in the model, the phoneme sequence given by the
path may not be the most likely sequence. This is because the probability of a
phoneme sequence must be computed from the sum over ail paths in the
model corresponding to the sequence (see (2.4», and not only the most likely
path. In practice, however, this rarely makes a big difference.

Similarly, it is usually possible to build a compact general model mgen such

67

that every path t .i. every model m in the application is also a legal path in

m g•n •5 If, conversely, every path in m gcn also corresponds to a path in a pos­
sible model m in the application, then,11J,g.n is said not to over-gene:r~te.

Using the Viterbi algorithm to find the best path in m gtn effectively segments
an acoustic sequence:y into a "recognized" word sequence. This technique is
called Viterbi decoding. For example, connected digit recognition is often
done using Viterbi decoding with a looped model such as the one in Figure
3.4.

1

2

1
oh

zero

Figure 3.4: A Jooped model used for connected digit recognition

Once again, however, the most likely path will not necessarily produce the
most likely word sequence. This is especially true because there is an implicit
language mod~l used in the recognition process and this model may be quite
different from the true P(w). Remember that the most likely word sequence
w is the one that maximizes Pe<:YlmfD)P(w). Referring to the looped model
in Figure 3.4 and assuming that all transitions from the same node in the word
network are equiprobable, we have that P(w) = 0.5' (l/Ut , where w is the
sequence found and n is the number of digits in w. Thus, in this implicit
language model, the a priori probability of a digit string decreases exponen­
tially with the number of digits. Mor~;generally, since the implicit language
model in a word network arises from word transition probabilities in the

'Sec Chapler 4 Cor more delails.

68

network, it will be of the fonn

(3.12)

where I\Ij is the ith word in ID and n is the number of words in ID. Such a

language model is usually referred to as bigram language mode!.6 In practice,
the acoustic probabilities weigh so heavily in the detennination of the best
path that the implicit language model has a very limited effect on the recogni­

tion process. This means that ü the language model is to be useful7 its contri­

bution to the sentence log likelihood must be increased.l! For simple applica­
tions such as connected digit recognition, a negligible contribution from
Pimp (ID) is just as weil since, in general, (3.12) will not provide a useful
approximatii:>n to the "true" language mode!. For larger applications, how­
ever, the use of a good language model becomes essential, which means that
more sophisticated search techniques will have to be used.

1";.'~;

3.4.2. Viterbi search with partial backtrace

One problem with the Viterbi decoding technique described in the previous
section is that if it is applied to the recognition of a complete sentence, no
word can be recogni:;:ed before the end of the sentence. For recognition of
short sentences, this may not be much of a problem. For some applications,
however, this can introduce unacceptable delays. For example, some HMM­
based wordspotting systems (ROHL 89, GISH 90, ROSE 90] use looped
models of the type illustrated in Figure 3.5 to recognized keywords in

•A speeinl cnse of bigrnm Inngunge model is the ward·pair model, in which nU probnbilities nre ei­
ther 0 or 1. Clenrly, the complex relationships between words in naturallanguage cannot be redueed to
simple bigram probabilities. Nevertheloss, bigram language models can be quite cffective in many
simpler applicatioas.

'The potentinl usefulaess oC a langunge model is usuaUy expressed in terms oC the reduction in per­
plexity that it aUows. The perplexity is a mensure oC perCormance oC a language model on a given text
ID [KUHN 901. Il is given by S(ID) _ P(ID)-I/" , where n is the aumber oC words in ID. Roughly speak­
ing, iC the perplexity of a language model is S, then the speeeh recognition tnsk is os diCCicult as it
would b. iC. at any time, S words were equaUy probable.

'For exnmple, in the Lincola Lob system [PAUL 91], the bost recognition rate on the resource
manngement task is obtained when the contn'hution of the bigram lnnguage modelto the log likelihood
is multiplied by a factor oC around S. '.

)

o

o

69

unconstrained speech.9

~.----------

/ -, ""/ \, '
/ \

1 keyword2 '
J \
: \t \J

,'1
keywordN

silence

alternative

Figure 3.5: Looped model for wordspotting.

If Viterbi decoding is used, then a keyword will be reported spotted when the
path goes through the corresponding keyword model.The problern is that
wordspotting is often applied to non-stop signals which are often several
minutes in duration. It does not make much sense to wait until the end oC the
input signal to start backtracing the best path in the Viterbi trellis; Cor­
tunately, this is usually not necessary.

Using a technique called partial backtrace [ROSE 90], il is possible to report
recognized words as the Viterbi trellis is being computed. The idea is that
when the Viterbi algorithm is applied to looped models such as the one in Fig­
ure 3.5, there will eventually be a time l such that the paths backtraced Crorn
all trellis nodes at that time converge to a common node somewhere in the
pasto Thus, the path backtraced Crom that node is common to all active paths
at time land all words on that path can be reported. For wordspotting

'ID the looped model, lhe alltmalive model is used la model DOY DOD·keywold speech.

70

application, this partial backtrace resulted in recognition delays usually not
exceeding 2 or 3 seconds [ROSE 90].

3.4.3. Beam search

When computation time 1s important, it is possible to make the Viterbi search
faster by restricting it to the trellis nodes having a likelihood greater than
some fraction of the maximum likelihood in the given column. This is called
a beam search. Each time a trellis column l is computed, the value P,max of
the highest log-likelihood of any node in the column is found. Then, only the
nodes with a log-likelihood greater than P,max - /). will be kept in the list of

active nodes (the other nodes are pruned).10 The value Â is called the beam
",idth. The smaller the width, the faster the program will run. In large voca­
bulary speech recognition experiments, Lee [LEEC 9Oa] observed that the

computation time increased almost linearly with the beam width /)..11

In practice, however, a narrow beam will cause good paths to be eliminated
because of poor local acoustic match, which will result in deteriorated recogni­
tion rates. As Lee points out, when the overall acoustic match is poor, a
larger beam width should be used in order to allow the confusion to be
resolved later on in the search. This suggests using a search algorithm with a
variable beam width, although it is not clear exactly how this should be done.

3.4.4. Language models and N·best algorithms

As todaY'll applications become more and more ambitious (very large vocabu­
laries, continuous speech), it becomes quite difficult to have good recognition
based on acoustic information alone. Examples of factors limiting recognition
include acoustically similar words (not to mention homonyms), and word dele­
lions, and insertions in continuous speech (especially small words). Many of

'on.. pruning slralegy causes Ihe s.arch la b.com. suboptimal (lhe maximum lik.lihood palh may
Dol bo round) and wo say lhal il is Dol admissible.

"This experimental result cannot be gcncralized ta 011 applications. Other rcscarchers have round
computation lime to incrcase more nenrly cxponentially with à.

71

the errors will result in recognized sentences which are either syntactically
incorrect (even for speech) or meaningless, both of which could be detected if
an appropriate language model were available.

If recognition is performed using a frame-synchronous search on a looped
model, it will not, in general, be possible to take advantage of such alanguage
model during the search. An alternative solution, however, is to generate the

, ,
N most acousticaL:y probable sentences (word sequence!:) and toèhoose
among them using the language mode!. The number N should be chosen sllch
that the true word sequence will be among the first N choices with high pro~a­

bility.12 What is needed, then, is an algorithm that can find these N besv,y:ôrd
sequences (the Viterbi algorithm is not suited for this task).

Two such algorithms have been introduced recently. The first one [SCHW 90]
is an exact algorithm (it uses all paths corresponding to the given word
sequence) in which N has to be decided a priori. The second one [SaON 90],
called the tree-trellis search algorithm is more computationally efficient. It
uses a modified Viterbi algorithm to generate exact heuristics that will be used
in a backward A* algorithm. The number N doesn't have to be decided a
priorij as many sentences as desired can be generated during the backward A*
passj however, it only uses the most Iikely path in each word sequence, so it
is not an exact algorithm.

3.4.5. The A* search algorithm

o-

1:'
The A* algorithm is a depth-first search algorithm borrowed from the field of
artificial intelligence. In speech recognition, the A* algorithm is often called
the stack algorithm [JEL! 76]. It is becoming popular in speech recognition
because it does not have the language model integration problems of most
frame-synehronous algorithms. However, it is more difficult to apply since
partial paths of different lengths must be compared, which means that a func-

12TItis is ooly nccessary in applications, 5uch as dictation, wherc il is imporUlOl that ail wards be
recognizcd correctly. For rnaoy applications. such as dalabase queries or dialogue systems (ZUE 90), it
is ooly necessary to recognizc a Rumber oC wards surficient to undcrstond the wholc sentence.

72

tion estimating the cost until the end of the sentence must be available. 13 The
tree-trellis search algorithm uses an exact function that was pre-eomputed by a

modified Viterbi search.14 However, tbis only applies to the acoustics. A
search using a language model would still need an evaluation function for the
lan~age mode!.

3.5. Implementation considerations

3.5.1. Underflow problems

Looking at equation (2.7) for the forward trellis computation, we realize that
a, (i) decreases geometrically as lincreases. The same is true for the back­
ward trellis computation p, (i) as 1 decreases. For any practical speech appli­
cation, this will eventually create underflow problems, that is, trellis values
will become smaller than the smallest floating point value on the given com­
puter. This problem is usually solved either by scaling or by representing pro­
babilities by their logarithm.

3.5.1.1. Scaling

The scaling procedure [LEVI 83, RABI 89c] il! applied as follows. Column­
by-eolumn, the forward trellis is computed as described in (2.7). The result of.
this computation is denoted a, (i), with ëro(i) = OO(i). However, after compu­
tation of each column, a scaling factor c, for that column is computed as

(3.13)

where F is the final state. Then, each element of this column is divided by
the scaling factor. resuiting in

"Ir tho ostimalod oosl is always smal1er Ihan or oqual to Iho roal oOSl, then the A· search is ad­
missible.

"In thal caso. tho Vilorbi searoh is done rorward and the A' searoh is donc backward. The op-

73

_. a, (i)
0'1(1) =-- =

CI

which may be written in final form as

_ (') Cl'z (i)
0', 1 =, =

II Cj
j-O

a, (i)
F
L:: a, (i')

;'-0

Cl'z (i)
F
L:: 0'1 (i')

;'-0

(3.14)

(3.15)

where 0'1 (i) is the original unscaled trellis. The quaritity a, (i) can be inter­
preted as the a posteriori probability of heing in state i at time l, given the
observation sequence. This probability may be usefui in wordspotting applica­
tions [ROHL 89].

The same scaling is done with the backward trellis (3, (i), but !!lis time we use
the scaling coefficients';cl calculated in the forward trellis. Using a, (i) and
fi, (i) instead of a, (i) ad)P, (i) in (2.10), we obtain

where
ICI ca, (I,)q, fi, (r,),

Pel(t,ylm) = - -" C0'1_1(I,)q, b, Qj){3, (r,),

if t empty
if t full,

(3.16)

From (3.16) and (3.17), we can now compute Pe,l (t ,y Im)/PeCY lm) as

) posile is DIsa possible.

(3.17)

Pe.1 (t,y lm)

PeCY\m)

74

CI al (4)q, PI (r,)

aL.(F)

= al_l(I,)q, b, (YI)PI (r,)

aL.(F)

if t empty

if t full.

(3.18)

This scaling process should bring the probabilities of a given column to within
.the dynamic range of the computer. In practice, scalinè' ileed not be done at
every time instant (or for every column). Computing time can therefore be
savedby pcrforming scaling only when necessary, leaving the scaling coeffi­
cients for the unscaled columns to 1.0. Note, however, that since the back­
ward trellis uses the scaling coefficients from the forward trellis, it is possible
to have underf10w problems in the bac~acd trellis even if the forward trellis
isscaled properly. This means that scaling should be done more often than is
requircd by the forward trellis.

3.5.102. Logarithmic probabilities

In some cases, cspecially with continuous HMMs, the dynamic range of pro­
babilities Wthin a givcn treÜis column can exceed the range of floating point
numbersin a given computer. This means that there will be underf10w prob-

. lems, regardless of scaling. In that case, one solution [BROW 87] is to use
lcgarithmic probabilities throughout the trellis computations. One immediate
consequence is that multiplications become additions, which, if anything, is an
advantage. Handling additions is slightly more complicated. Let Pl and P2 be

probabilities, with Pl >P2 and let Il be the logarithm base. The problem of
computing logu (Pl+Pz) from 10guPl and loguP2 can be solved with the follow­
ing expression:

(3.19)

c
. Note that if loguP2 -loguPl goeo. below a certain value (whieh depends on the.,>_./

nl!mber of significant digits available); then ulos,pz - loS,PI becomes negligible

cOlnparcd to 1 and the expression becomcs simply logu (Pl+P2) ~ logupt.

7S

In practice, logarithms are usually expressed as integers, which allows ail com­
putations to be performed using integer arithmetic. Thus, if p is the integer
logarithmic representation of p, then

"'1,

(3.20)

, ,

where lxjmeans the greatest integer smaller t~an or equal to x. Since intcger

representation rounds the logarithm value to the nearest integer, an error of at
most 0.5 is introduced, which, if Il > 0, means a maximum relative error of
100(IlO.5 - 1) percent. In our experiments, we usually take Il = 1.001, which

. gives a maximum relative error of around 0.05%, or about 3.5 significant
digits. Also, we use integer values from -134217727 (our value for 10&,0, or
-00) to 0, which gives a dynamic range of over 58000 orders of magnitude.

Integer arithmeti,; also allows the computation of logu (1 + Illog. p , - log.p ') to

be implemented as a table look-up, using 10guPl -loguP2 as index. Thus, the
computation of logu (Pl+P2l from 10guPl and loguP2 can be implemented with
at most two comparisons, one integer subtraction, one table look-up and one
integer addition.

Logarithmic probabilities can offer a much increased dynamic range at the
cost of some lost precision; however, experience shows that with HMMs,
dynamic range is much more critical than precision. Moreover, for most
applications, the increased dynamic range completely eliminates the need for

scaling.15 Since most of our programs are much faster with logarithm probabil­
ities, we are now using them exclusively.

3.5.2.
:1)

In-place computation orthe trellises
,-:..,.. ,

!.

The term central to most HMM-relatedcomputations is Pe./(t,yrlm'r)' Il
appears in ail MLE reestimatioll formulas, in the probabilily derivativc

"Sâme applicntions, wh/ch require the trellis computations to be donc on very long inpul signais
may require scaliog ta be performcd Crom lime to lime eYen Wilh logarithmic probabilitics. For c:<am..
pIe. wordspolling systems oCten faU in that catcgory.

(

76

computations, and in all MMIE-related computations in Chapter 4. Recall
from Chapter 2 that Pe,l (t ,yr 1m r) is computed as

if t empty
if t full. (3.21)

(

(

Thus, in order to compute Pe,l(t,yr\mr), both the forward and backward
trellises are needed. This, however, may be a problem since the trellis
matrices are typically the largest data structures in an HMM-based system.
Suppose, for example, that the system can process a maximum of S seconds
of speech at a ,ti~e. At a frame period of 10 ms, this means a maximum of
SOO frames of speech. Suppose, furthermore, that the largest model in a task
has 200 st~tes. Then, a treHis for this system will have a maximum size of
2ooXSoo, or 100,000 elements. This means that if 4 bytes are used per trellis
element, then 400,000 bytes of memory will be required for each trellis.

Now, althoughin practice, the probabilities Pe,l (t,yr Imr) are usually needed
for all 1 and all t, their values can be computed in any desired order. This
allows computations to be carried out using a single trellis matrix M. In order
to see this, first remember that backward trellis elements {31 (i) are computed
recursively in decreasing order of column number 1 and, within one column,

in decreasing order of state number i .16 This is illustrated in Figure 3.6. The
idea is to first compute the forward trellis, storing al (i) in M[l,i], and then to
compute both the backward trellis and Pe,l(t,yrlmr) in the backward pass,
storing {31 (i) in M[l,i] in the process.

16Remember trom Cbapter 2 the assumption that Cor DOY empty transition t, wc must have 1, < r,

77

t
i o

o
o

,- '-'-.--' "--',-----,

Figure 3.6: Order of evaluation of backward trellis elements.

Suppose that somewhere in the recursion, the backward trellis element {J, (i) is
the next one to be computed. This méans that all matrix locations M[l' ,i']
'such that either 1'>1 or l'=l and i'>i, contain backward trellis elements and
all other locations (in particular, M[I,i]=O'1 (i» contain forward trellis ele­
ments. From (3.21), we see that all values of Pe.l(t,yrlmr) computed with
QI (i) can be computed at this time, after which {J, (i) can be computed anrlè.
stored in M[l,i], replacing QI (i) which will not be needed any more. Moving
to the next backward trellis element to evaluate, the process is repeated until
the last element is reached.

(

4. MAXIMUM MUTUAL INFORMATION

ESTIMATION OF HMM PARAMETERS

4.1. Introduction

In HMM-based speech recognition, the purpose of training is to find the
HMM parameter set 6 which will result in the decoder with the lowest possi­
ble recognition error rate. This is done by maximizing sorne objective func­
tion R(6).

There are two imp"rtant and ~difficult problems to consider. The first is to
determine a meaningful objective function. This function should be such that,
whenever R(è) > R(6), then è produces a better decoder than 6. Once a
rf~~~tion R(6) has been chosen, the se.'ond problem (the estimation proble~)
',is to find the parameter set 6 which maximizes it. These two problems are
"interrelated. An objective function is useless if it makes the estimation prob­
lem impossible. Aiso to be considered is the fact that a typical HMM param­
eter set usually has st.:veral thousands of parameters, which makes it very
unlikely that a globally dj)timal 6 will be found. This means that even with a
good function, it is possible to have poor results if the estimation procedure
converges to a bad local maximum.

By far the most common HMM parameter estimation technique is MLE which
we described in Chapter 2. Its most obvious quality is the existence of a rees­
timation formula t(·) such that, if è;= t(6), then we will have R(è) > R(6),
with equality only when 6 is a local maximum'tor, possibly, a saddle point) of
R (6). In practice, very few iterations are necessary to obtain the desired
results (usually under 5). ,The existence of this reestimation formula is the
main reason for the introduction of HMMs in speech recognition, and it is
also largely responsible. for their success and popularity. Recall from Chapter
2 that the objective function typically used in MLE is

,)
78

79

R(e) = II Pe(yrlmr) ,
r

(4.1)

where, as before, m r == m lD , is the model corresponding to the rth observa­

tion sequence :Ir. Thus, MLE tries to increase the a posteriori probability of
the training data, given the model corresponding to the data. The models not
corresponding tl) the data ar,.- never taken into account. It is not intuitively
obvious how (4:1) relates te, -.:, . objective of reducing the error rate. A tenta­
tive explanation was offere'.-y' Nâdas [NADA 83], who has shown that, if
certain assumptions are meÇ(4:1) will, in fact, produce the best decoder. As
mentioned earlier, these assumptions are, however, always violated in any
practical speech recognition application. :\

More recently, a different type of estimation, maximum mutual information
estimation (MMIE) has been proposed [BAHL 86]. The objective fuiîction
used in MMIE is

(4.2)

where we have assumed that the language model P(w) P(m ID) is available and
where :E means a sum over ail possible word sequences in the application.

ID

MMIE tries to increase the a posteriori probability of the model corresponding
to the training data, given the data. Since this is also the probability used in
MAP decoding, the relationship between MMIE and error rate is mu.:h more
intuitive than it is with MLE. Unfortunately, conlrary to MLE, there are no
known reestimation formulas with theoretically proven convergence, which
means that general purpose optimization techniques such as gradient descent
are usually used. This is a problem because convergence can be quite slow
and each iter~_t~.n of gradient descent is at least as expensive as a standard
Baum-Welch 'iteration.

There have:been attempts at empirically justifying the use of MMIE, usually
using very ~i'l1ple experiments where ail the parameters are known. Some of
them [BROW 87, NADA 88] demonstrate that, lor certain types of estimation

..

80

problems, MMIE will converge to the optimal decoder even if incorrect
modeling assumptions are made, while MLE will not. These experiments thus
tend to demonstrate that MMIE is more robust than MLE to incorrect model­
ing assumptions.Since most of HMMs' modeling assumptions about speech
are plainly wrong, this seems to be an argument in favor of MMIE. It is,
however, also possible to build simple experiments [GOPA 88] in which nei­
ther MMIE nor MLE will converge to the optimal decoder, but another type
of estimator will.

It is not at aU clear how the results of these simple experiments apply to prac-
o·, .•--::-::-----:_~-- . ,\/,

tical speech recognition problems. OpthîiiationaIgOrithms will not;'\in gen-
al h gl bal ' 1 Id • 1'.. b b,·1 Iler , converge to t e 0 optimum, an: ' ID any case, It IS pro a .y n!>t pos-

sible to realize an HMM,based optimal decoder for speech~!l~ogni~jon. \\Jxtihe
end, the most convincing justüications for MMIE are probabiy:goihg to come

".")1,

from experimental evidence. .,<i,

There have been a number of comparisons between MLE and MMIE over the
past few years. The IBM speech recognition group was the first to report
results with MMIE [BAHL 86]. In their case, MMIE allowed them to reduce
their error rate by 18% in a 200<l-word speaker-dependent isolated word recog­
nition system. Shortly thereafter, BrO'Nn [BROW 87] reported improvements
from using MMIE for isolated word recognition of the e-set; however, he
found that MMIE actually degraded results with discrete HMMs. He
explained this apparent contradiction by the fact that, since discrete distribu­
tions don't make uny assumptions, there is nothing to be gained from MMIE.

Merialdo [MERl 88] successfuUy applied MMIE to speaker-dependent
phoneme recognition in continuous speech, using discrete HMMs. He
accelerated gradient descent convergence by biasing the gradient expression in
order to reduce emphasis from the low-valued discrete probabilities. In addi­
tion, by also using for training the looped model used for recognition, he
avoided having to approximate the denominator of (4.2) by a small- number of.
terms, as is often done in practice [BAHL 86, BROW 87]. More recently,
Chow [CHOW 90] marginally improved the performance of BBN's BYBLOS
system on the DARPA resource management corpus by using MMIE to esti-
mate codebook exponents. ..

81

From this short history, it is not possible to draw definite conclusions regard­
ing the usefuiness of MMIE. This thesis will demonstrate that, in some situa­
tions, there can be reai benefits from MMIE. Before we do this, however,
this chapter will explain the MMIE theory and describe the estimation tech­
niques used in the experiments.

4.2. Basic concepts

Let W be a random variable designating the message (words, phonemes, etc.)
in some spoken speech and let Y be the random variable designating an obser~

vation sequence. Let ID and y be possible outcomes of W and Y, respec~

tively. Using a communications theory viewpoint [BAHL 83], we can say that
a message ID is encoded into y. A measure of the average amount of uncer­
tainty about W, given the knowledge of Y is H(W IY), the conditionai entropy
of W given Y, is defined as

H(W IY) = - ~ P(ID,y)log P(ID Iy) = - E[log P(ID Iy)] .
1D,y

(4.3)

In any speech application, the "true" P(w Iy) is unknown. In our case, we
approximate it by an HMM-based parametric distribution Pe(m.c Iy), where e
is the HMM parameter vector and m Ul is the model corresponding to w. We

.'::.----

have

Ha(W \Y) = - E[log Pe(mUlly)] = - ~ P(w,y)log Pe(m.c Iy)
1D,y

Pe(m.c Iy)
=- ~ P(w,y)log P() - ~ P(w,y)logP(wly)

.coY w,y .. oY

> - ~ P(w,y){Pa(m wJY) , 1}+H(W IY) =H(W IY) , (4.4)
.coY P(w,y)

where we used the fact that log x <x-l, with equality only when x=l. Thus,
in (4.4), we have equality only when Pe(m.cly) =P(wly). This means that

82

minimizing He(WIY) attempts to make Pe(mIDly) as similar as possible to
P(lo Iy). Since P(lo,y) is unknown, H e(W IY) can only be estimated. This is
done by replacing the expectation in (4.4) by the sample average

• 1 NIN
H e(W IY) = li ~ log Pe(m, \y') = li log fI Pe(m, \y') , (4.5)

r-l r-1

where m, == m lD , is the model corresponding to the rth sequence in the train­

.. ing set T = {(lO"y'),r=l, ... ,N} and N is the number of sequences in T.
" For historica! reason."_. estimation of HMM parameters aimed at minimizing

fI e(W IY) above is called maximum mutual information estimation (MMIE).
To explain. this, let us first define the average mutua! information I(W;Y)
between the words spoken, W, and the corresponding observation sequence,
Y, as

) () P(lO,y) P(lo Iy)
I(W;Y = I~ P lO,y log P(lO)PCy) = EP(lO,y)log P(lO)

=H(W) -H(WIY), (4.6)

where H(W) = ~ P(lO)logP(lO) is the entropy of W. Assuming that P(lO)
ID

(the language model) is known, replacing P(lO 130) by its HMM estimate, and
using sample averages instead of expectations, we obtain .~

• 1 N •
Ie(W;Y)=fj ~ 10gP(lO,)-He(WIY);

,-1
(4.7)

so that maximizing Î e(W ;Y) with respect to e is equivalent to minimizing
·fIe(W IY).

There is another interpretation of MMIE that is oCCered by (4.5). Assuming
that ail Pfiirs (lO,y)ET are independent, MMIE aims at maximizing the a pos­
teriori probability of the "good models", given their observation sequences.
This probability has to take ail models into accoQt, whlch makes MMIE
much moreco!oplex than MLE. To derive~' parametric expression for

83

Pe(m'D Iy), we can use the probabilities as defined in Chapter 2 to obtain

(4.8)

which, combined with (4.5), gives the objective function R(e) in (4.2).

It is important to realize here that, from the MMIE point of view, we are only
interested in Pe(m'D Iy), which, as exp~~ssed in (4.8), is real1y a parametrie
family of probability distributions, with parameter vector e. The functions
PeCY\m w) and P(w) are of interest only to the extent that they are used in
(4.8). In fact, they don't even have to be distributions. This is going to be
important later on when modifications are introduced to the expression used
to compute PeCY Im'D) which will result in it not retaining the properties o[a
distribution.

It has always been clear that, because o[the frame independence assumption
inherent to the HMM formulation, P,eCY Im'D) is a very bad approximation to
PCYlw). It is hoped that Pe(m'Dly) in (4.8) may, in [act, be a much beUer
approximation to P(w lm).

4.3. MMIE in practice

For several reasons, using MMIE is much harder than using MLE. Let R(e)
be the criterion to maximize in MMIE. Then, [rom (4.5) and (4.8), we have

(4.9)

tf'>
.~ 1--

One thing that makes MMIE harder is the sum over w in the denominalor
which can have a very large (but always finite, in practice) number of terms.

Let us define a model m gen such that PeCY Imgen) = ~ PeCY ImID)P(m,U)' It
ID

~h.

-_._,-;---~;.

-

84

is always theoretically possible to design such a model by having every possi­
ble model m in parallel, with an initial state from which an empty transition
goes to the first state of every model, and a final state to which an empty tran­
sition from the last state of every model goes. Setting the probability of the
empty transition from the initial state to every model m to P(m) results in the
desired mode!. Because of its sheer size, however, such a model will usually
be unwieldy to use in practice.

It may be possible to use graph reduction techniques which remove redundan­
cies to reduce the size of the model somewhat, although doing this without
modifying the language model probabilities will be very difficult. In some
applications (such as connected digit recognition) for which the language
model is secondary, it may be possible to create a very compact model mgen

in which there is a path corresponding to every path in every possible model
m in the application. One example is the looped model used for connected
digit recognitfun (see Figure 3.4). In general, if recognition is done by apply-·
ing a Viterbi search on sorne model m gen , then the same model could be used
for the denominator of (4.9); however, such a model could be much too big
for a practical implementation of MMIE training.

If it is not possible to build a satisfactory mgen of a reasonable size, then the
denominator of (4.9) will usually be approximated by using a much smaller
number of models [BAHL 86, BROW 87, CHOW 90]. In this case, the sum
should be taken over the most probable models, which can be determined
using a so-called "N-best" algorithm [SCHW 90, SOON 90].

Another reason why MMIE is harder is that there are no reestimation formu­
las of the type derived in Section 3 for MLE. This may impose the use of
general optimization techniques such as gradient descent, in which the gra­
dient is computcdas-

'.i

85

mog R(e)
=ao

r

~ 1 ape(yrlmr)
Pe(yrlmr) ao ~ P(m)Pe(yrl m)

m

(4.10)

where 0 is one of the parameters in e and the expressions for the partial
,~ derivatives can be obtained from Chapter 2. Using ms,n' (4.10) rcduces to

mog R(e)
=ao

1
1 ape(yrlmr)

~ Pe(yr\m r) ao

4.3.1. A reestimation formula for discrete HMMs

Traditionally, MMIE training hasc'been done using a gradient dcscent on
-logR(e), which, because of slow convergence, can be very timc-eonsuming.
Recently how.::ver, Oopalakrishnan et al. [OOFA 89] introduced the following
reestimation formula for rational objective functions (such as R(e» associated
with discrete HMMs:

(4.12)

\'.
ii .. ' _ ,-,

If <'~.~, "

, where thti sum is taken over'al!Jparameters belonging to the same distribution
~-:::-:;> ~ \' -::" \\ .-
r as 0 and D is 11 constant to be delermined. Using (4.11) and (2.51), we have,

for discrete output probabilities
,-.

:,: ~l

86

mog R(S) =.!.(_ gen)
88 8 c, Cf , (4.13)

where c, represents the standard MLE count for parameter 8 and c§tn is the
corresponding count obtained using the general moqel. That is, Ü 8 is the
parameter corresponding to p(k 1b), then

Let us define a quantity 1/Je,/ (tS') as

'/L (t ') = p e,/ (t,y' 1m,) _ Pe,/ (t ,y' 111.htn)
'l'e,/ ,y p. (.,'1) (.,' l') .ev m, Pev mg.,n

Then, from (4.12) and (4,13), we obtain

~ ~ ~ 1/Je,/ (t,,') +Dp(k lb)
p(k lb) = ' (tlb,mb) (lJyr-k)

~ ~ ~ ~ 1/Je,/(t,y') + D
k' ,(tlb,.) (/Iyr-k')

(4.14)

(4.15)

What needs to he determined is the value of D. Tt is clear from (4.16) that
thegreaier D, the less p(k lb) will differ from p(k lb); thus, for fast conver­
gence, D needs to be as small as possible. Gopalakrishnan et al. have shown
that there is a value D(S) such that, for any D > D(S), (4.16) is guaranteed
to converge, However, as we shall see, D(6) is usually so large that using
D > D(S) renders (4.16) practically useless, For smaller D, there is no
theoretically proven convergence; however, Gopalakrishnan et al. report that
using

87

·D = {_ 8l0g R(e) o}+
m:x â9 .' e, (4.17)

where e is a small positive constant, results in fast convergence. Even though
our experiments using (4.16) with (4.17) aIso consistently demonstrated con­
vergence, we generally found that convergence was too slow to be useful. Fol­
lowing an argum!;nt of MeriaIdo [MERl 88], we conjectured that by removing
emphasis from the 10w-vaIued parameters in the gradient vector, convergence
could be improved. MeriaIdo had found that when a parameter (J is very
small, the division by (J in (4.13) often causes the corresponding gradient coor­
dinate to have a large magnitude. The consequence is that senrch is often
concentrated on coordinates corresponding to very low-valued parameters, but
since those values are small, they are also unreliably estimated. Merialdo
argues that the search should put more emphasis on better estimated, Iiigh­
vaIued parameters.

In bis gradient descent based MMIE training experiments, Merialdo improved
convergence by replacing (4.13) by

8l0g R(e) ::::: -=c,.-'"o_
8(J ~ clY

lYeb(O)

(4.18)

1

where the notation ~ means a summation over nil parameters fl belonging
lYeb(O)

to the same distribution as (J. We observed similar improvement in our own
MMIE training experiments with gradient descent. We naturally thought that

-'::\ '.'

(4.18) could also improve convergence when (4.16) is used instead of gradient
descent. This proved to be indeed the case. Ali our experiments demonstrate

that convergence, indeed, is dramatically improved. 1 We experimented with
different variants of (4.18) based on the same idea and observed similar ~on­

vergence behavior. In ail cases,however, as R(6) gets near its optimum (1.0);
divergence is often observed. .

'Sec Ch'pter 5

')

4.3.2.

88

The Corrective MMIE training algorithm

The Corrective MMIE training algorithm, based on the above results, is initial­
ized with the HMMs obtained after a pre-determined number of MLE itera­
tions. Subsequently, each iteration is a two-step process. First, recognition is
performed on the training set and then reestimation is done using only those

"sentences that were incorrectly recognized. The set of incorrectly recognized)1

strings is called the reestimation set. The aim here is to correct as many errofs
as possible from the training set, hoping that this will improve results on the
test set.

\i.,
}

Nôte that for correctly recognized sentences, the two contributiolls to the
counts in (4.14) will be similar so that their effect will tend to cancel 6~t, leav­
ing most of the contribution with the incorrect ones. In practice, t!le results
obtained by training only on errors are similar to the ones obtained by training
on the full training set, but at a much lower computational cost. Reestimation
is done using (4.12), (4.17) and (4.18), and the HMM parameters obtained are
smoothed with the ones from the previous iteration using a weight that is
dependent on the number of errors in the training set.

4.3.3. Extension to Gaussian densities

The reestimation formula (4.12) only applies to discrete distributions.:! Il is
known [BROW 87], however, that MMIE can result in substantially improved
recognition results when continuous HMMs are used. It would thus be useful
to have an equivalent of (4.12) for continuous densities. This section exa[;J­
ines trus probJem for the case of diagonal covariance Gaussian densities.
These dcnsitics can appear by themselves; as part of a Gaussian miA1ure in
CDHMMs; or they can appear as the lied continuous densities in SCHMMs.
For this section, we consider the simplest case, that of a single diagonal Gaus­
sian distribution. Application of the results to more complex Gaussian-based
distributions is relatively straightforward.

:'This includcs traDsition probabilitics, as weil as the wcights uscd in mixture distributions.

4.3.3.1.

89

Looking for the fixed point

It is possible to gain insight into the reestimation problem by simply taking the
derivative log R(6) with respect to its parameters and setting them equal to
zero. Let J.I; and cr; be parameters of a diagonal Gaussian distribution b.
From (4.11), (2.55) and (2.56), we have

(

8l0g R(6) _ ~ ~ ~ .1._ (r) (YI,i - /li)a - LJ LJ LJ '1'6,/ t,y 2'
/-li r (1Ib,É) /-1 cr;

where yf.i is the ith parameter from the lth observation vector in yr.

the derivatives to zero and solving for /li and cr; 2, we obtain:

L,
~ ~ ~ '!/Je./ (t ,yr) yr,i
r (1Ib,ab) /-1

'p,p:, -...;...;.--'---,-----
l,IL L,.

li ~ ~ ~ '!/Je,/ (t ,yr)
;; r (1Ib,Bb) 1-1

ii
-:.'

'-~",- L., 2
~ - ~ ~ '!/Je,1 (t ,yr) (Yr,i - /li) ,

~ r (lib/ab) 1-1
cr; - = -...:....:.-'--'---...--------L,

~ ~ ~ '!/Je,l (t ,yr)
r (1Ib,Eb) 1-1

(4.19)

(4.20)

Setting

(4.21)

(4.22)

c

Since the unknowns appear on both sides of (4.21) and (4.22), these equations
don't offer a solution to the estimation problem. They are, however, interest­
ing because they suggest a recursion that could be used in the estimation pro­
cess. Unfortunately, not only is there no proof of convergence, but, since
'!/Je./ (t ,yr) can be negative, there is not even a guarantee that the variance esti­
mate is positive.

! :

4.3.3.2.

90

A heuristic reestimation formula

A Gaussian density can be approximated with arbitrary precision by a discrete
distribution. Let bj = N(y ,CTi ,/-li) be the ith one-<limensional Gaussian density
in the diagonal Gaussian density b. Partition the real axis (domain of the den­
sity) into three non-overlapping intervals Il = (--00, /-li -lICTj),
12 = [/-li -lICTi , /-li +lICTi] and 13 = (/-li +/IOj ,+00). Choose 1/ such that alI points
{Y[,dr=l, ... , N,l-l, ... , L r } in the training data falI in the second inter­
val 12, This is always possible since the training data is available and the
range of Y[,j is finite. cNow, let us partition 12 into M non-overlapping sub­
intervals 12k.' k=l, ... ,M of width /)" = 2wJM. This construction is iIIus­
trated in Figure 4.1.

Il
Il
12

Il +va
13

o

Figure 4.1: Construction described in the text.

Given a continuous random variable Yi, we can define a discrete distribution
by the M probabilities Qi (k) = P(Yj E 12k.) and we can set these probabilities

to

91

where Yk is the mid-point of the interval 12Jc. Each of these probabilities
corresponds to the surface of the corresponding bin in Figure 4.1. It is easy
to see that for any y El2Jc' lim y =Yk and

.0.-+0

(4.22)

(4.23)

(

which means that for any k and any y El2Jc' we can find Il and 1/ such that
ai (k)/Il approximates hi (y) = N(y ,U; ,/li) with any desired precision. Let the
parlitions be the same for aIl densities and let k (y) be a scalar quantizer map­
ping yto its partition, that is, if yEl2j, then k(y)=i. If, in Pe(y'lm) and
Pe,l (t ,y' lm), we replace Gaussian densities N(y ,u; ,/li) by ai (k(y», we get
Pe.(y'lm) and Pe••I(t,y'lm), where ed is the parameter vector of a discrete

HMM. Observe that

Pe, l(t,y'lm)Hm .,
à_a Pe (y'lm)
v~oo il

ilL,Pe,l (t ,yr lm)
=

é'Pe(Y'lm)

Pe,l (t,y' lm)
-

Pe(y'lm)
(4.24)

Pe(Y'lmlD)P(m lD)
-
~ PeCY' ImlD,)P(m lD .) .
ID'

(4.25)

This means that, in the limit, the MLE counts for the discrete HMMs are the
same as the counts for the continuous ones Rnd that R(ed) = R(e).

Using these observations, we can make a heuristic extension of (4.12) to the
case of diagonal Gaussian densities. The idea is that, with(4.12), we can use
MMIE to obtain new discrete probability estimates âi (k), from which we can
get an estimate of the new mean and variance as

(4.26)

92

Since it will usually not be the case that âi (k) oc N(jk ,Ôj ,Pi) for any Ôj and
Pi, it is difficult to determine exactly what (4.26) computes. In fact, what we
have is a discrete distribution obtained with MMIE, from which the parame­
ters of a Gaussian density are computed using MLE. Nothing guarantees that
this will in fact increase the MMIE function R(a). Nonetheless, it could lead
to a useful expression. Observe that

o

Using this with (4.16) and the fact that lim y[i =Yk' (4.26) gives
60 '

L,
~ ~ ~ 1/Je./ (t ,yr) Y[,i +DJli
r (tlb,Bb) /-1

{.Li = -..;..;.,.'--'----.-----­L,
I: I: I: 1/Je./ (t Sr) + D
r (t Ib, ..b) /-1 .

and

(4.27)

(4.28)

(4.29)

(4.30)

o

1;
Several observations can be made here. First note that the reestimation for-
mulas do not depend on the actual value of t::.. used in the approximation.
Note also that the variance estimate is not guaranteed to be positive so D

must be at least as large as the minimum value that guarantees a positive esti­
mate.

In our experiments, we start from the value for D that guarantees a positive

(

93

denominator and we repeatedly double its value until ail estimates (4.30) are
positive. The value we use is twice this last value. We observed fast conver­
gence in ail our experiments with (4.29) and (4.30).

4.3.3.3. Revisiting the reestimation formula

(..

r:..:.,-!-.

Even though (4.29) and (4.30) experimentally exhibit good convergence pro­
perties, the heuristic derivation used in the last section is not really satisfying.
This section proposes a new derivation for Gopalakrishnan's formula (4.12),
which will allow a formal extension to the continuous case.

For this section, new definitions are needed. We use t to designate any
sequence of transition components, regardless of whether or not the sequence
could have been generated by any model in the application. For example, if
there are a total of N transitions components in the application's parameter
vector, then there are NL such sequences of length L. We say that a
sequence t is a possible sequence if it could have been generated by one of the
models in the application. Otherwise it is called an impossible sequence.

We must also introduce the concept of a discrete distribution component,

which refers to one of the elements of one of the discrete distributions in the
application. If K is the size of the discrete alphabet, then a discrete distribu­
tion has K such componenis, each of which is associated with a different
alphabet symboJ. Each component a belongs to one and only one discrete
distribution b, which we express as aEb. We use b(a) to the designate the
distribution to which a belongs and k(a) to designate the alphabet symbol k
associated with a. If there are B output distributions in the applications using
a size-K alphabet, then there are BK distribution components corresponding
to that alphabet. The probability associated to a is Pa = p(k(a)lb(a». For
any distribution b, component probabilities must respect the constraint
~ Pa = 1. We use a to designate any sequence of distribution components.
aeb

To any sequence a correspond not only a unique sequence of distributions,
but also a unique observation sequence 'Y. Again, we can distinguish between
possible and impossible sequences.

94

Finally, let:

L, be the length of y' (and aIso the minimum length of any transition
sequence having generated y')

L,max be the maximum length of any possible transition sequence having gen­
eratedy'

t' be any transition sequence corresponding to y', possible or impossible.
Note that petr lm) will be zero if t' is not a possible transition
sequence in m.

L t' be the length of t', a transition sequence having generated y'. In what
follows, we assume that L, < L t , < L,max.

a' be any sequence of discrete distribution components corresponding to
y' (This correspondence only affects the length of the sequence. Only
one such sequence is a possible sequence)

QI be the lth element of a

Let us assume that there are N repetitions, that is, r can take values from 1 to
N. We want to maximize

(4.31)

(4.32)

WÎth respect to the parameters of ê. Il is relatively casy to see that this is
equivalent to maximizing

N , N PeCY'lm,)
F(ê,6) = II PëCY lm,) - II P CY'I /ëCY'lmcen).,-1 ,-1 e mcen

This is a very complex expression. In order to be able to work with it, we will
have to express it differently. First, observe that since discretej~~tributions

are normalized to unity, both L; q, = L; tj T and L; Pa = L; l'a are constant

o expressions; this means that
T T

,'''"

a a

c
9S

is also a constant. Maximizing an expression with a constant added to it is the
same as maximizing the expression itself. Hence, maximizing (4.32) is the
same as maximizing ,.

(4.33)='"

where D is a constant to be specified later. Now, note that A can be rewrit­
ten as

A= (4.34)

where the notation ~ means a sum over all possible combinations of
t' ... t N

{t l ... tN}. Let us define 6(t,a Im,y) to be l if t and a are possible given .
both model m and output sequence 'Y, anu.O otherwise. Then, using (2.4), we
have .-:::.--r: \~';':::7":/i/

{
..

N N L, L,
II Pe(yrlmr) = II ~ ~ t5(tr,arlmr,yr) II q" II P(Y[lb,.>}
,-1 r-1 t r a" i-l 1-1 '

N L,,,, L,.
= ~ ... ~ ~ ... ~ II t5(tr,arlm r,yr) II q" II pMlb,~)

t' t N a' aN r_1 1-1 /-1 '

N L~ 4
= ~ ~ II t5(tr,arlm r,yr) II q" II p(yflb,,). (4.35)

t
'

• •• t N a'· .. aN r-I 1-1 /-1 .,'

This means that, using (4.34), (4.33) can·be written

96

F'(è,a) = I: I:
t l • •• t N al • •• aN

I
N IV Pe(y'lm,) 1N L,_ L~
Il 6(t',a'lm"y') - Il P ("'1)6(t',a'lmgen ,y') +D Il n4,(Il Par'
,-1 ,-1 ev m gen "-1 ,-1 1-1

(4.36)

o

o

where, in order to lighteu the notation, we used t r' = t 1 ••• t N and
ar' =a1 • •• aN, and where

1 · I~..... N N Pe(y'lm,) L,_' L~

.
Il 6.(t',a' Im"y') - Il P (,,"1) 6(t',a' Imgen ,y') +D. .". JI 4,(Il Par·
'-1 ,-1 e J mg~n , ,< _.:-J-l 1-1

(4.37)

Note that

N
F'(a,a} = I: I: Il F'(r',tr',ar',a,a) = DA . (4.38)

,1 ••. tN al ••• ON r'..1

N
If we choose D> II Pe(Y'lm,)/Pa(Y'lmgen), then F'(r,tt',at',è,a) is

,-1
always positive and maximizing F'(è,a) becomes equivalent to maximizing:

1
F'(è,a) _ .~ ~ IlN F'(r',tr',ar',a,a) F'(r',t~,ar',è,a)

og F'(a a) -log LJ LJ '(a a) N N
, t'· .. t N a'· •• aN ,'-1 F, F'.~:'.!l ,al ,a,a)

97

(
F'(r',tf,af,e,e») !N F,(r',tf,af,è,e») (4.39)
. F'(e,e) log El F'(r',tf,af,e,e)
"

't~'

,;

Using the faet that

N F'(r',tf,af,è,e) N L~ PaF N L,~ 4,(.
log II "N N = ~ ~log - + ~ ~log - ,

r'-l F (r ,t1 ,al ,e,e) "-1/'-1 Pa(. "-1 j'_l q,(.'

equation (4.39) beeomes

1 F'(è,e) >" "
og F'(e e) - LJ LJ

, t 1 ···tN a 1 ···aN

1
N L~ Pa(. N L ... ' 4,(.]
~ ~ log - + ~ ~ log -

r'-U'-l Pa(. r'-l j'-l q,f'

1 L,. L. 1N L~ Paf' N L,~ 4,(.]
+ ~ ~ - II q,r II Par ~ ~ log - + ~ ~ log - .

t l • •• tN 0 1 ••• ON A ;-1 1-1 r'-l 1'_1 Pa(. r'-l j'-l q,(.

(4.40)

Equation (4.40) is a three-part sum, in whieh every part is divided into a sum
over distribution eomponents and a sum over transition probabilities. Distri­
bution eomponents and transition probabilities can be optimized separately.
We will only eonsider distribution eomponents. First, let us look at the first
part of (4.40), Wc have

98

"1 Pa ~ ~" " rrN e5(t',a'lm"y') Lrr,· rrL.
~~ ~~ ~~, D'A ~ ~
a Pa ,'-11'-1 t'··· tH (a'··· oHlaf'_a) '-1 ... ;-1 1-1

Pa N 1 Pe,l' (t,y" 'm,,)
= L; log - L; L; L;-

a Pa ,'-1 (l'Iyf'-k(a» (tlaeb,) DA PeCY'ïmr')

Nrr PeCY' lm,) .
'-1

(4.41)

o

The development for the second part of (4.40) is similar and left to the
interested reader. Now, for the third part, observe that, in the case of distri­
bution components we have

1 N L~ N L" L. Pa
= A 2:: 2:: 2:: 2:: 2:: rr rr qtr rr Par log -

,'-11'-1 a t ' ··· tH (a" •• oHlaf'_a) ,-1 ;-1 1-1 Pa

1 N L~ N L" N L. Pa
= A 2:: 2:: 2:: 2:: 2:: rr rr qtr II rr Par log -

,'-11'-1 a t'··· tH (a" •• oHla(._a) ,-1 i-l ,-11-1 Pa

o

N Pa Pa= L; L" 2:: -:-'''-- log - .
,'-1 a 2:: Pa' Pa

a'

This means that for discrete output probabilities, we want to have
'"

2:: log ~j f 2:: 2:: jPe,I'(t~''1mr') fi Pe(y'lm,)
a Pa ,'-1 (l'Iy,.'-k(a» (tlaeb,) PeCY lm,,) ,-1

Pe,,.{t,yr'lmctn } N PeCY' lm,} , 1
P f ••" ,) rr P f"'1)Pe(y Imgtn)ev mctn ,-1 ev m ctn

(4.42)

99

N pa)+ DA ~ L,. '" > 0 .
r'.1 ~Pa'

a'

(4.43)

• N .__
Then, dividing everywhere by the constant il Pe(Y' 1m,), and dé.iiùng a new

,-1
constant D'as ,",

N
DA~ L"

,'-1D' = ""7"""-~""-''-----

(~Pa') TI Pe(y'lm,) ,
a' r-l

(4.43) reduces to

. Pa {N }
~ log - ~ ~ ~ ?/Je,1 (t ,y') + D'pa
a Pa ,-1 (t/aEb,) (/Iy[-k(a»

Pa --{N }= ~ L: log - ~ ~ ~ ?/Je,1 (t ,y') + D'pa > 0 .
b aEb Pa '-1 (tlb,"') (/Iy[-k(a»

(4.44)

(4.46)

Using the notation from Chapter 2 for discrete probabiIities, (4.46) can be
expressed as

~~logP«~II:» {~~ ~ 1/Ie,/(t'Y')+D'p(k lb)}>O (4.47)
b k P ,-1 (tlb,"') (/Iy[-k)

Using the constrained optimizati(ll technique used for the MLE case, we find
the following reestimation formula:

(}

N
~ ~ ~ ?/Je,1 (t ,y') + D'p(klb)

p(k lb) = ,-1 (tlb,.b) (/Iy[-k) ,

{
N }~ ~ ~ ~ 1/Ie,1 (t ,y') + D'

k' r-1 (tlb,.,,) (/Iy[-k')

(4.48)

100

which is the Gopalakrishnan reestimation formula. Now, suppose as before
that p(k Ib)ill = N(jkoUb ,/lb), that is, p(klb)/a is an approximation to a
Gaussian density; Then we know that as a - 0 alld v - 00, the discrete
counts in (4.47) bec'ome equal to the continuous ones. Suppose further that
we also want p(k lb)/a = N(jk ,Ô"b ,Îlb)' As before, Yk is the mid-point in the
kth interval. Using (4.47), we must maximize

F(t. •) li ~ [1' (jk -Ad]f'b 'Ub ,/lb ,<Tb = m LJ - og Ub - • 2
<l-o k 2Ub
&1-+00

{f: 2; 2; 1/Je,I(t,yr) +D]J(klb)}
r-1 (tlb,mb) (1IY[Ek)

(4.49)

with respect to Ab and Ô"b' Taking the derivatives with respect to Îlb and Ô"b

and setting them equal to zero, we have

8F(Ab ,Ô"b ,/lb ,Ub)

8Îlb

{
N } (jk-Ab)

= Hm 2; 2; 2; 2; 1/>e,1 (t ,yr) +D'p(k lb) • 2
~~ k r-1 (tlb,,,,b) (1IY[Ek) Ub

(4.50)

o

8F(Ab ,Ô"b ,/lb ,CTb)

8Ô"b

{
N } [1 (jk -Ab)2]= Hm 2; 2; 2; 2; 1/>e.1 (t ,yr) + D'p(k 1b) --.+ . 3

<l O k r-1 (t1b,mb) (1IY[Ek) .' CTb CTb
v oo

101

(

c

Solving the above equations leads to

L,
~ ~ ~ !/Je.1 (t ,yr) y[+ D'J.lb
r (1Ib,ab) 1-1

{tb = -~..:........:......---;-------:­L,
~ ~ ~ "pe.1 (t ,yr) + D'
r (1 lb,sb) 1-1

which is what we had obtained with the heuristic development.

(4.51)

(4.52)

(4.53)

4.3.3.4. On the value of D

Little has been said so far about the constant D' used in the derived reestima­
tion formulas. As we mentioned, for the previous development to be valid,

N
wc must have D > Il Pe(yrlmr)/Pe(yrlmgtn). It is, however, clear from

r-1
(4.44) that this makes D' an extremely large number. This, in lurn, means
that using (4i~8) within its theoretically proven convergence region will make it
practically useless. Moreover, in the development for Gaussian parameters,
as ~-O, D'-oo, which, in effect, means that convergence is only proven for
infinitesimal steps. Thus, the reestimation formulas are in fact very similar to
gradients.

102

Nonetheless, even if we cannot theoretically say anything about (4.48), (4.52)
and (4.53) when D' is smaIl, these formulas may have great practical value. It
turns out that indeed they do. AIl our experiments using a biased gradient in
(4.48) resulted in very fast convergence. SimiIarly, (4.52) and (4.53) have con­
sistently exhibited good convergence in practice.

4.4. MMIE refinements

In order to make Pe(mwly) a better model of P(wly) and thus, hopefuIly,
improve recognition, it is possible to introduce refinements into (4.8). The
most obvious refinements are those aimed at reducing the effcct of sorne of
the known deficiencies of HMMs such as the diverse independence assump­
tions (frame independence, codebook independence, etc.). Modifications
introduced into the terms used in the computation of PeCY lm) willleave (4.8)
a probability distribution.

4.4.1. Global codebook exponents

One of the simplest possible refinements appears in HMMs using multiple
codebook output distributions. In those distributions, it is assumed that the
parameter sets quantized by each codebook are independent of one another
and their probabilities are simply multiplied. This assumption is usually neces­
sary in order to have a tractable number of parameters to estimate. There are
two important deficiencies with output distributions of this type. First, the
parameter sets are usuaIly not independent (though they may be relatively
uncorrelated) and second, they may not carry the same amount of information
about the speechl~eing modeled and so, may not have the samc importance
for recognition.

Apart from modeling the joint distribution, which is not praclical, not much
can be done about the first problcm. The second problem, however, can be
tackled by weighting the contribution of each parameter set using codebook

(

103

exponents,3 as fol1ows:

NC ~
bCl) = II [Pc~ lb)] < ,

c-l
(4.54)

c

where Pc ~) is the distribution associated with the eth codebook and Àe is
the corresponding codebook exponent. There is an additional advantage to
(4.54). It has generally been found that transition probabilities have negligible
effect on the overal1 recognition process. Because of that, some systems sim­
ply don't use them at alI. The main reason, however, why their effect is negli­
gible is that the dynamic range of transition probabilities is very small com-

pared to that of output probabilities.4 Moreover, as output distributions
become more complex (in number of codebooks, number of parameters, etc),
this difference in dynamic ranges increases. The Àes in (4.54) can optimize
the dynamic ranges difference in order to improve the mode!.

Since we don't know of any reestimation formula for the exponents, gradient
descent will be used to estimate them. Let us derive the derivative expres­
sions for the two following cases:

1) Discrete with multiple codebooks:

~,­

'1

i'Ji
1

NC ~
bCl) = II [PeCYe lb)] < •

e-l

Using (2.49), we obtain

(4.55)

'The tcrm "codebooklt is sometimes uscd to designnte the parameter set quantized by a given
codebook. In lhal conlexl, "codebook exponenl" mea.. lhallhe exponenl is applied ta lhe probabili-
ty of the parameter sel corresponding la a given codebook. "

\ ~'

'This is similar la lh. mismJlJ':h belw••n acouslic probabililies ù"d laaguag. model probabililies,
which requires lhal th. languag.mod.l conlribulioa la lh. log lik.lihol'd b. mullipli.d by a cerlain fac­
lor. This factor is usually del.rmin.d empirically. MMIE is again al.~ood fram.work for delermining
lhal faclor aUlomalically. JI

104

(4.56)

where naturallogarithms are assumed.

2) Multiple codebooks semi-continuous:

We now have

(4.58)

where the '"(b,c (k 11I,c) is the same as in (2.60), and

Let œ be a parameter of Pc Qj ,c 1k), then

(4.60)

lOS

(
(4.61)

4.4.2. Frame-dependent weighting

c

One of the weaknesses of HMMs as speech models is the fact that all speech
frames have the same weight in the computation of Pecyr 1m r). This clearly
cannot be correct; we know. intuitively that linguistic information is not uni­
formly distributed across the speech signal. For example, there is much
redundancy in long vowel sounds and each frame from that vowel probably
cames less information than frames from, say, a plosive. In order to deter­
mine how much new information lJ carries, however, previous observations
have to be taken into account.

Suppose we have a labeler ~) which classifies a speech frame into a n~mber

of categories, according to some criteria. This labeler could, for cxample, be
based on prosodie information. In particular, information about stress might
especially useful. Indeed, it has been found [ZUE 85] that, in addition to
being more robust, acoustic observations around stressed syllables contain
more information about the words spoken than those around unstressed syll­
ables.

We can use that labeler to weigh the contribution of each speech frame lJ in
the computation of Pecyrlmr) according to the category 11:61) to which it was
assigned. This could be done by expressing output distributions as

(4.62)

c

where b61) is any standard output distribution and >'(11:61)) is the weight
applied to b61). If >'(11:61)) > 0, it is easy to see that the larger >'(11:61)) is,
the !arger the contribution of lJ to the final value of log Pecyr 1m r) will be.
As an extreme case, if >'(11:61)) = 0, then lJ will not have any effect on
log Pe(yr lmr). From the communication theory viewpoint, the interpretation
would be that lJ should not be considered for speech recognition. This, for

106

example could happen if lJ doesn't carry any useful information about w that
is not already in the other observations.

MMIE can be used to leam À(It), where It is one of the frame categories. The
labeler itself, however, has to be determined a priori. MMIE will only be use­
fuI if the category' k0!J) of lJ can somehow be correlated with the "usefulness"
of lJ for speech recognition purposes. We assume that a good labeler is avail­
able and find the derivative expressions (using 2.49) with respect to À(k), the
weight of frame category k, to be

and the derivative with respect to a, a parameter of bCJ:J), to be

o 8Pe(yrlmr)

a
L, À(ItCJ:J» 8b0!J)

L; L; bl".) Pe,l(t,yrlmr) 8a
(, Ib,aeb) 1-1 'l:J

(4.64)

As a generalization of both codebook exponents and frame-dependent wcight­
ing, we can use an output distribution of the form

(4.65)

where IttCJ:J) is the frame labeler used to determine the frame-dcpendcnt codc­
book exponents and ~CJ:J) is the labeler used to detcrminc the frame­
dependent distribution exponent. The derivatives becomc

8Pe(yrl mr)
L; L; À(~0!J» Pe,I(t,yrlmr) 10gPc{J:J,c lb,), (4.66)

8Àc (k 1)
-

, (II~I~)-k,)

0
8Pe(yrl mr) 1

Pe,l (t ,yr Im r) log b, {J:J) , (4.67)
8À(k 2)

= À(k) L; L;
2 , (l1~:~)-k,)

(

107

and let a be a parameter of Pc~ 1b). Then

o
5. CONNECTED DIGIT RECOGNITION

EXPERIMENTS

S.1. The TI/NIST connected digit task

S.1.1. Database description

o

o

The connected digit recognition experiments were performed using the adult
speaker portion of the TIINIST connected digit database [LEON 84]. This
large database contains speech from a total .of 326 speakers (111 men, 114
women and 101 children), coming from 21 geographical regions of the con­
tinental United States (approximately 5 men, 5 women and 5 children per
region). The database vocabulary is made of the digits '1' to '9', plus 'oh' and
'zero', for a total of 11 words. Each speaker in the database provided two
repetitions of each digit in isolation and 55 digit strings, evenly distributed into
lengths 2, 3, 4, 5 and 7. This makes a total of 77 digit strings, or 253 digits
per speaker. Each string is stored in a separate signal file, with sorne silence
(or background noise) preceding and following _the speech I:.ignal. Approxi­
mately half the speakers have been assigned to:Üle training set, the remaining
half being the testing set. Ir

This is a clean database in the sense that it has high quality sound and high
signal to noise ratio (SNR). It was originally sampled at 20 kHz using a 16 bit
A/D and a 10 kHz antialiasing filter. It has subsequently been downsampled
by NIST to 10 kHz, the version we use.

Following the lead of other researchers [BOCe 86, BUSH 87, DODD 89,
RABI 89a, RABI 89b], we only use the adult portion of the database. This
reduces it to 225 speakers (111 men and 114 women), 112 of which (55 men,

- 57 women).are used for training and 113 (56 men, 57 women) for testing: This
is the stal!Ciard set used by most researchers, which makes result comparisons

108

c
109

relatively meaningfuI. Out of a total of 17 325 signal files (there is one digit
string per signal file) in the database, 20 contained errors and could not be
used. Of these, 8 were in the training set and 12 in the testing set. As a
resuIt, our training set contained 8616 digit strings (28 302 digits) and our test­
ing set contained 8689 digit strings (28 543 digits).

There are usually two types of recognition experiments performed with the
TIINIST connected digit database. In the first type, known-length recogni­
tion, the number of digits in each digit string is assumed to be known a priori.
In this case, the number of errors is computed by comparing in sequence the
digits in the true and the recognized strings and counting the number of
mismatches. Thus, all recognition errors are assumed to be substitution
errors. In the second, more difficuit type, unknown-length recognition, the
string length is assumed unknown. This means that the true and the recog­
nized strings do not necessarily contain the same number of digits. The
number of errors is computed by first doing an optimal dynamic programming
based alignment between the true and the recognized strings [pICO 86]. This
alignment produces three types of errors: insertions, deletions and substitu­
tions. In both cases, resuits are usually reported in terms of word and string

error rates (or recognition rates).l

In this work, only unknown length recognition experiments were performed.
The word error rate was computed using

d t insertions + deletions + substitutionswor error ra e = X 100% ,
total number of words

and the string error rate is simply

t . t number of strings with one or more errorss rmg error ra e = .
total number of stnngs X 100% .

~ 'Note Ih.t our scoring .Igorilbm w.s comp.red ta Iho NIST scoring .Igorithm, .nd Ihe)' wero
round la givn idenlic.1 resulls. .

• 5.1.2. Previous results

110

o

o

Digits - telephone numbers, prices, seriaI numbers, code numbers, etc. ­
are an inherent part of our everyday life. The number of potentiaI applica­
tions to digit recognition is aImost limitless. It is not surprising, then, that the
problem of digit recognition has enjoyed a large popularity within the speech
recognition community. This is especially true since, th:mks to the wide avai­
lability of the large TIINIST connected digit database, it is possible to com­
pare the recognition rates obtained at different sites.

Results on the TIINIST database have been reported in the literature ever
since its cn:ation. In 1985, Kopec and Bush [KOPE 85] reported a 2% error
rate using only the isolated digits in the adult portion of the database. In
1986, Bush and Kopec [BUSH 86] reported results of connccted digit recogni­
tion experiments using about half of the adult portion of the database.
Separating maIe and femaIe talkers, they achieved 3.5% and 2.2% string error
rate for unknown length and known length recognition, respectively.

The next year, the sàme authors reported results obtained using the entire
adult portion of the database. Using separate models for male and female
taIkers, they achieved a 4% string error rate (around 1.5% word error rate).

In 1988, Rabiner et al. reported a 2.94% string error rate on the same task.
This result was obtained using 4 models per digit and Gaussian mixture distri­
butions. The next year, they improved their performance to 2.84% string
error rate by experimentingwith different clustering procedures.

The best results reported so far in the literature are probably those of George
Doddington [DODD 89]. He obtained a 1.5% string (0.5% word) crror rate
using phonetically sensitive discriminants. . His system uses an 18-element
feature vector obtained from a 32-element feature vector via principal com-'
ponent analysis. He uses separate maIe and female models in which each
state corresponds, on average, to one frame of speech. For each state, a
linear discriminant transformation matrix is computed using "in-elass data"
and "confusion data". The resuIting complexity is about equivalent to a singlc
full covariance density per state.

c
111

5.2. Baseline system

5.2.1. Signal processing

The speech in our version of the TIlNIST connected digit database was sam­
pied at 10 kHz. This speech signal s(n) is first pre-emphasized using the
düference equation s(n) = s(n) - 0.9Ss(n-l). The effect of pre-emphasis is
to spectrally flatten the signal. The pre-emphasized signal is then blocked into
256-point frames, with 100 points separating the beginning of two consecutive
frames. The frame rate is thus 100 frames per second. No endpoint detection
is performed.

Each frame is analyzed with a 2S6-point FFr, using a Hamming window. A
bank of 20 mel-scaled, triangular band-pass fiiters is applied tothe FFr spec­
trum [DAVI 80] and the logarithm of the energy in each band is computed.
Then, cepstral coefficients C; are extracted by applying a cosine transform to
the 20 log-energies, using theequation

(5.1)

where Xk is the log-energy in the kth band. It was found [HUNT 89] that this
cepstral transformation is close to a principal component analysis and that the
resulting cepstral coefficients are nearly uncorrelated, with most of the useful
information in the f11"st coefficients. In our system, only the 6 cepstral coeffi­
cients C1 t!:'.rôt~~ C6 are used. The coefficient Co, the total log-energy across
the channels, is not used. Instead, we use a different parameter E, which we
compute directiy from the signal points s(n) in a frame (after both pre­
emphnsis and windowing) using

[
1 N-l]

E = 10 10glO N ~ [w(n)s(n)f ,
n-O

(5.2)

'-' where. N is the frame size (256 in our case), w(n) is the Hamming window,
and s(O) is the first point in the frame.

112

For each of these 7 "static" parameters, a corresponding "dynamic" parame­
ter is computed. The dynamic parameter is used to describe how the static
parameter changes over time. It is defined as the slope of the linear regres­
sion of the static parameter, computed over a 5-frame window centered on the
current frame as

2
t1P(1) = 0.1 L; kP(l +k) ,

k--2
(5.3)

where P(l) is any of the static parameters at f~:ime l, and AP(I) i~. the
corresponding dynamic parameter. Thus, in t01;11;>14 parameters are extnièted
from each frame. . ~

5.2.2. Vector quantization

o Three VQ codebooks [LEEK 88] are created from the entire training set
(1509735 frames), using the binary-split VQ training algorithm [RABI 83a,
GRAY 84] with' a Euclidean distortion measure. The first codebook, of size
128, is used for the 6 cepstral coefficients Cl through C6' The second, also of
size 128, is used for the 6 cepstral slopes AC1 through AC6' The third, of
size 32, is used for both the log-energy E and its slope AB.

The VQ codebooks thus created have two düferent purposes. In the baseline
system, they are used to quantize the 14-dimensional continuous parameter
vectors into 3-dimensional discrete vectors. For semi-continuous HMMs, the
codebooks are used to compute an initial estimate for the mean and variance
vectors of the tied mixtures.

5.2.3. HMMs

o
The baseline system is a standard discrete HMM system with one model per
digit. The output distributions used are of the discrete ",it" multiple code­
books type (see (2.12», where in our case the number of codebooks is 3.

(

(j:

113

The word models are built from a set of sub-word units, using the following
lexicon:

1 w-ax n-tail
2 t uw
3 th r-lv
4 f ow-r
S f av vS
6 s ih-k pau k-s
7 s eh v7 al(n-tail
8 ey pau t8
9 n-head av n-tail

oh ow
zero zz Iv-r-ow

Table 5.1: Digit lexicon

There are a total of 24 unit models, including the pause model (pau) and the
silence model (sil). For sub-word units, the HMM structure has been chosen
to allow precise temporal modeling of acoustic events. The basic HMM build­
ing blocks are the dura/ion block (Figure 5.1) and the head/tail block (Figure
5.2). All transitions in any of these blocks share the same output distribution.
Each subword unit model is built from the concatenation of one head block, a
unit-dependent number of duration blocks (none, in some cases), and, if dura­
tion blocks are used, a tail block. This is shown in Table 5.2.

model head duration tail model head duration tail
w-ax 1 6 1 n·tail 1 3 1

t 1 3 1 uw 1 8 1
th 1 2 1 r-Iv 1 S 1
f 1 2 1 ow-r 1 11 1

av 1 8 1 v-S 1
s 1 3 1 Ih-k 1 3 1

k-s 1 3 2 eh 1 4 1
ax 1 1 1 v-7 1
ev 1 7 1 t-8 1

n-head 1 2 1 ow 1 8 1
z 1 2 1 Iv-r-ow 1 ~, 10 1

</

, Table 5.2: Structure of unit mod~ls

The number of duration blocks in each unit is a function of the average time
duration of each unit. Note that duration blocks without a self-loop could

li
Il

o

114

have been used; however, we did not want to constrain the duration of an
acoustic event to a given maximum (determined from the training set).

Silence and pause models, intended to model near-stationary processes that
can, in principle be of any length, have a simpler structure (Figure 5.3). In
fact, in this case, a 2-state model such as the head/tail block wouId have done
just as weil.

Figure 5.1: Duralion block

This unit set is somewhat arbitrary and obviously task-specific. It was origi­
nally chosen because speech data from 13 speakers in the training set had pre­
viously been manually segmented according to these units. The set of manu­
al1y segmented speech has now been extended to 78 speakers from the training

set.2 We use these speakers with the corresponding labels to bootstrap the
unit models with 3 iterations of Maximum Likelihood Estimation (MLE) train­
ing. ACter bootstraping, the silence and pause models are converted into
optionai models. This means that a new state is added at the beginning of the
models, with equiprobable empty transitions going to the previous first state
and to the last state (see Figure 3.1).

:Interestingly. even though our experienee shows proper model bootstraping ta be very important
in arder to get gaod resultst it doesn't seem necessary ta use large amounts of data Cor thot purpose.
We found basieaUy no differenee in our final results when the bootstraping set was inereased from 13
ta 78 speakers.

c

(

115

Figure 5.2: Head/tail blocks

Figure 5.3: Silence and pause models

Subsequently, three iterations of MLE training are performed on the entire
training set. In each iteration, a model corresponding to each digit string in
the training set is built such that it reflects the way the digit string would
appear in the looped model used for recognition. For example, the model
corresponding ta the digit string 5-9-6 is shawn in Figure 5.4. The Baum­
Welch algorithm is applied ta this model, using the observation sequence from
the corresponding string. The unit models obtained after MLE training are
called the MLE models.

Figure 5.4: Model used for digit string 5·9-6

'0:i
"~ .

116

Unknown string length recognition is performed by applying the Viterbi algo­
rithm with the looped model (Figure 5.5). As described, the baseline system
has a word error rate of 1.40% and a string error rate of 4.01%. Table 5.3
shows the system's recognition performance on the test set as the number of
MLE training iterations is increased. In this and the following tables, word
and string error rates are in percentage, while insertions (ins), deletions (dei)
and substitutions (sub) are given in absolute numbers.

Iterations word strina ins dei sub
3 1.40 4.01 55 107 237
4 1.40 4.04 54 110 236
5 1.39 4.01 52 112 232
6 136 3.91 50 110 227
7 1.37 3.96 51 112 229
8 1.37 3.94 51 113 227
9 1.36 3.90 50 112 225

Table 5.3: Baseline system's recognition performance on the test set as the
number of training iterations is increased.

As seen from the table, after 3 iterations, the performance doesn't really
change if the number of iterations is increased. It is also interesting to see
that performance on the training set, though somewhat better than on the test
set, also levels off very quickly. This is shown in Table 5.4. This, as MMIE
results will clearly show, illustrates the discrepancy between MLE training and
the objective of reducing the error rate.

Iterations word strina
3 1.14 3.27
4 1.12 323
5 1.10 3.15
6 1.\0 3.16
7 1.08 3.10
8 1.08 3.09
9 1.08 3.09

Table 5.4: Baseline system's performance on the training set

c

c

117

~
1 2 \

\

oh

zero

Figure 5.5: Looped mode!.

li:
5.3. Semi-continuous HMMs---,:-

Ail SCHMM experiments reported assume diagonal covariance Gaussian den­
sities. Since, as mentioned earlier, the cepstral coefficients are relatively
uncorrelated, this assumption should not dramatically affect the system's per­
formance; it will, however, sùbstantially reduce both the number of parame­
ters to estimate and the computation time.

Trained models taken from a system using discrete with multiple codebook
distributions can trivially be converted into models for a multiple codebook
SCHMM system. In fact, the models can stay the same. Only the means and
variances of the tied mixture components need to be estimated. Using the
codebook used in the discrete case, initial estimates can be obtained by
assigning all frames from the training set to the closest codeword in the code­
book. Then, for each codeword, means and variances of the corresponding
mixture can be computed using all frames assigned to it.

It is usually better, however, to trai'n semi-eontinuous HMMs following the
steps used in the discrete case. That is, start with initial models with uniform
distributions and initial mixtures components as described above, and perform
bootstraping followed by MLE training (using the same number of iterations).
This has the advantage of jointly optimizing (with MLE) the codebook proba-

:'\ bilities and the mixture parameters. Table 5.5 compares the two approaches.

o

118

Unless specüied otherwise, all semi-eontinuous experiments (training and
recognition) were performed by considering only the 3 most probable com­
ponents (densities) in the mixture. Thus, referring to equation (2.17), we
assume Pc~ Ik)=O li k is not one of the 3 most probable mixture com­
ponents. This May affect performance but it substantially reduces the execu­
~on time.

word strlno dei
,

ins sub
discrete models 1.40 4.00 55 107 237

direct conversion to 5CHMM :j.44 4.14 55 120 202
full SCHMM trainlno 1.22 3.51 47 99 202

Table 5.5: Semi-continuous recognition on the test set with 3 itcrations of
MLE training.

5.4. MMIE experiments
l'"

"

There were two aims pursued in our MMIE experiments. The first aim was to
evaluate the effectiveness of the reestimation techniques proposed in Chaptcr
'4. In our opinion, an effective reestimation formula should be such that in
most cases, it will produce a sizable improvement in the value of the function
being optimized. For example, in MLE training, the fact that the recstimation
formulas from the Baum-Welch algorithm are mathematically guaranteed not
to produce a degradation is very comforting. What is MOSt important, how­
ever, is the experimental evidence showing that in practicc, good parameter
values are usually obtained after a small number of iterations. That, of

course, is not to say that faster convergence cannot be obtained otherwise.3 In
the case of the MMIE reestimation formulas proposed in this thesis, there is
no mathematical guarantee of convergence. What wc are looking for, then, is
to experimentally demonstrate their effectiveness.

The second aim was to evaluate the usefulness of MMIE training for speech
recognition. In both discrete and semi-eontinuous experiments, discrete dis­
tributions (codebook and transition probabilities) were reestimated using

3In fact, il is Dot impossible tbot estimation techniques borrowcd Cram the field oC neural nct­
warks, 5uch as on-/ine estimation, could Jead to Caster convergence.

c
119

(4.12), with D computed using (4.17), as proposed by Gopalakrishnan et al.
[GOPA 89].

In the connected digit case, the general model m gen used for training (see
Chapter 4) is simply the looped model used for recognition (Figure 5.5). For
each digit string in the training set, a typical MMIE training iteration thus con­
sisls of one pass of the Baum-':Velch a1gorithm using the "correct" string
model, and one pass using the looped modei.

5.4.1. Convergence experiments for discrete distributions

The following experiment was aimed at evaluating the effect of biasing the gra­
dient expression, as proposed by Merialdo [MERl 881. Using c, and cfen as
defined in (4.14), the gradient expressions compared were:

c 1) Exact expression

aIogR(8) _ 1 (gen)
80 - 0 c, -c,

2) Weighted (1)

3) Weighted (2)

aI gR(e) 1 (c, + cgen)o _ (gen) _---:-:--.....;.'---:....._
80 - -0 c, -co L: (cl'+cfFn)

l'eh('>

4) Merialdo

8IogR(8) r::: -=c_,_
80 L: c"

"eh(')
L: cfFn

l'eh(')

5) Modified Merialdo

120

'.

o

For each of these five expressions, several full MMIE iterations4 were per­
formed on a subset of the complete training set made from all the speech data
from 10 male and 10 female speakers. The value of the logarithm of the glo­
bal criterion R(6) (using a base of 1.001) was computed after each iteration.
The initial value of the criterion was -406055. The results are summarized in
the Table 5.6.

Iteration Exact Weiahted m Weiahtedl2\ Merialdo Mad. Merialdo
1 -395443 -314734 -282458 -127088 -141359
2 -386397 ·176154 ·235354 -28792 ·33944
3 -377779 -263393 -183231 ·67025 -11027
4 -369426 ·104312 -136283 -5152 -22813
5 ·360547 -120408 -94958 -9710 -3690
6 -355778 -89411 -75643 -105 ·7231
7 -351413 -50689 -56996 ·4213 -85998
8 -347043 ,29394 -24143 -9391 -6242
9 -342651 -28624 -29685 ·11360 ·41501
10 -338328 .,27232 -16629 -39859 -3336
11 ·334071 -20965 -9322 ·96657 -351
12 -329960 -1529 -17517 -72 ·121
13 -325923 -39432 -22446 -127 -35856
14 ·321776 -152421 -5506 ·116314 ·11779
15 -317774 -12861 ,577 -78 ·533
16 -313603 -766 -2177 -23295 ·120592
17 -309468 ·97174 -2085 -2775 ·45407

Table 5.6: Convergence of gradient expressions

The convergence is graphically illustrated in Figure 5.6 for the exact expres-
il

sion, the Merialdo expression, and the "weighted (2)" expression.
//
Il

·For these convergence expcrimenlS, MMJE trainioOg wus donc using ail digit strings in the
described training set. This is in contrast with the corrective MMIE trnining algorithm and il is what is
me.nt by "Cull MMIE il.r.tions".

c
121

-100000

-200000

-300000

-400000 ID '- exact

• Merlaldo

• welghled (2)

2010
-500000+-----....-------r------.-----~

o
iteration

Figure 5.6: Value of log1.001 R(a) as a function of the iteration number

However difficult it is to draw definite conclusions from these results, some
important trends' are noticeable. First, it seems clear that using the exact gra-

. dient expression results in hopelessly slow convergence. Second, with all
other expressions, we observe that as the criterion gets close to the optimum
value of zero, training becomes chaotic and divergence is often observed. In
fact, some iterations can result in large degradations, although results are
always substantially better than with the exact expression.

It is unclear at this point whether tbis behavior is caused by the modified gra­
dient expressions, which become inaccurate near the optimum, or whether it
is caused by the use of (4.17) to determine the value of D used in (4.12).
Remember that (4.12) is only proven to converge for a D probably much
larger than the one actually used. This, on the other hand, seems unlikely
since (4.21) and (4.22) show that at a fixed point of R(a) (any local optimum),
the value of D is zero.

o

o

122

In order to clarify this point, we perfonned an experiment using the exact gra­
dient expression, but starting with the models obtained after the 16th iteration
with the "Weighted (2)" fonnula. The initial value of 10gl.OOl R(e) was -2177.
The value of 10gl.OOl R(e) after each iteration is shown in Table 5.7. As can
be seen, the value of R(e) stays much more stable near the optimum (the vari­
ations observed are consistent with the precision of the computations).

Iteration lo!!:. nn. R(e)
1 ·85
2 -67
3 ·77
4 ·102
5 -164
6 ·247
7 ·149
8 -84

Table 5.7: Convergence of exact expression near the optimum

The chaotic behavior of 10gl.OOl R(e) near the optimum seems, therefore, to
be caused by the use of a modified gradient expression. Even though this
behavior is clearly undesirable, it does not necessarily undermine the useful­
ness of the modified expressions. Indeed, the initial reductions of
10gl.OOl R(e) are quite spectacular compared with those oblained with the
exact expression. The problem really seems to appear when e is already rela­
tively satisfactory. Note that since, in the MMIE corrective training algo­
rithm, only incorrectly recognized strings are used for training, then e is
always far from satisfactory (it in fact caused recognition errors for every sin­
gle digit string in the training set). It is thus quite possible that, in the conteAt
of this algorithm, the modified expressions will perform as desired.

In order to verify this, we first decided to limit al! further investigations to the
Merialdo gradient expression. Then in al! our discrete HMM cxperimcnts
with corrective MMIE training, we looked at the value of 10gl.OOI R(e) beforc

and after reestimation for each iteration of the training algorithm. The results
obtained are given in the section on recognition experiments. They confJJ;lnc~

our speculation that, in the context of corrective MMIE training, the modified
li

reestimation formula is indeed very effective. .

c 5.4.2.

123

Convergence experiments with the Gaussian

reestimation formula

This experiment uses multiple codeb~oks semi-continuous HMMs to look at
the convergence of the reestimation formulas (4.52) and (4.53). The formulas
are used to reestimate the means and variances of each of the tied Gaussian
densities in the codebook. The models used in this experiment are discrete
HMMs obtained after 3 MLE iterations on the entire training set and the ini­
tial tied mixtures were computed from the codebook as explained before. The
training set is the same as the one used in the previous convergence experi­
ments (10 male and 10 female speakers).

In order to verify the effectiveness of the continuous reestimation formulas,
only the parameters of the tied Gaussian densities were modified during train­
ing. A heuristic way of determining the constant D,in the formulas was used.
We started with the minimum value guaranteeing a positive denominator in
(4.53). We then repeatedly doubled its value until all new variance estimates
were positive. The value of D used was double that final value. The initial
value of the optimization function logl.olJ1R(e) was -302278. The experiment
is summarized in Table 5.8.

Iteration lo!!. M' RCe)
1 -169153
2 -98848
3 -70639
4 -57420
5 -39332
6 -23169
7 -14225
8 ·13184

Table 5.8: Convergence of continuous reestimation formulas
<:--

As can be seen from the Table, the convergence is steady and relatively
impressive, considering that all discrete distribution parameters remained con­
stant. Again, it is probably possible to have a faster convergence using,gra­
dient descent but the technique proposed here offers both simplicity and con­
vergence within a small number of itera.tions.

5.4.3.

124

Recognition experiments with discrete HMMs

o

As is the case for aIl training techniques of an error-correcting nature [APPL
89, LEEK 90], the corrective MMlE training algorithm has an important prob­
lem. As the number of errors on the training set becomes negligible, the algo­
rithm runs out of data to train on. The procedure must thus stop ~~cause of
a lack of training data.

There is another, closely related problem. Since the training set us~d for rees­
timation is in fact a very srnaIl fraction of the full training set, the parameters
learned may not be as globaIly useful as if the whole training set were used for
estimation.

In our experiments with the corrective MMIE training algorithm, we used a
simple solution to both the above problems. In each iteration, the new
models are smoothed with those from the previous iteration, using a weight
for the old model that increases by increments' of 0.1 from 0.0 to 0.8 (for a
total of 9 iterations). Thus, as used, the weights are not a function of the
reestimation set size.

5.4.3.1. Applying MMIE to the baseline system

Table 5.9: Applyillg MMIE ta the baseline system. Error rate on the test set
aCter each iteration of corrective MMIE trnining.

Iteration ward strlna Ins dei sub
1 1.16 3.38 51 88 191

1· 2 1.05 3.10 46 76 178
3 1.00 2.98 42 72 171
4 0.95 2.87 38 66 167
5 0.95 2.87 40 60 171
6 0.95 2.84 41 60 169
7 0.91 2.76 38 59 164
8 0.91 2.75 38 59 163
9 0.92 2.79 40 56 166

o

This first experiment uses the models obtained aCter 3 MLE iterations and
applies 9 iterations of corrective MMIE training. Table 5.9 shows the rcsults
obtained on the test set aCter each iteration.

'1

\\
\\

\\

c
125

As can be seen from the table, straightforward application of corrective
MMIE training reduced the word error rate by around 32% from 1.36% to

0.92% and the string error rate by around 28% from 3.90% to 2.79%.5

. Table 5.10 shows the performance of the training algorithm on the training
iL?set. The string recognition rate gives the percentage of the total number of

strings from the training set that was not used for reestimation. For example,
in the sixth iteration, the reestimation set contains only 0.2% of the number
of strings in the full training set. The last two columns show the value of
logUllll R (a), computed on the reestimation set before and, after reestimation.
They demonstrate the effectiveness of the modified reestimation formula.

Iteration
Error log, nnl R(a)

ward strlna before after
1 1.14 3.27 ·5267094 ·2181203
2 0.58 1.73 -2190945 ·905775
3 0.28 0.88 ·909609 ·388468
4 0.20 0.62 -447990 ·161837
5 0.11 0.34 -167403 ·60264
6 0.06 0.20 -60479 ·18845
7 0.03 0.09 ·18076 -11830
8 0.05 0.16 -26546 ·8507
9 0.03 0.08 -8658 ·6969

Table 5.10: Error rate on the training set during each iteration. Also shawn
is the value of 10gl.OOl R(a), computed before and arter reestimation on the
reestimation set.

5.4.3.2.

,../
f

Global codebook' exponents

As discussed in Chapter 4, each of the three sets of parameters may carry dif­
ferent amounts of useful (for recognition) information. It may be appropriate,
then, to weigh the contribution of each of the parameter sets using so-ealled
"codebook exponents". This is a type of refinement that fits quite naturally
within the MMIE framework. We treat exponents as a set of parameters
separate from the other parameters...Within the same iteration, each of the
two parameter sets is estimated independently, assuming the other set fixed.
Note that even though each estimate separately optimizes R(a), this may not

'Compunsons ure m.de wilh the best MLE resulls in Tuble 5.3.

o

o

126

be true of the combined estimate. In order to avoid this problem, in our ori­
ginal experiments we estimated exponents in odd-numbered iterations and the
other parameters in even-numbered iterations. It tums out that in practice
this is unnecessary; the combined estimate works just as weil and is twice as
fast.

Exponents are estimated using a simple line search in the gradient direction.
At each iteration, the initial step size is chosen so that no exponent changes
by more than 10% of its original value. If this doesn't increase R(e), the step
size is slowly reduced until a value for the exponents is found such that R(6)
is greater than its original value.

The first experiment looks at the usefulness of global codebook exponents,
thus called because the same fixed exponents are applied to ail frames and dis­
tributions. Such exponents are attractive since they add very littie complexity
to the programs (they can be precomputed in the distributions).

5.4.3.2.1. First pass

Starting with the models obtained after 3 standard MLE iterations and code­
book exponents initialized at 1.0, we obtained the recognition resuits as shown
in Table 5.11.

Iteration word strlno ins deI sub
1 1.10 3.25 46 84 183
2 1.00 2.98 42 70 174
3 0.92 2.76 39 56 169
4 0.84 2.54 31 50 160
5 0.86 2.59 35 48 162
6 0.88 2.65 36 49 167
7 0.86 2.60 38 43 164
8 0.83 2.51 36 42 160
9 0.85 2.58 38 42 163

Table 5.11: Error rnte on the test set nfter ench iterntion of corrective MMIE
training (using global codebook exponents).

This Js an encouragingresult since it corresponds to a word (string) error rate
improvement of 8% (8%) over the previous result. and a 38% (34%) improve­
ment over standard MLE training.

':'

127

Table 5.12 shows the performance of the training algorithm on the training
set, as well as the codebook exponents obtained after each iteration. As
before, the value of 10gl.001 R(a), computed on the reestimation set before

and after reestimation with (4.12) and (4.18),6 clearly demonstrates the effec­
tiveness of the formula. Also, from the exponent values obtained, it seems
clear that the second set of parameters (AC1 through AC6) contains more use­
fui information than the other two sets. This indicates the usefuIness of
dynamic parameters.

Iteration
Error log, nn R(a> Exponents

word strlna before after 1 2 3
1 1.14 3.27 ·5767094 ·2181207 0.9000 1.0146 0.9182
2 0.57 1.68 ·1984268 ·825008 0.8190 1.0184 0.8712
3 0.28 0.87 ·764405 ·293995 0.7535 1.0242 0.8573
4 0.17 0.53 ·290326 ·78038 0.7007 1.0600 0.8057
5 0.10 0.27 ·80842 ·33795 0.7356 1.0239 0.7574
6 0.07 0.22 -49859 ·15936 0.6989 1.0338 0.?,633
7 0.04 0.12 ·19249 ·3970 0.6864 1.0204 0:7938
8 0.04 0.08 ·14746 ·2004 0.7045 1.0203 0.1700
9 0.04 0.12 ·7311 . ·4661 0.7072 1.0282 0.7577

Table 5.12: Error rate on the training set during each iteration (with global
codebook exponents). Also shown is the value of loglool R(a), computed
before and after reestimation on the reestimation set, as weU as the exponents
oblained after ench iteration.

5.4.3.2.2~ Second pass

We have discussed in Chapter 3 the importance of initial values used when
training HMMs. As can be seen from the last results, the exponent values
obtnined nt the end of training are quite diffeTent from the initial values. This
suggest that these initial values are probably not the best with which to start
training.

Il may thus be interesting to repeat the whole training process (including
bootstraping and MLE training),cusing, as initial exponent values, those
obtained at the end of the first pass. Even though bootstraping and MLE
training do not modify the exponent values, training will take the exponents
into account and the parameters learned will he different from those learned

6Assuming the exponents ftlcd.

o

o

o

128

without exponents.

Table 5.13 shows the results obtained on the test set in tbis second training
pass. The results confirm the importance of good initial exponents. The
word (string) error rate is now 12% (14%) better than in the first pass and
45% (43%) better than with standard MLE training. Note that even the
results after both bootstraping and standard MLE training are noticeably
better than those obtained without exponents.

Iteration ward strinn Ins dei sub
boat 1.59 4.57 71 92 290

MLE·3 1.21 3.48 50 89 207
1 0.96 2.80 36 63 175
2 0.86 2.51 31 54 160
3 0.83 2.45 33 47 157
4 0.83 2.46 32 50 155
5 0.80 2.38 32 46 151
6 0.80 2.37 34 45 148
7 0.77 2.29 32 45 143
8 0.75 2.23 36 39 139
9 0.75 2.23 36 38 140

Table 5.13: Error rate on the test set after each iteration (second training
pass with global codebook exponents).

Table 5.14 shows the performance of the training algorithm on the training
set, as weIl as the codebook exponents obtained after each iteration.

Error lo!!', M R(6) Exponents
Iteration ward strin" before after 1 2--c 3

1 0.98 2.83 -3761588 -1493435 0.6365 1.0091 0.7139
2 0.50 1.49 ·1401493 -413552 0.5792 0.9916 0.6832
3 0.22 0.65 ·408220 -121876 0.5329 0.9881 0.6661
4 0.13 0.39 -125959 -19131 0.4978 0.9840 0.619~

5 0.07 0.24 -41297 -2198 0.5277 0.9710 0.6092
6 0.03· 0.09 -6452 -748 0.5013 0.9814 0.6263
7 0.03 0.10 ·15023 ·881 0.4812 0.9756 0.6469
8 0.02 0.07 ·2175 ·106 0.4957 0.9754 0.6417
9 0.02 0.06 -7933 ·2146 0.4858 0.9719 0.6535

Table 5.14: Error rate on the training set during cach iterlltion (second train­
ing pllSS with globat codebook exponents). Also shawn is the vlIlue of
logl.OOl R(6), computed before. and lifter rees~imllt!on on the reestimatioll
set, liS weil liS the exponents obtlllDcd lIftcr ellch Iterlltlon. .

i:

(
5.4.3.3.

129

Frame.dependent codebook exponents

(:

c

The previous results have shown what can be gained by wcighting the contri­
bution of each parameter set in the probability computation. The exponents
obtained are values which, on average, lead to better discrimination than unity
exponents. It is not clear, however, that the same weighting is appropriate for
all types of sounds.

In order to verify whether düferent .:odebook exponents si:ould be used with
düferent types of sounds, we have used a recurrent neural network (RNN)
developed at CRIM to label the speech frames as one of three categories:
sonorant/nasal, silence/noise and fricative/plosive. Then, for each frame, the
exponents used were dependent on the category to which the frame was
a~signed by the RNN.

5.4.3.3.1. First pass

This experiment is exactiy the same as the first pass with global exponents,
except that now there are 3 sets of three codebook exponents to train. Table
5.15 shows the results obtained on the test set.

Iteration word strino ins dei sub
1 1.08 3.18 48 84 175
2 0.95 2.82 42 69 161
3 0.87 2.64 35 57 156
4 0.83 2.50 35 48 154
5 0.83 0.50 38 45 154
6 0.81 2.45 34 46 152
7 0.81 2.42 33 45 153
8 0.77 2.31 33 42 145
9 0.78 2.36 36 42 145

Table S.lS: Error rate on the test set after each iteration (first training pass
with frame-dependent codebook exponents).

This is a word (string) error rate improvement of 8% (9%) over what was
obtained after the first pass with global codebook exponents. This is
encouraging, even though it may not be signüicant. Table 5.16 shows the per­
formance of the training algorithrn on the training set.

130

Iteration
Error log! nn R(6)

word strina before after
1 1.14 2.27 -5267094 ·2181231
2 0.57 1.68 -2005903 -846674
3 0.26 0.82 -781706 ·338863
4 0.17 0.52 ·338471 -145867
5 0.12 0.34 -141112 ·67254
6 0.07 0.22 -75117 -25147
7 0.06 0.19 -31277 -9497
8 0.02 0.07 -9488 -5283
9 0.03 0.08 -6647 -3064

Table 5.16: Errer rate on the training set during eaeh iteration (first training
pass with frame-dependent eodebook exponents). Also shown is the value of
IOg1.001 R(6), eomputed before and after reestimation on the rcestimation
set.

Table 5.17 shows the exponents obtained at the end of the 9th iteration, for

each of the 3 categories. We can see that there are noticeable differences
between the categories. In particular, the silence/noise category puts almost
equal weights on ail parameter sets, which is quite different from the global

codebook exponents obtained in the previous experiment.

categery eXDonent '.'

1 2 3
sonorant/nasal 0.6679 1.0585 0.7903
silence/noise 0.9822 0.9794 1.0432

frlcative/plosive 0.8559 1.0814 0.8277

Table 5.17: Exponents obtained at the end of the first pass of training with
eodebook-dependent exponent.

5.4.3.3.2. Second pass

The complete training process, (from bootstraping) is donc ail over again,
using the exponents from Table 5.17 as initial exponents. Table 5.18 shows
the results obtained on the test set. They show a word (string) error rate

improvement of 6% (8%) over the results from the first pass, and of 3% (3%)

over the results obtained with global codebook exponents after the second

pass.

(

(

131

Iteration word strlna lns dei sub
bootstrap 1.50 430 64 86 279

MLE·3 1.14 3.22 46 81 197
1 0.91 2.65 39 61 160
2 0.80 2.37 36 50 143
3 0.77 2.26 37 44 138
4 0.76 2.23 31 45 141
5 0.76 2.21 39 42 136
6 0.77 2.29 42 41 138
7 0.73 2.14 32 41 134
8 0.73 2.16 36 42 130
9 0.73 2.16 37 40 132

Table 5.18: Error rate on the test set after each iteration (second training
pass with frame-dependent codebook exponents).

Although this last improvement is quite marginal, we think the results are
nonetheless significant with regard to demonstrating the concept of frame­

dependent codebook weighting. Indeed, we could not expect to gain much

information from the classes determined by the RNN.7 Yet, it seems clear,
bath from the significant differences between the exponents for each category
(Tables 5.17 and 5.20) and from the small recognition improvement, that the

training algorithm was capable of learning how ta usefully adapt codebook
weighting to the sound category.

Table 5.19 shows the performance of the training algorithm on the training

set.

Iteration
Error logl Ml R(6)

word strina before 1. after
1 0.98 2.82 ·3747997 ·1477450
2 0.46 1.40 ·1410572 -2'57900
3 0.19 0.59 ·353049 ·67140
4 0.08 0.28 ·82773 ·16484
5 0.05 0.15 ·19463 ·8912
6 0.03 0.09 ·26985 ·581 ;1
7 0.03 0.09 ·10384 ·876' .
8 0.02 0.07 ·2987 ·777
9 0.02 0.08 ·9053 ·950

(

Table 5.19: Error rate on the training set during each iteration (second train­
ing pass with frame-dependent codebook exponents). Also shown is the value
oflogl.001 R (6), computed before and after reestimation.

7Morcover, the RNN used is several yenrs old Dnd ils nccuracy is unknown.

~;­
..",~

132

Table 5.20 shows the exponents obtained at the end of the 9th Iteration, for
each of the 3 categories.

category exoonent
1 2 3

sonorant/nasal 0.5208 1.0067 0.6702
silence/noise 0.9283 0.9622 1.0102

fricative/piosive 0.7448 1.1276 0.6955

Table 5.20: Exponents obtained at the end of the second pass of trllÎning with
codebook-dependent exponent.

5.4.3.4. Frame-dependent weighting

o

This experiment attempts to verify the hypothesis that speech frames are not
equally useful for recognizing words. The first thing needed is an automatic
procedure that produces a frame labeling which somehow correlates with the
frame's relative usefulness. If this is available, then MMIE can be used to
learn the weight that should be applied to each category.

Such a labeler could for example be based on the assumption that redundant
speech frames (those which are very similar to immediately preceding~rames)

are less useful than frames which are very different from those preceding il.
In other words, speech frames should be more important when the signal
changes rapidly. We decided to categorize this using the output from /he

,1

second codebook-; which encodes the dynamic changes in the cepstral coHfi-
".-- . ,>.-......... ..-----<.......... -

cient. Thir thus resultS in 128 different categories. One advantage ofUlis-iS~
"that no additil'lnal signal processing is required. Instead, the same discrete

parameter is used in two different ways. Note that global (frame-indcpendent)
codebook exponents are also used.

5.4.3.4.1. First pass
,f

l',1

This experiment is exactly thej!same as the first pass with global cxponents,
- -

except that in addition tatlle 3 codebook exponents, a set of 128 exponents is
also trained. The initial models used are the ones obtained aftcr 3 iterations
of standard MLE training. Ali exponents are initialized at 1.0. Table 5.21
shows the results obtained on the test set.

(

133

Iteration word strina Ins dei sub
1 1.07 3.15 47 81 178
2 0.98 2.87 43 68 168
3 0.92 2.75 41 59 164
4 0.82 2.45 30 47 157
5 0.81 2.47 31 46 155
6 0.80 2.44 27 47 155
7 0.82 2.50 30 47 156
8 0.83 2.54 29 47 162
9 0.82 2.49 31 45 158

Table 5.21: Error rate on the test set after each iteration (first training pass
with frame-dependent weightingJ.

Table 5.22 shows the performance of the training algorithm on the training

set.

Iteration
Error lo!!, M R(6) Exponents

word strina before after 1 2 3
1 1.14 3.27 ·5267094 ·2181219 0.9000 1.0146 0.9182
2 0.57 1.67 ·1912998 ·778350 0.8190 1.0186 0.8719
3 0.25 0.78 ·674851 ·300591 0.7535 1.0284 0.8524
4 0.16 0.50 ·270240 ·89697 0.7007 1.0528 0.8073
5 0.07 0.22 ·77966 -17452 0.7091 1.0496 0.7586
6 0.04 0.13 -16612 -9525 0.6775 1.0389 0.7968
7 0.06 0.20 ·54941 ·7735 0.6852 1.0537 0.7649
8 0.02 0.06 ·7851 ·2288 0.6885 1.0295 0.7879
9 0.02 0.07 ·12809 ~2693 0.6748 1.0313 0.7956

Table 5.22: Error rate on the trainin/: set during each iteration (first training
pass with frame-dependent weightmg). Also shown is the value of
10gl.OOl R(6), computed before and ài'ter reestimation on the reestimation
set, as weil as the codebook exponents obtained after each iteralion.

5.4.3.4.2. Second pass

The complete training process is started from bootstraping, using as initial

exponents those obtained at the end of the first pass. Table 5.23 shows the
results obtained on the test set.

"i \
\, \,

,
7iI,'"

::.;

134

Iteration word strinn Ins dei sub
boot 1.54 4.45 61 95 283

MLE-3 1.18 3.35 45 93 199
1 0.91 2.62 33 66 161
2 0.84 2.45 30 59 150
3 0.75 222 27 48 139
4 0.79 2.36 27 49 149
5 0.78 2.34 33 48 142
6 0.79 2.36 28 52 145
7 0.80 2.37 34 48 145
8 0.81 2.41 37 47 147
9 0.83 2.49 42 46 149

Table 5.23: Error rate on the test set after each ~teration (second training
pass with frame-dependent weighting).

Table 5.24 shows the performance of the training algorithm on the training
set.

Iteration
Error log, nn R(6) ÊlCponents

word strlno before after 1 2 3
1 1.02 2.95- ·3326158 ·1073830 0.6073 1.0110 0.7359
2 0.46 1.39 -992536 -254541 0.5538 0.9681 0.6697
3 0.18 0.56 -259860 -45035 0.5095 0.9687 0.6538
4 0.08 0.27 ·44383 -8218 0.5452 0.9129 0.6172
5 0.04 0.14 ·13243 ·1082 0.5657 0.9274 0.5802
6 0.07 0.22 -42068 -2021 0.5479 0.9208 0.6092
7 0.02 0.08 -4984 -1084 0.5394 0.9375 0.5848
8 0.01 0.05 ·4173 -891 0.5232 0.9386 0.5938
9 0.01 0.03 ·2729 -55 0.5337 0.9242 0.5850

Table 5.24: Error rate on the traininj: set during each iteration (second train­
ing pass with frame-dependent welghting). Also shown is the value of
10gl001 R (6), computed before and after reestimation on the reestimation
set, as weil as the codebook exponents obtained after each iteration.

Clearly, as applied here, frame-dependent weighting is not useful ai ail. Note
that the training algorithm did just as weil as before (even better) on the train­
ing set. This should not be surprising since the additional 128 paramelers sim­
ply provide additional degrees of freedom to the training algorithm. The prob­
lemj~ that whatever was learned has no generalization value. This seems clcar
by ,'looking at the 128 exponents which, after 18 iterations of training (2
passes), did not change much from their original values.

These results, however, do not necessarily undermine the concept of frame­
dependent weighting. The problem is probably one of finding an appropriate

c
135

Iabeling criterion. As mentioned in the last chapter, an interesting possibility
might be to classify each speech frame in terms of how stressed the signal in
the frame is.

5.4.3.5. InCl"easing the amount of training data

c

(J

As mentioned earlier, one problem with the corrective MMIE training algo­
rithmd~ that, as the recognition rate on the training set increases, the size of
the re~stimation set becomes very small (it may even completely vanish). One
proposed way [LEEK 90] to al1eviate this problem is to attempt to generate
potential errors and then train on them.

Another possibility is to train not only on the incorrectly recognized strings in
the training set, but also on those which had a close second choice. This is
what we have chosen to do for this experiment. Using the N-best algorithm
from Soong and Huang [SOON 90], we generated the 2 most likely digit
strings for each string in the training set. AlI strings with an incorrect first
choice were automatically selected for training. We then computed the aver­
age difference between the likelihood of the first and second choices for aIl
the other strings, and added to the reestimation set aIl strings which had a
difference smaller than 20% of the average difference. This guaranteed that
the reestimation set was not reduced to a token number of strings.

Iteration word strlna los dei sub
1 0.98 2.87 41 61 177
2 0.88 2.61 41 61 177
3 0.84 2.49 37 48 155
4 0.83 2.44 31 51 155
5 0.80 2.36 32 51 145
6 0.84 2.49 32 52 155
7 0.83 2.45 34 51 151
8 0.79 2.34 30 51 145
9 0.79 2.34 30 51 145

Table 5.25: Error rate on the test set aCter each iteration of N-best training
with global codebook exponents. The initial modeIs used are the ones ob­
tained after 3 iterations of MLE training in the second pass of training with
global codebook exponents.

In order to save time, we started training with the MLE models obtained in

.ià"J

136

the second pass of the experiment with global codebook exponents. The ini­
tial exponents for parameter sets 1, 2 and 3 were thus 0.7072, 1.0282 and
0.7577, respectively. The recognition results on the test set are shown in
Table 5.25.

The results are not quite as good as those obtained with the standard correc­
tive MMIE training algorithm, although the dliference may not be significant.
One explanation, however, for this deterioration may be found in Table 5.26,
which describes the performance of the algorithm during training. Indeed,
note from the ccbefore" and ccafter" columns that the modified reestimation
formula doesn't seem as effective when correctly recognized strings are added
to the reestimation set. This is especially true for the two iterations which had
no incorrectiy recognized strings as part of the reestimation set. These two
iterations resulted in substantial degradations in the value of log1.001 R(6).

Error log1.001 R(6)
"

fraction ofIteration
word strino before after trainino set

1 0.98 2.84 ·10299253 ·5520558 0.054
2 0.47 1.42 ·6167800 ·3858200 0.036
3 0.19 0.58 ·4497131 -3126228 0.033
4 0.09 0.29 -3893807 ·1672855 0.030
5 0.03 0.10 ·3557109 ·2643450 0.028
6 0.01 0.03 -3498021 -2428867 0.027
7 0.00 0.00 -3407676 ·91779282 0.026
8 0.00 0.00 ·3274827 -91779892 0.026
9 0.01 0.02 ·2986947 -1568665 0.024

Table 5.26: Error rate on the training set during each iteration (N-best train­
ing with global codebook exponents). Also shown is the value of
logl001 R(e), computed before and afier reestimation on the rcestimation
set, as weil as the fraction of the total number of strings from the training set
that was used for reestimation.

5.4.4. Recognition experiments with semi-continuous HMMs

o
Earlier, we presented the results of a convergence experiment with the rcesti­
mation formulas for continuous densities proposed in this thesis. This section

. now looks at whether their use can translate into better recognizers. This will
also be an opportunity to compare the performance of semi-eontinuous and

.,\

discrete HMMs. ',\

5.4.4.1. One model

137

This experiment starts ~th what has so far been called the "second pass" of
training. We use codebook exponents obtained aCter an earlier MMIE training
experiment with semi-eontinuous HMMs as· our initial exponents. The initial
exponents are, in order, 0.6941, 1.0222 and 0.7287. Table 5.27 shows the
results obtained on the test set. The result at the end of training corresponds
to a word (string) error rate reduction of 46% (43%) compared to the results
obtained aCter 3 standard (i.e., no expçments) MLE iterations (see Table 5.5).
It also corresponds to word (stringfimprovement of 12% (10%) over the
results obtained with discrete HMMs in the same conditions.

Iteration word strlna ins dei sub
boot 1.44 0.96 68 85 257

MlE-3 0.96 2.85 37 70 168
1 0.71 2.15 26 62 126
2 0.72 2.14 36 46' 121
3 0.61 1.84 24 39 112
4 0.61 1.85 24 36 114
5 0.67 . 2.00 37 37 116
6 0.65 1.98 33 33 120
7 0.63 1.90 35 34 110
8 0.64 1.96 41 34 109
9 0.66 2.01 47 30 112

Table 5.27: Error rate on the test set aCter each iteration using semi­
continuous HMMs with global codebook exponents. The initial models· used
are the ones obtained after 3 iterations of MLE training in the second pass of
training with global codebook exponents.

Table 5.28 shows the performance of the training algorithm on the training
set. For semi-eontinuous experiments. the value of 10gl.OOl R(e) is computed
after reestimation of both the discrete and continuous parameters (with the
è:~onents unchanged). Observe that the error rate on the training set is
always lower than in the corresponding discrete case. This means that the SiZl;;
of the reestimation set is also always smaller. The last training iteration was
doue using 3 digit strings (out of 8616), which is probably not a reasonable
thing to do.

138

Iteration
Error lOI! 1 nn R(e) Exponents

word srrina before afrer 1 2 3
1 0.89 2.56 ·3278371 -993317 0.624713 0.981255 0.680461
2 039 1.18 -923233 ·262261 0.568489 0.965428 0.638151
3 0.15 0.49 ·261732 -42987 0.523010 0.907878 0.627088
4 0.08 0.26 ·65732 -5070 0.559621 0.880285 0.617109
5 0.05 0.16 ·20751 ·834 0.535705 0.907287 0.580082
6 0.06 0.15 -15611 -556 0.535857 0.886985 0.609086
7 0.03 '. 0.08 ·10805 ·579 0.518053 0.883373 0.633449
8 0.02 0.07 -5908 ·394 0.502511 0.888198 0.647999
9 0.01 0.03 ·1211 -669 0.512561 0.888812 0.637920

Table 5.28: Error rate on the training set during each iteration (semi­
continuous HMMs with global codebook exponents). ···Cc

5.4.4.2. Separate male and female models

iÎ
\1

o

This last experiment looks at how to perform MMIE training when multiple
models per unit are used, and at how this can improve results. It also looks
at the effect of increasing the number of MLE iterations before MMIE train­
ing. This last point seemed relevant since our other experiences with semi­
continuous HMMs (in particular for wordspotting applications) tend to show
that SCHMMs requj~e more MLE training iterations than do discrete HMMs.
The fact that the continuous mixture components are shared by aIl distribu­
tions may in part explain why this should be the case.

We use separate male and female models, which means that there are now
twice as many models as previously. Note, however, that the same tied mix­
tures are used for both male and female models. Since the information about
the sex of speakers is available in the database, it is relatively straightforward
to train models on speakers of the corresponding sex. This is what we du for
both bootstraping and MLE training. Table 5.29 shows how the error rate on
the test set changes as the number of MLE iterations is increased.

c
139

Iteration ward strlno Ins dei sub
3 0.75 236 39 77 99
4 0.74 2.27 39 75 96
5 0.70 2.18 38 72 91
6 0.72 2.21 39 72 94
7 0.73 2.23 40 69 99

__ 8 0.71 2.16 38 69 95
~-9 0.72 2.19 38 67 100

Table 5.29: Error rate 00 the test set after additioDaI MLE training iteratioDs.

After seeing these results, we decided ta perform two sets of MMIE training
experiments: one after 3 iterations of MLE training (as previously) and one
after 6 iterations.

It is not immediately clear how MMIE training should be done when several
models per unit are used, especially when, as is our case, the clusters (male &
female) are determined a priori and the information about each speaker's clus­
ter is available from the database. The question is whether or not we should

.. enforce the sex of speakers in the training process. If we did, it would, in
effect, add sex recognition to the problem of digit recognition. Since this is
not useful for our purpose, we decided not to use the information about sex
during MMIE training. Suppose one of the digit training sequences contains
w=5-9-6. Then the "good" model used for training is the one illustrated in
Figure 5.7. In ail cases, the model m gen will be the oneillustrated in Figure
5.8.

Figure 5.7: Madel m'D for w -5-9-6.

140

o

zero

o

o

Figure 5.8: Madel m gen used for training with separate male and female
models.

Table 5.30 shows the recognition results on the test set aiter each iteration of
MMIE training. The initial models used were those obtained aiter 3 MLE
iterations. In order to determine if taking into account a larger number of
mixture components can improved results, we performed two sets of recogni­
tion experiments: One using the best 3 components and one using the best 6
components. In both cases, the models used are those trained using only the
best 3 components.

(

141

best 3 codewords best 6 codewords
Jter word strin" Ins dei sub word strinn Ins dei sub

1 0.66 2.00 :9 62 86 0.64 1.96 35 62 85
2 0.63 1.93 42 52 87 0.61 1.86 37 51 85
3 0.57 1.71 39 38 86 0.55 1.67 39 41 76
4 0.59 1.80 43 39 87 0.56 1.74 43 36 82
S- 0.56 1.73 45 29 86 0.52 1.59 45 26 76
6 0.51 1.62 37 26 83 0.49 1.53 38 23 79
7 0.53 1.65 47 22 82 0.57 1.77 45 29 88
8 0.49 1.52 41 20 78 0.48 1.50 42 16 80
9 0.51 1.59 45 21 79 0.49 1.51 45 16 78

Table 5.30: Error rate on the test after each MMIE training iteration (semi­
continuous HMMs with lÙobal codebook exponents, separate male and female
models). The initial moèlels used are those obtained after 3 MLE iterations.

Table 5.31 shows the performance of the training algorithm on the training

set.

Error lOI!:, nt R(S) Exponents
Iteration

word strin" bpfore after 1 2 3
1 0.58 1.72 ·3094683 ·1125788 0.907877 1.019112 0.900000
2 0.24 0.75 -1021651 -442032 0.826168 1.018070 0.852678
3 0.12 038 ·435294 -199868 0.777467 1.030542 0.784464
4 :: 0.10 0.30 ·183330 ·42012 0.746291 1.041456 0.729552
5 0.04 0.14 -46524 ·8139 0.701514 1.009579 0.709844
6 0.04 0.13 ·13680 ·190 0.666438 0.987393 0.691150
7 0.01 0.03 ·14427 -1 0.658413 1.026889 0.679909
8 0.03 0.09~ -10323 ,184 0.647485 1.020205 0.700306
9 0.01 0.03\\ ·3838 -72 0.657150 1.040609 0.689485

Table 5.31: Error rate on the training set during each iteration (semi­
continuous HMMs with global codebook exponents, separate male and female
models). The initial models used are those obtained after 3 MLE iterations.

Now, using as initial models those produced with 6 MLE iterations, we
obtained the results on the test set as shown in Table 5.32, and results on the

tr'!5ning set as shown in Table 5.33. In tbis case, training had to be stopped
after 7 iterations since, as the recognition on the training set was 100"10, there
was not any data to use for training. Although it is difficult to determine
which combination works best, it is clear that the training algorithm performs

really weil and the results obtained on the test set are very good.

o

142

Iter
best 3 codewords best 6 codewords

word strlna ins dei sub word strina ins dei sub
1 0.62 1.92 35 59 83 0.60 1.82 31 56 83
2 0.53 1.65 31 45 75 0.49 1.54 25 41 75
3 0.53 1.63 37 34 79 0.48 1.47 36 30 70
4 0.52 1.62 35 35 77 0.44 1.39 27 30 70.
5 o.sl 1.61 30 32 85 0.47 1.45 25 30 7.8
6 0.56 1.71 34 34 92 0.50 1.55 32 32 79
7 0.51 1.58 31 29 86 0.50 1.55 35 29 78

Table 5.32: Error rate on the test after each MMIE training iteration (semi­
continuous HMMs with 210bal codebook exponents, separate male and female
models). The initial moaels used are those obtained after 6 MLE iterations.

Iteration
Error log LOOI R(6) Exponents

word strlna before after 1 2 3
1 0.48 1.44 -2801591 ·928698 0.900765 1.018678 0.900000
2 0.20 0.63 -859489 -326391 0.819696 1.027538 0.835109
3 0.10 0.33 ·300554 -75060 0.754120 1.037853 0.774689
4 0.10 0.30 -120180 ·13408 0.762586 1.026837 0.720461
5 0.04 0.12 ·28092 -1275 0.716831 1.027858 0.738279
6 0.01 0.02 ·9150 1 0.728267 0.985781 0.701365
7 0.02 0.06 -10359 -94 0.720362 0.975759 0.729420
8 0.00 0.00 - - - . .

Table 5.33: Error rate on the training set during each iteration (semi­
continuous HMMs with global codebook exponents, separate male and female
models). The initial models used are those obtained after 6 MLE iterations.

5.5. Summary of results

Table 5.34 compares the results obtained in the different experiments in this
chapter. In aIl cases, we report the best result for a given type of experiment.
These result exhibit a clear superiority of semi-eontinuous HMMs over
discrete HMMs. This merely confirms what several other researchers have
recently found out. Il also confirms the usefulness of more specifie models
(male and female in our case).

These results are only side-effects of our experiments. What we wanted to "
verify was the usefulness of MMIE as a training framework for HMMs. There
seems to be iittle doubt about this.

(

(

c

143

Exoerlment ward strlno Ins dei sub
Discrete MLE 1.36 3.90 50 112 225

Discrete MMIE 0.91 2.75 38 59 163
Discrete MMIE + exponents 0.75 2.23 36 38 140

Discrete MMIE + CD-exponents 0.73 2.16 37 40 132
SCHMM MLE 1.22 3.51 47 99 202

SCHMM MMIE + expanents 0.61 1.84 24 39 112
SCHMM 2 models MLE 0.70 2.18 39 72 94

SCHMM 2 models MMIE + exoonencs 0.44 1.39 27 30 70

Table 5.34: Summary of results

o-

6. CONCLUSION

Looking back at everything that has been accomplished within such simple a
framework as HMMs, it is difficult not to be a little surprised. Yet, it is now
clear that the statistical approach to speech recognition, as implemented by
HMMs, is indeed very powerful. Sorne of the progress realized over the past
years with HMMs is, of course, the result of trial and error; however, much
of the success has resulted from a better understanding of their strengths and
weaknesses.

This thesis has thoroughly reviewed the theory and the practice of HMMs, as
they relate to the problem of speech recognition. Along the way, we
described sorne of the improvements which have helped to make HMMs such
a successful technology. We felt this was important in order to provide the
necessary insight into the problem.

As we have seen, there are many different ways of making HMMs work
better. For example, improving the front-end by finding better speech
features (or descriptors) to extract from the signal and by making it more
robust to changes in the acoustical environment; finding ways of quickly
adapting HMM parameters to changes in speaker or environmental charac­
teristics; improving language modeling at ail levels (syntactic, semantic and
pragmatic) and integrating the language models into the search strategies (real­
izing that many applications do not require that every single word be correctly
recognized); finding better speech units; and improving training techniques.
Each of these constitutes an area of research in its own right and each prom­
ises to improve, yet again, the performance of HMM-based systems.

We have chosen tl) work on the training problem and, because we Celt it was
more intuitively appealing than MLE, to concentrate on the MMIE Crame­
work. In the process, our hope was not to replace MLE with MMIE. After
ail, as is the case for MLE, MMIE needs good initial models to perCorm weil,

144

(

c

145

and MLE seems to be a method well-suited to produce these models. In fact,
our hope was not even to establish MMIE as an indispensable part of
everybody's training process (although for us, in Many cases, it is). Instead,
what we wanted to do was to add tools to those already available to designers
of speech recognition systems and to demonstrate their effectiveness. We
especially hoped that this work would increase general understanding of
HMMs and add further insight into the speech recognition problem.

6.1. Contributions

We have shown that using MMIE following MLE can result in significantly
improved recognition rates, compared to MLE alone. In fact, using MMIE
with the techniques presented in this thesis has allowed us to obtain, with a
fairly simple system, recognition rates better than the best results published to
date on the TIINIST connected digit task.

More significant, however, than the absolute recognition rates obtained, is the
general applicability of the techniques presented. It is quite probable that
better results could be obtained using MLE alone in a more complex system
(full covariance densities, more specifie model(' second derivative parameters,
etc.); however, there is little doubt that, given enough training data, even
these MLE results could be' substantially improved using the MMIE tech­
niques descri",ed in this thesis.

We have introduced an efficient new training algorithm, "Corrective MMIE
training", which has allowed us to obtain these improvements with a small
number of iterations, each of which is usually faster than a standard MLE
training iteration.

This algorithm is the result of a modification that we introduced into a reesti­
mation formula for discrete distributions proposed by Gopalakrishnan et al.,
and of the id~~ of on1y using errors in the training set for reestimating the
HMM parameters. Taken separately, none of these ideas would have per­
formed very weil; however, taken together they led to systematically fast con­
vergence in practice.

'~"
'4'

o

146

We proposed a new derivation for the discrete reestimation formula. This
allowed us to derive new reestimation formulas for the case of Gaussian densi­
ties with diagonal covariance. We demonstrated convergence in practice and
also effectively used the procedures in a speech recognition system with semi­
continuous distributiC!ns. This resulted in a joint optimization of the code­
book of tied densities and of the discrete distributions of mixture weights and
transition probabilities.

We proposed a method for performing MMIE training with multiple model per
word and we demonstrated its effectiveness in practice. We proposed a way
of using an N-best search algorithm to generate more training data. This tech­
nique could also be used elsewhere, such as in corrective training. Moreover,
this could a1so be used to generate a good approximation to the denominator
of the MMIE objective function.

We have shown how HMMs can be improved by the introduction of a small
number of additional parameters and how MMIE, contrary to MLE, can be
used to learn these new parameters. We have shown that this can be very
effective in a speech recognition system.

6.2. Discussion and future work

In many ways, the results reported are very encouraging. There are not many
experiments that we have made with MMIE which have not resultcd in sub­
stantial improvements over MLE alone. Yet, in order to correctly assess their
real significance, it is important to take into account the characteristics of the
task that was used for the experiments.

One of the first characteristics that comes to mind is the very small vocabu­
lary. This is an important point because it a110ws the use of a very simple
looped model (mgen) to represent ail possible models in the task. .JI. similar
model for, say, a triphone-based, large voeabulary continuous speech applica- ,

"tion would either have to be extremely big or to grossly over-gcnerate. Sup-
pose, for example, that we use for m gen a big looped model with ail triphones
in para11el. Then, even if the rules about the legal triphone transitions arc
observed, most of the paths in that looped model will not correspond to legal

147

English words (not to mention se.ntences). Moreover, those that do will not
use anything close to the "true" language mode!.

For the connected digit task, the language model was probably not an impor­
tant issue. The implicit language model in m gen was obviously wrong, but not,

"dramatically so. Moreover, as some simple demonstrations have shown, ..
MMIE is probably robust to incorrect modeling assumptions such as this one.
There is no point, however; in training a system to make distinctions it will
never need to do, as would be the case with the triphone looped mode!. It is,
of course, possible to improve the mode! somewhat using bigram probabilities
for triphone transitions, but this is as far as it is possible to go with a looped
mode!. Training with such a model could probably .improve recognition of
connected phones, but it is not clear that tbis would translate into better word

• ",i

accuracy.

For such applications, then, it may be better to approximate the denominator
of (4.9) with a summation over the word sequences which could most easily be
confused with the true sentence. These word sequences could be found using
one of the recently introduced "N-best" algorithms and the approximation
would probably be very good.

Another important characteristic of the connected digit task is the large size
of the database and the fact that the training set was designed to be "represen­
tative" of the entire task. This makes it more difficuIt for us to explain the
sizable differences between our results on the training and on testing sets.
Yet, since a large proportion of errors usually comes from a small number of
"bad" speakers (such as HM, CS or LE), we believe the training set may still
not be "representative" enough. More training data, then, might be neces­
sary. This brings us back to the question of how much data is enough training
data. As we discussed in Chapter 3, the answer to that question depends to a
large extent on the characteristics of the model used; this is certainly as valid
for MMIE as it is for MLE.

Our experience shows that, if enough information is available in the training
data, MMIE will be very good at using that information in order to reduce the
error rate on the training set to almost nothing. This, however, doi:~n't mean
that results will be similar on a different set. In fact, as many researchers

..~.
.~

o

148

have often found out, the opposite may very well happen. If it does, it can of
course result from mismatches between training and testing sets. In our task,
however, it is more likely that this would be the result of attempting to learn
parameters which just don't have real global significance for the task. A case
in point is the frame-dependent weighting experiment that we performed: It
worked wonderfuIly on the training set, but degraded results on the test set.

In reaIity, some HMM parameters with global usefulness may not require a
large amount of training data to be well-estimated. Take, for instance, the
global codebook exponents that were used in most of our experiments. Ini­
tiaIly, we trained them on a very smaIl number of male speakers from the
training set. It turns out that the exponents obtained that way were quite simi­
lar to those we now obtain with our "integrated" training procedure. This, we
think, is because the values obtained reaIly reflect the relative usefulness (for
our task) of the various sets of parameters, which applies similarly to all
speakers. These exponents, however usefulwe now know them to be, do not
fit weliCwithin the MLE framework and could not have been learned in it.
Codebook exponents are very similar to the factor that is often used to
increase the contribution of the language model to the log likelihood of a sen­
tence. They both arise because of incorrect modeling assumptions in HMMs.
So far, however, the language model factor has been determined empirically.
This could be done automaticaIly with MMIE.

This brings us to a discussion of one of the ways in which MMIE could help
us most to improve our speech recognizers. We discussed in Chapter 1 the
importance of the front-end and how knowledge about HMMs should be used
in its design. The goal is, of course, to extract features which will allow
HMMs, as a speech recognition tool, to perform as well as possible~ It is
quite possible that the best way of achieving this would be to no! consider
feature extraction and HMMs a separate entities, but rather as two parts of an
integrated recognition tool.

After ail, it is the HMMs themselves which are the most capable of deterrriill-
/:/ '1

ing what they need from the front-end in order to improve thcir recogilitioll
',\

performance. This seems a natural application for MMIE training. The idea'
is as follows. Feature extraction is a mathematical transformation that takes
signal samples as input and produees features as output. Even though the.

-- '~.

c

(

149

commonly used transformations (FFr or LPC-based cepstral analysis, delta
parameters, etc.) perform reasonably weil, they might be far from optimal for
speech recognition. It is possible, however, to implement feature extraction
using neural networks as function approximators. Then, integrating the neural
network within the HMMs, the gradient of the MMIE objective function with
respect to its parameters could be computed, thus all(\wing it to be optimized.'.
at the same time as the other HMM parameters.

There are two important poin,ts to mak~: First, as in most such optimization
problems, the initialization is very important. An obvious solution is to ini­
tialize the neural network in such a way that it approximates a type of feature
extraction which is known to perform weil. Second, since many parameters
will be estimated, it is probable that a large amount of training da~Jl will be
required in order to obtain an optimum which can be generaliz~d. Such
experiments, if done extensively, could substantially increase our knowledge
about the types of speech features which are most useful to HMMs. This,
indeed, would be a valuable result.

Our experience with MMIE training so far has been that there usually is some­
thing (often substantial) to be gained from its direct use in training. As a
result, corrective MMIE training is now weIl integrated into our HMM
software package and is part of our standard training procedure.

-.,

REFERENCES

[ACER 90]

[APPL 89]

[BAHL 83]

[BAHL 86]

A. Acero, "Acoustical and Environmental Robustness in
Automatic Speech Recognition", Ph.D. thesis, Carnegie Mellon
University, Pittsburg, September 1990

T.H. Applebaum and B.A. Hanson, "Enhancing the discrimina­
tion of speaker independent Hidden Markov Model wittf-a:irrec­
tive training", Proc. lCASSP-89, pp. 302-305, Glasgow, 19l1,9

[(

L.R. Bah!, F. Jelinek and R.L. Mercer, UA Maximum Likeli­
hood Approach to Continuous Speech Recognition", IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-S, no. 2, March 1983

L.R. Bahl, P.F. Brown, P.V. de Souza and R.L. Mercer, "Max­
imum Mutual Information Estimation of Hidden Markov Model
Parameters for Speech Recognition", Proc. lCASSP-86, pp. 49­
52, Tokyo, 1986

[BAHL 88a] L.R. Bahl, P.F. Brown, P.V. de Souza, R.L. Merccr and M.A.
Picheny, "Acoustic Markov Models Used in the Tangora Speech
Recognition System", Proc. lCASSP-88, paper Sl1.3, pp. 497­
500, New-York, 1988

[BAHL 88b] L.R. Bahl, P.F. Brown, P.V. de Souza and R.L. Mereer, UA
New Algorithm for the Estimation of Hidden Markov Model
Parameters", Proc. lCASSP-88, pp. 493-496, New-York, 1988

[BAHL 91] L.R. Bah!, P.V. de Souza, P.S. Gopalakrishnan, D. Nahamoo,
and M.A. Pieheny, "Context Dependent Modeling of Phones in
Continuous Speech Using Decision Trees", Proceedings of the
DARPASpeech Recognition Workshop, February 1991

o
[BAUM 72] L.E. Baum, "An Inequality and Associated Maximization Tech­

nique in Statisticl\1 Estimation of Probabilistic Functions of Mar­
kov Proeesses", Inequalities 3:1-8, 1Q72

C'· 150

([BELL 89]

[BELL 90]

[BOCC 86]

[BROW 87]
~,

[BUSH 86]

[BUSH 87]

[CARD 91]

151

J.R. Bellegarda and D. Nahamoo, "Tied Mixtures Continuous
Parameter Models for Large V!,cabulary Isolated Speech Recog­
nition", Proc. ICASSP-89, pp. IJ-.16, Glasgow, 1989

-;:..':' - -: '';'

J.R. Bellegarda and D. Nahamoo, "TiedMixtures Continuous
Parameter Modeling for Speech Recognition", IEEE Transac­
tions on Acoustics, Speech, and Signal Processing, vol. ASSP-38,
no. 12, December 1990 ,

E.L. Bocchieri and G.R. Doddington, "Frame-Specüic Statistical
Features for Speaker-Independent Speech Recognition", IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol.
ASSP-34, no. 4, August 1986 '

P.F. Brown, "The Acoustic-Modeling Problem in Automatic:
Speech Recognition", Ph.D. Thesis, Carnegie Mellon University,
Pittsburg, May 1987

l'~ .

M.A. Bush and G.E. Kopec; "Network-Based Connected Digit
Recognition Using Explicit Acoustic-Phonetic Modeling", Proc.
ICASSP-86, Tokyo, pp. 1097-1100, April 1986

M.A. Bush and G.E. Kopec, "Network-Based Connected Digit
Recognition", IEEE Transactions on Acoustics, Speech, and Sig­
nal Processing, vol. ASSP-35, no. 10, October 1987

R. Cardin, Y. Normandin, and R. De Mori, "High Performance
Connected Digit Recognition Using Maximum Mutual Informa­
tion Estimation", to be published in Proc. ICASSP-91, Toronto,
May 1991

[CHOW 86] Y.L. Chow et al, "The Role of Word-Dependent Coarticulatory
Effects in a Phoneme-Based Speech Recognition System", Proc.
ICASSP-86, Tokyo, pp. 1593-1596, April 1986

[6IOW 87] Y.-L. Chow, M.?~ Dunham, O.A. Kimball, M.A. Krasner, G.F.
Kubala, J. Maknoul, P.J. Priee, S. Roucos, and R.M. Schwartz,
"BYBLOS: The BBN Continuous Speech Recognition System",
Proc. ICASSP-87, pp. 89-92, Dallas, 1987 .

[Cl-IOW 90] Y.L. Chow, "Maximum Mutual Information Estimation of HMM
Parameters for Continuous Speech Recognition using The N-Best
Algorithm", Proc. ICASSP-90, paper S13.6, Albuquerque, April
1990

o

[COHE 89]

[COX 89]

[DAVI80]

[DENG 90]

[DEVI 82]

[DODD 89]

152

1.R. Cohen, "Application of an Auditory Model to Speech
Recognition", Journal of the Acoustical Society of America,
85(6), June 1989

S.J. Cox and 1.S. Bridie, "Unsupervised Speaker Adaptation by
Probabilistic Spectrum Fitting", Proc. ICASSP-89, paper S6.11,
Glasgow, 1989

S.B. Davis and P. Mennelstein, "Comparison of Parametric
Representations for Monosyllabic Word Recognition in Continu­
ously Spoken Sentences", IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-28, no. 4, August 1980

L. _Deng, M. Lenning, F. Seitz and P. Mermelstein, "Large
Voèabulary Word Recognition Using Context-Dependent Allo­
phonie Hidden Markov Models", Computer Speech and
Language, yul. 4, no. 4, October 1990

P.A. Devijver and J. Kittler, "Pattern Recognition: A Statistical
Approach", Prentice-HaH International, London, 1982

G.R. Doddington, "Phonetically Sensitive Discriminants for
Improved Speech Recognition", Proc. ICASSP-89, paper
S10b.11, Glasgow, 1989

[EPHR 87] Y. Ephraim, A. Dembo, and L.R. Rabiner, "A Minimum
,~Discrimination Information Approach for Hidden Markov
'Modeling", Proc. ICASSP-87, paper 1.8.1, pp. 25-28, Dallas, 1987

o

;-~-; [EPHR 88]

[EPHR 89]

[EQUI 89]

[FENG 88]

Y. Ephraim and L.R. Rabiner, "On the Relations Between
Modeling AF~;'oaches for Information Sources", Proc. ICASSP­
88, pp. 24-27, New-York, 1988

Y. Ephraim, A. Dembo and L.R. Rabiner, "A Minimum
Discrimination Information Approach for Hidden Markov
Modeling", IEEE Transactions on Information Theory, vol. 3.5,
no. 5, September 1989

W.H. Equitz, "A New Vector Quantization Clustering AIgo­
rithm", IEEE Transactions on Acoustics, Speech, and Signal Pro­
cessing, vol. ASSP-37, no. 10, October 1989

M.-W. Feng, "Improved Speaker Adaptation using Text Depen­
dent Spectral Mapping", Proc. ICASSP-88, paper S3.9, New­
York,1988

([FENG89]

[FURU 86]

[FURU 89]

153

M.-W. Feng, R. Schwartz, F. Kubala, J. Makhoul, "Iterative
Normalization for Speaker-Adaptive Training in Continuous
Speech Recognition", Proc. ICASSP-89, pp. 612-615, Glasgow,
1989

S. Furui, "Speaker-Independent Isolated Word Recognition
Using Dynamic Features of Speech Spectrum", IEEE Transac­
tions on Acoustics, Speech, and Signal Processing, vol., ':~SSP-34,
no. l, Februazy 1986

S. Furui, "Unsupervised Speaker Adaptation Method Based on
Hierarchical Spectral Clustering", Proc. ICASSP-89, paper S6.9,
Glasgôw,1989-'-, ,

[GAUY 91] J.L. Oauvain and C.H. Lee, "Bayesian Learning of Gaussian
Mixture Densities for Hidden Markov Models" Proceedings of
the DARPA Speech Recognition Workshop, February 1991

[GISH 90]

[OOPA 88]

[OOPA 89]

H. Gish, Y.L. Chow, and J.R. Rohlicek, "Probabilistic Yector
Mapping of Noisy Speech Parameters for HMM Word Spotting",
Proc. ICASSP-90, pll!,er S2.21, Albuquerque, April 1990

P.S. Gopalakrishnan, D. Lanevsky, A. Nâdas, D. Nahamoo,
M.A. Picheny, "Decoder Selection based,on cross-entropies",
Proc. ICASSP·88, pp. 20-23, New-York, 1988

P.S. Gopalakrishnan, D. Kanevsky, A. Nâdas, and D.
Nahamoo, "A Generalization of the Baum Algorithm to Rational
Objective Functions", Proc. ICASSP-89, paper S12.9, Glasgow,
1989

[ORAY 84] R.M. Gray, "Yector Quantization", IEEE ASSP Magazine, April
1984

[OUPT 87]

[HON 90]

Y.N. Gupta, M. Lenning, and P. Mermelstein, "Integration of
Acoustic Information in a Large Yocabulazy Word Recognizer",
Proc. ICASSP-87, paper 17.2.1, pp. 697-700, Dallas, 1987

H.W. Hon and K.F. Lee, "On Yocabulary-Independent Speech
~~eling", Proc. ICASSP-90, paper S14.2, Albuquerquer~~~l

"

[HUAN 89] X.D. Huang andM.A. Jack, "Semi-Continuous Hidden Markov
Models for Speech Signais", Compllter Speech and Language,
vol. 3, no. 3,July 1989

'.1

154

[HUAN 90] X. Huang, K.F.; Lee, and'H.W. Hon, "On Semi-Continuous
Hidden Markov Modeling", Proc. ICASSP-90, paper S13.3, Albu­
querque, April 1990

-

[LAME 86] L.F. Lamel, R.H. Kassel, and S. Seneff, "Speech Database
Development: Design and Analysis of the Acoustic-Phonetic

o

[HUNT 89]

[JEU 76]

[JUAN 85]

[KOPE85]

[KUBA 88]

[KUBA 90]

[KUBA 91]

[KUHN 90]

[LAME 81]

M.J. Hunt and C. Lefebvre, "Distance Measures for Speech
Recognition", Aeronautical Note NAE-AN-57, National Research
Council Canada, NRC no. 30144, March 1989

F. Jelinek, "Continuous Speech Recognition by Statistical
Methods", Proceeding:; of the IEEE, vol. 64, no. 4, April 1976

B.-H. Juang and L.R. Rabiner, "Mixture Autoregressive Hidden
Markov Models for Speech Signals", IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-33, no. 6,
December 1985

a.E. Kopec, and M.A. Bush, "Network-Based Isolated Digit
Recognition Using Vector Quantization", IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-33, no. 4,
August 1985

F. Kubala et al., "Continuous Speech Recognition Results of the
BYBLOS System on the DARPA l000-Word Resource Manage­
ment Database", Proc. ICASSP-88, pp. 291-294, New-York, April
1988

F. Kubala, R. Schwartz, and C. Barry, "Speaker Adaptation
from a Speaker-Independent Training Corpus", Proc. ICASSP-90,
paper S3.2, Albuquerque, April 1990

F. Kubala, S. Austin, C. Barry, 1. Makhoul, P. Placeway, and R.
Schwartz, "BYBLOS Speech Recognition Benchmark Results",
Proceedings of the DARPA Speech Recognition Workshop, Febrll­
ary 1991

R. Kuhn, and R. De Mori, "A Cache-Based Natural Language
Model for Speech Recognition", IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1990

L.F. Lamel, L.R. Rabiner, A.E. Rosenberg, and J .G. Wilpon,
"An Improved Endpoint Detector for Isolated Word Recogni­
tian", IEEE Transactions on ACOllstics, Speech, and Signal Pro­
cessing, vol. ASSP-29, no. 4, August 1981

155

- Corpus", Proceedings of the DARPA Speech Recognition
Workshop, 1986

[LEEC 89b]

[LEEC 9Oa]

C.H. Lee and L.R. Rabiner, "A Frame-Synchronous Network
Search Aigorithm for Connected Word Recognition", IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol.
ASSP-37, no. 11, November 1989

C.H. Lee, L.R.. "Rabiner, R. Pieraccini, and J.G. Wilpon,
"Acoustic Modeling for Large Vocabulary Speech Recognition",
Computer Speech and Language, vol. 4, no. 2, April 1990

[LEEC 9Ob] C.H. Lee, C.H Lin, and B.H. Juang, "A Study on Speaker
Adaptation of Continuous Density HMM Parameters", Proc.
ICASSP-90, paper S3.4, Albuquerque, April 1990

[LEEK 88] K.-F. Lee, "Large-Vocabulary Speaker-Independent Continuous
Speech Recognition: The SPHINX System", Ph.D. thesis, Carne­
gie Mellon University, Pittsburg, April 1988

:"' [LEEK 89a] K.-F. Lee, and H.-W. Hon, "Speaker-Independent Phone Recog-
... nition Using Hidden Markov Models", IEEE Transactions on
.: Acoustics, Speech, and Signal Processing, vol. ASSP-37, no. 11,

November 1989

[LEEK 89b] K.-F. Lee, H.-W. Hon, M.-Y. Hwang, S. Mahajan, and R.
Reddy, "The SPHINX Speech Recognition System", Proc.
ICASSP-89, paper S9.3, Glasgow, May 1989

[LEEK 90] K.-F. Lee, and S. Mahajan, "Corrective and Reinforcement
Learning for Speaker-Independent Continuous Speech Recogni­
tion", Computer Speech and Language, vol. 4, no. 3, July 1990

[LEON 84] R. G. Leonard, "A Database for Speaker-Independent Digit
Recognition", Proc. ICASSP-84, paper 42.11, 1984

[LEVI 83] S.E. Levinson, L.R. Rabiner, and M.M. Sondhi, "An Introduc­
tion to the Application of the Theory of Probabilistic Function of
a Markov Process to Automatic Speech Recognition", The Bell
System Technical Journal, vol. 62, no. 4, Apr. 1983.

[MAKH 85] J. Makhoul and S. Roucos, "Vector Quantization in Speech
Coding", Proceediflgs of the IEEE, vol. 73, no. 11, November
1985

[MERl 88]

[MURV 91]

[MYER81]

[NADA 83]

156

B. Merialdo, "Phonetic Recognition using Hidden Markov
Models and Maximum Mutual Information Training", Proc.
ICASSP-88, paper S3.4, New-York, 1988~,c'

H. Murveit, J. Butzberger, and M. Weintraub, "Speech Recogni­
tion in SRl's Resource Management and ATIS Systems",
Proceedings of the DARPA Speech Recognition Workshop, FebTlt­
ary 1991

C. S. MYERS and L. R. Rabiner, "A Level Building Dynamic
Time Warping Algorithm for Connected Word Recognition",
IEEE Transaction! on Acoustics, Speech, and Signal Processing,
vol. ASSP-29, no. 2, April 1981

A. Nâdas, "A Decision Theoretic Formulation of a Training
Problem in Speech Recognition and a Comparison of Training by
Unconditional Versus Conditional Maximum Likelihood", IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol.
ASSP-31, no. 4, August 83, pp. 814-817

o
[NADA 88] A. Nâdas, D. Nahamoo, and M.A. !Picheny, "On a Model­

Robust Training Method for Speech Recognition", IEEE Tran­
sactions on Acoustics, Speech, and Signal Processing, vol. ASSP­
36, no. 11, September 1988, pp. 1432-1436

[NADA 89:_~A. Nâdas, D. Nahamoo, and M.A. Picheny, "Speech Recogni­
tion Using Noise-Adaptive Prototypes", IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-37, no. 11,

" November 1989, pp. 1495-1503

o

[PAUL 89]

[PAUL 91]

[PICO 86]

[RABI 83a]

D.B. Paul, "The Lincoln Robust Continuous Speech Recog­
nizer", Proc. ICASSP-89, paper S9.4, G1àsgow, May 1989

:::'"

D.B. Paul, "New Results with the Lincoln Tied-Mixture HMM
CSR System", Proceedings of the DARPA Speech Recognition
Workshop, February 1991

J. Picone, K.M. Goudie-Marslllll!,_G.R. Doddington, and W.
Fisher, "Automatic Text Alignmeiif"Ior Speech-System Evalua­
tion", IEEE Transactions on Acoustics, Speech and Signal Pro­
cessing, vol: ASSP-34, no. 4, August 1986

L.R. Rabiner, M.M. Sondhi, and S.E. Levinson, "Note on the
Properties of a Vector Quantizer for LPC Coefficients", The Bell
Systems Technical Journal, vol. 62, no. 8, October 1983

(

(

[RABI 83b]

[RABI 85a]

[RABI 85b]

[RABI 86]

[RABI 88]

[RABI 89a]

157

L.R. Rabiner, S.E. Levinson, and M.M. Sondhi, "On the Appli­
cation of Vector Quantization and Hidden Markov Models to
Speaker-Independent Isolated Word Recognition", The Bell Sys­
tems Technical Journal, vol. 62, no. 4, April 1983

L. R. Rabiner and S. E. Levinson, "A Speaker-Independent,
Syntax-Directed, Connected Word Recognition System Based on
Hidden Markov Models and Level Building", IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. ASSP-33, no. 3,
June 1985.

L.R. Rabiner, B.H. Juang, S.E. Levinson, M.M. Sondhi,
"Recognition of Isolated Digits Using Hidden Markov Models
with Continuous Mixture Densities", AT&T Technical Journal,
vol. 64, no. 6, July-August 1985

L. R. Rabiner and B. H. Juang, "An Introduction to Hidden
Markov Models", IEEE ASSP Magazine, January 1986

L.R. Rabiner, J.G. Wilpon and F.K. Soong, "High Performance
Connected Digit Recognition, Using Hidden Markov Models",
Proc. ICASSP-88, paper S3.6, New-York, April 1988

L.R. Rabiner, C.H. Lee, B.H. Juang, and J.G. Wilpon, "HMM
Clustering for Connected Word Recognition", Proc. ICASSP-89,
paper S8.5, Glasgow, 1989

[RABI 89b] L. R. Rabiner, J.G. Wilpon, and F.K. Soong, "High Perfor­
mance Connected Digit Recognition Using Hidden Markov
Models", IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. ASSP-37, no. 8, August 1989

[RABI 89c]

[ROHL 89]

L. R. Rabiner, "A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition", Proceedings of
the IEEE, vol. 77, no. 2, February 1989

J. R. Rohlicek, W. Russel, S. Roukos and H. Gish, "Continu­
ous Hidden Markov Modeling for Speaker-Independent Word
Sponing", Proc. ICASSP-89, April 19&9

(

[ROSE 90] R. C. Rose and D. B. Paul, "A Hidden Markov Model Based
Keyword Recognition System", Proc. ICASSP-9D, Albuquerque,
April 1990

[RTIS 89] D. Rtischev, "Speaker Adaptation in a Large-Vocabulary Speech
Recognition System", Masters Thesis, MIT, 1989

"~. [SCHW 85]

[SCHW 87]

[SCHW 89]

[SCHW 90]

[SENE 88]

[SaON 90]

158

R. Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Krasner, J.
Makhoul, "Context-Dependent Modeling for Acoustic-Phonetic
Recognition of Continuous Speech", Proc. ICASSP-85, April
1985

R. Schwartz, Y.-L. Chow and F. Kubala, "Rapid Speaker Adap­
tation Using Probabilistic Spectral Mapping", Proc. ICASSP-87,
pp. 633-636, Dallas, 1987

R. Schwartz et al., "Robust Smoothing Methods for Discrete
-Hidden Markov Models", Proc. ICASSP-89, pp. 548-551, Glas­
gow, 1989

R. Schwartz and Y.-L. Chow, "The N-Best Algorithm: An Effi­
cient and Exact Procedure for Finding the N Most Likely Sen­
tence Hypotheses", Proc. ICASSP-90, paper S2.12, Albuquerque,
April 1990

S. Seneff, "A Joint Synchrony/Mean-Rate Model of Auditory
Speech Processing", Journal of Phonetics, 16, 1988

F.K. Soong and E.-F. Huang, "A Tree-Trellis Based Fast Seareh
for Finding the N Best Sentence Hypotheses in Continuous "

!'Speech Recognition", Japan, Deeember 1990

[VITE 67]

[VANC 87] D. Van Compernolle, "Inereased noise immunity in large voca­
bulary speech recognition with the aid of spectral subtraetion",
Proc. ICASSP-87, Dallas, 1987

[VANC 89] D. Van Compernolle, "Noise adaptation in a hidden Markov
model speech recognition system", Compllter Speech and
Language 3, 1989

~~--
---~:::., "<.;..,

A.J. Viterbi, "Erior Bounds for Convolutional Codes and a','1
Asymptotieally Optimum Deeoding Algorithm", IEEE Transac~

tians on Information Theory, vol. 13, no. 2, April 1967

[WEIN 89]

[WILP 90]

M. Weintraub et al, "Linguistie Constraints in)-Hdden Markov
Model Based Speech Recognition", Proc. ICASSP-89" paper
SI3.2, Glasgow, 1989

J.G. Wilpon, L.R. Rabiner, C.-H. Lee, and E.R. Goldman,
"Automatic Recognition of KeYNords in Unconstrained Speech
Using Hidden Markov Models", IEEE Transactions on Aco/ls­
tics, Speech, and Signal Proce~sing, vol. ASSPô38, no. 11,

, November 1990

"
",j"'="'/

(

(

(

[ZUE 85]

[ZUE90]

159

V. Zue, "The Use of Speech Knowledge in Automatic Speech
Recognition", Proeeedings of the IEEE, vol. 73, no. 11,
November 1985

V. Zue et al., "The VOYAGER Speech Understanding System:
Preliminary Development and Evaluation", Proe. ICASSP-90"
paper S2.9, Albuquerque, April 1990

(,

::1

