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Abstract

The connection between algebra and finite automata theory has heen well stud-
ied and Eilenberg has shown that the notion of varicties in semigroups/mounoids
can be naturally made to correspond with varieties of languages that they recog-
nize. This has significantly deepened and organized our understanding of finite
automata and regular languages. Several researchers have later recognized that
the more appropriate algebraic objects to look into are finite categories which
generalize monoids in a way that is explained in the work. This point of view
not only refines the existing theory but is indispensable when dealing with serial
decompositions of automata. In this thesis we try to advance this theory by ex-
ploring the connections between the algebraic structure of a finite category and
the combinatorial description of languages recognized by it which is a central

theme of algebraic theory of automata.

The method of congruence has proved quite successful in the study of lan-
guages recognized by finite monoids. In this thesis we show that this method
remains powerful and successful even in the categorical setting. Using graph
congruences, we obtain some new proofs of old results and some completely

new results.

[t is known that a finite category can have all its base monoids in a variety

V (i.e. be locally V, denoted by ¢V) | without itself dividing a monoid in V



(i.e. be globally V, denoted gV). This is in particular the case when V=Com.
the variety of commutative monoids. The main result in this work provides a
combinatorial characterization of locally comutative categories. This is the
first such theorem dealing with a non-trivial variety for which local differs from
global. As a consequence, we show that /Com C gV for every variety V that
strictly contains the commutative mounoids.

We give new proofs of the locality of the following M-varicties: R and L,
the M-variety of all R and L-trivial monoids respectively, Ry, L1 and Ry Vv L.
where Ry is the variety of all R-trivial and idempotent monoids and Ly is the
variety of all L-trivial and idempotent monoids. We provide a simple example
illustrating the fact that ¢J strictly contains the variety gJ where J is the variety
of all J-trivial monoids. The problem of characterising languages recognized

by locally J-trivial categories remains opeu.
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Résumé

Le lien entre I'algebre et la théorie des automates finis a été étudic¢ par plusicurs
chercheurs et Eilenberg a démontré que la notion de variétés dans les semi-
groupes ou monoides peut correspondre de fagon naturelle avec les varictes
de langages qu’elles reconnaissent. Cette découverte a approfondi ct organisé
notre compréhension des automates finis ct des langages rationnels, ¢t ce, de
facon importante. Plusieurs chercheurs ont plus tard reconnu que les objets
algébriques les plus appropriés qui devraient étre étudiés sont les catégories finies
qui généralisent les monoides d’une facon qui est expliquée dans cet ouvrage.
Ce point de vue ne fait pas que raffiner la théorie existante; il est également
indispensable lorsqu’on traite avec des décompositions sérielles d’automates.
Dans ce mémoire, nous tentons de faire progresser cette théorie en explorant les
liens entre la structure algébrique des catégories finies et la description combi-
natoire des langages qu’elle reconnait, ce qui est un théme central de la théorie

algébrique des automates.

La méthode des congruences a fait ses preuve dans 'étude des langages
qui peuvent étre recounus par des monoides finis. Dans ce mémoire, nous
démontrons que cette méthode demeure utile et puissante meéme dans le contexte
des catégories. En utilisant des congruences sur les graphes, nous obtenons de

nouvelles preuves de résultats déja prouvés, ainsi que des résultats completement
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nouveaux.

On sait déja que pour une catégorie finie, les monoides de hase peuvent ¢tre
contenus dans une variété V (c’est-a-dire, étre V localement. représenté par
¢V) sans qu’elle ne divise un monoide dans V (¢’est a dirve étre 'V globalement.
indiqué par gV). En particulier, c¢’cst le cas lorsque V = Com, la variété de
mounoides commutatifs. Le résultat principal de cet ouvrage fournit unc car-
actérisation combinatoire des catégories localement commutatives. Il s'agit du
premier théoreéme qui s’applique a une variété non-triviale pour laquelle local
différe de global. En corrolaire, nous démontrons que {Com C gV pour chaque
variété V qui contient strictement les monoides commutatifs.

Nous fournissons aussi de nouvelles preuves de la localité des M-variétés
suivantes: R et L, la M-variété de tous les monoides R-triviaux et L-triviaux,
respectivement; Ry, L; et Ry V Ly, ou Ry est la variété de tous les monoides
R-triviaux et idempotents et Ly est la variétés de tous les monoides L-triviaux
et idempotents. Nous présentous un example sitiple illustrant le fait que €J
contient strictement la variété gJ, ou J est la variétés de tous les monoides J-
triviaux. Cependant, nous démontrons que £J = gR M gL. Le probleme de la
caractérisation des langages reconnus par les catégories localement J-triviales

demeure ouvert.
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Chapter 1

Introduction

In algebraic theory of automata, a language L C A* is said to be recognized by
the finite monoid M if there exists a morphism ¢ : A* — M and a subset F' C A{
such that L = ¢~H(F) (see [Pin86] or [Str94] for a very readable introduction
of this notion). It is well-known that languages that can be so recoguized arce
precisely the regular languages and that for each regular language there is a
unique minimal monoid, called the syntactic monoid of L and deunoted A (L),
that recognizes it. One expects that combinatorial properties of L would be
reflected in the algebraic structure of M (L): this intuition is completely valid
and a driving theme of the field is to prove theorems of the following form:

“A language L belongs to the combinatorially-defined class V iff the syntactic
mounoid M (L) belongs to the algebraically-defined class V.”

For technical, but unavoidable, rcasons, one sometimes has to deal with sub-
sets of AT (instead of A*) and semigroups (instead of mounoids). Most oftew,
“algebraically-defined” means that V is an M-variety, that is a class of finite
monoids which is closed under division (i.e. morphic image and submonoid)
and direct product. The notion of S-variety is similarly defined for finite semi-

groups. Books such as [Alm94, Eil76, Pin&6] offer a comprehensive treatiment



| bid ; \dfe
a,b ale a/t d,e, f, g e e

| blg i d.fg

.____Machine A __MuachineB

Figure 1.1: Serial connection of automata

of this theory. One interesting by-product of results of the above form is that
when membership in 'V is decidable, one gets a decision procedure to test if L
is in V), since the monoid M (L) can be effectively computed from any of the
common representations used for regular languages (automaton, regular expres-
sion, grammar, logical formula). Two classical theorems of that nature ave the
correspondence between star-free languages and aperiodic monoids [SchGd] and
the correspondence between piecewise-testable languages and J-trivial monoids
[Sim75].

In automata theory one is often interested in decompositions of automata
into simpler units. As an example consider the situation where two automata
A and B are connected in series as shown in figure 1.1: for machine B it is
no longer the case that the space of inputs it can receive forms a free monoid.
since the input sequence is mediated through machine A and some combinations
(like ’dg’ or ’df’) never arise. One simple way of tackling this situation is to

view machine B as processing input sequences that are valid paths in the finite



directed multi-graph representing the state transition diagram of automaton A.
Techuically, the right point of view then is to say the input space of automaton
B is the free category induced by this graph and we can associate with the
machine a congruence of finite index (that we shall henceforth call graph con-
gruence) on this free category. The machine thus represents a finite category
rather than a monoid. In order to understand the all-important case of serial
connection of automata and its algebraic incarnation i.e the wreath product of
monoids, it 1s essential to generalize the above setting to the level of categories.
c.g. we shall see in a later section that deciding if a monoid M divides a wreath
product of the form S o1 amounts to decide if a certain category, constructible
from M and T, divides S. In this framework, one considers languages as sets of
finite-length paths in a directed multi-graph (instead of finite-length sequences
over a set) and such languages may be recognized by finite categories (instead of
finite monoids). The notion of syntactic monoid for a language over an alpha-
bet naturally generalizes to syntactic category of a language over a graph. In
fact any alphabet could be looked at as a one node graph and the free monoid
thus becomes the free category induced by such a one node graph. Kleene's
theorem about regular languages can also be extended to this framework, as
shown in [TSG88]. One can naturally define division and direct product of
categories and the notion of M-varieties generalize to C-varieties i.e. a class of
finite categories closed under division and direct product. Thus the manipu-
lation and understanding of finite categories as algebraic objects are essential
ingredients in manipulation and understanding of regular languages as observed

and formalized in the seminal work of [Ti187]A

Given a C-variety W, it is easily seen that the monoids in W lorm an

M-variety. It is thus natural to consider the following question: for a fixed M-
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variety V, what are the C-varieties W for which the mounoids in W oare precisely
those of V7 Two natural examples cmerge readily: the variety gV = {C' @
divides M for some M € V}, and the variety (V = {C : every basc monoid
of C'is in V } are respectively the smallest and the largest C-varieties with
that property. It turns out that a combinatorial description of the languages
recognized by monoids in V immediately implies a combinatorial description of
the languages recognized by categories in gV; similarly, an algebraic description
of the monoids in V implies an algebraic description of the categories in £V. Our
understanding is thus complete whenever gV = {V; this happens in a nunber
of interesting cases, e.g. for every non-trivial variety of groups, for semilattices,
for aperiodic monoids. But there are also cases where gV & (V. c.g. for the
trivial variety, for commutative monoids [TW85], for J-trivial monoids [Kna83];
apart from the case of the trivial variety, it becomes quite a challenge to find
an algebraic description of gV or a combinatorial description of the languages

recognized by members of (V.

[t is a well kuown fact that combinatorial analysis of congruences ou the free
monoid generated by a finite set is a powerful tool to describe languages recog-
nized by M-varieties. In this thesis, we exposit the usefulness of this method for
deriving results about categories by introducing the notion of graph congruence
on a free category. Let 7y represent a family of congruences (ou the free monoid
generated by the set of edges of a graph) that describe lauguages recognized by
monoids in a M-variety V. As explained later in this chapter, every such con-
gruence family inudces a graph congruence family denoted by 7=, We show that
for many important M-varieties, languages recognized by a category in (V can
be described by a congruence in the family F7. For all such cases, we conclude

that the C-varieties £V and gV coincide.
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The central result of the thesis provides a combinatorial description of the
languages recognized by members of /Com, the C-variety of locally commuta-
tive categories. This is the first instance of such result for a non-trivial variety
V where gV # ¢V. We give our description via congrucences of finite-index
and some novel ideas have to be introduced. We also show that (Com is
contained in gV for every M-variety V that strictly contains all conmumutative
monoids. We then use known techniques to derive results about the S-variety
LCom = {5 : eSe € Com for every ¢ = ¢?}.

The work is organized as follows: the rest of this chapter presents the basic
notions that are needed and some clementary theoremns. Chapter 2 looks at
local C-varieties induced by various varicties of idempotent monoids. chiapter
3 reviews some interesting and useful properties of graph cougrucuces that are
needed to understand ¢Com, chapter 4 provides a combinatorial description of
languages recognized by locally commutative categories and some consequences
of that result, chapter 5 presents some elementary combinatorial proofs of
theorems about /R and ¢L and consequently describes the C-varicty of locally
J-trivial categories in terms of global C-varieties. Finally, chapter 6 discusses

some open problems and possible research directions.

1.1 Basic notions

We quickly recall that a monoid M is a set that is closed under an associative
binary operation defined on it which has an identity. The monoid is called finite
when the underlying set is finite. Given an alphabet X, the set of all strings of
finite length (including the empty string) with thie operation of concatenation
forms a monoid that is called the free monoid generated by 2.

A category C' is given by a finite non-empty set of objects Obj(C) and for

(@2}



every ¢, ¢y € Obj(C) a set of arrows from ¢; to ¢; denoted by Arr(cy.¢y). For
every arrow © € Arr(cy, ¢), we say ¢ is the start object of x and ¢, is the end
object of x. Arrow z is called a loop iff the start object and end object of @
coincide. Given an arrow z in Arr(cy, ¢) and an arrow y in Arr(ey, ¢3), there
must exist an arrow xy € Arr(cy, ¢3). Arrows 2 and y in this case are called
consecutive. Further, if z is an arrow in Arr(cy, ¢4), then x(yz) = (wy)z. This
defines a partial product on the set of arrows in the category that is associative.
With every object ¢ in the category, we associate an arrow 1, € Arr(c, ¢) such
that for every arrow z, whose start object is ¢ and for every arrow y whose end
object is ¢ we have x = 1.2 and yl, = y. It then becomes easy to sce that a
mounoid is just a category with a single object. A category C' is called finite iff
it has finite set arrows. This implies that the set of objects is also finite cven
though the converse is not true. Obviously, the set of loops around any object
in a category forms a monoid. Fach suchi monoid is called a base monoid of
the category. One can also form a monoid denoted by M from a category ¢
by saying that the underlying set of Mo is A U {0, 1}, where 4 is the set of
arrows 1n the category. The product in Mg of two consecutive arrows in 4 is
their product in C" and the product of two non-consecutive arrows is (0. 0 is the
zero element of the monoid and 1 is its identity.

A finite directed multi-graph! G = (V, 4, v, w) consists of a set V' of vertices.
a set A of directed edges and two mappings «,w : A — 1/, which assigns to cach
edge « the start vertex a(a) and the end vertex w(a) of that edge. Two cdges
a, b are consecutive iff w(a) = a(b). A path of length n > 0 is a sequence of n

consecutive edges?; we extend the mappings o and w to paths in the natural

!Note: Henceforth, by graph we will always mean directed multi-graph unless meuntioned
otherwise explicitly
2A path may and will often contain repeated occurrences of one or more edges

G



way. A path is said to be finite iff it has a finite length. For cach vertex v we
allow an empty path 1, of length 0 for which «(1,) = w(1l,) = v. The sct of
all finite paths between any two vertices v, w is denoted by G . It is casy to
see that the set of all finite paths, denoted by G*, where G* = {J, ey G}
forms a category called the free category generated by the graph G. The length
of a path x will be denoted by |z|, and the number of occurrences of an edge
a in x by |zl,. Often for two paths 2 and y, we would want to compare the

number of occurences of an edge a in them threshold t, modulo ¢, denoted by

=, where (x|, = |y|o iff either |z], = ly|, or the following two conditions
are satisfied: |x|q, |yl > ¢t and @], = |yl (nod)q, where (mod)q represents
modular ¢ counting. We will also be iuterested in the set of edges (letters) that
appear in path (word) x and this would be denoted by A(x), where A(z) C A

Two paths z,y are co-terminal, denoted x ~ y if a(z) = a(y) and w(x) = w(y).

A loop is a path x such that a(z) = w(z).

An equivalence § on the set G* of all paths in G is a graph congruence iff 2: 3y
implies © ~ y and x1 By1, x9 B2, w(x)) = a(ay) imply wywy Syiys. It is casy to
see that the set of congruence classes, G*/3, then forms a category. The objects
of this category are the vertices of G’ and for any v,w € V, the set of arrows is
given by Arr(v,w) = Gj‘,w/ﬁ For each path x, we denote the correspounding
congruence class containing @ by [2]s. We note that for every vertex v, the sct
{{x]s - 2 is a loop on v} forms a base mounoid of the category. [t should be
clear that every finite category C can be represented as the quotient of a free
category by an appropriate graph congruence. If thie category is represented as
C = (N, A), where NV is its set of objects and A the set of arrows, then one may
write C = G*/f, where G is the underlying graph and x 8y iff the sequence of

arrows in 2 and y multiply out to the same arrow in C. Iu this work, henceforth
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whenever we speak of a finite category, we would thus think of an underlving
graph and a congruence defined on its paths. Note that if G = (V7 4) is any
graph, then every congruence v in A" induces a graph congruence ¥ in (;* in
the following way: if 2 and y are two paths in G*, then 2%y iff © and y arve
co-terminal and z yy.

A relational morphism < ¢, ¢ >: C — D between two categories C' and D
consists of an object function ¢ : Obj(C') — Obj(D) and a morphism relation

P Arr(v, w) — Arr(vé, we) such that

ap # O for each arrow x in C.

lyg € Ly for every object v in C.

(x)(yy) C (ay)y for every two arrows z,y n C.

C' is a subcategory of D if ¢ and ¢ are injective functions. We say that C
divides D, denoted by C' < D, iff for any two co-terminal arrows 2 and 1y in
C,ap Ny # @ implies ¢ = y. It is not hard to see that when C aud D are
one-object categories i.e. monoids, this definition is equivalent to the standard
notion of monoid division that says monoid C' is a homomorphic image of a
submonoid of D.

We can define the direct product of two categories C' and D, denoted by
C x D, where the objects are given by Obj(C x D) = {(v,w) : v € Oby(C)

and w € Obj(D)} and the arrows are given by
Arr( (v, w), (W', w")) = {(x,y) v e Arr(o,0), y € drr(w, w')}

As introduced by [Til87], we define a C-variety to be a class of finite cate-

gories which is closed under division and direct product.



1.2 Inducing C-varieties from M-varieties

As monoids can be identified with 1-vertex categories in an obvious way. we can
introduce the notion of a category dividing a monoid from the above definitions.

We now state two easily verifiable facts below that will be used later:

Fact Given a graph G = (V, A), a graph congrucuce 5 for G* and a ftinite
monoid M | the category C = G*/F divides the monoid A iff there exists a
morphism y: A* — M such that the induced graph congruence ¥ refines 3.
Proof. Consider any path x in G*. The value of this path in C' is given by
[]g. Let [1]5, ..., [za]5 be classes of F that refine the class [x]s. Then each of
these classes have a value in the monoid that we denote by my,...,m,. We sct
the arrow relation 9 such that [z]gy = {m¥,...,mE}. Similarly, for path y in
G* let [yi]s, - -, [ymly be classes of 7 that refine the class [y]z. Then, for any
4,7 such that 1 < ¢ < nand 1,< j < m, we have 2 fx; and y By;, whence
xy B xy;. Hence for all such 1, j, the class [2,y;]5 is contained in the class [vy]s.
Hence it follows that the monoid element m#m? belongs to the set [wylye, forall
such 4, 7. This establishes [x]s¢ [y]s ¥ C [zylgy. I (2] N [ylzv # U, then
our definition of ¥ implies that there exists a 7 class that is contained both in
[¢]g and [y]p and thercfore it must be that @ and y are in the same congrucnce
class of 8. Thus C divides M.

In order to show that this is a necessary condition, simply observe that we
define v : A* — M to be the morphism generated by fixing for cvery cdge «.
a7y to be any one element in [¢]g¢. If 2 and y are two coterminal paths in G
then clearly a2y and y~v are contained in [z]g¢) and [y]gy respectively. Since C
divides M, xy = y7vy implies z 8y and we are done.

U

9



Fact Every finite category C divides the associated monoid M.

Obviously, if we restrict a C-variety to its L-vertex members, we then get an
M-variety. In general, there may exist several C-varieties which coincide on the

monoids they contain.

We can then form gV a set of finite categories containing cvery mouoid in a
M-variety V by defining gV = {C : C divides M for some M € V}. It is casily
checked that gV is closed under direct product and division and hence forms a

C-variety.

Another set of finite categories, denoted by ¢V induced from a variety V
of monoids is given by ¢V = {C : every base monoid of C is iu 'V }. I D is
any finite category in ¢V and C divides D, then one can easily see that every
base monoid of C' divides some base monoid of D and hence €V is closed under
division. One can also see that if C" and D are finite categories then every base
monoid of C x D is a direct product of some base monoid of C' and some basc
monoid of D. This establishes that ¢V is closed under direct product as well.

Hence it follows that ¢V is a C-variety.

Further, if we consider any category C' that divides a monoid M, it is casily
seen that every base monoid of C' divides M. We will see the converse is not
always true. This observation implies that for any M-variety V. the C-variety
gV is always contained in the C-variety £V. The C-variety corresponding to
V is unique iff gV = ¢V and in this case the variety V of monoids is said to
be locul. As we shall see, although this holds in several instances, this is not in

general true.
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1.2.1 Some examples of local M-varieties

We call a monoid M aperiodic if the monoid does not contain any groups.
Equivalently, there exists an integer ¢ > 0 such that every element 2 of the
monoid satisfies the identity 2¢ = 2T The set of all aperiodic monoids forms
a variety which is denoted by A. Categories that divide an aperiodic monoid are
called globally aperiodic and categories all of whose base monoids are aperiodic
are called locally aperiodic. We are now going to prove the following theoremn

from [Til87):

Theorem 1.1 FEuvery locally aperiodic category is also globally aperiodic. In

other words, the C-varieties gA and (A are identical.

Proof. We remind the reader that from facts stated earlicr, we know that
gA C (A. For showing the converse, consider the monoid Mg associated with
a finite category C' where C' is assumed to be locally aperiodic. Therefore,
there exists a t such that if we take any element x in Ao that is a loop in C.

2

L= g If o is not a loop then 22 = 23 = 0. Thus M is aperiodic. But

&

we know that C divides M. Hence C must be in gA. J

We will need to prove an interesting property about categories hefore we
can give the next example. Recall that for any directed graph G = (1, 4), a
subgraph G’ is said to be strongly connected iff for every two vertices v and w
in GG', there exists some path in G* going from v to w and vice-versa. Every
maximal strougly connected subgraph is called a strongly connected component.
Every graph can be uniquely decomposed into its strongly connected compo-
nents. Given a graph G, by G; we shall mean its ¢th strongly counected com-

ponent. A; would mean the set of edges contained in the th component. Let

11



B = {by,...,0} C A represent the set of edges which connect vertices in two
different compounents and let ¢ represent the number of such edges. For a cate-
gory C = G*/3, we will denote the subcategory G /5, by C;, where 3, refers
to 4 restricted to paths in G7. We are now in a position to state the following

theorem that first appeared in the work of [TW85] and later in [TiI87].

Theorem 1.2 For each non-triviel M-variety V, any category C = G*/5 is

in gV uff each of the subcategories Ch,...,C,, are in gV.

Proof. If C divides a monoid M in 'V, then from fact 1.2 we know that there
exists v+ A* = M. We can induce naturally v : 47 — AL, where ay, =
for any a € A;. Clearly 7; refines f; and M; = A /v, divides M and hence is
in V. This proves the right to left direction.

For the other direction, we can again use fact 1.2 to assume that therc
exists y; : A7 — M,;, where M; is in V for each i. Let M’ be any non-trivial
monoid in V and m' be some element other than identity in A'. We consider
the morphism v : A* — M} x My x ... x M, x (M")' = M. So M has n+ ¢
components, each one of the first n for the correspounding strongly connected
component and then ¢ copies of M’ one for cach edge in 8. For any 1 in A,
let [rn]; represent the jth component of m. We fix for every « € 4, [av); = av

and [ay]; = 1 for cach j # 4. For the edge by in B, we fix [by], = o/ if

¢ = n+ k and 1 otherwise. Let @ and y be co-terminal edges in G* such that
xy = yy. Then they can be uniquely factorized as v = wpby ) ... by ), and
Y = Yobsyyr ... bs,y, where x; is co-terminal with zy; = y7,. Since cach 77

refines f;, we have x; 8; y; for every 4 and consequently x 5y. This shows that

7 refines 8 and we are done. O
Our next example is taken from [TWS85].
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Example 1.2. Let H denote some non-trivial M-variety consisting ouly of
groups. Let C = G*/f be any finite category such that all base monoids of
C belong to H. In this case we want to show that C divides a group in H.
Using theorem 1.2 we can assume that G is strongly connected. In this case
we would show that C in fact divides each base nmonoid (in this case a group) it
contains. We arbitrarily choose a vertex v in G and for every vertex o; in G we
choose paths x; and y; such that «(2;) = w(y) = v, w(w;) = «y) = ¢, and
yix; B 1, Let v : A* = M, be the morphism generated by fixing for cvery
a € A, ay = [1;ay;lp, where afa) = v; and w(a) = v;. It s easily seen that
for any path @ in G*, we have oy = [w;2y,], where «(2) = ¢, and w(e) = ¢,
If « is co-terminal with y and @y = yv, then w;uy; 5 2yy; and multiplying on
the left by y; and on the right by 2; we obtain « fy. Thus 7 refines 8 and hence
C divides M,. This implies gH = (H.

1.2.2 Examples of non-local M-varieties

Example 1.2. Let V = 1 be the M-variety consisting of the 1-clement monoid
only. Then for every graph G, G*/f € gl iff 5 and ~ coincide. On the other
hand, let B be the subset of those edges of G for which start and end vertices
belong to different strongly connected components. Define @ vy it & ~ ¢ and.
for each b € B, © = xybx| it y = yyby,. Clearly, G*/f is in €1 but not in gl if
B is non-empty. Now consider an arbitrary category C = G*/§ € (1. Let o
and y be any two co-terminal paths not containing any edge b € . Then there
exists a path w from w(z) to «(x) since they are in the same strongly connected
compouent. Thus x Syww By. Hence, v reflines S and we thus observe that
G*/p € ¢1 iff v C . An interesting consequence of this observation is that

¢1 C gV whenever 1 C V. Indeed an edge b of B can appear in a path zero or
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one time only: if M is a non-trivial monoid, i.e. M contains an elemeut 1 # 1.
it can be used to distinguish paths in which 0 occurs from paths in whicli it
does not, by mapping b to m and every other edge of the graph to 1. Taking a
direct product of |B| copies of M insures that we can recover the equivalence

class (in y) of a path from its value in MBI,

Example 1.2. Let V = Com, the variety of all commutative finite monoids.
On any graph G, define @ v, 4y iff & ~ y and for each « € A either (Jx], < ¢ and
lele = lylo) or (Jz]le = tlyle = tand ||, =, |y

« where =, denotes modulo ¢
equality). It can be shown that G*/f8 € gCom ift v, , C /5 for some t > 0,4 > 1.

Oun the other hand, consider the following graph G-

[+
o

define 2 Sy iff © ~ y and (Jz] < 3 and 2 = y) or (la] > 3 and « ~ y). Then
G* /3 € ¢Com but not in gCom.

This example is in some seuse generic as [TW85] proves that a category '
is in gCom iff it satistics wyz = zyr whenever @ and 2z ave co-terminal: this
result is combinatorially quite delicate to obtain. By definition, a category ¢
is in ¢Com iff xy = yx for every two loops x,y on the same vertex. The above
example shows that knowing the number of occurrences of each edge in a path
is not enough information to characterize the value of the path in a locally

commutative category.
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1.3 Syntactic category and some allied notions

We briefly introduced the notion of finite monoids recoguizing languages through
homomorphisms from the free monoid generated by an alphabet. We also re-
called that every language defined over an alphabet induces a minimal monoid
called the syntactic monoid of the language. In this section we want to extend
these ideas to the notion of finite categories recognizing languages in G*. For-
mally, every language L C G, induces a congruence that we call the syntactec

L where oty iff for every w, v in G*, wxv in

graph congruence, denoted by -y
L implies uyv is in L and vice-versa. The category G*/+" is called the syn-
tactic category of the language L. Conversely, just as in the case of monoids.
a finite category C' recognizes languages through relational morphism from G*

to C, such that the object function is injective and the morphism relation is a

function.

The central theme of traditional algebraic theory of automata is to study
relationships between the algebraic structure of monoids and combinatorial de-
scriptions of languages they recognize, and here we would like to conuect the
algebraic structure of categories and combinatorial descriptions of languages
they recognize. The variety of categories we will study in this thesis will he
either locally or globally induced from some variety of monoids as explained

before.

If v is any graph congruence, then every language that is a union of some
cougruence classes of v will be called a y-language. For cachh M-variety that we
consider in this thesis, one already knows the existence of a family of congru-
ences, that characterise languages recognized by monoids in that variety. Let

~y, denote a congruence from the family such that the syntactic monoid of



a language L in X% is in V* iff L is a ~y,-language for some ¢ > 0. Then
from discussions in the previous section, it is clear that languages recognized
by a finite category C in gV are v, -languages where x4, y. whenever @ and y
are co-terminal paths and © ~y,; y. Thus, everytime we show for a M-varicty
V, IV = gV, we obtain as a corollary a characterization of languages recog-
nized by categories in gV. However to characterize the languages recognized by
categories in £V, when V is not local, one has to explicitly work out the combi-
natorics over graphs. In chapter 4 on {Com, we will provide a combinatorial

description of that kind.

“From Eilenberg’s variety theorem one can conclude the existence of one such congrucuce
family for every M-variety
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Chapter 2

Sub-varieties of locally
idempotent categories

In this chapter we consider local C-varieties induced by some sub-varvicties of
idempotent monoids. In particular we look at ¢Ay, ¢J1, {R; and ((Ry Vv Ly).
In cach case we show that it coincides with the corresponding global C-variety.
It follows from the work of [JS92] that for every M-variety V of idempotent
wonoids gV = (V. However, in this chapter we present independent argu-
ments establishing the locality of the following M-varieties : Ay, J1, Ry and
¢(Ry V Ly) . Our arguments would always crucially use the existing knowledge
of algebraic identities characterizing the concerned M-varieties and the congru-
ences that describe the languages recognized by them. We start off by recalling
an argument that is due to [BS71] and again appears in the treatise of [Eil70]

for the C-varieties induced by Jj.

2.1 The variety (J,

J1 denotes the variety of all idempotent and commutative monoids. Note that

any finite monoid M that is not a group must have an idempotent ¢ other than
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the identity element. It can be verified that every monoid N in Jy divides the
the direct product UENi, where U; denotes the monoid ({1, ¢}, ). The variety J,
is contained in every M-variety that is not a variety of groups. In particular. it
is the smallest variety of idempotent mounoids. Oue can also verify quite casily
that Jq recognizes ~j -languages where the congruence is generated in X by
the following condition: © ~, y iff A(z) = My).

Given a graph G = (V, A), let 8/t represent the smallest graph congruence
generating a category all of whose base monoids are in J;. Such a congruence is
generated by the two following identities: zy 87t ya and 2 67t 22 whenever 2 and
y are loops in G*. Clearly, £J; is contained in £Com. From example 1.2.2 . we
know that gCom is not an upper bound for £Com. [t turns out one can casily
show that ¢J; € gCom modulo the characterization obtained for gCom in the
work of [TW85]. Let zyz be any path in G*, where = and z are co-terminal

paths and hence wy and yz are loops. Thus,
(wy)z 070 wlyx)(yz) 07 (wy)(zy)e 070 2(yx)(yx) 07 zyu

As noted in Chapter 1, xyz = zyw is the generating law for globally commu-
tative categories and hence the upper bound claimed carlier follows. However,
we shall give a much sharper bound for ¢J; that was known from the work of
Simon ([BS71]) long before gCom was characterized. Before doing so, we shall
prove slightly stronger versions of two lemmas that appear in [Eil76].

Consider the graph congruence 6%1 generated by conditions: zyx 6% xy and

x 0% 22 for every two co-terminal loops = and y. We can now state our lemima:

Lemma 2.1 Ifz and y are two consecutive paths (i.e.w(w) = aly)) and AM(y) C
Ma), then there exists a factorization x = wox), where afe) = w(y) and

w(z)) = aly) and z 68 zyz,.
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Proof. If y is the empty path at the end of 2, then the lemma reduces to
the trivial statement z 6% z and we have nothing to prove. We shall prove
the lemma now by inducting on the length of y. Let |y| > 0 so that we write
y = y'a, for some edge a that occurs in z. Hence, we can write & = ayoay. [or

some &y, 3 in G*. Also from our induction hypothesis we have

o 0wy = sy’ (2.1)
Duplicating the loop axsy’, we have from condition 2.1

g ! .
@ 0 wyaayyaryy'c, = wyrsy'e (

[N
[N
—

Applying the induction hypothesis 2 07 wy'2, to condition 2.2 we get
ppiying ! Yy g

—
N
o~

b

0" w(y'a)) (yas) (y'ay)
Note the bracketed entities in condition 2.3 are all co-terminal loops and thus
applying the generating condition of 0% one finally gets = 070 ay/x yay %0 wyuy.
This establishes the lemma. O

We specialize the lemma above to the following result below

Corollary 2.2 If x us an arbitrary path, then for cvery loop y at the end of @

satisfying My) € Ax) we have x 0wy (and v 070 )

Proof. In this case from lemma 2.1 we get o 0% wyay, where @ = wgr, and

both 2, and y are loops at the end of . Thus 6™ wowya, 0% wyay = ay.

To show that 2 67t ¢, we simply note that the congrucnce 8 refines 670 and

we are (1()11(‘,. D
Let 47/t be the congruence in G* gencrated by the condition a v/t 4 iff the set

of edges that occur in 2 1s the same as the set of edges occurring in ¢ and the
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paths 2 and y are co-terminal. We are now in a position to prove the following

theorem.

Theorem 2.3 The syntactic category of a language L C G is o 0Jy iff L is

a vt -language.

Proof. The direction from right to left is immediately established by just
observing that z 7t 22 and zy v/ yx whenever = and y are loops.

For the other direction, consider a locally J; category, ¢ = G* /07 Lot
two co-terminal paths z,y in G* be related by = /' 4. We want to establish
z 67 y by inducting on the length of z. If || = 1, then y could only contain
a single repeated loop-edge and we immediately have the result. Otherwise
consider |z| > 1. Let w and v be the start and end vertex of 2 respectively.
Cousider the subgraph G, = (V, A,) of G, where A, = A(x) = AMy). In this

case consider Vi, to be the set of vertices that arve reachable from ¢ in G Let

v. We split our argument into following two cases:

o Let w lie in V,. In this case, let w be a path in G from v to w. Then
from corollary 2.2 one gets 2 8/t zwy and y 0/* ywx. Cowbining them

together, one gets
v 07 zwy 07 (vw)(yw)ex 070 y(wa)(wx)e 07 ywa 070y

Note that the bracketed entities in each step are co-terminal loops.

*

e Let w liein V' e, there are no paths in G from v to w and hence they
liec in two different strongly connected components. On the other hand

since both z and y go from w« to v, it must be true that there exist unique
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factorization for x and y, such that © = zyaxy and vy = yyay, with the
edge a such that its endpoints «(a) and w(a) lie in V' and V, respectively.

J1

Thus we can say that zy v/t y; and 2, /'y, and from our [H we get

x, 070 y, and 2, 0% y, from which the desired result follows.

This proves the theoremn. L]

Hence in particular, every category all of whose base monoids are in J
) . 1

divides some monoid in Jy, whence ¢J; = gJ.

2.2 Categories in /R; (/L)

We now want to move up in the lattice of idempotent varieties of monoids
and consider categories induced by the M-variety Ry. It is easy to sce that
the congruence 6% introduced in the last section is the smallest to induce a
category in ¢R; for any graph G. Here we introduce another congruence y/®
that is used in the theorem below for describing the languages recognized by
locally R; categories. We say o v/ y iff for every prefix 2/ of 2 we have a
prefix ¥ of y such that A(z') = A(y') and vice-versa, where x and y are co-
terminal paths in G*. Note if z and y are related by this, then they must start
with the same edge. In other words, the longest comion prefix of a0 and ¢ has

length at least one, provided 2,y are non-empty words.

Theorem 2.4 The syntactic category of a language L C G* is in (Ry iff L is

a v -language.

Proof. The direction from right to left is easy and left to the reader.
For the other direction, consider z % y. Let y = yy. Our strategy is to

keep growing the longest common prefix of « and y;, by successively changing
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Ity for all 4. Thus. for some > 1.y,

y; to yi 1 so that y; 0™ gy and @ vy
would have @ as a prefix and then applying corollary 2.2 from the last scction.
we obtain that © 6%y, and this would finish the argument. Hence. the only
remaining thing is to show that one can always obtain y; ) from ;. satisfving
the condition stated above. Let p; denote the longest common prefix of « and

yi. Let x = pjaz’ and y; = piby’. If a = b, then we have nothing to show. So

consider a # 0. We split our argument in following two cases:

e « does not occur in p;. This means that y' can be written as ¢ = z,a2,
where A(bz;) € A(p;). Note that bz, is a loop at the end of p; and
Ry

hence p; y™ pibzy which implies 2 = pjaa’ ™ pjaz,. Now applving
corrollary 2.2 we get p; 01 bz, and thus setting vy, = puazy we are

done for this case.

o ¢ occurs in p;. In this case we could write p; = wy(aw,) 0" wgaw,au, =

piaw;. Thus, setting y;.1 = p;au by’ does the job.
This completes the proof. O

The theorem above establishes the equality of C-varicties (R; and gR;y.

Very similar arguments yield the identity ¢L; = gL;.

2.3 R; V L; is local

The M-variety R; V Lj is the join of the varieties R; and Li. This mecans
that we take the union of the set of monoids in Ry and the set of monoids in
L, and then take the closure of this set under direct product and division of
monoids. It follows that the congruence corresponding to the variety Ry v Ly.

is the intersection of the congruence corresponding to Ry with the cougruence

N
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corresponding to L. Hence the syntactic monoid of a language Lisin Ry \/ Ly
iff L is a ~p,vr,-language, where ~p v, is the congruence generated by the
following condition: for any two words « and y, @ ~p vy, y it @ ~p ¢ and
x ~g, y. In other words, two strings are ~p v, related iff the order in which
new letters appear in one of them is the same as in the other, irrespective of the
way we scan the words. It can be shown that the identities for this M-variety
are given by 2 = 2% and ayxza = wyza.

We are now interested in looking at the languages recognized by categories
in the C-variety ¢(Ry Vv Ly). Let 8VE be the coarsest graph congruence gen-

2

v wyza and @ IV g2

erated by the following condition on loops: wywza 6
where x, vy, z are arbitrary loops.

Let yfVEs denote graph congruence satisfying the following condition: 2~V
ift © and y are co-terminal and © ~p vy, ¥ when z,y are treated as strings in
A*.

In this section, we want to prove the following result:

Theorem 2.5 The syntactic category of a language L is i ((Ry vV Ly) off L s

a YV Janguage.

The direction from right to left is casily obtained by observing that g%V

BVl The other direction is somewhat technical and we will have to

refines -y
develop some more results before we can prove it. We will state a result here

that easily follows from the theorem given in the next section.

Proposition 2.6 If C = G*/f is any locally idempotent category (i.c u5u?
for all loops u), then zvr Bz if A(v) C Ax).

We now want to show a result that is the key lemma of this section and in
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sonie sense is a natural generalization of corollary 2.2 given iu the last scction.

to the case of £(Ry Vv Ly).

Lemma 2.7 Let usw be a path such that s is a loop satisfying the condition

A(s) C AMu), Mw). Then, usw 0VE

Proof. If s is empty, we have nothing to prove. Otherwise, let ¢ be the last
edge of s. Then, there exists some edge b in s such that it can be factorized as
s = pobpia and w can be written as u = webu', where A(s) € A(bu'). Note
that b = a is a special case of this for which, we would have written v = uyau'.
Here we will assume that b # «, as the other case is much simpler to handle.
once we have seen the arguiment for this case. Symunetrically, one can also write
s = d'q gy such that w = w'b'wy and A(s) C A(w'd'). We also note that hoth
bu'py and gow'l' are loops. Hence, by replicating cach of them twice, one cau

write the following:
wsw VI b pobu pobu sw'l qow' gy w' b wy (2.4)

For compactness, we put u, = pobu’ and w, = w'l'¢y in equation 2.4 to get the

following:

wsw 05V ugbu! (uy)?s(wy) w'V wy

—
NS
(1]

~

Since the edge 0" occurs in s and we know that A(s) C A(bu'), it tollows that
b also occurs in bu’ and we can write bu' = pyb'p. Hence, using cquation 2.5

one can write
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usw OV g pol py () s(wy) 2wl wy
= usw VI wopab g () s (wy) 2wl py () s (w,) 2w b wy (2.6)
= usw VI wuppel py (uy)? swpbugs(wy) w'bwy = x (2.7)
= = wopol w0’ 2, 0wy (2.8)
where, wy = (w,)*w" and up = py(u,)?. We will now think of # in equation

2.7 as having two symmetric parts - the left and the right and these are called
i equation 2.8 @, and @, respectively. We will focus on the segmment (uy)*s of
x; on the left and s(w,)? of x, on the right. We will explain here what we do
on the left and completely dual arguments would apply on the right. Let us
recall uy, = pobu’. Since every edge that occurs in s also occurs in bu', we can
write uy, = pobujaus, where a is the last edge of s when scanned from leflt.
Hence (u)?s can be written as pobujausbu’spa. Observe that usbu’ and spa are
co-terminal loops and since uybu' occurs twice in x, (once in z; and once in 2:,.),

we can insert another uobu’ in the middle. Thus, we can write the followine:
2 ) g

ax 0VET w00l prpebu ausbu' spausbuwg b, Dlwyg (2.9)

Since A(s) C Aauybu'), we can apply proposition 2.6 to equation 2.9 and

get

01\’1\//‘1

X wopol pLpobuy ausbu' w2, 0w,

= g gVl '11,0/)01)’/)1(’zl,‘,)2/11%])'.'1.&,.1)"1110 (2.10)

Now we can apply very similar arguments for the segment s(w,)?* in 2, to

equation 2.10 and obtain



o 0FVE g pol py () 2w g (o) 2w’ wy (2.11)

Expanding wy and wuy and shrinking (u,)* and (w,)? to w, and w, respec-

tively:

x OFVE g0 (U pruswaw’) (U prugw w0 wyg

= x 08V yyp0b prusww'dw, (2.12)
Recalling pob'p; = bu’ and expanding u, and w, in equation 2.12
usw  OVEC gy (b pobu) (W'l gow'V ) w, (2.13)

Recall that both bu' and w'V contained every edge in s. In particular they
contain all edges of py and gy which we recall to be just segments of 5. We can

hence apply proposition 2.6 to the bracketed entities in equation 2.13 to obtain

usw OV gy (bu'w' b wy) = uw (2.14)

This completes the argument. ]
We now obtain the following result using the result above:

Lemma 2.8 If v is a loop at the end of u and wv~y"VE w, then wo @0 VE 4.

Proof. Clearly, in this case AM(v) C A(u). Also note that since uw %Vt
if w and v are non-empty, then v and uw must end with the same letter. Our
strategy in this case would be to grow the length of the common suftix of we

and u gradually by changing v until one of the two following things happen:
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1. We have transforined v to v such that wo 07V wo' and u is o suffix of o',

In this case uv’ = vwu and AM(w) C A(u). Hence applying proposition 2.6

we get uo' 9V gy,

2. The other case is v has been transformed to o' such that ¢ is a sullix of

w. In this case wv 08 VE v’ = wug(v')? OFVE g = .

Thus in both cases we get the desired result. Hence the rest of the argument
boils down to showing that we can continously go from wv to wo’ such that
wv 0%V 4’ and the common suffix of v’ and u has grown in length. Assune
that the common suffix to start with is p. Then uwv = wvgap and v = ugbp.
If b = a we are done. Hence, assume b # a. We now have two cases. 110
has already occurred in p, then uv = wwgap,bpg 8 VE wvgap, bp bpy = wv bp,
where vy = wvgap;. Thus setting the common suffix to p' = bp, we are done.
We are thus left with the case in which b does not occur in p. In this case there

are two possibilities. The first is, b does not occur in v at all. Note in this

case, clearly v = wvop and A(vg) € A(p) siuce the order in which new cdges

appear from right to left in wv and w are the same. Thus,we get we = wypugp.

Hence applyving proposition 2.6, we get we 00VE wyp = v and we are doue.
J ; )

The second possibility is v = wobviap. Again, AM(via) = A(p) and vya is a loop.
Thus we can apply lemma 2.7 to get uv = uwobvap 8VE wugbp and we are

done. 0

We shall now prove the main theorem of this section.

Proof of Theorem 2.5: Let us assume that x~y%Vi

iy, where o and ¢y are
arbitrary paths. Let y = ;. We want to find a series of pathis y; such that
y; OFVELC g Let p; represent the longest common prefix of 2 and ;. Then

we want |p;| < |piy1]- Thus for some n, z itself is a prefix of y,. Since §#1Vi
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refines yVEL we can apply lemma 2.8 to obtain the result @7 VEe gy, glavie .y,

and we are done. Thus, the whole argument boils down to finding y;,,, given
y,. Let o = p;ba’ and y; = piay’. If @ = b, there is nothing to show. Assume
a # b. There are several cases to consider. Assume b occurs in p;. In this case
v = wbw'ay 08V whw'bw'ay' = pibw'ay’ = v, Otherwise, let b not oceur
in p;. In this case we can write y; = puby’, where v is a loop and every edge
in v occurs in p and v does not contain b. If no edge of v occurs in ', then

clearly p; vYE p, since we know @ fVEs g Thus applying lemma 2.8 to g,

and p;v we get y; = poby @5VE byt = g and we are done. Otherwise, let
) - Y 1 Ve S+ b

¢ be some edge in v that occurs in y'. In this case, ¢ also occurs in p; and let

pi = wew', y' = wvgevy. Thus, we get
i = wew' vbugev, 0V wew vhugew vbugeu
i 0CU] 0 0CUy
=y 0VEL bt (2.15)

where t = vypcw'vbugev, and clearly every cdge that appears in v appears in f.
Thus applying lemma 2.7 to equation 2.15 we get y; 0%V pibt = gy and we

are done. O

2.4 A, is local

Our arguments are based on the work of [WT8G]. For cvery word @ let ap
(xs) represent the longest prefix (longest suffix) of @ such that AMup) # A(x)
(Mrs) # AMa)). We define a congruence ~ 4, in A* by saying that @~ ¢ ifl
AMa) = My), p ~a, yp and 2s ~4, ys. Note for non-cmpty words @ and y.
x ~4, y implies that they start and end with the same letter and hence @ and

y have a common non-empty prefix and suffix. The following remarkable fact
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can be traced back to McLean and Green-Rees and also appears in the work of

[Bil76]:

Theorem 2.9 The syntactic monoid of a language L is finite and idempotent

iff L is a ~ 4, language.

We can then induce a graph congruence from ~ by iimposing couditions of
coterminality and denote it by v, Given a graph G = (V, A), let the coarsest
congruence in G* that induces a locally idempotent category be denoted by ¢4
The generating identity for such a congruence is given by x 6 22 for cach loop

2 in G*. The first thing to observe is the following easy fact:

Fact 6% refines y41.

The non-trivial thing to show however is the other direction:
Lemma 2.10 % refines 64

Proof. We will use nested induction to prove the theorem. We first note that
if we restrict ourselves to paths © and y such that A(x) < 1, then the result
is obviously true. Now we will induct on [A(x)]. We first make the following
claim: If w vy vw, then there exists w' in G*, such that uw ' vw’. We show the
claim by again inducting on the size of A(v). Since w and v must begin with the
samne edge, the desired result immediately follows in the base case of [A(v)]| < 1.
Otherwise, let vy be the longest common prefix of w and v. If vy is the entire
path v, then there is nothing to show. If not, then we can write v = vyav; and

u = vou'. We split into two cases:

e If a does not occur in vy, then from the definition of v it follows that

u' can be factorized as wyaus,. Then one can write v = wugauy, where



ug = wou; and a does not occur in wy. Hence ugvy?* vy. Note that
[A(v0)] < |A(v)l and so from our induction hypothesis we obtain vy 6w,

and hence u 8™ vyaus,.

e [f ¢ occurs in vy, then one can write vy = wvyavs. Thus,

w = vpavsu' 04 vyavsavyu’

as avs 18 a loop.

Hence in all cases we can write u 8 w,, where the common prefix of w,, and
v has grown in length. Since we know that 844 refines v, we can repeat this
until the common prefix coincides with v, which establishes the claim. It is casy
to see from symmetry that vy vw also implies w6 w'w for some ' in (.
Consider vy y. From the claim, it follows y 6" 22 for some z. This means
w4 2z, The symmetric form of the claim then gives 10" wz for some w.

Since z is a loop, we get © 04 wzz 04 xz, whence finally 2 6 y. ]

[t is interesting to note here that [JS92] have shown that every monoid vari-
ety satisfying the identity ™! = 2 for some n > 0, is local if labels appearing
in its “Polak ladder” are all local. They have then been able to show as a corol-
lary that any non-trivial M-variety consisting of mounoids whose idempotents
form a submonoid!, is local. It then follows that every varicty of idempotent
monoids is local. Jones and Szendrei use the powerful theory of completely reg-
ular semigroups developed in [Pol85], [Pol87] and [Pol88] and conjecture that

every nou-trivial variety of completely regular monoids? is local.

'such monoids are called orthogroups and the variety of all such monoids is denoted by
oG

N . , . oy

“monoids that are unions of their subgroups
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Chapter 3

Some results on graph
congruences

In this chapter, our objective is to present some properties of two graph con-
gruences that help us characterise the C-variety gCom in terms of algebraic
identities. All of these results first appeared in [TW85] and then in the hook of
[Str94]. We mildly strengthen lemma 3.8 and 3.9 from their original form in
[Str94]. The results in this chapter also prepare us to take ou locally commuta-
tive categories in the next chapter.

Note that we can form an infinite family of sub-varieties of Com by con-
sidering variety Comy g whichi is generated by following identities on loops:
b = 2! and vy = ya. As a byproduct, at the end of this chapter we give

another argument for the locality of J; by observing that Jq is identical with

Comlyl.

3.1 Free globally commutative categories

Let G be a graph and define on G* the congruence @ yoo y iff 22 ~ y and ||, = |y,

tor every edge a.
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Let also 6 denote the coarsest congruence satisfying wyz 6 zya whenever
x and z are two co-terminal paths in G*.
The following lemma shows that 6., characterises free globally commutative

categories.

Lemma 3.1 For two paths © and vy, v vs y iff 2 0y.

Proof. It is straight-forward to sce that 0 refines vo. We will show the other
direction by induction on the length of paths. For jx| = |y| = 1, the base case
of the induction, it is obvious. Let £ > 2 be a positive integer with |z| = |y| = k.
If 2 and y begin with the same edge a, then we have © = ax’ v, ay’ = vy, which
implies that 2’ v. v and applying the induction hypothesis we obtain 2/ 0 v/'.
whence z 0y y.

So we are left with the case in which 2 = ax by, and y = by ay, where a
and b are two different edges. If x| is empty, then y 0. abyy, = v as a and by,
are loops around the same vertex. As 2 and ¢’ begin with the same edge a, we
can apply the arguimment of the previous paragraph and obtain @ 6. v 0 y. So
we assume that 2y is non-empty. Let 2p = wjuy . .. uy, where everv u; is an edge
in G. If uy occurs in yy, then y = bwiuwsayy 0o auywibwyy, = v as a and
bw, are co-terminal paths. Since ¢ and 2 begin with ¢ we are done with this
case. If uy occurs in yy then v = by aw y,wy O awybywy, = o' as awy, and
by, are loops around the same vertex and we are again done as in the previous
cases. Otherwise if there exists an ¢ with 1 < 4 < s such that w,, ..., u,—, occur
in 4, and u; occurs in yy, then y = bwuweav u;_ 109 Oo a1, _  uswobw vy =
as bwy and avyu;—; are co-terminal paths and now considering = and ¢y we are

done as before. d



Lemma 3.2 If © s a loop with

xly = 0(mod)q for cvery edge a, then there

exists a loop y such that x oo yY

Proof. Every edge a occurs ngq times in 2, where n, > 0 is some number. We
create a new graph G having the same vertex set as G by replacing every edge
a in G' by n, co-terminal edges that are denoted by a,,...,a,,. The loop x in
G thus gives rise to a circuit in G’ such that each edge in G’ is repeated exactly
¢ times. This implies that the in-degree of every vertex in G’ is the same as its
out-degree. So there exists an Euler loop co-terminal with & denoted hy ¢ that

traverses cvery edge of G' exactly once. Clearly v v/ C

Lemma 3.3 If x and y are paths in G* such that ||, < |yl, for cvery edge a

in G that occurs in x, then y0s uxv for some u,v € G*.

Proof. We show this by induction on the length of the path . For |u| = 0,
it is clearly true. Cousider || > 1. In this case let x = 2'a where « is an
edge in G. From the induction hypotheses we have y 6o, ua’v for some w, v such
that jul, + |v], > 2. The first case is when |ul, > 2. Then y 0y wgau aua'e.
Since au; and ausx’ are loops around the same vertex we commute them to
get y O ugaugx'auv and we are done. Next, cousider the case |ul, = |v], = 1.
Then y 0y ugaux'vgav,. In this case au 2’ and vy are loops around the same
vertex and so exchauging them we have y 0 upvpau,2’av; and we are agaiu
done. Finally for the case |v|, > 2 we get y Oua’vyav,avy and by interchanging

the loops vy and av; we get y by v’ av vgavy and this completes the proofl. O

Lemma 3.4 If 2 is a loop at the end of y such that every cdge a in (0 occurs
at most once in x and for every edge a that occurs in x, |yl >t where t > 1,

then y s uat for some u in G*.
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Proof. We prove this by induction on t. For ¢t = 1, lemma 3.3 gives vy 0o uav.
But in this case 2 and v are loops around the same vertex and so we have
Y Boo uvx and we are done. Let ¢ > 2. In this case from our induction hvpothesis.
we get y by pr'™t, for some path p. For each edge « that occurs in x, we have

lyle = Iple + t =1 > ¢, since a occurs at most once in 2. Thus for every such

edge a, we have |u], < |plo. Applying lemuna 3.3 we get pOy poapy. whence

!

we have y 0 poxpra'™!. Since z is a loop, we finally obtain y 0 ux', where

U = Pypi. O

3.2 Finite globally commutative categories

In a finite category C' = G*/f, every base monoid is finite. One would thus
have from the pigeon hole principle, some ¢ > 0 and ¢ > 1 such that @f 32t
for every loop = in G*. Formally, we generalize 6 by sayiug that 6,, repre-
sents the coarsest graph congrucence satisfying following conditions: wyz 6, , zyu.
whenever o and z are co-terminal and for every loop x, we have @' 0, , /9.

In this section we prove the following theorem that was first proved in

[TWS5]:

Theorem 3.5 Category C' = G*/3 is globally commutative iff 3 is refined by
04 for somet > 0 and g > 1.

Let 7,4 be the coarsest congruence satisfying @y, v iff 2], =, |yl. for
every edge a and © ~ y. Note that in the above theorem if C is globally
commutative then by definition, it divides some finite commutative monoid and
hence f is clearly refined by ~,, for some ¢ and ¢. One can easily verify that

0, refines ., and this gives the left to right direction of the above theoreny.
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The other direction is much more delicate to obtain and we first need o

prove some lemmas.

Lemma 3.6 For every graph G = (V, A), given a t > 0, there exists s de-
pendent on G and t (we write s = s(G,t)) such that for cach path 2 in G*,
|z, > s implies © 0y play)tw for some p,y,w in G*.

Proof. Let s = |V|+t(24 — 1) + 1. In this case for any 2 that has more
than s occurrences of edge a, we can write & = wyawy ... arute.) = Ut .
where ' = wxga...az,; and no x; contains any occurrcnces of a for i < 5. We
shall call each ax; (where ¢ < $) an a-zone. Since we can commute loops.
we can assume w.l.o.g that all the vertices that appear in 2/ also appear in

w = weal,q...ax. Consider any 7 such that
QLY V] .

Vi < j < s and ax; has
a loop in between. In other words we can write ax; = wyw w,, where w,
is a loop. Then from our assumption, we can factorize « as ugu, such that
a(uy) = a(w;) and hence commuting loops wiaay g ... wy and wy, one gets
UGUWL UL ATV |41 - - - WoW2ATj41 - . . ATeq1. Continuing in this way, one can ensure
that finally, for all j in the range given by |V]| < j < s, ax; has at most one
occurrence of any edge in A. But then from our choice of s, there must be at
least t instances of a-zones which have the same set of edges occurring in them
and hence are v, equivalent to each other. Let them all be equivalent to ay for
some y. Using the equivalence of v, with € and commuting loops. one can

thus write x 0 p(ay) w. O

Lemma 3.7 Given o graph G = (V, A), and r > 0, we can find m dependent
on G and r (written m = m(G,r)) such that for every path x,y in G* .2y, y

implies that there exists a path z in G* satisfying the following : ||, <

od
4

o« for

every edge a in A, v, 2 and 20, 4 y.



Proof. We choose m(G,r) = s(G,r) + 1, where s(G,r) comes from lennma
3.6. Let 27, v aund let A" = {a

ale > lylo}'. Take any edge a from 1.
Then « occurs at least m thes in oy, This means using lenma 3.6, we goet

Y oo plav) w b, , plav) ™ 4w = y;. Here we have chosen k such that » + kg >

One can see that any edge occurs in y; at least as many time as it oceurs
in y. Thus, each edge in A" oceur in y; at least 1 times and we can repeat the
argunient, once for each edge in A’ Hence, let 2z =y and it can be casily

verified that z satisfies all desired conditions as m > + and 6, , refines v, . O

Observe that ¢, , can be thought of as a rewriting system. If a path y can be
obtained from path x using rule for exchanging co-terminal paths (i.c wwov —
vwu, where v ~ ) and rule for loop replication (u* — «'"9) without using loop

deletion (¢t — wt), then we write z <Y

g Y- It is atrivial observation that

x ,q y implies w6, ,y. Clearly z <! v implies for all a € A,

[(/ :l;’(l S iylu

Lemma 3.8 If v is any path in G* and v 1s any loop al the end of y. such
Iy Y1 Yy / )

that for every edge a of G that occurs in x we have

Yo > 5 for s 2 L. then

y <4 ¢yt for every ¢ > 0.

Proof. We will prove this by induction on the length of . For |« = 0. it is

obviously true. F

, if for every edge a, |z}, < 1, then lemma 3.4 gives us

Yy 0o ux® _<_§’q uz® 6, ya? and the result follows. Now if |2, > 2 for some edge

a, then let @ = wouwywq, where ) is a loop. In this case |o], [wyan] < o], Hence
applying the induction hypothesis to y and xgx,, we get y </ o Ylagry)?. But
y(wowa)? = yxoro(wex2)? . Again applying the IH to yag and z; we get y <’ y

_ 1 . —1
Yo wy (xow) ™ O y(wow 20) wox o (woan)?™ 2. Here we have commuted @

f 4" is empty, then z = y and we are doue
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and zox9. We can keep doing this ¢ — 1 times to get y Sf,q y(roway)? = yxt.

U

Lemma 3.9 If for two paths x and vy, |z|. < |ylo for every edge a and zvi4y , y.

oy g <0
then w <{ .

Proof. We will prove this using induction on d = |y} — |x|. For d = 0, we

have

yla = |z, for every edge ¢ and so from lemma 3.1 we have 260,y and

hence x S?,r/ y. Counsider the case d > 1. Let « be the longest comnnon prefix
of v and y. Then ¢ = way and y = wyy. If 27 1s empty then |y, ], = 0 (mod ¢)
for each edge a and so from lemma 3.2, we get y 6 ww? for some loop w in G*.
And so lennna 3.8 gives us v = S(L},(, ww' fy y and hence the result.
Now consider the case when z; and hence gy, are non-empty. So we could
write © = wad’ and y = ubypayy, with ¢ and b being edges such that a #
b. 1If byy and y; have a vertex in common then bygay, could be rewritten as
bwywyavgw; for some wy, wy, ve, vy in G* such that bwy and avy are co-terminal.
Thus y 0 uavewbwgv, = y'. Now ¢’ and x have a common prefix that is longer
than v and we can repeat this argument until we find a path y* such that @ is a
prefix of y* or we cannot find the common vertex as before. The former case has
been treated already and so we consider the latter, whicli can he stated siinply
as byg and y; have no vertices in comimon.

Claim: If © = waz’ and y = wbypay, are two paths with |«|. < |yl. for
every edge ¢ and by and y, have no vertex in common, then @ and by, contain

no edge in common.

If the claim is false then we have a connmon cdge ¢ and so we could write

r = uax cry and y = wwycwoayy, such that no edge of 1y occurs in byy. I
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is empty then a(c) = «(y;) and so this vertex is common to byy aud y,. If @
is non-cmpty then the last edge of @ must occur in gy and again by, and gy,
would have a common vertex. So in both cases we have a contradiction. Heuce

the claim follows.

For each edge ¢, we have

byole + lyile =tq 12"]c. From the claim above and
the condition of the present case by, does not have any edge in common with
y1 or with /. Thus |byyl. = 0(mod ¢) for each edge ¢. Applyiug lenima 3.2
we have byg by (w)?, where w is some loop at the end of w. For cach cdge ¢
that appears in w we have |2'|, = 0 and hence |u|. > t + 1. Hence applying
lemma 3.8 to u and uww?, we obtain uay, Sf,q vwlay, 0o y.

Since byy and ' have no edges in common, we get |z|. = |uax!|. < |uay,].

for all edges c. If for any edge ¢ we have |uaz'|. < |uay,

o then juaa'l, <

uax’

|ubyoay, |, and hence ¢ > t+ 1 for all such edges ¢. Also for all cdges ¢

in the underlying graph, we have

wax'|. = lubysay | = Juay |, (modqg). Thus.
X Vg1, vayy and from our induction hypotheses we obtain Sig wayr <y,

ubyoay, = y and we are doune. Il

Now we are iu a position to prove our main theorem 3.5.
Proof of Theorem 3.5. We proved one direction earlier. Here we cousider
a category C' = G*/f such that for some t and ¢, 6,, refines 5. We choose
s = m(G,t+ 1). Consider two co-terminal paths 2 and y such that @, v
Then in this case from lemma 3.7 we get a path z, such that 2 v, 200400, v

with

z]e < |zl, for every edge a in the graph. Then lemma 3.9 gives us @ Oy 2
and hence z 6, , y. Thus, 7,4 refines 0, ,, whence it refines § and the theorem is

proved. n
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3.3 Consequence

We denote by 6% , the coarsest graph congruence geunerated by the following :

for all loops @,y 2y = yx and x = 29+,

¢

Proposition 3.10 The graph congruence 8, 4 always refines 0] .

Proof. We will show that zyz 6¢ g 2yx. whenever x and z are co-terminal paths

and the desired result follows {rom that.

(wy)z 0, (wy)™ 2 = wly)'(yz) 07, (oy)(zy)a(ye)"™!

and thus,

LYz f)f,q 2(ya)? () = 2(ya)et! ()(I’"q g

Note that the bracketed entities in each step are loops that arc either commuted

or replicated/deleted. d0

As a consequence of the arguments appearing before, we obtaiu the following

result for the varieties Comy 4.

Lemma 3.11 For any category C = G* /B in the C-variety (Comy ¢, the graph

congruence vy, 4 refines 8 for all ¢ > 1.

Proof. We first prove the following

Claim: If 2y, , y, each edge ¢ in G does not lie in any loop in path @ iff it does
not lie in any loop in path y. . We shall prove the right to left direction and
the other direction is symmetric. Consider x in G*. Starting from the vertex
a(x) form a maximal sub-path denoted by x! such that no edge in this sub-path
lies in any loop in z. Starting from w(x!), form a maximal sub-path such that

every edge in this sub-path lies in some loop in  and denote this sub-path by
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n+l

Figure 3.1: Graph G, induced by path z

xl. We keep doing this such that a(z!) = w(zl) and «(2'™') = w(z!) for all
¢ > 1, until all edge occurrences in @ are covered. The subgraph induced by the
edges appearing in x (or y) is denoted by G, and looks as showu in figure 3.1.

The veritces appearing in ! and 2% are denoted by 1

¢ 5

and V7* respectively, Tt
is not hard to sce that no edge occurs in G, with its endpoints in VY and UF
respectively, where j # k and u,v € {s,c¢}. Cousequently no such edge can
occur in path y as graphs G, and G, have to be identical. On the other hand.

one such edge must exist in y if it has an edge from «* occurring in soue loop.

This establishes our claim.

Now we can convert 2 into x; and y into y; by replicating loops so that
every edge in a or y that lies in some loop has at least two occurrences in bhoth
xy and y;. For every edge « in G we compare |2y|, with |yl,. If jo1]0 > |yila
then from the claim it follows that a lies in a loop in y,. We replicate this loop

cnough number of times so that the resulting path y, satisties |yale > |21]a.

Clearly for some 4, |y;|, >

xil, for all a. Assigning y' = y; and 2/ = @, gives us
2014 ¥ Yoq Y 014 v and applying lemma 3.9 we get 26, , y and from proposition

3.10 above we get @ H(iﬂ,q y and thus @ 7y,

The arguments above along with the observation that Comyg is a sub-

variety of finite abelian groups and heunce the result of example 1.2.1 applics to

40



it, give us the following result:
Theorem 3.12 The variclics Comyg o and Comy  wre local for cacl g > 1.

The result above appears in [Kna78] and then in more general form in
[Alm94]. Note that Comy; is exactly the variety J; and consequently Jy is

local.

41






Chapter 4

Locally commutative categories

The work presented here is primarily taken from the author’s joint work with
Denis Thérien that first appeared in [CT03]. In order to describe the language
recognized by categories in /Com, we have to introduce some new definitions.
In any graph G, we call a loop that consists of a single edge a loop edge; for
cach path 2 in G* we denote by T the path obtained from @ by removing its
loop edges. For a path 2 and a vertex v, let z[v] stand for the subsequence of
consisting of all edges of the path that are incident oun vertex v; note that x[v]

is not itself a path, and that when @ is a loop T[v] has even length for cach v.

4.1 Free locally commutative categories

We remind the reader that from last chapter we know that free globally comumu-
tative categories are characterised by the congruence 6, , which is the coarsest
congruence satistying the equation zyz 6 2yx whenever © ~ z.

The free locally commutative congruence on G*, which we denote ¢4, is
the coarsest congruence satistying wy 0 ya whenever x and y are loops ou the
same vertex. Obviously, Hgo refines 0o, = Yoo, We also observe that x f)f)o y iff

t]y = lyla for every loop edge @ and TOL, 7, i.e. the presence of loop edges cannot
||, = ly|q for every loop edge a and T 0 7, i.e. the presence of loop edges canno
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affect the congruence relation provided they are in equal nunber in both paths.
There is another combinatorial property that is preserved by commutation of
loops; let v be a vertex such that |vyl, = 0 for cach loop edge « on o and such
that |zy[v]|, <1 for each a; then the subsequence wy[v] is an even permutation
of the subsequence yz[v]. We now proceed to show that these combinatorial
properties, the last one suitably modified, characterize 6¢,.

In general, it is not the case that every edge appears at most once in a

path. Suppose

T

« = k; we make the k occurrences of ¢ in » formally distinet
by labelling them, in the order they appear, as axay.. ..,y where s a
permutation of {1,... &k} A labelling A(x) of a path - is the result of applying
this process to each edge. Thus the edges forming A(x) can be viewed as heing
distinct. We will write I(x) when the labelling is based on identity periutations
for cach edge, i.e. for cach «, if |z|, = &, the occurrences of « in « are renamed
i, ..., a in that order.

We define on G* w5,y iff 274 y and there exists a labelling A for 77 such that
for every vertex v the sequence A(7) [U] Is an even permutation of the sequence
I(Z)[v]. It can be checked that 75 is a congruence relatiou.

We state a useful property of v&,

Proposition 4.1 Let v = wipry and y = ypys be two paths in a graph such
that x5y and p is a loop on some verter v such that for each edge a in p we

have |x], = |ylo = 1. Then vyxy ¥, yiys.

Proof. Clearly w29 voe y1y2. For the sccond property that we need to prove.
we can assume that @ and y do not contain any loop edge, since this property is
dealing with T and 7. From the definition of v°_ there exists a labelling function

A such that for cach vertex v, A(y)[v] is an even permuation of I(x)[v]. But
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every edge that appears in p is wnique and so A and [ must have labelled p
exactly the same way. Also for every vertex v, A(p)[e] and I(p)[e] have the
saute length, which is even since p is a loop. This implies that Ay y.)[e] 1s an

even permutation of I(x2y)[v] for every vertex v, as required. ]
An immediate corollary follows

Corollary 4.2 If two paths x and y satisfy x yﬁo y and there are n loops py, ..., p,

appearing in x and y where for each edge a in a loop p; we have

:I:{u = 11’/’(1 = l
then the paths obtained by deleting these loops from w and y (say ' and y'),

. " /
satisfy x' v, '

Proof. This follows by repeatedly applying proposition 4.1 once for every loop

Pi- L]

Lemma 4.3 For two paths x and y, a5y iff v 0¢ y.

Proof. The implication from right to left is easy and left to the reader.

Now for the other direction we assume x % y. Since every loop edge appears
the same number of times in the two paths, its suffices to show 7 6% 7, so we
now suppose that « and y have no loop edges. Because of the labelling involved
in the definition of 75, we can think of  and y as having at most one occurrence
of any edge.

We will prove our claim by induction on the length of the paths. For the
base case of |z] = 1, the lemma is trivially true. Also note that if 2 and y are
two coterminal paths that start with the same edge ¢ and © = a2’ and y = ay'.
then @ ’yﬁo y implies 2/ fygo y', since the occurrence of « is unique. Thus from the

inductive hypothesis we obtain 2/ 6%y’ and this proves z 65 y.
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Agsume next that 2 and y start with different edges. Let @ = gy =
byoayr, v = a(x) = aly); If v appears in yy, Le. y; = yoy with w(yy) = v,
then we can commute byy and ayy and we arve back at the previous case. A
similar argument holds if @) contains v. Otherwise the vertex o, which is the
common end vertex of xy and yy, must appear at least once more in those two
subpaths because x[v] is an even permutation of y[v]. This implies the presence
of an edge ¢ in ¢ with start vertex v. This edge also appears in y, hence must
appear in y. We can thus use loop commuting to bring the ¢ as first edge in
each path, and so z 60 cx’ v% ey’ 6%y for some 2’ and y' (note that this follows
from the already proven fact that 6%, refines 7% ). Now we are back to the case

handled before. U]

The lemma above combinatorially captures the algebraic congruence 6, and
so provides a tool for describing the language recognized by free locally com-
mutative categories. But it is impossible to work directly with the congruence
vt for the case of finite categories since we have to deal with paths that arc
equivalent even though their lengths are different and so the concept of even
permutations does not work anymore. This motivates us to find anotlicr way of
characterising 6%,.

Consider the following special case. Let 2 = axyyryzaza be a path where «

is an edge which is coterminal with the subpaths y and z. One verilies that

€z ﬁﬁozzgyzzawla ng ZUA3YL 1AL ﬁﬁo 2L aryyrea = 2 (4.1)

and so
2l 00 awgza yaaa 00 aw yaszaaa 05 sy (1.2)
@t O arszyra U awyyrszaya U awyzuyyasa 2

Thus we are able to interchange in 2 the coterminal subpaths y and z by using

commutation of loops, because = contains an edge twice whicli is coterminal

16



with these subpaths. The equivalence between exchange of coterminal paths and
commutation of loops holds under a more general condition that we formalize
below.

For a path z, define I'} as the reflexive and transitive closure of the relation

['; defined on the vertices by v, vy whenever there is an edge « such that

x|y > 2 and afa) = v, w(a) = vy or ala) = vy, w(a) = ).

Lemma 4.4 For any path x = wyxywszews in G, if a(ay) Uhw(xy) and @y ~

then o rorstids ()go DXLy

Proof. Let x = xj2ox3uqts, y = 204232905, 0, = o(uy) = alvy), v, =
w(ay) = w(wy). If vy = vy, the result is immediate. Otherwise we prove the

lemma by showing that the hypothesis implies zv., y. Clearly

&)y = |ylo for
each a. Consider now T and 7, or equivalently assume that z and y contain
no loop edges. We have to show that there exists a labelling A which will
make A(y)[v] an even permutation of I(x)[v] for every vertex v. Since y is
obtained by interchanging subpaths of x, we get naturally from I(w) a first
labelling A for y. For cach vertex v # ¢,, v, we have that (a)[e] and [(0y)[]
have even length. Since A(y)[v] is obtained from /(x)[¢] by interchanging two
blocks of even length, it must be an even permutation. The problem is that
I(xq)[v,] and I(24)[v,] have odd length, hence the permutation A(y)[uv,] is odd,
and the same for v, Since v, I v, there exists some n > 0 such that v, =
volyoy Lpwg .. . Upv 1 Upw, = v, . Using the definition of [', let ¢; he the
edge connecting v;_; and v; for ¢ > 0. Each ¢; is directed and its direction is
arbitrary. Also there are at least two occurrences of ¢; in both @ aud y. Lot
us create a new labelling A’ that switches the labels (as given by A) of two

arbitrarily chosen instances of e; for each 4. For all other edge occurrences, A’
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is the same as A. For each of vy, ..., v,_1, A'(y)[v] differs from A(y)[v;] by two
transpositions, hence it remains even. For vy and for v,,, the difference hetween

A and A’ is one transposition, hence these become even as well. (]

An edge e in a path z is called a special edge for o it a(e) and w(e) are not
related by I'M. A maximal subpath in a path 2 that is completely contained
iside an equivalence class of I, 1s called a component of . So special edges
always connect components that are over different equivalence classes of I,
Note that a component could cousist of just the identity path in which case two
special edges would be adjacent to cach othier. Clearly every special edge occurs
exactly once in a path z. Every path x in G* is thus now uniquely decomposed
as woe k. .. ey, where the e;’s are the special edges for 2 and the @;’s arc its

components. The lemma above then gives the following result

Corollary 4.5 If a path © has no special edges then for any path y, 6%y iff
Oy tff T Yoo Y-

In order to take into account the presence of special edges. we deline, for
cach path x, a reduced graph G, = (V,, Ay, v, w,) where V, = V/I 0 4, ds the
set of special edges for x, and «,, w, are defined in the obvious way. The path @
induces a path Red(x) in the graph G, by taking Red(x) to be the sequence of
special edges in the order they appear in 2. Note that Red(x) is a permutation

of A, and that x vy, y implies that I} = I'

o hence that the graphs G, and G,

are identical; furthermore we then have that Red(a) ~ Red(y) in this graph.

We now define a congruence on G* by x 0% y iff & voo y and Red () v/, Red(y).

Lemma 4.6 For two paths x and y in G if x6° y and Red(x) = Red(y) then

6 y.
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Proof. Let z = zgeixy...e,20, ¥ = yoeryy - - - €Y. Observe that this forces
@; ~ vy, for each 4. Fix an equivalence class C'in V/I7 and let 0 < iy < i) <
..., < n be the indices for which z;; is a component of = over C; the same
sequence of indices gives the components of y that are over C'. For each j replace
the subpath of @ between w;,_, and x;; by a “meta-edge” E; that goes from
w(wg,_,) to afr;). Do the same for y. Consider the paths X = a; Epeg, . By,
and Y =y, By, . Bry;,. We have that X v, Y and these two paths now have
no special edges since the two endpoints of each £ are in C'. By corollary -1.5.
X can be transformed into Y by commuting loops. The corresponding sequence
of operations will transform x into a path 2’/ = ayea) ... ¢, where o) = y; for
i € {ig,... 4} and 2} = x; otherwise. Doing this for each class of 1/} in turn

will transform « into y. O
We are now in a position to prove the equivalence of ¢, and 6%
Lemma 4.7 For any two paths x and y in G 20y iff v 05 y.

Proof. The implication from right to left is easy and left to the reader. We
prove the second implication. Suppose 2 = zgejxy...e,1,; We fix in cach
cquivalence class C of V/T'2 a vertex ve, and for cach special edge ¢; going from
vertex v in C' to a vertex ¢ in €', we augment the graph G by introducing
four new edges: €€ going from v to ve. f¢ going from ve to v, ¢¢ going from
o' to ver and AY going from wer to o', We create from 2 a new path o' in
the augmented graph by the following process: if ¢; is a special edge for @
going from vertex v in C' to a vertex v’ in C', we replace e, by e,jf',/jj("cz]-.q;ﬂ /LJ(."'.
If any loop edges have been added we remove them. We create ' from y
similarly. Red(2') v, Red(y') comes trivially from the fact that @8 y (since

Red(x) = Red(2') and Red(y) = Red(y')). Hence also Red(a') 6, Red(y') by
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lemma 4.3. By construction, if there is a loop on vertex C appearing i Red (')
in the reduced graph, there is a corresponding loop on vertex wve appearing
in 2" in the augmented graph. Thus, corresponding to the sequence of loop
commutations that transforms Red(z') to Red(y') in the reduced graph. there
is a sequence of loop transtormations, in the augmented graph, that transforms
2 into a path (say w) in which the special edges appear in the same order as
those of ¢y'. Hence using lemma 4.6 it follows z’ 65, w6, y'. So 2’ v ¢ and by
recalling that we obtained z' (y') from z (y) by adding a certain nummber of
loops around every vertex ve we apply proposition 4.1 and corollary 4.2 to get

w vt y. Hence 208 y. O

Thus ¢°, provides an alternative characterisation of locally commutative
free categories. We will see in the next section that this characterisation can be

naturally adapted to the case of finite categories.

4.2 Locally commutative finite categories

We recall from chapter 3 that the algebraic description of finite globally coni-
mutative categories is given by a path congruence ¢, , generated by cquations:
ayz 0,4 zyx for & ~ z and @' 0, ;27 where a 1s a loop.

The corresponding combinatorial congruence v, , is induced by relations: for
x ~y we say =y, 4y iff for all edge a € A, either (|24, Jy], <1 and |z], = {yla)
or (|zle; |yle 2 rand |zl. =4 [yla)

The main result from the last chapter can obviously be restated in the forim

bhelow:

Lemma 4.8 For everyt > 0 and graph G there exists s such that for two paths

xoand y, xys,y vnplies w0, 4.
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As an extension of ideas from free locally commutative categories we intro-

duce Hf’q to be the finite index path congruence generated by the conditions:

¢

wy by, yx where x and y are loops and 2t ¢

ta % where z is a loop. Analogous

to the global case we write 2 <{% y, when 267y and y can be obtained from
2 by just loop commuting and loop replication.

We also extend our combinatorial characterisation from the last section to
<5f’q meaning for two paths x and y « <5qu y U wy,y and Red(w)~L, Red(y).

0 . NT .
where 7 gets defined on the reduced graph G,. Note that this congruence

only depends on the permutation of reduced paths which are of fixed length.

14

Using the definition of 4, ,

and the lemma 4.4 we can conclude the following:

Corollary 4.9 For paths with no special edges, 0, and Hf,q are equivalent,

This corollary along with lemma 4.8 gives us the intuition to expect the
following result

Lemma 4.10 If 26} ,y and Red(x) = Red(y) then 2 6]

5 by where s and t are

related according to lemma 4.8.

Proof. We direct the attention of the reader to the proof of lemma 4.6.
Employing exactly the same technique as in that proof, fixing an equivalence
class C'in V/I'2 we add “meta-edges” conuecting two successive compounents of
that class and obtain paths X and Y respectively from z and y. In our case
here, X', , Y. Therefore using lemma 4.8 it follows X ¢, , ¥ and since X and
Y have no special edges from corollary 4.9 X can be transformed into Y by

4

transformations preserving ¢y .

We apply the same operations on x to get a
new path 2/ and then repeat the procedure with 2’ for each class of V/I' to

finally get y. 0



We can now combine the proof of lemma 4.10 and lemma 3.9 from the last

chapter to obtain the following corollary

Corollary 4.11 Ifzd{; ,y and Red(z) = Red(y) with |x], < |yla, then a <[

.

Lemma 4.12 For every t > 2 and ¢ > 1, there exists B > t + 1 such that

¢

€ (5?27(1 y wmplies that there exists a path p satisfying x (5f+1’q p, where pt) y and

for all edges a € A, 2], < [pla.

Proof. We will use lemma 3.6 and 3.7 from the last chapter to prove this.
Specifically let R = m(G,t + 1)(|E] + 1) + L where (Gt + 1) = V| + (+ +
1) (211 = 1) + 2 as defined in lemma 3.7, So for cach edge « such that x|, > |y/,
we have |yl, > R and since y can have at most (|E|-+ 1) components there is at
least one component that has at least m(G, ¢+ 1) occurences of a. We can now
straight away apply the argument used to prove lemma 3.7 in the last chapter

and obtain the result of the present leinma. 0

Lemma 4.13 If for two paths 2 and y, x|, < lyla for all @ € A and ¢ <)‘,’,r,_q 0.

then x 0¢

rgy Jort>2and ¢ > 1.

Proof. We ask the reader to recall the technique used to prove lenna 4.7.
We mimic the steps in that proof to augment the graph G by introducing four
new edges for each special edge ¢; and then modify the paths 2 and ¢ to 2" and
y' respectively as prescribed there. (Note: we are using the same notation as in
that proof.) Also let A" represent the set of edges of the augmented graph. The
same argumentation of the earlier proof carries over to establish the existence of

a path w such that Red(w) = Red(y') and 2’ 0°_ w !, , /. From corollary 4.11
00 I+1,q



it follows that w <{% 4" and hence «/ <% ¢'. This implies that there exists
a series of loop commuting and loop duplicating transformations to obtain 1/
from 2. Let the loops that got duplicated, be called py, ..., p, and let them he
around vertices vy, ..., v, in G respectively. Also let n; be the number of times p,
was duplicated. It is a trivial observation that every vertex v; occurs somewhere
in the path 2 and every loop p; contains edges strictly from the unaugmented
original graph G (since for each edge a € A'\A we have |2/, = |y|.). Also
no loop p; contains any special edges as their count is one in both 2/ and /'
Hence every loop p; could be added n; times to path 2 to obtain a path « in G*

¢

1 ! atld hence

such that Red(x) = Red(u) and hence wal, gy, This unplies @0
from corollary 4.11 we have « f)fﬂ w. Now applying lemmma 4.7 to « and y we get

T anee 1 A
ubo,y and hence w6y y. 0

We now state the maln result.

Theorem 4.14 (3 is a {Com-congruence iff there exists R > 2, ¢ > 1 such
that 52)(] C p.

Proof. The direction from right to left is trivial and is left as an exercise for the
reader (it can be verified that (Sfm is a ¢Com-cougruence). For ¢ > 2 we choose
R =mn(G,t+ 1)(|E| + 1) + 1 according to lemma 4.12. Then 2 0j, .y implics
there exists a path z with |z], < |z], for each edge a € A and « (5;+l,</ zt‘)f’q Y.
Using lenuna 4.13 on o and 2, we get @ (J,{f'_(l y. Recall that for cases £ = 0 and
t = 1, we have shown in the last chapter (Conig g and (Comy ¢ coincide with

gComyg 4 and gCom, 4 respectively. U



4.3 Consequences

In this section, we sketch some cousequences of the combinatorial description
obtained above. When an M-variety V is such that the C-varieties gV oand (V
differ, then ¢V cannot be equal to gW for any M-variety W. This is because
if we restrict to one-node categories in gW, we precisely get the monoids of W
and this set is different from the set of monoids in V. How big should W be
to insure £V C gW? In example 1.2.2 of chapter 1, we observed that for the
trivial M-variety we have £1 C gW for every non-trivial W. We now argue that

a similar phenomenon occurs for Com.

Theorem 4.15 {Com C gW for cvery M-variety W that strictly contains

Com.

Proof. Our main result shows that in every locally commutative categorys,
the value of a path is determined by the number of occurrences of cach edge
(threshold ¢, modulo ¢ for some t > 0,¢ > 1) and the ordering of the so-called
“special” edges. The first condition can be determined by using for each edge
a cyclic counter of appropriate cardinality. For the second condition, let M be
any nou-commutative monoid, i.e. M contains two elements m and m’ such
that mm' # m'm. Fix two edges of the graph, ¢ and b, map « to m, b to '
and every other edge to 1. If a path z contains at most one occurrence of cach
of a and b, which is necessarily the case when these two edges are special for
x, the value of the path in M is in {1,000/, nen " In particular if houl
edges occur once, the order in which they appear can be recovered from the
value in the monoid. If the graph has & cdges, we can use the direct product
of k cyclic counters to count occurrences of each edge, and O(k?) copies of M.

one for each pair of edges. Tle value of the counters will determine the first
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condition and also which edges are special for a given path: we can then look
up the appropriate copies of M to know in which order the special edges have

¢

appeared, hence recover the 4,

-value of the path. 0. U

Next, we transfer the last theorem to the S-variety LCom = {S : ¢Sc €
Com for all e = ¢*}. For any semigroup S, consider the graph G = (V| A, o, w),
where V is the set of idempotents of S, A = VxSxV ale, s, f) = c,wle, s, f) =
f. Define the congruence # on G* by identifying co-terminal paths that nmultiply
out to the same element in S. This construction trivially insures that S €
LCom iff G*/3 € ¢Com. It follows from work of [Str85]' that S € V % D,
where D = {S : Se = ¢ for all ¢ = ¢*} and x denotes wreath product of

varieties, iff G*/5 € gV. We thus get the following

Theorem 4.16 LCom C V x D for every M-variety V that strictly includes

the commmutative monoids.

'The delay theorem in [Til87] gives this in the language of categories

o
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Chapter 5

Locally R, L, J-trivial categories

For any local M-variety V, trivially
VvV C gW (5.1)

where W is a M-variety that strictly contains V. As we have seen, equation 5.1
is also true when V is substituted either with the non-local variety 1 or Com.
A natural question therefore is whether this equation is always truc. There is
another famous case of an M-variety for which the induced global and local
C-varieties are different, namely the variety J of J-trivial monoids. However,
Jorge Almeida has pointed out to us that there exists a C-variety gV where V
is a M-variety of aperiodic monoids that strictly contains J, such that gV does
not contain ¢J, and hence we conclude that equation 5.1 is not in general true.
The main result in this chapter expresses the vaviety ¢6J in terms of globally
defined C-varieties gR and gL, where R and L are the M-varieties of ‘R-trivial
and L-trivial monoids respectively. We first show that R is local. An old result
of Stiffler from the 70’s (in [Sti73]) along with the application of the Delay

Theorewm of [Til87] implies this'. [Alm9G] presents a general argument using
8 g

'the interested reader may note that Stiffler actually proves the stronger result that cach
element of LR divides a semidirect product of semilattices and right zero semigroups, where

-1
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profinite techniques that shows both DA? and R to be local. More recently,
[Ste] has given an algebraic proof of results of Stiffler using derived category
3

of morphisms between categories® . Our method is guite clementary and uses

graph congruences.

5.1 Preliminaries about Green’s relations

There are excellent books like [Alm94]and [Pin86] giving an extended treatment
of these and we recommend the interested reader to go through them. We
try to give here a quick overview of these relations that play a central role in
understanding the structure of finite semigroups and mounoids. We will here
assume that we are always dealing with monoids, noting that with very little
extra effort, these could be extended to semigroups.

For any monoid M, we say that 2,y € M are R-related to each other.
denoted by « Ry, iff they generate the same right ideal ie. 20 = yAl. Dually.
we say that « Ly it Max = My. Clearly, both R and £ arc reflexive, symmetric
and transitive and hence are equivalence relations. Thelr equivalence classes
are called R and £ classes respectively. Similarly we can induce the equivalence
relation J from two-sided ideals, by saying « Jy ift MaM = MyAl. Note
that both R and £ refine J. Moreover, it can be shown that in a finite monoid

the following three things are equivalent:
L.aJy

2. there exists an element z in M such that @R 2 and 2 Ly

one can first do the right zero semigroups and then the semilattices

2Variety of all monoids whose regular D-classes are aperiodic semigroups

Swe direct the interested reader to [STar| for a description of the derived category of
morphisms between categories



3. there exists an element z in M such that £z and 2 Ry

If eM C yM, then we write & <g y. Obviously, t Ry iff v <g yandy <, ..
From the definition of the relation R, it should be clear that @Ry iff there exist
v and w such that © = yv and y = 2w. A monoid is said to be R-trivial iff
cach of its R-class contains a single element. Similarly, one defines £ and 7-
trivial monoids: they mean respectively that each £ and J-class, contains a
single element. It is a simple observation that every J-trivial monoid is both
L-trivial and R-trivial. It can be shown that the set of all R-trivial and finite
monoids forms a M-variety, denoted by R and is characterised by the identities
(zy)"z = (zy)" and 2" = z"*! for some n > 1. Similarly, the variety of all
J-trivial monoids 1s characterized by the identities : for some n > 1 we have

(xy)* = (yx)" and 2" = 2"

5.2 Languages of R-trivial and £L-trivial monoids

We describe the languages recognized by finite R-trivial monoids as explained
in [Fic79]. We introduce the notion of subwords by saying « is a subword of y
iff there exists x(, ..., 2, ug, ..., u, and y can be factorised as wox u, ... 2,10,.
where 2 = ... x,. For cach word x, let g, (2) denote the set of all subwords

of length at most n of z i.e. p,(z) = {v : vis asubword of x and

vl < n}.
We also introduce two related congruences on 2% one denoted by ~,, and the
other ~, r. For two words x,y, « ~, v iff j,,(x) = p,.(y) i.e. 2 and y have the
same set of subwords upto length n.

@~y gy iff for every prefix @’ of @ there exists a prefix ¢ of y such that ' ~,, /'
and vice-versa. In other words, new subwords appear in 2 and y in the same

order, if we scan the words from left to right. Note that we can synunetrically



define the congruence ~,, ; by saying that @ ~, ; y Ul for every suffie o ol w
there exists a suffiz v’ of y such that 2/ ~,, v and vice-versa. In this case we
are looking for the order in which subwords appear from right to left. It is a
straight-forward exercise to verify that ~,, ~, p and ~, ; are all congruences
of finite index and that both ~, ; and ~, ; refine ~,. We note some uscful

properties of these congruences!:

Lemma 5.1 For arbitrary two words w and v i X%, w ~, we iff v can be
split into n pieces uy, ..., u, where AMuy) 2O AMuy) 2 ... D Mu,) 2 Ae) and

U = Uy ... Uy,
Lemma 5.2 u ~,, p uv iff u ~, uv, where u and v are arbitrary words.
We then quote the following result from [Fic79].

Theorem 5.3 A language L is recognized by o finate R-trivial (L-trivial) imonoid
ioff there exists an integer 1 > 0 such that L is « union of congrucnce clusses of

N R (N71,7L)~

5.3 Languages recognized by locally R-trivial
categories

We can now induce a graph congruence yllf on G* from the congrucnce ~,, ;
on A*) where G = (V, A). We define 2+ y iff 2 and y are co-terminal paths
in G* and 2 ~, p y when viewed as words in A*. Let ﬁfﬂ' denote somie graph
congruence such that the category C' = G*/0fR is locally finite, every base
monoid of the category is R-trivial and the cardinality of the largest such monoid

is t. The result we want to show here is the following:

4proofs of these could be found in [Ping6]
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Lemma 5.4 For every graph G, given t and some congruence 6% there ewists

s such that v refines 0%, where s and t are non-zero positive integers.

A path e in G* is called idempotent with respect to 67 iff ¢ 0% ce. Lor the
sake of brevity we will simply say e is idempotent without mentioning the graph
congruence, whenever the associated congruence is clear from the coutext. c.

/

¢!, ¢ would always denote such idempotent paths unless noted otherwise. Note

that idempotent paths are always loops.
f . . .
Lemma 5.5 ¢s0% ¢, whenever s is a loop coterminal with ¢ and M(s) C Me).

Proof. We will first consider the case where s 1s a subword of e. Let
$ = ayay...a,, where each a; is an edge in G. Then we can write ¢ =
Yol Y1G2Ya ... Yn—10nYy. Here y; is a loop around the end vertex of «,, for « > 1.

Since e is an idempotent we get

c 9[ Y Yoty 1Ay - Y1 U Y Yo QLY 1Ay - Y1 Uy Yy,

o) R SUIIN oS
e 0% eyou (5.2)
where v = «yyay ... a,y,. Note that e yy and vp are all loops around the
same vertex v = «fe). Heuce using equation 5.2 and the R-triviality of the
base monoid M, one gets
. R -
e 0~ ey (5.3)

Using the idempotence of e and equation 5.3, one sces es 0% ceyys and then

expanding
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X IR , , e . , o
es O Youry1 - Yn 100 Yu YoUrYy - - - Yn-1GnYnYotr s - - - Uy,
e R, a1l =
es O ya wiay. .. ay (5.4)
where w = yiay ... Y- 1auynyocy is a loop around the end vertex of ay.

Again using the idempotence of ¢ and equation 5.3 one can write

e = . , P
w = Y1y . Y1 GnYn Yol
2 R , e
w0 yray . Y1 QY eyoeyoy
2R, - -
w? O w? (5.9)

Using equation 5.5 one can write w? 0% w?y vy, where vy = ayty . . Yo 1 G Yn ot -
Note that w?, y; and vy are all loops around the end vertex of a;. Since the
) 1
R
0[

base monoid induced by around this vertex is R-trivial, it follows that

w? O wry (5.6)

Now considering equation 5.4 and 5.6 one gets

es 0% yoawtyiay .. a,
o 2 - -
es = YoU Y1Uatas ... Uy, (5.7)
where v = yody ... Ypu—1U, 61y ae and using very siinifar arguments as above with
the R-triviality of the monoid around the start vertex of v, we get 02 = v2y,.

Applying this to equation 5.7 one obtains
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o OFR a2
es 0, yoary asvysas ... ay,

2
€s = Yol YUYt Uy . . . Uy,

where u = y3aq - .. 4y ynyo - - - a3. We need to apply this argument [s| 4+ 1 times,
using the R-triviality of base monoids around every vertex that appears in path

s. This finally yields es 0% eee 0% ¢ and we are done. O
We use the above result to obtain the following:

Lemma 5.6 For every two paths u,v i G* such that v is a loop around w(u),

uyRuv implies w0 wo where s = 2(t + 1).

Proof. If v is empty then we have nothing to prove. For any noun-cempty v,
applying lemma 5.1 to the fact wy®uv, we find that w can be split up into s
pieces Uy, ..., us such that AM(u1) O Mug) D ... 2 Aus) D A(v). Since v is
non-empty, let v = av’ for some edge a. Each u; thus contains at least one

occurence of a. We factorise cach wu; as w;pau,,, where u; o does not contain

any a. Let us also denote by v, the path wy jususg, vo = wyuqusy and so
on. In general v; = wj upug, where k =5+ 1,1 =j+2and j = (20 — 1).
for 1 < ¢ < t. Note that we make v, =y U402 01 In other words

Vg1 = Ug—) oUs. LThus, we can write

U= Uy gUUL AUy L U4

where each av; 1s a loop around the start vertex of ¢ and this is also the start

vertex of v. Let M denote the base monoid induced by ¢/% at this vertex. Also
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note that Alav;) 2 A(av,), where ¢ < j. Since the cardinality of A is hounded
by t, we can apply the pigeon-hole priuciple to conclude that there exists A/

such that

(R
o,

avy ... AU avy ... QUG - - . QU] (5.8)

where £ < [. Let w = avgy)...av. Then using equation 5.8 one can write

{ -
wv  O% wy gavy . avgwfaoy . aoge (5.9)

where w* is an idempotent and is denoted by ¢ and let w' = avyy ... av,.

Clearly A(e) D A(w'v). Note that w, e, w" and v are all loops arouud the same

vertex. Let «' = wjgav; ... avg. Using lemma 5.5, we conclude
; , ’ 3
wo 0 d'ew'v O w'e 0F Wl ew O W' =
O
Lemma 5.7 Let p, x and y be paths in G*, such that pr v py and ji,(p) =
ps(px) = ns(py). Then pr 8 py, where s = 2(t + 1).
Proof. We will show this by induction on |x]. Let the base case he [ = 0. 1

this case ¥ is a loop at the end of p with py! py. Using directly lemma 5.6, we

have p 8 py. Now as our induction hypothesis (IH) we assuwe it is true for all
a, such that [x] < k. Let |¢] = k. We write © = g’ and y = by'. If « = b, then
applying IH on 2" we get our desived result. Assume a # b. In this case, since

ps(pa) = pg(p), applying lemma 5.1 we split p into s paths p, ... p,, caclt of
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which contains at least one occurence of a. Thus, we can write p, = p,pap,,.

Observe that ap, | is a loop at the end of p and

ws(p) = pslpaps.) (5.10)

Hence applying lemma 3.6, we get p 0% pap, (. This means that
) ) sCL pU,— papy

py O papg 1y (5.11)

It follows from equation 5.10 that py y2 pap, y. Assigning ) = pa and
noting that pz = p'z’, we can apply our induction hypothesis to 2’ obtaining

px 0% p'pg 1y 0% py. This completes the argument. tJ

We are now in a position to prove our main lemma 5.4.
Proof. Let s =2(t+1). Assume for x,y in G*, 2 v y. Let py be the longest
common prefix of « and y. Note that {py] > s. Let yo = y. Our strategy would
be to find a series of paths i, ..., v, such that y; v gy and y; 0% g1, Let p;
denote the longest common prefix of x and y;. We will satisfy |piyq] > |pi] + L.
n is thus an integer such that p, = w. Thus applying lemima 5.6 at the end to
x and y, we would get our desired result.

Therefore, the argument boils down to showing, given y,, we can always
obtain vy, satisfying the above conditions. Let = = pyaz’ and y; = p;by’. If
a = b we have nothing to show. Assume a # 0. We split up the argument into

following cases.

1. a adds new subwords to p;, i.e. pui(p;a) D p(p;). This means b caunot
add any subwords to p;. Also in this case ¢ can be factorised as vyar,.

where by is a loop at the end of p; such that



ps(pibvy) = ps(pi) (5.12)

Using lemma 5.6 we obtain

yi = pibyar, ()fR POl = Yy (5.13)

Thus assigning p;) = p;a, and using equations 5.12 and 5.13 we sce

that vy, satisfies all desired conditions.

2. b adds new subwords to p;. In this case a cannot add any new subwords
to p; and 2’ could be factorised into vybr,. Mimicking arguments given
above, we see that setting v,11 = p;apby’ aud p;p, = p;ainb does the

job.

3. Neither a nor b adds any new subwords to p;. In this case we take the
largest possible prefix of 2’ denoted by v, such that p(piv.) = p(pi).
If v, is the whole of 2/, then obviously ¢’ cannot add any new subwords

to p; cither and using the lemma 5.7 we get @ 0% ¢, and we are done.
f Y

Otherwise, we write ©' = w,cv,. This meauns ' can be factorised as
Y = vyev, with p(piry) = ps(p). We can again apply lemma 5.7 to
obtain p;v, 19fR pivy. Finally we are done by setting y, = piv,cr, and

Pit1 = pPileC.

We can state the result given above now in terms of languages as
Corollary 5.8 Let G = (V, A) be a grupl. Then the syntuctic category of a
language L C G* 1s finite and locally R-trivial iff there exists s > 1 such that

L is a v2 language.
b
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We can alternatively interpret the main lemma as the following theorem:
Theorem 5.9 The C-varieties {R (¢L) and gR (gL) coincide.

Proof. We know from Chapter 1 that for any M-variety V, the C-variety gV
is always contained in the C-variety V. This immediately give us one direction
of the theorem. Clearly, for every finite locally R-trivial category C'. one can
define a graph G = (V, A4), such that C = G*/6%. Consider the monoid
M = A/ ~, g, where s = 2(¢t + 1). Using lemma 5.4, C' divides the mouoid
M. Finally, M is R-trivial using theorem 5.3, Exactly symmetric arguments

exist for the M-variety L. O

5.4 Locally J-trivial categories

We shall first give an example that shows J is not local. Before doiug so we
note two things : the beautiful theorem of Simmon says that the syntactic monoid
of a language L is J-trivial iff L is a ~,-language for some n > 0. Let ¥ =
{a,b,¢,d}. Then, clearly (ab)"ad(cd)™ ~, (ab)"*(cd)™. It is easily verified that
no J-trivial monoid whose cardinality is at most n can distinguish these two
words. This intuition could be applied to conclude that any category that is
in gJ and hence divides some J-trivial monoid whose cardinality is 7 cannot
distinguish the path (zy)"zy' (2'y')" from (wy)"(2'y")", where xy and @'y’ arce
co-terminal loops. Using this argument we give the following example of a two
node graph:
a,c
P

b.d
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Sp = ¥ S1 52 53 54 55
Sy = ((L[))+ S§9 859 Sq Sy Sh
s3 = (ed)™ 53 S5 53 55 S5
84 = (ab)+(0d)+ S4 Sy Sq 55 Sr,
S5 = L S5 S5 S5 Se Sh

Figure 5.1: Multiplication table of base monoid S

The graph congruence that we consider is the syntactic congruence «y, of the
language L = (a+0)" (¢ + d)* N A*adA*. Obviously, every path ol the forn
(ab)™(cd)™ is in L for each m > 0, but the path (ab)"ad(cd)™ is not in L
for any m. Hence, from the observation made in the previous paragraph, it
follows that the syntactic category C = G*/v, caunot be in gJ. Now let us
compute base wmonoids S and T around vertex 1 and 2 respectively.  Bach
element of S (T') corresponds to a congruence class of v, that contains loops
around vertex 1 (2). Hence, we will represent the clements of S by regular
expressions yielding the paths contained in the corresponding congruence class.
Thus, S = {51 = *, 5o = (ab)*, s3 = (cd)T, 84 = (ab)T(cd)t, 55 = L} contains
five elements. Similarly, T = {t; = x, t, = (ba)™, t3 = (ba)*be(de)*, t, =
(de)™, ts = (ba)*(de)*t, ts = L}. Note that L represents the complement of the

language and for any string w in L, for all w, v in A* we have wwe € L.
bl b

Note from the table given in figure 5.1 that i and s5 act as the identioy and
zero element of S respectively. One can verify from the table that (ss')? = (4's)?
and 5?2 = 5% for each s, ¢ in S, Similarly from table in figure 5.2. it can be
casily verified that (¢¢)* = (#'t)? and t* = ¢* for cach ¢,¢' in T Thus S and T

are both J-trivial.
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|t =% ty=(ba)* t3 = (ba)"be(dc)*

t = * t, 19 ty
ty = (ba)™ ty ty ty
ty = (ba)*be(de)* t3 te to
t4 = (dC)+ t4 t()‘ f()
ts = (ba)™(dc)™ ts to tg
te = L tg t te
ty = (de)t ty = (ba)T(de)T tg=1L
t = % tq ts tg
ty = (ba)™ ts t tg
ty = (ba)*be(dce)* ts to Lo
ty = (de)* 21 lg Lg
ts = (ba) T (dc)* ts te to
to = L t tg t

Figure 5.2: Multiplication table of base monoid T°

It is worthwhile mentioning here that as first shown in [Kna84] aud later
proved using algebraic methods in [Thé88], the identity characterising gJ is
indeed given by

(wo)?u (u'v") = (uv)¥(u'v")*

where 2% is the unique idempotent that is a power of x. Note in the above
identity uv and w'v" are co-terminal loops.

Even though in this section we would have liked to understand languages
recognized by categories in £J, we are currently not in a position to characterise
these languages in terms of any graph congruence. This is ongoing work with
Denis Thérien. However using the results of the previous section we can hound

the C-variety ¢J in terms of global varieties rather casily.

Theorem 5.10 ¢J = gR N gL.

69



Proof. We first show that each category in gR N gL is locally J-trivial. If
C is any such category, then every base monoid of C' is both R and L-trivial.
This implies from the definition of the relation 7, that C is locally J-trivial.
For the other direction consider an arbitrary category C'in ¢J. This means that
C is locally R-trivial and using theorem 5.9 we kuow that C' must be in gR.
Similarly C' is locally L£-trivial and thus is in gL, This completes the argument.
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Chapter 6

Conclusion

In this thesis, we have shown that the mecthod of graph congruence is a uscful
syntactic techinique that can yield important results about finite categories and
the languages recognized by them. We have used it for example to prove locality
of many M-varieties. In particular, it would be interesting to explore if this
technique could be used to show that every variety contained in the variety of
all idempotent monoids is local. Note that this is already known from the work
of [JS92] using different techniques.

We have given a combinatorial description for the languages that can be
recognized by finite locally commutative categories. This is the first result of
that kind for a non-trivial M-variety for which the induced global and local
C-varieties are different. We derived as a consequence the upper bound that for
each M-variety V properly including the commutative monoids, the inclusion
¢V C gV holds, which is similar to the situation for the trivial M-variety. It
is easily checked that all these results can be proved, mutatis mutandis. [or the
C-varicty of locally aperiodic connnutative monoids.  An interesting question
to explore is: “What are the C-varietics that lie between gCom and (Com?”.

Are categories defined with a 2-object graph cnough to generate these varieties
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using direct product?

We have given elemeutary proofs of the locality of R and L. [t would be
interesting to sce if this could be extended to show the locality of DA and other
results that appear in [Alm96]. However, the most interesting open question
from the point of view of this work is “What is the combinatorial description of
languages recognized by locally J-trivial categories?”. We recall that hoth for
(1 and ¢Com, the crucial first thing to understand was “For what paths the
computational power of these local varieties coincide with their global counter-
part?”. In the case of {1, we saw that for paths which were completely contained
inside one strongly counected component, gl and £1 behave exactly the same.
This directly resulted in the characterisation of languages recognized by (1.
In the case of {Com, the trick was again to see that every path induces an
equivalence relation on vertices and for edges between these vertices, we cannot
do any more with local than global. We therefore think that the first step lor

understanding £J would be to discover such a connection with gJ.

~I
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