A METHODOLOGY FOR THE FATIGUE ANALYSIS OF LUG/PIN JOINTS

Ъy

GERARD CARRIER

Department of Mechanical Engineering
McGill University
Montreal, Canada.

A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Engineering.

March, 1988

©Gérard Carrier, 1988

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN 0-315-45952-2

y

i

Abstract

Lug/pin joints are structural elements extensively used in mechanical design. Unfortunately they tend to have a low fatigue strength. This thesis presents a methodology based on advanced computational techniques for the analysis and design of metallic lug/pin joints. In the thesis, a particular lug/pin joint, typical of those found in helicopter rotors, will be studied but the methodology could be applied to different lug/pin joints. Many steps of the methodology could even be applied to the design of other metallic mechanical assemblies.

This methodology involves:

- 1. The construction of preprocessors that allow for 3-D geometrical design of lug/pin joints and the definition of a finite element model that considers the non-linearity induced by the clearances existing between the components.
- 2. The computation using the finite element method of the stress fields resulting from the application of extreme loading conditions.
- 3. The fatigue analysis of the lug/pin joint components using a "safe-life" approach. The probabilistic aspect of fatigue crack initiation is also considered.

In conclusion improvements to the design of the lug/pin joint under study will be proposed.

Résumé

Les joints boulonnés ("lug/pin joints" en anglais) sont des éléments structuraux très utilisés dans la conception de machines. Malheureusement, ils ont en général une faible résistance à la fatigue. Cette thèse présente une méthodologie informatisée pour l'analyse et la conception de joints boulonnés métalliques. Dans la présente thèse, la méthodologie sera appliquée à un joint particulier, typique de ceux qu'on retrouve sur les rotors d'hélicoptères. Elle pourrait être appliquée à d'autres joints. Plusieurs des étapes de la méthodologie pourraient même être appliquées à la conception d'autres assemblages mécaniques faits en métal.

Là méthodologie comporte les étapes suivantes:

- 1. La construction de préprocesseurs qui permettent la conception d'un joint boulonné tridimensionnel et la définition d'un maillage d'éléments finis qui considère la non-linéarité due au jeu existant entre les différentes composantes du joint.
- 2. Le calcul par la méthode des éléments finis des contraintes résultant de l'application des conditions extrêmes de chargements.
- 3. L'analyse de fatigue des composantes du joint en utilisant la méthode "safe-life" (i.e. utilisation de courbes S N corrigées). L'aspect aléatoire de l'initiation des fissures de latigue sera aussi pris en considération.

Pour conclure, des améliorations au design du joint boulonné particulier sous étude seront proposées.

Acknowledgements

I would first like to thank Professor James W. Provan who supervised this research and whose enthusiasm was a source of motivation throughout my studies at McGill. The orientation Prof. Provan gave to the project was extremely valuable and made the investigation all more easier.

I am also grateful to Bell Helicopter Textron Canada (BHTC) that has supplied the data and the computer ressources necessary to the research. A special word of thank is given to Somen Chowdhury of BHTC who, through collaboration with Professor Provan, has made this research possible. I am also indepted to Wafaa Ishak, Alain Roquet, Guy Lambert, Edward Burczak, and many other BHTC employees for technical advices that helped me to carry out this research.

The financial assistance of the Natural Sciences & Engineering Research Council (NSERC) is gratefully acknowledged.

. [] .

Contents

		Abstra	act	. i
			né	
			wledgements	
1	INT	rrodi	UCTION	1
	1.1	Motiva	ation	. 1
	1.2		Objectives	
v	1.3		Description	
2	Des	criptio	on of the lug/pin joint assembly under study	5
	2.1	Lug/p	in joint geometry	. 5
	2.2	,	in joint components materials	
	2.3	-, -	ne loading conditions	
3	Str	ess Ana	alysis	15
	3.1	Param	netric Drawing	. 15
	3.2		Element Definition	
		3.2.1	· ·	
		3.2.2		
		3.2.3	- · · · · · · · · · · · · · · · · · · ·	
		3.2.4	Boundary Constraints	
	3.3		Bushing Interference Fit Analysis	
	,	3.3.1	Lug & Bushing Interference Fit Analysis using a F.E. Model	
		3.3.2	Computation of Stresses using Lamé's Equations	
	3.4			
	314 314	•	in Joint Global Stress Analysis Results	

4	To t	igue Analysis	•	78
4	4.1	Determination of the Working $S - N$ curves		
	7.1	4.1.1 Basic $S-N$ curves		
		4.1.2 The mean stress effect		
		4.1.3 $S_a = f(N, S_m)$ diagram		
	,	4.1.4 Modifying Factors		
	4.2	Equivalent Stresses		
		4.2.1 Stress Concentration Factors and Fatigue Notch Factors.		
		4.2.2 Multiaxial stress state in fatigue		
	4.3	Crack Propagation Criterion		
	4.4	Cumulative Damage		
	4.5	Reliability		
		4.5.1 Computing the Reliability as a Function of the Stress Amp	oli-	
		tude		
	4.6	4.5.2 Computing the Reliability as a Function of the Endurance Fatigue Analysis Results		
	4.0	4.6.1 Pin		
		4.6.2 Bushing		
		4.6.3 Lug		
		4.0.5 Lug		. 133
5	Disc	cussion		140
	5.1	Discussion on the stress analysis		. 140
	5.2	Discussion on the results of the lug/pin joint fatigue analysis		. 141
	5.3	Discussion on the fatigue analysis methodology		. 143
	5.4	Possible improvements to the design		. 144
6	Cor	nclusions		145
	6.1	Conclusions		. 145
	6.2	Proposed Future Investigations		
	Refe	erences		147
\mathbf{A}	Geo	ometry Definition Program		150
В	Fini	ite Element Definition Program	,	174
C	Nod	le Offsetting Program		193

زيي

D	Gap Element Definition Program	201
E	Bar Element Definition Program	21 2
F	Multi-Point Constraint (MPC) Definition Program	225
G	Node Coordinates Rounding off Program	236
H	Node Location Program H.1 IVOL Program: Node Location Program (basic cartesian coordinates) H.2 IVOLC Program: Node Location program (cylindrical coordinates)	
	Displacement Definition Program I.1 DF61 Program I.2 DF62 Program I.3 DF9 Program	264
J	Commented Versions of the Data Decks used for the Finite Element Analysis	277
K	Material Fatigue Properties K.1 Pin Material Fatigue Properties K.2 Lug Material Fatigue Properties K.3 Bushing Material Fatigue Properties K.4 Material Fatigue Properties Data Files	303 303
L	•	311 313 314 314 314 315 315
M	YMIR Program	342

vii

List of Figures.

	1.1	Safe-life approach	4
0	2.1	Isometric view of the lug/pin joint under study	6
	2.2	Top & section views of the lug/pin joint under study . 4	7
	2.3	Lug & bushing geometrical detail	8
	2.4	Radial clearance & interference fits between the components y	9
	2.5	Extreme loading conditions applied to the blade	11
	2.6		12
	2.7	Application of the bending moment M on the blade	13
	2.8	Application of the torsion T on the blade \dots	14
		,	
	3.1	Lug/pin Joint Under Study	
	3.2	Lug/pin joint topologically similar to the lug/pin joint under study	
	3.3	Example of geometrical continuity principle	
	3.4	Eight node hexahedron element	
	3.5	Six node five sided element	22
	3.6	Boundary displacements applied to the lug & bushing	24
	3.7	Coarse F.E. mesh used to model the lug/pin joint	25
	3.8	Skew elements replacement	27
	3.9		
	3.10	Lug chamfer and bush flange root details	29
	3.11	F.E. mesh at the bushing flange root and lug chamfer	33
		Interactions between the components	
•	3.13	Gap Element as used for clearance fit modeling	39
		Gap Element as used for interference fit modeling	
		Constraints to avoid rigid body motion	
		Tangential stress induced in the lug by the interference fit bushing	
		Radial stress induced in the lug by the interference fit bushing	
			'n

3.18	Radial stress at the lug/bushing interface	47
3.19	Radial stress at the lug/bushing interface (cont'd)	48
3.20	Computation of the radial stress lower bound	51
3.21	Computation of the radial stress upper bound	52
3.22	Radial stress, section view of lug/pin joint when subjected to LL1	54
3.23	Axial stress, section view of lug/pin joint when subjected to LL1	55
3.24	Radial stress, section view of lug/pin joint when subjected to HL1	56
3.25	Axial stress, section view of lug/pin joint when subjected to HL1	57
3.26	Radial stress in the top lug when submitted to HL1	58
3.27	Gap Element #19025 when the lug/pin joint is submitted to HL1	59
3.28	ξ_1 and ξ_2 parameters	61
3.29	Radial displacement imposed by the pin on the bushing when the	
	lug/pin joint is submitted to HL2	62
3.30	Radial displacement imposed by the pin on the bushing when the	
•	lug/pin joint is submitted to HL2	63
3.31	Top lug view shown in the next two figures	64
3.32	Axial (Z') displacement imposed by the pin head to the top lug when	
	the lug/pin joint is submitted to HL2	65
3.33	Axial (Z') displacement imposed by the pin head to top lug when	
	the lug/pin joint is submitted to HL2, (cont'd)	66
3.34	Top bushing view shown in the next two figures	67
3:35	Axial (Z') displacement imposed by the washer to the top bushing	₹°`
•	when the lug/pin joint is submitted to HL2	68
3.36	Axial (Z') displacement imposed by the washer to the top bushing	
	when the lug/pin joint is submitted to HL2, (cont'd)	69
3.37	Top lug tangential stress field when submitted to LL1	70
3.38	Top lug tangential stress field when submitted to LL2	71
3.39	Top lug tangential stress field when submitted to HL1	72
3.40	Top lug tangential stress field when submitted to HL2	73
3.41	Radial stress field of the lug when submitted to the #L1	74
3.42	Gap Element #12064 deformation when the lug/pin joint is submitted	
	to <i>HL1</i>	76
3.43	Partial loss of contact at bush/lug interface when the joint is highly	
١	loaded	77
4 4		7
4.1	Comparison between 2 mathematical expressions used to approximate	00
	the $S-N$ curves	82

4.2	S_{max} , S_{min} , S_a , S_m -definitions
4.3	Comparison of Goodman's Line, Gerber's Parabola and Proposed
	Equations
4.4	Three Dimensional Schematic Illustrating $S_a = f(S_m, N) \dots 8$
4.5	The Size Effect
4.6	Illustration of the Relation between Fretting-Fatigue Strength and the
	Regular Fatigue Strength for Various Combinations of Axial Loading. 9
4.7	Effect of Amplitude of Slip on the Fretting Fatigue of Aluminum Alloy 9
4.8	Pin surface submitted to fretting
4.9	Bushing surface submitted to fretting 9
4.10	Surface Finish Factor for Bending Fatigue Strength
4.11	Approximative Tangential Residual Stresses Induced by Shot Peening
	of the Lug
4.12	Notch at the Pin Head
4.13	Notch at the Bushing Flange Root
4.14	Crack Initiation Ellipse
4.15	Equivalent alternating stress under "high amplitude cycle" conditions,
	computed using the von Mises like equation
4.16	Equivalent alternating stress under "high amplitude cycle" conditions,
	computed using $S_a = \frac{P_1}{2} - \frac{P_3}{3} \dots \dots$
4.17	Comparison of the stress state at the critical zone to the oscillating
	loading condition
4.18	S_{at} Definitions
	Reliability
	Unacceptable Probability of Fatigue failure
	Pin Reliability Factor, after 1.E7 "High Amplitude Cycles" 12
	Bushing Reliability Factor after 1.E7 "High Amplitude Cycles" 13
4.23	"Low Amplitude Cycles" Lug Fatigue Endurance - With Shot-Peening 13.
	"High Amplitude Cycles" Lug Fatigue Endurance - With Shot-Peening 13
4.25	"High Amplitude Cycles" Lug Fatigue Endurance - Without Shot-
	Peening
	Lug Fatigue Endurance - With Shot-Peening
4.27	"High Amplitude Cycles" Lug Reliability Factor - With Shot-Peening 139
5.1	Crack Initiation Site
A 1	Tue/oin isint manager and a second se
W.I	Lug/pin joint geometric parameters

A.2	Lug/pin joint geometry definition flow chart
B.1	F.E. mesh definition variables
C.1	Definition of a Zone whose Nodes need to be Offset
I.1	Point positions (ξ_1, ξ_2) where displacements are known
K.1	Constant-Life Fatigue Diagram for heat treated AISI4340 Alloy Steel bar, $S_u = 150ksi$
K.2	Constant-Life Fatigue Diagram for heat treated AISI4340 Alloy Steel bar, $S_u = 200ksi$
K.3	$S_u = 208ksi 4340$ Steel - Mean Stress Effect
K.4	S-N Diagram of 7075 – T73 Aluminum Alloy
	Goodman diagram of 7075 - T73 Aluminum Alloy 306

List of Tables

2.1	Lug/pin joint component materials	10
3.1 3.2	GEO program input file used to generate the lug/pin joint under study GEO program input file used to generate a lug/pin joint topologically	17
	similar to the lug/pin joint under study	19
3.3	FED program input file used to generate the coarse F.E. mesh	26
3.4	FED program input file used to create the fine F.E. mesh	30
3.5	Modified FED output file used to generate the lug fine F.E. mesh	31
3.6	Modified FED output file used to generate the bushing fine F.E. mesh	32
3.7	OFFSET program input file used to model the bushing flange root	
	and the lug chamfer	34
3.8	OFFSET program output file used to modify the F.E. mesh near the	-
	bushing flange root	35
3.9	Component interactions	37
3.10	Boundary constraints	42
3.11	Comparison of the displacements of 4 pairs of nodes when the lug/pin	
	joint is submitted to HL1	75
4.1	Values of α and β for the Lug, Pin and Bushing Materials	81
4.2	Values of a ₁ and a ₂ for the Lug, Pin and Bushing Materials	86
4.3 -	Fatigue Modifying Factors	99
4.4	Strength Reduction Factors Produced by the Fretting of Various Ma-	
	terials against Steels and Aluminum Alloys	001
4.5	Fretting Fatigue Strengths of Various Metals	101
4.6	Some values of ρ and $a \dots $	104
4.7	Approximate values of S_{cat} for various metals	
4.8	Reliability Factors Corresponding to an 8% Standard Deviation of the	
,	— • • • • •	20

	4.9			
		0.65		
		Reliability for Steel Components with $\bar{\Delta}=1.37$ and $V_{\Delta}=0.638$		
		Reliability for $\bar{\Delta} = 1.0$ and $V_{\Delta} = 0.65$		
		Normal Distribution Variable Z	12	4
	4.13	ENDUR program input file for Pin Fatigue Evaluation when Loading		_
		Alternates between LL1 and LL2	12	6
	4.14	ENDUR program input file for Pin Fatigue Evaluation when Loading		_
		Alternates between HL1 and HL2	12	7
	4.15	ENDUR program input file for Fatigue Endurance of Lug and Bushing		_
		when Loading Alternates between LL1 and LL2	12	9
	4.16	ENDUR program input file for Fatigue Endurance of Lug and Bushing		
2	,	when Loading Alternates between HL1 and HL2	13	1
	A .1	Typical GEO program input file	15	3
		Example of a GEO program output file		
	A.3			
	11.0	,		Ĭ
	B.1	Typical FED program input file	17	6
	B.2	Typical FED program output file	17	8
	B.3	FED program FORTRAN code	17	9
	~ .	m		_
	C.1	Typical OFFSET program input file		
	C.2	Typical OFFSET program output file		
	C.3	OFFSET program FORTRAN code	19	7
	D 1.	Typical IGAP program input file	20	13
		Typical IGAP program output file		
		IGAP program FORTRAN code		
	<i>D</i> .0	Total program Potestim code	20	٠,
	E.1	Typical IBAR program input file	21	4
	E.2	Typical IBAR program output file		
	E.3	Typical DEFORM.OUT file created by IBAR program	21	в
	E.4	IBAR program FORTRAN code		
	_			
	F.1	Typical IMPC input file		
	F.2	Typical IMPC output file		
	F.3	IMPC program FORTRAN code	22	Q

G.1	TRONC program FORTRAN code
H.1	Typical IVOL program input file
H.2	
	IVOL program FORTRAN code
	Typical IVOLC program input file
	Typical IVOLC program output file
	IVOLC program FORTRAN code
I.1	Typical DF61 program input file
I.2	DF61 program input file format
I.3	Typical DF61 program output file 260
I.4	DF61 program FORTRAN code
I.5	Typical DF62 input file
I.6	Typical DF62 output file
I.7	DF62 program FORTRAN code
I.8	Typical DF9 program input file
I.9	DF9 program input file format
I.10	Typical DF9 program output file
I.11	DF9 program FORTRAN code
J.1	Commented version of the NASTRAN data deck used for the analysis
	of the interference fit induced stresses
J.2	Commented version of the NASTRAN data deck used for the global
	analysis of the lug/pin joint
.J.3	Commented version the NASTRAN data deck used for the detailed
	analysis of the lug & bushing
K.1	AL7075F.DAT File
K.2	AL7075.DAT File
K.3	
	SS174PHF.DAT File
K.5	S4340.DAT File
K.6	S4340FS\DAT File
K.7	S4340FC DAT File
4411	,
L.1	ENDUR.DAT file. Typical input file to ENDUR program 317
T. 9	Table I 1 Format

L.3	HE.DAT file								. •												319
L.4	E1.NOD file							٠													320
L.5	ENDUR program output file when th	le	ir	ıp	ut	: fi	ile	i	3	El	IV	וכ	IJ	₹.	D	A	T	fi	le		
	given in Table L.1								. ,	D r											321
L.6	ENDUR program FORTRAN code																				
M.1	Typical YMIR program input file		•																		343
M.2	S4.NOD file																				344
	Typical YMIR program output file .																				
M.4	YMIR program FORTRAN code			•	•	•					•					•			•	•	346
N.1	Typical MINER program input file .			•																	351
N.2	Typical MINER program output file																				352
	MINER program FORTRAN code .																				

4

Chapter 1

INTRODUCTION

1.1 Motivation

"Fatigue" is a gradual deterioration of the strength of mechanical components resulting from the application of an unsteady load whose maximum value is lower, and sometimes much lower, than the static breaking load. Most mechanical failures are due to fatigue.

Some basic mechanical assemblies are particularly sensitive to fatigue. Lug/pin joints are among these and their fatigue strength may well determine the life an entire structure. In spite of this, lug/pin joints are structural elements extensively used in design because of the following advantages:

- they are easy to machine,
- they can be assembled and disassembled easily, and
- in addition, they can allow a relative rotation of the two components.

In many designs, lug/pin joints cannot be replaced by any other type of linkage. The particularly low fatigue strength of lug/pin joints is generally due to:

- 1. fretting (i.e., wear due to relative alternating motion) at the lug hole (fatigue strength reduction of up to 90%), and
- 2. the high stress concentration factor at the lug (typically 3.5).

The present investigation has been undertaken:

- to identification more precisely the causes of the low fatigue strength of given lug/pin joint designs, and thus
- to be able to propose improvements to these designs.

1.2 Thesis Objectives

١

The main objective of this research is to develop a methodology for the "high cycle" i.e., long life, fatigue analysis of three dimensionnal lug/pin joints that can be adapted to allow geometrical changes (including the presence of clearance/interference fits), various loading conditions and different material properties. "Classical" methods [1,2] are limited to axially loaded bi-dimensional joints. The methodology is to be used to design more fatigue resistant lug/pin joints.

The present state of knowledge on fatigue does not permit very accurate evaluation of the endurance particularly in the high cycle range. The methodology developed in this thesis is to be used to compare alternative designs and select those that are worth testing. This methodology requires heavy computer work which may not be too expensive when compared to the time and expenses necessary to perform a purely experimental comparison of different lug/pin joint designs. Moreover, it can predict the most fatigue sensitive spots in a particular design and, therefore, make the establishment of an inspection procedure all more easier.

The main steps and techniques of the methodology developed in this research could be applied to the design of most mechanical metallic components.

1.3 Thesis Description

Chapter 2 of the thesis describes the particular lug/pin joint that will be analysed using the methodology developed here. It is representative of those found in helicopter rotors but should be seen as a non-restrictive example.

Chapter 3 deals with the finite element based stress analysis of the lug/pin joint under study. The "parametric drawing" concept will be explained and used. The finite element (F.E.) analysis will be carried out in two steps. A coarse three dimensional F.E. mesh will first be used to obtain the global stress state. A fine F.E. mesh will then be used to get more accurate values for the stress state in the lug which is the critical component of the assembly. Also computed are the stresses induced by the introduction of an interference fit bushing in the lug hole.

In Chapter 4, the fatigue analysis is performed using the so-called "safe life" approach whose principle is illustrated in Figure 1.1. The working S-N diagrams will be established. The concept of "equivalent" stresses that are computed so as to be in a position to use the S-N diagrams for multiaxial stress states will be introduced. A crack propagation criterion will also be established. The principles of cumulative damage and reliability computation will be discussed and applied to the lug/pin joint. Finally, the results of the analysis will be commented upon and possible improvements to the lug/pin joint described in Chapter 2 will be proposed.

. C.

Many programs have been written during the course of this research and are used in conjunction with the resident F.E. analysis software and pre/post processor. They are presented in the text. Their user guides and detailed codings in VAX FORTRAN are given in the Appendices.

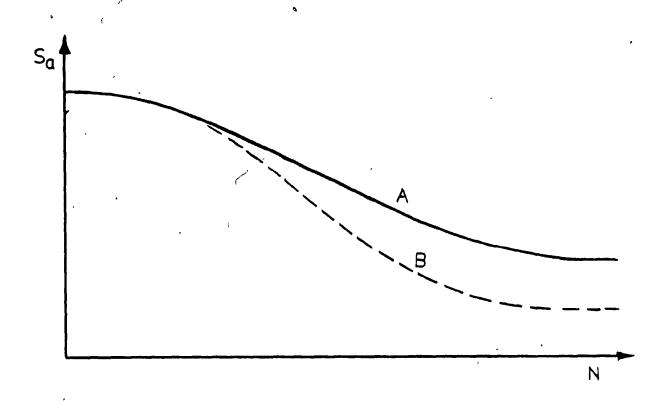


Figure 1.1: Safe-life approach

The "safe-life" approach consists in finding the number of loading cycles a component can support before failure. It is based on "S-N diagrams".

curve A is the "basic S - N" diagram and represents the alternating stress S_a a plain specimen can sustain as a function of the "life" or "endurance" N (i.e., the number of cycles).

curve B is the "working S-N" diagram and represents the alternating stress an actual component can sustain once the working conditions have been taken into account.

Chapter 2

Description of the lug/pin joint assembly under study

To demonstrate the methodology that is being developed to study the fatigue of lug/pin joints, an actual lug/pin joint assembly will be analysed. As previously mentioned, this lug/pin joint is representative of those found in helicopter rotors but should be seen as a non-restrictive example. Its geometry, the components materials, and the oscillating loading conditions are again typical of those found in this industry.

2.1 Lug/pin joint geometry

Figures 2.1 to 2.3 show the geometry of this lug/pin joint. The pin geometry has been simplified by replacing its nut by a second "head" which make the pin symmetric. Moreover both "heads" of the pin are considered as cylinders.

Figure 2.4 shows the radial clearance and interference fits occurring between the components. Notice that the pin of the lug/pin joint under study is not tightened. Interference fit bushings have been introduced in the lugs to increase their fatigue resistance. Essentially, for a certain range of interference, the increase of the mean stress due to the interference fit bushing is more than compensated for by the decrease in alternating stress [3]. Moreover, the lug/bushing fretting is not as severe as the pin/lug fretting that would occur without the presence of the bushing.

All the components of the lug/pin joint under consideration have surface roughnesses of $125\mu in \ (\approx 3\mu m)$.

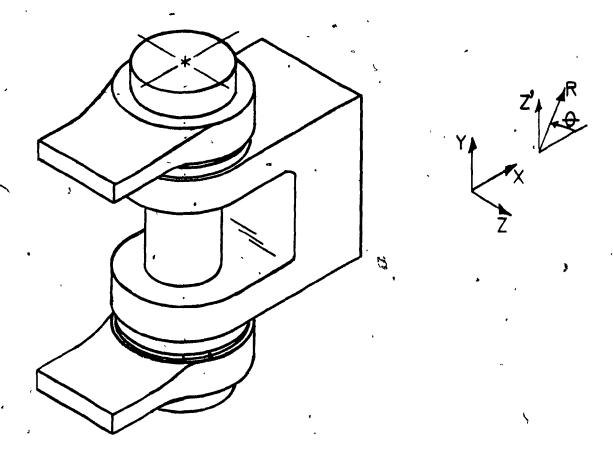
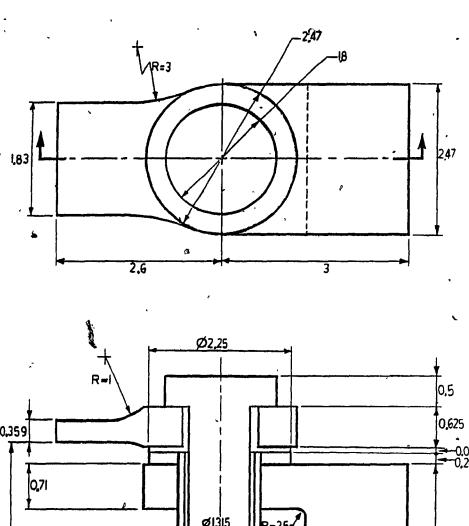



Figure 2.1: Isometric view of the lug/pin joint under study

Two coordinate systems are used in the study. The basic cartesian X, Y, Z coordinate system and the R, θ , Z' coordinate system. Their origin is at the middle of the pin axis:

The lug/pin joint has two planes of symmetry, the X-Y plane and the X-Z plane.

0,625 0,009 0,71 Ø1,125 R=25 Ø1,25 Ø1,25 Ø1,25 Ø1,25

Figure 2.2: Top & section views of the lug/pin joint under study

Dimensions are in inches.

7

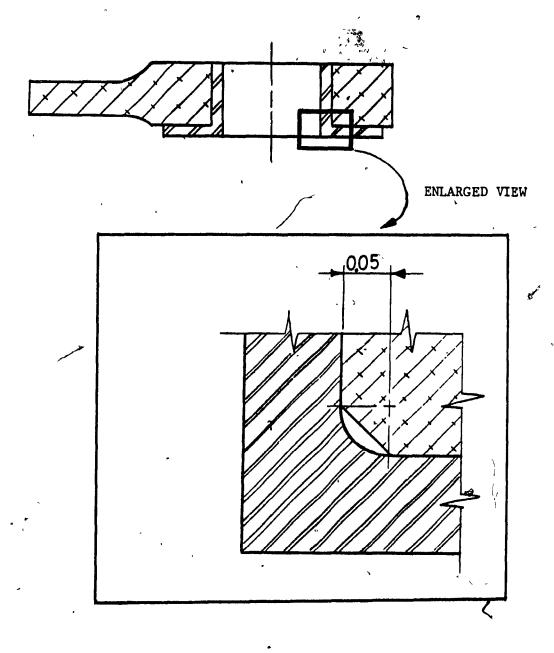
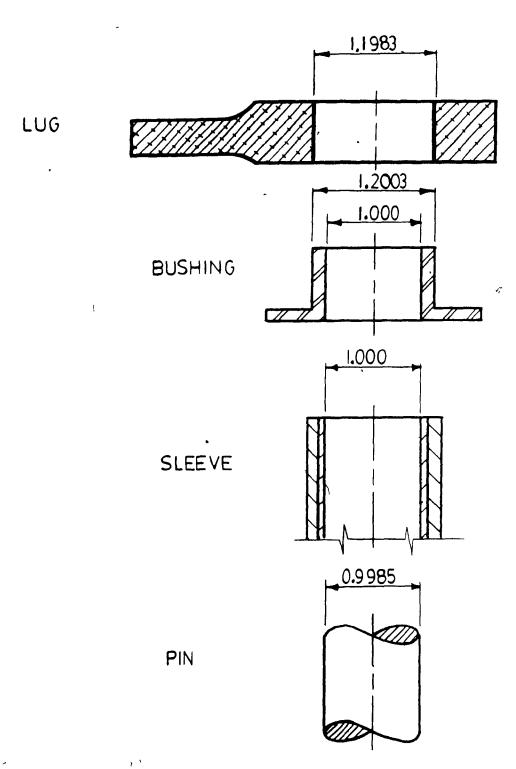



Figure 2.3: Lug & bushing geometrical detail

The bushing flange root is a stress raiser that was judged important enough to be modeled in the F.E. mesh (see Section 3.2.2). Its radius is 0.05in

O

0

٦

Figure 2.4: Radial clearance & interference fits between the components

The radial interference between the lug and bushing is 0.001in. The pin/sleeve and pin/bushing radial clearance is 0.00075in, (0.0008in will be used for the computation because the machining cannot be accurate to $5/100000^{th}in$).

2.2 Lug/pin joint components materials

Table 2.1 shows the materials used to make the various components of the lug/pin joint. Notice that the blade is made of fiber glass. This material will be considered as isotropic. This approximation does not significantly modify the stress fields in the lugs which are the critical components of the assembly.

The bushes are plated with a ≈ 0.005 in thick coating of cadmium to make the joint resistant to galvanic attack [4]. The aluminum lugs would be submitted to severe galvanic corrosion if put in direct contact with the stainless steel bushes since aluminum is anodic relative to ferric alloys.

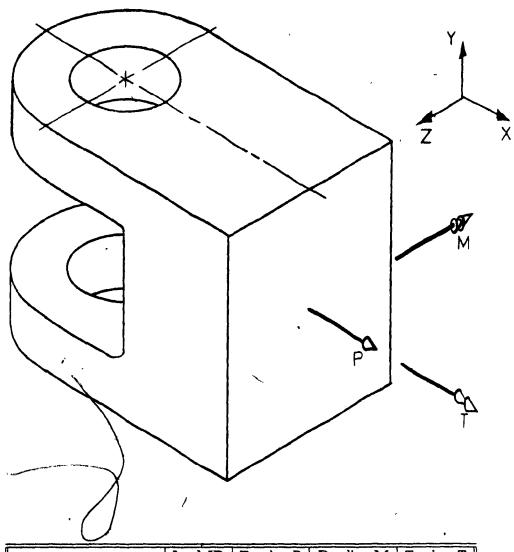

Component	Material	Young	Poisson	Yield	Tensile
		Mod.	Ratio	Strength	Strength
		(×10 ³ ksi)		$(\times 10^3 ksi)$	(×10 ³ ksi)
BUSHING	17-4 PH Stainless S.	28.5	0.272	155.	170.
SLEEVE	15-5 PH Stainless S.	28.5	0.270	. 155.	170.
SLEEVE	Copper	170	0.34	n.r.	n r.
LINING					
PIN	4340 Steel	29.0	0.32	163.	180
LUG	7075-T73 Aluminum	10.0	0.33	59.	72.
BLADE	S. Fiber Glass Roving	7.3	0.3	n.r.	n r.
WASHER	15-5 PH Stainless S.	28.5	0.270	155	170

Table 2.1: Lug/pin joint component materials

n.r.: not required for the current analysis.

2.3 Extreme loading conditions

Figure 2.5 shows the extreme loading conditions that will be applied to the geometry under study. During the fatigue process, the loading oscillates 99.97% of the total number of cycles between the low load LL1 and low load LL2 values ("Low Amplitude Cycles"). It oscillates 0.03% of the total number of cycles between the high load HL1 and high load HL2 ("High Amplitude Cycles").

•	Load ID	Tension P (lb)	Bending M $(lb \cdot in)$	Torsion T (lb·in)
Low Amplitude Cycle	LL1	+16000	+12400	+1260
	LL2	+16000	-1240Q	-1260
High Amplitude Cycle	HL1	+17400	+23900	+2870
	HL2	+17400	-23900	-2870

Figure 2.5: Extreme loading conditions applied to the blade

Tension P. The force P is applied as a uniform normal stress on the blade section (see Figure 2.6).

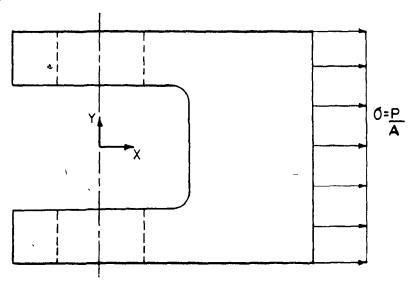


Figure 2.6: Application of the tension P on the blade

 σ is the normal stress, A is the section area.

Bending Moment M. The bending moment M is applied as a linearly distributed normal stress on the blade section (see Figure 2.7).

Torsion T. Figure 2.8 shows how the torsion T has been applied. Ten punctual forces were used. Each of the punctual force applied is proportional to the local shear stress that would have resulted from the remote application of the torsion T.

Symmetric Loading Conditions.

Loading conditions LL1 and LL2 are symmetric: to know the stress field at a point located at R, θ , Z' when the lug/pin joint is submitted to LL2, one has only to check the stress field at the point R, θ , -Z' position when the lug/pin joint is submitted to LL1.

Loading conditions HL1 and HL2 are symmetric too. The HL2 stress field can be deduced from the HL1 stress field.

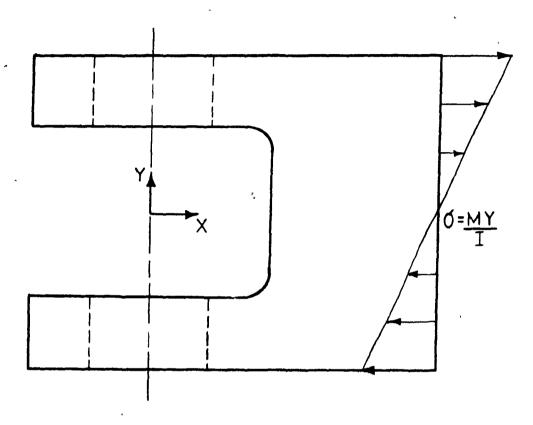


Figure 2.7: Application of the bending moment M on the blade whose section moment of inertia is I

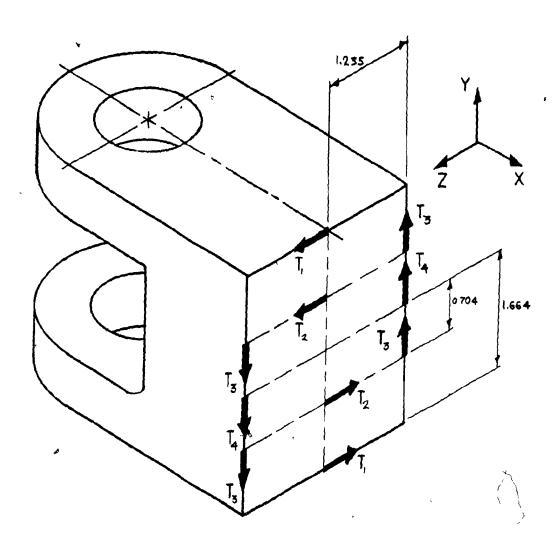


Figure 2.8: Application of the torsion T on the blade

 $T_1 = 0.0873 \cdot T$

 $T_2 = 0.0235 \cdot T$

 $T_3 = 0.0878 \cdot T$

 $T_4 = 0.0981 \cdot T$

Chapter 3

F,

Stress Analysis

The fatigue analysis of a component requires the knowledge of the stress fields resulting from the different applied loads. Because of the complexity of the lug/pin joint studied, a finite element method (F.E.M.) was selected to obtain a precise knowledge of the stress fields.

The NASTRAN finite element software was used throughout the analysis. The PATRAN pre & post-processor was used to define the lug/pin joint geometry, generate most of the NASTRAN inputs, and illustrate the NASTRAN outputs. The post-processing capacity of PATRAN will also be exploited to illustrate fatigue analysis results in Section 4.6.

3.1 Parametric Drawing

Improvement to a lug/pin joint design may be achieved through geometrical modifications. In this thesis, the concept of "parametric drawing" is exploited to simplify the modification of the lug/pin joint geometry. A parametric drawing is a drawing whose caracteristic dimensions are defined by parameters (Figure A.1 shows a "parametric drawing").

The program GEO (see Appendix A) uses the parametric drawing concept to write the inputs required by PATRAN to define a particular lug/pin joint geometry. As shown in Figure A.1 and Table A.1, twenty-four parameters completely define the geometry of a lug/pin joint of the type under study. Any of the 24 parameters can be modified, and with the help of the GEO program, PATRAN will be able to regenerate the new geometry, as long as the model topology is not modified (The

topology is modified if 2 geometric entities, e.g., 2 lines, do or do not meet according to the values that define them).

The GEO program does not check for any inconsistent geometry or topological modification. PATRAN gives a warning or an error message if an incorrect geometry is entered in which case the user has to redefine some parts the geometry within PATRAN. Figure 3.1 shows the lug/pin joint under study while Figure 3.2 shows a different lug/pin joint whose topology is similar. Chamfers and radii smaller than $\frac{1}{8}$ inch are not considered at this stage. Neither are the clearance and interference fits. They will be when defining the finite element model. In PATRAN, the lug/pin joint component geometries are defined to avoid any discontinuity in any line or plane. This avoids any node mismatch when defining the finite element mesh. Figure 3.3 shows an example of this principle.

3.2 Finite Element Definition

The definition of the finite element mesh is performed with the help of PATRAN. Most of the solid, i.e., 3-D elements used in the finite element (F.E.) mesh are 8 node hexahedron elements (see Figure 3.4). To satisfy the various component geometries, some of the elements are five sided solid elements defined by 6 nodes (see Figure 3.5).

The definition of the F.E. mesh will make some nodes belonging to 2 different components coincident, i.e., located at the same position. The interactions between the various lug/pin joint components will be defined by the way their coincident nodes interact. Most of the interactions between coincident nodes are defined using non-linear "interface" elements (Section 3.2.3).

The use of 3-D elements with nodes at the vertices was mandatory because a non-linear approach, due to the presence of the non-linear interface elements, had to be used to compute the stress fields. NASTRAN does not accept high order elements in such analyses.

3.2.1 Finite Element Definition Program

A program named FED (Appendix B) has been written to define most of the finite elements. This simplified the analysis of different geometries that would result from the modification of the characteristic dimensions of the lug/pin joint (Section 3.1).

Upon running the FED program, files that are run as PATRAN session files are created. Tables B.1 and B.2 and Figure B.1 illustrate the use of the FED program.

•		
PIN DIAMETER	[in]	(PD) =1.
PIN HEAD DIAMETER	[in]	(PHD)=1.8
PIN HEAD THICKNESS	[in]	(PHT) = . 5
•		
SLEEVE OUT DIAMETER	[in]	(SOD)=1.315
SLEEVE LINER DIAMETER	[in]	(SLD) = 1.125
•		
WASHER THICKNESS	[in]	(WT) = .21
•		
BUSHING OUT DIAMETER	[in]	(BOD)=1.2
BUSHING BASE OUT DEAMETER	[in]	(BBD) = 2.25
BUSHING BASE THICKNESS	[in]	(BBT) = .097
•		
LUG THICKNESS #1	[in]	(LT1) = .625
LUG THICKNESS #2	[in]	(LT2) = .359
LUG "IN" LENGTH	[in]	(LIL)=4.01
LUG OUT DIAMETER	[in]	(LOD) = 2.47
LUG WIDTH	[in]	(LW) =1.83
LUG REFERENCE TO PIN AXIS DISTANCE	[in]	(LRA)=2.6
LUG "IN" RADIUS	[in]	(LIR)=1.
LUG "OUT" RADIUS	[in]	(LOR)=1.
LUG SUPPORT RADIUS	[in]	(LSR)=3.
•	•	*
BLADE THICKNESS	[in]	(BT) =3.328
BLADE SUPPORT DIAMETER	[in]	(BSD)=2.47
BLADE SUPPORT THICKNESS	[in]	(BST)=.71
BLADE SUPPORT LENGTH	[in]	(BSL)=2.6
BLADE SUPPORT FILLET RADIUS	[in]	(BSF)=.25
BLADE REFERENCE TO PIN AXIS DISTANCE	[in]	(BRD)=3.
*		

Table 3.1: GEO program input file used to generate the lug/pin joint under study (See Figure 3.1)

Figure 3.1: Lug/pin Joint Under Study

The dimensions are given in Table 3.1.

```
(PD) =1.
 PIN DIAMETER
                                        [im]
                                                (PHD)=1.8
 PIN HEAD DIAMETER
                                        [in]
                                                (PHT)=.5
PIN HEAD THICKNESS
                                        [in]
                                                (80D)=1.315
 STEEVE OUT DIAMETER
                                        [in]
 SLEEVE LINER DIAMETER
                                        [in]
                                                (SLD)=1.125
WASHER THICKNESS
                                                (VI) =.21
                                        [in]
MUSHING OUT DIAMETER
                                        [in]
                                                (BOD) = 1.33
BUSHING BASE OUT DIAMETER
                                        [in]
                                                (BBD)=2.25
                                                (BBT) = 097
SUSHING BASE THICKNESS
                                        [in]
LUG THICKNESS #1
                                        [in]
                                                (LT1)=.725
LUG TRICKYESS #2
                                                (LT2)=.359
                                        [in]
LUG "IN" LENGTH
                                                (LIL)=4.01
                                        [1n]
LUG OUT DIAMETER
                                                (LOD)=2.34
                                       [in]
LUG WIDTH
                                       [in]
                                                (LY) =1.83
LUG REFERENCE TO PIN AXIS DISTANCE
                                       [in]
                                                (LRA)=2.6
LUG "IN" RADIUS
                                        [in]
                                                (LIR)=1.
LUG "OUT" RADIUS
                                        [in]
                                                (LOR)=1.
LUG SUPPORT RADIUS
                                                (LSR)=3.
                                       [in]
BLADE THICKNESS
                                       [in]
                                                (BT) =3.328 4
BLADE SUPPORT DIAMETER
                                        [in]
                                                (BSD)=2.47
BLADE SUPPORT TRICKNESS
                                       [in]
                                                (BST) = .71
BLADE SUPPORT LENGTH
                                       [in]
                                                (BSL)=2.6
BLADE SUPPORT PILLET RADIUS
                                       [in]
                                                (BST)=.26
BLADE REFERENCE TO PIN AXIS DISTANCE [in]
                                                (BRD)=3.
```

Table 3.2: GEO program input file used to generate a lug/pin joint topologically similar to the lug/pin joint under study

۶,

The following values have been changed (refer to Table 3.1).

- 1. BOD = 1.33 instead of 1.2
- 2. BBD = 2.10 instead of 2.25
- 3. LT1 = 0.725 instead of 0.625
- 4. LOD = 2.34 instead of 2.47

(See Figure 3.2)

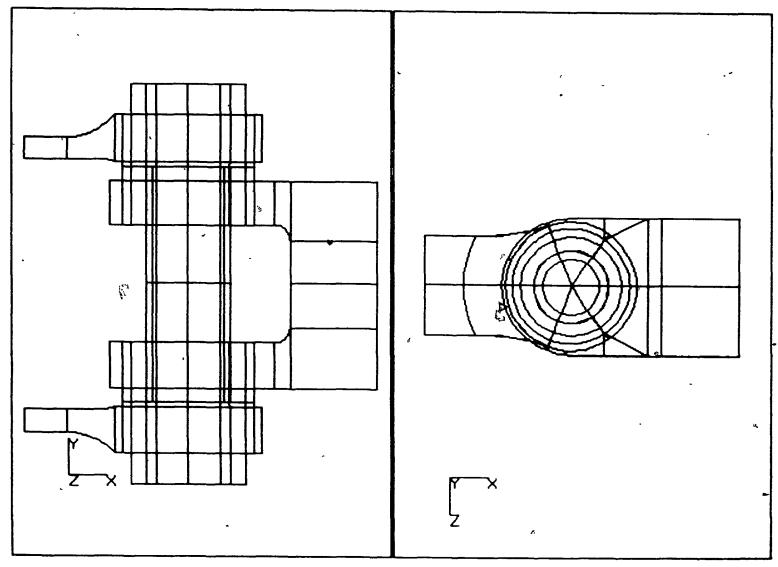
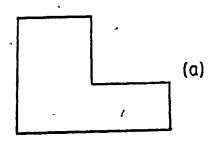
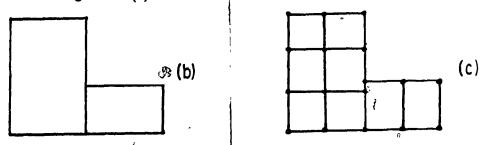
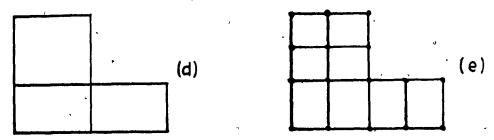




Figure 3.2: Lug/pin joint topologically similar to the lug/pin joint under study


The dimensions are given in Table 3.2.

Suppose a bi-dimensional F.E. mesh has to be created on the geometry shown in Figure 3.3(a).

Using the preprocesser, one may define this shape using 2 rectangles (Figure 3.3(b)) and then, define the finite element mesh in each rectangle with Figure 3.3(c). If no special care is taken, the nodes on the common boundary of the rectangle will probably not match as shown in Figure 3.3(c).

However, if the shape is defined by 3 rectangles, Figure 3.3(d), the F.E. mesh will always match, Figure 3.3(e).

This principle has been applied to the definition of the lug/pin joint geometry.

Figure 3.3: Example of geometrical continuity principle

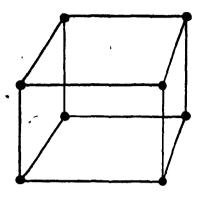


Figure 3.4: Eight node hexahedron element
This type of element is named "HEXA" in NASTRAN.

£,

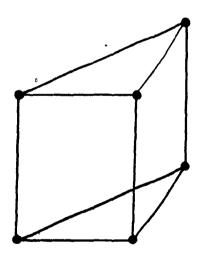


Figure 3.5: Six node five sided element

This type of element is named "PENTA" in NASTRAN.

The user may have to edit the FED output files and modify slightly the PATRAN statements to fit his needs or he may modify the F.E. mesh once the FED output files have been executed by PATRAN.

3.2.2 Finite Element Analysis Methodology

The following two step method, illustrated in Figure 3.6, has been used to obtain an accurate knowledge of the stress field in the lugs.

First step: Global analysis of the lug/pin joint using a coarse F.E. mesh.

For the *LL1* and *HL1* loadings shown in Figure 2.5, a coarse F.E. mesh modeling the complete geometry was used to find the following boundary displacement fields:

- 1. the radial displacement imposed by the pin on the bushings,
- 2. the axial (Z') displacement imposed by the washers to the bushings,
- 3. the axial displacement imposed by the pin heads to the lugs.

The friction between the components has been neglected. If it had not been neglected, it would have been necessary to consider the R, θ , Z' displacements at the 3 interfaces given above.

The mesh, shown in Figure 3.7, has \$625 nodes, 864 solid elements (HEXA or PENTA), and 468 gap elements used to simulate the effects of clearance/interference fits between the components (Section 3.2.3). Table 3.3 shows the inputs to the FED program that were used to generate the model. Some HEXA elements in the F.E. model generated by the FED output file had angles near 180°, they were replaced by PENTA elements (Figure 3.8). As previously mentioned, the analysis was non-linear and therefore required a large amount of computer time. As explained in Chapter 2, the stress and displacements fields induced by the loading conditions HL2 and LL2 could be deduced from the HL1 and LL1 stress and displacement fields.

Second step: Detailed analysis of the lug using a fine F.E. mesh.

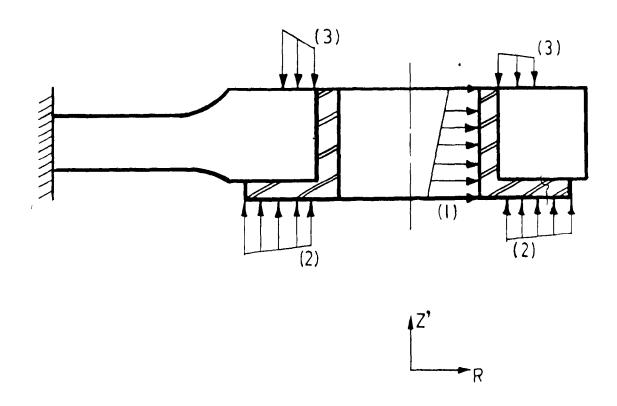


Figure 3.6: Boundary displacements applied to the lug & bushing

The first step of the method was used to get what will be called "the boundary displacements" (1), (2), (3). The second step used the boundary displacements (1), (2), (3) to accurately compute the stress fields in the bushing and the lug. A fine mesh was used.

National Library of Canada

Canadian Theses Service

Bibliothèque nationale du Canada

Service des thèses canadiennes

NOTICE

AVIS

THE QUALITY OF THIS MICROFICHE IS HEAVILY DEPENDENT UPON THE QUALITY OF THE THESIS SUBMITTED FOR MICROFILMING.

UNFORTUNATELY THE COLOURED ILLUSTRATIONS OF THIS THESIS CAN ONLY YIELD DIFFERENT TONES OF GREY.

LA QUALITE DE CETTE MICROFICHE DEPEND GRANDEMENT DE LA QUALITE DE LA THESE SOUMISE AU MICROFILMAGE.

MALHEUREUSEMENT, LES DIFFERENTES ILLUSTRATIONS EN COULEURS DE CETTE THESE NE PEUVENT DONNER QUE DES TEINTES DE GRIS.

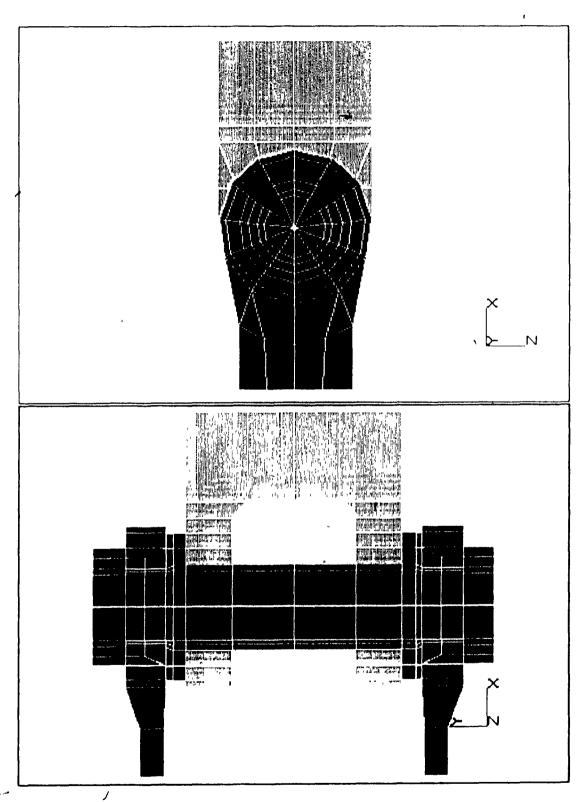


Figure 3.7: Coarse F.E. mesh used to model the lug/pin joint

```
LUG & PIN F.E. DEFINITION (refer to Figure B.1)
 L1 = 2
 L21=1
 L22=1
 L3 =1
 L4 = 1
 L5 -1
 L6 =2
 L7 -1
 B1 =1
 B2 =2
P21-1
P3 -1
W1 =1
D1 -1
D2 =1
D21=1
D22=1
D3 =1
D4 =1
D5 =1
D6 =1
S1 =1
52 -1
```

ઇર

Table 3.3: FED program input file used to generate the coarse F.E. mesh.

The file format is explained in Appendix B. See also Figure 3.7.

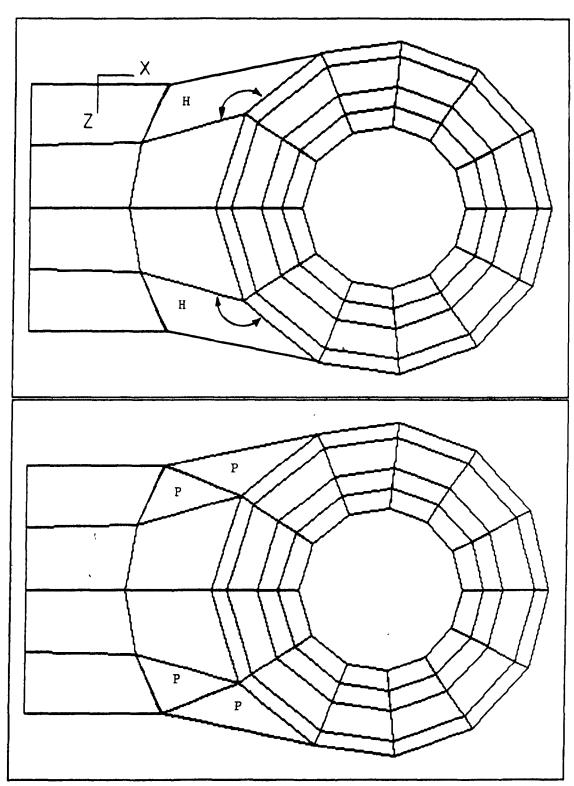


Figure 3.8: Skew elements replacement

The hexahedron elements having angles near 180° (indicated by "H") have been replaced by five sided solid elements (indicated by "P").

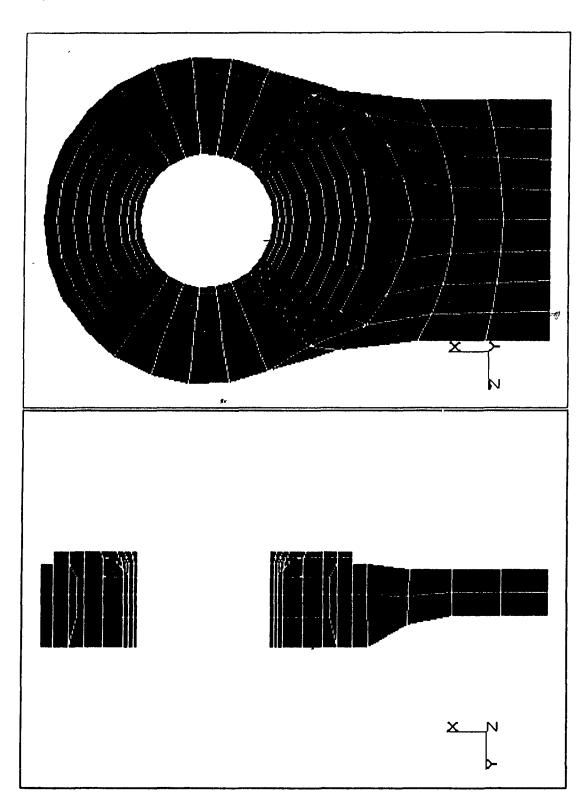


Figure 3.9: Lug & bushing fine F.E. mesh.

The boundary displacements (1), (2), (3), computed in the first step were applied to the bushing and lug model. A fine mesh that takes into account the stress concentration factors was used. The model, shown in Figure 3.9, has 1932 nodes, 1296 solid elements and 240 gap elements. The results of the second step has provided a much more accurate answer.

Table 3.4 shows the input to the FED program that were used to generate the model. Only the FED output files related to the lug and bushing were kept. Some of their instructions were modified to get a coarser mesh far from the bushing and a fine mesh at the bushing notch root (Tables 3.5, 3.6). As in the first step, some HEXA elements having angles near 180° were replaced by PENTA elements.

The OFFSET program (see Appendix C) was used to model the lug chamfer and the radius at the lug flange root (see Figures 2.3, 3.10, 3.11). Inputs and outputs to the OFFSET program that were used are shown in Tables 3.7 and 3.8. Some elements belonging to the lug had to be deleted (see Figure 3.11).

Figure 3.10: Lug chamfer and bush flange root details

(See Figure 3.11)

3.2.3 Component Interface Modeling

The lug/pin joint under study is made of 9 components. This section of the thesis explains how the interactions between these components were modeled taking into

```
LUG & BUSH F.E. DEFINITION (refer to Figure B.1)
 L1 =4
 L21=2
 L22=2
 L3 -1
L4 = 4
L5 =2
L6 =4
L7 = 2
B1 = 2
B2 = 3
P1 =1
P21=1
P3 -1
W1 =1
D1 -1
D2 = 1
D21=1
D22=1
D3 -1
D4 = 1
D5 -1
D6 =1
S1 =1
S2 =1
```

Table 3.4: FED program input file used to create the fine F.E. mesh.

Only the output files related to the lug and bushing were kept.

```
$ LUG F.E. DEFINITION
$
GF, H103/114 ., 5/3/5/2.25,2,ED9
GF, H106/107/117/118 ., 5/3/5/2.25,2,ED9
GF, H104/115 ., 3/3/5/1.717071.2 .F3
GF, H108/109/119/120 ., 3/3/5/1.717071.2 .F3
GF, H101 .,3/5/3,2
GF, H102 .,5/3/3,2
GF, H105 .,3/5/2/1.717071.2
GF, H110/111 .,2/3/5///1.717071.2
GF, H112 .,5/3/3,2
GF, H113 .,3/5/3,2
GF, H116 .,5/3/2//1.717071.2
GF, H1112 .,5/3/3,2
GF, H1112 .,5/3/3,2
GF, H1112 .,5/3/3///1.717071.2
GF, H1112 .,5/3/3///1.717071.2
CF, H1112 .,5/3/3///1.717071.2
CF, H1112 .,5/3/3///1.717071.2
CF, H1112 .,5/3/3///1.717071.2
```

Table 3.5: Modified FED output file used to generate the lug fine F.E. mesh (See Figure 3.9)

```
$ BUSHING F.E. DEFINITION

$ GF.H601/613 ..3/4/5.2,ED9

GF.H605/606/617/618 ..3/4/5.2,ED9

GF,H602/614 ..3/3/5.2,ED9

GF,H604/616 ..4/5/5,2,ED9

GF,H607/608/619/620 ..3/3/5.2,ED9

GF,H611/612/623/624 ..4/5/5//2.25,2,ED9

GF,H621/622 ..3/5/3,2

GF,H603 ..5/3/3,2

GF,H615 ..3/5/3,2

CF,H601T624,HEX,M6,6001T6999
```

Table 3.6: Modified FED output file used to generate the bushing fine F.E. mesh (See Figure 3.9)

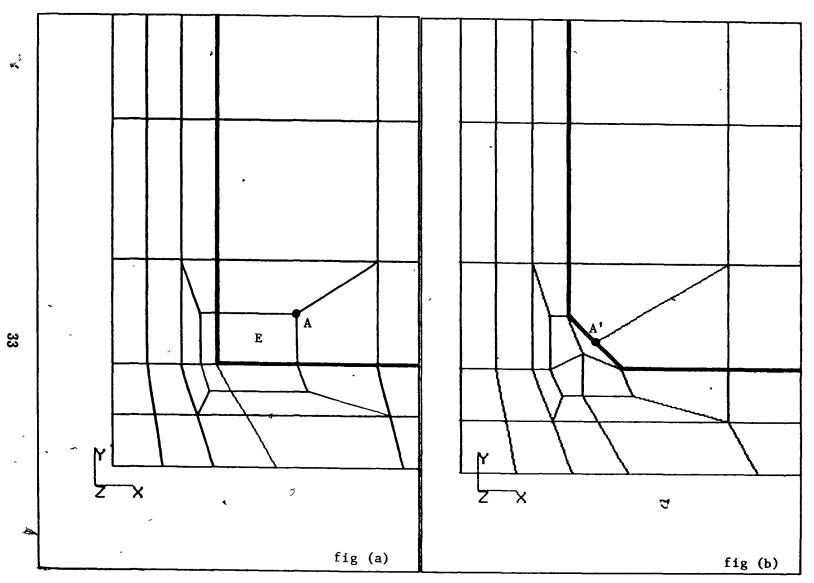


Figure 3.11: F.E. mesh at the bushing flange root and lug chamfer

Figure a) shows the mesh as produced by the files shown in Tables 3.5 and 3.6

Figure b) shows the mesh once modified by the Table 3.8 instructions. Note that the element indicated by "E" in a) has also been deleted.

BUSH FLANGE ROOT MODEL

```
PATRAN.OUT FILE
                     : [MCGO1.F] PATRAN.OUT
 R1
       R2
            TETA1
                    TETA2
                              Z'1
                                       Z'2
                                               DR
                                                      DZ.
.599 .601
             -360.
                     360.
                                     1.972 .014645 .014645
                           1.970
.582 .601 *
             -360.
                     360.
                           2.016
                                     2.019
                                                0. .00358
.674 .676
             -360.
                                     1.972 -.025 0.
                     360.
                           1.970
.764 .767
             -360.
                     360.
                           1.921
                                     1.924 -.014375 0.
.674 .676
             -360.
                     360.
                           2.016
                                     2.019 -.05 -.02142
.684 .687
             -360
                           1.945 1.947 -.025 0.
                   360.
```

Table 3.7: OFFSET program input file used to model the bushing flange root and the lug chamfer

See Table 3.8

```
NOD,
      826,0FF,-0.005585, 0.014645,-0.013538
NOD,
      894,0FF,-0.009313, 0.014645,-0.011302
      895,0FF,-0.002104, 0.014645;-0.014493
NOD,
NOD,
     988,0FF,-0.012171, 0.014645,-0.008145
NOD.
     989,0ff, 0.001451, 0.014645,-0.014573
NOD, 1082,0FF,-0.014000, 0.014645,-0.004299
NOD, 1085,0FF, 0.004922, 0.014645,-0.013793
NOD, 1173,0FF,-0.014645, 0.014645, 0.000000
NOD, 1184,0FF, 0.008145, 0.014645,-0.012171
NOD, 1249,0FF,-0.014000, 0.014645, 0.004299
NOD, 1278, OFF, 0.010874, 0.014645, -0.009810
NOD, 1343.0FF,-0:012171, 0.014645, 0.008145
NOD, 1380,0FF, 0.012918, 0.014645,-0.006899
NOD, 1470,0FF,-0.009313, 0.014645, 0.011302
NOD, 1514, OFF, 0.014200, 0.014645, -0.003581
```

```
NOD, 1769,0FF,-0.008402, 0.000000,-0.023546
NOD, 1773,0FF,-0.018563, 0.000000,-0.016746
NOD, 1777,0FF,-0.013904, 0.000000,-0.020777
```

Table 3.8: OFFSET program output file used to modify the F.E. mesh near the bushing flange root

ş,

The OFFSET input file is given in Table 3.7

It was executed as a PATRAN session file to get Figure 3.11(b) after the mesh shown in Figure 3.11(a) had been generated.

account clearance and interference fits where necessary.

Interactions between the components were simulated using the following means: 'equivalencing', "multipoint constraints', "bar elements', and "gap elements'. These actually define interactions between pairs of coincident nodes that belong to 2 different components. To insure that "coincident" nodes have exactly the same coordinates (to the last digit), these are rounded off in the NASTRAN data deck. The TRONC program was used to perform this task (see Appendix G).

There are 12 possible interactions between the lug/pin joint components. The Table 3.9 and Figure 3.12 show how they have been included in the model.

Clearance Fit Modeling

Clearance or exact fit are modeled using NASTRAN "GAP" elements [5]. Gap elements have a very high rigidity when closed and a very low rigidity (but still greater than zero) when open (Figure 3.13).

Since gap elements are non-linear, the solution of a F.E. model with gap elements is found through an iterative process. NASTRAN solution 66 "material non-linear" was used. The ITER method on the NASTRAN NLPARM card was selected [5].

The gap elements were not defined in the FATR AN preprocessor and, hence, a program was written to perform this task (Append x D). The PATRAN to NASTRAN translator, "PATNAS", can generate GAP elements but, because of the number of interactions between the components (see Table 3.9), it is cumbersome to use. From a neutral file, PATNAS can generate only one set of GAP elements having the same property (i.e., referring to the same PGAP card). The generation of GAPs with different properties would require the generation of many PATRAN neutral files.

Interference Fit Modeling Using Bar Elements

The prestressing of components (via interference fit or the tightening of a bolt for example) can be modeled by the use of bar elements. These elements are placed between the coincident nodes of the interacting parts. Their initial deformation, set by the NASTRAN DEFORM cards [5], is equal to the interference fit length. Since they are set to a very high relative rigidity, they "un-deform" almost completely, thus inducing stress in the interacting parts. The offset parameter of the CBAR NASTRAN cards [5] is used to give a short arbitrary finite length (0.002inch was chosen here) to the bars. The bar elements used are constrained along their length only thereby transmiting axial stresses only (see Appendix E).

COMPONENTS	DIRECTION	INTERFACE ,	FIG 3.12 ID
PIN - LUG	Z'	exact fit	1
LUG - BUSHING	R	INTERFERENCE FIT:	2
		0.001in ON RADIUS	
LUG - BUSHING	Z'	exact fit	3
PIN - BUSHING	Z'	(a)	4
PIN - BUSHING	R	CLEARANCE FIT:	5
		0.0008in ON RADIUS	
WASHER - BUSHING	Z'	exact fit	6
WASHER - BLADE	Z'	(b)	7
SLEEVE - BUSHING	Z' .	(c)	8
SLEEVE - BLADE	R	(d)	9
PIN - SLEEVE	R	CLEARANCE FIT:	10
		0.0008in ON RADIUS	
WASHER - SLEEVE	R	(e)	11
SLEEVE - LINING	R	(f)	12

- (a): the pin lug interface prevents the pin and bushing from touching axially,
- (b): it is assumed that every pair of points of the washer-blade interface have the same Z' displacement,
- (c): the washer bushing interface prevents the bushing and sleeve from touching axially,
- (d): the sleeve and blade are considered as tightly joined,
- (e): there is a radial gap between the washer and the sleeve large enough to prevent them from touching, and
- (f): the sleeve and its lining are considered tightly joined.

Table 3.9: Component interactions

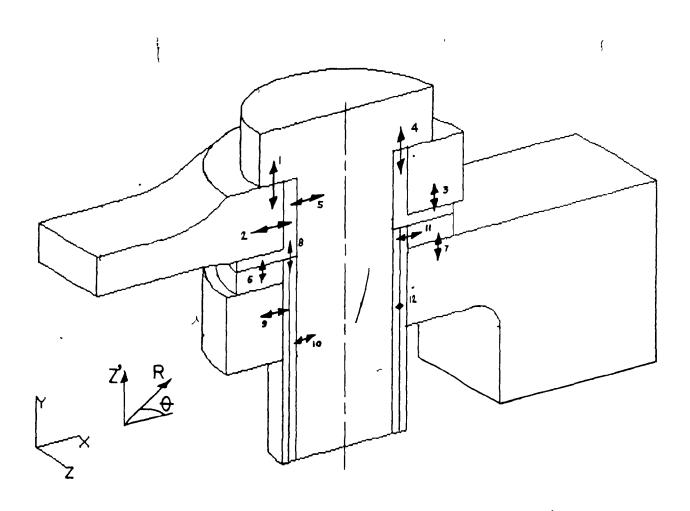
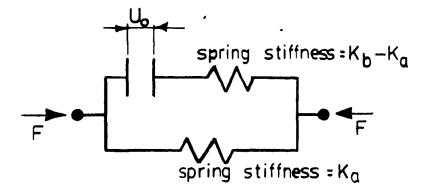



Figure 3.12: Interactions between the components See Table 3.9.

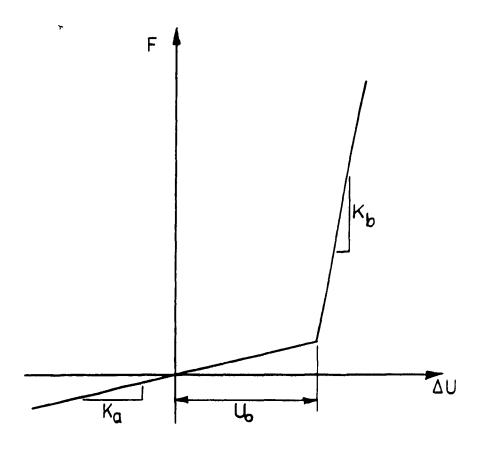


Figure 3.13: Gap Element as used for clearance fit modeling

 ΔU is the distance between the interacting nodes. F is the force (F > 0 when in compression).

This method of computing the interference fit induced stress is linear and was used to compute the interference fit effects between the lug and the bushing when the joint is not loaded (see Section 3.3.1). Unfortunately, it could not be used in an NASTRAN non-linear analysis since NASTRAN does not accept any pre-deformation in non-linear analyses. Using an NASTRAN non-linear analysis was required when analyzing the complete problem since the clearance fit modeling is non-linear.

Interference Fit Modeling Using Gap Elements

For the reason explained in the above paragraph, the interference fit had to be modeled using gap elements in situations where non-linear analyses had to be used. Figure 3.14 shows how the interference fit can be modeled with gap elements.

Other Interfaces

The washers are assumed to always stay in contact with the blade (interface (7) in Table 3.9 and Figure 3.12). NASTRAN MPC [5] cards are used to define this type of interaction. The program IMPC (Appendix F) was used to create them.

The sleeve and its lining (interaction (12) in Table 3.9 and Figure 3.12) are tightly joined. So are the sleeve and the blade (interaction (9) in Table 3.9 and Figure 3.12). Since each pair of the interface nodes have the same R, θ , Z' displacements, they can be replaced by one node only. This task was performed by the PATRAN EQUIVALENCING instruction [6].

3.2.4 Boundary Constraints

Every component must be constrained in such a way as to avoid rigid body motion, i.e., displacement without any stress. Table 3.10 explains how every component of the lug/pin joint is constrained to avoid rigid body motion. The lug constraints were set within PATRAN. For the other components, the constraints were input directly into the NASTRAN data deck. When arbitrary nodes had to be determined to constrain the components, they were with the help of the IVOL program (Appendix H). NASTRAN MPC cards [5] were used to make the R, θ , or Z' displacement of two nodes equal.

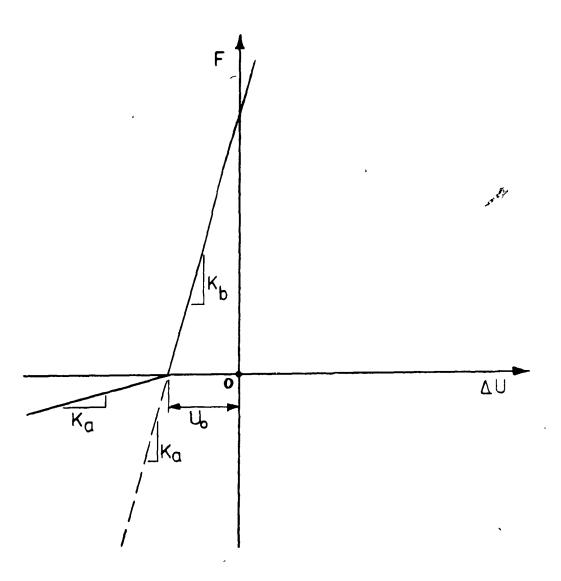


Figure 3.14: Gap Element as used for interference fit modeling

 U_0 is the interference fit length.

If it is certain that, upon loading, the components in contact will not separate, the gap tensile rigidity K_a can be set equal to its compressive rigidity K_b as shown by the dashed line. The convergence will then be much faster. Unfortunately, it was not the case for the lug/pin joint under study.

Table 3.10: Boundary constraints

- LUGS: Their left ends (see (1) on Figure 3.15) are constrained in R, θ , Z'.
- BUSHINGS: The gap elements constrain the bushings in R and Z'. The θ -motion of one arbitrary node of each bushing is made equal to the θ -motion of the coincident node on the lugs (see (2) on Figure 3.15).
- WASHERS: The R-motion of one node on each washer is made equal to the R-motion of the coincident node on the blade. The θ -motion of 2 nodes on each washer are made equal to the θ -motion of the 2 coincident nodes on the blade (see (3) on Figure 3.15). The Z'-motion is constrained by the gap elements.
 - SLEEVE: The sleeve is considered tightly joined to the blade. R, θ , Z' motions of the sleeve are consistent with the R, θ , Z' motions of the blade. The gap elements between the sleeve and the pin constrain the R-motion. The sleeve nodes located on the X axis are constrained in θ .
 - BLADE: The blade nodes located on the X-axis are constrained in θ . The Z'-motion of the blade is constrained by gap elements. The R-motion is constrained because of the sleeve.
 - PIN: The pin nodes located on the X-axis are constrained in θ . The R and Z' motions of the pin are constrained by the gap elements.

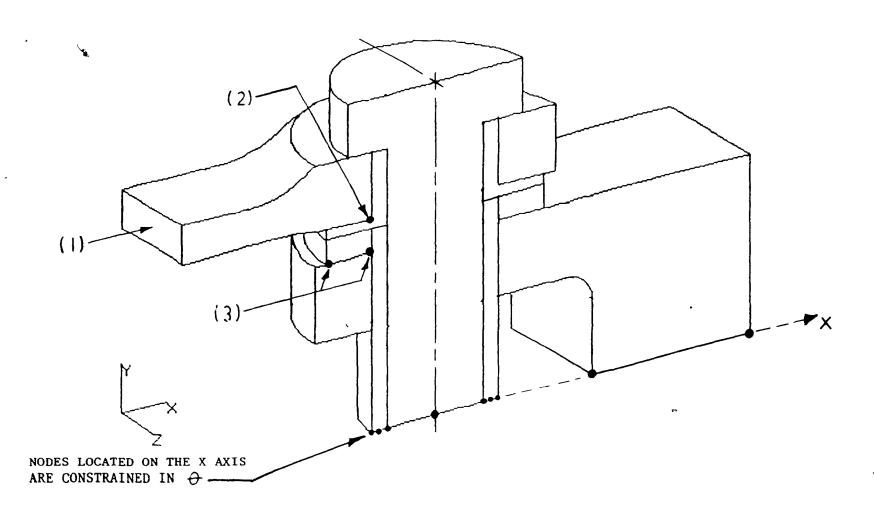


Figure 3.15: Constraints to avoid rigid body motion
Only one quarter of the model is shown here. (Refer to Table 3.10).

3.3 Lug & Bushing Interference Fit Analysis

3.3.1 Lug & Bushing Interference Fit Analysis using a F.E. Model

Table J.1 in Appendix J shows a commented version of the NASTRAN data deck used for this analysis.

The fine F.E. mesh defined in Section 3.2.2 (Figure 3.9) was used to evaluate the stresses induced on the lug by the bushing interference fit. Prestrained bar elements (see Section 3.2.3) which are defined with the help of the IBAR program (see Appendix E) were used.

A bar stiffness of 1.0E8lb/in was chosen. To get that value, the bar length was set to 0.002in, the cross section to $1.00in^2$, and the material Young modulus to 20.0E4psi. I.e.:

Bar stiffness =
$$\frac{\text{Young's modulus} \times \text{Bar cross section}}{\text{Bar length}}$$

$$= \frac{20.0E4psi \times 1.00in^2}{0.002in}$$

$$= 1.0E8lb/in$$

Figures 3.16 to 3.19 show the stress field induced by the lug/bushing interference fit. The radial interference fit is 0.001 inch (Figure 2.4).

The maximum final bar deformation was found to be -0.146% of the interference fit length.

The inner face of the bushing is not constrained and, therefore the radial stress there should be zero. On Figure 3.19, it is around $-1000 \, psi$ which is approximately 8% of the radial stress range (from -8000 to 4000 psi).

3.3.2 Computation of Stresses using Lamé's Equations

In this section, the results obtained from the F.E. model in the previous section are compared to some theoretical results. Upper and lower bounds for the radial stress at the lug/bushing interface will be computed using the well known Lamé's eqns(3.1 & 3.2) which correspond respectively to Figures 3.20 and 3.21.

$$P = \frac{d}{\frac{D}{E_r}(\frac{(C^2 + D^2)}{(C^2 - D^2)} + \nu_r) + \frac{B}{E_b}(\frac{(B^2 + A^2)}{(B^2 - A^2)} / \nu_b)}$$
(3.1)

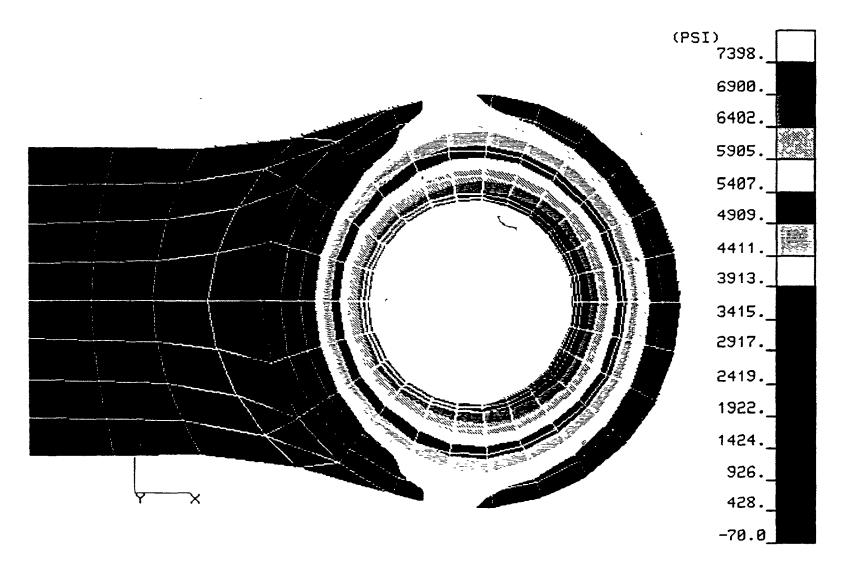


Figure 3.16: Tangential stress induced in the lug by the interference fit bushing

The lug is seen from below and the bushing is not shown.

45

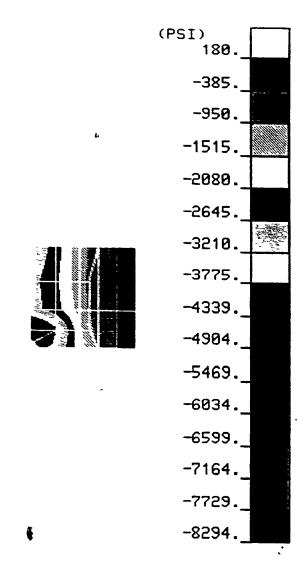


Figure 3.17: Radial stress induced in the lug by the interference fit bushing (section view)

The bushing is not shown.

46

Figure 3.18: Enlarged view on next figure

48

(PSI) 4188. 3356. 2524. 1692. 860. 27.6 -805. -1637. -2469. -3301. -4133. -4965. -5798. -6630. -7462. -8294.

Figure 3.19: Radial stress at the lug/bushing interface

The radial stresses on both sides of the bushing/lug interface should match. They approximatively do except near the lug chamfer.

$$P = \frac{E_r d}{D(\frac{(C^2 + D^2)}{(C^2 - D^2)} + \nu_r)}$$
 (3.2)

where:

- P is the radial stress at the bush/ring interface,
- A is the bushing inner radius,
- B is the bushing outer radius,
- C is the ring outer radius,
- D is the ring inner radius,
- d is the radial interference,
- E_r is the ring Young's modulus,
- Eb is the bushing. Young's modulus, .
- ν_r is the ring Poisson's ratio and
- ν_b is the bushing Poisson's ratio.

Here, from Table 2.1:

- $E_r = 10.0E6psi$,
- $E_b = 28.5 E6 psi$,
- $\nu_r = 0.33$ and
- $\nu_b = 0.272$.

Lower bound. A lower bound for the radial stress can be evaluated using eqn(3.1) (Figure 3.20) with the following geometrical values:

- d = 0.001in,
- A = 0.5in,
- B = D = 0.6in and
- C = 1.235in.

In this case, the radial stress is 4388psi.

Upper bound. An upper bound can be computed by considering the case illustrated in Figure 3.21. The deformation d = 0.001in is completely taken by the lug. The outer radius has been chosen equal to the distance between the pin axis and the lug end, i.e., C = 2.6in. Knowing that inner radius is D = 0.6in, the radial pressure computed using eqn (3.2) is found to be 11554psi.

Comparison & Discussion. The radial pressure at the lug/bushing interface should be between 4388psi and 11554psi. From Figure 3.19, it is between ≈ 3000 and $\approx 8000psi$.

Since the minimum value obtained by the F.E. analysis is lower than the lower bound, it means the fr.E. mesh is not fine enough and, therefore, underestimates the stress concentration factor around the lug hole. This comment will also be valid for the detailed stress analysis of the loaded lug (Section 3.5).

2.00

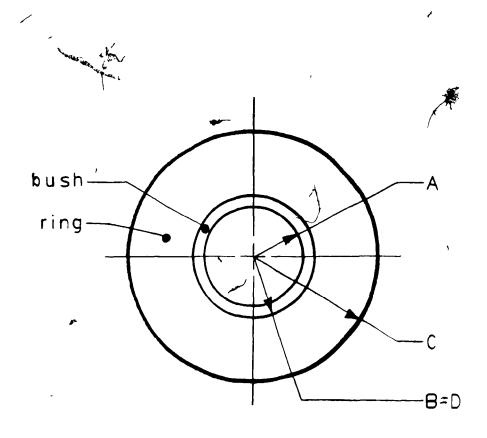


Figure 3.20: Computation of the radial stress lower bound See eqn(3.1).

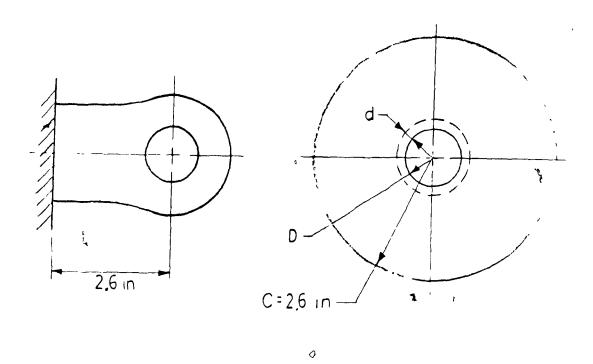


Figure 3.21: Computation of the radial stress upper bound See eqn(3.2).

3.4 Lug/Pin Joint Global Stress Analysis Results

This section presents the results of the "first step" of the stress analysis (see Section 3.2.2). Table J.2 in Appendix J shows a commented version of the NASTRAN data deck used for this analysis. The results obtained from this analysis are shown in the following figures:

- Figures 3.22 and 3.23: section view of lug/pin joint subjected to LL1.
- Figures 3.24 and 3.25: section view of lug/pin joint subjected to HL1
- Figure 3.26: top lug, seen from below, when submitted to HL1

Ŋ,

The most compressed gap element was gap #19025. It connected sleeve node #503 to pin node #1479. It was compressed to 2875lb when the lug/pin joint was submitted to HL1. Since the gap stiffness when closed was set to $1.0E7 \ lb/in$, it means that it had "over-deformed" $0.29E - 3 \ in$ (Figure 3.27). The radial displacement of nodes 503 and 1479 were -11.586E - 3 and $-10.499E - 3 \ inch$ respectively. So the "over-deformation" was 3% of the deformation.

53

Figure 3.22: Radial stress, section view of lug/pin joint when subjected to LL1

55

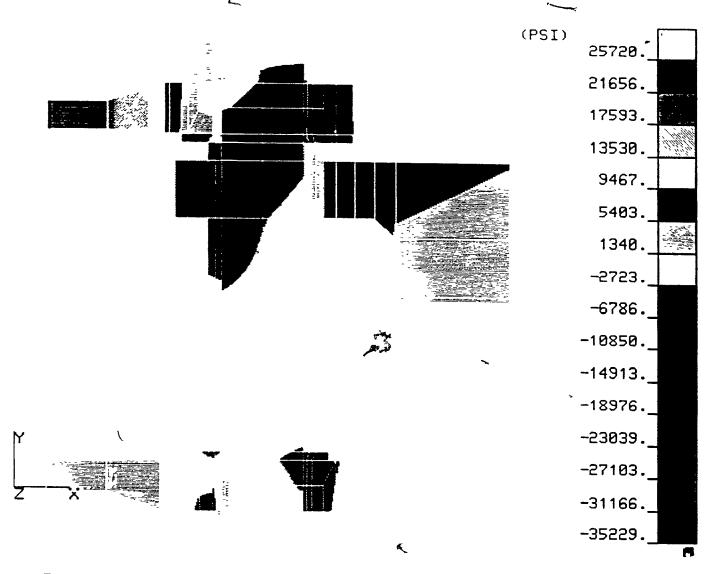



Figure 3.23: Axial stress, section view of lug/pin joint when subjected to LL1

56

Figure 3.24: Radial stress, section view of lug/pin joint when subjected to HL1

57

Figure 3.25: Axial stress, section view of lug/pin joint when subjected to HL1

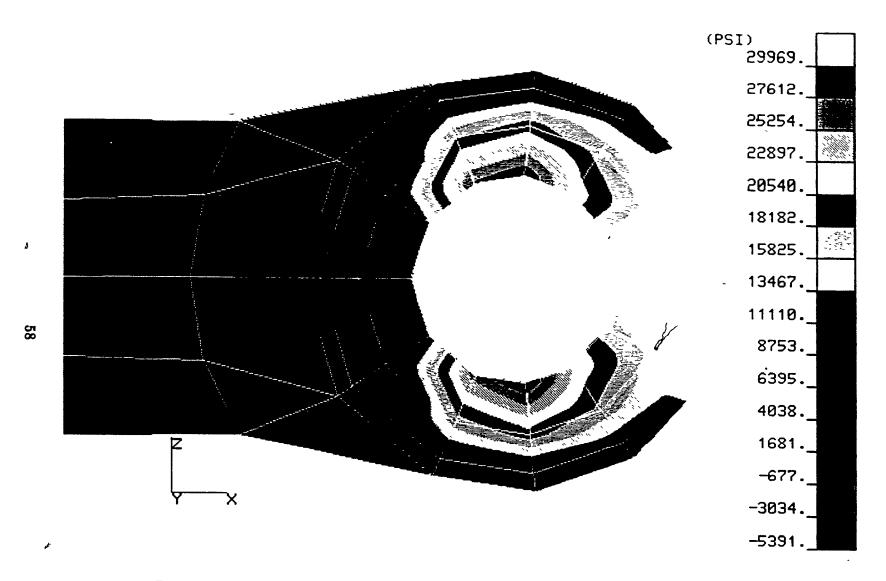


Figure 3.26: Radial stress in the top lug (seen from below), when submitted to HL1

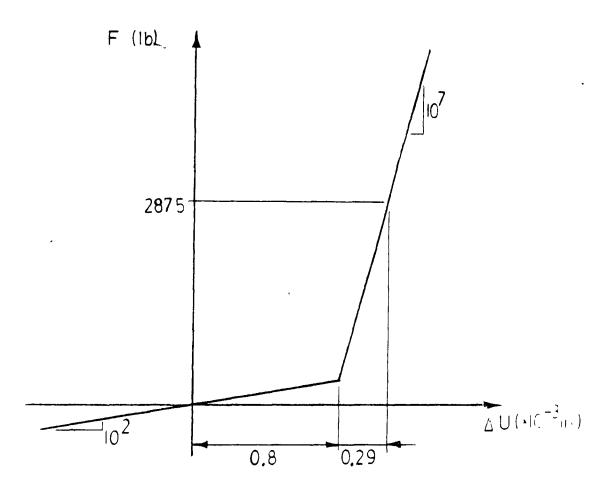


Figure 3.27: Gap Element #19025 when the lug/pin joint was submitted to IIL1 It deformed (0.8E-3 + 0.29E-3) in.

3.5 Lug Detailed Analysis Results

Recalling that the purpose of the first step was mainly to find the boundary displacements at the lug & bushing (Figure 3.6), the boundary displacement fields applied to the fine model were computed using eqn(3.3) in which the ξ_1 and ξ_2 parameters indicate the nodes positions (Figure 3.28).

$$D(\xi_{1}, \xi_{2}) = S_{00} + S_{01}\xi_{2} + S_{02}\xi_{2}^{2} + S_{03}\xi_{2}^{3} + S_{10}\xi_{1} + S_{11}\xi_{1}\xi_{2} + S_{12}\xi_{1}\xi_{2}^{2} + S_{13}\xi_{1}\xi_{2}^{3} + S_{20}\xi_{1}^{2} + S_{21}\xi_{1}^{2}\xi_{2} + S_{22}\xi_{1}^{2}\xi_{2}^{2} + S_{23}\xi_{1}^{2}\xi_{2}^{3} + S_{30}\xi_{1}^{3} + S_{31}\xi_{1}^{3}\xi_{2} + S_{32}\xi_{1}^{3}\xi_{2}^{2} + S_{33}\xi_{1}^{3}\xi_{2}^{3}.$$

$$(3.3)$$

In eqn(3.3) the S_i , parameters were determined from the boundary displacement fields obtained from the coarse F.E. model analysis. Once the S_i , parameters were known, the boundary displacement fields applied on the fine F.E. model were computed.

The programs DF9, DF61, DF62 explained in Appendix I were used to compute the S_i , parameters and create the PATRAN instructions that defined the imposed displacements. Those programs were written only to make the task easier. For a different F.E. meshing, it may not be possible to use them. This is a weak part of the analysis since it is tedious and error prone to use output from a model as input to another model.

As stated in Chapter 2, the displacements fields at the top lug & bushing under the HL2 and LL2 loading conditions can be deduced from the displacements fields at the bottom lug & bushing under the HL1 and LL1 loading conditions. Figures 3.29 to 3.36 show the boundary displacement fields imposed on the top lug & bushing when the HL2 loading conditions are applied. The LL1, LL2, HL1 loading conditions imposed similar boundary displacement fields. The nodes located on hyperpatch sides whose gap elements have opened are set free.

Table J.3 in Appendix J shows a commented version of the NASTRAN data deck that was used for this analysis. Figures 3.37 to 3.40 shows the top lug tangential stress field as seen from below when it is submitted to the 4 loading conditions (LL1, LL2, HL1, HL2). Figure 3.41 shows the radial stress field of the lug when it is submitted to the loading HL1.

The most compressed gap element was gap #12064. It connected bushing node #1301 to lug node #513. It was compressed to 518.49lb when the lug/pin joint was

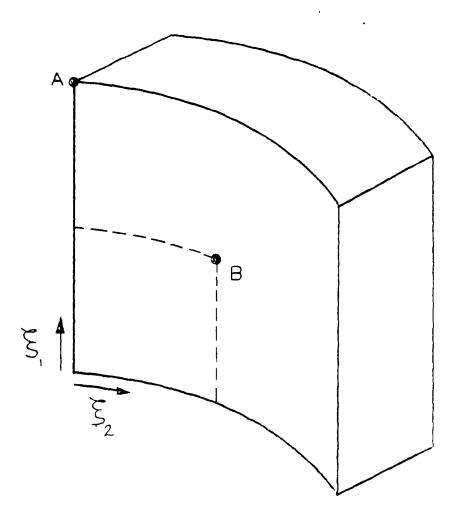


Figure 3.28: ξ_1 and ξ_2 parameters

The node position on each hyperpatch side can be defined using ξ_1 and ξ_2 parameters where $0 \le \xi_1 \le 1$ and $0 \le \xi_2 \le 1$.

For example: node A is located at $\xi_1 = 1.0$ and $\xi_2 = 0.0$, and node B is located at $\xi_1 = 0.5$ and $\xi_2 = 0.5$.

Figure 3.29: Radial displacement imposed by the pin on the bushing when the lug/pin joint is submitted to HL2

Values are in inches.

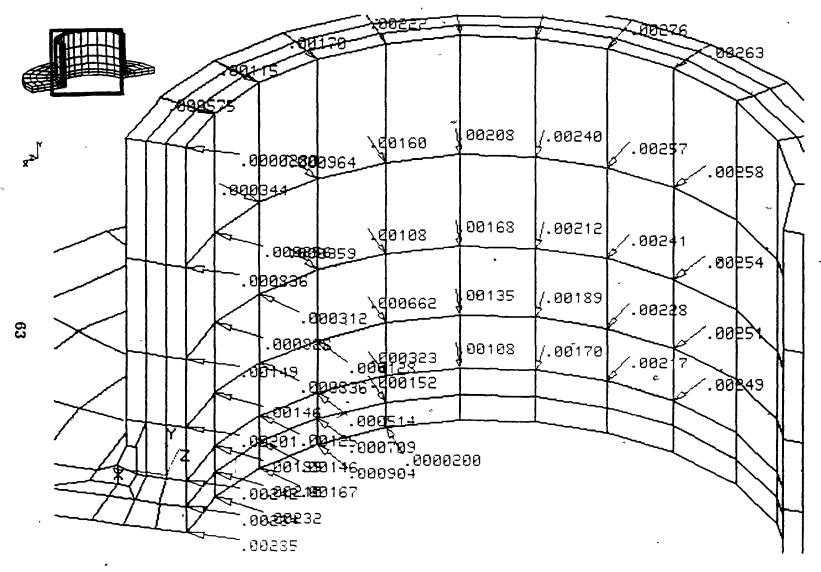


Figure 3.30: Radial displacement imposed by the pin on the bushing when the lug/pin joint is submitted to HL2

Values are in inches. This is the opposite half of Figure 3.29.

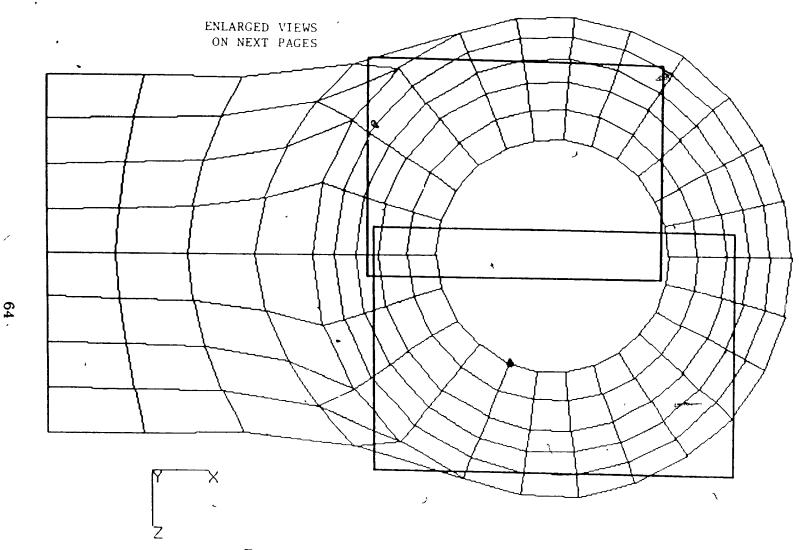


Figure 3 31 Top lug view shown in the next two figures

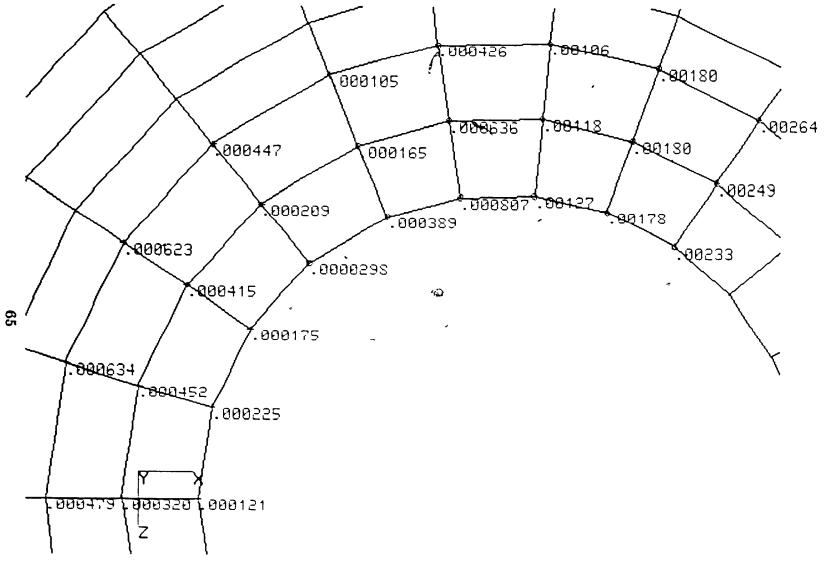


Figure 3.32: Axial (Z') displacement imposed by the pin head to the top lug when the lug/pin joint is submitted to HL2

Values are in inches.

(Displacement vectors indicated by "+" are entering in the figure Those indicated by "o" are coming out of the figure).

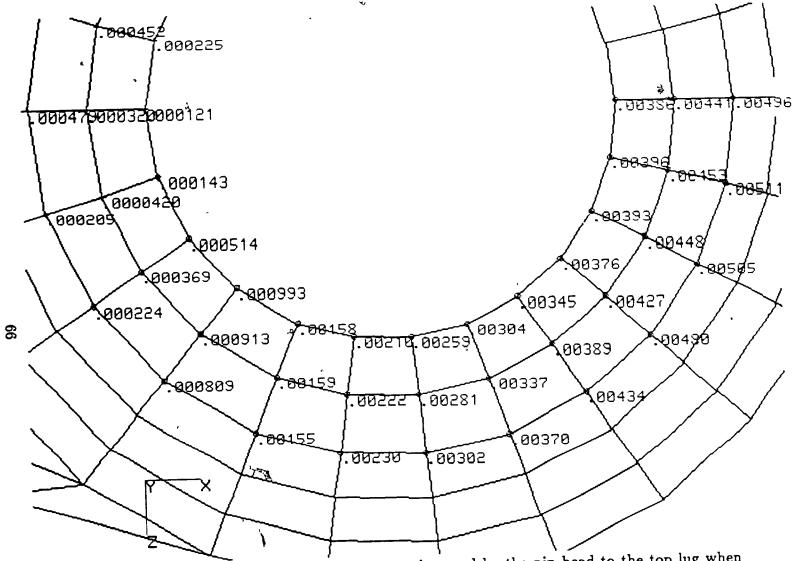


Figure 3.33: Axial (Z') displacement imposed by the pin head to the top lug when the lug/pin joint is submitted to HL2, (cont'd)

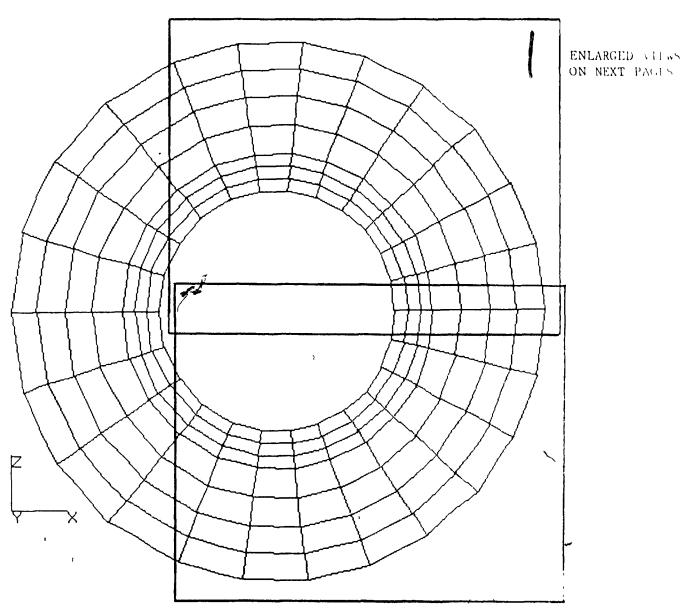


Figure 3.34: Top bushing view shown in the next two figures

It is seen from below.

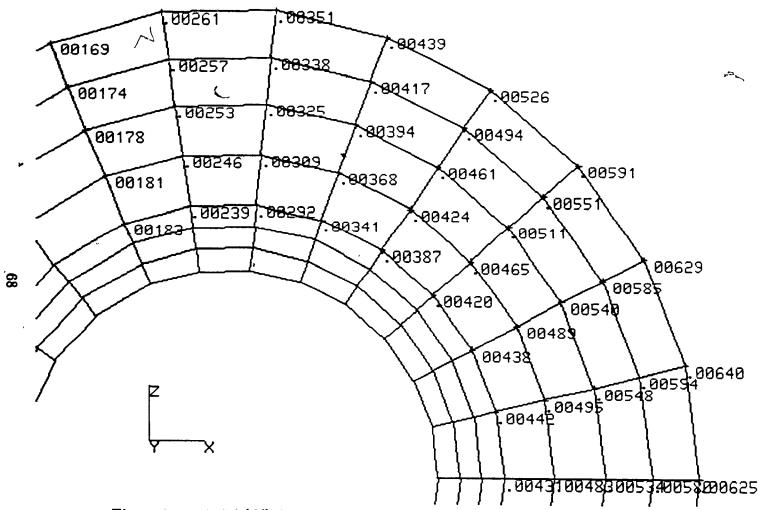


Figure 3.35: Axial (Z') displacement imposed by the washer to the top bushing when the lug/pin joint is submitted to HL2

Values are in inches.

Displacement vectors indicated by "+" are entering in the figure. Those indicated by "o" are coming out of the figure.

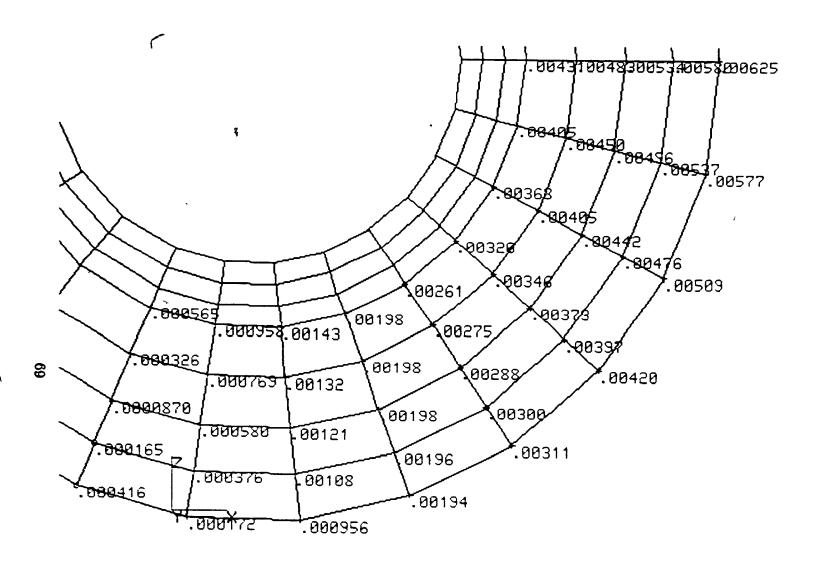


Figure 3.36: Axial (Z') displacement imposed by the washer to the top bushing when the lug/pin joint is submitted to HL2, (cont'd)

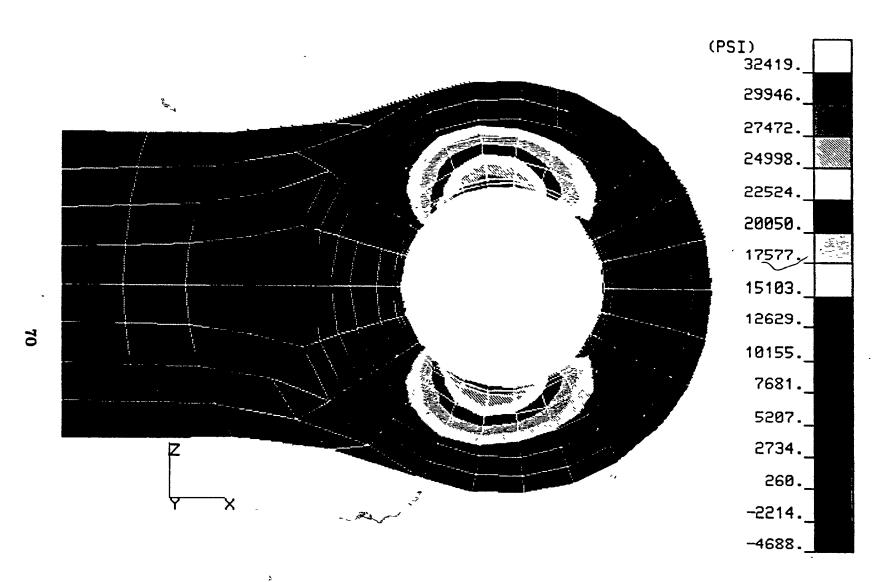


Figure 3.37: Top lug tangential stress field when submitted to LL1 The lug is seen from below.

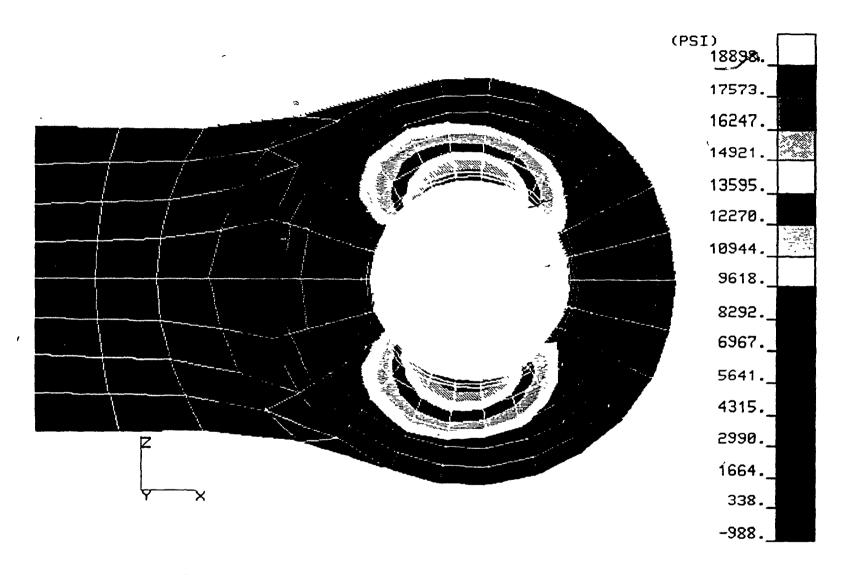


Figure 3.38: Top lug tangential stress field when submitted to LL2. The lug is seen from below.

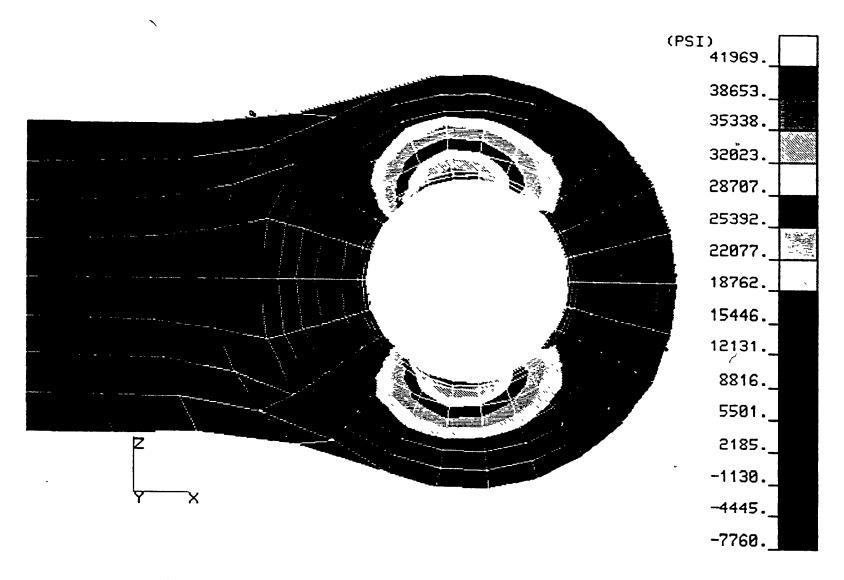


Figure 3.39: Top lug tangential stress field when submitted to HL1 The lug is seen from below.

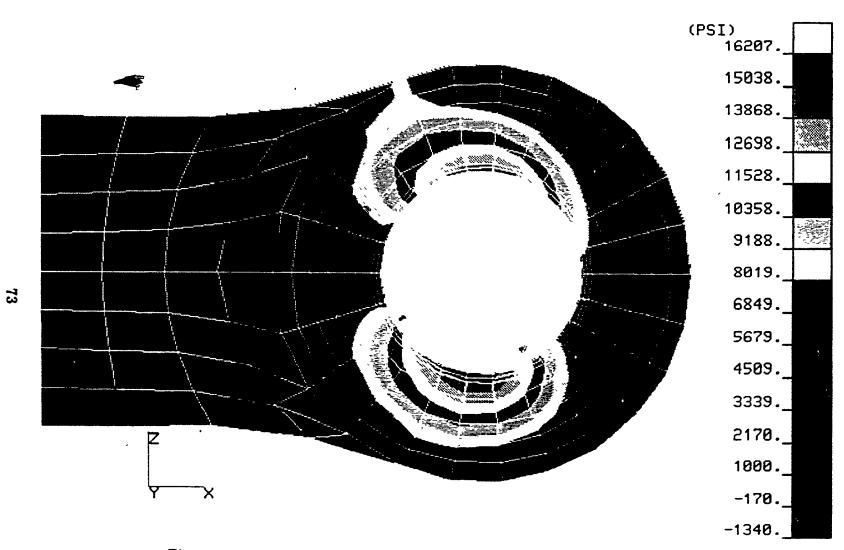


Figure 3.40: Top lug tangential stress field when submitted to HL2 The lug is seen from below.

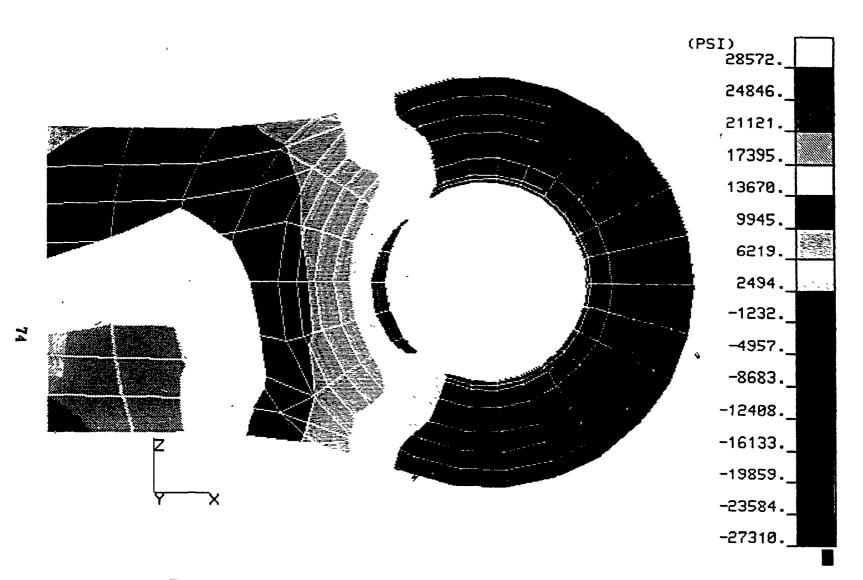


Figure 3.41: Radial stress field of the lug when submitted to the HL1.

submitted to HL1. Since the gap stiffness when closed was set to 5.0E7lb/in, it means that it had "over-deformed" 0.01E-3in (Figure 3.42). The radial displacement of nodes 513 and 1301 were 3.953E-3 and 2.963E-3inch respectively. So the "over-deformation" was approximately 0.3% of the deformation. This is small.

Results obtained from the coarse F.E. mesh can be compared with those obtained with the fine F.E. mesh. In particular, Figure 3.26 can be compared to Figure 3.37. It can be seen that the coarse F.E. model does underestimate the maximum hoop stress by a factor of 1.4. (For reasons that have been explained in Section 3.3.1, it is suspected that the fine mesh still underestimates the stress concentration factor at the lug hole).

In principle, the displacement of the free nodes located on the fine model boundary should be equal to the displacement of the corresponding nodes on the coarse model. Table 3.11 shows that this is indeed the case.

Table 3.11: Comparison of the displacements of 4 pairs of nodes when the lug/pin joint is submitted to HL1

```
Nodes position: R = 0.5in, \theta = 180^{\circ}, Z' = 2.596in
Coarse
          F.E. model, node
                                 938: -5.26, 2.02, -3.49 \times 10^{-3} in
Fine
          F.E. model, node 1214: -5.16, 2.02, -3.53 \times 10^{-3} in
     Nodes position: R = 1.235in, \theta = 56.208^{\circ}, Z' = 1.971in
                                  83: 2.31, -6.29, -0.22 \times 10^{-3} in)
 Coarse
           F.E. model, node
 Fine
           F.E. model, node 416: 2.35, -6.45, -0.29 (\times 10^{-3}in)
     Nodes position: R = 1.125in, \theta = 112.416^{\circ}, Z' = 1.874in
Coarse F.E. model, node 824: -4.56, -6.85, -2.05 \times 10^{-3} in
Fine
          F.E. model, node 849: -4.53, -6.89, -2.05 \times 10^{-3} in
        Nodes position: R = 0.6in, \theta = 180^{\circ}, Z' = 2.596in
           F.E. model, node
                                  19: -3.37, 1.62, -4.09 \times 10^{-3} in
Fine
           F.E. model, node 205: -3.17, 1.67, -4.09 \times 10^{-3} in
```

It has also been noticed that the bushing and the lug do not stay in contact

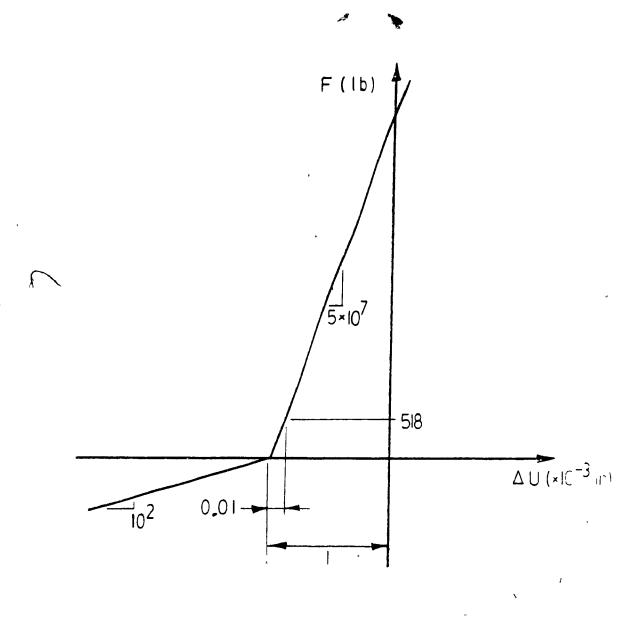


Figure 3.42: Gap Element #12064 deformation when the lug/pin joint is submitted to HL1

in the R direction when the lug/pin joint is highly loaded. By checking the axial forces in the gap elements defining the lug & bushing radial interface, it can be seen that some gaps are open. It seems that the lug & bushing interference is not large enough. Figure 3.43 shows the worst case obtained. This is detrimental from a fatigue point of view since the relative motion that occurs results in fretting.

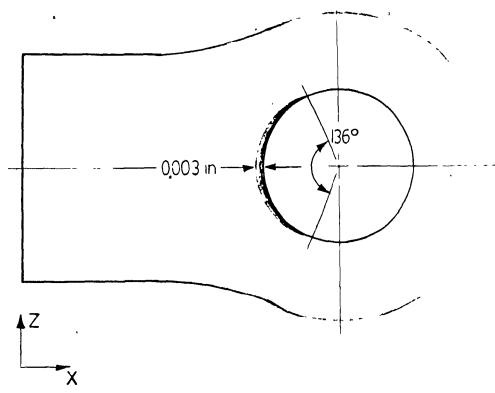


Figure 3.43: When submitted to HL1, the top lug and bushing lose contact on the zone indicated

Chapter 4

Fatigue Analysis

In chapter 3, the stress states corresponding to the extreme loading conditions have been found, now the fatigue analysis as such can proceed. Five components of the blug/pin joint assembly are critical and their fatigue behaviors need to be studied. They are the pin, the lugs (2) and bushings (2).

The fatigue analysis methodology developed in this thesis involves the following steps.

1. Computation of a working S-N diagrams, i.e., expressing the acceptable uniaxial alternating stress S_{aa} as a function of the number of cycles N and the uniaxial mean stress S_m :

$$S_{aa} = f(N, S_m). \tag{4.1}$$

- 2. Computation of the "equivalent" alternating stress field and the "equivalent" mean stress field for the critical components.
- 3. Checking whether crack propagation is possible and, if so, solving eqn(4.1) where N is the unknown. Cracks will initiate at the point having the shortest life which will be the life of the assembly. If a component has an infinite life its "reliability factor" (Section 4.5.1) after 10^7 cycles will be evaluated.

The ENDUR program performs the 3 steps explained above. The user guide to this program is in Appendix L.

Sections 4.1 to 4.3 of the present chapter explain the concepts used in the ENDUR program and how they have been applied to the lug/pin joint under study. Section 4.4 explains the cumulative damage concept while Section 4.5 explains the computation

of reliability while Section 4.6 gives the results of the fatigue analysis of the lug/pin joint.

4.1 Determination of the Working $S - \mathring{N}$ curves

The fatigue analysis can be performed with the help S-N curves which show the fatigue resistance of materials (see Figure 1.1).

In practice, "basic" S-N curves, obtained by testing standard polished unnotched specimens, must be modify to take into account the "actual conditions" the components have to withstand. These "conditions" may be related to the environment (e.g. corrosion), the surface condition (e.g roughness), the presence of stress raisers, etc. In the present analysis however, the stress concentration factors will not be considered in the computation of the working S-N curves. Stress concentrations will be considered at a later stage (Section 4.2.1).

4.1.1 Basic S - N curves

"Basic" S-N curves are obtained by testing standard specimens of materials usually under fully reversed axial loading. Specimens can also be tested in alternating bending, rotating bending, or in alternating torsion. Results thus obtained are different but can be correlated [7].

For steels, their is an alternating load, called the "fatigue limit", below which no fatigue failure will occur. For other materials, there is no such load. The improperly called "fatigue limit" of these materials is often taken as the maximum alternating load allowed for a finite life (10⁷ cycles for example).

In actual testing of specimens under fatigue, there is an important scattering of the results which gets wider as the endurance increases. This is due to the fact that, as the alternating load decreases, the crack initiation stage lasts longer when compared to the crack propagation stage. Crack initiation depends more on the inhomogeneity (small random flaws) of the material. Crack propagation depends more on the material bulk properties. Published data usually correspond to a 50% rate of survival and this has to be considered (Section 4.5).

Many attempts have been made to express the S-N curve in mathematical forms. Most of them, particularly in the high-cycle fatigue range, are not based on any theory, they are simply obtained by "curve fitting" test results. For this research, the required S-N curves have been approximated using the equation given in [8], namely:

$$S_{a0} = S_f + (S_u - S_f) \exp{-\alpha (\log N)^{\beta}},$$
 (4.2)

where:

- S, is the fatigue limit [psi],
- Su is the tensile strength [psi],
- N sthe endurance, i.e. the number of cycles to failure,
- α , β are curve fitting parameters, and
- S_{a0} is the zero mean stress fatigue strength.

A less attractive alternative is

$$S_{a0} = S_f + \frac{S_0}{N^{\gamma}},\tag{4.3}$$

where S_0 and γ are fatigue curve fitting parameters.

Eqn(4.2) has been preferred to eqn(4.3) because eqn(4.2) permits, in principle, the prediction of the fatigue strength for N=1 to ∞ . Eqn(4.3) is valid for a narrower range $(N=10^3 \text{ or } 10^4 \text{ to } \infty)$. Figure 4.1 compares the S-N curve based on eqn(4.2) and eqn(4.3).

Restricting attention to eqn(4.2), values of α and β for the lug, pin and bushing materials are given in Table 4.1. Details on how they have been computed are given in Appendix K.

Component	α	β
Pin (4340 steel)	1.6120E-4	5.9962
Lug (7075 aluminum)	4.49887E-2	1.61941
Bushing (17-4 PH stainless steel)	4.2884E - 3	3.6592

Table 4.1: Values of α and β for the Lug, Pin and Bushing Materials

4.1.2 The mean stress effect

For uniaxial loading, the mean stress " S_m " is defined as:

$$S_m = \frac{1}{2}(S_{max} + S_{min}). {4.4}$$

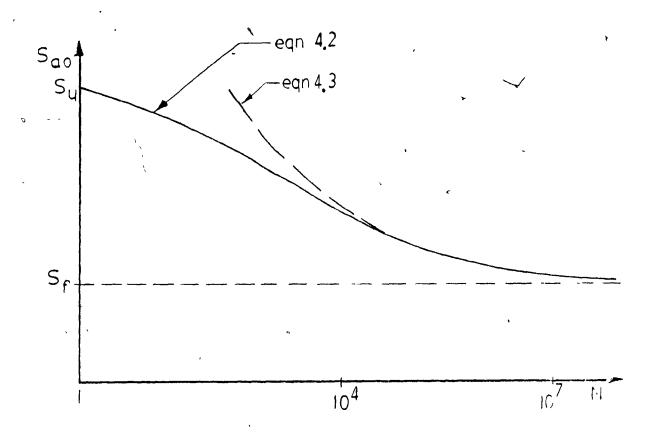


Figure 4.1: Comparison between 2 mathematical expressions used to approximate the S-N curves

Eqn(4.2) has been chosen in this investigation because it gives better predictions on a wider range of N.

The alternating stress or stress amplitude " S_a " is defined as:

$$S_a = \frac{1}{2}(S_{max} - S_{min}). (4.5)$$

Figure 4.2 illustrates the above definitions.

Various equations relating the acceptable alternating stress to the applied mean stress have been proposed. The best known are the Goodman's line and Gerber's parabola.

$$\frac{S_a}{S_{a0}} = 1 - \left(\frac{S_m}{S_u}\right)^2 \quad , \quad \text{Gerber's parabola}, \tag{4.6}$$

$$\frac{S_a}{S_{a0}} = 1 - \left(\frac{S_m}{S_u}\right) \quad , \quad \text{Goodman's line.}$$
 (4.7)

Another line that has been proposed is the Sine's line:

$$_{\mathbf{s}}S_{a} = \dot{S}_{N} - \frac{m}{\sqrt{2}}S_{m}, \tag{4.8}$$

where S_N is the fatigue strength for a life "N". The curve fitting parameter "m" is chosen to get the "best fit" line on the S_m interval of interest (usually $0 < S_m < S_y$, S_y being the yield strength of the material). Near the fatigue limit, [9] proposes to use m = 0.5 if no better data are available. Unfortunately, m may change when $N < 10^7$. To overcome this problem, the following modification to eqn(4.8) is proposed:

$$\frac{S_a}{S_{a0}} = 1 - \frac{M}{\sqrt{2}} \left(\frac{S_m}{S_u} \right),$$
 (4.9)

the parameter "M" being assumed independent of "N".

The Gerber's parabola tends to be unconservative for S_m greater than 0 and overly conservative if extrapolated for S_m lower than 0. The opposite is true for the Goodman's line (see Figure 4.3). Eqn(4.9) is valid on a narrow range of S_m . Because of this, eqn(4.10) is preferred for an evaluation of the mean stress effect:

$$\left(\frac{S_a}{S_{a0}}\right) = a_2 \left(\frac{S_m}{S_u}\right)^2 + a_1 \left(\frac{S_m}{S_u}\right) + 1, \tag{4.10}$$

where a_1 and a_2 are curve fitting parameters which are assumed independent of "N". Note that if $a_2 = 0$ and $a_1 = -1$; the eqn(4.10) becomes the Goodman's line; if $a_2 = -1$ and $a_1 = 0$, it becomes the Gerber's parabola and if $a_2 = 0$ and a_1 is set $= -\frac{M}{\sqrt{2}}$, eqn(4.10) becomes eqn(4.9).

Table 4.2 gives the values of a_1 and a_2 for the lug, pin and bushing materials. Details of their computation are given in Appendix K.

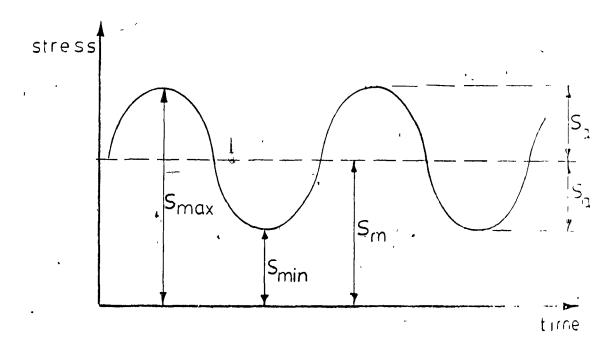


Figure 4.2: S_{max} , S_{msn} , S_a , S_m definitions

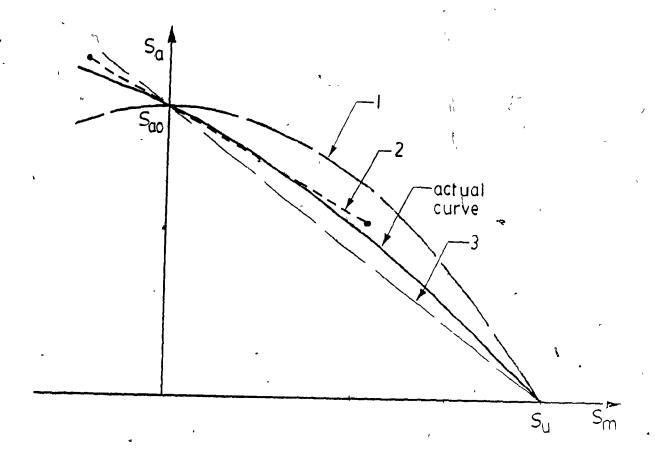


Figure 4.3: Comparison of Goodman's Line, Gerber's Parabola and Proposed Equations

- 1. Gerber's parabola
- 2. Equation 4.9
- 3. Goodman's line.

Equation 4.10 is close to the actual curve.

4.1.3 $S_a = f(N, S_m)$ diagram

To help visualize how the acceptable alternating stress S_a varies with N and S_m , eqns(4.2 & 4.10) have been schematically combined as shown in Figure 4.4.

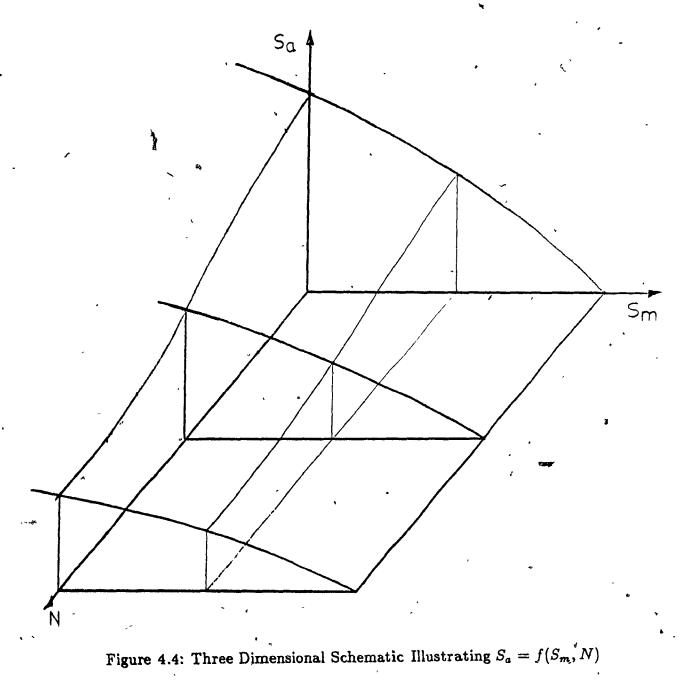
4.1.4 Modifying Factors

The "working" S-N curve is a S-N curve once the factors that reduce the material fatigue strength have been taken into account. Table 4.3 shows the main factors that may influence the fatigue behavior of metallic components. Among these factors, only those marked (*) are relevant to the present study.

Size Effect

Size effect for steels. For steels, the fatigue limit in air decreases as the specimen size increases. The explanation of this behavior is based on the idea that it is the "weakest link" that governs the fatigue strength [9]: in a larger specimen, the chance to have a weak zone due to a small flaw in the material is greater.

The following empirical equation has been proposed [9] to relate the fatigue strength of specimens of different sizes:


$$S_f = S_{f0} \left(\frac{V}{V_0}\right)^{-0.034}, \tag{4.11}$$

where:

• V_0 is the volume submitted to a stress greater than 95 % of the maximum stress in the reference specimen,

	Component	a_1	a ₂
•	Pin (4340 steel)	-0.4544	-0.5456
	Lug (7075 aluminum)	-1.0 -	0.0
	Bushing (17-4 PH stainless steel)	-0.5	-0.5
		assumed	assumed

Table 4.2: Values of a_1 and a_2 for the Lug, Pin and Bushing Materials

- V is the volume submitted to a stress greater than 95 % of the maximum stress
 in the other specimen,
- S_{f0} is the fatigue limit for the reference specimen, and
- S_f is an estimate of the fatigue limit for the other specimen.

Eqn(4.11) can be applied to specimens having different shapes and submitted to different type of loadings. The size effect factor can therefore be computed using the expression:

 $K_{\text{size}} \stackrel{\checkmark}{=} \left(\frac{V}{V_0}\right)^{-0.034}. \tag{4.12}$

Size effect for Aluminum Alloys. For high strength aluminum alloys, the fatigue strength in air (in high cycle fatigue) can be considered as independent of the specimen size [7]. It may be because the humidity in air attacks the aluminum. The loss of fatigue strength that should result from an increased size is compensated by the fact that the environment is less detrimental for larger specimens.

Size effect Variation with N. In short life fatigue (arbitrary chosen as $N < 10^3$ here), the size is considered as having no effect. In long life fatigue (arbitrary chosen as $N > 10^7$ here), the size effect is considered constant. For intermediate life, the size effect is considered to vary linearly with $\log N$. (see Appendix L). To be conservative, the size effect is considered to reduce both the "acceptable" tensile stress AND the "acceptable" alternating stress (see Figure 4.5).

Size Effect for the Lugs. Because the lugs are made of aluminum, the size effect can be neglected.

Size Effect for the Pin. The pin volume is approximately $0.3in^3$. By checking Figures 3.22 to 3.25, the "highly stressed" (i.e., 95% of the maximum stress) volume is < 20% of the pin volume. As a result, the highly stressed volume is $< 0.6in^3$. The specimen size being approximately L = 2in, D = 0.4in (Appendix K), its volume is $0.6in^3$. The size effect factor is therefore equal to 1.

Size Effect for the Bushings. The volume of each bushing is $0.5in^3$. The "highly stressed" volume for each bushing is $< 0.1in^3$ (i.e., < 20 % of the total volume). This is small enough so that the size effect can be considered as 1.

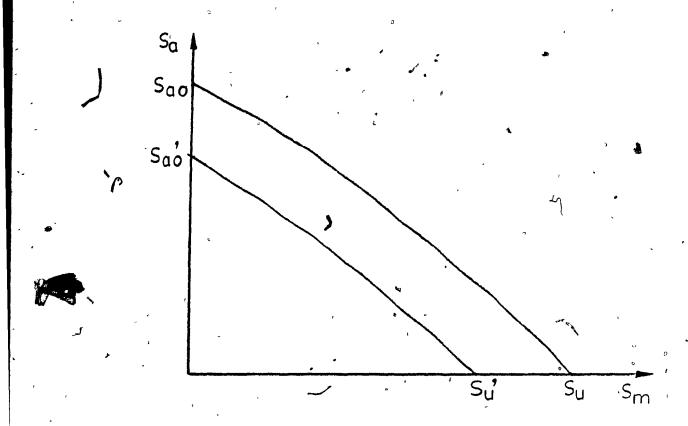


Figure 4.5: The Size Effect

$$S'_{a0} = K_{size} \times S'_{a0}$$

$$S'_{u} = K_{size} \times S_{u}$$

$$K_{sire} \leq 1.$$

Surface Effect

Almost all fatigue cracks are initiated at surfaces. The surface conditions have therefore a dominant effect on the fatigue life.

Three aspects of the surface are relevant to the lug/pin problem under study. They are:

- 1. fretting at the components interfaces,
- 2. surface roughness, and
- 3. residual stresses induced by shot peening the lugs.

Surface roughness need not be considered when fretting occurs.

Fretting. Fretting involves the behavior of two surfaces in contact subjected to small repeated relative motion. Fretting damage will occur in the contact zone submitted to high shear stress [1]. Some authors attribute fretting damage to the contact of the two surfaces and the rubbing action that provokes microwelding and rupture of the microwelds [7]. Oxydation may occur and, if the debris is harder than the surface, it causes abrasion. Furthermore, fretting fatigue occurs even in an inert environment but will not be as detrimental. Notice, however that fretting fatigue damage decreases with increasing humidity in the atmosphere. Once a fretting induced macrocrack is formed, fretting itself does not control its growth.

Fretting is important in high cycle fatigue but of less importance in short life components. Typically, fretting reduces the fatigue strength by 30 % for smooth specimens [10]. Reductions of up to 90 % are possible [11].

Tables 4.4 and 4.5 show the fatigue strength for various combinations of metals. The weakness of those tables is that they neglect to state some important experimental conditions, such as the normal stress and the slip amplitude. The geometry of the components submitted to fretting can also be important since it may or may not foster the accumulation of debris. Tabled values for fretting fatigue reduction factors are at best approximate.

The mean stress effect in fretting fatigue is shown in Figure 4.6. Notice that fretting does not reduce the "acceptable" tensile strength and does not affect the admissible alternating stress if the mean stress is very low.

In spite of the above limitations on the evalution of the fretting effect in fatigue, that cannot be neglected in the fatigue life evaluation of lug/pin joint components. In the present investigation, it has been considered that fretting has no effect for

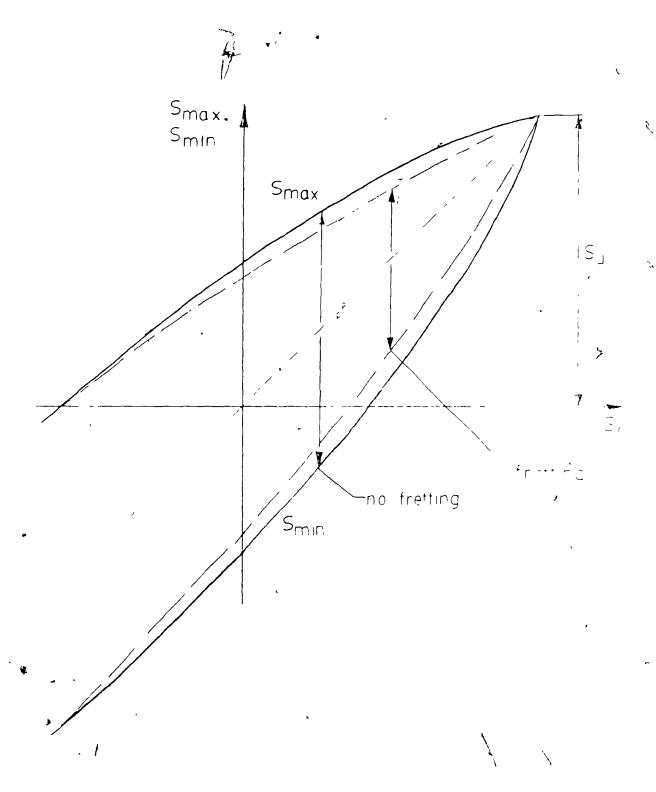


Figure 4.6: Illustration of the Relation between Fretting-Fatigue Strength and the Regular Fatigue Strength for Various Combinations of Axial Loading

f+4 ==

From [13].

 $N < 10^3$, a constant effect for $N > 10^7$, and a negative tangential mean stress decreases the fretting effect. Refer to Appendix L ("ENDUR" program) for details on how fretting effect has been incorporated into the analysis. Notice that the fretting fatigue effect coefficients computed in the ENDUR program do not take into account either the normal stress or the slip amplitude.

Fretting Effect at the Lugs. The surface of the lugs in contact with the bushings is submitted to fretting. The lugs are made of aluminum, the bushings are made of stainless steel. The fretting of aluminum on stainless steel is known to be very damaging for the aluminum. Since the thin and soft cadmium plating on the bushes may wear rapidly at some points, its presence is neglected. This is a conservative assumption. In the lug/pin joint under study, the slip amplitude at the bush/lug interfaces is very important (from the F.E. analysis, it has been determined it may go as high as $0.002in = 50\mu m$). As explained in the previous paragraph, quantifying the fretting is not easy. As an indication, we can refer to Figure 4.7. It is seen that, when the slip amplitude is larger than 7.5 μm , the fretting strength reduction factor is greater than 5. Unfortunately the normal stress at which the experiment was carried is not mentioned. It is probably high since factors of 2 or 3 are more usual. On the other hand, fretting of steel on aluminum is more detrimental than aluminum on aluminum. Bearing in mind those considerations, a fretting fatigue reduction factor of 4 (at zero mean tangential stress and $N=10^7$), is considered to be reasonably conservative for the lug/pin joint under study.

Fretting Effect at the Pin. There is a copper liner in the sleeve. The fretting of copper on steel is known to be relatively undamaging for the steel. The fretting strength reduction factor for the section of the pin in contact with the sleeve has been assumed equal to 1.5 (at zero mean tangential stress and $N = 10^7$).

The fretting at the pin/bushing interface is serious because both components are made of steel and the slip amplitude between them is important. It may not be as detrimental as the bushing/lug fretting though. The fretting strength reduction factor for the sections of the pin in contact with the bushings has been assumed equal to 2.5 (at zero mean tangential stress and $N = 10^7$). Figure 4.8 shows the pin surface submitted to fretting.

Fretting Effect at the Bushings. Each bushing is in contact with the pin, a lug, and a washer. To make the computation tractable, the fretting fatigue reduction

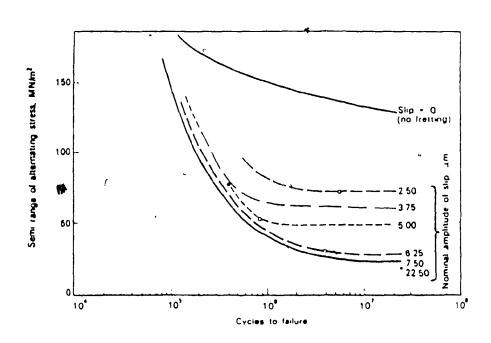


Figure 4.7: Effect of Amplitude of Slip on the Fretting Fatigue of Aluminum Alloy
From [11].

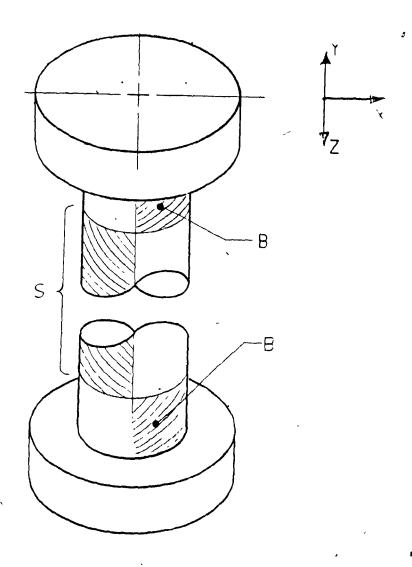


Figure 4.8: Pin surface submitted to fretting

Because of the loading conditions and the pin/sleeve & pin/bushing clearances, the pin surface is not completely submitted to fretting. Only the shaded surfaces are considered as being submitted to fretting. The surface indicated by "S" is considered in contact with the sleeve while those indicated by "B" are considered in contact with the bushings.

factor is assumed to be constant on all faces subjected to fretting and equal to 2.5 (at zero mean tangential stress and $N=10^7$). It will be shown later that the bushings are far from being critical. Figure 4.9 shows the bushings surface submitted to fretting.

3

1

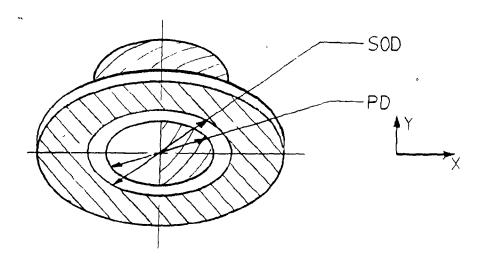


Figure 4.9: Bushing surface submitted to fretting

The shaded area is considered as being submitted to fretting. Refer to Table A.1 to know the meaning of the "SOD" and "PD".

Roughness effect. Surface irregularities can be seen as "micro" stress raisers. Components with rougher surfaces therefore show worse fatigue behaviors than similar components with smooth surfaces.

In short life fatigue $(N < 10^3)$, the surface roughness is considered as having no effect. In long life fatigue $(N > 10^7)$, the effect is considered constant. For intermediate life, the surface roughness effect is considered to vary linearly with log N. (see Appendix L). To be conservative, the surface roughness effect is considered to reduce both the "acceptable" tensile stress AND the acceptable alternating stress. Figure 4.10 shows how the high cycle fatigue strength reduction coefficient varies with the tensile strength of steels.

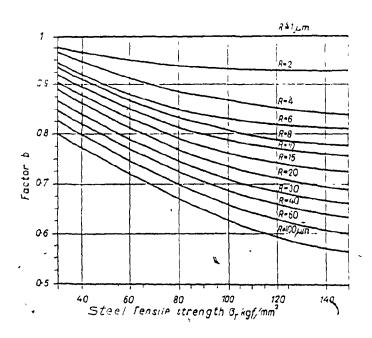


Figure 4.10: Surface Finish Factor for Bending Fatigue Strength From [10].

As stated in Section 2.1, all the components of the lug/pin joint under study have surface roughnesses of $125\mu in \ (\approx 3\mu m)$. For the strongest material (pin material

 $S_u = 180 ksi = 126 \frac{kgf}{mm^2}$) which is the most influenced by surface roughness, the factor from Figure 4.10 is ≈ 0.88 . This factor is used on all lug/pin component surfaces that are not influenced by fretting. The results will show that none of the unfretted surface is critical.

Surface Residual Stresses. In high cycle fatigue, residual stresses can be treated as an externally induced mean stress (see Section 4.1.2 & [14,15,9,16]). In low cycle fatigue on the other hand, microplastic deformations relax the residual stresses during the fatigue process and, hence, they may be neglected.

For the lug/pin joint under study, there is no significant residual stresses on the pin and bushings. The lug hole walls, however, have been shot peened. This is considered in the following paragraph.

Shot Peening of the Lug Hole Walls. The lug hole walls have been shot peened. The stress induced by shot peening is shown in Figure 4.11.

Since it is not easy to measure, there is always an uncertainty on the value of compressive stresses induced by shot peening on an actual component. Moreover, the compressive stresses may partially relax due to fretting or high temperatures induced by friction. For these reasons, the shot peening induced stresses will be considered as 60 % of the minimum value shown in Figure 4:11, i.e., $60\% \times 50 ksi = 30 ksi$. The value 30ksi will be added to both the axial and tangential stresses, i.e., to both $\sigma_{z'z'}$ and $\sigma_{\theta\theta}$, of the nodes located on the lug hole walls.

1

0

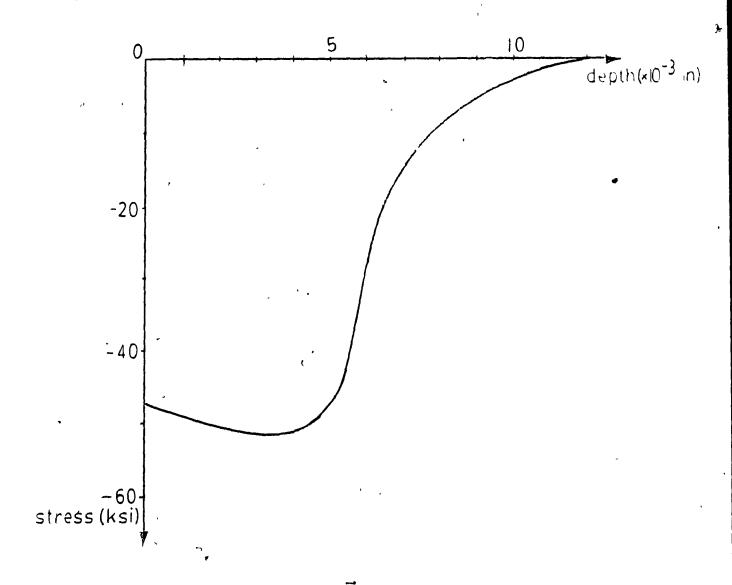


Figure 4.11: Approximative Tangential Residual Stresses Induced by Shot Peening of the Lug

(ref Metal Improvement Co.)

* roughness
* fretting
* residual stresses
porosity
grain size
grain orientation

Table 4.3: Fatigue Modifying Factors

•	Specimen	Hardness VHN	Faugue strength MN m-?	Clamp _	Fretting fatigue strength MN m-1	Strength reduction (actor (SRF)
	0 I C steel	137	172	0-1 C steel brass zinc	122 95 137	1·41 1 83 1 25
ø	0·33 C steel	165	372	0-33 C steel	254	1 48
Carbon steels	0-4 C steel	420	550	0-2 C steel 0 4 C steel 70/30 brass - Al 4-4 Cu 0 5 Mn 1 5 Mg	450 257 325 500	1 23 2 00 1 70 1 10
	0 7 C steel, cold-drawn 0 7 C steel, normalized	365 270	525 371	0 7 C steet, cold drawn 0-7 C steet, normalized	147	3 18 2 08
	0 25 Cr 0 25 Ni 0 Mn	285	372	0 1 C steel 18 Cr 8 Ni steel	294 264	1 62
Si	1 3 Cr 2 6 Ni 0 4 Mo	217	304	3 Sı steel	241	1 19
Alloy steels	11 Cr 3 7 Ni 0 4 Mo	176	272	18 Cr 8 Ni steel aluminium	212	1 28
<	0 6 Cr 2 5 Ni 0·5 Mo	330	542	0 6 Cr 2 5 Ni 0 5 Mo	124	4 14
	1 4 Cr 4-0 Ni 0 3 Mo	510	850	1 4 Cr 4 0 Ni 0 3 Mo	240	3 55
\$	Al _% Cu-Mg	-	276	Al-Cu-Mg	99	2 70
in all	A1 4 4 Cu 0.5 Mn 1 5 Mg	140	159	Al 4 4 Cu 0:5 Mn 1:5 Mg	82	1 92
Aluminium alloys	Al 4-4 Cu 0-8 Mn 0 7 Mg	160	134	Al 4 4 Cu 0·8 Mn 0 7 Mg mild steel	49 5° 35 6°	2 72 3 78
•	Al 4 Cu	117	83 5	Al 4 Cu	52 5	1 50
Copper	70/30 brass	175	139	70/30 brass	93	1 50

^{* 193} MN m⁻¹ mean stress

Table 4.4: Strength Reduction Factors Produced by the Fretting of Various Materials against Steels and Aluminum Alloys

From [11].

Rotating bending fatigue tests at 3500 cycles min

) Naterial	Condition	Tensile strength tons in	Hardness Rockwell B	Normal fatigue strength (10° cycles) tons in²	fatigue strength (10° eveles) tons in ²
0.35% C steel	Annealed		65		8.5
	Cold worked	47	95	(95
- *	Normalized	1	75		Q
18", Cr 9", Nr \	Annealed	478	89	1	125
Stainless steel	Cold worked	77.8			105
19%, Cr 11% Ni (Annealed	· ·	77		11
Stainless steel	Cold worked	}	95	}	6
Aluminium Bronze (4° Al 7° Zn)	Annealed	34	77		: 65
	Cold worked	48	94		6
Duralumin (4° Cu)	Annealed	116	1		4.5
() U	Aged 1 hr at 175 C		61	'	1
	Water-quenched from 500 C	}	, 56	1	4
0.24% C steel	Forged and normalized	36	1	18"	9
	Cast and normalized	34	i !	15	11
Aluminium alloy (4.5% Cu)	Forged and heat-treated	24.5	ı	,	4.5
Aluminium alloy (4% Cu)	Sand cast and heat-treated	14	;	3.5	3
Aluminium alloy (4.5% Cu)	Chill cast and heat-treated	16	,	5.5	3 4 5

Table 4.5: Fretting Fatigue Strengths of Various Metals

From [12].

4.2 Equivalent Stresses

In Chapter 3, the stress states of the lug/pin joint components for the various loading conditions were found. In Section 4.1, it was explained how the working S-N diagram could be determined. To find the fatigue life of the components, the stress states must now be related to the working S-N diagrams.

The concept of "equivalent stresses" is introduced here in order to accomplish this. Equivalent stresses are the values of alternating and mean stresses, S_a and S_m , that represent the fatigue loading and can be used in the working S-N diagram to evaluate the life.

Notice that, for simple geometries and loading conditions, the concept of "equivalent stresses" is not used. The concept of "fatigue notch factors" denoted by K_f is used instead to take into account the stress raisers effect. Most of the time, K_f is introduced in the computation by reducing the acceptable alternating stress of the working S - N curve. Then the nominal value of alternating stress is used in the S - N diagram to find the component endurance.

In the subsection below, it will be shown that, for the critical components of the lug/pin joint under study, the fatigue notch factors can be safely assumed equal to the stress concentration factors and, therefore, the stress states computed in Chapter 3 can be used as inputs to the computation of the equivalent stresses necessary to perform the fatigue analysis.

4.2.1 Stress Concentration Factors and Fatigue Notch Factors

In a linear static analysis, the actual stress at a geometric irregularity is given by:

$$q = K_t S, \tag{4.13}$$

where:

- S is the nominal stress,
- σ is the actual stress, and
- K_t is the stress concentration factor.

The stress concentration factor depends only on the component geometry and the loading conditions. It can be computed using the theory of elasticity or the finite

element method. [17] gives the stress concentration factors corresponding to various geometries and loading conditions. In a static analysis, to avoid plastic deformations, the nominal stress "S" applied on a component must always be such that:

$$S < \frac{S_{\mathbf{v}}}{K_{t}},\tag{4.14}$$

where S_{y} is the yield strength of the material in question.

Similarly, in fatigue analyses, the alternating stress " S_a " that can be applied to a component must be such that:

 $S_a < \frac{S_f}{K_f},\tag{4.15}$

where K_f is the high cycle $(N \ge 10^7)$ fatigue notch factor. K_f is defined as the ratio of the notched specimen nominal fatigue strength to the unnotched specimen fatigue strength. For a given geometry, K_f is never greater then K_i because K_f takes into account the micro-plastic deformations that occur at the notch root.

Various equations have been established to relate K_f to K_t , the most common being as follows.

1.

$$K_f = q(K_t - 1) - 1,$$
 (4.16)

where q is the "notch sensitivity". The notch sensitivity is a function of the component geometry, the loading condition, the material and varies from 0 to 1.

2.

$$K_f = 1 + \frac{K_t - 1}{1 + \sqrt{\frac{a}{r}}},\tag{4.17}$$

where:

- r is the notch root radius and
- a is a material property.

3.

$$K_f = 1 + \frac{K_t - 1}{1 + \frac{\ell}{2}},\tag{4.18}$$

where ρ is again a material property.

The following equation has been proposed [9] to estimate " ρ " (in inches) for steels:

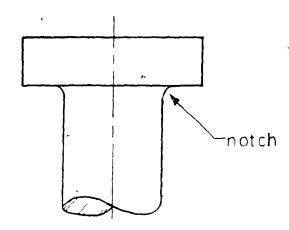
$$\rho = 10^{-3} \left(\frac{3.0E5}{S_u} \right)^{1.8}, \tag{4.19}$$

where S_u is the tensile strength, [psi]. Table 4.6 shows some values of ρ and a.

Steel	$S_u = 345MPa$	$\rho = 10mm$
•	$S_{s} = 1750MPa$	$\rho = 0.03mm$
Aluminum $7075 - T6$	plane stress	$\rho = 0.02mm$
	plane strain 🐬	$\rho = 0.003mm$
Steel	$S_{\mathbf{u}} = 500MPa$	a=0.25mm
	$S_{u}=2000MPa$	a=0.0002mm
Aluminum $7075 - T6$	$S_{\mathbf{u}} = 150 MPa$	a=2.0mm
	$S_{\mathbf{u}} = 600MPa$	a=0.4mm

Table 4.6: Some values of ρ and a

Fatigue Notch Factor for the Lugs. Using Table 4.6, with $\rho = 0.02mm = 8.0E - 4in$ and the "r" value of eqn(4.18) being equal to the lug hole radius of 0.6in, it follows that:


$$K_t = 0.999 K_t + 0.001.$$
 (4.20)

Since $K_f \approx K_t$, the stresses computed in Chapter 3 can be applied directly to evaluate the fatigue equivalent stresses.

Fatigue Notch Factor for the Pin. The only notch on the pin is at the pin head (see Figure 4.12). This notch has not been studied since cracking at this location is not expected. If the pin had been torqued up tightly, a more careful study of this area would have been warranted. The pin nut has also been neglected in the current investigation.

Fatigue Notch Factor at the Bushings. The notch radius at the flange root (see Figure 4.13) is small and plasticity in this area may be important. However, neglecting the plasticity, i.e., assuming $K_f = K_t$ can only be conservative.

It will be shown in Section 4.6 that the bushings are not critical in the current lug/pin joint configuration.

P. ..

Figure 4.12. Notch at the Pin Head

5

Figure 4 13: Notch at the Bushing Flange Root

The notch root radius is 0.050in.

}

4.2.2 Multiaxial stress state in fatigue

In this Section, some methods that relate the multiaxial stress states resulting from the application of oscillating loading conditions to the equivalent stresses are explained. Notice that there is no universally accepted method for the computation of multiaxial fatigue. Garud [18] has counted 24 methods that have been proposed to put multiaxial fatigue into equations. Only 2 methods that are relatively easy to use are explained here.

Computation of Equivalent Stresses for a Stress State having fixed Principal Axes

[9] has proposed the following criterion for fatigue crack initiation:

$$S_a + \frac{m}{\sqrt{2}} S_m > S_N,$$
 (4.21)

where:

$$S_a = \frac{K_f}{\sqrt{2}} \left[(S_{a_1} - S_{a_2})^2 + (S_{a_2} - S_{a_3})^2 + (S_{a_3} - S_{a_1})^2 \right]^{\frac{1}{2}}, \qquad (4.22)$$

$$S_m = K_f(S_{m_1} + S_{m_2} + S_{m_3}), (4.23)$$

where:

- S_m and S_a are the "equivalent" mean and alternating stresses, respectively,
- S_{a_i} and S_{m_i} are the nominal alternating and mean stress components of the principal stresses in the direction "i" (i = 1, 2, 3),
- S_N is the fatigue strength at life N,
- ullet K_f is the fatigue notch factor, and
- m is the coefficient of influence of the mean stress given in eqn(4.8)

If the fatigue notch factors differ too greatly for different principal directions, different factors K_{f_i} ; i = 1, 2, 3 must be used [19,20] and K_f must be removed. Eqns(4.22 & 4.23) then become:

$$S_a = \frac{1}{\sqrt{2}} \left[(K_{f_1} S_{a_1} - K_{f_2} S_{a_2})^2 + \cdots \right]^{\frac{1}{2}}, \qquad (4.24)$$

$$S_m = K_{f_1} S_{m_1} + K_{f_2} S_{m_2} + K_{f_3} S_{m_3}. (4.25)$$

If K_{f_i} cannot be determined, the actual stresses; σ_{a_i} , σ_{m_i} computed using linear elasticity can be used instead of $K_{f_i}S_{a_i}$ and $K_{f_i}S_{m_i}$. This is equivalent to making the conservative assumption stating that $K_f = K_t$.

Eqn(4.21) is the equivalent of eqn(4.8) for multiaxial loadings. Since eqn(4.21) is valid for narrow ranges of S_m , it has been decided to use the parabola given in eqn(4.10).

For biaxial stress states, the crack initiation criterion eqn(4.23) is plotted on a S_2 , S_1 graph as an ellipse centered at the mean stress. Figure 4.14 shows an example.

Computation of Equivalent Stresses for Stress States having moving Principal Axes

Various methods have been proposed to study fatigue when the principal axes change orientation as the component is submitted to oscillating loads [18]. The following method that has been adopted in the present investigation has been proposed by Langer [21] and modified by Fuchs [19,22].

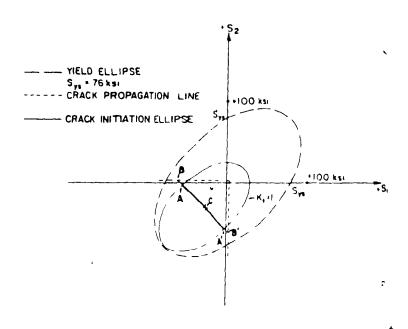
Two "exfreme" instants t_1 , t_2 during the fatigue cycle are chosen. The 6 stress tensor components computed at these two instants are designated by:

$$\sigma_{xx_1} \ \sigma_{yy_1} \ \sigma_{zz_1} \ \tau_{xy_1} \ \tau_{yz_1} \ \tau_{zx_1},$$
 (4.26)

$$\sigma_{xx_2} \ \sigma_{yy_2} \ \sigma_{zz_2} \qquad \tau_{xy_2} \ \tau_{yz_2} \ \tau_{zz_2}, \tag{4.27}$$

From these the differences \mathcal{V}_{ij} can be computed:

$$D_{ij} = \sigma_{ij_1} - \sigma_{ij_2}, \tag{4.28}$$


which again form a symmetric second order tensor.

At this point, Langer proposed to compute the equivalent alternating stress as:

$$S_a = \frac{P_1 - P_3}{2},\tag{4.29}$$

where P_1 and P_3 are the maximum and minimum principal values of the D_1 , tensor. However, in [19], it is claimed that a von Mises like method given by eqn(4.30) gives better results than Langer's.

$$S_a = \frac{1}{2\sqrt{2}} \left[(D_{xx} + D_{yy})^2 + (D_{xx} - D_{xx})^2 + (D_{yy} - D_{xx})^2 + 6(D_{xy}^2 + D_{xx}^2 + D_{xy}^2) \right]^{\frac{1}{2}}.$$
(4.30)

C

Figure 4.14: Crack Initiation Ellipse

This figure taken from [9] shows the fatigue behavior of an unnotched shot-peened torsion bar. Shot-peening induces a tangential mean stress shown by the point C. When submitted to alternating torsion, the stress state $S_1(t), S_2(t)$ may oscillate between points A and A' before crack initiation. To get crack propagation (see Section 4.3), it must oscillate between B and B'. The "Yield Ellipse" shows the von Mises yielding criterion.

In [22], it is proposed to compute S_a the following way:

$$S_a = \frac{b}{2t}(P_1 - P_3) + (1 - \frac{b}{2t})(P_1 + P_3), \qquad (4.31)$$

where b and t are respectively the fatigue stength in bending and torsion. For ductile metals such as steel or aluminum, $t \approx 0.6b$ and eqn(4.31) becomes:

$$S_a = \frac{P_1}{2} - \frac{P_3}{3}. (4.32)$$

In the ENDUR program (Appendix L), the user can choose either eqn(4.30) or eqn(4.32) to evaluate the equivalent alternating stress. As Figures 4.15 and 4.16 show, it does not do much difference. Notice that if the principal directions are not moving, eqn(4.30) is the same as that explained in Section 4.2.2.

The equivalent mean stress is set to the average, over a cycle, of the first stress tensor invariant [18]. If only the 2 extreme stress states are known, this average can be approximated as:

$$S_{m} = \frac{1}{2} \left(\sigma_{zz_{1}} + \sigma_{yy_{1}} + \sigma_{zz_{1}} + \sigma_{zz_{2}} + \sigma_{yy_{2}} + \sigma_{zz_{2}} \right). \tag{4.33}$$

Care must be taken in determining the "extreme" loading conditions. For example, Figure 4.17 taken from [23] shows that, when the external load does one cycle, the critical area is submitted to 2 cycles, one having a large amplitude, the other having a small amplitude. For the lug/pin joint under study though, the lugs always stay in tension (Figures 3.37 to 3.40), therefore the "extreme" stress states correspond to the "extreme" loading conditions.

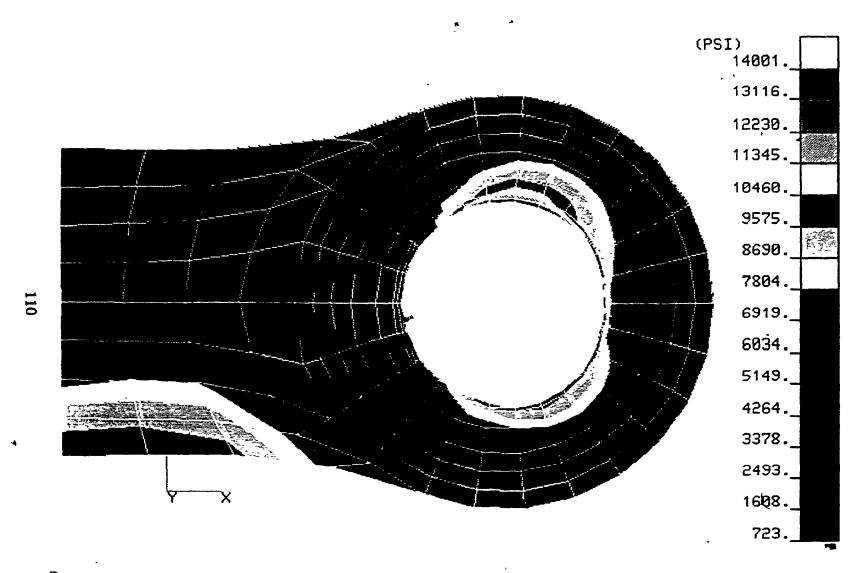


Figure 4.15: Equivalent alternating stress under "high amplitude cycle" conditions, acomputed using the von Mises like equation

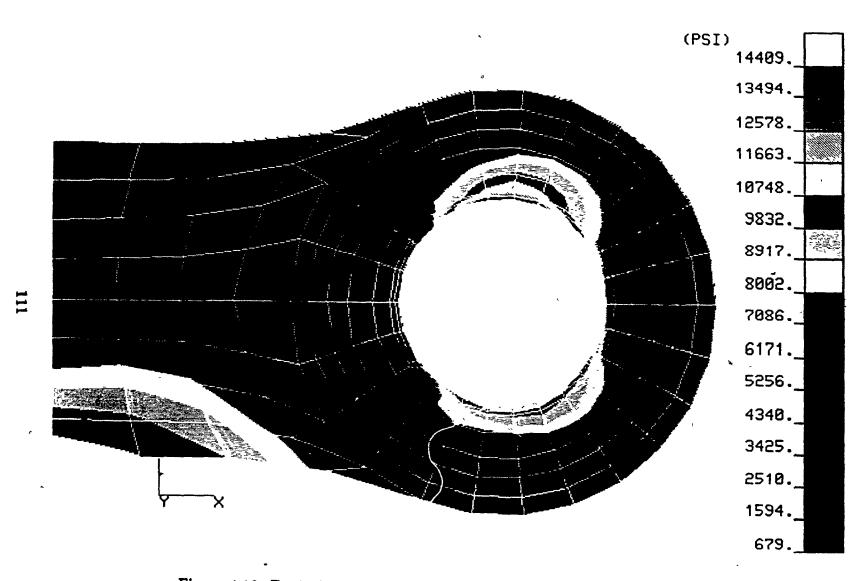


Figure 4.16: Equivalent alternating stress under "high amplitude cycle" conditions, computed using $S_a = \frac{P_1}{2} - \frac{P_3}{3}$

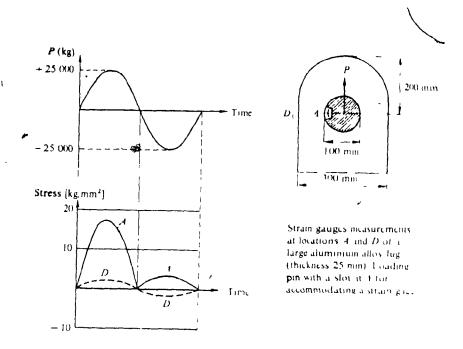


Figure 4.17: Comparison of the stress state at the critical zone to the oscillating loading condition

When the external load does one cycle, the critical area is submitted to 2 cycles, one having a large amplitude, the other having a small amplitude.

In the lug/pin joint under study though, the lugs always stay in tension over a loading cycle and, therefore, the "extreme" stress states correspond to the "extreme" loading conditions.

4.3 Crack Propagation Criterion

To get a fatigue failure, a crack must initiate and propagate until the component cannot stand the load it is submitted to, then a "static" fracture occurs. In the previous section, it was explained how equivalent alternating and mean stresses could be determined to set a crack initiation criterion. In the present section, a crack propagation criteron will be developed.

For uniaxial loading, there will be crack propagation if:

$$S_{at} > S_{cat}, \tag{4.34}$$

where:

- S_{at} is the "nominal alternating tensile stress" i.e. $S_{at} = \frac{1}{2}(S_{max\ tensile} S_{min\ tensile})$ and
- Scat is a material constant.

The definition of S_{at} is illustrated in Figure 4.18. S_{cat} is small (see Table 4.7) and, as suggested in [15], $S_{cat} = 0$ will be used in the present investigation. In [14,15,9], it is mentioned to use the nominal instead of the actual local value of S_{at} since the cracks are always arrested at some depth from the surface. [9] also mentioned that the absence of K_f on the right side of eqn(4.34) is only "approximately correct". Actually it is more or less un-conservative.

High-strength Aluminum Alloys	3ksı
Mild Steels	4ksi
Hardened Steels	10ksi

Table 4.7: Approximate values of S_{cat} for various metals

For multiaxial loading the crack propagation criterion becomes eqn(4.35) if the principal directions do not move [9].

$$S_{at_i} > S_{cat}, \tag{4.35}$$

where $S_{at_i} = \frac{1}{2}(S_{max\ tensile}, -S_{min\ tensile})$; i = 1, 2, 3.

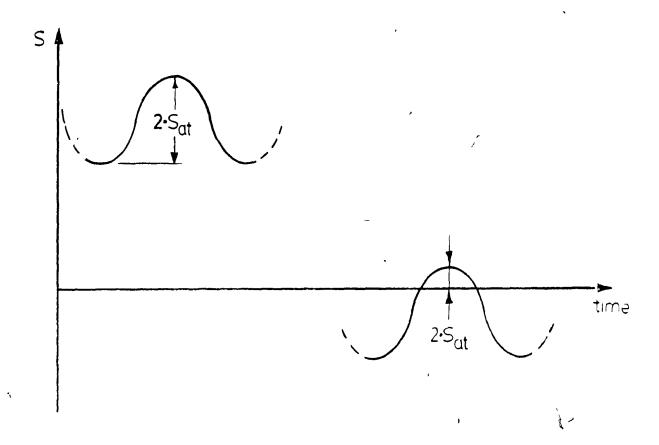


Figure 4.18: S_{at} Definitions

$$S_{at} = \frac{1}{2}(S_{max \ tensile} - S_{min \ tensile})$$

$$S_{max \ tensile} = MAX(S_{max} \ , \ 0.0)$$

$$S_{min \ tensile} = MAX(0.0 \ , \ S_{min})$$

Again [14,15,9] propose to use the nominal values of S_{at} . If, because of the complexity of geometry under study, the "nominal" values cannot be computed, then the present investigator proposes to use the actual local values. This is conservative.

A survey of the literature on multiaxial fatigue has not permitted to find any suitable fatigue crack propagation criterion if the principal directions are moving. The present investigator proposes to use the following criterion:

$$P_{1_1} > 0$$
, and $P_{1_2} > 0$, (4.36)

where:

- P_{1_1} is the maximum principal stress at instant t_1 and
- P_{12} is the maximum principal stress at instant t_2 .

the instants t_1 and t_2 corresponding to the two "extreme" stress states. Here the actual local values of the stress are used to compute P_{1_1} and P_{1_2} .

In the ENDUR program (Appendix L), eqn(4.36) is used for every F.E. node to check whether crack propagation at this point is possible. If it is not, the life at this node is considered infinite. If crack propagation is possible, then the equivalent stresses are computed and the appropriate working S-N curve is used to evaluate the endurance.

4.4 Cumulative Damage

Components are rarely submitted to constant amplitude loading. In high cycle fatigue, the Palmgren-Miner rule is widely used to evaluate the life of components submitted to a variable amplitude loading from the knowledge of their fatigue behaviors under constant amplitude loading. This Palmgren-Miner rule states that the total fatigue damage "D" a component has been subjected to is:

$$D = \sum \frac{n_i}{N},\tag{4.37}$$

and that failure will occur when:

$$D > 1. (4.38)$$

In the above equations:

AJ

- N_i is the number of cycles to failure for the stress level "i" determined from the S-N curve and
- n_i is the number of cycles occurring at stress level "i".

This rule should be seen as a reasonable "rule of thumb". Other rules have been devised but they are harder to apply and have not proved to be superior if sequence effect can be neglected. Sequence effect is assumed to be negligible in the present investigation.

From eqns (4.37 & 4.38), the life "N" of a component will be:

$$N = \frac{1}{\sum \frac{x_1}{N}},\tag{4.39}$$

where x_i is the relative frequency of occurrence of a stress cycle at the stress level i_i .

The MINER program (Appendix N) uses the Palmgren-Miner rule to evaluate the endurance of any component submitted to a variable amplitude loading. The lug/pin joint under study is submitted to a loading spectrum with 2 types of oscillations (section 2.3) and the MINER program was used to find the life of the lugs of the lug/pin joint being considered in this investigation (see Figure 4.26).æ

4.5 Reliability

There are lots of uncertainty associated with fatigue and a probabilistic approach in its study is very enlightening. In fatigue, the reliability of a component is its probability of survival. There are several ways to look at the reliability of components subjected to fatigue loading situations. For example, one can look for:

- 1. the probability of failure after a given number of cycles N, the stress amplitude S_a being known; or
- 2. the probability of failure at a given alternating stress S_a , N being fixed.

Figure 4.19 illustrates these two concepts.

The second method cannot be applied if the applied load S_{a_2} of Figure 4.19 is below the fatigue limit. In this case, it may be important to apply the first method because the applied load could be only slightly below the fatigue limit and the probability of failure unacceptably high (see Figure 4.20).

4.5.1 Computing the Reliability as a Function of the Stress Amplitude

Usually published S-N diagrams represent a 50 % rate of survival. To obtain higher reliability, the applied alternating stress must be lower than the fatigue strength. One way of expressing the reliability of a component is simply to define the reliability factor K_c as:

$$K_c = \frac{\text{applied alternating stress}}{\text{fatigue strength}}.$$
 (4.40)

Assuming that the fatigue strength at a given life is normally distributed:

$$K_c = 1 - \delta Z_r, \tag{4.41}$$

where:

- δ is the standard deviation of the strength distribution (given as a fraction of the fatigue strength) and
- $\bullet_{r}Z_{r}$ is the standardized normal variable, function of the reliability.

At the fatigue limit, δ can be conservatively assumed as 0.08 if no accurate data is available. Table 4.8 shows the reliability factor " K_c " as a function of the reliability.

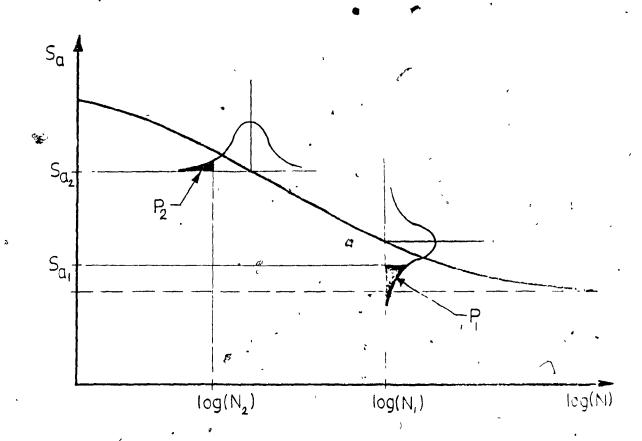


Figure 4.19: Reliability

- P_1 is the probability of failure as a function of the stress amplitude S_{a_1} , the life N_1 being kept constant.
- P_2 is the probability of failure as a function of N_2 , the stress amplitude S_{a_2} being kept constant.

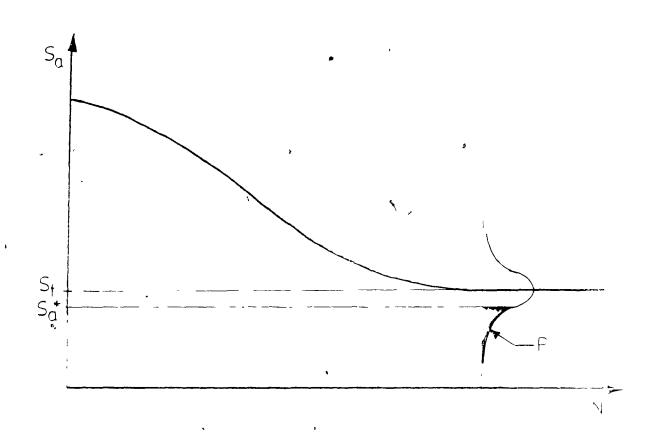


Figure 4.20 Unacceptable Probability of Fatigue failure

Even if the applied alternating stress S_a^{\star} is lower than the fatigue limit S_f and, therefore, a infinite life is computed, the component has an unacceptably high probability of failure.

Reliability	Z_r	Reliability factor K_c
0.50	0.000	1.000
0.90	1.288	0.897
0.95	1.645	0.868
0.99	2.326	0.814
0 999	3.091	0.753-
0 999 9	3.719	0.702
0.999 99	4 265	0.659
0.999 999	4 753	0.620
0.999 999 9	5.199	0.584
0 999 999 99	5.612	0.551
0 999 999 999	5.997	0 520

Table 4.8 Reliability Factors Corresponding to an 8% Standard Deviation of the Endurance Limit

From [24]

4.5.2 Computing the Reliability as a Function of the Endurance

The method, proposed in [25,26], is a modified version of the Palmgren-Miner rule and permits for the evaluation of the reliability as a function of the endurance. Instead of stating that failure occurs when the total damage is one (see Section 4.4), it is stated that there is a probability of failure associated with the total damage. The damage at failure can therefore be seen as a random variable that will be denoted by Δ .

Usually, there are not enough data to define the probability distribution at very low levels of probability of failure. 10^{-6} or 10^{-7} are typical desired probabilities of failure. An assumption on the probability law has to be made. Two distributions, the "log-normal" and the "Weibull", are widely used in probabilistic fatigue analysis. In the present investigation, the behavior of materials under fatigue is assumed to be such that the random variable Δ is "log-normally" distributed. Because of the assumption on the probability distribution law, the "probability" computed should be seen more in a comparative than a classical relative frequency sense.

Bearing in mind the above considerations, the reliability can be computed using the following equations [25,26]:

$$\sigma_x^2 = \ln(1 + V_\Delta), \tag{4.42}$$

$$\mu_x = \ln \bar{\Delta} - \frac{1}{2} \ln(1 + V_{\Delta}),$$
(4 43)

$$R = 1 - \Phi\left(\frac{\ln \Delta - \mu_x}{\sigma_x}\right), \tag{4.44}$$

where:

• V_{Δ} is the coefficient of variation of Δ , namely:

$$V_{\Delta} = \frac{\sigma_{\Delta}}{\bar{\Delta}},\tag{4.45}$$

- $\bar{\Delta}$ is the mean value of Δ ,
- $\Phi(z_0)$ is the cumulative probability for a normal distribution for $z < z_0$, and
- R in the Reliability.

If possible, both $\bar{\Delta}$ and V_{Δ} should be experimentally found for a given design. If not, the following values can be used:

For steels, in the high cycle fatigue range:

$$\bar{\Delta} \simeq 1.37 \; ; \; V_{\Delta} \simeq 0.638.$$
 (4.46)

For aluminums, in the high cycle fatigue range:

$$\bar{\Delta} \simeq 1.33 \; ; \; V_{\Delta} \simeq 0.65.$$
 (4.47)

If $\bar{\Delta}$ and V_{Δ} are not known, $\bar{\Delta}=1.0$ and $V_{\Delta}=0.65$ are reasonably conservative assumptions.

Tables 4.9 to 4.11 give the cumulative damage Δ for various values of $\bar{\Delta}$ and V_{Δ} as a function of the reliability.

Example 1: For an aluminum specimen, the reliability when the cumulative damage is 0.5 can be computed as follows.

- It is known that $\bar{\Delta} \simeq 1.33$; $V_{\Delta} \simeq 0.65$.
- From eqns(4.40 & 4.41) σ_x and μ_x may be computed as $\sigma_z = 0.5936$ and $\mu_x = 0.10897$.
- Since $\Delta = 0.5$ then:

$$R = 1 - \Phi\left(\frac{\ln 0.5 - 0.10897}{0.5936}\right) or$$

$$R = 1 - \Phi(-1.35).$$

From a normal distribution table: $\Phi(-1.35) = 0.0885 \Rightarrow$ The Reliability "R" is: 91%.

Example 2: For aluminum components, the cumulative damage for a 99.9 % reliability can be computed as follows:

$$\Phi\left(\frac{\ln \Delta - 0.10897}{0.5936}\right) = 1 - 0.999 = 0.001.$$

By looking at a normal distribution table (Table 4.12):

$$\frac{\ln \Delta - 0.10897}{0.5936} = -3.09 \implies \Delta = 0.178,$$

i.e., when the cumulative damage Δ has reached 0.178, there is a cumulative probability of failure of 0.1 %. In other words, when the component has been in service for 17.8 % of its expected life (according to the Palmgren-Miner rule), there is a cumulative probability of failure of 0.1%.

Reliability	Δ
%	
99.99999	0.051
99.9999	0.066
99.999	0.088
99.99	0.12
99.9	0.18
99.	0.28
95.	0.42
9ஓ.	0.52
50.	1.12

Table 4.9 Reliability for Aluminum Alloy Components with $\bar{\Delta}=1.33$ and $V_{\Delta}=0.65$

Reliability	Δ
%	
99.99999	0.055
99.9999	0.072
99.999	0.095
99.99	0.13
99.9	0.19
99.	0.30
95.	0.44
90.	0.54
50.	1.15

Table 4.10: Reliability for Steel Components with $\bar{\Delta}=1.37$ and $V_{\Delta}=0.638$

î

Reliability	Δ
%	
99.99999	0.038
99.9999	0.050
99.999	0.066
99.99	0.092
99.9	0.13
99.	0.21
95.	0.32
90.	0.39
50.	0.82

Table 4 11. Reliability for $\bar{\Delta}=1$ 0 and $V_{\Delta}=0.65$

Probability	Reliability	Z
of Failure	%	
1.0E-7	99.99999	-5.20
1.0E-6	99.9999	-4.75
1.0E-5	99.999	-4.27
1.0E-4	99.99	-3.72
0.1 %	99.9	-3.09
1.0 %	99.	-2.326
5.0 %	95.	-1.645
10.0 %	90.	-1.288
50,0 %	50.	0.0

Table 4.12: Normal Distribution Variable ${\cal Z}$

4.6 Fatigue Analysis Results

4.6.1 Pin

The stress fields of the pin when the lug/pin joint is submitted to the loading conditions *HL1* and *LL1* have previously been found (Chapter 3).

As explained in Section 2.3, the stress fields corresponding to the loadings HL2 and LL2 can be deduced from the knowledge of HL1 and LL1 stress fields. The plane of symmetry is the XZ plane. The YMIR program, explained in Appendix M, has been used to find the HL2 and LL2 stress fields.

Table 4.13 shows the ENDUR program input file that was used to evaluate the fatigue resistance of the pin when the loading oscillates between *LL1* and *LL2* values. Likewise, Table 4.14 shows the ENDUR program input file that was used to evaluate the fatigue resistance of the pin when the loading oscillates between *HL1* and *HL2* values.

For both cases, the pin has an infinite life. Figure 4.21 shows the reliability at N=1.0E7 if the pin were submitted to "high amplitude cycles" only. (Actually, it is submitted to a "high amplitude cycles" 0.03 % of the time only). The probability of failure would then be < 1.0E-6 (see Table 4.8). If a crack does appear, which is very unlikely, it will in the red area.

4.6.2 Bushing

Tables 4.15 and 4.16 give the inputs that were used by the ENDUR program to find the endurance and reliability factor of the bushings and the lug. For both oscillating loading conditions, ("high" and "low" amplitude cycles), the bushing endurance was infinite. Figure 4.22 shows the bushing reliability factor after N=1.0E7 "high amplitude cycles". The probability of failure is <1.0E-9 (see Table 4.8). As expected, the bushing is FAR from being critical.

```
-- FILE: [MCGO1.C]FLPIN.DAT --
      PIN FATIGUE, LOADS: LL1 & LL2
             NEUTRAL FILE NAME: [MCGO1.F]PATRAN.OUT
     STRESS STATE #1 FILE NAME: [MCGO1.GEO] S3.NOD
     STRESS STATE #2 FILE NAME: [MCGO1.GEO] YMIRS3.NOD
"SA"
     COMPUTATION METHOD (1,2): 2
                NODE ID'S FILE: PINS.DAT
          SURFACE (1,2,3 OR O): 1
      MATERIAL PROPERTIES FILE: S4340FC.DAT
     SUPERIMPOSED STRESS STATE: O.
                                     ,0. ,0.
                NODE ID'S FILE: PINB.DAT
          SURFACE (1,2,3 OR 0): 1
      MATERIAL PROPERTIES FILE: S4340FS.DAT
     SUPERIMPOSED STRESS STATE: O. .O. .O.
               NODE. FROM. TO: 1287.
                                          1625
          SURFACE (1,2,3 OR 0): 0
      MATERIAL PROPERTIES FILE: S4340.DAT
     SUPERIMPOSED STRESS STATE: O., O. .O.
```

Table 4.13: ENDUR program input file for Pin Fatigue Evaluation when Loading Alternates between LL1 and LL2

S3.NOD and YMIRS3.NOD are the stress states resulting from loading conditions *LL1* and *LL2*, respectively.

PINS.DAT and PINB.DAT give the pin nodes mating with the sleeve and bushing, while S4340FC.DAT and S4340FS.DAT identify the respective fatigue properties of these nodes. All other nodes (those numbered from 1287 to 1675) have the fatigue properties given by the file S4340.DAT.

7

```
-- FILE: [MCGO1.C]FPIN.DAT --
   PIN FATIGUE, LOADS: HL1 & HL2
             NEUTRAL FILE NAME: [MCGO1.F]PATRAN.OUT
     STRESS STATE #1 FILE NAME: [MCGO1.GEO]S4.NOD
     STRESS STATE #2 FILE NAME: [MCGO1.GEO] YMIRS4.NOD
"SA" COMPUTATION METHOD (1,2): 1
               NODE ID'S FILE: PINS.DAT
         SURFACE (1,2,3 OR 0): 1
     MATERIAL PROPERTIES FILE: S4340FC.DAT
    SUPERIMPOSED STRESS STATE: O. ,O. ,O.
               NODE ID'S FILE: PINB.DAT
         SURFACE (1,2,3 OR O): 1
     MATERIAL PROPERTIES FILE: $4340FS.DAT
    SUPERIMPOSED STRESS STATE: O. ,O. ,O.
             NODE: FROM, TO: 1287,
         SURFACE (1,2,3 OR 0): 0
     MATERIAL PROPERTIES FILE: S4340.DAT
    SUPERIMPOSED STRESS STATE: O., O. .O.
```

Table 4.14: ENDUR program input file for Pin Fatigue Evaluation when Loading Alternates between HL1 and HL2

128

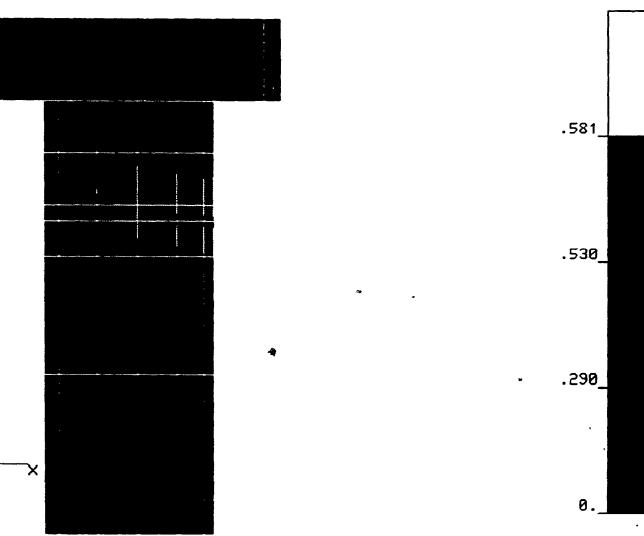


Figure 4.21: Pin Reliability Factor, after 1.E7 "High Amplitude Cycles"

The lower half of the pin is symmetric to the upper half and is not shown.

```
-- FILE: [MCGO1.C] FLUG.DAT --
   LUG FATIGUE, LOADS: LL1 & LL2
             NEUTRAL FILE NAME: [MCGO1.F]PATRAN.OUT
    STRESS STATE #1 FILE NAME: [MCGO1.F]L1.ELS
    STRESS STATE #2 FILE NAME: [MCGO1.F]L2.ELS
"SA" COMPUTATION METHOD (1,2): 2
                NODE ID'S FILE: HOLE.DAT
         SURFACE (1,2,3 OR 0): 1
     MATERIAL PROPERTIES FILE: AL7075F.DAT
    SUPERIMPOSED STRESS STATE: 0., -30000.,
                                               -30000.
               NODE ID'S FILE: FLANGE.DAT
         SURFACE (1,2,3 OR O): 3
     MATERIAL PROPERTIES FILE: AL7075F.DAT
    SUPERIMPOSED STRESS STATE: O. ,O. ,O.
               NODE ID'S FILE: HEAD.DAT
         SURFACE (1,2,3 OR 0): 3
     MATERIAL PROPERTIES FILE: AL7075F.DAT
    SUPERIMPOSED STRESS STATE: O.
                                    ,0. ,0.
                     FROM, TO: 1, 804
             NODE:
         SURFACE (1,2,3 OR 0): 0
     MATERIAL PROPERTIES FILE: AL7075.DAT
    SUPERIMPOSED STRESS STATE: O., O.,O.
```

Table 4.15: ENDUR program input file for Fatigue Endurance of Lug and Bushing when Loading Alternates between LL1 and LL2

(continued on next page)

NODE ID'S FILE: BUSHFZP.DAT

SURFACE (1,2,3 OR 0): 3

MATERIAL PROPERTIES FILE: SS174PHF.DAT SUPERIMPOSED STRESS STATE: 0. ,0.,0.

NODE ID'S FILE: BUSHFR.DAT

SURFACE (1.2.3 OR 0): 1

MATERIAL PROPERTIES FILE: SS174PHF.DAT SUPERIMPOSED STRESS STATE: 0. .0. .0.

NODES: FROM, TO: 805, 1932

SURFACE (1,2,3 OR 0): 0

MATERIAL PROPERTIES FILE: SS174PH.DAT SUPERIMPOSED STRESS STATE: 0., 0 ,0.

(continued from previous page)

HOLE.DAT and AL7075F.BAT are the files that give the nodes located on the lug hole wall and their fatigue properties, respectively. The residual stresses induced by shot-peening are -30ksi along the Z' direction and -30ksi along the θ direction.

FLANGE.DAT and HEAD.DAT files contain the lists of nodes where the lug mates with the flange and pin head. Nodes 1 to 804 and not included in HOLE.DAT, HEAD.DAT and FLANGE.DAT have the fatigue properties given in AL7075.DAT.

BUSHFZP.DAT contains the bushing flange nodes in contact with washer or lug while BUSHFR.DAT contains the bushing nodes in contact with pin or lug. Their fatigue properties are contained in SS174PHF.DAT.

Finally, nodes numbered from 805 to 1932 are bushing nodes that have the fatigue properties given in SS174PH.DAT, provided they are not described by the above files.

```
-- FILE: [MCGO1.C]FLUG.DAT --
  LUG FATIGUE, LOADS: {\em HL1} & {\em HL2}
            NEUTRAL FILE NAME: [MCGO1.F]PATRAN.OUT
     STRESS STATE #1 FILE NAME: [MCGO1.F]H1.ELS
     STRESS STATE #2 FILE NAME: [MCGO1.F] H2.ELS
"SA" COMPUTATION METHOD (1,2): 2
                NODE ID'S FILE: HOLE.DAT.
          SURFACE (1,2,3 OR 0): 1
     MATERIAL PROPERTIES FILE: AL7075F.DAT
     SUPERIMPOSED STRESS STATE: O.,
                                     -30000.
                NODE ID'S FILE: FLANGE.DAT
         SURFACE (1,2,3 OR 0): 3
     MATERIAL PROPERTIES FILE: AL7075F.DAT
    SUPERIMPOSED STRESS STATE: 0. ',O. ,O.
               NODE ID'S FILE: HEAD.DAT
         SURFACE (1,2,3 OR 0): 3
     MATERIAL PROPERTIES FILE: AL7075F.DAT
    SUPERIMPOSED STRESS STATE: O.
            NODES:
                     FROM. TO: 1, 804
         SURFACE (1,2,3 OR 0): 0
     MATERIAL PROPERTIES FILE: AL7075.DAT-
    SUPERIMPOSED STRESS STATE: O., O., O.
```

Table 4.16: ENDUR program input file for Fatigue Endurance of Lug and Bushing when Loading Alternates between HL1 and HL2

(continued on next page)

NODE ID'S FILE: BUSHFZP.DAT SURFACE (1,2,3 OR 0): 3 MATERIAL PROPERTIES FILE: SS174PHF.DAT SUPERIMPOSED STRESS STATE: O. ,O. ,O. NODE ID'S FILE: BUSHFR.DAT SURFACE (1,2,3 OR 0): 1 MATERIAL PROPERTIES FILE: SS174PHF.DAT SUPERIMPOSED STRESS STATE: O. .O. .O. FROM, TO: 805, 1932 NODES: SURFACE (1,2,3 OR 0): 0 MATERIAL PROPERTIES FILE: SS174PH.DAT SUPERIMPOSED STRESS STATE: O., O. .O.

(continued from previous page)

Except for the stress states files, it is identical to Table 4.15

ą.

4.6.3 Lug

Figure 4.23 shows the lug fatigue endurance when the loading oscillates between *LL1* and *LL2* values ("low amplitude cycles"). Similarly, Figure 4.24 shows the endurance when the loading conditions oscillate between *HL1* and *HL2* values ("high amplitude cycles"). Note that Tables 4.15 and 4.16 again give the inputs that were used in the ENDUR program to generate these figures.

Figure 4.25 shows what would happen if the lug hole walls had not been shot peened. From a comparison of Figures 4.24 and 4.25, it is seen that shot peening increases the fatigue life by a factor of 2.5.

Figure 4 26 shows the expected endurance when the high amplitude cycles are applied 0.03 % of the time and low amplitude cycles are applied 99.97 % of the time Finally, Figure 4.27 shows the reliability factor at N=1.0E7 "high amplitude cycles". Failure before N=1.0E7 is almost certain

Figure 4.22: Bushing Reliability Factor after 1.E7 "High Amplitude Cycles"

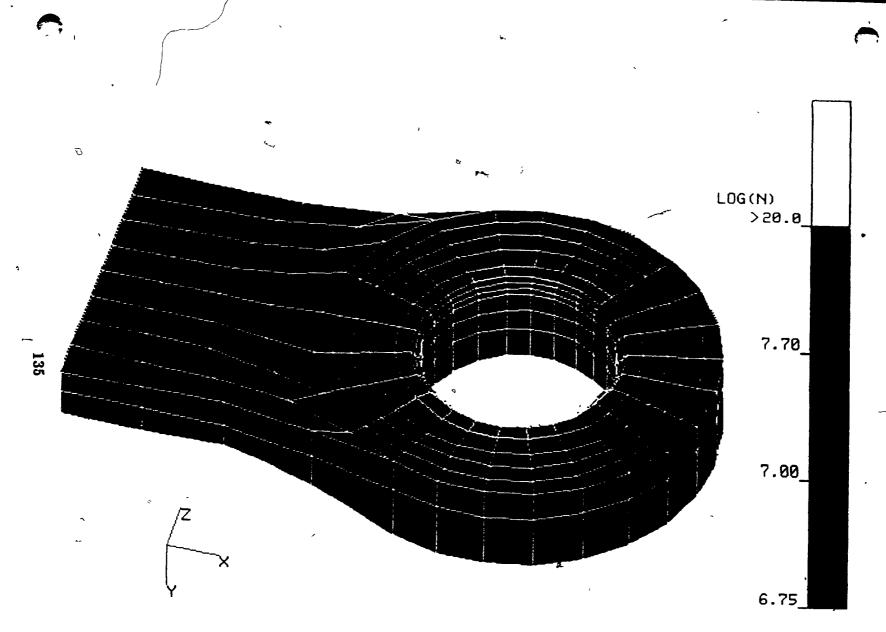


Figure 4.23: "Low Amplitude Cycles" Lug Fatigue Endurance - With Shot-Peening

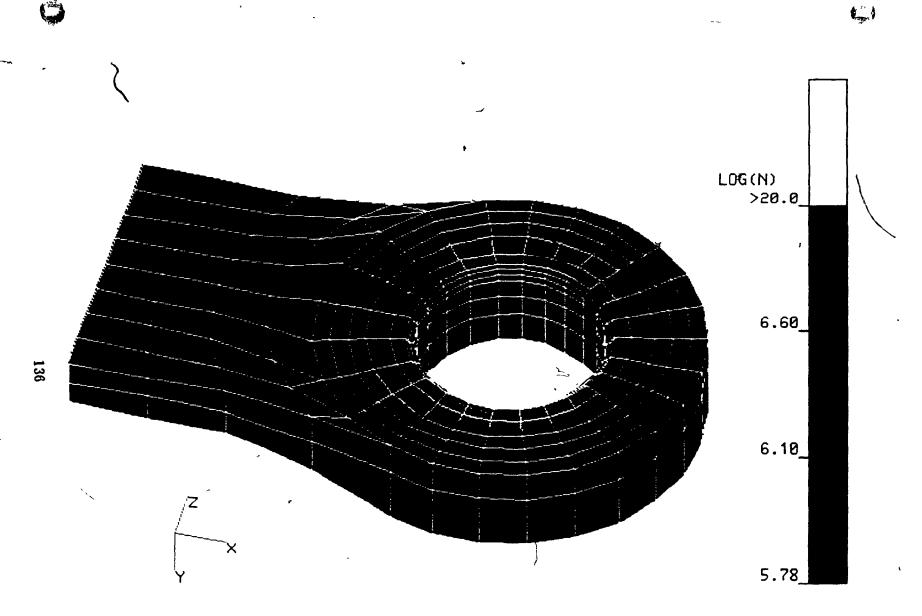


Figure 4.24: "High Amplitude Cycles" Lug Fatigue Endurance - With Shot-Peening

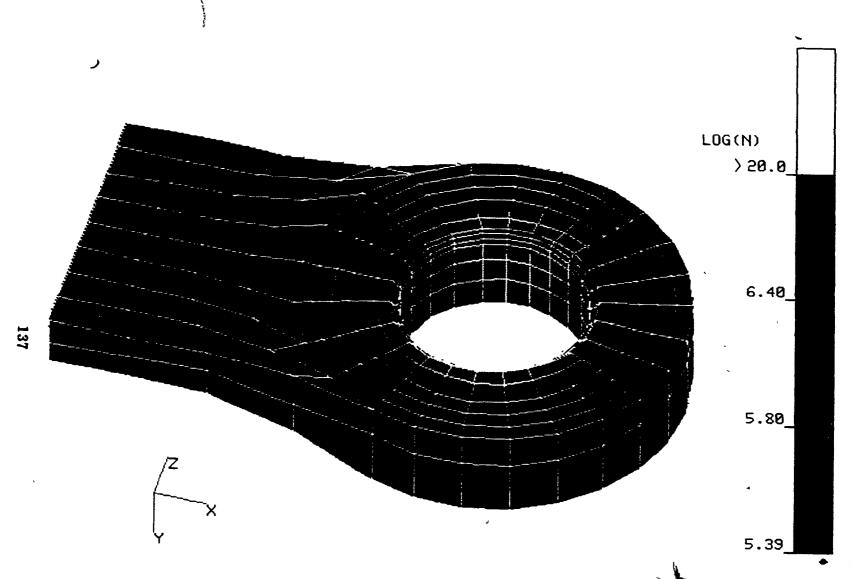


Figure 4.25: "High Amplitude Cycles" Lug Fatigue Endurance - Without Shot-Peening

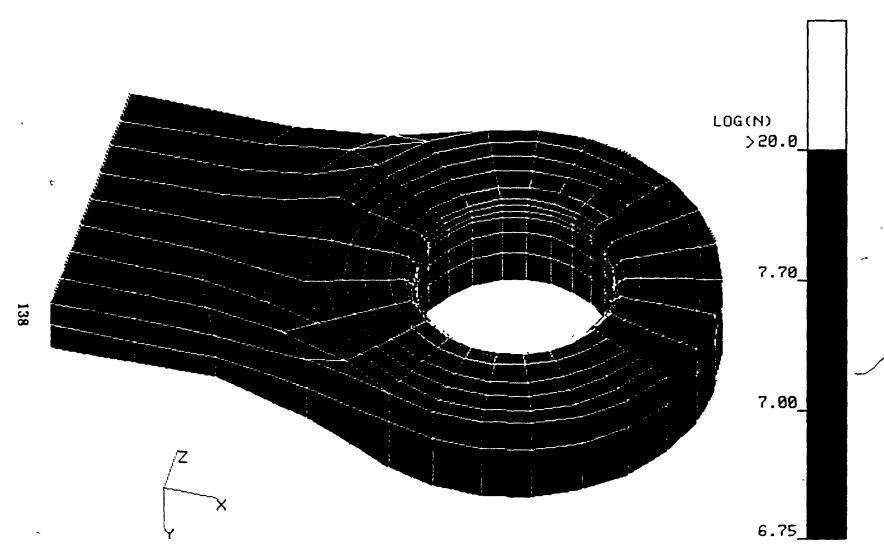


Figure 4.26: Lug Fatigue Endurance - With Shot-Peening

When the frequency of "High Amplitude Cycles" is 0.03% and the frequency of "Low Amplitude Cycles" is 99.97%

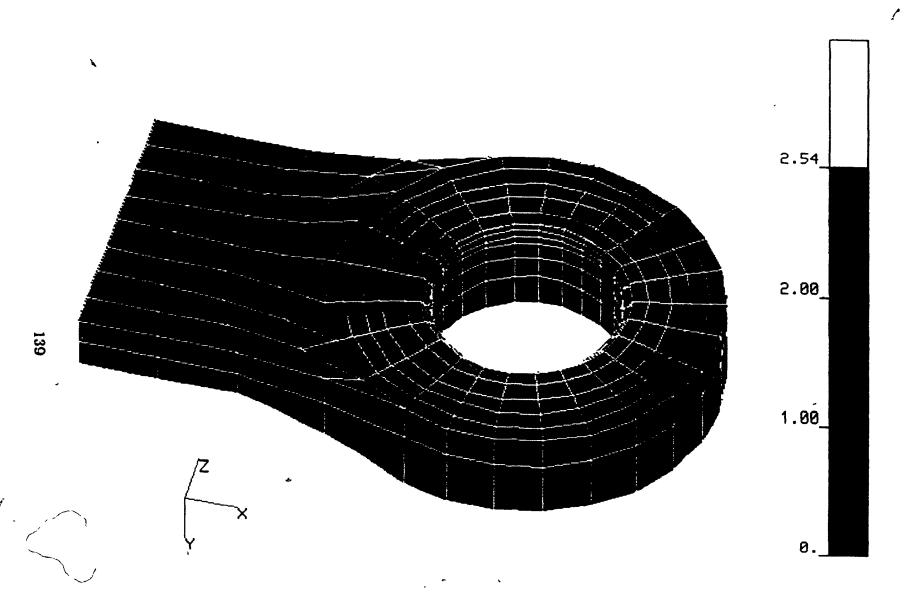


Figure 4.27: "High Amplitude Cycles" Lug Reliability Factor - With Shot-Peening

Chapter 5

Discussion

5.1 Discussion on the stress analysis

- 1. It has been found that, when the lug/pin joint is submitted to HL1, the top lug and bush lose contact over a large area. Results might have been slightly different if friction had been considered or if a finer F.E. mesh had been used (see the two paragraphs below) but it is doubted that the top lug and bush would have kept contact when the lug/pin joint were highly loaded
- 2 The accuracy of the stress analysis would certainly be improved by using a finer F.E. mesh around the lug hole. It has been noted in Section 3.3.2 that the stresses around the lug hole were underestimated.
- 3. Another possible improvement to the accuracy would result from considering the friction between the lug/pin joint components. Friction could be taken into account easily by adding a non zero coefficient of friction in the NASTRAN PGAP cards [5]. Rerunning NASTRAN would require a large amount of computer time though. As explained in [27], this would improve the fatigue analysis even if fretting occurs.

Notice that if the bolt had been tightened, friction at the pin head/lug, bushing flange/lug, bush flange/washer and washer/blade interfaces would have had to be considered since a large proportion of the load would have been transmitted by shear stresses through these interfaces. If it can be reasonably assumed that no slip occurs between two components, then they can be considered as only one component and their F.E. mesh can be made continuous. This would make

the computation much faster.

4. The use of the substructuring technique in the F.E. analysis could decrease the computer time required to perform the stress analysis of the lug/pin joint. Each component of the lug/pin joint could be seen as a linear substructure whose internal degrees of freedom can be "condensed". The total structure stiffness would then be formed from the substructure stiffness matrices. Referring to the coarse F.E. model (Figure 3.7), instead of having around:

1625
$$\hbar$$
odes \times 3 degrees/node = 4875 degrees of freedom, (5.1)

a condensed structure would have around:

$$((468 \ gaps + 72 \ MPC \ cards) \times 2) \times 3 \ degrees/node = 3240 \ degrees \ of \ freedom.$$

$$(5 \ 2)$$

5.2 Discussion on the results of the lug/pin joint fatigue analysis

- 1. The crack growth time is small relatively to the crack initiation time for lugs in high cycle fatigue range. The endurance computed using the methodology proposed in this thesis can be assimilated into either the crack initiation time or the life to rupture (crack initiation period + crack growth period);
- 2. The reliability of the pin and bushings is so much higher than the reliability of the lugs that no pin or bushing failure is expected.
- 3: Cracks are likely to appear on the areas colored in red on Figure 4.26. It shows that the crack will appear at the interface between the lug and the bushing flange. Cracks located in this position cannot be detected visually because of the presence of the bushing (see Figure 5.1).
- 4. The expected life of the component is $10^{6.75} = 5.6E6$ cycles (Figure 4.26). To get a reliability of 0.9999999, the lugs must be retired from service after $0.038 \times 5.6E6 = 2.1E5$ cycles. The factor 0.038 was taken in Table 4.11. Although the lugs are made of aluminum, the Table 4.9 value was not used because of the fretting that may modify the endurance distribution.

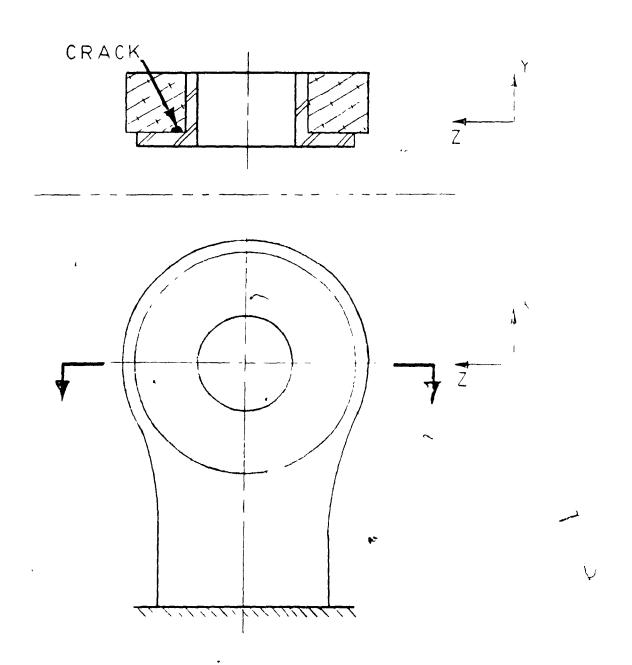


Figure 5.1: Crack Initiation Site

The crack initiation site cannot be detected without removing the bushing.

5.3 Discussion on the fatigue analysis methodology

- 1. The fatigue analysis methodology developed here can be applied to a wide range of problems, not only to lug/pin joints. There are, however, a few restrictions to the use of the ENDUR program. They may be listed as follows.
 - (a) The stress cycle must reflect the loading cycle and the loading conditions that induced the extreme stress states must be identified. Usually, this is straightforward but the user is advised to be careful. Figure 4.17 shows an example where a stress cycle at the critical zone is not similar to the loading cycle.
 - (b) All stresses must be expressed using the same material coordinate system, e.g., the R, θ , Z' coordinate system was used in this investigation.
 - (c) Nodes numbering must start at 1 and no number can be skipped. The maximum number of nodes is 3000. The maximum number of elements is 2000.
 - (d) Fretted surface must be normal to one of the unit vectors of the material coordinate system. In the lug/pin joint concentrated upon in the present investigation, all fretted surfaces were normal to either R or Z'.

It would be possible to make the ENDUR program more sophisticated so it could overcome most of these restrictions.

- 2. Fretting effects are hard to incorporate into an explicit equation. A good equation would probably have to take into account the normal pressure and the slip between the mating surfaces. If improved equations for the computation of the fretting effect could be found, they could probably be a implemented in the ENDUR program.
- 3. The ENDUR program is built to be easily modified if different equations are preferred for the S-N curve, mean stress effect, fretting effect, etc..
- 4. As previously mentioned in the Introduction, the present state of knowledge on fatigue does not permit very accurate evaluation of the fatigue endurance particularly in the high cycle range. The methodology proposed in this thesis is to be used to compare alternative designs and select those that are worth testing.

5.4 Possible improvements to the design

The fact that the crack initiation sites are not visible without removing the interference fit bushes is certainly not convenient. As the lug/pin joint is designed now, sophisticated inspection techniques may be required to detect cracks at an early stage of their formation. Flanged bushes tend to induce very high tension at one side of the hole which increases the likelihood of crack initiation at this site. This finding is confirmed by [28]. Though it is hardly possible for the lug/pin joint under study, [28] proposes to use coating or a separate shims to protect lug sides. The present investigator would rather recommend a decrease in the bushes flange diameter and thickness. Moreover since the pin is much more fatigue resistant than the lugs, the present investigator also proposes to decrease the pin diameter to $\approx \frac{7}{8}in$ and increase the bushes and sleeve wall thicknesses accordingly. It would then be important to check the pin static strength to make sure that it can sustain the expected "once in a lifetime" load.

Increasing the lug/bush interference fit from $\approx 0.2\%$ to ≈ 0.3 or 0.4 or even 0.6%, which are more usual values for interference of lug/pin assemblies [1], could prevent the lugs and bushings from losing contact when the lug/pin joint is highly loaded (see Figure 3.43). Introducing higher interference fit bushings in the lugs would be harder though and special care should then be taken to avoid scratching the lug. This would also reduce the slip at the bush/lug interfaces. Fretting would then be less severe.

ì

The geometrical modifications proposed in the above paragraphs would be easy to implement since they would not require any modification of the blade or the lugs.

Pre-stressing the lugs by hole expansion with split-sleeve could be a more effective way to introduce beneficial compressive stresses in the lugs than the shot peening technique. The problem with both techniques is that it is difficult to control how well they have been applied.

An important increase in endurance can be obtained from the application of a clamping pressure, via tightening of the bolt for example, because the load is then transferred by friction rather than pin load (See the third paragraph of Section 5.1). Notice that lubrification of such joints is detrimental [29].

Chapter 6

Conclusions

6.1 Conclusions

A methodology for the stress and fatigue analysis of metallic lug/pin joints has been developed. For the particular lug/pin joint that was under investigation, the methodology has permitted the suggestion of possible improvements to its design. It is clear, however, that the methodology could be more extensively exploited to simplify the comparison of different lug/pin joint designs thereby aiding the selection of those that are worthy of testing.

To be more specific, the methodology permits:

- easy performance of the stress analysis of topologically similar lug/pin joints,
- a determination of the fatigue crack initiation site,
- an evaluation of the fatigue lives of critical components of an assembly, and
- the assessment of their reliability.

The methodology involves the following steps:

- definition of the lug/pin joint geometry,
- a F.E. mesh definition using solid and interface elements,
- computation using the F.E. method of the stress states induced by extreme loading conditions,

- · evaluation of the endurance for each stress level, and
- computation of the endurance taking into account the relative frequency of occurrence of each stress level.

Notice that the fatigue analysis program ENDUR (explained in Appendix L) can be applied to different metallic assemblies.

6.2 Proposed Future Investigations

As is usually the case in high cycle fatigue, the crack initiation time is much longer than the crack propagation time. The application of fracture mechanics techniques that permit an evaluation of the crack growth once a "small" crack has formed would be useful since it would permit an evaluation of the time interval between inspections.

Secondly, although the manufacture of a few lug/pin joint specimens and their testing would be very expensive and time consuming, empirical verification of the results predicted by this methodology would certainly be very informative and would permit an improvement in some of the assumptions that had to be made in its development. In particular, it would be of interest to see the crack initiation position and how the cadmium plating on the bushes resists fretting.

Finally, it must be recalled that most of the assumptions made during the development of this thesis have been conservative. On the other hand, the stresses around the lug hole have been underestimated (Section 3.3.2) due to the implementation of a relatively coarse F.E. grid. It would therefore be beneficial for the stress analysis to be repeated with a much finer F.E. mesh at this location.

References

- [1] R.B. Heywood, Designing Against Fatigus, Reinhold, New-York, 1962
- [2] S.E. Larsson, The Development of a Calculation Method for the Fatigue Strength of Lugs and a Study of Test Results for Lugs of Aluminum, from Fatigue Design Procedures, Proceedings of the 4th Symposium of the International Committee on Aeronautical Fatigue, Munich, 1965, edited by E. Gassner & W. Schutz, Pergamon Press, 1969.
- [3] A Buch, Fatigue and Fretting of Pin-Lug Joints with and without Interference Fit, Wear, vol 16, no 9, 1977.
- [4] ASM, Metals Handbook, 9th edition, Volume 2, Properties & Selection of Nonferrous Alloys & Pure Metals, 1979
- [5] MSC NASTRAN user's manuals, MacNeal-Schwendler Corporation, Los Angeles, 1986.
- [6] PATRAN user's guide, Vol 1 & 2, PDA Engineering, Santa-Ana, 1986
- [7] N.E. Frost, K.J. Marsh, L.P. Pook, Metal Fatigue, Clarendon Press, Oxford, 1974.
- [8] W. Weibull, Fatigue Testing & Analysis of Results, Pergamon Press, New-York, 1961.
- [9] SAE, Fatigue Design Handbook, SAE, New-York, 1968.
- [10] L. Sors, Fatigue Design of Machine Components, Pergamon Press, Oxford, 1971.
- [11] R.B. Waterhouse, Fretting Corrosion, Pergamon Press, London, 1972.

- [12] P.G. Forrest, Fatigue of Metals, Pergamon Press, London, 1962.
- [13] ASME, Metal Engineering Design Handbook, McGraw-Hill, New-York, 1953.
- [14] H.O Fuchs, Prestressing and Fatigue, Metal Engineering Quarterly, American Society for Metals, Aug 1966.
- [15] H.O. Fuchs, The Effect of Self-stresses on High cycle Fatigue, Journal of Testing and Evaluation, vol 10, no 4, July 1982.
- [16] F. Och, Fatigue Strength in Helicopter Fatigue Design Guide, AGARD-AG-292, AGARD, Neuilly-sur-Seine, 1983.
- [17] P.E. Peterson, Stress Concentration Factors, John Wiley & sons, New-York, 1974.
- [18] Y.S Garud, Multiaxial Fatigue: A Survey of the State of the Art, Journal of Testing & Evaluation, vol 9, no 3, May 1983
- [19] H.O Fuchs, Stephens R I., Metal Fatigue in Engineering, John Wiley & sons, New-York, 1980
- [20] A Cardou, Analyse des Contraintes, Université Laval, Québec, 1983
- [21] B.F. Langer, Design of Vessel involving Fatigue in Pressure Vessel Engineering Technology, R W Nichols editor, Applied Science Publishers ltd, London, 1971
- [22] H.O. Fuchs, Fatigue Research with Discrimating Specimens, Fatigue of Engineering Materials & Structures vol 2, no 2, 1979.
- [23] J. Schijve, Fatigue of Lugs from Contributions to the Theory of Aircrast Structure, Delft University Press, 1972.
- [24] W.D. Prayoorat, S. Taylor, Computed-Aided Fatigue Analysis, Computer-Aided Design, vol 18, no 5, June 1986.
- [25] ASCE, Fatigue Reliability: Variable amplitude Loading, Journal of Structural Division, vol 108, st-1, January 1982.
 - [26] ASCE, Fatigue Reliability: An Introduction, Journal of Structural Division, vol 108, st-1, January 1982.

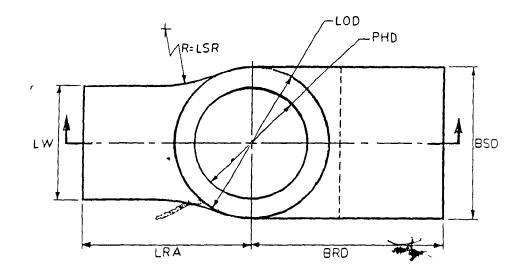
- [27] J.J. O'Connor, The Role of Elastic Stress Analysis in the Interpretation of Fretting Fatigue Failures, from Fretting Fatigue, edited by R.B. Waterhouse, Applied Science Publishers, London, 1981.
- [28] F.F. Liard, Fatigue Strength Improvement & Deterioration in Helicopter Fatigue Design Guide, AGARD-AG-292, AGARD, Neuilly-sur-Seine, 1983.
- [29] H.P. Van Leeuwe, A. Nederveen, H.H. Ruiter, Fretting & Fatigue under Complex Loads, National Aerospace Laboratory, NLR, Netherlands, 1973
- [30] CRC Handbook of Materials Science, Vol 2, Metals, Composites & Refractory Materials, CRC Press, Cleveland, 1974.

Appendix A

Geometry Definition Program

The GEO program creates the PATRAN session files corresponding to the lug/pin joint geometry given in the input file. The format of the input file must be the same as the file GEO.DAT (TABLE A.1). The input file contains only independent variables. They are shown in Figure A.1.

Each of the 6 GEO output files is used to create a different component of the lug/pin joint geometry.


The GEO output files are:

LUGX.SES BLAX.SES BUSX.SES SLEX.SES WASX.SES PINX.SES

where "x" is a one digit user chosen ID.

The geometric entities (points, lines, surfaces, solids) have been numbered according to the following scheme:

E

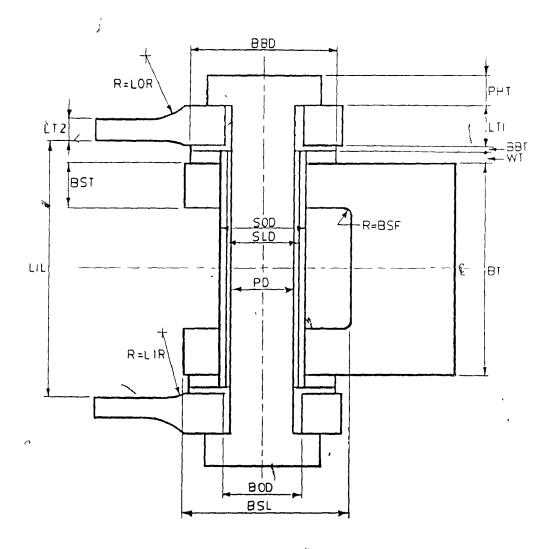


Figure A.1: Lug/pin joint geometric parameters

components	geometric entities numbering
lugs	from 101 to 399
blade	from 401 to 599
bushings	from 601 to 699
sleeve	from 1701 to 1899
	(except the solids: from 701 to 799)
pin	from 901 to 1099
washers	from 801 to 899

The output files must be executed by PATRAN separately. They can be put together using the "neutral" file feature of PATRAN. (see Figure A.2). No geometric entity ID must be changed while putting the neutral files together.

The GEO program cannot handle "topological" modifications. If, for a set of input data, the topology is modified, then PATRAN will give a warning or an error message when executing the GEO output files. In this case, the user may have to exter the modified part of the model within PATRAN.

Notice that the measurements in the input file must not take into account any clearance or interference. These will be taken into account at a subsequent stage. Small fillets and chamfers are not taken into account at this stage either.

To run GEO, type:

```
$RUN GEO

ENTER INPUT FILE NAME: <--- written by GEO

GEO.DAT <--- example, typed by the user

ENTER OUTPUT FILES ID (ONE DIGIT): <--- written by GEO

1 <--- example, typed by the user
```

	*		}
	*	F. 7	()
	PIN DIAMETER	[in]	(PD) =1
	PIN HEAD DIAMETER	[in]	(PHD)=1 8
	PIN HEAD THICKNESS	[in]	(PHT) = 5
•	*		
	SLEEVE OUT DIAMETER	[in]	(SOD) = 1 315
	SLEEVE LINER DIAMETER	[in]	(SLD)=1 125
	*		
	WASHER THICKNESS	[in]	(WT) = 21
	*		
	BUSHING OUT DIAMETER	[in]	(BOD)=1 2
	BUSHING BASE OUT DIAMETER	[in]	(BBD)=2 25
	BUSHING BASE THICKNESS	[in]	(BBT) = O97
	*		
	LUG THICKNESS #1	[in]	(LT1) = 625
	LUG THICKNESS #2	[in]	(LT2) = .359
	LUG "IN" LENGTH	[in]	(LIL)=4 01
	LUG OUT DIAMETER	[in]	(LOD) = 2.47
	LUG WIDTH	[in]	(LW) = 1 83
	LUG REFERENCE TO PIN AXIS DISTANCE	[1n]	(LRA)=2.6
,	LUG "IN" RADIUS	[in]	(LIR)=1
	LUG "OUT" RADIUS	[in]	(LOR)=1
	LUG SUPPORT RADIUS	[in]	(LSR)=3.
	*		
	BLADE THICKNESS	[in]	(BT) =3.328
	BLADE SUPPORT DIAMETER	[in]	(BSD)=2.47
	BLADE SUPPORT THICKNESS	[in]	(BST)=.71
	BLADE SUPPORT LENGTH	[in]	(BSL)=2.6
	BLADE SUPPORT FILLET RADIUS	[in]	(BSF)=.25
	BLADE REFERENCE TO PIN AXIS DISTANCE	[in]	(BRD)=3.
	*		

Table A.1: Typical GEO program input file

Only the values placed right to the equal signs can be changed. No new line must be introduced. No line can be deleted. The variables are illustrated in Figure A.1.

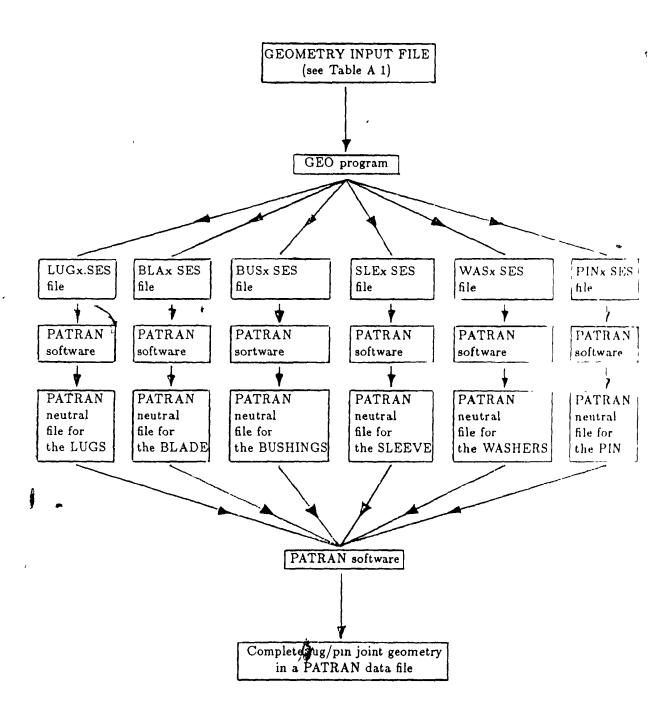


Figure A.2: Lug/pin joint geometry definition flow chart

```
PIN
 GR,901,,0,0
GR,902,,0,1.664000
GR,903,TR,0/-0.710000,902
GR,904,TR,0/ 0.210000,902
GR.905,TR.0/ 0.097000,904
GR,906,TR,0/ 0.725000,905
GR,907,TR,0/ 0.500000,906
LI,901T906,ST,, 901/903/902/904T906,903/902/904T907
LI,6#,TR, 0.500000,901T906
LI,#,TR, 0.165000,912
LI,#,TR,0.900000,906
PA,901T908,2L,, 901T906/912/913,907T912/913/914
HP,901T916,ARC,G901/G902/110.140862,901T908
PA,8#,MI,X,901T908
HP,8#,ARC,G901/G902/-69.859138,909T916
LI,1T#,D
PA,1T#,D
HP,24#,MI,Z,901T924
HP,48#,MI,Y,901T948
```

Table A.2: Example of a GEO program output file

This file is a PATRAN session file. It creates the pin geometry when executed in PATRAN.

Table A.3: GEO program FORTRAN code

```
C
      PROGRAM GEO
C
       -----
C
      IMPLICIT REAL I, J, K, L, M, N
      CHARACTER*1 A1, ID
      CHARACTER*50 A50, INPUT
С
     WRITE(6,2)
 2
       FORMAT(' ENTER INPUT FILE NAME ')
      READ(5,3) INPUT
C
      WRITE(6,4)
       FORMAT(' ENTER OUTPUT FILES ID (ONE DIGIT) ')
      READ(5,3) ID
                                                4
C
 3
       FORMAT(A)
C
      OPEN ( UNIT=2,
             FILE=INPUT,
     Ł
             STATUS='OLD',
             ACCESS = 'SEQUENTIAL',
             FORM='FORMATTED',
             READONLY )
С
       READING INPUTS
C
C
C
1
        FORMAT(//,3(51X,F9 6,/),/,2(51X,F9 8,/),/,(51X,F9 6,/),/,
     & 3(51X,F9.6,/),/,9(51X,F9.6,/),/,6(51X,F9.6/))
C
       READ(2,1) PD
                 , PHD
                 , PHT
     Ł
                , SOD
                 ,SLD
```

```
,WT
                 , BOD
                 , BBD
                 , BBT
                 ,LT1
                 ,LT2
                 ,LIL
                 , LOD
                 .LW
                 LRA
                 ,LIR
                 ,LOR
                 , LSR
                 ,BT
                 , BSD
                 , BST
                 BSL
                 , BSF
                 , BRD
C٠
С
 9999
           FORMAT(A18)
 9998
            FORMAT('$')
 9997
            FORMAT('$', A40)
C
C
      CREATING "LUGx.SES" FILE
C
C
      OPEN ( UNIT=1,
     k
              FILE='LUG'//ID//'.SES',
     Ł
              STATUS='NEW',
     æ
              ACCESS='SEQUENTIAL',
     å
              CARRIAGECONTROL='LIST',
              FORM='FORMATTED' )
C
          WRITE(1,*) 'SET,LINES,O'
C
C
          WRITE(1,9998)
```

```
WRITE(1,9997)'
                                   LUG'
          WRITE(1,9998)
          WRITE(1,*) 'SET, TOL, .010'
          WRITE(1,9997)'
                              GRID 101, 102 DEFINE AN AXIS'
          WRITE(1,*) 'GR,101,,0'
          WRITE(1,*) 'GR,102,,0,1'
          WRITE(1,9998)
C
          L1 = -SQRT((LOD/2. + LSR) **2 - (LW/2. + LSR) **2)
          L2=-(LSR+LW/2)
C
          WRITE(1,1002)L1,L2
 1002
           FORMAT('GR,#,,',F9 6,',0,',F9 6)
C
          L7=BT/2.+WT+BBT
          L3=L7+LT1
C
          WRITE(1,1004) L3
 1004
           FORMAT('GR,#,TR,/',F9.6,',103')
          WRITE(1,1006) LSR
 1006
           FORMAT('GR,#,TR,//',F9.6',104')
          WRITE(1,9998)
          WRITE(1,*) 'LI,101,ARC,G103/G104/40.,105'
          WRITE(1,9997) '40 ABOVE N.I. (Not Important)'
          WRITE(1,9998)
          WRITE(1,*) 'LI,#,EXT,-.3,101'
          WRITE(1,9997) ' .3 ABOVE N.I.'
          WRITE(1,9998)
          WRITE(1,*) 'LI,#,MER,,101/102'
          WRITE(1,*) 'LI,#,TR,/-1,103'
          WRITE(1,9997)' -1 ABOVE N.I.'
          WRITE(1,9998)
          WRITE(1,*) 'PA,101,2L.,103,104'
C
          L6 = LIL/2.+LT2+LOR
          L4 = SQRT(LOR**2-(L6-L3)**2)
          L5 = -(LOD/2.+L4)
С
          WRITE(1,1007) L5,L6
```

```
FORMAT('GR,#,,',F9.6,',',F9.6)
 1007
          WRITE(1,*) 'GR,#,TR,//1,110'
          WRITE(1,9997) ' 1 ABOVE N.I.'
          WRITE(1,9998)
C
          LORM =- LOR
C
          WRITE(1,1008) LORM
           FORMAT('GR,#,TR,/',F9.6,',110')
 1008
          WRITE(1,9998)
C
          L8 = LIL/2.-L7
          L9 = LIR-L8
          L10 = -SQRT(LIR**2-L9**2)-LOD/2.
          L11 = LIL/2.-LIR
C
          ANGL2 = -ASIND((LSR+LW/2.)/(LSR+LOD/2.))
          ANGL1 = 180. + ANGL2
          ANGL3 = -90.-ANGL2
          ANGL4 = ASIND(L4/LOR)
          ANGL5=-ANGL2
          ANGL6 = ACOSD(L9/LIR)
          ANGL7 = -ANGL1/2
C
          WRITE(1,1010) ANGL4
 1010
           FORMAT( 'LI, #, ARC, G110/G111/', F11.6,', 112')
         WRITE(1,1012) ANGL5
 1012
           FORMAT( 'PA, 102, ARC, G102/G101/', F11.6,', 105')
          WRITE(1,9998)
          WRITE(1,9998)
          WRITE(1,*) 'LI,106, INT,,101,102'
          WRITE(1,*) 'N'
          WRITE(1,*) '1'
          WRITE(1,*) 'GR,117,,.1,.1'
          WRITE(1,*) 'GR,117,ER
                                          ! GRID 117 IS DUMMY'
          WRITE(1,9998)
          WRITE(1,*) 'PA,103,2L,P102,105,106'
          WRITE(1,1014)L10,L11
```

```
1014
            FORMAT( 'GR, #,, ', F9.6, ', ', F9.6)
           WRITE(1,9998)
           WRITE(1,*) 'GR,119,TR,//1,118'
           WRITE(1,9997) '1 ABOVE N I '
           WRITE(1,9998)
           WRITE(1,1016) LIR
 1016
            FORMAT( 'GR, 120, TR, /', F9.6, ', 118')
           WRITE(1,9998)
C
С
           WRITE(1,1018) ANGL6
            FORMAT( 'LI,109,ARC,G119/G118/',F11.6,',120')
 1018
           LT2M=-LT2
C
           WRITE(1,1020) LT2M
 1020
            FORMAT (' 'GR, 122, TR, /', F9.6, ', 112')
           WRITE(1,*) 'LI,110,2G,,122,120'
           WRITE(1,*) 'LI,111,MER, 005,110/109'
           WRITE(1,1022) ANGL2
 1022
            FORMAT( 'PA,104,ARC,G101/G102/',F11.6,',111')
           WRITE(1,*) 'LI,#, INT, 101,104'
           WRITE(1,*) 'N'
           WRITE(1,*) '1'
           WRITE(1,*) 'GR,126,,-.1,-.1'
           WRITE(1,*) 'GR,126,ER'
           WRITE(1,9997) ' GRID 126 IS DUMMY'
           WRITE(1,9998)
           WRITE(1,*) 'PA,105,2L,104,111,112'
           WRITE(1,9998)
           WRITE(1,*) 'HP, 101, 2P, , 103, 105'
C
          LIL2D = LIL/2.
          BSLM - -BSL
C
          WRITE(1,1024) BSLM,LIL2D
1024
           FORMAT( 'GR,#,,',F9.6,',',F9.6)
          WRITE(1,9998)
```

C

```
LW2DM=-LW/2
С
          WRITE(1,1026) LW2DM
           FORMAT( 'GR, 128, TR, //', F9 6,', 127')
 1026
          WRITE(1,*) 'LI,113,2G,P104,122,125'
          WRITE(1,*) 'LI,114,2G,,127,128'
          WRITE(1,9998)
          WRITE(1,*) 'SET, TOL, 015'
          WRITE(1,*) 'PA,106,2L,,113,114'
          WRITE(1,1028) LT2
           FORMAT( 'PA, 107, TR, /', F9 6, ', 106')
 1028
          WRITE(1,*) 'HP,102,2P,,106,107'
С
          BBD2DM = -BBD/2
          BOD2DM = -BOD/2.
C
          WRITE(1,1040) BBD2DM,L7
          FORMAT('GR,#,,',F9 6,',',F9 6)
 1040
          WRITE(1,1050) BOD2DM, L7
 1050
          FORMAT('GR,132,,'F9 6,',',F9 6)
          WRITE(1,9998)
          WRITE(1,9997) ' MODIFIED, JULY 1 ,1987'
          WRITE(1,9998)
C
          PHD2DM = -PHD/2
          WRITE(1,1060) PHD2DM,L7
 1060
          FORMAT('GR.#,,',F9 6,',',F9 6)
          WRITE(1,*) 'LI,3#,ST,,132/133/131,133/131/121'
          WRITE(1,1065) LT1
          FORMAT('LI,3#,TR,/',F9 6,',115T117')
 1065
        WRITE(1,*) 'PA,3#,2L,,115T117,118T120'
          WRITE(1,*) 'PA.3#,MI.X,108T110'
          WRITE(1,1070) ANGL2
 1070
          FORMAT( 'HP.3#, ARC, G101/G102/', F11 6, ', 108T110')
          WRITE(1,1080) ANGL1
1080
          FORMAT('HP,6#, ARC, G101/G102/', F11 6,',111T113')
          WRITE(1,*) 'LI,1T#,DEL'
```

WRITE(1,*) 'PA,1T#,DEL'

```
WRITE(1,*) 'GR,119/118/103/104/110/105,DEL'
WRITE(1,*) 'SET, TOL, O5'
WRITE(1,*) 'HP,11#,MI,Z,H101T111'
WRITE(1,*) 'HP,22#,MI,Y,H101T122'
WRITE(1,9998)
WRITE(1,9998)
WRITE(1,*) 'SET.TOL, O15'
WRITE(1,9998)
WRITE(1,*) 'HP,101,LAB,,113/114'
WRITE(1,*) 'HP,112,LAB,,113/112'
WRITE(1,*) 'HP,123,LAB,,180/181'
WRITE(1,*) 'HP,134,LAB,,180/179'
WRITE(1.9998)
WRITE(1,*) 'HP,103 ,LAB,,145/147'
WRITE(1,*) 'HP,106 ,LAB,,137/138'
WRITE(1,*) 'HP,107 ,LAB,,151/152'
WRITE(1,*) 'HP,114 ,LAB,,132/133'
WKITE(1,*) 'HP,117 ,LAB,,172/171'
WRITE(1,*) 'HP,118 ,LAB,,166/168'
WRITE(1,9998)
WRITE(1,*) 'HP,125 ,LAB,,191/195'
WRITE(1,*) 'HP,129 ,LAB,,194/198'
WRITE(1,*) 'HP,128 ,LAB,,208/205'
WRITE(1,*) 'HP,139 ,LAB,,203/204'
WRITE(1,*) 'HP,140 ,LAB,,231/232'
WRITE(1,*) 'HP,136 ,LAB,,225/227'
WRITE(1,9998)
WRITE(1,*) 'HP, 104 , LAB, ,147/149'
WRITE(1,*) 'HP,108 ,LAB,,138/141'
WRITE(1,*) 'HP,109 ,LAB.,152/155'
WRITE(1,*) 'HP,115 ,LAB,,133/131'
WRITE(1,*) 'HP,120 ,LAB,,168/170'
WRITE(1.*) 'HP.119 ,LAB, ,171/175'
WRITE(1,9998)
WRITE(1,*) 'HP,130 ,LAB,,205/212'
WRITE(1,*) 'HP,131 ,LAB,,198/202'
WRITE(1,*) 'HP, 126 ,LAB, ,195/199'
WRITE(1,*) 'HP,137 ,LAB,,227/229'
WRITE(1,*) 'HP,142 ,LAB,,232/235'
```

```
WRITE(1,*) 'HP,141 ,LAB,,204/211'
          WRITE(1,9998)
C
      CLOSE(1)
C
C
      CREATING "BLAx.SES" FILE
C
C
C
      OPEN ( UNIT=1, *

FILE='BLA'//ID//'.SES',
     &
             STATUS = 'NEW'.
     Ł
             ACCESS='SEQUENTIAL',
     &
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED')
C
          WRITE(1,*) 'SET,LINES,O'
C
          WRITE(1,9998)
          WRITE(1,9997) '
                             BLADE'
          WRITE(1,9998)
          WRITE(1,9997) '
                             GR 401,402 DEFINE AN AXIS'
          WRITE(1.9998)
          WRITE(1,*) 'GR,401,,0'
          WRITE(1,*) 'GR,402,,0,1'
          WRITE(1,*) 'GR,401T402,ER'
          WRITE(1,9998)
C
          WRITE(1,9998)
      BT2D = BT/2.
      SOD2DM = -SOD/2.
      BSD2DM = -BSD/2.
          WRITE(1,4010) SOD2DM,BT2D
4010
          FORMAT('GR,#,,'F9.6,',',F9.6)
          WRITE(1,4020) PHD2DM,BT2D
4020
          FORMAT('GR, #,,',F9.6,',',F9.6)
          WRITE(1,4030) BBD2DM,BT2D
4030
         FORMAT('GR,#,,',F9.6,',',F9 6)
```

WRITE(1,4040) BSD2DM,BT2D

```
4040
         FORMAT('GR, #, 'F9.6,',',F9.6)
         WRITE(1,*) 'LI,401T403,ST,,403T405,404T406'
         WRITE(1,4050) ANGL2
4050
         FORMAT('PA, 401T403, ARC, G401/G402/', F11 6,', 401T403')
         WRITE(1,*) 'LI,2#,MI,X,401T402'
         WRITE(1,4060) ANGL1
         FORMAT('PA, 4#, ARC, G401/G402/', F11 6,',404T405')
4060
         WRITE(1,9998)
         WRITE(1,4070) ANGL3
4070
         FORMAT('LI, #, ARC, G401/G402/', F11.6,',410')
         WRITE(1,*) 'LI,#,EX,1,406'
         WRITE(1,9998)
         WRITE(1,*) 'GR,#,TR,//-1,416'
         WRITE(1,*) 'LI,#,ST,,416,419'
         WRITE(1,*) 'GR,#,INT,,407,408'
         WRITE(1,*) 'LI,#,ST,,417,420'
         WRITE(1,*) 'LI,#,MER,,406/409'
         WRITE(1,4080) ANGL7
4080
         FORMAT('LR 411, ARC, G401/G402/',F11 6,',409')
         WRITE(1,*) PA,408,2L,,410,411'
         WRITE(1,9998)
       D1 = BSL - BSD/2.
         WRITE(1,4090) D1,BT2D
4090
         FORMAT('GR,#,,',F9 6,',',F9 6)
         WRITE(1,4100) BSF
4100
         FORMAT('GR,#,TR,',F9.6,',421')
         WRITE(1,4110) BRD,BT2D
4110
         FORMAT('GR,#,,',F9:6,',',F9 6)
         WRITE(1,4120) BSD2DM
4120
         FORMAT('GR,#,TR,//',F9.6,',421')
         WRITE(1,*) 'LI,2#,ST,,420/416,424/424'
         WRITE(1,*) 'LI,#,ST,,421,424'
         WRITE (1,4130) ANGL7
4130
         FORMAT( 'LI, #, ARC, G402/G401/', F11.6,',413')
         WRITE(1,*) 'PA,2#,2L,,415/413,414/412'
         WRITE(1,*) 'LI,2#,ST,,421/422,422/423'
         WRITE(1,4140) BSD2DM
4140
         FORMAT('LI,2#,TR,//',F9.6,',416/417')
         WRITE(1,*) 'PA,2#,2L,,416/417,418/419'
```

```
D6 - BST-BSF
           WRITE(1,4150) D6
 4150
           FORMAT('GR,#,TR,/',F9.6,',421')
          WRITE(1,*) 'GR,#,TR,//1,427'
          WRITE(1,9997) ' 1 ABOVE NOT IMPORTANT'
          BSTM = -BST
          WRITE(1,4160) BSTM
          FORMAT ('GR, #, TR, /', F9.6,', 421')
 4160
          WRITE(1,*) 'LI,#, ARC, G428/G427/90,429'
          WRITE(1,4170) BSD2DM
          FORMAT('LI,#,TR,//',F9.6,',420')
 4170
          WRITE(1,4180) BSTM
          FORMAT('PA,10#,TR,/',F9.6,',401T410')
 4180
          WRITE(1,*) 'PA,#,2L,,420,421'
          WRITE(1,4190) D6
 4190
          FORMAT('PA,#,TR,/',F9 6,',412')
          WRITE(1,*) \hp,401T412,2P,,401T412,413T424'
      BT2DM = -BT/2.
          WRITE(1,4200) BT2DM
 4200
          FORMAT('PA,#,TR,/',F9 6,',412')
          WRITE(1,*) 'HP,#,2P,,424,425'
          WRITE(1,9998)
          WRITE(1,*) 'PA,1T#,DEL'
          WRITE(1,*) 'LI,1T#,DEL'
          WRITE(1,*) 'GR,427/428/419,DEL'
          WRITE(1,9998)
          WRITE(1,*) 'HP,13#,MI,Z,401T413'
          WRITE(1,*) 'HP,26#,MI,Y,401T426'
          WRITE(1,9998)
C
      CLOSE(1)
C
      CREATING "BUSX.SES" FILE
C
C
      OPEN ( UNIT=1,
             FILE='BUS'//ID//'.SES',
             STATUS='NEW',
```

ACCESS='SEQUENTIAL',

```
æ
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED' )
     Ł
C
          WRITE(1,*) 'SET,LINES,O'
С
          WRITE(1,9998)
          WRITE(1,9997) '
                            BUSHING'
          WRITE(1,9998)
          WRITE(1,9997) '
                            GR 601,602 DEFINE AN AXIS'
          WRITE(1,9998)
          WRITE(1,*) 'GR,601,0'
          WRITE(1,*) 'GR,602,,0,1'
          WRITE(1,*) 'GR,601T602,ER'
          WRITE(1,9998)
          WRITE(1,9998)
      PD2D = PD/2.
      BT2DWTP = BT/2.+WT
      SODPDM2D = (SQD-PD)/2.
      BODPDM2D = (BOD-PD)/2
          WRITE(1,9998)
          WRITE(1,6010) PD2D,BT2DWTP
6010
          FORMAT( 'GR,#,,',F9 6,',',F9 6)
          WRITE(1,6020) BBT
6020
          FORMAT('GR,#,TR,0/',F9 6,',603')
          WRITE(1,6030) LT1
6030
          FORMAT('GR,#,TR,0/',F9 6,',604')
          WRITE(1,6040)SODPDM2D
6040
          FORMAT( 'GR, #, TR, ', F9 6, ', 603')
          WRITE(1,6050)BODPDM2D
6050
          FORMAT('GR,2#,TR, ',F9 6,',604T605')
     BBD2D=BBD/2.
         WRITE(1,6060) BBD2D,BT2DWTP
6060
         FORMAT('GR,#,,',F9.6,',',F9 6)
         WRITE(1,6070) BBT
6070
         FORMAT('GR,#,TR,O/',F9.6,',609')
         WRITE(1,9998)
         WRITE(1,9998)
         WRITE(1,9997) ' MODIFIED, JULY 1, 1987'
         WRITE(1,9998)
```

```
PHD2D = PHD/2.
         WRITE(1.6080) PHD2D, RT2DWTP
         FORMAT('GR,#,,'F9.6,'(,',F9.6)
6080
         WRITE(1,6090) BBT
         FORMAT('GR, 612, TR, /', F9.6,', 611')
6090
         WRITE(1,*) 'LI,601T606.ST,.
    £603/606/611/604/607/612,606/611/609/607/612/610°
         WRITE(1,*) 'LI,#,ST,,605,608'
         WRITE(1,*) 'PA,601T604,2L,,601T604,604T607'
         WRITE(1,*) 'PA,4#,MI,X,801T604'
         WRITE(1,6100) ANGL2
         FORMAT('HP,601T604,ARC,G601/G602/',F11.6,',605T608')
6100
         WRITE(1,6110) ANGL1
         FORMAT('HP,8#,ARC,G601/G602/',F11.6,',601T604')
6110
         WRITE(1,9998)
         WRITE(1,*) 'PA,1T#,DEL'
         WRITE(1,*) 'LI,1T#,DEL'
         WRITE(1,9998)
         WRITE(1,*) 'HP,12#,MI,Z,601T612'
         WRITE(1,*) 'HP,24#,MI,Y,601T624'
         WRITE(1,9998)
         WRITE(1,*) 'HP, 605, LAB ,, 607/604'
         WRITE(1,*) 'HP, 606, LAB ,, 635/633'
         WRITE(1,*) 'HP, 601, LAB ,, 625/626'
         WRITE(1,*) 'HP, 607, LAB ,, 607/606'
         WRITE(1,*) 'HP, 608, LAB ,, 635/636'
         WRITE(1,*) 'HP, 602, LAB ,, 625/623'
         WRITE(1,*) 'HP, 611, LAB ,, 607/608'
         WRITE(1,*) 'HP, 612, LAB , 635/642'
         WRITE(1,*) 'HP, 604, LAB ,, 625/631'
         WRITE(1,9998)
         WRITE(1,*) 'HP, 613, LAB ,, 615/616'
         WRITE(1,*) 'HP, 618, LAB , 646/645'
         WRITE(1,*) 'HP, 617, LAB , 656/654'
         WRITE(1,*) 'HP, 614, LAB , 615/614'
         WRITE(1,*) 'HP, 620, LAB ,, 646/644'
         WRITE(1,*) 'HP, 619, LAB , 656/655'
         WRITE(1,*) 'HP, 616, LAB , 615/621'
         WRITE(1,*) HP, 624, LAB , 646/652'
```

```
WRITE(1,*) 'HP, 623, LAB ,, 656/662'
          WRITE(1,9998)
          WRITE(1,*) 'HP, 641, LAB ,, 690/686'
          WRITE(1,*) 'HP, 642, LAB ,, 715/713'
          WRITE(1,*) 'HP, 637, LAB ,, 705/706'
          WRITE(1,*) 'HP, 625, LAB ,, 670/667'
          WRITE(1,*) 'HP, 630, LAB ,, 669/668'
          WRITE(1,*) 'HP, 629, LAB ,, 689/685'
          WRITE(1,9998)
          WRITE(1,*) 'HP, 631, LAB , 690/694'
          WRITE(1,*) 'HP, 632, LAB ,, 689/693'
          WRITE(1,*) 'HP, 626, LAB , 669/673'
          WRITE(1,*) 'HP, 638, LAB ,, 670/674'
          WRITE(1,*) 'HP, 644, LAB ,, 705/708'
          WRITE(1,*) 'HP, 643, LAB ,, 715/717'
          WRITE(1,9998)
          WRITE(1,*) 'HP, 635, LAB ,, 690/686'
          WRITE(1,*) 'HP, 636, LAB ,, 689/685'
          WRITE(1,*) 'HP, 628, LAB , 669/668'
          WRITE(1,*) 'HP, 640, LAB ,, 670/667'
          WRITE(1,*) 'HP, 648, LAB ,, 705/706'
          WRITE(1,*) 'HP, 647, LAB ,, 715/713'
C
      CLOSE(1)
С
C
      CREATING "SLEx.SES" FILE
Ç
C
      OPEN ( UNIT=1,
             FILE='SLE'//ID//'.SES',
     Ł
             STATUS='NEW',
     k
             ACCESS='SEQUENTIAL'.
     Ł
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED' )
C
          WRITE(1,*) 'SET,LINES,O'
C
          WRITE(1,9998)
          WRITE(1,9997) '
                             SLEEVE'
```

```
WRITE(1.9998)
                            GR 1701,1702 DEFINE AN AXIS'
          WRITE(1,9997) '
          WRITE(1,9998)
         WRITE(1,*) 'GR,1701,,0'
          WRITE(1,*) 'GR,1702,,0,1'
         WRITE(1,*) 'GR,1701T1702,ER'
         WRITE(1,9998)
     SOD2D = SOD/2.
         WRITE(1,9998)
         WRITE(1,7010)PD2D
         FORMAT( 'GR,#,, ',F9.6)
7010
     SLD2D = SLD/2.
         WRITE(1,7020) SLD2D
         FORMAT('GR,#,,',F9.6)
7020
         WRITE(1,7030) SOD2D
         FORMAT('GR,#,, ',F9.6)
7030
         WRITE(1,*) 'LI,1701T1702,ST,.1703/1704,1704/1705'
         WRITE(1.7040) BT2D
         FORMAT('LI,2#,TR,0/',F9 6,',1701T1702')
7040
         WRITE(1,7050) BSTM
7050 -
         FORMAT('LI,2#,TR,0/',F9 6,',1703T1704')
         WRITE(1.7060) WT
7060
         FORMAT('LI,2#,TR,0/',F9.6,',1703T1704')
         WRITE(1,9998)
         WRITE(1,*) 'PA,1701T1703,2L,,1701/1702/1705,1705/1706/1703'
         WRITE(1,*) 'PA,3#,2L,,1706/1703/1704,1704/1707/1708'
         WRITE(1,*) 'PA,1707T1712,MI,X,1701T1706'
         WRITE(1,9998)
         WRITE(1,7070) ANGL1
7070
         FORMAT ('HP, 701 T706, ARC,
    &G1701/G1702/',F11.6,',1701/1703/1705')
         WRITE(1,7080) ANGL2
7080
         FORMAT('HP,3#,ARC,G1701/G1702/',F11.6,',1707/1709/1711')
         WRITE(1,*) 'HP,9#,MI,Z,701T709'
         WRITE(1,*) 'HP,18#,MI,Y,701T718'
         WRITE(1,7090) ANGL1
7090
         FORMAT('HP,6#,ARC,G1701/G1702/',F11.6,',1702/1704/1706')
         WRITE(1,7100) ANGL2
7100
         FORMAT('HP.3#, ARC, G1701/G1702/', F11.6,', 1708/1710/1712')
```

```
WRITE(1,*) 'LI,1T#,DEL'
           WRITE(1,*) 'PA,1T#,DEL'
           WRITE(1,9998)
           WRITE(1,*) 'HP.9#,MI,Z,737T745'
           WRITE(1,*) 'HP, 18#, MI, Y, 737T784'
           WRITE(1,9998)
C
       CLOSE(1)
С
С
      CREATING "WASX SES" FILE
С
C
      OPEN ( UNIT=1.
     k
             FILE='WAS'//ID//'.SES',
     Æ
             STATUS='NEW'.
     Ø
             ACCESS='SEQUENTIAL',
     k __
             CARRIAGECONTROL='LIST'.
             FORM='FORMATTED')
C
          WRITE(1.*) 'SET, LINES, O'
C
          WRITE(1,9998)
          WRITE(1,9997) '
                            WASHER'
          WRITE(1,9998)
          WRITE(1,9997) '
                            GR 801.802 DEFINE AN AXIS'
          WRITE(1,9998)
          WRITE(1,*) 'GR,801,,0'
          WRITE(1.*) 'GR.802,.0.1'
         WRITE(1.*) 'GR,801T802,ER'
         WRITE(1,9998)
         WRITE(1,8010) SOD2D,BT2D
8010
         FORMAT('GR,#,,',F9.6,',',F9.6)
         WRITE(1,8020) PHD2D,BT2D
8020
         FORMAT('GR.#,,',F9.6,',',F9 6)
         WRITE(1,8030) BBD2D.BT2D
8030
         FORMAT('GR,#,,',F9.6,',',F9.6)
         WRITE(1.9998)
         WRITE(1,*)'LI,801T802,ST,,803/804,804/806'
         WRITE(1,8040) WT
```

```
FORMAT('LI,2#,TR,/',F9.6,',801T802')
8040
         WRITE(1,*)'PA.801T802,2L,.801T802,803T804'
         WRITE(1,*)'PA.2#,MI,X,801T802'
         WRITE(1,9998)
         WRITE(1,8050) ANGL1
         FORMAT('HP,801T804, ARC, G801/G802/',F11 6,',801T802')
8050
         WRITE(1,8060) ANGL2
8060
         FORMAT('HP.2#, ARC, G801/G802/', F11.6,',803T804')
         WRITE(1,9998)
         WRITE(1,*)'PA,1T#,DEL'
         WRITE(1,*)'LI,1T#,DEL'
         WRITE(1,9998)
         WRITE(1,*)'HP,6#,MI,Z,801T806'
         WRITE(1,*)'HP,12#,MI,Y,801T812'
         WRITE(1,9998)
         WRITE(1,*)'HP, 801 ,LAB ,, 806/803'
         WRITE(1,*)'HP, 802 ,LAB ,, 815/816'
         WRITE(1,*)'HP, 805 ,LAB ,, 819/820'
         WRITE(1,*)'HP, 811 ,LAB ,, 812/809'
         WRITE(1,*)'', 808 ,LAB ,, 832/831'
         WRITE(1,*)'HP, 807 ,LAB ,, 828/827'
         WRITE(1,9998)
         WRITE(1,*)'HP, 803 ,LAB ., 807/804'
         WRITE(1,*)'HP, 804 ,LAB ,, 817/818'
         WRITE(1,*)'HP, 806 ,LAB .. 821/822'
         WRITE(1,*)'HP, 812 ,LAB ,, 811/810'
         WRITE(1,*)'HP, -810 ,LAB ,, 834/833'
         WRITE(1,*)'HP, 809 ,LAB ,, 830/829'
         WRITE(1,9998)
         WRITE(1,*)'HP, 819 ,LAB ,, 842/839'
         WRITE(1,*)'HP, 820 ,LAB ,, 863/864'
         WRITE(1,*)'HP, 823 ,LAB ,, 867/868'
         WRITE(1,*)'HP, 817 ,LAB ,, 859/857'
         WRITE(1,*)'HP, 814 ,LAB ,, 848/847'
         WRITE(1,*)'HP, 813 ,LAB ,, 841/840'
         WRITE(1,9998)
        WRITE(1,*)'HP, 821 ,LAB ,, 846/843'
        WRITE(1,*)'HP, 822 ,LAB ., 865/866'
        WRITE(1,*)'HP, 824 ,LAB ,, 869/870'
```

```
WRITE(1,*)'HP, 818 ,LAB ,, 860/858'
          WRITE(1.*)'HP. 816 .LAB .. 850/849'
         WRITE(1,*)'HP, 815 ,LAB ,, 845/844'
C
      CLOSE(1)
C
C
      CREATING "PINx.SES" FILE
C
C
      OPEN ( UNIT=1,
     Ł
             FILE='PIN'//ID/'.SES'.
     &
             STATUS='NEW',
     Ł
             ACCESS='SEQUENTIAL',
     Ł
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED')
C
          WRITE(1,*) 'SET, LINES, O'
C
C
          WRITE(1,9998)
          WRITE(1,9997) '
                            PIN.
          WRITE(1,9998)
          WRITE(1,*) 'GR,901,,0,0'
          WRITE(1,9001) BT2D
 9001
           FORMAT('GR, 902, , O, ', F9.6)
          WRITE(1,9002) BSTM
 9002
           FORMAT('GR,903,TR,0/',F9.6,',902')
          WRITE(1,9902) WT
9902
           FURMAT('GR,904,TR,0/',F9.6,',902')
          WRITE(1,9003) BBT
9003
           FORMAT('GR,905,TR,0/',F9.6,',904')
          WRITE(1,9004) LT1
9004
           FORMAT('GR,906,TR,0/',F9.6,',905')
          WRITE(1,9005) PHT
9005
           FORMAT('GR,907,TR,0/',F9.6,',906')
          WRITE(1,*) 'LI,901T906,ST,,
     &901/903/902/904T906,903/902/904T907'
          WRITE(1,9006) PD2D
9006
           FORMAT('LI,6#,TR,',F9.6,',901T906')
```

```
WRITE(1,9007) BODPDM2D
           FORMAT('LI,#,TR,',F9.6,',912')
 9007
C
           WRITE(1,9008) PHD2D
 8008
           FORMAT('LI, #, TR, ', F9.6, ', 906')
           WRITE(1,*) 'PA,901T908,2L,,
     &901T906/912/913,907T912/913/914'
          WRITE(1,9009) ANGL1
 9009
          FORMAT('HP,901T916,ARC,G901/G902/',F11.6,',901T908')
          WRITE(1,*) 'PA,8#,MI,X,901T908'
          WRITE(1,9010) ANGL2
 9010
           FORMAT('HP,8#,ARC,G901/G902/',F11.6,',909T916')
          WRITE(1,*) 'LI,1T#,D'
          WRITE(1,*) 'PA,1T#,D'
          WRITE(1,9998)
          WRITE(1,*) 'HP,24#,MI,Z,901T924'
          WRITE(1.*) 'HP.48#,MI.Y,901T948'
          WRITE(1,9998)
C
      END
```

Appendix B.

Finite Element Definition Program

The FED program helps to define the F.E. of the lug/pin joint geometry. The input file must have the same format as the FED.DAT file (Table B.1). The output files are PATRAN session files containing the node definition statements (GFEG) and the connectivity definition statements (CFEG) used to define the finite elements [6].

They are named:

FELUGX.SES FEBUSX.SES FEWASX.SES FEPINX.SES FESLEX.SES FEBLAX.SES

where "x" is a user chosen one digit ID.

Note that before creating the output files, the FED program will compute the numbers of F.E. of every lug/pin joint component and prompt to know whether the user is satisfied. The FED output files can be edited and modified to fit the user's needs. After the FED output files have been executed by PATRAN, the user may have to modify some of the elements whose skewness would bring NASTRAN to compute inaccurate results. Moreover, the washer F.E. mesh is a transition between the blade and the bushings. It may have to be modified within PATRAN so that the nodes at the bushing-washer and blade-washer interfaces match.

The elements created by the FED program are numbered according to the following scheme:

lug elements : from 1001 to a maximum of 3999 bushing elements : from 6001 to a maximum of 6999 pin elements : from 9001 to a maximum of 10999 washer elements : from 8001 to a maximum of 8999 sleeve elements : from 7001 to a maximum of 7499 sleeve lining elements : from 7501 to a maximum of 7999 blade elements : from 4001 to a maximum of 5999

The material property ID's given to the elements are

lug elements 1
bushing elements 6
pin elements 9
washer elements 8
sleeve elements : 71
sleeve lining elements : 72
blade elements 4

To run FED, type.

```
LUG & PIN F E DEFINITTION (refer to Figure B 1)
 L21-1
 L22=1
 L3 -1
 L4 -2
 L5 -1
 L6 =2
 L7 -1
 B1 =1
 B2 =2
 P1 -1
 P2 =1
P21=1
P3 =1
W1 -1
D1 -1
D2 =1
D21=1
D22=1
D3 -1
D4 =1
D5 =1
D6 -1
S1 =1 -
S2 -1
```

Table B.1: Typical FED program input file

The format is as follows: only the one digit integer right to the equal sign can be changed, the first 3 lines are available for comments, no line can be added or deleted. The variables L1, L2,... S2 define the numbers of elements the user wants to have for every hyperpatch (refer to Figure B.1).

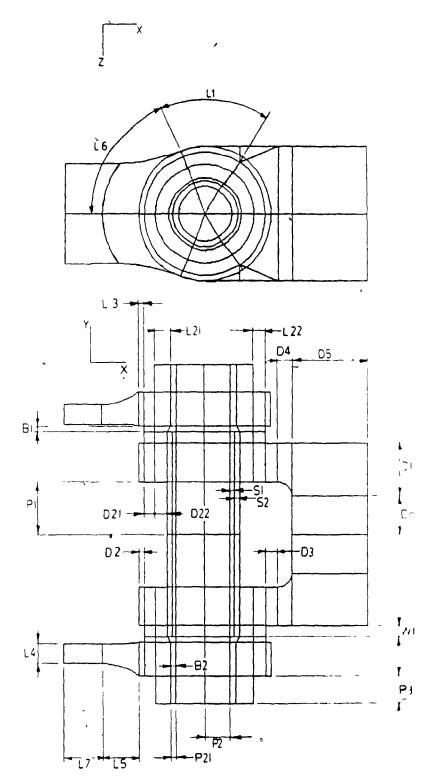


Figure B.1: F.E. mesh definition variables

See Table B.1

```
PIN F E. DEFINITION
GF, H9O1/902/973/974,,2/3/2,2
GF, H9O3/904/975/976,,2/3/2,2
GF, H9O5/906/977/978,,2/3/1,2
GF, H9O7/908/979/980,,2/3/2,2
GF, H909/910/981/982,,2/3/2,2
GF, H911/912/983/984,,2/3/2,2
GF, H913/914/985/986,,2/3/2,2
GF, H915/916/987/988,,2/3/2,2
GF, H925/926/949/950,,3/2/2,2
GF, H927/928/951/952, 3/2/2, 2
GF, H929/930/953/954, 3/2/1,2
GF, H931/932/955/956,,3/2/2,2
GF, H933/934/957/958,,3/2/2,2
GF, H935/936/959/960, 3/2/2, 2
GF, H937/938/961/962,,3/2/2,2
GF,H939/940/963/964,,3/2/2,2
GF, H917/989,,2/3/2,2
GF, H918/990,,2/3/2,2
GF,H919/991,,1/3/2,2
GF, H92O/992, , 2/3/2, 2
GF, H921/993,,2/3/2,2
GF, H922/994,,2/3/2,2
GF, H923/995,,2/3/2,2
GF, H924/996, ,2/3/2,2
GF, H941/965,,3/2/2,2
GF, H942/966, ,3/2/2,2
GF, H943/967, 3/1/2, 2
GF, H944/968, 3/2/2, 2
GF, H945/969, 3/2/2, 2
GF,H946/970,,3/2/2,2
GF, H947/971, 3/2/2, 2
GF, H948/972, , 3/2/2, 2
CF, H9O1T996, HEX, M9, 9001T10999
```

Table B.2: Typical FED program output file.

This particular file was used to generate the pin F.E. mesh.

Table B.3: FED program FORTRAN code-

```
C
      LUG & PIN. FINITE ELEMENT DEFINITION PROGRAM
C
      PROGRAM FED
C
      INTEGER L1, L3, L4, L5, L6, L7, B1, B2, P1, P2, P3, P21,
              W1,D1,D2,D3,D4,D5,D6, L21,L22, D21,D22, S1,S2
      INTEGER M1, M3, M4, M5, M6, M7, C1, C2, Q1, Q2, Q3, Q21,
         X1,E1,E2,E3,E4,E5,E6, M21,M22, E21,E22, T1,T2
      CHARACTER*1 A1, OUTPUT
      CHARACTER*50 INPUT
C ~
      WRITE(6,2)
      FORMAT(' ENTER INPUT FILE NAME: ')
      READ(5,3) INPUT
C
      WRITE(6,4)
       FORMAT(' ENTER OUTPUT FILES ID (ONE DIGIT) · ')
      READ(8',3) OUTPUT
C
 3
       FORMAT(A)
9998 FORMAT('$',A40)
9999 FORMAT('$')
      OPEN ( UNIT=2,
             FILE=INPUT,
             STATUS='OLD',
             ACCESS='SEQUENTIAL'
             FORM='FORMATTED'
             READONLY )
C
C
       READING DATA FROM INPUT FILE
```

```
FORMAT(///8(4X,I1/),/,2(4X,I1/),/,
                 4(4X,I1/),/,4X,I1//,8(4X,I1/),/,2(4X,I1/))
         READ(2,1)L1,L21,L22,L3,L4,L5,L6,L7,B1,B2,P1,P2,P21,P3
                  .W1,D1,D2,D21,D22,D3,D4,D5,D6,S1,S2
  C
 C
         COMPUTING THE NUMBER OF ELEMENTS
 C
 C
        NLUGS = 4*(L4*L6*(L5+L7) +
                    (L6+2*L1)*(L4*(L21+L22+L3)+2))
        NBUSH = 4*((L6+2*L1)*(B1*(L21+L22+B2)+(B2*L4)+6))
        NPIN = 8*L1*(P2*(P1+D1+W1+B1+L4+P3) + (B2+L21)*P3) +
                4*L6*(P2*(P1+D1+W1+B1+L4+P3) + (B2+L21)*P3)
        NWASH = 4*((2*L1+L6)*((D21+D22)*W1+4))
        NSLEE = 4*((L6+2*L1)*((S1+S2)*(P1+D1+W1)))
        NBLAD = (L6+2*L1)*(D1*(D2+D21+D22)) +
                D1*(L1*D2 + D3*D2 + D3*L1 + E1*D4 + L1*D5) +
                D6*D5*L1
C
        NTOT - NLUGS + NBUSH + NPIN + NWASH + NSLEE + NBLAD
 21
       FORMAT('
                                      BOTH LUGS
                                                     = ',I5,
           FROM
                  1001 TO ', I5)
 22
       FORMAT('
                                      BOTH BUSHINGS = ', IS,
          FROM
                  6001 TO ', (5)
 23
       FORMAT('
                                      PIN
                                                     - ', I5,
          FROM
                  9001 TO ', I5)
 24
       FORMAT('
                                      BOTH WASHERS
                                                    = ',I5,
          FROM
                  8001 TO ', I5)
 25
       FORMAT('
                                      SLEEVE
                                                     = ',I5, '
          FROM
                  7001 TO ', I5)
 26
       FORMAT('
                                      BLADE
                                                    = ', I5,
          FROM
                 4001 TO ', I5)
                                       ζ
. 27
       FORMAT('
                                                    = <sup>4</sup>,15)
                                      TOTAL
C
       WRITE(6,*)' '
       WRITE(6,*) ' APPROX NUMBER OF ELEMENTS'
```

WRITE(6,21) NLUGS, NLUFIN € NBUF IN=6000+NBUSH WRITE (6,22) NBUSH, NBUFIN C NPIFIN=9000+NPIN WRITE(6,23) NPIN, NPIFIN C NWAFIN=8000+NWASH WRITE (6,24) NWASH, NWAFIN C NSLFIN=7000+NSLEE WRITE (6,25) NSLEE, NSLFIN C NBLFIN=4000+NBLAD WRITE (6,26) NBLAD, NBLFIN C WRITE(6,*) ' WRITE(6,27) NTOT WRITE(8,*)'' WRITE(6,*)'' WRITE(6,*)' ' WRITE(6,*)' PROCEED ? Y/N' C 5 FORMAT (A1) READ (5,5) A1 IF (A1.EQ.'N') STOP NUMBER OF NODES M1=L1+1M21=L21+1 M22=L22+1 M3=L3+1 M4 = L4 + 1

C

M5=L5+1

D

NLUFIN=1000+NLUGS

4.

```
M6=L6+1
         M7 = L7 + 1
         C1=B1+1
         C2=B2+1
  С
         Q1=P1+1
         Q2=P2+1
         Q21=P21+1
         Q3=P3+1
 C
         X1=W1+1
 C
         T1=S1+1
         T2=S2+1
 C
        E1=D1+1
        E2=D2+1
        E21=D21+1
        E22=D22+1
        E3=D3+1
        E4=D4+1
        E5=D5+1
        E6=D6+1
C
C
        CREATES THE OUTPUT FILES
C
C
      OPEN ( UNIT=1.
             FILE='FELUG'//OUTPUT//'.SES'.
             STATUS='NEW'.
             ACCESS 'SEQUENTIAL',
     å
             CARRIAGECONTROL='LIST',
     k
             FORM='FORMATTED' )
     å
C
C
       WRITE (1.9999)
       WRITE (1,9999)
```

C

```
WRITE (1,9998)'
                                LUG F.E. DEFINITION'
Y C
        FORMAT('GF, H103/114/125/136 ,,', 11,'/', I1,'/', I1,',2,ED9')
  103
 128
        FORMAT('GF, H128/129/139/140/108/107/117/118 ,, '
               ,I1,'/',I1,'/',I1,',2,ED9')
        FORMAT('GF, H104/115/126/137 ,, ',I1,'/',I1,'/',I1,',2')
 104
        FORMAT('GF, H108/109/119/120/130/131/141/142 ,. '
 108
               .I1,'/',I1,'/',I1,',2')
C
        FORMAT('GF, H101/123 ,, ',I1,'/',I1,'/',I1,',2')
 101
        FORMAT('GF, H102/135 ,, ',I1,'/',I1,'/',I1,',2')
 102
        FORMAT('GF, H105/138 ,, ',I1,'/',I1,'/',I1,',2')
 105
        FORMAT('GF, H110/111/143/144 ,, ',I1,'/',I1,'/',I1,',2')
 110
       FORMAT('GF, H112/134 ,, ',I1,'/',I1,'/',I1,',2')
 112
 113
       FORMAT('GF, H113/124 ,, ',I1,'/',I1,'/',I1,',2')
 116
        FORMAT('GF, H116/127 ,, ', I1, '/', I1, '/', I1, ', 2')
 121
       FORMAT('GF, H121/122/132/133 ,, ',I1,'/',F1,'/',Qt,',2')
C
C
       WRITE(1,103) M4,M21,M6
       WRITE(1,128) M4, M21, M1
       WRITE(1,104) M4, M22, M6
       WRITE(1,108) M4, M22, M1
       WRITE(1,101) M5,M6,M4
       WRITE(1,102) M6,M7,M4
      WRITE(1,105) M4,M6,M3
       WRITE(1,110) M3,M1,M4
C
       WRITE(1,112) M6,M5,M4
       WRITE(1,113) M7,M6,M4
       WRITE(1,116) M6,M4,M3
       WRITE(1,121) M1.M3.M4
C
       WRITE(1,*)'CF,H101T144,HEX,,M1,1001T3999'
```

```
C
        CLOSE(1)
       OPEN ( UNIT=1,
              FILE='FEBUS'//OUTPUT//'.SES'.
              STATUS='NEW'.
              ACCESS='SEQUENTIAL'.
              CARRIAGECONTROL='LIST'.
              FORM='FORMATTED' )
        WRITE(1,9999)
        WRITE(1,9998)'
                               BUSHING F.E. DEFINITION'
       WRITE(1,9999)
C
 601
       FORMAT('GF, H601/637/613/625 ,,', I1,'/', I1,'/', I1,',2,ED9')
 605
       FORMAT('GF, H605/606/641/642/617/618/629/630 ,,',
               I1,'/',I1,'/',I1,',2,ED9')
       FORMAT('GF, H602/614 ,,', I1,'/', I1,'/', I1,',2,ED9')
 602
 604
       FORMAT('GF, H604/616 ,,', I1,'/', I1,'/', I1,',2, ED9')
 607
       FORMAT('GF, H607/608/619/620 ,,',I1,'/',I1,'/',I1,',2,ED9')
 611
       FORMAT('GF, H611/612/623/624 ,,',I1,'/',I1,'/',I1,',2,ED9')
C
 638
       FORMAT('GF, H638/626 ,,', I1,'/', I1,'/', I1,',2, ED9')
 640
       FORMAT('GF, H640/628 ,,', I1,'/', I1,'/', I1,',2,ED9')
       FORMAT('GF, H643/644/631/632 ,,', I1,'/', I1,'/', I1,',2, ED9')
 643
 647
       FORMAT('GF, H647/6\8/635/636 ,,', I1,'/', I1,'/', I1,',2, ED9')
C
 621
       FORMAT('GF, H621/622/633/634 ,,',I1,'/',I1,'/',I1,',2')
       FORMAT('GF, H609/610/645/646 ,,',I1,'/',I1,'/',I1,',2')
 609
C
 603
       FORMAT('GF, H603/639 ,,',I1,'/',I1,'/',I1,',2')
 615
       FORMAT('GF, H615/627 ,,', I1,'/', I1,'/', I1,',2')
C
      WRITE(1,601) C1,C2,M6
      WRITE(1,605) C1,C2,M1
```

```
WRITE(1,602) M21,C1,M6
       WRITE(1,604) C2,M4,M6
       WRITE(1,607) M21,C1,M1
       WRITE(1,611) C2,M4,M1
 C
       WRITE(1,638) C1,M21,M6
       WRITE(1,640) M4,C2,M6
       WRITE(1,643) C1,M21,M1
       WRITE(1,647) M4,C2,M1,
 C
       WRITE(1,621) C1,M1,M22
       WRITE(1,609) M1,C1,M22
С
       WRITE(1.603) M6,M22,C1
      WRITE(1,615) M22,M6,C1
C
      WRITE(1,*)'CF, H601T648, HEX, M6,6001T6999'
C
      CLOSE(1)
C
      OPEN ( UNIT=1.
              FILE='FEPIN'//OUTPUT//'.SES'.
              STATUS='NEW'.
             ACCESS='SEQUENTIAL'.
             CARRIAGECONTROL='LIST',
             FORM= 'FORMATTED' )
C
      WRITE (1,9999).
      WRITE (1,9998)'
                              PIN F.E. DEFINITION .
      WRITE (1,9999)
C
      FORMAT('GF, H901/902/973/974,,',I1,'/',I1,'/',I1,',',')
901
      FORMAT('GF, H903/904/975/976,.',I1,'/',I1,'/',I1,',',I1,',')
903
      FORMAT('GF, H905/906/977/978,,',I1,'/',I1,'/',I1,',',I1,',')
905
      FORMAT('GF, H907/908/979/980,,',I1,'/',I1,'/',I1,',2')
907
      FORMAT('GF,H909/910/981/982,,',I1,'/',I1,'/',Iî,',',Iî,',2')
909
      FORMAT('GF,H911/912/983/984;,',I1,'/',I1,'/',I1,','2')
911
```

```
FORMAT('GF, H913/914/985/986,,',I1,'/',I1,'/',I1,',')
913
       FORMAT('GF, H915/916/987/988,,',I1,'/',I1,'/',I1,',2')
915
C
       FORMAT('GF, H925/928/949/950,,',I1,'/',I1,'/',I1,',2')
925
       FORMAT('GF, H927/928/951/952,,',I1,'/',I1,'/',I1,',2')
927
       FORMAT('GF.H929/930/953/954,,',I1,*/',I1,'/',I1,',2')
929
       FORMAT('GF, H931/932/955/956,,',I1, */',I1,'/',I1,',2')
931
       FORMAT('GF, H933/934/957/958,,',I1,'/',I1,'/',I1,',2")
933
       FORMAT('GF, H935/936/959/960,,',I1,'/',I1,'/',I1,',2')
935
       FORMAT('GF, H937/938/961/962,,',I1,'/',I1,'/',I1,',2')
937
       FORMAT('GF, H939/940/963/964,,',I1,'/',I1,'/',I1,',2')
939
C
       FORMAT('GF, H917/989,,',I1,'/',I1,'/',I1,',2')
917
       FORMAT('GF, H918/990,,',I1,'/',I1,',',I1,',2')
918
       FORMAT('GF, H919/991, .', I1, '/', I1, '/', I1, ', 2')
919
       FORMAT('GF, H920/992, ,', I1, '/', I1, '/', I1, ', 2')
920
       FORMAT('GF, H921/993, .', Ii, '/', I1, '/', I1.'.2')
921
       FORMAT('GF, H922/994,,',I1,'/',I1,'/',I1,'\$2')
       FORMAT('GF, H923/995,,',I1,'/',I1,'/',I1,',2')
       FORMAT('GF, H924/996,,',I1,'/',I1,'/',I1,',2')
924
C
       FORMAT('GF, H941/965,,',I1,'/',I1,"/',I1,',2')
941
       FORMAT('GF, H942/966, , ', I1, '/', I1, '/', I1, ', 2')
942
      FORMAT('GF, H943/987,,',I1,'/',I1,'/',I1,',',2')
943
       FORMAT('GF, H944/968,,',I1,'/',I1,'/',I1,',2')
944
       FORMAT('GF, H945/969,,',I1,'/',I1,'/',I1,',2')
945
       FORMAT('GF, H946/970,,',I1,'/',I1,'/',I1,',',')
946
       FORMAT('GF, H947/971,,',I1,'/',I1,'/',I1,',2')
947
       FORMAT('GF, H948/972, , ', I1, '/', I1, '/', I1, ', 2')
948
C
      WRITE(1,901) Q2,M1,Q1
      WRITE(1,903) Q2,M1,E1
      WRITE(1,905) Q2,M1,W1
      WRITE(1,907) Q2,M1,C1
      WRITE(1,909) Q2,M1,M4
      WRITE(1,911) Q2,M1,Q3
      WRITE(1,913) Q21,M1,Q3
      WRITE(1,915) M21,M1,Q3
```

```
WRITE(1,925) M1,Q2,Q1
% WRITE(1,927) M1,Q2,E1
  WRITE(1,929) M1,Q2,W1
  WRITE(1,931) M1,Q2,C1
  WRITE(1,933) M1,Q2,M4
  WRITE(1,935) M1,Q2,Q3
  WRITE(1,937) M1,Q21,Q3
  WRITE(1,939) M1,M21,Q3
  WRITE(1,917) Q1,M6,Q2
  WRITE(1,918) E1,M6,Q2
  WRITE(1,919) W1,M6,Q2
  WRITE(1,920) C1,M6,Q2
  WRITE(1,921) M4,M6,Q2
  WRITE(1,922) Q3,M6,Q2
  WRITE(1,923) Q3,M6,Q21
  WRITE(1,924) Q3,M6,M21
  WRITE(1,941) M6,Q1,Q2
  WRITE(1,942) M6,E1,Q2
  WRITE(1,943) M6,W1,Q2
  WRITE(1,944) M6,C1,Q2
  WRITE(1,945) M6,M4,Q2
 WRITE(1,946) M6,Q3,Q2
 WRITE(1,947) M6,Q3,Q21
 WRITE(1,948) M6,Q3,M21
 WRITE(1,*)'CF, H901T996, HEX, ,M9, 9001T10999
 CLOSE(1)
 OPEN ( UNIT=1,
        FILE='FEWAS'//OUTPUT//'.SES',
        STATUS='NEW',
        ACCESS='SEQUENTIAL',
        CARRIAGECONTROL='LIST',
        FORM='FORMATTED')
```

C

C

WRITE (1,9999)

```
WRITE (1,9998)'
                                 WASHER F E DEFINITION'
        WRITE (1,9999)
 C
  801
       FORMAT('GF, H8Q1/802/808/807,,', I1,'/', I1,'/', I1,',2, ED12')
  805 FORMAT ('GF, H805/811, ,', I1, '/', I1, '/', I1, ', 2, ED12')
  803
       FORMAT('GF, H803/804/810/809, , ', I1, '/', I1, '/', I1, ', 2, ED9')
  808
       FORMAT ('GF, H806/812, , ', I1, '/', I1, '/', I1\', 2, ED9')
       FORMAT (GF, H819/820/814/813,,',I1,'/',I1,'/',I1,',2,ED12')
  819
  823 FORMAT('GF, H823/817, . ', I1, '/', I1, '/', I1, ', 2, ED12')
       FORMAT('OF, H821/822/816/815, . ', I1, '/', I1, '/', I1, ', 2, ED9')
  824
       FORMAT('GF, H824/818,,',I1,'/',I1,'/',I1,',2,ED9')
 C
       WRITE(1,801) E21,X1,M1
       WRJTE(1,805) E21,X1,M6
       WRITE(1,803) E22,X1,M1
       WRITE(1,806) E22,X1,M6
       WRITE(1,819) E21,X1,M1
       WRITE(1,823) E21,X1,M6
       WRITE(1,821) E22,X1,M1
       WRITE(1,824) E22,X1,M6
       WRITE(1,*)'CF, H801T824, HEX, , M8, 800178999'
С
       CLOSE(1)
C
       OPEN ( UNIT=1.
              FILE='FESLE'//OUTPUT//' SES',
     Ł
              STATUS='NEW',
     &
              ACCESS='SEQUENTIAL'.
     &
              CARRIAGECONTROL='LIST'.
              FORM='FORMATTED' )
C
С
C
      WRITE (1,9999)
      WRITE (1,9998)'
                               SLEEVE F E DEFINITION'
      WRITE (1,9999)
C
701 FORMAT('GF,H701/702/728/729 ,, ',I1,'/',I1,'/',I1,',2')
```

```
703 FORMAT('GF,H703/704/730/731 ,, ',I1,'/',I1,'/',I1,',2')
705 FORMAT('GF, H705/706/732/733 ,, ', I1, '/', I1, '/', I1, ', 2')
707 FORMAT('GF, H707/734 ,, ', I1, '/', I1, '/', I1, '.2')
 708 FORMAT('GF, H708/735 ,, ', I1,'/', I1,'/', I1,',2')
 709 FORMAT('GF,H709/736 ,, ',I1,'/',I1,'/',I1,',2')
C
 710 FORMAT('GF, H710/711/719/720 ,, ', I1, '/', I1, '/', I1, ', 2')
712 FORMAT('GF,H712/713/721/722 ,, ',I1,'/',I1,'/',I1,',2')
714 FORMAT('GF,H714/715/723/724 ., ',I1,'/',I1,'/',I1,',2')
716 FORMAT('GF,H716/725 ,, ',I1,'/',I1,'/',I1,',2')
 717 FORMAT('GF, H717/726 ., ', I1, '/', I1, '/', I1, ', 2')
718 FORMAT('GF, H718/727 ,, ', I1, '/', I1, '/', I1, ', 2')
C
 737 FORMAT('GF,H737/738/764/765 ,, ',I1,'/',I1,'/',I1,',2')
739 , FORMAT('GF, H739/740/766/767 ,, ', I1, '/', I1, '/', I1, ', 2')
741 FORMAT('GF,H741/742/768/769 ,, ',I1,'/',I1,'/',I1,',2')
743 FORMAT('GF, H743/770 ,, '_, I1, '/', I1, '/', I1, ', 2')
744 FORMAT('GF, H744/771 , , ', I1, '/', I1, '/', I1, ', 2')
745 FORMAT('GF, H745/772',, ', I1,'/', I1,'/', I1,',2')
C
 746 FORMAT('GF, H746/747/755/756 ,, ',I1,'/',I1,'/',I1,',2')
748 FORMAT('GF, H748/749/757/758 ,, ', I1, '/', I1, '/', I1, ', 2')
750 FORMAT('GF, H750/751/759/760 ,, ', I1, '/', I1, '/', I1, ', 2')
752 FORMAT('GF, H752/761 ,, ', I1, '/', I1, '/', I1, ', 2')
753 FORMAT('GF, H753/762 ,, ', I1, '/', I1, '/', I1, ', 2')
754 FORMAT('GF, H754/763',, ', I1,'/', I1,'/', I1,',2')
C
      WRITE(1,701) M1,Q1,T1
      WRITE(1,703) M1,E1,T1
      WRITE(1,705) M1,X1,T1
      WRITE(1,707) M6,T1,Q1
      WRITE(1,708) M6,T1,E1
      WRITE(1,709) M6,T1,X1
      WRITE(1,710) Q1,M1,T1
      WRITE(1,712) E1,M1,T1
      WRITE(1,714) X1,M1,T1
      WRITE(1,716) T1,M6,Q1
```

```
WRITE(1,717) T1,M6,E1
       WRITE(1,718) T1,M6,X1
 С
       WRITE(1,737) M1.Q1,T2
       WRITE(1,739) M1,E1,T2
       WRITE(1,741) M1, X1, T2
       WRITE(1,743) M6, T2,Q1
       WRITE(1,744) M6, T2, E1
       WRITE(1,745) M6, T2, X1
       WRITE(1,746) Q1,M1,T2
       WRITE(1,748) E1.M1.T2
       WRITE(1,750) X1,M1,T2
       WRITE(1,752) T2,M6,Q1
       WRITE(1,753) T2,M6,E1
       WRITE(1,754) T2,M6,X1
C
      WRITE(1,*) 'CF,H701T736,HEX,,M71,7001T7499'
      WRITE(1,*) 'CF,H737T772,HEX,,M72,7501T7999'
C
      CLOSE(1)
С
      OPEN ( UNIT=1.
             FILE='FEBLA'//OUTPUT//' SES',
             STATUS='NEW',
             ACCESS='SEQUENTIAL',
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED')
C
      WRITE (1,9999)
      WRITE (1,9998)
                              BLADE F E. DEFINITION'
      WRITE (1,9999)
401 FORMAT('GF, H401/440 .. ',I1,'/',I1,'/',I1,',2')
402 FORMAT('GF, H402/441 .. ', I1, '/', I1, '/', I1, ', 2')
403 FORMAT('GF, H403/442 .. ', I1, '/', I1, '/', I1, ', 2')
404 FORMAT('GF, H404/405/443/444 ,, ',I1,'/',I1,'/',I1,',2')
406 FORMAT('GF.H406/407/445/446 ,, ',I1,'/',I1,'/',I1,',2')
```

```
FORMAT('GF. H408/447 ...'. I1.'7', I1,'/', I1,',2')
 409 FORMAT('GF, H409/448 ., ',I1,'/',I1,'/',I1,',2')
 410 FORMAT('GF, H410/449 ,, '.I1,'/'.I1,'/'.I1,'.2')
 411 FORMAT('GF, H411/450 ,, ',I1,'/',I1,'/',I1,',2')
 412 FORMAT('GF, H412/451 ,, ', I1, '/', I1, '/', I1, ', 2')
 413 FORMAT('GF, H413/452 ,, ', I1, '/', I1, '/', I1, ', 2')
C
 414 FORMAT('GF, H414/427 ,, ', I1, '/', I1, '/', I1, ', 2')
 415 FORMAT('GF, H415/428 ,, ', I1, '/', I1, '/', I1, ', 2')
 416 FORMAT ('GF, H416/429 ,, ', I1, '/', I1, '/', I1, ', 2')
 417 FORMAT('GF, H417/418/430/431 ,, ', I1, '/', I1, '/', I1, ', 2')
 419 FORMAT('GF, H419/420/432/433 ,, ', I1, '/', I1, '/', I1, ', 2')
      FORMAT('GF, H421/434 ,, ', I1, '/', I1, '/', I1, ', 2')
 421
 422 FORMAT('GF, H422/435 ,, ', I1,'/', I1,'/', I1,',2')
 423 FORMAT('GF, H423/436 ,, ', I1, '/', I1, '/', I1, ', 2')
 424 FORMAT('GF, H424/437 ,, ', I1, '/', I1, '/', I1, ', 2')
      FORMAT('GF, H425/438 ,, ', I1,'/', I1,'/', I1,',2')
 425
      FORMAT('GF, H426/439 ,, ', I1, '/', I1, '/', I1, ', 2')
 426
С
C
      WRITE(1,401) M6,E21,E1
      WRITE(1,402) M6,E22,E1
      WRITE(1,403) M6,E2,E1
      WRITE(1,404) M1,E21,E1
      WRITE(1,406) M1,E22,E1
      WRITE(1,408) M1,E2,E1
      WRITE(1,409) M1,E3,E1
      WRITE(1,410) E3,E2,E1
      WRITE(1,411) E4,M1,E1
      WRITE(1,412) E5,M1,E1
      WRITE(1,413) E5,M1,E6
      WRITE(1,414) E21,M6,E1
      WRITE(1,415) E22,M6,E1
      WRITE(1,416) E2,M6,E1
      WRITE(1,417) E21,M1,E1
      WRITE(1,419) E22,M1,E1
      WRITE(1,421) E2,M1,E1
      WRITE(1,422) E3,M1,E1
```

```
WRITE(1,423) E2,E3,E1
WRITE(1,424) M1,E4,E1
WRITE(1,425) M1,E5,E1
WRITE(1,426) M1,E5,E6

WRITE(1,*)'CF,H401T452,HEX,,M4,4001T5999'
WRITE (1,9999)
WRITE (1,9999)
C
CLOSE(1)
C
END
```

Appendix C

Node Offsetting Program

This program is used to modify small details of a F.E model that were not specified in the geometrical definition. It uses the OFFSET option of the PATRAN NODE command ([6], PATRAN user's guide, section 13.2.6) to perform that task.

The input file must have the format of the file OFFSET.DAT (Table C.1). It contains:

- 1. A PATRAN neutral file ("PATRAN.OUT" file).
- 2. Zones whose nodes have to be offset (See Figure C.1). They are defined in a cylindrical coordinates (R, θ, Z') where:

$$egin{array}{lll} & {
m R1} & < R < & {
m R2}, \ & {
m THETA1} & < heta < & {
m THETA2}, \ & {
m Z'1} & < {
m Z'} < & {
m Z'2}. \ \end{array}$$

The R, θ , Z' coordinates are related to the basic coordinate system X, Y, Z

$$R = \sqrt{X^2 + Z^2} \tag{C.1}$$

$$\theta = \arctan \frac{-Z}{X}$$
 (C.2)

$$Z' = Y$$
 (C.3)

$$Z' = Y (C.3)$$

Zones in the input file are defined using free format.

3. The offset values are given by DR, DZ'. There is no offset value allowed in θ -direction.

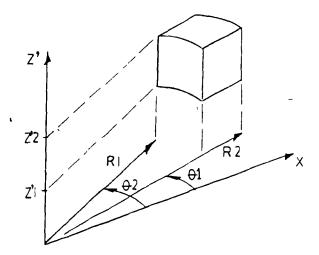


Figure C.1: Definition of a Zone whose Nodes need to be Offset

Recall that the NODE OFFSET instruction does modify the node's actual position without modifying its parametric " (ξ_1, ξ_2) " coordinates.

To run OFFSET, type:

\$RUN OFFSET

ENTER INPUT FILE NAME: <--- written by OFFSET

OFFSET.DAT <--- example, typed by the user

ENTER OUTPUT FILE NAME: <--- written by OFFSET

OFFSET.SES <--- example, typed by the user

BUSH FLANGE ROOT MODEL

"Š

PATRAN.OUT FILE : [MCGO1.F] PATRAN.OUT

*	R1	R2	THET	TA1 '	THETA2		Z'1	Z'2	DR	DZ.
*										
1	. 599	.601	-360).	360.	1	.970	1.972	.014645	.014645
. 5	82 .601	-360.	360.	2.016	2.019	٥.	.003	358		
. 6	74 .676	-360.	360.	1.970	1.972	028	5 0.			
.7	64 .767	-360.	360.	1.921	1.924	014	4375	Ο.		
. 6	74 .676	-360.	360.	2.016	2.019	05	02	2142		
. 6	84 .687	-360	360.	1.945	1.947	025	Ο.			

Table C.1: Typical OFFSET program input file

- The first 3 lines are available for comments.
- On the 4th line, the neutral file name is entered right to ":".
- The 5th and 7th lines are for comments.
- The 6th line indicates the order that must be used to enter the rest of the data.
- Each of the other lines described a zone whose nodes have to be "offset" and by how much they have to be. Each zone is described by 6 limits R1,R2, THETA1,THETA2, Z'1,Z'2 entered in that order. The offset values "DR" and "DZ" are entered right to the Z'2 value. Free format is used.

```
NOD.
         826,0FF,-0.005585, 0.014645,-0.013538
NOD.
         894,0FF,-0.009313, 0.014645,-0.011302
NOD,
         895,QFF,-0.002104, 0.014645,-0.014493
NOD,
         988, OFF, -0.012171, 0.014645, -0.008145
NOD,
         989,0FF, 0.001451, 0.014645,-0.014573
NOD,
        1082,0FF,-0.014000, 0.014645,-0.004299
NOD,
        1085,0FF, 0.004922, 0.014645,-0.013793
NOD,
        1173, OFF, -0.014645, 0.014645, 0.000000
NOD.
        1184,0FF, 0.008145, 0.014645,-0.012171
NOD,
        1249,0FF,-0.014000, 0.014645, 0.004299
NOD,
        1278,0FF, 0.010874, 0.014645,-0.009810
NOD.
        1343,0FF,-0.012171, 0.014645, 0.008145
NOD.
        1380,0FF, 0.012918, 0.014645,-0.006899
        1470,0FF,-0.009313, 0.014645, 0.011302
NOD.
NOD,
        1514,0FF, 0.014200, 0.014645,-0.003581
NOD.
        1769,0FF,-0.008402, 0.000000,-0.023546
NOD.
        1773,0FF,-0.018563, 0.000000,-0.016746
NOD.
        1777, OFF, -0.013904, 0.000000, -0.020777
```

Table C.2: Typical OFFSET program output file

Table C.3: OFFSET program FORTRAN code

```
C
        PROGRAM OFFSET
  С
        -----
 С
        INTEGER NO(15000)
       REAL R(15000), TETA(15000), ZP(15000)
       CHARACTER*50 INPUT, OUTPUT, PATOUT
       CHARACTER*1 ALPHA
 C
 C
       INPUTS
 C
       -----
       WRITE(6,2)
  2
        FORMAT(' ENTER INPUT FILE NAME: ')
       READ(5,5) INPUT
C
       WRITE(6,4)
        FORMAT(' ENTER OUTPUT FILE NAME: ')
       READ(5,5) OUTPUT
 C
  5
       FORMAT(A)
C
       OPEN ( UNIT=2,
             FILE=INPUT.
             STATUS='OLD'.
             ACCESS='SEQUENTIAL'.
             FORM='FORMATTED',
             READONLY )
C
C
      READ(2,10) PATOUT
      FÖRMAT(///17X,A,///)
 10
C
C
C
      UNIT-3 IS THE OUTPUT
```

```
C
       OPEN ( UNIT=3,
              FILE=OUTPUT,
      k
              STATUS='NEW',
              ACCESS='SEQUENTIAL',
              CARRIAGECONTROL='LIST',
              FORM='FORMATTED' )
 C
 C
C
   CREATES A LIST OF NODES NO(I) WITH THEIR COORD X(I),Y(I),Z(I)
C
C
      OPEN ( UNIT=1.
             FILE=PATOUT,
             STATUS='OLD'.
             ACCESS='SEQUENTIAL',
             FORM='FORMATTED'.
             READONLY )
C
C
           READS THE NUMBER OF NODES
C
C
        READ(1,60) NN
60
        FORMAT(//,26X,18,/)
C
C
           READS & TRANSFORMS THE NODES COORDINATES
     DO I=1,NN
       READ(1,65) NO(I), X, Y, Z
       R(I) = SQRT(X**2+Z**2)
       IF (X.NE.O.) THEN
          TETA(I) = ATAND(-Z/X)
          IF (X.LT.O.) TETA(I)=TETA(I)+180.
       ELSEIF (Z.GE.O.) THEN
          TETA(I) = -90.
       ELSE
```

```
TETA(I) = 90.
        ENDIF
        ZP(I) = Y
      ENDDO
C
 65
      FORMAT(2X, 18, /, 3E16.9, /)
C
C
C
      READS THE INPUT FILE
     DO N=1.999
        READ(2,*,END=999) RI1,RI2, TI1,TI2, ZPI1,ZPI2, DR,DZP
C
C
     FINDS WHETHER THE NODE BELONG TO THE
C
      ZONE WHOSE NODES NEED TO BE OFFSET
C
C
     DO I=1.NN
       IF (((R11.LE.R(I)) .AND.(R(I).LE.RI2))
                                                    . AND.
           ((TI1.LE.TETA(I)).AND.(YTETA.LE.TI2))
            ((ZPI1.LE.ZP(I)) .AND.(ZP(I).LE.ZPI2)) )
                                                       THEN
C
C
      COMPUTE THE OFFSET IN BASIC COORDINATES
C
C
          DX = DR*COSD(TETA(I))
           DY = DZP
           DZ = -DR*SIND(TETA(I))
C
           WRITES OFFSET COMMAND FOR NODES SUCH THAT
           RI1<R<RI2, TI1<TETA<YI2, ZPI1<ZP<ZPI2
C
          WRITE(3,70)NO(1),DX,DY,DZ
```

Appendix D

Gap Element Definition Program

The IGAP program creates GAP elements between pairs of coincident nodes that belong to 2 hyperpatches. GAP elements are used to describe the interaction between two components that may or may not be in contact according to the loading conditions they are submitted to.

The IGAP input file must have the same format as the file IGAP.DAT (Table D.1). A PATRAN neutral file (i.e., PATRAN.OUT) having the GFEG table must be available as an input to IGAP. For each pair of hyperpatches, the nodes having the same location are identified and a list of CGAP elements are written in the output file. The output file must be included in the NASTRAN data deck created by PATRAN. A file named "IGAP.ERR" containing the list of hyperpatches pairs of the input file that have no common nodes will be written.

A gap opening is not defined by the distance between the nodes it connects but rather by the GAP element property card (PGAP) which is not created by IGAP. Actually nodes connected by GAP elements should be made exactly coincident in the NASTRAN data deck (See Appendix G).

To run IGAP, type:

\$RUN IGAP

ENTER INPUT FILE NAME: <--- written by IGAP

IGAP.DAT <--- example, typed by the user

ENTER OUTPUT FILE NAME: <--- written by IGAP

IGAP.SES <--- example, typed by the user

Program limits: \\ \frac{15000}{500}\ \text{ nodes in the model} \\ \text{500 hyperpatches in the model}

550 "surface" nodes per hyperpatche (i.e., nodes placed on the faces of the hyperpatch) 3000 gap elements in the output file

SLEEVE & PIN GAP ELEMENTS, (R DIRECTION)

PATRAN OUT FILE [MCGO1 GEO] PATRAN OUT DEFAULT CGAP ELEMENT CID DEFAULT CGAP ELEMENT PID 190 FIRST ELEMENT NUMBER 19001 HP PAIRS (PIN. SLEEVE) 901 701 902 702 903 703 904 704 905 705 906 706 917 707 918 708 919 709

989 734 990 735 991 736

Table D 1 Typical IGAP program input file

- The first 3 lines and the 8th to the 10th lines are available for comments.
- For the 4th to the 7th lines, the user must write the required information right to ":" only.
- From the 11th line to the end, the user inputs the hyperpatches pairs in contact. Always put the hyperpatch (hp) pair in the same order: hp belonging to first component followed by the hp belonging to second component.

						*	•
CGAP	19001	190	1462	453			2
CGAP	19002	190	1475	448			2
CGAP	19003	190	1461	554			
CGAP	19004	190	1474	547			2
CGAP	19005	190	1458	631			2
CGAP	19006	190	1471	575			2
CGAP	19007	190	1456	652			2
CGAP	19008	190	1469	583			2 2
		\					
CGAP	19082	190	1437	706			
CGAP	19083	190	424	733			2
CGAP	19084	190	1 11	736			2
	l -co-		_)	V	\		2
		Table D	.2 Typi	cal IGAP	program or	utput file	
			//		• 0		

Table D.3: IGAP program FORTRAN code

```
C
       PROGRAM IGAP.
 С
       -----
 C
       LOGICAL WARN
       INTEGER CCID, CPID, P1, P2, H(500), N(500,550),
               NO(15000), NKEEP1(3000), NKEEP2(3000), NS(500),
               NP1(550), NP2(550)
       REAL X(15000), Y(15000), Z(15000),
            X1(15000), X2(15000),
            Y1(15000), Y2(15000),
            Z1(15000), Z2(15000)
       CHARACTER*50 INPUT, OUTPUT, PATOUT
       CHARACTER*2 A2.A44
 C
       INPUTS
 C
       -----
      WRITE(6,2)
 2
       FORMAT(' ENTER INPUT FILE NAME ')
      READ(5,5) INPUT
C
      WRITE(6,4)
 4
       FORMAT(' ENTER OUTPUT FILE NAME ')
      READ(5,5) OUTPUT
C
 5
      FORMAT(A)
C
      OPEN ( UNIT=2,
             FILE=INPUT,
     Ł
             STATUS='OLD'.
     &z
             ACCESS='SEQUENTIAL',
     Ł
            FORM='FORMATTED'.
            READONLY )
C
```

C

```
READ(2,10) PATOUT, CCID, CPID, NGRID
   10
       FORMAT(///26X,A./,26X,I8,/,26X,I8,/,26X,I8,///)
  C
  C
       INITIALIZATION
  C
       NK=1
       NKEEP1(1)=0
       NKEEP2(1)=0
 C
       UNIT-11 FILE CONTAINS THE LIST HYPERPATCHES HAVING NO COMMON NODES
 C
       OPEN ( UNIT=11,
      Ł
              FILE='IGAP.ERR',
             STATUS='NEW'.
             ACCESS='SEQUENTIAL',
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED' )
 C
 C
      UNIT=3 IS THE OUTPUT FILE
C
      ------
      OPEN ( UNIT=3.
             FILE=OUTPUT.
     &
             STATUS='NEW',
             ACCESS='SEQUENTIAL',
             CARRIAGECONTROL='LIST',
            FORM='FORMATTED')
C
C
     CREATES A LIST OF NODES NO(I) WITH THEIR COORD X(I), Y(I), Z(I)
     OPEN ( UNIT=1.
            FILE=PATOUT.
            STATUS='OLD'.
            ACCESS='SEQUENTIAL'.
```

```
FORM='FORMATTED',
             READONLY )
C
C
           READS THE NUMBER OF NODES
C
C
        READ(1,60) NN
 60
        FORMAT(//,26X,18,/)
C
C
           READS THE NODES COORDINATES
C
C
      DO I=1,NN
        READ(1,65) NO(I), X(I), Y(I), Z(I)
      ENDDO
C
 65
      FORMAT(2X, 18, /, 3E16 9, /)
C
C
C
      CREATES LIST OF HYPERPATCHES WITH THEIR NODES N(I, J)
           DETECTS BEGINNING OF HYPERPATCHES DEFINITION
      DO I=1.40000
        READ(1,67) A2
        IF (A2.EQ '44') GOTO 70
      ENDDO
      FORMAT(A)
 67
 70
        BACKSPACE(1)
C
C
          READS HYPERPATCH ID & NUMBER OF NODES IN THE HYPERPATCH
      DO I=1,500
        K=O
        READ(1,75)A44,H(I),NNODE
                                     ! ( HP ID & NUMBER OF NODES )
```

```
75
          FORMAT(A,218,////)
          IF (A44.NE.'44') GOTO 85
  C
          READS NODES
           ------
         DO J=1,NNODE
           READ(1,80)XI1,XI2,XI3,NODE
  80
           FORMAT(3E16.9,8X,18)
 C
           IF (((XI1.EQ.O.).OR.(XI1.EQ.1.)) .OR.
               ((XI2 EQ.O.).OR (XI2.EQ 1.)) .OR.
               ((XI3.EQ.O.).OR.(XI3 EQ.1)) THEN
      Ł
              K=K+1
              N(I/K) = ABS(NODE)
          ENDIF
 C
         NS(I)=K
                  ! NUMBER OF "SURFACE" NODES FOR HYPERPATCH "I"
 C
                   ! (I.E. THAT MAY BE IN CONTACT WITH OTHER NODES)
 C
        ENDDO
 C
       ENDDO
C
      NH=I-1 ! NH IS THE NUMBER OF HYPERPATCHES
 85
C
C
       FINDS COMMON NODES
C
C
       DO M=1,500
C
       SET WARNING FLAG TO TRUE
C
       ( THE FLAG STAYS .T. IF THE HYPERPATCHES
        BEING PROCESSED HAVE NO COMMON NODE )
C
      WARN = .TRUE.
```

```
READS A PAIR (P1,P2) OF HYPERPATCHES
       READ(2,*,END=999) P1,P2
      WRITE (6,95)P1,P2
 95
      FORMAT (' PROCESSING HYPERPATCHES', 218)
C
C
      FINDS THE NODES (NP1(J), NP2(J)) BELONGING TO P1, P2
C
C
      DO I=1,NH
                             ! NH IS THE NUMBER OF HYPERPATCHES
        IF (P1.EQ.H(I)) THEN
          DO J=1,NS(I)
            NP1(J) = N(I,J)
          ENDDO
          NNP1=NS(I)
        ELSEIF (P2 EQ H(I)) THEN -
          DO J=1,NS(I)
           NP2(J) = N(I,J)
          ENDDO
          NNP2=NS(I)
        ENDIF
      ENDDO
C
C
C
      FINDS THE COORDINATES OF NP1(J), NP2(J)
С
      DO K=1.NN
                        ! NN IS THE NUMBER OF NODES
        DO J=1, NNP1
          IF (NP1(J).EQ.NO(K)) THEN
                X1(J)=X(K)
                Y1(J)=Y(K)
                Z1(J)=Z(K)
          ENDIF
        ENDDO
C
        D0 J=1,NNP2
```

```
IF (NP2(J).EQ.NO(K)) THEN
                  X2(J)=X(K)
                  Y2(J)=Y(K)
                 Z2(J)=Z(K)
           ENDIF
         ENDDO
       ENDDO
 C
 C
 C
       FINDS THE NODES OF P1, P2 HAVING THE SAME POSITION
       ------
 C
 C
       DO J=1,NNP1
        DO K=1.NNP2
          IF(( ABS(X1(J)-X2(K)).LE 2 E-5 ) AND
            ( ABS(Y1(J)-Y2(K)).LE.2.E-5 ) AND
            ( ABS(Z1(J)-Z2(K)).LE.2.E-5 ) THEN
C
C
       SET WARNING FLAG TO FALSE
C
C
              WARN = .FALSE.
C
       VERIFY IF THE PAIR OF NODES HAS BEEN WRITTEN
С
       and WRITE THEM IF NOT WRITTEN YET
C
C
              DO L=1,NK
                IF ((NP1(J).EQ.NKEEP1(L)) AND
                    (NP2(K).EQ NKEEP2(L)) ) GOTO 110
              ENDDO
C
              WRITE(3.100) NGRID, CPID, NP1(J), NP2(K), CCID
              FORMAT('CGAP',418,24X,18)
100
              NK=NK+1
              NKEEP1(NK)=NP1(J)
             NKEEP2(NK)=NP2(K)
             NGRID=NGRID+1
```

C

```
110
              CONTINUE
         ENDIF
         ENDDO
      ENDDO
C
      WARNS IF NO COMMON NODE FOUND
C
С
C
      IF (WARN) THEN
        WRITE(6,96)
 96
        FORMAT(' WARNING!
    & THE ABOVE HYPERPATCHES HAVE NO COMMON NODE ')
        WRITE(11,*)P1,P2
      ENDIF
C
      ENDDO
999
      STOP
      END
```

Appendix E

Bar Element Definition Program

The IBAR program creates BAR elements between pairs of coincident nodes that belong to 2 hyperpatches. BAR elements are used in linear analyses to simulate the interaction of 2 components known to stay in contact when loaded.

Bars created by IBAR program can transmit axial loads only. They can be prestrained to simulate interference fit effect. MPC cards are recommended if there is no pre-stress (see Appendix F). Bars rigidity should be set to a value much higher than the component material rigidities. The BAR elements property card (PBAR) is not created by the IBAR program.

The input file must have the same format as the file IBAR.DAT (Table E.1). A PATRAN neutral file (i.e. PATRAN.OUT) having the GFEG table must be available as an input to IBAR.

For each pair of hyperpatches, the nodes having the same location will be identified and a list of CBAR elements will be written in the output file. The output file must be included in the NASTRAN data deck created by PATRAN. A file named "IBAR.ERR" containing the list of hyperpatches pairs of the input file having no common nodes will be written. A list of DEFORM cards will also be written in a file named "DEFORM.OUT" (Table E.2).

The bars length is defined in the IBAR input file, it is not defined by the distance between the nodes bars connect. Actually, nodes connected by BARs must be made exactly coincident in the NASTRAN data deck (see Appendix G).

To run IBAR, type:

\$RUN IBAR

ENTER INPUT FILE NAME:

<--- written by IBAR

IBAR.DAT

<--- example, typed by the user

ENTER OUTPUT FILE NAME:

<--- written by IBAR

IBAR.SES

<--- example, typed by the user

Program limits: 15000 nodes in the model

500 hyperpatches in the model

550 "surfacé" nodes par hyperpatch

(i.e., nodes placed on the faces of an hyperpatch)

3000 bar elements in the output file

LUG & BUSHING CBAR ELEMENT DEFINITION (R DIRECTION, CID 2)

PATRAN.OUT FILE : [MCGO1.F] PATRAN.OUT DEFAULT CBAR ELEMENT PID :120 FIRST ELEMENT NUMBER :12001 BAR ORIENTATION RELATIVE TO END 1ST CID :1 BAR LENGTH :.002 INITIAL DEFORMATION (>O IF COMPRESS) :.001 DEFORM SET ID :104 HYPERPATCHES PAIRS : (BUSHING LUG) 604 103 612 107 611 106 616 114 624 118 623 117

Table E.1: Typical IBAR program input file

- The first 3 lines and the 11th to the 13th lines are available for comments.
- From the 4th to the 10th lines, the user must write at the right of ":" only.
- From the 14th line to the end, the user puts the hyperpatches pairs in contact. Always put the hyperpatch (hp) pair in the same order: hp belonging to first component followed by the hp belonging to the second component.

CBAR	12001	120 827	196	0. 1	0.	E 15001
+E 12001		23-0.00100		0 00100	0.	E 12001
CBAR		120 832	197	0. 1	٥.	E 12002
	23	23-0.00100		0 00100	٠.	E 12002
CBAR ·		120 833 .	198	0. 1.	0	E 12003
+E 12003		23-0.00100		0 00100	•	£ 12003
CBAR		120 841	202	0 1.	0.	F 12004
+E 12004		23-0.00100	4	0 00100	٠.	E 120 9 4
CBAR	12005	120 848	204	0 1.	0	- E 12005
	23	23-0 00100		0 00100	v	· £ 12008
CBAR		120 896	126	0 1	0	E 12006
+E 12006		23-0.00100		. 0.00100	Ŭ	E 12006
CBAR		120 906	128	0. 1.	٥	. R 10007
+E 12007	23	23-0 00100	<i>F</i>	0 00100	0	異月2007
CBAR.	12008	120 907	129	0 1	0.	E 10000
	23	23-0.00100		0.00100	Ο.	E 12008
CBAR	12009	120 924	132	0 1	٥.	F 10000
+E 12009	23	23-0 00100		0 00100	Ο,	E 12009
				0 00100		
		•	٥			
						0
CBAR		120 1744	744	0. 1	٥.	E 12118
+E 12118		23-0.00100		0 00100	٥.	£ 12110
CBAR		120 1748			0	R 12110
+E 12119		23-0.00100		0.00100	•	E 12119
CBAR	12120		746	0. 1.	0	P 17170
+E 12120	23	23-0.00100		0 00100	v	E 12120
				5 30100		•

Table E.2: Typical IBAR program output file It corresponds to the Table E.1

DEFORM	t	104	12001	0 001
DEFORM		104	12002	0 001
DEFORM		104	12003	0 001
DEFORM		104	12004	0 001
DEFORM		104	12119	0 001
DEFORM		104	12120	0 001

Table E 3 Typical DEFORM OUT file created by IBAR program

Table E 4 IBAR program FORTRAN code

```
C
      PROGRAM IBAR
C
       -------
C
C
      LOGICAL WARN
      INTEGER CPID, P1, P2, H(500), N(500,550).
              NO(15000), NKEEP1(3000), NKEEP2(3000),
              NP1(550), NP2(550), NS(500),
              PIN, SID
      REAL X(15000), Y(15000), Z(15000),
           X1(15000), X2(15000).
     Ø
           Y1(15000), Y2(15000).
           Z1(15000), Z2(15000)
      CHARACTER*50 INPUT, OUTPUT, PATOUT
      CHARACTER*2 A2, A44
С
С
      INPUTS
С
      -----
      WRITE(6,2)
 2
      FORMAT(' ENTER INPUT FILE NAME ')
      READ(5,5) INPUT
С
     WRITE(6,4)
      FORMAT(' ENTER OUTPUT FILE NAME ')
     READ(5,5) OUTPUT
C
5
     FORMAT(A)
С
     OPEN ( UNIT=2,
     Ł
             FILE=INPUT,
    Ł
             STATUS='OLD'.
    &
             ACCESS='SEQUENTIAL',
             FORM - 'FORMATTED',
            READONLY )
```

```
READ(2,10) PATOUT, CPID, NGRID, PIN, BARL, DEFORM, SID
       FORMAT(///41X.A.3(/.41X.I8),2(/.41X.F10 7)./.41X.I8.///)
  10
 C
 C
 С
       INITIALIZATION
 С
       NK=1
       NKEEP1(1)=0
       NKEEP2(1)=0
 C
 С
       END A & B SHIFT
 C
С
      BARL2 = BARL/2
      BARL1 = -BARL2
      UNIT-12 FILE CONTAINS THE DEFORM CARDS
      OPEN ( UNIT=12.
             FILE='DEFORM OUT'.
             STATUS = 'NEW'.
             ACCESS='SEQUENTIAL',
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED' )
C
     UNIT-11 FILE CONTAINS THE LIST OF HYPERPATCHES WITHOUT COMMON NODES
     OPEN ( UNIT=11,
            FILE='IBAR ERR'.
            STATUS='NEW'.
            ACCESS='SEQUENTIAL'
            CARRIAGECONTROL='LIST'.
            FORM='FORMATTED')
```

```
C
        UNIT=3 IS THE OUTPUT
  С
        OPEN ( UNIT=3,
               FILE=OUTPUT,
       &
               STATUS='NEW'.
               ACCESS='SEQUENTIAL',
               CARRIAGECONTROL='LIST'.
              FORM='FORMATTED' )
 C
 С
 C
       CREATES A LIST OF NODES NO(I) WITH THEIR COORD X(I), Y(I), Z(I)
 C
 С
       OPEN ( UNIT=1.
              FILE=PATOUT,
      &
              STATUS='OLD'
      k
              ACCESS='SEQUENTIAL',
      Ł
              FORM='FORMATTED',
      æ
              READONLY )
 С
 C
            READS THE NUMBER OF NODES
C
C
        READ(1,60) NN
 60
        FORMAT (//, 26X, 18,/)
C
C
           READS THE NODES COORDINATES
C
Ç
      DO I=1,NN
        READ(1,65) NO(I),X(I),Y(I),Z(I)
      ENDDO
С
 65
      FORMAT(2X, 18, /, 3E16 9, /)
С
C
     CREATES LIST OF HYPERPATCHES WITH THEIR NODES N(I,J)
С
```

```
C
C
C-
           DETECTS BEGINNING OF HYPERPATCHES DEFINITION
C
C
      DO I=1,40000
        READ(1,67) A2
        IF (A2.EQ '44') GOTO 70
      ENDDO
 67
      FORMAT(A)
C
 70
        BACKSPACE(1)
C
          READS HYPERPATCH ID & NUMBER OF NODES IN THE HYPERPATCH
C
C
      DO I=1,500
        K=0
        READ(1,75)A44,H(I),NNODE ' ( HP ID & NUMBER OF NODES )
 75
        FORMAT(A.218,////)
C
        IF (A44 NE '44') GOTO 85
С
С
        READS NODES
С
         -----
C
       DO J=1, NNODE
C
          READ(1,80)XI1,XI2,XI3,NODE
80
         FORMAT (3E16.9,8X,18)
С
          IF (((XI1.EQ.O.).OR.(XI1 EQ 1 )) OR.
             ((XI2.EQ.O.).OR.(XI2 EQ.1.)) OR
             ((XI3.EQ.O.).OR.(XI3.EQ.1.)) THEN
            K=K+1
            N(I,K)=ABS(NODE)
         ENDIF
       NS(I)=K ! NUMBER OF "SURFACE" NODES FOR HYPERPATCH "I"
```

```
! (I E THAT MAY BE IN CONTACT WITH OTHER NODES)
C
C 1
       ENDDO
C
      ENDDO
С
      NH=I-1 ! NH IS THE NUMBER OF HYPERPATCHES
 85
С
С
       FINDS COMMON NODE
С
С
      DO M=1,500
С
      SETS WARNING FLAG TO TRUE
С
С
       ( THE FLAG STAYS .T IF THE HYPERPATCHES
С
         BEING PROCESSED HAVE NO COMMON NODE )
С
       WARN = TRUE
C
C
       READS A PAIR (P1, P2) OF HYPERPATCHES
C
C
       READ(2,*,END=999) P1,P2
       WRITE(6,95)P1,P2
 95
       FORMAT(' PROCESSING HYPERPATCHES', 218)
C
С
       FINDS THE NODES (NP1(J), NP2(J)) BELONGING TO P1, P2
C
                                 ! NH IS THE NUMBER OF HYPERPATCHES
      DO I=1,NH
         IF (P1.EQ.H(I)) THEN
           DO J=1,NS(I)
            NP1(J) = N(I,J)
           ENDDO
           NNP1=NS(I)
        ELSEIF (P2.EQ.H(I)) THEN
          DO J=1,NS(I)
```

```
NP2(J) = N(I,J)
              ENDDO
             NNP2=NS(I)
           ENDIF
         ENDDO
  C
  C
  C
         FINDS THE COORDINATES OF NP1(J), NP2(J)
 C
 С
         DO K=1.NN
                                 ! NN IS THE NUMBER OF NODES
          DO J=1,NNP1
             IF (NP1(J) EQ NO(K)) THEN
                    X1(J)=X(K)
                    Y1(J)=Y(K)
                    Z1(J)=Z(K)
            ENDIF
          ENDDO
 C
          DO J=1,NNP2
            IF (NP2(J).EQ.NO(K)) THEN
                    \hat{X}_2(J) = X(K)
                    \Upsilon_2(J) = \Upsilon(K)
                   Z2(J)=Z(K)
            ENDIF
          ENDDO
        ENDDO
C
       FINDS THE NODES OF P1, P2 HAVING THE SAME POSITION
C
C
       DO J=1,NNP1
         DO K=1,NNP2
           IF(( ABS(X1(J)-X2(K)).LE.2.E-5 ) AND
              ( ABS(Y1(J)-Y2(K)).LE.2.E-5 ) .AND
              ( ABS(Z1(J)-Z2(K)).LE.2.E-5 ) THEN
C
        SETS WARNING FLAG TO FALSE
```

```
C
                WARN = .FALSE
 C
        VERIFIES IF THE PAIR OF NODES HAS BEEN WRITTEN
 С
 C
        and WRITES THE APPROPRATE CBAR ELEMENT
 С
        IF NOT WRITTEN YET
 C
 С
 С
        WRITES THE APPROPRIATE DEFORM CARD
 C
 C
                DO L=1,NK
                  IF ((NP1(J) EQ NKEEP1(L)) AND
                     (NP2(K) EQ NKEEP2(L)) ) GOTO 110
                ENDDO
 C
                WRITE(12,98) SID, NGRID, DEFORM
  98
               FORMAT('DEFORM ',218,F8 5)
C
               WRITE(3,100) NGRID, CPID, NP1(J), NP2(K), NGRID
 100
               FORMAT('CBAR ',418,' O 1 O
              E', 16) \
               IF (PIN EQ 1) THEN
                 WRITE(3,106) NGRID, BARL1, BARL2
 105
                 FORMAT('+E', 16,' 23
                                            23',F8 5,16X,F8 5)
               ELSEIF (PIN.EQ.2) THEN
                WRITE(3,106) NGRID, BARL1, BARL2
 106
                 FORMAT('+E', 16, ' 23
                                             23',8X,F8 5,16X,F8 5)
                 WRITE(3,107) NGRID, BARL1, BARL2
 107
                FORMAT('+E', I6,' 23 23', 16X, F8 5, 16X, F8 5)
               ENDIF
C
               NK=NK+1
               NKEEP1(NK)=NP1(J)
               NKEEP2(NK) = NP2(K)
              NGRID=NGRID+1
```

5

```
C
 110
                CONTINUE
          ENDIF
         ENDDO
       ENDDO
C
C
       WARNS IF NO COMMON NODE
С
C
       IF (WARN) THEN
         WRITE(6,96)
 96
        FORMAT(' WARNING!
       THE ABOVE HYPERPATCHES HAVE NO COMMON NODES ')
        WRITE(11,*)P1,P2
С
      ENDIF
      ENDDO
888
      STOP
      END
```

Appendix F

Multi-Point Constraint (MPC) Definition Program

The IMPC program writes MPC cards corresponding to coincident pairs of nodes that belong to 2 hyperpatches. MPC cards written by the IMPC program are used when two components are known (or assumed) to stay in contact when loaded

The input file must have the same format as the file IMPC DAT (Table F 1) A PATRAN neutral file (i.e. PATRAN OUT) having the GFEG table must be available as an input to IMPC.

For each pair of hyperpatches, the nodes having the same location will be identified and a list of MPC cards will be written in the output file. The output file must be included in the NASTRAN data deck created by PATRAN. A file named "IMPC.ERR" containing the list of hyperpatches pairs of the input file that have no common nodes will be written.

To run IMPC, type:

```
$RUN IMPC

ENTER INPUT FILE NAME: <--- written by IMPC

IMPC.DAT <--- example, typed by the user

ENTER OUTPUT FILE NAME: <--- written by IMPC

IMPC.SES <--- example, typed by the user
```

Program limits:15000 nodes in the model
500 hyperpatches in the model
550 "surface" nodes per hyperpatch
(i.e., nodes placed on the faces of an hyperpatch)

3000 bar elements in the output file

WASHER & BLADE (Y DIRECTION)

PATRAN.OUT FILE : [MCGO1.GEO] PATRAN.OUT MPC SID NUMBER DEPENDANT DEGREE OF FREEDOM :3 HP PAIRS (BLADE, WASHER) 401 805 402 806 404 801 405 802 406 803 407 804 414 811 415 812 417 807 444 820 445 821 446 822

Table F.1: Typical IMPC input file

- The first 3 lines and the 7th to the 9th lines are available for comments.
- For the 4th to the 6th lines, the user must write the required information right to ":" only.
- From the 10th line to the end, the user puts the hyperpatches pairs in contact. Always put the hyperpatch (hp) pair in the same order: hp belonging to the first component followed by the hp belonging to the second component.

MPC	501	517	3	1.	1147	- 3	-1.
MPC	501	520	3	1.	1145	3	-1.
MPC	501	516	3	1.	1159	3	-1.
MPC	501	521	3	1.	1157	3	-1.
MPC	501	515	3	1.	1171	3	-1
MPC	501	518	3	1.	1169	3	-1.
MPC	501	429	3	1.	1143	3	-1.
					3		
MPC	501	535	3	1.	1251	3	-1.
MPC	501	⁴619	3	1.	1239	3	-1.
MPC	501	651	3	1.	1227	3	-1.

2 ,

Table F.2: Typical IMPC output file

```
C
        PROGRAM IMPC
  C
  C
  C
        LOGICAL WARN
        INTEGER DFREE, CPID, P1, P2, H(500), N(500,550),
                NO(15000), NKEEP1(3000), NKEEP2(3000).
                NP1(550), NP2(550), NS(500)
       REAL X(15000), Y(15000), Z(15000),
             X1(15000), X2(15000),
            Y1(15000), Y2(15000),
            Z1(15000), Z2(15000)
       CHARACTER*50 INPUT, OUTPUT, PATOUT
       CHARACTER*2 A2, A44
 C
 C
       INPUTS
       -----
 C
 C
       WRITE(6,2)
  2
        FORMAT(' ENTER INPUT FILE NAME. ')
       READ(5,5) INPUT
·C
       WRITE(6,4)
        FORMAT( * ENTER OUTPUT FILE NAME: ')
       READ(5,5) OUTPUT
 5
       FORMAT(A)
       OPEN ( UNIT=2.
              FILE=INPUT.
              STATUS='OLD',
              ACCESS='SEQUENTIAL',
     æ
             FORM='FORMATTED',
     k
             READONLY )
```

```
C
        READ(2,10) PATOUT, MPCID, DFREE
       FORMAT(///29X,A,/,29X,I8,/,29X,I8,///)
  10
 C
 C
       INITIALIZATION
 C
       NK=1
       NKEEP1(1)=0
       NKEEP2(1)=0
 С
       UNIT=11 FILE CONTAINS THE PAIRS OF HYPERPATCHES WHITOUT COMMON NODES
 C
       OPEN ( UNIT=11,
             FILE='IMPC ERR',
      &z
             STATUS = 'NEW'.
             ACCESS='SEQUENTIAL',
            CARRIAGECONTROL='LIST',
             FORM='FORMATTED' )
C
      UNIT=3 IS THE OUTPUT FILE
      OPEN ( UNIT=3.
            FILE=OUTPUT,
             STATUS = 'NEW'.
            ACCESS='SEQUENTIAL',
            CARRIAGECONTROL='LIST'.
           FORM='FORMATTED')
     CREATES A LIST OF NODES NO(I) WITH THEIR COORD X(I), Y(I), Z(I)
C
     OPEN ( UNIT=1.
            FILE=PATOUT.
            STATUS='OLD',
```

```
Ł
             ACCESS='SEQUENTIAL',
     Ł
             FORM='FORMATTED',
             READONLY )
C
С
           READS THE NUMBER OF NODES
C
C
        READ (1,60) NN
        FORMAT(//,26X,18,/)
C
С
           READS THE NODES COORDINATES
C
С
      DO I=1.NN
        READ(1,65) NO(I), X(I), Y(I), Z(I)
      ENDDO
C
 65
      FORMAT(2X, 18, /, 3E16 9, /)
C
C
С
      CREATES LIST OF HYPERPATCHES WITH THEIR NODES N(I,J)
C
С
           DETECTS BEGINNING OF HYPERPATCHES DEFINITION
C
C
      DO I=1,40000
        READ(1,67) A2
        IF (A2 EQ '44') GOTO 70
      ENDDO
67
     FORMAT(A)
C
 70
       BACKSPACE(1)
          READS HYPERPATCH ID & NUMBER OF NODES IN THE HYPERPATCH
C
C
     DO I=1,500
        K=0
```

```
READ(1,75)A44,H(I),NNODE ! ( HP ID & NUMBER OF NODES )
   75
         FORMAT(A, 218, ////)
  С
         IF (A44 NE '44') GOTO 85
 С
          READS NODES
 С
 C
         DO J=1,NNODE
 C
           READ(1,80)XI1,XI2,XI3,NODE
  80
           FORMAT(3E16 9,8X,18)
           IF (((XI1.EQ O ) OR (XI1 EQ 1 )) OR
              ((XI2 EQ 0 ) OR (XI2 EQ 1 )) OR
              ((XI3 EQ 0 ) OR (XI3 EQ 1 )) THEN
              N(I,K) = ABS(NODE)
          ENDIF
 C
                  NUMBER OF "SURFACE" NODES FOR HYPERPATCH "I"
                   ! (I E THAT MAY BE COINCIDENT WITH OTHER NODES)
C
        ENDDO
C
      ENDDÓ
C
      NH=I-1 ! NH IS THE NUMBER OF HYPERPATCHES
 85
C
       FINDS COMMON NODES
C
C
      DO M=1,500
C
      SETS WARNING FLAG TO TRUE
      ( THE FLAG STAYS .T. IF THE HYPERPATCHES
        BEING PROCESSED HAVE NO COMMON NODE )
C
```

```
WARN = TRUE.
 C
 C
        READS A PAIR (P1, P2) OF HYPERPATCHES
 C
 C
       READ(2,*,END=999) P1,P2
       WRITE(6,95)P1,P2
       FORMAT(' PROCESSING HYPERPATCHES', 218)
 95
 C
       FINDS THE NODES (NP1(J), NP2(J)) BELONGING TO P1. P2
 C
 C
C
       DO I=1,NH
                              . ! NH IS THE NUMBER OF HYPERPATCHES
         IF (P1 EQ H(I)) THEN
           DO J=1,NS(I)
             NPJ(J) = N(I,J)
           ENDDO / -
           NNP1=NS(I)
         ELSEIF (P2 EQ H(I)) THEN
           DO J=1,NS(I)
            NP2(J) = N(I,J)
           ENDDO
           NNP2=NS(I)
         ENDIF
       ENDDO
C
C
      FINDS THE COORDINATES OF NP1(J). NP2(J)
С
      DO K=1.NN
                              ! NN IS THE NUMBER OF NODES
        DO J=1, NP1
          IF (NP1(J) EQ.NO(K)) THEN
                 X1(J)=X(K)
                 Y1(J)=Y(K)
                 Z1(J)=Z(K)
          ENDIF
        ENDDO
```

С

```
DO J=1, NNP2
            IF (NP2(J).EQ.NO(K)) THEN
                  X2(J)=X(K)
                  Y2(J)=Y(K)
                  Z2(J)=Z(K)
           ENDIF
          ENDDO
        ENDDO
 C
 C
 C
       FINDS THE NODES OF P1, P2 HAVING THE SAME POSITION
 C
 C
       DO J=1,NNP1
         DO K=1,NNP2
           IF(( ABS(X1(J)-X2(K)) LE.2 E-5 ) AND
             ( ABS(Y1(J)-Y2(K)) LE 2 E-5 ) AND
              ( ABS(Z1(J)-Z2(K)) LE 2 E-5 ) THEN
C
C
        SETS WARNING FLAG TO FALSE
C
                WARN = FALSE
С
       VERIFIES IF THE PAIR OF NODES HAS BEEN WRITTEN
C
       and WRITES THE APPROPRIATE MPC CARD IF NOT WRITTEN YET
C
               DO L=1,NK
                 IF ((NP1(J).EQ.NKEEP1(L)).AND.
                     (NP2(K).EQ.NKEEP2(L)) ) GOTO 110
               ENDDO
C
               WRITE(3,100) MPCID, NP1(J), DFREE, NP2(K), DFREE
100
               FORMAT('MPC ',18,218,' 1 ',218,' -1.')
               NK=NK+1
               NKEEP1(NK)=NP1(J)
              NKEEP2(NK)=NP2(K)
```

```
CONTINUE
 110
         ENDIF
        ENDDO
      ENDD0
С
C
      WARNS IF NO COMMON NODE
C
C
      IF (WARN) THEN
        WRITE(6,96)
       FORMAT(' WARNING!
96
    & THE ABOVE HYPERPATCHES HAVE NO COMMON NODES ')
        WRITE(11,*)P1,P2
      ENDIF
C
      ENDDO
999
     STOP
      END
```

Appendix G

f.

Node Coordinates Rounding off Program

The TRONC program rewrites a NASTRAN data file with the node positions (given on the NASTRAN GRID cards) rounded off. The last digit of the R, θ, Z' coordinates are removed. It is used to make sure that nodes that should be coincident do coincide exactly in the NASTRAN data deck.

For example, suppose that a NASTRAN data deck have the following GRID cards.

GRID 21 0.49999 112 1103 2.01901

GRID 298 0.50003 112.1100 2.01900

Upon running, NASTRAN will give an error message if a GAP element connects these 2 nodes since these are not exactly coincident.

The program TRONC rewrites the NASTRAN data deck with rounded off GRID coordinates.

The TRONC output file corresponding to the input file shown above will be:

GRID 21 0.5000 112 110 2.0190

/ :
GRID 298 0.5000 112 110 2.0190

... where nodes 21 and 298 are exactly coincident

The TRONC program will modify the "GRID" cards only All the other lines will be rewritten in the output file unchanged.

To run TRONC, type:

\$RUN TRONC

ENTER INPUT FILE NAME:

NASTRAN.BDF

ENTER OUTPUT FILE NAME:

NASTRA2.BDF

<--- written by TRONC

<--- example, typed by the user

<--- written by TRONC

<--- example, typed by the user

Table G.1: TRONC program FORTRAN code

```
C
       PROGRAM TRONC
 C
 C
 С
       REAL*8 X,Y,Z
       CHARACTER*50 NASTRAN, OUTPUT
       CHARACTER*4 ALPHA
       CHARACTER*80 ALINE
       CHARACTER*24 A24
       INTEGER OCID, CCID, G,CID,CD
 C
 C
 C
      INPUTS
 C
       -----
      WRITE(6,2)
 2
       FORMAT(' ENTER INPUT FILE NAME ')
      READ(5,5) NASTRAN
C
      WRITE(6,4)
       FORMAT(' ENTER OUTPUT FILE NAME ')
      READ(5,5) OUTPUT
 5
      FORMAT(A)
C
C
     OPENS NASTRAN.BDF INPUT FILE AND NASTRAN.BDF OUTPUT FILE
C
     OPEN ( UNIT=2,
            FILE=NASTRAN,
            STATUS='OLD'.
            ACCESS='SEQUENTIAL',
    å
            FORM='FORMATTED',
            READONLY )
```

```
C
      OPEN ( UNIT=3.
           FILE=OUTPUT,
           STATUS='NEW',
           ACCESS='SEQUENTIAL',
           CARRIAGECONTROL='LIST',
     Ł
            FORM='FORMATTED' )
С
С
C
      DETECTS WHERE GRID DEFINITION BEGINS & ENDS
C
      DO I=1,13000
       READ(2,30) ALPHA
30
       FORMAT(A)
        IF (ALPHA EQ 'GRID') GOTO 40
      ENDDO
С
C
 40
    IBEGIN = I-1
      DO I=1,13000
       READ(2,30) ALPHA
       IF (ALPHA NE.'GRID') GOTO 50
      ENDDO
C
 50
     NG = I
      CLOSE(2)
      WRITES THE OUTPUT NASTRAN FILE UP TO THE 1ST GRID
C
     OPEN (UNIT=2,
          FILE=NASTRAN.
    &
          STATUS='ÔLD',
    &
           ACCESS='SEQUENTIAL'
    &
           FORM='FORMATTED',
          READONLY )
C
```

```
DO I=1, IBEGIN
         READ(2,60) ALINE
         WRITE(3,60) ALINE
  60
         FORMAT(A)
       ENDDO
 C
 C
 C
            READS GRIDS AND THEIR COORDINATES
 C
         & WRITES THEM AFTER ROUNDING OFF
 C
 С
      DO I=1,NG
C
        READ(2,63) G,CID,X,Y,Z,CD,A24
 63
        FORMAT(8X,218,F8 5,F8 4,F8 5,18,A24)
С
        WRITE(3,70)G,CID,X,Y,Z,CD,A24
        FORMAT('GRID ',218,F8 4,F8 3,F8 4,18,A24)
 70
C
      ENDDO
C
C
C
      WRITES THE REST OF THE OUTPUT NASTRAN FILE
C
C
     DO I=1,10000
       READ(2,60,END=999)ALINE
       WRITE(3,60) ALINE
     ENDDO
999 STOP
     END
```

Appendix H

Node Location Program

Two node location programs have been written. They permit to identify the nodes that belong to a volume entered as input and find those that are coincident. The volumes can be entered either in the basic cartesian coordinate system (IVOL program) or in cylindrical coordinate system (IVOLC program).

H.1 IVOL Program: Node Location Program (basic cartesian coordinates)

The IVOL program finds the nodes that belong to volumes entered as input. Coincident nodes are put in pairs.

The input file must have the same format as the file IVOL.DAT (Table H.1). A PATRAN neutral file (i.e. PATRAN.OUT) must be available as an input to IVOL. To run IVOL, type:

\$RUN IVOL

ENTER INPUT FILE NAME: <--- written by IVOL

IVOL.DAT <--- example, typed by the user

ENTER OUTPUT FILE NAME: <--- written by IVOL

IVOL.OUT <--- example, typed by the user

Program limit: 15000 nodes in the model

TITLE

PATRAN.OUT FILE : [MCGO1.GEO]PATRAN.OUT

* ZONE ID, X1 TO X2, Y1 TO Y2, Z1 TO Z3

*
1 -1.126 -1.124 -10. 10. -.001 .001
2 -.901 -.899 1.8 10. -.001 .001
3 -.901 -.899 -10. -1.8 -.001 .001

Table H.1: Typical IVOL program input file

- The first 3 lines are available for comments.
- The 4th line gives the PATRAN neutral file.
- The 5th line is available for comments.
- The 6th line indicates how to input the volumes whose nodes need to be identified. Each volume is identified by a user chosen ID and its upper and lower limits given in the basic cartesian coordinate system. Free format is used.
- The 7th line is available for comments.
- Each of the subsequent line gives the parameters defining a volume whose nodes need to be identified.

```
FOR ZONE
                     I FROM -1 12600 TO
                                          -1 12400
                     Y FROM -10 00000 TO
                                         10 00000
                     Z FROM -0 00100 TO
                                          0 00100
     NODE ID'S
           817 -1 12500 1 97100
    15
                                 0 00000
         NONE -1 12500 2 59600
    16
                                  0 00000
   167
          1009 -1 12500 -1 97100
                                  0 00000
         NONE -1 12500 -2 59600
   168
                                  0 00000
   429
          1143 -1 12500 1 66400
         NONE -1 12500 0 95400
   431
                                  0 00000
   679
          1233 -1 12500 -1 66400
                                  0 00000
   681
         NONE -1 12500 -0 95400
                                  0 00000
   817
         NONE -1 12500 1 97100
                                  0 00000
          1144 -1 12500 1 87400
   818
                                  0 00000
  1009
         NONE -1 12600 -1 97100
                                  0 00000
  1010
          1234 -1 12509 -1 87400
                                  0 00000
         NONE -1 12500 1 66400
  1143
                                  0 00000
         NONE -1 12500 1 87400
  1144
  1233
         NONE -1 12500 -1 66400
                                  0 00000
  1234
         NONE -1 12600 -1 87400
                                 0 00000
FOR ZONE
                    X FROM -0 90100 TO
                                        -0 89900
                    Y FROM
                            1 80000 TO
                                         10 00000
                            -0 00100 TD
                    Z FROM
                                          0 00100
    NODE ID'S
    17
          1507 -0 90000 2 59600
                                  0 00000
    20
           860 -0 90000
                        1 97100
                                  0 00000
          1146 -0 90000
   859
                        1 87400
                                  0 00000
   860
         NONE -0 90000 1 97100
                                  0 00000
  1146
         NONE -0 90000 1 87400
                                  0 00000
  1506
         NONE
              -0.90000 3 09600
                                  0 00000
  1507
         NONE -0 90000 2 59600
                                  0 00000
FOR ZONE
                    X FROM -0 90100 TO -0 89900
                    Y FROM -10 00000 TO -1 80000
                   Z FROM -0 00100 TO
                                          0 00100
    NODE ID'S
          1290 -0 90000 -2 59600
   169
                                  0 00000
   172
          1051 -0 90000 -1 97100
                                 0.00000
 1051
        NONE -0 90000 -1 97100
                                 0 00000
 1052
         1236 -0 90000 -1 87400
                                 0 00000
 1236
        NONE -0 90000 -1 87400
                                 0 00000
        NONE -0 90000 -3 09600
 1289
                                 0 00000
 1290
        NONE -0 90000 -2 59600
                                 0 00000
```

Table H.2: Typical IVOL program output file

The corresponding input file is given in Table H.1.

Table H.3: IVOL program FORTRAN code

```
PROGRAM IVOL
        INTEGER NO(15000), NOK(1000)
        REAL X(15000), Y(15000), Z(15000)
REAL XK(1000), YK(1000), ZK(1000)
        CHARACTER*50 INPUT; OUTPUT, PATOUT
        CHARACTER*1 ALPHA
        LOGICAL FLAG
 C
 C
        INPUTS
 С
        ~ - - - - -
       WRITE(6,2)
  2
        FORMAT(' ENTER INPUT FILE NAME
       READ(5,5) INPUT
 C
       WRITE(6,4)
        FORMAT(' ENTER OUTPUT FILE NAME ')
       READ(5,5) OUTPUT
`C
 5
       FORMAT(A)
C
      OPEN ( UNIT=2,
               FILE=INPUT.
              STATUS='QLD',
              ACCESS='SEQUENTIAL'.
              FORM='FORMATTED',
              READONLY )
C
      READ(2,10) PATOUT
      FORMAT(///17X,A,///)
10
```

```
C
       UNIT=3 IS THE OUTPUT
       OPEN ( UNIT=3,
              FILE=OUTPUT.
              STATUS='NEW'.
              ACCESS='SEQUENTIAL',
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED')
C
C
C
C
      CREATES A LIST OF NODES NO(I) WITH THEIR COORD X(I), Y(I), Z(I)
С
C
C
      OPEN ( UNIT=1,
              FILE=PATOUT,
     k
              STATUS='OLD',
              ACCESS='SEQUENTIAL'.
              FORM='FORMATTED'.
              READONLY )
C
\mathbb{C}
           READS THE NUMBER OF NODES
C
        READ(1,60) NN
60
        FORMAT(//,26X,I8,/)
C
C
           READS THE NODES COORDINATES
C
C
      DO I=1.NN
        READ(1,65) NO(I), X(I), Y(I), Z(I)
      ENDDO
C
65
      FORMAT(2X,18,/,3E16 9,/)
C
```

✓ 1_

```
C
       READS THE INPUT FILE
  C
       DO N-1,999
 C
         READ(2,*,END=999) IDZONE, XI1, XI2, YI1, YI2, ZI1, ZI2
         WRITE(3,69) IDZONE, XI1, XI2, YI1, YI2, ZI1, ZI2
  69
         FORMAT(//, ' FOR ZONE ', 18,',',
                /,20X,' X FROM ',F9 5,' TO ',F9 5,
                /,20X,' Y FROM ',F9 5,' TO ',F9 5,
               /,20X,' Z FROM ',F9 5,' TO ',F9 5,/,
                /,6X,'NODE ID''S
                                       Х
                                               Y
 C
           KEEPS THE NODES SUCH THAT XI1<X<XI2, YI1<Y<YI2, ZI1<Z<ZI2
       NK=0
 C
      DO I=1.NN
        IF (((XI1.LE X(I)).AND (X(I)—LE XI2)) AND.
            ((YI1 LE Y(I)) AND (Y(I) LE YI2)) AND
            ((ZI1 LE Z(I)) AND.(Z(I) LE ZI2)) )
                                                       THEN
            NK=NK+1
            NOK(NK)=NO(I)
            XK(NK)=X(I)
            XK(NK)=X(I)
            ZK(NK)=Z(I)
        ENDIF .
      ENDDO
C
     PUTS THE NODES KEPT IN PAIRS
C
C
     DO I=1,NK
        IP1=I+1
        FLAG=.FALSE.
        DO J=IP1,NK
          IF(( ABS(XK(J)-XK(I)).LE.2.E-5 ) .AND.
```

ļ

```
( ABS(YK(J)-YK(I)) LE 2 E-5 ) .AND
                                   &
                                                                                                  ( ABS(ZK(J)-ZK(I)).LE.2.E-5 ) THEN
  С
                                                                                          \label{eq:write(3,70)NOK(1),NOK(J), XK(J), YK(J), ZK(J) } \text{ $$WRITE(3,70)$ NOK(I), NOK(J), $$XK(J), $XK(J), $$XK(J), $$XK(J), $$XK(J), $$XK(J), $XK(J), $XK(J)
        70
                                                                                         FORMAT(218,3F9.5)
                                                                                         FLAG = .TRUE. ! SAYS THAT A PAIR HAS BEEN IDENTIFIED
                                                                           ENDIF
  C
                                                              ENDDO
                                        IF ( NOT.FLAG) WRITE (3,80)NOK(I), XK(I), YK(I), ZK(I)
                                                               FORMAT(18,' NONE ',3F9 5)
       80
С
                                       ENDD0
С
         ENDDO -
      999
                                              STOP
                                              END
```

H.2 IVOLC Program: Node Location program (cylindrical coordinates)

The IVOLC program finds the nodes that belong to volumes entered as input. Co-incident nodes are put in pairs.

The input file must have the same format as the file IVOLC.DAT (Table H.4). A PATRAN neutral file (i.e. PATRAN.OUT) must be available as an input to IVOLC.

The cylindrical coordinate (R, θ, Z') system used is related to the basic cartesian coordinate system (X, Y, Z) by:

$$R = \sqrt{X^2 + Z^2}$$

$$\theta = \arctan \frac{-Z}{X}$$

$$Z' = Y$$
(H.1)

To run IVOLC, type:

\$RUN IVOLC

ENTER INPUT FILE NAME: <-

<--- written by IVOLC

IVOLC.DAT

<--- example, typed by the user

ENTER OUTPUT FILE NAME:

<--- written by IVOLC

IVOLC.OUT

<--- example, typed by the user

Program limits: 15000 nodes in the model

TO FIND PIN NODES SUBMITTED TO FRETTING

PATRAN.OUT FILE : [MCGO1.GEO] PATRAN.OUT

k	ZONE ID,	R1 TO R2,	TETA1 TO	TETA2, ZF	1 TO ZP2
k					
	1	.499 .501	-18090.	-1.873 1.8	173
	1	.499 .501	90.180.	-1.873 1.8	173
	2	.499 .501	-90 . 90.	1.873 2.59	17
	3	.499 .501	-90.90	-2.597 -1.	873

Table H.4: Typical IVOLC program input file

- The first 3 lines are available for comments.
- The 4th line gives the PATRAN neutral file.
- The 5th line is available for comments.
- The 6th line indicates how to input the volumes whose nodes need to be identified. Each volume is identified by a user chosen ID and its upper and lower limits given in the cylindrical coordinate system
- The 7th line is available for comments.
- Each of the subsequent line gives the parameters defining a volume whose nodes need to be identified.

```
7,
```

1

```
FOR ZONE
                      R FROM
                              O 49900 TO
                                           0 50100
                   TETA FROM -180 00000 TO -90 00000
                     ZP FROM -1 87300 TO 1 87300
     NODE ID'S
                             TETA
    499
          1477
                 0 50000-112 41609
                                   1 66400
                 0 50000-146 20804
    501
           1476
                                   1 66400
    586
          1464
                 0 50000-112 41610
                                   0 95400
      7
                 0 50000-112 41609
   1477 NONE
                                   1 66400
 FOR ZONE
                     R FROM
                              0 49900 TO
                                            0 50100
                             90 00000 TO 180 00000
                   TETA FROM
                    ZP FROM -1 87300 TO 1 87300
    NODE ID'S
                     R
                            TETA
   500 1481
                0 50000 112 41611
                                   1 66400
   502
          1480
                0 50000 146 20802
                                  1 66400
   503
          1479
                0 50000 180 00000 1 66400
                0 50000 112 41611 1 66400
  1481 NONE
FOR ZONE
                     R FROM
                             0 49900 TO
                                           0 50100
                  TETA FROM -90 00000 TO
                                          90 00000
                   ZP FROM
                            1 87300 TO
                                           2 50000
    NODE ID'S
                            TETA
                                   ZP
                0 50000 0 00000
0 50000 0 00000
   373
         829
                                  1 87400
   373
         1501
                                  1 87400
                0 50000 -28 10402
   378
          781
                                  1 87400
 1551
        NONE
                0 50000 0 00000
                                  2 28350
FOR ZONE
                    R FROM
                             0 49900 TD
                                           0 50100
                 TETA FROM -90 00000 TO
                                         90 00000
                   ZP FROM -2 50000 TO
                                         -1 87300
   NODE ID'S
                    R
                                 ZP
                           TETA
        1021
               0 50000
                        0 00000 -1 87400
               0 50000 0 00000 -1 87400
  464
         1422
               0 50000 -28 10403 -1 87400
 1423 NONE
               0 50000 28 10403 -1 87400
```

Table H.5: Typical IVOLC program output file

Table H.6: IVOLC program FORTRAN code

```
C
        PROGRAM IVOLC
  C
 C
        INTEGER NO(15000), NOK(1000)
       REAL R(15000), TETA(15000), ZP(15000)
       REAL XK(1000), YK(1000), ZK(1000)
       CHARACTER*50 INPUT, OUTPUT, PATOUT
        CHARACTER*1 ALPHA
       LOGICAL FLAG
 C
 C
       INPUTS
 C
       -----
       WRITE(6,2)
  2
        FORMAT(' ENTER INPUT FILE NAME ')
       READ(5,5) INPUT
 С
       WRITE(6,4)
       FORMAT(' ENTER OUTPUT FILE NAME ')
  4
       READ(5,5) OUTPUT
C
 5
       FORMAT(A)
C
      OPEN ( UNIT=2.
             FILE=INPUT,
     Ł
             STATUS='OLD',
             ACCESS='SEQUENTIAL',
             FORM='FORMATTED',
          . READONLY )
C
      READ(2,10) PATOUT
      FORMAT(///17X,A,///)
 10
C
```

```
C
        UNIT=3 IS THE OUTPUT
  C
        OPEN ( UNIT=3.
               FILE=OUTPUT,
               STATUS='NEW'.
               ACCESS='SEQUENTIAL',
               CARRIAGECONTROL='LIST'.
              FORM='FORMATTED' )
 C
 С
 C
       CREATES A LIST OF NODES NO(I) WITH THEIR COORD R(I), TETA(I), ZP(I)
 C
 C
 C
 C
       OPEN ( UNIT=1.
              FILE=PATOUT,
      k
              STATUS='OLD',
              ACCESS='SEQUENTIAL',
              FORM='FORMATTED'.
              READONLY )
C
C
            READS THE NUMBER OF NODES
C
C
        READ(1,60) NN
 60
        FORMAT(//,26X,18,/)
C
C
           READS & TRANSFORMS THE NODES COORDINATES
C
      DO I=1,NN
        READ(1,65) NO(I),X,Y,Z
        R(I) = SQRT(X**2+Z**2)
        IF (R(I).EQ.O.) THEN
          TETA(I)=0
        ELSE
```

```
TETA(I)=ATAN2D(-Z,X) ! -180 TO 180 DEG
          ENDIF
          ZP(I)=Y
        ENDDO
  С
  65
       FORMAT(2X, 18, /, 3E16 9, /)
 С
 C
 C
       READS THE INPUT FILE
 C
       DO N=1,999
 C
         READ(2,*,END=999) IDZONE, XI1, XI2, YI1, YI2, ZI1, ZI2
         WRITE(3.69) IDZONE, XI1, XI2, YI1, YI2, ZI1, ZI2
         FORMAT(//,' FOR ZONE '.18.'.'.
  69
                /,20X,' R FROM ',F10 5,' TO ',F10 5,
                /,20X,' TETA FROM ',F10 5,' TO ',F10 5,
      ď
                /,20X.' ZP FROM ',F10 5,' TO ',F10 5,/,
                /,6X,'NODE ID''S
                                         R
                                                 TETA
                                                              ZP')
 C
 C
            KEEPS THE NODES SUCH THAT XI1<R<XI2, YI1<TETA<YI2, ZI1<ZP<ZI2
 C
 C
      NK = O
С
      DO I=1,NN
        IF (((XI1 LE.R(I)).AND.(R(I).LE.XI2)) AND.
            ((YI1.LE.TETA(I)) AND (TETA(I) LE YI2)) AND
     k
            ((ZI1.LE.ZP(I)) AND (ZP(I) LE.ZI2)) )
                                                          THEN
            NK=NK+1
            NOK(NK)=NO(I)
            XK(NK)=R(I)
            YK(NK) = TETA(I)
            ZK(NK) = ZP(I)
        ENDIF
      ENDDO
C
C
      PUTS THE NODES KEPT IN PAIRS
```

```
C
 C
       DO I=1,NK
           IP1=I+1
           FLAG - . FALSE.
           DO J=IP1,NK
             IF(( ABS(XK(J)-XK(I)) LE 2 E-5 ) AND
                ( ABS(YK(J)-YK(I)) LE 2 E-5 ) AND
                ( ABS(ZK(J)-ZK(I)) LE 2 E-5 ) THEN
C
               \label{eq:write(3,70)nok(1),nok(j), xk(j), yk(j), zk(j)} \  \  \, \text{write(3,70)nok(1),nok(j), xk(j), yk(j), zk(j)}
 70
               FORMAT(218,3F10 5)
               FLAG - TRUE
                               ! SAYS THAT A PAIR HAS BEEN IDENTIFIED
             ENDIF
C
          ENDDO
C
      IF (.NOT FLAG) WRITE (3,80)NOK(I), XK(I), YK(I), ZK(I)
           FORMAT(18,' NONE ',3F10 5)
80
C
      ENDDO
C
      ENDDO
999
       STOP
       END
```

1

Appendix I

Displacement Definition Program

The programs DF61, DF62, DF9 are used to define the boundary displacement fields on the lug & bushing F.E. mesh (see Section 3.5).

I.1 DF61 Program

This program computes the 16 algebraic coefficients (see eqn(3.3)) required to define a displacement field from the knowledge of the displacements at 6 points located on the parametric coordinate system at (See Figure I.1(a)):

$$(\xi_{1}, \xi_{2}) = 0, 0$$

$$0, 1$$

$$\frac{1}{2}, 1$$

$$1, 1$$

$$1, 0$$

$$\frac{1}{2}, 0$$

Refer to PATRAN user guide [6], Section 7.13.1. The input file must have the same format as the DF61.DAT file (Table I.1). The DF61 output sele (Table I.3) must be run as a PATRAN session file.

To run DF61, type:

\$RUN DF61

ENTER INPUT FILE NAME:

<--- written by DF61

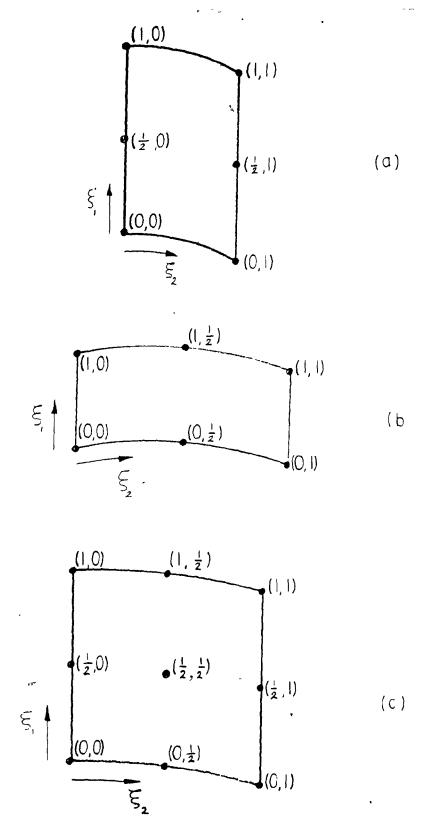


Figure I.1: Point positions (ξ_1, ξ_2) where displacements are known.

DF61'.DAT ENTER OUTPUT FILE NAME: DF61.OUT

<--- example, typed by the user

<--- written by DF61

<--- example, typed by the user

```
001
FIRST
       DPATCH ID 101
CID
                  2
  DFEG ID
                                DISPLACEMENTS (6 VALUES)
              HР
                   FACE
                          DIR
              605
                  4
                          1
                                6 02 6 44 5 21 2 56 2 27 4 81
   11
                                2 27 2 56 - 62 -2 98 -2 99 - 749
              606
   11
              617
                   4
                          1
                                3 57 3 81 5 91 6 44 6 02 5 55
  11
              618
                                -1 66 -1 73 771 3 81 3 57 728
  - 12
              605
                               7 93 8 39 6 44 2 79 2 42 5 98
  12
              606
                               2 42 2 79 -1 47 -4 54 -4 63 -1 64
  12
              617
                              ~ 5 47 5 71 8 11 8 39 7 93 7 72
  12
              618
                               -1 41 -1 54 1 86 5 71 5 47 1 89
  13
              605
                               3 19 3 58 3 40 2 24 2 04 3 07
                  4
  13
              606
                               2 04 2 24 055 - 878 - 793 514
  13
             617
                                769 1 03 2 71 3 58 3 19 2 34
                  4
  13
             618
                               -2 05 -2 06 - 767 1 03 769 - 895
  14
             605
                               2 42 2 86 3 17 2 85 2 37 2 83
  14
             606
                               2 37 2 55 1 23 - 027 126 1 27
  14
             617
                  4
                                 323 02 1 67 2 85 2 42 1 25
  31
             608
                  4
                                 903 - 633 -1 25 -1 99 -1 97 -1 39
  31
             602
                               -1 97 -1 99 -2 92 -3 51 -3 09 -2 67
             610
  31
                               -3 09 -3 51 -3 41 -2 77 -2 54 -3 02
  31
             620
                               -2 64 -2 77 -2 07 -1 22 -1 41 -1 99
  32
             608
                               -1 55 -1 1 -1 67 -2 21 -2 39 -1 93
                         3
 32
             602
                         3
                               -2 39 -2 21 -3 12 -3 98 -3 73 -3 11
 32
             614
                               -3 73 -3 98 -4 34 -4 14 -3 78 -3 96
 32
             620
                               -3 78 -4 14 -3 64 -2 72 -2 74 -3 38
 32
             603
                 5
                               -3 98 -4 21 -3 1 -2 05 -2 21 -3 12
 32
             622
                 1
                         3
                              -2 72 -2 81 -3 93 -4 48 -4 14 -3 64
 33
            620
                               704 602 1 73 2 86 2 35 1 55
 33
            619
                         3
                              2 35 2 86 3 67 3 84 2 96 2 86
 33
            607
                              2 96 3 84 3 28 2 16 1 84 2 57
 33
            608
                              1 84 2 16 903 - 107 186 964
                        3
 33
            622
                              2 86 3 3 1 85 469 602 1 73
 33
            621
                              3 84 4 64 4 39 3 3 2 86 3 67
 34
            620
                              1 83 1 78 3 25 4 61 3 87 2 92
 34
            619
                              3 87 4 61 5 4 5 34 4 31 4 38
34
            607
                        3
                              4 31 5 34 4 42 2 88 2 61 3 68
            608
                              2 61 2 88 1 21 087 565 1 43
31
            622
                              4 61 5 26 3 51 1 69 1 78 3 25
34
           621
                              5 34 6 25 6 29 5 26 4 61 5 4
```

Table I.1: Typical DF61 program input file

Ý

The file format is given in Table I.2.

- The first 3 lines are available for comments.
- The 4th, 5th, and 6th lines are the scaling factor, the first data patch ID that will be used to define the imposed displacement, and the reference coordinate system ID (only the values right to the ":" can be changed). Make sure that all the data patch ID's that will be created by DF61 are unique
- The 7th and 8th lines are available for comments.
- Each of the other lines indicates an imposed displacement. It is defined by:
 - a DFEG ID,
 - the hyperpatch (HP) the DFEG is applied to,
 - the HP face (1 to 6) [6],
 - the direction (1, 2, or 3),
 - and the 6 displacements applied on the surface indicated by the HP and the FACE. They must be entered in the (ξ_1, ξ_2) order shown on page 255

Table I.2: DF61 program input file format

See Table I.1.

```
DATA, 101,...,-0. 1800E+00, 0.5000E-01, 0.4200E+00,
 -0.2660E+01,-0.1090E+01, 0.6020E+01
 DPAT, 101, ALG, 0.0010, D101
 DF, H605, DISP, P1011 11, F4.2
 0.1556E+01,-0.6816E+01, 0.2270E+01
 DPAT, 102, ALG, 0.0010, D102
 DF, H606, DISP, P102.
                   11,F4,2
 DATA, 103,...,-0.1200E+00, 0.3000E+00, 0.2400E+00,
 -0.3020E+01, 0.5470E+01, 0.3570E+01
. DPAT, 103, ALG, 0.0010, D103
 DF, H617, DISP, P103,
                     11,F4,2
DATA,104,..., 0.1680E+00, 0.1420E+00,-0.7000E-01,,
 0.9080E+00, 0.4322E+01,-0.1660E+01
DPAT, 104, ALG, 0.0010, D104
DF, H618, DISP, P104, 11, F4, 2
DATA,136...., 0.8000E-01,-0.8200E+00, 0.6500E+00,.
-0.2200E+00,-0.2610E+01, 0.4610E+01
DPAT,136,ALG,0.0010,D136
DF.H622,DISP.//P136.
                      34,F1.2
DATA,137,,,,,-0.4400E+00, 0.1800E+00, 0.9100E+00,
-0.1700E+01, 0.9700E+00, 0.5340E+01
DPAT, 137, ALG, O. 0010, D137
DF, H621, DISP, //P137, 34,F1,2
```

Table I.3: Typical DF61 program output file It corresponds to the input file given by Table I.1.

Table I.4: DF61 program FORTRAN code

```
С
        AOGRAM DF61
С
С
С
      CHARACTER*50 INPUT, OUTPUT
      INTEGER HPID, DFID, FACE, DIR, DPID, CID
C
C
      INPUTS
       -----
      WRITE(6,2)
 2
       FORMAT(' ENTER INPUT FILE NAME: ')
      READ(5,5) INPUT
C
      WRITE(6,4)
       FORMAT(' ENTER OUTPUT FILE NAME · ')
      READ(5,5) OUTPUT
C
 5
      FORMAT(A)
C
      OPEN ( UNIT=1.
             FILE=INPUT,
             STATUS; OLD',
             ACCESS SEQUENTIAL .
     Ł
             FORM='FORMATTED'.
             READONLY )
C
C
      OPEN ( UNIT=2,
     Ł
             FILE=OUTPUT,
     Ł
             STATUS='NEW',
     ď
             ACCESS='SEQUENTIAL',
     Ł
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED' )
```

```
C
 C
       READS GENERAL INPUTS
 C
       READ(1,10)SCALE, DPID, CID
 10
       FORMAT(///,18X,F6 4,/,2(18X,I8/),/)
C
С
      DO I = 1,999
C
C
        READS EACH CASE
C
        READ(1, *, ERR=999)DFID, HPID, FACE, DIR, D1, D2, D4, D6, D5, D3
C
C
        COMPUTES THE ALGEBRAIC COEFFICIENTS
        (SEE SECTION 7.13.1 IN PATRAN USER GUIDE)
        SOO = D1
        SO1 = D2-D1
        S10 = 4.*(D3-D1) - (D5-D1)
        S20 = 2.*(D5-D1) - 4.*(D3-D1)
C
         E4 = D4 - S00 - .5*S10 - 25*S20 -
                                            S01
         E6 = D6 -S00 -
                          S10 -
                                  S20 -
C
        S11 = 4.*E4 - E6
        S21 = 2.*(E6-2.*E4)
C
C
        DATA PATCH DEFINITION
C
        WRITE(2,60)DPID, S21, S11, S01
        WRITE(2,62)S20,S10,S00
60
       FORMAT('DATA,',13,',,,,,,',3(E11.4,','),',')
62
       FORMAT(2(E11.4,','),E11.4)
```

```
WRITE(2,65)DPID, SCALE, DPID
        FORMAT('DPAT,' 13,', ALG,', F6 4,', D', I3)
 65
C
C
        DFEG DEFINITION
C
        IF (DIR.EQ 1) THEN
           WRITE(2,70) HPID, DPID, DFID, FACE, CID
        ELSEIF (DIR.EQ.2) THEN
           WRITE(2,80)HPID,DPID,DFID,FACE,CID
        ELSE
           WRITE(2,90)HPID,DPID,DFID,FACE,CID
        ENDIF
C
 70
        FORMAT('DF,H',I3,',DISP,P',I3,',',I6,',F',I1,',',I1)
        FORMAT('DF,H',I3,',DISP,/P',I3,',',I5,',F',I1,',',I1)
80
        FORMAT('DF,H',I3,',DISP,//P',I3,',',I5,',F',I1,',',I1)
90
        DPID = DPID + 1
С
      ENDDO
C
999
      STOP
                                                   120
      END
```

I.2 DF62 Program

This program computes the 16 algebraic coefficients (see eqn(3.3)) required to define a displacement field from the knowledge of the displacements at 6 points located on the parametric coordinate system at (see Figure I.1(b)):

$$(\xi_1, \xi_2) = 0, 0 \\ 0, \frac{1}{2} \\ 0, 1 \\ 1, 1 \\ 1, \frac{1}{2} \\ 1, 0$$

Refer to PATRAN user guide [6] Section 7.13.1. The input file must have the same format as the DF62.DAT file (Table I.5). The DF62 output (Table I.6) file must be run as a PATRAN session file.

To run DF62, type:

```
$RUN DF62

ENTER INPUT FILE NAME: <--- written by DF62

DF62.DAT <--- example, typed by the user

ENTER OUTPUT FILE NAME: <--- written by DF62

DF62.OUT <--- example, typed by the user
```

```
SCALE
                   : .001
FIRST
       DPATCH
                ID:201
CID
                   : 2
                             DIR
                                   DISPLACEMENTS
   DFEG ID
               ΗP
                     FACE
                             3
                                   -1.1 -1.67 -2.21 -2.05 -1.48 -.791
               610
                     3
   32
                                   -3.98 -4.34 -4.14 -4.48 -4.67 -4.21
   32
               615
                     5
                             3
   33
               609
                     3
                             3
                                   3.84 3.28 2.16 2.42 3.9 4.64
                                   2.16 .903 -.107 -.422 .82 2.42
               610
                     3
                             3
   33
                     3
                                   5.34 4.42 2.88 3.11 5 09 6.25
                             3
   34
               609
                             3
                                   2.88 1.21 .087 -.416
                                                            956 3.11
   34
               610
                     3
```

Table I.5: Typical DF62 input file

- The first 3 lines are available for comments.
- The 4th, 5th, and 6th lines are the scaling factor, the first data patch ID that will be used to define the imposed displacement, and the reference coordinate system ID (only the values right to the ":" can be changed). Make sure that all the data patch ID's that will be created by DF62 are unique.
- The 7th and 8th lines are available for comments.
- Each of the other lines indicates an imposed displacement. It is defined by:
 - a DFEG ID,
 - the hyperpatch (HP) the DFEG is applied to,
 - the HP face (1 to 6) [6],
 - the direction (1, 2, or 3),
 - and the 6 displacements applied on the surface indicated by the HP and the FACE. They must be entered in the (xi_1, xi_2) order shown on page 264.

```
DATA,201,,,,,, 0.1780E+00, 0.6000E-01,,,
 -0.3270E+00,-0.1170E+01,,,
  0.3090E+00,-0.1100E+01
 DPAT.201.ALG.0.0010,D201
 DF, H610, DISP, //P201,
                         32,F3,2
 DATA,202,,,,,, O.1800E+00, O.1120E+01,,,
 -0.2900E+00,-0.1280E+01,,,
 -0.2300E+00,-0.3980E+01
 DPAT,202,ALG,0.0010,D202
 DF, H615, DISP, //P202,
                         32,F5,2
 DATA,203,,,,,-O.3600E+00,-O.1120E+O1,,,
 -0.1800E+00,-0.5600E+00,,,
  0.8000E+00, 0.3840E+01
 DPAT, 203, ALG, 0.0010, D203
 DF, H609, DISP, //P203,
                        33,F3,2
DATA,204...,, O.2220E+00, O.4940E+00,.,
-0.7970E+00,-0.2761E+01,..
 0.2600E+00, 0.2160E+01
DPAT, 204, ALG, 0.0010, D204
DF, H610, DISP, //P204,
                        33,F3,2
DATA,205,...,-0.4000E+00,-0.1240E+01,,,
-0.2800E+QO,-0.1220E+O1,..
 0.9100E+00. 0.5340E+01
DPAT, 205, ALG, 0.0010, D205
DF.H609,DISP.//P205.
                        34,F3,2
DATA,206,,,,,, 0.4700E+00, 0.1094E+01,,,
-0.1203E+01,-0.3887E+01,..
 0.2300E+00, 0.2880E+01
DPAT, 206, ALG, 0.0010, D206
DF.H610,DISP.//P206.
                       34,73,2
```

Table I.6: Typical DF62 output file

It corresponds to the input file given by Table I.5.

Table I.7: DF62 program FORTRAN code

```
C
        PROGRAM DF62
 С
 C
       CHARACTER*50 INPUT, OUTPUT
       INTEGER HPID, DFID, FACE, DIR, DPID, CID
 C
 C
       INPUTS
 C
        -----
 C
       WRITE (6,2)
  2
       FORMAT(' ENTER INPUT FILE NAME ')
       READ(5,5) INPUT
 C
       WRITE (6,4)
       FORMAT(' ENTER OUTPUT FILE NAME ')
       READ(5,5) OUTPUT
 С
 5
       FORMAT(A)
       OPEN ( UNIT=1,
      Ł
              FILE=INPUT,
              STATUS = 'OLD',
              ACCESS='SEQUENTIAL'.
     æ
              FORM='FORMATTED',
              READONLY )
C
      OPEN ( UNIT=2,
             FILE=OUTPUT.
             STATUS='NEW',
     Ł
             ACCESS='SEQUENTIAL',
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED' )
C
```

```
C
        READS GENERAL INPUTS
  C
        READ(1,10)SCALE, DPID, CID
        FORMAT(///,18X,F6 4,/,2(18X,I8/),/)
   10
  C
 C
       DOI = 1.999
 C
 C
         READS EACH CASE
 C
         READ(1,*,ERR=999)DFID,HPID,FACE,DIR,D1,D3,D5,D6,D4,D2
 C
 C
         COMPUTES THE ALGEBRAIC COEFFICIENTS
 C
         (SEE SECTION 7.13.1 IN PATRAN USER GUIDE)
 C
 C
         S00 - D1
         S10 = D2-D1
        SO1 = 4.*(D3-D1) -
                               (D5-D1)
        SO2 = 2.*(D5-D1) - 4.*(D3-D1)
C
         E4 = D4 -S00 - .5*S01 - .25*S02 -
                                            S10
         E6 = D6 -SOO - SO1 - SO2 -
C
        S11 = 4.*E4 - E6
        S12 = 2.*(E6-2.*E4)
C
C
        DATA PATCH DEFINITION
C
C
        WRITE(2,60)DPID,S12,S02
        WRITE(2,61)S11,S01
        WRITE(2,62)S10,S00
C
       FORMAT('DATA,',13,',,,,,',2(E11,4,','),',,')
60
61
       FORMAT(2(E11.4,','),',,')
62
       FORMAT (E11.4, ', ', E11.4)
```

```
С
         WRITE(2,65)DPID,SCALE,DPID
         FORMAT('DPAT,',13,',ALG,',F6 4,',D',13)
  65
 C
 C
         DFEG DEFINITION
 C
 C
         IF (DIR.EQ.1) THEN
            WRITE(2,70) HPID, DPID, DFID, FACE, CID
         ELSEIF (DIR.EQ.2) THEN
            WRITE(2,80) HPID, DPID, DFID, FACE, CID
        ELSE
            WRITE(2,90) HPID.DPID.DFID, FACE, CID
         ENDIF
C
        FORMAT('DF,H',I3,',DISP,P',I3,',',I5,',F',I1,',',I1)
 70
        FORMAT('DF,H',I3,',DISP,/P',I3,',',I6,',F',I1,',',I1)
 80
 90
        FORMAT('DF,H',I3,',DISP,//P',I3,',',I5,',F',I1,',',I1)
        DPID = DPID + 1
C
      ENDDO
C
C
 999
      STOP
C
      END
```

I.3 DF9 Program

This program computes the 16 algebraic coefficients (see eqn(3.3)) required to define a displacement field from the knowledge of the displacements at 9 points located on the parametric coordinate system at (see Figure I.1(c)):

$$(\xi_{1}, \xi_{2}) = 0,0$$

$$0, \frac{1}{2}$$

$$0,1$$

$$\frac{1}{2},1$$

$$1,1$$

$$1,\frac{1}{2}$$

$$1,0$$

$$\frac{1}{2},0$$

$$\frac{1}{2},\frac{1}{2}$$

Refer to PATRAN user guide [6] Section 7.13.1. The input file must have the same format as the DF9.DAT file (Table I.8). The DF9 output (table I.10) file must be run as a PATRAN session file.

To run DF9, type:

```
$RUN DF9
ENTER INPUT FILE NAME: <--- written by DF9
DF9.DAT <--- example, typed by the user
ENTER OUTPUT FILE NAME: <--- written by DF9
DF9.OUT <--- example, typed by the user
```

```
SCALE
                  001
FIRST DPATCH ID 1
CID
  DFEG ID
             HР
                         DIR Di
                          1 6 02 4.81 2.27 1 5 936 2 93 4 01 4 93 3 78
   11
             611
                          1 2 27 - 749 -2 99 -3.01 -3.12 -1 42 936 1 5 -1 18
   11
             612
             623
                          1 3 57 5 55 6 02 4 93 4.01 3 91 2 66 3 02 4 64
   11
   11
             624
                            -1 66 .728 3.57 3.02 2 66 622 -1 36 -1 46 598
                          1 7 93 5 98 2 42 1 45 732 3 8 5 75 6 72 4 77
   12
             611
                          1 2 42 -1 64 -4 63 -4 81 -4 90 -2 63 732 1 45 -2 24
   12
             612
             623
                          1 5 47 7 72 7 93 6 72 5.75 6 08 4 75 4 99 6 79
                          1 -1 41 1 89 5 47 4 99 4 75 2 14 - 716 -1 01 1 95
   12
             624
   13
                            3 19 3 07 2 04 1.49 1.07 1 35 1 1 2.08 2 15
             611
                          1 2 04 514 -. 793 - 59 - 39 368 1 07 1 49 369
   13
             612
   13
             623
                          1 769 2 34 3 19 2.08 1.1 383 - 622 016 1 3
                          1 -2 05 - 895 769 016 - 622 -1 61 -2 06 -2 05 -1 3
   13
             624
   14
             611
                          1 2 42 2 83 2.37 1.91 1 53 997 .028 1 17 1 86
             612
                          1 2 37 1 27 126 553 991 1 52 1 53 1 91 1 35
                          1 - 323 1 25 2 42 1 17 028 -1 15 -2 22 -1 34 - 009
            623
             624
                        1 -2 49 -1.7 - 323 -1.34 -2 22 -2 73 -2 63 -2 56 -2 26
         103
                        -2 39 -2 82 -3 04 -2 91 -2 87 -2 63 -2 24 -2 31 -2 70
   21
               2
   21
          114
                          -3 04 -3 07 -2 84 -2 86 -2.90 -2 93 -2 87 -2 91 -2 99
                         -3.19 -3 7 -4 09 -3 87 -3 78 -3 3 -2 8 -2 96 -3 47
   22
          103
               2
   22
          114
               2
                          -4 09 -4 36 -4.29 -4 34 -4 41 -4.12 -3 78 -3 87 -4 22
   23
          107
               2
                      3 1 55 .695 - 069 - 171 - 307 702 1 95 1 75 .705
   23
          103
               2
                         - 069 - 618 - 715 - 858 - 962 - 888 - 307 - 171 - 761
                         - 715 - 348 .404 399 377 - 589 - 962 - 858 - 448
   23
          114
                          404 1 22 2 2 32 2 64 1 49 377 399 1 37
   23
          118
                      3 2 33 1.27 389 166 - 106 1.06 2 64 2 49 1 18
          107
   24
                          389 - 175 - 121 - 32 - 479 - 623 - 105 165 - 416
          103
               2
                          - 121 514 1 58 1 59 1 55 224 -.479 - 32 369
          114
                         1.58 2 59 3 45 3 89 4 34 3 02 1.55 1 59 2 81
  24
          118
               2
                      3 3 45 3 93 3 86 4 41 4 96 5 05 4 34 3 89 4 48
          117
```

Table I.8: Typical DF9 program input file

The format is given in Table I.9

- The first 3 lines are available for comments.
- The 4th, 5th, and 6th lines are the scaling factor, the first data patch ID that will be used to define the imposed displacement, and the reference coordinate system ID (only the values right to the ":" can be changed). Make sure that all the data patch ID's that will be created by DF9 are unique.
- The 7th and 8th lines are available for comments.
- Each of the other lines indicates an imposed displacement. It is defined by.
 - a DFEG ID,
 - the hyperpatch (HP) the DFEG is applied to,
 - the HP face (1 to 6) [6],
 - the direction (1, 2, or 3),
 - and the 9 displacements applied on the surface indicated by the HP and the FACE. They must be entered in the (xi_1, xi_2) order shown on page 270.

Table I.9: DF9 program input file format

See Table I.8

```
DATA, 1..., 0.6400E-01, 0.7680E+00,-0.2660E+01,
 0.7998E-02,-0.1640E+00,-0.1090E+01,,
 0.3400E+00,-0.2350E+01, 0.6020E+01
DPAT, 1,ALG,0.0010,D 1.
DF, H611, DISP, P 1, 11, F2, 2
DATA, 2,,,,,-0.1064E+01, 0.8200E+00, 0.1556E+01,,
 0.4720E+00, 0.9760E+00,-0.6816E+01...
 0.4120E+00,-0.1746E+01, 0.2270E+01
DPAT, 2,ALG,0.0010,D 2
DF, H612, DISP, P 2.
                    11,F2,2
DATA, 3,...,-0.2861E-05, 0.7200E+00,-0.3020E+01,,
-0.4000E-01,-0.1780E+01, 0.5470E+01,
 0.3800E+00,-0.1290E+01. 0.3570E+01
DPAT, 3,ALG,0.0010,D 3
DF.H623,DISP,P 3.
                    11,F2,2
DATA, 4.....-0.8720E+00: 0.7600E-01. 0.9080E+00..
0.1452E+01,-0.1866E+01, 0.4322E+01,
-0.2000E+00, 0.5000E+00,-0.1660E+01
DPAT, 4,ALG,0.0010,D 4
DF, H624, DISP, P 4, 11, F2, 2
```

```
-DATA, 28,,,,,-0.8000E-01, 0.8000E-01,-0.3000E+00,,
0.2000E+00, 0.7200E+00, 0.2170E+01,,
-0.1000E+00, 0.7000E-01, 0.1580E+01

DPAT, 28,ALG,0.0010,D 28

DF,H118,DISP,//P 28, 24,F2,2

DATA, 29,,,,-0.1200E+00,-0.3800E+00,-0.1100E+01,,
0.1000E+00, 0.6100E+00, 0.1510E+01,,
0.2000E-01, 0.8700E+00, 0.3450E+01

DPAT, 29,ALG,0.0010,D 29

DF,H117,DISP,//P 29, 24,F2.2
```

Table I.10: Typical DF9 program output file

It corresponds to the input file given by Table I.8.

Table I.11: DF9 program FORTRAN code

```
PRÓGRAM DF9
  C
        CHARACTER*50 INPUT, OUTPUT
        INTEGER HPID, DFID, FACE, DIR, DPID, CID
 C
        INPUTS
 С
 C
       WRITE(6,2)
  2
        FORMAT ( ' ENTER INPUT FILE NAME ')
       READ(5,5) INPUT
 С
      . WRITE(6,4)
        FORMAT(' ENTER OUTPUT FILE NAME. ')
       READ(5,5) OUTPUT
 C
     FORMAT(A)
  5
       OPEN ( UNIT=1,
              FILE=INPUT.
              STATUS='OLD',
      Ł
              ACCESS='SEQUENTIAL',
              FORM='FORMATTED',
             READONLY )
C
      QPEN ( UNIT=2, '
             FILE=OUTPUT,
             STATUS= : NEW ',
             ACCESS='SEQUENTIAL',
     t
             CARRIAGECONTROL='LIST',
             FORM='FORMATTED' )
Ċ
```

C

```
C
        READS GENERAL INPUTS
  C
  C
        READ(1,10) SCALE, DPID, CID
   10
        FORMAT(///,18X,F6.4,/,2(18X,18/),/)
  C
  C
        DO I = 1,999
 C
 C
         READS EACH CASE
 C
 C
          READ(1,*,ERR=999)DFID,HPID,FACE,DIR,D1,D2,D3,D6,D9,D8,D7,D4,D5
 C
 C
         COMPUTES THE ALGEBRAIC COEFFICIENTS
 C
         (SEE SECTION 7.13.1 IN PATRAN USER GUIDE).
 C
 C
         S00 = D1
        SO1 = 4.*(D2-D1) - (D3-D1)
        SO2 = 2.*(D3-D1) - 4.*(D2-D1)
         S10 = 4.*(D4-D1) - (D7-D1)
        S20 = 2.*(D7-D1) - 4.*(D4-D1)
c`
         E5 = D5 -S00 -.5*S10 -.25*S20 -.5*S01 -.25*S02
         E6 = D6 -S00 -.5*S10 -.25*S20 -
                                           SO1 -
         E8 = D8 -S00 - S10 -
                                   -$20 -.5*S01 -.25*S02
         E9 = D9 - S00 -
                          S10 - S20 - S01 -
C
         F5 = 16. *E5
         F6 = F5 -8. *E6
         F8 = F5 -8.*E8
         F9 = 4.*E9 - F5
C
        S22 = F6+F8+F9
       S12 = -.5*(F6+S22)
       S21 = -.5*(F8+S22)
       S11 = .25*(F5 -S22 -2.*(S21+S12))
```

```
DATA PATCH DEFINITION
          WRITE(2,60) DPID, S22, S12, S02
          WRITE(2,61)S21,S11,S01
          WRITE(2,62)S20,S10,S00
 C
          FORMAT('DATA,',13,',,,,,',3(E11.4,','),',')
  60
  61
          FORMAT(3(E11.4.'.').'.')
  62
          FORMAT(2(E11.4,'.'),E11.4)
 C
         WRITE(2,65) DPID, SCALE, DPID
         FORMAT('DPAT,',13,',ALG,',F6.4,',D',13)
  65
 C
 C
         DFEG DEFINITION
 C
 C
         IF (DIR.EQ.1) THEN
            WRITE(2,70)HPID.DPID.DFID.FACE.CID
         ELSEIF (DIR.EQ.2) THEN
            WRITE(2,80)HPID.DPID.DFID.FACE.CID
         ELSE
            WRITE(2,90)HPID, DPID, DFID, FACE, CID
         ENDIF
C
 70
        FORMAT('DF,H',13,',DISP,P',13,',',15,',F',11,',',11)
        FORMAT('DF,H',13,',DISP,/P',13,',',15,',F','11,',',11)
 80
 90
       . FORMAT('DF,H',I3,',DISP,//P',I3,',',I5,',F',I1,',',I1)
        DPID = DPID + 1
C
      ENDDO
 999
      STOP
C
      END
```

Appendix J

Commented Version's of the Data Decks used for the Finite Element Analysis

Table J.1: Commented version of the NASTRAN data deck used for the analysis of the interference fit induced stresses

```
Solution "24": linear

Solution "24": linear

Solution "24": linear

TIME 25

THE LINES BELOW ARE NECESSARY TO CREATE AN OUTPUT FILE THAT CAN BE POST

PROCESSED

ALTER 187 $

MATNOD CSTN,SIL,BGPDT,../TRANSCB./5//-1 $

MPYAD TRANSCB,UGV,/UGVBASIC $

SDR2 CASECC...EQEXIN,....UGVBASIC../
..OUGV1PAT,../STATICS/S,N,NOSORT2/V,N,NOCOMP $

OUTPUT2 OUGV1PAT,GES1X//-1/11/V,N,Z $
```

```
.$ THE NEXT LINE IS TO MININIZE THE STIFFNESS MATRIX BAND WIDTH
..BM 2 RFA RF24D74
CEND
TITLE
                 LUG & BUSHING
SUBTITLE - INTERFERENCE FIT INDUCED STRESS
ECHO-UNSORT
SUBCASE
             ( 0.001 PNCH ON THE RADIUS )
LABEL
SPC=100
MPC=200
DEFORM-104
LOAD=100
DISPL=ALL
STRESS (VONM) -ALL
STRAIN-NONE
FORCE = ALL
BEGIN BULK
$ The coordinate system 2 is the cylindrical coordinate system R, THETA, Z'
$ as defined in Chapter 2.
$ The coordinate system 3 is not used here.
CORD2C
               2
                                  0.
                                                  0.
                                                          1.00000 O.
+CF
       1 1.00000 1.00000 0.
CORD2R
                                  O.
                                         Ò.
                                                  1.00000 0.
               3
                                                                 0.
+CF · 2 1.00000 1.00000 0.
   (All FORCE cards define very small DUMMY loadings.
   They were necessary to avoid any error message.)
FORCE
             100
                    1642
                                               1.
             100
FORCE
                    688
$ Node 1427 belonging to the bushing has the same THETA and Z' motions as the
$ coincident node 611 that belongs to the lug.
```

```
TO AVOID BUSHING THETA RIGID BODY MOTION
MPC
              200 - 1427
                             , 2
                                        1.
      TO AVOID BUSHING Z' RIGID BODY MOTION
                                               661
MPC
              200
                                3
                  1427
$ The DEFORM cards below define the INTERFERENCE FIT (0.001 INCH ON RADIUS).
$ They were created by the IBAR program.
DEFORM
              104
                    12001 0.00100
              104
                    12002 0.00100
DEFORM
DEFORM
              104
                    12003 0.00100
              104
                    12004 0.00100
DEFORM
DEFORM
              104
                    12005 0.00100
DEFORM
              104
                    12006 0,00100
DEFORM
              104
                    12007 0.00100
              104
                    12008 0.00100
DEFORM
DEFORM
              104
                    12009 0.00100
DEFORM
              104
                    12118 0.00100
              104
DEFORM
                    12119 0.00100
DEFORM
              104
                    12120 0.00100
$ The lug end is constrained in R, THETA, Z'.
$ The SPC1 cards below were created by PATRAN.
              100
                                                          5
SPC1
                      123
                                1
                                         2
                                                                  8
                                                                          11
SPC1
              100
                      123
                                                                          72
                               17
                                        19
                                                25
                                                         66
                                                                 68
SPC1
              100
                      123
                              139
                                      141
                                               145
                                                        212
                                                                214
                                                                         218
SPC1
              100
                      123
                              285
                                       287
                                               291
                                                        362
                                                                364
                                                                         368
SPC1
              100
                      123
                              139
                                       141
                                               145
SPC1
              100
                      123
                              438
                                      440
$ NO NODE ROTATION ALLOWED. The SPC1 card below has been manually entered.
SPC1
             100
                      456
                                     THRU
                                              1932
$ NODE DEFINITION. The GRID cards below were created by PATRAN and modified
```

9 100	e la	st digit	of each	coordin	ate was	removed b	TRONG	to make	sure the	٠
¥ 40.	inci	dent node	B'do co	incide e	xactly.		, 1,60,70	co mere	ante fug	τ
\$ GRID		. 1	. 2	2.7563	3 160.612	2.0050	,	•		
GRID		2	.2		160.612		2			
GRID		3			160.612		2		•	
GRID		4	. 4		156.485		2			
RID		5					2		•	
RID		6	2	2.0090	165.214	2.0050	2			
RID		7		2.2023	162.121	2.0045	2			
RID			2	2.2867	156.485	2.1838	2			
RID		8	2	2.6890	165.214	2.1845	, 2			
KID		9	2	2.2623	162.121	2.1840	2			
		•								
		•								
RID		1930	•	0 5000						
RID					-56.208	2.0706	2			
RID		1931	2	0.6000	-56.208	2.0706	2			
KID		1932	2	0.5667	-56.208	2.0706	2		•	
		•								
COT.	TN									
SOL	ID e	lement de:	finition	n as cre	eated by	PATRAN.	Ð			
	ID e					•				
HEXA	ID e	1001	1	n as cre	eated by 1	PATRAN.	1 9	152	149 E	
HEXA E		1001 76	1 80	153	150	77	82		9	
HEXA E HEXA	1	1001 76 1002	1 80 1			•		152 149	149 E	
HEXA E HEXA E		1001 76 1002 71	1 80 1 76	153 150	150 147	77	82 77	149	9	
HEXA E HEXA E HEXA	1 2	1001 76 1002 71 1003	1 80 1 76 1	153	150	77	82		9	43
HEXA EXA EXA HEXA	1	1001 76 1002 71 1003 29	1 80 1 76 1 32	153 150 82	150 147 77	77 74 30	82 77	149	° 144 E	~4
HEXA HEXA HEXA HEXA HEXA	1 2 3	1001 76 1002 71 1003 29 1004	1 80 1 76 1 32	153 150	150 147	77	82 77	149	° 144 E	43
HEXA HEXA HEXA HEXA HEXA	1 2	1001 76 1002 71 1003 29 1004	1 80 1 76 1 32 1 29	153 150 82 77	150 147 77	77 74 30	82 77 33	149 80	144 E	43
HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3 4	1001 76 1002 71 1003 29 1004 22 1006	1 80 1 76 1 32 1 29	153 150 82	150 147 77	77 74 30	82 77 33	149 80	144 E 76 E 71 E	43
HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3	1001 76 1002 71 1003 29 1004 22 1006	1 80 1 76 1 32 1 29	153 150 82 77	150 147 77 74	77 74 30 27	82 77 33 30	149 80 76	144 E	43
HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3 4	1001 76 1002 71 1003 29 1004 22 1006 16 1008	1 80 1 76 1 32 1 29	153 150 82 77	150 147 77 74	77 74 30 27 24	82 77 33 30 65	149 80 76 29	144 E 76 E 71 E 22 E	43
HEXA HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3 4	1001 76 1002 71 1003 29 1004 22 1006	1 80 1 76 1 32 1 29 1 63	153 150 82 77 30	150 147 77 74 27	77 74 30 27	82 77 33 30	149 80 76	144 E 76 E 71 E	43
HEXA HEXA HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3 4	1001 76 1002 71 1003 29 1004 22 1006 16 1008	1 80 1 76 1 32 1 29 1 63	153 150 82 77 30	150 147 77 74 27	77 74 30 27 24 23	82 77 33 30 65	149 80 76 29 63	144 E 76 E 71 E 22 E 16 E	43
HEXA E HEXA	1 2 3 4	1001 76 1002 71 1003 29 1004 22 1006 16 1008 15	1 80 1 76 1 32 1 29 1 63 1	153 150 82 77 30 65	150 147 77 74 27	77 74 30 27 24	82 77 33 30 65	149 80 76 29	144 E 76 E 71 E 22 E	43
HEXA HEXA HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3 4 .5	1001 76 1002 71 1003 29 1004 22 1006 16 1008 15 1009	1 80 1 76 1 32 1 29 1 63 1 61 1 78	153 150 82 77 30 65	150 147 77 74 27 24	77 74 30 27 24 23 76	82 77 33 30 65 64 80	149 80 76 29 63 151	144 E 76 E 71 E 22 E 16 E 148 E	43
HEXA HEXA HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3 4 .5	1001 76 1002 71 1003 29 1004 22 1006 16 1008 15 1009 75	1 80 1 76 1 32 1 29 1 63 1 61	153 150 82 77 30 65	150 147 77 74 27	77 74 30 27 24 23	82 77 33 30 65	149 80 76 29 63 151	144 E 76 E 71 E 22 E 16 E	43
HEXA HEXA HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3 4 5 6 7	1001 76 1002 71 1003 29 1004 22 1006 16 1008 15 1009 75 1010	1 80 1 76 1 32 1 29 1 63 1 61 1 78	153 150 82 77 30 65	150 147 77 74 27 24	77 74 30 27 24 23 76	82 77 33 30 65 64 80	149 80 76 29 63 151	144 E 76 E 71 E 22 E 16 E 148 E	43
HEXA HEXA HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3 4 5 6 7	1001 76 1002 71 1003 29 1004 22 1006 16 1008 15 1009 75 1010	1 80 1 76 1 32 1 29 1 63 1 61 1 78	153 150 82 77 30 65	150 147 77 74 27 24	77 74 30 27 24 23 76	82 77 33 30 65 64 80	149 80 76 29 63 151	144 E 76 E 71 E 22 E 16 E 148 E	43
HEXA HEXA HEXA HEXA HEXA HEXA HEXA HEXA	1 2 3 4 5 6 7	1001 76 1002 71 1003 29 1004 22 1006 16 1008 15 1009 75 1010 70	1 80 1 76 1 32 1 29 1 63 1 61 1 78	153 150 82 77 30 65 152 149	150 147 77 74 27 24	77 74 30 27 24 23 76 71	82 77 33 30 65 64 80	149 80 76 29 63 151	144 E 76 E 71 E 22 E 16 E 148 E	43
SOL: HEXA E HEXA E HEXA E IEXA E EXA E EXA E EXA	1 2 3 4 5 6 7	1001 76 1002 71 1003 29 1004 22 1006 16 1008 15 1009 75 1010	1 80 1 76 1 32 1 29 1 63 1 61 1 78	153 150 82 77 30 65	150 147 77 74 27 24	77 74 30 27 24 23 76 71	82 77 33 30 65 64 80	149 80 76 29 63 151	144 E 76 E 71 E 22 E 16 E 148 E	43

```
CPENTA
               2007
                                                  376
                                 449
                                                          448
                                                                   372
                                                                            375
  CHEXA
               6766
                          6
                                1878
                                        1877
                                                 1799
                                                         1800
                                                                 1890
                                                                          1889 E 1294
  +E 1294
               1811
                       1812
  CHEXA
               6767
                          6
                                1877
                                        1876
                                                 1798
                                                         1799
                                                                 1889
                                                                          1888 E 1295
  +E 1295
               1810
                       1811
  CHEXA
               6768
                          6
                               1876
                                        1875
                                                1797
                                                         1798
                                                                 1888
                                                                          1887 E 1296
  +E 1296
               1809
                       1810
   BAR element definition cards. They were created by the IBAR program.
 CBAR
             12001
                        120
                                827
                                         196
                                                          1.
                                                                   ٥.
                                                                              E 12001
 +E 12001
                23
                         23-0.00100
                                                     0.00100
 CBAR
             12002
                        120
                                832
                                         197
                                                  0.
                                                          1.
                                                                   ď.
                                                                              E 12002
 +É 12002
                23
                        23-0.00100
                                                     0.00100
 CBAR
             12003
                       120
                                833
                                        198 .
                                                          1.
                                                                   0.
                                                                              E 12003
 +E 12003
                23
                        23-0.00100
                                                     0.00100
 CBAR
             12004
                       120
                                841
                                        202
                                                  0.
                                                          1.
                                                                   0.
                                                                             E 12004
 +E 12004
                23
                        23-0.00100
                                                     0.00100
 CBAR
            12005
                       120
                               848
                                        204
                                                  0.
                                                          1.
                                                                   0.
                                                                             E 12005
 +E 12005
                23
                        23-0.00100
                                                   0.00100
 CBAR
            12006
                       120
                               896
                                        126
                                                 ٥.
                                                          1.
                                                                  Ο.
 +E 12006
                23
                        23-0.00100 %
                                                     0.00100
CBAR
            12120
                       120
                              1752
                                        746
                                                         1.
                                                                  0.
                                                                             E 12120
+E 12120
                        23-0.00100 -
                                                    0.00100
$ The PSOLID 1 & 6, MAT1 1 & 6 cards define the lug and bushing materials.
$..The PBAR 120 & MAT1 99 cards define the BAR elements properties.
PSOLID
                        1
                                 2
                                         3
PSOLID
                6
                        6
                                         3
PBAR
              120
                       99
                                1.
                                        . 1
                                               · .1
NAT1
                1_1.000+7 3.759+6 0.33000 1.00000 0.
                                                          · 0.
                                                                    0.
NAT1
                6 2.850+7 1.120+7 0.27200 1.00000 0.
                                                            ٥.
NAT1
                   20.+4
                                        .3 1.00000 O.
ENDDATA
```

. 4

O

```
ID GC. MCGO1
APP DISP
      Solution 66: "Non-linear Material Analysis"
SOL 66
TIME 180
$ THE LINES BELOW ARE NECESSARY TO CREATE AN OUTPUT FILE THAT CAN BE POST
$ PROCESSED
ALTER 1 $
               ,,,,//C,N,-1/C,N,11/V,N,Z $
OUTPUT2
ALTER 962 $
OUTPUT2
               OUGV1, OES1//O/C, N, 11/V, N, Z $
CEND
               PIN
                        JOINT
SUBTITLE = NON LINEAR ANALYSIS, 1625 NODES
ECHO-UNSORT
SUPER-ALL
SEALL-ALL
SPC-101
MPC=501
    The HIGH CYCLE LOAD (i.e. LL1) is input in 3 steps.
    5%, 25%, 100%
SUBCASE=1
LABEL =
             5% HIGH CYCLE LOAD
LOAD - 1
NLPARM = 1
SUBCASE=2
```

```
25% HIGH CYCLE LOAD
 LABEL =
 LOAD = 2
 NLPARM - 2
 SUBCASE-3
 LABEL -
                 HIGH CYCLE LOAD
 LOAD - 3
 NLPARM = 3
 STRAIN-NONE
DISP = ALL
 STRESS (VONM) - ALL
 FORCE -
                 ALL
 $ The "LOW CYCLE LOAD" is load HL1.
 SUBCASE-4
                LOW CYCLE LOAD
 LABEL -
 LOAD - 4
 NLPARM - 4
 STRAIN-NONE
 DISP - ALL
 STRESS (VONM) = ALL
 FORCE -
                'ALL
 BEGIN BULK
    The cylindrical coordinate system defined below
    is the R. Theta, Z' coordinate system shown in Chapter 2.
 CORD2C
                                                   0. /
                                                           1.00000 0.
        1 1.00000 1.00000 O.
    The R unit vector of the cylindrical coordinate
    system defined below corresponds to the Y axis of the basic
    coordinate system defined in Chapter 2.
    It is used to define some of the CGAP cards.
                         ્રે છે.
                                   ٥.
                                          0.
                                                    ٥.
                                                            ٥.
                                                                  -1.00000 CF
                 1.00000 -1.00000
```

```
5% HIGH CYCLE LOAD
LOAD
                  .05 16000.
                             201 16000.
                                           202 12400.
                 413 12400. 425 12400.
439 12400. 451 12400.
+LO
    11 12400.
                                           426 12400.
                                                          438 LO .. 12
                                          452 1260.
+L0
    12 12400.
                                           -20 P
                  1 0.
NLPARM
                              ITER - 1
                                                          NO NL
+NL - 1
                  .01
    25% HIGH CYCLE LOAD
$
                 .25 16000.
                              201<sup>-</sup> 16000.
                                           202 12400.
LOAD
                                                         412 LO
                                           426 12400. , 438 LO
+L0 21 12400.
                413 12400.
                              425 12400.
+LO 22 1240ó.
                439 12400.
                              451 12<u>4</u>00.
                                            452 1260.
                      0.
NLPARM
         2.
                 i
                                             -20
                                                         NONL
                              ITER 1
                                                   Ρ.
+NL 2
                 .005
$ 100% HIGH CYCLE LOAD
$
LOAD
               1.00 16000.
                               201 16000. \ 202 12400.
                                                         412 LO 31
             3
+LO 31 12400.
                413 12400.
                             · 425 12400. 426 12400.
                                                         438 LO
+LO 32 12400.
                                            452 1260,
                 439 12400.
                              451 12400.
NLPARM
         3
                 1 . 0.
                              ITER 1
                                            -20 P - NO NL
+NL 3
                 .001
                                                              A 774 1
    100% LOW CYCLE LOAD
                               201 17400.
               1.00 17400.
LOAD
                                            202 23900.
                                                        412 LO
               413 23900)
                              425 23900.
+LO 41 23900.
                                            426 23900.
                                                         438 LO
+LO 42 23900.
                439 23900
                              451 23900.
                                            452 2870.
                                                          601
                              ITER 1
                                                         NO NL
NLPARM `
                                             -20
               1 0.
               .001
+NL
$ The "PLOAD4" cards below have been created by PATRAN.
        TENSION "P" (See Chapter 2) are defined by PLOAD4 cards numbered
                  201 & 202
          201<sup>°</sup>
                 4022-0.12165-0.12165-0.12165-0.12165
                                                   320
                                                          308
PLOAD4
          204
                                                          309
PLOAD4
                4023-0.12165-0.12165-0.12165-0.12165
                                                   322
PLOAD4
           201
                4024-0.12165-0.12165-0.12165-0.12165
                                                   361
                                                          322
```

```
365
                                                                            324
 PLOAD4
               201
                       4025-0.12165-0.12165-0.12165
               202
                                                                            307
 PLOAD4
                       4047-0.12165-0.12165-0.12165-0.12165
                                                                   318
 PLOAD4
               202
                       4048-0.12165-0.12165-0.12165-0.12165
                                                                   316
                                                                            306
                                                                   358
                                                                            320
 PLOAD4
               202
                       4049-0.12165-0.12165-0.12165-0.12165
 PLOAD4
               202
                       4050-0.12165-0.12165-0.12165-0.12165
                                                                   354
                                                                            318
               202
                                                                   369
                                                                            364
 PLOAD4
                       4072-0.12165-0.12165-0.12165-0.12165
 PLOAD4
               202
                       4073-0.12165-0.12165-0 12165-0 12165
                                                                   371
                                                                            370
 PLOAD4
               202
                       4074-0.12165-0 12165-0.12165-0 12165
                                                                   365
                                                                            363
 PLOAD4
               202
                       4075-0.12165-0.12165-0.12165-0.12165
                                                                   367
                                                                            369
 PLOAD4
               201
                       4097-0.12465-0 12165-0 12165-0.12165
                                                                   363
                                                                            360
 PLOAD4
               201
                       4098-0.12165-0.12165-0.12165-0.12165
                                                                   359
                                                                            356
 PLOAD4
               201
                       4099-0,12165-0.12165-0.12165-0 12165
                                                                   361
                                                                            359
 PLOAD4
               201
                       4100-0.12165-0 12165-0 12165-0.12165
                                                                   358
                                                                            355
 $
 $
          BENDING "M" (See Chapter 2) are defined by PLOAD4 cards numbered
 $
                       412, 413, 425, 426, 438, 439, 451 & 452
 Ŝ
PLOAD4
                      4022-0 09279-0.09279-0 21933-0.21933
              412
                                                                   320
                                                                            308
PLOAD4
              412
                      4023-0 09279-0 09279-0 21933-0.21933
                                                                   322
                                                                            309
PLOAD4
              413
                      4024 0
                                    0
                                            -0 09279-0.09279
                                                                   361
                                                                            322
PLOAD4
              413
                      4025 0.
                                    0
                                            -0 09279-0.09279
                                                                   365
                                                                            324
              425
PLOAD4
                      4047-0 09279-0 09279-0 21933-0.21933
                                                                   318
                                                                            307
                      4048-0.09279-0 09279-0.21933-0.21933
PLOAD4
              425
                                                                   316
                                                                            306
PLOAD4
              426
                      4049 0.
                                    0
                                            -0.09279-0 09279
                                                                   358
                                                                            320
PLOAD4
              426
                      4050 0.
                                    0.
                                            -0.09279-0.09279
                                                                   354
                                                                            318
                      4072 0.09279 0.09279 0.21933 0 21933
PLOAD4
              438
                                                                   369
                                                                            364
PLOAD4
              438
                      4073 0.09279 0 09279 0 21933 0.21933
                                                                            370
                                                                   371
PLOAD4
              439
                      4074 0.
                                    0.
                                             0 09279 0.09279
                                                                   365
                                                                            363
PLOAD4
              439
                      4075 0_
                                    0.
                                             0.09279 0 09279
                                                                   367
                                                                            369
PLOAD4
              451
                      4097 0.09279 0.09279 0.21933 0.21933
                                                                   363
                                                                            360
PLOAD4
              451
                      4098 0.09279 0.09279 0.21933 0.21933
                                                                   359
                                                                            356
PLOAD4
                                    0. .
              452
                      4099 0.
                                            0 09279 0 09279
                                                                   361
                                                                            359
PLOAD4
              452 ---
                      4100 0.
                                    0
                                             0.09279 0.09279
                                                                   358
                                                                            355
$
            TORSION "T" (See Chapter 2) are defined by FORCE cards "601"
$
                         They have been manually entered.
$
FORCE
              601
                       367
                           . 098124
                                          ٥.
                                                   1.
                                                           0.
FORCE
              601
                       354 -. 098124
                                          0.
                                                   1.
                                                           0.
FORCE
              601
                       371 .087821
                                          0.
                                                           Ο.
                                                   1.
              601
FORCE
                       324 .087821
                                          0.
                                                   1
                                                           0.
                       316 -. 087821
FORCE
              601
                                          0.
                                                   1
                                                          0
FORCE
              601
                       355 -.087821
                                                          0.
```

```
364 -.087331
FORCE
             601
                                         0
                                                 0.
FORCE
                      307 .087331
             601
                                         0
                                                 ٥.
FORCE
                      363 -.023550
             601
                                         0.
FORCE
             601
                      320
                            023550
    The 4 cards below state that the lugs are constrained at their ends.
    They have been created by PATRAN
SPC1
             101
                      123
                                                                  5
SPC1
                      123
                                7
             101
                                         8
                                                        10
                                                                153
                                                                        154
                      123
SPC1
             101
                              155
                                       156
                                               157
                                                       158
                                                                159
                                                                        160
SPC1
             101
                      123
                              161
                                       162
    The card below states that NO node ROTATION is allowed
    It has been manually entered.
$
SPC1
             101
                      456
                                      THRU
                                              1625
    The 2 cards below state that the grids along X axis are constrained
    in theta (The node ID's were determined using the IVOL program)
$
                        2
SPC1
             101
                              361
                                       362
                                               453
                                                      1462
                                                                454
                                                                        455
SPC1
             101
                              661
                                               668
                                                       671
                                      1453
                                                               1459
    The 6 cards below were necessary TO AVOID WASHER RIGID BODY MOTION
    (The node ID's were determined using the IVOL program)
$
MPC
             501
                     1143
                                               429
                                1
                                        1.
                                                                -1
MPC
             501
                     1233
                                1
                                               679
                                                         1
                                        1.
                                                                -1.
MPC
             501
                                               429
                     1143
                                2
                                                         2
                                        1
                                                                -1.
MPC
             501
                    1233
                                2
                                               679
                                                         2
                                        1.
                                                                -1.
MPC
             501
                   . 1147
                                2
                                        1.
                                               517
                                                                -1
MPC
             501
                     1237
                                               752
    The 2 cards below were necessary TO AVOID BUSHING RIGID BODY MOTION
    (The node ID's were determined using the IVOL program)
MPC
             501
                      807
                                2
                                       1.
                                               116
                                                                -1.
MPC.
             501
                      999
                                2
                                       1.
                                               264
                                                         2
                                                                -1.
```

```
The "MPC 501" cards define the WASHER & BLADE INTERFACE
     They were created by the IMPC program.
 MPC
               501
                       517
                                   3
                                                 1147
                                                                   -1.
                                          1.
                                                                   -1
 MPC
               501
                       520
                                   3
                                          1.
                                                 1145
                                                             3
MPC
               501
                       516
                                   3
                                          1.
                                                 1159
                                                             3
                                                                   -1.
MPC
               501
                       521
                                  3
                                          10
                                                 1157
                                                             3
                                                                   -1.
MPC
                                                             3
               501
                       515
                                  3
                                          1.
                                                 1171
                                                                   -1.
MPC
               501
                       518
                                  3
                                          1
                                                1169
                                                            3
                                                                   -1.
MPC
               501
                       429
                                                1143
                                                             3
                                                                   -1
                                  3
MPC
                                                            3
               501
                       430
                                          1
                                                1155
                                                                   -1
MPC
              501
                                                            3
                       427
                                          1.
                                                1167
                                                                   -1.
MPC
              501
                       439
                                          1
                                                1213
                                                            3
                                                                   -1
MPC
              501
                                                1207
                                                            3
                       441
                                  3
                                          1.
                                                                   -1
MPC
              501
                       476
                                  3
                                                1211
                                          1
                                                                   -1
MPC
              501
                       535
                                  3
                                          1.
                                                1251
                                                            3
                                                                   -1
MPC
              501
                       619
                                                1239
                                                            3
                                  3
                                          1.
MPC
              501
                       651
                                  3
                                                1227
                                          1.
$ The GRID cards below define the node positions. They were created by PATRAN
$ and modified by the TRONC program.
GRID
                         2 2.6399-170.020
                                              2.3640
                                                            2
GRID
                            2.6399-170.020
                                              2.0050
                                                            2
GRID
                3
                         2
                            2.7563-160.612 2.3640
                                                            2
GRID
                4
                            2.7563-160.612 2.0050
                                                            2
GRID
                5
                         2 2.6000 180.000
                                              2.3640
GRID
                6
                         2
                            2.6000 180.000
                                              2.0050
                                                            2
GRID
                7
                         2
                            2.6399 170.020
                                              2.3640
                                                            2
GRID
                8
                         2
                            2.6399 170.020
                                              2.0050
                                                            2
GRID
                9
                            2.7563 160.612
                                              2.3640
                                                            2
GRID
               10
                         2
                            2.7563 160.612
                                                            2
                                              2.0050
GRID
               11
                            1.8755 180.000
                                              2.0050
                                                           . 2
GRID
               12
                            1.8755 180.000
                                              2.3640
                                                            2
GRID
                            0.9000
                                     28.104
                                              2.5960
```

GRID \$		1625	2	0.9000	0 000	2.5960	2			
		CPENTA			efine the	solid	elements.			
CHEXA		1001	1	13	12	40	43	14	11 E	1
+E	1 /	39	44							
CHEXA	1	1003	1	11	39	8	6	12	40 E	2
+E	2 '	7	5							
CHEXA		1004	1	39	41	10	8	40	42 E	3
+E	′ 3	9	7				4			
CHEXA		1005	1	71	70	73	74	49	48 E	4
+E	4	51	52							
CHEXA		1006	1	74	73	72	75	52	51 E	5
+E	5	50	53				a			
CHEXA		1007	1	70	69	72	€ 73	48	47 E	6
+E	6	50	51							
CHEXA		1008	1	49	48	51	52	19	18 E	7
+E	7	21	22							
CHEXA		1009	1	52	51	50	53	22	21 E	8
					•					
CPENTA		9230	9	1385	1390	1394	1372	1377	1381	
CPENTA		9231	9	1399	1398	1407	1386	1385	1394	
CPENTA		9232	9	1386	1385 ≫	1394	1373	1372	1381	
CPENTA		9233	9	1372	1377	1381	1349	1354	1362	
CPENTA		9234	9	1373	1372	1381	1350	1349	1362	
CHEXA		9235	9	1377	1354	1349	1372	1342	1341 E	859
+E 8	59	1340	1339							
CHEXA		9236	9	1372	1349	1350	1373	1339	1340 E	860
+E 80	50	1335	1336							
CHEXA		9237	9	1342	1341	1340	1339	1316	1315 E	861
+E 80	51	1314	1313							
CHEXA		9238	9	1339	1340	1335	1336	1313	1314 E	862
+E 86	62	1312	1311							
CHEXA		9239	9	1316	1315	1314	1313	1290	1289 E	863
+E 80	53	1288	1287							
CHEXA		9240	9	1313	1314	1312	1311	1287	1288 E	864
+E 80	54	1291	1292							
\$										_

The CGAP cards below were created by the IGAP program.

\$ \$ \$	They defi	ne various	interfa	ces between	the	components.	
8	PIN. LUG	Z' INTERFA	CR				
CGAI	1000		71	1565		į. r	
CGAF			70	1567			3
				1007			3
•							
CGAP		100	278	1360			3
CGAP		l 100	277	1328			3
CGAP			271	1304			3
\$	BUSHING, LU	IG R INTERP	ACE '				3
CGAP			910	75			2
CGAP	12002	120	921	74			2
			•				-
CGAP	12070	120	974	302			
CGAP	12071	120	977	299			2
CGAP	12072	120	978	299 278			2
\$	PIN, BUSHING			210			2
CGAP	13001	130	1516	914		7	_
CGAP	13002	130	1514	928		' '*	2
							2
CGAP	13094	130	1413	989			2
CGAP	13096	130	1412	1035			2
CGAP	13096	130	1411	1064		•	2
\$ 1	PIN, SLEEVE		E				-
CGAP	19001	190	1462	453		•	2
CGAP	19002	~ 190	1475	448			2
			•				_
			•				
CGAP	19082	100				,	
CGAP	19083	190	1437	706		-	2
CGAP	19084	190	1424	733			2
\$	WASHER, BU	190 ISUTNO 71 1	1411	736			2
CGAP	15001	120 120 TMG 7. 1	NTERFACI				•
CGAP	15001	150	1172	877			3
	10002	100	1170	865			3

C.

```
CGAP
              15070
                         150
                                 1252
                                           968
  CGAP
              15071
                         150
                                 1240
                                           952
  CGAP
              15072
                         150
                                 1228
                                           984
  Ś
               BUSHING, LUG Z'
                                 INTERFACE
  CGAP
              14001
                         140
                                  910
                                            75
  CGAP
              14002
                         140
                                  866
                                            72
 CGAP
              14070
                         140
                                  967
                                           262
  CGAP
              14071
                         140
                                  951
                                           260
  CGAP
              14072
                         140
                                  983
                                           242
 $ The PSOLID and MAT1 cards below were manually entered.
 $ They define the components material properties.
 $ The PGAP cards define the gap element properties.
 PSOLID
                  1
                           1
 PSOLID
                  4
                                   2
                                            3
 PSOLID
                 6
                          6
                                   2
                                            3
 PSOLID
                71
                         71
                                   `2
- PSOLID
                72
                         72
                                   2
 PSOLID
                 8
                          8
                                   2
 PSOLID
                                   2
PGAP
               100
                         .0
                                  ٠٥
                                        1.E7
                                                 100.
PGAP
               120
                      -.001
                                  .0
                                        1.E7
                                                 100.
PGAP
               130
                      .0008
                                 .08
                                        1.E7
                                                 100.
PGAP
               140
                         .0
                                  .0
                                        1.E7
                                                 100.
PGAP
               150
                         .0
                                  .0
                                        1.E7
                                                 100.
PGAP
               190
                      8000
                                 .08
                                        1.E7
                                                 100.
     Component material properties.
MAT1
                 1 1.000+7
                                    0.33000 1.00000 0.
                                                               ٥.
                                                                      0.
MAT1
                4 7.300+6
                                    0.30000 1.00000 0.
                                                              0.
                                                                      0.
MAT1
                6 2.850+7
                                    0.27200 1.00000 O.
                                                                      0.
MAT1
               71 1.700+7
                                    0.34
                                             1.
                                                              0.
                                                                      0.
MAT1
              ~72 2.850+7
                                    0.27000 1.00000 0.
                                                              0.
                                                                      0.
MAT1
                8 2.850+7
                                  50.27000 1.00000 o.
                                                              0,
                                                                      0.
MAT1
                9 2.900+7
                                    0.32000 1.00000 0.
                                                                      ٥.
```

ENDDATA

Table J.3: Commented version the NASTRAN data deck used for the detailed analysis of the lug & bushing

```
ID GC, MCGO1
APP DISP
$ SOLUTION 66: "Non-linear Material"
SOL 66
TIME 220
$ THE LINES BELOW ARE NECESSARY TO CREATE AN OUTPUT FILE THAT CAN BE POST
$ PROCESSED
ALTER 1 $
               ....//C.N.-1/C.N.11/V.N.Z $
OUTPUT2
ALTER 962 $
               OUGV1, OES1//O/C, N, 11/V, N, Z $
OUTPUT2
CEND
MAXLINES-È00000
TITLE = BUSH & LUG
SUBTITLE = NON LINEAR ANALYSIS, 1932 NODES
ECHO-UNSORT
SUPER=ALL
SEALL-ALL
MPC=500
           HL2 loading conditions
SUBCASE
              - 1
LABEL =
              HIGH LOAD #2
LOAD - 1
NLPARM - 1
SPC=100 `
STRAIN-NONE
DISP - ALL
STRESS (VONM) = ALL
```

```
FORCE -
               ALL
             LL2 loading conditions
  SUBCASE
              = 2
  LABEL -
               LOW LOAD #2
  LOAD - 2
  NLPARM - 2
  SPC=200
  STRAIN-NONE
  DISP - ALL
  STRESS(VONM) - ALL
 FORCE -
            LL1 loading conditions
 SUBCASE
               = 3
 LABEL -
              LOW LOAD #1
 LOAD - 3
 NLPARM - 3
 SPC=300
 STRAIN-NONE
 DISP - ALL
 STRESS(VONM) - ALL
 FORCE -
            HL1 loading conditions
SUBCASE
               = 4
LABEL -
               HIGH LOAD #1
LOAD = 4
NLPARN = 4
SPC=400
STRAIN-NONE
DISP - ALL
STRESS(VONM) - ALL
FORCE =
BEGIN BULK
```

```
$ The cylindrical coordinate system defined below
$ is the R. Theta, Z' coordinate system shown in Chapter 2.
CORD2C
                2
                                  ٥.
                                                  ٥.
                                          0.
                                                           1.00000 0.
       1 1.00000 1.00000 0.
   The X unit vector of the coordinate system defined below
   corresponds to the Y axis shown in Chapter 2. It is used to
  define some of the CGAP elements.
CORD2R
                                          0
                                                  1.00000 0.
+CF
       2 1.00000 1.00000 0
$
$
       The MPC gard below permits to AVOID BUSHING Z' ROTATION
MPC
             500
                  1427
                                              661
                                2
                                       1.
                                                         2
$
   All FORCE cards define very small DUMMY loadings.
    They were necessary to avoid any error message.
   HIGH LOAD #2
FORCE
               1
                     660
                                       1.
                                               1.
FORCE
               1
                     1645
                                       1.
                                               1.
SPCADD
             100
                     999
                               34
                                       24
                                               14
                       `1
NLPARM
               1
                               ٥.
                                     ITER
                                                       -30
                                                                       110
+NL
                    .0001
    1
$ LOW LOAD #2
FORCE
                     660
                                       1.
                                               1.
FORCE
                    1645
                                               1.
               2
                                       1.
SPCADD
             200
                     999
                               33
                                       23
                                               13
NLPARM
                                                       -20
                                                                       NO
               2
                       1
                               0.
                                     ITER
                                                                                  11L
+NL 2
                    .0001
 LOW LOAD #1
FORCE
                     660
                                       1.
                                               1.
FORCE
                    1645
               3
                                       1.
                                               1.
SPCADD
             300
                     999
                               31
                                       21
                                               11
```

```
ITER
                                                                         NO
NLPARM
                                0.
                                                  1
                                                         -20
                     .0001
 +NL
    HIGH LOAD #1
FORCE
                       660
                                         1.
                                                 1.
FORCE
                      1645
                       999
SPCADD
              400
                                32
                                         22
                                                 12
                                                           1
                                                                   P
                                                                         NQ
NLPARM
                         1
                                0.
                                       ITER
                                                  1
                                                         -20
+NL
                     .0001
 $ The SPC cards below were created by PATRAN.
$ ID's 21, 22, 23, and 24 define the displacements imposed by the washer
$ on the bushing for the LL1, HL1, LL2, HL2 loading conditions.
$ ID's 11, 12, 13, and 14 define the radial displacements imposed by the pin
$ on the bushing for the LL1, HL1, LL2, HL2 loading conditions.
$ ID's 31, 32, 33, and 34 define the displacements imposed by the pin head
$ on the lug for the LL1, HL1, LL2, HL2 loading conditions.
SPC
               21
                       45
                                 3-2.630-3
SPC
               22
                       45
                                 3-3.300-3
SPC
               23
                       45
                                 3-8.880-4
8PC
               24
                       45
                                3-6.230-4
SPC
               21
                       51
                                 3-2.700-3
SPC
               22
                       51
                                 3-3.470-3
SPC
               23
                       51
                                 3-7.610-4
SPC
               24
                       51
                                 3-4.150-4
               3 P
SPC
                      814
                                 3-1.970-3
SPC
               32
                      814
                                 3-2.390-3
Spc
               33
                      814
                                 3 1.860-4
SPC
               34
                      814
                                 3 5.650-4
SPC
               11
                     1898
                                 1 3.147-3
SPC
               12
                     1898
                                 1 5.093-3
SPC
               13
                     1898
                                 1 2.036-4
```

NL

NL

1-1..085-3

SPC

14

```
SPC
                     1899
                                1 3.374-3
                     1899
SPC
                                1 5.291-3
               12
SPC
               13
                     1899
                                1 5.166-4
SPC
               14
                     1899
                                1-6.619-4
$ Lug ends are constrained.
$ The SPCi cards below have been created by PATRAN.
                      123
                                        2
                                                 3
                                                                         11
SPC1
                1
                                1
                                                         Б
                                                25
                                                                         72
SPC1
                1
                      123
                               17
                                       19
                                                        66
                                                                 68
SPC1
                1
                      123
                              139
                                      141
                                               145
                                                       212
                                                                214
                                                                        218-
                                      287
                                                       362
                                                                364
                                                                        368
                      123
                              285
                                               291
SPC1
                1
SPC1
                                      440
                1
                      123
                              438
                                               444
f s No node rotation allowed for the types of elements used f s
$ The SPC card below has been manually entered.
                                     THRU
SPC1
             999
                      456
                                 1
                                              1932
$ The GRID cards below define the nodes positions.
$ They have been created by PATRAN and modified by the TRONC program.
$
GRID
                        2 2.7563 160.612 2.0050
                1
GRID
                        2 2.7563 160.612 2.1845
                2
GRID
                3
                        2
                           2.7563 160.612
                                            2.3640
                                                         2
GRID
               4
                        2 2.2867 156.485
                                           2.0043
                                                         2
GRID
               5
                        2 2.6890 165.214
                                           2.0050
GRID
                                           2.0045
               6
                        2
                           2.2623 162.121
GRID
               7
                        2
                           2.2867 156.485
                                           2.1838
                                                         2
GRID
               8
                        2 2.6890 165.214
                                           2.1845
GRID
               9
                        2 2.2623 162.121
                                           2.1840
                                                         2
GRID
              10
                        2 2.2867 156.485
                                           2,3633
GRID
              11
                        2 2.6890 165.214
                                           2.3640
                                                         2
GRID
              12
                        2 2.2623 162.121
                                                         2
                                           2.3635
GRID
              13
                        2 1.8349 150.279
                                                         2
                                           2.0037
GRID
                                                         2
              14
                        2 1.8451 157.611 2.0039
GRID
              15
                          1.8349 150.279
                                           2.1832
                       2 0.5333 -56.208 2.0706
GRID
            1930
```

GRID		1931	2	0.6000	-56.208	2.0706	2			
GRID		1932			-56.208	2.0706	2		3	•
\$										٠.
\$					 3-41 11			- ^		
		re creat			leline th	ie BOTIC	elements.	•		
\$	y we	TA CTATO	ad by th	I WWW .			د سب			
CHEXA		1001	1	153	[©] 150	77	82	152	149 E	1
+E	1	76	80	100	100	1 1	3.0	102	. 149 5	
CHEXA	•	1002	1	150	147	74	77	149	144 E	. 2
+E	2	71	76	100	177,	/ =	• • •	149	144 5	2
CHEXA	-	1003	1	82	77	30	33	80	76 E	3
+E	3	29	32	04		ક	00	00	70 12	
CHEXA	•	1004	1	77	74 -	-	30	76	71 E	4
+E	4	22	29	• •	178	2.1	30	, ,	11 5	74
CHEXA	-	1006	1	30	27	24	65	29 '	22 E	5
+E .	5	16	63	-	-,	4-1	00	23	22 1	4
CHEXA	-	1008	1	- 65	24	23	64	63	16 E	6
+E	6	15	61	-	44	20	04	00	10 15	,
CHEXA	•	1009	1	152	149	76	80	151	*148 E	7
+E	7	75	78	102	140	, 0	00	101	140 5	•
CHEXA	•	1010	1	149	144	71	76	148	143 E	8
+E .	8	70	75	1.0			,	140	140 F	,
		•								
		•								
CDENTA		0105	4	60	₽ 04					
CPENTA		2125	1	63	81	32	62	' 79	31	0
CPENTA		2126	1	32	29		31	. 28	62	
CPENTA		2129	1	61	` 137	. 81	60	136	, 79	
CPENTA		2130	1	81	63	61	79	62	['] 60	
		•								
CHEXA		6766	6	. 1878	1877	1799	1800	1890	1889 Æ	1294
+E 12	94	1811	1812		•					
CHEXA		6767	6	1877	1876	1798	_ 1799	1889	1888 E	1295
+E 129	95	1810	1811							
CHEXA		6768	6	1876	1875	1797	1798	1888	1887 E	1296
+E 129	96	1809	1810							
\$,										

^{\$} The CGAP elements were created by the IGAP program.
\$ BUSHING-LUG RADIAL INTERFACE

```
CGAP
               12001
                        . 120
                                  827
                                            196
  CGAP
               12002
                          120
                                  832
                                           197
                          120
                                           198
  CGAP
               12003
                                  833
  CGAP
               12004
                          120
                                  841
                                           202
                          120
                                           204
  CGAP
               12005
                                  848
  CGAP
               12006
                          120
                                   896
                                            126
  CGAP
                          120
                                  906
                                          · 128
               12007
  CGAP
               12008
                          120
                                  .907
                                            129
  CGAP
               12009
                          120
                                  924
                                           132
                                   8
                          120
                                           744
  CGAP
               12118
                                  1744
                                                                                2
  CGAP
              12119
                          120
                                  1748
                                            745
                                                                                2
  CGAP
               12120
                          120
                                  1752
                                            746
                                                                                2
  $
  $
  $ BUSHING-LUG AXIAL (Z') INTERFACE
  CGAP
               14001
                          140
                                   828
                                            192
                                                                                3
  CGAP
                                  836
                                            180
               14002
                          140
  CGAP
               14003
                          140
                                  837
                                            166
  CGAP
               14004
                          140
                                  898
                                            122
  CGAP
                          140
               14005
                                  914
                                            110
  CGAP
               14006
                          140
                                  915
                                             96
                                                                                 3
  CGAP
               14007
                          140
                                  991
                                             53
                                                                                 3
  CGAP
                          140
              14008
                                  1008
                                             47
              14009
  CGAP
                          140
                                  1009
                                             40
                                                                                 3
  CGAP
                          140
              14120
                                  1436
                                           574
                                                                                3
  CGAP
             14121
                          140
                                  1545
                                           521
  CGAP
              14122
                          140
                                  1430
                                            516
     . The PSOLID and MATi-cards define the component material properties.
      The PGAP cards define the GAP properties.
      These cards have been manually entered.
  PSOLID
                   1
                            1
♪PSOLID
                  6
                            6
                                    2
                                             3
 PGAP
                 120
                       -.001
                                          5.E7
                                                   100.
                                                   100.
 PGAP
                                          5.E7
                140
                           ٥.
                                    .0
  MAT1
                  1 1.000+7 3.759+6 0.33000 1.00000 0.
```

MAT1 ENDDATA

6 2.850+7 1 120+7 0 27200 1 00000 0

0

0

.

Appendix K

Material Fatigue Properties

This section explains how the parameters α, β, a_1, a_2 that describe the basic material fatigue properties have been computed.

K.1 Pin Material Fatigue Properties

The pin is made of AlSI4340 steel treated such that its tensile strength is $S_u = 180ksi$. No fatigue data were available for such steel. Only $S_u = 150ksi$ 4340 steel & $S_u = 208ksi$ 4340 steel data were available (Figures K.1, K.2) The average fatigue strength at N = 1.0E5 and N = 4.0E4 were taken to estimate α and β parameters for the pin steel, i.e.

$$S_{a0}(N = 1.0E5) = 0.5 \times (78 + 79) = 79ksi,$$

 $S_{a0}(N = 4.0E4) = 0.5 \times (85 + 102) = 94ksi.$ (K.1)

 $S_u=150ksi$ 4340 steel and $S_u=208ksi$ 4340 steels have the fatigue limits of 69 and 70ksi, the fatigue limit of $S_u=180ksi$ 4340 steel is assumed to be 70ksi Using these data, α and β can be computed as:

$$\alpha = 1.6120E - 4$$
; $\beta = 5.9962$. (K.2)

The mean stress effect parameters a_1 and a_2 of eqn(4.10) have been computed assuming that they are the same as those describing the mean stress effect of S_u =

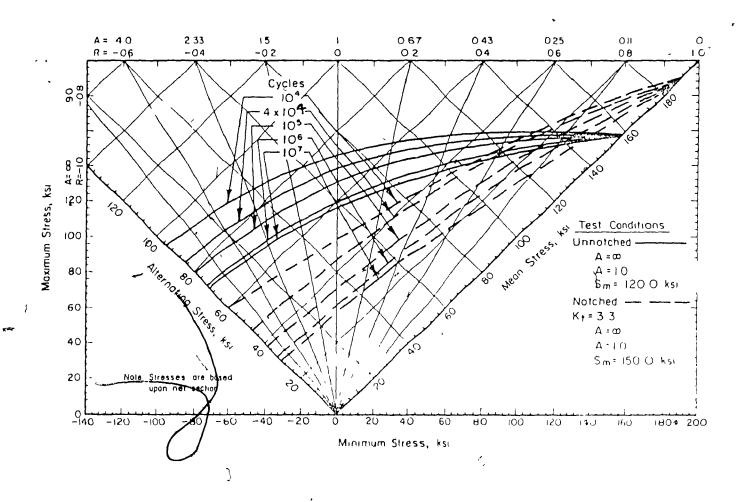


Figure K.1: Constant-Life Fatigue Diagram for heat treated AISI4340 Alloy Steel bar, $S_u = 150 ksi$. (Ref MIL-HDBK-5D)

Specimen diameter: 0.4in

Assumed specimen length: 2.0in

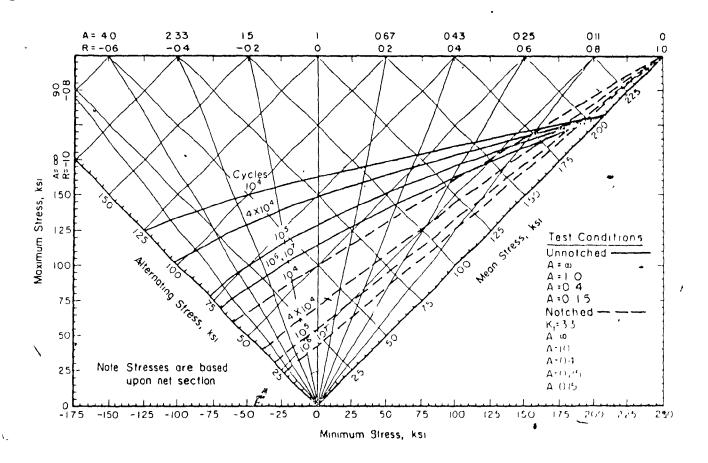


Figure K.2: Constant-Life Fatigue Diagram for heat treated AISI4340 Alloy Steel bar, $S_u = 200ksi$ (Ref MIL-HDBK-5D)

Specimen diameter: 0.4in

Assumed specimen length: 2.0in

208ksi 4340 steel at N = 1.0E7 cycles (see Figure K.3). They are:

$$a_2 = -0.5456$$
; $a_1 = -0.4544$. (K.3)

K.2 Lug Material Fatigue Properties

Static and fatigue properties of lug material (7075 – T73 aluminum) are shown in Figures K.4 and K.5. Aluminum alloys are known to show no actual fatigue limit. Since $S_f = 0$, eqn(4.2) becomes:

$$S_{a0} = S_u e^{-\alpha(\log N)^{\beta}}, \qquad (K.5)$$

or:

$$\ln \ln \left(\frac{S_u}{S_{a0}}\right) = \ln \alpha + \beta \ln(\log N). \tag{K.6}$$

 $\ln \ln \left(\frac{S_u}{S_{a0}}\right)$ is linearly dependent on $\ln(\log N)$. Using the following 3 points (taken from Figure K.4):

$$S_{a0}(N=2.0E7)=24ksi$$
; $S_{a0}(N=1.2E6)=30ksi$; $S_{a0}(N=9.0E4)=40ksi$, (K.7)

the least square line parameters were computed and the α and β determined as:

$$\alpha = 4.498872E - 2$$
; $\beta = 1.619441$. (K.8)

From Figure K.5, the mean stress effect is taken into account using the Goodman line. The parameters a_2 and a_1 , of eqn(4.10) are set equal to 0., -1.

K.3 Bushing Material Fatigue Properties

The bushings are made of 17-4PH stainless steel. The known data are:

$$S_u = 170ksi$$
; $S_y = 155ksi$ from Table 2.1; $S_f = 90ksi$ [30]. (K.9)

Assuming that the fatigue strength at 1000 cycles is 90 % of S_u , i.e., $S_{a0}(N=1.0E3)=153ksi$, that $\log S_{a0}$ varies linearly with $\log(N)$, and that $S_{a0}(N=1.0E6)\simeq 90ksi$, the α and β can be evaluated to give:

$$\alpha = 4.2884E - 3$$
 ; $\beta = 3.6592$. (K.10)

The a_2 , a_1 parameters used in eqn(4.10) are assumed to be both equal to -0.5.

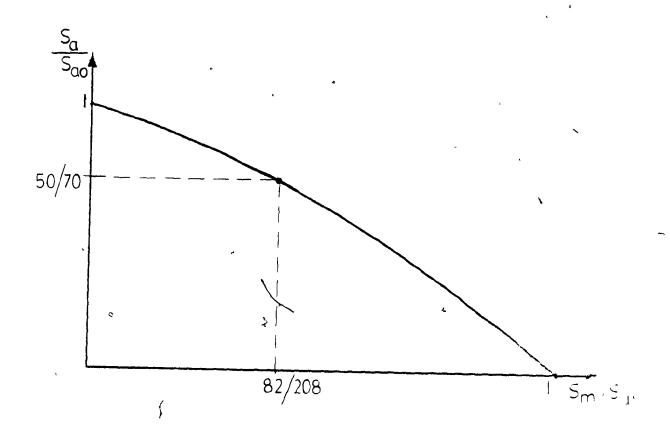


Figure K.3: $S_u = 208ksi$ 4340 Steel - Mean Stress Effect

If the curve is approximated by:

$$\left(\frac{S_a}{S_{a0}}\right) = a_2\left(\frac{S_m}{S_u}\right)^2 + a_1\left(\frac{S_m}{S_u}\right) + 1$$
 (K.4)

then $a_2 = -0.5456$, $a_1 = -0.4544$.

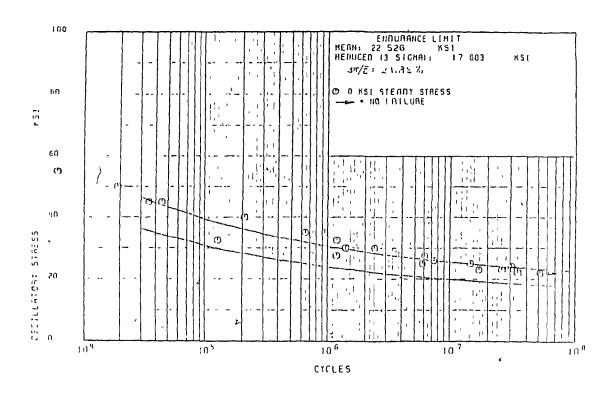


Figure K.4: S-N Diagram of 7075-T73 Aluminum Alloy (supplied by Bell Helicopter Textron Canada)

7075-T73 ALUMINUM

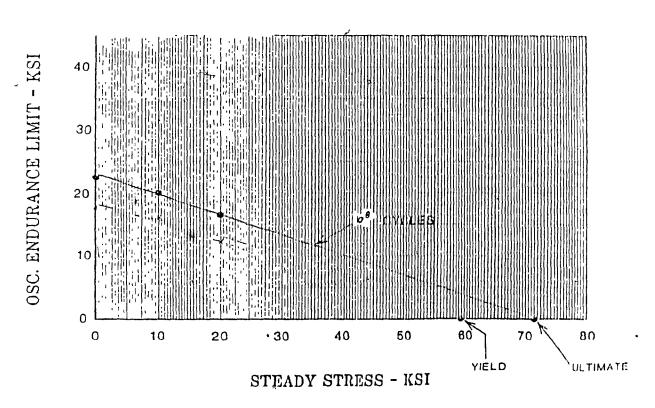


Figure K.5: Goodman diagram of 7075 - T73 Aluminum Alloy (supplied by Bell Helicopter Textron Canada)

K.4 Material Fatigue Properties Data Files

Tables K.1 to K.7 show the material properties data files. These files are used as input to the ENDUR program for the computation of endurance and reliability of lug/pin joint components.

The following format must be employed.

- 1. The first three lines are for user comments and are not read by the ENDUR program.
- 2. Lines 4 to 7 input the α , β , a_2 , and a_1 parameters of eqns(4.2 and 4.10).
- 3. Line 8 gives for the Fretting Factor at N = 1.0E7, $S_m = 0.0$; see Section 4.1.4.
- 4. Line 9 gives the Size Effect Factor; see Section 4.1.4.
- 5. Line 10 gives the Surface roughness Factor; see Section 4.1.4.
- 6. Lines 11 through 13 are for the Fatigue Limit, Yield Strength and Tensile Strength, respectively.
- 7. Note that the first 43 characters of each line are not read.

MATERIAL: LUG, 7075 ALUMINUM, FRETTING

ALPHA PARAMETER: 4.498872E-2

BETA PARAMETER: 1.61941

A2 PARAMETER: O.

A1 PARAMETER: -1.

FRETTING FACTOR AT N=1.E7: .25

SIZE EFFECT FACTOR AT N=1.E7: 1.

SURFACE FINISH EFFECT FACTOR AT N=1.E7: 1.

FATIGUE LIMIT: O.

YIELD STRENGTH: 59000.

TENSILE STRENGTH: 72000.

Table K.1: AL7075F.DAT File

MATERIAL: LUG, 7075 ALUMINUM

ALPHA PARAMETER: 4.49887E-2

BETA PARAMETER: 1.61941

A2 PARAMETER: O.

A1 PARAMETER: -1.

FRETTING FACTOR AT N=1.E7: 1.

SIZE EFFECT FACTOR AT N=1.E7: 1.

SURFACE FINISH EFFECT FACTOR AT N=1.E7: .88

FATIGUE LIMIT: O.

YIELD STRENGTH: 59000.

TENSILE STRENGTH: 72000.

Table K.2: AL7075.DAT File

MATERIAL: BUSHING, 17-4PH STAINLESS STEEL

ALPHA PARAMETER: 4.2884E-3

BETA PARAMETER: 3.6592

A2 PARAMETER: -.5

A1 PARAMETER: -.5

FRETTING FACTOR AT N=1.E7: 1.

SIZE EFFECT FACTOR AT N=1.E7: 1.

SURFACE FINISH EFFECT FACTOR AT N=1.E7: .88

FATIGUE LIMIT: 90000.

YIELD STRENGTH: 155000.

TENSILE STRENGTH: 170000.

Table K.3: SS174PH.DAT File

MATERIAL: BUSHING, 17-4PH STAINLESS STEEL, FRETTING

ALPHA PARAMETER: 4.2884E-3

BETA PARAMETER: 3.6592

A2 PARAMETER: -.5

A1 PARAMETER: -.5

FRETTING FACTOR AT N=1.E7: .4 .

SIZE EFFECT FACTOR AT N=1.E7: 1.

SURFACE FINISH EFFECT FACTOR AT N=1.E7: 1.

FATIGUE LIMIT: 90000.

YIELD STRENGTH: 155000.

TENSILE STRENGTH: 170000.

Table K.4: SS174PHF.DAT File

MATERIAL: PIN. 4340 STEEL

ALPHA PARAMETER: 1.6120E-4

- BETA PARAMETER: 5.9962

A2 PARAMETER: -.5456

A1 PARAMETER: -.4544

FRETTING FACTOR AT N=1.E7: 1.

SIZE EFFECT FACTOR AT N=1.E7: 1.

SURFACE FINISH FACTOR AT N=1.E7: .88

FATIGUE LIMIT: 70000.

YIELD STRENGTH: 163000.

TENSILE STRENGTH: 180000.

Table K.5: S4340.DAT File

MATERIAL: PIN, 4340 STEEL, FRETTING WITH STAINLESS STEEL

APPHA PARAMETER: 1.6120E-4
BETA PARAMETER: 5.9962
A2 PARAMETER: -.5456

A1 PARAMETER: -.4544

FRETTING FACTOR AT N=1.E7: .4
SIZE EFFECT FACTOR AT N=1.E7: 1.
SURFACE FINISH FÁCTOR AT N=1.E7: 1.

FATIGUE LIMIT: 70000.
YIELD STRENGTH: 163000.
TENSILE STRENGTH: 180000.

Table K.6: S4340FS.DAT File

MATERIAL: PIN, 4340 STEEL, FRETTING WITH COPPER

ALPHA PARAMETER: 1.6120E-4
BETA PARAMETER: 5.9962
A2 PARAMETER: -.5456

A1 PARAMETER: -.4544

FRETTING FACTOR AT N=1.E7: .67
SIZE EFFECT FACTOR AT N=1.E7: 1.
SURFACE FINISH FACTOR AT N=1.E7: 1.

FATIGUE LIMIT: 70000. YIELD STRENGTH: 163000. TENSILE STRENGTH: 180000.

Table K.7: S4340FC.DAT File

Appendix L

ENDUR Program

The ENDUR program evaluates the high cycle fatigue life (END URance) and the reliability factor at N=1.0E7 cycles.

A typical input file to the ENDUR program is shown in Table L.1. The input file to this program contains:

- 1. The PATRAN neutral file name.
- 2. The two extreme stress states representing the oscillating loading condition (They are either two xxxx.NOD files or two xxxx.ELS files produced by NAS-PAT). The program assumes that nodes are numbered from 1 to N and no number is skipped.
- 3. The " S_a " computation method (see the section entitled "Computation of the Equivalent Alternating & Mean Stresses" below).
- 4. Sets of nodes. They may be listed in a file ("NODE ID'S FILE:") or identified by a "range" ("NODES: FROM, TO:"). Notice that, once processed, the nodes are flagged to avoid processing them subsequently. (As an example, check the files ENDUR.DAT and HE.DAT (Tables L.1, L.3): The nodes 1,2,3,4,9,10,11,12 are processed first. When the program is asked to process nodes 1 to 32, ("NODES: FROM, TO:1,32"), the nodes 1,2,3,4,9,10,11,12 are skipped.). The first three lines of a node ID's file (such as Table L.3) are not read and may be used for comments. The program can process as many as 99 sets of nodes. The maximum number of nodes in the input files is 3000. The maximum number of elements is 2000.

For each set of nodes:

- (a) The material data file which contains the properties that permit to evaluate the alternating stress S_a as a function of the mean stress S_m and the life N ($S_a = f(N, S_m)$). The fretting effect, surface finish effect and size effect factors at N = 1.0E7 and $S_m = 0$ are included there. These factors are never > 1.
- (b) A superimposed steady stress (S11, S22, S33). It may be used to take into account the shot peening effect. It must be input in the displacement coordinate system.

Follow the example (files: ENDUR.DAT, HE.DAT, AL7075F.DAF) to know how to input the data (Tables L.1, L.3, K.1).

For each node (input in a node ID's file or within a range), the program will compute the endurance and the reliability factor at N=1.0E7. The output file can be used in PATRAN to get a drawing of the endurance or reliability of the component(s). The user has simply to type:

RUN, CON, COL, i

where:

- i=1 gives the equivalent alternating stress,
- i=2 gives the equivalent mean stress,
- i=3 gives the log of the expected life,
- i=4 gives the reliability factor at 1.0E7 cycles,

and enter the ENDUR program output file name.

To run the ENDUR program, type:

\$RUN ENDUR

ENTER INPUT FILE NAME: <--- written by ENDUR

ENDUR.DAT <--- entered by the user, (example)

ENTER OUTPUT FILE NAME: <--- written by ENDUR

ENDUR.OUT . <--- entered by the user, (example)

The paragraphs below explain the main concepts used in the program.

Computation of the Equivalent Alternating & Mean Stresses

The user inputs the 2 "extreme" stress states file names. The stress states at each node are given by the following 2 extreme stress tensor components:

$$S_{xx1}$$
 S_{yy1} S_{xx1} S_{xy1} S_{yx1} S_{zx1} S_{zx2} S_{yy2} S_{zx2} S_{xy2} S_{yx2} S_{zx2}

The difference stress tensor D_i , is:

$$D_{zz} = S_{zz1} - S_{zz2} \tag{L 1}$$

$$D_{yy} = S_{yy1} - \tilde{S}_{yy2}$$

$$D_{zz} = S_{zz1} - S_{zz2}$$
(L 2)
(L 3)

$$D_{zz} = S_{zz1} - S_{zz2} \qquad (L 3)$$

$$D_{xy} = S_{xy1} - S_{xy2}$$
 (L4)

$$D_{yz} = S_{yz1} - S_{yz2} (L 5)$$

$$D_{zz} = S_{zz1} - S_{zz2} \tag{L.6}$$

The equivalent alternating stress S_a is given by either of the following equations

1. "von Mises like equation"

$$S_{a} = \frac{1}{2\sqrt{2}} [(D_{zz} - D_{yy})^{2} + (D_{yy} - D_{zz})^{2} + (D_{zz} - D_{zz})^{2} + (D_{zz} - D_{zz})^{2} + (D_{zy} + D_{yz}^{2} + D_{zz}^{2})]^{\frac{1}{2}}, \qquad (L7)$$

or

"Fuch's equation"

$$S_a = \frac{P_1'}{2} - \frac{P_3}{3}, \tag{L 8}$$

where: P_1 and P_3 are the maximum and minimum principal values of the D_1 , tensor.

Because there is no "universally" accepted method to compute the equivalent alternating stress, the user is given the opportunity to choose either eqn(L.7) or eqn(L.8).

The equivalent mean stress S_m is the average of the first stress tensor invariant (which measures a kind of "hydrostatic" plessure).

$$S_{m} = \frac{1}{2} (S_{zz1} + S_{yy1} + S_{zz1} + S_{zz2} + S_{yy2} + S_{zz2}). \tag{L.9}$$

L.2 Crack Propagation Criterion

It is known that there will be no fatigue failure at a point which always stays in compression over a cycle. Over a complete cycle, the maximum principal stresses at such a point are always \leq zero.

L.3 Computation of the Acceptable Alternating Stress

L.3.1 Basic SaN curve

The basic S-N curve for zero mean stress is given by

$$S_{a0} = S_f + (S_u - S_f) \times \exp(-\alpha(\log N)^{\theta})$$
 (L 10)

where:

- S_{a0} is the acceptable alternating stress,
- S_f is the fatigue limit (input by the user in the material properties file),
- S_u is the tensile strength (input by the user in the material properties file),
- α and β are curve fitting parameters (input by the user in the material properties file),
- ullet N is the endurance, i.e. the number of cycles at failure

In principle, this equation permits the prediction of the life for N=1 to ∞ .

L.3.2 Surface finish and size effects

- For N < 1000, surface finish and size have no effect.
- For N > 1.0E7, surface finish and size-effects are constant. The user supplied factor (never > 1) is used.
 - For 1000 < N < 1.0E7, the factors vary linearly with $\log N$.

The factors reduce both the acceptable tensile stength to $S_{\rm u}'$ and acceptable alternating stress to $S_{\rm a0}'$

L.3.3 Mean stress effect

The mean stress effect is taken into account the following way:

$$S_{am} = S'_{a0} \left(a_2 \left(\frac{S_m}{S'_u} \right)^2 + a_1 \left(\frac{S_m}{S'_u} \right) + 1. \right)$$
 (L 11)

۴ ز

where:

1

- S_m is the mean stress,
- a_2 , a_1 are user supplied (within material properties file) curve fitting parameters (if they cannot be evaluated, use $a_2 = -1$., $a_1 = 0$. for the Gerber's parabola, or $a_2 = 0$., $a_1 = -1$. for the Goodman's line),
- $S'_{\mathbf{u}}$ is the acceptable tensile strength, and
- S'_{a0} is the acceptable alternating stress.

L.3.4 Fretting effect

Computation of the zero mean stress fretting effect " F_0 "

- For N < 1000.: Fretting has no effect.
- For N > 1.0E7: Fretting as a constant effect. The user supplied factor (never > 1) is used.
- For 1000 < N < 1.0E7: Fretting effect varie linearly with $\log N$.

Mean stress effect on fretting. If the tangential mean stress S_{mt} is < 0, it is known that the fretting is not as damaging. It is assumed that fretting has no effect if $S_{mt} < -S_y$, and the fretting strength reduction coefficient "F" varies linearly for $-S_y < S_{mt} < 0$, (i.e.,

$$if S_{mt} \geq 0$$
. then $F = F_0$
else $F = MIN(1., F_0(\frac{S_{mt}}{S_y} + 1) - \frac{S_{mt}}{S_y})$. (L.12)

L.3.5 Acceptable alternating stress S_{aa}

$$S_{aa} = F \times S_{am} \tag{L.13}$$

L.3.6 Reliability Factor

The reliability factor is simply the ratio of the applied alternating stress over the fatigue strength for a given mean stress and at a given endurance (here chosen as 1.0E7). The reliability factor can be related to a reliability level (or probability of survival) if the fatigue strength distribution is known.

EXAMPLE

ς

NEUTRAL FILE NAME: PATRAN.OUT

STRESS STATE #1 FILE NAME: E1.NOD
STRESS STATE #2 FILE NAME: E2.NOD

SA COMPUTATION METHOD (1 OR 2): 1
----* "A" GROUP BELOW *----NODE ID'S FILE: HE.DAT
SURFACE (1,2,3 OR O): 1
MATERIAL PROPERTIES FILE: AL7075F.DAT
SUPERIMPOSED STRESS STATE: O. ,-30000. ,-30000.

NODES: FROM, TO: 1, 32
SURFACE (1,2,3 OR O): O
MATERIAL PROPERTIES FILE: AL7075.DAT
SUPERIMPOSED STRESS STATE: O. , O. ,O.

Table L.1: ENDUR.DAT file. Typical input file to ENDUR program

See Table L.2 for the file format

- 1. The first 3 lines are available for comments and are not read by ENDUR.
- 2. The 4th line gives the neutral file name.
- 3. The 5th and 8th lines are not read by ENDUR.
- 4. The 6th and 7th lines give the 2 extreme stress state file names.
- 5. The 9th line gives the equivalent alternating stress S_a computation method, (enter 1 or 2 which correspond respectively to eqn(L.7), eqn(L.8)).
- 6. The rest of the file is made of up to 99 groups of lines similar to either the "A" or "B" (Tables 4.13 and 4.15 give other examples).
 - (a) The first line of the group is available for comments.
 - (b) The 2nd line gives either a node ID's file name (as in the "A" group) or a list of nodes ("FROM...TO..." as in the "B" group). Once processed, each node is flagged and will not be reprocessed subsequently.
 - (c) The 3rd line gives the surface on which the nodes are located. The surface is indicated after its normal unit vector in the node coordinate system, (1,2 or 3). This is used only if there is fretting. If there is no fretting, input 0.
 - (d) The 4th line gives the material properties file name associated with the nodes given on the second line.
 - (e) The 5th line gives a superimposed stress state given in the node coordinate system. (Here it is used to take into account the residual stress induced by shot peening). Each value MUST be separated by a comma.

Table L.2: Table L.1 Format

 $\sqrt{}$

```
* NODES 1,2,3,4,9,10,11,12: FRETTING

*
1
2
3
4
9
10
*
11
12
```

Table L.3: HE.DAT file

The first 3 lines are available for comments. The first number on each of the subsequent line must be an integer. It indicates a node ID. It can be followed by any comment that ENDUR program will not read.

```
BUSH +
                                  31
  32
        32
            0.00000E+00
 EXAMPLE
 HIGH LOAD =1 SUBCASE
10.0000000E+000.0000000E+000.000000E+000.000000E+000.000000E+000
O.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.9731590E+040.0000000E+000.0000000E+000.0000000E+000.0000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
-.5793461E+040.1175065E+050.1316092E+040.4313637E+040.2776492E+05
0.3791462E+040.4312430E+040.7677600E+020.7645117E+030.2257690E+04
0.9731590E+04
20.0000000E+000.0000000E+000.0000000E+000.0000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
O.1152708E+050.0000000E+000.0000000E+000.0000000E+000.0000000E+00
O.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
-.9768359E+040.1717181E+050.4859469E+040.7273805E+040.4510268E+05
O.2931219Et050.7271191E+040.8303320E+030.9290801E+030.2739287E+04
O.1152708E#05
```

```
320.0000000E+000.0000000E+000.0000000E+000.0000000E+000.0000000E+00
0.0000000E+000.0000000E+000.0000000E+000.0000000E+00
0.9873090E+040.0000000E+000.0000000E+000.0000000E+000.0000000E+00
0.0000000E+000.0000000E+000.0000000E+000.0000000E+000.0000000E+00
-.3426025E+040.9870250E+04-.7823145E+030.1190158E+040.4726641E+04
0.5249973E+040.3014644E+030.4433434E+040.1008877E+030.6162075E+03
0.9873090E+04
```

Table L.4: E1.NOD file

This file has been produced by the "NASPAT" NASTRAN to PATRAN translator and represents a stress state.

```
FATIGUE
```

32 32 0.000000E+00 0 4
EXTREME STRESS STATE #1 : E1.NOD
EXTREME STRESS STATE #2 : E2.NOD

10:1401622E+05-.5032420E+050.1094078E+020.3278132E+00

20.1716331E+05-.2154772E+050.8585935E+010.6623231E+00

30.5336852E+04-.3543446E+050.1294026E+020.1666287E+00

40.5412157E+04-.5753621E+050.1385409E+020.1195328E+00

50.2112029E+050.3680421E+050.4094871E+010.2275350E+01

60.4648361E+040.1347467E+040.1221861E+020.2144510E+00

70.6088972E+040.3108959E+040.1132813E+020.2891259E+00

80.3978417E+040.1362010E+050.1202869E+020.2288300E+00 90.5275813E+04-.5621006E+050.1389507E+020.1177267E+00

100.6869380E+04-.5621375E+050.1317358E+020.1532819E+00

300.3900500E+04-.4157479E+040:1296315E+020.1652767E+00 310.3163163E+040.1591883E+050.1255673E+020.1907541E+00 320.3081373E+040.6648188E+040.1313459E+020.1554456E+00

Table L.5: ENDUR program output file when the input file is ENDUR.DAT file given in Table L.1

- 1. The first column gives the node ID's.
- 2. The 2nd and 3rd columns give the equivalent alternating & mean stresses.
- 3. The 4th column gives $\log N$. Infinite life can be considered when $\log N = 20$.
- 4. The 5th column gives the reliability factor at N = 1.0E7 cycles.

Table L.6: ENDUR program FORTRAN code

```
C
      PROGRAM ENDUR
C
C
C
      COMMON SU, SF, SY, ALPHA, BETA, SIZE, FINISH, FRETTING,
              SA, SM, A2, A1, SSX, SSY, SSZ, NODE, SMTAN, FRETSURF, METHOD
C
      CHARACTER*1 A
      CHARACTER*33 CHAR
      CHARACTER*50 INPUT, OUTPUT, MATERIAL, STATE1, STATE2, LIST, NEUTRAL
      INTEGER IDELN(2000), NTIME(3000), NODEE(3000,8), FRETSURF
      LOGICAL FLAG(3000)
      REAL ALT(3000), MEAN(3000), LOGLIFE(3000), RELY(3000)
      REAL SXX1(3000), SYY1(3000), SZZ1(3000)
      REAL SXY1(3000), SYZ1(3000), SZX1(3000)
      REAL SXX2(3000), SYY2(3000), SZZ2(3000)
      REAL SXY2(3000), SYZ2(3000), SZX2(3000)
      REAL S1(6), S2(6), SNODE1(0.3000, 1.6), SNODE2(0.3000, 1.6)
C
      EQUIVALENCE (SNODE1(1,1),SXX1(1))
      EQUIVALENCE (SNODE1(1,2),SYY1(1))
      EQUIVALENCE (SNODE1(1,3),SZZ1(1))
      EQUIVALENCE (SNODE1(1,4),SXY1(1))
      EQUIVALENCE (SNODE1(1.5), SYZ1(1))
      EQUIVALENCE (SNODE1(1.6), SZX1(1))
C
      EQUIVALENCE (SNODE2(1,1),SXX2(1))
      EQUIVALENCE (SNODE2(1,2),SYY2(1))
      EQUIVALENCE (SNODE2(1,3),SZZ2(1))
      EQUIVALENCE (SNODE2(1,4),SXY2(1))
      EQUIVALENCE (SNODE2(1,5),SYZ2(1))
      EQUIVALENCE (SNODE2(1,6),SZX2(1))
C
C
      USER INPUTS
```

```
WRITE(6,2)
        FORMAT(' ENTER INPUT FILE NAME ')
  2
       READ(5.5) INPUT
 C
       WRITE(6,4)
       FORMAT(' ENTER OUTPUT FILE NAME: ')
       READ(5,5) OUTPUT
 C
       FORMAT(A)
  5
       OPEN ( UNIT=1,
              FILE=INPUT.
              STATUS='OLD',
              ACCESS='SEQUENTIAL',
             FORM='FORMATTED',
              READONLY )
 C
, C
       READS THE NEUTRAL FILE NAME
 C
       READ(1,7)NEUTRAL
       FORMAT(///,33X,A)
 C
 C
       READS STRESS FILE NAMES
 C
 C
       READ(1,8) STATE1,STATE2
       FORMAT(/,33X,A,/,33X,A)
 C
 C
       CHECKS IF 'ELS' OR 'NOD' FILES ARE USED
       IF (INDEX(STATE1,'NOD').EQ.O) THEN
 C
 C
        READING THE STRESS FROM THE STRESS AT ELEMENT CENTROIDS
 C,
         FROM 'ELS' FILES
```

```
OPEN ( UNIT=3.
                 FILE=STATE1.
       Ł
                 STATUS='OLD',
      æ
                 ACCESS='SEQUENTIAL',
      Ł
                 FORM='FORMATTED'.
      Ł
                 READONLY )
         OPEN ( UNIT=7,
                 FILE=STATE2,
                 STATUS='OLD'.
                 ACCESS='SEQUENTIAL'.
                FORM='FORMATTED',
                READONLY )
 C
         OPEN ( UNIT=9,
                FILE=NEUTRAL.
      Ł
                STATUS='OLD'.
                ACCESS='SEQUENTIAL',
                FORM='FORMATTED',
                READONLY )
C
C
        SKIPS THE NODE SECTION IN THE NEUTRAL FILE
C
        READ (9, 150) NNODE, NELEMENT
 150 > FORMAT(//,26X,218,/)
C
       DO I=1, NNODE
          READ(9,200)A
 200
          FORMAT(//A)
        ENDDO
C
C
        READS ELEMENTS & THEIR NODES FORM NEUTRAL FILE
C
       DO I=1, NELEMENT
         READ(9,300,ERR=777)IDELN(1),ITYPE
         FORMAT(2X,218,/)
300
```

```
IF (ITYPE.EQ.8) THEN
              READ(9,400) (NODEE(I,J),J=1,8)
   400
              FORMAT(818)
   ,
            ELŞE
              READ(9,500) (NODEE(I,J),J=1.6)
  500
              FORMAT(618)
            ENDIF
         ENDDO
 C
  777
         CONTINUE
 С
         SKIPS 4 LINES IN THE XXX.ELS FILES
 C
 C
         READ(3,600)A
         READ (7,600) A
 600
         FORMAT(///A)
C
C
        DO I=1, NELEMENT
C
C
          READS ELEMENTS AND THEIR STRESS STATES FROM XXX.ELS FILES
C
C
          READ(3.700, ERR=666) IDELE, ITYPE, (S1(J), J=1.6)
          READ(7,710,ERR=666) (S2(J),J=1,6)
          FORMAT(218,////,6E13.7,/)
 700
710
          FORMAT(////,6E13.7./)
C
            DO K=1, NELEMENT
              FINDS NODES CORRESPONDING TO THE ELEMENT READ &
              ADDS THE STRESS TENSOR COMPONENTS
              IF (IDELE. EQ. IDELN(K)) THEN
                   DO L=1.8
                     DO J=1,6
```

C C

C C

C C

```
SNODE1(NODEE(K,L), J)=SNODE1(NODEE(K,L), J)+S1(J)
                          SNODE2(NODEE(K,L),J)=SNODE2(NODEE(K,L),J)+S2(J)
                        ENDDO
                        NTIME(NODEE(K,L))=NTIME(NODEE(K,L))+1
                      ENDDO
                    GOTO 888
                ENDIF
              ENDDO
 C
  888
            CONTINUE
 С
         ENDDO
 C
  666
         CONTINUE
 C
         DO N=1,NNODE
 C
 C
           AVERAGING THE STRESSES AT THE NODES
 C
           DO J=1,6
             SNODE1(N, J)=SNODE1(N, J)/NTIME(N)
             SNODE2(N, J)=SNODE2(N, J)/NTIME(N)
           ENDDO
C
         ENDDO
         CLOSE(3)
        CLOSE(7)
        CLOSE(9)
C
      ELSE
C
C
        READS THE STRESS STATE IN "NOD" FILES
C
C
C
        OPENS THE STRESS STATE #1 FILE
        OPEN (UNIT=3;
```

```
FILE=STATE1.
                STATUS='OLD',
                ACCESS='SEQUENTIAL',
                FORM='FORMATTED',
               READONLY )
C
C
        READ(3,20)NNODE
 20
        FORMAT(/I5//)
C
С
        DO NODE-1, NNODE
          READ(3,30)SXX1(NODE),SYY1(NODE),SZZ1(NODE),
                     SXY1 (NODE), SYZ1 (NODE), SZX1 (NODE)
     Ł
C
 30
          FORMAT(///,52X,E13 7,/,5E13 7,/)
C
          FLAG(NODE) = FALSE | INITIALIZATION
        ENDDO
        CLOSE(3)
C
C
        OPENS THE STRESS STATE #2 FILE
        OPEN (UNIT=3,
               FILE=STATE2,
               STATUS='OLD',
               ACCESS='SEQUENTIAL',
               FORM - 'FORMATTED'.
               READONLY )
С
                       'SKIPS 3 LINES
        READ (3,50)
50
        FORMAT(///A)
C
        DO NODE=1,NNODE
          READ(3,30)SXX2(NUDE),SYY2(NODE),SZZ2(NODE),
```

```
SXY2(NODE), SYZ2(NODE), SZX2(NODE)
 C
         ENDDO
         CLOSE(3)
 С
       ENDIF
 C
       READS THE "SA" COMPUTATION METHOD
       READ(1,72)METHOD
       FORMAT(/,33X,13)
 72
C
       FOR EACH NODE LIST
C
C
      DO IC=1,99
C
        CHECKS IF NODE ID'S FILE NAME OR "FROM TO
С
        READ (1,78, ERR=999) CHAR
 78
        FORMAT(/,A)
С
        READS THE SURFACE ON WHICH THE NODES ARE LOCATED
C
        (USED FOR FRETTING COMPUTATION ONLY)
C
C
C
        READ(1\80)FRETSURF
FORMAT(33X.16)
80
С
       READS THE MATERIAL PROPERTIES FILE NAME
       READ(1,90)MATERIAL
```

FORMAT (33X, A)

90

```
OPEN (UNIT=5,
                FILE=MATERIAL,
                 STATUS='OLD',
      k
                ACCESS='SEQUENTIAL',
      k
                FORM='FORMATTED',
                READONLY )
         READS THE MATERIAL PROPERTIES
 C
       e READ(5,100) ALPHA, BETA, A2, A1, FRETTING, SIZE, FINISH, SF, SY, SU
         FORMAT(///.9(43X,F12 4,/), 43X,F12 4)
  100
 C
         CLOSE(5)
 C
         READS THE SX, SY, SZ STRESS SUPERPOSITION
         READ(1,110)SSX,SSY.SSZ
         FORMAT(33X, 3E10 3)
  110
 C
~ C
 C
         BACKSPACING TO READ NODE ID'S FILE NAME OR FIRST & LAST NODES
 C
 C
         BACKSPACE(1)
         BACKSPACE(1)
         BACKSPACE(1)
         BACKSPACE(1)
 C
         IF (INDEX(STATE1, 'FROM') EQ.O) THEN
 C
           READS NODE-ID'S FILE NAME
           READ(1,112)LIST
           FORMAT(33X, A, ///)
  112
```

```
С
           OPEN ( UNIT=4.
                FILE=LIST,
     k
                  STATUS='OLD',
     k
     Ł
                  ACCESS='SEQUENTIAL',
     b
                  FORM='FORMATTED',
                  READONLY )
C
C
          FOR EACH NODE IN THE LIST.
C
С
          READ(4.115)
                        ! SKIPS THE FIRST 3 LINES (WHICH ARE COMMENTS)
          FORMAT(//A)
 115
C
          DO J=1,3000
C
             READ(4,*,ERR=997)NODE
C
С
             COMPUTES ALTERNATING, MEAN STRESSES, LOG(N),
             AND RELIABILITY FACTOR AT N=1 OE7
C
С
            CALL LIFE (SXX1 (NODE), SXX2 (NODE), SYY1 (NODE),
     Ł
                       SYY2(NODE), SZZ1(NODE), SZZ2(NODE).
     Ł
                       SXY1 (NODE), SXY2 (NODE), SYZ1 (NODE),
     Ł
                       SYZ2(NODE), SZX1(NODE), SZX2(NODE),
                       LOGLIFE (NODE), ALT (NODE), MEAN (NODE), RELY (NODE))
С
C
C
            FLAGS THE NODE, FLAG=.T. MEANS "PROCESSED"
            FLAG(NODE) = TRUE.
          ENDDO
C
 997
          CLOSE(4)
C
        ELSE
```

```
C
  C
             READS FIRST & LAST NODES OF THE LIST
  C
  C
            READ(1,91)NODEF, NODEL
   91
            FORMAT(33X,218,///)
  C
  C
            DO NODE=NODEF, NODEL
              IF ( NOT.FLAG(NODE)) THEN ! IF UNPROCESSED
  C
 C
                COMPUTES THE ALT & MEAN STRESSES AND LOG(N)
 С
                CALL LIFE(SXX1(NODE), SXX2(NODE), SYY1(NODE),
                          SYY2(NODE), SZZ1(NODE), SZZ2(NODE),
                          SXY1 (NODE), SXY2 (NODE), SYZ1 (NODE),
                          SYZ2(NODE), SZX1(NODE), SZX2(NODE),
                          LOGLIFE(NODE).ALT(NODE), MEAN(NODE), RELY(NODE))
 C
 C
             FLAGS THE NODE, FLAG=.T MEANS "PROCESSED"
 C
 C
               FLAG(NODE) = . TRUE .
C
             ENDIF
C
           ENDDO
C
        ENDIF
      ENDDO
С
 999 CONTINUE
C
C
      WRITES RESULT FILE
C
      OPEN ( UNIT=2.
```

```
FILE=OUTPUT,
              STATUS='NEW',
              ACCESS='SEQUENTIAL'.
              CARRIAGECONTROL='LIST',
              FORM='FORMATTED' )
C
      WRITE(2,195)NNODE, NNODE
 195 FORMAT(' FATIGUE',/,215,' 0 000000E+00
      WRITE(2,196)STATE1
      WRITE(2,197)STATE2
 196 FORMAT(' EXTREME STRESS STATE #1
                                            ',A)
 197 FORMAT(' EXTREME STRESS STATE #2
                                            ',A)
C
      DO NODE=1,NNODE
        WRITE(2,199)NODE, ALT(NODE), MEAN(NODE), LOGLIFE(NODE), RELY(NODE)
 199
        FORMAT(18,4E13 7)
      ENDDO
C
      STOP
      END
C
C
       LIFE SUBROUTINE
C
C
C
       This subroutine computes the expected life of a point
C
       using the extreme stress states and the material properties
C
       SUBROUTINE LIFE(SXX1,SXX2,SYY1,SYY2,SZZ1,SZZ2,
                        SXY1, SXY2, SYZ1, SYZ2, SZX1, SZX2,
                        LOGLIFE, ALT, MEAN, RELY)
C
       COMMON SU, SF, SY, ALPHA, BETA, SIZE, FINISH, FRETTING,
               SA, SM, A2, A1, SSX, SSY, SSZ, NODE, SMTAN, FRETSURF, METHOD
C
       INTEGER FRETSURF
     , REAL LOGLIFE, MEAN
```

C

```
C
 C
         COMPUTES EQUIV ALT & MEAN STRESSES
        DXX = SXX1 - SXX2
        DYY = SYY1 - SYY2
        DZZ = SZZ1 - SZZ2
        DXY - SXY1 -SXY2
        DYZ = SYZ1 - SYZ2
        DZX = SZX1 - SZX2
 C
 C
        IF (METHOD . EQ 2) THEN
          CALL PRINCIPAL(DXX,DYY,DZZ,DXY,DYZ,DZX,P1,P2,P3)
         SA =AMAX1(P1,P2,P3)/2. - AMIN1(P1,P2,P3)/3
        ELSE
         SA = .6 * (SQRT(((DXX-DYY)**2+(DYY-DZZ)**2+(DZZ-DXX)**2 +
      &
                             6 *(DXY**2+DYZ**2+DZX**2)) /2 ))
       ENDIF
C
       SM = AMAX1(-SY, (
                   .5 * (SXX1 + SYY1 + SZZ1 +
     Ł
                           SXX2 + SYY2 + SZZ2 ) +
                           SSX+SSY+SSZ
                                                               ) )
C
C
       ... ASSUMING YIELDING IS THE MINIMUM EQUIVALENT STRESS
           (BECAUSE OF PLASTIC DEFORMATION)
           ACTUALLY, THE MEAN STRESS EFFECT EQUATION IS NOT
           VALID FOR ANY SM. THE LOWER LIMIT SM -- SY WAS ASSUMED.
C
      COMPUTES TANGENTIAL MEAN STRESS (FOR FRETTING EFFECT ONLY)
      IF (FRETSURF.EQ.1) THEN
        SMTAN = .5*(SYY1 +SZZ1 + SYY2 +SZZ2) + SSY+SSZ
     ELSEIF (FRETSURF.EQ.2) THEN
        SMTAN - .5*(SXX1 +SZZ1 + SXX2 +SZZ2) + SSX+SSZ
```

```
ELSEIF (FRETSURF.EQ.3) THEN
         SMTAN = .5*(SXX1 + SYY1 + SXX2 + SYY2) + SSX+SSY
      ELSE
         SMTAN=SM ! ACTUALLY THE NODE BEING PROCESSED IS NOT AT THE
C
                    SURFACE
      ENDIF
       STATE #1 ACTUAL NORMAL STRESSES
C
       SRX = SXX1 +SSX
       SRY = SYY1 +SSY
       SRZ = SZZ1 +SSZ
C
C
       FINDS STATE #1 PRINCIPAL STRESSES
       C
       CALL PRINCIPAL (SRX, SRY, SRZ, SXY1, SYZ1, SZX1, P11, P21, P31)
       STATE #2 ACTUAL NORMAL STRESSES
       SRX = SXX2 +SSX
       SRY = SYY2 +SSY
       SRZ = SZZ2 +SSZ
C
       FINDS STATE #2 PRINCIPAL STRESSES
     \CALL PRINCIPAL(SRX, SRY, SRZ, SXY2, SYZ2, SZX2, P12, P22, P32)
       CHECKS IF CRACK PROPAGATION IS POSSIBLE
      IF ((P11.LE.O.) .AND.
           (P21.LE.O.) .AND.
           (P31.LE.O.) .AND.
          (P12.LE.O.) .AND.
```

```
(P22.LE.O.) .AND.
             (P32.LE.O.)
                               ) THEN
  C
           XLIFE =20. ! NO CRACK PROPAGATION, "INFINITE" LIFE
  C
                          (LOG(N)=20.)
  C
         ELSE
  C
  C
  C
           USING SECANT ALGO, COMPUTES THE LOG(LIFE) "XLIFE"
           FROM MATERIAL PROPERTIES, SA, SM
 C
 C
 C
           initialisation
 C
           XLIFEO = 7
           XLIFE1 = 7.05
           SERRORO = SAA(XLIFEO)-SA
 C
 C
           iterations
 C
           DO L=1,100
             SERROR1 = SAA(XLIFE1)-SA
C
            IF ( ((XLIFEO.GT.20.).AND.(XLIFE1 GT XLIFEO))
               .OR. (SERROR1.EQ.SERRORO)
                                                              ) THEN
              XLIFE1=20.
              XLIFE =20.
C
              ... TO AVOID USELESS COMPUTATION IF LIFE -> INFINITE
            ELSE
              XLIFE = AMAX1(O., XLIFE1-SERROR1*(XLIFE1-XLIFEO)
                                           /(SERROR1-SERRORO) )
                       ... MINIMUM LIFE = 1. CYCLE !
            ENDIF
C
C
            check for convergence
```

```
C
             CONVERG = ABS(XLIFE-XLIFE1)
             IF (CONVERG.LT.O.O1) GOTO 1
             XLIFEO = XLIFE1
             XLIFE1 = XLIFE
             SERRORO = SERROR1
 C
           ENDDO
 C
            WRITE(6,363)NODE
  363
            FORMAT(' LIFE COMPUTATION FOR NODE ', 16,
                  ' DID NOT CONVERGE, LIFE SET TO 1 E20')
 C
          XLIFE=20
 C
          ENDIF
C
 1
          CONTINUE
          IF (XLIFE.GE.20 ) THEN
             ALT =SA
             MEAN =SM
          LOGLIFE =20.
          ELSE
             ALT =SA
            MEAN -SM
            LOGLIFE =XLIFE
          ENDIF
C
С
         COMPUTES RELIABILITY FACTOR AT N=1 E7
C
C
         RELY = SA/SAA(7)
         RETURN
         END
```

```
FUNCTION SAA(ALOGN)
  C
  C
  C
          This function gives the acceptable alternate stress Saa
  C
          computed from the knowledge of log(N) & Sm
  C
          COMMON SU, SF, SY, ALPHA, BETA, SIZE, FINISH, FRETTING,
                 SA, SM, A2, A1, SSX, SSY, SSZ, NODE, SMTAN, FRETSURF, METHOD
       Ł
 C
          INTEGER FRETSURF
 C
 C
            BASIC S-N CURVE FOR ZERO MEAN STRESS
 С
           SAO = SF + (SU-SF)*EXP(-ALPHA*ALOGN**BETA)
 C
 C
         . SIZE EFFECT "SSE"
 C
            -----
 C
           IF (ALOGN.LE.3.) THEN
              SSE = 1.
           ELSEIF (ALOGN.GE.7.) THEN
              SSE - SIZE
           ELSE
              SSE = .25*(SIZE-1.)*(ALOGN-3.) + 1.
           ENDIF
C
C
           SURFACE FINISH EFFECT "SFE"
C
C
           IF (ALOGN.LE.3.) THEN
              SFE = 1.
          ELSEIF (ALOGN.GE.7.) THEN
             SFE = FINISH
          ELSE
             SFE = .25*(FINISH-1.)*(ALOGN-3.) + 1
          ENDIF
C
          SIZE & FINISH EFFECTS ON ACCEPTABLE TENSILE STRENGTH "SUSF"
```

```
C
                                          AND ALTERNATE STRESS "SAOSF"
 C
            SUSF = SU * SSE * SFE
            SAOSF = SAO * SSE * SFE
 С
 C
           MEAN STRESS EFFECT
 С
           SA1 = SAOSF * ( A2*(SM/SUSF)**2 + A1*(SM/SUSF) + 1 )
 С
           FRETTING EFFECT
 C
           -----
           IF (ALOGN.LE.3 ) THEN
              FRETO = 1.
           ELSEIF (ALOGN.GE.7.) THEN.
             FRETO = FRETTING
             FRETO = 25*(FRETTING-1 )*(ALOGN-3 ) + 1.
          ENDIF
C
C
          TANGENTIAL MEAN STRESS EFFECT ON FRETTING COEF.
          IF (SMTAN.GE.O.) THEN
             FRET = FRETO
          ELSEIF (SMTAN.GT.-SY) THEN
             FRET = FRETO*(SMTAN/SY+1.) - SMTAN/SY
             FRET = 1.
         ENDIF
C
        ACCEPTABLE ALTERNATE STRESS "SAA"
        SAA = FRET*SA1
```

```
RETURN
          END
       SUBROUTINE PRINCIPAL (SRX, SRY, SRZ, SXY, SYZ, SZX, PO, P1, $\mathcal{P}_2\)
C
C
       This subroutine finds the principal stresses of a stress state
       COMMON /SA/SA2,SA1,SA0
       COMPUTES THE STRESS INVARIANTS
        SA2 = - SRX - SRY - SRZ
        SA1 = SRX*SRY + SRY*SRZ + SRZ*SRX - SXY**2 - SYZ**2 - SZX**2
        SAO = -SRX*SRY*SRZ -2.*SXY*SYZ*SZX +
              SRX*SYZ**2 + SRY*SZX**2 + SRZ*SXY**2
C
        USING SECANT ALGO, COMPUTES ONE ROOT
        OF THE POLY X**3 +SA2*X**2 +SA1*X +SA0 =O
C
C
C
          initialisation
          XO = -10.
          X1 = 10.
          YO = POLY3(XO)
C
          iterations
         DO L=1,100
            Y1 = POLY3(X1)
            IF (Y1.EQ.YO) THEN
              X2 = .5*(X1+X0)
            ELSE
```

K)

```
X2 = X1 - Y1*(X1-X0)/(Y1-Y0)
             ENDIF
 C
 C
             check for convergence
 C
             CONVERG = ABS(X2-X1)
             IF (CONVERG.LT.O.01) GOTO 1
C
             XO = X1
             X1 = X2
             YO'= Y1
           ENDDO
C
 1
      CONTINUE
C
C
      FIRST ROOT
C
C
      PO = X2
      FINDS B1 AND BO OF (X**2 + B1*X + BO)*(X-PO) = O.
C
      B1 = SA2 + PO
      BO = SA1 + B1*PO
C
      C = B1**2-4.*B0
      IF ( C .LT. O. ) THEN
       WRITE(9,101) SRX, SRY, SRZ, SXY, SYZ, SZX, SA2, SA1, SAO, PO, B1, BO, C
       FORMAT(' PRINC, C<O ',6E12.4,/3E12.4,/,4E12.4)
101
       C=0.
     ENDIF
     SC=SQRT(C)
     FINDS THE OTHER ROOTS OF
     THE POLY X**3 +SA2*X**2 +SA1*X +SA0 =0
```

```
P1 = 5*(-B1-SC)
P2 = 5*(-B1+SC)

C

RETURN
END

C

FUNCTION POLY3(X)

C

COMMON /SA/SA2,SA1,SAO

C

POLY3 = ((X+SA2)*X+SA1)*X+SAO

C

RETURN
END
```

341

13. d

Appendix M

YMIR Program

The YMIR program finds the symmetric stress state of a known stress state. The plane of symmetry is the X-Z plane.

The YMIR program input file has the format of YMIR.DAT (Table M.1) YMIR assumes that nodes numbering begins from 1 and that no node ID is skipped

It outputs the symmetric stress state of that given in the input file. i.e. The stress state that was applied at a node located at X,Y,Z in the input file is applied at the node X,-Y,Z in the output file. (Table M 3 shows the YMIR output stress state corresponding to stress state given in M.2).

To run YMIR, type:

```
$RUN YMIR

ENTER INPUT FILE NAME: <--- written by YMIR

YMIR.DAT <--- example, typed by the user

ENTER OUTPUT STRESS STATE FILE NAME <--- written by YMIR

[MCGO1.GEO] YMIRS4.NOD <--- example, typed by the user
```

PIN "HL2" STRESS STATE FROM "HL1" STRESS STATE

NEUTRAL FILE NAME: [MCGO1.GEO]PATRAN.OUT INPUT STRESS STATE FILE: [MCGO1.GEO]S4.NOD

NODES: FROM, TO. 1287, 1625

Table M.1: Typical YMIR program input file

- The first 3 lines are available for comments.
- The 4th and 5th lines give the neutral file name and the input stress state that must be a xxxx.NOD file output by NASPAT (example: Table M.2).
- The 6th line is available for comment.
- All the other lines give the node ranges on which the YMIR program will be applied.

This file was used to find the HL2 stress state which is symmetric to the HL1 stress state. Nodes 1287 to 1625 belong to the pin.

Table M.2 shows the S4.NOD File.

```
PIN JOINT
 1625 1625 0 000000E+00
 NON LINEAR ANALYSIS, 1625 NODES
 LOW CYCLE LOAD
                   SUBCASE
       10 0000000E+000 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 0000000E+000 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 1794370E+050 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 000 0000E+000 000000E+000 000000E+000 000000E+000 000000E+00
- 1777239E+050.2962689E+050 1045863E+050 1323166E+050 2567062E+05
0 1441745E+050 1322910E+05- 3773638E+04- 1355041E+040 6441363E+04
0 1794370E+05
    12870 0000000E+000 000000E+000 0000000E+000 0000000E+000 0000000E+000
O 0000000E+000 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 1261567E+050 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 000 0000E+000 0000000E+000 000000E+000 000000E+000 000000E+00
0 2505621E+030 6892414E+04- 7630242E+04- 1385809E+020 2318168E+04
0 1439700E+04- 4509555E+04- 1935040E+040 2512495E+04- 5224105E+04
0 1261567E+05
    15320 0000000E+000 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 000000E+000 000000E+000 000000E+000 000000E+000 000000E+00
0 1109716E+050 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 0000000E+000 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 7179309E+030 5593609E+04- 7190207E+04- 5571985E+030 2128878E+04
0 3128220E+03- 4595492E+04- 1450006E+04- 1340036E+040 4871043E+04
0 1109716E+05
    16250 000000E+000 000000E+000 000000E+000 000000E+000 000000E+00
0 000 0000E+000 .0000000E+000 000000E+000 000000E+000 000000E+00
0 2680197E+040.0000000E+00Q 0000000E+000 0000000E+000 0000000E+00
0 000000E+000.000000E+000 000000E+000 000000E+000 000000E+00
Q 7489937E+030.3666296E+03- 2514852E+04- 9875800E+020 2168166E+03
 1978722E+04- 4850757E+03- 4488635E+02- 7513348E+02- 2999270E+03
0 2680197E+04
```

Table M.2: S4.NOD file

This file has been created by the NASTRAN to PATRAN translator ("NASPAT"). Nodes 1287 and 1532 are symmetrically placed.

```
J'O I N T
       PIN
 1625 1625
             0.00000E+00
 NON LINEAR ANALYSIS, 1625 NODES
 Y MIRROR OF LOW CYCLE LOAD SUBCASE 4
       10.0000000E+000.0000000E+000.0000000E+000 0000000E+000 0000000E+00
O 0000000E+000.0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 0000000E+000.0000000E+000.000000E+000.0000000E+000 0000000E+00
0 0000000E+000.0000000E+000.0000000E+000.0000000E+000 0000000E+00
0 0000000E+000 0000000E+000 000000E+000 000000E+000 0000000E+00
0 0000000E+000.0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 000000E+00
    12870 0000000E+000 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 0000000E+000 0000000E+000 000000E+000 000000E+000 000000E+000
0 1109716E+050.0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 0000000E+000.0000000E+000 0000000E+000 000000E+000 000000E+00
0 7179309E+030 5593609E+04- 7190207E+04- 5571985E+030 2128878E+04
0 3128220E+03- 4595492E+04- 1460005E+04- 1340035E+04- 4871043E+04
0 1109716E+05
    16320 0000000E+000 0000000E+000 0000000E+000 0000000E+000 0000000E+00
O 0000000E+000 0000000E+000 0000000E+000 0000000E+000 0000000E+00
O 1261567E+050 0000000E+000 0000000E+000 0000000E+000 0000000E+00
O 0000000E+000 0000000E+000 0000000E+000 0000000E+000 0000000E+00
0 2505621E+030.6892414E+04-.7630242E+04- 1385809E+020 2318168E+04
0 1439700E+04- 4509655E+04- 1935040E+040 2512495E+040 5224105E+04
0 1261567E+05
    16250.000000E+000 000000E+000 000000E+000 000000E+000 000000E+00
O 0000000E+000.0000000E+000 0000000E+000 000000E+000 000000E+00
0 1346635E+040.0000000E+000 0000000E+000 000000E+000 0000000E+00
O 0000000E+000.0000000E+000 0000000E+000.0000000E+000 0000000E+00
0 3771882E+030 2079775E+03- 1258356E+04~ 8118622E+020 1208574E+03
 9765344E+03- 2758879E+036 1588784E+02-.1840277E+02- 2006893E+03
0 1346635E+04
```

Table M.3: Typical YMIR program output file

It corresponds to input files shown in Table M.1 and Table M.2.

As asked in Table M.1, only nodes numbered from 1287 to 1625 have been processed. Since nodes 1532 and 1287 are symmetrically placed, the stress state of node 1532 in Table M.2 corresponds to that of node 1287 in Table M.3.

Table M.4: YMIR program FORTRAN code

```
C
        PROGRAM YMIR
 C
 C
 С
       CHARACTER*80 LINE1, LINE2, LINE3, LINE4
       CHARACTER*50 NEUTRAL, STATE1, STATE2, INPUT
       INTEGER NODE (3000)
       REAL X(3000), Y(3000), Z(3000)
       REAL S(3000,31)
 C
       EPSILON=5 E-5 ! SMALL VALUE
 C
 C
       INPUTS
 C
       -----
 C
       WRITE(6,1)
       FORMAT(' ENTER INPUT FILE
                                    NAME ')
       READ(5,5)
                    INPUT
C
       OPEN ( UNIT=4.
               FILE=INPUT,
               STATUS='OLD',
               ACCESS='SEQUENTIAL',
               FORM='FORMATTED',
               READONLY )
C
      READ(4,2)NEUTRAL,STATE1
      FORMAT(///,24X,A,/,24X,A,/)
 2
\mathcal{L}
C
      OUTPUT
C
      WRITE(6,3)
     FORMAT(' ENTER OUTPUT STRESS STATE FILE NAME ')
3
      READ(5,5)
                   STATE2
```

```
С
   6
        FORMAT(A)
       OPEN ( UNIT=1.
               FILE=NEUTRAL,
               STATUS='OLD',
               ACCESS='SEQUENTIAL',
               FORM='FORMATTED'.
               READONLY )
 C
       READS NODE POSITIONS
 С
       READ(1,10) NNODE
      FORMAT(//26X, 18,/)
  10
 С
       DO I=1,NNODE
        READ(1,20)X(I),Y(I),Z(I)
 20
        FORMAT(/,3E16 9,/)
      ENDDO
C
      CLOSE(1)
C
      READS NODE LIST
C
C
      DO N=1,99
C
        READ(4,25,ERR=888)NFROM,NTO
 25
        FORMAT(24X,218)
C
C
      FINDS THE MIRROR NODE OF EACH NODE
   DO I=NFROM.NTO
     IF (ABS(Y(I)).LE.EPSILON) THEN
       NODE(I) = I ! IF A NODE IS ITS OWN "MIRROR"
     ELSE
       DO J=I+1,NTO
```

```
IF ((ABS(X(I)-X(J)) LE.EPSILON).AND.
                  (ABS(Y(I)+Y(J)) LE.EPSILON) AND
                  (ABS(Z(I)-Z(J)).LE.EPSILON)
                                                   ) THEN
          NODE(I)=J
          NODE(J)=I
          WRITE(9,*)I,J
          ENDIF
        ENDDO
      ENDIF
    ENDDO
C
      ENDDO
С
 888 CONTINUE
C
      WRITES THE STRESS STATES OF THE MIRROR IMAGE
C
C
C
      OPEN ( UNIT=2,
             FILE=STATE1.
              STATUS='OLD'.
              ACCESS='SEQUENTIAL',
             FORM='FORMATTED',
     &
              READONLY )
C
      OPEN ( UNIT=3,
              FILE=STATE2,
     &
              STATUS='NEW',
              ACCESS='SEQUENTIAL'.
     &
              CARRIAGECONTROL='LIST'.
              FORM='FORMATTED' )
C
C
C
      READS & WRITES THE STRESS STATES IDENTIFICATION
     READ(2,30)LINE1,LINE2,LINE3,LINE4
30
     FORMAT (3(A8O/), A8O)
```

C

```
WRITE(3,40)LINE1,LINE2,LINE3
      FORMAT(2(A80/), A80)
 40
C
      WRITE(3,50)LINE4
      FORMAT(' Y MIRROR OF ', A80)
 50
C
C
      READS THE INPUT STRESS STATE
C
C
      DO I=1, NNODE
C
        READ(2,55) (S(I,J),J=1,31)
        FORMAT(8X,5E13 7,/,
                5E13 7./,5E13.7./,5E13.7./,5E13 7./,5E13 7./,E13 7)
C
      ENDDO
C
C
      WRITES THE MIRROR STRESS STATE
     DO I=1, NNODE
C
C
   ! NOTE: RZ' SHEAR BECOMES ITS INVERSE
C
        S(NODE(I),30) = -S(NODE(I),30)
        WRITE(3.60) (I,(S(NODE(I),J),J=1.31))
60
        FORMAT(18,5E13.7,/,
                5E13.7,/,5E13.7,/,5E13.7,/,5E13.7,/,5E13.7,/,E13.7)
C
      ENDDO
C
999
     STOP
     END
```

Appendix N

MINER program

The MINER program evaluates the high cycle fatigue life using the Palmgren-Miner rule. The Palmgren-Miner rule states that the life "N" of a component submitted to a variable amplitude loading is given by:

$$N = \frac{1.}{\sum \frac{X_i}{N_i}} \tag{N.1}$$

where:

- N_i is the life at loading level i,
- X_i is the frequency of occurrence of a cycle at the loading level i.

The inputs to this program are:

- the files representing the endurance at each node and at each load level (the format of the endurance files must be the same as the ENDUR program output file format, see Table L.5). Up to 99 endurance files are allowed.
- the probability or relative frequency of occurrence of each load level.

The MINER program input file format is as follows:

- the first 2 lines are for comments,
- each load level are described by 3 lines:
 - one comment line,

- one line that gives the ENDURance file name,
- one line that gives the frequency of occurrence (in %).

Follow the example (file: MINER.DAT, Table N.1).

The MINER program outputs can be illustrated using PATRAN. The user has simply to type "RUN,CON,COL,1" within PATRAN. He will then be prompted to enter a file name. The file name to be entered is the MINER output file name.

* LUG & BUSH ENDURANCE, USING PALMGREN-MINER RULE

**** HIGH AMPLITUDE CYCLES *****

ENDURANCE FILE NAME: [MCGO1.F] FLUG. OUT

% OCCURRENCE :

:.03

***** LOW AMPLITUDE CYCLES *****

ENDURANCE FILE NAME: [MCGO1.F] FLLUG.OUT

% OCCURRENCE

:99.97

Table N.1: Typical MINER program input file

The files FLUG.OUT, FLLUG.OUT were created by the ENDUR program.

```
ENDURANCE
1932 1932
            0.00000E+00
INPUT FILE: MINER.DAT
      10.1108417E+02
      20.1067445E+02
      30.1022085E+02
      40.1130773E+02
      50.1140515E+02
   1920.6994275E+01
   1930.1269851E+02
  19250.2000000E+02
  19260.2000000E+02
  19270.2000000E+02
  19280.2000000£+02
 19290.2000000E+02 ·
 19300.2000000E+02
 19310.200000E+02
 19320.200000E+02
```

Table N.2: Typical MINER program output file It corresponds to input file shown in Table N.1.

Table N.3: MINER program FORTRAN code

```
C
        PROGRAM MINER.
  C
  C
        REAL LOGLIFE
        REAL TLIFE (3000)
        CHARACTER*50 INPUT, OUTPUT, NAME
 C
 C
        INPUTS
 C
        -----
 C
       WRITE(6,2)
  2
       FORMAT(' ENTER INPUT FILE NAME: ')
       READ(5,5) INPUT
 C
       WRITE (6,4)
        FORMAT(' ENTER OUTPUT FILE NAME: ')
       READ(5,5) OUTPUT
 C
  5
       FORMAT(A)
C
       OPEN ( UNIT=1.
              FILE=INPUT,
              STATUS='OLD',
             -ACCESS='SEQUENTIAL'.
             FORM='FORMATTED',
             READONLY )
C
      READ (1,8) NAME
      FORMAT(///.20X.A)
 8
C
      READS THE NUMBER OF NODES
C
      OPEN ( UNIT=3.
             FILE-NAME,
```

```
STATUS='OLD'.
               ACCESS='SEQUENTIAL',
       k
               FORM='FORMATTED',
               READONLY )
  C
        READ(3,30)NNODE
   30
        FORMAT(/,I5)
  С
        CLOSE(3)
        BACKSPACE(1)
        BACKSPACE(1)
 C
 C
 C
        INITIALIZATION
 C
 Ç
       DO K=1, NNODE
         TLIFE(K)=0.
       ENDDO
 Ç
 C
       FOR EACH FILE ...
 C
 C
       DO J=1,99
 C
         READ(1,35,ERR=888)NAME,APPL100
 35
         FORMAT(/,20X,A,/,20X,F12.5)
C
         APPL = .01 * APPL100 ! % -> PROPORTION
C
         OPEN ( UNIT=3.
     Ł
                FILE=NAME,
     Ł
                STATUS='OLD',
     Ł
                ACCESS='SEQUENTIAL',
     Ł
               FORM='FORMATTED',
               READONLY )
C
C
        SKIPS 4 LINES.
```

```
READ(3,45)
        FORMAT(///)
 45
        READS LOG(N) & COMPUTES CUMULATIVE LIFE FOR EACH NODE
С
C
С
        DO K=1.NNODE
          READ(3,50)LOGLIFE
 Б0
          FORMAT (34X, E13.7)
          XN=APPL/10.**LOGLIFE
          TLIFE(K)=TLIFE(K)+XN
        ENDDO
      ENDDO
C
 888 CONTINUE
C
C
      WRITES THE OUTPUT FILE
C
      DEN (UNIT=2,
            FILE=OUTPUT.
             STATUS='NEW',
             ACCESS='SEQUENTIAL',
             CARRIAGECONTROL='LIST'.
             FORM='FORMATTED' )
      WRITES OUTPUT FILE HEADER
C
C
C
      WRITE(2,55) NNODE, NNODE, INPUT
     FORMAT(' ENDURANCE',/,215,' 0 000000E+00
 55
                                                  0 1',/,
     ' INPUT FILE: 'A./' -----')
C
    WRITES THE LIFE OF EACH NODE
C
     DO K=1,NNODE
```

```
TOTLIFE=1./TLIFE(K) ! FRACTURE AT DAMAGE = 1
LOGLIFE=ALOG10(TOTLIFE)
WRITE(2,60)K,LOGLIFE .

60 FORMAT(18,E13.7)
ENDDO
C
999 STOP
C
END
```