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Abstract 

The connection between algebra and finite automata theory has beell well stud­

ied and Eilenberg has shown that the notion of varicties in scmigl'OUpsjlllolluids 

can be naturaUy made to correspond with varieties of languages that thcy recog­

nize. This has significantly deepened and organized our understancliug of fiuit(~ 

autornata and regular languages. Several researchers have later l'l~cognizcd thal 

the more appropriate algebraic objects to look into are fiuite categories which 

generalize monoids in a way that is explained in the worle This point of vi('w 

not only refines the existing thcOl'Y but is indispensable whcn dealing '.vith seriai 

decompositions of automata. In this thesis we try to advance this theory by (~x­

ploring the connections between the algebraïc: structure of a finite category aud 

the combinatorial description of languages recognized by it which is ct central 

therne of algebraic theory of automata. 

The method of congruence has pl'Oved quite successful in the study of lall­

guages l'Ccognized by finite monoids. In this thesis w(~ show that this llwt hod 

rernains powerful and successful even in the catcgorical s(~tting. usillg graph 

congruences, we obtain sorne new proofs of old results and souw colllpletdy 

llew l'esults. 

It is known that a finite category can have aU its base mOlloids ill a varicty 

V (i.e. be locally V, denoted by eV) , without itself clividing a lllOllOid ill V 



(i.e. be globally V, ùenoted gV). This is in particlliar tlw cas(~ \Ylwu V=COlll. 

tlw variety of commutative Illonoids. The nlain lcsulL ill (his \York [lw\·ides il 

combillatorial characterizatioll of loca11y cOllllIlutative cat(~gOlics. This is 1,11(, 

first such theorem dealing with a non-trivial variety for which local diff(~rs fWlll 

glooal. As a consequence, we show that jiCom C gV for cvery varicty V that 

strictly contains the COllllllutative UlClllOids. 

\;\Te give new proofs of the loeality of the fo11owing l\I-varieti<~s: R and L, 

the M-variety of all Rand L-trivial mOlloids respectively, RI, LI and RI V LI. 

where RI is the variety of all R-trivial and idempotent lllOnoids ami LI is t IH' 

variety of a11 L-trivial and idempotent monoids. \iVe provide a simple exètlllpic 

i11ustrating the faet that jiJ strietly eontains the variety gJ where J is the variery 

of a11 J-trivial monoids. The problem of characterising languages n'coglliz(~d 

by loca11y J-trivial categories rernaills open. 
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Résumé 

Le lien entre l'algèbre et la théorie des automates finis a dé étudié pm plusiclll's 

chercheurs et Eilenberg a démontré que la notion de variéV~s claus les sCllli­

groupes ou monoïdes peut correspondre de fa(,:oll llaturelle avec l(~s \'mil'! l~S 

de langages qu'elles reconnaissent. Cdte cl6cotlVl~rte a approfolldi ct orgauisé' 

notre compréhension des automates finis ct des langagcs ratioullels, l't cc. d(' 

façon importante. Plusieurs chercheurs ont plus tard reCOllIlU quc les ob.il~ts 

algébriques les plus appropriés qui devraient être étudiés sont les catégories finies 

qui généralisent les monoïdes d'une façon qui est expliquée dans cet Oll\Tag(~. 

Ce point de vue ne fait pas que raffiner la théorie existante; il est égalculCnt 

indispensable lorsqu'on traite avec des décompositions sérielles d'autollmt(~s. 

Dans ce mémoire, nous telltolls de faire progresser cette théorie en (~Xplur(\llt l('s 

liens entre la structure alg(~brique des catégories finies et la description cOlllbi­

natoire des langages qu'elle reconnaît, ce qui est un th(~llle ceutral dc la thl~()ri(' 

algl)brique des automates. 

La méthode des congrmmces a fait ses preuve dans l' l~t ud(~ des laugages 

qui peuvent être reconnus par des monoïdes finis. Daus ce lllhuoin', llOllS 

délllontrons que cette méthode delIlelln~ utile et puissaute lllellle daus l(~ COlltcxtl' 

des catégories. En utilisant cles cougruences sur les graphcs, UOllS obt(~ll()llS dl~ 

nouvelles preuves de résultats déjà prouvés, ainsi que ues résultats complètelllellt 
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nouveaux. 

On sait déjà que pour une catégorie fiuie, lcs 1ll0l1Oïdes dc lmsc pcuvellt (';(}'(, 

contcnus claus une vari(~té V (c'est-il-dire, être V localcllwllt. rcpd~sellt(~ par 

JiV) sans qu'elle ne divise un mouoïde dans V (c'est à dire (~tn~ V glolJalellwllt. 

indiqué par gV). En particulier, c'cst l(~ cas lorsquc V = Com, la vari(~t(, d(~ 

mOlloïdes commutatifs. Le résultat principal de cet ouvrag(~ fournit \lUC car­

actérisation combinatoire des catégorü~s localerrwut co III lllU tati yeso Il s· agi t d 11 

premier théorème qui s'applique à une variété non-triviale pour laq\ldh~ local 

diffère de global. En corrolaire, llOUS démontrons que JiCom c gV pOUl' chaque 

variété V qui contient strictement les monoïdes commutatifs. 

Nous fournissons aussi de nouvelles preuves de la localité des lvl-variét(,s 

suivantes: R et L, la M-variété de tous les monoïdes R-triviaux et L-triviallx. 

respectivement; Rb LI et RI V Lb ou RI est la variM,é de tOllS l('s 1ll0l1Oïdes 

R- tri viallx et idempotents et LI est la vari(~tés dl' W\lS les 1ll001Oïdes L- ui via llX 

et idempotents. Nous présentons uu exarn pIe silll pIe illustrant le fai t. q \1(' (J 

contient strictement la variété gJ, où J est la variét(~s de tous les lllOnoïdcs J­

triviaux. Cependant, UOllS dérnoutrons que (iJ = gR n gL. Le probl(~lllC d(~ la 

caractérisation des langages reconllUS par les catégories localelllent J -triviales 

demeure ouvert. 
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Chapter 1 

Introduction 

III algebraic theory of automata, a language L ç A* is said to be recogllizccl I>y 

the tillite 1l10lloid ~M if there exists a morphism cP : A* -1- l'II and a subset F ç Ji 

such that L = cP-1(F) (see [Pin86] or [Str94] for a very rcadable iutl'Oductiou 

of this notion). It is well-kuown that languages that cau be so n~c()gllizcd an' 

precisely the regular languages anù that for cach rcgular language therc is il 

unique minimal monoid, called the syntactic rnonoid of Land delloted il! (L), 

that recognizes it. One expects that cornbiuatorial properties of L would !Je 

refiected in the algebraic structure of Iv! (L): this intuition is completdv val id 

and a driving therne of the field is to prove theorems of the follovviug fonu: 

"A language L belongs to the combillatorially-dctincd dass V iff 1,11(' syutè\("( je 

lllOllOid lv! (L) bclollgs to the algebraically-dctiued dass V." 

For techllical, but unavoidable, l'casons, one sOllld,irues has 1,0 <lcal with slllJ­

sets of A + (instead of A *) anù semigroups (instead of 1ll0llOicls). l\Iost Oft(~lL 

"algebraically-defined" rneaus tlmt V is an M-variety, that is a dass of nuite 

1ll01l0ids w hich is closecl ullcler di visioll (i. e. morphic image amI s UIHllOllOid) 

and direct product. The notion of S-variety is similarly detined for fiuite sellli­

groups. Books such as [Ahn94, Ei176, Pi1l86] offer a cOlllprelwusiV<' t.n~atltWllt 
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Figure 1.1: SeriaI cOIllwction of autolllata 

of this theory. One interesting by-product of results of the abmT f()nll is that 

WIWll membership in V is dec:idable, one gets a decision proœdun' to ('st if f­

is ill V, since the rnolloid Ivf(L) can be dfectivdy comput(~d frolll au.\' of the 

comIllon representations usecl for regular lallguagl~s (au tOIllatou, r('gulm ex pn's­

siou, gnullluar, logical forlllula). Two dassical tlWOl"('lllS of (hat llallm' ,UT (Ill' 

correspondenœ between star-free languages aud aperiodic lllUWlids [Sch(jj] (\11d 

the correspondenL:e between pieœwise- testable languages and J -tri vialulOlloids 

[Sim75]. 

III automata theory one is orten iuterestecl in dec:ompositiollS of êlutolllata 

into simpler mlÏts. As an example consider the situation where two autolllata 

A and B are connected in series as SllOWll in figure 1.1: for lllètchilH' G i t. is 

no longer the c:ase that the spac:e of inputs it c:an rc(;Cive fomls Cl frœ ulouuid. 

sinl:e the input sequenœ is mecliatecl through machiue A ami SOlIW combillatiulls 

(like 'dg' or 'clf') never arise. One simple way of tadding this situatio11 is to 

view machine B as processing input sequellœs that are valid paths iu the fiuit<, 



directed multi-graph representing the statc transition cliagram of autolllaton A. 

Tedmically, the right point of view then is to say the input space of autoltlatoll 

B is the free category induced by this graph and we can associate with the 

machine a congruence of fini te index (that we shall hcnceforth call (Fm}!'" cm 1.­

g'f"'lJ,cnce) on this frce category. Thc lllachine tlms rq)l"(~s(,llts il ElIic(, c,l! q'>;Ul"\' 

rather than a monoicl. In order to undl~rstand the all-illlpOltallt cas(~ of s(~rial 

connection of automata and its algcbraic illc:al1latiou i.e the wreath prod m:t of 

lIlonoids, it is essential to geueralize the above settiug to the levd of catq'>;Ol"il's. 

e.g. wc shall see in a bLer sectioll that cleciclillg if a lllOllOid J\J divilll~s a \\'1'eaLh 

procluct of the form SoT amounts to decicle if ft certain catcgory, COllstlïlcti!Jl(~ 

from 1\1 and T, divides S. III this fnullcwork, OlW COllsid(~1's lallgllag(~s as s('(s of" 

finite-length paths in a directed rnulti-graph (insteacl of fillite-lcngth S('qIWUC(~S 

over a set) and such languages may be recognized by fini te categories (instcad of 

finite monoids). The notion of syntactic IIlonoid for a language over au alpha­

bet naturally generalizes to syntactic category of a language over a gmph. lu 

fact any alphabet coulcl be looked at as a one uode graph and the free lllOllUid 

thus becomes the frcc category illclucccl by such a Olle uode g1'aph. 1\:1('('1I('"s 

theorclll about regular languages call alsu !Je extclld('d tu Ihis flëtllH'\\,(Jl·k. ilS 

shown in [TSG88]. Onc cau uatmally ddine division alld dircct. j)lOd\lct. uf 

categories and the notion of M-varieties generalize tu C-varicties i.e. il dass of 

fillite categories closed uncler division and direct product. 1'11us the lllauipll­

latioll and unclerstallcling of finite categories as algd)1'aic ob.i(~cts are (~sselltial 

ingredients in manipulation and uuderstandillg of rcgular lallguages as obscr\\~d 

and fonllali)':pd in thp sprninal work of [Ti187]. 

Given a C-variety W, it is easily seen that the lllonoids iu W fOlïll ail 

M-variety. It is thus natural to consider the following question: for a fixed .1\11-
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variety V, what are the C-varieties W fOl' which Llw lllOllOids il! W an~ jJll'('is('l\' 

thosc of V? Two natund examples CIllel'g-(~ n~(\dily: the \ëlri('t)' gV = {C : C 

<livides 1\11 fOl' some ivl EV}, aud the variety ev = {C : (~vel'y bas<~ mOllOid 

of C is in V } are respectively the srnallest and tlw largest C-val'idi(~s \\'ith 

that property, It turns out that ct combiuatOl'ial description of th<' laug-Ilag-<'s 

recognized by monoids in V immediately irnplies a combinatOl'ial d(~sniption of 

the languages recognized by categories in gV; similarly, an algcbraic desniptiol! 

of the rnonoids in V implies an algebraic description of the categ-Ol'ies illlV. ()lll' 

understanding is thus complete whenever g V = ev; this happens in a l!llml)(~r 

of interesting cases, e,g. for every non-trivial variety of groups, 1'01' sl~milattiœs, 

for aperiodic monoids. But there arc also cases where gV Cl (IV, <~,g-. fol' the 

trivial variety, 1'01' commu tati ve lllonoids [TvV8G], 1'01' J -tri viallllOl!oids [I\.l!a.sJ l: 
apart from the case of the trivial varicty, it bœolIlcs qui te a challenge to bllll 

an algchraic description of g V or ct cOlubillatOl'ial description of t!l<' 1 êlllg-Ilag-( 's 

recogllized by lllemb(~rs of ev. 

It is a we11lmown fact that combinatorial <1nèLlysis of cOllg-ruellœs OH the frœ 

1Il0IlOid generated by a fini te set is a powerful tool to descri be lang-uag-<~s recog-­

nized by M-varieties. In this thesis, we exposit the usefulness of this lllcthocl fOl' 

deriving results about categories by introducillg the notion of graph congru(~llc(' 

on a free category, Let IV represent a fàrnily of congrucnceS (on the frœ lllOllOid 

generated by the set of edges of a graph) that describe lallguag-<~s n~l:Oglliz('d bv 

mOlloids in a lVI-variety V. As explained later in this dlapt<~r, e\l~ry su ch COll­

gruence farnily inudces a graph congruence farnily denoted by~, W<~ show that 

fol' wany important lVI-varieties, lallguages l'ecogllized by a cat<~g-OlT ill tV ('<Ill 

lw described by a congruence in the family Il', FOl' a11 such cases, wc colldlld(, 

that thc C-varieties ev and gV coim:ide. 



The central result of the thesis provides a combinatorial description of the 

languages recognized by rnernbers of gCorn, the C-variety of 10ca11y COlllllluta­

tive categories. This is the first instance of such result for a non-trivial varidy 

y where gY =1- gy. vVe give our description via cOllgnwuœs of hllit('-i1ld('x 

and SOlne novel ideas have 1.0 be illtroduced. \Ve also show that (leoHl is 

cOlltained in gY for every M-variety Y that strictly coutaius ail COUllllutatiw 

Ulonoids. We then use kIlown tedlllicl'ws 1.0 clerive results abOlit tlw S-vari(,t\, 

LCorn = {S : eSe E Corn for every e = e2 }. 

The work is organized as fo11ows: the l'est of this chapter pres(~uts thc basic 

notions that are needecl ancl SOlllC elcllleutary theorellls. Chapt<~r :2 louks a! 

local C-varieties illcluced by variolls val'Ïcties of idclllpotellt lllUllUids. ('11;\pt(,1' 

3 reviews SOlUe interestillg ami usdul pwperties of grapl1 couguwuccs that arc 

needecl to understand gCorn, chapter 4 provides a combiuatorial descriptioll of 

languages recognized by locally commutative categories and SOllle COnS(XjlWUœS 

of that result, chapter 5 presents sorne elementary combiuatorial proofs of 

theorems about gR and gL and consequently describes the C-varicty of locally 

J -trivial categories in tenns of global C-varieties. Fiually, dlilpt(~r G disCllSS('S 

some open pwblerns and possible rcseal'ch directious. 

1.1 Basic notions 

We quickly recall tlmt a rnonoid il1 is a set that is doscd lludcr a1l associa t.i \'(' 

binary operation definecl 011 it which has an identity. The lllouoid is callcd huile 

when the uuclerlying set is finite. Given an alphabet I::, the set of ail striugs (Jf 

fiui t(~ lellgth (ind udiug the elllpty string) \Vi th tlw opera lion of COlll:al.l'llil ti()]] 

fonns Cl rnonoid that is called the free Tfwnoid geueratcd lJy I::. 

A categoTy C is given by a finite Ilou-empty set of objects OÙj (C) ami for 
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cvel'y arrow:1: E ATT(Cl, (;:2), we say CI is the start object of.J: and C2 is tlw end 

object of ::C. Anow:[ is called a loap iff the start object and end object of :r 

Coillcide. Given an <tnow :1: in A'J"r(cl, (::2) amI an èLlTOW y in A'/T(C2: C:l), thcl'(, 

lIUlSt exist an aITOW :ry E A/'T(Cl, C:l). AlTows:r ami y in this caSl~ are calh~d 

cOIlsecutive. Further, if z is an aITOW in Arf'(c:J, CIl), thcn :r(yz) = (:t::t;);::. This 

defines a partial product 011 the set of anows iIl tlw category tlmt is associatiw. 

With every object c in the category, we associate an arrow le E ..1'/'/'((:, c) such 

that fOl' every arrow x, whose start object is (; and for every arrow :1) whosc end 

object is c we have x = Icx and yle = y. It then becomes easy to sec that a 

lllonoid is just èL categOl'y with a single object. A categOl'y C is calbl fillit(~ ifi' 

it has finite set arrows. This implies that the set of objects is also finite CV('1l 

though the converse is not true. Obviously, the set of loups anJlllld èlll)' obj(,(·t 

in a c:ategOl'y fonns a monoid. Each sllch ltlonoid is called a I)as(~ 1l10llOid of 

the category. One cau aiso fonn a lllOIlOid dellotcd Ily iIJ C' l'rolll il Cil t(~gOl'." (' 

by saying that the underlying set of j\1(: is A u {(J, l}, wlwrc A is t1w set of 

ètnows in the categOl'y. The prodllct ill J\1c of two cOllsecuti"c arrows ill A is 

their product ill C and the product of two llOn-consecutive ètnovvs is (J. () is t.lH' 

zero clement of the monoid and 1 is its identity. 

A finite directed rnulti-graph 1 G = (11, A, Ct, w) cunsists of a S(~t V of v(>l'tices. 

a set A of directed edges and two mappings QI, w : A ---t V, which assigus to (~ach 

edge a the start vertex a(a) and the end vertex w(a) of that (xige. Two (~dges 

a, b are consecutive iff w(a) = a(b). A path of length 'II, > 0 is a sequence of /1 

j Note: HCllceforth, by graph wc will always mean ùirectt~d lIlulti-graph lIldcss llWlltioll('d 

otherwise explicitly 
2 A path may and will often contaill repeat(~d OCCUlT(~llCl'S of Olle or lllon~ (~dg('s 

Cl 



way. A path is saicl to be finite iff it has a finite length. For each vertex 'lJ we 

allow an ernpty path Iv of leugth 0 for which ü(lv) = w(lv) = 'U. Thc set of 

all fiuite paths between any two vertices 'U, w is clclloted by G:"w. lt is ('asv to 

see that the set of all finite paths, denoted by G*, wlwrc (;* = U' , c \' ct', i'. 
U,Ule (, L 

forrns a category called the Fee categoTy gellerated by thc graph G. The lCllgth 

of a path x will be denoted by 1:r:I, and the number of OCClllTCllœS of an cdgc 

CL in :1: by I:r:lo.. Orteil for two paths :1: and y, we wOlllcl wallt 1,0 l"Olllpan' tlH' 

uUlllbcr of occurences of an edge CL in them thTeslwld t, modulo 1], dcn()t(~d Il.\" 

=t,q, where 1:1:la =-t,q Iyla iff either I:rl a = Iyla or the followiug two ulllditiollS 

are satisficd: kleL) 1:1)10 2:: t and 1:1:1" =- 1//1" (m,od)lj, ",lwu' (lIwd)lj rq)l'('S\~llLS 

mod ulm (j counting. vVe will also be interestecl iu the set of edgcs (let! ers) that 

appear in path (word) :1: and this woulcl be deuot(~d by À(:r), where /\(:1:) ç A. 

Two paths x) y are co-terminal, deuoted x rv y if oc (:r) = c{l)) ami w (:c) = w (y). 

A loop is a p,üh x such that 0:(:1:) = W (:1:). 

An equivalence P on the set G* of a11 paths in G is a graph congruence if!" :1: j-3 y 

implies:c rv y and XIPYl, X'2PY'2) w(:1:d = cx(x'2) iruply :1:IJ:"2/JYIY"2. It is casy tu 

see that the set of congruence classes, G* / (3, then fonlls a category. The oll.i('cts 

of this category are the vertices of G and for any v, lU E 11, tlw set of anows is 

given by ArT(v,w) =- G~,w/p. For each path :1:, we dellote the cunespoudillg 

congruence class containing :r by [:1: ]/}. VVe note that for every vertex li, tlw sd 

{[:c]f:i : :1: is a loop on v} forms a base Illouoid of the category. It shoule! Ile 

clear that every finite category C can be represeut.ed as the quotiellt of Cl frel' 

catcgory by an appropriatc graph couguwucc. If tlw catcgory is rcpl'csPlltcd a:-i 

C = (N, A), where N is its set of objects alld A the set of ill'l'OWS, t1wll Oll(' llla.\' 

write C = G* / (3, where G is the underlying graph and :1: jJ y iff the sequencc of 

arrows in x and y multiply out to the same arrow in C. III this work, hcuccforth 
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whenever wc ~pcak of a fiuite category, we would thus think of an llndcrlying 

gnlph and a congruence defiued ou it~ patll~. :\'otc that if G = (", A) is am' 

graph, then every congruencc A( in A* iuduce~ a gmph congnLCU(,C ry ill Ci' ill 

the followillg way: if:r and '!J are two path~ in G*, theu :J: ry:lJ iff :1: and '!J arc 

co- terminal and x 1 :lJ. 

A Te/ational rnOTphisrn < cp, 4) >: C ---1 D between two categories C aud D 

cOllsists of an object function cp : Ouj (C) ---1 Ouj (D) and a lllorphi~lll relatioll 

'~) : ATT (v, w) ---1 AT'T' (vcp, wcp) sucll that 

• :I:'~J of- 0 for each anow :x: ill C . 

• lv</> E lv/I) for every obj(~ct v iu C. 

C is a sUUcategoTy of D if cp allcl~) are injective functious. VVe say that C 

divides D, denotecl by C --< D, iff for any two co-tcl'lllillai alTO"'S :1' alld il III 

C, :1:4) n '!J4) of- 0 implies T = '!J. It is llOt hard to ~ee thaL wllell C and Dan' 

olle-object categories i,e. monoicls, this definition is equivalellt to the stalldanl 

notion of monoicl division that says lIlonoid C is CL hOlllomorphic image of a 

subrnonoicl of D. 

VVe can clefine the direct product of two categories C aud D, dcuotcd by 

C x D, where the objects are given by Ouj(C x D) = {(v,w) :1' E Ol;./(C) 

ami w E Obj(D)} and the anows are giVCll b.v 

A'f'r( (v, 'lU), (v', 'lU')) = {(:E, y) : :L'E AI'r(v, v'),.IJ E Arr(w, /l")} 

As introd uced by [Ti187], we clefine a C-variety to be a cla~~ of fini t(~ catc­

gories which is closecl under divi~ioll and direct pl'Oduct. 
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1.2 lnducing C-varieties from M-varieties 

As mOlloids can be identified with I-vertex categories in au obvious way. wc GIll 

introduce the notion of a category dividing a monoid hom the a!Jov(' d(~finitiolls. 

We now state two easily verifiable facts below that vyill be us(~d later: 

Fact Giveu a graph G = (V, A), ct graph cougnH.'llCl' (j fOl' G* aud Cl fillit(, 

lIlOllOid 1\11 , the category C == G* /!-] divides the mono id AI iff tlwn~ cxists il 

morphisrn ,: il * --t 1\1 such that the ind uced graph congruence '7 refines f3. 

Proof. Consider any path x in G*. The value of this path in C is giVCll hy 

[:r],8' Let [:rd'Y" .. , [xnh be classes of '7 that l'efine the class [:1:](3. Thcll each of 

these classes have aval ue in the monoid that we den ote by n~ l, ... , m n . Vic set 

the arrow relation 'tP such that [x JfftP = {Tnf, ... , m~}. Similady, for path y ill 

G* let [Ylh,···, [Ymh be classes of '7 that refine the class [yb- Thcn, for au)' 

'i J' such that 1 < 'i < n and 1 < J' < 'In we have x jJ :r, and 'u;3 'U. whenc<~ , - - ,-. - , !.'i .'iJ' 

:ry jJ :riYj' Hence for all such 'i, j, the class [:riYj J'Y is coutained in the dass [:r:y ]i'!' 

Hcncc i t follows that the Illouoid element mimj bclougs to the sd [:J:y];JI:.>, 1'01' il Il 

such 'i,j. This establishes [x]f:i'i;0 [y] ('1 1/) ç [:Q;]!1'1/J. If [:r],8 4) n [yb 1/) # 0, t.!l<'ll 

our defillition of 'tP irnplies that there exists a '7 class that is contailH~d both ill 

[:J:b and lY]!1 and thercfOl'c il. lllUSt be that :r: and y arc in tlw SiUlH' U)l1gnl(~llC(' 

class of jJ. Thus C di vides M. 

In Ol'der to show that this is a necessary condition, sim ply observc that we 

defille , : il * --t NI to be the rnorphism genel'ated by fixing for cvery (~dge (/" 

a, to be any one element in [aJ(:J '~). If:1: and y are two cotenninal pat.lls iu (,'; 

then clearly x, and y, are contained in [x ktP and [Y]!j'I/J respecti vcly. Sinœ C 

divides 1\1, x, = y, implies x p y and we are done. 

o 
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Fact Every finite category C divides the associatcd IllOllOid .~1(.'. 

Obviously, if we l'estrict a C-varioty tu its 1-vcl't(~X lllClllbcl's. \\'(! UH'1l gd, ,Ill 

M-variety. lu goueral, there may exist severai C-val'ieties which coiucidc uu the 

monoids they contain. 

vVe cau theu form g V a set of nnite categories coutaiuiug cvery 1ll001Oid iu (\ 

M-variety V by defining g V = {C : C divides Nf for some j\:1 EV}. It is (!a:'iily 

dwcked timt g V is dosed uuder direct prod uct ami di visioll alld IWll(,(, l'()lïllS ,1 

C-variety. 

Auother set of finite categories, cleuoted by t'V iuclucecl l'rom il variet)' V 

of ulOuoicls is given byeV = {C : evcry base IllOllOicl of C is ill V }, 11' D is 

auy nuite category ill ev aud C divides D, theu one can easily SC(! tlmt (~vcr.v 

base IllOl1oid of C divides sorne LJase Illouoicl of D aud lwuce ev is closcd lIudn 

divisiou, Oue cau also see that if C aud D are nuite (ël.tegOlics (1)('u ('\U\' h,ISl' 

lllOllOid of C x D is a direct product of SOllle base Illouoid of C aud SOlllC base! 

rnonoid of D. This establishes that ev is c:losed under direct product as well. 

Heuce it follows that ev is a C-variety. 

Further, if we consider any category C that divicles a rnonoid !II, it is casil,v 

seen that every base monoid of C divicles Ai. \-\T(! will s(!e the COlm!l'S(' is 1101 

always truc. This observation illlplies that fol' auy ~l-\,uicty V. dl<' C-\,lli(,t\, 

gV is always contained in the C-variety t'V. The C-\'ariety concspolldiug 1,0 

V is unique iff g V = EV and in this case the variety V of lllouoicls is said tu 

bc locul. As we shall see, although this ho Ids in several instances, this is uot iu 

gencral true. 
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1.2.1 Sorne exarnples of local M-varieties 

Vve caU a rnonoid M aperiodic if the lllonoid dOl~S not coutaill auy groups. 

Equivalently, there exists an integer t > 0 snch that every elellll'ut :J: of tIlt' 

Ulonoid satisfies the identity Xl = :1: t+1
. The set of all apcrioelic ll101lOids fOl"llIS 

Cl va.riety which is dcuotcd Gy A. CategOl"it~s that divide au apcl"Ïodic 11lU1HJid ,ln' 

calleel globally aperiodic and categories aIl of whos(~ base lllOllOids M(' ëqH'l"iodi(" 

are called locally aper·iodic. We are now going to prove the followillg thcorelll 

frOUl [TiI87]: 

Theorem 1.1 EVCTy locally apc'f'iodic categoTy is also globally (JPC'f'Ù)(ùc. I", 

othe'f' wO'f'ds, the C-var'ieties gA and fA are identù;al. 

Proof. We remind the reader that from facts stated earli(~r, vve kuo\\' that 

gA ç fA. For showing the converse, consider the monoid ~Mc associated \Vith 

a finite category C where C is assumecl to be locally aperiodic. Tlwreforc, 

there exists a t such that if we take any clement :r in 111 c that is Cl loup iu C. 

:1: t = :é+ 1 . If:r is not a luop then :1;'2 = :r3 = O. Thus 1I1e is apcriodic. Gllt 

we know that C divides NIc. Bence C must Ge iu gA. 0 

Vve will need to prove an iut<~l"cstiug property il bOll t ("(\ t(~gOl"i(~s iJd()["(' \\'(' 

cau give the uext example, Recall tlmt fOl' any direc:ted graph C = (V, A), il 

subgraph C' is said to be st'{'ongly connected iff fOl' every t,vo verticesli ami 'Il! 

in C', there exists sorne path in G* going from v to 'W and viœ-v(~rsa. EWl"\' 

maximal strougly conllected subgraph is calleel a stTOngly connected cumpu'I/,cnt. 

Every graph cau be uniquely clecornposed iuto its strongly cunuccted COlllpO­

mmts, Given a graph C, by Ci we shall lllean its à.h strollgly COllucct(~d t'011l­

pouent, Ai would mean the set of eclges contailled in the 'ith COlllpollCllL. Ll't 
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B = {Vl,"" vd ç A represent the set of edges which corlllect vertices iu twu 

different compollents and let t represent the number of such ('c!g(~s. For a ca tl'­

gory C == G* /13, we will denote the subcategory Ci / (3., by Ci, whcn' /)/ l'd"el's 

to ,f) restricted to paths in Ci. 'vVe are uow in il pusi tiou to stèlll' Iltl' folio\\' i Il).', 

theorem tlwt first appeared iu the work of [T\V8G] auc! la tel' iu [Tilt) 7]. 

Theorem 1.2 FOT" each non-tT'l>u'ial M-vaT'iety V" any mtC,I]OTy C = G* / Il zs 

in g V iff each of the .s'uvcatego'T'ie.s Cl, ... ,CIL ar-e in g V. 

Proof. If C divides a lUouoid 111 iu V, then from fac!"' 1.2 we Imo\\' thal. tlwn' 

exists, : A* -f lvl. 'vVe cau iuduce uatmally ~(i : Ai -f 1\1, \\'h('n~ W;I = W; 

for auy CL E Ai' Clearly ,i refiues /Ji aud 111; = Ar / ~(i di vides Al aud lleUel' is 

in V. This proves the right to left direction. 

For the other direction, we can again use fact 1.2 to assume that therc 

exists ,; : Ai -f NI;, where NI; is in V for each 'i. Let Ai' be any uou-trivial 

rnonoid in V and m' be sorne element other than identity iu 111'. \Vl~ cousidn 

the morphism , : A * -f hl1 X 111'2 X ... x 1I1n x (M') 1 = j\l. So M has 1/ + 1 

components, each one of the fil'st 'II, for the cOlTespulldiug stl"Ouglv CUllW'l'jHl 

cOlllponellt aud theu t copies of AI', ()lll~ for cadl Cc!gl' iu fl. FOl am' III iu .\1. 

let [mL rcpres(mt the jth cOlllpoueut of m. 'vVe fix for CVCl'y (f, E Ai, [aiL = (/~il 

and [aiL = 1 for each j =1= i. For the ec!ge VA; in D, wc nx [bA;iL = 1/1' if 

/, = II. + k and 1 otherwisl~. Let:1: auc! y be co-terminal cdges iu G* slleh tha! 

:fI = Yi- Then t11ey cau oe uuiquely factorizecl as :l: = :J:ob'u:J: 1 ••• b"I,rl) alld 

Y = YOVsoYl ... vSpYP where :r:i is co-terminal with :r,i = y,i' Siuœ l~ach ri 

rdines Pi, we have .Ti (3.; Yi for evcry 'i alld c:ousequcutly :r tJ y. This shows t ha t 

"1 rennes fJ and we are clone. D 

Our next example is taken from [TW85]. 
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Example 1.2. Let H denote sorne non-trivial M-variety consistillg ouI.\' of 

groups. Let C == G* / (3 oe any finite category such that all base 1ll0l1Oids oi' 

C belong to H. In this case we want ta show that C <livides il hl'OUP iu H. 

Using theorem l.2 we caIl assume that G is strougly couucct.ed. lu t.his C,\S(' 

we would show that C in fact di vides l~ach base lllOllOid (in this case a hl'Oli p) i t 

contaills. VVe arbitrarily choose a vertex '/J in G and for cvel'y vel't(~x li; ill G W(' 

dlOose paths :L'i and Yi such that u(:rJ = W(Yi) = '/J, W(:ri) = n{Yi) ={}i nud 

Y'iXi f3 lu,. Let 1 : A * ----t fllv be the morphism geuerated by fixiug for cvcry 

CL E A, ([,1 = [:Z:iWlJj]P, wlwl'c cv(a) = /Ji awl w(a) = 1;). IL is (~asil\' S('('l1 [lwt 

for auy path:r in G*, we have TI [:1:(CYJ]{1' whcrc (\'(:1:) 1.'; alld èv'(.l') = l')' 

If :1: is co-terlllinai with y and :Z:I YI' theu l:(1:Yj /J :1:mYj ami llluitiplyiuh ou 

the left by Yi and on the right by :ri we obtain :r (3 y. Thus '7 l'chues !1 <tue! lwuc<' 

C divides NIv. This implies gH = eH. 

1.2.2 Examples of non-local M-varieties 

Example 1.2. Let V = 1 be the l\/I-varil,ty consistiuh of thl' l-<>l('lIwllt Il!o!!oid 

only. TheIl for every graph G, G* / /J E gl iff /J aue! cv coiucide, Ou the ot.lwr 

hand, let B be the subset of those eclgcs of G for which stmt and ('ud \'(~rtic('s 

belong to different strougly cOllIlccted cOlllponellts, Dehlle:1: 1 y iff:r cv .Il am!. 

for each 0 E B, T = :];00:1:[ iffy = Y00Yl' Clearly, G*//1 is iu €1 but uot iu gl if 

B is uon-empty. Now consider an arbitrary category C = G* / f3 E n. Let:1: 

aue! y be auy two co-terminal paths uot coutaiuillg auy edg(~ U E I3. Theil th('J'(' 

exists a path w from w (T) to ct (:1:) SillC(' they are ill the sallW stl'OlIgly COlll]('ct(~d 

cOlllpollellt. Thus T f3 ywx f3 y. Hellce, 1 rennes /3 aml wc thus o!Jscrvc lhat 

G* / /3 E el iff 1 ç fJ. An interesting consequence of this 0 bscl'vatiou is that 

€1 c gV whenever 1 C V. lndeed an edge 0 of Beau appear in a path ;œl'O or 
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one timc ouly: if NI is a nou-trivialmolloid, i.e. AI coutaillS au el(~l!wut III. i: 1. 

it cau be used to distinguish paths ill which b occms froIll paths in which il 

does not, by rnapping b to TIL and every other edge of the graph to 1. Taking èt 

direct product of IBI copies of NI insures that we cau recover tlw (~quival(~uce 

class (in 1) of a path from its value in 1~1IBI. 

Example 1.2. Let V = Corn, the variety of al! COllllllutative finitc lllOllOids. 

On ally graph C, define Xlt,qY iff:r t'V y and fOl' each a E ri either (1:4, < l aud 

I:r la = I:lJ 1 a) or (I:r 1 (L 2: t, Iy la 2: t alld I·e 1 li ='/ Iy 1", whl'l'C ='1 dl 'llot(~S ltlod 1 do (/ 

equality). It cau be shown that C* / /3 E gCom iff Il.,1/ ç fJ fol' SOllW t 2: (), I} 2: 1. 

Ou the otlter hèWd, consider the fol!owing graph G: 

a, C 1<=>2 
b 

defiue :l:f3y iff:r t'V:I) and (I:rl ::; 3 and:1: = y) Ol' (1:1:1> 3 and:r t'V 01/). TIH'll 

C* / /J E t'Corn but Hot in gCom. 

This exarnple is in sorne scusc gencric as [T"T8S] pl'Ov(~S that a ('atq!;ory C' 

is in gCom iff it satisfics T.lJ,? = ZyT \\'h('llt~vel' Taud Z ;lle ('()-t('l"lllillid: titis 

result is cornbiuatorial!y quite delicatc to obtain. Gy ddiuition, a cat(~gOl'y C 

is ill t'Corn iff :ry = y:r for every two loops :1:, y on the saUle vertex. The abovl' 

l~xample shows that kllowillg the llllluuer of occurrcuccs uf l~ach l'dge in a paLh 

is Hut cllough iufonnatiou to characterize the value of the path il! èt l()call~' 

comInU tative categOl'y. 
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1.3 Syntactic category and sorne allied notions 

We uriefly introclucecl the notion of finite mOIloiùs recognizing lauguages thl'Ough 

homolIlorphisms from the free lIlonoiù generatecl uy an alphabet. Wc also n~­

called that every language defined over an alphabet induces a lllillimallllollOid 

called the syntactic monoid of the language. In this section wc want to c~xt(~ll(l 

t.lwse ideas to the notioll of finite categories n~cogllizing languages iu C'. FOI­

umlly, every language L ç G*, indllces a congruence Chat. \YC~ cal! the .'if)/I./'w:lù 

gmph cungr'uence, denoted by "/, whcre :1: IL y iff for l'very 'iL, li ill G*, 'iL:J:'l! ill 

L implies n:y'U is in L and vice-versa. The category G* /l'~ is called the syll­

tactic categoTy of the language L. COllversely,.i llst as in the casc~ of lllOllOids. 

a finite category C recognizes languages through rdatiollal lllorphislll frolll G' 

to C, such that the object function is injective and tlw morphisIll l'da tiOll is Cl 

fUll ct i 0 11. 

The central theme of traclitional algebraic theOl·y of automata is to stud.\' 

relationships between the algebraic structure of monoids and combiuatorial de­

scriptions of languages they recognize, alld here we would lilœ to COlllWct thc' 

algebraic structure of categories and combinatorial descriptions of lallguages 

they recognize. The variety of categories we will study in this tlwsis will 1)(' 

either locally or globally induœd [rolll souw varie!..\' of 1l10IlOids ilS ('XPlclil)('d 

befme. 

If 1 is any graph congruence, t.hell (~very language that is Cl ullioll of SOlll(' 

cOllgruellce classes of 1 will be called a "(-language. For each lVI-variet.\" that wc' 

consider in this thesis, Olle already knows tlw exisLence of a faIllily of CUllgtïl­

cnces, that characterise languages recognized by lllonoids ill that Yilricty. Let 

'"'-'V,i dellote a congruence from the family snch that the sylltac:tic: lllOllOid uf 
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ct language L in 2:;* is in V:, iff L is a rvv,l-lallguage for SOllW t > (J. Tlwn 

frolll discussiolls in the previous section, it is dear that languag(~s ["(~("()glliz('d 

by ct nuite category C in gV are ,{-languages where :);~I{;I), \Vlwll<~n~l".1" alld ;1) 

are co-terminal paths and :c rvF,t ;1). Thus, cverytilllc wc show for ct l'vl-vari(~t.v 

V, ev = g V, we obtain as a corollary a characterization of langllag(~S ["(~C()g­

nizeù by categories in g V. However to charactcrizc the languages recugnized I)\' 

categories in ev, whcn V is not local, one has to cxplic:itly work out tlw cUlllbi­

natorics over graphs. In chapter 4 on eCom, wc will pl"Ovide a cOlllbinatorial 

description of that killll. 

:j Frolll Eilenberg's variety theurelll oue cau coudude tlw exist,,'uce of (J!le sucb cuugnwu('(' 

family for every M-variety 
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Chapter 2 

Sub-varieties of locally 
idempotent categories 

lu this dmptel' W(~ cousidel' local C-vari(~ti<~s iw Illœd by suuw SlI b- \, \ lid i('s (Ji 

idempotent rnonoids. In pal'ticular wc luok at RAI, eJ l . tRI <tud f!(R l V Lt). 

In each case we show that it coincides with the COlTcspondiug glubal C-varict.v. 

It follows from the work of [JS92] that for CVCl'y lVI-varicty V of ielClllpOtcUt 

lllOllOids gV = ev. Howcvcl', iu this chaptcl' wc pl'cscut illdcpcllelcUt argll­

ments establishing the locality of the folluwiug IVI-yarieties : Al, JI, RI aud 

R(RI V LI) . Our arguments wuuld always crucially lise the existiug kllO\\'!edg(' 

of algebraic ideutities dmracterizillg the coucemcd Ivl-\'arictil~s ami tlw cougnl­

ellces that describe the languages recognized by them. vVc start uff by l'ccalliug 

an argument that is due to [BS 71] and again appears in the treatise of [EiI7G] 

for the C-varieties ind uced by JI' 

2.1 The variety gJ 1 

JI den otes the variety of ail idcHlP()t(~llt. auel COlllUlll ta ti ve lllouuids. :\ (J( (' llti\ l 

any fillite lIlOllUid 111 that is nut a gl'Ollp must have an idcmpotcnt C othcl' thall 

17 



the identity element. lt cau be vcrificcl that cvcry lIlouoid N iu JI di vid(~s t1J(' 

the direct product uIN1 , where U) denotes the monoid ({ l, e}, .). The variety JI 

is contained in every lVI-variety that is uot a vè.uicty of groups. lu particular. il 

is the slllallest variety of idelllpotcut mOlloids. Oue cau abo vcrify qlliL(' (~asily 

that JI recogllizes ""-h -lauguages where the congrueuce is g(~ll(~rated iu L* 1)\, 

the foIlowing condition: :.c "".JI y iff '\(:1:) = ,\(y). 

Given a graph G = (V, A), let e·h represent the slllaIlest graph congmClll'(' 

generating a category aIl of whose base monoids are in JI' Such a congruellœ is 

generated by the two following identities: :[yeJ
! y:1: and :1:: eJ

! 1;'2 wlwnever :r aud 

y are loops in G*. Clearly, t'JI is contained in t'Corn. From cxamplc 1.:2.2 . \\'(' 

know that gCom is not an upper bounel for t'Corn. It tums out OlW cau (~asilv 

show that gJ 1 ç gCom lllodulo the characterizatiou obtaillcd fOl" gCom iu tlw 

work of [TW85]. Let xyz be auy path in G*, where :L" and ;-:; are co-terlllinai 

paths and hellce :1:y and yz arc loops. Tilus, 

As notcd in Clmpter l, :J:fjZ = zy:r is the gellerating law for glo\)ally ("()llllllll­

tative categories and hcncc the upper bouml claillled earlier fo11o\\'s. I-Io\\'('\'('r. 

we shall give a lIluch sharper bound for t'J 1 that was Imown frolll the work of 

Simon ([BS71]) long before gCom was characterizec!. Before doillg so, \V(~ shall 

prove slightly stronger versions of two lemmas that appear in [Ei17G]. 

Consider the graph congruence eHI generated by conditions: :qp: f)/{[ :1:.1) ami 

:[ eH! :1:'2 for every two co-terminalloops x and y. vVe cau now state our lL~lllllla: 

Lemma 2.1 1rE and y a'f"e t'Wo cunsecutive ]laths (i.e.w(:l:) = (l(U)) (J,W! /\(011) ç 

/\(:1:), then thCT'e exists a factoTizatiun:1: = ;1:0:1:1, whcn; n(:l:t) = w(y) (LW! 

w(:1:d = n(y) and:r eR
! :1:yxI' 
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Proof. If Y is the empty path at the elld of :1:, thcll the lelllllla l'edllt:(~s to 

the trivial staternent x eR
! :.c and we have nothing to praye. \I\Te shall pwvc 

the lemrna now by inducting on the length of y. Let Iyl > 0 so tlmt Wl~ \\Tit!' 

y = y'a, for sorne edge a that occurs in 1:. Hence, we cau writc :r = :1':2a:I::\. for 

sOIlle :.c',!, X3 in G*. Aiso from our induction hypothesis we haye 

(:2. 1 ) 

Duplicating the loop a:1::3Y', we have from cOllditiou 2.1 

'l' eH! '1' (L')' 'IJ'(1 ')' 'l'J' ')' - 'l"lj'l' 'l'J' 'l' " ,<2 ,<\. "<l." j - ", -<l, "J (:2.:2) 

A pplying the illd uctiOll hypothcsis:1: OH I Ty':J: l tu coudi tiOll :2.:2 \\'(~ get 

( ') '») -,.) 

Note the lJracketed entities iu condition 2.3 are all co-tenuiual looj)s and chlls 

applying the generating condition of e R
!, one fillally gets:1: en! :q/:r [.1):1::\ e HI :q;:):\. 

This establishes the lernrna. o 

vVe specialize the lemma above to the following l'esult Gelow 

Corollary 2.2 If x is an œrbdmry path, then f(Jï' (Cve,.y loop y Il,t the end of :1' 

satisfying À(Y) ç /\(:r) wc: hlLve:J: Onl ,l'l} (anri.J: ().JIIj). 

Proof. In this case t'rom lemma 2.1 vve get :1; eUI Ty:J:j, \\'1l(T(~ :1' = :l'(J.1:j alld 

both:1:[è1ndyareloopsattheclldof:1:, Thus:r eH! :Z:o:Z:[y:1:j (IHI :J:O:J:l:t! = :q). 

To show that x OJ! y, wc simply note that the cougruence Ou! l'chu cs O.JI and 

wc are donc. o 

Let. ,.J! be the congruence in G* geucrated by tlw couditiou :1: ~(.JI.IJ iff tlw set. 

of edges that occur in x is the sanle as the set of edges occlllTing iu OIJ èllld (11(, 
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paths :r and 'Y are co-terminal. Vle arc IlO\\' in a position to pl'OW tlw follo\\'illg 

tllCorcm. 

Theorem 2.3 The syntactic categoTy of a laug'U.a.!Jc L C C* is in PJ 1 ifJ L 'lS 

a ,Jl -language. 

Proof. The direction from right to left is immediately establish~d by just 

observing that x ,Jl :r:2 and xy ,Jl 'YX whenever x anù y are loops. 

For the other directiou, considcr a locally JI catcgmy, C = (,'* jOf l • L('l 

two co-terminal paths x, 'Y in C* be related by :r: ,.h fi. VVe waut tu est èlblislt 

:r: fJJl 'Y by iuducting on the lellgth of :r:. If Ixl = 1, then 'Y couic! ouly ("olltaill 

a single repeated loop-edge and wc immcdiately have the n~slllt. Othcrwis(~ 

consider 1:1: 1 > 1. Let 'U and 'U be the start aud end vertex of T r('sp(~cti \'l'I.\". 

COllsider the subgraph Cl = (V, Al) of C, where Ar = /\(:1:) = /\(y). lu titis 

case cOllsider 1/;) to be the set of verticcs that an~ n~(\dlèlblc froml' ill Ci;. L('l 

V' = V 

'U. vVe split our argument iuto followillg two cases: 

• Let 'U lie in Vu. In this case, let w be a path in C:. from /1 to '/1. T1WIl 

from corollary 2.2 one gets:r fJJl ;r:wy and y fJJl yw:r. COlllbillillg thClll 

together, one gets 

Note that the bracketed elltities in each step are co-t(~nlliualluups . 

• Let 'iL lie in V' i.e. there are no paths in C: from 'U tu 1/ <tut! ll('llC(~ tlt(,y 

lie in two clifferent strongly connected compoucnts. Ou tlw othe!" halld 

since both :r and 'Y go from n 1.0 'U, it must be tnw that tlwl'C cxist ulliq Ill' 
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factorization for x and y, suell tllat :r: = :r: 1 a:r'2 and y = YI ay'2 wi th tlw 

edge a such that its endpoints O'(a) and w(a) lie in V' and i~, Œspectivdy. 

Thus we ean say that Xl ,h YI and X2 ,JI Y'2 and fwm our IH \\'(~ gd 

Xl eJ
! YI and X2 eUI Y2 from which the clesired rc~mlt follows. 

This proves the theorclll. l~i 

Hence in particular, cvery catcgory all of whos(~ base lllüllOids arc III JI 

clivicles some mOlloid in JI, wheuœ fiJ1 = gJ1. 

\l'le now want 1,0 move up lI1 the lattice of idclupotent vari(~ti(~s uf 11lOIlOids 

and eonsicler categories incl ucecl oy the M-variety RI' lt is cas)' to S( '(' t 11<1 t 

the congruence eRI introduced in the last section is the slllallest tu iudllœ a 

category in t'RI for any graph G. Here we introduce another congruence ,III 

that is used in the theorem below for deseribing the languages recoglliz(~d by 

locally RI categories. Vve say X ,RI Y iff for every prefix :);' of :r wc hav(~ a 

prefix y' of Y such that .>.(x') = .>.(y') and vice-versa, wlwre :1: and il are (:()­

tcrmiual paths in G*. Note if :1: ami il are rdated bv this, theu the.\" UUISt S(;lrt 

with the sarne eclge. In other words, the longest COllllllon pn~fix of :1: aud OIJ has 

length at least one, providecl :1:, Y are nOll-empty words. 

Theorem 2.4 The syntact'ic CUÜgUTy of a lanCJv,age L C G* 'lS in eR1 i.t/ L l.'i 

a ,HI -ll1ng'uage. 

Proof. The direction from right tu !eft is easy <lud ldt tu tlw read('r. 

For the other direction, cOllsicler:r ,Ul y. Let y = Yu. Our stratl~g~T is tu 

hep growing the longest cornIllon prefix of :z: and :1Ji, by successively chaugiug 

21 



Yi to Yi+l so that Yi eHI Yi+l aUc!:1: ,III Yi fOl' aIl i" ThllS, fur SOIlH'1/ :::: Lu" 

would have :1: as a prefix and then applyiug corollary 2.2 hOlll thc last sectioll. 

we obtain that:1: eUI Yn and this woulc! fiuish the argullwllt. Hcuce, the oui.\' 

relllaiuiug thiug is to show that oue cau always obtaiu Yi+l frolll Yi, sat.is1\'ill!2, 

the coudition stated above. Let {Ji deuote the lougest COIlllllOU pn~fix of :1." and 

Yi· Let 1: = p,JL:r' and Yi = PiUy'. If a = U, then wc have uothiug to show. So 

consider a of. U. We split our argullleut in followillg two cas(~s: 

• CL does not occur in {Ji. This meaus that y' can be writteu as y' = Zj U.Z'd, 

where À(uzd ç À(Pi). Note that UZI is a loop at the eud of Pi aud 

hence Pi ,RI P'iUZl which illlplies:1' = ()Jef' ,UI Pia,,,'d. :\'0\\' applvill!2, 

corrollary 2.2 we get Pi eHI (J,UZI and thus sptting /}i+1 = (J,U;;'d W(' ;\l'(' 

done for this case . 

• a occurs in {Ji. lu this case \v(~ coult! \HiLe (Ji = II.U(all.1) OUI U(jlllllUIlI 

p;CL'U 1. Tlms, setting Yi+l = Pi(W, 1 uy' does the job. 

This cOlllpletes the pro of. o 

The theorem above establishes the equality of C-varietics fRI ami gRI' 

Very siIllilar arguments yield the identity eLI = gLI' 

2.3 RI V LI is local 

The lVI-variety RI V LI is the jOiTL of the varieties RI aud LI' This llW<lUS 

tlmt we take the union of the set of lllouoids iu RI aucl the seL of IllOllOids ill 

LI and then take the dosure of this set lluder direct prodllct and divisioll of 

mOlloids. It follows that the cougruence correspondiug to tlw vari('L\' RI V LI' 

is the intersection of the congrllem:(~ COlTcspoudillg to RI with tlw ('(Jllgrtl(~lllT 
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corresponding to LI. Hence the syntactic monoid of a language L is in RI V LI 

ift" L is a rvRIVLI-language, where rvR1VLI is the congruence generated IlV the 

following condition: for any two words :l: and y, :1: "'l!lVLj !J ifi":J: "'I!I i} ;\lIt! 

:l: '""'LI '!J. In other words, two strings arc "'UjVLj rclat(~d iff the onler iu whi("l! 

new letters appear in one of them is the same as in the other, inespcctiw of the 

way we scan the words. It cau be sllOwn that the iclcutities for this i\I-\(tri(~ty 

arc giveu by :l: = :1:'2 ane! :ry:l:z:J: = :1:/jZ:J:. 

VVe are now intercstcd in looking at tlw buguages rccogniz(~d b~T catc~gOl'i(~s 

in the C-varicty e(R1 V Ld. Let (jH1VL l oe the coarsest graph cougl"ll(~lJ(·e g('ll­

erat(:~d lly the followiug cOlldi tiOll ou loops: :c'!J:rz:{ {jl! 1 v L 1 Ti} ::é:J: aud .J: () /1 1 V /, 1 :r".!. 

where :l:, y, z are arbitrary loops. 

Let ~fRl v LI denote graph congruence satisfying the following coudition: :1: ,JIl v /'1 il 

iff:l: and y are co-terminal and x rvR1VL1 Y when x, y are treated as striugs iu 

A*. 

In this section, we want to prove the following reslllt: 

Theorem 2.5 The syntu,ct'ic cu,teyo'f"'!J of (j, lanyulLye L is il l, f(R l V Ld i.IJ LiS 

a ÎRIVL1-lanyv,age. 

The direction from right to left is l~asily obtaiued by observiug that {jUIVLI 

refiues ~fHI v L j . The other clirectioll is SOlllewhat tecllllical aud wc will have' tu 

develop SOIlle more results before wc cau prove it. VVe will statc a l"Cslllt llCl"(, 

that easily follows from the theorem given iu the llext sectiou. 

Proposition 2.6 If C = G* / (J is any locally ùLc'/fL]Jotcul cu,tel}IWIJ (i.c,,:} ,,".! 

for· aU loo]Js u), then x'u:r f3 x if ).(u) ç À (x). 

Vve 1l0W want to show a result that is the key lemma of this spctiOl! aud il! 
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SOllle sense is Cl naturai generalizatiou of corollary :2.:2 gi vcu iu the last scctiuu. 

1,0 the case of t'(RI V LI)' 

Lemma 2.7 Let 'usw be a path .'luch that s ~s a 100]) satisfl)iny t/w c()'fuhtùm, 

À(8) ç /\Cu) , À(w). Then, 'll.SWH1I1VLI uw. 

Proof. If 8 is empty, we have nothillg to prove. Othenvise, I(~t CL lw the las! 

edge of 8. Then, there exists sorne edge b in s such that it can be factorizcd as 

S = fJoblha and 'U can be written as 'u. = uobu', wlwre À("") ç À(ln/). No!(' 

that b = CL is a special case of this for whic:h, we wouid have wri tteu 'II. = lIO(JlIl 

Here we will assume that b i=- li, as tlw other case is lllllCh silllpl('l' (0 llalldl('. 

once we have seen the argument for this case. Sylttlllctrically. Olle ('(lll ,\lsu \\'l'i! (' 

s = a'q[b'qo such that w = w'b'wo and À(s) ç /\(w'I/). \Vc also uo«' that \JOch 

bl1,']Jo aud (Jow' b' are loops. Henee, by replicatillg cadi of thClll twiœ, OIW cau 

write the following: 

For compac:tness, we put Us = Pabu' and w" 

following: 

(:2.-1) 

w' b' qo iu equatiou :2.cl to get t h(' 

(:2.5) 

Since the edge [;' occurs in 8 and wc know that /\ (s) ç /\ (bu,'), i t follows that 

[;' aiso occ:urs in bu' and we cau write Inl,' = pob' {JI' I-h~ucc, Ilsiug (,([Ilatiou 2.~) 

one cau write 
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W:i'W eR1VLl ' ( )2 ( rZ " 'UOPOU Pl LL~ S 'W s 'W U 'WO 

::::} 'US'W eRI V LI ' ()2 2" ()2 2' , 'UOPOU Pl 'U~ S('W~) 'W U {JI 'Us S(WJ 'UJ b Wo (2.G) 

::::} 'uS'W eRIVLI ' ()2 , )2 " 'UOPOU Pl 'Us S'WkU 'U.kS(W, WU 'WO - :1: (2.7) 

::::} :r 'iJ.O(JOU' :1:,1/ :Dr 1/ 'Wo (2.8) 

2.7 as having two symmetric parts - the left and thl' right and tlwsc' an~ calb 1 

iu (~quation 2.8 Tl aud :1: r l'esp(~ctivdy. \Vc will fucus ou the scgltWll( (IlJ.!.') (Jr 
:Dl on the left and S('W s )2 of :D, ou the l'ight. We will explaiu hcl'c wlmt wc du 

on the left and completely dual arguments woulcl apply ou the right. Let liS 

recall 'U~ = Pou'u'. Since every edge that OCClUS iu s also occurs iu lm', wc CèlU 

write 'Us = POU'U.1U'U2, whel'e CL is the last edge of s wheu scalllwd hOlll Idt. 

Renee ('U s )2 scan be written as POU'U.l CL'U2U'U' Ska. Observe that 'U2ud aud sAa arc 

co-terminalloops and since 'U2U'U' occurs twice in x, (once in :Dl ami once in :1:,). 

we can insert another 'U2U'U' in the middlc. Tlms, wc cau write Uw followiug: 

(2.9) 

Siuce ),(8) C /\(CLU2UU'), we cau apply proposition 2.G to equatiou 2.9 èllld 

get 

(2.lO) 

Now we can apply very sirnilar arguments for the segment s(w,)2 iu :1:, t.u 

equation 2.10 and obtain 
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.'}.' /JR1VLI [' ( )'2 1,1 ( )'2 'l' 
(7 'lLO(JU) Pl 'IL" 'W/.;u 'U/.; 'lU" 'lU) 'W() (:2.11) 

Expanding 'W/.; and 'IL/.; and shrinking ('ILs) '2 and ('/0,,):2 tOIJ." aud 'lU" respec­

tivdy: 

(2.12) 

Recalling pob' Pl b'u' and expanding 'Us and 'W s iu equation 2.12 

(:2.13) 

Recall that ooth b'IL' aud (1)'b' coutailled evel'y edge iu s. III pmticlIlill' tll('\' 

contain aIl edges of Pu and qo which wc recall to be just seglllents of s. vVe cau 

hence apply proposition 2.G to the bl'acketecl elltities in (~quatioll 2.13 tu obtaill 

This completes the argument. D 

vVe now obtain the following 1'8sult llsiug the l'csult abow: 

Lemma 2.8 Ifv is a laap at the end ofu and 'U,'U",/?jVLl 'a, then '/J.V(jH1VLl Il. 

Proof. Clearly, in this case À(v) ç À(-u). Also note that since iLU,flIVL 1 Il, 

if 'li. and U are non-empty, then v and '/1. must end with the sauw Id. tel'. U\ll 

stl'ategy in this case would be to gl'OW tlw lcugth of (h(' COllllllOll sldlix ur III' 

allClu gradually oy changing v until one of the two [ollowiug thiugs haPIH'u: 
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1. 'yVe have transfonned '0 to '0' snch that uv (JHI v LI uv' alldu is a suffix 01'1.'" 

lu this case uv' = 'u/w'u and À(1O) ç À(u). HeuLe app1yillg pl'Opositiou 2.G 

wc get 'Uv' (JRIVLI 'u. 

2. The oLlier case is v has lw(~u tmllsfol1ued Lou' SUdl (hat u' is il sltllix (Jr 
'IL. III this case 'uv (JHIVL I 'lLV' = 'lLo(V')'2(JHI VL I 'uov' = li. 

Thus in both cases wc get the desil'ed resu1t. HeuLe the l'est of tlw arglllllcut 

boils clown to showing that we cau contiuous1y go from 'uv to (LV' such that. 

uv (JHl v Ll uv' and the common suffix of v' aud 'u has grown in 1ength. Assulllc 

that the common suffix to start with is p. Then 'Uv = 'UVOCLp ami 'li. = 'u,o!J/J. 

If U = CL we are done. HenLe, assume U -1- a. vVe uow have Iwo (,(Scs. lf f) 

has already occurred in p, then 'uv = 'uvOaplupo(JHIVLI 'u:uoaplbplu/J(j = l/.IJ 1 !J{J, 

where '01 = VO(LPl· Thus setting the COIllmon suffix to {J' = b(J, w(~ arc done. 

vVe are thus 1eft with the case iu which U does uot occur iu (J. lu this case the['(' 

are two possibi1ities. Tlw first is, U dOl~S Ilot occur in v at aIl. NoL(~ iu Ihis 

case, dearly v = Vo(J and À(vo) ç /\(p) sincc the order in which uew (~dg(~s 

appear froIll right to left in '(LV aucl 'u aI'(~ the SalIW. 1'hlls,wc gd vu = lIo/JI'ofJ. 

Henœ app1ying proposition 2. C, we gct ({'u (JHI v LI Uo/) = 'II aud \\'C arc doue. 

The second possibility is v = IJObVIU,P. Again, /\(Vla) = À(p) and 'IIj(J, is a loop. 

Thus we can apply lernIIla 2.7 to get 'uv = 'uvObu[ap(JHIVL I LL'UO/;p aud vve arc 

done. o 

We shaH now prove the main theorem of this section. 

Proof of Theorem 2.5: Let us assume that :1:iHIVLl y, whcre x aud yan' 

arbitrary patlls. Let y = YI. vVe waut to find a series of paths Yi. such t.hat. 

Yi (JRl v LI Yi+l' Let Pi represent the longest COlllmon prefix of :l: and Yi. T1Wll 

wc want Ipil < Ipi+ll. Thus for some n, :1: itse1f is a prefix of Yn' SillC<' f)I!IVI_1 
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l'efüws ,J!IVLI, we cau apply lelllllla :2.8 to obtaiu the n~sult :1.' (jHIV/'1 :t)" ()I!IVI.I if 

and we are done. Thus, the whole argument Loils clown tu findiug Yi+l, giveu 

Yi· Let:r = p.;,!;:r' and Yi = Piay'. If a = b, there is llothing to show. Assullle 

a i: b. There are several cases to consider. Assume b occurs iu {Ji. lu this case 

Y'i = wbw'ay'(jR]VL] wbw'bw'ay' = Pibw'œy' = 'Yi+l' Otlwrwisc\ let b llot OCC\ll' 

in Pi. In this case we can write Yi = p(uby', wherc 'U is a loup and (~V(,l'y edge 

in 'U uccurs in p and 'U clops not contHil! !J, If IlO (~clg(' or /1 O(TllrS ill y'. 11[('11 

clearly Pi,H.IVLI jJ(U, since \V(~ kuow ,1',II IVL I "Ji. ThllS applyillg l(~lllilla 2.8 to (Ji 

and P(U wc get Yi = Pi'uby' (-j/(IV/'1 Piby' = Yi+1 and wc are dOlW. Otlwnvise, Id 

c be sorne eclge in 'U that occurs in y'. ln this case, c aisü OCCllrs in {Ji a Ild 1(>( 

Pi = wcw', y' = 'UOC'Ul' Thus, wc gd 

Yi 

where t = 'Uocw''Ub'UOC'Ul and clearly every cclge that appears in 'U appears iu t. 

Thus applying lemma 2.7 tü equation 2.15 we get Yi ()R1VL] (Jibt = Yi+l and \\'(~ 

are done. o 

2.4 Al is local 

Our argulIwnts are based on the work of [vVT8G]. For ('\,crv worcl :1: Id :l'p 

(:rs) represent the lüngest prefix (longest suffix) of :r sueh that /\ (Tp) i: /\ (:1:) 

(J\(:rs) i: J\(:1:)). vVe dcfine a cougrueuce "-'A] iu A* Ly sayiug thaL .1' "-'\1 Y ifl' 

/\(T) = À(Y), :Dp "-',\] yp and :rs "-'Al Ys. Note for uon-clllpty wonls :.1." ancl y. 

:r rv A] Y illlplies that they stal't and eml with the sanw lettcr aue! lwncc :J: aucl 

Y have a COlIllIlon nun-empty prefix and suffix. The rullowillg lUllarkai>l(> raet 
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can be traced back to McLean and Grccn-Recs ami also appcars ill tlw WOl'k of 

[EiI7G]: 

Theorem 2.9 The syntactù; rrwT/,o'id of a languayc L 'is .finde and ùJclII,]Jotcn!' 

'i.ff L 'is a r-v Al lang'aage. 

vVe can thcu iud llce Cl graph cOllgrucncc fWIll r-v Il Ily im posill).!; cOlldi t ious of 

coterminality and denote it by Î A1 . Given a graph G = (1/, A), let the coarscst 

cougruence iu G* that induces a locally idempotent category he dCllotcd by ()A 1. 

The generating identity for such a congruence is given Gy :1: (JAl :l;L fOl' (~ach loop 

:r in G*. The first thing 1,0 observe is the following easy faet: 

Fact (JAl refines Î A1 . 

The non-trivial thing to show llOwcver is the otller directiou: 

Lemma 2.10 1"h Tefi:nes (JAl 

Proof. VVe will use uestecl iuductioll 1,0 prove the th('On'lll. \\'(~ lilst IWU' [lt;lt 

if wc restrict ourselves to pa1,hs :r ancly such that À(:D) :s; 1, thcu tlw resul! 

is obviously true. Now we will induct on I/\(:r) 1. We first makc the followiu).!; 

dailll: If '(j, ÎAl vw, thcll therc exists w' in G*, such that u, (J'\ 1 V'U)'. \V(~ show tlll' 

dëüm by again iIlclucting on the size of /\('0). SiIlCC iL and v lllUSt lwgin with tll(' 

same edge, the clesirecl result immediately follows in the base case of IÀ(v)1 :s; 1. 

Otherwise, let '00 be the longest common prefix of 'il ami v. If Vu is the (~lltil(' 

path v, then there is nothillg to show. If not, thcn we call write u = (,'U(/(il and 

'U = VO'(l'. 'vVe split into two cases: 

• If CL cloes Ilot occur iu vo, theu fwm the clefiui tiou of TIl i t follows tltat 

'(L' cau Gc factorized as '(lI Cl/iL L . Theil Olle cau wri te 1/, = Il ()(/{j'2 • wlt('l'(' 
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'Uo = VO'Ul and a does not o cc \lI' in 'Uo· Hellce 'Uo T·II Vo. Not<~ that 

IÀ(vo)1 < IÀ(v)1 and so t'rom om induction hypothesis we obtain '{Jo Wll 110 

and hence 'IL (}AI VOU'U2 . 

• If U occurs in Vo, thcn one can write Vo 

as aV;j is a loop. 

Hence in a11 cases we can writc 'iL Wh 'Ll. n , where the commOll prenx of 1/ 11 aud 

v has grown in lellgth. Sillce we kuow that (}Aj rcnues TIl, wc (',UI rClJl'at this 

until the common prefix coincides with 'U, which establishes the dailll. It is (~asy 

to see from symmetry that 'U 1,.'\1 V'UJ also irnplies 'IL fI,1 l 'IL'W fol' SOllW '/l'in C;*. 

Cousider T ,AI y. From the daim, it fo11ows y (l'II T,;: fOl' SOlllt~:::. This 1Ill',IIIS 

T,AI :1:Z. The syIllIlletric l'mm of the daim theu gi ves :1: ().I 1 Il! ,":; fm SUlll(' W. 

Since Z is a loop, we get x (}Aj 'Wzz W" 1 :J:Z, whence nna11y :1: fiAI y. o 

It is inte1'esting to note he1'e that [JS92] have shown that every mOllo id V(\l'i­

ety satisfying the identity xn+l = :r for some n 2: 0, is local if labels appcaring 

in its "Polak ladder" are alliocai. They have thell bcell able to show as a COl'ol-

Imy that ally non-tri vial 1\1[-varicty consisting of lUOllOids \V hos(' icl('ltl po( ('II l s 

form a submonoid l , is local. It tlwu follows that cvcry varidy of idc1Il[)()(,('Ul 

lllonoicls is local. Jones and Szendrei use the powcrful theol'y of complctdy n~g­

ulm sellligrou ps dcvelopecl in [PoI85], [PoI87] and [PoI88] aud COIl.i(~ct me tha t 

evel'y uon-trivial variet.y of completely l'l'gulal' lllOllOidsL is local. 

J such lllonoids are u\llet! ortllOgroups and t.hl' \'ariel,)' of ail suell 1I10110ids is d('Jlu\ ('d IJ\' 
OG 

2molloids that are unions of thcir subgl'Oups 
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Chapter 3 

Sorne results on graph 
congruences 

In this chapter, our objective is to present some properties of two gr<1ph (,Oll­

gruenc:es that help us characterise the C-variety gCom in tenllS of a.lg('!)l'aic 

identities. All of these results first appearecl iu [T"T8G] aud thcu iu tlw book of 

[8tr94]. vVe mildly strengthen lernma 3.8 ami :3.9 frolll tlwir Ol'igillal l'Olïu ill 

[8tr94]. Tlw results in this dwpt(~r aJso prepare ILS 1,0 Lake 011 Jocall,v ('Ulllllllitcl­

tive categories in the next chaptcl'. 

Note that we can fonn an iufinite family of sub-varietics of Corn by ('011-

sidcl'Îng varicty Comt,q which is gellerated by followiug iclcutities ou loups: 

:rl = :1. 1+1] aud :ry = y:t. As a bYPl'Oduct, at the eud of this chapt(~r wc giv(' 

êluother argument for the locality of JI by obsel'viug that JI is idcuticaJ \Vith 

Coml,l. 

3.1 Free globally commutative categories 

Let G be a graph and define on G* the congruencc:1: 100 y iff:J: rv .lJ èllld 1:4, = 1.Ili/l 
for every edge a. 



Let aIso Boo dellote the coarsest cOllgnwnce satisfyillg :1:,I)Z fJoo ,":!Jl' \\'lwuc\'(~l 

:1: and z are two co-terminal paths in G*. 

The following leIlllIla shows that Boo characterises fre(~ globally COlllIlmtati"c 

categories. 

Lemma 3.1 Fol' t'Wo paths:r and !J, Tloo,l) ijj:1:Boo:IJ. 

Proof. It is stmight-fol'w<lnl to SC(~ thal ()CG l'diu('s "/00' \\1(' will sho\\' t.!J(' ot!J('! 

direction by induction ou the length of paths. Fm 1:1:1 = I:IJI = L the base caSt' 

of the induction, it is obvious. Let k 2: 2 be a positive illtegcr with 1:1:1 = I:IJI = k. 

If :1: and y begin with the same edge a, then we have:1: = a:r' "(00 (J.!J' = !J, which 

implies tlmt :1: ' 100 yi and applying the induction hypothesis wc ubtain :);' (ICXJ u'. 

whence x Boo y. 

So we are left with the case in which x = a:D l ln::2 amI y = b/JIŒih wlwl'(' Il 

and b are two different edges. If x[ is empty, then.1J Boo ab!Jl!h = !J' as Il aurl !Jf}1 

are loops around the same vertex. As :1: aud yi bcgiu with the saUle (~dgc a, W(' 

can apply the argument of the previous paragraph and obtain :J: BCXJ!J' fJ CXJ y. So 

we assume that Xl is llon-cmpty. Let :1:1 = 'lL1'lL:2'" 'IL." where cvcry "i is au c<lg(' 

ill G. If tLl occurs in //1, tlwn :IJ = IrWl'u,lW:2aY:2 fJoo (J,'lLl'W:2{JU)I.lh = yi as ({, (lud 

Inoj are co-terlIlinal paths. Since yi and :1: begin with (J ,,,'e are douc with this 

casc. H'lLs OCC1U'S iU!J:2 thcll!J = !)'ill(J,WI:IJ,W'2fJoo({,'U.'IUs!J.lllU:2 = yi as 1Ii/'Il), <llld 

h!Jj are loups around the same vertex auc! wc an~ again douc as ill Uw pn'\'iOI1S 

cases. Otherwis(~ if there exists au 'L with 1 < 'L < s s1lch tlmt 'ILl,.'" l1,i-1 OCClll' 

in!J2 and 'lLi occurs in Yl, then y = h'Wl'lL'i'W2U/Ul'lLi-I'U2 BCG (L'Uj'IJ.i-l'1J,(W:2!noj'U:2 =u l 

as hWi amI a'Ul'lLi-i are co-terrniual paths anù now consiùering :1: alld yi \\'(~ an' 

done as before. 0 
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Lemma 3.2 rf:1: -ts (J, luap wdh l:rl a 

e:àsts a laap y .'Juch that :1: /00 yi! 

Proof. Every edge (L occurs TL,,!} tillles in :1:, wllen~ no 2: () is SOlllC lllllltl)('l'. \ \'(' 

create a new graph 0' having the same vertex set as 0 by rcplaciug cvpry edg(~ 

a in 0 by n" co-terminal edges that are denoted by (LI, ... , an". The loup :J: iu 

o tllUs gives risc ta Cl circuit in 0' such that each edge in 0' is rl~pcatcd ('xad.l.\' 

q times. This implies that the in-degree of every vertex in 0' is the same as iLs 

out-degree. So there exists an Euler loop co-terminal with :1: dello\(~d !J\' y tllilt 

traverses (~very edge of 0' exactly onœ. CI(~mly:J: IOC :IJ I
! c 

Lemma 3.3 rf:1: and y aTe path" in 0* such t/wt 1:4, < Iyl" fo'!' C'I)(Tfj cdy!: ({ 

in 0 tfwt OCCV,TS in :1:) then y (}oo 'IL:1:'U fOT .'iume '1/., v E 0*. 

Proof. \V(~ show this by illd uction on the length of the pat.h;1:. FOl' 1;1: 1 = lL 

i t is dearly truc. COllsider 1:1: 1 2: 1. In this case let :1: = :1:' (J, W lwl'c ({, is a11 

edge in O. From the induction hypotlwses we have fj (}ooLL:l;"U 1'01' SOIlW Il,1) su dl 

that lula + l'Ula 2: 2. The first case is whell lula 2: 2. Thcn y (}oo IlUOI/'1 (III·P.I u. 

Sinœ a'Ul and a'u2x' are loops around the same vertex we COllllIlute thClll ta 

get y (}oo 'uOa'U2x'a'Ul'U and we are done. Next, consider the case lul a = Ivlo = 1. 

TheIl y ()oo 'uoa'UjX'VOavl. In this case a'uj:1:' and va are loops <11'Ouud the S(Ull(~ 

vertex and so exchangiIlg them we have y (}oo 'Uuvua'lLjx'avj auc! \\'(~ an' agaill 

done. Finally for the case Ivl" 2: 2 we get y (}00'u:1:'VUO,Vt(LV2 aud by intndli\ugiug 

the loops '/Jo and ou 1 we gct. y ()ool/:r' al! II!()U/}'2 aut! this (,()lllpl(~tl~s tlw Pl'()u!'. l] 

Lemma 3.4 ff.7: is (], !O()J! at thp end of:IJ S'Il,Ch, that ("IJe'f':t) ('dye {/ 'i'fl C ()(:nl.'J'.''' 

at must once 'in :E and fOT eveTy edge (L that OCC'/1,TS 'in :1:, 1 y 1 (J > t 'I1Ihcl'c t ;::: 1, 

then :IJ Hool1,:r L fOT ,'iO'f/l,P 'U, in G* . 

33 



Proof. We prove this by induction on t. For t = 1, lemma 3.3 gives Y()oolL:J:'U. 

But in this case :r: and v are loops around the salIle vertex and so W(' hm'(' 

i} ()oo 'U'UX ancl we are donc. Let t ;::: 2. lu this case from our iudnctiou hYlJOtlwsis. 

wc get y ()oo rn;t-l, for some path p. FOl' each edge ([ that OCCUl'S iu :J:, wc ha\'(' 

Iyl" = Ipla + t - 1 > t, siuce a üccurs at most ou('(~ iu :1:. Thus fol' (~\'('r'y sndl 

(~dge a, we have 1:1:1" < Iplo' Applyiug l(~lllltl(l :l.:3 wc gct /) (i.x; /)lI.l/)I. \l'ltl'Ut'(' 

we have y ()oo PO:rPl:1: I
-

l
. Siucc:r is a loop, we fiually obtaill :IJ ()ooIU;I, \\'11(')'(' 

IL = POPl' o 

3.2 Finite globally commutative categories 

In a finite category C = G* / (3, every Lmse mouüid is fiuite. Oue \\'()\[ld t1111s 

have from the pigeon hole pl'inciple, SOIlle t ;::: 0 aud (j ;::: 1 sllch t.hat :/:' ,j T II
'/. 

for every loop :1: in G*. Fonnally, we generalize eoo Gy sayiug that et,1} l'epl'e­

seuts the coarsest graph congruence satisfyiug following condi tious: :1::1) Z ()I,I} ,";f):L. 

W lLClll~ver :1: and z are co- tenniual and fOl' every loop :D, wc havc ./:' 01,(1 ./,1 +'1 . 

lu this section we prove the following theOl'Clll that was fil'st p1'O\'cd lU 

[TvV85]: 

Theorem 3.5 Cu.tegury C = G* / /3 'IS gluually co/!l.m:/J.tu.tivci.!f'.:) 1" nj/l/.cd by 

et,1f for sorne t ;::: 0 (J:nd (j ;::: 1. 

Let It,1} Ge the coal'sest cougruence satisfying :z: Il,1} y iff l:rl" =1.(/ lui" fOl' 

every edge a. and :z: ('V y. Note that ill the above tlWOl'Clll if C is glolmll~' 

commutative then by definition, it divides sorne fiuite commutative lllouoid ;md 

heu ce (3 is clearly refined by It,q for SOllle taud q. Oll(~ cau e(tsily Wl'i fv t 11<\ t 

et,q refiues It,q and this gives the left to l'ight. directiou of the il bov(' th(~l)n~llJ. 
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Tlw other directiou lS lIluch more delicatc tu obtaiu alld wc first Jl('cd III 

prove sorne lemmas. 

Lemma 3.6 FaT' every graph G (11, A), gwen a t ~ 0, thcrc (;:âsts .':i rfe-

pendent on Gand t (we write s s(G, t)) s'uch that for cach ]Jath :1' Ù/, G*, 

1:I:la > s 'iTnphes xBoop(ay)tw for 80me p,y,'UJ in G*. 

Proof. Let s = IVI + t(2 1A1 - 1) + l. lu this case for ally :r that has lllor(' 

thê1ll s occurrences of edge a, we call write :1: = :coa:c 1 ••• (I,;I:,(U:,+ 1 = ./:'(1.1:,+ 1. 

where :r' = :cua ... ax, and no :Ci cOlltains auy OCCUlT(~llœS of (J, for i ::; .'i. \"(' 

shall call each a.Ti (where i ::; s) an (L-zone. Siuce we cau COIlllllllt(~ loops. 

wc can assume w.l.o.g that aIl the vertices that appcal' in :1" also apjJ(~ar in 

'il = Tuo.:r la ... o.TIVI· Consider auy .J such that 1 VI < j ::; .'i aud (u:; !tas 

a loop in bl~tween. In other words we can write a:Dj 'l/)U'Wl'lU:2, wherc 'WI 

is a loop. TheIl fWIll 0111' assumptioll, we cau factmizc Il aSIl()i11 SllCh t.I1a! 

n(v,d = c~('Wd and hence COIllIlluting IOOPSU1(L;l'lI'l+l ... Wu <lud lUI, ()tl(' gct.s 

'uu'UJl'U,luxlVl+l ... 'UJu'UJ'2a.:rj+l ... aXs+l' Coutinuing in this \Vay, Olle call ewmrc 

that finaIly, for aIl j iu the range giveIl by IVI < j ::; s, aTj lias at lllOSt ()ll(' 

occurrence of any edge in A. But then from our choice of s, then~ lllUSt !Je ,I! 

least t instances of a-zones which have the same set of edges occUl'riug in thClll 

and hence are 100 equivalent to each otlier. Let thcw aIl be cq11ival(~ut tu I/f! flJl' 

SOUle il. Usiug the cquivalcllœ of lex \Vith &00 alld (,Olllllllltillg loups. lJIll' (,lIl 

thus write1: &00 p(ay)L'W. D 

Lemma 3.7 Given a gmph G = (V, A), and T ~ 0, we ca'{/, .finrf Ir! depcndr:nl 

on G (lnd 'f' (uJ'f'dten 'III, = 'III, (C, '/')) su ch that fOT e'ueTy ])(),th :r 1 /J 't'/l, G* .. /' ~rJ/I,(1 if 

'implies that there C:rt8ts a ]J(J,th ;:; 'in G* sat'ÎsflJ'ing the followù/,(j : 1:4, ::; I,èl" fol' 

evexy ed.lJe (L in A, x IT,q z and z &1','1 y. 
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Proof. Wc choose m(G, T) = 8(G, 'l') + 1, whcre 8(G, 'l') CUllles frolll l(,lll 1 llèl 

3.G. Let :1:/IIL ,(/ y <1llcllet A' = {a : I:/;Iu > lylu}l. 'Tak(' a 11\' ('dge ({ f"n)Jll .\'. 

T'hen u. OCClUS at least III tillws iu.'J. This HWilUS llsiug l(~llllll(l TG. \1'(' g('1 

Y ()oo p(o:uyw 0,,(/ p(o.uy+k"w = YI' Here we have clloseu k sllch that r + l':(j 2': 

l:rl". One can sec that any edge occurs in y[ at lcast as lllauy lilllC as il. OU:lll'S 

ill.lJ. T'lms, cath eclgc in A' occur in YI al. least 'Ill, tillles ami w(~ cau n~p(~at. tl[(' 

argument, once for each edge ill A'. Hence, let z :l)tA't aud il, cau \)(' eèlsil\· 

verified that z satisfies ail desirecl conditions as 'ln > 'f" and (J,,!/ rdùws ~('.(I" D 

Observe that (Jt,'1 can be thought of as a rewritillg systelll. If a pat il .IJ GlU ])(' 

obtained t'rom path x using rule for exchanging co-terminal paths (i.e 1IU1'l! ---1 

v'W'u., where 'U ~ 'u) and rule for loop replication ('lL t ---1 /Lt+(/) without llsing loop 

deletiou ('I1. t+'1 ---1 lit), then we wl'ite:r 5c~,'1 :1). It is a trivial o!Js(!I"Vatioll tltal 

:r 5c~,(1 Ji implies :1: (Jt,(/ y. Clearly:r 5cf,,! y implies for ail CL E A, I:/:Iu 5c 1.'Jlu' 

Lemma 3.8 ff y ois IL 'IL Y ]Jath ù/, G* (/,nd :1; is U:II..I} {(JO!) al. l,he cluj ()Iij. ;;1U:l1 

tliat fUT cueT.I} edge CL of G t!w,t ()ccl1:rs in :t: we have 1.1) 1 u > .'j .lm .'i 2: 1. I/U'II 

'1) < li '/'):1:(/ f'or' CVCT"I) (1 > Ü. . -c<;,(J ~, , 

Proof. vVe will pl'Ove this by induction on the l(èngth of:1:. Fol' l:rl = (J. it is 

obviously true. For I:rl 2': 1, iffor cvcry edge a, I:rl a 5c 1, thell lelllllla 3.4 givcs LIS 

y (Joo 'u:r;' ~~,'1 'U:r;s+'1 (Joo yx CJ and the result follows. Now if 1:1:la 2': 2 fOl' SOllte ('dg(! 

o., tlten let :1: = :1:0:r[:D2, where :r[ is a loop. lu this case I:J:II, 1 Lo:!::!1 < l:rl, H('IH'(' 

applying the induction hypothesis to y and :];0:1:2, we get y 5cS,(, y (:1:0./:'2)'1 , 13111 

Y(XOX2)Q = YXO:J:2(XO:1:2)Q-l, Again applyillg the rH to y:DO and :rI WC! gct:IJ S:~,,! 

Y,,' '1''1 "', ('l' 'L', )1/-1 (J Y ('L' '1' X") '" ",(/-[ "', (", 'l', )1/-2 Here we have COllllllllt,('(1 :r{I/- 1 ,v(), '1 "'2 . 'o· '2 00' '0, '1 '2 .VO·V J 'v'2 .V(J.V2 . 

lU A' is empty, theu z = y and wp are duue 
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and :1:2XO' WC can keep doing this q - 1 times to get :1) S;~,IJ y(:1:0:1:1 J.·'2)'! UT'!. 

o 

Lemma 3.9 IffoT t'Wo path/31: and Y, 1:1:la < Iyl" fUT e'UCTy edge (J mu]:r (1.+1,,/.1}. 

then:1: S;~,'l y. 

Proof. We will prove this usmg induction on cl = Iyl - 1:1:1. For cl = (J. W(' 

have Iylu = 1:z:la for every edge CL and so from lemma 3.1 wc have :1: (lo;j :1) aud 

lwncc :1: S;~,IJ y. Cousider the case cl ? 1. Let IL be the IO!lg(~st COlllUlUU prefix 

of:1: ane! y. Then x = 'lai aud Y =/(1)1' If :1:1 is clllpty thcll IUII" == (J (/IIOI! (J) 

for each edge a and so from lemma 3.2, we get y (}o;j /LW'! for SOUle loupllJ ill C*. 

Aud so lelllllla 3.8 gives 11S :1: = IL S;~,,,ILW'/ ()oo:1) (lml hCllc(~ the n'stiit. 

Now consider the case wh(~n Tl aud heuce YI are uon-clllpty. Su \\'(' ('ottld 

write :r = wu; 1 and Y = ILuYuaYl, with CL ami U beillg edges such that (J, of. 

U. If uYo and YI have a vertex in eOIllIllon then uYoaYl could he n~writt(~11 as 

U'WU'WI a'UO'U1 for SOUle 'Wu, 'W i, 'Uo, 'U 1 in G* sueh that uwu aud (J,'{)o arc co- tCl1uiuaL 

Thus Y {}oo 'U(J'UO'WIUWU'Ul = y'. Now y' and x have a eOIIlmOll prefix that is IOllgcr 

than 'LL, and we can repeat this argument until we finel a path y* such tlwt T is a 

prefix of y* or we calluot find the co III 1110 Il vertex as l)('fo['(~. Tlw fOlï!H,[, caSt' bas 

been treated already and so wc cousicler the latter, which eall !Je staLcd siltlpl\' 

as byo and Yi have 110 vertices in eOlIllllon. 

Claim: If:r =u,a:r' aml y =IÛJYOC(1)1 are two paths with I:L1 S; 1:l)lr for 

cv(~r'y (~dge c and byo ètlldUl have IlU vertex iu COllllllO!l, thcI! :r' alld 1Jill! l'OliLlill 

110 cdge i11 commO!l. 

lf the dailll is false tlWll wc hav(~ il CllllllllOIl (~dg(' (' «lld su \Vl' ('oldd Wl'itl' 

:r = UQ,:C 1 c:r2 and 'Y = 'U'W 1 CW'2CL'Y 1, sneh that I!O cdge of :c l OCl'lll'S ill I)ilo. If.r 1 
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is ernpty then c~(c) = o(yd and so this vertex is COllllllOU to b:lJo aml .'JI. If '/"1 

is llüll-(~Illpty thcu the last cdgc of TI lllust oc("l!l" in .'JI and again In/II ,\lId YI 

would have a commOll vertex. 80 in bot11 cases \V(' have Cl C()l1Lradictioll. 11('IHT 

the daim follows. 

For each edge c, we have IbYolc + IYll, ==t,q 1:1:'1,. Frolll the dailll alJ()v(~ and 

the condition of the prcseut case byo does not have any edgc iu COllllllüU with 

YI or with :];'. Thus IbYulc == 0 (!nod q) for each edg(~ c. Applying ]ClllUW 0.2 

wc have byo &00 (w)IJ, where w is some luup at the cud of u. For ('adl l~dg(' (' 

that appears in w we have l:r'l" = 0 and hence Iule 2: t + 1. Benœ applying 

lemma 3.8 to 'U and 'uw q
, we obtain UUYI 5:.~,(1 'U,'w'laYl &00 y. 

Since byo and x' have no edges in cornmon, wc get I:rle = l'IUL:];'I, 5:. IWLYll, 
for aIl edges c. If for any edge c we have luax'lc < 1'U,aY1 l,) t11<,n lua:c'Ic < 

l'ubYoaY1 le and hence IU(L1;'le 2: t + 1 for aIl such edg(~s c. :-\lso for aIl cdges (" 

in t.he underlying graph, wc havc lua:)"'Ir == l,ûn/ou.I!ll, == 1 U(f./J 1 l, (m.or! (J). Tl1Ils. 

:1: 1t.+l,'IuaYl and from our induction hypot1wses wc ubtaiu:1' 5:.~JI'WUI 

ubYoa:l/l = y and we are done. 

N ow wc are iu a position tu prove our main thcorcm 3. G. 

o 

Pro of of Theorem 3.5. \I\!c provcd oue directioll earlier. Hcrc wc collsid(~r 

a category C = G* / /3 such that for sorne taud (J, ()/.,(/ l'chues !). \I\,(~ cho()s(' 

:; = 'm(G, t + 1). COIlsidcr two co-tcl111iua1 paths :r alldu sllch LitaI T~I'.,/ /J. 

Then in this case from 1emma 3.7 we gct a path z, snch that :J: 1/.+1,I{·C: ()/.+J,,/ .IJ 

with Il:la 5:. Izla for every edge a in the graph. Then 1emma 3.9 givps us ;); &"'1 z 

and hence x &t,q y. Thus, Is,q refines &t.'1' whence it rehnes /3 alld the thcorclll is 

proved. o 
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3.3 Consequence 

vVe deuote by ef,q the coal'sest graph cOllgruellœ geuel'ated by tlw follo",iug : 

for allloops x, y :r;y = yx and x = :r;if+l. 

Proposition 3.10 The gmph congruence e1,1j u,[11J(],Ys n,.!iu!;.') HL'I' 

Proof. We will show that xyz eL zy:r, whenever x aud z are co-tcrIlliual paths 

and the desired result follows from that. 

aucl thus, 

""'!j7 lie Z('I')'I·)2('I)'I·)'I-1 - 7('1)'1,)'/+1 (JI' ~'I')'l' "', ,. VI ,Ij " , ., .' , - '" • .• l ,II '", ' , 

Note that the bracketed entities in each step are loops that arc citlwl' C()llllllllt(~d 

or replicatedj deleted. o 

As a consequence of the arguments appearing before, we obtaiu the 1'olluwiug 

re~:ml t for the varieties Corn l,q' 

Lemma 3.11 For any category C = G* j (3 in the C-vu:riefy PComl,'l' the (j'lïlJJh 

congruence Il,q refines (3 fOT all (j 2 l. 

Proof. We first prove the following 

Claim: If XII,if y, each edge a iu G do es not lie in any loop iu path :1: iff it. do('s 

uot lie in any loop iu pat11 y . . \V(~ shall prove the right tu l('fl. ditn:t.ioll ;lltd 

the other direction is symmetl'ic. Cousider x in G*. Startiug 1'1'0111 the \'(~lt('X 

0(:1:) t'orm a maximal sub-path delloted by :rt snch th;\t uo cdgc in tItis sltlJ-p;\t,ll 

lies in any loop in :I:. S tartiug t'rolll Cc.' (:1';), t'orm a lllaximal Sil b-path s lldl (hat 

every edge in this sub-path lies in some loop in :I: aue! dellot.e this sub-path IJy 
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V , 
v , 

Figure 3.1: Graph G x induced by path 1; 

Il 

V 
c' 

11+1 
V, 

:E;. We keep doing this such that Œ(X~J = w(:r~) and o:(:1:~+I) = w(:1:;.) for a11 

i 2: 1, until aIl edge occurrences in :D are coverecl. The subgraph imluccc! bv !lw 

edges appearillg in x (or '!J) is denoted by Cl and looks as shown iu figure :).1. 

The veritces appearing in :t~ ami :1'; are dCllotcd b\' \ ',' and \;' l'l'Sl)('('( iwl\', [1 

is not hard to sec that no cdgc OCCIlI'S ill Cl \Vith its (~lldp()illtS ill \:! and \./' 

respectively, where j i- k and 'IJ, 'U E {s, c}. COllsequentl)' 110 such cdg(~ Cè\.ll 

occur in path '!J as graphs Gx and Gy have to lw idcntical. On the utlwr lland. 

UIW such edge must exist in '!J if it has an (xlge hOlll :r~ occllning ill SOlllC loup. 

This establishes our daim. 

Now we can convert x into 1:] and :1) into '!JI by l'(~plicating loups su du\! 

every cdge in :1: or '!J that lies in SOlUe loop has at least t\Vo OCClln(~nœS in bOUI 

:El and YI' For every edge a in G wc compare 1:1:llu with l'!Jllo' If 1:/:110 > 1'!J11" 

then from the daim it fo11ows that a lies in a loop in '!JI. We replicatc this loup 

nIlOugh nurnber of tillles so that the resulting path '!J'2 satisfi(~s 1:1)'2111 2: 1:1: II", 
Clearly for sorne 'i, ly,la 2: 1:1:110. for aIl a. Assigning '!J' = Yi and :1" = :1:1 gi,'(~s liS 

:di l ,,! :[;' 72,'1, '!J' (h,q '!J and applying lemma 3.9 wc get T (JI.I/y mal frolll [Jwpusitioll 

3.10 abow W(~ gd, :1: (JLy and LIllls .1: ,'5,1), 

The argunwnts abovc along with the observation thaL Como,,! is a sllb­

variety of finite abelian groups and hCllC!' the reslllt of (~xalllple 1.2.1 applics tu 
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it, give us the followillg re~·iUlt: 

Theorem 3.12 The v(J,'r'ù~t'ics CmllO,q (J/1U1 Cmlll.q (/,1'(: l()cal fu'/' cw:h I! ;:::- l. 

The result above appears in [Kna78] anù thCll in lllore general t'onll ill 

[Alm94]. Note that Coml,l is exactly the variety JI and consequclltly JI is 

local. 
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Chapter 4 

Locally commutative categories 

The work presented here is primarily taken from the author's joint work with 

Denis Thérien that first appeared in [CT03], In arder to clescribe the languag(' 

recognized by categories in t'Corn, we have to introduce some new dcfinitious, 

In any graph C, we call a loop that consists of il single edge a loor> ('dge: fOl' 

each path :r in G* we clellote by x the path obtaiued frolll ,1.' i>.\' n'ltl()\'illg iLs 

loop edges. For a path x and a vertex v, let :r[v] staud for the subseqlleucc uf :J: 

consisting of all edges of the path that are incident ou vertex/!; note tlwt :I:[V] 

is not itsclf Cl path, and that wh eu :1: is il loop x[v] has (~Vell Icugth l'or (~(\ch u. 

4.1 Free locally commutative categories 

vVe relllind the n~ader that hom last chaptcr wc kllow that fn'(~ glol!;dh' ('(Jllllll\l­

tative categories are characterised by the congruence &00 , which is the COal'S('st 

congruence satisfying the equation xyz &00 zyx whenever :1: rv z, 

The free locally commutative congruence on G*, which we dCIlute ()~, is 

the coau;est cOllgruellce satisfyillg xy ()~ y:1: whellcver :1: aud y are luups ou 111(' 

same vertex, Obviously, &~ refines &00 = /00' \Vc also observe that :r &~ if iff 

1:1:1(1 = Iylo fOl' every loop eclge a and x &~ Tl, i,(~, the pn~S(~llœ of loup ('dg('s (,llllllll 
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affect the cOllgruellce relation provided they are in eqllalnUlllbcl' in buth paths. 

There is another combinatorial property that is pl'cservcd ]yy COlllllllltatioll of 

loops; letu be a vertex sllch that I:culli = () for (~i\ch loup (~dgc ({, UUiI alld slldl 

that 1:r;y[vJla ::; 1 for each a; then the subsequence :i:y[vJ is au cycn pcnulltaLioll 

of the subsequence yx[vJ. vVe now proceed 1,0 show that these cuIllhinatorial 

properties, the last Olle suitably modified, characterize e~. 

lu geueral, it is llOt the case that every edge appeau.; at 1ll0St (HIc(' III il 

path. Suppose 1:r;la = k; we make the k occurreuœs of (J ill :1; fOrIllally distill("t 

by labelliug thern, in the orclel' they appcar, as 0'\(1) .... , (/,\(1,). wllcl'(, /\ is (\ 

pel1uutatioll of {l, ... , k}. A labdlhuj .\(:1;) uf il [laLh:r is LIt(! l'(~slllt ur ilppJvillg 

this pro cess to cach edg(~. T'hus the cdgcs fUl'luing ~\(:E) cali Iw vic\\'('d as IJcillg 

distinct. Wc will wri te 1 (x) when the labellillg is based ou idcuti ty pCl1Ull Latious 

fol' cac:h cdg(~, i.e. fol' each a, if 1:r;I(I = k, the OCCUlTcuces of (J in .r arc H'lliluwd 

(lI, ... ,(LI;; in that order. 

\!\Te define on G* :r; I~ y iff x 100 y and there exists a lalwlling A for Tl s11ch that 

for (~very vertex 'U the sequence 1\ (Tl) [v] is an eveu perlllutation of the S(~q ll('IlC(' 

1(x)[vJ. It cau be checked that I~ is a congruence relatiou. 

vVe state a useful property of I~ 

Proposition 4.1 Let:E = :i:l/JX2 aud y = YIPY2 Vi: two jJu,ths ù/, {/, Y'mph .'m.ch 

t/wt :r; I~ y and P is a loop on SOTf!,C vertc]; li ,Juch that for cach (:dyr: a ln !) w(' 

have l:rl a = Iyla = 1. Then :i:ll;2 I~ Yt'.lJ2. 

Proof. Clcady :1:1:1:2 Icc YIY'2.' For the secoud propcrty t.!Jat. \\'(' LH'cd t.o prm·('. 

W(~ call assume that :r and y do Ilot contain auy loop edge, siucc this prop(~rty is 

clealing with x aud y. From the definition of I~ there exists a labdliug functiou 

1\ sueh tlmt for each vertex 'li, AClj)[uj is au eveu penmmtiou of 1(:r)[/)]. Bllt 
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every edge that appcars in p is ulllque and so ;\ and 1 lllUSt han' lal)('lI('d (J 

cxactly the samc way. Abo for e\'(~r'y wrtcx l', ~\(fJ)[I'] alld J((J)[I'] h;(\"(' lhl' 

same length, which is even sincc p is a loop. This illlplies that :\(Y1 Y2) [I.']IS êlll 

even permutation of 1(XIX2)[V] for every vertex v, as rcquired. o 

An immediate corollary follow8 

Corollary 4.2 If two paths x and y satisfy x 1~ y and there are 'IL luups (JI, ... , (lll 

appear-ing in x and y wheTe faT each edge (L in a luop (Ji 'Ille lw'ur: 1:[;1" = 1'.1/1" = 1 

then the paths obtained by deleti'fLy these loops fm7!/, :1: (j,ud y (,';lI.y TI ilnd 1/), 

satisflj :r l 1~ .Ill 

Proof. This fo11ows uy repeatedly applying proposition 4.1 once for every loop 

Pi· o 

Lemma 4.3 FOT t'Wu paths :r and y) :J: 1~ Y iff:l' ()~ :IJ. 

Proof. The implication from right to left is eas)' aud Idt 1,0 the n~adcl'. 

Now for the other direction we assume 1; 1~ y. Sillce every loop edge appears 

the sarne number of times in the two paULS, its suffices to show x (-)~ y, SO W(' 

now suppose that x and y have no loop edges. Because of the labclling iuvolvr'd 

in the definition of 1~' we can think of x and y as having at most Olle OCClIlTCUCe 

of any edge. 

\IVe will prove our dailll by inductiou on thl' It~llgLh of Lhe pallts. Flll llJ(' 

base case of 1:1:1 = 1, the lemma is trivially truc. Also Ilote that if :1: audy are 

Lwu coLenuiual paLlls Llwt starL with the sallle edge a and :[ = (U;' alld,lj = Ily'. 

theu :1: 1~ y illlplies :J:ll~ yi, siuce the occunCllCC of ([ is lllliqlle. Tlllls l'mui U[(' 

iuductive hypothcsis we obtain :1:
1 f)~ yi amI this provcs :r (-)~ y. 
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A::>::>UlllC lWXt that :); aud y star! \Vith diffcrcllt ('dg('s. L('I .. 1: = (lJ()/U: 1 • .I! 

UYOWlJl, V = n(:r) = (t(y); If v appCal"::> iu YI, i.e. YI = YIO.l!II \Vith u':(.I/IU) = l'. 

thcn we can commute !Jyo and aylü aud wc are !Jack at the prpviolls case. A 

siIllilar argulllcut holds if :J: 1 contaill::> v. Otherwise the n~rt('x IJ, \Vllidl is the 

COlllIllon eud vertex of :co antlYol lllU::>t appcar al. l(~ast ouce 11101"(' iu thos(~ t.\Vo 

::>uopath::> oecause :r[v] is an even permutation of y[v]. Thi::> illlplies tlw pn~seuce 

of an edge c in xo \Vith start vertex 'li. Thi::> edge also appcars iu y, Il(~ll('(' ltlllsl 

appear in Yo. We can thus use loop cOlmIlutiug to oring the c as first ('dge ill 

cach path, and so x f)~ c:r' /~ cy' f)~ Y for sorne :r' and y' (note that this follows 

from the already proven fact that f)~ refines /~). Now wc are IJad: to the caSt' 

haudlcd before. o 

The lem ma above combinatorially captures the algcbraic cougnlCllC(' f)~ alld 

so provides a tool for describing the language n~('()glliz(~d hi- t'l'Cl' IO("è\llv COlll-

UlU tati ve categories. Dut i t is ilUpossi hIc to work ditectly wi t.h !li(' ('0l1g1"ll<'1!("(' 

/~ for the case of fillite categories siuce iVe have to deal \Vith paths that arc 

equivalellt even though their lengths are differcnt and so tll(' com:('pt of (~V('u 

permutations docs uot work <tllylllOrc. This lllotivatcs us to nud auot!H'r \Vay or 

characterising f)~. 

Consider the following special case. Let x = (LX 1 y:r'2,'U;3(L he Cl path when' (J 

is an edge which is coterminal with the suupaths !/ and ,3. OU(' v(~rifil's that. 

and so 

(-1. 2) 

TllUs we are able to iuterchaugc in :c the cotenllinal subpaths :1) awl z by Ilsiug 

commutation of loo})s, because :1: contains au ed!!;(~ twic(' which is ('01 (~rtlliu;d 
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with these subpaths. The equivalence between exdmnge of cotenninal paths aud 

commutation of loops holùs unùer a more general condition that we fonll(diz(~ 

bclow. 

For a path x, clefine r:. as the rcfiexivc aud trausitive c!OSlll'(, of t!t(, J'('bt.ioll 

rr ddincd on the vertices by VI f\V2 wl!('IWVer Lhcn~ is êUl (~di!/~ (/ Sllclt (11i\( 

Lemma 4.4 FOT any path:c = :rl:r:2:D:):C4:r5 in G*, 'if o{C:2) r;; W(:C2) and:l:'2 rv :1'1 

tll ("II ')' '1' '1' ')' '1' {lt '1' 'r' ' •• ' •. '1' 
o ,~ 0 "1,,:2· <J. ',1· • 5 li (X) • , 1 · ... ·1 .<.<J .... :2 .... " . 

Proof. 

w(:r'2) = w(:c<j). If Va = 'Uu, the result is imrnediate. Otlwl'\visc W(~ J!W\'(' !.ll<' 

lemma by showing that the hypothesis irnplies x I~ y. Clcarly I:rl a = Iylu f()l' 

each a. Consider now x and y, or equivalently assume that :r ancl y contain 

no loop edges. We have to shovv that there exists a labellillg A whieh will 

make 1\(y)[vJ an eVCll permutation of I(:c)[vJ for every vertex/!. Siu('(~,I} IS 

obtained by interchanging subpaths of x, we get llatlll'ally [rolll 1(:r) il first 

labelliug 1\ fol' y. For each vertexu 1- l'", ('1" wc lw V(~ tha t 1 (:/:2)[ (;J ;\lld 1(:/' 1 ) H 
hêty(~ evcu length. Siuce A(:Ij)[u] is o!JLaiucd frolll l (:L')[l'] Il,\' illtl'l'l·ltaugillg (\\'() 

blocks of evcu length, it must be au cven p(~nnutation. The jJl'Oblelll is tltal. 

l (:C:2) [ua] and l (:Ld [ua] have odd length, hence the permutation A(y)[vu ] is odd, 

and thc same for VU' Since Vu, r:; Vu thcl'e exists SOUle n > 0 sllel! that Uu = 

Vu rI VI r x V2 ... r x Vn-l r;l V n = Vu' using the definition of l'J; let Ci Iw t.ll<' 

edge cOllnecting Vi-l and Vi for i > O. Each ei is dil'ected and its direct.ion is 

al'lJitl'ul'y. Alsu there are aL ll~ast two occurreuœs of CI in I)ot.h :1' illldU. L('( 

us create a new labelling A' that switches the labels (as givell b.v .\) of Iwo 

arbitrarily chosen instances of ei for each 'i. For aIl other edgc occuncuccs, :\' 
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is the saIlle as A. For each of 'UI,"" 'Un-l, A'(y)['uil diffcrs from A(Y)[Uil by two 

transpositions, hence i t remains even. FOl' 'Ua aue! for 'Un, the diffcrcuc(' 1 wC Il'l'(' Il 

A and A' is one transposition, heu ce these beCOllW l~VCU as wdl. D 

An edge c in a path 1: is called Cl special edge fol' :1: iff n (c) auel w ((') an~ uot 

l'datee! by r:.. A maxilllai sllbpath iu a path :J: that is cOlllpletdy cottl,;liued 

iuside au (~qllivalencc class of r: is called Cl cO'{fI,ponent of:1:. Su sp('('ial (~dg<:s 

always connect cornponents that are over different equivaience classes of r:. 
Note that a compouent couIc! consist of.i llst the idcuti ty path iu \V hicl! cas(~ tll'() 

special edgcs woulel be adjaccut to cach otlWl'. CI(~arl\' cvcry s])('cial (~dgl' OCClllS 

exactly once in a path x. Every path :r in C* is thus now uniquely d(~COlllPOS(~d 

as XOe11:1 ... en :1: n , where the c;'s are the special edges for :r and tlw :1:/s an~ its 

cOlllponents. The lemwa above then gives the following rcsult 

Corollary 4.5 If a path x has no special edges then fOT any path y, :1: H~ y i.lf 

:1: Hoo Y if}' x /00 y. 

ln ortler to takc iuto aCCollut tlw pn~S(~llc(~ of special (~dg(~s. Il'(' ddilll'. fUl 

each path 1:, il Teduced gmph CT = (1/1., Ax,n",w.,) wherc VI = \jr:, A., is t.he 

set of special edges fol' :1:, and U", W 1 mc defüwd ill the obvious \Va\'. Th(' padl .r 

induC(~s a path RcrL(:r) iu the graph CI by takiug Rcd(:J:) tu he the S(~qll('lll'(' ur 
special edges in the order they app(~al' ill :z:. Note that Red(:J:) is il peUHl! tatioll 

ofAx aud that :r /00 y implies that r; = r:~, hem:e that the graphs G I <lud G,) 

are idelltical; furthermOl'c we thcu have that Rcd(:L:) rv Rerl(iJ) il! t.his gmph. 

vVe now define a congruence on C* by x c5~ y iff:1: /00 y auel Rcd(:r) J'xc Rcd(U)· 

Lemma 4.6 For' two paths 1; and :y 'in C 'if:1: c5~ y and Red(:1:) = Red(y) the'//. 

:r: H~ :y. 
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Proof. Let x = :J:OC1Xl ... Cn:Dn , 'Y = YOC1'Yl ... CnYn' Observe that this fon:('s 

:ri rv 'Yi for each 'i. Fix au equivaleucc dass C iu v/r~; amI ll~t 0 :S i() < il < 

... ,it :S n be the indices for which Xij is a component of :r; over C; the S<Llll(' 

sequence of indices gives the components of y that are ovcr C. For each .J replace 

the subpath of :r between Xi
J

-
1 

and :L'i
j 

by a "meta-edge" Ej that gu('s fWIll 

W(:l:i
J

_ I ) to n(:l:iJ. Do the sarne fol' y. Consider tlw paths X = :i'i lJ El :/:';1 ... Et.J:i l 

and Y = YioEI 'Yi l .•. Et'!h,. vVe have that X 100 Y aud thcse t'NO paths uow han' 

uo special eclges Sillce the two enclpoillts of each Ej al'(' iu C. 13y ('()wllèl!'Yl.;J. 

){ cau be trausfonned into Y by cou1l1111tiug loops. The COlTCSpolidillg SCql[('Ij('(' 

of operations will transform :1: iuto a path :r l = :L'~Cl:1:/l •.. cU:<t wh cre :< = Yi for 

i E {io, ... ,id and :< = Xi othenvise. Doiug this for eaeh dass of F Ir~. iu tUl1l 

will transfonn :r iuto y. o 

Wc are llOW in a position to prove the equivalenl:e of Ô~ and (j~. 

Lemma 4.7 FaT any two [Jaths :r and y in G T r5~:1) i'/f:J: ()~ :v. 

Proof. The implication from l'ight to left is easy aud left to the n~adel'. Wl~ 

prove the second implication. Suppose J; = :Z:Oe1:Z:1 ... Cu:D u ; \;\le fix in cach 

equivalence class C of 11 Ir;; a vertex ïi(', èwd for each special ('dge Ci gOillg fW1l1 

vertex 'U iu C 1,0 a vertex '01 iu CI, we augment the graph G lJy iutrod IlCillg 

four uew edges: eT' goiug from 'Ii to '{Je . .ff' gOillg from /Je tu /J, .rI;' goiug t'WIll 

Vi tu '/J(" aud 11.;: going frolll/Jc" tOi:'. \V(~ cn',tt.l' l'Will T (\ 1l('1\' pèlt.1J ./'1 ill 

the augmellted graph by the followillg pl'Ocess: if Cj is a sJH,cial cdg(' fOl :1" 

g'Oillg' f'rolll V{~~ltf.>"X '/J ill C 1,0 a vertex 'u l l' n CI Wl' rel)laee c by (:'c: f'(,'(' (1(:' li c:' 
~ '-' ,. , ~ J . J '.1 ') :1J '.1' 

If ally loup edges have bcen added we remove them. VVe l'l'pate 'yl from .iJ 

Silllilarly. Rcd(:r /) I~ Rcd(!/) comes trivially from tlw faet that :r rl~ y (SillC(' 

Rcd(:r;) = Rcd(:r /) and Rcd(y) = Red(yl)). Hence also Red(xl) (j~ Rcd(UI
) by 
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leIllma 4.3. By construction, if thel'e is a loop ou vertex C appcilrillg ill Rcd(:/J) 

1Il the reduced graph, there is a COlTcspondillg loup on vertex /J(' app(~al'illg 

lU TI in tlw <tuglllcllted grapll. TIlllS. COlTcspolldillg Lo the S(~qlWJl('(' ur I()()[J 

commutat.ions that. transfonns Rcd(:rl) to Rcd(yl) in thc n,dll('('d gl'apll. r1l('l(' 

is a sequellce of loop transformat.ions, in the augmented graph, that trauSfOl'lllS 

:r l into a path (say 'W) in which the special edges app(~ar in the salUe Ol'd(~l' as 

t.hose of yi. Bence using lernma 4.6 it follows :r;1 e~ 'W e~ yi. So :1:
1 (~:I)I aud il,\" 

recalling that we obtained Xl (yi) from :r (y) by adding a certain nUlllbcl' of 

loops around every vertex 'Ue we apply proposition 4.1 aud corollary -1.:2 tu g('! 

o 

Thus r)~ provides an alternative charac:terisation of locally COlllUl\ltatiV<' 

free categories. \Ve will see in the next section that this characterisatiou cau I)(~ 

llatul'ally adapted to the case of fiuite categories. 

4.2 Locally commutative finite categories 

\Vc n~call from chapter 3 that the algebraic descriptiou of fiuit(, gluilal1\' COlll­

lllutative categories is given by a path congruence et,!} geuerated by (~quatious: 

:D'yz BI,C] zyx for x rv Z and :r t et,C] :rt+q where x is a loop, 

The corresponding combinatorial congruence (J',C] is induced by relatiolls: fur 

x rv y we say x (r,q Y if!' for aIl edge a E A, either (I:rl a , Iyla < r aud 1:1:10 = Iylll) 
or (Ixia, Iyla 2: T and Ixia =q Iyla) 

The lllain re~mlt t'rom the last dmptcl' cau obvionsly 1)(' n~stè1t(~d ill Ill<' rUl'Ill 

below: 

Lemma 4.8 FOT eveTy t 2: 0 and gTaph G thcTe e.:rists S s'Il,ch tluû fOT t'Wu lJaths 

:r and :U, :r (s,Cf:Y implies :1: et,q :u' 
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As an extension of ideas from free locally commutative categories we intro­

duce 8f,q to be the finite index path congruence generated by the conditions: 

:cy 8f,q yx where :c and y are luops and Xl &;,q x t+'1 where :r is il loup. Aualogulls 

to the global case we write x s;f~1 y, whcll x ef,q y and y cau be ubtaincd froltl 

;c by just loop commuting and loup replication. 

\"Te alsu extelld OUl' combillatol'ial charadcrisatioll fWltl the' lelSt S(!(·t iOIl t () 

clt,q meaning for two paths :c alld :lJ :1: clf,'1 U iff :J: AI/,(IU and Rcd(.J:) I~ H«/(.iJ). 

wlH're ,~ gets ddinccl on the reduced graph Cl:' ~otc that this cougnwllu' 

cml)' depends on the permutatioll of reclllccd paths which are of nxc!cl h!llgth. 

Using the definitioll of &;,(/ and the lelllllla 4.4 we cali conclu de the folluwillg: 

Corollary 4.9 FOT paths with no special edges, &t,q and &Z,q are e(j'Iûvalent. 

This corollary along with IClllllla 4.8 gives liS tlw illtuitioll tu (!xj)('c:L t!Jl' 

following result 

Lemma 4.10 If x 6~,q y and Red(x) 

re!ated accurding tu lemma 4.8. 

Red(y) then :1: &z,q y wheTe .'i (J,nd t (J,ï'(: 

Proof. vVe direct the attention of the rcader tn the proof of IC'llllll<l. cl.G. 

Elllployillg exactly the saUie technique as in that, pwof, fixillg au (!(llli \·;t!C!llC·(' 

class C in V /r~. we add "Uleta-c~dges" cOllucctillg two successivc! COlllj)Olt('lltS (JI' 

that dass and obtain paths X and Y l'espectively t'rom :t <tlld :lJ. III Ul\l' c«se 

hcm~, X '8,'1 Y. Thercfore Hsillg IClllIll.a 4.8 it fo11ows X et,'! y ancl sincC' .\ and 

y have !l0 special cdges fWIll co1'011<1r)' 4.9 X can bc trallsfonrwd intu }' br 

transformatiollS preservillg &f,q. 'vVe appl)' the same operations on :1: tu get a 

new path x' and then repeat the procedure with :1:' for each dass of IJr: tu 

finally get y. D 
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vVe can now combine the pra of of lemma 4.10 and leulIlla 3.9 frolll tlw las! 

dmpter to obtaill the following cmollary 

Corollary 4.11 If x c5f+l,q y and Rcd(x) = Red(y) wdh I:rla ::; Iyla, t/WH:I: ::;;1;1 

y. 

Lemma 4.12 For evcry t 2: 2 and q 2: 1, thcn~ e:rists R 2: t + 1 su ch tlud 

:r c5h,'1 y ùnplies that thcre e:âsts a path P .'iatisfying :z; c5[+1,'1 p, whcn: fJ &L1.lJ and 

for aU edges (J, E A, I:Dla ::; Ipla' 

Proof. vVe will use lemllla 3.G and 3.7 from tlw last chapt<~r tu prove this. 

Specifically let R = m(G, t + 1)(IEI + 1) + 1 WlH)n~1I1.(G, t + 1) = 11'1 + (t + 

1)(2 IBI -l) +:2 as detinecl illlellllll<l 3.7. So for each edge IL sllch thaL 1:/:1" > lui" 
we have Iyla 2: Rand since y cau have at most (lEI + 1) cOlllpollents th cre is aL 

least one component that has at least Tn(G, t + 1) occureuccs of a. Wp cau now 

straight away apply the argumellt used to praye lemma 3.7 in the last chapt(~r 

and obtain the result of the present lemma. o 

Lemma 4.13 fffoT t'Wo ]Juths:1: (lnd fJ, 1:4,::; lyllL lm· al! ([ E .-t u.1/,(1.CÔ;~I(I.I). 

then :r &f,q y for t 2: 2 and q 2: 1. 

Proof. We ask the reader to recall the technique used to proV(~ bUlllêl 4.7. 

'\Te mirnic the steps in that proof to augment the graph G by iutwd lICillg rom 

uew edges for each special edge Ci and thCll lllodify the paths :1.· amI .1} tu :(' and 

yi l'espectivcly as prescribed there. (Note: wc arc usiug the saIlle 1lUlatiou as in 

t.haL prouf.) Also let A' n~preS(~llt the set uf (~dg(~s uf thl' illlgnH'llt('d grilpl!. TIJ(' 

same argumentation of the earlier proo! c<1rrics ovcr tu ('stablish the ('XiS\('Ill"(' of 

a path w snch that Rcd(w) = Rcd('!J') and :r' &~ w c5;+1,(1 '!J'. From corollary 4.11 

52 



it follows that 'LU :sf~1 y' and hellce :r' :sf~1 y'. This implies that th('l"(' exist.s 

a series of loop commuting and loop duplicating transformations to olJtain y' 

from :r'. Let the loops that got clllpli("(\t(~d, be called (JI, ... , /)" aud h'!; t1l(~11l \)(' 

around vertices 'Ul, ... , 'Un in G respectively. Also let ni be the llUlUlwl" of tiuws /), 

was duplicated. It is a trivial observation that every vertex 'Ui occurs sOlllewlwl"(~ 

in the path x and every loop Pi contains edges strictly from the unaugmcutcd 

original graph G (since for each edge a E A'\A w(~ have 1:1:' III = If/ 1,,). Alsu 

no loop (Ji contains ally special edges as their cou nt is one iu both :r' ètlld y'. 

Hellce every loop Pi could be adcled ni times to path :1; to obtain ct path 1/ iu Ci' 

SUdl that Red(:r) = Red(l1) aud lwuœ IIÔ~ y. This illlp)i<~s :l;Ô;+I. ,j ll aud )]('1[('(' 

froIll cüI"ollary 4.11 we have :rHf,qu. j\;ov\' applyillg lClllllla -J.7 to II. <ludy \\'(~ g('( 

li &~ y and heuce :r H~,IJ y. o 

vVe now state the main result. 

Theorem 4.14 f3 zs a (JCom-congT'U,(~nce if1" thCTC e:âsts Il > 2, () > 1 s'/J,cl!, 

tltat c5~,q ç /3. 

Proof. The direction from right 1,0 left is trivial and is left as au ex(~rcise for tlt(, 

reader (it cau be verified that 6}?,1j is a t'Com-congruence). For t 2 "2 wl' c!tOOS(' 

R = 'fn(G,t + l)(IEI + 1) + 1 according ta lemma 4.12. Theu :1:r57t,IjY illlpli(~s 

there exists a path z with Ixla:S Izla for eac:h edge (J E A aud :i:Ô;+I,lj"?Hf"jY. 

Using lellllllèl 4.13 on :l: and 2, \V(~ gel. :1: O,i,"!). H.l~call t.ltat. 1'01' cases 1 = () alld 
.Ij' 

t = 1, we have showll in the lust chaptcl' {COlllO,q alld eCOUll,q CUillCidc \\'itIJ 

gComO,q aud gComl,q respectively. o 
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4.3 Consequences 

III this section, we sketch some cOllsequeuces of the cOlllbillatorial desCl'iptioll 

obtained above. When an lVI-variety V is such that the C-varicties gV <tuct fV 

differ, then fiV canIlot be equal to gW for any .M-variety W. This is bec<lusc 

if wc restrict to one-no de categories in gW, we precisely get the mOlloids of W 

and this set is different from the set of rnonoids iu V. How big shoul<1 W 1)(' 

to insure fV c gW? In example 1.2.2 of chapter 1, we observed tlmt for tlw 

triviallVI-variety we have €1 C gW for ('very nOll-trivial W. \\'(' !!O\\' arglle lllèll 

a similar phenomenou OCCUl'S for Corn. 

Theorern 4.15 fiCorn c gW fOT e'u(;'f"y M-va/riety W that strictly wntu/lns 

Corn. 

Proof. Our lllain r8sult shows that iu every locally COlllllllltati ve catl~gOl'y, 

the value of a path is cletcnuined by the nUIllber of ()CClllT(~UCeS of (~adl cdg(' 

(thrcshold t, modulo (j for SOUH' t 2:: 0, (} 2:: 1) aud tlw Ol'd('l'Îug uf Ul(' su-(',dl('d 

"special" edges. The first condition can be detcnnined by USillg for cach edgc 

a cyclic counter of appropriate cardinality. For the second couditioll, let !Ii lJe 

auy nou-commutative rnonoid, i.e. NI coutains two elements 'fil, and m' sudl 

thatmm' f- m'm. Fix two edges of the graph, a and b, lllaI> ([, to ln, b tu III.' 

and every othe1' edge to 1. If a path x contains at most Olle occurrence of (~ach 

of a ami b, which is uecessarily the case wlwn t\wse Lwo ('dges ilre sp(~('iill fur 

:D, the value of the path iu J\I is iu {I, 'III., II~', fII/III.',III.'ln}. lu particlliar if !)(JLIJ 

edges occur once, the order in which they appe<1r cau UC recovcrcd fl'OlIl the 

value iu Lhe 1ll01lUid. If the gmph has /,; (~dg(~s, W(~ cau use tlw dircct pl'Odllct 

of li; cydic (:ouuters to COllllt occmrellœs of eac:h cdge, aud O(/,;'l.) copics of :\1. 

Olle fur cach pair of edges. The value of the COll11t(~rS will dctcnllill(~ tlw tirs! 



condition ami <11so which edg(~s arc sp(~cial fOl' a giVCll !Jatl!: \V(' cau (IWll l()u!,: 

up the appropriatc copies of Ai to kuov\' in which orcier the sp(~cial (~dgcs have 

appeared, hence recover the 6[,q-value of the path. D. o 

Next, wc transfel' the last theorclll to the S-variety LCom {S: cSc E 

Corn for aU e = e2
}. For ally semigroup S, cOllsider the graph G = (V, A, (t, w), 

where V is the set of idempotents of S, A = V x S x V, n(e, 5, f) = c, w(e,.'i , f) = 

f. Define the congruence (3 on G* by identifying co-terminal paths that lll11ltiply 

out to the same element in S. This construction trivially insmes that S E 

LCom iff G* / (3 E t'Corn. It follows from work of [Str85]l that S E V * D, 

where D = {S : Sc = c for aIl c = c2
} and * dCllotes \Heath pl'Odllct of 

varieties, iff G* / (3 E g V. vVe thus gel the followiug 

Theorem 4.16 LCom C V * D faT' evcry M-vaT'iety V that .stT'ictly 'luclurlcs 

the C()'!1I,Tr!,'lJ,tat'ive rrw'(/,oùls. 

1 The delay theorern in [TiI87] gi VPS this ill the language uf caü~gorips 
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Chapter 5 

Locally R, L, J-trivial categories 

For any 10callVI-variety V, trivially 

ev c gW (;":).1 ) 

where W is a lVI-variety that strictly contains V. As we have seeu, equatiou G.l 

is also truc wheu V is suustituted either with the uou-local val'i(~t.y 1 or Com. 

A natural question therefore is whether this equation is always tme. Tlwrc is 

another famous case of an lVI-variety for which the iuduced gloual and local 

C-varieties are different, namely the variety J of J-trivial monoids. How(~\'(~r, 

Jorge Almeida has poiuted out to us that there exists a C-varicty gV \\'11('re \' 

is a ~if-variety of aperioclic monoids that strictly coutains J, snch t.hat gV ducs 

Ilot contain fJ, and hence we cond ude that equatiou G.l is IlOt. iu gClwml tm('. 

Tlw lllain reslllt iu this chaptl~r expresses t.lw vmic(.\' (J ill tClltlS of glo!J;t1h' 

ddined C-varieties gR aud gL, where Raud L al'l~ the Nl-varietics of R-cri vial 

and .L:-trivialmonoids respectively, vVe first. show that Ris local. Au old l'esult 

of Stiffiel' from the 70's (in [St.i73]) along with the application of the Dday 

Theorem of [TiI87] illlplies thisl. [AI1ll9G] pl'escuts il genel'a.l argulllcuL llsillg 

j t.he interested reader lllay note that Stiffier actually I)l'oves the strouger re~ml t t.hat. each 
elemeut of LR divides a semidirect product of semilattices and right. zero sellligroups, w!H're 
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prohnite techniques that shows Loth DA'2 and R ta be local. i\Iol(~ rl'ccntl.'", 

[Ste] has given an algebraic proof of results of Stiffier usiug d(~riv('d catl'gOl'y 

of ll10rphisms between categories:l 
. Our lIlcthod is qllitc d(!lllcut;\lT and llS('S 

gl'aph congruences. 

5.1 Preliminaries about Green's relations 

There are excellent books like [Alm94]and [Pin8G] giving an exteuded treatulCut 

of these and we recommend the interested reader ta go through thelll. \-V(, 

try ta give here a quick overview of these relations that play ct œutral 1"01e ill 

undcl'standing the structure of fiuite sellligroups aud lllouoids. \ VI' will !t('l(' 

assume that we are al ways dcaling with monoicls, Iloting tlla! \Vit Il V(,l'.\" lit tk 

(~xtra effort, tlwsc couIc! be extended to sellligroups. 

For any monoid 1\1, we say that x, y E 1\1 are R-relatcd tu cach otlwr. 

dcuotcd by :r Ry, iff tlwy gcnerat(~ th(~ salIlC right ideal i.e. :J'llI == iJJj. 1) llèI 1 1.". 

wc say that :1: ~ y iff 1v1:1: == 1\{I). Clearly, Loth R aud ~ arc rdiexivc. SylllllwtrÏC 

and transitive and hence are equivalcllce relations. 'Th(~ir (!quival(~llc(' dasscs 

an! callcd 'R and ~ classes respectively. Siltlilarly wc cau iudllc(! the (!(lllÏv;l!('!l("(' 

relatioll J frolll two-sidcd ideals, by sayillg :1: J y iff l\h;i\! == Jj y l\j. SoLe 

that bath R and ~ l'ehne J. l\!Ioreover, it can Le shawn that in ct .finüe TfI,(}'/wùJ 

the followillg three things are equivalent: 

1. x Jy 

2. thcre exists au elelllcllt z iu lU sllch that :1' R;:; and::; L.iJ 

Olle call fil'st cio the l'ight zero SŒlIigroUpèl ,tIld t/tell t/te sClllilattiœs 
2Variety of alllllolloids wllOse rcgular D-class(~s are a]leriodie S(!llligl'Oups 
J we direct the iuterested reader to [STar] for Cl descriptioll of tlw cleriv(!d catl'!-',ory of 

lllorpltislllS betweell categories 
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3. thcre exists an clement z in !Il sueh that :J: L z and ;c; R y 

If :tAI ç yl\l, thcn we wl"Ïtc :1: ~R y. Ubviollsl}', ;/: R y iH':c ~R y aud.1J ~N. ,/. 

From the definition of the relatioll R, it should be clear tllêlt :1' R y ilf tlWl'<' ('xis! 

vaud 'LU sueh that :D = yv and y = :nu. A UlOIlOid is saiel to be R-trivial if±" 

(~ach of its R-class cOlltaius a siugle elclllent. Silllilady, orle ddiups Land J­

trivial mouoids: they rueau respectively that each Land J -dass, coutaius Cl 

single element. It is a simple observation that every J-trivial rnouoid is both 

L-trivial and R-trivial. It can be showu that the set of ail R-trivial aull fiuiL<' 

monoids forms a M-variety, dcnoted by Rand is eharacterised by tlw id<'utiti<'s 

(xy)1L:x: = (:x:y)n and :];n = xn+l for sorne n 2: 1. Similarly, the variety of ail 

J'-trivial mouoids is eharacterized by the identities : for some II, > l wc have 

(:ry)n = (y:t)n aud :rn = :1:n +1 . 

5.2 Languages afR-trivial and L-trivial manaids 

\'\T(~ descrilw the lauguages nxoguized by fiuite R-trivial UlOllOic1s as ('xplailled 

in [Fic79]. \'\Tc illtroduce the notiou of 8'U,0wonls by sayiug :r is a su!J'lII()'f'(1 of y 

iff there exists :x: l, ... , :rn ,'Uo, ... ,lin and y can be factorised as 'UOT l'III ... :1: , /1/,11' 

whl're:r = :1,'] , •. :rn- Fol' each word :1:, lct fLn(:1:) dcnote the set of ail slli>wonls 

of length at most n of:t i.e. ILn(X) = {v : u is a subword of:r and lui ~ n}. 

vVe also introduce two related congruences on ,E*, one deuoted by ""II aud the 

otller t'V1l,R. For two words :t, '!i, :1: t'Vn Y iff fLn(:;:) = ILII(Y) i.c. :( èlud,l) havI' th<' 

same set of subwords upto length IL. 

:1: t'Vn,R Y iff for every prefix x' of x there exists a prchx y' of 'iJ suell tllat :1: ' t'VI/. :1/ 

and vice-versa. In other words, new subvvords appear iu :1: aud :1) ill the S<lIlj(' 

ordcr, if we scan the worcls frOlll ldt to right. Notc that we cau S~'llllll<'tl'il'al1\' 

59 



ddine the congruence r'V",L oy saying that T r'VuJ :IJ dl' fol' ('v(~r\' sujJi:); .1:' or .1' 

tlwl'e exists a 8'Uffix yI of Y such that TI r'Vnyl and vice-versa. III titis ('<lSC \\'(' 

are looking for the order in wllich slIbwOl'ds appear frolll right to Idt, IL is a 

straight-forward exercise to verify tlmt r'V n , r'V",l! and r'Vn,L are all COll~rllCllCCS 

of nnite index èlud that ooth r'V n ,1! and r'Vn,I" renue r'V1/.' \Ve llole S()/ll(' llS('l'ltl 

properties of these congruences,j: 

Lemma 5.1 FOT aTudT(J,J'Y t'Wo won]:; 1/ and 'U l'IL 2::* II. r'V /1 li. iJ ijf 1/ um. ()( 

split into n pieces 'lLl, .. ·,lLn whcn: /\(lLl) 2 /\(u~d 2",2/\(11/1) 2 /\(1') I/.ud 

Lemma 5.2 'u r'V",H 'uv if}' 'u r'V n '/L'V, wheTe u and v aTe a:f'uitTO,I'Y wonls. 

We then quote the following result t'rom [Fic79]. 

Theorem 5.3 A language L is l'e.cognizerl by (). fiuitc R-tr'ivzl/.L (L-/:rivùd) lIum(}ù/ 

if}' there exists an integeT 'II, > ü such thu.t L i,'i (J. v.nùm of ('o'/uj'f"w:nce du",;;!'s (JI 

5.3 Languages recognized by locally R-trivial 
categories 

\A/(' can now incl uce a graph congrnen('(~ ,/," on G* frollt tlw COll~I'l[('lll'(' r'V /1./1 

on A*, where G = (V, A). We denlle :r ,./,":IJ iff:r and :IJ me co-t(,l'lllimd paLhs 

in G* and x r'Vn,R 'U wh en viewed as words in A *. L(~t ef'R clcllote SOlllC graph 

congruence such that the category C == G* /ef'R is loc:ally nllite, cvery base 

lllUllUiù uf the category is R-trivial and the cardinality of the largcst Su ch lllOllOid 

is t. The result we want ta show here is the t'ollowing: 

4proofs of these could be found in [Piu86] 
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Lemma 5.4 For every gmph C, given t and somc congnœT/,CC efR, t!u;n; e:âsls 

s s'Uch that ,1{ 'f'efines efR, whe'f'e sand tare non-zeTO positive ùdeycTs. 

A path e iu C* is called idcmpotcnt with resp(~ct to efR iH' c oiR 
('C. Fur Ul(' 

sake of brevity we will simply say e is idempotent witllOut mcutiouiug the' graph 

congruence, whenever the associatecl cougl'uenœ is clcar [rolll the C()ll(('xt. ('. 

e', Cff woule! always dcnote sueh id(~lllpotCllt paths 11llll~SS lw[.ed othl'lwist'. :\()Il' 

that idempotent paths are always loops. 

Lemma 5.5 es efR e, whene'ueT s is a [oop cotcf'mina[ wdh e and /\ (s) c /\ (c). 

Proof. We will first consicler the case where s lS a su!Jwonl of c. Ld 

s = ala2 ... aro where each ai is an eclge in C. Then wc cau write c 

YO(1,jYl(L2Y2"'Yn-!anYn' Here Yi is a loop around the eud Vl~rtcx of (J,i, f()!' i > 1. 

Since e is an idempotent we get 

c 

(" .)) J._ 

wlwre 'UI = (J,IY1(L'2'" (lI/Y,,' Note that c. :lJo and/;j arc ail lo()ps <\WllllCl tlll' 

salUe vertex v = n(e). Hcm:c using cquation S.L aud the R-tl'Ïvialitv of tl](' 

base lIlOllOid Afa one gets 

(5.3 ) 

Using the idempotence of e and equation 5.3, one sees es ef1~ eeyo,'i and tlwn 

expanding 
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Agaill using the idcmpotenœ of e amI (~qllatioll 5.3 oue cau wrlt(' 

YJa'2 ... Yn~J(lnYney(JaJ 

Using eqllation 5.5 one can write w'2 efR w'2 Y (U"2 , wherc V"2 = (L"2Y'2··· Yn~iUniln.IJ(}(/I. 

Note that w"2, YI and 'U2 are aU loops around the end vertex of (], 1. Sillce the 

base rnonoid induced by ef~ around this vertex is R-trivial, it fo11ows that 

'2 
lU Yi (:).0 ) 

Now cOllsidering equatioll 5.4 alld 5.G one gets 

es (:). ï) 

the R-triviality of the lIlOllOid è1round tlw start vertex of u, w(~ gduL = {):2.1h 

Applying this to equation 5.7 one obtains 
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cs ()eR t 

cs 

where 'U = Y3a4 ... anYnYO ... 0.3. vVe need to apply this argument 181 + 1 tillwS, 

using the R-triviality of base monoids around every vertex tlwt appears ill patll 

s. This finally yields es eiR cee ejR c and we are done. D 

Wc use the above result to obtain the following: 

Lemma 5.6 For eve:ry twu paths Il, li in G* s'U.ch that LI is (J, loop ([:m'lJ,fI,(! w(u). 

'Ili,[l.UV im.plic8 'U efR 'uv whcf'c S = 2 (t + 1). 

Proof. If v is empty th en we have llothing to prove. For any llotH~ltlpty{!, 

applyillg leltlrna 5.1 to the fact U i;l 'U:V, we filld that 'Il can be split up into s 

non-empty, let v = av' for sorne edge a. Eac:hlLi tllllS cOlltaillS at l(~(\st. ()lJ(~ 

octurence of a. We factorise eath 'IL, as lL"OU:Ui, l, wherc '/L"o ducs llO! eUll! ail! 

any CL. Let us also denote by Vl the path 'I1.1,lLL:!,LL:l,O, '0'2 = 'Il:l,jU"jIL'J,[) and su 

on. In general Vi = 'Uj,l'Uk'lll,O, where k = ) + l, 1 = j + :2 and j = (2{ - 1). 

for 1 :::; i :::; t. Note that we lllalœ Vt+l = 'lL'2t+l,l'lL2t+'2 or in utlwl' wonls 

Vl+l = '11.,,-1,0'11.,,· Thus, we can write 

where eath aVi is a loop around the start vertex of a and this is also the start 

vertex of 'U. Let Iv! denote the base mOlloid induced by BiR al. this V(~l't<~x. Abu 
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Ilote that À(av.;) :2 À(avj), where i <). Siucc the cmclillality of 1\1 is !Jolllldl'd 

I>y t, we cau apply the pigeou-llOle prillciplc to cuucllldc tl!<ll tlwn' ('xists j,./ 

s11eh that 

where k < 1. Let w = a'uk+l ... a:Uf. Theu using equatiou 5.8 oue cau wlit(~ 

'{LV arR 
t ( 5.0) 

where W W is an idempotent and is dcnotcd by c aud let w' = (f.'(),+ 1 ••• U:U,. 

Clearly À(c) :2 À(w"/J). Note that w, e. w' and V are allloops mOllud the' Sètlll(' 

vertex. Let '(L' = '(Ll,üO:Ul ... aVk. USillg lelllllla 5.5, we conclude 

Lemma 5.7 Let p, :[ and y ue patlts in G*) s'lJ.ch that (XI: ,[( py Il:/111 /1, (fJ) 

/1. s (p:r) = ILs (py). Then ln: arR py) 'WheTC S = 2 (t + 1). 

D 

Proof. \Vc will show this by inductioll ou 1:1:1. Ll~t dw IJase (:aSl~ 1)(' 1:1:1 = (J. III 

chis case :1) is il loop at the l~lld of (J with (J ,[1 fJY. LJsiug din'ct.lv ICllllllèl <~dj. Il'(' 

have pHfR py. Now as our illduction hypoth(èsis (IH) wc aSSUllle it is LnLe fOl al! 

:1:, tiuch tlwt 1:1:1 < k. Let ILl = k. \IVe write :[ = 0.:1:' and y = (r.IJ', If (J = h, tlwll 

applyillg lH on :ri we get uur desirecl result. Assumc a 1= /J. lu this CèlSl~. sjJl('(' 

jLs(pa) = jLs(p), applying lelIllIla 5.1 wc split P illtO spaths {JI,'" ,Ps, cadi uf 
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which contains at 1east one occurence of a. Thus, we Gin write Ps 

OLserve that aps,l if> a 100p at the end of p and 

Hence applying lemma S.G, we get p ()[R f)(LPs,l. This lllCê111S thaL 

(:J.ll) 

It follows from equation 5.10 that PY I~ paps,lY. Assigning p' = pa aud 

noting that p:r: = p'x', we can app1y our induction hypothesis to :1:' obtaiuiug 

p:r efT? p' Ps,IY efT? Py. This completes thc argumcnt. o 

We are now in a position to prove our main 1emma G.4. 

Proof. Let 8 = 2(t+ 1). Assume for :1:, Y in G*, :1:~f~{Y. Let Po be the lougest 

COlnmou prefix of:1: and y. Note that Il)01 ~ 8. Let Yo = y. Om strategy wOllld 

be to filld Cl series of paths YI, ... , y" snch that Yi 71f Y;+I aml Yi ejRUi+l. Ld /)i 

clenote the longest common prefix of:I: and Y,. vVe will satisfy Ipi+ Il ~ IjJi 1 + l. 
n is thus au iutegcr snch that Pli = :/:. Tlms applyiug 1('UUlla s.c ,d LIt(, ('IH[ Lu 

:D and Yn we wou1d gel, our desired result. 

Therefore, the argument boils ùown to sllOwing, glven Yi, we cau always 

obtain Yi+l satisfying the above conditions. Let:1: = (fieLD' aud Yi = /}jby'. If 

a = b we have nothiug to show. Assume a i- b. vVe split up the argulllent into 

following cases. 

1. a aùds new subwords to Pi, l.e. j1.,(PJJ,) :J fL,(Pi). This lllcallS b call1lOt 

add any subworcls to Pi. Abo in this case y' cau he factoriscd as I/()(/j/I. 

where buo i8 a loop al, the end of Pi snch that 

GG 



fLs (Pi) (5.12) 

Using lemma 5.6 we obtaill 

Cï. 1:3) 

Thus asslgIllng Pi+ l = PJL, and llsiug equatious 5.12 aud 5.1:3 \Y(~ se(' 

that Yi+ l satisnes aIl uesireu L:olldi tions. 

2. b adds new su bwords to {Ji. In this L:ase a caunot adcl any Ile\\' su bwords 

to {Ji amI :r' could lw factorised into IJoblJj. :Vlirnickillg argllllwllts giV('11 

above, we see that settiug Yi+l = Pia/Joby' and {Ji + 1 = Pi(U/Uh do('s (.11(, 

job. 

3. Neither a nor b adds any new subworcls to (Ji. In this case we tak(~ tll<' 

largest possible prefix of :r' denoted by IJJ sueh that V,(p;IJ1 ) = j/,,(fli). 

If /Jx is the whole of x', then obviously y' caullot add auy IW\\' subwor<ls 

to (Ji ei ther and USillg the lelllllla 5.7 we g(~t :J: (irR Yi alld wt' <lH' <lOII('. 

Otherwise, we writc:r' = VICIJ~. This lllcallS yi cau 1)(' factoriser[ as 

y' = lJy(;l/~ with IL,(PilJ//) = JLs(p·;). vVe cau agaiu apply lCUllllit 5.7 t.o 

obtain {JiVI' (JiR PiUY ' Finally we are doue by sctting Yi+1 = (lil/JIJy auc! 

o 

Wc can state the result given above now in tenIlS of languages as 

Corollary 5.8 Let G = (V, A) ue u ymph. The'//, Lhe ::;y'//,La cLù; ca/'c(jury uf (/ 

language L ç G* is finite and locally R-tr-ivial if}" thcTe e:Dists .'i 2: l such that 

L is a r~ language. 
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We can alternatively interpret the main lernrna as the followillg theOl'Clll: 

Theorem 5.9 The C-vaTieties ER (eL) and gR (gL) wincùlc. 

Proof. Wc know from Chapter 1 that for auy M-variety V, the C-\Oaricty gV 

is always containcd in the C-variety fV. This irnrnediately give ilS Olle <lin'ct iOll 

of the theorelll. Clearly, for evcry fillite locally R-trivial categorv C. (Jill' (';\11 

define a graph G = (11, A), sueh that C == G* /fJ;R. Cousiclcr tlw lllouoid 

hl = A* / "-'.dl., where .'3 = 2(t + 1). Using lelllma 5.4, C clivides the 11lOllOid 

1\;]. Fiually, lU is R-trivial Ilsiug th(lurclll 5.3. Exactly SYUlllwtric arglIU1<'1Its 

exist for the M-variety L. D 

5.4 Locally J-trivial categories 

Wc shall first give an exarnplc that shows J is not local. Before doiug su wc 

note two thiugs : the Lcautiful theorern of Simou says that tite syuta(tic 1I101l0id 

of a lauguage L is J-trivial iff L is a "-'n-Iauguagc fur SOItW 1/ > (). Ll'l 2:: = 

{a,b,c,â}. TheIl, clcarly (ab)llaâ(ul)1l "-'" (au)n(cd)ll. It is easily verificd tlmt 

no J -trivial rnonoid whose cardiuality is at Illost 11, eau distillguish tlWSl~ two 

worcls. This iutuitiou coulcl bc applied tu c:ouclllcle that auy caLcgory t hat is 

in gJ and hence divides sorne J-trivial mouoid whose c:ardiwdity is 1/ CèUlllOt 

distiuguish the patl! (:ry)":cy'(:r'y')" from (:ry)"(.r'u')lI, whcrc TU <lud :/:'// ,Ul' 

co-tCl'lllillalluops. Usillg titis arglllllc1lt \Y(~ givc tlw follo",iug l'X,llllp!l' of" ;1 1 wu 

node graph: 

a,e 

1~2 
b.d 
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SI = * 82 = (ab)+ 8:, = (cd)+ 8,1 = (ab)+(cd)+ .'ir, = L 

8] =* 81 :5'2 .'i:, .'icI .'i.', 

8'2 = (ab)+ 82 8'2 84 ;; ·1 ,'1;) 

S3 = (cd)+ .';:1 85 8:3 .';S .'-i!) 

34 = (ab)+(cd)+ 34 85 84 8S .,,';) 

35 = L 85 85 8r, Sr, .'i " 

Figure G.1: Multiplicatiou table of base lllOllOid S 

The graph congruence that we considcl' is the syntactic congrucuce 1" of t h(' 

lallguage L == (a + b)*(c + cl)* n A*wjA*. Ob\'iollsly. ('\'(~ry pittil of tlw l'()rlll 

(a{J)m(cd)'" is in L fOl' cath m 2: 0, but the path (Ub)"lwt(ul)lII is uol III L 

for <tnyl/L Heuce, from the observatioll made in the previous paragraph, it 

follows that the syntactic categOl'y C == G* IlL Cêlnnot be ill gJ. Now let Ils 

compute base lIlOllOids Sand T èlroUlld vertex 1 aud 2 rcspcctivdy. Each 

clement of S (T) corresponds to a congruence dass of IL that contains loops 

arouncl vertex 1 (2). Hence, we will represent tlw c!cmeuts of S Ily l'(~gll[;tl' 

expressions yielding the paths contained in the COlTcspolldillg congnwnc(' c!ass. 

Thus, S {81 = *,82 = (ab)+, 83 = (cd)+, 84 = (ab)+(ul)+, 8S = I} coutaius 

five elernents. Similarly, T == {tl = *, t2 = (ba)+, t:, = (ba)*bc(dc)*, t'I = 

(dc)+, tr, = (ba)+(dc)+, tG = L}. Note that L rcpreseuts the cOlllpl(~lll(~Ut of Ill(' 

lauguage and for any striug 'W in L, fOl' allu, 'U in A * we have u.wu E L. 

Note fmIn the table givl~ll ill fig1ll'e J.1 that .';l alld 8;, ad as tlte id(~lltit\, <llld 

z;ero element of S respectively. One cau verif"y froIll the table that (.';.';')'2 = (s'::;? 

aud s'2 = s:\ fol' eac11 s, s'in S. Silllilarly fmm table iu hgure 21.:2. il. cau 1)(' 

easily vcrifiecl that (tt')'2 = (t't)'2 and t'2 = {3 for cach i, t'in T. ThllS Saud T 

arc both J-trivial. 
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t l = * tL, = (6a)+ t;l = (6a)*/Jc(dc)* 

t l = * 

t:l = (/Ja)*/Jc(dc)* 

t(j = L t(j t(j t(j 

1 tt! = (dc)+ t s = (ba)+(dc)+ tG = L 

t5 t(i 

tG t(j 

ta = (/Ja)*bc(dc)* t;l tG t(j 

t(j t(i 

t(j tn 
t(j t(i 

Figure 5.2: Multiplicatioll table of base mOlloid T 

It is worthwhile rnentioning here that as first shmvu iu [Kna84] aud leI ti~l' 

pl'Oved usillg algebraic lllctllOds ill [Thé88], the idclltity chal'act(\l'Ïsiu),', gJ is 

indeed gi veu by 

whcre X W is the unique idempotent that is a power of :r. Note in the a[)u\,c 

identi ty uv and u' v' are co-terminal loops. 

Even though in this section we wOllld have likcd to lludcl'staud [;\II)2,II<\)2,(\S 

recoguizcd by categories in eJ, wc are cUlTcutly uot iu il pusitiou tu clt<ll'il<:t.('ri:-;(\ 

these languages in terms of auy graph cougruence. This is ougoiug wo1'k with 

Denis Thérien. However using the l'esults of the j)l'cvious scction \V(~ cau bOlllld 

the C-variety eJ ill teruls of global varietics rathcl' easily. 

Theorem 5.10 eJ gR n gL. 
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Proof. We first show that each category in gR n gL is locally J-trivial. If 

C is aay such category, theu every base monoicl of C is hoth 'R allcl 12- tri\'ial. 

This illlplies from the definitioll of the relation J, tlmt C is lucall\' J-I"l'ivi;d. 

For the other direction consider an arbitrary category C in D. This lllCallS that 

C is locally R- trivial and using theorem Ci.9 wc kIlow that C lllust 1)(' iu gR. 

Similarly C if> locally 12-trivial and thus is in gL, This cOlllpldes tlw argllllH'ut. 

o 
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Chapter 6 

Conclusion 

III this thesis, we have shown that the lllcthod of gl'aph cOllgl'llellC(~ is il 1lSdlli 

syntactic tedlllique that cau yield illlportallt resllits about buite ciltcguri(>s <tilt! 

the languages recognized by thern. vVe have used it for exalllpic to provc locality 

of many M-varieties. In particular, it \Vould be intcTesting to pxplOl"e if this 

tedllliq ne could be llscd to show that every varicty contaillecl in the vmicty of 

a11 idempotent monoids is local. Note that this is all'eady kllOWll fWlIl th(> work 

of [.JS92] using different techniques. 

vVe have given a cOlllbiuatorial dl~SCriptioIl for tlw languages Lhal C;lU 1)(' 

l'ecognized by finite locally commutative categories. This is tlw hl'st l'csllit of 

that kind for a non-trivial M-variety for which the induced global and local 

C-varieties are different. Vve derived as a consequence the upper bOUlld that fOl" 

each M-variety V properly indudiug the commutative lllOllOids, the illdusioll 

ev c gV holds, which is similar to the situation for thc trivial ;Vl-varietv. 11 

is easily checked that ail these results cau be proved, llllltatis llllltalldis. fol' t.!](' 

C-varicLy u1" lucally aperiudic COlllllllltaLivl~ lllUlllJids. :\n inl.<>l"(>sting <[ll(>stjoll 

tu explore is: "vVhat are the C-varieties that lie between gCom and eCorn"!"". 

Are categories defined with a 2-object graph enough to gCllcratc thcsc varietÏl~s 
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USillg direct product? 

We have given elemelltary proofs of the locality of Rami L. 11 wOltld 1)(' 

illt<~restiug 1,0 sce if this conld he extclldcd 10 shm\" the !oc<llir..v uf DA illld ()l!l('[" 

re~·;ults that appear in [AlIll96]. However, the must illterestillg opell q llcstiou 

from the point of view of this work is "\iVhat is the cUlllbillatmial description of 

languages recognized by locally J-trivial categories?". Vic H~call that !Juth for 

el and gCom, the crucial tirst thing to understaud \Vas "For wlmt paths tIlt· 

computational power of these local varieties coincide with their global coullter­

part?". In the case of gl, we saw that for paths which \Vere cOlllpl(~tdy cOlltaill('d 

inside one strongly connec:ted component, gl and fI belmv(~ (~xactly the Sèlll[(~. 

This direc:tly resulted in the charac:terisatioll of languages recogllized by tI. 

In the case of t'Corn, the trick was again to see that every path iuduces au 

eqnivalence relatioll ou vertiœs and for edges bety\,c(~U these v('rti(:(~s. \\,(' Ciluu()l 

do any more with local than global. We therefon~ thillk that tIt(· tirst step for 

ullderstanding gJ would be to cliscover such ct COllllectioll with gJ. 
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