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ABSTRACT

Dynamic joint stiffness is an important property involved in the control of posture and
movement. It can be separated into two components: intrinsic stiffness, due to the
properties of the joint, muscles, and tissues, and reflex stiffness, due to reflex mediated
changes in muscle activation. Most motor activities involve time-varying conditions but
studies have primarily focused on joint stiffness under static conditions. This thesis
evaluated the performance of a parallel-cascade algorithm designed to identify time-
varying intrinsic and reflex stiffness. A simulation study showed that the algorithm could
identify rapidly changing system dynamics, and that the gain of the parallel pathways,
the signal-to-noise ratio, and the number of realizations used impacted the quality of the
identification. With a carefully designed experiment, the algorithm produced good
results using real data, and showed that results from postural studies cannot predict

time-varying stiffness modulation patterns.



RESUME

La raideur dynamique est une propriété importante de la posture et du mouvement. Elle
se divise en deux constituants: la raideur intrinseque, provenant des propriétés de
I'articulation, des muscles, et des tissues, et la raideur réflexive, provenant de I'activation
musculaire enchainée par les réflexes ostéo-tendineux. La majorité des activités moteurs
se font sous conditions temporelles changeantes. Par contre, la plupart des études se
sont attardées sur la raideur dynamique sous conditions statiques. Cette these évalue la
performance d’un algorithme ‘paralléle-cascade’ pour I'identification de raideur
intrinséque et réflexive changeant dans le temps. Sous études simulées, nous avons
démontré que l'algorithme peut identifier des dynamiques changeant rapidement. Ces
simulations démontrent que le gain relatif des constituants, le rapport signal/bruit, et le
nombre de réalisations dans l'ensemble de données influencent la qualité de
I'identification. Avec une procédure expérimentale soigneusement établie, I'algorithme
produit de bons résultats utilisant de vraies données. Les expérimentations ont
démontré que les études stationnaires ne peuvent pas prédire la raideur changeant dans

le temps.
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1. INTRODUCTION

Getting out of bed, dressing, and teeth brushing are all things that can be done half
asleep and yet, each of these tasks involves complex interactions between muscles, con-
nective tissue and bone, all controlled by neurological command signals. This neuromus-
cular system is what makes human movement possible. The brain plans the movement
and sends command signals, via the spinal cord and peripheral nerves, to the muscles.
These central commands are complemented by feedback signals from the muscle’s sen-
sory receptors, which provide information about muscle tension and stretch. The result

is the smooth execution of a desired movement.

The manner in which the neuromuscular system generates smooth, coordinated move-
ments is still poorly understood. A thorough study of the neuromuscular system will pro-
vide a better understanding of normal motor function, which will consequently help us
understand how neurological diseases affect it. A proper model of motor control will al-
low clinicians to objectively assess the progression of a disease and the effectiveness of
rehabilitation programs. Furthermore, in the field of robotics and prosthetics, an under-
standing of the control schemes used by the body will allow designers to make limb

prosthetics or robots with more natural and smooth movement patterns. [1]

1.1. DYNAMIC JOINT STIFFNESS AND MOVEMENT

How a limb will respond to an external perturbation, or the type and strength of muscle
contraction required to generate a desired movement is determined by a property
known as dynamic joint stiffness [2]. Dynamic joint stiffness is defined as the relation be-
tween joint position and the torque acting about it [3]. It can be separated into two

components [1]:

1. Intrinsic stiffness: due to the mechanical properties of the joint, visco-elastic tis-
sues and active muscle.

2. Reflex stiffness: due to the increased muscle activation in response to a stretch.

The exact role of joint stiffness, and in particular reflex stiffness, in movement is still un-

der debate. To gain a proper understanding of joint stiffness it is important to distinguish



between its two components. Intrinsic and reflex torque cannot be recorded separately;
therefore, our lab developed a parallel-cascade system identification algorithm to con-
currently identifying intrinsic and reflex ankle stiffness from a single recording of input
position and output torque [4]. Intrinsic and reflex stiffness are modeled as parallel
pathways that contribute additively to the total output torque. Intrinsic stiffness is mod-
eled as a linear dynamic system relating position to torque. Whereas, reflex stiffness re-
lates joint velocity to torque through a delayed non-linear system, consisting of a static
non-linearity followed by a linear low-pass filter. This model has been used to study the
properties of ankle stiffness under various stationary conditions in both normal and spi-
nal cord injured subjects [5-8]. These studies documented how each stiffness component
changed as the operating point (position/torque) was modified. Their results cannot be
used to predict joint stiffness behavior during movement because studies have shown
that for matched background activation levels, the reflex response changes depending

on the movement being executed [9, 10].

The study of dynamic joint stiffness during movement is a complex problem. Time-
invariant system identification techniques cannot be used because they rely on the as-
sumption that the system remains the same throughout the period of time used to iden-
tify it. This is not the case during movement, where the changing position and torque
cause the stiffness parameters to change over the course of the task. Special identifica-
tion techniques are required to tackle this problem. Ideally a full ankle stiffness model
would be developed, which characterizes all the non-linear behavior of this complex
physiological system. Unfortunately, this is not yet possible. As an intermediate step, an-
kle stiffness can be treated as a time-varying system, where changes in system dynamics,
which are in actuality due to the non-linear properties of the system, are treated as
functions of time. This allows for ankle stiffness to be characterized during specific tasks
in which the operating point changes, without a global model. The stiffness modulation
pattern identified for a particular task cannot be used to predict the pattern during an-

other task, but will provide insight into the role of reflexes for that particular situation.

Our lab developed ensemble-based identification techniques to identify rapidly, time-

varying linear [11] and non-linear [12] systems. Multiple realizations of the same time-
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varying behavior are collected to generate ensembles of input-output data. The
ensemble technique identifies the time-varying system by performing the identification
across the ensemble instead of in time. This approach is based on the assumption that
the system dynamics are identical at each time across the ensemble. These algorithms
were integrated into the existing parallel-cascade algorithm to identify time-varying in-

trinsic and reflex stiffness dynamics [13].

The goal of this thesis was to use the time-varying, parallel-cascade (TVPC) algorithm to
study the behavior of intrinsic and reflex stiffness during a non-postural task. A previous
student, Heidi Giesbrecht, struggled to get good experimental results. Consequently, it
was necessary to investigate the performance limits and optimal operating conditions of
the TVPC algorithm. The first goal of this thesis was to assess the algorithm’s ability to
track rapid changes in joint dynamics, such as step changes in reflex gain. The second
goal was to evaluate the performance of the TVPC algorithm as the signal-to-noise ratio
decreased and to identify other factors influencing the algorithm’s performance, such as
the number of realizations in the data ensembles and the relative contribution of the in-
trinsic and reflex pathways to the total output torque. The final goal of this thesis was to
apply the TVPC algorithm experimentally to identify time-varying intrinsic and reflex
stiffness during a simple time-varying task. The first two goals were achieved by creating
a realistic simulation of ankle stiffness and varying the system parameters to investigate
the properties of the TVPC algorithm. Using the knowledge gained through the simula-

tion study, an experiment was carefully designed to meet the final goal.

1.2. THESIS OUTLINE

This thesis is composed of six chapters. Following this introduction is a background chap-
ter. The background chapter covers relevant anatomy and physiology, and includes a re-
view of past studies of dynamic joint stiffness under both postural and time-varying con-
ditions. Chapter 3 gives an overview of time-invariant and time-varying system identifi-
cation techniques, including the parallel-cascade algorithm, and briefly discusses im-
provements that the author made to the implementation of the TVPC algorithm. Chapter

4 describes the results of a simulation study evaluating the performance limits of the



TVPC algorithm. It specifically examines the algorithm’s ability to track rapid TV system
dynamics, and evaluates its performance under various conditions. Chapter 5 presents
the results of an experimental study, which used the TVPC algorithm to examine the
properties of intrinsic and reflex stiffness during an isometric contraction/relaxation task
involving low level contractions. The chapter also includes a detailed experimental

methods section. Chapter 6 summarizes key findings and provides suggestions for future

work.



2. BACKGROUND

This chapter presents information required to understand the background and rationale
for the work described in this thesis. Since the focus of this thesis is ankle stiffness, the
stretch reflex, the anatomy and physiology of the ankle, muscles, and related compo-
nents of the nervous system are explained. The mechanics of the stretch reflex are ex-
plained in detail, including the sensory receptors and the reflex pathway. This is followed
by a review of past studies of dynamic joint stiffness, and in particular reflex dynamics

under both static and time-varying conditions.

2.1. ANKLE ANATOMY

The ankle, also known as the talocrural joint, is a complex joint composed of many ten-
dons, ligaments, bones, and muscles that make movement possible. The tibia, fibula, and
talus are the bones that make up the talocrural joint (see Figure 2-1). The tibia is the
shinbone; at the proximal end, it forms one half of the knee joint, and at the distal end it
interacts with the talus and fibula to form the ankle joint. The fibula is parallel and lateral
to the tibia; the two bones are connected along their length by an interosseous mem-
brane; at the proximal end of the fibula, the head articulates with the inferior surface of
the lateral condyle of the tibia, and at the distal end, the lateral malleolus of the fibula
articulates with the talus, and forms the distal tibiofibular joint. The talus is the most su-
perior bone in the foot; it articulates with the tibia and fibula to form the ankle joint; it

also articulates with the calcaneus, the heel bone, to form the subtalar joint.

The foot undergoes 2 main motions (see Figure 2-2): dorsiflexion and plantarflexion
(movement of the foot towards and away from the shin, respectively), and inversion and
eversion (movement of the soles of the feet towards and away from each other, respec-
tively). Dorsiflexion and plantarflexion occur at the talocrural joint, while inversion and
eversion are made possible by movement in the intertarsal joints (primarily the subtalar
joint). Focus will be on dorsiflexion and plantarflexion because these motions have been

extensively studied and are most relevant to this thesis research.
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and Plantarflexion: movement of the foot towards and away from the shin, respectively. Adapted
from [14].

Jia m—— Biceps femoris
Gracilis ———L § = Semitendinosus
Quadriceps fexmoris Sartorius ! L Semimembranosus
Tendon of
quadriceps te moris Popliteal fossa
lliotibial tract PLANTARIS
Biceps femoris
Patella
Head of fibulel
Patellar ligament
Tibia
TIBIALIS ANTERIOR
GASTROCNEMIUS
GASTROCNEMIUS

FIBULARIS LONGUS
SOLEUS
EXTENSOR
DIGITORUM LONGUS
Egi)((}%FéDIG ITORUM A SOLEUS
FIBULARIS BREVIS FIBULARIS LONGUS
FIBULARIS TERTIUS

fiie FLEXOR DIGITORUM LONGUS
EXTENSOR

‘ \ HALLUCIS LONGUS

FLEXOR HALLUCIS LONGUS
| FIBULARIS BREVIS

Fibula Tibia j
EXTENSOR ‘\ 4 )
HALLUCIS BIREVIS Tendon of il® 1 7——‘— Fibula
EXTENSOR tibialis posterior WE/ Al 4]
DIGITORUM BREVIS \ / ‘( }T Calcaneal (Achilles) tendon (cut)

Metatarsals { td
el sy

DANK-

Figure 2-3. Leg muscles. (A) Anterior view. Notice the Tibialis Anterior (Shin muscle). (B) Poste-
rior view. Notice the Gastrocnemius (calf muscle) and Soleus. Adapted from [14].



There are many muscles involved in the motion of the foot, but the three major muscles
for dorsi- and plantarflexion are the tibialis anterior, gastrocnemius, and soleus (see Fig-
ure 2-3). The tibialis anterior (TA) is located against the lateral surface of the tibia. It is
responsible for dorsiflexion of the foot at the ankle joint and inversion through the inter-
tarsal joints. Gastrocnemius and soleus, collectively referred to as the triceps surae (TS),
are located on the posterior aspect of the leg. TS produces plantarflexion of the foot

through the ankle joint and eversion through the intertarsal joints [14].

2.1.1. Function of the Ankle Joint
The ankle plays a role in both locomotion and posture. During activities such as walking,
running, and cycling the triceps surae and tibialis anterior aid movement by dorsiflexing
or plantarflexing the foot. TA is used to decelerate the body, while TS produces the ma-
jority of forward and vertical propulsion [15]. During normal gait, the ankle does not use
its entire range of motion [16]. Posture and balance are maintained by small coordinated
contractions of the leg muscles in response to proprioceptive, visual, and vestibular

stimuli [17].

2.2. SOMATIC NERVOUS SYSTEM

The nervous system is responsible for many functions within the body. It enables our
special senses, regulates our internal organs, and controls our movements. The nervous
system can be subdivided into the central nervous system (CNS) and the peripheral
nervous system (PNS). The CNS, made up of the brain and spinal cord, is the main proc-
essing center. It processes incoming sensory information (afferent signals) and sends out
the command signals (efferent signals) that control muscle contractions. The PNS en-
compasses all nervous tissue outside the CNS. This includes the cranial nerves, spinal
nerves, ganglia and sensory receptors. The functions of the PNS can be subdivided into
tasks that are voluntary and those that are not. Involuntary functions are mediated by
the autonomic nervous system (ANS) and the enteric nervous system (ENS), while
voluntary functions fall under the somatic nervous system (SNS) that consists of motor
neurons that convey nerve impulses to muscles that are under voluntary control, i.e. the

skeletal muscles. It also includes sensory neurons that relay information about the head,



body wall, limbs, and the special senses.[14] This thesis studies systems involving skeletal

muscle control and response, and will therefore focus on the somatic nervous system.

2.2.1. Skeletal Muscle Anatomy and Physiology
Skeletal muscles are made up of hundreds to thousands of cells, called muscle fibres.
Muscles cells are elongated, multi-nucleated cells that do not undergo mitosis once they
have reached maturity. The muscle fibre is filled with myofibrils, the contractile struc-
tures of skeletal muscle. Myofibrils extend the length of the muscle fibre and are only
about 2 um in diameter. They have a striated appearance due to the small structures
within them called filaments. There are thin filaments that are 8 nm in diameter and 1-2

um long, and thick filaments that are 16 nm in diameter and also 1-2 um long. The thin
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Figure 2-4. (A) A myofibril. Notice the sarcomere. (B) Bands and zones of a sarcomere. The H
zone is where there is no overlap between the thin and thick filaments. The A band is the length
of the thick filament. The | band is where there are no thick flaments. Adapted from [14].
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become smaller as the overlap between the thin and thick filaments increases and the sar-
comere shortens (c) Maximally contracted muscle: the A band and H zone are reduced to zero
and no further contraction is possible. Adapted from [14].
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and thick filaments do not extend the entire length of the myofibril but are arranged in
units called sarcomeres. The thin and thick filaments overlap by a variable amount de-
pending on the level of contraction. The pattern of overlap is the source of the striated
appearance of the myofibril and can be characterized by bands and zones (refer to Figure
2-4). The dark band in the middle of the sarcomere, called the A band, is due to the
presence of the thick filaments. The H zone is the region in the center of the A band
where there are no thin filaments. The rest of the A band involves zones of overlap. The |
bands, located at the ends of the sarcomere, have a lighter colour than the rest of the
sarcomere because they consist of thin filaments only. Z disks separate the sarcomeres,

while M lines mark their centre.

The thick filaments (see Figure 2-4) in skeletal muscle are made up of about 300 mole-
cules of the contractile protein, myosin. The thin filaments (see Figure 2-4) are primarily
made up of the contractile protein, actin. The actin molecules are connected together to
form a helical filament. There are myosin-binding sites on each actin molecule. Muscle
contraction results from the interaction between myosin and actin. A myosin molecule is
shaped like two golf clubs twisted together; the golf club heads are called the myosin
heads, while the twisted shafts are called the myosin tail. A contraction occurs when the
myosin head binds to the actin and ‘walks’ along the thin filament. This occurs at both
ends of the sarcomere, causing the thin filaments to be pulled towards the M line (see
Figure 2-5). As the thin filaments move inward, the Z disks move closer together, thus
shortening the sarcomere. As the sarcomeres shorten, so does the muscle fibre, and the
entire muscle. Not all the myosin heads in a thick filament bind at the same time. As
some myosin heads are forming crossbridges with the actin and generating force, others
are detached and waiting to bind. This is what creates the ‘walking” action of the thick

filament along the thin filament [14].

2.2.2. Motor Neurons and Motor Units
Skeletal muscles receive commands from the CNS through somatic motor neurons origi-
nating in the brain stem or spinal cord. The cell bodies of the neurons that innervate the
limbs are located in the spinal cord and their axons can be quite long, as they must reach

from the spinal cord to all the skeletal muscles of the limbs. Each axon branches out and
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connects with multiple muscle fibres, forming a motor unit. A motor unit consists of one
motor neuron and all the muscle fibres it innervates (see Figure 2-6). There are, on aver-
age, 150 fibres in one motor unit dispersed throughout the muscle. All fibres in a motor
unit contract simultaneously in response to a stimulus. Each muscle fibre receives excita-
tion from only one motor neuron and is therefore part of only one motor unit. Each
muscle has multiple motor units, but the number of fibres per unit and the number of
units depends on the role of the muscle. Precision muscles have very small motor units,
with as few as 2 or 3 fibres; large, powerful skeletal muscles may have as many as 3000
muscle fibres per motor unit. The strength of a contraction is modulated by controlling

the number of active motor units and their firing rate [14].

2.2.3. Skeletal Muscle Contraction Mechanics
Movement occurs when the tension generated by the muscle exceeds the resistance of
the object to be moved. Contractions can be classified as either isotonic or isometric. A
contraction that maintains a constant muscle tension, while the length of the muscle
changes, is said to be isotonic. Isotonic contractions produce movement and are classi-
fied in two categories: concentric and eccentric. Concentric isotonic contractions are
achieved when the muscle tension exceeds the resistance of the environment and the
muscle shortens. Eccentric isotonic contractions occur when the opposite is true and the
resistance of the environment exceeds the muscle tension causing the muscle to
lengthen. A muscle contraction that does not produce movement is called an isometric
contraction. In this type of contraction, the length of the muscle does not change, and

the muscle tension equals that of the environment.

A muscle contraction is initiated when the muscle fibres are stimulated by a nerve im-
pulse. One nerve impulse from a motor nerve produces a muscle action potential in all
the muscle fibres within the motor unit. However, the force generated by that single ac-
tion potential is not the maximum force that the muscle fibre can produce. Contraction
force of a muscle fibre largely depends on the rate at which nerve impulses reach the
fibre. The process by which the frequency of stimulation modulates muscle tension is
called rate-encoding. The contraction force also depends on the length of the muscle be-

fore contraction. The total force produced by a muscle can also be varied by activating
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Figure 2-7. Rate Encoding. (a) Single twitch due to a single action potential. (b) Wave summa-
tion occurs when a second action potential excites the muscle before it has fully relaxed from the
previous stimulus. (¢) Unfused tetanus results in a sustained but wavering contraction. (d) Fused
tetanus is achieved when the muscle does not relax at all between stimuli. Adapted from [14].

more or less motor units at a time. [14] Each of these effects will be discussed in more

detail in the following sub-sections.

2.2.3.1. Rate-encoding

A single stimulus will elicit a twitch contraction lasting from 20 to 200 ms (see Figure 2-
7A). There is a small delay between the stimulus and the contraction, as the action po-
tential propagates through the muscle fibre. After this latent period, the contraction
phase begins and lasts from 10-100 ms. This is followed by the relaxation period, which
also lasts 10-100 ms. After a muscle fibre has been stimulated, there is a period of time
where it will not respond to another stimulus, called the refractory period. In skeletal
muscle, the refractory period lasts only about 5 ms. A second stimulus applied after the
refractory period but before the muscle fibre has completely relaxed will generate a
stronger contraction. This is due to a process called wave summation (see Figure 2-7B)
that occurs because additional calcium ions, which allow for myosin binding, are re-
leased due to subsequent stimuli while there is still a large concentration of calcium ions
as a result of previous stimuli. The higher concentration of calcium ions increases the

peak tension.

14



A sustained muscle contraction is achieved by repeated stimulation of a muscle fibre be-
fore it has had the chance to relax. If a muscle fibre is stimulated at 20 to 30 times per
second it produces a sustained but wavering contraction, called unfused tetanus (see
Figure 2-7C). Fused tetanus (Figure 2-7D) is achieved when a muscle fibre does not relax
between stimuli. This occurs at stimulation rates of 80 to 100 Hz. Perhaps surprisingly,
smooth, sustained contractions of an entire muscle are not ordinarily achieved by fused
tetanic contraction of the muscle fibres. Rather, it is produced by unsynchronized, un-

fused contractions of different motor units within the muscle [14].
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Figure 2-8. Length-Tension relationship. Maximum tension is achieved around 100% of the sar-
comere’s resting length. Increasing or decreasing the muscle length reduces the tension that can
be generated. Adapted from [14].
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2.2.3.2. Length-Tension Relationship

The strength of a muscle contraction depends on the sarcomere’s length. The length-
tension relationship is shown in Figure 2-8. The peak of the curve indicates the optimal
length of a sarcomere is at 2.0 — 2.4 um. This usually occurs when a muscle is at its rest-
ing length. At this length, there is the optimal overlap between the thin filaments and
the myosin heads. As the sarcomere length increases (moving to the right of the graph),
the overlap between the thin and thick filaments decreases and consequently the
amount of tension that can be produced decreases. Once a muscle fibre is stretched to
170% of its optimal length, there is no overlap between the thin and thick filaments. This
prevents the myosin heads from interacting with the actin filaments and therefore no
tension can be produced. Conversely, if the sarcomeres are too short (moving to the left
of the graph), the thin filaments overlap and make it more difficult for the myosin heads
to bind. In the limit, the Z disks compress and crumple the thick filaments, thereby re-

ducing the number of myosin heads available for binding. [14]

2.2.3.3. Recruitment

The final mechanism for modulating muscle contraction force is motor unit recruitment,
the process in which motor units are activated and deactivated as required. Recruitment
follows the size principle, which states that smaller motor units are recruited before
larger ones. Small motor units are usually composed of slow twitch fibres, while large
motor units tend to be made up of fast twitch fibres. Orderly recruitment has several po-
tential functional advantages; it ensures that smaller, more fatigue resistant motor units
are recruited first, while the larger, more easily fatigued motor units are reserved for
tasks that require a large amount of force for a short period of time. The faster motor
units are also the largest and therefore can produce more force than the slower ones.

(18]

Smooth movements also result from the size principle. The smaller, slower motor units
with the smallest force output are recruited first, and as more force is required, progres-
sively larger motor units are recruited, whose force output is roughly proportional to the

force at which they were recruited [18].
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Recruitment also plays a role in preventing muscle fatigue. To allow for a contraction to
be maintained for long periods of time with limited fatigue, motor units alternate be-
tween contracted and relaxed states. Different motor units take turns sustaining the con-

traction. [14]

2.2.4. Electromyography (EMG)
Electromyography is a measure of the electrical activity of muscles. The electrical activity
originates from the impulses traveling along the membrane of the muscle fibres. These
action potentials create an electrical field that can be measured by placing an electrode
on the surface of the skin or by inserting a needle electrode directly into the muscle.
Needle electrodes record motor unit action potentials (MUAP) from a very small volume
of tissue and can target deep muscle fibres. Surface electrodes, on the other hand, de-
tect MUAPs in a large volume and primarily record from the superficial muscle fibres.
The needle electrode measurement technique provides more precise, targeted readings,
yet it is the less common method because of the ease of use and the non-invasive nature
of the surface electrode.[19] Furthermore, surface electrode recordings may be prefer-

able if the goal is to record the overall muscle activity.

With EMG recording, there is a layer of tissue between the muscle fibres, the source, and
the electrode, which changes the properties of the signal. This tissue acts as a volume
conductor, and the properties of this conductor determine many features of the signal,
such as its frequency content. In general, the biological tissue acts as a spatial low-pass
filter on the distribution of electrical potentials from the muscle fibres. The electrode’s
size and dimensions also affect the features of the detected signal. The potential meas-
ured by the electrode is the average of the potential distribution over the skin under it.

So the electrode also acts as a spatial low-pass filter.[19]

Crosstalk is a common problem with surface electrodes. Crosstalk is the interference of
signals from nearby muscles other than the one of interest. It occurs because of volume
conductor properties and source properties. It leads to frequent interpretation errors,
such as muscles being incorrectly identified as active, when they are at rest, while a

nearby muscle is active.
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Since EMG represents the level of muscle activation, it would follow that it represents
force output. In general, with isometric contractions, EMG has been found to vary mono-
tonically with force. One study found that under static conditions the dynamic EMG/
force relationship is well described by a second-order low-pass filter. However, they also
found that the parameters of the filter varied greatly with the type of movement being
executed, making it very difficult to create a general model. [20] The EMG-force relation-
ship during isotonic contractions is much more complex. One particular study examined
EMG and torque during an imposed walking movement and found that at a point of peak
EMG no discernible torque was generated [21]. The relationship is more difficult to gen-
eralize because of the change in muscle length and the effect of the rate of change of
length on the output torque. Therefore, caution should always be taken when interpret-
ing the functional significance of EMG recordings during tasks involving isotonic contrac-

tions.

2.2.5. Peripheral Sensory Receptors
The efferent pathways of the somatic nervous system (SNS) were discussed in detail in
the previous sections. In addition, the afferent pathway plays an important role in re-
flexes and the control decisions made by the CNS. The afferent pathway relays sensory
information about the head, body walls, and limbs. This sensory information gives rise to
the sense called proprioception, which indicates limb position and velocity. The sensors
responsible for this sense are broadly termed proprioceptors. They are imbedded in
muscles and tendons and provide information about the length of a muscle and the ten-
sion in the tendons. The brain constantly receives impulses from the proprioceptors,
which allows it to produce coordinated muscle movements [14]. The muscle spindles,
proprioceptors involved in the stretch reflex, and the Golgi tendon organs, which detect

muscle tension, are discussed in the following sections.

2.2.5.1. Muscle spindles (Length-monitoring)

Muscle spindles are small proprioceptors; they have a fusiform shape and are found
imbedded throughout the fleshy part of the muscle. Their main purpose is to monitor

length changes in skeletal muscles. They are also vital to the stretch reflex (see Section
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2.2.6.1). Muscles involved in precisely controlled movements, such as in the fingers, have
many muscle spindles. Conversely, there are fewer muscle spindles in muscles involved
in coarser movements, such as the quadriceps and the hamstring muscles [14]. Muscle

spindles have three main components (refer to Figure 2-9A):

1. A group of specialized muscle fibres, called intrafusal muscle fibres, with non-

contractile central regions.
2. Sensory nerve endings.
3. Motor nerve endings.

The intrafusal fibres are enclosed in a capsule and run parallel to the regular muscle fi-
bres, called extrafusal muscle fibres. There are three types of intrafusal fibres: dynamic
nuclear bag fibres and static nuclear bag fibres, which have a bulbous centre region, and
nuclear chain fibres, which have a more uniform cross-section (refer to Figure 2-9B). A
muscle spindle usually has 2-3 nuclear bag fibres, and 5 nuclear chain fibres. These dif-
ferent fibre types have different functions, which are also in part dictated by the type of

innervation they receive [22].

There are two types of sensory endings (refer to Figure 2-9B). The la sensory fibre is a
large diameter (12-20 um), myelinated neuron that innervates all three types of intra-
fusal muscle fibres. It wraps around the central regions of the intrafusal fibres to form
the only primary sensory ending. The secondary sensory endings, formed by smaller di-
ameter (6-12 um) group Il fibres, are located adjacent to the central regions of the static
nuclear bag fibres and nuclear chain fibres. When the intrafusal fibres are stretched, the
sensory endings are distorted, and increase their firing rate. When the stretch is relieved,
the activity decreases. [22] The extrafusal muscle fibres are innervated by large diameter
alpha motor neurons. When the extrafusal fibres are stimulated and contract, gamma
motor neurons prevent slack in the muscle spindles, which would reduce their sensitiv-
ity. The small diameter gamma motor neurons innervate the polar contractile ends of the
intrafusal muscle fibres and cause them to contract, helping to maintain their sensitivity.

In fact, alpha and gamma motor neurons are often activated at the same time during
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normal activity; this is referred to as alpha-gamma coactivation. The action of the
gamma motor neurons does not contribute to the overall force output of the muscle but

functions to adjust muscle spindle sensitivity. [22]

There are two types of gamma motor neurons, dynamic and static, that affect the sensi-
tivity of the afferent sensory neurons differently. Dynamic gamma motor neurons inner-
vate the dynamic nuclear bag fibres which only have a primary sensory ending. The dy-
namic gamma motor neurons are so called because they increase the primary afferents
response to dynamic length changes during a ramp stretch. Static gamma motor neurons
innervate both the static nuclear bag fibres and the nuclear chain fibres, which have
both primary and secondary endings (refer to Figure 2-9B). The static gamma motor neu-
rons increase the sensory endings steady-state response to a ramp stretch. However, the
dynamic response of the afferents is much more complex than can be deduced from a

simple ramp stimulus. [23]

Figure 2-10A shows the response amplitude (impulses/s) of primary and secondary end-
ings to different stretch amplitudes (mm) at 1 Hz. Primary endings clearly have a much
greater sensitivity (impulse/s/mm) to small amplitude stretches than do secondary end-
ings and also have a very small linear range. Secondary endings have lesser sensitivity
but have a much larger linear range. At larger stretch amplitudes, the difference in sensi-
tivity of the primary and secondary afferents is insignificant. Figure 2-10B shows the sen-
sitivity of primary and secondary endings to stimuli of different frequencies. Both pri-
mary and secondary endings have a similar highpass response; the sensitivity of the sec-
ondary ending is only an absolute order of magnitude lower. The primary afferent’s sen-
sitivity increases more quickly at higher frequencies, which may suggest some accelera-
tion response as well [23]. The muscle spindles are very tunable structures. Their re-
sponse to changing length of the parent muscle is largely determined by the gamma mo-
tor neuron activity. The dynamic response and sensitivity of the muscle spindle can be

modified by selective stimulation by the gamma motor neurons [22].

Spindle information about muscle stretch goes to three places: (1) the spinal cord, which

mediates the stretch reflex, (2) the sensory areas of the cerebral cortex, which allow for
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Figure 2-10. (A) Response amplitude vs. Stretch amplitude. The slope of the lines represents the
sensitivity. Primary endings have a much greater sensitivity to small stretch amplitudes than sec-
ondary endings and also have a small linear range. (B) Sensitivity vs. Frequency. Primary and
secondary endings both have a similar highpass response with only an order of magnitude differ-

ence. The primary ending’s sensitivity increases faster at high frequencies, which may indicate an
acceleration sensitivity. Adapted from [23].
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Figure 2-11. Stretch reflex pathway. A muscle stretch causes a response in the muscle spindle.
This response travels up the la afferent and synapses in two places. It connects directly to alpha
motor neurons of the homonymous and synergist muscles, forming a monosynaptic connection,
which causes those muscles to contract. It also synapses onto the la inhibitory interneuron which
connects to the alpha motor neuron of the antagonist muscle and causes it to relax. This recipro-
cal innervation prevents the antagonist muscles from interfering with the agonist muscle contrac-
tion that relieves the stretch. Adapted from [22].
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conscious perception of muscle position, and (3) the cerebellum, which helps coordinate
muscle contractions. [14] At the spinal level (see Figure 2-11), the la afferent fibres syn-
apse directly onto the alpha motor neurons of the same muscle, forming a monosynaptic
connection. They also synapse onto agonist muscles that produce the same action. This
causes the muscles to contract and relieve the stretch. The la fibres also activate a poly-
synaptic inhibitory pathway by synapsing onto the la inhibitory interneurons, which syn-
apse onto the alpha motor neurons of the antagonist muscles and cause them to relax.
This prevents conflict between the muscle groups and coordinates the limb movement.
This mechanism is referred to as reciprocal innervation, when a muscle is stretched, its
antagonist relaxes.[22] The stretch reflex will be discussed in more detail in Section

2.2.6.1.

2.2.5.2. Golgi Tendon Organs

Golgi tendon organs (GTO) are small sensory receptors that detect tension in the muscle.
They are located at the junction between muscle fibres and the tendon, placing them in
series with a group of muscle fibres (refer to Figure 2-12). Since they are in series with
the muscle fibres, they become taught when the muscle contracts, which is the opposite
of the muscle spindles, which slacken when the muscle contracts. The GTO is an encap-
sulated structure that contains braided collagen fibres. Each GTO is innervated by a sin-
gle group Ib sensory neuron. The Ib axon enters the capsule, after which it loses its mye-
lination and branches into many small nerve endings, which intertwine with the collagen
fibres. Stretching the capsule straightens the collagen fibres, compresses the free nerve
endings, and causes them to fire. [22] The GTO are not very sensitive to passive force
because the overall tension is distributed over all the receptors, so the tension sensed by
each is very small. However, their structure makes them very sensitive to force in the
muscle fibers to which they are connected, which makes them very sensitive to active
contractions. Studies have shown that the average level of activity of the GTO of a con-

tracting muscle gives a good measure of the total force it generates.

The Ib afferent axons synapse onto the Ib inhibitory interneurons, causing inhibition of

homonymous muscles. In other words, when tension is sensed in a muscle, the GTO
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Capsule

Tendon

Figure 2-12. Golgi Tendon Organ. The Golgi tendon organ is located at the junction between
the muscle fibres and the tendon. It consists of braided collagen fibres enclosed in a capsule. A
Ib afferent innervates the structure. The single sensory neuron splits into small endings that are
intertwined with the collagen. Tension in the muscle fibres stretches the capsule and straightens
the collagen fibres, which pinch the nerve endings causing them to fire. Adapted from [22].
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trigger a response that causes the muscle to relax and thus, alleviate the tension. The
action of the Ib fibres is more complex than that explanation indicates. The interneurons
that mediate their response, also receive input from the la muscle spindle fibres, affer-
ent fibres from cutaneous receptors and joints, and excitatory and inhibitory inputs from
multiple descending pathways, which will all contribute to the final response. Further-
more, the |b fibres also form multiple connections to motor neurons of other joints,
which has led to the speculation that the tendon reflex is part of a network that regu-

lates whole limb movement. [22]

2.2.6. Peripheral Reflexes
A reflex is a rapid series of actions elicited in response to a specific stimulus. It is un-
planned and automatic, such as pulling away from a hot surface. Since the processing of
reflex responses needs to happen quickly, the brain is not directly involved, rather it is
the spinal cord or brain stem that determines the response [14]. Of primary interest to
this thesis are the reflexes classified as somatic, which involve the contraction of skeletal
muscles. The following subsection looks at the response of one spinal reflex, the stretch

reflex.

2.2.6.1. Stretch Reflexes

Stretch reflexes resist stretching of the muscle by causing the stretched muscle to con-
tract, and thus, shorten. Section 2.2.5.1 discussed the action of the muscle spindle. The
basic stretch reflex response involving the monosynaptic and reciprocal innervation, is
seemingly very simple but can produce a broad range of responses. The reflex response
is highly adaptable and can produce task appropriate responses [9, 10, 22]. In fact, the
stretch reflex does not always cause the antagonist muscles to relax; during a ball catch-
ing task, both the agonist and antagonist muscles contract in response to a stretch [24].
The stretch reflex can also have more far reaching consequences and can cause muscles
in other limbs to contract as well [22]. Furthermore, reflex strength can be voluntarily
modulated, although whether we do this during normal function is not certain [8]. From
these examples it is clear that the stretch reflex response is highly modulated in a func-

tionally significant way.
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There are three main ways in which the stretch reflex can be modulated:

1. The sensitivity and dynamics of the muscle spindles can be regulated by the action of

the gamma motor neurons, as discussed in Section 2.2.5.1.

2. The state of the joint, about which the reflex acts, affects its response. In fact, the
strength of the reflex response changes with joint position[5], the level of torque act-
ing about the joint [5, 25] and the mean average velocity with which the joint is per-

turbed [26].

3. The reflex response can be modulated at three sites in the spinal cord (refer to Figure
2-13): the alpha motor neurons, the interneurons, and the presynaptic terminals of
the afferent fibres. Descending signals from regions of the upper nervous system and
from other parts of the spinal cord synapse at those locations. They may regulate the

strength of the reflexes by changing the background level of activity. For example, by
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increasing the background activity of the alpha motor neurons, the neuron is closer to

its firing threshold and will respond to smaller inputs from the la fibres [22].

There are clearly many ways in which the stretch reflex response can be modulated and
adapted. The stretch reflex response has also been shown to be large and malleable
enough to play a significant role in many day-to-day activities [26]. Exactly how and how
much reflexes contribute is still unclear. The remainder of this chapter is dedicated to a
discussion of past studies of dynamic joint stiffness that have worked to shed some light

on motor control strategies.

2.3. DYNAMIC JOINT STIFFNESS

Dynamics deal with the forces acting on a body and the resulting movement [1]. This
thesis is primarily concerned with the dynamics of human joints, which is defined as the
dynamic relation between joint position and the torque acting about it[3]. It can be

separated into two components[1]:

1. Intrinsic stiffness: due to the mechanical properties of the joint, active muscle

fibers, and passive, visco-elastic tissues.

2. Reflex stiffness: due to the change in muscle activation mediated by the stretch

reflex.

Joint stiffness plays an important role in the control of movement; it determines the
force needed to achieve the desired final position of the limb and the movement that
will result from an external perturbation [3]. However, the exact role of joint stiffness,

and in particular, reflex stiffness, in movement and posture is still under debate.

There are a number of opposing motor control theories but they can generally be
grouped in two categories: internal model control or equilibrium point control [27-30].
The internal model theory postulates that the CNS includes either inverse or forward
models that predict the neural activation pattern needed to produce a specified move-
ment [30, 31]. This theory must assume that the CNS accounts for the dynamics of the
limb and external loads [30]. Within this category, certain theories postulate that the

brain encodes movement parameters, such as position and velocity [32-35], and that
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these are later converted to joint torques and muscle activations via an internal model
[36]; others believe that muscle activation is directly encoded using built in knowledge of
system dynamics [37, 38]. However, with both groups, once the neural signal reaches the
spinal level it encodes for muscle activation, which in turn affects joint stiffness. Feed-
back from peripheral sensory receptors is used to update the internal models [28], but
the role of the monosynaptic stretch reflex in movement is not clearly defined. This is
problematic since the absence of reflexes has been shown to severely impair movement
[39], indicating that they must play an integral role in any motor control theory. The in-
ternal model control theories also fall short when attempting to explain the transition
from posture control to movement [30]. During postural control, reflexes work to return
the body to a stable position. Without any reflex control, voluntary movements would
trigger resistance, as the reflexes attempted to move the body back to a stable position

[30].

The equilibrium-point (EP) hypothesis addresses this problem. The EP theory postulates
that the brain sets various equilibrium points for the limbs. When a body part moves
away from its equilibrium point, reflexive processes work to bring it back. Movement is
generated by changing the EPs [40]. Both central commands and feedback from muscle
spindles work together to set the EPs by modifying the threshold value, A [41, 42]. In the
EP theory, muscle forces are not computed explicitly by the brain, but are a consequence
of the limb not being in the equilibrium position [29]. This could account for the severe
motor control impairment seen in deafferented patients [30]. The progress of the EP hy-
pothesis has been stalled by the difficulty of estimating A. Attempts have been made to
discredit this theory by modeling joint stiffness using a inertial-viscous-elastic model and
converting it to an EP trajectory [43, 44]. However, it appears that the method did not
estimate joint stiffness correctly and consequently, modeled the EP trajectory incorrectly
[29]. The study of dynamic joint stiffness using more comprehensive models, such as the
one explored in this thesis, may help clarify the role of joint stiffness in movement, and

help shed some light on the motor control debate.

Ultimately, understanding the role of joint stiffness in movement will greatly improve the

design of prosthetic devices and human-machine interfaces. It will also provide a more
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qguantitative means of evaluating the progression and rehabilitation of neurological dis-

eases [2]. The following section examines research in the field of dynamic joint stiffness.

2.3.1. Studies in joint dynamics
Early studies in joint dynamics often referred to joint stiffness as a whole, and did not
differentiate explicitly between intrinsic and reflex stiffness [2, 3, 45, 46]. However their
methods limited them to the study of intrinsic stiffness, because they examined the lin-
ear dynamic relationship between position and torque, and as discussed below, reflex

stiffness is highly non-linear.

Hunter and Kearney [3] developed an intrinsic stiffness model to quantify joint stiffness
properties. This model relates position to torque through a linear, 2~-order transfer
function:

TQ(s)
P(s)

=Is>+Bs+K

where K, B, and | are the elastic, viscous and inertial parameters, respectively. Using this
model, it was shown that intrinsic stiffness varied with many conditions, such as joint
position [5, 45, 46], the mean ankle torque [3, 5], and the perturbation displacement
amplitude [2]. Specifically, ankle stiffness was found to increase (i.e. K and B increased)
with increasing levels of voluntary contraction [3, 45] and with progressive ankle dorsi-
flexion [45, 46] (see Figure 2-14). These results show that more force is required to ro-
tate the ankle when the muscles are contracted than when they are relaxed (Figure 2-
14B), and that it becomes increasingly difficult to rotate the ankle as it approaches the
limits of its range of motion (Figure 2-14A). It has also been shown that ankle stiffness
has a strong non-linear dependence on the amplitude of the perturbations used to iden-
tify it; increasing displacement amplitude decreased ankle stiffness [2]. Since stiffness is
highly dependent on the state of the joint it is difficult to create a model that describes

its behavior under all circumstances.
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Figure 2-14. (A) Intrinsic gain, K, versus position for 8 subjects. As ankle moves from a plantar-
flexed position to a dorsiflexed position, K increases. (B) Intrinsic gain, K, versus plantarflexing
torque for 7 subjects. As the voluntary torque increases so does K. Adapted from [5].
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2.3.1.1. Stretch Reflex Dynamics
2.3.1.1.1.  Reflex Stiffness model

Relatively few studies have examined reflex stiffness because reflex torque cannot be
recorded separately from intrinsic torque, making it difficult to isolate the reflex stiffness
contribution. Attempts were made to circumvent this problem by blocking the reflex re-
sponse by using electrical stimulation [47-49], nerve block [50], or deafferentation [51,
52] to record a reflex-free baseline response, which could later be removed from the to-
tal torque to isolate the reflex response. The technique could potentially lead to over or
underestimation of the reflex contribution if there were changes in the intrinsic baseline
[5]. Other studies have avoided the problem completely by focusing on the reflex EMG
response instead of the reflex torque response, because the EMG does not have a me-
chanical intrinsic component and can, therefore, be described more directly. Ideally, both
intrinsic and reflex stiffness components must be identified simultaneously. Kearney et
al. [4] developed a parallel-cascade system identification technique (described in Section
3.5) to do this. The parallel-cascade model of ankle stiffness incorporates the intrinsic
stiffness model, described in the previous section, and also includes a model of reflex

stiffness dynamics.

Studies of reflex EMG dynamics at the ankle were able to establish that there is a 40 ms
delay from the onset of the stretch to the change in EMG, and that the stretch reflex has
a strong non-linear dependence on velocity [25], correlating well with delayed, half-wave
rectified velocity. Furthermore, reflex EMG dynamics were particularly well modeled by a

Hammerstein system [53], consisting of a static non-linearity followed by a linear filter.

This knowledge was used to build the reflex stiffness model, which relates position to
torque through a differentiator, followed by a delay and a Hammerstein system [4]. The
implementation of this model and the identification procedure yielded good system es-
timates, and were able to confirm the uni-directional rate sensitivity of the reflex re-
sponse, as well as the response delay of 40-50 ms. Reflex torques were found to be sig-

nificant only over a limited frequency band (5-10 Hz).
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2.3.1.1.2.  Reflex stiffness - Static conditions

Studies have examined reflex stiffness and reflex EMG dynamics under various stationary
conditions and have found that reflex gain is highly dependent on ankle position [5, 25,
26, 54], the level of voluntary contraction [5, 26], and the properties of the input pulse
used to identify it, such as the velocity, amplitude, duration, and direction [26]. Mir-
bagheri et al. [5] studied the effect of position and the level of voluntary contraction on
reflex stiffness gain, using multiple subjects. Figure 2-15 shows reflex gain versus position
and voluntary torque. Figure 2-15A shows that there is little change in stretch reflex gain
as the ankle moves from near the neutral position to a more plantarflexed position.
There is, however, a large increase in reflex gain as the ankle is dorsiflexed. This is likely
due to the effect of changing muscle length; changing the stretch of the muscle will af-
fect the spindle sensitivity. Plantarflexion reduces the muscle length, which, without any
modification from central commands, would reduce muscle spindle activity. Dorsiflexion
stretches the muscle and therefore, increases muscle spindle activity. This same position

dependence has been observed in the reflex EMG response [25, 26, 54].

The functional consequences of changing the level of voluntary contraction on the reflex
response is more disputed. Early studies that examined the reflex EMG dynamics con-
cluded that reflex gain increased monotonically as the level of voluntary contraction in-
creased [25, 26, 49]. This is what we would expect since increasing the activation level of
a muscle increases the number of motor neurons close enough to threshold to be acti-
vated by the stretch [26]. However, this increase in reflex EMG gain does not translate
into increased reflex stiffness. Figure 2-15B shows the results of a study examining reflex
stiffness gain with various levels of torque. This figure shows a large increase in reflex
stiffness gain in the transition from rest to low contraction levels followed by a gradual
drop in reflex gain as the voluntary torque continues to increase. This behavior was also
observed by Toft et al. [48]. These studies show that the behavior of reflex EMG dynam-
ics cannot predict reflex stiffness dynamics. Stiffness dynamics are more representative
of reflex functionality than reflex EMG dynamics, because they represent the actual me-

chanical output of the muscle, not only its activation. As discussed in Section 2.2.4,
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Figure 2-15. (A) Reflex gain, Gr, versus position. As the ankle moves from a neutral position to a
dorsiflexed position the reflex gain increases. There is little change from a plantarflexed position
to a neutral position. (B) Reflex gain versus plantarflexing torque. The reflex gain peaks at a low
torque, about 3 Nm, and decreases as further torque is generated. Adapted from [5].
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EMG does not directly correlate with the tension produced in the muscle under all con-

ditions.

The gain of the stretch reflex has also been shown to be highly dependent on the prop-
erties of the input perturbation; the mean average velocity of the perturbation sequence
being the most important of these properties [26]. Figure 2-16 shows the magnitude of
the reflex torque and EMG versus the mean absolute velocity (MAV). The reflex EMG and
torque responses are strongest for MAVs below 0.25 rad/s. This tells us that sustained
movement suppresses reflexes. Any type of movement, therefore, will likely have a sub-
stantial effect on reflex gain. The following section examines the way reflexes change

during motion and what role they may play.

2.3.1.1.3.  Stretch Reflex and Movement

The stretch reflex can generate torques as large as 30-50% of a muscle’s maximum
voluntary contraction [47]. This is large enough to contribute significantly to voluntary
movements [26]. Section 2.2.6.1 discussed several ways in which the reflex gain could be
modulated. The question, therefore, is whether the brain modifies reflex gain depending
on the task being performed. Many studies have shown that reflexes are modulated in a
way that meets the functional requirements of a movement [10, 55-57], which supports
the idea of central control of reflex gain. Furthermore, Ludvig et al. [8] showed that re-
flex stiffness could be voluntarily modulated independently of intrinsic stiffness.

Whether this is a technique employed by the nervous system is still unclear.

Most studies of reflexes during movement and other time-varying tasks examined the
EMG response, not reflex stiffness. The functional significance of their results should be
interpreted with caution because the amplitude of EMG during movement does not di-
rectly correlate with torque output [21]. The Hoffman (or H-) reflex has been used exten-
sively to study reflex modulation during movement in human subjects [10, 55, 57]. The
H-reflex involves electrical stimulation of the muscle spindle afferents and is used to
study the modulation of reflexes by central mechanisms [39]. They differ from the
stretch reflex in that they do not include the effect of peripheral mechanisms [39]. The

use of this method has produced interesting results. Capaday and Stein [9, 10] studied
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the amplitude of the EMG elicited by the H-reflex in the soleus muscle during standing,
walking, and running tasks. In walking and running tasks, they found that the reflex EMG
amplitude was largest during the late stance phase, when it would assist in forward pro-
pulsion and in lifting the body. The reflex response was virtually absent during the swing
phase, when it would oppose ankle dorsiflexion. However, the H-reflex was on average
smaller during running than walking [10]. Similarly, the reflex response was in general
larger during standing than walking for matched background EMG and stimulus levels.
Similarly, a study performed by Grey et al. [55] showed that the EMG amplitude elicited
by the H-reflex and the stretch reflex were largest during the down-stroke (power phase)
of the crank cycle in a cycling task. The reflexes were smallest during the recovery phase,

when they would be less useful.

Kimura et al. [56] examined the magnitude of the stretch reflex response in the soleus
during a gradual increment and decrement of isometric force, and found that for
matched torque levels the stretch reflex EMG amplitude was larger during the increasing
phase than the decreasing phase. They speculated that a reduced reflex response during
relaxation would lower the level of muscle activity and thus allow for a smoother force
decrement. This coincides with the results of the studies mentioned above that found
that reflexes were largest during the late stance phase of walking and the power phase
of cycling, during soleus contractions, and smallest immediately afterwards, as the so-

leus relaxed.

Kirsch et al. [58] performed a similar experiment and found that the reflex EMG gain was
largest just prior to the onset of the contraction and was depressed just prior to relaxa-
tion. The changes in reflex EMG gain closely followed the changes in background EMG
but not the level of voluntary torque. This indicates that, at least for this task, the reflex
gain was primarily modulated by the level of muscle activation, regardless of the output
torque. In a related study, Kirsch and Kearney [59] found that reflex gain did not follow
the background EMG changes as closely during a rapid imposed movement. This shows
that there are many ways to modulate the reflex response, and one mechanism cannot

predict the response in all situations.

37



The above studies do not conclusively determine the cause or purpose of reflex modula-
tion. Both peripheral and central mechanisms have been shown to modify reflex gain,
and it has also been shown to be task dependent. What is clear, however, is the impor-
tance of reflexes. Sinkjaer et al. [60] studied reflex modulation in multiple sclerosis pa-
tients and found that it was impaired when compared to normal function. This contrib-
uted to severe dysfunction during normal gait, demonstrating that reflexes play an im-
portant role in locomotion. Other studies also found that reflexes may play a role in
stumble correction, stabilization of body posture over an uneven surface and restoration
of balance during locomotion in the face of external perturbations [39]. Further study of
reflex stiffness during movement is required to determine the functional significance of

the stretch reflex in day-to-day tasks.

2.3.1.2. Relative Importance of Intrinsic and Reflex Stiffness

Both intrinsic and reflex mechanisms contribute to the total joint stiffness; however,
their importance is determined by their relative contribution to the total output torque.
Knowing how reflexes are modulated during movement would not be important if they
contributed little to the total output torque. To determine the relative importance of
each component, they must be identified simultaneously. A parallel-cascade system
identification technique (described in detail in Section 3.5) was developed in our lab to
do this [4]. Using this technique, it was shown that the reflex component dominates at 5-
10 Hz, while the intrinsic component dominates at higher frequencies. The reflex contri-

bution was largest when stimulated with a perturbation with a low mean average veloc-

ity.

Mirbagheri et al. [5] used this technique to investigate the effect of position and the level
of voluntary torque on the relative contribution of intrinsic and reflex stiffness; Figure 2-
17 shows the results. They found that although both intrinsic and reflex gain increased
with ankle dorsiflexion, the reflex contribution was largest at a neutral position. Fur-
thermore, intrinsic gain increased with the level of voluntary contraction, while the reflex
gain was largest at a low contraction level, making the reflex contribution greatest at low
contraction levels. From this study, we can see that the stretch reflex is likely to be more

significant near a neutral position and with low contraction levels, near 3 Nm.
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torque versus plantarflexion torque (A) and position (B). The relative contribution of the reflex
pathway peaks at approximately 3 Nm and near the neutral position. Adapted from [5].
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2.4. THESIS RATIONALE

It is well established that impaired ankle reflexes lead to dysfunction in gait [39, 60] but
their role in normal movement [9, 10, 21] and how they are controlled [56, 58] is still un-
der debate. Previous studies of ankle reflexes lacked adequate means of separating me-
chanical stiffness from reflex generated stiffness, and instead relied on baseline, reflex-
free recordings [50-52, 61]. To solve this problem our lab developed a parallel-cascade
algorithm to simultaneously identify intrinsic and reflex stiffness [4]. This algorithm was
applied to many time-invariant studies of ankle stiffness [5-8] but the ultimate goal was
to examine ankle stiffness under time-varying conditions, where the position and torque

of the ankle are changing.

An ensemble identification method was developed to study time-varying total joint stiff-
ness [62]. However, this method did not distinguish between intrinsic and reflex stiffness
[63]. That is why our lab further developed the time-varying, parallel-cascade (TVPC) al-
gorithm to study intrinsic and reflex stiffness during time-varying tasks [13]. The TVPC
algorithm incorporates ensemble identification techniques and will be able to accurately

track ankle stiffness during a variety of tasks.

A thorough study of time-varying ankle stiffness will provide a clearer understanding of
the role of reflex stiffness in motor control. The TVPC algorithm could be used to estab-
lish the normal pattern of reflex modulation for a variety of tasks. Once the modulation
pattern is known, reflex impairment could be more objectively and precisely character-
ized. Current methods rely on a clinician’s subjective assessment of the joint’s resistance
to passive manipulation and therefore, do not provide much insight into the progression
of neurological diseases or effectiveness of a treatment program [1]. Furthermore, an in-
depth understanding of joint stiffness modulation patterns would improve the design of

limb prothesis and robotic control [1].

2.4.1. Thesis objectives
The goals of this research were the following:
1. Improve and debug the existing implementation of the TVPC algorithm.

2. Verify the algorithm’s ability to track rapid, time-varying changes in system dynamics.
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3. Assess the algorithm’s noise performance and evaluate the effect of changing the
relative contribution of the reflex pathway to the output.

4. Determine the effect on the quality of the identification of changing the number of
realizations in the data ensembles.

5. Apply the TVPC algorithm experimentally to confirm that it can produce good results
using real data.

Goals 1-4 are accomplished through a simulation study involving a realistic simulation of

ankle stiffness. Goal 5 is achieved by applying the TVPC algorithm experimentally to track

changes in intrinsic and reflex stiffness during a time-varying torque matching task.
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3. SYSTEM IDENTIFICATION AND THE TIME-VARYING, PARALLEL-CASCADE ALGORITHM

System identification tackles the problem of developing a mathematical model of a sys-
tem knowing only its inputs and outputs [64, 65]. This is a useful tool in the study of joint
stiffness, since, in humans, joint position and torque are most easily recorded. This chap-
ter gives an overview of system identification methods, focusing specifically on the tech-
niques relevant to this thesis. This will provide the background necessary to understand
the following chapters, which apply the TVPC algorithm to simulation and experimental
data. The methods of identifying linear and non-linear, time-invariant systems are dis-
cussed, followed by a description of the parallel-cascade algorithm used to separate and
identify intrinsic and reflex stiffness. A review of time-varying system identification tech-
niques follows; ensemble methods are presented in detail. It is then shown how the
ensemble methods are incorporated into the parallel-cascade algorithm to study time-
varying joint stiffness. The last section discusses improvements made by the author to
the time-varying, parallel-cascade (TVPC) algorithm’s implementation, as part of this the-

sis research.

3.1. SYSTEM IDENTIFICATION

There are many types of systems and many ways of representing them. A system can be
either linear or nonlinear, time-invariant or time-varying. It can be represented either in
the time domain using an impulse response function, or in the frequency domain using a

frequency response function.

A mathematical model can also be either parametric or non-parametric. Parametric
models are represented by an analytic expression that contains a limited number of pa-
rameters. The parameters are often chosen to represent certain physical properties and
therefore, have actual physiological meaning. However, parametric modeling is only suc-
cessful when the underlying model is chosen correctly, and this requires a priori knowl-
edge about the system structure. If the model parameters are chosen incorrectly they
will be meaningless. Unfortunately, biological systems are often very complex and a large
number of parameters would be needed to accurately represent them, which is what

parametric modeling aims to avoid. [1] For this reason, non-parametric methods are
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more suitable for identifying unknown systems, even though they require a “large” num-
ber of parameters. Non-parametric models make few assumptions as to the structure of
the system and are represented using frequency response functions, or impulse re-
sponse functions (IRFs); the latter is described in the following section. An analytic ex-
pression can be fit to the IRFs or frequency response functions following the initial iden-
tification to reduce the number of parameters required. This is the method used in this

thesis.

3.2. Impulse Response Function
The impulse response function (IRF) is a fundamental tool in system identification and
can be used to predict a linear system’s output due to any input. The IRF is the response
evoked by applying a unit impulse to a system; since all frequencies are excited by an

impulse, an IRF fully characterizes the dynamics of a linear system. Given the input, x(¢),

and the system IRF, A(¢), the output, y(¢), is given by the convolution integral:
y(1) =f_wh(r)X(t -T)dt (1)

The IRF may have positive lags that represent ‘system memory’ and negative lags that
represent ‘system anticipation’. Typically, a system has ‘finite memory’, and so has very
small or zero values for large lags, defined by the limits T <71 andt > t2. The above in-

tegration limits can then be set from 71 tot2 [66]. Equation 1 is more practically written
in the discrete-time format, with sampling interval At, as follows:
T2
V@) = At Y h(j)x(i - j) (2)
j=T1
where, i, is the discrete-time index, j, is the lag index, and7T'1 and T2 are equal totl/ At

andt2 /At , respectively. The discrete-time formulation assumes that Az is small com-

pared to the fastest fluctuations of the system, so that the rectangular integration gives

satisfactory results.
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The basic IRF can only describe linear systems; more complex formulations are necessary
for non-linear cases. If the system is stationary and linear about a particular operating
point, a quasi-linear model can be used, which is described by an IRF that depends on

the operating point, as follows [1]:

V@) = At Y h(j,)x( = ) (3)

j=T1

where A represents the operating point. This model can be used to represent linear,
guasi-stationary system. If the system is not stationary long enough to estimate the IRF,

this model cannot be used; time-varying identification methods will be necessary.

Cascade models can be used to model non-linear systems, which is the method used in
this thesis. These models consist of a cascade of linear and non-linear elements; the
simplest being the Wiener (linear — nonlinear) and the Hammerstein (nonlinear — linear)
models. The Hammerstein model, as previously mentioned, can be used to model reflex
dynamics. The procedure for identifying a Hammerstein model is discussed in Section
3.4. The following section describes a technique for identifying linear systems using a

correlation-based method.

3.3. CORRELATION FUNCTION APPROACH TO LINEAR, TIME-INVARIANT SYSTEM IDENTIFICATION

There are many techniques for solving the linear, time-invariant convolution equation for
the impulse response function. This section presents a technique that uses a correlation
function approach. This method involves solving a matrix equation expressed as a func-
tion of the input autocorrelation and the impulse response function; it is derived as fol-

lows [66]. Substitute i + k fori into Equation 2 to get the following:

Wi+ k)= At > h()xGi+k = j) (4)

j=T1

Multiply Equation 4 by x(i) and sum both sides fromi =1to N to get:
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N T2 N
N 6@y + k) = At Y ()Y, x @i+ k= j) (5)
i=1 j=T1 i=1

The left hand side of Equation 5 is a biased estimator of the cross-correlation function:

N

)= XD+ K. )

i=1

The rightmost sum is a biased estimator of the autocorrelation function:

¢, (k)= %gx(i)x(i +k). (7)

Equations 6 and 7 are substituted back into Equation 5 and rewritten in matrix form, as

follows:

C,=AC H (8)

where C is a T2-T1+1 length vector withi” element c,T1+i-1),C, is a T2-T1+1

square matrix with i, j” element c.(i—-j),and H is a T2-T1+1 length vector with i" ele-

ment A(T1+ i —1). Rearranging Equation 8 for H gives:

1
H=—C]/C, (9)

Using a simple matrix inverse to solve the above equation can lead to large random er-
rors when the output SNR is low and the input is coloured [67, 68]. A pseudoinverse pro-
vides more reliable results in those situations. The pseudoinverse method removes
terms from the calculation that don’t contribute significantly to the output [11], thus

providing better results.

3.4. TIME-INVARIANT HAMMERSTEIN IDENTIFICATION TECHNIQUE

Biological systems are very often non-linear and require specialized techniques to iden-

tify them. Certain non-linear systems can be represented using a Hammerstein cascade
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v(t)
x(t)—» m() k(T) y(t)

Figure 3-1. Non-linear Hammerstein cascade model.

X(t) - input

m(.) - non-linear function

v(t) - intermediate signal modified by the non-linear function
k(1) - linear subsystem

y(t) - output

system (see Figure 3-1), as is the case with ankle reflex stiffness. Hunter and Korenberg
[64] describe an iterative technique to identify time-invariant Hammerstein systems. The
technique iterates between the identification of the linear element and the non-linear

element as follows (refer to Figure 3-1):

1. Generate a linear estimate of the inverse of k, denoted ik, between y and x using lin-

ear correlation system identification techniques. Note that this is made possible by

Bussgang’s theorem, which states that for two Gaussian signals, the cross-correlation,
calculated after one of them has undergone a nonlinear amplitude distortion, is iden-
tical to the cross-correlation calculated before the distortion was applied, except for a

factor of proportionality [69].

2. Predictv (denoted V) by convolving y with ik.

3. Estimate the non-linear function, m, by fitting a high-order polynomial between x and

v, and setV to be the value predicted by the polynomial.
4. Re-estimate ik between y and v.
5. Re-estimate v from the convolution of ik and y.
6. Continue iterating at step 3 to improve the estimates or generate the final estimate by

continuing at step 7.
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7. Re-estimate the non-linear function, m, by fitting a high-order polynomial between x

and v, and setV to be the value predicted by the polynomial.

8. Estimate k between vand y.
9. Generate a prediction of y by convolving the estimate of k withv.

This method has been used to model dynamic reflex stiffness [5]. It has also been

adapted for time-varying Hammerstein systems [12], as discussed in Section 3.6.3.

3.5. PARALLEL-CASCADE SYSTEM IDENTIFICATION OF ANKLE STIFFNESS

Joint stiffness consists of both intrinsic and reflex components. Identifying one compo-

nent while excluding the other can lead to biased results. Our lab developed a time-

Intrinsic pathway
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Reflex pathway

Figure 3-2. Model of ankle stiffness used in the parallel-cascade system identification algorithm.
The upper pathway represents intrinsic stiffness. The lower pathway is the reflex stiffness. The
torques resulting from each pathway combine additively to give the total output torque.

P(t) - Position

TQ(t) -Total output torque

TQi(t) and TQx(t) - Intrinsic and Reflex torque, respectively

V(t) - Velocity

PTQ(7) - Intrinsic stiffness IRF

SNL(V) - Non-linear function of reflex stiffness Hammerstein system
VTQ(T) - Linear subsystem IRF of reflex stiffness Hammerstein system
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invariant, parallel-cascade identification technique to separate and identify the two
components [4]. The parallel-cascade model used in the identification of reflex and in-

trinsic stiffness is shown in Figure 3-2.

The upper pathway represents the intrinsic component of joint stiffness, which relates
position to torque via a linear, dynamic system. The lower pathway, representing reflex
stiffness, relates joint velocity to torque through a delay followed by a Hammerstein sys-
tem. The two pathways are assumed to contribute linearly to the total output torque.
Each pathway of the parallel-cascade model is separated and identified using the follow-
ing iterative technique:

1. First, an estimate of the intrinsic stiffness, PfQ, is generated by estimating the

IRF between input position, P, and total output torque, 7Q, using the correlation

method described in Section 3.3. The length of the intrinsic IRF is fixed to be

shorter than the reflex delay, to avoid any correlation between the reflex compo-

nent and the input. Pf‘Q is then convolved with P to generate an estimate of the

intrinsic torque, TQ,.

2. The intrinsic residuals, TQ.R are calculated by subtracting the predicted intrinsic
torque from the total torque, as follows: TQ.R =710 - TQ. TQR is used as the out-
put for the reflex identification. Using the residual signal instead of the total out-
put torque increases the SNR of the reflex identification by eliminating the com-
ponent of the signal due to the intrinsic pathway.

3. The static non-linearity, S]\A/L, and the linear subsystem, VfQ, of the Hammerstein
system are estimated between the joint velocity, V', and TQ.R using the Hammer-

stein identification method described in the previous section. The estimated

Hammerstein system is used to predict the reflex torque, TQ.

4. An estimate of the total output torque, TQ, is calculated by summing TQ and TQ,.
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5. The quality of the identification is evaluated by computing the percent variance

accounted for (%VAF) between TQ and TQ. The general %VAF equation between

an observed signal, X, and its estimate, X, is as follows:

( var(X — )A()\

%VAF(X,X) =100 kl g (9)

6. The procedure continues back at step 1, where a new estimate of intrinsic stiff-

ness is generated using reflex residuals as the output.
7. lteration continues until the %VAF fails to increase.

Following the identification, intrinsic stiffness is converted to compliance, TQP, since it is

more readily interpreted.

The time-invariant, parallel-cascade identification procedure has been successfully ap-
plied in many studies [5-8] to examine ankle stiffness about a fixed operating point, (i.e.
when torque and position are fixed). This model does not describe joint stiffness under
all conditions, such as when position or torque are changing. Therefore, for this model to
hold, it is important to use a small position perturbation to identify the system, such that
it minimizes the non-linear effects of changing position and torque. For example, intrin-
sic mechanisms are modeled here as linear even though muscle and joint properties are
known to be non-linear. This model holds as long as the position input used to identify
the system is small enough, such that it doesn’t affect the system parameters. A small
amplitude (usually 0.03 rad) pseudo-random binary sequence (PRBS) about the operat-
ing point is used, as it satisfies this requirement and has a wide enough bandwidth to

identify the system dynamics.

Similarly, reflex stiffness is only modeled in terms of its velocity-torque relationship.
However, the parameters of the model change with changing position and torque [5] but
by identifying it about a fixed operating point with small position perturbations this sim-

plified model can be used. A more complete model would be required to account for all
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the non-linearities of this complex system. Unfortunately, is not yet possible to develop

an overall model of joint stiffness.

The system parameters that change due to the non-linearities of ankle stiffness can in-
stead be modeled as functions of time. Their changes through time can be described for
a specific task. This will not provide insight into other tasks but can be used to describe
the role of reflexes in specific situations. This simplifies the modeling task, as the non-
linear properties and interactions between the intrinsic and reflex pathways do not need

to be described explicitly.

To identify ankle stiffness as a time-varying system, Mackenzie Baker, adapted the time-
invariant, parallel-cascade identification algorithm for the time-varying case, as the topic
of her master’s thesis [70]. The time-varying, parallel-cascade algorithm is discussed in

Section 3.6.4.

3.6. Time-varying system identification
Time-varying systems provide an added challenge in system identification because their
dynamics change with time. Many system identification methods assume time-invariant
systems, however, most biological systems are time-varying to some degree. For this rea-
son, traditional, time-invariant methods cannot be used to identify them. [62] This has
limited most of the study of motor control system to static conditions [1, 3, 5, 53], or
physical models [55, 57], which can describe the system behavior for a particular task but
have no general predictive abilities [1]. These studies provide insight into motor control
strategies, but will always be lacking because most of motor control involves movement

of some kind.

For certain applications, which deal with slowly time-varying systems, adaptive methods
are appropriate. Adaptive methods use recursive algorithms that progressively change
parameters in a parametric model such that they reduce the output error. They are often
applied in tracking applications of slowly varying systems. Like with time-invariant para-
metric modeling, the system structure must be known a priori, which limits its useful-
ness. [62] A recent improvement to this tracking method blends parametric and non-

parametric modeling to reduce the need for a priori information about the system while
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remaining computationally efficient [71]. Adaptive methods are generally used for con-
trol purposes and there is no guarantee that the estimates accurately track the actual

system dynamics during the adaptation process.

Further development of methods for the identification of linear and non-linear time-
varying systems has been approached in several different ways. State-space methods are
common because they provide reliable models for complex multivariable dynamic sys-
tems [72]. Kameyama and Ohsumi [73] recently developed a subspace method capable
of tracking fast-varying systems by using a predictive approach, making it far superior to
other state-space methods, which use step-wise approximation to model the time-
variations [74], or require some a priori knowledge of the general shape of the time-

variations [75]. This method has yet to be applied to the study of biomedical systems.

Ensemble methods identify time-varying systems from sets of responses that exhibit the
same underlying time-varying behavior. Time-invariant identification techniques are used
to identify an IRF at each time point by forming the input and output from points chosen
at a particular point in the TV behavior instead of from a single response. In other words,
the identification is performed across the ensemble instead of in time. This method has
the advantage of being able to track rapid changes in system behavior and requires no a
priori information about the system order or the nature of the TV behavior. The major
disadvantage of this method is that it requires the acquisition and analysis of large data
sets. This can make it challenging to acquire the necessary data experimentally. In spite
of this, ensemble identification is the method of choice for studying real-world move-
ments, since it does not impose restrictions on the type of movement studied. [62] For

this reason, this is the method used in this thesis to study TV behavior.

3.6.1. Ensemble methods

Ensemble methods provide a robust means of identifying TV joint dynamics, and have
been used to study many biological systems [24, 58, 76-78]. The ensemble technique
was pioneered by Soechting et al. [77]. The original method imposed strict timing be-
tween the input sequence and the movement studied, requiring that with each repeti-

tion of the movement the input sequence be shifted by one element. To generate the
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desired ensemble of data, extreme consistency between each trial of the movement was
required. Time-invariant, cross-correlation system identification techniques were applied
across the ensemble of data to calculate the IRF for every time point. Thus changes in
system dynamics could be visualized via a surface of IRFs. Despite the timing restriction,
this method was used successfully to study the myotatic response in the arm [77], and

reflex changes during a simple ball catching task [24].

Seeing the advantages of the ensemble approach, researchers sought to modify the
technique to remove the strict timing requirements. Verhaegen and Yu [79] developed a
state-space formulation of the ensemble method, but it required some knowledge of the
time-variations to generate the state-space model. Bennett et al. [76] developed a para-
metric ensemble method based on the autoregressive moving average (ARMA) model.
The time-varying ARMA parameters were considered fixed for a particular time point,
and were solved for using an unbiased estimation procedure. Xu and Hollerbach [78] also
developed a parametric ensemble identification technique that used a model of forearm
dynamics. The advantage of using a parametric model with the ensemble technique is
that the models have fewer parameters, and therefore fewer movement trials are re-
quired to identify them. On the other hand, parametric models also assume a system

structure and are therefore less general.

Our lab developed a non-parametric, least-squares ensemble method based on singular
value decomposition (SVD) [62]. This method doesn’t impose any timing requirements
between the input sequence and the time-varying behavior, nor does it require the input
to be white. This method is based on time-varying convolution. The discrete-time, time-
invariant convolution equation (Equation 2) is extended to the time-varying case by mak-

ing the IRF time-dependent, as follows [62]:

V@)= At Y k(i j)x(i - j) (10)

j=M1

where i is the discrete-time index and j is lags. The time-varying IRF, h(i, j), describes the

instantaneous system dynamics at each time, and can be expressed in matrix form, as
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Figure 3-3. Data ensembles. The input and output ensembles are functions of time and realizations. For
each time point, there is an IRF that describes the instantaneous system dynamics, which is a function of
lags.
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shown in Figure 3-3. Large ensembles of input and output data generated by recording
multiple trials of the same time-varying behavior are required to identify the time-
varying IRF ensemble. Ensemble methods assume that (1) the input trials are uncorre-
lated with each other, and (2) the system undergoes the same time-variations during
each realization. The data is organized in matrix form, as shown in Figure 3-3. In theory,
the number of trials needed is equal to the number of points in the IRF. However, since
there is noise in practice, more trials are necessary. This makes the problem overdeter-
mined, and a unique solution will not exist. A solution is found by minimizing the

squared error between the observed and predicted output using SVD.

3.6.2. TV linear pseudoinverse approach
Our lab developed a method for the identification of linear time-varying (TV) system
based on the correlation method, originally applied to time-invariant systems [11]. For
an ensemble of input and output realizations exhibiting the same time-varying behavior,

the discrete convolution equation (Equation 10) for a realization is:

M?2
y,(0) = At Y G, j)x, G = ) (12)
j=M1
[ #Gi— M1,0) oG- M1,-1) e OG- M1L,M1—M2) ]
b ()= (13(1’—1\/{1—1,1) @(i—A/{l—l,O) - ¢3(i—M1—1,{\41—M2+1)
di—M2,M2-M1) ¢ii—M2,M2—M1-1) ... #(i— M2,0)

0,()=| 6,G-MD 6,G-MI=1) . §,G-M2) |

h(i)=[ hiM1) ... h(i,0) ... h(i,M2) }T

Figure 3-4. Form of the matrices used to solve for a TV linear system.

@ _ (@) - matrix of unbiased auto-covariances

¢, (i) - vector of unbiased cross-covariances

h(7) - IRF for time i
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where the subscript, r, indicates the realization number. The derivation of the TV corre-
lation method is similar to that described in Section 3.3. By multiplying both sides of the

above equation by x (i - k), summing over all realizations and dividing by the total

number of realizations, Equation 11 can be expressed in terms of covariances, as follows:

B.(i.~k) = At Y h(i. ) (i~ kK~ j) (12)

where ([}W(i —k,k — j) is the unbiased auto-covariance of the input at timei — k£ and the

input at time k — j, as follows:

R

5. L1 e g
boli= ko= )= — %, = Px. = k) (13)

r=1

A

and¢,

yu(i,—k) is the unbiased cross-covariance of the output at timei and the input at

timei - k, as follows:

A~ 1 & N
@u(z,—k>=52y,<z>x,<z—k> (14)

By letting k take on values from M1 to M2, Equation 12 can be rewritten in matrix form:
At®_ (Dh(i) = b, (i) (15)

The complete forms of the matrices are shown in Figure 3-4. Equation 15 is solved for

h(i) by replacing matrix inverse of(i)m(i) by a pseudoinverse.

Kirsch et al. successfully applied this technique in two studies [58, 59, 63]. The first study
looked at reflex EMG gain changes during an isometric contraction/relaxation task [58].
The second study examined changes in reflex EMG dynamics and intrinsic stiffness during

a rapid imposed movement while a constant contraction level was maintained [59, 63].
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3.6.3. TV Hammerstein system identification
As previously mentioned, reflex stiffness is well modeled by a Hammerstein system,
which is a cascade of a static non-linearity and a linear subsystem [25]. Mireille Lortie,
from our lab, extended Hunter and Korenberg’s iterative technique [64] to the time-
varying case with the use of ensemble data [12]. The discrete-time relationship between

the input x(¢) and the output y(¢) for a time-varying Hammerstein system is expressed as
follows:

y(@i) = At E h(i, j)g(i,x(i - ) (16)

j=M1

where g(i,’) is the time-varying non-linear mapping function represented by a polyno-
mial, and i(i, j) is the time-varying IRF. Input and output ensembles are required to pre-

dict the non-linear mapping function and IRF at each time. The iterative procedure for

Intrinsic pathway
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Figure 3-5: Model of ankle joint stiffness used in the time-varying, parallel-cascade identification algo-
rithm. All variables are the same as for the time-invariant case with some slight changes.

PTQ andVTQ are now a function of lags, T, and time. There is a separate IRF to describe the instan-

taneous system dynamics at every time. SIVL is also a function of time; the non-linear function may be

different at every time point.

P,TQ,V,TQ, andTQ, are all ensembles, where N represents the realization number.
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identifying this system is the same as described in Section 3.4 for the time-invariant case.
The time-varying correlation identification technique is used to generate the initial esti-
mate of the linear subsystem. The algorithm then iterates between estimating the poly-
nomial representing the non-linearity at each time, and estimating the parameters of the
time-varying linear subsystem, such that each iteration minimizes the sum of squared
errors (SSE) between the predicted and observed outputs. The iteration stops once the

SSE fails to decrease.

3.6.4. The Time-Varying, Parallel-Cascade algorithm
The time-invariant, parallel-cascade algorithm has been used extensively to study ankle
stiffness under static conditions [5-8]. These studies revealed that ankle stiffness varies
with position and the level of torque [5]. Therefore, when either position or torque
change, stiffness will also change and may be treated as time-varying (TV). Furthermore,
while a movement is executed both intrinsic and reflex stiffness may vary independently
and therefore, must be identified concurrently. Mackenzie Baker extended the existing
parallel-cascade algorithm for the time-varying case [13] as the topic of her thesis [70].
Figure 3-5 shows the time-varying, parallel-cascade (TVPC) model of ankle stiffness. The
same iterative procedure is used with the TV identification as with the time-invariant,
parallel-cascade algorithm. However, intrinsic stiffness and reflex stiffness are TV and
therefore, must be identified using the linear and non-linear TV ensemble identification
methods described in Sections 3.6.2 and 3.6.3, respectively. This requires input and out-

put data ensembles, as with all ensemble methods.

Improvements to the algorithm’s implementation and initial experimental validation
were the topic of Heidi Giesbrecht’s thesis [80]. The following section describes further
improvements made to the implementation of the TVPC algorithm, as part of this thesis

work.

3.7. TVPC ALGORITHM IMPROVEMENTS

Previous studies were done to validate the TVPC algorithm [70, 80] and although the
simulation results were encouraging, the algorithm had little success when applied ex-

perimentally. The simulation studies of the TVPC algorithm generated the data ensem-
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bles by TV convolution. TV IRF ensembles were created and convolved with a simulated
input to generate the output. The simulated input and output ensemble were then used
to validate the TVPC algorithm. This method did not uncover the problems that occurred
with experimental data; likely due to the simulated model having the same form as the
system estimates produced by the identification algorithm. As part of this thesis work, a
different simulation method was devised; ankle stiffness was modeled in Simulink (The
MathWorks Inc.). The Simulink model included time-varying parameters and did not ex-
plicitly perform time-varying convolution to generate the output. The results were likely
more representative of experimental data. Exploration of the algorithm with this new
simulation method uncovered some previously undocumented problems. This section

describes the steps taken to further improve the algorithm.

The TVPC algorithm was tested extensively by simulating various experimental condi-
tions. Under certain conditions, a small number of reflex IRFs had a larger amplitude
than the others, and the associated non-linearities had a negative offset. These ‘glitches’
occurred at seemingly random time points. Considerable time was spent determining
that the problem stemmed from the iterative nature of the reflex identification. Recall
that reflex stiffness is modeled as a Hammerstein system. Under certain conditions, the
initial estimate of the linear subsystem of the Hammerstein system had a small positive
offset, which would translate into output signals with a non-zero mean. However, since
the mean of the output signal was removed prior to identification, the output was re-
guired to have a zero mean overall. Therefore, to produce an overall zero offset, a nega-
tive offset was added to the non-linearity to compensate for the positive offset on the
IRF. The negative offset on the non-linearity cancelled the positive offset on the IRF to
produce a zero mean signal. The offset was small at the beginning of the iteration, but
increased with continued iteration. This offset gave the IRF the appearance of being
larger than the others. Once the root of the problem was determined, it was easily cor-
rected by removing the mean of the post-non-linearity signal prior to identifying the lin-

ear system. Using the zero mean signal forced the identified IRF to have zero offset.

After this problem was fixed, there were still some problems with both the intrinsic and

reflex IRFs for the last time points. This was due to the type of anti-aliasing filter used
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prior to decimating the signals for identification. The filter caused large end-point tran-
sients, which affected the identification. This filter was replaced by a two-pass filtering
method that first filtered the signals in the forward direction, followed by the backwards
direction. This minimized the end-points transients and eliminated the problem with the

last IRFs.

Despite the problems with decimation, it is a necessary process that eliminates much of
the high-frequency noise. Previous studies decimated the input and output ensembles
from 1000 Hz down to 100 Hz [80] prior to applying the TVPC algorithm. This gave very
clean results but the intrinsic stiffness estimates were always slightly off, producing pa-
rameter estimates lower than those simulated. This is because a 100 Hz signal does not
contain enough frequency information to identify intrinsic stiffness, which is high-pass in
nature. Changing the decimation to 200 Hz, improved the intrinsic stiffness estimates
and produced more accurate parameter estimates, even though more high frequency

noise was allowed for the identification.

These changes to the TVPC algorithm implementation greatly improved the accuracy and
reliability of the identification. The rest of this thesis explores the performance limits of
the algorithm via simulation and applies it experimentally to study ankle stiffness during

a simple torque-matching task.
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4. PERFORMANCE EVALUATION OF AN ALGORITHM FOR THE TIME-VARYING IDENTIFICA-
TION OF INTRINSIC AND REFLEX STIFFNESS: A SIMULATION STUDY

4.1. INTRODUCTION

As discussed in Chapter 2, ankle stiffness parameters change with position and the level
of voluntary torque [5]. To study situations in which one or both of these conditions are
time-varying (TV), the time-varying, parallel-cascade (TVPC) system identification algo-
rithm is required (refer to Chapter 3). This algorithm has the ability to identify time-

varying, intrinsic and reflex stiffness concurrently.

The goal of this chapter is to investigate the performance of the TVPC algorithm in vari-
ous conditions. Simulation is used so that conditions can be controlled directly. This also
permits the accuracy of the identification to be quantified by comparing the results of
the identification to the simulated systems and torques. The first test evaluates the TVPC
algorithm’s ability to accurately track rapid, TV changes in joint stiffness, by simulating
ankle stiffness with step and ramp changes in the system parameters. The second test is
designed to evaluate the algorithm’s noise performance. This test not only investigates
the effect of changing the signal-to-noise ratio (SNR) on the quality of the identification;
it also evaluates the effect of changing the relative contributions of the reflex and intrin-
sic pathways to the total output torque, and studies the effect of changing the number

of realizations in the input and output data ensembles.

4.2. METHODS
4.2.1. Analysis algorithm

Previous studies showed that ankle stiffness is described well by the model shown in

Figure 4-1 [4]. Intrinsic stiffness, PTQ, relates position, P, to torque, 7Q,, through the fol-
lowing transfer function:

TQ,(s)

= _ s’ +Bs+K,
P(s)

PTQ(s) =
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Figure 4-1. Block diagram of the time-invariant, parallel-cascade model of ankle stiffness. The
torques generated by the intrinsic and reflex pathways add linearly to produce the total torque.

Legend:
P(t) = ankle angular position.

V(t) = ankle velocity.
TQ(t) = total output torque.
TQ.(t), TQ, (1) = intrinsic and reflex torque.

PTQ(7) = intrinsic stiffness

SNL(V) = static, non-linearity of reflex stiffness Hammerstein system
VTQ(t) = linear subsystem of reflex stiffness Hammerstein system
PTQ and VTQ are a function of the IRF lags, .

SNL modifies the velocity, V.
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where I, B, and K are the inertial, viscous and elastic parameters, respectively. Reflex

stiffness relates joint velocity, V, to torque, 70, via a delay and a Hammerstein system,
consisting of SNL , modeled as a half-wave rectifier, followed by VTQ, a 2nd-order low

pass filter with the following transfer function:

n

V(is) s +28mw,5+w.

VTows) < T2 _ Gw

where G, £, andw, are the gain, damping and natural frequency, respectively. The two

pathways work in parallel and their individual output torques combine additively to pro-
duce the total output torque. With time-varying joint stiffness, all intrinsic and reflex

stiffness parameters may change with time.

Joint stiffness becomes time-varying with changes in either the joint position or the
torque acting about it. For time-invariant systems, each output point provides more in-
formation about the system to be identified. This is not the case with time-varying sys-
tems, where each output point is the result of different system dynamics. That is why
ensemble methods are used. Ensemble methods use sets of input-output pairs exhibiting
the same TV behavior, and perform the identification across the ensemble. An example
input-output data ensemble is shown in Figure 4-2. For a fixed time, /i, all the output
points across the ensemble are a result of the same instantaneous system dynamics. A
separate impulse response function (IRF) is identified for every sample time, which is de-

pendent on time, t, and lags, T . The TVPC algorithm makes use of ensemble methods

and iteration to separate and identify the TV intrinsic and reflex pathways, as described

in Chapter 3.

4.2.2. Simulation models

The performance of the TVPC algorithm was tested by simulating the model of ankle
stiffness shown in Figure 4-1. An ensemble of position inputs were generated, using
pseudo random binary sequences (PRBS) because they are used experimentally. These

position inputs were applied to the joint stiffness model to generate the resulting output
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Figure 4-2. An example of (A) an input position ensemble and (B) an output torque ensemble. An
arbitrary offset was added so that each realization could be clearly seen.

o

torque ensemble. The input position and output torque were then used in the TVPC al-
gorithm to identify the simulated system. Ankle stiffness was modeled in Simulink (The
Mathworks Inc.). A simplified block diagram of the simulation model is shown in Figure

4-3; the full Simulink model is found in Appendix A.

The simulated position input was a 0.03 rad PRBS with a 150ms switching rate. To simu-
late the bandwidth limitations of our experimental apparatus, the input was filtered with
a 2nd-order, lowpass Butterworth filter with a 50Hz cutoff. Gaussian white noise was
added to the total output torque to investigate its effect on the quality of the identifica-

tion.

Time-varying behavior was achieved by changing G, B, and K with time. All other pa-
rameters were held constant. The data ensembles were generated by running the simu-
lation multiple times with different realizations of the input and noise signals but the

same TV behavior. Note that the term set will be used to describe the group of simula-
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Figure 4-3. Simulation model of joint stiffness. The intrinsic viscosity, B, and elasticity, K, pa-
rameters, and reflex gain, G, varied with time. All other parameters were held constant.

tions used to generate the ensembles of input-output pairs, while single input-output

pairs will be referred to as realizations.

The simulations were run at a 1 KHz sampling rate and were subsequently decimated to

200 Hz prior to analysis. Only the input position, P, and the total output torque, 7Q, can

be measured experimentally. However, with simulations we will be able to determine

exactly how well the intrinsic torque, 7Q,, and the reflex torque, 7Q,, are predicted. The

guality of the identification is determined by calculating the percent variance accounted

for (%VAF) between the observed signal, X, and its estimate, )A(, as follows:

BVAF(X,X) =100 (1 - %&)X)\
var

The intrinsic torque estimates were generated by convolving the TV intrinsic stiffness es-

timates with simulated position. The reflex torque was predicted by applying the TV non-
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linearity to the velocity signal, and convolving the result with the TV reflex IRFs. The pre-

dicted total torque was the sum of the intrinsic and reflex torque estimates.

4.3. REsULTS
4.3.1. Identification of rapid, TV changes

The goal of the first simulation study was to evaluate the algorithm’s ability to identify
rapid, TV changes in system dynamics. This was tested by simulating the model shown in
Figure 4-3 with rapid changes in G, K, and B, while all other parameters were fixed. The
data ensembles were composed of 600 realizations and there was no added noise. Table

4-1 lists the parameters used in the simulated model.

G, K, and B were changed according to the time-course shown in Figure 4-4. First, G un-
derwent 3 steps changes, followed by ramp changes in both K, and B. This pattern was
chosen for its fast changes (steps) and to show that changes could be detected in the pa-
rameters known to vary under different stationary conditions. Also, by varying the pa-
rameters independently, cross-talk between parameters could be detected. Otherwise,
the pattern was not chosen to resemble that of a particular movement, since that re-

mains unknown.

Intrinsic stiffness parameters Reflex stiffness parameters
K(t) see Figure 4-4B G(t) see Figure 4-4A
B(t) see Figure 4-4C C 0.075

I 0.02 Nm/rad/s? w 20 rad/s

Table 4-1. Parameters used in the simulation model shown in Figure 4-3 to study the TVPC algo-
rithm’s ability to track system dynamics that change rapidly in time. K, B, and G are time-varying,
while all other parameters are fixed.
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Figure 4-5. Single realization of (A) position (rad), (B) intrinsic torque (Nm), (C) reflex torque
(Nm), and (D) total torque (Nm).
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Figure 4-5 shows a single realization of simulated position, intrinsic torque, reflex torque,
and total torque. The effect of changing G can be seen in the simulated reflex torque
(Figure 4-5C) as the amplitude of the reflex response changes with the steps in gain. The
TV behavior of the intrinsic stiffness is not apparent in the intrinsic torque trace (Figure

4-5B).

Figure 4-6(A-D) shows the theoretical stiffness and compliance ensembles corresponding
to the simulated systems. Figure 4-6A shows the intrinsic stiffness IRFs as they change
through time. The effect of the ramp change in K decreases the IRF amplitude and looks
like a notch in the stiffness ensemble. The effect of changing B is less apparent. Figure 4-
6B shows the intrinsic compliance IRF ensemble. Intrinsic stiffness is usually converted to
compliance following the identification procedure because it is causal and is more readily
interpreted. For instance, not only is the effect of changing K apparent, but the effect of
changing B is also visible. There are two peaks in the compliance ensembles, correspond-
ing to the changes in K and B, which were difficult see in the stiffness IRFs. The compli-
ance IRFs are also less affected by the identification noise. This is clear in the identifica-
tion results, discussed later. Figure 4-6C shows the reflex non-linearity ensemble, which
is a half-wave rectifier with no time-varying behavior, and a gain of 1 (i.e. a slope of 1).
Finally, Figure 4-6D shows the reflex stiffness IRF ensemble. The three step changes in

gain are clearly visible.

The simulated data was analyzed using the TVPC algorithm. Figure 4-6(E-H) shows the
resulting estimates of the stiffness and compliance IRF ensembles. TV behavior is not
visible in the intrinsic stiffness IRF ensemble (Figure 4-6E). It does not share any of the
same visual features as the theoretical ensemble and has an increased amplitude due to
noise, and yet, when converted to compliance (Figure 4-6F) the TV behavior is clear. This
is due to its sensitivity to identification noise, mentioned above. A small amount of high
frequency noise distorts the stiffness IRFs, but when it is converted to a low-pass compli-
ance IRFs the high frequency noise has less effect. The estimated compliance IRF
ensemble shows all the same gain and shape changes as the theoretical ensemble,
though slightly noisier. The estimated reflex stiffness IRF ensemble (Figure 4-6H) shows

the three step changes in G, but has a smaller gain. This is because some of its gain was
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Figure 4-7. Predicted torque (red) superimposed on the simulated torque (black) for (A) total
torque, (B) intrinsic torque, and (C) reflex torque. The predicted torques closely match those
simulated.

transferred to the non-linearity (Figure 4-6G), which does not have a gain of 1, as was
simulated. This is not a problem, because the reflex stiffness is in a series arrangement.
With this structure, the overall gain of the reflex pathway can be distributed arbitrarily
between the non-linearity and the low-pass filter [53]. Whether the gain is all on one or
the other of the Hammerstein component, or distributed over both, gives the same re-
sults, as long as product of the gains remains the same. The total reflex gain, G, is a com-
bination of the gain of the linear element, and the gain of the non-linearity. Therefore,
that some of the gain was associated with the estimated reflex non-linearity, instead of

all on the reflex IRFs, was not an error.

The estimated systems were used to predict the output torques, which estimated the

simulated torques well. Figure 4-7 shows a single realizations of predicted torques (red)
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superimposed on simulated torques (black). There is very close agreement between the
simulated and predicted torques; the black trace of the simulated torques is barely visi-
ble behind the red trace of the predicted torques. Figure 4-8 shows the %VAF calculated
across the ensemble at each time. The total and intrinsic torque were estimated well
consistently (see Figure 4-8(A-B), with an average %VAF of 98.5% and 98.3%, respec-
tively. The reflex torque was also predicted well (see Figure 4-8C), with an average %VAF
of 96.8%. This is not as high as for the intrinsic torque, the reason for this is explored in

the following section.

To further confirm that the simulated systems were correctly modeled, the parametric
models used to simulate them were fit to the estimated TV systems, providing an esti-

mate of the simulated parameters, such as G, B, and K. Fitting was accomplished
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Figure 4-8. %VAF calculated across the ensemble at each time point. The %VAF is very good for

the total torque (A), and intrinsic torque (B). The % VAF for the reflex torque (C) is lower, although
still good.
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using the Levenberg-Marquardt non-linear, least-square fit algorithm. Intrinsic compli-
ance was parameterized using a 2nd-order, lowpass system relating torque to position.
The linear subsystem of reflex stiffness was parameterized using a second order, lowpass
system relating half-wave rectified velocity to torque. A parametric fit was calculated for
the intrinsic and reflex IRFs at every time point. The parametric models fit the IRFs quite
well. The quality of the parametric fit was assessed by calculating the %VAF between the
parametric fits and their corresponding non-parametric IRF. The average %VAF between
the non-parametric intrinsic and reflex IRF estimates and their parametric fit was 96.1%

and 99.7%, respectively.

2>

G (Nm/rad/s)
(%]
=)

N
-

Co

K (Nm/rad)
oy
8 38 oo
; o
—
N
X
=
o
o

N

O

B o2
—
N
w
=Y
o
(#)]

B (Nm/rad/s)
N

oﬁ
- |
N
w k
= F
43 1
ot

Time (s)

Figure 4-9. Parametric fit results for parameters (A) reflex gain, G, (B) elasticity, K, and (C) vis-
cosity, B. The values obtained by the parametric fits are in blue (solid). These are compared to
the values of parameters used in the simulations, in red (dotted). The simulation parameters are
estimated well.
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The parametric fits provided values for K, B, and the reflex IRF gain. Recall that the total
reflex gain is the product of the gain on the non-linear and linear subsystems. Therefore,
the gain of the non-linearity must also be determined in order to have the equivalent of
the simulated parameter, G. The gain of a polynomial is difficult to define. Recall that the
gain of a half-wave rectifier is determined by the slope of the line above zero. By apply-
ing the knowledge that the polynomial is approximating a half-wave rectifier, a straight
line that starts at the origin, can be used to approximate the positive portion of the poly-
nomial; the slope of that line is an estimate of the gain of the non-linearity. The total re-
flex gain, G, is calculated by multiplying the gain of the non-linearity with the gain of the

parametric fit of the reflex IRF.

Figure 4-9 shows the value of the parameters estimated for G, K, and B. The estimated
parameters closely follow the time-course of those simulated. Even the step changesin G
are predicted precisely (see Figure 4-9A). The ramp changes in K and B are also predicted
well (see Figure 4-9(B-C)). This demonstrates that the TVPC algorithm is able to track
rapid changes in system dynamics with no a priori information about the time-course of

the TV behavior.

4.3.2. Noise performance

The second goal of the simulation study was to evaluate the robustness of the TVPC al-
gorithm in the presence of noise. Specifically, we wanted to study the effect of the
signal-to-noise ratio (SNR) on the quality of the identification and determine the condi-
tions needed for successful identification. Time-invariant system dynamics were simu-
lated to isolate the exact system conditions affecting the algorithm’s performance. With
a constant noise level, varying the stiffness gain over a realization would change the
signal-to-noise ratio; time-invariant simulations allow for a constant SNR to be main-
tained. Furthermore, the relative gain of the intrinsic and reflex pathways in the parallel-
cascade structure, may affect the algorithm’s performance. This can be controlled with

time-invariant simulations.

The same TV procedure was used to simulate and identify the time-invariant systems.

The input and output were organized into ensembles of 500 realizations and the system
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Parameters Value(s)
| (same for all sets) 0.02 Nm/rad/s?
B (same for all sets) 1.5 Nm/rad/s
K (same for all sets) 150 Nm/rad
C (same for all sets) 0.75
w (same for all sets) 20 rad/s
G 10, 20, 30 Nm/rad/s
SNR 0, 5,10, 15, 20, 25, 30, 35 dB
# of realizations (same for all sets) 500

Table 4-2. Value of the parameters used to evaluate the TVPC algorithm’s performance with
various noise levels (SNR) and reflex gain (G).

was identified using the TVPC algorithm. Table 4-2 shows the values of the simulated pa-
rameters. All system parameters were held constant for each set and the reflex gain and
SNR were varied between sets. The reflex gain, G, took on three values, representing low,
medium, and high gain, to explore the effect of changing the relative strength of the re-
flex pathway on the quality of the identification. For each reflex gain, SNRs from 0 dB to
35dB, in 5 dB increments, were simulated. There were a total of 24 simulated sets; each
with a different combination of reflex gain and SNR. The quality of the identification was
assessed by the %VAF between the simulated, noise-free torques and the estimated

torques.

Figure 4-10 shows the %VAF between the simulated and predicted total torque (A), in-
trinsic torque (B), and reflex torque (C) for the various SNRs and reflex gain combina-
tions. Each point represents the results of the identification of a single set. The identifi-
cation was considered to have failed if the %VAF fell below zero; the %VAF was set to

zero for those points.

Figure 4-10(A-B) shows that the total and intrinsic torque were estimated consistently
well. The %VAFs are above 80% for all SNRs and reflex gains; dropping only slightly as the

SNR decreases. This, however, was not the case with the reflex torque. The size of the
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Figure 4-10. Percent VAF between simulated and predicted (A) total, (B) intrinsic, and (C) reflex
torque as a function of SNR for high, medium, and low reflex gains. The reflex identification is
more sensitive to higher noise levels than the intrinsic identification.
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reflex gain had a large effect on the amount of noise that could be tolerated during reflex
identification. This is most clearly illustrated by the points corresponding to low reflex
gain (see Figure 4-10C), where the identification failed for SNRs less than 10 dB. The

guality of the reflex identification degraded at higher SNRs for lower reflex gains.

In light of the above result, a new metric was calculated: the effective reflex SNR, defined
as the ratio of reflex torque power to noise power. Figure 4-11 plots the %VAF between
simulated and predicted reflex torque against effective reflex SNR. Using this new metric,
the reflex identification showed the same degradation behavior for all reflex gains. The

%VAF was above 80% for effective reflex SNRs above 0 dB, and fell off rapidly below that.
4.3.3. Number of realizations

In TV ensemble identification methods, the quality of the identification is not improved
by using longer realizations to generate the estimates, as it is with time-invariant identifi-
cation. This is because noise averaging is not performed in time but across the ensemble.
Consequently, the quality of the identification should improve as more realizations are

added to the data ensembles. Similarly, more realizations should be required as the SNR

Parameters Value(s)
| (same for all sets) 0.02 Nm/rad/s?
B (same for all sets) 1.5 Nm/rad/s
K (same for all sets) 150 Nm/rad
C (same for all sets) 0.75
w (same for all sets) 20 rad/s
G (same for all sets) 20 Nm/rad/s
SNR (same for all sets) 10 dB
# of realizations 400, 450, 500, 550, 600, 650, 700, 750, 800, 900

Table 4-3. Parameter values used to investigate the effect of increasing the number of realiza-
tions in the data ensembles. All parameters were fixed except the number of realizations.
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decreases. To test these hypotheses, we first studied the effect of increasing of the num-
ber of realizations on the quality of the torque estimates. Table 4-3 shows the values of
the simulated system parameters. The SNR was fixed at 10 dB and a medium reflex gain
was chosen because these conditions were observed in a previous study that used the

time-invariant, parallel-cascade algorithm to evaluate ankle stiffness [5].

Figure 4-12A shows the %VAF between the simulated total, intrinsic and reflex torques
and their estimates versus the number of realizations included in the data ensembles.
The total and intrinsic torques were modeled consistently well; maintaining a %VAF be-
tween simulated and predicted torques above 90%. Increasing the number of realiza-
tions in the ensembles only slightly improved the estimates. A more drastic improvement
was seen in the reflex identification; the %VAF increased from approximately 60% with
400 realizations, to 90% with 900 realizations. The previous results showed that with a
medium reflex gain, the identification of the reflex pathway was more sensitive to the
SNR than that of the intrinsic pathway (refer to Figure 4-10(B-C)). Therefore, it was ex-
pected that increasing the number of realizations, which increases the noise averaging,

would more significantly improve the reflex torque estimates.

The second part of the study varied both the number of realizations and the SNR in order
to determine the minimum number of realizations required to reliably identify the sys-
tem under various noise conditions. Reliability was determined by simulating 5 sets with
the same SNR and number of realizations but different realizations of the input and noise
signals. If the identification of all 5 sets was successful, the identification was considered
reliable. If, however, one or more identifications failed, determined by a %VAF below
zero for either the total, intrinsic or reflex torque, the identification was considered unre-
liable. Failure results from limiting the amount of noise averaging by reducing the num-
ber of realizations. When approaching the minimum number of realizations required for
identification, certain combinations of the input, output and noise may result in a suc-
cessful identification, while others may fail. The minimum number of realizations re-
quired for reliable estimation for a particular SNR was determined by decreasing the

number of realizations in the ensembles by 25 until at least one identification failed. The
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Figure 4-12. (A) %VAF between the simulated and estimated total, intrinsic and reflex torques
vs. the number of realizations used in the data ensembles. Increasing the number of realizations
improves the %VAF of the identification. The reflex identification shows the most improvement.
(B) The minimum number of realizations required for reliable identification vs. SNR. Less realiza-
tions are required for reliable identification as the SNR increases.

minimum allowable ensemble size was determined to be that of the last successful iden-

tifications of a group of 5 sets. A medium reflex gain was used.

Figure 4-12B shows the minimum number of realizations required for successful identifi-
cation as a function of SNR. As expected, the minimum number of realizations required
for reliable identification decreased in a non-linear manner as the SNR increased. Even
for a SNR close to 0 dB less than 500 realizations were required, and as few as 225 reali-

zations were required for SNRs above 35 dB. Note that although few realizations were
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required to achieve an identification, increasing the number of realizations in the

ensemble would improve the estimates.

4.4. DiscussiON AND CONCLUSIONS

The results of this simulation study demonstrate several important properties of the
TVPC algorithm. First, the TVPC algorithm is capable of estimating system dynamics that
change rapidly with time. In fact, it was even able to accurately track step changes, which
were nearly instantaneous. Therefore, there are no limitations on the speed of the dy-
namics that may be studied using this method. Secondly, the TVPC algorithm is limited
by the relative contribution of the reflex pathway, which is unlikely to be constant during
movement. As the reflex gain decreases, the algorithm’s ability to adequately identify
the reflex pathway diminishes. Consequently, more realizations will be needed to main-
tain a high %VAF as the reflex gain decreases, and the SNR and effective reflex SNR de-

crease.

That the reflex identification cannot tolerate as much noise when the intrinsic compo-
nent dominates the output is unsurprising because of the iterative nature of the algo-
rithm. Consider the following: the intrinsic stiffness is estimated first and its contribution
is removed from the total output torque prior to reflex identification. This is made possi-
ble by the reflex delay, which causes the reflex torque to be uncorrelated with the input
for the duration of the reflex delay, which is longer than that of the intrinsic IRF. For the
same reason, the noise is also not included in the intrinsic estimates because it is uncor-
related with the input for all times. Therefore, when the intrinsic component is removed
from the total torque, the reflex component and the entirety of the noise remain for the
reflex identification. This means that with smaller reflex gains, the effective reflex SNR is
much lower than the total SNR, which, as the results of the previous section revealed,
would require more realizations to achieve a similar identification quality as the intrinsic
component. A similar trend could be expected if the situation were reversed and the re-
flex component dominated the output. In that case the intrinsic identification would
have a lower effective SNR than the reflex identification, which would likely result in a

lower %VAF of the intrinsic torque. However, there is an added complication, which is
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that the reflex dynamics have more free parameters that must be identified, because the
reflex IRF is longer than the intrinsic IRF and the non-linearity must be identified. There-
fore, reflex stiffness presents a more difficult estimation problem and will always be

more challenging to identify.

The number of realizations used in the data ensembles must take into account both the
predicted reflex gain and the SNR. For a fixed SNR, more realizations will be required if
the reflex gain is low rather than high. The less dominant pathway will have a lower ef-
fective SNR and therefore, more noise averaging will be required. A previous study [5]
that used the time-invariant, parallel-cascade identification algorithm achieved a %VAF(

TQ,TQ) of 90% and above, which is approximately equivalent to a 9 dB SNR. The same

study found the reflex stiffness to have a low to medium gain. If these conditions are as-
sumed for future experiments, between 500 and 800 realizations would be required for
reliable and accurate estimation using the TVPC algorithm. This is a large amount of data;
however, if experiments are designed such that one realization of a task takes 3 seconds
to complete, 800 realizations recorded consecutively would take 40 minutes. If rest peri-
ods are included, the full experiment could be completed in under an hour, which is a
realistic and reasonable amount of time to expect a subject to perform a task. Carefully
designed experiments will improve the likelihood of successful system identification.
When possible, experiments should aim to maximize the reflex gain and the SNR, and

when this cannot be controlled, more realizations will improve the results.

The next chapter describes a study in which the TVPC algorithm is used to study changes

in intrinsic and reflex dynamics during an isometric contraction relaxation task.
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5. ANKLE STIFFNESS DURING AN ISOMETRIC CONTRACTION/RELAXATION TASK
5.1. INTRODUCTION

Position and the level of muscle activation have been found to greatly influence joint
stiffness under quasi-stationary conditions [5]. Even though stationary studies indicate
that joint stiffness is a variable property, they cannot be used to predict temporal
changes during movement. Stationary studies can predict the stiffness once a transition
is complete, but cannot predict its pattern of change between two points. Furthermore,
the amplitude of the reflex EMG response, for matched background EMG levels and joint
position, changes depending on the movement being executed [9, 10]. Due to the under-
lying non-linear properties of ankle stiffness, changing either ankle position or torque in
time affects the system dynamics. These changes in stiffness throughout a task can be
treated as time-varying (TV) dynamics, which require specialized identification tech-
niques. Since most day-to-day tasks involve changes in position or torque, TV identifica-
tion techniques must be used to identify stiffness as it changes throughout a particular

task.
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Figure 5-1. Schematic of the experimental setup
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Figure 5-2. (A) Custom-made fibreglass boot (B) Boot attached to foot pedal of the hydraulic actuator

This chapter describes the use of a time-varying, parallel-cascade (TVPC) algorithm (refer
to chapter 3) to examine the time-course of intrinsic and reflex stiffness modulation dur-
ing a simple isometric contraction/relaxation task. The goal is to confirm that the TVPC
algorithm produces reasonable results with experimental data. Subjects were required to
periodically contract and relax their triceps surae (TS) while small, pseudo-random,
position perturbations were applied. Kirsch et al.[58] and Kimura et al. [56] studied the
reflex EMG response during similar tasks. Kirsch et al. found an increase in reflex EMG
gain just prior to and during the early phase of contraction, and a gain decrease associ-
ated with relaxation. They also found that these changes closely followed the changes in
background EMG, leading them to conclude that the muscle activation level and reflex
gain were commonly controlled. Similarly, Kimura et al. found that the amplitude of the
reflex EMG was largest during the contraction phase and smallest during the relaxation

phase. The following sections provide detailed methods and results.

5.2. METHODS

5.2.1. Experimental setup
A general schematic of the experimental setup is shown in Figure 5-1. The subject lay
supine with their foot attached to a hydraulic actuator by means of a custom made fi-
breglass boot (Figure 5-2A). The knee was held in a slightly bent position, supported by
sandbags. A strap across the thigh prevented motion at the knee joint. The custom boot

was attached to a foot pedal (Figure 5-2B), which produced the rotation around the an-
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kle joint. Position and rotation were controlled by a proportional position servo imple-

mented using xPC Target (The Mathworks Inc.) on the Target PC.

Six signals were recorded: position, torque, and 4 EMGs. Angular position was measured
using a precision potentiometer (Bl Technologies, 6273). Ankle torque was acquired us-
ing a general purpose reaction torque sensor (Lebow, 2110-5K). EMG signals were re-
corded from the lateral (LG) and medial gastrocnemius (MG), soleus (SOL), and tibialis
anterior (TA) muscles using a 8-channel Bagnoli EMG System (Delsys Inc.). These signals
were sampled at 1 kHz by a dynamic signal acquisition card (National Instruments, 4472),
which also performed the anti-aliasing, and stored on the Host PC. These signals were

also used by the Target PC for the position controller and subject feedback.

The subject was provided with visual feedback through an LCD monitor suspended over-
head. The Display PC generated the feedback display (discussed in detail in Section 5.2.4)

using signals from the Target PC.

5.2.2. Subjects and Task
Six male subjects between the ages of 24 and 42, with no prior history of neuromuscular
disease, participated in this study. They were required to perform a simple torque
matching task, while the ankle underwent small perturbations about the neutral
position. The perturbation was a 0.03 rad pseudo random binary sequence (PRBS) with a
127 ms switching rate, assumed to be small enough not to affect system properties and
dynamics. The ankle was placed in a neutral position and the target torque levels kept
small to maximize the reflex contribution to the total torque output [5] and to avoid fa-

tigue. A detailed experimental protocol follows.

5.2.3. EMG Preparation
For the EMG recordings, the subject was required to shave five small patches of hair,
about 6 cm? each, for the placement of the electrodes. The shaved areas were cleaned
with alcohol swabs. Single differential surface electrodes (DE-2.1) were attached using

double sided tape. Electrodes were placed on the belly of the lateral and medial heads of
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Figure 5-3. Visual torque feedback given to the subject. The red dashed lines are used for the stationary
torque matching task. The blue lines are used for the time-varying, isometric contraction/relaxation task.
The red ball provides feedback about the torque generated by the subject. When the subject pushes on
the foot pedal (plantarflexion) the ball moves down on the screen. It moves up when the subject pulls
back (dorsiflexion).

the gastrocnemius, on the soleus just below the gastrocnemius, and on the belly of the

tibialis anterior. A large ground electrode was placed on the knee.

5.2.4. Visual Feedback
Visual feedback was provided to the subject by means of the LCD screen suspended
overhead. The feedback display is shown in Figure 5-3. The red dashed lines were used
for stationary torque matching tasks, while the blue lines were used for the time-varying,
isometric contraction/relaxation task. The red ball responded to changes in torque. It
moved across the screen in time; taking six seconds to cross the screen and then looping
back to the beginning. The subject’s filtered torque controlled the vertical ball position.

Plantarflexing torques moved the ball down and dorsiflexing torques moved the ball up
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on the screen. The recorded torque was filtered with a 2nd-order Bessel filter with 0.5 Hz
cutoff. This cutoff removed most of the torque response to the perturbation, leaving
only the slowly changing voluntary torque. Before every recording, the passive torque
(i.e. the torque recorded while the subject was relaxed) was recorded and removed from
the feedback torque so that the torque seen by the subject was only the voluntary

torque.

5.2.5. Experimental Protocol
The subject lay supine with their foot in the custom boot attached to the actuator. The
hydraulic fluid was warmed prior to the start of the experiment to avoid any change in
behavior during the experiment. The subject was required to perform the following

tasks:

5.2.5.1. Preliminary recordings

1. Zero-levels: The subject was asked to relax and the base level signals were recorded

for reference.

2. Maximum Voluntary Contraction (MVC): The subject was asked to push (plantarflex-
ion) and pull (dorsiflexion) as hard as they could. According to the lab convention, a
plantarflexing torque is negative, while a dorsiflexing torque is positive. The value ob-
tained in the plantarflexing direction was used to set the torque levels in the torque

matching task. It was also used to assess muscle fatigue at the end of the experiment.

5.2.5.2. Training

To obtain good results in a TV experiment, it is important that there be as little inter-trial
variability as possible. In a torque matching task, many different combinations of TS and
TA activations can produce the same torque output. The visual feedback only provides
the subject with the total output torque and does not provide them with any informa-
tion about how they are performing the task. Initial pilot experiments revealed that sub-
jects had a tendency to use their TA to perform the task, even though instructed to only
contract and relax the TS; the TA should not have been involved. They varied their use of

TA and TS throughout the experiment, which meant the task was not being performed
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Figure 5-4. The solid blue lines are the ensemble average of the median filtered EMG. The dotted red lines
indicate the standard deviation. (A) and (B) show the subject’s EMG prior to training. (C) and (D) are after
training. (A) SOL EMG without training (B) TA EMG without training (C) SOL EMG with training (D) TA EMG
with training.

consistently. Furthermore, there could be no guarantee that all subjects performed the

task in the same manner, making it difficult to compare results. For this reason, a strict

training procedure was added to the experimental protocol.

The subject was given time to practice matching the torque trace both with and without
perturbations. TA EMG was monitored during the practice. If the TA EMG exceeded base-
line levels, indicating contraction, the subject was told to relax their TA. After 5 to 10
minutes of training, the subjects were generally able to perform the task without use of

the TA. Figure 5-4 shows a subject’s mean baseline EMG with standard deviation before
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and after training. It is evident that there was TA EMG modulation without training and
that it was no longer present after training. Furthermore, when the subject no longer
used their TA, the TS modulation was larger and clearer. One subject was not able to per-
form the task without using the TA. Training was done in the same session as the rest of

the experiment for all but one subject.

The EMG shown in Figure 5-4 is the ensemble average of median filtered traces. The in-
dividual EMG traces, with a 1 kHz sampling frequency, were filtered with a 250 point
median filter. This was done to remove peaks due to the reflex response and isolate the

background activity.

5.2.5.3. TV torque matching task

This task involved the isometric contraction/relaxation of the triceps surae (TS) between
1% and 5% MVC. Low torque levels were used to avoid muscle fatigue. To ensure consis-
tent task performance, the subject was instructed to keep the red ball between the blue
lines in the visual feedback (see Figure 5-3). The red ball went through two periods,
three seconds each, of the task before looping back to the beginning. The subject was
given approximately 5 minutes to practice matching the torque trace without perturba-
tions. This was then recorded for 3 minutes, and could be used to assess the quality of

the task performance.

The subject was then trained to perform the same task while the ankle was perturbed.
The training procedure was explained in Section 5.2.5.2. The subject was required to
complete 10 sets of 100 repetitions. Each set took approximately 5 minutes to complete,
and the subject was given a 2 minute rest between each. A longer break was given at the
half way point. A total of 1000 repetitions (realizations) of the task were acquired. The

MVC was reassessed following the 10 sets.

5.2.6. Fatigue
This experiment took just over two hours to complete from start to finish, so muscle fa-
tigue was a concern. Fatigue can change intrinsic and reflex dynamics and cause intrinsic

gain to decrease and reflex gain to increase [81]. Time-varying ensemble methods rely on
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the system being the same across the entire ensemble; fatigue would change the system
and thus the identification would provide unreliable results. To avoid fatigue, a very low
level contraction was used (5% MVC) and the subjects were given frequent rest periods.
Fatigue was assessed by comparing the subject’s MVC before and after the experiment.
All subjects achieved or surpassed their original MVC, indicating that muscle fatigue was

not a problem.

5.2.7. Data Preparation
The TV trials were collected continuously in 10 sets of 100 cycles. These long records
were segmented into individual realizations and aligned to form the data ensembles (as
Figure 5-5 illustrates). There were several challenges involved in this process.
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Figure 5-5. (A) Example input ensemble (B) Related output torque ensemble. The points denoted by the
black box in A are convolved with the IRF at time = 1 to generate the output at the black line in B (time
=1).
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First the trials had to be segmented and aligned in a consistent way for all 10 data sets.
The trials would, ideally, be aligned according to the underlying voluntary torque. This
cannot be done directly because the torque recording includes the reflex response. Xu
and Hollerbach [78] suggested that the underlying voluntary movement could be ap-
proximated by applying a filter with a cutoff frequency equal to the movement fre-
guency. This idea was adapted by filtering the torque with a 2nd-order Butterworth filter
with a 0.5 Hz cutoff to approximate the underlying voluntary torque. This filtered torque
was used to align the trials and choose the most similar. The following is the alignment

and selection algorithm used to generate the data sets used for system identification:

1. Initial segmentation: The filtered torque was first segmented according to the 3-
second modulus of a clock signal. This clock signal controlled the movement of the red

ball across the screen of the feedback display. A modulus value of zero indicated the

Torque (Nm)
IN
T

0 T T T T T

Time (s)
Figure 5-6. Filtered torque traces after (A) initial alignment, (B) P-P selection process, realignment and
extension, (C) Final selection

89



beginning of each repetition. The clock signal ran continuously throughout the entire

experiment and therefore could be used to align data in the ten different sets.

The point at which the clock signal crossed zero for the first time in each set was used
as the starting point. Beginning at the reference point for each set, the signals were
broken into 3-second segments and reorganized into an ensemble. Figure 5-6A shows

the result of this initial segmentation.

This first alignment, although consistent with the command trace given to the sub-
jects, does not represent the ideal alignment because it does not account for variabil-
ity in the subject’s response. The subject may have started or ended their contraction

at different times in each cycle. Further alignment was necessary for optimal results.

. Removal of trials with abnormal peak-to-peak (P-P) amplitude: Following the initial
segmentation, filtered torque traces with abnormally small or large amplitudes were
removed from the ensemble. To accomplish this, the first step was to calculate the
ensemble mean filtered torque trace and its P-P amplitude. Next, the P-P amplitude of
the mean was subtracted from the individual P-P values, and the standard deviation of
these differences was calculated. Trials were sorted according to their P-P amplitudes
and those with P-P amplitudes that differed from the mean value by more than 2

standard deviations were removed from the ensemble.

. Realignment according to cross-covariance values: The ensemble mean filtered torque
trace was recalculated for the remaining realizations. The remaining trials were shifted
to a point of maximum correlation with the ensemble mean torque. This was deter-
mined by calculating the unbiased cross-covariance between the ensemble mean
torque and the individual realizations. Each trial was then shifted to the point deter-
mined to produce the maximum correlation. The newly shifted segments were re-
trieved from the original continuous traces and reorganized into an ensemble. At this
point, each realization was extended to include additional points at the beginning and
end of the period; thus allowing an entire period of ankle stiffness to be identified.
The ensemble following realignment and extension is shown in Figure 5-6B; notice the

closer alignment and tighter grouping of the trials.
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4. Selection of most similar realizations according to %VAF: Once the realizations were
optimally aligned, the most similar trials were selected. The mean ensemble filtered

torque trace was recalculated. The match between it and the individual traces was

assessed in terms of percent variance accounted for (%VAF). The %VAF between two

signals, X and, X , is calculated as follows:

BVAF(X.X) = 100(1 - &(;{)}m
vart

The %VAFs were sorted in descending order and plotted against the realization num-

ber (see Figure 5-7). This selection curve was used to determine how many realiza-
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tions should be kept. The goal was to keep only the realizations with a %VAF greater
than 90%; typically, between 600 and 750 realizations were kept. A minimum of 600
were retained if the 90% mark could not be achieved. The final selected trials com-
pleted the data ensemble used for identification. Figure 5-6C shows an example the
data ensemble after the final selection process. Notice that the dissimilar traces were

removed and there is a tight grouping of trials.

5.2.8. Data Analysis
The TVPC algorithm (see Chapter 3) was used to identify TV joint stiffness. The algorithm
generated intrinsic and reflex stiffness estimates at each time. Intrinsic stiffness was con-
verted to compliance for ease of interpretation. The resulting system estimates were
used to predict the output torque. The predicted intrinsic torque was calculated by con-
volving the position with the estimated time-varying intrinsic stiffness dynamics. The
predicted reflex torque was the result of applying the estimated TV Hammerstein system
to the velocity signal. Predicted total torque was calculated as the sum of the predicted
intrinsic and reflex torques. The quality of the predictions was assessed in terms of %VAF.
The quality of the total torque prediction is denoted as %VAFor. Intrinsic and reflex
torque were not directly observed, consequently, a direct measure of the quality of their
estimates is impossible. The %VAF between the total observed torque and the intrinsic
and reflex torque estimates, denoted %VAF, and %VAFR respectively, was used to quan-

tify the relative contributions of each pathway to the total output torque.

The physical significance of non-parametric models is difficult to interpret because the
parameters have no physical meaning. For this reason, parametric fits of the intrinsic
compliance and reflex stiffness were calculated. Parameterization was accomplished us-
ing the Levenberg-Marquardt non-linear, least-squares fit algorithm. Intrinsic compliance

was parameterized using a 2nd-order, low-pass filter, with the following equation:

1
Is>+Bs+ K
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where I, B, and K are the inertial, viscous and elastic parameters, respectively. This
transfer function has been shown to describe intrinsic stiffness well [3]. K is typically

used to describe the overall gain of the intrinsic pathway.

The linear component of reflex stiffness was parameterized using a delayed, 2nd-order,

low-pass filter, with the following equation:

Gw*

s +Cws + o’

where G,, andw are the reflex gain, damping and and natural frequency, respectively.

The delay was fixed at 40 ms and overall reflex gain was calculated as the product of the

gain of the non-linearity and G.

5.3. REsuLTs

5.3.1. General behavior
Figure 5-8 shows single trial responses for position, torque, and GL, GM, SOL and TA
EMGs for one subject. Figures 5-9 to 5-14 show results from this same subject. These
results are a good representation of the trend seen in all subjects, except where other-
wise noted. Figure 5-8A shows the 0.03 rad PRBS used as the position input. The rising
edge of the position perturbation stretched the TS, and a clear reflex response can be
seen in the torque and TS EMG. In Figure 5-8B, the underlying voluntary torque change is
seen by the drop in the mean of the signal at around 2 s. The TA EMG (Figure 5-8C),
shown on a different scale than the other EMG responses, shows small peaks. These
peaks are likely due to crosstalk with LG and not due to a stretch because they are very
small and occur during TS stretching and not TA stretching. The TS EMG reflex response
(refer to Figure 5-8(D-F)) shows some time-varying behavior; the amplitude of the re-
sponse changes over the length of the trial. The response is clearly non-linear, since
there is no response to the falling edge of the position perturbation. This non-linear re-

flex behavior has been previously documented [25, 53].
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Figure 5-9 shows the ensemble mean of position, torque and EMGs for one subject. The
position (Figure 5-9A) averages to zero, which is what was desired. The mean torque
(Figure 5-9B) and TS EMG (Figure 5-9(D-F)) show the desired TV behavior, gradual
contraction-relaxation of the TS. The TA EMG is flat, indicating that the TA was not used,
as the subject was trained to avoid. All subjects showed similar behavior, except subject
4 who was unable to use only his TS muscles to perform the task. His identification re-
sults, which are discussed later, show similar trends to subjects 1-3 and were included

for support.
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Figure 5-10. Results of TVPC algorithm. (A) Intrinsic stiffness, (B) Intrinsic compliance, (C) Reflex non-
linearity, and (D) Reflex linear subsystem.
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5.3.2. Identification results

5.3.2.1. System estimates

Figure 5-10 shows the estimated intrinsic stiffness, intrinsic compliance, and reflex stiff-
ness at each time. The intrinsic stiffness estimates (Figure 5-10A) were quite noisy, which
made it difficult to see time-varying behavior. However, when converted to compliance
(Figure 10B) time-varying behavior was apparent; the amplitude of the large negative
peak and the second positive peak of the compliance IRFs change over time. The non-
linearity ensemble (Figure 5-10C) did not show any clear time-varying behavior. The
negative peaks of the reflex IRF ensemble (Figure 5-10D) show some time-varying
changes. Clearly, there was time-varying behavior, as the IRFs were not identical through

time.

5.3.2.2. Goodness of Fit

Figure 5-11 shows a sample of five observed position-torque pairs. The predicted torque
(red) is superimposed on the observed torque (blue). The observed torque was not per-
fectly predicted, but an examination of the frequency content of the residuals indicated
that the majority of the power was below 5 Hz. The reflex component has been shown to
dominate at 5-10 Hz, while the intrinsic component dominates at higher frequencies [4].
The frequency of the residuals fell below the range of reflex and intrinsic components,
indicating the discrepancy was likely due to inconsistencies in the low frequency
voluntary torque. The ensemble mean torque was subtracted from each realization prior
to identification. However, since the voluntary torque was not modulated exactly the
same way each trial, the voluntary torque that differed from the ensemble mean re-

mained in the data.

Despite this, the identification yielded good predictions. Figure 5-12 shows %VAFqor,
%VAF, and %VAFg for one subject calculated across the ensemble throughout a period of
the task; the ensemble mean torque is also shown for comparison. Notice that the con-
tribution of each pathway changes throughout the task. Figure 5-12B shows that the
contribution of the intrinsic pathway drops near the beginning and end of the contrac-

tion. The drop in the intrinsic contribution is also reflected in %VAFror (see Figure 5-12A).
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[ e | sounes
Subject 1 77.8 38.3 39.2
Subject 2 83.0 59.3 23.5
Subject 3 77.7 35.9 44.9
Subject 4 78.1 45.2 32.2
Subject 5 72.3 21.4 45.6

Table 5-1. Average %VAFror, %VAF,, and %VAFg for one cycle, for all subjects.
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Figure 5-12C shows that, for this subject, the reflex contribution stayed relatively con-
stant; some subjects showed some slight change. We'd expect to see change in %VAFg
and %VAF, as the gain of each pathway changed. If the intrinsic stiffness was constant, an
increase in reflex gain would increase the torque contributed by the reflex pathway to
the output, thereby increasing the %VAFgr. However, if the intrinsic gain increased in the
same way as the reflex gain, there will be no change in the relative contribution of the

reflex pathway to the output.

The average %VAFor for one cycle was between 72.3% and 83.0% for all subjects. Table
5-1 lists the average %VAFtor, %VAF,, and %VAFg over one cycle, for all subjects. Note
that the reflex pathway contributed more than the intrinsic pathway for three of the five

subjects.

5.3.2.3. Parametric fits

The intrinsic compliance IRFs, the reflex stiffness IRFs, and the reflex non-linearities were
fit parametrically, as described in Section 5.2.8. Figure 5-13 shows an example of para-
metric fits superimposed on their associated intrinsic IRF, reflex non-linearity, and reflex
IRF for one time point; clearly, they are closely matched. The parametric fits were gener-
ally quite good. All the parameters of the fits for both intrinsic compliance and reflex
stiffness for one subject are shown in Figure 5-14. The red dashed lines indicate the be-
ginning and end of the contraction, and the green dashed line indicates the middle. The
intrinsic parameters were much noisier than the reflex parameters and the %VAF of the
fits were not as consistently high. Despite the noise, it is apparent that B, and I change
very little, while K follows the same pattern as the mean torque. It increased with the
contraction and decreased with relaxation. The reflex gain, G, shows a completely differ-
ent pattern. The reflex gain had two peaks; the first began just prior to the start of the

contraction and the second just prior to the relaxation. Neitherw or{ showed any sig-

nificant changes.

The time-course of the intrinsic and reflex gain changes, for all subjects, is shown in Fig-
ure 5-15. Subject 1-4 show similar trends in both intrinsic and reflex gain. Their results

showed that the intrinsic gain followed the same pattern as the voluntary torque, in
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Figure 5-13. Example of identified systems (blue) and their parametric fits (red) for one time point. (A) In-

trinsic compliance (B) Reflex non-linearity (C) Reflex IRF. The fits approximate the identified system dynam-
ics well.
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Figure 5-15. Time-course of intrinsic gain, K, in blue, and reflex gain, G, in green, for all subjects. The mean
torque (red) is included for comparison. Notice that, for subjects 1-4, the intrinsic gain follows the change
in the mean torque, while the reflex gain has one peak near the beginning of the contraction, and another
near the beginning of the relaxation. Subject 5 shows different behavior; the intrinsic gain shows little
change, while the reflex gain follows same pattern as the mean torque.
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agreement with previous time-invariant studies that have shown that it increases with
increasing voluntary contraction [3, 5]. The reflex gains, for subjects 1-4, all had two
peaks; one near the beginning of the contraction and one near the beginning of the re-
laxation. There was variability in the amplitude and width of the peaks between subjects

but they occurred at similar points in the task.

Subject 5 showed entirely different behavior; the intrinsic gain was small and remained
relatively constant throughout the contraction and the reflex gain had only one peak,
which coincided with the peak contraction level. The background EMG showed no ab-
normalities; it followed the same pattern as the mean ensemble torque, as with all

subjects.

5.4. DISCUSSION

We used a time-varying, parallel-cascade system identification method to examine tem-
poral changes in ankle joint stiffness during a torque matching task. A small position per-
turbation was applied around the neutral ankle position while the subject generated
torque to track a command on the feedback display. The TVPC algorithm produced good
results, with %VAFstor between 72.3% and 83.0%; this shows that the method works
with real data. Furthermore, this study shows that the TV behavior could not be pre-
dicted from time-invariant behavior. For 4 out of 5 subjects, there were two peaks in re-
flex gain; the first peak occurred near the lowest torque level, while the second occurred
near the maximum torque level. Time-invariant studies would have predicted that the
pattern of reflex gain modulation would have followed the mean torque. This is clearly

not the case.

The intrinsic stiffness estimates were noisy, likely because of the low stiffness require-
ments of the task. The intrinsic stiffness gain was generally below 100 Nm/rad during this
task, for all subject, while other studies have found stiffness gains as high as 500 Nm/rad
[5]. Stationary studies would predict that the neutral position of the ankle and small
torques levels used here would result in a small intrinsic gain [5]. When one of the paral-
lel pathways has a small gain, it is more difficult to accurately identify it, as revealed in

the simulation study (Chapter 4). In spite of the noisy estimates, the results showed that
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the intrinsic stiffness gain behaved as expected. It increased with increasing torque and

decreased with decreasing torque. This behavior was predicted by stationary studies [5].

Subject 5 exhibited different intrinsic and reflex gain modulation behavior. No reason
was found for this discrepancy. Subject 5 performed the task in the same manner as all
other subjects and did not used his TA during the experiment. The background EMG fol-
lowed the pattern of the mean torque, in the same way as the other subjects. It appears

that his reflex modulation strategy was simply different.

5.4.1. Methodological considerations

5.4.1.1. Inter-trial variability

Time-varying ensemble methods are based on the assumption that, for a given point in
time, the underlying system is the same across the entire ensemble. This is possible to
achieve with simulated systems but not with human subjects, where there will always be
inter-trial variability. To minimize this, a trial selection process is necessary, which keeps
only the most similar realizations. This should not bias the results, as it simply ensures
that the identification algorithm requirements are met. In fact, including trials that exhib-

ited different behavior could have resulted in erroneous system estimates.

5.4.1.2. Goodness of fit

The TVPC algorithm only models intrinsic and reflex stiffness, and therefore, does not
account for voluntary torque. So the mean torque, representing the voluntary compo-
nent, is removed prior to the identification. However, any voluntary torque that does not
exactly match the mean will remain in the torque ensemble. As discussed above, this re-
sidual voluntary torque will act as another noise source, in addition to the general out-
put noise. Recall, that the selection process used here is based on low-pass filtered
torque, representative of the voluntary torque. Using this process, the mean filtered
torque accounted for 90% or more of the variance of the realizations selected. However,

this does not take into account any higher frequency variability.

A side experiment was performed on Subject 1 to determine the best possible tracking

that he could do with perturbations. The subject was asked to track the command signal
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of the feedback display, while the ankle was perturbed with a predictable square-wave.
The subject knew when the perturbations would occur and therefore had the best
chance of performing the task repeatably. After some allotted practice time, the tracking
was recorded. The data was segmented and aligned to form an ensemble. The mean
ensemble torque trace was calculated and compared to each individual realization. The
mean ensemble torque accounted for an average of 83% of the variance of each realiza-
tion. This means that the predicted total torque could not be expected to account for
more than 83% of the variance of the observed torque. This places an upper limit on
how much variance the TVPC algorithm could predict. The predicted torque, from the
main experiment, for Subject 1 accounted for 77.8% of the total torque. This value is only
slightly lower than the subject was able to obtain with predictable perturbation. There-
fore, the results are very good; the total %VAF attained during the main experiment ap-
proaches that of the controlled, best-case tracking experiment. The variability in the sub-
ject’s tracking was the principle source of noise, and accounted for most of the unpre-

dicted torque.

5.4.2. Comparison with Other Results
The reflex stiffness modulation pattern found in this study does not agree with that of
the reflex EMG dynamics in similar studies. Kimura et al. [56] studied the reflex EMG re-
sponse during a gradual increment/decrement of isometric force. They found that the
reflex gain was largest during contraction and smallest during relaxation. The pattern of
reflex EMG gain did not correlate with the reflex stiffness changes in this study. However,
their study confirmed that the background torque level does not predict the reflex gain.
For matched background torque levels, the reflex gain was different depending on when

that torque occurred during the task.

In contrast, Kirsch et al. [58] found that the reflex EMG gain during a rapid isometric con-
traction closely followed the background EMG. However, in their experiment, the EMG
did not closely follow the torque level, in comparison to this experiment. They saw a
similar burst in reflex gain just prior to the contraction, but saw a dip in gain prior to re-
laxation, instead of another increase. They also used a much stronger contraction (up to

25% MVC), which may explain the difference in the EMG activation pattern. In their ex-
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periment, the subject was required to produce a much stronger, faster contraction in the
same amount of time as our much weaker contraction. The experimental paradigm was

not similar enough for a direct comparison of results.
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6. CONCLUSION

The time-varying, parallel-cascade (TVPC) algorithm is a tool to study ankle stiffness dur-
ing tasks in which the torque and/or position are changing. A simulation study was con-
ducted to assess the algorithm’s performance limits. Specifically, the study examined the
algorithm’s ability to track system dynamics that change quickly in time, and isolated the
factors influencing its performance in the presence of noise. The algorithm was applied
experimentally to confirm that it could produce good results with real data. The follow-

ing section summarizes the key results.

6.1. SUMMARY

6.1.1. Simulation Study
The simulation study showed that the TVPC algorithm can identify rapid, time-varying
changes in system dynamics; therefore, there is no theoretical limit on the speed of the
movement to be identified. The study isolated three factors that impacted the algo-
rithm’s performance: the relative contribution of intrinsic and reflex stiffness, the signal-
to-noise ratio (SNR), and the number of realizations in the data ensembles. Given a fixed
SNR, the quality of the reflex identification degraded as its gain decreased; this is be-
cause it faced a lower effective SNR as its gain decreased. Ideally, each pathway would
contribute equally to the output torque. The gain of the system and the SNR are not
fully under experimental control, while the number of realizations in the data ensembles
is under the investigator’s control. The simulation study showed that the quality of the
identification increased as the number of realizations in the data ensembles increased.
Assuming conditions where the SNR and reflex gain are similar to the time-invariant
studies, approximately 500-800 realizations of the time-varying behavior would be nec-
essary to produce good results. The following section outlines how the results of the

simulation helped guide the design of the experimental procedure.

6.1.2. Experimental Design
The TVPC algorithm was used to study dynamic ankle stiffness during an isometric
contraction-relaxation task. The design of the experiment was critical to the successful

implementation of the TVPC algorithm. The simulation study showed that, when possi-
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ble, the experiment should be designed such that the intrinsic and reflex pathways con-
tribute equally to the output, and the SNR is high. Unfortunately, these two conditions
cannot both be optimized. A study of stationary ankle stiffness [5] showed that the gain
of each pathway increases as the ankle is dorsiflexed, increasing the overall SNR. How-
ever, the relative contribution of the reflex pathway decreases as the ankle is dorsiflexed
because its gain doesn’t increase as quickly as the intrinsic gain. The largest relative re-
flex contribution actually occurs near the neutral ankle position with low contraction
levels. Therefore, when designing the experiment, a choice had to be made between
maximizing the reflex contribution or the overall SNR. We decided to maximize the reflex
contribution by using a neutral ankle position and a low level of voluntary torque. Using
a low torque also had the added benefit of avoiding muscle fatigue, which was a concern
because of the large number of realizations the time-varying (TV) identification required.
The simulation study showed that between 500 and 800 realizations should be used in
the data ensemble to get good results; with more realizations providing better results.
Therefore, the experiment was designed such that 1000 realizations were collected and
only the most similar were used in the identification; typically, between 600 and 800 re-
alizations were kept. The investigation of the performance limitations of the TVPC algo-
rithm helped guide the design choices that led to good experimental results. These re-

sults are discussed in the following section.

6.1.3. Experimental results
The TVPC algorithm was successfully used to identify the progression of intrinsic and re-
flex stiffness during a torque matching task. The subjects were asked to slowly contract
their triceps surae from 1% to 5% of their maximum voluntary contraction and then
slowly relax. The TVPC algorithm yielded good results, accounting for up to 83% of the
total torque output variance; confirming that the algorithm works with real data. Fur-
thermore, the study showed that time-invariant stiffness behavior cannot be used to
predict the modulation pattern of TV stiffness. The results showed peaks in reflex gain
near the lowest and highest torque levels; time-invariant data would predict that they

would occur at the same level of background torque.
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Reflex stiffness contributed more to the output torque than intrinsic stiffness, in 3 of 5
subjects. This led to good reflex estimates but the intrinsic stiffness estimates were noisy.
The experiment was designed to maximize reflex stiffness, by using a neutral position
and small torques. This, consequently, minimized the intrinsic stiffness. The simulation
study predicted that a small relative gain for one pathway would result in poorer esti-
mates of it, because of the lower effective SNR. This is what was seen with the intrinsic
stiffness identification. In spite of this, the TVPC algorithm produced good overall results
with real data and will be a useful tool for studying the modulation pattern of joint stiff-

ness during various tasks.
6.2. FUTURE WORK

The simulation study addressed the problem of additive noise at the output but not the
problem of inconsistent TV behavior. Inter-trial variability is a common difficulty encoun-
tered in TV experiments [78]. The TVPC algorithm assumes that at a fixed point in time
the system is in the same state across the entire ensemble, but this will never be the
case with human subjects. Despite this, it is assumed that the system parameters will
vary around a mean and be correctly estimated with averaging. This has not been con-

firmed via simulation and is an area that requires further investigation.

There are still many ways in which the TVPC algorithm can be used to explore ankle stiff-
ness. This thesis addresses only the TV behavior during a relatively small, slow contrac-
tion with a fixed position. It would be informative to vary the speed or strength of the

contraction to investigate their effect on the reflex stiffness gain pattern.

The TVPC algorithm could also be applied to a task where the hydraulic actuator rotates
the ankle while the subject maintains a constant torque. There are added challenges to
this type of experiment. It is difficult to provide the subject with feedback of their
voluntary torque, because as the ankle position changes the intrinsic torque is also
changing. Therefore, the torque the subjects sees is a combination of the slow changes
in the intrinsic and voluntary torque. Without proper feedback, it is difficult to ensure

repeatable performance of the task.
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It is important to be able to study more realistic tasks; the TVPC algorithm is currently
limited to task in which the subject pushes against a stiff load. This means that the
torques produced by the subject do not affect the position of the ankle. However, most
tasks involve moving against a compliant load, where the torques produced as a result of
perturbations change the position. This situation requires closed-loop identification
techniques, because the position affects the torque and the torque affects the position.
The TVPC algorithm is currently not designed to handle this identification problem. Fu-
ture work could involve expanding the TVPC algorithm to handle situations that require
closed loop identification. This would make it possible to study ankle stiffness during any
repeatable task. The ultimate goal is to study ankle stiffness during every day tasks, such
as walking, to gain a better understanding of the reflex modulation patterns in normal

function.
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Simulink simulation model used in Chapter 4
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